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Abstract

When considering regularity of surfaces we are primarily interested in tangent plane
continuity and curvature continuity respectively. We restrict ourselves to study funda-
mental surfaces such as n-patch surfaces, i.e., n patches meeting at a common vertex
point. The main problem here is to present necessary and sufficient compatibility condi-
tions for such a parameterized surface to be geometrically continuous of order one and
two. In this article the compatibility conditions are proved to be independent of the patch
parametrization. The number of patches, n, treated here is greater or equal to 3.

Keyword: n-patch surface, geometric continuity, tangent plane continuity, curvature conti-
nuity, compatibility conditions, geometric regularity.

1 Introduction

In this paper we study a certain type of surfaces, which we call n-patch surfaces, see Figure 1.
We will present general conditions for such surfaces to be regular when the the number of
patches, n, is greater than or equal 3. This is a generalization of a previous paper by the
author, see [8]. For n = 3,4,5, we deduce explicit necessary and sufficient compatibility
condition for an n-patch surface to be regular of order 1 or 2, i.e., to be tangent continuous
or curvature continuous. Since the regularity problem for 2-patch surfaces is well studied we
will focus on regularity at the vertex point V', which is the intersection point of the n patches.

Nevertheless, in order to formulate necessary and sufficient compatibility conditions for
an n-patch surface to be regular, the regularity results for two adjacent patches intersecting
along a common boundary curve by Kahmann, see [2], is of central importance.

In this paper we consider only patches that are of parametric type, but we do not restrict
us any further. Thus the results include particularly patches represented by a spline such as
Bezier polynomial, B-spline or NURBS. In a previous paper, see [8], we have studied the case
of a 4-patch surface. Among the many other authors that also has treated regularity problem
in the 4-patch surface case, we mention Bézier [3], Sarraga [6], Ye and Nowacki [7].



2 A general perspective on an n-patch Surface

In this article we will study a general n-patch surface, for n > 3. An n-patch surface is a
surface consisting of n patches connected in a way such that every pair of adjacent patches
has a common boundary curve. Moreover, all the patches meet at a common vertex V. See
Figure 1. Here we are going to decide necessary and sufficient (compatibility) conditions in
order for such a surface to be regular of order one or two, i.e., tangent plane continuous and
curvature continuous respectively.

Figure 1: An n-patch surface, where the n patches intersect at a common vertex V'

More precisely, let (u;,v;) — () (ui, v;) € R? be continuous for 0 < u;,v; < 1, where i =
1,2,...,n. An n-patch surface S of regularity G° is the set S = ,Gl{r(") (i, v3);0 < wgyv; < 1}
1=
such that the only intersection occurring between two of the patches, except for the vertex V,
is the common boundary between two nearby patches, i.e., there exists a continuous bijective
function ¢; : [0,1] — [0,1] such that for every point on the common boundary there exist
parameters u,(;,v; € [0, 1] satisfying

r0) (u,5),0) = (0, 2:(vy)),

for 7(i) = ¢ (mod n) + 1, where ¢ = 1,...,n. In order to simplify the notations we use
t;l(uT(i)) = v;, which can be done by a reparametrization. Thus, from now on we assume

having the following relation ‘ A
v (¢,0) = (0,1), (2.1)

fort € [0,1] and i =1,2,...,n.

In this section we will focus on general aspects concerning compatibility conditions for an
n-patch surface to be regular. In later sections we consider such a surface for specific numbers
n in order to explicitly get the compatibility conditions.

In the next subsection we consider tangent plane continuity, i.e., G'-continuity.



2.1 Geometric continuity of order 1

The lowest order of regularity for an n-patch surface is G°, which means that the surface is
continuous across common patch boundaries as well as the included patches are continuous.
The next level of regularity is tangent plane continuity, denoted by G, which will be defined
next. For a more detailed discussion about tangent plane continuity, see Hoschek and Lasser
[5] or Johansson [8].

Definition 2.1 A continuous surface is said to be tangent plane continuous, denoted by G*,
if every point on the surface has a unique tangent plane which varies continuously on the
surface. Such a surface is also said to be geometrically continuous of order one.

The only points where G''-continuity can fail for an n-patch surface are those at a common
boundary between two patches, as long as all the patches are regularly enough, which in
this case means C'. Here we consider patches with a normal vector field, i.e., we assume
that the patches are of regularity C’?l&, which means that the representation of each patch

(ui,v;) — rO(u,v;) € R is in C([0,1]%) with rS} X rq(,? # 0 for 0 < w;,v; < 1 and
1=1,2,...,n. Another way to guarantee tangent plane continuity under these circumstances
is to require that

70 (8,0) = Mi(D)r) (0,1) + ri(D)r) (0, 1), (2:2)

for t € [0,1], where A\; and k; are continuous functions for ¢« = 1,...,n, along the boundary
curve, and the tangent vectors rq(fi) (0,t) and rg) (t,0) are linearly independent for ¢ € [0, 1]
and i =1,2,...,n. We have here, as before, used the function 7(i) =4 (mod n) + 1.

A natural convention we follow in the rest of this article is to exclude the indices of the
variables.

In the case of an m-patch surface, using the identity (2.2), we get the next system of
identities along the common boundaries of two patches, i.e., for ¢ € [0,1]. We have

rV(4,0) = A (O)r(0,1) + kn(O)rM(0, 1)

r?(t,0) = MOrP0,8) + k1 (Or (0, 0)

rP(t,0) = MOrP(0,6) + ko (t)r'P(0,) (2.3)
e (1,0) = A1 (O 2(0,8) + ko (O (0, 1).

As long as t # 0, the above equalities do not interfere with each other, but at the point ¢ = 0,
i.e., at the common vertex V, combining (2.1) and (2.3) it implies that the next identities
have to be simultaneously satisfied. We have

(n—1) (n)

rgl) = Iy + Kpry

v = arl” 4 wrl!

r1(,3) = )\21‘1(,1) + ngrg) (2.4)
rl()n) = )\n—lrl()n72) + ’Qn—lrl(Jnil)7



where the notations \; = X;(0), x; = £;(0) and rQ(}ii) = rq(,?(0,0) for i = 1,2,...,n, are used.
The compatibility conditions in the equation system (2.4) can be rephrased in such a way that
we formulate necessary and sufficient conditions for the functions A; and k;, ¢ = 1,2,...,n,
at the intersection point V. The relations (2.4) can be written in the form

Xo Ky —1 ... 0 0 ret)
0 X3 k3 ... 0 O ri?
0 0 X ... 0 0 r)
= 0.
-1 0 0 ... A Kp rz(,nfl)
ki —1 0 ... 0 X r”

Moreover, since we want to achieve tangent plane continuity, the vector r, = (rq()l)rq(?) . rq(,n))t

at the point V' can be represented by the linearly independent vectors (rg)rgl))t, spanning
the tangent plane at the point V, as

ri) 0 1

r1(}2) A1 K1

r1()3) A1K2 K1k + Ao rq(})
ri)

r{ Y —kn/An 1A

r{" 1 0

Finally, we have a necessary and sufficient condition for tangent plane continuity at the point

V that the functions \; and k;, i = 1,2, ..., n, satisfy the next equation system at the point
V,ie.,

Ao kg —1 ... 0 O 0 1

0 X3 kK3 ... 0 O A1 K1

0 0O XN ... 0 O A1K2 K1k2 + Ag

) . ) =0 (2.5)
-1 0 0 ... A En —Kn/An 1/,
k1 —1 0 ... 0 X\ 1 0

Thus, we have

Theorem 2.1 Let S be a continuous n-patch surface, composed of the C;%—patches (u,v) —
r@(u,v), 0 < u,v <1, i =1,2,...,n, which intersect at the point V = r(D(0,0) for i =
1,2,...,n. Necessary and sufficient conditions for the surface S to be G' are that there exist
continuous functions v — X\i(v) and v — k;(v), 0 < v < 1,4 = 1,2,...,n, satisfying the



relations in (2.3) with the coefficients \; = X\;(0) and k; = K;(0), i = 1,2,...,n, fullfilling the
equation system (2.5).

Next we continue to the case of curvature continuity, i.e., G?-continuity.

2.2 Geometric continuity of order 2

A further level of regularity for a surface is to be curvature continuous. We next introduce
the concept of curvature continuity, which also is denoted by G?2.

Definition 2.2 A tangent plane continuous, G, surface is said to be curvature continuous,
denoted by G2, if every point on the surface has a unique Dupin indicatriz, which varies
continuously on the surface. Such a surface is also said to be geometrically continuous of
order two.

An equivalent way to describe the notation of curvature continuity is to demand that every
pair of closely connected patches in the n-patch surface, consisting of Ci—patches, fulfills the
next equation, together with equation (2.2), along their common boundary curve. We have

e (6,0) = A(Ord0,1) + 20 (O)ri(Hri)(0,1) + K7 (H)rl) (0,1)

Tt (0,6) + (B (0, 1), (2.6)
where the functions \;, k;, p; and v; are continuous for i = 1,2,...,n, and ¢ € [0,1]. Here we
have used the notation Ci =C?N C# We assume from now on that the functions A; and &;,
1 =1,2,...,n, are continuously differentiable. For a more detailed description of curvature
continuity and its relation to the equation (2.6) we refer to Hoschek and Lasser [5]. From

(2.6) it follows that for an n-patch surface the next equations must be satisfied along their
common patch boundaries. Thus, we have

ri(£,0) = 226000, ) + 20knr (0, ) + £2250(0, ) + pnri™ (0, ) + vpr(0, )]s
el (8,0) = AZrl (0, ) + 20 m1ei) (0, ) + w2rl) (0, ) + il (0, ) + 1ax$M (0, )]s
e (8,0) = A2r() (0, ) + 2h9kar) (0, ) + K3r2) (0,-) + par? (0, ) + vor$ (0, )]s 2

) (,0) = A2_ el (0,) + 20 1knoarle V(0,) + k2l (0, )

100, + v eV (0,

for ¢t € [0,1]. We also have, as a consequence of the identities in (2.3) combined with the
assumption of differentiability of A\; and k; for ¢ = 1,2,...,n, that the next relations must be
fulfilled, i.e.,
£l (£,0) = Aris) (0,) + marl) (0,) + Nor” (0,) + w,xl (0, )]s
£ (1,0) = Mrld (0,) + mard (0,) + Mrl (0,) + mir" (0, ),
)

)\11‘
rz(ﬁ’})(t,O) = Agr(Q)(O, )+ kK I'(Z)(O, )+ )\Qrg )(0, )+ I<é/2r1(;2)(0,' |¢

rz(ff}) (t,0) = A 1&% 1)(0, 9+ Hn_lr%*l)(o, )+ A;@,Irgnfl)((), )+ m%,lrz(,nfl)((), e



in the interval [0, 1]. Here we use the same notations as in the previous section, complemented
by pi = 1i(0), v; = 13(0), A, = X(0) and s = &}(0) for i = 1,2,...,n. Using this in combi-
nation with the identities (2.1) and (2.2), the two equation systems above can be rewritten

at the vertex point V' as follows

r? = 22e{ 42Xkl + k2l + el
rl) = A2rly 4 2gmkorl) + k23S + por

(n) _

yyw = )\%711'1(}711)72) + 2An—1’€n—1r1(3)71)

rly = A2r0Y on kel + k2rln)
and

vl = el el + Ve + kel

i) = Dorl) + morll) + el 4 s

r = e Y el

ry) = et 4 el 4+ A Y

+ KT

+ vor

(1)
(2)

—1Tw

+ 11 I'vl
(2)

v

/
+ K, _T

2 n—1
+ anlm(w )

(n—1)

+ vpr

+ pp—1r

(n—1)

The equation system (2.9) can be written in a compact form as

Ary, = Kryy + Gry,

(1) (2) (3) (n)

(n—2)

+ vp—1r

(2.8)

I(Jnfl)

(2.9)

(2.10)

where 1y, = (T rq(w Ty - Ty )b, iee., the column vector of the mixed derivatives of respec-
tively patch. Similarly for the other two column vectors r,, and r,. The matrices in equation

(2.10) are given by

-\ 1 0

0 X 1

A= 0 0 X3

1 0 0

and

Ky 0 0 .00\
ANy kb 0 ... 0
G= 0 Ny Ky ... O
0 0 0 K,

K1
0
0

K2

0

0

K3

Kn




The equalities in (2.8) can, in a similar way, also be written in a compact form. We have
I'ryy = Hryy + Fry, (2.11)

where the matrices are

1 0 0 —K2
-k 1 0 —\?
=] -\ -2 1 UN
0 0 0 1
2M1K1 0 ... 0 0
H = 0 2)\2/4,2 PN 0 0
0 0 2)\n71/{n71 0
and
0 O Un  Vp
%1 0 . 0 M1
F = Mo Voo 0 0
0 O Upn—1 O

Next, we formulate a result of the invertibility of the matrix A.

Lemma 2.2 Let A be the matriz given above forn = 3,4, .... Then, det(A) = (—1)" (A1 ... A\p—

1) # 0. Suppose that Mo ...\, = (=1)",. Thus, for an odd integer n the matriz A is invert-

ible and

A ..

A2..

DV VD
1 A3\
Ao 1
D VRS VRN W

Mg A
VIR ¥
Ag... A2
) VIR W

A1
A1 A2




Using the above Lemma for an odd integer n. From (2.10) we get
ruw =A"1kry + A1 Gry,
which combined with (2.11) implies that
(T —HA 'Ky, = (F+ HA ' G)r,.

In order to solve equation (2.12) we start with

A .. A\nKn A3 ... AnKkn —Kn,
—K1 )\3...)\1/&1 )\1%1
HA ! = Ao K9 —K9 - A A2K9
/\2-")\71—1/{571—1 )\3--'/\71—1571—1 /\1 'w)\n—lﬁn—l

First, a multiplication with x and we have

HA 'k=
A2 ... AnKnkl A3 ... Apknko .. —H%
—/i% )\3...)\1,%1/%2 )\1K1I€n
)\2%2/61 _H% e )\1A2H2/€n
)\2-'-)\n71/fn71/<vl )\3...)\71,1/6“71/{2 )\1 ...)\nflfinfllin

from which it follows that

I-HA 'k =
1— )Xo .. \pEnKk1 —A3... \nknko ... 0
0 1—)\3...)\1,%1,%2 —)\%—Allﬁfin
—A% — )\2%2%1 0 e —)\1>\2/€2/€n
—)\2...)\n,1/€n,1/€1 —)\3...>\n,1/€n,1/€2 o1 —)\1 ...)\nfll-infllin

(2.12)



Second, we multiply G by H A~! to get

HA'G =
A3 Ankin(A2k] + A5) At Anfn(Askh + N5) .. Ao Apkin A — Knkl,
A3 ... MK, — K1R) Mg Ak (Agkh + A) r1( A1kl — A))
ka(A2k] — A)) Ag .. Aako Ny — Kokl . Aaka(A1K] + A])
A5 AnctFnot okl + M) M Anc1fnot sk + ML) oo Agee Anifnot (AL + X))
and then
F+HA'G=
A3 Anfin(Aak] + A)) A Anfn(Askh + N5) cee Ao Ak A — Kkl + g
Ag... Mk, — kiK) + 1 Mg AR (Agkh + A) r1( Ak, — A +
ko(Aak] — Ay) + e Ad.. . XokoNy — Rokh + g L. Xaka (MK, + A))
A3 e Ane ko1 (ok] F L) Adee Anothno1(Askh £ M) oot Az Antkno1 (MK, X))

This concludes the odd case. For even integers n, n > 4, we instead consider the equation
(2.13) below. Supposing  is invertible, it follows from (2.10) that

K VAT = Tpw + £ Gry.
Combined with (2.11), we get
Tk "Aryy =Trp + Tk ' Gry = Hryy + Fry, +I‘/<a_1Grv,

or more specifically
(T A — H)ryy = (D7 1G + F)r,,. (2.13)




We have

'k !=

and

Tk~ 'A =

1 0 0 -A2 0 k2
—k2 1 0 0 X
-\ -k} 1 0 0

0 0 0 1 0

0 0 0 -k2 1

1 A2
?1 0 0 K1 _K/’I’L

2

—K1 %2 0 0 ,){\Tll

A2 1
_?? —K9 ?3 0 0

0 0 0 o 0

0 0 0 —Fno1

%1 0 0 —Kn -\

2
—K1 %2 0 ::L 0
A2 1
_ﬁ —K2 H—S 0 0
0 0 0 = 1
A 1
_?i — K, 571 0
)\2
A1 A2 A2 A
T em— R
1
L 0 0

10

1
L 0 0
0 :12 0
0 0 é
0 0 0
0 0 0
1 0
X 1
0 —)\3
0 0
2
)\n/{n—ﬁjnl
An A
Rn
0
%_ﬁn—l




Thus, we easily se that

AL 1
K1 kn K1
2 A
— M K1 — H*l *,Ti — k1
1 g7 AA2 A2
I'e A H = 1 —)\QHQ 1
1
P 0
_ MtEnk1 1
K1 K1
_ AM(Aitsnkr) _ dotk1Ko
Kn K2
_ A1 )2 _ A2QatK1k2)
K1 K1
1
P 0
Also, we have
1 AL
K1 O Rn—1
—RK1 o 0
-1 _ A2
0 0 —KRnp—1
K1
o 0
)\/2 / HQ
?2 - KJlKJl ?2
_ A2K) / 5 /
= —TEL — ko 2 — Kok
0 0

)\n—l)\%

Kn—1

—An—1Kn—1 —

/\nfl/\%

Kn—1

_ /\n71(>\n71+5n72’in71)

An
Ankn p—
)\n/\%
Rn
0
2
n—1 _An
n—2 Kn Fn—1

)\n()\n‘i’ﬂnflﬁn)
Rn—1
An A2

Kn

0

_ AntEn—1Kn

Rn—2 Kn
—Fn Ky 0 0 X
A2 / /
. 9 Ko 0 0
0 0 A, 0 0
/ /
L 0 0 Nkl
A1 ! A /
e T hnAn 5T Ak
AT ALk, /
- T TN
0 A
K1
Al / K,
fon — Hn—1Rp_ o

11




and

/ A2 K/ bV
Ky _ M1 ! Ao /
o 0 P KnAy, or — Knkp
X, / Kb A2N A2kl /
R = e s T A
-1 - L) roX / AZN,
'k "G+ F = —== — K2y 2 — kaky ... 0 =
b / K/
0 0 T — Kp—1Kp,_q P
0 0 ... pun vy
141 0 ... 0 1251
+ He V2. 0 0
0 0 . VUp 0
Thus
I G+ F=
2 ./ ’
Ky An’infl / 1 /
P 0 —ﬁ—/{n)\n—i—ﬂn ?l—l‘in/‘in—FVn
A, / Kb A20 A2kl ’
?Q_K/]-K/l—’_yl Py T Ten — _K/]_)\1+,U/1
A2#! , VA / AZN
T — KAy + Lo e kg T2 0 e
0 0 o1 0
Kn—1
Vi / K!
0 0 A7 L o 2 | P

In order to formalize what have been discussed above, we formulate it as

Theorem 2.3 Consider a G!'-continuous n-patch surface S, composed of the C;—patches
(u,v) — r(® (u,v), 0 <wu,v <1 fori=1,2,...,n, which intersect at the point V = r() (0,0),
where i = 1,2,...,n. Necessary and sufficient conditions for the surface S to be G* are
that there exist continuously differentiable functions v — X\;(v), v — k;(v) and continuous
functions v — p;i(v), v = vi(v) for 0 < v <1 and i = 1,2,...,n, satisfying the relations
(2.7), with the coefficients N\; = Xi(0), ki = ki(0), pi = i (0), v; = 1;(0), X; = X,(0) and
ki = k;(0) fullfilling equation (2.12) in the case of odd integers n and equation (2.13) in the
case of even integers n and invertible k respectively.

The cases where « is not invertible will be handled separately in its context.

3 A 3-patch Surface

In this section we restrict ourselves to consider a 3-patch surface and formulate necessary and
sufficient conditions for such a surface to be tangent plane continuous and curvature continu-

12



ous respectively. Thus, we reformulate Theorem 2.1 and Theorem 2.3 for this particular case.
We start by considering G'-regularity.
3.1 Tangent plane continuity — G*

The system of identities in (2.3) is in this case reduced to the next three equations which
have to be simultaneously satisfied for ¢ € [0, 1], i.e.,

)(0,8) + ra(H)ri? (0, 1)

1(5’ r§3 0
e (0) = MO (0,8) + sty (0,1) (3.1)
2(0,1) + ra(t)r$2(0, 1)

In order to restate Theorem 2.1 in the case n = 3, we have to solve the equation system (2.5),
which in this case is

Ay ke —1 0 1
—1 )\3 K3 Al K1 =0.
K1 —1 )\1 1 0

This is equivalent to the following equation systems

)\1/-4,2 —1=0
Ao+ k1Ko = 0,
and
AMA3+k3 =0
)\3&1 —1=0.

Thus, we can state our first result in this section as

Theorem 3.1 Let S be a continuous 3-patch surface, composed of the three C}?& -patches vV,

r? and 3 which meet at the vertex point V. Necessary and sufficient conditions for the
surface S to be G' are that there exist continuous functions \; and ki, i = 1,2,3, fulfilling
the relations (3.1), with the coefficients \; = X\;i(0) and k; = k;(0), i = 1,2,3, satisfying the
equations

Azky =1 A2+ K1k =0
i and 2 (3.2)
AMko =1 AsA + k3 = 0.

Trivially consequences of Theorem 3.1 are the next two results

Corollary 3.2 The equations in (3.2) implies

)\1/\2/\3 =-1 and KR1RoRK3 — —1.

13



Corollary 3.3 The equations in (3.2) also implies the natural symmetry conditions, i.e.,

)\2/’4}3 =1
M+ kK31 =0
A3+ Kkokg =0
and
M3+ kKo =0
A2+ k1 =0.

In fact, we can substitute any of the equalities in Theorem 3.1 against any other condition
in Corollary 3.3. This can easily be proved, but can also be seen as a result of symmetry. In
fact, any four of the above nine symmetry conditions can be used in Theorem 3.1.

Let us now continue to the next level of regularity.

3.2 Curvature continuity — G?

In the case of a 3-patch surface to be G2, compare (2.7), the next equation system has to be
fulfilled. We have

vl (t,0) = A2ri (0,-) + 2Agrari (0, ) + #2650 (0, ) + par' (0, -) + v3ri? (0, )¢
r$2(,0) = A2r8)(0, ) + 2\ k1 (0, ) + k20590, ) + el (0, ) + el (0, ), (3.3)
r$ (£,0) = A2r3)(0, ) + 2X0kor'H (0, ) + K22 (0, ) + pari? 0, ) + 1012 (0, )4

for ¢t € [0, 1].

In order to formulate Theorem 2.3 in the case of n = 3, we start by stating that n is an
odd integer and therefor we want to solve equation (2.12). From Theorem 3.1 in the previous
subsection, combined with its corollaries, we get

1 — AoA3K3K1 —)\g — A3Kk3K9 0
r-HA 'k= 0 1— AgAikike —A? = MNkikg | =0
—)\% — \9Kak1 0 1 — M Aokaks
and
Ask3(Aek) + Nb) k3(Askh — A5) + 3 AedgkgA\] — kakh + 3
f+HA 9= AsA1R1Ny — K1k + 11 A1k1(Askh + A5) r1(Aikh — M) +

Iig()\glill — )\’2) + 125) )\1)\21432)\% — HQHIQ + 19 )\Qlig()\llig + )\,1)

Askg(Aoky +Ay)  K3(Askh — Ag) + s As(Akh + Ap) + v
= A1 ()\2%’1 + )\/2) —+ 11 )\1/{1()\3/-4,/2 + )\é) /@1()\1/@& — )\/1) + u1
Hg()\glill — )\/2) + 125) )\2()\3%’2 + )\é) + 1y )\gliz()\llig + )\/1)

14



Thus, in this case equation (2.12) becomes

)\31€3()\2/€/1 + )\/2) Iig()\glié — )\é) + M3 )\3()\1/€g + )\/1) +v3 0 1
M ()\Qlﬁll + )\/2) + 1 Allil(/\;;lﬁé + )\g) K1 ()\p‘ig — )\/1) + 11 A K1 =0.
/iz()\glﬁll — )\/2) + o )\2()\3%’2 + )\g) + 19 )\2/@2()\1/@& + )\/1) 1 0

If we multiply the above equation with the invertible matrix

1 0 —>\3/>\2,‘€2
_/\1//\3:%3 1 0 5
0 —)\2//\1/€1 1
we get
2A3I€3)\/2 — iiﬁ; 2)\3&3%’2 + pu3 — % Vs 0 1
141 2)\1/61)\% — % 2)\1/11/4% + u1 — % A K1 =0,
2)\2&2%’1 =+ Mo — 7??}2 120} 2)\2:%2)\,1 — %i‘zi 1 0

which is equivalent to the next equation system
/\1(2)\3%3/43/2 + pus — %) +v3=0

2)\3/‘63/\’2 — % + /{1(2/\3%3:%/2 + pz — %) =0

M(2Arr1 Ny — JUL) + 2\ kR + iy — A2 =0

A3k3
v+ /€1(2/\1I€1Ag — )\1“3) =0

A3K3
/ Aapr1
Ao + 2)\2/@2)\1 ~ Nl o 0
2)\21€2Fé/1 + g2 — if:i + k1o = 0.

A further simplification using Theorem 3.1 and its Corollaries combined with multiplying the
above equation system by the following invertible matrix

0 0 0 0 XN O
0 0 0 0 0 X\
MoXx 0 0 0 0
Mg 0 0 0 0 0
0 0 0 X 0 0
0 0 X3 XAkg 0 0O

gives us the next result, which states
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Theorem 3.4 Let S be a G'-continuous 3-patch surface, composed of the three Ci—patches

rD, @ and r®) which meet at the vertex point V.. Necessary and sufficient conditions for
the surface S to be G? are that there exist continuously differentiable functions \;, k; and
continuous functions p;, v; for i = 1,2,3, fulfilling the relations (3.3), with the coefficients
Ai = Xi(0), ki = Ki(0), pi = pi(0), vi = 145(0), X; = X,(0) and K} = &(0) fori =1,2,3,
satisfying the equations

2)\2)\/1 + Kop1 + )\%Vg =0

2/\2,%/1 4+ Apg + kovy + AMKkive =0

223X\, + Kapiz + Ajvz =0

2X\3K5 + Agpiz + Kava + Agkarg =0

2)\1)\:/3 + K13 + )\?))Vl =0

2A1I€é 4+ A1 + k1vg + Agksvp = 0.

!/

It can be worth noticing that the case u; = v; = 0 for i = 1,2, 3, implies that \; = x, = 0 for

)

i =1,2,3. On the other hand, if X = &, =0 for ¢ = 1,2,3, then y; = v; =0 for i = 1,2, 3.

4 A 4-patch Surface

In this section we study the most common case, i.e., a 4-patch surface. Just as in the previous
section, we use the results in the second section applied to the case where n = 4 in order to
formulate necessary and sufficient conditions for the surface to be tangent plane continuous
as well as curvature continuous.

4.1 Tangent plane continuity — G*

In the case of a 4-patch surface we have, as a consequence from (2.3), the next equation
system for ¢ € [0, 1]

riV(,0) = M)ri(0,t) + ra(t)rs(0, 1)
r?t,0) = A)rd0,6) + k1 (6)r$ (0, ¢) )
rP(4,0) = A(t)rP(0,t) + ra()r$2(0, 1)
r$(,0) = A(t)rP(0,1) + rs(t)r$(0,1).

A2 kg —1 0 0 1

0 X3 k3 -1 A1 K1 _ 0
-1 0 M B4 AK2 Ki1Ko + Ao

k1 —1 0 X\ 1 0



from which we get

AA3 + Akok3 —1=0

K1A3 + K3(k1ka + A2) =0

MM ko + K4 =0

—1+ M(R1k2 + A2) = 0.
Thus, we have the following result

Theorem 4.1 Let S be a continuous 4-patch surface, composed of the C#—patches v, for
1 = 1,...,4, which meet at the vertex point V. Necessary and sufficient conditions for the
surface S to be G' are that there exist continuous functions \; and ki, i = 1,...,4, fulfilling
the relations (4.1) and the coefficients A; = X\i(0) and k; = k;(0), i = 1,...,4, satisfy the
equations

A1(A3 + mok3) =1
A3kl +k3 =0

and

)\4()\2 + I€1/€2) =1
MMk + kg = 0.
With the same assumptions as in Theorem 4.1, we can prove the next three Corollaries.

Corollary 4.2
AA2AzAg = 1.

Proof

I = M(A3+ K2kr3) = A(A3 — Kadz ki)
Ads(1 = Marira) = Ada(1 — (1= Aohs))
A1 A2 A3 A4.

We can easily see that the symmetry conditions also hold. We have

AoAskg + Ko = AaAgkg + A1 Ao ds\gke = AaA3(kg + AgA1k2) =0
AMAak3 + K1 = MAgKk3 + A1 Aad3 k1 = >\1)\2(I€3 + )\3)\4&1) =0
and
Ao( Mg+ k3ke) = Ao Mg+ A3hak1Madik2) = A(Ae + Kik2) =1
)\3()\1 + /i4/<,1) = )\3()\1 + )\4)\1/@2)\1/\2/&3) = )\1()\3 + I‘igl-ig) =1.

17



Corollary 4.3 It holds that

R1Kk2 = )\2()\1)\3 — 1)
K3R4 = )\4()\1)\3 — 1)

and
K2R3 = )\3()\2)\4 — 1)

R4R1 = )\1()\2)\4 — 1).

Corollary 4.4 It also holds that

(1 —A1A3)?

_ (1 — )\2)\4)2

R1kKa2R3k4 =

A1A3

4.2 Curvature continuity — G?

A2y

Since we are now dealing with a 4-patch surface and its curvature continuity, the next equa-

tions have to be fulfilled, i.e., for ¢ € [0, 1] we have

i) (¢,0) = A2 (0, ) + 2>\4n4ruv 0, ) + k20590, ) + pari? 0, ) + variP(0, ) s

rq(,%) (t,0) = /\21'7(}12 0,-) + 2/\1/411' (O7 )+ nlr(l)(O, )+ ,u,lrul)(O7 )+ z/qu()l)(O, e (4.2)
e (£,0) = Mri2)(0, ) + 2harorle) (0,) + w380 (0,) + ' (0,) +0orP (0,0
ry (£,0) = A2r(3)(0, ) + 2\sksrid (0, ) + /€3r(3)(0, )+ usr (0, ) + vsrl® (0, ).

As a consequence of this, we refer to Theorem 2.3 under the
equation (2.13) must be satisfied. We have for n = 4 that

assumption that k1ko # 0, the

_ Aitkak1 1 A3\]  Aa(Matr3Kg)
K1 K1 K3 K3
_ A1(Aatrmarg) _ Aa+KiKo 1 A}
I 'A - H= r 2 2 4 4.3
A1A3 _ A2(de+r1K2) _ A3+kok3 1 ( )
K1 K1 K3 K3
i >\2)\§ _ )\3(>\3+"42f‘53) _ AM+K3K4
K4 K2 K2 K4
and
e 'G+F
Hll Ai)\é )\zlﬁé / )\/1 /
?1 —? — —H4)\4+M4 a _H4I€4+V4
X K A2\, A2
= K2 Rlﬁl e Ko T ka + (1
,\251 A K A2\
=2 — RNyt pe 22— KRy 1 o p
)\2>\/ >\2K)2 / )\, / H’il
—T2 — — I€3)\3 + M3 ?4 - Ii3/€3 + V3 ?4

18



Using the identities in Theorem 4.1 and its Corollaries we can simplify the matrix in (4.3) in
such a way that we get

_1 1 XY D Vil
A3r1 K1 K3 A2K3
a1 1 AaX?
FH_lA —H = A3ka AaK2 K2 K4
AMA a1 1
K1 A4k A1K3 K3
1 >\2)\§ _ A3 _ 1
K4 Ko A1K2 Agkyg
Introducing the notation
hy
ho
= I'v 'G+F,
hs3
hy
the equation (2.13) transforms into
S S AN\ h
A3K1 K1 K3 A2k3 1
a1 1 AaX? h
A3k4 Agka K2 K4 — 2
5 P ry.
A1A5 .Y 1 1 h
K1 A4K1 A1K3 K3 3
1 P D VI |
Ka K2 A1k2 A2K4 ha

Using Theorem 4.1 and its Corollaries once more, we get

1 1 A3A] A
“%eR R ke ams I
0o 0 0 0 hy — AEL
Tyy = 4 ry.
0 0 0 0 hg — 2252 hy
0 0 0 0 hy — 2355 hg

Thus, we want to solve the equation system
ha — 7/\,1{'21 hy
A2k —
hy — 2202 by [ 1, =0. (4.4)
hy — 285 hy

From (2.4) we have a relation to express r, in the linear independent vectors rz(}) and r,(}) as

ry! 0 1
)\11‘1(}) + mrgl) A\ K1 I‘g)

e 0 o | = e (4.5)
Akary,” + (A2 + K1k2)Ty A\ K2 )%1 rl
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Substituting the identity (4.5) into equation (4.4) we can rewrite it as

0 1
A1 K1
<Q1 %@ g3 Q4) L =0
AMKo
1~2 bV
1 0
where ¢;, i = 1,...,4, is naturally defined from equation (4.4). In fact, we have
Ay K
K2 A3ka + 1
AL A2K) A2k
q1 = T T ()\2 — Iillﬁg) + po — %Ul
A3\, MA3k3k]  A3kg
~ et (e = hakg) 4 T = S0
Kh | A3k
o T rara
_ Ay Kb
Q= K3 ki T
A3 A3k A3k3
—nes — 52 (A3 = Kakg) + pug — S0
/\1/\21 >\Z21>\151"i/3 A K1
- ()\1 — I<L4I€1) + T o]
/ 2 ’
— K3 AP A2kr2 )
a3 P TR
Al K
K4 A1k2 +v3
A ALKy A1k
T Nska | ka (A1 — Kak1) + p1 — WTRL
_ Ao\ A2Xokok)  Aoka
Ga = | =7 (Ao = myrp) + SEEEE — S
Ky | ABakaM
K4 + K1Kk2

Next we multiply equation (4.6) by the invertible matrix

“hesea ARL g
)\2)\:2;,,‘@4 —)\3/\4!4:1 0

)\2)\%)\4:‘{4 0 —)\4)\1/62

to get
0 1
S Al K1
<Q1 q2 g3 CJ4> 1 =0,

Atk2  5;
1 0
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where

<
(V)
Il

/\122>\3 v
1

2)\%)\%)\4/‘%4%1%’1 — )\3)\4/4/1/,62 — AQ)\3/€2%3/€4U1

—2)\5)\4%4%1)\/2 — )\%)\i)\llﬁuz + )\2)\%/\4I€4V1

22X A AN + mus

— A3 \qK19

—2/\3)\4/{4%1%/2 + Kapg — )\%)\i)\lHIVQ

2)\%/\2)\3)\2 + 2/\4)\1)\2/43:/3 + )\1)\2)\3/€1,U4 + mlﬁg
2)\1/\2A§I€4I€1)\2 — /\1)\2)\%/431/1,4

2)\3%4/{1)\2 — A3K1tq + K4V3

203N A3k + ﬁ/ﬂ + A A2A3R14

2)\%)\%)\4%4%1)\’1 + 2)\1)\2)\%%4%1%& — )\2)\3%2%3/64#1 — )\1)\2)\%%11/4

2)\3/€4I€1ﬁ2 + )‘2)‘3)‘4’@1#1 — A3K1V4

Equation (4.7) can also be written as the following equation system

A (2A A AN, +

,ILS) + )\1%2 (2)\%/\2)\3)\2 + 2/\4)\1)\2%}{3 + )\1)\2)\3&1”4

1
)\g)uml

+ml/3) + 2)\%)\2)\3&2 + Tlm'ul 4+ M A2A3k14 =0

2222811 + ky (20 A1 A2 A + k) (AN N] + 200 Aarf

+A1 A2 A3K1 g + mw) =0

/\1(—)\3)\4/€1V2) + A K9 (2)\1/\2)\%%4%1)\2 — /\1)\2)\%/431/1,4) + 2)\§A§)\4/€4/€1)\11

+2)\1)\2>\§/€4/€1/€ﬁl — )\2)\3%2%3%4,&1 — )\1)\2)\%/@11&1 =0

2)\%)\%)\4I€4I€11€,1 — )\3>\4I€1M2 — )\2)\31€2/€31€4V1 + Iil(—)\g)\4l€1V2)

+%4(2)\1/\2A§/f4ﬁ1>\21 — /\1)\2)\%/11/1,4) =0

)\1( — 2)\%)\4/@4&1%’2 + Kap3 — )\%)\i)\llﬂl/z) + AKa (2)\3/@4%1)\2 — A3K14

+/-€41/3) + 2X3K4K1 K] + AaAENgkapn — Azkivy =0

—2/\3)\4/14%1)\/2 — A%)\i)\lm/n + )\2)\%)\4H4V1 + l<&1( — 2)\%/\4H4H1I€/2 + K43

—)\g)\i)\ll/ill/Q) + )%4(2)\354/4)1)\21 — A3K1p4 + /€41/3) =0.
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In order to simplify these equations we multiply the above equation system by the invertible
matrix

1 _ MKk2

T 0 0 0 0
Ay
0 2t 0 0 0 0
1
0 0 om0 0 0
A4
0 0 0 A2 /\g K4K1 0 0
1 A

0 0 Ag)%mml 0 A3K4K1 0
k1 A 0 0 _ Mk Aah
A2 A1A2 K4K1 R4K1

and then rearrange the new equation system to get our result. Thus, we are now in a position
to formulate the main result in this section. We have

Theorem 4.5 Let S be a G'-continuous 4-patch surface, composed of the Ci—patches r(®
fori =1,... 4, which meet at the vertexr point V. Necessary and sufficient conditions for
the surface S to be G? are that there exist continuously differentiable functions \;, k; and
continuous functions u;, v; fori =1,...,4, fulfilling the relations (4.2), and the coefficients
Xi = Ai(0), ki = Ki(0), i = pi(0), v; = 145(0), X, = X(0) and k], = k[(0) fori=1,...,4, with
k1ke # 0, satisfy the equations

2
2)\2%1)\’1 + 2)\%)\3%1/’%’2 — )\2#1 — )\?)\2#3 — )\;\Zl Vo — ig;zl/ =0

2
2)\31€2)\/2 + 2/\%)\4I€21€é — A3 — )\%)\3M4 — A?\ZQ vy — ii;fu =0

2
2)\4%3)\é + 2)\%/\1%3%& — A3 — )\%)\4#1 — Ai’:3 V4 — ;figl/ =0

A4ﬁ1

. Aak2
2)\1%4)\/ + 2)\2)\2/-4,4/€/1 — Aiftg — )\‘i)\luQ — 4N4 V] — )\2)\3 vy =20

2ATRTAG + 2\ Aski N + 2Mak1 ke + M5 g + Agkipg + 3-8+ AsAarn = 0

2)\1%2)\/ + 2)\2/\4/452)\1 + 2)\1%&2:‘%4 + )\1@ 4 + )\4/€2M1 —|- V4 + )\4/\11/2 =0.

An observation worth noticing is that there is no absolute ordering of the patches, i.e., we
can number them in any order.

In order to complete our study in the 4-patch surface case we must consider two different
subcases. First, the case k1 = k1(0) = 0, but k2 = k2(0) # 0. This implies that also k3 = 0
and k4 # 0. Second, the case k1 = ko = 0, which implies that x; = 0 for 1 = 1,2, 3, 4.

4.2.1 The first subcase

In this subsection we consider the case where k1 = £1(0) = 0 and k2 = k2(0) # 0. We use
the equation systems (2.8) and (2.9) restricted to n = 4 to get

r%) = )\41'1(11)) + 2>\4f€4r5w) + K4r1(w) + ,M4I'1(; ) + V4r1(;4)

(2) _ y2.(4) (4) (1)
Tyy = A{Tyy + 1y + V1Ty
1 1 (4.8)

rly) = Agriv) + 2Xororl) + /<a2r( ) 4 el 4 vorl?

8 = 232 4 psr® 4 el

22



and

rl) = el + )\’11'1(,4) + /4;’11'1(;1)

rly) = orl) + korll) + )\’21‘1()1) + /<;’2rq(;2)

(4.9)
riy) = Agrl) + )\gr$,2) + /fgrf;?’)
i) = Arls) + rarly) + Aﬁqu(fo’) + mﬁqu(fl).
We can now formulate the above relations in the next matrix equation as
A1 -1 0 0 0 0 0 0 & 0 0 XN
0 Ao —1 0 0 K 0 O 5 kY 0 0
0 0 Ag —1 0 0 0 0 0 X wf O
r
1 0 0 M 0 0 0 Kk 0 0 XN K, “ .
r =0.
O 0 0 0 0 -1 0 X v 0 0 m °
r
0 20k2 0 0 A k2 -1 0 p vs 0 0 °
0 0 0 0 0 X 0 -1 0 puz vy O
0 0 0 2Mrg —1 0 A K2 0 0 gy 1
Multiplying the above matrix equation with the the invertible matrix
1 0 0 0 00 O 0
0 1 0 0 00 O 0
0 0 1 0 00 O 0
)\4)\3)\2 )\3)\2 )\2 1 00 KR4 0
0 0 0 010 AN o0
0 —2K9 2Xokg 0 0 1 A3k2 N2
0 0 0 0 00 1 0
0 0 0 0 00 O 1
we get simplified matrices as follows
Tyw
A + Br, =0, (4.10)
r’UU
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where

Ao —100 0 0 0 0 O
0 X -1 0 0 wke 0 O
0 0 X -1 0 0 0 O
A 0O 0 O 0 0 0 0 O
0O 0 O 0 0 0 0 O
0O 0 O 0 0 0 0 O
0 0 O 0 0 X 0 -1
0 0 0 2Mks —1 0 M &2
and
K 0 0 Al
X K 0 0
0 g Kl 0
. M AsAa, AsAakdy + AN, + Kapis Ny + Al + kv Ky 3
v Mpus Mus 1
po — 2ko XNy Vo — 2Kakh + 2Xaka Ny + M3kTus  ASpa + 2Xakakh + NikGvs Ay
0 03 V3 0
0 0 i 17!

Let B be defined by restricting B to the rows four to six, i.e.,

% + )\3)\4)\’2 )\3)\4K/2 + )\4)\% + K43 )‘ﬁl + )\4,‘6% + Rql3 Iiil + %

i
I

V1 A2 s Mg 1

po — 2ko Ny vo — 2Kakh + 2 aka Ny + M3kTus  Adpa + 2hakakh + NikGvs Ay

By writing r, in terms of the independent vectors rd and rlV as in (4.5), it follows from

(4.10) that

0 1

_ A 0
' = 0.

)\1/-4,2 )\2

1 0
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Explicitly this means

A (AsAgkh + My + kaps) + Aike(N) + Akl + Kavs) + &) + % =0

M ANy + Aa(N) + Aawl + kavs) = 0

M A2 3 + Ak A3vs + g = 0

v+ )\2/\%1/3 =0

M (v2 — 2kaKh + 2Xaka Ny + A3K213) + Aka (Mg + 2 akarh + M3k3rs) + A3vy = 0.
2 — 262\ + Ao(A3ua + 2Xakakly + A3K3v3) = 0.

After multiplying the above equation system by the inverse matrix

0 0 0 w3 0 1
0 2M\rg O 0 0 A
2Mk4 0 —=X3k7 0 —AI\ 0

0 0 0 0 — /\% A3AgK2
0 0 1 0 0 0
0 0 0 1 0 0

we finally arrive with the next result. We have

Corollary 4.6 Let S be a G'-continuous 4-patch surface, composed of the Ci—patches r(®)
fori =1,... 4, which meet at the vertexr point V. Necessary and sufficient conditions for
the surface S to be G? are that there exist continuously differentiable functions \;, k; and
continuous functions u;, v; fori =1,...,4, fulfilling the relations (4.2), and the coefficients
Ai = Ai(0), ki = Ki(0), i = pi(0), v; = 15(0), X, = X(0) and k], = k,(0) fori=1,...,4, with
k1 = k1(0) =0, Ko = Kk2(0) # 0, satisfy the equations

2%2)\’2 + 2)\1/\2&2&% — U2 — )\%/1,4 - /\%/@211/3 =0

2%4)\21 + 2)\3)\4%45’1 — U4 — )\i,ug — )\i/ﬁ?%l/l =0

264N + 2\ 2 Kok N) + 201 K4k — A3k3p1 — Mkopg — A3y — Ay =0

2%2)\3 + 2)\%/14/12)\/2 + 2)\3%2%’2 - )\1E§M3 - )\%:‘14/L2 - )\%)\%M; - )\3V2 =0

w1+ Mg 4+ A3karg =0

V1 + )\%)\21/3 =0.
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4.2.2 The second subcase

Just as in the previous subsection we start with (4.8) and (4.9) further restricted by ke = 0.
We end up, as above, in the following equation system

A (AsAarh + A \s) + Kl + % =0
B A AN, + Ao (N + Aar) = 0
MA g +p1 =0

v, + Ag)\%yg =0

Ao + A%m =0

o + )\2)\%;14 =0.

Thus, we have

Corollary 4.7 Let S be a G'-continuous 4-patch surface, composed of the Ci—patches ()
fori =1,... 4, which meet at the vertexr point V. Necessary and sufficient conditions for
the surface S to be G? are that there exist continuously differentiable functions \;, k; and
continuous functions p;, v; fori=1,...,4, fulfilling the relations (4.2), and the coefficients
Xi = Ai(0), ki = Ki(0), i = pi(0), v; = 145(0), X, = X(0) and k], = k}(0) fori=1,...,4, with
k1 = ko = 0, satisfy the equations

)\3)\4)\/2 + )\2)\21 + )\3/41 + /ﬁé =0

)\4)\1)\& + )\5)\’1 + )\4/%’2 + Iizl =0

p1+ Az =0

po + Aspg =0

V1 + )\%)\ng =0

Vo + /\%)\3V4 =0.

5 A 5-patch Surface

In this section we consider a 5-patch surface. As before, we want to study which compatibility
conditions have to be satisfied in order for the surface to be tangent plane continuous and
curvature continuous respectively. We start to consider the case of geometric continuity of
order one.
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5.1 Tangent plane continuity — G'

In the case of a 5-patch surface the relations (2.3) are

r?(t,0) = A)rP(0,t) + k1 (Ors (0, t)
v 6,00 = A(t)rP(0,t) + ro(t)r$?(0, 1)
r(t,0) = A(0)rP(0,1) + rs(O)rP (0, 1) (5.1)
v (t,0) = M)ri(0,1) + rka(t)rs? (0, t)
rV(,0) = As(t)rP(0,8) + #5(t)r$(0, 1)

for t € [0,1]. The restriction of this equation system to the vertex ¢ = 0 gives us the analogy
to equation (2.5). That is

A ke —1 0 0 0 1

0 X k3 -1 0 A1 K1

0 0 XN kg -1 A1K2 K1ka + Ao =0.
-1 0 0 X ks A (A3 + Kakg)  K1(A3 + Kaks) + K32

kK —1 0 0 XN\ 1 0

Equivalently, we have

AMA1R2 + KgA1(Ag + koks) — 1 =10

A(K1k2 + A2) + Ka(k1 (A3 + Kak3) + kgA2) =0
AsA1 (A3 + koks) + k5 =0

=1+ As(k1(A3 + K2k3) + K3A2) = 0.

After a minor rewriting of the above equation system, or more precisely multiply the equation
system with the invertible matrix

X 0 kg O
0 0 -1 X\
0 X5 0 &£y 7
0o 0 1 0

we can now formulate our first result in this subsection.

Theorem 5.1 Let S be a continuous 5-patch surface, composed of the Ci#—patches r@ | for
1 =1,...,5, which meet at the vertex point V. Necessary and sufficient conditions for the
surface S to be G are that there exist continuous functions \; and r;, i = 1,...,5, fulfilling
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the relations (5.1) and the coefficients A; = X\;i(0) and k; = k;(0), i = 1,...,5, satisfy the
equations
)\4)\5/\1%2 — R4R5 = )\5

)\5)\1A2/ﬁ73 — KpR1 = )\1
and

MAs(K1k2 +A2) + k4 =0
As A1 (/432/433 + /\3) + k5 = 0.

From the above Theorem the next Corollary easily follows. This result meets the assump-
tion in Lemma 2.2. We have

Corollary 5.2 Suppose that the relations in Theorem 5.1 hold, then
A Ao Ag A s = —1.

Proof

0 = MAsAiko — Kaks — A5 = MAsA 1K + /465)\4)\50\2 + H1/€2) — A5

)\4)\5%2()\1 + I‘i5/€1) + 1425)\4)\5)\2 - )\5 = /\4)\5%2)\5)\1)\253 + H5)\4)\5)\2 — )\5
As(Made(Ashikaks + k5) — 1) = As(Aada(—AshiAg) — 1)

= (M dadsAads + 1).

O
Because of symmetry the next two Corollaries are obvious, but anyhow we prove the
results here. Thus

Corollary 5.3 If the compatibility conditions in Theorem 5.1 hold, then

)\1)\2)\3/@4 — K1k = )\2
AoA3 ARk — Kokg = A3

and
)\2)\3()\5 + I€4I€5) + Ky = 0

/\3)\4(A1 + K5I€1) + k3 = 0.

Proof The above identities follows immediately from the compatibility conditions. We have

)\4)\5()\1)\2)\3%4 — K1k — )\2) = —Ky4 — )\4)\5(/{1/4,2 + /\2) =0

)\5)\1()\2)\3)\4%5 — K9R3 — )\3) = —Ry — )\5)\1(/62/43 + )\3) == O
AaAs AL (A2A3 (A5 + Kaks) + ko) = —A5 — Kaks + AgAsAike =0
)\3)\4)\5()\1)\2()\4 + I€31€4) + KL1) = —)\4 — K3kq4 + )\3)\4)\5I€1 =0.
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Corollary 5.4 If the above compatibility conditions hold also the last symmetry conditions
hold, 1.e.,

)\3)\4)\5:‘{1 — R3R4 = )\4

AA2(Ag + K3kg) + K1 = 0.

Proof Let us consider the first equation. Using an identity in Corollary 5.3 we first get

A3AMA5K1 — K3Kk4 — A4 = A3 4561 + H3/\4)\5(H1:‘£2 + )\2) — M
= A3MAs5K1 + K3 A5 e + M Ask1KoKk3 — Ay
= /\3/\4)\5/’4}1 + H3A4)\5)\2 + )\4)\5&1()\2)\3)\4,‘?5 — )\3) — /\4
= R3AA5 2 + AAsK1 A0 A3 \ak5 — Mg

1
= — (Iig + )\3)\4(H5I€1 + )\1)) =0.
A1A3

From this first equality the other also follows immediately. We have
0= )\1)\2()\3/\4/\5,%1 — R3R4 — /\4) = —K1 — )\1)\2(/433/14 + A4),

which completes the proof. ]

5.2 Curvature continuity — G?

In this subsection we will study what conditions that are needed to be satisfied in order for
a 5-patch surface to be regular of order two. Besides fulfilling

r&) (t,0) = )\grfu (0,-) + 2X5k5r EL)(O, )+ /~@5rw (0, )+ ,u5r&5) 0,-) + u5r£)5)(0, e
rz(}%) (¢,0) = Azrulu (0,) + 2\1K1r 11,)(07 )+ /ilrm, (07 )+ ,ulrul)(O, )+ Vqu(;l)(o, )¢
v (£,0) = A2r3)(0, ) + 2Xokor'H (0, ) + /ﬁzrm, )(0,) + par2(0,) + o2 (0, ), (5.2)
r) (£, 0) = A2r$0(0, ) + 2Asksrid (0, ) + li3rm, )(0,) + 5P (0, ) + v (0, )
) (£,0) = A2r80) (0, ) + 2Xararid (0, ) + k2658 (0, ) + pari? (0, +) + varP (0, )4
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for t € [0, 1], the equation (2.12) must be satisfied for n = 5. In order to solve this equation
we start by considering I' — H A~! x on page 8. We have

I-HA 'k
1—Xo... X5K5K1 — A3 A4 A5K5K9 — M A5K5K3 —)\g — A5K5K4 0
0 1—MX3...\1K1k2 —MA5A1K1K3 —A5A1K1K4 —)\% — A K1Ks
= —)\% — \9Kak1 0 1—MX4...A2K2K3 —A5A\1 AoKaky — M AgkoKs
—AoA3Kk3K1 —)\g — Agk3Ko 0 1—AsA1A2A3K3K4 — A A2 A3K3Ks5
—Ao A3 \qKk4K1 —A3A\qK4K9 _)‘421 — AK4K3 0 1—X...\KaR5
Ashaks  —Ashadskska  —Aadsksks sz 0
0 MAsks  —MAsAikiks  —AsA1K1k4 R
= 2 0 Xodsks  —AsAtdokoks  —A1dokoks
—XoA3k3H1 {ass 0 AsAsk1 —MA2sksks
—XoAshakakt  —A3Aakako Sasl 0 AAiko

bl
2
=\ f3 |-
Ja
fs

where f;, i =1,2,...,5, are defined by the above equality. Supposing that ksk4ks # 0, it is
easily seen that the above matrix equality can be reduced as follows

h
2

fs = 5
37 NiAZka

Ja— 553
47 NoX2ka

f = 538
57 XiAZks

fl + Az)\gigf%m f2
fo+ Aodadeas

AgAs A
fo + Mol g,
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Next we have, see page 9,

F+HA'G
A3Ag sk (Aak] + Ab) AAsks(Azkh + A5) Asks( Akl + A))
A3 AIRIA, — K1k v AAs Ak (Askh 4+ Af) AsA1k1(Aakl + X))

= | RaOarl = A) + 1o M. Aok, — rakly +vs AsAidaka (Al + X))

Agkg(Aak] + b)) r3(As3kh — Ng) + p13 A5 ... A3k — K3kh + U3
AsAgkg(Aak] + Ab) Aka(Azkh + A5) ka( Akl — X)) + g
ks( A5kl — A5) + ps A2 ... Asks ] — KskE + s hi
AMk1(Ask)y + A5) rk1(MKE — M) + ho
Mok (AsK) + A%) Aok (A1RE + A]) =1 hs
AMA2A3k3(AsK) + AL) AoAsk3(A1kE + A]) hy
Al ARy — kak) +va o Aedgdara(MkE + N]) hs

Here we have defined h;, i = 1,2,...,5, by the above equality. Because of the structure of
the matrix in (5.3), we restrict ourselves to consider only the three lower rows in that matrix
equation. Thus, we have reduced our interest to the matrix

hs — 55y h + 22
hy — /\SEM ho + %ﬁ"ﬂm”hg = ( @ 92 93 g4 G5 )7 (5.4)
hs — Aliénf, hs + %ﬁmm ha

where we at the same time have defined the column vectors ¢;, for i =1,2,...,5.

Since our goal is to solve equation (2.12), we see from above that this equation is now
reduced to the next equation

0 1
)\1 K1
( QG2 93 @ G ) roA1 —xas [ =0 (5.5)
_ ks 1
A5 A5
1 0
The column vectors ¢;, i = 1,2,...,5, are defined in equation (5.4). A direct calculation gives

r2(Aa] = Ny) + 12 = 358 Ashadshis(Aak] + M) + A2 (— L (X, + Agh)) + 1)

K3

Q Aghia(A2ry + Ag) = o8 (=55 (Mg 4 Aary) + 1) + ASMASEUS (155 (Mg — Ny) + o)

)\3)\4/14()\2/41 + )\,2) — )\1’;7%55(&2()\2/41 — )\,2) + p2) + Mé@m)\g/ig()\glill + /\,2)

R,
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—A—?()\’ + Aarh) + v — S M AR (A + Nj) - A2ARREE N N\ kg (A + AG)

@2 =1 k3(A3 )\3) + p3 — p /\2 )\4)\5)\1&1()\3&2 + /\,) %LM(—%(/\% + )\3&’2) + 1)
)\4/404(/\3!4?/2 + )\g) - >\1>\§H5 (—%(/\g + /\3%2) + 1/2) + %&254(%3()\3,‘?/2 - )\g) + M3)
)\5)\1)\2&2()\4/13 + )\/) )\5%5(/\41%3 + X ) )\2)\32%/\5)\151(/\41%3 + )‘ﬁl)

q3 = (/\/ + /\4%3) + vy — )\5)\1%1()\4&3 + /\/) %ﬁmm’)ﬁ)\l/\yﬁ()\yﬁg + )\2)
ra( Akl — N)) + prg — )\5>\1>\2/<2(>\4/~63 N A MRS (B (N 4 Ay kh) + vg)
Mdarz(Nsily + N5) — 558 (5 (Aswly — N5) + pus) + 222904552 ) sy (A5 ) + AG)

qq4 = )\1)\2)\3%3()\5/@2 + )\/) e /\2 )\1/41()\5:‘{4 + A ) W%)HAZKQ()\SKZ + )\/5)
—%()\{5 + )\51621) + vy — N )\2 )\1)\21€2()\5KJ4 + )\/) 7)\4)\52;R2H4)\1)\2)\3/€3()\5H2 + )\{5)
Aok (M + M) = 3 A8 (= 5E (N + Aukh) +vs) + 22X (151 (A il — X)) + 1)

g5 = )\2)\3/€3()\1F&g + )\,1) - )\5%(%1()\1/{5 - /\,1) + ,Ul) + %ﬁml‘%)\gﬁg()\lﬂg + )\,1)
)\2)\3)\4:‘@4()\1%35 + )\/) AQF&Q(AlK}g’ + X\ ) %;;'ﬂml/\gkgﬂg(/\lﬁg + )\/1)

We simplify equation (5.5) by multiplying it by two matrices as seen below. Since we are
assuming that k3kgqks #£ 0, it follows that both those matrices are invertible and we have the
equivalent equation

0 1

1 0 A1 A2 A3 k3 0 O A1 K1
0 1 Atd2d3)g 0 kg O (Q1 92 93 qa Q5> Mr2 =% [ =0

Ads 0 1 0 0 #s —r

1 0
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Considering the previous equation as a system of equations, we have

—Q200485 N 2§4§g Xy — 232580 — 25245 Mgty — QALZAANS ) o D pYPU IV

—|—)\2)\3>\4I€5I€2M1 — )\1162164#3 + 2 )\2)\3/&5,‘62#4 + MHS ,u5 + )\1( m)yg

A2
AhoAsk?
v aarvs =0

2,2
—A{K3K4V3 —

k2K
2/\1)\§H4)\12 — 2%251)\% §4§§ /\/ + 2)\2)\3/\4H5A2l€1 — 2)\:;:31\5 Aglﬁié + 2)\%\2 )\45%

A PYPYSY
+ (k3 — 5 ) g — MiRak1kopy — 350 1y — ohs + AeAshakshor

4N

A A1k2k] A2
+K}1(I€3 — i;l)yz + )\4)\54V3 + =t §\53K5 vy =20

—2AMEIR N, + 258 — 2\ Ashakanis Ash — 22\l — B

A3\ 2 A1K2 A1 A2 A3 Ak
f13 + M Ao ds Moy + 250 vy — SRy — 2)\2 =0

)\1H4K5

H
2%)\’ QAN + 2888 Ao — 2Xs Narsans i Asih + 25555 Nar

)\ )\2
A3dgk5k? K3IK5K1 M A2d3K4K5 A3Agksk3 K3Ks
TR M2 T T M3 T TR M4 T >\2 LI Ve A WeLC

5

+A1)\2§§)\4f€5 vy =0

2AIAsAT K2 Xy + 2A5 A1 g Ny — 2AMESR2 AL 92k N 232 A3t + 2AAsA T KE Ny

—2%)\5#;21 + 2Xgk2 A1 K5 + Aadg AT Asksrapn + AadsAFkakapis + A1 Kakshig

2
K
5575 + M(Nadshis — 5o ve + MAs A 3kavs — 2va — §ivs = 0

/6152 / 2 /! K4 \/ AA1K2 \/ K2K3 N1“2 /
)\ )\2)\ + 2\ )\5)\1H1H2)\ 2r4)\4 + QT)\5 — 2)\1)\2)\3 )\2%1 + 2 NAZAg )\3%2

—2X\1Koka ARG + 2%5)\5% + (MaAsk3 — %}\%)l@ + AAs A1 k1K2Raps — FE52 1

—%,U,g, + /\2)\3)\421)\5,‘£5I£QV1 + /i1()\4)\5/<53 — %;\%)Vz — )\152/@211/3 + %V4 =0.

In order to reduce the equations in such a way that we can see a pattern, we multiply the
above equation system by still another invertible matrix. That matrix is

/\4/\§/§2
0 0 0 e 0 AaAska
N3N A3N
A5 AZA A5 A3
0 0 5 11{ 2K1 _ ABATA2 0 0
5 K5
_ A2K2 "f% A2Ka /\2/\5’% . /\%/\3’@1’{5 A2K5K2
A1 A1 A3K4 A1 A4 K4 AaA5 A1 AaAs A1
1
0 0 S PR 0
_ MAsK2 AsK2 K5 __
A1K4 0 A1K4 0 A4As A2 0
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We get an equivalent equation system, which can be rewritten in the following way

—A5K4/l4 + )\, M5 + )\4)\ o + AgAsvy + >\3)\ I€2V1 + >\3)\5/<;1y2 =0
2KEN AL — 2)\5/@3,%5)\2/\1 — 2X5K5A1 K5 + 223\ kg A3k

—A1k5ls + Ao "m + )\5)\ 13 + AsAivs + )\5)\ /€3l/2 + )\5)\1/-@21/3 =0
2n1A2A1 — 2)\11€4I£1)\3)\2 - 2)\1%;1)\2&1 + 2)\3)\214;4)\4/13

=0

2%2)\3)\/2 - 2)\2:‘65:‘?2)\4)\3 — 2)\2&2)\3&2 + 2)\2)\3/€5)\5/€2

A3u5 4+ AoAgvo + >\3)\ K5I/4 + )\3)\3/14y5 =0

21K A3\, + 2§;§§ )\’ + 2R3 Ra Ny + 222Nl 4 25 A

2 2 3 3
_ KT Kak A1d2ky KT Ky A A2,
Mg H2 + >\3>\4/\5'u3 + Xids H4 T GV A3AZNZ v3 X5 VAT N V1= 0

)\2)\31{5

2/&2/65)\4)\/ + 2’””5 )\/ + 2%2165)\4163 + 2 A5k Ky + 2”2 )\3/&2

2 3 3
’@5"’52 A2 A3K5 _ _ _ A2A3 _ A3 —
R Rb v eel U e vl Ll vs vid B vev el Bt vl i o Z Bl U

Before we formulate the main theorem in this subsection we consider what different cases
that are possible to receive. First let us consider the case k; = k;(0) # 0 for i = 1,2,...,5.
Second, without loss of generality, we assume that k1 = k1(0) = 0 and all the other x;:s are
non-zero. From Theorem (5.1) and its Corollaries it follows that

1

3 = Xxa

AoKks + Ako = 714.

The third and last case is where kg = k2(0) = 0 besides the fact that x; = k;(0) = 0. From
the relations (5.6) it now follows that

R3 = vy

A5 A2
_ 1
k4 = X753
_ 1
Ry = 7&)\4.

Now we are in the position to formulate the main Theorem. Since the conditions are rotion
invariants, we start by changing indices in the previous equation system by i — 7(i + 2) =
(i + 1)mod 5 + 1. With this setting all the different cases are included in next formulation.
We have

Theorem 5.5 Let S be a G'-continuous 5-patch surface, composed of the Ci—patches r(®
fori =1,...,5, which meet at the vertexr point V. Necessary and sufficient conditions for
the surface S to be G? are that there exist continuously differentiable functions \;, k; and
continuous functions u;, v; for i =1,...,5, fulfilling the relations (5.2), and the coefficients
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Ai = Xi(0), ki = Ki(0), wi = pi(0), v; = 15(0), X, = Xi(0) and k] = k;(0) fori=1,...,5, with
ki # 0 fori=3,4,5, satisfying the equations

2%2)\3)\2 — 2)\2H5f£2/\4)\3 — 2)\2l£2)\3f£2 + 2)\3)\3I€5)\5KJ4
)\3M5 + )\2/\31/2 + /\3/\ KZ5Z/4 + /\%)\%/@11}5 =0

=0

2:%4/\5)\/ — 2)\4H2H4)\1/\5 — 2)\4&4)\5,‘@4 + 2A3)\5/€2)\2/€1
/\5[@ + AgAsv4 + )\3)\ K,Qljl + )\3>\5/€1V2 0
2&%)\1)\/ — 2)\§I€31€5)\2)\1 — 2)\5I€5)\1/€5 + 2)\3)\1/i3)\3/i2

/ / )\4)\5,‘6
2%4%2)\1)\5 + 2;?;?))\ + 2/64/{2)\1/15 + 2 2)\2 Ky + 2'{4 )\5/'64
2 3 3
_ kg KoK M As k2 _ _MAs A5,
e Aol LR v vl i v e e Mzt~ e~ xra =0
2&5&3/\2)\, + 2K5N3 )\/ + 2&5:‘%3)\2%&1 -+ 2)\5>\1K3 )\3 Ko + 2'%5 )\1&5
K3 K3K5 AsAik 3 K3 As) A
3
— Tt e He T AR s — o ot T AT s =0
References
[1] Manfredo P. do Carmo, Differential geometry of curves and surfaces, Englewood Cliffs,

2]

N.J., Prentice-Hall, cop. (1976)

Juergen Kahmann, Continuity of Curvature between adjacent Bezier patches, Surfaces in
CAGD, R. E. Barnhill and W. Boehm (eds), North Holland Publishing Co (1983)

Pierre Bézier, The mathematical basis of the UNISURF CAD system, Butterworth & Co
Ltd (1986)

Wen-Hui Du and Francis J M Schmitt, On the G continuity of piecewise Bzier surfaces:
a review with new results, Computer Aided Design 22(1990)

Josef Hoschek and Dieter Lasser, Fundamentals of Computer Aided Geometric Design,
A K Peters, Ltd., Wellesley (1997).

Ramon F Sarraga, Computer Modeling of Surfaces with Arbitrary Shapes, IEEE Com-
puter Graphics & Applications (1990)

Xiuzi Ye and Horst Nowacki, Ensuring compatibility of G?-continuous surface patches
around a nodepoint, Computer Aided Geometric Design 13(1996)

Bo I Johansson, Geometric continuity and compatibility conditions for 4-patch surfaces,
arXiv1009.0436

35



Department of Mathematical Sciences
Chalmers University of Technology/University of Gothenburg
SE-41296 Goéteborg, Sweden
bo@chalmers.se
September, 2013

36



