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Abstract

In the design of wind turbine structures, aeroelastic stability is
of utmost importance. The bending-torsion oscillation problem of
a representative rotor blade section with structural nonlinearity has
been considered. The system is subjected to horizontal random gust
modeled as a stationary process. Uncertainty quantification in high-
lighting the relative importance of different sources of uncertainty on
aeroelastic system stability, consequently its fatigue and failure is a
crucial step of aeroelastic design. Effect of different sources of un-
certainty on the fatigue damage estimate of the blade are studied in
the present aeroelastic problem. The effect of the following on the
fatigue damage estimate of the blade is reported in this work, struc-
tural parameter, choice of aeroelastic model (modeling error) and also
the stress selection criteria for the damage estimate. The structural
parameter randomness is modeled through polynomial chaos expan-
sion in analyzing its effect on the damage estimate. The unsteady
inviscid flow-field in the aeroelastic model is resolved analytically and
also using a higher fidelity vortex lattice algorithm and the relative
effect on damage is seen. Finally, the effect of fatigue damage criteria
selection is also observed. The damage calculation is done for torsion
only, bending only and also for multiaxial stress situations. Multiax-
ial stresses are converted to an ‘equivalent’ one by using a signed von
Mises criterion. A linear damage accumulation rule has been used to
estimate the risk for fatigue damage.
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Nomenclature

m = Structural mass per unit span
h = Plunge displacement in meters
Iα = Mass moment of inertia about elastic axis
Sα = First moment of inertia
cα, ch = Viscous damping coefficients in pitch and plunge
Kα, Kh = Linear stiffness coefficients in pitch and plunge
Kα1 , Kh1 = Non linear stiffness coefficients in pitch and plunge
Lα, Mα = Unsteady aerodynamic lift and moment
Lu = Horizontal length scale of the gust
ah = Non-dimensional distance from airfoil mid-chord to elastic axis
b = Airfoil semi-chord
CL = Lift coefficient
CM = Pitching moment coefficient
rα = Radius of gyration about elastic axis
u(t) = Longitudinal turbulence
U = Non-dimensional speed
xα = Non-dimensional distance from elastic axis to center of mass
α = Pitch angle of airfoil
ε = Non-dimensional plunge displacement
βα, βε = Cubic spring coefficients in pitch and plunge
ζα, ζε = Viscous damping ratio in pitch and plunge
µ = Airfoil/air mass ratio
τ = Non-dimensional time
ωα, ωε = Uncoupled natural frequency in pitch and plunge respectively
ω̄ = Natural frequency ratio in plunge and pitch
φ = used in many contexts as standard notations and is defined locally as
appropriate.

3



Introduction

Flutter oscillation can occur in flexible structural systems when it is sub-
jected to high wind forces. It is self induced in nature and becomes a recipe
for disaster when not properly controlled, as the resulting oscillation ampli-
tude could be quite high. Such structures should be designed with carefully
selected parameters in order to avoid flutter from taking place. In the pres-
ence of parametric uncertainties, the flutter margin can become sensitive to
such parameters once again. An uncertainty quantification to estimate the
propagation of uncertainty is crucial to evaluate the probability of failure or
fatigue damage. The paper gives methodology for studying different sources
for uncertainties in fatigue life prediction of wind turbine blade subjected to
gusts. The following typical uncertainties will be considered; modeling error
uncertainty in predicting the aerodynamic loads acting on a blade; choice
of fatigue criterion and uncertainty in system parameters used to model the
blade’s motions.

The modeling error uncertainty will be studied by comparing fatigue life
predictions for two different aeroelastic models of body wake interaction used
to evaluate aerodynamic loads acting on the blade. The methods will be pre-
sented in sections entitled ‘Analytical Model for CL and CM in (3)’ (in more
detail in Appendix 1) and ‘CL and CM Estimated by Means of Unsteady
Vortex Lattice Method’. The first one is the classical formulation given by
Wagner1 in which the airfoil body is approximated as a flat plate and the
unsteady wake behind the trailing edge is assumed to be fixed behind the
body. The second model uses an unsteady vortex lattice method (UVLM).
This model considers the actual shape of the airfoil and the wake is dis-
cretized into computational elements forming a freely rolling wake structure.
The airfoil body is the section of a model blade treated as a cantilever beam
fixed at the hub with arbitrarily chosen blade parameters. The aeroelastic
system is subject to a horizontal random gust which is a stationary normal
process having von Karman spectrum. The presence of gust makes the airfoil
oscillate randomly and the classical bifurcation theory cannot be applied2.
Uncertainties due to choice of fatigue criterion will be discussed in section
entitled ‘Uncertainty in Fatigue Damage Prediction’. The criteria to predict
damage rates will be discussed in section entitled ‘Fatigue Damage Criteria’.
Common engineering approach combining linear damage accumulation hy-
pothesis with constant amplitude experiments (S-N data) will be employed.
The differences in fatigue life predictions will be investigated while consid-
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ering stresses due to torsion, bending separately and also by combining the
stresses into a signed von Mises stress. S-N curves established from the tor-
sion and tensile loads on a representative material will be used.

As mentioned before, proper design of blade is crucial for reliable and safe
use of an aeroelastic system. In particular, flutter oscillations in blades are
very undesired motions. In section entitled ‘Governing Equations of Motion’
coupled non-linear oscillators are used to describe the motion (plunge and
pitch) of the blade. An important parameter ω̄, which is the natural fre-
quency ratio in plunge and pitch, is assumed not perfectly known and hence
modeled as a random variable. In the realm of uncertainty quantification, in-
fluence of random parameters on response of interest have traditionally been
analyzed with the help of Monte Carlo Simulation (MCS). Of late however
a spectral uncertainty quantification tool called polynomial chaos expansion
(PCE), pioneered by Ghanem and Spanos3, has been put into use to study
such problems. The PCE method will be employed in this work, see Ap-
pendix entitled ‘Polynomial Chaos Expansion’ for some introduction to the
method to study sensitivity of damage rate prediction on uncertain system
parameter ω̄.

Some studies which are of interest in the area of influence of uncertain-
ties in flow and aeroelastic systems are discussed briefly here. Poirel and
Price2 have modeled and studied a structurally nonlinear aeroelastic system
using linear aerodynamic theory subjected to gust loading conditions. Monte
Carlo Simulations (MCS) were used to investigate the stochastic bifurcation
behavior. Pettit et al.4 have used horizontal and vertical gust models with
an unsteady vortex lattice solver on a rigid flat plate. Further, Pettit and
Beran5 have studied the effects of parametric uncertainties on airfoil flutter
limit cycle oscillation (LCO) using MCS. Desai and Sarkar6 have modeled
and studied a nonlinear aeroelastic system using a linear aerodynamic the-
ory with structural uncertainties under a uniform wind and have given a
comparison between standard MCS and PCE solutions. However studies
of uncertainties of damage rate predictions is in its beginning. In our ear-
lier work, Sarkar et al.7 have studied the fatigue damage rate uncertainties
for a simpler aeroelastic model of single degree-of-freedom torsional oscilla-
tion. Aerodynamic loads were estimated using semi-empirical method which
is based on fitting load coefficients from experimental data. A stationary
random gust was considered on the structure with its mean having a Gaus-
sian variation. It was felt in the previous study that the effect of structural
parameter uncertainty should also be taken into consideration. This is now
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attempted in the present study. Also, the aeroelastic model is improved to
take into account both pitch-plunge oscillations which is a more likely sce-
nario in blades. The aerodynamic loads are calculated by both analytical
and computational techniques and are more accurate.

Fatigue Damage Criteria

Fatigue damage of a material takes place when the the material is subjected
to repeated loading and unloading. Most often constant amplitude periodic
loads are used to study the resistance of the material to fatigue damage which
is measured by the number of periods it takes for a failure. These results
are then represented in the form of S-N (stress vs. number of cycles) curve,
also called as Wöhler curve. However the real loads encountered in actual
practice are seldom a constant amplitude load. Hence there is a need to
follow a cycle counting procedure which reduces the varying stress data into
a set of cycles that allows for the application of damage rules in order to
assess the fatigue life of the structure.

Yang and Fatemi8 have given a detailed account of different damage rules
in use today. Though many fatigue models have been developed, none of
them are universally accepted. Each model accounts for only a limited num-
ber of cases where it works satisfactorily. In the present work, as is often done
in engineering, the linear fatigue damage rule commonly known as Palmgren-
Miner’s rule9;10 which defines a damage D as

D =
k∑

n=1

ni
Ni

(1)

From Eq. (1), Ni is the number of cycles to failure when a constant amplitude
reversible load of Si is acting; ni is the actual number of cycles over which
the constant amplitude reversible load of Si is acting and k is the number
of stress blocks. For variable amplitude loads ni is the number of rainflow
cycles having range Si counted in the load. Here local definition of rain-flow
cycles, proposed in11, will be used. The fatigue failure is predicted when the
damage D exceeds one, or some smaller threshold.

Often the environmental loads can be modeled as a sequence of station-
ary conditions resting for a period T , say. If the mean stress between the
stationarity periods are approximately equal and T sufficiently long then the
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stress ratio
d = D/T,

can be considered constant and the total damage due to N stationary load
conditions are D ≈ N T E[d] where expected damage rate is computed using
the long-term distribution of wind spectra parameters for structure location.
In this paper we shall study uncertainty of the damage D accumulated over
a period of T = 120 seconds.

More precisely damage rate will be computed in three cases: in the first
one only the stresses due to torsion are considered; in the second stresses
due to bending are used and in the third method combines the two ones by
means of ‘equivalent’ uniaxial sign von Mises stress12 where sign of the stress
is defined by the highest principal stress. ( The stress calculation for the
bending and torsion modes are discussed in detail in Appendix 3. )

Finally, as a representative material, Aluminum alloy 6082-T6 is consid-
ered here to compare the fatigue damage between the analytical and UVLM
models. Experimental data have been analyzed and presented in an earlier
work13 (second chapter), which is used to estimate the fatigue life of Al 6082-
T6 in bending and torsion. S-N relationship for these (bending and torsion
data) are fitted in the form of N = CSb with the given data to estimate
damage. The fitted behavior is shown in Appendix 3. The present work
incorporates the WAFO toolbox for rain-flow counting and the evaluation of
damage14.

Governing Equations of Motions

Fig. 1 shows a schematic plot of the two degrees-of-freedom (2D) classical
pitch-plunge (bending-torsion) aeroelastic system. The equations of motion
for the structurally linear system have been derived in 15. With nonlinear
restoring forces such as with cubic springs in both pitch and plunge, the
equations of motion can be written as,

mḧ+ Sαα̈ + 2chḣ+Khh+Kh1h
3 = Lα

Sαḧ+ Iαα̈ + 2cαα̇ +Kαα +Kα1α
3 = Mα (2)

The above equation in the nondimensional form is given as1,

7



ε′′ + xαα
′′ + 2ζε

ω̄

U
ε′ + (

ω̄

U
)2(ε + βεε

3) = − 1

πµ
CL(τ)

xα
r2
α

ε′′ + α′′ + 2
ζα
U

α′ +
1

U2
(α + βαα

3) =
2

πµr2
α

CM(τ) (3)

where ζα and ζε are structural damping ratios in pitch and plunge respec-
tively, βα and βε denote coefficients of cubic spring in pitch and plunge re-
spectively. Among other nondimensional structural parameters, xα is the
first moment of inertia and rα is the radius of gyration, ω̄ is the natural fre-
quency ratios of plunge and pitch degrees-of-freedom. In the following work,
the parameter ω̄ will be considered as uncertain.

Analytical Model for CL and CM in (3)

Here we consider the classical formulation given by Wagner1 in which the
airfoil is approximated as a flat plate and the unsteady wake is assumed to be
fixed to the body. For incompressible, inviscid flow, with small amplitude of
oscillation of the body, the expressions for unsteady lift (CL(τ)) and pitching
moment coefficients ( CM(τ)) respectively can be analytically modeled in
the time domain using the classical approach of Wagner15. The unsteady
loads are expressed in the form of Duhamel’s integrals in terms of a time
domain function called Wagner function15. This analytical approach models
the body as a zero thickness flat plate and also assumes the unsteady wake
to be rigidly attached to the body’s trailing edge.

The integral form of the loads at the right hand side makes the direct
integration of the governing differential equations difficult. To solve this
integro-differential form, four new variables w1, w2, w3, w4 were introduced1,
thus reformulating the equations in the following first order form,

x′ = f (x, system parameters). (4)

Here, x is an array of eight variables as given below:

{x1, x2, x3, x4, x5, x6, x7, x8} = {α, α′, ε, ε′, w1, w2, w3, w4}. (5)

More for details on this formulation, the readers are referred to Appendix 1.
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CL and CM Estimated by Means of Unsteady

Vortex Lattice Method

Subsequently, an unsteady potential flow solver based on a 2D unsteady
vortex lattice method (UVLM) is implemented to calculate the aerodynamic
loads at the right hand side of the governing equations, i.e. CL and CM . In
contrast to classical approach here the wake is free to evolve with its own
local velocities. This method discretizes the actual shape of the body and
the wake into computational elements. In the present work, the unsteady
Hess and Smith panel method is implemented16 and is used for the time
dependent load calculations.

The airfoil surface is divided into a number of small segments called pan-
els. The body is represented using two types of singularity elements, sources
and vortices. The velocity at any point (x,y) in the flow-field is vector sum
of velocity of undisturbed flow (free stream) and disturbance field due to
the presence of the oscillating body and the wake behind the body. The
wake behind the airfoil also consists of discretized elements. The boundary
condition that the surface of the body is a streamline of the flow is satisfied
by taking the summation of velocities induced by body bound singularities,
free-stream and wake vortices to be equal to zero in the direction normal to
the surface at each panel. The source singularity strength is considered to
be constant over a particular panel and the vorticity strength is considered
to be constant over all the panels and their values are computed using the
boundary condition and also the Kutta condition. Kutta condition is im-
posed to ensure smooth flow at the trailing edge. For inviscid flow, Kelvin’s
theorem states that the total circulation in the flow-field must be preserved
and that any changes in the circulation about the body is balanced by an
equal and opposite vorticity added in the wake. These shed vortices influence
the local velocity field significantly and as a result the forces on the airfoil at
any instant are influenced by the past motion of airfoil. All the wake vortices
are shed from the trailing edge of the airfoil. In unsteady potential flow,
the calculation of pressure at any point on the body is done by the use of
unsteady Bernoulli’s equation16.

The qualitative flow-field for a sinusoidally oscillating NACA 0012 airfoil
with its evolving wake pattern behind the trailing edge is shown in Fig. 2.
The shape of the wake is dictated by the local velocities of the wake vorticity
elements. Hence the name, free wake model in contrast to the rigid wake
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model of analytical method in which the wake moves with the free-stream17.
UVLM also accounts for the airfoil geometry; the effect of airfoil shape and
thickness is significant on the wake pattern which finally affect the unsteady
aerodynamic loads.

Simulation of Gust Time Histories

The simulation of gust time histories is done by using the approach given
by18. The von Karman spectral density has been used in the present simu-
lation to model the horizontal gust fluctuations4.

Suu(ω) =
2σ2

uLu
πV∞

1

[1 + (1.339Luω/V∞)2]5/6
, 0.01 ≤ ω ≤ 40 (6)

V∞ is the mean wind at 6.1 m/s and the following gust parameter values
have been considered in the present study, σu = 0.52303 m/s; Lu = 152.5
m. The vertical component of the gust is assumed to be absent. Simulation
of horizontal fluctuations u(t), from its spectral density function is done by
superimposing a set of sinusoidal components.

u(t) =
Nw∑
n=1

√
2Suu(ωn)∆ωn(ωn) cos(ωnt+ φn) (7)

φns are uniformly distributed random variables between 0 and 2π and Nw =
1000. It is well known that Gaussian process possessing PSD is ergodic. Since
u(t) is an approximation of the ergodic Gaussian process, approximately, the
average quantity like damage, will converge to the ensemble mean of the
quantity. Hence basically one sequence of the random phases is needed to
estimate damage rate dependence on uncertain parameters. In the present
work, the focus is on estimating average quantities like rate of damage over a
long time simulation, and hence this assumption. A PCE formulation is done
for the structural parameter ω̄ which is considered to be a Gaussian random
variable with mean = 0.2 and coefficient of variation = 5%. Sensitivity of
the fatigue damage on this structural parameter variation is shown in a later
section.
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Validation of the UVLM Code and Aeroelastic

Response

A validation of the UVLM aerodynamic model has been done with the earlier
results of Young17 for both computational and analytical results. They are
compared in terms of the peak lift and moment coefficients for a rigid airfoil
driven in plunge and the results have matched quite well as shown in Fig. 3
(a),(b). The analytical approach over predicts the load and this difference
increases with the frequency.

Ensuring that the code is working fine in the flow only part, the next
step was to couple the structural part with it. In this step, the lift coefficient
obtained from the flow part is substituted in Eq. (2), and the position of the
airfoil is updated at each time step. A symmetric NACA 0012 airfoil profile
has been used in the aerodynamic model. The structural parameters are: µ
= 41.3833; xα = 0.33586; rα = 0.57378; βα = 3; βε = 0; b = 0.5m and ω̄ =
0.2.

It was seen that the linear flutter speed predicted by both UVLM and an-
alytical calculations are reasonably close and are in good agreement with each
other in the above chosen parameter ranges. The non-dimensional critical
speed (flutter) predicted by UVLM is 4 while that predicted by the analytical
model is 4.29. The difference in the flutter speed can be attributed to the
airfoil shape and the free wake aerodynamic model used in UVLM. UVLM
considers a wake model in which the trailing edge wake is free to develop
while the analytical model considers a Wagner’s model15 in which the wake
is rigid and bound to the body. Also the airfoil geometry is taken into con-
sideration in UVLM whereas the Wagner’s model makes simplifications by
neglecting the thickness and camber of the profile. Fig. 4 shows a qualitative
comparison of the aeroelastic response under a sample gust realization for
both UVLM and analytical model. Under the influence of same gust profile,
the analytical formulation predicts higher amplitude of oscillation compared
to UVLM.
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Sensitivity of Fatigue Damage on Structural

Parameter ω̄

In Sarkar et al.7, a PCE relation between fatigue damage rate and average
wind speed V∞ has been presented. There, the aerodynamic load was sim-
plified so as to consider the blade torsion only. Since the oscillation problem
involved large angles of attack, viscous effects were included and the aero-
dynamic load was calculated using a semi-empirical model19 (Onera model
for dynamic stall). In the present case, loading in both torsion and bending
are considered, however, here the viscous effects are not important hence
load calculation can be done with analytical formulations. For higher accu-
racy and improved unsteady effects, UVLM is also used. Three formulas for
damage accumulation will be compared; damage solely due to torsion then
bending and multiaxial approach using equivalent signed von Mises stress,
see Fig. 5 for a typical record of von Mises stress evaluated for the rotor blade.
(The multi-axial state of stress time histories arising from the bending and
torsion of a rotor blade is discussed at some details in Appendix 3.)

Summarizing, there are three damage rates considered for two models of
loadings; the classical analytical formulation given by Wagner1 and UVLM.
This gives six damage rates. Sensitivity of the damage rates on structural
parameter (ω̄) is presented in Fig. 6. We can see that the damage rate is
very sensitive for the value of the ω̄ growing by factor two for the considered
cases.

Uncertainty in Fatigue Damage Prediction

Fig. 7 show damage PDFs (T= 120 secs) for equivalent signed von Mises,
torsion and bending situations for two models of environmental load, i.e. six
cases. The variability of damage rates caused by uncertainty of ω̄ is described
by means of the pdf’s. Note that ω̄ is considered as normally distributed
random variable with mean 0.2 and standard deviation 0.01.

First of all, as is mentioned in Appendix 3, the torsion stress is much larger
then the bending stress so we expect that damage computed for solely torsion
and von Mises stress should be much higher than the damage rate computed
for bending originated stresses. This is also the case as can be seen in plots
shown in Fig. 7. We conclude that for system considered neglecting torsion
in fatigue damage prediction would lead to gross errors. Secondly one can see
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that modeling error can also be very large. We can see that using analytical
description of environmental loads will give damage rates between two and
three times larger than the damage rates evaluated for UVLM model. There
is also non negligible uncertainty due to choice of fatigue criterion based solely
on torsion stresses and the equivalent multiaxial signed von Mises stress. The
damage rates for the multiaxial fatigue criterion are about 25% higher for
the chosen system.

Summarizing in our study the largest uncertainties in fatigue damage
predictions are due to choice of the model to describe environmental load.
Variability due to uncertainty in the value of parameter ω̄, the natural fre-
quency ratio in plunge and pitch, is of similar size. Finally, for the chosen
system, uncertainty on selection of fatigue damage criterion, uniaxial or mul-
tiaxial is much smaller but not negligible.

Summary & Conclusions

A nonlinear flutter model of a model rotor blade with different sources of
uncertainty has been considered in the present study. The unsteady aerody-
namic loads are calculated for the bending-torsion oscillation model of blade
section. The system is subjected to horizontal gust, modeled as a stationary
process. Different sources of uncertainty are investigated for their relative
effect on the fatigue damage estimate of the blade. This is a qualitative
comparison of their effect on the model blade rather than a quantitative life
prediction of an actual rotor. Uncertainty in the structural stiffness param-
eter is assumed with a Gaussian variation and modeled using polynomial
chaos expansion (PCE). PCE needs to use smaller number of deterministic
runs compared to Monte Carlo samples. Modeling error uncertainty is an-
other important source of uncertainty in predicting the aeroelastic stability
boundary (flutter) and also the fatigue life. Two different aeroelastic mod-
els, using two different unsteady inviscid flow solvers have been compared;
an analytical flow model and a two dimensional vortex lattice code. The an-
alytical model approximates the airfoil as a thin flat plate with the unsteady
wake rigidly attached to it. The vortex lattice method takes into account
the shape of the airfoil and also evolution of the wake pattern, hence based
on a more realistic unsteady flow situation than the analytical model. The
damage pattern is similar but damage values are higher with the analytical
model. Thus, the analytical model is seen to be more conservative. There is
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a significant computational advantage is using the analytical model as well,
as the higher fidelity UVLM code takes much longer to run. For fatigue life
estimate, three different criteria based on torsion, bending and multiaxial
stress are used. Multiaxial stress situation is converted to an equivalent uni-
axial case using a signed von Mises criterion. The damage patterns for von
Mises and torsion were close to each other. The effect of bending is much
smaller compared to torsion, but not entirely absent. Thus the uncertainty
on the choice of fatigue criteria is smaller compared to the other sources of
uncertainty, though not entirely negligible.
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APPENDIX 1

Analytical Model for Aerodynamic Loads

For incompressible, inviscid flow, the unsteady lift and pitching moment
coefficients, CL(τ) and CM(τ) can be written analytically in terms of the
Wagner function φ(τ)15 as (please note that φ is used as a standard notation
and is different from any other φ that have been used elsewhere in the paper
outside this Appendix).

CL (τ) = π {ε′′(τ)− ahα′′(τ) + α′(τ)}+2π
{
α (0) +ε′ (0) +

[
1

2
−ah

]
α′ (0)

}
φ (τ)

+2π
∫ τ

0
φ(τ−σ)

[
α′ (σ) ε′′(σ) +

[
1

2
−ah

]
α′′ (σ)

]
dσ (8)

CM (τ) = π
[
1

2
+ ah

]
×
{
α (0) + ε′ (0) +

[
1

2
− ah

]
α′ (0)

}
φ (τ)

+π
[
1

2
+ ah

] ∫ τ

0
φ (τ − σ)

{
α′ (σ) + ε′′(σ) +

[
1

2
− ah

]
α′′ (σ)

}
dσ

+
π

2
ah {ε′′(τ)− ahα′′(τ)} −

[
1

2
− ah

]
π

2
α′(τ)− π

16
α′′(τ) (9)

The Wagner function φ(τ) in terms of the nondimensional time is given by:

φ (τ) = 1− ψ1e−ε1τ−ψ2e−ε2τ (10)

Values for the constants are, ψ1= 0.165, ψ2= 0.335, ε1= 0.0455 and ε2 =
0.320. Introducing the following new variables w1, w2, w3, w4, the original
integro-differential equations for aeroelastic system given by Eq.3 can be
reformulated1.

w1 =
∫ τ

0
e−ε1 (τ−σ)α(σ)dσ

w2 =
∫ τ

0
e−ε2 (τ−σ)α(σ)dσ

w3 =
∫ τ

0
e−ε1 (τ−σ)ε(σ)dσ

w4 =
∫ τ

0
e−ε2 (τ−σ)ε(σ)dσ
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The above expressions give way to the following:

w′1 = α− ε1w1

w′2 = α− ε2w2

w′3 = ε− ε1w3

w′4 = ε− ε2w4

Now a set of autonomous first order forms are obtained as follows:
x′ = f(x) are obtained as, x = {x1, x2, x3, x4, x5, x6, x7, x8}= {α, α′, ε, ε′, w1, w2, w3, w4}.
Explicitly, the system looks like,

x′1 = x2

x′2 = (c0N − d0M)/(c1d0 − c0d1)

x′3 = x4

x′4 = (−c1N + d1M)/(c1d0 − c0d1)

x′5 = x1 − ε1x5

x′6 = x1 − ε2x6

x′7 = x3 − ε1x7

x′8 = x3 − ε2x8, (11)

where,

M = c2x4 + c3x2 + c4x3 + c5x
3
3 + c6x1 + c7x5 + c8x6 + c9x7 + c10x8 − f (τ)

N = d2x2 + d3x1 + d4x
3
1 + d5x4 + d6x3 + d7x5 + d8x6 + d9x7 + d10x8 − g(τ)

The values of c0...c10, d0...d10, f (τ) and g(τ) depend on the system parame-
ters1.

APPENDIX 2

Polynomial Chaos Expansion

System response X(t, θ) is defined in a probability space given by (Ω,A, P ),
with θ ∈ Ω. X(t, θ), which is second order stationary, can be written as21:
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X(t, ~ξ) =
∞∑
j=0

aj(t)Φj(~ξ(θ)) (12)

where polynomials Φj forms a basis and ~ξ = ξ1, ξ2, .... are random variables
defined on the probability space. The choice of the basis function depends on
the random variables ~ξ. In the original form, Gaussian random variables were
used and Φjs were Hermite polynomials. The basis polynomials are chosen
so as to be orthogonal with respect to P~ξ and the speed of convergence
depends on the choice of basis. The first few one-dimensional (ξ1) Hermite
polynomials are given as:

Φ0(ξ1) = 1,

Φ1(ξ1) = ξ1,

Φ2(ξ1) = ξ1
2 − 1,

Φ3(ξ1) = ξ1
3 − 3ξ,

Φ4(ξ1) = ξ1
4 − 6ξ2 + 3,

Other Hermite polynomials can be generated from the following recurrence
relationship,

Φn(ξ1) = ξ1Φn−1 − (n− 1)Φn−2.

However, the exponential convergence of the polynomial chaos expansion
has been extended to several other types of commonly used probability dis-
tributions. One can use orthogonal polynomials from the generalized Askey
scheme for some standard non-Gaussian input uncertainty distributions such
as gamma and beta as given in22. For any arbitrary input distribution, a
Gram-Schmidt orthogonalization can be employed to generate the orthogonal
family of polynomials given by23. Any stochastic process α(t, ~ξ), governed

by Gaussian random variables ~ξ (~ξ can always be normalized as standard
Gaussian) can then be approximated by the following truncated series:

α(t, ~ξ) ≈
p∑
j=0

α̂j (t) Φj(~ξ (θ) ) (13)

Note that, here the infinite upper limit of Eq. (12) is replaced by p, called
the order of the expansion. For multi-dimensional random variables (n), with
number of polynomial terms denoted by np, the minimum value is given by
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the following24.

p =
(n+ np)!

n!np!
− 1 (14)

A number of non-intrusive variants of PCE have been developed to counter
the disadvantages of the classical Galerkin method. Stochastic projection is
one of them3;25. In the present study, a stochastic projection based approach
is used to evaluate the chaos coefficients. Here, the chaos expansions are not
substituted in the governing equations; instead samples of the solutions are
used (using a low order pseudo-Monte Carlo method) to evaluate the coef-
ficients directly using a projection formula. As a result, this approach can
utilize the existing deterministic code and hence the name non-intrusive. The
random process is approximated by a truncated series, as shown in Eq. (13).

The Hermite polynomials are statistically orthogonal, that is, they satisfy
< Φi,Φj >= 0 for i 6= j, hence the expansion coefficients can be directly
evaluated as:

α̂j (t) =
< α(t, ~ξ),Φj>

< Φj
2 >

(15)

The denominator in Eq. (15) can be shown to satisfy < Φj
2 > = j ! for

non-normalized Hermite polynomials26. So the key step in projecting α(t, θ)
along the polynomial chaos basis is the evaluation of < α,Φj>.

For a single random variable case (ξ1),

< α(t, ξ1),Φk(ξ1) >=
∫ +∞

−∞
α(t, ξ1),Φk(ξ1)φ(ξ1)dξ1 (16)

Where the weighting function φ (ξ1) is the Gaussian probability density
function. For zero mean and unit variance case, this is given by the following,

φ(ξ1) =
1√
2π

e−
1
2
ξ1

2

(17)

The evaluation of < α(t, ξ1),Φk> is done by using a Gauss-Hermite
quadrature numerical integration scheme. The quadrature points along ξ1

are taken as the equi-probability points (for the definition of equi-probability
points, see27). At these points, the corresponding samples of the uncertain
parameter is used to run the pseudo-MCS. The realizations of the system re-
sponse α(t, ξ1) are then used to estimate the deterministic coefficients, α̂j(t)s
in Eq. (15).
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APPENDIX 3

Stress Calculation and Damage

The turbine blade is assumed to be a cantilever beam with the same airfoil
cross-section throughout its length. The blade is assumed to undergo torsion
(airfoil pitching) and bending (airfoil plunging). The centrifugal stresses
caused due to the rotation of the blade has not been taken into consideration
and only the shear stresses and bending stresses caused due to torsion and
bending have been considered. The turbine blade has been assumed to be
made of aluminum alloy Al 6082-T6 with modulus of elasticity E = 70 GPa,
the shear modulus G = 26.4 GPa. The SN characteristics for this material
have been fitted from the data given in13, chapter 2, for bending and torsion.
These are plotted in Fig. 8.

Stress calculation related to bending

The load and the corresponding stress on a cantilever beam is estimated in
the following way. For the sake of simplicity it is assumed that, the beam
is subjected to a uniformly distributed load. Megson28 describes the plunge
deflection at the tip of a cantilever beam under a uniformly distributed load
to be,

δtip =
wunil

4

8EI
, (18)

where δtip is the plunge deflection, I is the moment of inertia of the airfoil
cross section, wuni is the load per unit length of the blade, l is the length of
the blade. The plunge deflection estimated from the airfoil model is assumed
as the tip deflection.

The term wunil (called net loading) introduces a shear force as well as
bending moment which in turn introduces normal stresses. The shear stress
component τyz due to the net loading is given in the following. The beam
has its longitudinal axis along the z and vertical axis along the y directions
respectively.

τyz =
PAȳ

Ic
(19)

where P is the load = wunil, A is the area above the neutral axis, ȳ is the
centroid of the area and c is the width of the cross section. The plunge
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deflection δtip is time dependent, and so is the shear stress τyz.
The load per unit length of the blade wuni also produces a bending mo-

ment M which is given by (wunil
2)/2. The bending moment induces normal

bending stress σzz in the beam.

σzz =
My

I
(20)

where y is the height of the section above neutral axis. The bending stress
σzz is maximum at y = ymax and the shear component τyz near the neutral
axis. However, in the present bending computations, σzz values are several
magnitude larger than τyz and thus this shear component is not taken into
further calculations.

Stress calculation related to torsion

Estimating the torsion stresses is not as straightforward as the bending case
because of the unusual shape of the cross section involved. One needs to
account for warping of the cross section as well. Prandtl’s stress function
approach is used here29. Let us assume a prismatic bar of arbitrary cross-
section carrying a torsion couple T at the ends about the longitudinal z axis
and passing through the centre of twist. The deformation of the twisted shaft
consists of the rotations and warping of the cross sections.

Displacements due to rotation ∆x and ∆y in x and y directions respec-
tively are given by,

∆x = −rβ sinα = −rβ y
r

= −yzθ,

∆y = rβ cosα = rβ
x

r
= xzθ (21)

where, β = zθ is the angle of rotation of the cross section at distance z
along the blade. The cross section will also displace in the z direction as it
warps out of the x − y plane. This warping displacement is assumed to be
proportional to the rate of twist θ and a function ψ(x, y) which describes the
variation in ∆z over the cross section29. This gives

∆z = θψ(x, y) (22)

From Eq. (21) and Eq. (22), it can be observed that the direct strains
εx=

∂∆x
∂x

; εy=
∂∆y
∂y

and εz=
∂∆z
∂z

are all absent. Also γxy = ∂∆x
∂y

+ ∂∆y
∂x

= 0 which
implies that cross section does not shear in the x- y plane.
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The strain components can be written as,

γzx =
∂∆x

∂z
+
∂∆z

∂x
= θ(

∂ψ

∂x
− y) (23)

γzy =
∂∆y

∂z
+
∂∆z

∂y
= θ(

∂ψ

∂y
+ x) (24)

As a result, the stress components σx, σy, σz and τxy would all be zero
and shear stresses τzx = Gγzx and τzy = Gγzy would be present. Substituting
the values, one would get,

∂τzy
∂x
− ∂τzx

∂y
= 2Gθ (25)

A stress function φ called Prandtl stress function is introduced so as to satisfy,

τzx =
∂φ

∂y

τzy = −∂φ
∂x
. (26)

which give the following:

∂2φ

∂x2
+
∂2φ

∂y2
= −2Gθ (27)

Thus there are no normal stresses and the shear stresses are defined by com-
ponents τzx and τzy.

In order to estimate the torsion stresses in an arbitrary cross section, the
stress function should be known apriori. The stress function should be such
that it satisfies Eq. 27 and also the boundary conditions. Timoshenko and
Goodier29 have given a generalized expression for φ for airfoil-like section
shapes. One can assume a polynomial fit for such cross section shapes as,

y = aξ
(x
c

)
and, y = −a1ξ

(x
c

)
(28)

with, ξ
(x
c

)
=
(x
c

)m[
1−

(x
c

)p]q
(29)

The parameters a, a1,m, p, q are fitted according to the chosen cross section.
The stress function is given in the following generalized form:

φ = A(y − aξ)(y + a1ξ) (30)
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Here, A can be estimated in terms of Gθ a, a1, and ξ, as follows:

A =
−Gθ

1 + α(a2 + a2
1 + aa1)/c2

, (31)

where, α = f(ξ). Once φ is known, the stress components can be estimated
following Eq. 26. In the present study, a NACA 0012 symmetric airfoil has
been assumed. For this, the parameters are fitted as: a = a1 = 0.94,m =
0.75, p = 0.139, q = 1, α = 0.0083. The airfoil profile is reproduced using
these values and plotted along with a NACA 0012 profile (Fig. 9) and the
match is excellent.

The blade is assumed to be a standard rotor blade of length 20 m and
the chord length is assumed to be 1 m. Maximum τxz occurs at y = ymax

and maximum τyz near the leading edge. However, τxz values are larger
than τyz at least by one order of magnitude. Finally, the most significant
stress components from both bending and torsion are found to be σzz and
τxz. A typical case of stress time histories are plotted in Fig. 10. Damage
calculations are done based on these stress components individually and also
on an equivalent uniaxial stress using the signed von Mises criteria.
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Figure 1: The schematic of a symmetric airfoil with pitch and plunge degrees-
of-freedom.
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Figure 2: Freely developing wake behind an oscillating NACA 0012 simulated
with UVLM at various time instances.
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Figure 3: UVLM vs. analytical results17, (a) peak lift coefficient, (b) peak
moment coefficient.
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Figure 5: Signed vonMises stress calculation for a typical case.
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Figure 6: Damage pattern for random ω̄ as predicted with (a) signed von-
Mises, (b) torsion only, (c) bending only.
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Figure 7: Damage PDF for random ω̄ with (a) signed vonMises, (b) torsion
only, (c) bending only and two models for environmental loads.
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Figure 8: S-N data fit for bending and torsion stresses.
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Figure 9: Comparison of actual NACA 0012 profile and its approximate fitted
shape.
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Figure 10: Typical stress time histories.
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