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Abstract. Geometric calculus unify, simplify and generalize many
fields of mathematics that involve geometric ideas. This work is a
swift introduction to a few concepts in geometric calculus leading
to simple representation of Maxwell equations. We then approxi-
mate the Vlasov-Maxwell system using streamline diffusion finite
element method. In this part we derive optimal convergence rates
due to the maximal available regularity of the exact solution.

1. Introduction

In geometric calculus, geometric objects: points, lines, planes, cir-
cles, ... are represented by members of an algebra, a geometric algebra,
rather than by equations relating coordinates. Geometric relations on
objects: rotate, translate, intersect, project, construct a circle through
three points, ... are represented by the algebraic operations on the
objects. Thus, geometric algebra is coordinate free.

Below we introduce some basic concepts in geometric calculus used
for a novel approach to a simple and general formulation for the Maxwell
equation unifying its approximation strategies. The short survey on
geometric calculus in here is based on studies by Dorst and Lasenby
[3] Hestenes [5], and Macdonald [7]. Our main concern will be approx-
imation of the Vlasov-Maxwell (VM) system by a semi-classical finite
element approach: the streamline diffusion (SD) method. The standard
finite element method for hyperbolic equation (e.g. VM), with the ex-
act solution in the Sobolev space Hr+1, has an L2-optimal convergence
rate of order O(hr). Whereas, with the same regularity (Hr+1) the
corresponding optimal convergence rate for the elliptic and parabolic
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2 M. ASADZADEH

problems is: O(hr+1). SD method is, roughly, a variational formulation
with the test functions possessing a multiple of convection term in the
equation. This corresponds to add of extra diffusion to the continuous
problem which enhance the regularity. Using the SD strategy would
improve the convergence rate of the hyperbolic problems by an order
of 1/2: i.e. O(hr+1/2). Then, by interpolation space techniques, one
can show that, for the hyperbolic problems, this rate is optimal.

Throughout this note C will denote a generic constant, not neces-
sarily the same at each occurrence, and independent of the parameters
in the equations, unless otherwise explicitly specified.

2. The Geometric Algebra Gn

The Geometric Algebra Gn is an extension of the inner product space
Rn. Every vector in Rn is also in Gn. It is an associative algebra with
one. i.e. a vector space with a product, called geometric product. In
addition to being an algebra, it satisfies also the properties G1−G2:

G1. The geometric product of Gn is linked to inner product of Rn by

vv = v · v = |v|2, ∀ v ∈ Rn.

G2. Every orthogonal basis for Rn defines a canonical basis for Gn.

Canonical basis. We illustrate this by an example: for an orthonor-
mal basis {e1, e2, e3} for R3, the canonical basis for G3 is given by

1 basis for 0-vectors (scalars)

e1 e2 e3 basis for 1-vectors (vectors)

e1e2 e1e3 e2e3 basis for 2-vectors (bivectors)

e1e2e3 basis for 3-vectors (trivectors).

By G1, the nonzero vectors have an inverse in Gn: v−1 = v/|v|2. A
polarization identity, combined with G1 and distributivity yields:

u · v =
1

2
((u + v) · (u + v)− u · u− v · v)

=
1

2
((u + v)2 − u2 − v2) =

1

2
(uv + vu).

Thus if u and v are orthogonal then

vu = −uv, (u ⊥ v). (2.1)

If u ⊥ v and u and v are nonzero, then by G1: (uv)2 = uvuv =
−uuvv = −|u|2|v|2 < 0. Thus, uv is not a scalar or a vector: It is a
2-vector, or bivector. For the orthonormal basis: e1e2 = i. By (2.1)
rearranging the order of the e’s in a member of canonical basis at most
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changes its sign. Hence, the original product and its rearrangements
are linearly dependent. Zero is a j-vector for all j. Evidently, there are
no k-vectors in Gl with k > l. Finally, dim(Gl) = 2l.

2.1. The Fundamental Identity. Let {e1, e2} be an ON-basis for a
plane containing two vectors u and v in Rn. Let u = ae1 + be2 and
v = ce1 + de2, (a, b, c and d are scalars). Then, by (G1) and (2.1)

uv = (ac+ bd) + (ad− bc)e1e2 =: u · v + u ∧ v. (2.2)

u · v = (ac + bd) = |u||v| cos θ is the usual inner product of u and v.
u ∧ v is a bivector called the outer product. It represents an oriented
area. The identities ad− bc = |u||v| sin θ, and e1e2 = i yield

u ∧ v = |u||v| sin θ i. (2.3)

Some important properties
• u ∧ v, unlike uv, is always a bivector.
• uv is a bivector⇔ u·v = 0⇔ u ⊥ v⇔ uv = −vu⇔ uv = u∧v.
In particular, for i 6= j, eiej = ei ∧ ej.
• uv is a scalar ⇔ u ∧ v = 0⇔ u ‖ v⇔ uv = u · v⇔ uv = vu.
• u · v = 1

2
(uv + vu), is the symmetric part of geometric product.

• u∧v = 1
2
(uv−vu), is the antisymmetric part of geometric product.

2.2. Subspaces. A k-blade B for a k-dimensional subspace of Rn is
a product of members of an orthogonal basis for the subspace, i.e.
B = b1b2 . . .bk. Nonzero scalars are 0-blades.

The inverse of B is B−1 = bk . . .b2b1/|bk|2 . . . |b2|2|b1|2.
The pseudoscalar. The pseudoscalar I = e1e2 . . . en is the unit of Gn.
Since n-vectors form a 1-dimensional subspace of Gn, every n-vector is
a scalar multiple of I. I−1 = en . . . e2e1 = ±I.
Duality. The dual of a multivector A is defined as

A∗ = A/I = AI−1.

If A is a j-blade, then A∗ is an (n−j)-blade representing the orthogonal
complement of A. Extend an orthonormal basis {a1, a2, . . . , aj} of A
to an orthonormal basis {a1, . . . , aj, aj+1, . . . , an} of Rn. Then

A∗ = AI−1 = ±AI = ±(a1a2 . . . aj)(a1a2, . . . , an) = ±aj+1 . . . an.

2.3. Extended Inner/Outer Products. 〈V 〉j denotes the j-vector
part of the multivector V , e.g. 〈uv〉0 = u ·v, 〈uv〉1 = 0, 〈uv〉2 = u∧v.

Lemma 2.1. Let v be a vector and B, a k-blade. Decompose v with
respect to B: v = v‖ + v⊥, where v‖ ∈ B and v⊥ ⊥ B. Then
a. v‖ ·B = v‖B, v‖ ∧B = 0 and v‖ ·B is a (k − 1)-blade in B.
b. v⊥ ∧B = v⊥B, v⊥ ·B = 0 and v⊥ ∧B is a (k + 1)-blade.



4 M. ASADZADEH

Theorem 2.2 ( Extended fundamental identity). Let B be a k-blade.
Then for every vector v,

vB = v ·B + v ∧B. (2.4)

Proof. Use Lemma 2.1. �

In general AB 6= A ·B + A ∧B. Example: A = e1e2, B = e2e3.

3. Geometric Calculus

3.1. The gradient. The gradient is defined as ∇ =
∑

j ej∂j, and acts
algebraically as a vector: we can multiply it by a scalar field f , giving
the vector field ∇f ; dot it with a vector field f , giving the scalar field
∇ · f ; and cross it with f , giving the vector field ∇ × f . In geometric
calculus ∇f does make sense:

∇f = ∇ · f +∇∧ f , (scalar+bivector). (3.1)

3.2. Analytic functions. Let f(x, y) = u(x, y) + v(x, y)i, where u
and v are real valued. Then, using e1e2 = i

∇f = e1(ux + vxi) + e2(uy + vyi) = e1(ux − vy) + e2(vx + uy).

Thus, ∇f = 0⇔ Cauchy-Riemann equations ⇔ f is analytic.

3.3. Generalize ∇. Directional derivative of F in the “direction” A:

∂AF (X) = lim
τ→0

F (X + τA)− F (X)

τ
.

If A contains grades for which F is not defined, then ∂AF (X) = 0, e.g.
if F is a function of a vector v, then ∂e1eeF (v) = 0.

3.3.1. Maxwell’s equations. Elementary electromagnetic theory is
formulated in 3D vector calculus: The electric field e and the magnetic
field b, represent the electromagnetic field. The charged density scalar
field ρ and the current density vector field j represent the distribution
and motion of charges. They governed by the Maxwell’s equations, viz

∇ · e = 4πρ, ∇× e = −∂b
∂t
, ∇ ·b = 0, ∇×b = 4πj +

∂e

∂t
. (3.2)

The spacetime G1,3 provides a more elegant formulation. A space-
time bivector field F unifying e and b represents the electromagnetic
field. A spacetime vector field J unifies ρ and j. Maxwell’s four equa-
tions become a single equation:

∇F = J. (3.3)

Multiplying ∇F = J by e0 and equating the 0−, 1−, 2−, and 3-vector
parts yields the standard Maxwell equation (3.2). Calculations using
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this formulation of Maxwell’s equations are much easier than using the
R3 formulation. This is in part due to the fact that the GA derivative
∇, unlike the divergent and curl in equation (3.2), is invertible.

4. Vlasov-Maxwell system in vector analysis form

The Vlasov-Maxwell (VM) system describes time evolution of col-
losionless plasma of particles with mass m and charge q, formulated
as

∂tf + v̂ · ∇xf + q(E + c−1v ×B) · ∇vf = 0,

∂tE = c∇×B − j, ∇ · E = ρ,

∂tB = −c∇× E, ∇ ·B = 0.

(4.1)

Here f is density in phase space, c is speed of light and v̂ the velocity

v̂ = (m2 + c−2|v|2)−1/2v (v is momentum).

Further, the charge and current densities are given by

ρ(t, x) = 4π

∫
qf dv, j(t, x) = 4π

∫
qf v̂ dv. (4.2)

A proof for the existence (and uniqueness) of the solution to VM system
can be obtained using the Schauder fixed point theorem: Insert an
assumed and given g for f in (4.2). Compute ρg, jg and insert the
results in Maxwell equations to get Eg, Bg. Then insert, such obtained,
Eg and Bg in the Vlasov equation to get fg via an operator Λ: fg = Λg.
A fixed point of Λ is the solution of the VM system. For the discretized
version one should, instead, use the Brouwver fixed point theorem.
Both these proofs are rather involved and non-trivial.

The most convenient VM system to discretize is the relativistic model
(RVM) in one and one-half dimensional geometry (x ∈ R, v ∈ R2) and
E = (E1, E2), which then can be generalized to higher dimensions:

∂tf + v̂1 · ∂xf + q(E +BM0v̂) · ∇vf = 0,

∂tE1 = −4πj1, ∂xE1 = 4πρ,

∂tE2 = −∂xB − 4πj2, ∂tB = −∂xE2.

 M0 =

(
0 1
−1 0

)
.

To carry out discrete analysis, we need global existence of classical
solution. To this end we need to make the following some assumptions:

The background density n(x) is smooth, has compact support and
is neutralizing. This yields, for

ρ(t, x) = q

∫
f dv − n(x); that

∫ ∞
−∞

ρ(0, x) dx = 0. (4.3)
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We also assume that f 0(x, v) := f(0, x, v) ≥ 0. Then choosing

E1(0, x) = 4π
(∫ x

−∞
f 0(y, v) dv − n(y)

)
dy, (4.4)

∂xE1 = 4πρ is the only possibility that lead to finite energy solution.

Theorem 4.1 (Glassy, Schaeffer, [4]). Assume that n is naturalizing,

(i) 0 ≤ f 0(x, v) ∈ C1
0(R3), (ii) E0

2 , B
0 ∈ C2

0(R1).

Then, there exists global C1 solutions of RVM. If 0 ≤ f 0 ∈ Cr
0(R3) and

E0
2 , B

0 ∈ Cr+1
0 (R1), then (f, E,B) is of class Cr over R+ × R× R2.

The theorem is an existence result. For r = 2 we differentiate to get{
∂tE2 = −∂xB − 4πj2 w.r.t x(t)⇒ ∂x∂tE2 = −∂2

xxB − ∂x4πj2

∂tB = −∂xE2 w.r.t t(x)⇒ ∂2
ttB = −∂t∂xE2.

Subtracting the resulting equations, both E2 and B, satisfying the wave
equation, have solutions of d’ Alembert type. The closed form solution
for E1 is yet simpler. Hence, (by uniqueness of the solution for the
wave equation), we have now both existence and uniqueness.

5. The streamline diffusion method

We shall assume (x, v) ∈ Ωx × Ωv ⊂ R × R2, that f , E2, B and n
have compact support in Ωx and that f has compact support in Ωv.
Since

∫
ρ(0, x)dx = 0, it follows that E1 has compact support in Ωx.

Let now Ω := Ωx×Ωv, t ∈ [0, T ] and 0 = t0 < t1 < . . . < tM−1 < tM =
T be a partition of [0, T ]. For k = 0, 1, . . . we define

Vh = {w ∈ H : w|K ∈ Pk(τ)× Pk(Im);∀K = τ × Im},

where Sm = Im×Ω = [tm−1, tm]×Ω and H := ΠM
m=1H

1(Sm). We write

(f, g)m := (f, g)Sm , (f, g)D :=

∫
D

fg, (D any domain).

Further ‖g‖m := (g, g)
1/2
m and

〈f, g〉m = (f(tm, ·), g(tm, ·))Ω, |g|m = 〈g, g〉1/2m .
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6. SD for Maxwell equations in vector analysis form

In this section, Ω = Ωx, we state the main SD results for the Maxwell
equations. Detailed proofs follow the path of analysis in [1]-[2] and
therefore are omitted. We set

M1 =


0 0 0
1 0 0
0 1 0
0 0 1

 , M2 =


1 0 0
0 0 0
0 0 1
0 1 0

 ,

and let W = (E1, E2, B)T , W 0 = (E0
1 , E

0
2 , B

0)T and b = (ρ, j1, j2, 0)T .
The Maxwell equations can then be written, in the concise form, as{

M1Wt +M2Wx = b
W (0, x) = W 0(x).

(6.1)

The SD method for the Maxwell equations can now be formulated as:
Find W h ∈ Vh such that for m = 1, . . . ,M ,

(M1W
h
t +M2W

h
x , g + δ(M1gt +M2gx))m + 〈W h

+, g+〉m =

= (b, g + δ(M1gt +M2gx))m + 〈W h
−, g+〉 ∀ g ∈ Vh.

Here, g = (g1, g1, g2, g3)T , δ is a multiple of h, and we have a variational
formulation with the test function g + δ(M1gt +M2gx) . We introduce

B̃(W, g) =
M−1∑
m=0

(M1Wt +M2Wx, g + δ(M1gt +M2gx))m

+
M−1∑
m=1

〈[W ], g+〉m + 〈W+, g+〉0,

which is a bilinear form, and define the linear form

L̃(b, g) =
M−1∑
m=0

(b, g + δ(M1gt +M2gx))m + 〈W 0, g+〉0.

Thus, in short, we have the SD problem: Find W h ∈ Vh such that

B̃(W h, g) = L̃(b, g) ∀ g ∈ Vh. (6.2)

Then, the triplenorm below will be an adequate measuring instrument:

|||g|||2 =
1

2
(|g+|20 + |g−|2M +

M−1∑
m=1

|[g]|2m + 2δ
M−1∑
m=0

‖M1gt +M2gx‖2
m),

where [g] = g+ − g− is the jump with g± = lims→0+ g(x± s).
It is the spirit of Reisz representation and Lax-Milgram theorems to

guarantee existence of a unique solution for (6.2) via Lemmas 6.1-6.2.



8 M. ASADZADEH

Lemma 6.1. In the above setting, we have the coercivity relation

B̃(g, g) = |||g|||2 ∀g ∈ H, H := ΠM
m=1H

1(Sm).

Lemma 6.2. For any constant C we have for g ∈ H,

‖g‖2
m ≤

(
|g−|2m+1 +

1

C
‖M1gt +M2gx‖2

m

)
he2Ch.

Lemma 6.3. For any h > 0 the problem (6.2) has a solution and if h
is small enough the solution is unique.

Let now F = E2 +B and G = E2−B. By adding and subtraction the
equations for E2 and B, we get the following equations for F and G:{

∂tF + ∂xF = j2(t, x), F (0, x) = E0
2(x) +B0(x)

∂tG− ∂xG = j2(t, x), G(0, x) = E0
2(x)−B0(x).

Using the facts that E2 = 1
2
(F +G) and B = 1

2
(F −G), we have

E2(t, x) =
1

2

(
E0

2(x− t) + E0
2(x+ t) +B0(x− t)−B0(x+ t)

)
+

+
1

2

∫ t

0

j2(τ, x+ τ − t) + j2(τ, x+ t− τ)dτ,

B(t, x) =
1

2

(
E0

2(x− t)− E0
2(x+ t) +B0(x− t) +B0(x+ t)

)
+

+
1

2

∫ t

0

j2(τ, x+ τ − t)− j2(τ, x+ t− τ)dτ.

Further, for x ∈ [x0, x1], the equations for E1 yields

E1(t, x) =

∫ x

x0

(∫
f(t, y, v)dv − n(y)

)
dy.

We set QT = [0, T ]× Ωx, by some standard inequalities we can derive

‖E1‖2
QT
≤ C

(
‖f‖2

QT
+ T

∫
Ωx

|n(x)|2dx
)
,

and

‖E2‖2
QT
≤ CT

(∫
Ωx

|E0
2(x)|2dx+

∫
Ωx

|B0(x)|2dx+ ‖v̂2f‖2
QT

)
.

In a similar way we get, for i = 1, 2, that

‖v̂iB‖2
QT
≤ CT

(∫
Ωx

|B0(x)|2dx+

∫
Ωx

|E0
2(x)|2dx+ ‖v̂2f‖2

QT

)
.
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These inequlities are the main ingredients to perform error analysis.
Then, the proof of the convergence theorem below relay on the inter-
polation (η) and projection (ξ) error estimates in the following split:
let W h be the SD solution for (6.2) and W̃ an interpolant of W , set

W −W h = (W − W̃ )− (W h − W̃ ) := η − ξ.

Theorem 6.4. If W h is a solution to (6.2) and the exact solution W
of (6.1) satisfies ‖W‖k+1 ≤ C, then there exists a constant C such that

|||W −W h||| ≤ Chk+1/2, W ∈ Hk+1(Ωx).

7. SD for the Vlasov-Maxwell system

As for the Vlasov-Maxwell system we relay on Schauder fixed point
approach and let Ωx ⊂ Rd, Ωv ⊂ Rd and Ω := Ωx × Ωv, d = 1, 2, 3.
We consider the divergent-free form of the Vlasov-Maxwell system, viz{
ft +G · ∇f = 0, in ΩT := Ω× (0, T ) := Ωx × Ωx × (0, T ),

f(x, v, 0) = f0(x, v), in Ω0 := Ω× {0} f = fb, on ∂Ω× (0, T ).

Here ∇f := (∇xf,∇vf), and G :=
(
v, (E +BM0v)

)
⇒ divG(f) = 0.

Let F be a certain (linear) function space, f̃ ∈ F an approximation
of f and Πf ∈ F a projection of f into F (e.g. an interpolant), then
to estimate the approximation error, once again, we relay on an split:

f − f̃ = (f − Πf) + (Πf − f̃) ≡ η + ξ; ξ ∈ F .
We discretize ΩT using streamline diffusion method with test functions

of the form u+ δ
(
ut +G(f̃) · ∇u

)
, and δ ∼ h, the mesh size. Then we

(i) Use approximation theory to derive sharp error bounds for the in-
terpolant η: |||η||| ≤ |||data|||, data = f0, fb.
(ii) Establish |||ξ||| ≤ C|||η|||. (|||·||| is a certain norm below).
Observe that (i) and (ii) work only if ut is included inside test function!

7.1. stability. In the stationary problems ( with no ft), the modifica-
tion test function u+δ(Gh·∇u) together withGh·∇fh introduces a term
of the form δ(Gh·∇fh, Gh·∇u) := δ(fhγ , uγ), (γ := Gh, ζγ := γ ·∇ζ), in-
terpreted as resulting from a diffusion −δfγγ acting only in the stream-
line direction γ: Motivation for the use of the term streamline diffusion.

Lemma 7.1 (coercivity/stability).

∀u ∈ H, Bδ
(
G(fh);u, u

)
≥ 1

2
|||u|||2. ∀C1 ≥ 0.

||u||2ΩT
≤
[

1
C1
||ut +G(fh) ·∇u||2 +

∑M−1
m=1 |[g]|2m +

∫
∂Ω×I g

2|Gh ·n|
]
δeC1δ.
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Lemma guarantees existence and uniqueness for the approximate VM.
The SD test function adds numerical dissipation in the vicinity of

large gradients improving convergence rates: The streamline-diffusion
approximation, with fSD in a discrete space Vh, satisfies

||f − fSD||SD ≤ Chk+1/2||f ||Hk+1(ΩT ).

where

||f ||2SD =
1

2

[
2σ||∇vg

2
ΩT

+ |g|2M + |g|20

+
M−1∑
m=1

|[g]|2m + 2||gt +G(fh) · ∇g||2ΩT
+

∫
∂Ω×I

g2|Gh · n| dνds
]
.

For the analysis and proofs follow [1]-[2] and work out the details.
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