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Inverse Eigenvalue Problems in the Theory of

Weakly Guiding Step-Index Optical Fibers

Karchevskii E., Spiridonov A., Repina A.

Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia; e-mail: ekarchev@yandex.ru

Beilina L.

Chalmers University of Technology and Gothenburg University, SE-42196 Gothenburg, Sweden;
e-mail: larisa@chalmers.se

We formulate three inverse spectral problems and
present new methods for calculation of dielectric
constants of core and cladding of optical fibers us-
ing propagation constants measurements. We prove
that our three inverse problems are well-posed. We
also show that for unique and stable reconstruction
of one dielectric constant of core or of cladding it
is enough to measure propagation constant of fun-
damental mode only at one frequency. For recon-
struction of both dielectric constants of core and
of cladding it is enough to measure propagation
constants at two frequencies. Our numerical algo-
rithms are based on approximate solution of a non-
linear nonselfadjoint eigenvalue problem for a sys-
tem of weakly singular integral equations. Integral
operators are approximated by a spline-collocation
method. We propose to use the singular value de-
composition (SVD) to obtain an initial approxima-
tion to eigenvalues for the matrix in the spline-
collocation method. For the computations of three
test inverse spectral problems we use parallel com-
puting technologies (OpenMP and MPI) to show
performance and efficiency of our calculations.

1 Introduction

There are many non-destructive material character-
ization techniques for obtaining permittivity of di-
electric materials in closed waveguides (see a short
review of recent results in [1]). Particularly, permit-
tivity determination problems from measurements
of propagation constants were investigated firstly
for closed rectangular waveguides in [2]. For open
dielectric waveguides of arbitrary cross section such
problems can be set up as inverse eigenvalue prob-
lems [3] of the theory of optical waveguides [4]. In-
verse eigenvalue problems arise in a remarkable va-
riety of applications, including system and control
theory, geophysics, molecular spectroscopy, particle
physics, structure analysis, and so on. An inverse
eigenvalue problem concerns the reconstruction of a
physical system from prescribed spectral data. The
involved spectral data may consist of the complete
or only partial information of eigenvalues or eigen-
vectors.

In this work we formulate and solve new inverse
spectral problems on reconstruction of dielectric
constants of core and cladding of optical fibers using
propagation constants measurements. The state-
ments of problems are based on integral formula-
tions. Two mathematical models of optical waveg-
uides were investigated in details by integral equa-
tion methods: step-index waveguides [5]–[8] and
waveguides without a sharp boundary [9]–[11]. A
review of modern results in this field is given in [12].
We use a mathematical model of a weakly-guiding
step-index arbitrarily shaped optical fiber and for-
mulate three inverse spectral problems. Then we
present new numerical algorithms for dielectric con-
stants calculation based on an approximate solu-
tion of a nonlinear nonselfadjoint eigenvalue prob-
lem for a system of weakly singular integral equa-
tions. Any information on specific values of eigen-
functions is not required. In our algorithms it is
enough to know that the fundamental mode is ex-
cited, and then to measure its propagation constant
for one or for two frequencies. We prove that it is
enough to measure propagation constants of fun-
damental eigenmode at two distinct frequencies for
unique and stable reconstruction of both unknown
dielectric constants of core and cladding of the fiber.
For reconstruction of the core’s permittivity it is
enough to measure the propagation constant only
at one frequency. The same result is obtained for
reconstruction of the cladding’s permittivity.

Our conclusions are based on the analysis of the
mathematical model and results of numerical ex-
periments. Integral operators were approximated
by a spline-collocation method proposed in [8].
The main difficulty with practical solution of ob-
tained finite-dimensional nonlinear spectral prob-
lem are calculations of good initial approximations
for eigenvalues. Usually initial approximations are
chosen by a physical intuition using a prior infor-
mation on solutions. If we solve inverse problems
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then we may not have an accurate prior informa-
tion on solutions. Therefore, we investigate prop-
erties of the spline-collocation method’s matrix as
a function of spectral and non-spectral parameters.
For each given point in an investigated domain of
parameters we calculate the condition number of
matrix. If for given non-spectral parameter a spec-
tral parameter is equal to a nonlinear eigenvalue of
matrix, then the condition number is equal to infin-
ity. Therefore, the numbers for which the condition
number is big enough are good approximations for
eigenvalues.

The condition number is calculated by singular
value decomposition method (SVD). The calcula-
tions are based on unitary transformations of ma-
trix and therefore are stable. However, if the condi-
tion number is calculated for a wide range of param-
eters, then a large amount of calculations is needed.
Kazan Federal University purchased a compact su-
percomputer APK-1M according to the program of
university development. Now this supercomputer is
a base of hardware of Kazan Laboratory of the Su-
percomputer Modeling. Kazan team are program-
ming for this supercomputer and we have decided
to investigate numerically the problem on calcula-
tions of good initial approximations for nonlinear
eigenvalues. Using parallel computational technolo-
gies (OpenMP and MPI) we solved this problem
directly and without any prior information.

2 Nonlinear eigenvalue problem for

transverse wavenumbers

2.1 Statement of problem and properties of solu-
tions

Let us consider an optical fiber as a regular cylin-
drical dielectric waveguide in a free space. The
cross-section of the waveguide’s core is a bounded
domain Ωi with a twice continuously differentiable
boundary γ (see Fig. 1). The axis of the cylinder
is parallel to the x3-axis. Let Ωe = R2 \ Ωi be the
unbounded domain of the cladding. Let the per-
mittivity be prescribed as a positive piecewise con-
stant function ε which is equal to a constant ε∞ in
the domain Ωe and to a constant ε+ > ε∞ in the
domain Ωi.

Eigenvalue problems of optical waveguide the-
ory [4] are formulated on the base of the set of
homogeneous Maxwell equations

rotE = − µ0
∂H
∂t

, rotH =ε0ε
∂E
∂t

. (1)

ε =ε+

ε =ε∞
Ωi

x2

x1

Ωe
γ

x3

Figure 1: The cross-section of a cylindrical di-
electric waveguide in a free-space

Here, E and H are electric and magnetic field vec-
tors; ε0 and µ0 are the free-space dielectric and
magnetic constants. Nontrivial solutions of set (1)
which have the form

[
E
H

]
(x, x3, t) = Re

([
E
H

]
(x)ei(βx3−ωt)

)

(2)
are called the eigenmodes of the waveguide. Here,
positive ω is the radian frequency, β is the propa-
gation constant, E and H are complex amplitudes
of E and H, x = (x1, x2).

In forward eigenvalue problems the permittivity
is known and it is necessary to calculate longitu-
dinal wavenumbers k = ω

√
ε0µ0 and propagation

constants β such that there exist eigenmodes. The
eigenmodes have to satisfy to a transparency con-
dition at the boundary γ and to a condition at in-
finity.

In inverse eigenvalue problems it is necessary to
reconstruct the unknown permittivity ε by some
information on natural eigenmodes which exists for
some eigenvalues k and β. The main question is
how many observations of natural eigenmodes are
enough for unique and stable reconstruction of the
permittivity.

The domain Ωe is unbounded. Therefore, it is
necessary to formulate a condition at infinity for
complex amplitudes E and H of eigenmodes. Let
us confine ourselves to the investigation of the sur-
face modes only. The propagation constants β of
surface modes are real and belong to the inter-
val G = (kε∞, kε+). The amplitudes of surface
modes satisfy to the following condition:

[
E
H

]
= e−σrO

(
1√
r

)
, r = |x| → ∞. (3)

Here, σ =
√

β2 − k2ε∞ > 0 is the transverse
wavenumber in the cladding.
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Denote by χ =
√

k2ε+ − β2 the transverse
wavenumber in the waveguide’s core. Under the
weakly guidance approximation [4] the original
problem was reduced in [6] to the calculation of
numbers χ and σ such that there exist nontrivial
solutions u = H1 = H2 of Helmholtz equations

∆u + χ2u = 0, x ∈ Ωi, (4)

∆u − σ2u = 0, x ∈ Ωe, (5)

which satisfy to the transparency conditions

u+ = u−,
∂u+

∂ν
=

∂u−

∂ν
, x ∈ γ. (6)

Here, ν is the normal derivative on γ, u− (respec-
tively, u+) is the limit value of a function u from
the interior (respectively, the exterior) of γ.

Let us calculate nontrivial solutions u of prob-
lem (4)–(6) in the space of continuous and continu-
ously differentiable in Ωi and Ωe and twice contin-
uously differentiable in Ωi and Ωe functions, satis-
fying to condition

u = e−σrO

(
1√
r

)
, r = |x| → ∞. (7)

Denote by U described functional space.
Let σ > 0 be a given number. A nonzero fun-

ction u ∈ U is called an eigenfunction of the prob-
lem (4)–(6) corresponding to an real eigenvalue χ
if relationships (4)–(6) hold.

The next theorem follows from results of [6].

Theorem 1. For any σ > 0 the eigenvalues χ of
problem (4)–(6) can be only positive isolated num-
bers. Each number χ depends continuously on σ.

For waveguides of circular cross-section the anal-
ogous results about the localization of the surface
modes spectrum and about the continuous depen-
dence between the transverse wavenumbers σ and χ
were obtained in [4]. The results of [4] were ob-
tained only for waveguides of circular cross-section
by the method of separation of variables. Theo-
rem 1 generalizes the results of [4] to the case of an
arbitrary smooth boundary.

The next theorem follows from results of [11] (see
an illustration at Fig. 2).

Theorem 2. The following statements hold:
1. For any σ > 0 there exist the denumerable set

of positive eigenvalues χi(σ), where i = 1, 2, ..., of
a finite multiplicity with only cumulative point at
infinity.

0 20 40 60 80 100
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50

60

70

80

90

100
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χ2

Figure 2: The plot of the computed by the
spline-collocation method dispersion curves
for surface eigenmodes of a weakly guiding di-
electric waveguide of the circular cross-section.
The exact solutions are plotted by solid lines.
The solution for the fundamental mode is plot-
ted by the bottom red solid line. Numeri-
cal solutions of the residual inverse iteration
method are marked by red crosses. SVD’s ini-
tial approximations to the numerical solutions
are marked by blue circles.

2. For any σ > 0 the smallest eigenvalue χ1(σ)
is positive and simple (its multiplicity is equal to
one), corresponding eigenfunction u1 can be chosen
as the positive function in the domain Ωi.

3. χ1(σ) → 0 at σ → 0.

For a given σ > 0 the smallest eigenvalue χ1(σ)
and corresponding eigenfunction u1 define the
eigenmode which is called the fundamental mode
(see the bottom curve plotted by the red solid line
at Fig. 2). Thus, Theorem 2 states, particularly,
that for any σ > 0 there exists exactly one funda-
mental mode.

To compute eigenmodes we use the representa-
tion of eigenfunctions of problem (4)–(6) in the
form of single-layer potentials [13]:

u(x) =

∫

γ

Φ(χ; x, y)f(y)dl(y), x ∈ Ωi, (8)

u(x) =

∫

γ

Ψ(σ; x, y)g(y)dl(y), x ∈ Ωe. (9)
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Here

Φ (χ; x, y) =
i

4
H

(1)
0 (χ |x − y|) , (10)

Ψ (σ; x, y) =
1

2π
K0 (σ |x − y|) (11)

are the fundamental solutions of Helmholtz equa-

tions (4) and (5) correspondingly, H
(1)
0 (z) is Han-

kel function of the first kind, K0(z) is Macdonald
function; unknown densities f and g belong to the
Hölder space C0,α(γ). Then f and g satisfy to
the following system of boundary integral equations
for x ∈ γ:

A11(χ)f + A12(σ)g = 0, (12)

A21(χ)f + A22(σ)g = 0, (13)

where

(A11(χ)f) (x) =

∫

γ

Φ(χ; x, y)f(y)dl(y),

(A12(σ)g) (x) = −
∫

γ

Ψ(σ; x, y)g(y)dl(y),

(A21(χ)f) (x) =
1

2
f(x) +

∫

γ

∂Φ(χ; x, y)

∂ν(x)
f(y)dl(y),

(A22(σ)g) (x) =
1

2
g(x) −

∫

γ

∂Ψ(σ; x, y)

∂ν(x)
g(y)dl(y).

Suppose that the boundary γ is parametrically
defined by a function r = r(t) of t ∈ [0, 2π] and
this parametrization is regular. We consider func-
tions from C0,α(γ) and C1,α(γ) as Hölder-continues
and Hölder-continuously differentiable 2π-periodic
functions of parameter t. Then for x = x(t) ∈ γ,
where t ∈ [0, 2π], system (12), (13) is transformed
to the following system of equations:

Lp1 + B11(χ, σ)p1 + B12(χ, σ)p2 = 0, (14)

p2 + B21(χ, σ)p1 + B22(χ, σ)p2 = 0. (15)

Here new unknown functions are defined as follows:

p1(τ) = (f(y) − g(y)) |r′(τ)|, p2(τ) = f(y)+g(y),

y = y(τ), τ ∈ [0, 2π],

Integral operators are defined by the following re-
lationships for t ∈ [0, 2π]:

(Lp1) (t) = − 1

2π

2π∫

0

ln | sin t − τ

2
| p1(τ)dτ,

(
Bij(χ, σ)p(j)

)
(t) =

1

2π

2π∫

0

hij(χ, σ; t, τ)p(j)(τ)dτ,

where

h11(χ, σ; t, τ) = 2π (G11(χ; t, τ) + G12(σ; t, τ)) ,

h12(χ, σ; t, τ) =

2π (G11(χ; t, τ) − G12(σ; t, τ)) |r′(τ)|,
h21(χ, σ; t, τ) = 4π (G21(χ; t, τ) + G22(σ; t, τ)) ,

h22(χ, σ; t, τ) =

4π (G21(χ; t, τ) − G22(σ; t, τ)) |r′(τ)|,

G11(χ; t, τ) = Φ(χ; x, y) +
1

2π
ln | sin t − τ

2
|,

G12(σ; t, τ) = Ψ(σ; x, y) +
1

2π
ln | sin t − τ

2
|,

G21(χ; t, τ) =
∂Φ(χ; x, y)

∂ν(x)
,

G22(σ; t, τ) =
∂Ψ(σ; x, y)

∂ν(x)
.

The linear operator L : C0,α(γ) → C1,α(γ) is con-
tinuous and continuously invertible (for details see,
for example, [6]). It was proved in [6] that for
each χ > 0, σ > 0 the linear operators

B21(χ, σ), B22(χ, σ) : C0,α(γ) → C0,α(γ),

B11(χ, σ), B12(χ, σ) : C0,α(γ) → C1,α(γ)

are compact. Therefore, the system (12), (13) is
equivalent to the following Fredholm operator equa-
tion of the second kind:

A(χ, σ)w = (I + B(χ, σ))w = 0, (16)

where w = (w1, w2)
T
,

w1 = Lp1 ∈ C1,α(γ), w2 = p2 ∈ C0,α(γ),

the compact operator B acting in the Banach
space W = C1,α(γ)×C0,α(γ) is defined as follows:

Bw =

[
B11L

−1 B12

B21L
−1 B22

] [
w1

w2

]
, (17)

and I is the identical operator.
Let σ > 0 be a given number. A nonzero el-

ement w ∈ W is called an eigenfunction of the
operator-valued function A(χ) corresponding to a
characteristic value χ > 0, if equation (16) holds.
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It follows from results of [6] that original prob-
lem (4)–(6) is spectrally equivalent to (16). Namely,
the following theorem is true.

Theorem 3. Let σ > 0 be a given number. The
following statements hold.

1. If a function w is the eigenfunction of the
operator-valued function A(χ) corresponding to a
characteristic value χ0 > 0, then the function u
defined by equalities (8) and (9), where χ = χ0,

f = w2/2 + L−1w1/(2|r′|),

g = w2/2 − L−1w1/(2|r′|),
is the eigenfunction of problem (4)–(6) correspond-
ing to the eigenvalue χ0.

2. Each eigenfunction of problem (4)–(6) corre-
sponding to an eigenvalue χ0 > 0 can be represented
in the form of single-layer potentials (8) and (9)
with some Hölder-continuous densities f and g, re-
spectively. At the same time the function

w = (L((f − g)|r′|), f + g)

is the eigenfunction of the operator-valued func-
tion A(χ) corresponding to the characteristic
value χ0.

Let us formulate the nonlinear spectral problem
for transverse wavenumbers by the following way.
Suppose that the boundary γ of the waveguide’s
cross-section and the number σ > 0 are given. It
is necessary to calculate all characteristic values χ
of the operator-valued function A(χ) in some given
interval.

2.2 Numerical method

A spline-collocation method was proposed in [8] for
numerical calculations of characteristic values χ of
the operator-valued function A(χ) for given σ such
that the problem (16) for each fixed σ was reduced
to a nonlinear finite-dimensional eigenvalue prob-
lem of the form

An(χ)wn = 0, (18)

where n is the number of collocation points. For
numerical solution of obtained nonlinear finite-
dimensional eigenvalue problem we use the residual
inverse iteration method [14].

Any iterative numerical method for computa-
tions of the nonlinear eigenvalues χ needs in good
initial approximations for each given σ. Usually

initial approximations are chosen by a physical in-
tuition using a prior information on solutions. If
we model fundamentally new types of waveguides,
solve inverse problems, or investigate defects in
fibers, then we may not have an accurate prior in-
formation on solutions.

In this case we can investigate spectral proper-
ties of the matrix An(χ) as a function of variable χ
for each fixed σ. For each given point in an inves-
tigated domain of parameters χ and σ we calculate
the condition number of matrix An:

cond(An(χ)) =
ρ1

ρn

, (19)

where ρ1 and ρn are maximal and minimal singu-
lar values of matrix. If for given σ a number χ is
equal to a nonlinear eigenvalue of An(χ), then the
condition number is equal to infinity. Therefore,
the numbers χ for which the condition number is
big enough are good approximations for eigenval-
ues (see [15] as an example of analogous approach).
Singular values are calculated by singular value de-
composition method (SVD):

An(χ) = USV, S = diag(ρ1, ρ2, ..., ρn), (20)

where U, V are unitary matrices, S is a diagonal
matrix, the singular numbers form S. The calcula-
tions are based on unitary transformations of the
matrix A and therefore are stable.

In the next step for each σ in the investigated
interval we use obtained initial approximations for
numerical calculations of nonlinear eigenvalues χ by
the residual inverse iteration method.

2.3 Numerical results

Let us describe numerical results obtained for
nonlinear eigenvalue problem (16) for transverse
wavenumbers. We compare our numerical results
with the well-known exact solution for the circu-
lar waveguide obtained by the method of separa-
tion of variables (see, for example, [4]). At Fig. 2
we present some dispersion curves for surface eigen-
waves of the circular waveguide. The exact solution
is plotted by solid lines.

We started our numerical calculations with com-
putations of initial approximations to nonlinear
eigenvalues χ. We used SVD as was described in
the end of subsection 2.2. Calculated initial ap-
proximations are marked at Fig. 2 by blue circles.

The blue circles are the initial approximations
only. We used these initial approximations as start
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points for the residual inverse iteration method.
Using this iteration method for each given σ we
solved numerically the finite-dimensional nonlinear
eigenvalue problem (18) on eigenvalues χ by the it-
eration method. The numerical results are marked
at Fig. 2 by red crosses.

Note here, that using previously calculated initial
approximations we solved numerically this problem
directly and without any prior physical informa-
tion. The next our conclusion from the observation
of Fig. 2 is that the initial approximations are good
enough and we can use them in the majority of
cases without iterative refinement of solutions.

3 Forward and inverse spectral problems

On the base of solution of nonlinear eigenvalue
problem (16) for transverse wavenumbers we solve
the forward and inverse spectral problems for
weakly guiding step-index waveguides.

3.1 Forward spectral problem

Clearly, if for given σ the characteristic values χ of
the operator-valued function A(χ) were calculated,
and also if the permittivities ε+, ε∞ are known,
then the longitudinal wavenumber k and the prop-
agation constant β are calculated by the following
explicit formulas:

k2 =
σ2 + χ2

ε+ − ε∞
, β2 =

ε+σ2 + ε∞χ2

ε+ − ε∞
.

For each given ε+, ε∞, and i the function χi(σ)
generates a function β2 of variable k2. As an ex-
ample at Fig. 3 we present the plot of the computed
function β2 = β2(k2) corresponding to the funda-
mental mode (see the bottom curve plotted by the
red solid line at Fig. 2) of the circular waveguide.
Here, ε+ = 2, ε∞ = 1, and i = 1. Two points
marked by circle and by square we will use in the
next sections as test points for numerical solution
of inverse spectral problems.

3.2 Inverse spectral problems

In this subsection we present three algorithms for
approximate solution of three inverse spectral prob-
lems. The algorithms are based on the numerical
solution of the nonlinear eigenvalue problem (16)
for transverse wavenumbers. Namely, they are
based on numerical calculations of characteristic
values χ1(σ) of the operator-valued function A(χ)

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

k2

β
2

 

 

ε+ = 2, ε∞ = 1

k2 = 1, β2 = 1.0409
k2 = 3, β2 = 3.9652

Figure 3: The red solid line is the plot of the
computed function β2 = β2(k2) correspond-
ing to the fundamental mode of the circular
waveguide.

for fundamental mode and for σ in an appropriate
interval. Note that the boundary γ of the waveg-
uide’s cross-section is given in all inverse problems.

3.2.1 Algorithm for reconstruction of the permit-
tivity of the core

The first inverse problem is formulated as follows.
Suppose that the permittivity ε∞ of the cladding
is given. Suppose that the propagation constant β
of the fundamental mode is measured for a given
wavenumber k. The measuring can be done by ex-
perimental methods described, for example, in [2].
It is necessary to calculate the permittivity ε+ of
the waveguide’s core.

Inverse Eigenvalue Problem for the Per-
mittivity of the Core (IEP-PCo). Given the
information about the one natural fundamental
eigenmode for k, β, and ε∞ determine the un-
known ε+ such that ε+ > ε∞ and belongs to the
set of admissible parameters ε+ ∈ (ε∞, d1] with a
priori known constant d1 > ε∞.

The solution of this inverse spectral problem is
calculated by the following way.

Algorithm

• Step 1. Compute the number

σ =
√

β2 − k2ε∞,
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which is calculated for given values of β, k,
and ε∞.

• Step 2. Calculate the transverse wavenum-
ber χ(σ) by the spline-collocation method for
the obtained σ of the fundamental mode.

• Step 3. Compute the permittivity of the
waveguide’s core by the following explicit for-
mula:

ε+ =
χ2 + β2

k2
.

• Step 4. Put ε+ = d1, if computed at previ-
ous step ε+ > d1. Put ε+ = ε∞ + d2, if com-
puted ε+ ≤ ε∞, where d2 > 0 is a priori known
constant.

We note that the transverse wavenumber χ(σ)
in step 2 is calculated by an interpolation of the
function χ1(σ) with respect to the points obtained
when the nonlinear spectral problem for transverse
wavenumbers was numerically solved. Step 4 is sim-
ilar to the formula (4.7) in [16].

3.2.2 Algorithm for reconstruction of the permit-
tivity of the cladding

Suppose that the permittivity ε+ of the core is given
and that the propagation constant β of the funda-
mental mode is measured for a given wavenumber k.
It is necessary to calculate the permittivity ε∞ of
the waveguide’s cladding.

Inverse Eigenvalue Problem for the Per-
mittivity of the Cladding (IEP-PCl). Given
the information about the one natural fundamen-
tal eigenmode for k, β, and ε+ determine the un-
known ε∞ such that ε∞ ≥ 1 and belongs to the set
of admissible parameters ε∞ ∈ [1, ε+).

The solution of this problem is calculated by the
following algorithm.

Algorithm

• Step 1. Compute the number

χ =
√

k2ε+ − β2

which is calculated for given values of β, k
and ε+.

• Step 2. Calculate the transverse wavenum-
ber σ by the spline-collocation method for the
obtained χ for the fundamental mode.

0 0.5 1 1.5
1

1.5

2

2.5

3

3.5

ε∞

ε +

 

 

k2 = 1, β2 = 1.0409
k2 = 3, β2 = 3.9652
cut-off points
ε∞ = 1, ε+ = 2

Figure 4: The blue and the green solid lines
are plots of function ε+ = ε+(ε∞) for given
pairs of k and β for the fundamental mode of
the circular waveguide. The unique exact solu-
tion of the inverse spectral problem is marked
by the red circle. The approximate solution
obtained by the spline-collocation method co-
incides with the red circle for the exact β. For
randomly noised β̃ approximate solutions are
intersections of dashed lines. They belong to
the red rhomb.

• Step 3. Compute the permittivity of the
waveguide’s cladding by the following explicit
formula:

ε∞ =
β2 − σ2

k2
.

• Step 4. Put ε∞ = 1, if computed at previ-
ous step ε∞ < 1. Put ε∞ = ε+ − d3, if com-
puted ε∞ ≥ ε+, where d3 > 0 is a priori known
constant.

3.2.3 Algorithm for reconstruction of both permit-
tivities of the core and of the cladding

The full variant of our problem is the reconstruc-
tion of both permittivities of the core and of the
cladding. The solution for the fundamental mode
of nonlinear eigenvalue problem (16) for transverse
wavenumbers gives us an implicit function ε+ of the
variable ε∞ for each fixed longitudinal wavenum-
ber k and propagation constant β. For example, at
Fig. 4 the blue and the green solid lines are plots
of this function for given pairs of k and β.
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The intersection of this lines marked by the red
circle is the unique exact solution of our prob-
lem. Therefore, we calculate the permittivities ε+

and ε∞ as the solution of the following nonlinear
system of two equations:

{
χ(

√
β2

1 − k2
1ε∞) =

√
k2
1ε+ − β2

1 ,

χ(
√

β2
2 − k2

2ε∞) =
√

k2
2ε+ − β2

2 .
(21)

Here, k1 and k2 are some given distinct longitu-
dinal wavenumbers, β1 and β2 are corresponding
measured propagation constants; χ is the function
of variable ε∞ for fixed kj and βj , where j = 1, 2.

The functions χ
(√

β2
j − k2

j ε∞

)
, j = 1, 2, of vari-

able ε∞ in (21) are calculated by an interpolation

of the function χ1(σ), where σ =
√

β2
j − k2

j ε∞, for

the fundamental mode (see the bottom curve plot-
ted by the red solid line at Fig. 2).

Inverse Eigenvalue Problem for the Per-
mittivities of the Core and the Cladding
(IEP-PCoCl). Given the information about the
two natural fundamental eigenmodes for longitudi-
nal wavenumbers k1 and k2 6= k1 and correspond-
ing β1 and β2 determine the unknown ε+ and ε∞
such that ε+ > ε∞ and belongs to the set of admis-
sible parameters ε+ ∈ (ε∞, d1) with a priori known
constant d1 and ε∞ ∈ [1, ε+).

Algorithm

• Step 1. Solve numerically nonlinear system of
two equations (21) depending on two variables
ε+, ε∞ for given numbers k1, k2, β1, and β2.

• Step 2. Put ε+ = d1, if computed at previous
step ε+ > d1. Put ε∞ = 1, if computed at
previous step ε∞ < 1. Put ε+ = ε∞ + d2, if
computed ε+ ≤ ε∞, where d2 > 0 is a priori
known constant.

3.3 Numerical results

Let us describe results of numerical experiments
with core’s permittivity reconstructions by the al-
gorithm of subsection 3.2.1.

The mathematical analysis of existence of the
solution of the original spectral problem (4)–(6)
for transverse wavenumbers is presented in Theo-
rems 1 and 2. The results of Theorems 1 and 2 are
true for arbitrarily shaped waveguides. An illus-
tration of the theoretical results is shown at Fig. 2
for a waveguide of circular cross-section. Analyz-
ing Fig. 2 we observe that the fundamental mode

3 3.5 4 4.5 5
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

ε +

β2

 

 

k2 = 3, ε∞ = 1

Exact β2 = 3.9652

Randomly noised β̃

Figure 5: The red solid line is the plot of func-
tion ε+ = ε+(β2) for the fundamental mode of
the circular waveguide. The approximate solu-
tion obtained by the spline-collocation method
is marked by the blue circle for the exact β and
by black points for the randomly noised β̃.

(see the red solid curve at Fig. 2) exists for each
wavenumber k > 0. The fundamental mode is
unique, its dispersion curve does not intersect with
any others curves and well separated from them.
Therefore, the inverse spectral problem’s solution
exists and unique for each wavenumber k > 0, this
solution depends continuously on given data. In
other words, the inverse spectral problem is well-
posed by Hadamard.

An example of this continuity dependence we can
see at Fig. 5. The red solid line is the plot of the
function ε+ of β2 for the fundamental mode.

In our computations by analogy with [17] we
have introduced a randomly distributed noise in the
propagation constant as

β̃ = β(1 + pα),

where β =
√

3.9652 is the exact measured propaga-
tion constant, α ∈ (−1, 1) are randomly distributed
numbers, and p is the noise level. In our compu-
tations we have used p = 0.05 and thus, the noise
level was 5%.

Some numerical results of reconstruction of ε+

are presented at Fig. 5. The approximated value
ε+,comp of ε+ for the noise-free data is marked at
Fig. 5 by the blue circle. Approximated values
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k2 = 3, ε+ = 2

Exact β2 = 3.9652
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Figure 6: The red solid line is the plot of
function ε∞ = ε∞(β2) for the fundamental
mode of the circular waveguide. The ap-
proximate solution obtained by the spline-
collocation method is marked by the blue cir-
cle for the exact β and by black points for the
randomly noised β̃.

ε+,comp of ε+ for randomly distributed noise β̃ with
the 5% noise level is marked at Fig. 5 by the black
points. Using this figure we observe that the ap-
proximate solutions even for the randomly noised β̃

were stable. The relative L2 error e =
||ε+−ε+,comp||

||ε+||

is on the interval [0, 0.14], and approximated values
ε+,comp differs from the exact values of ε+ not more
than 12%. We see that for the unique and stable
reconstruction of the constant waveguide permit-
tivity ε+ it is enough to measure the propagation
constant β of the fundamental mode for only one
wavenumber k.

Note that in this numerical experiment all the
approximated values ε+,comp of ε+ for the noised
data belong to the set of admissible parameters
ε+ ∈ (ε∞, d1) for d1 = 2.4.

Analogous results we obtained for cladding’s
permittivity reconstructions by the algorithm de-
scribed in subsection 3.2.2. As at the previous fig-
ure the red solid line at Fig. 6 is the plot of contin-
uous function ε∞ of squared β for the fundamental
mode. The approximate solution ε∞,comp obtained
by the spline-collocation method is marked by the
blue circle for the exact β and by black points for
the randomly noised β̃. Using this figure we observe

that the approximate solutions for the randomly
noised β̃ were stable in this case too. The relative

L2 error of the reconstruction e =
||ε∞−ε∞,comp||

||ε∞|| be-

longs approximatelly to the interval [0, 0.67]. Ap-
proximated values ε∞,comp differs from the exact
values of ε∞ not more than 40%. We can con-
clude, that for the unique and stable reconstruction
of the constant permittivity ε∞ it is enough to mea-
sure the propagation constant β of the fundamental
mode for only one wavenumber k.

Note that in this numerical experiment the exact
solution ε∞ belongs to the low boundary of the set
of admissible parameters ε∞ ∈ [1, ε+). Therefore a
half of approximate solutions ε∞,comp obtained for

the randomly noised β̃ are less than one. Then in
the fourth step of the algorithm of section 3.2.2, we
assign ε∞,comp = 1.

We finished our numerical experiments with full
permittivity reconstructions by the algorithm de-
scribed in subsection 3.2.3. The approximate so-
lution obtained by the spline-collocation method is
marked at Fig. 4 by the red circle for the exact
propagation constant. We have also introduced the
random noise in the propagation constant as we de-
scribed above. The approximate solutions for the
noised β̃ are intersections of dashed lines. We see
that the approximate solutions for the randomly
noised β̃ belong to the red rhomb and are stable.
Therefore, for the unique and stable reconstruction
of the dielectric constants ε∞ and ε+ it is enough
to measure the propagation constant β of the fun-
damental mode for two distinct wavenumbers k.

Note that in this numerical experiment all the
approximated values ε+,comp of ε+ for the noised
data belong to the set of admissible parameters
ε+ ∈ (ε∞, d1) for d1 = 2.4. Since ε∞ = 1 a half
of approximate solutions ε∞,comp obtained for the

randomly noised β̃ are less than one. For these
cases in the second step of the algorithm of sec-
tion 3.2.3, we assign ε∞,comp = 1.

4 Parallel computing

In this section we describe in details the method
of calculation of initial approximations to nonlin-
ear eigenvalues. We consider a more complicated
problem [6] on surface and leaky modes of opti-
cal fibers. Only surface modes satisfy to original
problem (4)–(6). For leaky modes propagation con-
stants β are complex. Hence transverse wavenum-
bers are complex too. As in previous sections de-
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note by χ =
√

k2ε+ − β2 the (complex) transverse
wavenumber in the core. But it is more convenient
to denote the complex transverse wavenumber in
the cladding by η =

√
k2ε∞ − β2. Then equa-

tion (5) has the form

∆u + η2u = 0, x ∈ Ωe. (22)

Suppose that the domain Ωi is a subset of a circle
with radius R0, then the function u satisfies to the
Reichardt condition at infinity [10]:

u(r, ϕ) =

∞∑

l=−∞

alH
(1)
l (ηr) eilϕ, r ≥ R0. (23)

The series in (23) should converge uniformly and
absolutely.

For surface modes η = iσ, where σ > 0, and Re-
ichardt condition (23) is equal [10] to condition of
exponential decay (7). For leaky modes η is com-
plex and Im(χ) < 0. Therefore, as it was shown
in [10], Reichardt condition permits the fields to
grow exponentially with r → ∞. Nevertheless, re-
sults similar to Theorems 1-3 are true. These re-
sults were obtained in [6] and [11]. In [6] we used
the representation of eigenfunctions of problem (4),
(22), (6), (23) in the form of single-layer poten-
tials (8) and

u(x) =

∫

γ

Ψ(η; x, y)g(y)dl(y), x ∈ Ωe, (24)

where

Ψ (η; x, y) =
i

4
H

(1)
0 (η |x − y|) . (25)

In [11] we studied functions ηi of normalized and
squared frequency λ = k2(ε+ − ε∞) > 0.

Using spline-collocation method in [8] we approx-
imated problem (4), (22), (6), (23) by a nonlinear
finite-dimensional eigenvalue problem of the form

A(λ, η)w = 0. (26)

To obtain good initial approximations to complex
nonlinear eigenvalues η for given values of parame-
ter λ we investigate spectral properties of the ma-
trix A as a function of variables η and λ. For each
given point in an investigated domain of parame-
ters η and λ we calculate the condition number of
matrix A. Condition number is calculated by SVD
method.

Start

Geometry and Collocation points

For  λ

For  η  

A = A(λ, η)

SVD and cond(λ, η)

Local maximums of 
cond(λ, η) for given λ

Save initial approximations

End

--

--

Figure 7: The sequential algorithm for numer-
ical calculations of local maximums of condi-
tion number cond(λ, η) := cond(A(λ, η)) as a
function of variables λ and η.

4.1 Sequential algorithm

In this subsection we present our basic sequential
algorithm for calculations of local maximums of
condition number as a function of variables λ and
η. Recall that λ is positive; η is complex for leaky
waves and pure imaginary for surface waves.

The first step is the definition of the waveguide’s
geometry and calculations of collocation points (see
Fig. 7). The loop for λ is basic. For each given λ
we make calculations in the inner loop for η. For
given λ and η we calculate the matrix A. Then
we make SVD and calculate cond(A(λ, η)). The
next step for given λ is numerical calculations of
local maximums of condition number as a function
of variable η. Finally for each given λ we save local
maximums of condition number as initial approxi-
mations for nonlinear eigenvalues η.

4.2 Parallel algorithm

In this subsection we present a parallel modifica-
tion of our basic algorithm for calculations of lo-
cal maximums of condition number as a function
of variables λ and η. We program for APK-1M
compact supercomputer using C language. It is a
cluster with two computational nodes. It has eight
processors. Each computational node has four pro-
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OpenMP

MPI

Start

Geometry and Collocation points

For  λ

For  η 

A = A(λ, η)

SVD and cond(λ, η)

Local maximums of 
cond(λ, η) for given λ

Save initial approximations

End

--

--

For  η  

--

Figure 8: The parallel algorithm for numeri-
cal calculations of local maximums of condi-
tion number cond(λ, η) := cond(A(λ, η)) as a
function of variables λ and η.

cessors. Each processor quadruple share a half of
all main memory. The main memory is uniformly
distributed for two computational nodes. Thus, we
use both MPI and OpenMP technologies. Message
Passing Interface (MPI) is a technology for mul-
tiprocessor systems with distributed memory [18].
Open Multi-Processing (OpenMP) is a technology
for computers with shared memory [19].

The loop of λ is sequential (see Fig. 8) because we
want to make parallel computations for any speci-
fied λ. Hence we parallelize our algorithm for vari-
able η. Firstly, we divide the computational domain
of η for four or for eight subdomains according to
the number of using processors. At this level of par-
allelization we use MPI. Secondly, we divide each
subdomain of variable η for a fixed number of sub-
subdomains according to the number of OpenMP
threads. We use OpenMP also for parallel compu-
tations of entries of the matrix A and for singular
value decomposition.

Let us describe as how we use some functions of
MPI. We use MPI_Bcast to dispatch the variables
n, m, and λ to all processes:
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Figure 9: Initial approximations to nonlinear
eigenvalues η for a waveguide of the circular
cross-section for given λ.

MPI_Bcast(&n,1,MPI_INT,0,MPI_COMM_WORLD);

MPI_Bcast(&m,1,MPI_INT,0,MPI_COMM_WORLD);

MPI_Bcast(&lambda,1,MPI_DOUBLE,0,

MPI_COMM_WORLD);

Note here, that n is the number of collocation
points, m is the number of nodes in the meshed
subdomain of η for each process. Then we use
MPI_Scatter to scatter meshed subdomains of the
variable η for all processes:

MPI_Scatter(re_chi,m,MPI_DOUBLE,

local_re_chi,m,MPI_DOUBLE,0,

MPI_COMM_WORLD);

MPI_Scatter(im_chi,m,MPI_DOUBLE,

local_im_chi,m,MPI_DOUBLE,0,

MPI_COMM_WORLD);

Finally, we use MPI_Gather to gather computed
condition numbers in one array from all processes:

MPI_Gather(local_condition,m,MPI_DOUBLE,

condition,m,MPI_DOUBLE,0,

MPI_COMM_WORLD);

Each process runs on its own processor. Each
processor has sixteen computational cores with
shared cash memory. For parallel computations on
each processor we use sixteen OpenMP threads for
each process. We use the following OpenMP direc-
tive for loops of variable η:

#pragma omp parallel for private(i)

for(i = 0; i < m; i++)

{
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Figure 10: Initial approximations to complex
eigenvalues η satisfying to leaky eigenwaves
for a waveguide of the circular cross-section.
The exact solution is plotted by solid lines
(for Imη) and by dashed lines (for Reη). SVD
results are marked by squares.

int idxThread = omp_get_thread_num();

...

}

To control the sub-subdomain of η which was dedi-
cated to the thread and to control the special mem-
ory array which was dedicated to the thread we use
the function omp_get_thread_num(). This func-
tion returns the number of the thread. We also use
#pragma omp parallel for directive for loops of
indexes of matrix elements and for loops in SVD.

4.3 The comparison of computational technologies
and hardware

We started our numerical experiments using a home
personal computer with Intel Core i7 processor
(2.90 GHz, 4 physical cores). We fixed λ = 10 and
meshed the domain of the variable η by a 20-by-20
mesh: Reη = 0 : 0.25 : 5, Imη = −5 : 0.25 : 0.
In these experiments the number n of collocation
points was equal to 100. The results are presented
in the following table:

Computational technologies Time
(sec.)

C 162
C+OpenMP(A) 95
C+OpenMP(η) 46
C+OpenMP(η)+OpenMP(A) 42

In this table we compare the time of computation
for different computational technologies:

0 5 10 15 20 25 30
0

1

2

3

4

5

λ

Im
 η

Figure 11: Initial approximations to pure
imaginary eigenvalues η satisfying to surface
eigenwaves for a waveguide of the circular
cross-section. The exact solution is plotted
by solid lines. SVD results are marked by
squares.

• for the usual C sequential program,

• for parallel computing for elements of A,

• for parallel computing on the mesh of η,

• for parallel computing for matrix elements and
on the mesh of η.

We see that the last parallel program works four
times faster than the sequential program.

Our numerical experiments we continued using
APK-1M. The abbreviation means a modification
of the first hardware-software complex. Let us de-
scribe some characteristics of the compact super-
computer APK-1M:

• the peak performance is 1.075 TFlops,

• the main memory is 1024 GB,

• the disc storage is 18 TB.

As we have told, it is a cluster with two computa-
tional nodes based on the motherboards H8QG6-F.
Each computational node has four processors AMD
Opteron 6272 with sixteen computational cores.
Therefore, one computational node has 64 cores.

For numerical experiments with supercomputer
we fixed λ = 10 and meshed the domain of the
variable η by a 48-by-48 mesh: Reη = 0 : 0.104 : 5,
Imη = −5 : 0.104 : 0. The results for n = 100 are
presented in this table:
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Figure 12: Dispersion curves for surface and
leaky eigenwaves of the circular waveguide.
The exact solution is plotted by solid lines and
by dashed lines. The numerical solutions ob-
tained by the residual inverse iteration method
are marked by circles.

Computational
technologies
and hardware

Time
(sec.)

Proces-
sors

MPI
proc.

OMP
threads

PC: OpenMP 390 1 - 8
APK-1M:
OpenMP

78 4 - 64

APK-1M:
OpenMP+
MPI (1CN)

78 4 4 64

We compare the time of computations for different
computational technologies and hardware:

• for OpenMp computations using a home PC
with Intel Core i7 processor,

• for the same computations using APK-1M,

• for OPenMP and MPI computations using
APK-1M as we described in previous section.

We see that parallel programs for APK-1M work
five times faster than the OpenMp program for
home PC. Note here, that we used only one compu-
tational node for these experiments. If we use two
nodes then supercomputer works ten times faster
than home PC.

4.4 Numerical results

In this subsection we describe some numerical re-
sults for the 48-by-48 mesh of complex η and for a
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λ=10, η = 1.4−0.4i

Figure 13: Isolines for leaky eigenwaves of the
circular waveguide.

150-nodes mesh of positive λ. The figures presented
at Fig. 9 were animated by the changing of λ. Fig. 9
shows a frame for λ = 8.4 of this movie. At the up-
per left corner of the figure we present the surface of
the inverse condition number function of complex
variable η. At the upper right corner we present the
isolines of this function. At the bottom of this fig-
ure we present initial approximations to nonlinear
eigenvalues η for λ up to value 8.4.

At Fig. 10 we present initial approximations to
nonlinear eigenvalues η for λ from 0 to 31. Com-
plex eigenvalues η are satisfied to leaky eigenwaves.
The numerical results were obtained for a dielectric
waveguide of the circular cross-section. The exact
solution for this case is well known [4]. So, we com-
pare obtained numerical results with the exact so-
lution. The exact solution is plotted by blue solid
lines (for Im η) and by blue dashed lines (for Re η).
SVD results are marked by small red squares. Note
here, that squares are the initial approximations
only. They are start points for inverse iterations
which we use for numerical solution of the nonlin-
ear eigenvalue problem.

At Fig. 14 we present initial approximations to
pure imaginary eigenvalues η satisfying to surface
eigenwaves. We compare numerical results with the
exact solution for the circular waveguide. The exact
solution is plotted by solid lines. SVD results are
marked by squares. As at the previous figure the
squares are the initial approximations only.
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Figure 14: Isolines for surface eigenwaves of
a weakly guiding dielectric waveguide of the
square cross-section.

We used these initial approximations as start
points for the residual inverse iteration method [14].
Using this iteration method for each given λ we
solved numerically the nonlinear eigenvalue prob-
lem on eigenvalues η. At Fig. 12 we present some
dispersion curves for surface and leaky eigenwaves
of the circular waveguide. The exact solution is
plotted by solid lines and by dashed lines. The nu-
merical solutions obtained by the residual inverse
iteration method are marked by circles. At Figs. 13
and 14 we present some isolines for leaky eigenwaves
of the circular waveguide and for surface eigenwaves
of the square waveguide.

5 Conclusion

In this work we showed that our three inverse spec-
tral problems are well-posed. It is important to
note that any information on specific values of
eigenfunctions is not required. For solution of these
inverse problems it is enough to know that the fun-
damental mode is excited, and then to measure its
propagation constant for one or for two frequencies.

This approach satisfies to the practice of phys-
ical experiments because usually the fundamental
mode is excited for practical purposes. Moreover,
the fundamental mode can be excited only for the
enough wide interval of frequencies.

For the approximate solution of the inverse prob-
lems we propose first to solve the nonlinear spec-
tral problem for transverse wavenumbers in order to
compute the dispersion curve for the fundamental
mode. These calculations are done accurately by
the spline-collocation method. Next, we uniquely
and stably reconstruct the permittivities in our in-
verse algorithms.

Numerical experiments showed practical effec-
tiveness of our approach to use SVD of the matrix
for spline-collocation method for numerical calcula-
tions of initial approximations to nonlinear eigen-
values. Because of our numerical tests we can con-
clude that our software package can be used for nu-
merical simulations of new type’s optical fibers and
for numerical reconstructions of dielectric constants
of optical fibers on APK-1M supercomputer.
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