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Abstract

As a result of social awareness of air emission due to use of fossil fuels, the utilization of the natu-
ral wind power resources becomes an important option to avoid the dependence on fossil resources
in industrial activities. For example, the maritime industry, which is responsible for more than 90%
of the world trade transport, has already started to look for solutions to use wind power as auxiliary
propulsion for ships. The practical installation of the wind facilities often requires large amount of in-
vestment, while uncertainties for the corresponding energy gains are large. Therefore a reliable model
to describe the variability of wind speeds is needed to estimate the expected available wind power, co-
efficient of the variation of the power and other statistics of interest, e.g. expected length of the wind
conditions favorable for the wind-energy harvesting. In this paper wind speeds are modeled by means
of a spatio-temporal transformed Gaussian field. Its dependence structure is localized by introduction
of time and space dependent parameters in the field. The model has the advantage of having a relatively
small number of parameters. These parameters have natural physical interpretation and are statistically
fitted to represent variability of observed wind speeds in ERA Interim reanalysis data set.

Keywords: Wind speeds, wind-energy, spatio-temporal model, Gaussian fields.

1 Introduction

In the literature typically cumulative distribution function (CDF) of wind speed W , say, is understood
as the long-term CDF of the wind speeds at some location or region. The distribution can be interpreted
as variability of W at a randomly taken time during a year. Weibull distribution gives often a good fit.
Limiting time span to, for example, January month affects the W CDF simply because, as it is the case
for many geophysical quantities, the variability of W depends on seasons. To avoid ambiguity when
discussing the distribution of W , time span and region over which the observations of W are gathered
need to be clearly specified. By shrinking the time span to a single moment t and geographical region
to a location p one obtains (in the limit) the distribution of W (p, t). This is used as the distribution of
W in this paper. Obviously the long-term CDF can be retrieved from the "local" W (p, t) distributions
by means of an average of the local distributions, viz for a fixed location p

P(W ≤ w) =
1

S

∫ s+S

s

P(W (p, t) ≤ w) dt, (1)

where S can be a month, a season or a year. Similarly the long-term CDF over a region A, say, is
proportional to

∫
A

∫ s+S
s

P(W (p, t) ≤ w) dt dp.
In order to identify the distributions at all positions p and times t vast amount of data are needed.

Here the reconstruction of W from numerical ocean-atmosphere models based on large-scale meteoro-
logical data, called also reanalysis, is utilized to fit a model. The reanalysis does not represent actual
measurements of quantities but extrapolations to the grid locations based on simulations from complex
dynamical models. It is defined on regular grids in time and space and hence convenient to use. In this
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paper, the ERA Interim data [1] produced by European Centre for Medium-Range Weather Forecasts
is used to fit the model. However the model can also be fitted to other data sets, e.g. to satellites wind
measurements which has also good spatial coverage, see [2].

Modeling spatial and temporal dependence of wind speed is a very complex problem. Models pro-
posed in the literature are reviewed in [3]. Here we propose to use the transformed Gaussian model,
which assumes that there exists a deterministic function G(w), possibly dependent on location p, such
that X(p, t) = G(W (p, t)) is Gaussian. The X(p, t) field is defined by the mean m(p, t) and covari-
ance structure Cov(X(p1, t1), X(p2, t2)). Obviously for a given transformation G and many years of
hind-cast one could estimate the covariance for any pair (p1, t1), (p2, t2), see e.g. [4], [5]. However
such an approach is limited to relatively small grids in space. Employing the empirical covariances in
time and space would result in huge matrices, which limit the applicability of such empirical approach.
Consequently a simple parametric model that catches only some aspects of the wind speed variability,
important for a particular application, is of practical interest. The minimal requirements on the model
are that it should provide: a correct estimates of long-term distributions of the wind speeds; accurate
predictions of average durations of the extreme winds conditions and reliable estimates of CDFs of top
speeds during storms encountered by a vessel. In order to demonstrate the capability of the proposed
model for such minimal requirements, this paper is organized as follows.

In Section 2 a general construction of non-stationary model for wind speed variability in time and
space is presented. Section 3 presents probabilistic model for the velocity of storms movements. Then
statistical properties of some storms characteristics are described in Section 4. The physical interpre-
tations of the introduced parameters are also given in this section and in Appendix I, Section 8.1. In
Section 5 on board measured wind speeds are used to validate the proposed model, where the long term
CDFs of encountered wind speeds and persistence statistics are used. In total forty routes are used, see
Figure 1. The time when routes were sailed are well spread over a year. Finally in Section 6 means
to simulate the encountered wind speeds are briefly reviewed. Paper closes with three appendixes
containing somewhat more technical matters.
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Figure 1: The considered routs in the validation process.

2 Transformed Gaussian model and long-term CDFs.

In this section we shall introduce the transformed Gaussian model for the variability of wind speeds.
In particular the transformation G making the transformed wind speed data X = G(W ) normally
distributed will be presented. Seasonal model for the mean and variance of X is given and assumed
normality of X validated.
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The wind speed W (p, t) is the ten minutes average of the wind speed measured at position p, de-
fined in degrees of longitude and latitude, while t is the time of the year. We will use the transformation
G(w) = wa, where a is a fixed constant that depend on the location p, viz

X(p, t) = W (p, t)a(p) (2)

The parameter a is nonnegative with convention that the case a = 0 corresponds to the logarithm. We
assume that X(p, t) is normally distributed.

Mean and variance of X(p, t), denoted by m(p, t), σ2(p, t), respectively, depend both on position
and time. The temporal variability of mean and variance is approximated by seasonal components with
trends defined as follows

m(p, t) = m0(p) +m1(p) cos(2π t) +m2(p) sin(2π t) +m3(p) t, (3)
ln(σ2(p, t)) = b0(p) + b1(p) cos(2π t) + b2(p) sin(2π t) + b3(p) t. (4)

Here t has units years. This type of model has been used in the literature, see e.g. classical paper [6].

Remark 1 For a fixed position p, the parameters a andmi in Eq.(3) are fitted simultaneously in such a
way that the distance between yearly long-term empirical CDF of W (p, t)a−m(p, t) and a Gaussian
distribution is minimized.

More precisely for a wind data at fixed position p and parameter a ∈ (0, 1) we evaluate x(t) =
w(t)a and fit regression Eq.(3). Then the residual ε(t) = x(t) −m(t) is evaluated and its empirical
CDF estimated. Next a distance between the empirical CDF and the Gaussian CDF (fitted to ε(t)) is
evaluated. Finally the parameter a∗ that minimizes the distance is the estimate of a.

A table of a and mi values as function of the location p is created. As additional parameters
of the model will be estimated new columns with parameters estimates will be added to the table.
For example, having estimated a and mi the variance σ2(p, t), defined in Eq.(4), is fitted using an
additional assumption that properties of the wind speed changes slowly in time. Then the parameters
bi are saved in the table. More details of model estimations are given in Appendix III.

2.1 Validation of Gaussianity of X(p, t)

Ten years of data W (p, t) were used to estimate parameters a, mi and bi in Eq.(3-4) in North Atlantic
on a grid of 0.75 degree. Figure 2 presents the estimates of parameter a. At offshore locations a values
vary around 0.8 while close to shore or inlands locations a can be much smaller. Note that small values
of a indicate larger departures of the observed wind speeds distribution from the Gaussian one.

Figure 2: Values of parameter a in the transformation Eq.(2).

Usefulness of the proposed model relies on the accuracy of the approximation of X(p, t) CDF
by Gaussian distribution. The Gaussianity of the process X(t) = X(p, t) has been validated for
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the Northern Atlantic. An example of conducted validations is shown in Figure 3. In the figure the
left plot shows ten years of W process limited to two weeks in the middle of February, at locations
(−20, 60), (−10, 40), (−40, 50), (−20, 45), plotted on the normal probability paper. (It is assumed that
the winds are stationary for such short period of time.) In the right plot of the figure the transformed data
X = G(W ) is plotted on normal probability paper. One can see that X CDFs are well approximated
by the Gaussian distributions.
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Figure 3: Left: Ten years of wind speeds W (t) with t limited to February at the four locations.
(−20, 60), (−10, 40), (−40, 50), (−20, 45) plotted on normal probability paper. Right: Transformed
wind speeds X(t) limited to February at the four locations plotted on normal probability paper. The
values of parameter a in transformation Eq.(2) are a = 0.850, 0.675, 0.875, 0.875, respectively.

In the right plots of Figure 4, the standard deviation σ(p, t), defined in Eq.(3), is presented for
February and August, respectively. One can see that the standard deviation changes considerably with
the geographical location but is less dependent on season. We turn next to presentation of variability
of the parameter m(p, t), i.e. the mean of X(p, t) defined in Eq.(2). However since units of m are not
physical we choose to show the variability of the median speed

µ(p, t) = m(p, t)1/a(p) (5)

instead. The values of the median for February and August are presented in two left plots of Figure 4.
As expected, wind speeds are higher in winter than in summer.

Finally we check whether the regressions Eq.(3-4) used to model seasonal variability of m and
σ2 leads to accurate estimates of the long-term CDF of W at position p. Employing Gaussianity
assumption of X CDF the theoretical long-term CDF of wind speeds at a fixed position p, defined in
Eq.(1), is given by

P(W ≤ w) =
1

S

∫ s+S

s

Φ

(
wa(p) −m(p, t)

σ(p, t)

)
dt, (6)

where Φ(x) is the CDF of a standard Gaussian (normal) variable. In Figure 5 the yearly probabilities
for wind speeds P(W > w) computed using Eq.(6) at four locations in North Atlantic are compared
with the empirical estimates. (The locations are marked by crosses in Figure 2.) One can see that the
agreement between the estimates is excellent.
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Figure 4: Left top - Median wind speed µ [m/s], defined in Eq.(5), in February. Left bottom - Median
wind speed in August. Right top - Standard deviation of X , computed by means of Eq.(4) in February.
Right bottom - The standard deviation in August.
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Figure 5: Comparisons of estimates of the long-term probability P(W > w) for yearly wind speeds
variability Eq.(1) at four locations defined in degrees of longitude and latitude; (-20,60), (-10,40), (-
40,50) and (-20,45). The solid line is the probability computed using Eq.(6) with S = 1 year. Somewhat
more irregular lines are the estimated probabilities based on ten years of hind-cast data.
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3 Velocity of a wind storms

A storm occurring at time t is a region where W (p, t) ≥ u, e.g. u = 15 m/s. The border of a storm is
a u-level contour {p : W (p, t) = u}. The border changes as storms move, grow or fall. In a classical
paper [7] Longuet-Higgins has introduced velocities to study movements of random surfaces. There
are several definitions of velocities proposed in the literature, see [8]. Here we will use velocity in a
fixed direction θ, say. The direction θ will be called the main azimuth of a storm. It will be defined in
Remark 2), see also Example 1. As customary we use the convention that the direction south to north
has azimuth θ = 0 while azimuth α = 90o for the direction west to east.

Following [8] the velocities in the direction θ and θ − 90o are given by

~Vθ = −Wt

Wθ
, ~Vθ−90o = − Wt

Wθ−90o
, (7)

where Wt is the time derivative of the wind speed, Wθ and Wθ−90o are the directional derivatives
having azimuths θ, θ − 90o, respectively. These are evaluated at a position p on the u-level contour.
Note that time t is fixed.

The general assumption of this paper is that parameter a does not depend on time and changes much
slower in space than the wind speed W varies, see Figure 2. Hence the gradient∇W = (Wx,Wy,Wt)
can be approximated as follows,

∇W ≈ (1/a)X1/a−1∇X, (8)

where∇X is the gradient of X-field. Hence velocities defined in Eq.(7) can be approximated by

~Vθ = −Xt

Xθ
, ~Vθ−90o = − Xt

Xθ−90o
. (9)

For a homogeneous Gaussian field the velocities have median values equal to

~vθ = −Cov(Xθ(p, t), Xt(p, t))

Var(Xθ)
, ~vθ−90o = −Cov(Xθ−90o(p, t), Xt(p, t))

Var(Xθ−90o)
, (10)

see [8] for proof. The speeds in directions θ and θ − 90o will be denoted by vθ, vθ−90o , respectively.
The azimuth θ is chosen in such a way that the directional derivatives Xθ, Xθ−90o are uncorrelated, see
Remark 2 for some discussions about the choice of θ.

Example 1 Let consider the following field

X(x, y, t) = σ1R1 cos

(
2π

t

T
− 2π

x

L
+ φ1

)
+ σ2R2 cos

(
2π

t

T
+ φ2

)
(11)

where R1, R2 and φ1, φ2 are independent variables having Rayleigh, uniform CDF, respectively, and
hence X is a sum of two independent Gaussian fields. The first component is a harmonic wave moving
along the x-axis with velocity L/T while the second term can be interpreted as colored noise.

Obviously Xx is independent of Xy and hence θ = 90o. Further Cov(Xθ(p, t), Xt(p, t)) =
−(2π)2σ2

1/(LT ), Cov(Xθ−90o(p, t), Xt(p, t)) = 0 while Var(Xθ) = (2π)2σ2
1/L

2 and hence the
median velocities Eq.(10) are given by

~vθ = (L/T, 0), ~vθ−90o = (0, 0).

In this simple example the median velocities agree with the velocity of the harmonic wave moving along
the x-axis.

Remark 2 The angle θ depends on properties of the covariance matrix Σ of the gradient ∇X(p, t).
Means to estimate the matrix Σ are given in Appendix III. For several reasons, seen [9] for detailed
discussion, it is convenient to rotate the coordinate system so that the partial derivatives Xx and Xy

become uncorrelated.
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Let Aθ be the rotation by angle θ around the t-axis matrix making covariance between Xx and Xy

zero. Then let denote by Σθ the covariance matrix of the∇X in the rotated coordinates viz.

Σθ = ATθ ΣAθ, (12)

where ATθ is the transpose of Aθ. Now the Var(Xθ) is the the element having index 11 in the matrix
Σθ while Cov(Xθ(p, t), Xt(p, t)) has index 13. Using the elements the median velocity ~vθ in Eq.(10)
can be computed once the matrix Σθ has been evaluated.

In Figure 6 variability of the median velocities ~vθ and ~vθ−90o Eq.(10) are compared. In the top plots
seasonal variability of ~vθ is illustrated by showing differences between the velocities in February and
August. The maximal mean speed in the top plots is about 45 km/h while minimal is zero. Similar
comparison for the velocity ~vθ−90o is given in the bottom plots, where the maximal speed is about 19
km/h. Generally one can say that the storms move faster in winter than in summer, and the angle θ also
changes between the seasons. For example, in the North Atlantic the storms move basically in average
from west to east while in the summer months the direction is opposite in latitude of around 20 degrees.

Figure 6: Top - Estimates of the median velocities, km/h, the windy field moves in direction θ in
February and August. The color corresponds to speed. The highest speed (orange) is 45.1 km/h while
the lowest (blue) is 0 km/h. Bottom - Comparisons of the median velocities ~vθ−90o in February and
August. The highest speed is 18.6 km/h.

4 Statistics of encountered wind speeds

Main subject of the paper is development of a simple model describing variability of wind speeds time
series encountered by a vessel or at a fixed location. In this section we will define the model and
give means to estimate the long-term CDF of encountered winds; expected duration and strength of an
encountered storm.

A ship route is a sequence of positions pi, say, a ship intends to follow. We assume that a ship will
follow straight lines between the positions having azimuth αi, say. A voyage starts at time s and will
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last for S days. Initial position p(s), azimuths α(t) and ship speeds vsh(t), t ∈ [s, s + S], define its
position p(t) at any time t during a voyage. Then the encountered wind speeds are given by

W e(t) = W (p(t), t), s ≤ t ≤ s+ S. (13)

A ship sailing along a route (p(t), t) = (x(t), y(t), t), t ∈ [s, s+ S], has velocity

~v sh(t) = (ẋ(t), ẏ(t)) = v sh(t) (sinα(t), cosα(t)), (14)

where vsh(t ) is the ship speed at time t. (Recall that the x axis has azimuth 90o while the y-axis has
azimuth θ = 0o.) In the following we will use the transformed Gaussian field Eq.(2) to model the
encountered wind speeds W e(t), viz

W e(t) = X(p(t), t)1/a(p(t)) = Xe(t)1/a(t). (15)

The process Xe(t) is Gaussian with mean m(t) = m(p(t), t) and variance σ2(t) = σ2(p(t), t),
respectively.

The long-term CDF of encountered wind speeds is defined by

P(W e ≤ w) =
1

S

∫ s+T

s

P(W e(t) ≤ w) dt, w ≥ 0. (16)

The CDF given in Eq.(16) could be be estimated by fitting an appropriate distribution to available data.
(Weibull distribution is often used.) Alternative approach is to compute the theoretical CDF, viz.

P(W e ≤ w) =
1

S

∫ s+S

s

Φ

(
wa(t) −m(t)

σ(t)

)
dt. (17)

4.1 Distributions of storm characteristics

Similarly as in Section 3 we will say that a ship encounters stormy conditions at time t if wind speed
W e(t) exceeds some fixed level u. (In the examples we will use u = 15 m/s.) Similarly, it encounters
windy weather conditions at time t if wind speed is above the median, i.e. W e(t) > µ(p(t), t). In
Figure 7 wind speeds encountered along a route in October are presented. The upper intervals mark
times in storms while the lower intervals show the periods of windy weather encountered by a vessel.
The thin line, shown in the lower plot, illustrates variability of the encountered median wind speed.

The region of stormy conditions consists of time intervals when the wind speed is constantly above
threshold u. The intervals will be called storms.Then let Nu denote the number of encountered storms.
For example, Nu = 3 in Figure 7. The durations of storms are denoted by T sti , while the highest wind
speed during a storm by Asti , i = 0, . . . , Nu. The probability distributions of the characteristics will
be defined next. In order to efficiently write down the formulas for the CDFs we need some additional
notation.

Let the number of encountered storms for which event (statement) A is true be denoted by Nu(A).
For example, Nu(Ast > w) is the number of encountered storms for which wind speeds exceed a
threshold value of w, while Nu(T st > t) is the number of storms that last longer than t. Obviously
Nu = Nu(T st > 0), since all T sti > 0, is the number of upcrossings of level u by the encountered wind
speeds. The empirical probability that a storm last longer than t hours can now be written as follows

Pemp(T st > t) =
Nu(T st > t)

Nu

Next the theoretical, based on model, probability of event A, e.g. A = ”T st > t”, will be defined by

Pu(A) =
E [Nu(A)]

E [Nu]
, e.g. Pu(T st > t) =

E [Nu(T st > t))]

E [Nu]
. (18)

The proposed model Eq.(15) will be validated by comparing the empirical distribution of storms
strengthAst and the average durations of storms with theoretically computed Pu(Ast > w) and E [T st].
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Figure 7: Illustration of the definition of stormy, windy weather regions. Topp - A rout taken in October.
Bottom - Solid thick line shows the on-board measured wind speeds. The thin solid line presents
variability of the median wind speed along the rout. The intervals plotted at level 15 m/s represent times
when ship encounters the stormy weather while intervals plotted at level zero marks the encountered
windy weather regions.

More complex storms statistics could also be used to validate the model but it would require a dedicated
numerical software, see e.g. [10] and references therein, to evaluate E [Nu(A)]. Hence it will not be
used here. In the following only a simple bound

P(Ast > w) ≤ E [Nw]

E [Nu]
, w ≥ u, (19)

introduced in [11], and the expectations

E
[
T st
]

= S
P (W e > u)

E [Nu]
, E

[
T cl
]

= S
P (W e ≤ u)

E [Nu]
, (20)

will be used for validation purposes. In Eq.(20), T cl denotes time period when wind speed is unin-
terruptedly below the threshold u, i.e. a time period between storms. The Eq.(20) will be proved in
Appendix II.

In order to evaluate Eq.(19) and Eq.(20), the formula for E [Nw] is needed. The expected number
of upcrossings of level w by W e can be computed using the generalized Rice’s formula [12], viz.

E [Nw] =

∫ s+S

s

∫ +∞

0

z fẆ e(t),W e(t)(z, w) dt, (21)

see also [13]. Here Ẇ e(t) is the time derivative of W e(t).

Remark 3 Consider a stationary Gaussian process X with mean m and variance σ2. Let Nw be the
number of upcrossings of level w by X in time interval of length S then classical result of Rice [12]
gives

E [Nw] =
S

2π σ

√
Var(Ẋ(0)) exp(−(w −m)2/2σ2). (22)

Consequently the average distance between upcrossing of the mean level m by X is

E [T ] = 2π
σ√

Var(Ẋ(0))
(23)
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4.2 Evaluation of E [Nw]

From definition of the encountered wind speed processW e it follows that the number of upcrossings of
the level w by W e(t) in the interval [s, s+ S] is equal to the number of upcrossings of the level wa(t)

by Xe(t). Since we are primarily interested in modeling wind fields in offshore locations we assume
that the field is homogeneous in a region with radius of about 100 km and stationary for a period of
couple of weeks. (The assumptions are likely to fail in close to coast or inland locations.) Under the
assumption ṁ(t) = 0 and Xe(t) and Ẋe(t) are independent. Consequently the integral in Eq.(21) can
be written in a more explicit way, viz.

E [Nw] =

∫ s+S

s

1

2π

√
Var(Ẋe(t))

σ(t)
e
− (wa(t)−m(t))2

2σ2(t) dt. (24)

In the following we shall use an additional parameter τe(t) defined by

τe(t) = π
σ(t)√

Var(Ẋe(t))
(25)

and write Eq.(24)) in an alternative form

E [Nw] =

∫ s+S

s

1

2τe(t)
e
− (wa(t)−m(t))2

2σ2(t) dt. (26)

Note that if Xe is stationary then τe = E [T ] /2, seen Eq.(23). Hence τe is the average time period
that windy conditions last for. Properties and means to evaluate τe(t) using physically interpretable
parameters are discussed in Appendix I.

5 Validation of the model

The proposed model is validated by investigating the accuracy of the theoretically computed distribu-
tions with the empirical distributions estimated from data. Firstly at fixed positions p the theoretical
statistics of the storm characteristics Ast, T st and T cl will be compared with estimates of the statistics
derived using ten years of hind-cast data. Secondly, the long-term wind speed distributions encountered
by vessels are compared with the theoretically computed distributions using the model and the estimates
derived from the hind-cast. The expected number of encountered upcrossing will also be used in the
validations. However statistics of encountered storm characteristics will not be used in the validation
process. This is because the wind speeds measured on-board ships are biased by captains’ decisions to
avoid sailing in heavy storms, reported also in [14]. Some validations of the model at inland locations
was presented in [15].

5.1 Distributions of storm characteristics Ast, T st and T cl at a fixed position

Consider a buoy at position p then Xe(t) = X(p, t). The parameter τe, see Eq.(25), is then given by

τe(t) = π
σ(t)√

Var(Xt(p, t))
. (27)

In Figure 8 values of the parameter τe evaluated using Eq.(27) for February and August are presented.
In offshore locations τe is less than two days, which is much shorter than the stationarity period as-
sumed to be about 3 weeks. Hence the parameter τe(t) is the expected time period the wind speeds
exceeds the median and that τe(t) is approximately constant for about a month.

The values τe, presented in Figure 8, will be first used to validate the approximation of probability
that a storm observed at position p will have wind speeds exceeding a level w > u = 15 m/s. That
is to estimate Pu(Ast > w) using formula Eq.(19). Next by combining formulas Eq.(20) with Eq.(16)
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Figure 8: Comparison of spatial variability of τe(s), defined in Eq.(25) for a buoy. (Top) - February,
(Bottom) August.

and Eq.(24) one can compute the expected duration of a storm, similarly the expected duration of
calmer weather, i.e. time intervals when winds speeds are constantly below the threshold u, will also
be computed.

The probabilities Pu(Ast > w) and expectations E [T st], E
[
T cl
]

are computed for a period S = 1
year and positions p marked by crosses in Figure 2. The results presented in Figure 9 and Table 5.1
show very good agreement between the observed storm characteristics at the four locations and the
theoretically computed characteristics.

u = 15 m/s u = 18 m/s
position E[T st] T̄ st E[T cl] T̄ cl E[T st] T̄ st E[T cl] T̄ cl

(-20,60) 0.6 0.5 4.4 4.2 0.5 0.4 13. 11
(-10,40) 0.3 0.4 56 69 0.3 0.3 514 525
(-40,50) 0.6 0.5 4.4 4.2 0.5 0.4 12 11
(-20,45) 0.6 0.5 11 13 0.4 0.4 46 57

Table 1: Long-term (one year) expected storm/calm durations in days.

5.2 Validation - wind speeds encountered by vessels

Measurements of the wind speed over ground, i.e. ten minutes averages, recorded each ten minutes
on-board some ships, are used to validate the proposed model. Since the data are recorded much denser
than the hind-cast we have removed high frequencies from the signals (periods above 1.5 hour were
removed using FFT). The data used in this study is limited to the North Atlantic and western region of
Mediterranean sea. The accuracy of the theoretically computed long-term distribution of encountered
wind speed will be investigated.

First a single voyage operated in late August, shown in the top left plot of Figure 10, is considered.
In right top plot of the figure, the measured wind speeds shown as solid line are compared with the
wind speeds from hind-cast, dashed dotted line. One can see that the two signals are reasonably close.

11



15 20 25 30
10

−4

10
−2

10
0

(−20,60)

                
15 20 25 30

10
−4

10
−2

10
0

(−10,40)

                

15 20 25 30
10

−4

10
−2

10
0

(−40,50)

wind speed [m/s]
15 20 25 30

10
−4

10
−2

10
0

(−20,45)

wind speed [m/s]

Figure 9: Probabilities Pu(Ast > w), u = 15 [m/s], that wind in a storm exceeds level w during one
year at four locations having longitudes and latitudes; (-20,60), (-10,40), (-40,50) and (-20,45). The
solid lines are probabilities computed using Eq.(19) and Eq.(25) with a, τe(t) and σ(t) estimated at the
locations. The irregular lines are the estimated probabilities using ten years of hind-cast data.

In the left bottom plot of Figure 10, the drawn ten thin lines show ten estimates of the long term
probabilities P (W e > w) based on hind-cast for ten consecutive years. One of the estimates is not
visible since it is very close to the P (W e > w) estimated using the on-board measured wind speed,
the thick solid line. The ten estimates show large variability between years. The regular solid line is
the theoretically computed P (W e > w). It is close to the average of the ten estimates derived from the
hind-cast (not shown in the figure). We conclude that for the considered rout the theoretical long-term
distribution of wind describes well long-term variability of winds along the rout. Similar conclusions
can be drawn from Figure 11 left bottom plot were the combined long-term distributions for all 40
voyages are shown. Based on the results presented in Figures 10 - 11, we conclude that the theoretical
long term distribution of wind speeds encountered by a sailing vessels agrees well with the distribution
derived using hind-cast; and secondly that the routing systems used in planning a rout is successful in
selecting routs with calmer wind conditions than average one.

In Figure 10, bottom right plot, and in Figure 11, right plot, estimates of E [Nw] based on hind-cast
(dashed dotted line) and the observed Nw (the solid irregular line) are compared with the theoretical
E [Nw] computed using Eq.(24) for routes shown in Figure 1 and Figure 10 top left plot. One can see
that the lines are close except for the high wind speeds. The observed crossings of high wind speeds
(solid irregular line) are fewer than theoretically predicted. This we attribute to use of routing programs
that successfully choose calmer roots than the average one. This claim is also supported by studies of
the estimate of E [Nw] derived from 10 years of hind-cast, shown as the dashed line. One can see that
these estimates are higher than on-board observed Nw for wind speeds above 12 m/s.
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Figure 10: Top left - A rout sailed from Europa to America in late August. Top right - Wind speeds
measured on-board a vessel (solid irregular line) compared with their estimates derived from the hind-
cast data (dashed dotted line). Bottom left - Comparisons of estimates of the long-term probability
P(W e > w), plotted on the logarithmic scale, for the voyage. The thick smooth line is the probability
computed by using Eq.(6). The less smooth thick line is the probability estimated using the on-board
measured wind speeds. The thin irregular lines are the probabilities estimated from the hind-cast data
for ten different years. Bottom right - Comparisons of the estimates of E [Nw], plotted on the loga-
rithmic scale, for the voyage. The thick smooth line is E [Nw] computed by using Eq.(21). The thick
irregular line is the Nw evaluated from the on-board measured wind speeds. The dashed dotted line is
the estimate of E [Nw] using hind-cast derived wind speeds for the rout sailed in ten years.
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Figure 11: Left- Comparisons of the estimates of the long-term probability P(W e > w) for the forty
voyages. The solid smooth line is the probability computed using Eq.(6). The dashed-doted line is the
estimate of P(W e > w) using ten years of hind-cast while the irregular line is the estimate of the wind
speeds encountered by vessels. Right - Comparisons of the estimates of E [Nw] for the forty voyages.
The solid smooth line is the E [Nw] computed using Eq.(21). The dashed dotted line is an estimate of
E [Nw] using ten years hind-cast while the irregular line is the on-board observed Nw.

6 Simulation of the encountered wind speeds

Common experience says that wind speeds vary in different time scales, e.g. diurnal patten due to
different temperatures at day and night; frequency of depressions and anti-cyclones which usually
occur with periods of about 4 days and annual pattern.

To follow the claim the transformed observed wind speed field x(p, t) is decomposed into four
parts which contain periods above 40 days, between 40 and 5 days, between 5 and 1 day and the
noise. For each signal the covariance matrix of the gradient vector Σi have been estimated allowing
computation of τei (t). Then one can independently simulate the encountered four components along
an arbitrary ship route, adding them together and then transforming to get the encountered wind speeds
W e(s) = Xe(t)a.

More precisely, for a ship route (p(t), t), s ≤ t ≤ s+S, one finds parameters a(t),m(t), σi(t) and
τei (t), i = 1, . . . , 4, then Xe(t) is simulated by

Xe(t) = m(t) +

4∑
i=1

σi(t)

∫ +∞

−∞
fτi(t)(t− s) dBi(s). (28)

Here Bi are independent Brownian motions while the kernels fτi are given by

fτ (t) = (2/π)1/4
1√
τ

exp

(
−π2

(
t

τ

)2
)
.

The process Xe(t) is Gaussian with mean m(t) and the covariance function given by

Cov(Xe(t), Xe(s)) =

4∑
i=1

σi(t)σi(s)

√
2τi(t)τi(s)

τ2i (t) + τ2i (s)
e−π

2(t−s)2/(τ2
i (s)+τ

2
i (t)). (29)
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Obviously the integrals in Eq.(28) has to be computed numerically. This is carried out using the fol-
lowing approximation ∫ +∞

−∞
fτi(t)(t− s) dBi(s) ≈

∑
sj

fτi(t)(t− sj)
√
dsZij , (30)

where Zij , i = 1, . . . , 4, are independent zero mean variance one Gaussian random variables, while
ds = sj+1 − sj . Here sj forms an equidistant grid covering the domain of the kernel fτi .

The proposed model gives means for efficient simulation of wind speeds along any ship routes. The
parameters a(t),m(t), σ2

i (t) and τei (t) are specified by means of Eqs.(28) and Eq.(30). Alternatively
one can simulate Xe(t) using covariances defined in Eq.(29) and some of many methods to simulate
Gaussian vectors. The algorithm based on Eq.(30) is preferable when densely sampled wind speeds
along a long ship route are needed. For example for a route defined in Figure 12 top plot that was sailed
for 400 hours giving 2400 recorded wind speeds, it took less than 100 seconds on laptop to simulate
100 wind speed profiles along the route. Five of the simulated profiles of W e(t) are presented as thin
solid lines in Figure 12 bottom plot. The measured wind speeds are presented as the solid thick line
while dashed dotted line is the hind-cast based estimate of the speeds.
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Figure 12: Top - A rout sailed in Northern Atlantic in April. Middle - The expected length of encoun-
tered windy weather period τe(t). Bottom - Wind speeds measured on-board a vessel (solid thick line)
hind-cast prediction (dashed dotted line) and five simulations of the wind speeds by means of Eq.(15)
and Eq.(28) (thin solid lines).

Note that parameters σ2 and τe are simply computable from the parameters σ2
i , τ

e
i alone. Hence the

theoretical long-term distributions and statistics of storm characteristics can be computed by means of
methods discussed in previous sections.

7 Conclusions

A statistical model for the wind speed field variability in time and over large geographical region has
been proposed. The model was fitted to ERA Interim reanalyzed data. Validation tests show very good
match between the distributions estimated from the data and the theoretical computed one from the
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model. The model was also used to estimate risk of encountering extreme winds and the theoretical
estimates agree well with the empirical one. Realistic wind profiles can be simulated using the model.

8 Acknowledgments

Support of Chalmers Energy Area of Advance is acknowledge. Research was also supported by
Swedish Research Council Grant 340-2012-6004 and by Knut and Alice Wallenberg stiftelse. The
authors also would like to thank Wallenius Lines AB for providing us with onboard wind measurement
data.

References
[1] D.P. Dee, S.M. Uppala, A.J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M.A. Bal-

maseda, G. Balsamo, P. Bauer, P. Bechtold, A.C.M. Beljaars, L. van de Berg, J. Bidlot, N. Bor-
mann, C. Delsol, R. Dragani, M. Fuentes, A.J. Geer, L. Haimberger, S.B. Healy, H. Hersbach,
E.V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A.P. McNally, B.M. Monge-Sanz,
J.J. Morcrette, B.K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.N. Thépaut and F. Vitart. The
ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quar-
terly Journal of the Royal Meteorological Society, 137: 553-597, 2011.

[2] A. Baxevani, S. Caires, and I. Rychlik. Spatio-temporal statistical modelling of significant wave
height. Environmetrics, 20:14–31, 2008.

[3] V. Monbet, P. Ailliot and M. Prevosto. Survey of stochastic models for wind and sea state time
series. Prob. Eng. Mechanics, 22:113–126, 2007.

[4] George Caralis, G. Kostas Rados, G. and Zervos, A. The effect of spatial dispersion of wind
power plants on the curtailment of wind power in the Greek power supply system Wind Energ.
13, 339-355, 2010.

[5] Kiss, P. and Jánosi, I.M. Limitations of wind power availability over Europe: a conceptual study.
Nonlin. Processes Geophys., 15, 803-813, 2008.

[6] B.G. Brown, R.W. Katz amd A.H. Murphy Time Series Models to Simulate and Forecast Wind
Speed and Wind Power. Journal of Climate and Applied Meteorology,23:1184-1195, 1984.

[7] M. S. Longuet-Higgins. The statistical analysis of a random, moving surface. Phil. Trans. Roy.
Soc. A, 249:321–387, 1957.

[8] A. Baxevani, K. Podgórski, and I. Rychlik. Velocities for moving random surfaces. Prob. Eng.
Mechanics, 18:251–271, 2003.

[9] A. Baxevani and I. Rychlik. Maxima for Gaussian seas. Ocean Engineering, 33:895–911, 2006.

[10] K. Podgórski, K., I. Rychlik and U. E. B. Machado, Exact Distributions for Apparent Waves in
Irregular Seas, Ocean. Engng., 27, 979-1016, 2000.

[11] I. Rychlik and M. R. Leadbetter Analysis of ocean waves by crossing and oscillation intensities.
International Journal of Offshore and Polar Engineering, 2000, 10, pp. 282-289.

[12] S. O. Rice. The mathematical analysis of random noise part I and II. Bell Syst Tech J., 23:282–332,
1944, 24:46–156, 1945.

[13] I. Rychlik On some reliability applications of Rice formula for intensity of level crossings, Ex-
tremes, 2000, 3:4, pp. 331-348.

[14] W. Mao, J.W. Ringsberg, I. Rychlik and G. Storhaug. Development of a fatigue model useful
in ship routing design, Journal of ship research, 54: 281-293, 2010.

16



[15] I. Rychlik and A. Mustedanagic. A spatial-temporal model for wind speeds variability Preprint
2013:8, Department of Mathematical Sciences Division of Mathematical Statistics, Chalmers
University of Technology, University of Gothenbourg, 1-18, 2013.

Appendix I: Computation of Var(Ẋe(t)))

The parameter τe(t) was defined in Eq.(25), viz. τe(t) = πσ(t)/
√

Var(Ẋe(t)). In order to evaluate

Var(Ẋe(t)) one needs to introduce a time dependent gradient vector ∇X(t) = (Xx, Xy, Xt)(p(t), t)
and the vector of derivatives

~v = (ẋ(t), ẏ(t), 1). (31)

Obviously ~v sh(t) = (ẋ(t), ẏ(t)) and Ẋe(t) = ~v(t) · ∇X(t), where · is the scalar product. Hence

Var(Ẋe(t)) = ~v(t) Σ(t)~v(t)T , (32)

where Σ(t) is the covariance matrix of the gradient vector∇X(t). The matrix Σ has to be estimated in
the region of interest. In Appendix III a sketch of the estimation procedure is given. In the following we
shall give an alternative formula for Var(Ẋe(t)) which employs a physically interpretable parameters
which could be useful for comparison of suitability of a trade for use of wind sails or other means to
harvest wind energy.

8.1 Parameter τ e(t) as a function of wind, ship velocities and geometrical sizes
of windy regions

The variance Var(Ẋe(t)) is independent of the choice of coordinate system. Here we will use the
rotated coordinate system by azimuth θ called in Section 3 main azimuth of a storm. The matrix Σ in
the rotated coordinate system will be denoted by Σθ(t) and has the following diagonal elements

σ200 = Var(Xθ(p, t)), σ020 = Var(Xθ−90o(p, t)), σ002 = Var(Xt(p, t)), (33)

and following off-diagonal elements

σ110 = 0, σ101 = C(Xθ(p, t), Xt(p, t)), σ011 = C(Xθ−90o(p, t), Xt(p, t)). (34)

The ships velocity ~v sh(t) = vsh(t)(sinα(t), cosα(t)) is in the rotated coordinates given by

~v shθ (t) = vsh(sin(α(t)− θ(t)), cos(α(t)− θ(t))).

Obviously Var(Ẋe(t))) = [~v shθ (t), 1] Σθ(t) [~v shθ (t), 1]T and after some algebra

Var(Ẋe(t))) = σ200 (veθ)
2 + σ020 (veθ−90o)

2 + σ002

(
1− σ200

σ002
v2θ −

σ020
σ002

v2θ−90o

)
, (35)

where the encountered velocity, e.g. the difference between the ship velocity and the wind field velocity,
is in the rotated coordinates given by

(veθ , v
e
θ−90o) = (vθ(t) − vsh(t) sin(α(t)− θ(t)), vθ−90o(t)− vsp(t) cos(α(t)− θ(t))). (36)

In order to interpret components in Eq.(35) we neeed to introduce some additional parameters that
describe average size of windy weather regions and some irregularity factors.

Recall that windy weather conditions region at time t is the region consists all p where wind speeds
exceeds the median µ(p, t). Now we shall introduce parameters related to average size of windy region
in directions θ and θ − 90o. The parameters will be denoted by Lθ and Lθ−90o , respectively. The third
parameter T is the average period the windy weather last lasts at a fixed position p. The parameters are
defined by

Lθ = 2π
σ

√
σ200

, Lθ−90o = 2π
σ

√
σ020

, T = 2π
σ

√
σ002

, (37)
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see Eq.(22) and Remark 3. Obviously the values of parameters are slowly changing functions of po-
sition and time and that why we call them local sizes of windy regions. However if the field X(p, t)
were homogeneous and stationary then the parameters would be equal to the average length between
upcrossings of the median by wind speed W in direction θ, θ + 90o and in time, see [9] for details.

Now by multiplying both sides of the equation (35) by (2π)2 and dividing by σ2 we obtain that

1

(2τe)2
= (veθ/Lθ)

2 + (veθ−90o/Lθ−90o)
2 + (1/T )2 · (1− α2

θ − α2
θ−90o),

where

α2
θ =

σ2
101

σ200σ002
, α2

θ−90o =
σ2
011

σ020σ002
(38)

are useful irregularity factors. Roughly, smaller values of the factors higher risks of extreme storms,
see [9] for more details. Further, if α2

θ + α2
θ−90o = 1 then the surface X drifts, viz

X(p, t) = X(p− ~v dr t, 0).

If p has rotated coordinates then ~v dr in rotated coordinates is equal to (veθ , v
e
θ−90o). Finally

τe(t) =
1

2

1√
(veθ/Lθ)

2 + (veθ−90o/Lθ−90o)
2 + (1/T )2 · (1− α2

θ − α2
θ−90o)

. (39)

For a homogeneous wind field veθ/Lθ is the reciprocal of the time between encountering two con-
secutive windy weather regions when sailing with azimuth θ, similar interpretation can be given to
veθ−90o/Lθ−90o while 1/T is the frequency of windy weather observed by ship at rest or a buoy. These
parameters can be estimated from the on-board measured signals or given subjective values based on
experience. Usefulness of Eq.(39) and Eq.(24) lies in possibility of predicting risks for encountering
extreme storms using easily available parameters which have clear physical meaning.

Appendix II - proof of Eq.(20).

Let assume that W e(s) is a smooth process. Using Fubinni’s theorem

E
[
T st
]

=

∫ +∞
0

E [Nu(T st > t)] dt

E [Nu]
=

E
[∫ +∞

0
Nu(T st > t) dt

]
E [Nu]

.

Since
∫ +∞
0

Nu(T st > t) dt =
∫ s+T
s

1{W e(t)≥u} dt, where 1A(x) is the indicator function of the set A
taking value 1 if x ∈ A and zero otherwise. Again by Fubini’s theorem

E

[∫ s+T

s

1{W e(t)≥u} dt

]
=

∫ s+T

s

P (W e(t) > u) dt

and hence

E
[
T st
]

= T
P (W e > u)

E [Nu]
.

Appendix III: Estimation of parameters.

The parameters of the model has been fitted for the North Atlantic. Here the ERA Interim data has been
used, although in future work we plan to also use data from satellite based sensors. A moments method
and regression fit were employed to estimate the parameters. In this section we give a short description
of the applied estimation procedure. In the following the measured wind speeds at a location will be
denoted by w(t).
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Step 1: For a fixed geographical location and 0 < a < 1 the transformed wind speedw(t)a is computed
and the mean Eq.(3) fitted using LS regression. Empirical cumulative distribution function (CDF)
and Gaussian (CDF) are fitted to the residualw(t)a−m(t). Parameter a∗ minimizing the distance
between the two distributions is selected as an estimate of a. The corresponding mean m∗(t) is
an estimate of m(t). Further the residual x(t) = w(t)a

∗ −m∗(t) is evaluated and then used to
estimate parameters σ2

i (t) in the following steps.

Step 2: Estimation of signals xi(t), i = 1, . . . , 4. The signal x1 is estimated as follows; first one
filters out from x(t) (see Step1) the harmonics with periods shorter than 40 days. The resulting
signal is an observation of x1(t). The signal x2(t) is derived by filtering out harmonics with
periods below 5 days from the signal x(t) − x1(t). The signal x3(t) is derived by filtering out
harmonics with periods below 1 day from the signal x(t) − x1(t) − x2(t). Finally, x4(t) =
x(t)− x1(t)− x2(t)− x3(t).

Step 3: For a signal xi(t) the parameters σ2
i (t) are estimated as follows. For a sequence of times

tj , assuming stationarity of xi(s) for s in a neighborhood of 10 days around tj , estimates of
σi(tj)

2 are found. Then σ2
i (t) are estimated by fitting seasonal components, similar to Eq.(3), to

sequences of observations (tj , σi(tj)
2).

Step 4: Estimation of Σi(p, t), i.e. the covariance matrix of the gradient vector evaluated at (p, t).
The covariance matrix is defined by six covariances between the partial derivatives of Xi. The
functions are changing slowly with season but spatial variability can be high, particularly at
coastal and inland locations. Consequently we fit six seasonal components to the covariances for
each of positions p on a grid with mesh 0.75 degree. The components are estimated in a similar
way as discussed in Step 3.
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