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An approximate globally convergent algorithm
in a frequency domain for reconstruction of
dielectrics in Maxwell equations

Larisa Beilina ∗

We present a new model of an approximate globally convergent method in a fre-
quency domain for reconstruction of dielectric permittivity in Maxwell equations.
We consider data which are given only at the backscattered side of the medium
which should be reconstructed. We formulate new approximately globally conver-
gent algorithm for the reconstruction of dielectric permittivity function under the
assumption that the magnetic permeability is a known constant.

1 Introduction

In this paper we present a new frequency domain model of an approximate globally
convergent method for the solution of Multidimensional Coefficient Inverse Prob-
lem (MCIP) for the time-dependent Maxwell equations with backscattered data.
We use the same approach as in [5]. Main new element of this work is that this
new model uses the Fourier transform instead of the previously considered in [5]
Laplace transform for the solution of the underlying time-dependent problem. As
a result we obtain a new system of non-linear integral-differential equations on the
frequency interval instead of the previously considered in [5] pseudo-frequency in-
terval. The novelty of this paper is also in the new representation of the computation
of the so-called tail function which includes in the integral-differential equation of
the approximate globally convergent method.

A MCIP is a problem of the reconstruction of one or many unknown coefficients
of a PDE inside the domain of interest from a boundary measurements. We consider
the problems only with a single measurement data, or thus problems which use
a single source location or a single direction of the propagation of incident plane
wave to generate the data at the boundary.

∗ Department of Mathematical Sciences, Chalmers University of Technology and Gothenburg
University, SE-42196 Gothenburg, Sweden, ( larisa@chalmers.se)
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2 Larisa Beilina

Approximate globally convergent method answers to the question: how to obtain
unknown coefficient in the small neighborhood of the exact solution without a priori
knowledge of any information about this solution ? Convexification algorithm of
[8, 9, 14] is an approximate globally convergent method of the first generation.
Approximate globally convergent method of the second generation is developed in
[3, 5, 6, 10, 11, 12, 13] and is a different approach for solution of MCIP. This method
uses layer stripping procedure with respect to the pseudo-frequency for solution
of MCIPs. Based on our recent numerical experience [5] we can conclude that an
approximate globally convergent method is numerically efficient and quantitative
method, and thus, can be applied in real-life reconstruction of coefficients in MCIPs.

In the current work we propose new generation of approximate globally con-
vergent methods which uses layer stripping in the frequency domain instead of the
pseudo-frequency domain. This is the more realistic case of real-life applications
with single measurement data.

2 Statements of Forward and Inverse Problems with
backscattered data

In this section we present an approximately globally convergent method for an
MCIP for time-dependent Maxwell equations. For complete theory of an approx-
imate global convergence we refer to Chapter 1 of [5].

2.1 Statement of Forward problem

Let Ω ⊂ R3 be a convex bounded domain with the boundary ∂Ω ∈ C3 and T =
const. > 0 be the observation time. We define ΩT := Ω × (0,T ), ∂ΩT := ∂Ω ×
(0,T ) and consider propagation of an electromagnetic field in a homogeneous
anisotropic nonmagnetic dielectric medium Ω governed by the Maxwell equations:

∂D
∂ t
−∇×H =−J, in ΩT ,

∂B
∂ t

+∇×E = 0, in ΩT ,

D = εE,

B = µH,

E(x,0) = δ (x− x0),
H(x,0) = 0.

(1)

with perfectly conducting boundary conditions
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n×E = 0, on ∂ΩT

H ·n = 0, on ∂ΩT .
(2)

Here, n denotes the outward normal on ∂Ω , E(x, t) and H(x, t) are the electric and
magnetic fields, D(x, t) and B(x, t) are the electric and magnetic inductions, respec-
tively, ∀x = (x1,x2,x3) in the computational domain Ω . We assume that the mag-
netic permeability µ(x) := µ = const. > 0 and the dielectric permittivity ε(x) > 0
is the function in the anisotropic medium Ω . We assume that the current density
J(x, t) = 0 ∈ R3. The electric and magnetic inductions satisfy to the equations

∇ ·D = ρ, ∇ ·B = 0 in ΩT . (3)

Here ρ(x, t) is a given charge density.

2.2 Statement of Inverse Problem

Let the coefficient ε (x) of equation (1) belongs to the set of admissible parameters
Mε which is defined as

Mε = {ε(x) : |ε (x) | ∈ [1,d] , ε (x) = 1 ∀x ∈ R3�Ω ,ε (x) ∈C2 (R3)}. (4)

Here, |d| > 1 is a given number. We are interested in the case of the backscattered
data. In this case the data g1(x, t) are given only at a part of the boundary Γ of the
computational domain Ω , where

Ω ⊂ {x = (x1,x2,x3) : x3 > 0} ,
Γ = ∂Ω ∩{x3 = 0} 6=∅.

More precisely, we assume that the function g1(x, t) is known

g1 (x, t) =
{

g0 (x, t) ,(x, t) ∈ Γ × (0,∞) ,
r0 (x, t) ∈ (∂Ω�Γ )× (0,∞) , (5)

where the function r0 can be obtained computationally by solving the problem (1)
with ε = µ = 1, see [5]. Our inverse problem is following:

Inverse Problem with backscattered data (IPB). Suppose that the coefficient
ε (x) satisfies (4) and it is unknown in the domain Ω . Determine the function ε (x)
for x ∈ Ω , assuming that the function g1 (x, t) in (5) is known for a single source
position x0 ∈ {x3 < 0}.

Remarks 2.2.1:
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1. The formulation for IPB is similar for the case when we initialize a plane wave
instead of the delta-function in (1).

2. Uniqueness of the problem IPB is an open problem which can be solved via
the method of Carleman estimates [7] in the case of replacing of delta-function in
(1) with it approximation. Nevertheless, we assume that uniqueness holds for IPB.

2.3 An approximately globally convergent method

To obtain an approximately globally convergent method in frequency domain we
consider the Fourier transforms of the functions E(x, t),H(x, t),

E(x,ω) =
∞∫

0

E(x, t)e−iωtdt, for ω > ω = const. > 0,

H(x,ω) =
∞∫

0

H(x, t)e−iωtdt, for ω > ω = const. > 0,

(6)

where ω is a circular frequency and ω is a large number. Applying Fourier transform
in time to the system (1) and noting that x0 /∈ Ω we get the Maxwell equations in
frequency domain

∇×H(x,ω) = iωε(x)E(x,ω) in Ω ,

∇×E =−iωµH(x,ω) in Ω ,

H ·n = 0 on ∂Ω ,

n×E = f (x,ω) on ∂Ω ,

(7)

where the function f (x,ω) is obtained after applying Fourier transform to the func-
tion g1(x, t).

Let us consider now the transverse electric (TE) waves

E(x,ω) = (0,Ex2 ,0)T ,

H(x,ω) = (Hx1 ,0,Hx3)
T .

(8)

where Ex2 = Ey(x1,x2,x3), Hx1 = Hx1(x1,x2,x3), Hx3 = Hx(x1,x2,x3). Substituting
(8) into equations (7) we obtain the following system
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∂Hx3

∂x2
= 0,

∂Hx1

∂x3
−

∂Hx3

∂x1
= iωεEx2 ,

∂Hx1

∂x2
= 0,

∂Ex2

∂x3
= iωµHx1 ,

∂Ex2

∂x1
=−iωµHx3 .

(9)

From the system above follows that Hx1 ,Hx3 and thus Ex2 does not depend on x2.
Noting that x0 /∈Ω and thus, δ (x−x0) = 0 , we can easily obtain from the equations
(9) the single equation for the electric field

4w(x,ω)+ω
2
µε(x)w(x,ω) = 0,

lim
|x|→∞

w(x,ω) = 0, (10)

where we denoted by w(x,ω) := Ex2(x,ω). Similarly with [4, 5] we can prove that
lim|x|→∞ w(x,ω) = 0 for ω,ω > ω .

Next, as in [5] we eliminate the unknown coefficient ε (x) from equation (10).
Similarly with the Theorem 4.1 of [6] can be proven that the function w(x,ω) > 0.
Because of that we can introduce the new function v(x,ω),

v(x,ω) =
lnw
ω2 . (11)

Then equation (10) transforms to the following equation

∆v+ω
2 |∇v|2 = −ε(x)µ, x ∈Ω , (12)

v|∂Ω = ϕ (x,ω) , ∀ω ∈ [ω,ω] , (13)

where the function ϕ (x,ω) is generated by the function g1(x, t) in (5). Now, by
knowing the function v(x,ω), the function ε(x) can be computed explicitly from the
equations (12)-(13) as

ε(x) =
1
µ

(−∆v−ω
2|∇v|2). (14)

Next, we differentiate both sides of (12) with respect to ω . Since ε(x) and µ does
not depend on ω we eliminate ε (x) from (12). All further steps in derivation of the
globally convergent algorithm are similar to ones in pseudo-frequency domain, see
[5]. We briefly outline these steps below. Let us denote

q(x,ω) = ∂ω v(x,ω) .
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In the following consideration we use the asymptotic behavior of the function
w(x,ω) at ω → ∞ which follows from Lemma in [9]:

Lemma . Assume that conditions (4) are satisfied. Let the function w(x,ω) ∈
C3
(
R3�{|x− x0|< ε}

)
,∀ε > 0 be the solution of the problem (10). Assume that

geodesic lines, generated by the eikonal equation which corresponds to the function
ε (x) are regular, i.e. any two points in R3 can be connected by a single geodesic
line. Let l (x,x0) be the length of the geodesic line connecting points x and x0. Then
the following asymptotic behavior of the function w and its derivatives takes place
for |β | ≤ 3,k = 0,1,x 6= x0

Dβ
x Dk

ω w(x,ω) = Dβ
x Dk

ω

{
exp [−(x,x0)]

f (x,x0)

[
1+O

(
1
ω

)]}
,ω → ∞, (15)

where f (x,x0) is a certain function and f (x,x0) 6= 0 for x 6= x0.
The proof of this Lemma is not presented here but can be done similarly with the

proof of the similar Lemma in [9]. Thus, using (15) we can obtain the asymptotic
behavior for functions v(x,ω) and q(x,ω):

‖v‖C2+α(Ω) = O
(

1
ω

)
,‖q‖C2+α(Ω) = O

(
1

ω2

)
,ω → ∞. (16)

We should verify the asymptotic behavior (16) numerically as it is done in the sub-
section 7.2 of [5] and section 3.1.2 in [4].

Now using (16) we obtain

v(x,ω) =−
∞∫

ω

q(x,τ)dτ, (17)

or

v(x,ω) =−
ω∫

ω

q(x,τ)dτ +V (x,ω) , (18)

where the truncation number ω > ω is a large frequency which should be chosen
in numerical experiments. The function V (x,ω) we call “the tail function” and it is
defined as

V (x,ω) =−
∞∫

ω

q(x,τ)dτ.

Using definition of the function v(x,ω) (11), we obtain an equivalent formula for
the tail,

V (x,ω) =
lnw(x,ω)

ω
2 . (19)

Next, using (11), (12) and (17) we get the following nonlinear integral differential
equation
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∆q−2ω
2
∇q ·

ω∫
ω

∇q(x,τ)dτ +2ω

 ω∫
ω

∇q(x,τ)dτ

2

+2ω
2
∇q∇V

−4ω∇V ·
ω∫

ω

∇q(x,τ)dτ +2ω (∇V )2 = 0, x ∈Ω ,ω ∈ [ω,ω] ,

q |∂Ω = ψ (x,ω) := ∂ω ϕ (x,ω) .
(20)

The ω−integrals as well as the tail function of the above equation leads to the
nonlinearity. Now we apply asymptotic (16) to get

‖V (x,ω)‖C2+α(Ω) = O
(

1
ω

)
,ω → ∞, (21)

From (21) follows that the tail function V (x, ω̄) is small for large values of the
truncation of frequency ω .

Our previous numerical studies on this method have demonstrated that quality of
the reconstruction will be better if we will use the new model for the tail function
which we present in the next section.

2.4 New model of the tail function

In this subsection we present new approximate mathematical model which is based
on the another representation model of the tail function V (x, ω̄) .

Let the function ε∗(x) be the exact solution of IPB for the exact data g∗ in (5).
Let V ∗ (x,s) be the exact tail function defined as

V ∗ (x,ω) =
lnw∗ (x,ω)

ω
2 . (22)

Let q∗ (x,ω) and ψ∗ (x,ω) be the exact functions for q and ψ in (20), respectively.
These functions are defined from the following nonlinear integral differential equa-
tion

∆q∗−2ω
2
∇q∗ ·

ω∫
ω

∇q∗ (x,τ)dτ +2ω

 ω∫
ω

∇q∗ (x,τ)dτ

2

+2ω
2
∇q∗∇V ∗

−4ω∇V ∗ ·
ω∫

ω

∇q∗ (x,τ)dτ +2ω (∇V ∗)2 = 0, x ∈Ω ,ω ∈ [ω,ω] ,

q∗ |∂Ω = ψ
∗ (x,ω) := ∂ω ϕ

∗ (x,ω) ∀(x,ω) ∈ ∂Ω × [ω,ω] ,

(23)
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q∗ (x,ω) ∈C2+α
(
Ω
)
×C1 [ω,ω] . (24)

Let us assume that the functions V ∗ and q∗ have the following asymptotic behav-
ior

V ∗ (x,ω) =
p∗ (x)

ω
+O

(
1

ω
2

)
≈ p∗ (x)

ω
, ω → ∞,

q∗ (x,ω) = ∂ωV ∗ (x,ω) =− p∗ (x)
ω

2 +O
(

1
ω

3

)
≈− p∗ (x)

ω
2 , ω → ∞.

(25)

Taking ω = ω in (23) we obtain the following equation

∆q∗+2ω
2
∇q∗∇V ∗+2ω|∇V ∗|2 = 0, x ∈Ω ,

q∗ |∂Ω = ψ
∗ (x, ω̄) ∀x ∈ ∂Ω .

(26)

Substituting the first terms in the asymptotic behavior (25) for the exact tail V ∗ (x,ω)=
p∗(x)

ω
and for the exact function q∗ (x,ω) =− p∗(x)

ω
2 into (26) we obtain

−∆ p∗

ω
2 −2ω̄

2 ∇p∗

ω
2

∇p∗

ω
+2ω̄

(∇p∗)2

ω
2 = 0, x ∈Ω ,

q∗ |∂Ω = ψ
∗ (x, ω̄) ∀x ∈ ∂Ω .

(27)

From the equation above we get the following approximate Dirichlet boundary
value problem for the function p∗ (x)

∆ p∗ = 0 in Ω , p∗ ∈C2+α
(
Ω
)
, (28)

p∗|∂Ω =−ω
2
ψ
∗ (x,ω) . (29)

Approximate Mathematical Model
There exists a function p∗ (x) ∈C2+α

(
Ω
)

such that the exact tail function V ∗ (x)
has the form

V ∗ (x,ω) :=
p∗ (x)

ω
, ∀ω ≥ ω. (30)

Using (19) we assume that

V ∗(x,ω) =
p∗ (x)

ω
=

lnw∗ (x,ω)
ω

2 . (31)

Since q∗ (x,ω) = ∂ωV ∗ (x,ω) for ω ≥ ω, we can get from (30)

q∗ (x,ω) =− p∗ (x)
ω

2 . (32)

Then we have the following formulas for the reconstruction of the coefficient
ε∗ (x)



Title Suppressed Due to Excessive Length 9

ε
∗ (x) =

1
µ

(−∆v∗−ω
2 |∇v∗|2),

v∗ =−
ω∫

ω

q∗ (x,τ)dτ +
p∗ (x)

ω
.

Using the new approximate mathematical model we take the function

V1,1 (x) :=
p(x)
ω

. (33)

as the first guess for the tail function. Here, p(x) is the solution of the problem
(28)-(29) for p∗ = p.

2.5 The layer stripping procedure with respect to the frequency

We consider a layer stripping procedure with respect to the frequency ω by dividing
the interval [ω,ω] into N small subintervals such that every interval has the step size
h = ωn−1−ωn in the frequency such that

ω = ωn < ωn−1 < ... < ω0 = ω. (34)

Now we approximate the function q(x,ω) as a piecewise constant function with
respect to ω , q(x,ω) = qn(x) for ω ∈ [ωn,ωn−1) . Then we set q0 = 0 to get the
following approximation for the integrals in (20):

∫
ω

ω

∇q(x,τ) dτ ≈ (ωn−1−ω)∇qn(x)+h
n−1

∑
j=0

∇q j(x). (35)

Next, we introduce the ω−dependent Carleman Weight Function (CWF)

Cn,λ (ω) = exp [λ (ω−ωn−1)] , (36)

where λ > 1 is a large parameter, which is chosen computationally. Next we mul-
tiply both sides of equation (20) by Cn,λ (ω) and integrating over (ωn,ωn−1) , we
obtain following system of equations with respect to the frequency for x ∈Ω
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Ln (qn) : = ∆qn−A1,n

(
h

n−1

∑
j=0

∇q j−∇Vn

)
∇qn

= 2Bn (∇qn)
2−A2,nh2

(
n−1

∑
j=0

∇q j

)2

(37)

+2A2,n∇Vn

(
h

n−1

∑
j=0

∇q j

)
−A2,n (∇Vn)

2 ,

qn | ∂Ω = ψn(x) :=
1
h

ωn−1∫
ωn

ψ (x,ω)dω, n = 1, ...,N.

Here numbers A1,n,A2,n,Bn := I1,n
I0

can be computed explicitly via formulas

I0 : = I0 (λ ,h) =
∫

ωn−1

ωn

Cn,λ (ω)dω,

I1,n : = I1,n (λ ,h) =
∫

ωn−1

ωn

ω(ωn−1−ω)[ω− (ωn−1−ω)]Cn,λ (ω)dω,

A1,n : = A1,n (λ ,h) =
2
I0

∫
ωn−1

ωn

ω[ω−2(ωn−1−ω)]Cn,λ (ω)dω,

A2,n : = A2,n (λ ,h) =
2
I0

∫
ωn−1

ωn

ωCn,λ (ω)dω.

(38)

In (37) functions Vn are determined from the iterative procedure described in the
next section.

2.6 An Approximate Globally Convergent Algorithm

In this section we describe the algorithm for the numerical solution of (37). By index
k we denote the number of iterations inside every frequency interval [ωn,ωn−1).

On the Step 0 we describe iterations with respect to the nonlinear term (∇qn)
2 in

(37). These iterations can be omitted since the nonlinear term is very small, see for
details [5]. However, we include this step in the algorithm for the sake of complete-
ness.

Step 0 Iteration (n,1),n≥ 1.
Suppose that the initial tail function Vn,0(x,ω) ∈ C2+α(Ω) is determined from
(33). Suppose also that functions q0

1,1, ...,q
0
n,1 ∈C2+α(Ω) are already constructed.

Then, we solve iteratively with respect to the nonlinear term the following prob-
lems, for k = 1,2, ...
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∆qk
n,1−A1n

(
h

n−1

∑
j=1

∇q j

)
·∇qk

n,1 +A1n∇qk
n,1 ·∇Vn,0

=2B1,n

(
∇qk−1

n,1

)2
−A2nh2

(
n−1

∑
j=1

∇q j (x)

)2

+2A2n∇Vn,0 ·

(
h

n−1

∑
j=1

∇q j (x)

)
−A2n (∇Vn,0)

2 ,

qk
n,1 = ψn (x) , x ∈ ∂Ω .

We obtain the function qn,1 := limk→∞ qk
n,1 such that qn,1 ∈C2+α(Ω).

Step 1 Compute εn,1 via backwards calculations using the finite element formula-
tion of the equation (10), see details in Chapter 3 of [5], or via the finite difference
discretization of (14) as

εn,1 (x) =
1
µ

(−∆vn,1−ω
2
n |vn,1|2),x ∈Ω ,

where functions vn,1 are defined as

vn,1 (x) =−hqn,1−h
n−1

∑
j=0

q j +Vn,1 (x) .

Step 2 Solve the forward problem (1) with εn(x) := εn,1 (x) , calculate the Fourier
transform and the function wn,1 (x,ω).

Step 3 Find a new approximation for the tail function

Vn,1 (x) =
lnwn,1 (x,ω)

ω
2 . (39)

Step 4 Iterations (n, i), i≥ 2,n≥ 1. We now iterate with respect to the tails (39).
Suppose that functions qn,i−1,Vn,i−1 (x,ω) ∈C2+α

(
Ω
)

are already constructed.
Step 5 Solve the boundary value problem

∆qn,i−A1n

(
h

n−1

∑
j=1

∇q j

)
·∇qn,i +A1n∇qn,i ·∇Vn,i−1

=2B1,n (∇qn,i−1)
2−A2nh2

(
n−1

∑
j=1

∇q j (x)

)2

+2A2n∇Vn,i−1 ·

(
h

n−1

∑
j=1

∇q j (x)

)
−A2n (∇Vn,i−1)

2 ,

qn,i (x) = ψn (x) , x ∈ ∂Ω .
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Step 6 Compute εn,i by backwards calculations using the finite element formula-
tion of the equation (10) or via the finite difference discretization of (14)

εn,i (x) =
1
µ

(−∆vn,i−ω
2
n |vn,i|2),x ∈Ω ,

where functions vn,i are defined as

vn,i (x) =−hqn,i−h
n−1

∑
j=0

q j +Vn,i (x) .

Step 7 Solve the forward problem (1) with εn,i, compute the Fourier transform
and obtain the function wn,i (x,ω) .

Step 8 Find a new approximation for the tail function

Vn,i (x) =
lnwn,i (x,ω)

ω
2 .

Step 9 Iterate with respect to i and stop iterations at i = mn such that qn,mn :=
limi→∞ qk

n,i. Stopping criterion for computing functions qk
n,i is

either Fk
n ≥ Fk−1

n or Fk
n ≤ η , (40)

where η is a chosen tolerance and Fk
n are defined as

Fk
n =
||qk

n,i−qk−1
n,i ||L2

||qk−1
n,i ||L2

Step 10 Set

qn := qn,mn , εn(x) := εn,mn(x), Vn+1,0 (x) :=
lnwn,mn (x,ω)

ω
2 .

Step 11 We stop computing functions εk
n,i when

either Nn ≥ Nn−1 or Nn ≤ η , (41)

where

Nn =
||εk

n − εk−1
n ||L2(Ω)

||εk−1
n ||L2(Ω)

. (42)

3 Summary

We have presented a new approximate globally convergent algorithm for the recon-
struction of dielectrics in the Maxwell equations in a frequency domain. To do that
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we have modified approximately globally convergent method of [5] in a pseudo-
frequency domain. We believe that future numerical experiments will confirm va-
lidity of our new approximate globally convergent algorithm.
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