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Abstract
We consider the inverse problem of the simultaneous reagtgin of the dielectric permittivity and magnetic
permeability functions of the Maxwell’s system in 3D wittmilited boundary observations of the electric field.
The theoretical stability for the problem is provided by @&rleman estimates. For the numerical computations
the problem is formulated as an optimization problem andibynite element/difference method is used to solve
the parameter identification problem.

1 Introduction

This paper is focused on the numerical reconstruction otitekectric permittivity coefficient(z) and the mag-
netic permeability coefficient(z) for Maxwell’'s system basing our observation on a single meament data of
the electric fieldE(x,t). That means, that we use boundary measuremenfi¥.oft) which are generated by a
single direction of a plane wave. For the numerical recaetions of the dielectric permittivity coefficieatx)
and the magnetic permeability coefficiemtr), we consider a similar hybrid finite element/difference noet
(FE/FDM) as was developed in [5].

In the literature, the stability results for Maxwell’'s edqoas have been proposed by Dirichlet-to-Neumann
map or by Carleman estimates. For results using Diricloldtt¢umann map with infinitely many boundary ob-
servations, see [8, 11, 12, 23, 31, 35]. For results withefinimber of observations several Carleman estimates
have been derived in [9, 17, 22, 26, 27]. In order to solve tedficient inverse problem of Maxwell’s equations
numerically, we consider only those theoretical resulés tvolve finite number of observations.

Since real observations are generally corrupted by ndigejmportant to verify whether close observations
lead to close estimations of the coefficients. The resulthisfpaper give such conditions on the observations
for estimating the parametergz) ande(z) of the Maxwell’s system (1) from the observationsffz, t) on the
boundary of the domain. In particular, we obtain a stabiligguality of the form

[[(11,€1) — (u2,e2)|| < f(||ObservatiofiF;) — Observatio(iEs)||)
for f(s) such thatlin% f(s)=0,

which links the distance between two sets of coefficienth the distance between two sets of boundary observa-
tions of the electric fieldZ(«x, t). Such stability inequalities lead to the uniqueness of tefficients(u(z), e(x))



given the observationObservatiof\E(x,t))” on a small neighborhood of the boundary of the domain of @ster
They are also useful for the numerical reconstruction ofcbefficients using noise-free observations [21]. Our
main theoretical result concerns stability inequality efhgives an estimate of the norm of two coefficientnd

w in terms of observation of only the electric fiel{x, t) on the boundary of the domain. This implies directly a
uniqueness result. In the domain of the inverse problensscéted to reconstructing the Maxwell’s coefficients
from finite number of observations, except the referencg B up to our knowledge, there exists no result in-
volving only one componerif(z, t) (or the component (x, t)).

In this work, the minimization problem of reconstructingnfitionss(x) andy(z) is reformulated as the prob-
lem of finding a stationary point of a Lagrangian involvingaaviard equation (the state equation), a backward
equation (the adjoint equation) and two equations exprgsbat the gradients with respect to the coefficiefis
andu(x) vanish. Moreover, in our work the forward and adjoint proldeare given by time-dependent Maxwell’s
equations for the electric field. This means that we haverehtens of the electric field in space and in time
which provides us better reconstruction of both coeffigerin order to get the computed values=¢f) and
u(x), we arrange an iterative process by solving in each stepthe&fd and backward equations and updating the
coefficientss(z) andu(x) at every step of our iterations.

Recall, that in our optimization procedure the forward adpbiat problems are given by the time-dependent
Maxwell’s system for the electric field. For the numericausion of the Maxwell equations, different formula-
tions are available. One can consider, for example, the eldgeents of Nédélec [30], the node-based first-order
formulation of Lee and Madsen [25], the node-based culdlfoumulation with divergence condition of Paulsen
and Lynch [32] or the interior-penalty discontinuous GhileFEM [20]. In this work, for the discretization of the
Maxwell's equations, we use stabilized domain decompmsitiethod of [5] with divergence condition of Paulsen
and Lynch [32] and consider Maxwell’s system in a convex gemynwithout reentrant corners such that functions
e(z) andu(z) are smooth. This choice of the numerical method is convéfoeour simulations, see [5] for more
details.

We note, that we reconstruct functios(s:) andu(z) simultaneously. Up to our knowledge, the similar studies
of simultaneous recovery af(z) and u(z) within the spatio-temporal Maxwell's equations, have neéf pro-
posed in the literature. In the papers [3, 5], which use theesaptimization approach, the coefficienis assumed
to have a known and a constant value, j.e= 1, which means that the medium is non-magnetic. However, it is
well known that in many situations, we need to deal with maigmaaterials (e.g. metamaterials [37], low-lass
materials [34]).

Potential applications of our algorithm are in reconsingcthe electromagnetic parameters in nanocomposites
or artificial materials [34, 36, 37], imaging of defects ahdit sizes in a non-destructive testing of materials and
in photonic crystals [14], measurement of the moisture@ait{tL 3] and drying processes [28], for example.

Our numerical simulations show that we are able accuratgpmstruct simultaneously contrasts for both
functionse(x) andu(x) as well as their locations. In our future work, similarly w[B, 5, 7], we are planning also
to reconstruct shapes of the inclusions using a posterigt estimates in the Tikhonov functional and based on
them an adaptive finite element method.

The paper is organized as follows. In Section 2 we state theréhical results of recoveringx) and u(x)
from the limited boundary measurementds{ir, t). Section 3 is devoted to presenting the numerical methadi use
in this article. In Section 4, we give detailed informatidyoat our discrete numerical method and we outline the
algorithm for the solution of our inverse problem. The nuitedrresults are presented in Section 5. Discussions
and conclusions are given in Section 6.

2 Theoretical results

Let us consider a bounded domdh C R? with a smooth boundar9(?, and define byQr = Q x (0,7),
Q7 := 00 x (0,T), whereT is a strictly positive constant. The electromagnetic eiquatin an inhomogeneous
isotropic case in the bounded dom&irc R¢, d = 2, 3 with boundanyps2, are described by the first order system



of partial differential equations

0D -V x H(z,t) =0 in Qr

0B+ V x E(x,t) =0, in Qr,

D(z,t) =cE(x,t), B(x,t)=uH(z,t), 1)
E(J?,O) = EO(x)v H(J?,O) = 0(1‘),

V-D(z,t) =0, V-B(z,t)=0, in Qr,

D(z,t) xv =0, B(x,t)-v=0, on 9Qr,

whereE(z,t), H(z,t), D(x,t), B(x,t) are three-dimensional vector-valued functions of the tiraad the space
variablex = (x1,x2,x3), and correspond to the electric and magnetic fields and duotriel and magnetic induc-
tions, respectively. The dielectric permittivity(x) > 0 and the magnetic permeability(x) > 0, depend on

z € ), v = v(z) denotes the unit outward normal vectoQ.

Our goal is to reconstruct the coefficien{s:) andy(z) in the system (1) with appropriate initial conditions
Ey and H, on the electric and magnetic inductions, using only a finitenber of observations of the electric field
E(x,t) on the boundary2 of the domairt.

We base our theoretical approach on the work [9]. In this wbekauthors obtained a stability inequality
for the dielectric permittivity=(z) and the magnetic permeabilip(x) involving boundary observations of both
magnetic inductioB(x, t) and electric inductioD(z, t) (see theorem 1 of [9]). With the same assumptions, than
those used in [9], we can reformulate this stability ressibg only the observations of the electric fidix, t)
(or correspondingly, using only the observations of the metig field H (x, t)):

Assume that the functiongz) andes(x) in C2(Q), z € Q2 obey

p(x) = po,  e(x) = eo, )

for somesy > 0 andyy > 0. Next, for simplicity, we introduce some similar notatidnghe ones introduced in
(9l

Let us pickzg € R3\Q, sete(x) = (u(z)e(z))~! forz € Q, co = (noco) ™" and assume that the following
condition holds for somg € (0, ¢o)

3 _
§|V10gc(x)||x—xg|§1—£, x €. 3)

This technical condition is claimed by the weight function = |= — z¢|? that is used to create the Carleman
estimate established to prove the theorem 2.1 in [9]. Inrda#rens, (3) arises from the classical pseudo-convexity
condition. Another standard hypothesis is that the coefiitst andy are known in a neighborhood of the boundary
of O

Next, we defines = Q2 N O whereQ is some neighborhood @K in R3. Further letM, > 0 and two given
functionsyu®, \* belong toC?(w). Now we can define the admissible set of unknown coefficigrasdes as

AUJ (MO) = {(/.L, E) Verifying (2)7 H(/’La 6)”02(5) S MO and(:u7 5) = (/’Lu7 En) in w} . (4)
We set
V = H,o(curl,div0; Q) x H, o(curl,div0; Q),

where
H, o(curl,div0; Q) = {u € H'(Q)?, divu = 0 and y,u = 0}, * = 7,7n.
Further, for the identification ofu, <), imposing (as will appear in the sequel) thd@(x,t), D(z,t)) are
observed twice, we consider two sets of initial daf, BY), k = 1,2 such that,

D(x) = (di(a),db(2), d5(2)) . BE(z) = (f(2),b5(2), b5 () ",



and define thé2 x 6 matrix

e1 x Bl ea x B} e3 x B} 0 0 0
B 0 0 0 e1 x DY ea x DY e3 x D}
K@) =1 e/« B2 esx B2 esxB2 0 0 0 ’ ©®)
0 0 0 e1 x D3 ea x D} e3 x D?

wherez € Q. Then we can write thatB¥ (x,t), DF(z,t)) are the solution to (1) with the initial data, D§),
k = 1,2, where(u, ) are substituted witl,, ¢;), i = 1, 2.
Finally, we note that{(Qr) = H*(-T,T; L*(T)) N H*(-T,T; H'(T")) is a Hilbert space equipped with the
norm , , ,
lull3ry = lullgs —rmi2y) T ez crrm @y, v € H(Q1).
Now we recall the main theoretical result of the paper [9]:
Under some hypothesis dh and choosing initial conditionB%, D%), k = 1,2 verifying some additional

assumptions, then there are two constahts 0 andx € (0, 1), depending 02, w, T', M and My, such that we
have:

o1 = p2llgo) + ller — €2l o)

2 K
<0 (32 (1058 88 Ly, + 10 D8)Ly,))

k=1

Under the same assumptions and considering the definitidheo€lectric inductionD; and the magnetic
inductionB; for i = 1,2 we can write in the neighborhoadof the boundary(2 the following relations:

O:BF = —curle; 'DF inw x (=T, T), fori=1,2andk = 1,2.

Sincee; = ¢, fori = 1,2 in w, we can write
1 .
Oy(BY — BY) = —curlg(D’f —DYyinwx (=T, T), fork =1,2.
Itis straightforward to verify that

1 1
Oi(BY — BY) = —eurl (D — D§) — V3 X (DY — DE).

We define by
N(0Qr) = H3(=T,T; L*(0Q)) N H*(=T,T; H*(0Q)) N H' (=T, T; H*(0%)),

the Hilbert space equipped with the norm

2 2 2 2
lullyvoar) = lullzs —rr 200y + 1@l —rrm o0y + 1Wlm -z m200))
u € N(0Q7).Then from (4) and sinc&7 (0, -) = B5(0,-) andD¥(0,-) = D5(0, ), for k = 1,2, we get

|BY - < M, || D} -

B§||H(QT) = D§||N(8QT)'

Thus we can deduce our theorem in the following form

Theorem 2.1. LetT > ¢, /* max, g |« — x| and pick(BE, DE) € (H2(2)3 x H2(Q)®) NV, k = 1,2, in such
a way that there exists@x 6 minorm(z) of the matrixXC(x) defined in(5), obeying:

m(z) #0, z € N\w.



Further, choos€;, ;) € A, (M), i = 1,2, such that

|8, D}

7;/)||C3(—T7T;W2.:>o(ﬂ)) S M7 k= 172,

for someM > 0. Then there are two constants > 0 andx € (0,1), depending o), w, T', M and M, such
that we have:

2 K
1 = p2ll gz (o) + ller = e2ll g2 o) < C (Z | Dy - D&HN(@%)) :
=1

3 Statement of the forward and inver se problems

3.1 Themathematical mode

Below for any vector function: € R? our notationsu € L*(Q) oru € H*(Q),k = 1,2, mean that every
component of the vector functianbelongs to this space.

Next, we decompog@ into two subregionsrryn andQepy such thaf) = QpeyvUQepM, QreEMNQEDM =
¢ and9QreMm C OQrpum, for an illustration of the domain decomposition, see figlrdn Qrgy We use finite
elements and if2gpy We will use finite difference method with first order absopbbroundary conditions [19].
The boundaryf? is such thabQ = 9,2 U 0,0 U 9592 whered; 2 andd,2 are, respectively, front and back sides
of the domair2, andds; (2 is the union of left, right, top and bottom sides of this domai

By eliminating B and D from (1) we obtain the model problem for the electric fidldwith the perfectly
conducting boundary conditions at the boundayis as follows:

62

€W+VX( _1VXE) = 0, in QT, (6)
V-(eE) = 0,in Qp, 7

E(J?,O) = fO(x); Ef(x 0) = fl(x) in Q, 8
Exn = 0on dQr. 9)

Here we assume that
fo € HY(Q), f1 € La(9).

We note that similar equation can be derived alsoHorFor numerical solution of (6)-(9) ifkgpy We use the
finite difference method on a structured mesh with constaefficientss = ¢ = 1 andy = p* = 1. In Qpgw,
we use finite elements on a sequence of unstructured méshes{ K }, with elementgs consisting of triangles
in R? and tetrahedra iR? satisfying maximal angle condition [10].

In this work, for the discretization of the Maxwell's equats we use stabilized domain decomposition method
of [5] and consider Maxwell's system in a convex geometrnhaiit reentrant corners and with smooth coefficients
e andu. Since in our numerical simulations the relative perméighil and relative permittivity, does not vary
much, such assumptions about the coefficients are naturalurlcomputations all materials with valuescof-

10 are treated as metals and we cals “appearing dielectric constant”, see [4, 38] for mor@infation and
explanation.

To stabilize the finite element solution using standardgiése continuous functions, we enforce the diver-
gence condition (7) and add a Coulomb-type gauge conditip2d] to (6)-(9) with0 < s <1

?;;E +Vx (VX E)=sV(V-(cE)) = 0,in Qr, (10)
E(x,0) = fo(x), Ei(z,0) = fi(z)in Q, (11)
Exn = 0 8QT7 (]_2)

/.L(],‘) =€ (.23) = 1inQppnm. (13)



Let St := 012 x (0,T) whered; (2 is the backscattering side of the dom&with the time domain observa-
tions, and define by 1 := 919 x (0,¢1], S1.2 := 1 x (t1,T), S2 := B0 x (0,71, S5 := 930 x (0,T"). Our
forward problem used in computations, thus writes

0’E .
eom + Vx(u'VxE)-sV(V-(eE)) =0, in Qr,
E(z,0) =0, E(z,0)=0in Q,
OnE =p(t), onSy 1, (14)
8nE = —8tE, on 5172,
o E = —0.F, onS,,

O, E =0, onSs.

We use the Neumann boundary conditions at the left and rightl Isides of a domaift (recall, thatQ =
Qrem U Qrpm and inQppy our coefficients(x) = p(x) = 1) and first order absorbing boundary conditions
[19] at the rest of the boundaries. Further, we assume honeagks initial conditions.

We assume that our coefficientér) , u(z) of equation (14) are such that

e(x) €[1,d1], di =const. > 1, e(x) = 1forz € Qrpm,
p(z) € [1,d3], do = const. > 1, p(z) =1forx € Qrpu, (15)
e(z),u(x) € C* (R?).

We consider the following

Inver se Problem (I P) Suppose that the coefficient&r) andu(z) satisfies (15) such that numbels do > 1
are given. Assume that the functian&e) , u(x) are unknown in the domai?\ Qrpy. Determine the functions
e (z), p(z) for z € Q\Qppy, assuming that the following functidf (z, t) is known

E (z,t) = E(z,t),Y(z,t) € St.

A priori knowledge of an upper and lower bounds of functieris) andu(z) corresponds well with the inverse
problems concept about the availability of a priori infotioa for an ill-posed problem [2, 18, 39]. In applications,
the assumption (z) = u(z) = 1 for z € Qppym Means that the functiors«) andu(x) have a known constant
value outside of the medium of interé®t Qrpyr. The functionE (z, t) models time dependent measurements of
the electric wave field at the backscattering boundafy of the domain of interest. In practice, measurements are
performed on a number of detectors, see [4, 38].

3.2 Optimization method

We reformulate our inverse problem as an optimization gehlwhere we seek for two functions, the permittivity
e(x) and permeability:(z), which result in a solution of equations (14) with best fititne¢ and space domain
observationd”, measured at a finite number of observation point®d Our goal is to minimize the Tikhonov
functional

F(B.e) = [

- 1 1
(E — E)?z5(t)dxdt + =7, / (e —€0)? do+ =72 / (1 — po)? dz, (16)
St 2 Q 2 O

whereF is the observed electric field;] satisfies the equations (14) and thus dependsamdy, ¢y is the initial
guess fore and  is the initial guess fop, and~;,7 = 1,2 are the regularization parameters. Hes€l) is a
cut-off function, which is introduced to ensure that the patibility conditions a2y N {t = 7'} for the adjoint
problem (22) are satisfied, aid> 0 is a small number. We choose a functignsuch that

1 fort € (0,7 — ¢,
25 € C®[0,T], zs(t) =< 0 fort e (T —3,7],
0<zs<1l forte (T-6T-%).



Next, we introduce the following spaces of real valued vefitoctions

Hy = {w € H (Qr) : w(-,0) = 0},
Hy = {we H'(Qr) s w(-,T) = 0},
U' = Hp(Qr) x Hy(Qr) x C(2) x C (9),
UY = Ly () X Ly (Q7) X Ly () x Ly ().

To solve the minimization problem, we introduce the Lagiang

L(U)ZF(E,E,M)—/ 8%%—7561 dt—l—/ (u*IVxE)(VxA) dxdt
Qr Qr

+s5 /QT (V- (eE))(V - A) dzdt

— Mp(t) dodt — NOLE dodt — MO E dodt,
S1,1 Si.2 So

whereu = (E, \, e, 1) € U*, and search for a stationary point with respeet &atisfyingva = (E, \, &, i) € U*

whereL’(u; -) is the Jacobian of atw.
We assume thai (z,7) = A (z,T) = 0 and seek to impose such conditions on the functiothat
L(E,\e,p) == L(u) = F(E,e,p). Next, we use the fact that(z,7) = 22(z,7) = 0 and E(z,0) =
%? (z,0) =0, as wellagu = ¢ = 1 on 91, together with boundary conditios £ = 0 andd,, A = 0 on S3. The

equation (17) expresses that fora|l

_ e -1 By
0— / S 8tddt+/gT(M V x E)(V x X) dzdt
/ (V- (eE))(V - \) dadt
o (18)
- \p(t) dodt — N0 E dodt
S1,1 S1,2
— | NOE dodt, VA€ HL(Qrp),
Sa
oL _ L
0= SEO0E) = [ (B~ B)E x dade
= 5Q8—E dxdt +/ (W 'V x \)(V x E) dedt (19)
op Ot Ot Qr
+ 8/ (V-N(V - (¢E)) dzdt, YE € HL(Qr).
Qr
Further, we obtain two equations that express that the gméslivith respect te andp vanish:
0= LW = - aAaEsdmdt—ks/ (V- B)(V - \)# dadt
85 Qr 8 8 Qr (20)

+’71/(€—€0)5d$, z €,
Q

L 1
Oza—(u)(ﬂ):—/ —2vxEVx/\ﬂdxdtﬂg/(u—uo)ﬂdx,er. (21)
o Qr M "



The equation (18) is the weak formulation of the state equdti4) and the equation (19) is the weak formulation
of the following adjoint problem

0%\ .
e—— +Vx (u'Vx\)—-sV(V-\) =—(FE—E)z, = € Sr,

ot?
_0A _ (22)
)‘(7T) - E(aT) - Oa
OpA =0, onSs.

4 Numerical method

4.1 Finitedement discretization

We discretizé2rry x (0, T') denoting byK;, = { K'} a partition of the domaif2rgy, into tetrahedrd( (h = h(x)
being a mesh function, defined &lsc = hx, representing the local diameter of the elements), and g, lbe a
partition of (0, T') into time intervals/ = (¢x—1, t] of uniform lengthr = ¢, — t;_;. We assume also a minimal
angle condition on thé&, [10].

To formulate the finite element method, we define the finitenelet space¥;,, W2 andW;}. Firstwe introduce
the finite element trial spadé’;” for every component of the electric field defined by

WE ={we H} : wlkxs € PI(K) x P,(J),VK € K;,,VJ € J,},

whereP; (K) and P, (J) denote the set of linear functions éhand.J, respectively. We also introduce the finite
element test spad&;} defined by

W) i={we H} :w|gxs € PI(K)x P(J),VYK € K;,,¥J € J,}.

Hence, the finite element spacd§” andW;' consist of continuous piecewise linear functions in spawk a
time, which satisfy certain homogeneous initial and firstesrabsorbing boundary conditions.
To approximate functiong(z) ande(x) we will use the space of piecewise constant functigng L2 (€2),

Vi i={u € La(N) : u|g € Po(K),VK € K},

whereP,(K) is the piecewise constant function éh

Next, we defind/, = WP x W x Vj, x Vj,. Usuallydim U, < oo andU,, C U! as a set and we considey,
as a discrete analogue of the sp&te We introduce the same normip, as the one it/*, ||-||;, := ||| o . This
means that in finite dimensional spaces all norms are eguivahd in our computations we compute coefficients
in the spacéd/,. The finite element method now reads: Finde Uy, such that

L'(up)(a) = 0Va € Uy.

4.2 Fully discrete scheme

We expandE and ) in terms of the standard continuous piecewise linear fonst{y;(x)}*, in space and
{4 (t)}X_, in time and substitute them into (14) and (22) to obtain thiefdng system of linear equations:

M(EFtY —2EF 4+ EF1) = —72KEF — s72CEF,

23
M =28 4 A7) = —728F - 22 KN — 52 DAR, @9

with initial conditions :



Here,M is the block mass matrix in spadg, is the block stiffness matrix corresponding to the rotatesm,C, D
are the stiffness matrices corresponding to the divergemoes,S* is the load vector at time leve}, E* and \*
denote the nodal values &f(-, t) andA(-, ), respectivelyy is the time step.

Let us define the mappingk for the reference eleme#tsuch thatFx (é) = e and lety be the piecewise
linear local basis function on the reference elemesitich thatp o Fix = ¢. Then the explicit formulas for the
entries in system (23) at each elemeigtain be given as:

Mie ( QPZOFKaSDJOFK)ea

Kfj = (n7'V x ¢i 0 F,V X 9; 0 Fi)e,
Cie (v (5997)OFK7V SDJOFK)M
Die ({-:V SDlOFKaV (PJOFK)ey
S;, (E Ea@]OFK)Pa

where(-, -). denotes thd.,(e) scalar product.
To obtain an explicit scheme, we approximatewith the lumped mass matrix/” (for further details, see
[15]). Next, we multiply (23) with( ML) =1 and get the following explicit method:
Ek+1 :2Ek o TQ(ML)flKEk
8’7'2(ML)710EI€ o ]_Ekfl7
A= = 2P TSR 2 - P2(ME) T RA"
P2 (MP)TIDAF — AL

(24)

Finally, for reconstructing(z) andy(x) we can use a gradient-based method with an appropriat igitess
valuesey and . The discrete versions of the gradients with respect toficemitse and i in (20) and (21),
respectively, take the form:

T
g1(z) = — ————dt+s / V- EpV - \pdt + y1(en — €0)-

and

T

1

gg(x)z—/ MTVXEhVX)\h dt 4+ ~vo (pn, — po)-
0

Here,\;, and E}, are computed values of the adjoint and forward problemguskplicit scheme (24), and,, 1,
are approximated values of the computed coefficients.

4.3 Thealgorithm

In this algorithm we iteratively update approximatiafs and ;" of the functiore;, andy,, respectively, where
m is the number of iteration in our optimization procedure. dgaote

Toxp oEm T
g (z) = — e 8: dt+s/ V- EPV - AR dt + v (e — €o),
0

T
1
g?(x)z—/ VX BV X AT dt+ (i — o),
0 (Mh)

where functionszy, (z, t, e, ui') , An (x, t, €7, uj) are computed by solving the state and adjoint problems with
e:=eprandy = ppt.

Algorithm
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Step 0. Choose the megfy, in 2 and time partition/ of the time interval0, T") . Start with the initial approxima-
tionse?) = o anduf) = po and compute the sequencesf, ;" via the following steps:

Step 1. Compute solutiors;, (z,t, e}, pit) andy, (z,t, €7, pit) of state ( 14) and adjoint (22) problems &,
and.J.

Step 2. Update the coefficiery := sh’”“ andpuy, = u}?“ on K}, andJ using the conjugate gradient method

ep = el + andi(2),
p = g+ andg (2),

wherec;, i = 1,2, are step-sizes in the gradient update [33] and

di' () = —g7" (@) + A"d]" ™ (x),
d3' () = —g5" () + B3 dy' " (x),

with
m 2
m g1 X
sy = Ao @I?
g™ (@)l
m 2
m 92 \T
sp = @I
gz (@)l

whered?(z) = —{(x), d3(x) = —g§(x).

Step 3. Stop computing’ and obtain the functiosy, if either ||g{"|| 1, ) < 6 or norms||ej’|| 1, (q) are stabilized.
Here,d is the tolerance imn updates of the gradient method.

Step 4. Stop computing;® and obtain the functiopy, if either ||g3"|| ., ) < 6 or norms||u" || 1, () are stabilized.
Otherwise sein := m + 1 and go to step 1.

5 Numerical Studies

In this section we present numerical simulations of the mstroction of two unknown functions(x) and ()
inside a domaif2ggy; using the algorithm of section 4.3. These functions are kmmgideQrpy; and are set

to bee(z) = p(zr) = 1. The goal of our numerical tests is to reconstruct two magmaetallic targets of
figure 2 withy = 2.0. We note that when metallic targets are presented then odelpooblem (14) is invalid, see
discussion about it [4, 38]. This is one of the discreparnoés/een our mathematical model (14) and the simulated
backscattering data. We refer to [38] for the descriptiothier discrepancies in a similar case. However, one
can treat metallic targets as dielectrics with large dieleconstants and it was shown computationally using
experimental data in [4, 24, 38]. Similarly with [4, 24, 38¢wall these large dielectric constantsappearingor
effectivedielectric constants and choose values for them in thevaker

¢ (metallic target € (10, 30) . (25)

In our studies, we initialize only one componéry of the electrical field2 = (E1, F», E3) as the boundary
condition in (14) onSt ( see (27)). Initial conditions are set to be zero. In all catagions we used modification
of the stabilized domain decomposition method of [5] whicdswnplemented using the software package WavES
[40] with two non-constant functionsz) andu(x).

The computational geometfy is split into two geometriefren andQepy such that) = Qppyv U Qrpu,
see figure 1. Next, we introduce dimensionless spatial bi@sa’ = 2/ (1m) and obtain that the domailpgy
is transformed into dimensionless computational domain

QreEMm = {.13 = (.231,.%2,.%3) S (—3.2,3.2) X (—06,06) X (—03,03)}
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a) Q) = Qrem U QrpMm

b) QrEm

Figure 1:lllustration of the domaif2. a) Combination of domain@rpy and QM. b) Only the domaifrenm, with two
inclusions.
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Figure 2:The exact values of functiongr) andu(z) are: e(z) = 12.0, u(z) = 2 inside the two small scatterers,
ande(z) = u(z) = 1.0 everywhere else ifpgm.

The dimensionless size of our computational donfafor the forward problem is
Q= {2 = (z1,22,73) € (—3.4,3.4) x (—0.8,0.8) x (—0.4,0.4)}.

The space mesh flrg\ and inQepy consists of tetrahedral and cubes, respectively. We chibesmesh size
h = 0.1 in our geometries in the hybrid FEM/FDM method, as well ashia ¢verlapping regions between FEM
and FDM domains. In all our computational tests, we choog&@)the penalty factas = 1 in Qpg.
Note that inQrpy because of the domain decomposition method and conditid)siie Maxwell's system
transforms to the wave equation
82
ot
E(x,0) = fo(z), FEi(z,0)=0in Q,
E(x,t) (0, f (t),0), ondQ; x (0,t1], (26)
(Z‘,t) = —8t ( ), Oh@Ql X (tl,T),
(Z‘,t) —8t ( ), Oh@QQ X (O,T),
8nE(x,t) =0, on9dQs x (0,7).
We initialize only one component of the electrical fidld as a plane wavé(¢) in  in timeT" = [0, 1.2] such
that

Yol —AE=0,Iin Qr,

| sin(wt), if t € (0,27),

F®= { 0, if ¢ > 2x @7)

while other two components;, F5 are initialized as zero. Thus, {lgp\ We solve the problem (26) and 2y gy
we have to solve

82E _ .

o +Vx (' VXE)=sV(V-(eE)) =0, in Qrgewm,

E(J),O) :0, Et(l‘,O) =0in QFEM;

E(z, )00 = E(z, t)|8QFDMI :
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Here, 0Qrpy, is internal boundary of the domairpy, and 0Qrry is the boundary of the domaiipgy.
Similarly, in Qrpy the adjoint problem (22) transforms to the wave equation

0%\
12
Mz, T) =0, M\(z,T)=0in Q,
OnA(z,t) =00NnSs.

e=—— —AX=—(E — E)z;, in Sp,

(28)

Thus, inQgrpy We solve the problem (28) and §dwg\ Wwe have to solve

2

egz FV X (VX A) =sV(V - (2A) = 0, in Qg

/\(J),T) =0, )\t(l‘,T) =0in QFEM7
Az, t)|oaren = Az, t)|8QFDMI'

We define exact functions(z) = 12 andu(x) = 2 inside two small inclusions, see Figure 2, gad) =
e(x) = 1 at all other points of the computational domé&tagy. We choose in our computations the time step
7 = 0.003 which satisfies the CFL condition [16] and run computatienme [0, 1.2].

5.1 Reconstructions
We consider the following test cases for the generation@btickscattering data:
i) frequencyw = 21 with 3% additive noise
i) frequencyw = 21 with 10% additive noise
iii) frequencyw = 30 with 3% additive noise
iv) frequencyw = 30 with 10% additive noise

To generate backscattering data at the observation pdirfig an each cases i)-iv), we solve the forward
problem (14), with functionf(¢) given by (27) in the time interval = [0, 1.2] with the exact values of the
parameters(z) = 12.0, u(x) = 2 inside scatterers of figure 2, anflr) = u(x) = 1.0 everywhere else if0.

The isosurfaces of the simulated exact solution of theailiwed componenEs(x,t) of the electrical field
E(x,t) in the forward problem (14) witbv = 30 at different times are presented in figure 3. Using this figuee
observe the backscattering wave field of the compd@hét;, t).

We start the optimization algorithm with guess values ofitheameters(z) = 1.0, u(x) = 1.0 at all points in
Q. Such choice of the initial guess provides a good reconsmufor both functions (z) andu(x) and corresponds
to starting the gradient algorithm from the homogeneousaioysee also [2, 5] for a similar choice of initial guess.
Using (25) the minimal and maximal values of the functiefis) andu(z) in our computations belongs to the
following sets of admissible parameters

M. € {e € C(Q)|1 <e(z) <15},

? (29)
M, € {ne C@|L < u(a) < 3).

The solution of the inverse problem needs to be regularinee glifferent coefficients can correspond to similar
wave reflection data of, 2. We regularize the solution of the inverse problem by stgromputations with two
different regularization parameteys = 0.01,~v2 = 0.9 in (16). Our computational studies have shown that such
choices for the regularization parameters are optimal incage. We refer to [2, 18] for different techniques for
the choice of regularization parameters. The tolerariceour algorithm (section 4.3) is set fo= 107°.

Figure 4 shows a case of backscattering data without presertbe additive noise. Figures 5 and 6 present
typical behavior of noisy backscattering data with= 21 andw = 30, respectively. Figure 7 presents a com-
parison between computed componehitsand E53 of the backscattering data with 10 % additive noise for both
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-0.030699
-0.11536
-0.20002
-0.28468
-0.36934

0.4539%m

0.19924
0.12478
0.050325
- -0.024131
-0.098587
-0.17304
-0.2475
-0.32195
-0.39641

-0.470876i&

0.012526
-0.066754
-0.14603
-0.22531
-0.3046
-0.38388
-0.46316
-0.54244
-0.62172

-0.701 o
6id

Figure 3: Isosurface of the simulated exact solution of hraponentts («, t) for the forward problem at different
times. The snapshot times are a) 0.45s, b) 0.75s and c) éspeatively.
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02

-02
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-06
20

Figure 4: a) Comparison of the backscattering data of thecongonentZs(x, ) (on top) and transmitted data
(below). The results are computed without additive noige2 projection of the backscattering data with 0%
additive noise. Observe that the backscattering data haskes amplitude then the transmitted data.

frequenciesv = 21 andw = 30. Figure 8 presents the differences in backscattering dettaden 3% and 10%
additive noise for both considered frequenciess 21 on the left andv = 30 on the right in figure 8.

The reconstructions of(z) and u(z) with w = 21 using 3% and 10% noise, are presented in figures 9 and
11. Similarly, reconstructions afx) andu(x) with w = 30 using 3% and 10% of additive noise, are presented in
figures 13 and 15, respectively.

To get images of figures 9 - 15, we use a post-processing pueeesuppose that functions (x) andu!(z)
are our reconstructions obtained by algorithm of secti@wheren and/ are number of iterations in gradient
method when we have stopped to compt(te) andu(z). Then to getimages in figures 9 - 15, we set

e™(x) if e"(z) > 0.25 maxe™(x),
(z) = : e
1, otherwise.

and

. pl(z) if pl(x) > 0.87max pl(z),
fi(z) = . Q
1, otherwise.

6 Discussion and Conclusion

In this work we have used time dependent backscatteringtdasanultaneously reconstruct both coefficients,
e(x) andu(x), in the Maxwell’'s system as well as their locations. In orttedo that we have used optimization
approach which was similar to the method used in [6]. We teste algorithm with two different noise levels
(3% and 10% of additive noise) and with two different freqecies (v = 21 andw = 30, see (27)). The bigger
noise level (10%) seemed to produce artefact in reconsiguctwith frequencyw = 30, see figure 15. However,
we are able to reconstruct functiong) andu(x) with contrasts that are within the limits of (29). An imparta
observation is that in our computations, we are able to nb&age contrasts for dielectric functiariz) what
allow us conclude that we are able to reconstruct metaltgets. At the same time, the contrast for the function
w(z) is within limits of (29). We could reconstruct size on z-ditien for ¢, however, size fop(x) should be still
improved.

In our future research, we are planning to refine the obtdamades through the adaptive finite element method
in order to get better shapes and sizes of the inclusiong, 8, [7] it was shown that this method is powerful tool
for the reconstruction of heterogeneous targets, thedtioos and shapes accurately.



16

c) d)

Figure 5: Backscattering data of the one compotiit;, t) usingw = 21 as the frequency. Top row: 3% additive
noise a) the backscattering data, b) 2D projection of batkesing data. Bottom row: 10% additive noise c) the
backscattering data, d) 2D projection of backscatteririg.da
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c) d)

Figure 6: Backscattering data of the one compod&iit, ¢) usingw = 30 as the frequency. Top row: 3% additive
noise a) the backscattering data, b) 2D projection of battexing data. Bottom row: 10% additive noise c) the
backscattering data, d) 2D projection of backscatteririg.da

a) b)

Figure 7: Comparison between compufed(below) andEs (on top) components of the electric field in backscat-
tering data with 10% additive noise. a) Frequeacy: 21. b) Frequencw = 30.
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Figure 8: a) The differences of the backscattering data@btie componenfsy(x, t) with 3% and 10% additive
noise. a) Frequeney = 21. b) Frequencw = 30.

a)e ~ 15 b) =2

Figure 9: Computed images of reconstructed functigag andu(x) from backscattering data with 3% additive
noise, frequency = 21.
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Figure 10: Zoomed reconstructionsaftop row) andu (bottom row). Frequency = 21 additive noise 3%.

/

a)e ~ 15 b)p=~2

Figure 11: Computed images of reconstructed functidng andy(z) from backscattering data with 10% additive
noise, frequency = 21.
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Figure 12: Zoomed reconstructionsaftop row) andu (bottom row). Frequency = 21 additive noise 10%.

/

a)e ~ 11.3 b)u=~1.7

Figure 13: Computed images of reconstructed functidmg andx.(x) from backscattering data with 3% additive
noise, frequency = 30.
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Figure 14: Zoomed reconstructionsaftop row) andu (bottom row). Frequency = 30 additive noise 3%.

a)e ~ 11.2 b)u=1.7

Figure 15: Computed images of reconstructed functidng andy(z) from backscattering data with 10% additive
noise, frequency = 30.
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Figure 16: Zoomed reconstructionsaoftop row) andu (bottom row). Frequency = 30 additive noise 10%.
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