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ON STREAMLINE DIFFUSION SCHEMES FOR THE ONE AND

ONE-HALF DIMENSIONAL RELATIVISTIC VLASOV-MAXWELL

SYSTEM

CHRISTOFFER STANDAR

Abstract. We study streamline diffusion schemes applied for numerical so-
lution of the one and one-half dimensional relativistic Vlasov-Maxwell system

arising in modeling plasma of particles governed by electro-magnetic fields.
We derive stability estimates and prove optimal convergence rates, due to the

maximal available regularity of the exact solution.

1. Introduction

Our main concern will be approximation of the Vlasov-Maxwell system by a
semi-classical finite element approach of Petrov-Galerkin type, namely the stream-
line diffusion method. For the exact solution in the Sobolev space Hk+1 (see Adams
[1] for the definitions), the classical finite element method for the Vlasov-Maxwell
system (hyperbolic equations) will have an optimal convergence rate only of or-
der O(hk). Whereas, with the same regularity (Hk+1) the corresponding optimal
convergence rate for the elliptic and parabolic problems is O(hk+1). Streamline
diffusion (SD) method is, roughly, a weak formulation where a multiple of the con-
vection term is added to the test function. This resembles to the add of artificial
diffusion to the continuous problem which enhance the regularity. Using the SD
strategy would improve the convergence rate of the hyperbolic problems by an order
of 1/2, i.e. O(hk+1/2). Then, by interpolation space techniques one can show that
for the hyperbolic problems, a convergence beyond this rate (for the exact solution
f ∈ Hk+1; a convergence rate of O(hk+1/2)) is not achievable. The same result
is obtained for approximation with the streamline diffusion based discontinuous
Galerkin finite element method. Both approaches are investigated below.

The Vlasov-Maxwell (VM) system which describes the time evolution of colli-
sionless plasma is formulated as

∂tf + v̂ · ∇xf + q(E + c−1v ×B) · ∇vf = 0,

∂tE = c∇x ×B − j, ∇x · E = ρ,

∂tB = −c∇x × E, ∇x ·B = 0.

(1.1)

Here f is the density, in phase space, of particles with charge q, mass m and velocity

v̂ = (m2 + c−2|v|2)−1/2v (v is momentum).

Further, c is the speed of light and the charge and current densities ρ and j are
given by

ρ(t, x) = 4π

∫
qf dv and j(t, x) = 4π

∫
qf v̂ dv. (1.2)

A proof for the existence and uniqueness of the solution to VM system can be
obtained using Schauder fixed point theorem: Insert an assumed and given g for f
in (1.2). Compute the corresponding ρg and jg and insert the results in the Maxwell

Key words and phrases. Streamline Diffusion, Discontinuous Galerkin, Vlasov-Maxwell system

.
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2 C. STANDAR

equations to get Eg and Bg. Then insert, such obtained, Eg and Bg in the Vlasov
equation to get fg via an operator Λ, i.e. fg = Λg. A fixed point of Λ is the solution
of the Vlasov equation in the Vlasov-Maxwell system. For the discretized version
one should, instead, use the Brouwer fixed point theorem. Both these proofs are
rather technical and non-trivial.

The Vlasov-Maxwell system, as well as Vlasov-Poisson (VP), having similar
physical structures (physically VM is an extension of VP), are studied by sev-
eral authors in various settings. The analytic approaches relevant to this study
can be found in, e.g., Glassey and Schaeffer [8] (and the references therein) for the
one and one-half dimensional relativistic model. Other geometrics are considered
by Glass and Han-Kwan in [7], who studied the controllability of the relativistic
Vlasov-Maxwell system on a two dimensional torus. The discontinuous Galerkin
method is extensively studied by Cheng et al. in [4], deriving the same convergence
rates as in the present work, however, with much more involved and excessive cal-
culus and without involving the streamline diffusion strategy. Other numerical
approaches commonly used for kinetic type equations are the particle methodes
that are studied e.g., by Wollman for the Vlasov-Maxwell-Fokker-Planck system in
[11] (see also the references therein). In this paper, we study streamline diffusion
based finite element methods for the Vlasov-Maxwell system, prove existence and
uniqueness for both the continuous problem and its discretized version. We also
derive convergence rates and prove stability estimates. Assuming asymptotically
vanishing solutions and data, we shall consider initial boundary value problem with
compactly supported phase-space functions.

The VM system we are going to discretize is the relativistic Vlasov-Maxwell
model (RVM) in one and one-half dimensional geometry (x ∈ R, v ∈ R2):

∂tf + v̂1∂xf + (E1 + v̂2B)∂v1f + (E2 − v̂1B)∂v2f = 0
∂xE1 =

∫
fdv − n(x) = ρ(t, x)

∂tE1 = −
∫
v̂1fdv = −j1(t, x)

∂tE2 + ∂xB = −
∫
v̂2fdv = −j2(t, x)

∂tB + ∂xE2 = 0.

(1.3)

The system (1.3) is assigned with the Cauchy data

f(0, x, v) = f0(x, v) ≥ 0, E2(0, x) = E0
2(x), B(0, x) = B0(x)

and

E1(0, x) =

∫ x

−∞

(∫
f0(y, v)dv − n(y)

)
dy = E0

1(x).

This is the only initial data that leads to a finite-energy solution (see [8]). In
(1.3) we have for simplicity set all constants equal to one. We assume that the
background density n(x) is smooth, has compact support and is neutralizing. This
yields ∫ ∞

−∞
ρ(0, x) dx = 0. (1.4)

To carry out discrete analysis, we need global existence of a classical solution.
We have the following Theorem from [8].

Theorem 1.1 (Glassey, Schaeffer). Assume that n is neutralizing,

(i) 0 ≤ f0(x, v) ∈ Ck0 (R3), (ii) E0
2 ∈ Ck+1

0 (R), B0 ∈ Ck+1
0 (R).

for k ≥ 1. Then, there exists a global Ck solution of RVM.

The theorem is an existence result. For k ≥ 2 we can differentiate to get{
∂tE2 + ∂xB = −j2 w.r.t x⇒ ∂x∂tE2 + ∂2

xxB = −∂xj2
∂tB + ∂xE2 = 0 w.r.t t⇒ ∂2

ttB + ∂t∂xE2 = 0.
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Subtracting the resulting equations, one can show that B has solution of d’Alembert
type and satisfies the one dimensional wave equation. Similarly the same is valid
for E2. The closed form solution for E1 is yet simpler. Hence (by uniqueness of the
solution for the wave equation) we have now both existence and uniqueness in the
one and one-half dimensional case, when k ≥ 2.

An outline of this paper is as follows. In Section 2 we introduce some notations.
In Sections 3 and 4 we study the streamline diffusion method for the Vlasov-Maxwell
equations. This is done by first looking at the Maxwell part and then using the
results for the Vlasov part. The fifth and sixth Sections are devoted to a streamline
diffusion based discontinuous Galerkin scheme for the Vlasov-Maxwell equations.

Throughout this note C will denote a generic constant, not necessarily the same
at each occurrence, and independent of the parameters in the equations, unless
otherwise explicitly specified.

2. Assumptions and notations

Let Ωx ⊂ R and Ωv ⊂ R2 denote the space and velocity domains, respectively.
We assume that f(t, x, v), E2(t, x), B(t, x) and n(x) have compact supports in
Ωx and that f(t, x, v) has compact support in Ωv. Since we have assumed that∫
ρ(0, x)dx = 0, it follows that also E1 has compact support in Ωx.
Now we will introduce a finite element structure on Ωx × Ωv. Let T xh = {τx}

and T vh = {τv} be finite elements subdivision of Ωx with elements τx and Ωv with
elements τv, respectively. Then Th = T xh ×T vh = {τx× τv} = {τ} is a subdivision of
Ωx × Ωv. Let 0 = t0 < t1 < . . . < tM−1 < tM = T be a partition of [0, T ] into sub-
intervals Im = (tm, tm+1], m = 0, . . . ,M − 1. Further let Ch be the corresponding
subdivision of QT = [0, T ]×Ωx×Ωv into elements K = Im×τ , with h = diamK as

the mesh parameter. Introduce C̃h as the finite element subdivision of [0, T ]× Ωx.
Before we define our finite dimensional spaces we need to define

H0 =

M−1∏
m=0

H1
0 (Im × Ωx × Ωv) and H̃0 =

M−1∏
m=0

H1
0 (Im × Ωx),

where

H1
0 = {w ∈ H1;w = 0 on ∂Ω}.

Here Ω stands for either Ωx or Ωx × Ωv. For k = 0, 1, 2, . . ., we define the finite
element spaces

Vh = {w ∈ H0;w|K ∈ Pk(τ)× Pk(Im), ∀K = τ × Im ∈ Ch}

and

Ṽh = {g ∈ [H̃0]3; gi|K̃ ∈ Pk(τx)× Pk(Im), ∀K̃ = τx × Im ∈ C̃h, i = 1, 2, 3},

where Pk(·) is the set of polynomial with degree at most k on the given set. We
shall also use some notation, viz

(f, g)m = (f, g)Sm , ‖g‖m = (g, g)1/2
m

and

〈f, g〉m = (f(tm, . . .), g(tm, . . .))Ω, |g|m = 〈g, g〉1/2m ,

where Sm = Im × Ω, is the slab at m-th level, m = 0, . . . ,M − 1.
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3. The Maxwell equations

We start looking at the Maxwell part, therefore in this section Ω = Ωx. Set

M1 =


0 0 0
1 0 0
0 1 0
0 0 1

 , M2 =


1 0 0
0 0 0
0 0 1
0 1 0


and let W = (E1, E2, B)T , W 0 = (E0

1 , E
0
2 , B

0)T and b = (ρ,−j1,−j2, 0)T . Then,
the Maxwell equations can be written as{

M1Wt +M2Wx = b
W (0, x) = W 0(x).

(3.1)

The streamline diffusion method for the Maxwell part can now be formulated as:
Find Wh ∈ Ṽh such that for m = 0, 1, . . . ,M − 1,

(M1W
h
t +M2W

h
x , ĝ + δ(M1gt +M2gx))m + 〈Wh

+, g+〉m =

= (b, ĝ + δ(M1gt +M2gx))m + 〈Wh
−, g+〉m, ∀ g ∈ Ṽh,

where ĝ = (g1, g1, g2, g3)T , g±(t, x) = lims→0± g(t + s, x) and δ is a multiple of h.
Now we define the bilinear form

B̃(W, g) =

M−1∑
m=0

(M1Wt+M2Wx, ĝ+δ(M1gt+M2gx))m+

M−1∑
m=1

〈[W ], g+〉m+〈W+, g+〉0

and the linear form

L̃(g) =

M−1∑
m=0

(b, ĝ + δ(M1gt +M2gx))m + 〈W 0, g+〉0,

where [W ] = W+−W−. Then, the streamline diffusion can be formulated as: Find

Wh ∈ Ṽh such that

B̃(Wh, g) = L̃(g) ∀ g ∈ Ṽh. (3.2)

We also have that the solution of (3.1) satisfies

B̃(W, g) = L̃(g) ∀ g ∈ Ṽh.

Subtracting (3.2) from this equation, we end up with the Galerkin orthogonality
relation

B̃(W −Wh, g) = 0 ∀ g ∈ Ṽh, (3.3)

which is of vital importance in the error analysis. Now we will define the norm

|||g|||2M =
1

2

(
|g+|20 + |g−|2M +

M−1∑
m=1

|[g]|2m + 2δ

M−1∑
m=0

‖M1gt +M2gx‖2m

)
.

Lemma 3.1. We have

B̃(g, g) = |||g|||2M ∀g ∈ H̃0.

Proof. By definition of B̃ we have that

B̃(g, g) =

M−1∑
m=0

((M1gt +M2gx, ĝ)m + δ‖M1gt +M2gx‖2m) +

M−1∑
m=1

〈[g], g+〉m + |g+|20.

Integrating by parts we get that

M−1∑
m=0

(M1gt, ĝ) +

M−1∑
m=1

〈[g], g+〉m + |g+|20 =
1

2

(
M−1∑
m=1

|[g]|2m + |g−|2M + |g+|20

)
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and
M−1∑
m=0

(M2gx, ĝ)m = 0,

since g(t, x) = 0 on I × ∂Ωx. Then, the proof follows immediately through adding
all above terms. �

Lemma 3.2. For any positive constant C we have that for g ∈ H̃0,

‖g‖2m ≤
(
|g−|2m+1 +

1

C
‖M1gt +M2gx‖2m

)
he2Ch.

Proof. For tm < t < tm+1, we may write

‖g(t)‖2Ωx
=|g−|2m+1 −

∫ tm+1

t

d

dt
‖g(s)‖2Ωx

ds =

=|g−|2m+1 − 2

∫ tm+1

t

(M1gt +M2gx, ĝ)Ωx
ds ≤

≤|g−|2m+1 +
1

C
‖M1gt +M2gx‖2m + C

∫ tm+1

t

‖ĝ‖2Ωx
≤

≤|g−|2m+1 +
1

C
‖M1gt +M2gx‖2m + 2C

∫ tm+1

t

‖g‖2Ωx
.

Now Grönwall’s inequality gives us that

‖g(t)‖2Ωx
≤
(
|g−|2m+1 +

1

C
‖M1gt +M2gx‖2m

)
e2Ch.

By integrating over [tm, tm+1] we obtain the Lemma. �

Lemma 3.3. For any h > 0 the problem (3.2) has a solution and if h is small
enough the solution is unique.

The proof of this Lemma is similar to the corresponding proof in the Vlasov part
and is therefore omitted in here.

To proceed we define F = E2 +B and G = E2 −B. By adding and subtracting
the equations for E2 and B, we get the following equations for F and G:{

∂tF + ∂xF = −j2(t, x), F (0, x) = E0
2(x) +B0(x),

∂tG− ∂xG = −j2(t, x), G(0, x) = E0
2(x)−B0(x)

.

Solving these equations and using the facts that E2 = 1
2 (F +G) and B = 1

2 (F −G),
we get that

E2(t, x) =
1

2

(
E0

2(x− t) + E0
2(x+ t) +B0(x− t)−B0(x+ t)

)
−

− 1

2

∫ t

0

j2(τ, x+ τ − t) + j2(τ, x+ t− τ)dτ

and

B(t, x) =
1

2

(
E0

2(x− t)− E0
2(x+ t) +B0(x− t) +B0(x+ t)

)
−

− 1

2

∫ t

0

j2(τ, x+ τ − t)− j2(τ, x+ t− τ)dτ.

Moreover, using the equations for E1 we will get

E1(t, x) =

∫ x

x0

(∫
f(t, y, v)dv − n(y)

)
dy.
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Then by some simple inequalities we end up with

‖E1‖2QT
≤ C

(
‖f‖2QT

+ T

∫
Ωx

|n(x)|2dx
)

(3.4)

and

‖E2‖2QT
≤ CT

(∫
Ωx

|E0
2(x)|2dx+

∫
Ωx

|B0(x)|2dx+ ‖v̂2f‖2QT

)
. (3.5)

In a similar way we get for i = 1, 2 that

‖v̂iB‖2QT
≤ CT

(∫
Ωx

|B0(x)|2dx+

∫
Ωx

|E0
2(x)|2dx+ ‖v̂2f‖2QT

)
. (3.6)

Next we start the error analysis. First let W̃ be an interpolant of W in the finite
dimensional discrete function space Ṽh. Then we represent the error as the following
split

e = W −Wh = (W − W̃ )− (Wh − W̃ ) = η − ξ.
Now we state and prove the convergence theorem.

Theorem 3.4. If Wh is a solution to (3.2) and the exact solution W for (3.1)
satisfies

‖W‖k+1 ≤ C,
then there exists a constant C such that

|||W −Wh|||M ≤ Chk+ 1
2 .

Proof. We have by Lemma 3.1 and (3.3) that

|||ξ|||2M = B̃(ξ, ξ) = B̃(η, ξ) =

=

M−1∑
m=0

(M1ηt +M2ηx, ξ̂ + δ(M1ξt +M2ξx))m +

M−1∑
m=1

〈[η], ξ+〉m + 〈η+, ξ+〉0.

Partial integration gives the identities

(M1ηt, ξ̂)m = (ηt, ξ)m =

∫
Ωx

[ηξ]
tm+1

t=tmdx− (η, ξt)m =

= 〈η−, ξ−〉m+1 − 〈η+, ξ+〉m − (η, ξt)m

and
(M2ηx, ξ̂)m = (ηx, ξ)m = −(η, ξx)m,

since η and ξ have compact supports in Ωx. Inserting these equations into the
expression for B̃(η, ξ) we end up with an estimate of the form

B̃(η, ξ) ≤ |〈η−, ξ−〉M −
M−1∑
m=1

〈η−, [ξ]〉m+

+

M−1∑
m=0

(η̂,M1ξt +M2ξx)m + δ(M1ηt +M2ηx,M1ξt +M2ξx)m|.

Further, using some standard inequalities it follows that

|||ξ|||2M ≤
1

8
|||ξ|||2M +

M−1∑
m=0

(4|η−|2m+1 +
8

δ
‖η‖2m + 4δ‖M1ηt +M2ηx‖2m).

Hiding the ξ-term on the right hand side in the ξ-term on the left hand side, implies
the following inequality

|||ξ|||2M ≤
8

7

M−1∑
m=0

(4|η−|2m+1 +
8

δ
‖η‖2m + 4δ‖M1ηt +M2ηx‖2m).
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Thus, we have estimated |||ξ|||2M by terms only depending on η. This implies that

|||e|||2M ≤ |||η|||2M + |||ξ|||2M ≤

≤ C

(
|η+|20 +

M−1∑
m=0

(|η−|2m+1 +
1

h
‖η‖2m + h‖ηt‖2m + h‖ηx‖2m) +

M−1∑
m=1

|[η]|2m

)
,

where we have used that δ is a multiple of h. By standard interpolation theory we
have that the interpolation error satisfies (see e.g. [5])[

h|η+|20 +

M−1∑
m=0

(h|η−|2m+1 + ‖η‖2m + h2‖ηt‖2m + h2‖ηx‖2m) +

M−1∑
m=1

h|[η]|2m

]1/2

≤

≤ Chk+1‖W‖k+1.

Then, it now follows that

|||e|||M ≤ Chk+ 1
2 ‖W‖k+1

and the proof is complete. �

We have the following Corollary of the Theorem, which will be useful for the
error analysis for the Vlasov equation.

Corollary 3.5. Assume that E0
2 , B

0 ∈ C2
0 and that f0 ∈ C1

0 . Assume also that the
hypothesis in the previous Theorem hold true, then∫

Ωx

|E0
2(x)− Eh2,+(0, x)|2 + |B0(x)−Bh+(0, x)|2dx ≤ Ch2h+1.

Proof. We will prove the Corollary for the B-term. A similar proof works for the
E2-term. We start by noticing that |e+|20 is included in |||e|||2M . Theorem 1.1 states
that if E0

2 , B
0 ∈ C2

0 and f0 ∈ C1
0 , then there exists a global solution to (1.3)

such that f,E1, E2 and B are differentiable. Especially B is continuous, meaning
B+(0, x) = B−(0, x) = B0(x). This will together with the previous Theorem imply
that ∫

Ωx

|B0(x)−Bh+(0, x)|2dx = |B+ −Bh+|20 ≤ |||e|||2M ≤ Ch2k+1.

�

4. The Vlasov-Maxwell equations

Let us now return to the Vlasov equation given by{
∂tf + v̂1∂xf + (E1 + v̂2B)∂v1f + (E2 − v̂1B)∂v2f = 0
f(0, x, v) = f0(x, v) ≥ 0

. (4.1)

Introduce the notation

G(f) = (v̂1, E1 + v̂2B,E2 − v̂1B)

and
∇f = (∂xf, ∂v1f, ∂v2f).

We can write the Vlasov equation as

∂tf +G(f) · ∇f = 0.

In this section Ω = Ωx × Ωv. The streamline diffusion method for the Vlasov part
can now be formulated as: Find fh ∈ Vh such that for m = 0, 1, . . . ,M − 1,

(fht +G(fh) · ∇fh, g + δ(gt +G(fh) · ∇g))m + 〈fh+, g+〉m = 〈fh−, g+〉m ∀g ∈ Vh,
where

G(fh) = (v̂1, E
h
1 + v̂2B

h, Eh2 − v̂1B
h).
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Define the bilinear form

B(G; f, g) =

M−1∑
m=0

(ft +G · ∇f, g+ δ(gt +G(fh) · ∇g))m +

M−1∑
m=1

〈[f ], g+〉m + 〈f+, g+〉0

and the linear form

L(g) = 〈f0, g+〉0.
Streamline diffusion can now be formulated as: Find fh ∈ Vh such that

B(G(fh); fh, g) = L(g) ∀g ∈ Vh. (4.2)

Here we need to define a new norm, viz

|||g|||2V =
1

2
(|g+|20 + |g−|2M +

M−1∑
m=1

|[g]|2m + 2δ

M−1∑
m=0

‖gt +G(fh) · ∇g‖2m).

Lemma 4.1. We have that

B(G(fh); g, g) = |||g|||2V ∀g ∈ H0.

The proof of this is similar to the proof of Lemma 3.1 and will therefore be
omitted.

Lemma 4.2. For any constant C we have for g ∈ H0,

‖g‖2m ≤
(
|g−|2m+1 +

1

C
‖gt +G(fh) · ∇g‖2m

)
heCh.

This proof will also be omitted since it is similar to the proof of Lemma 3.2.

Lemma 4.3. For any h > 0 there exists a solution for the problem (4.2). If h is
small enough and we assume that

‖G(f)‖∞ + ‖∇f‖∞ ≤ C

for some constant C, then the solution is unique.

Proof. We will start by proving the existence part of the Lemma by following the
proof of Lemma 2.4 in [10]. Let V m = {v|Im ; v ∈ Vh} and define Pm : V m → V m

by

[Pmv, θ] = (vt+G(fh)·∇v, θ+δ(θt+G(fh)·∇θ))m+〈v+, θ+〉m−〈v−, θ+〉m ∀θ ∈ V m.

Notice that Pmv = 0 if and only if v = fh satisfies (4.2). We also need to define
the new scalar product

[v, θ] = (v, θ)m + 〈v−, θ−〉m+1 + 〈v+, θ+〉m
and the corresponding norm bvc2 = [v, v]. With respect to this norm Pm is contin-
uous. We have that

[Pmv, v] =
1

2
|v−|2m+1 +

1

2
|v+|2m + δ‖vt +G(fh) · ∇v‖2m − 〈v−, v+〉m.

Using Lemma 4.2 and the Cauchy-Schwarz inequality it follows that

[Pmv, v] ≥ 1

4
|v−|2m+1 +

1

2
|v+|2m +C(h)‖v‖2m − |v−|m|v+|m ≥ C(h)bvc2 − |v−|mbvc.

For a large enough r, we have that [Pmv, v] ≥ 0 when bvc = r. Using a Brouwer’s
fixed point theorem argument implies that there exists v = fm ∈ V m with bvc ≤ r
such that Pmv = 0 (see [6] for more details). An induction argument completes
the proof of the existence.
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To prove uniqueness, suppose that f1 and f2 are two solutions of (4.2). For any
m, write f = f1− f2 and assume that f(tm, ·)− = 0. Subtracting the equations for
f1 and f2 we get

(∂tf, f)m+|f+|2m+δ(∂tf1, ∂tf+G(f1)·∇f)m+(G(f1)·∇f1, f+δ(∂tf+G(f1)·∇f))m−
− δ(∂tf2, ∂tf +G(f2) · ∇f)m − (G(f2) · ∇f2, f + δ(∂tf +G(f2) · ∇f))m = 0.

After some simplifications by adding and subtracting some auxiliary terms we end
up with the following equation

1

2
|f−|2m+1 +

1

2
|f+|2m + δ‖∂tf +G(f1) · ∇f‖2m + (G(f1) · ∇f, f)m+

+ ((G(f1)−G(f2)) · ∇f2, f + δ(∂tf +G(f2) · ∇f))m+

+ δ(∂tf2 +G(f1) · ∇f2, ∂tf + (G(f1)−G(f2)) · ∇f)m = 0.

Moving the last three terms of the equation to the right hand side and taking
absolute values yields

1

2
|f−|2m+1 +

1

2
|f+|2m + δ‖∂tf +G(f1) · ∇f‖2m ≤

≤ ‖G(f1)‖∞·‖∇f‖∞·‖f‖m+‖G(f1)−G(f2)‖∞·‖∇f‖∞(‖f‖m+δ‖∂tf+G(f2)·∇f‖m)+

+ δ(‖∂tf2‖∞ + ‖G(f1)‖∞ · ‖∇f2‖∞)(‖∂tf‖m + ‖G(f1)−G(f2)‖∞ · ‖∇f‖m).

By the assumption

‖G(fi)‖∞ + ‖∇fi‖∞ ≤ C, i = 1, 2,

and inverse inequalities, we get the inequality

1

2
|f−|2m+1 +

1

2
|f+|2m + δ‖∂tf +G(f1) · ∇f‖2m ≤ C‖f‖2m

for some constant C. This inequality together with Lemma 4.2 implies that

h−1‖f‖m ≤ C‖f‖m.

If h is small enough, this inequality implies that ‖f‖m = 0. Hence f1 = f2 and the
uniqueness follows. �

Let us now start with the error analysis. First we let f̃ be an interpolant of f .
Then we set

e = f − fh = (f − f̃)− (fh − f̃) = η − ξ.
We have the following convergence theorem.

Theorem 4.4. Let fh be a solution to (4.2) and assume that the exact solution f
of (4.1) is in the Sobolev class Hk+1(I × Ω) and satisfies the bound

‖∇f‖∞ + ‖G(f)‖∞ + ‖∇η‖∞ ≤ C.

Also assume that h is sufficiently small, then there exists a constant C such that

|||f − fh|||V ≤ Chk+ 1
2 .

Proof. By (4.2) and Lemma 4.1 we get that

|||ξ|||2V = B(G(fh); ξ, ξ) = L(ξ)− B(G(fh); f̃ , ξ) = T1 + T2,

where

T1 = B(G(fh); η, ξ)

and

T2 = B(G(f); f, ξ)− B(G(fh); f, ξ).
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We will estimate these two terms separately. Starting with T1, estimations are
done similar to the proof of Theorem 3.4. After partial integration and using some
standard inequalities it follows that

|T1| ≤
4

δ
‖η‖2QT

+ 4δ‖ηt +G(fh) · ∇η‖2QT
+ 4

M∑
m=1

|η−|2m +
1

8
|||ξ|||2V .

To estimate T2 we use the definition of B and write

T2 =

M−1∑
m=1

((G(f)−G(fh)) · ∇f, ξ + δ(ξt +G(fh) · ∇ξ))m.

From some standard inequalities it follows that

|T2| ≤
1

2C1
‖G(f)−G(fh)‖2QT

· ‖∇f‖2∞ +
C1

2
‖ξ‖2QT

+

+ 2δ‖G(f)−G(fh)‖2QT
‖∇f‖2∞ +

δ

8
‖ξt +G(fh) · ∇ξ‖2QT

. (4.3)

To proceed we need to estimate ‖G(f)−G(fh)‖2QT
. By the definition of G(f) and

G(fh) we have that

G(f)−G(fh) = (0, E1 − Eh1 + v̂2(B −Bh), E2 − Eh2 − v̂1(B −Bh)).

Therefore

‖G(f)−G(fh)‖2QT
≤ 2(‖E1 − Eh1 ‖2QT

+ ‖v̂2(B −Bh)‖2QT
+

+ ‖E2 − Eh2 ‖2QT
+ ‖v̂1(B −Bh)‖2QT

).

Using (3.4) - (3.6) we thus obtain

‖G(f)−G(fh)‖2QT
≤ C‖e‖2QT

+ CT‖v̂2e‖2QT
+

+ CT

∫
Ωx

|n(x)− ñ(x)|2 + |E0
2(x)− Eh2,+(0, x)|2 + |B0(x)−Bh+(0, x)|2dx,

where ñ(x) is an interpolant of n(x) on the space

{w ∈ H1
0 (Ωx);w|τx ∈ Pk(τx),∀τx ∈ T xh }.

We can now use Corollary 3.5 and get

‖G(f)−G(fh)‖2QT
≤ C(T )(‖e‖2QT

+

∫
Ωx

|n(x)− ñ(x)|2dx+ h2k+1). (4.4)

This inequality together with (4.3) and the assumption ‖∇f‖∞ ≤ C, leads to the
following inequality

|T2| ≤ C(T )(‖e‖2QT
+

∫
Ωx

|n(x)− ñ(x)|2dx+ h2k+1) +
C1

2
‖ξ‖2QT

+
δ

8
|||ξ|||2V .

Let us now estimate

‖ηt +G(fh) · ∇η‖QT
≤ ‖ηt‖QT

+ ‖G(f)‖∞‖∇η‖QT
+ ‖∇η‖∞‖G(fh)−G(f)‖QT

.

Using the assumption ‖G(f)‖∞ + ‖∇η‖∞ ≤ C and (4.4), we get that

‖ηt +G(fh) · ∇η‖QT
≤ ‖ηt‖QT

+ C‖∇η‖QT
+

+ C(T )(‖e‖2QT
+

∫
Ωx

|n(x)− ñ(x)|2dx+ h2k+1). (4.5)
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Combining the inequalities for T1 and T2 together with (4.4) and (4.5), we have

|||ξ|||2V ≤
4

δ
‖η‖2QT

+ 4δ‖ηt‖QT
+ Cδ‖∇η‖QT

+ 4

M∑
m=1

|η−|2m +
1

4
|||ξ|||2V +

+ C(T )(‖e‖2QT
+

∫
Ωx

|n(x)− ñ(x)|2dx+ h2k+1) + C1‖η‖2QT
.

Hiding all ξ-terms in the norm on the left hand side, will give us the following
inequality

|||ξ|||2V ≤
C

δ
‖η‖2QT

+ C‖η‖2QT
+ Cδ‖ηt‖QT

+ Cδ‖∇η‖QT
+ C

M∑
m=1

|η−|2m+

+ C(T )(‖e‖2QT
+

∫
Ωx

|n(x)− ñ(x)|2dx+ h2k+1).

We can now estimate |||e|||V in the following way

|||e|||2V ≤ 2|||ξ|||2V + 2|||η|||2V ≤
C

δ
‖η‖2QT

+ C‖η‖2QT
+ Cδ‖ηt‖QT

+ Cδ‖∇η‖QT
+

+C

M∑
m=1

|η−|2m+C(T )(‖e‖2QT
+

∫
Ωx

|n(x)−ñ(x)|2dx+h2k+1)+ |η+|20 +

M−1∑
m=1

|[η]|2m.

By some standard interpolation inequalities and using Lemma 4.2 with an adequate
choice of C, we get that

|||e|||2V ≤
1

2
|||e|||2V + hC(T )

M∑
m=1

|e−|2m + C(T )(h2k+1 + h2k+2).

Here we need also to assume that h is sufficiently small. Otherwise, we do not get
1
2 |||e|||

2
V on the right hand side. To sum up it follows directly that

|||e|||2V ≤ hC(T )

M∑
m=1

|e−|2m + C(T )(h2k+1 + h2k+2). (4.6)

We shall now use the following discrete Grönwall estimate. If

yn ≤ C +

n∑
k=1

gkyk,

then

yn ≤ Ce
∑n−1

k=1 gk .

From the definition of |||e|||V it follows that

|e−|2M ≤ C1h
2k+1 + C2h

M∑
m=1

|e−|2m,

with C1 = C(T )(1 + h) and C2 = C(T ). The discrete Grönwall estimate implies
that

|e−|2M ≤ C1h
2k+1eC2h(M−1).

Using this inequality on the right hand side of (4.6), give us that

|e−|2M−1 ≤ C1h
2k+1(1 + heC2h(M−1)) + C2h

M−1∑
m=1

|e−|2m.

Once again applying the discrete Grönwall estimate leads to

|e−|2M−1 ≤ C1h
2k+1(1 + heC2h(M−1))eC2h(M−2).



12 C. STANDAR

Continuing in this way yields the following estimate

|||e|||2V ≤ Ch2k+1 +O(h2k+2),

which is the desired result. �

5. SD-based DG for the Maxwell equations

We are now going to prove the same error estimates for the streamline diffusion
based discontinuous Galerkin method. We start with the Maxwell equations. Define

∂K̃ = {(t, x) ∈ ∂K̃;nt(t, x) + nx(t, x) < 0}

for K̃ ∈ C̃h and where (nt, nx) denotes the outward unit normal to K̃. Introduce

W̃h = {g ∈ [L2(QT )]3; gi|K̃ ∈ Pk(K̃),∀K̃ ∈ C̃h, i = 1, 2, 3}.
The discontinuous Galerkin finite element method for (3.1) can now be formulated

as follows: find Wh ∈ W̃h such that

(M1W
h
t +M2W

h
x , ĝ + δ(M1gt +M2gx))QT

+
∑
K̃∈C̃h

∫
∂K̃−

[Wh]g+dσ =

= (b, ĝ + δ(M1gt +M2gx))QT
∀g ∈ W̃h. (5.1)

We introduce the bilinear form

B̃(W, g) = (M1Wt+M2Wx, ĝ+δ(M1gt+M2gx))QT
+
∑
K̃

∫
∂K̃′−

[W ]g+dσ+〈W+, g+〉0

and the linear form

L̃(g) = (b, ĝ + δ(M1gt +M2gx))QT
+ 〈W0, g+〉0,

where ∂K̃ ′− = ∂K̃−\{0} × Ωx. We can now reformulate (5.1) in a more compact

form: find Wh ∈ W̃h such that

B̃(Wh, g) = L̃(g) ∀g ∈ W̃h.

Define the norm

|||g|||2M =
1

2
(|g−|2M + |g+|20 +

∑
K̃

∫
∂K̃′−

[g]2dσ + 2δ‖M1gt +M2gx‖2QT
).

Lemma 5.1. We have

B̃(g, g) = |||g|||2M ∀g ∈ W̃h

Proof. The proof of this Lemma is very similar to the proof of Lemma 3.1. Here
we use the equality

(M1gt +M2gx, ĝ)K̃ + |g+|20 +
∑
K̃

∫
∂K̃′−

[g]g+dσ =

=
1

2
(|g−|2M + |g+|20 +

∑
K̃

∫
∂K̃′−

[g]2dσ),

which follows from partial integration. �

Lemma 5.2. For any constant C > 0 we have for g ∈ W̃h

‖g‖QT
≤

 1

C
‖M1gt +M2gx‖2QT

+

M∑
m=1

|g−|2m +
∑
K̃

∫
∂K̃′′−

[g]2dσ

heCh,

where ∂K̃ ′′− = {(t, x) ∈ ∂K̃ ′−;nt(t, x) = 0}.
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Proof. This proof is similar to the proof of Lemma 3.2. In this proof we have to
prove an estimate for every K̃ ∈ C̃h (local estimates) and then adding them together
to get the desired inequality. �

We have the following theorem for the error estimate.

Theorem 5.3. If Wh is a solution to (5.1) and the exact solution W of (3.1)
satisfies

‖W‖k+1 ≤ C,
then there exists a constant C such that

|||W −Wh|||M ≤ Chk+ 1
2 .

Proof. We have as in the proof of Theorem 3.4,

|||ξ|||2M = B̃(η, ξ),

where ξ and η are the same as in Section 3. Integration by parts leads to appearance
of a term of the form

T0 =
∑
K̃

∫
∂K̃′′−

[ξ]η+dσ.

We can estimate this term with

|T0| ≤ 4
∑
K̃

∫
∂K̃′′−

|η+|2dσ +
1

8

∑
K̃

∫
∂K̃′′−

[ξ]2dσ.

By standard interpolation theory the first sum can be estimated by Ch2k+1‖W‖2k+1,

while the second sum can be hidden in |||ξ|||2M . This together with the proof of
Theorem 3.4 completes the proof. �

6. SD-based DG for the Vlasov-Maxwell equations

Before formulating the discontinuous Galerkin method for the Vlasov equation,
we need to introduce some notations. For each K ∈ Ch define

∂K− = {(t, x, v) ∈ ∂K;nt(t, x, v) + n(t, x, v) ·G(fh) < 0},
where (nt, n) = (nt, nx, nv) denotes the outward unit normal to ∂K. Let us also
introduce for k ≥ 0,

Wh = {g ∈ L2(QT ); g|K ∈ Pk(K),∀K ∈ Ch}.
We can now formulate the discontinuous Galerkin method as: find fh ∈ Wh such
that

(fht +G(fh) · ∇fh, g + δ(gt +G(fh) · ∇g))QT
+

+
∑
K∈Ch

∫
∂K−

[fh]g+|nt + n ·G(fh)|dσ = 0,∀g ∈ Wh. (6.1)

Here g± = lims→0± g(t+ s, (x, v) +G(fh)s). We introduce the bilinear form

B(G; f, g) = (ft +G · ∇f, g + δ(gt +G(fh) · ∇g))QT
+∑

K

∫
∂K′−

[f ]g+|nt + n ·G(fh)dσ + 〈f+, g+〉0

and the linear form

L(g) = 〈f0, g+〉0,
where ∂K ′− = ∂K−\{0} × Ω. Now we can write (6.1) as: find fh ∈ Wh such that

B(G(fh); fh, g) = L(g) ∀g ∈ Wh.
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Lemma 6.1. We have

B(G(fh); g, g) = |||g|||2V ∀g ∈ Wh,

where

|||g|||2V =
1

2
(|g−|2M + |g+|20 +

∑
K

∫
∂K′−

[g]2|nt+n ·G(fh)|dσ+2h‖gt+G(fh) ·∇g‖2QT
).

Lemma 6.2. For any constant C > 0 we have

‖g‖2QT
≤

(
1

C
‖gt +G(fh) · ∇g‖2QT

+

M∑
m=1

|g−|2m +

+
∑
K

∫
∂K′′−

[g]2|n ·G(fh)|dσ

)
heCh ∀g ∈ Wh,

where

∂K ′′− = {(t, x, v) ∈ ∂K ′−;nt(t, x, v) = 0}.

The two lemmas are proven similar to Lemma 5.1 and Lemma 5.2, respectively.
We end this section with the following theorem corresponding to Theorem 4.4.

Theorem 6.3. Let f and fh be as in Theorem 4.4 and ‖f‖k+1,∞ ≤ C, then we
have the following error estimate for the problem (6.1),

|||f − fh|||V ≤ Chk+ 1
2 ,

where ‖ · ‖k+1,∞ denotes the W k+1
∞ (QT )-norm.

Proof. As in the proof of Theorem 5.3, we only get one extra term of the form∑
K

∫
∂K′′−

[ξ]η+|n ·G(fh)|dσ

to estimate. Following the proof of Theorem 4.1 in [2] together with the proof of
Theorem 4.4, the theorem follows. �

7. Conclusion

In summary, we have performed numerical studies of a relativistic Vlasov-Maxwell
system of equations formulated for an one and one-half dimensional model (i.e. one
space variable and two velocity variables). As for the existence and uniqueness of
the analytic solution for the continuous problem, both the electric and magnetic
fields have unique representations given by the initial data. Notice that this ap-
proach will not work in higher dimensions, therefore extensions to higher dimensions
require a different type of investigation.

As for the numerical approach, we have applied the streamline diffusion finite el-
ement strategy and discretized the Vlasov-Maxwell system accordingly. We derived
for the Maxwell equations and the Vlasov equation, optimal convergence rates for
a priori error estimates using streamline diffusion as well as discontinuous Galerkin
finite element methods. In a forthcoming paper we shall study a posteriori error
estimates for the current problem. This will generalize the work by Johnson and
Hansbo [9] and Asadzadeh et al. [3]. A natural extension thereafter is to study
both a priori and a posteriori error estimates for higher dimensional cases.
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E-mail address: standarc@chalmers.se


