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Abstract

Maneuvers at slow speed, curves, and other ”steering events” causing
large lateral loads, are important for durability assessments of steering
components of a vehicle. We focus on modeling of the extreme forces
during these steering events with the aim of finding a simple but still ac-
curate estimate of the fatigue damage caused by such loads. The sequence
of steering events that forming a vehicle independent part of the load will
be modeled by a Markov chain with transition probabilities estimated
from CAN (Controller Area Network) bus data. The data is available for
all vehicles. The extreme forces during the events, which are driver and
vehicle dependent, are assumed to be statistically independent. Distri-
butions of forces are estimated from dedicated field measurements. The
main result is an explicit formula for the expected fatigue damage of the
proposed model. Usefulness of the formula is validated using measured
lateral accelerations and link rod forces.

Keywords: Fatigue damage index; hidden Markov models (HMMs); Markov
chain; rainflow cycles; vehicle independent load models; steering events; on-
board logging signals; link rod force; lateral acceleration.

1 Introduction

Fatigue is a process of material deterioration caused by variable stresses. For
a vehicle stresses depend on external loads, e.g. road roughness, vehicle usage,
drivers behavior, and on dynamical properties of the vehicle. Description of
service loading independent of the properties of a vehicle is appreciated at design
stage of components. Only sections of loads which cause large oscillations of
stresses, often described by the range of rainflow cycles, are of interest.

In this paper we will present a model of loads related to the steering events
such as driving on curves, slow speed maneuvers etc., which cause large oscil-
lations of the forces acting on steering components. The model consists of two
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parts; description of the sequence of steering events and the model for the ex-
treme loads occurring during the events. The sequence of steering events will
be modeled by means of a Markov chain. This is a vehicle independent part of
the load. The extreme forces during the events are assumed to be statistically
independent. Their distributions may depend on the type of steering event,
e.g. (left, right) cornering, slow maneuver to the right or to the left etc. The
parameters of the distributions are vehicle dependent and need to be estimated
using dedicated measurement campaigns or laboratory tests.

For the proposed model an explicit formula for the expected damage is given.
The expected damage will depend on frequencies of transitions between events
and on the distributions of the extreme forces. In the examples given in Section
4, the Rayleigh distribution will be used to describe the variability of extreme
forces. The proposed method is a generalization of the approach presented by
Karlsson [15] for lateral loads caused by curves. In that model it was assumed
that left and right turns occur independently of the past with probabilities
1/2. However in our studies we have observed that frequencies of left and right
turns are usually not equal and that the turns directions (left, right) are not
independent, see Maghsood and Johannesson [18, 19]. The proposed model will
include the observed dependencies in order of steering events occurrences.

The paper is organized as follows. In Section 2 definition and some prop-
erties of rainflow method and fatigue damage calculations are reviewed. The
proposed model for loads and means to calculate the expected damage for the
model is described in Section 3. Measured data are used to validate models
and to illustrate the results in Section 4. The paper closes with conclusions,
acknowledgments, references and two appendices. The first appendix contains
the proof of the formula for the expected damage while in the second one hid-
den Markov models (HMMs) based algorithm to detect the steering events is
reviewed.

2 Fatigue damage index

Risk for fatigue failure in a component is often measured by means of a damage
index. It is computed in the following two steps. First the rainflow ranges hi,
i = 1, . . . , N , in a load x, say, are found, then the damage D(x) is computed
using Palmgren-Miner rule [24], [21], viz.

Dβ(x) = α

N∑
i=1

hβi , (1)

where α and β are material dependent constants determined in constant ampli-
tude tests. The parameter α−1 is equal to the predicted number of cycles with
range one leading to fatigue failure. Various choices of the damage exponent β
can be considered, e.g. β = 3 which is the standard value for the crack growth
process, is often used. For comparison we consider also β = 5, that is often used
when a fatigue process is dominated by the crack initiation phase. Finally, for
simplicity only, we let α = 1.
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2.1 Definition of a rainflow cycle

The rainflow cycle count algorithm is one of the most commonly used methods
to count cycles. The method was first proposed by Matsuishi and Endo [20].
Here, we shall use the definition given in [26] which is more suitable for statistical
analysis of damage index. The definition is given next for completeness of the
presentation.

Assume that a load x has N local maxima. Denote by Mi the height of ith

local maximum and by mi the height of the preceding minimum. For each local
maximum Mi, one should find the lowest value in forward direction (m+

i ) until
the load exceeds or equal Mi, and the lowest value in backward direction (m−i )
until the load exceeds Mi. The maximum value of m+

i and m−i is the rainflow

minimum which is denoted by mrfc
i . Then (mrfc

i ,Mi) is the ith rainflow pair

with the rainflow range hi = Mi −mrfc
i . Figure 1 illustrates the definition of

the rainflow cycles.

max

min rfc

h

Figure 1: The rainflow cycle.

Note that some local maxima Mi can not be paired with any of local minima
in x. (It can happen that the corresponding rainflow minimum mrfc

i lies before
or after the period when load was measured.) The sequence of maxima and
minima which could not be paired by means of rainflow method is called the
residual and has to be handled separately. Here we let maxima in the residual
form cycles with the preceding minima (in the residual).

2.2 Rainflow counting distribution and crossings of inter-
vals

In this paper we assume that a measured load x is given in form of time series
xi, i = 0, . . . , n. In reliability applications the variability of the load is often
modeled by means of random processes then x is one of many possible real-
izations of the process. For random loads the rainflow ranges become random
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variables and the damage index is a random quantity too. The expected value
of the index is an important parameter describing the severity of the load en-
vironment. Finding the expected damage is not a simple task and hence there
are many approximations proposed in the literature. Maybe the most famous
is the so-called narrow-band approximation, proposed by Bendat [2]. It can be
proved that the approximation is actually a bound for the damage index defined
in Eq. (1), see [29]. The proof is based on the alternative way to compute the
damage index which will be presented next.

Suppose that in load x the following rainflow cycles were found (mrfc
i ,Mi),

i = 1, . . . , N . Variability of the cycles can be described using a cumulative
histogram Nrfc(u, v), say, called the rainflow counting distribution. The dis-
tribution is defined as follows; for any levels u ≤ v, Nrfc(u, v) is equal to the

number of rainflow cycles such that mrfc
i < u ≤ v < Mi. As it was shown in

[28] the damage index in Eq. (1) can be evaluated using the distribution, viz.

Dβ(x) = β(β − 1)

∫ +∞

−∞

∫ v

−∞
(v − u)β−2Nrfc(u, v) du dv, β > 1. (2)

Remark 1. The proof of Eq. (2) follows the following lines. For any m ≤M

(M −m)β = β(β − 1)

∫ M

m

∫ v

m

(v − u)β−2 du dv. (3)

(For β = 3 the integral gives the volume of triangular pyramid having area of
the base (M −m)2/2 and height (M −m).) Then an alternative formula for

damage index (1) is obtained by replacing hβi = (Mi − mrfc
i )β by the double

integral (3). Finally Eq. (2) is obtained by changing order of summations and
integrations in the formula.

Remark 2. Particularly useful is the property that Nrfc(u, v) is equal to the
number of times xi, i = 1, . . . , n, crosses an interval [u, v] in upward direction,
see Eq. (A.2) for formal definition. The number of interval upcrossings will be
denoted by Nosc

n (u, v). The equality between the rainflow counting distribution
and the interval crossing was shown independently in [28] and [4]. In the second
paper multivalued loads were considered and oscillations between sets were used
to define multiaxial rainflow count. For a uniaxial load the oscillations between
sets (−∞, u) and (v,+∞) is equal to Nosc

n (u, v).
Figure 2 illustrates the equality Nrfc(u, v) = Nosc

n (u, v). It can be seen in
the figure that there are three rainflow cycles with top above level 1 and bottom
below -1 and there are also three upcrossings of the interval [−1, 1] by the load.

Obviously it is easier to evaluate the damage index using Eq. (1) than by
means of Eq. (2). However the formula in (2), with Nrfc(u, v) replaced by
Nosc
n (u, v), viz.

Dβ(x) = β(β − 1)

∫ +∞

−∞

∫ v

−∞
(v − u)β−2Nosc

n (u, v) du dv, β > 1, (4)
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found applications in studies of damage index properties for random loads as
will be shown in the following sections.
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Figure 2: Illustration of crossings of an interval [u, v], Nosc(u, v) = 3.

2.3 Random loads and damage intensity

Consider a random load X = (X0, . . . , Xn). Due to randomness of X the dam-
age index Dβ(X) will vary between the outcomes of X and becomes random
itself. Then the damage intensity, i.e. the average growth of the expected dam-
age index in time unit,

dβ = lim
n→∞

1

n
E[Dβ(X)] (5)

is often used to measure the severity of the random load.
Here the damage intensity dβ will be computed using the intensity of interval

crossings defined by

µosc(u, v) = lim
n→∞

E [Nosc
n (u, v)]

n
. (6)

Now, Eq. (4) with Nosc
n (u, v) replaced by µosc(u, v), gives

dβ = β(β − 1)

∫ +∞

−∞

∫ v

−∞
(v − u)β−2µosc(u, v) du dv. (7)

In the following section we will use Markov chains to model variability of a
load. Markov chains are flexible class of random processes and are often used to
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model variability of environmental loads. Markov chains are convenient models
for several reasons. Maybe the most useful property is that for Markov chains
there exist efficient methods to evaluate µosc and hence the expected damage
index, see e.g. [27], [16], [5], [10], [12], [11], [15], [17]. Markov chains can also
be used to simulate rainflow filtered loads. More precisely often one wishes to
simulate sequence of local maximums and minimums excluding cycles having
ranges below some given threshold. This is important for accelerated testing
of fatigue strength of components subjected to realistic loads, see [30] and [8]
for an alternative approach. A related problem of extrapolating the rainflow
counts, using oscillation intensity evaluated for compound Poisson process (a
continuous time Markov process) has been considered in [14].

3 Random model of lateral loads based on steer-
ing events

Modeling external loads is an important area of transportation engineering as
durability studies of vehicle components often require a customer or market spe-
cific load description. The most desired properties of the models are robustness
and simplicity, so that only a small number of parameters is used to describe
loads variability. Approach taken here is to approximate the load by a vehicle
independent sequence of steering events, here representing Left and Right turns
(LT, RT) or Left and Right steering (LS, RS). In both cases the two events
are separated by a section when wheels have approximately zero turning angle,
which is called Straight forward (SF). For each steering event only one, the most
extreme, value of the load will be modeled by a random variable Yi, say, and
when vehicle is driving straight forward the load will take zero value.

The model is constructed in two steps; first the sequence of steering events
is modeled as a Markov chain, then the distributions of extreme loads during
events are proposed. It is assumed that the values of extreme loads are statis-
tically independent.

As mentioned above a steering event has two states. The variability of the
sequence is modeled by Markov chain Zi, say, having two states ”1” and ”2”.
We denote by P the transition matrix of the chain, viz.

P =

(
p11 p12
p21 p22

)
(8)

where pij denotes the transition probabilities between states. We assume that
both p11 and p22 are smaller than one and hence the chain has the stationary
distribution denoted by π = (π1, π2). Further it is assumed that the chain
is reversible, i.e. πi pij = πj pji, for all i, j, and hence one can construct a
stationary sequence of steering events Zi (defined for all integers) such that
each Zi has distribution π and

P (Zi = j0|Zi−1 = j1, Zi−2 = j2, . . . , Zi−n = jn) = P (Zi = j0|Zi−1 = j1).
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We turn now to the definition of the extreme loads during steering events Zi.
Let Mi be a sequence of independent and identically distributed (iid) positive
random variables while let mi be iid negative random variables. Assume that
the three sequences, Z,M and m are independent. Then the extreme loads Yi,
say, are defined by

Yi =

{
Mi, if Zi = 1,

mi, if Zi = 2.
(9)

Finally, the random load Xi is defined by adding zeros between Yi and Yi+1

modeling the load when the vehicle is driving straight forward, viz.

Xi =

{
0, if i is odd integer,

Yi/2, otherwise.
(10)

Remark 3. The proposed random load Xi in Eq. (10) is defined using the
variables Zi, Mi and mi. Here Zi are vehicle independent while Mi and mi

depend on vehicle, driver and other similar factors. Further the sequence Yi
defined in Eq. (9) is stationary.

3.1 Oscillation intensity for the random load

In order to evaluate the interval upcrossing intensity µosc(u, v) the following two
conditional probabilities are needed;

• p1(u, v) - the conditional probability that given Z0 = 1, i.e. load has local
maximum at time zero, the sequence Yi, i > 0, will visit the set (v,+∞)
before it visits (−∞, u);

• p2(u, v) - the conditional probability that given Z0 = 2, i.e. load has local
minimum at time zero, the sequence Yi, i > 0, will visit the set (v,+∞)
before it visits (−∞, u).

It will be shown in Appendix A that for Yi defined in Eq. (9) the probabilities
satisfy the following equation system

pj(u, v) = P (Y1 > v|Z0 = j) +

2∑
l=1

P (u ≤ Y1 ≤ v|Z1 = l)pjlpl(u, v), j = 1, 2,

and more explicitly

p1 = p11P (M1 > v) + P (M1 ≤ v) p11 p1 + P (m1 ≥ u) p12 p2,

p2 = p21P (M1 > v) + P (M1 ≤ v) p21 p1 + P (m1 ≥ u) p22 p2. (11)

In the special case when Zi are independent, i.e. the probabilities pij = 1/2
in (8), one has that p1(u, v) = p2(u, v) and hence

p2(u, v) =
P (M1 > v)

P (M1 > v) + P (m1 < u)
. (12)

7



We turn now to the main result of the paper an explicit formula for the interval
upcrossing intensity by Xi given in the following theorem.

Theorem 4. For Xi defined in Eq. (10), µosc(u, v) is given by:

µosc(u, v) =
1

2


π2P (m1 < u), u < v < 0,

π2 P (m1 < u) p2(u, v), u ≤ 0 ≤ v,
π1P (M1 > v), 0 < u < v,

(13)

where p2(u, v) is a solution to the equation system in (11).

Proof of the thoerem is given in Appendix A.

Example 5. The case of independent Zi were considered by Karlsson [15]. In
this special case p2(u, v) is given by Eq. (12). Since π1 = π2 = 1/2 the intensity
of oscillations µosc(u, v) is given by

µosc(u, v) =
1

4


P (m1 < u), u < v < 0,
P (M1>v)P (m1<u)
P (M1>v)+P (m1<u)

, u ≤ 0 ≤ v,
P (M1 > v), 0 < u < v,

(14)

If Mi and −mi are exponentially distributed then Yi, i ≥ 0, has Laplace distri-
bution, i.e. having pdf f(y) = (1/2) exp(−|y|), and

µosc(u, v) =
1

4


eu, u < v < 0,
eu−v

eu+e−v , u ≤ 0 ≤ v,
e−v, 0 < u < v,

In the following section µosc(u, v) will be used to estimate the expected
damage index. More precisely E[Dβ(X)] ≈ n · dβ where dβ is computed using
Eq. (7) with µosc(u, v) given in (13). Basically one is approximating µoscn (u, v)
by n·µosc(u, v). (Note that µoscn (u, v) ≤ nµosc(u, v).) The numerical integration
in (7) as well as the rainflow cycle counting have been done using the WAFO
(Wave Analysis for Fatigue and Oceanography) toolbox, see [6, 32, 33], which
can be downloaded free of charge.

4 Validations

In this section the random load model proposed in Section 3 will be validated.
Two data sets will be used. The measured loads will be denoted by xobs. First
the steering maneuvers will be detected in xobs using HMM algorithm presented
in Appendix B. Then the extreme loads during maneuvers will be found. We
assume that each maneuver follows by a driving straight section.

The signal consisting of the extreme loads during maneuvers and zeros for
section when vehicle is driving straight will be denoted by x = (x0, . . . , xn)
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and called the reduced load. In Figure 3 part of measured load xobs (lateral
acceleration) is shown as the solid line while the reduced load x by dots.
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Figure 3: Reduced load x represented by dots compared with observed load
xobs, lateral acceleration, represented by the irregular solid line.

In Section 3 a random model for variability of the reduced load x was pro-
posed, viz. X = (X0, . . . , Xn), where Xi were defined in Eq. (10). Here the
accuracy of the proposed model will be validated. Two issues will be considered:

(I) Firstly, we will investigate whether the reduced load x contains all large
rainflow cycles that were found in the load xobs. By this we control whether
the assumption that load is zero when the vehicle is driving straight for-
ward is not too crude and whether the HMM algorithm detects correctly
the maneuvers.

(II) Secondly, we will investigate whether the random load X = (X0, . . . , Xn),
defined in Eq. (10), is accurately describing the variability of rainflow
ranges counted in the reduced load x.

Investigation (I) consists of comparisons of rainflow cycle counts found in the
measured load xobs and in the reduced load x. Furthermore the damage indexes
Dβ(xobs), Dβ(x) and the expected damage index E[Dβ(X)], for β = 3, 5, will
be evaluated and compared.
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The problem (II) will be addressed by studying the variability of the damage
index Dβ(X) and checking whether the index Dβ(x) does not differ significantly
from samples of Dβ(X). In addition the rainflow range spectrum, see Eq. (17),
found in x will be compared with the expected spectrum and with the simulated
spectra, i.e. found in samples of X.

4.1 Maneuvering events

In this section we consider the maneuvering events, e.g. driving in or out of a
parking lot, standing still but turning steering wheel. (For simplicity of pre-
sentation we will not distinguished between driving forward or backward.) A
common property of maneuvering is that the speed of vehicle is low. Here the
limit is set to 10 km/h. Three maneuvering events are considered; Steering Left
(SL), Steering Right (SR) and Straight Forward (SF). The HMMs algorithm,
presented in Appendix B, has been applied to detect the maneuvering events
from the steering angle speed.

In Figure 4(a), lower plot, the detected time periods when the vehicle was
maneuvering are shown. The extreme forces are negative, positive and zero
in the three states SR, SL and SF, respectively. There are 42 events detected
leading to the following estimate of the transition matrix

P =

(
0.11 0.89
0.77 0.23

)
. (15)

The Rayleigh distributions have been fitted to positive and negative values of
the reduced load giving

P (M1 > v) = e−
1
2 ( v

6.2 )
2

, v ≥ 0, P (m1 < u) = e−
1
2 (u

6 )
2

, u ≤ 0. (16)

The transition matrix P given in (15) and the Rayleigh distributions in (16)
define the random load X represented in Eq. (10).

Comparison of rainflow counts in measured and reduced loads

The link rod force is used as the load xobs. The load is shown in the top plot of
Figure 4(a) as a solid irregular line. The force is not included in the CAN data
and it has been separately measured. In the figure, the stars are the extreme
link rod forces occurring during maneuvers and constituting the reduced load x.
Rainflow cycles have been found both in the load and in the reduced load and
are compared in Figure 4(b). The rainflow cycles found in the measured link
rod force are marked as dots having coordinates (mrfc,M). One can see that
there are few large cycles and many small ones. The rainflow cycles found in the
reduced load are presented as circles. As can be seen in Figure 4(b), all large
cycles found in the link rod force are also found in the reduced load. Hence,
one can expect that the damage index computed for the measured load should
be very close to the one computed for the reduced load.

10



(a) (b)

0 50 100 150 200
−20

−10

0

10

20
Link rod

Time(s)

Lo
ad

0 50 100 150 200

SR

SF

SL

Detected maneuvering events

Time(s)

S
ta

te
s

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20
Rainflow cycles

Min

M
ax

Figure 4: (a) Top: solid irregular line is xobs (measured link rod force) while
stars represent x (reduced load). Bottom: Detected maneuvers. (b) Dots - the
rainflow cycles found in xobs. Circles - the rainflow cycles counted in x.

Table 1 shows a comparison of the damage indexes Dβ(xobs) computed for
the measured load, Dβ(x) for the reduced load and the expected damage index
E[Dβ(X)] for the random model of the reduced load with the transition matrix
P given in (15) and Rayleigh distributed M and m in (16). Damage indexes
Dβ(xobs) and Dβ(x) are given in columns 2 and 3. As expected, these are
almost identical. We conclude that the reduced load models the variability of
the measured load well.

Table 1: Comparison of damage indexes Dβ(xobs) computed for the measured
load, Dβ(x) for the reduced load and the expected damage index E[Dβ(X)].

Dβ(xobs) Dβ(x) E[Dβ(X)]
β = 3 14.8 · 103 14.3 · 103 15.5 · 103

β = 5 2.3 · 106 2.2 · 106 2.7 · 106

Validation of random load X

In this section we will investigate the problem (II), i.e. we will check if the
variability of the reduced load x is well modeled by the random load X. The
expected damage E[Dβ(X)] is given in the fourth column of Table 1. One can
see that the observed damage is only 8% smaller than the expected damage
evaluated from the model. This is a very small difference for this type of data.
However we will further investigate the accuracy of the model by estimating the
prediction intervals for Dβ(X) and comparing the load spectra for reduced load
x and random model X.
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The load xobs is rather short, only 42 steering events have been detected, and
hence statistical uncertainty of the model parameters is large. Neglecting the
uncertainty of the model parameters, we have estimated the prediction intervals
for the damage index using 10000 simulations of the random load X. The 95%
prediction intervals for the damage index Dβ(X), β = 3, 5, have been estimated
and the results are presented in Table 2. One can see that the variability of
the damage index is huge. This demonstrate that the damage index is a rough
tool to validate accuracy of the random model X. Consequently, we will use
the rainflow range distributions to validate the model instead of the damage
indexes.

Table 2: The approximative 95% prediction intervals for Dβ(X).

Lower limit Upper limit
β = 3 8.9 · 103 23.1 · 103

β = 5 0.9 · 106 5.4 · 106

Validation, in statistics, means determining whether a model fits the data
well. Often cumulative distribution functions (cdf) and some goodness of fit
tests are used. We will not follow this line since it is not taking into consideration
the purpose of the model. It is well known that cycles with small ranges do not
contribute much to the fatigue damage and hence their distribution not need to
be accurately modeled. However these may heavily influence the shape of ranges
cdf leading to rejection of practically ”good” model. In engineering one often
prefers to use the so-called load spectra to compare rainflow cycles distributions.
The load spectrum is defined as follows.

Consider a load y having N rainflow cycles and the rainflow ranges with the
cdf F rfc(h). Let H be random variable having cdf F rfc(h). Then, the damage
index is

Dβ(y) = N · E[Hβ ] = β N ·
∫ ∞
0

P (h > h)hβ−1 dh.

If for two loads the functions N · P (h > h) = N(1 − F rfc(h)) are close for
high and moderate h, then for any β > 1 the damage indexes are close too.
Traditionally, one defines the load spectrum S(h), say, to be the inverse of
function of N(1−F rfc(h)). Then, the plot of load spectrum (h, S(h)) coincides
with the graph of the following line(

N (1− F rfc(h)), h
)
, h ≥ 0, (17)

see [13] for more details.
Load spectrum in (17) was found in measured link rod force xobs and re-

duced load x. The expected load spectrum was also evaluated by integrating
n · µosc(u, v) over suitable regions. The interval crossing intensity µosc(u, v),
defined in (7), is given by (14). The spectra are shown in Figure 5(a). In the
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figure one can see that the load spectra are very close to each other except in
the region of small ranges where the load spectrum found in xobs is positive
while the remaining two spectra take value zero.

Finally in Figure 5(b) the load spectrum of the reduced load x is compared
with 10 load spectra computed from simulated samples of the random load. In
the figure, the smooth solid line is the expected load spectrum evaluated using
n · µosc(u, v), n = 84, while the thick stairs like line is the load spectrum found
in the reduced load. It can be seen that the load spectrum of x does not differ
significantly from the simulated load spectra and we can conclude that X is an
accurate model for the variability of the reduced load x.
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Figure 5: (a) Comparison of the load spectra (rainflow ranges). The regular
solid line is the theoretical spectrum computed from n · µosc(u, v), n = 84. The
stairs like functions are the observed load spectra in measured load (link rod
force) and the reduced load. (b) Comparison of load spectra found in simulated
random load X, see (10), with theoretical load spectrum and the load spectrum
of the reduced load (the thick stairs like line).

4.2 Driving through the curves

In this section we consider steering events occurring when vehicle is driving
with speed higher than 10 km/h, e.g. when driving in curves. We limit analysis
to three cases; Left turn (LT), Right turn (RT) and Straight forward (SF).
The lateral acceleration signal and the HMMs algorithm are used to detect the
curves. The signal is estimated using CAN supported data; vehicle speed and
yaw rate. It has been computed by means of

x =
speed · yaw rate

3.6
. (18)

Here speed has units [km/h] while yaw rate [s−1]. The signal is shown in Figure 6
(top plot). In the signal, 109 turns have been detected. The detected transitions
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between the events are shown in Figure 6 (bottom plot). This signal was used
to estimate the transition matrix P , (8), viz.

P =

(
0.41 0.59
0.19 0.81

)
. (19)

The lateral acceleration (18) is selected to be the load acting on a steering
component. The reduce load x is shown in Figure 6 (middle plot). The Rayleigh
distributions have been fitted to the positive and the negative values of the load
giving

P (M1 > v) = e−
1
2 ( v

0.6 )
2

, v ≥ 0, P (m1 < u) = e−
1
2 ( u

0.4 )
2

, u ≤ 0. (20)

The matrix P given in (19) and the parameters of Rayleigh distributions in (20)
define together the random load X.
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Figure 6: Top: Fifty minutes long record of the lateral acceleration (18). Middle:
The reduced load defined by the extreme accelerations during left and right
turns and zero when driving straight. Bottom: The corresponding detected
curves from the lateral acceleration.

Comparison of rainflow counts in the measured and reduced load

The load (lateral acceleration) is shown in the top plot of Figure 6. In the
figure, middle plot shows the extreme accelerations, occurring during curves,
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constituting the reduced load. The rainflow cycles have been found both in
the load and in the reduced load and compared in Figure 7(a). As before the
rainflow cycles found in the load are marked as dots. The rainflow cycles found
in the reduced load are presented as circles. One can see that the largest cycles
are counted both in lateral acceleration and in the reduced load. However there
are also many moderate size rainflow cycles found in the lateral acceleration
which are missing in the reduced load rainflow count. We conclude that the
largest cycles found in both the lateral acceleration signal and the reduced
load are not of higher order of magnitude than cycles occurring during the
event SF. And hence one can expect that the damage index computed for the
lateral acceleration signal will be higher than the damage index estimated for
the reduced load.
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Figure 7: (a) Dots - the rainflow cycles found in the lateral acceleration signal.
Circles - the rainflow cycles counted in the reduced load. (b) Boxplots of the
simulated damage Dβ(X) for β = 3, 5. The star shows the calculated expected
damage and the filled circle represents the damage index of the reduced load.

Damage indexes

The damage indexes evaluated for the load (lateral acceleration), reduced load
and the expected damage index are compared in Table 3. Since the largest
rainflow cycles are found both in lateral acceleration and reduced load, see Fig-
ure 7(a), the damage indexes D5(xobs) and D5(x) are almost identical. The large
number of moderate size cycles found when the vehicle was driving straight for-
ward are contributing to D3(xobs) and not to D3(x) and hence there is larger
difference between values of thess two damage indices. The expected damage
index E[Dβ(X)] is clearly smaller than Dβ(x). Whether this difference is sig-
nificant will be investigated next.
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Table 3: Comparison of damage indexes Dβ(xobs) computed for lateral acceler-
ation signal shown in Figure 6, top plot, Dβ(x) reduced load, shown in Figure 6
middle plot, and the expected damage index E[Dβ(X)], for the random model
for the reduced load with P given in (19) and Rayleigh distributed M,m (20).

Dβ(xobs) Dβ(x) E[Dβ(X)]
β = 3 25 19 14
β = 5 36 35 17

We have simulated 10000 sequences X = (X0, . . . , Xn), n = 218, found
rainflow cycles and evaluated the damage indexes. The variability of logarithms
of the evaluated damage indexes Dβ(X) is presented in form of boxplots shown
in Figure 7(b). The straight line in the middle of boxplot represents the median
of damage. The lines which are extended vertically from the boxes indicating
the whiskers. We have used the Tukey boxplot and the ends of the whiskers
corresponds to the approximately 99.3% intervals if the logarithm of damage
is normally distributed. As can be seen, the damage value calculated by the
reduced load (shown by a filled circle) lies within the normal spread of the
damage index Dβ(X), for β = 3, 5, and hence we conclude that the random
load X can be used to model variability of reduced load x. This claim will
be further supported by a study of load spectra variability presented in the
following subsection.

Validation of random load X - load spectra

In Figure 8(a), the load spectra for the lateral acceleration, reduced load x and
the random load X are compared. The observed load spectrum contains much
more small and moderately high ranges than the remaining two spectra. Further
the expected load spectrum, shown as a smooth line, is close to the load spectra
of the reduced load.

In Figure 8(b), the expected load spectrum is compared with 10 load spectra
computed from simulated samples of the random load. In the figure, the smooth
solid line is the expected load spectrum evaluated using n · µosc(u, v) while the
thick stairs looking like line is the load spectrum found in the reduced load.
Except cycles with very small ranges, one can see that the load spectrum of x
does not differ significantly from the simulated load spectra.
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Figure 8: (a) Comparison of load spectra (rainflow ranges). The regular solid
line is the theoretical spectrum computed from n · µosc(u, v), n = 109. The
stairs like functions are the observed load spectra in measured load (lateral
acceleration (18)) and the reduced load (b). Comparison of load spectra found
in simulations of random load X, see (10), with theoretical load spectrum and
the load spectrum of the reduced load (the thick stairs like line).

5 Conclusion

A reduced load, i.e. a sequence of the most extreme forces during steering events,
was introduced. A random load modeling the variability of the reduced load
was proposed. The sequence of steering events, which is vehicle independent
information, was modeled using a two states Markov chain. The extreme forces
occurring during the steering events were modeled by means of independent
Rayleigh distributed variables. For the model, an explicit formula for the ex-
pected fatigue damage was presented. The proposed random model depends
only on four parameters which could be used to classify and compare the sever-
ity of driving environments.

The results were validated using measured data. Two types of steering
events were detected; driving through the curve and slow speed maneuvering.
All large rainflow cycles found in measured load were also counted in the reduced
load. Hence the reduced load can be used to predict fatigue damage of steering
components.

Fatigue damage estimated for the reduced loads were in the confidence in-
tervals derived from the random load. The observed load spectrum did not
significantly differ from load spectra found in the simulated loads. We conclude
that the proposed random load accurately describe the variability of the rainflow
ranges for the considered measured loads.
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Appendix

A Proof of Theorem 4

Consider the stationary time series Xi defined in Eq. (10). Let k be the number
of maneuvers and random load X = {Xi : i = 0, . . . , n}, n = 2k. We recall that
µoscn (u, v) = E[Nosc

n (u, v)] is the expected number of upcrossings of the interval
[u, v] found in X while the intensity of interval upcrossings

µosc(u, v) = lim
n→∞

1

n
µoscn (u, v).

We begin with a definition of Nosc
n (u, v). Consider a load starting at time

zero, i.e. infinite sequence x = (x0, x1, . . .) of real numbers. For fixed u, v, u ≤ v,
i ≥ 0 and j > i+ 1 define the following sets

Ai = {xi < u} ∩ {xi+1 > v}, (A.1)

Aij = {xi < u} ∩ {xj > v} ∩ {u ≤ xl ≤ v for all l, i < l < j}.

Let 1A(x) be the indicator function of A, i.e. equal one if x ∈ A and zero
otherwise. Now for fixed u ≤ v, m ≥ 2 and x ∈ Rm+1 we will denote the
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number of upcrossings of interval [u, v] found in x, i.e. Nosc
m (u, v), by Nm(x).

Using the sets Ai and Aij , defined in Eq. (A.1), one obtain that

Nm(x) =

m−1∑
i=0

1Ai
(x) +

m−2∑
i=0

m∑
j=i+2

1Aij
(x). (A.2)

Now, we turn to evaluation of µoscn (u, v) = E[Nn(X)] for n = 2k. The do-
main of µoscn is divided into three regions; u ≤ v < 0, 0 < u ≤ v and u ≤ 0 ≤ v.

Region u ≤ v < 0: Since Xi = 0 for all odd indexes then Nn(X) is equal to num-
ber of X2i < u < 0, 0 ≤ i ≤ k − 1. Consequently µoscn (u, v) = kπ2 P (m1 < u)
and µosc(u, v) = 1

2π2 P (m1 < u). (Recall that mi, Mi are independent se-
quences of iid random variables.)

Region 0 < u ≤ v : Similarly Nn(X) is equal to number of X2i > v > 0 and
hence µoscn (u, v) = kπ1 P (M1 > v). Consequently µosc(u, v) = 1

2π1 P (M1 > v).

Region u ≤ 0 ≤ v: Computation of µoscn (u, v) and µosc(u, v) when u ≤ 0 ≤ v
is more complex. First we note that the number of crossings of intervals [u, v],
u ≤ 0 ≤ v found in sequences Xi, i = 0, . . . , n, and Yi, i = 0, . . . , k, are equal,
i.e.

Nn(X) = Nk(Y ), Yi = X2i.

Now from the definition of Nk(Y ) in Eq. (A.2), it is easy to see that

µoscn (u, v) =

k−1∑
i=0

P (Y ∈ Ai) +

k−2∑
i=0

k∑
j=i+2

P (Y ∈ Aij).

Since Yi is a stationary sequence hence P (Y ∈ Ai) = P (Y ∈ A0) and P (Y ∈
Aij) = P (Y ∈ A0(j−i)) for any j ≥ i + 2. Consequently, with P1 = P (Y ∈ A0)
and Pl = P (Y ∈ A0l), l = 2, 3, . . .,

µoscn (u, v) = k P1 +

k−2∑
i=0

k∑
j=i+2

Pj−i

= k P1 +

k−2∑
i=0

k−i∑
l=2

Pl =

k∑
i=1

(k − i+ 1)Pi.

Hence the intensity µosc(u, v) is given by

µosc(u, v) = lim
n→∞

1

n
µoscn = lim

k→∞

1

2

k∑
i=1

(1− (i− 1)/k)Pi =
1

2

∞∑
i=1

Pi,

by dominated convergence theorem (
∑∞
i=1 Pi ≤ 1). Next we will employ Markov

property to evaluate µosc(u, v).
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Let introduce the following sequence of events Bi, i ≥ 1,

B1 = {Y1 > v}
Bi = {Yi > v and u ≤ Yl ≤ v for all 1 ≤ l < i}, i > 1. (A.3)

Using Bi the sum
∑∞
i=1 Pi can be written as follows

∞∑
i=1

Pi = P (Y ∈ A0 and Z0 = 2) +

∞∑
i=2

P (Y ∈ A0i and Z0 = 2)

=

∞∑
i=1

P (Bi|Z0 = 2, Y0 < v)P (Y0 < v,Z0 = 2)

= π2P (m0 < u)

∞∑
i=1

P (Bi|Z0 = 2). (A.4)

Since probabilities pj introduced in Section 3.1 are given by

pj(u, v) =

∞∑
i=1

P (Bi|Z0 = j), j = 1, 2,

one has that
∑∞
i=1 Pi = π2 P (m < u) p2(u, v). This finishes the proof of Eq. (13).

Finally we demonstrate that p2(u, v) is the solution of Eq. (11). Using
Markov property one can evaluate pj in the following way

pj(u, v) = P (Y1 > v|Z0 = j) +

2∑
l=1

∞∑
i=2

P (Bi|u ≤ Y1 ≤ v, Z1 = l, Z0 = j)

·P (u ≤ Y1 ≤ v, Z1 = l|Z0 = j)

= P (Y1 > v|Z0 = j) +

2∑
l=1

∞∑
i=2

P (Bi|Z1 = l)P (u ≤ Y1 ≤ v|Z1 = l)pjl

= P (Y1 > v|Z0 = j) +

2∑
l=1

P (u ≤ Y1 ≤ v|Z1 = l)pjl

∞∑
i=1

P (Bi|Z0 = l)

= P (Y1 > v|Z0 = j) +

2∑
l=1

P (u ≤ Y1 ≤ v|Z1 = l)pjlpl(u, v).

This finishes the proof.

B Hidden Markov models

Hidden Markov models are probabilistic models that can be used for detection of
patterns or events in a signal. In some studies, one HMM has been constructed
for each type of event, see e.g. Mitrović [22]. They created a training set by
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identifying the events manually to build the models and evaluate them. Then for
a new observation sequence, they computed the observation likelihoods based
on all models and selected the type of driving event with respect to the highest
likelihoods. In our suggested method, we have used a single HMM for describing
all events instead of constructing several different models where each HMM
describes a single event. It should be more simple to estimate the parameters
of one model than lots of parameters of different models.

There are two processes in an HMM. The interesting process Zt describes
the events which are not accessible to measure directly. It is thus called hidden
and modeled as a Markov chain. However, what can be observed is a process Yt
and its statistical properties depend on the value of Zt. The problem at hand
is to estimate the parameters of the HMM. Based on an observation of Yt, it
is then possible to reconstruct the most probable hidden process and identify
events.

We have used HMMs to detect steering events such as curves and maneu-
vers by using on-board logging signals available on trucks, such as lateral ac-
celeration, vehicle speed and steering wheel angle. Figure B.1 shows a lateral
acceleration signal and the corresponding identified hidden states process.
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Figure B.1: Lateral acceleration signal and the corresponding hidden states.

Suppose that there are three events Right turn (RT), Left turn (LT) and
Straight forward (SF). The idea is to see these three events as three hidden states
and construct the HMM based on them. Figure B.2 illustrates three hidden
states and the transitions between them and a sequence of observations that
can be generated based on the probability distribution of observation symbols.
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Figure B.2: The hidden state sequence is modeled by a Markov chain and the
observation sequence is modeled by the emission probabilities.

Lateral acceleration values have been translated into predefined classes.
Here, three classes will be used, V = {A, B, C}, that are defined as follows:

• A =
{

”lateral acceleration” < −0.2 m/s2
}

,

• B =
{
−0.2 m/s2 ≤ ”lateral acceleration” ≤ 0.2 m/s2

}
,

• C =
{

”lateral acceleration” > 0.2 m/s2
}

.

where the threshold 0.2 m/s2 has been chosen based on experience. This kind
of clustering will create a sequence of observation symbols which has been used
to estimate the emission matrix in our model.

It has been demonstrated that a discrete HMM can be good in pattern
recognition, see Rabiner [25]. We have also used a discrete HMM λ = (A,B, π),
where λ represents model parameters which contain the transition matrix, the
emission matrix and the initial state distribution.

Let {Zt}∞t=1 be a Markov chain where Zt denotes a hidden state at time t and
has possible values S = {S1, S2, ..., SN}. The transition probabilities between
the hidden states are defined by the matrix A = {aij}, called transition matrix,
where

aij = P (Zt+1 = Sj |Zt = Si), i, j = 1, 2, ..., N

and
∑N
j=1 aij = 1.

Further, there is another process {Yt}∞t=1 where Yt denoting the obser-
vation symbol at time t. The sequence of observation has possible values
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V = {V1, V2, ..., VM} and it is observable for us. The probability distribution of
observation symbols in each state is given by the emission matrix, B = {bj(Vk)},
where

bj(Vk) = P (Yt = Vk|Zt = Sj), k = 1, 2, ...,M

and
∑M
k=1 bj(Vk) = 1.

The state where the hidden process will start is modeled by the initial state
probabilities that are denoted by π = {π1, π2, ..., πN} where

πi = P (Z1 = Si), i = 1, 2, ..., N

and
∑N
i=1 πi = 1.

The parameters must be estimated to characterize the model.
In an HMM, a training set is used to estimate the parameters of the model,

while a test set is used to validate the model. A training set consists of all
necessary information for estimating the model parameters. In our study, the
training set contains all history about the curves such as the start and stop
points of them.

To estimate model parameters based on an observation sequence, we have
used the Baum-Welch algorithm which was introduced by Baum et al. [1]. It is
a special case of the EM (expectation-maximization) algorithm, see Dempster
et al. [7]. The Baum-Welch algorithm is one of the most well known methods
for estimating the model parameters in HMMs on unlabelled sequences. It is an
iterative maximum likelihood method and starts with initial parameters that in
our case are set based on training data. The algorithm uses a forward-backward
procedure to estimate the model parameters for a given sequence of observations.
Here, we have used the Baum-Welch algorithm which was described by Rabiner
[25].

Another important algorithm in HMMs is the Viterbi algorithm, see Viterbi
[31] and Forney [9], which is used to find the most probable sequence of hid-
den states for a new signal. Suppose that we have an observation sequence
y1, y2, ..., yn. We would like to find steering events for this new observation. It
means that we should find a sequence of hidden states which maximizes the
probability of observing this specified observation. The Viterbi algorithm finds
the state sequence z1, z2, ..., zn out of the 3n possible sequences of length n that
maximizes:

P (Y1 = y1, ..., Yn = yn|Z1 = z1, ..., Zn = zn;λ).

In fact, the Viterbi algorithm gives the most likely sequence of hidden states
from which it is possible to identify the steering events.
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