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1 Abstract

Over five years, Volvo has sampled 200 variables on trucks in real world use. The sampling
frequency has been 10 Hz. This has given a Big Dataset with 500 million rows and 200
columns.

One of the sampled values is the fuel consumption. The wish is to see which of the sampled
variables has the largest influence on fuel consumption and therefore be able to adjust those
variables for lower fuel consumption.

It is not possible to perform ordinary Multiple Linear Regression (MLR) on the dataset
since it is too large for our computers to handle in one piece. Instead we regress each of
the 200 variables at a time against fuel consumption. This is achieved by subtraction of
the average of each variable followed by application of the Gauss normal equations on each
column at a time. This new technique is compared to the classical MLR in the Section
3. In our new method the ”explanation ratio” is computed as the Pearson’s correlation
coefficient. This enables us to approximately answer the following questions;

- How does fuel consumption vary with the different variables?

- How well does the i’th variable explain fuel consumption?

The conclusions are:

1. Normal MLR is not possible on Big Data.

2. It is fairly easy to pin-point the most important variables using the method proposed
in the current paper.

Key words: Big Data, Multiple Linear Regression, Multiple Bilinear Regression,
Pearson’s Correlation Coefficient.

2 Introduction

Datasets, particularly time dependent datasets, rapidly grow large. This is an identified
problem in Big Data. Pearson’s correlation coefficient is rediscovered in the current paper
and applied to a real dataset. The dataset CFF is a sampling at 10 Hz of 200 variables
available on the CAN-bus of Volvo trucks. The dataset was collected in the period 2008 to
2013. This takes the form of an SQL database of 200 columns and 500 million rows, some
terabytes in size. The aim of the sampling is to conclude which of the sampled variables
correlate with fuel consumption of the truck, in order to lower the fuel consumption.



3 Multiple Bilinear Analysis versus Multiple Linear

Regression

In this article, a bilinear regression is made on fuel for each input variable, aj. We call this
Multiple Bilinear Analysis, MBA, to differ from Multiple Linear Regression, MLR.

Suppose the system of linear equations Ax = b. If all columns aj of A are orthogonal to
each other, MBA and MLR will give the same result vector x, since then xj depends only
on aj and b.

The difference between the methods occurs when the columns aj are correlated, If the
correlations are strong the matrix A becomes badly conditioned, it has a large condition
number. There are many methods for handling badly conditioned matrices, for instance
truncated SVD, see Reference [5].

In the common solution by MLR on a badly conditioned matrix, A, the influence on b of
the correlated columns will be divided between several different xj. This leads to smaller
xj for columns aj that are correlated to other columns, and the magnitude of xj will be
affected by adding extra columns to A.

The aim is to detect high correlations, xj, between aj and b. However, the concept of
MLR and truncated SVD of badly conditioned matrices can exchange the lead to changes
in the ranking of xj due to effects of correlations realized previously. On the other hand,
using MBA, xj are regarded as independent so this method reveals large xj independent
on illconditioned matrix A.

4 Method

We study overdetermined systems of linear equations

Ax = b, A ∈ Rm×n,m > n, b ∈ Rm, x ∈ Rn. (1)

The system has in general no solution so an approximate solution is required. Usually the
least squares solution is used i.e. the solution to the minimization problem

minx∈Rn‖Ax − b‖ (2)

This problem (2) can be solved by the Gauss normal system of equations, see Reference
[1],

AT Ax = AT b (3)

although there in general exists more numerically stable techniques like the QR-factorization,
see Reference [4].



In the current study a new method to compute an approximate solution of (1) is presented.
Each separate column aj, j = 1, ... , n of A is considered to form a system of equations
with just one column,

ajxj = b (4)

which is solved in the least squares sense by the normal equation technique (3) i.e.

aT
j ajxj = aT

j b ⇔ xj = aT
j b/aT

j aj, j = 1, ..., n. (5)

When not centering aj and b, the result is the least squares solution of a proportional line.
When subtracting the average, centering aj and b, we get the affine coefficient xj, excluding
the bias term. The focus of the present study is not the bias term, but which variables
(columns) aj give the most explanation of b, therefore centering of the data is performed.
The explanation ratio of each variable is estimated as the ratio between the norm of the
model and the norm of the measurments, i.e.

pj =
xj‖aj‖

‖b‖
= xj

√

aT
j aj

bT b
=

aT
j b

√

aT
j aj bT b

=
aT

j b

‖aj‖ ‖b‖
, (6)

where the second (and fourth) equality follows from the definition of the standard Euclidean
norm of a vector and the third equality follows from (5). This explanation ratio is the cosine
of the angle between aj and b or the Pearson’s correlation coefficient, see Reference [2].

Recall that n systems are solved with just one unknown xj in least squares sense i.e.

minxj∈R‖ajxj − b‖, j = 1, ... , n, (7)

where the data is centered in the following manner: b = b̃− b̄, aj = ãj − āj, j = 1, ... , n
for original data b̃ and columns of the matrix ãj, j = 1, ... , n and v̄ is a notation for the
mean value of a vector ṽ.

This approach could be described as an affine regression between the result vector b and
each column of A. The result of this analysis is that every column in A is judged separately
and recieves separate straight line coefficients and rate of explanation of b, the Pearson’s
correlation coefficient between aj and b.

The interpretation of this analysis is that columns aj with high absolute values of the
correlation coefficient are strong candidates for explaining the fuel consumption, and those
variables should be further investigated. If the correlation coefficient is 95%, then the affine
straight line model of this column aj explains 95% of the fuel consumption, so that from
(6)



pj =
xj‖aj‖

‖b‖
=

xjstd(aj)

std(b)
= 95%, (8)

where std(v) is a notation for the standard deviation of a vector v, recall that the data is
centered.

5 Data processing

The CFF dataset was stored on an SQL server. The following requests were made to the
server:

(o) Sum of squares of each column, ãj
T ãj, b̃T b̃

(o) Average of each column, āj, b̄

(o) Feasible number of observation of each column, mj

(o) Scalar product of each column with result column (fuel consumption), ãj
T b̃

This task took approximately 1 week for the 200 variables and 500 million observations.
The remaining tasks were performed on a PC in a day. It is important to notice that
centering of data may be performed after computing scalar products since for vectors ṽ
and ũ with length m and averages v̄ and ū the following relation holds, where e is the all
ones vector:

(ṽ−v̄e)T (ũ−ūe) = ṽT ũ−v̄eT ũ−ūṽT e+v̄ūeT e = ṽT ũ−mv̄ū−mūv̄+mv̄ū = ṽT ũ−mv̄ū. (9)

This relation is called Steiner’s theorem, see Reference [3]. Using (9) saves floating point
operations (flops) since centering of the large columns aj is not requested. For a matrix
A ∈ Rm×n approximately 2mn flops are saved which is significant in the case of large
datasets.

Next all values are centered using (9):

(o) Centered ãj
T ãj: aT

j aj = ãj
T ãj − mj āj

2

(o) Centered ãj
T b̃: aT

j b = ãj
T b̃ − mj āj b̄

(o) Centered b̃T b̃: bT b = b̃T b̃ − mj b̄
2

Finally regression is performed, using formulas (5) and (6) from Section 4:

(o) Slope: xj = aT
j b/aT

j aj

(o) Bias: biasj = b̄ − xj āj

(o) Pearson’s coefficient (absolute value): pj =

√

x2

j
aT

j
aj

bT b
=

|aT
j b|

‖aj‖ ‖b‖
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Figure 1: Explanation, all variables

6 Result

The work presented in the current paper is a regression analysis of large systems variables,
amounting to several terabytes of data. As highlighted in Section 5, calculation of the
required values i.e. scalar products and mean values took one week on the database server.
Calculation of the linear coefficients and correlation are cheaply performed on a desk top
computer in a single day. After removal of infeasible variables (i.e. those variables with
few observations), 151 variables remained. The original variable numbering was retained.

In Figure 1 we present the explanation rates (Pearson’s coefficients) for the 151 variables,
sorted in decreasing order. We can see that 10% of the 151 variables have an explanation
rate over 50%. These variables are worth further analysis, since they probably have a
strong influence on fuel consumption. 60% of the variables have an explanation rate lower
than 10% which make them poor candidates for further analysis.

Figure 2 shows the 12 variables with an explanation rate higher than 50% plus the 100%
explanation rate of fuel consumption itself. We can see that variable number 221 also
has 100% explanation rate which is expected as the variable is an alternative measure of
fuel consumption. The unexpected candidate, the real ”dark horse”, is variable 48 with an
explanation rate of 95%. This variable has never previously been identified as explaining
fuel consumption.

From Figure 3, it can be seen that the regression coefficients xj give no indication of
which variables provide the best explanation of fuel consumption. Scaling the regression



0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

100

Variable number

Ab
so

lut
e v

alu
e o

f P
ea

rso
n c

oe
ffic

ien
t

Variables of largest explanation

fuel    221

48

226

222

224 71
41 101

72 9 208 207

Figure 2: Variables of largest explanation - zoom in from Figure 1

0 2 4 6 8 10 12 14
−15

−10

−5

0

5

10

Variable number

Re
gr

es
sio

n

Regression coefficients

fuel 221

48

226 222

224

71

41

101 72

9

208 207

Figure 3: Regression coefficients



coefficient by the standard deviation of each variable, would solve this problem.

The regression coefficients are very valuable when understanding the physics in later anal-
ysis. Variable 48, the dark horse, has an xj = −10. This means that for an increase of
this variable of 0.01 units, the fuel consumption will drop 0.1 units, if everything else was
constant.

7 Discussion

After gathering of the dataset CFF, amounting to over 1 terabyte data, analysis initially
seemed to be unfeasable. However, by use of Pearson’s correlation coefficient and regression
of each varable in isolation, understanding of the relationships within the dataset, was
achieved.

The method is particularly effective in the case where several datasets are incoming with
the same variables. For each analysis only the four values presented in Section 5 for each
variable i.e. sum of squares of each column, average of each column, feasible number of
observation of each column, and scalar product of each column with result column (fuel
consumption) are needed. This compresses a dataset of size nm to a dataset of size 4n,
which still contains all necessary values for future analyses. Recall that m = 500 millions
and n = 200 in the present study.

8 Conclusion

The final conclusion is that the terabyte sized dataset, CFF, is analysed in a reasonable
and very economic way, taking less than 1 week. A multiple linear regression of the same
dataset would require many times longer, of overall computational time, estimated to over
100 weeks.
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