

PREPRINT 2014:24

On some numerical methods for solving

strongly overdetermined systems of linear

equations

IVAR GUSTAFSSON

Department of Mathematical Sciences

Division of Mathematics

CHALMERS UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Gothenburg Sweden 2014

Preprint 2014:24

On some numerical methods for solving strongly

overdetermined systems of linear equations

Ivar Gustafsson

Department of Mathematical Sciences
Division of Mathematics

Chalmers University of Technology and University of Gothenburg

SE-412 96 Gothenburg, Sweden

Gothenburg, December 2014

Preprint 2014:24

ISSN 1652-9715

Matematiska vetenskaper

Göteborg 2014

On some numerical methods for solving strongly

overdetermined systems of linear equations

Ivar Gustafsson1

1Department of Mathematical Sciences, Division of Mathematics, Chalmers University of Technology,

Gothenburg, Sweden, email: ivar@chalmers.se

1 Abstract

In the present paper, we study overdetermined linear systems arising by sampling values in
a large number of experiments. The recieved Big Data could contain hundreds of columns
and millions of rows. It is not possible to apply the ordinary Multiple Linear Regression
(MLR) method on such a matrix since it is too large for our computers to handle in one
piece.

Recently, a method called Multiple Bilinear Analysis (MBA) was developed, see Reference
[1]. In the MBA method, one of the variables (columns) at a time is regressed with the
right side. One very important conclusion drawn in Reference [1] is that it is fairly easy to
pin-point the most important variables by the MBA method on Big Data.

In the present study we are concerned about the fit ability of the different methods. It then
turnes out that, for problems that are not so strongly overdetermined as the above example,
a method based on one or a few iterations of the preconditioned conjugate gradient (PCG)
method is a strong alternative to the MBA method.

In the present article the new ideas, MBA and PCG, are compared to the classical MLR
method for different sizes of the matrices, in particular for strongly overdetermined systems.
The importance of centering the data is stressed and different amount of noise in the data
is considered.

Also, rank deficient and almost rank deficient problems are studied. Among all solutions
to a rank deficient overdetermined linear system, the PCG method computes the solution
with smallest norm, like the pseudoinverse method does, see Reference [2].

Some conclusions made from the first study i Reference [1] and the present investigation
are:

1. Normal MLR is not possible on Big Data.

2. It is fairly easy to pin-point the most important variables by MBA on Big Data

3. It is important to center the data in order for the MBA method to have a good fit
ability.

4. Selection of the columns (variables) like in the MBA method is a good idea.

5. For strongly overdetermined and not very illconditioned systems, the MBA method,
with centering of data, is close to the MLR method when the fit ability is considered.

6. For not so extremly overdetermined systems, a couple of PCG iterations surpass the
MBA method regarding fit ability.

7. For all studied overdetermined systems, the PCG method turnes out to be a close
approximation to the MLR method.

8. Good fit ability can be obtained by using not all the given columns in the matrix but a
certain amount of them, say 50-70 %.

9. The PCG method computes the minimal norm solution to rank deficient problems.

2 Introduction

Datasets, particularly time dependent datasets, rapidly grow very large. This is an iden-
tified problem in Big Data. New methods are needed, methods that are not overwhelmed
by gathering data like the standard MLR method. Three methods, the MLR method, the
MBA method, and the PCG method, are compared with respect to the following properties:

1. The fit ability, measured by the value R2, dependent on the number of rows and columns
and the fraction of noise.

2. The feasibility to apply the methods on an SQL database in a reasonable time (a week
or so).

3. The behavior of the methods for illconditioned, rank deficient and almost rank deficient
problems.

We study three different methods:

1. QR-factorization (backslash in MATLAB). Except from rounding errors and the number
of operations needed, this method is equivalent to Gaussian elimination of the correspond-
ing system of normal equations i.e. the MLR method.

2. The method of Multiple Bilinear Analysis (MBA), see Reference [1]. This method
is equivalent to one step of the classical Jacobi method, starting from a zero vector, see
Reference [2].

3. The preconditioned Conjugate Gradient method, see Reference [2]. For a strongly
overdetermined system just one or a few iterations are needed for reasonably good solution.

3 The methods used

Let the overdetermined system of linear equations be

Ax = b, A ∈ Rm×n,m > n, b ∈ Rm, x ∈ Rn (1)

3.1 The QR method

The first method computes the least squares solution to (1) by QR-factorization i.e.

A = QR, Rx = QT b (2)

Here, Q is an orthogonal matrix and R is an upper triangulari matrix, so the system
Rx = AT b is easily solved by backward substitution. The solution obtained by (2) is,
except from rounding errors and the amount of floating point operations needed, equivalent
to the system of normal equations, that is x = (AT A)−1AT b, but here computed in the
numerically more stable way given by (2).

The QR-factorization involved in (1) is preferably made by Householder transformations,
see Reference [1]. The computational complexity, the number of floating point operations,
for this method is then of order 2mn2 (counting both additions and multiplications). This
is the reason why this method is not useful for large m and n, compared to the methods
to follow.

3.2 The Multiple Bilinear Analysis (MBA) method

In the second method, the corresponding system of normal equations to (1) i.e AT Ax = AT b
is considered. An approximation to the solution x is computed by x̂ = D−1(AT b), where D
is the diagonal of the matrix AT A. This technique is in fact equivalent to performing one
iteration of the classical Jacobi method on the system of normal equations, starting from
the zero vector. We do not consider doing more than one iteration since the Jacobi method
does not in general converge for our type of problems. The requirement for convergence is
for instance diagonally dominance of the system and this condition is not satisfied here in
general. For completeness we give the Jacobi method in MATLAB code:

function x = Jacobinorm(A,D, b, start, iter)
x = start;
for i = 1 : iter,
r = A′ ∗ (b − A ∗ x);
x = x + r./diag(D);

end

Recall that one iteration, starting with the zero vector, gives x = D−1(AT b). Let aj be the

j’th column of A, then the solution component xj = aT
j b/aT

j aj. Notice that xj/
√

bT b equals
the cosine of the angle between aj and b. For more details on this method, see Reference
[1].

We also note that the computational complexity of this method is of order 4mn (counting
both additions and multiplications), for computing D = diag(AT A) and then AT b.

3.3 The preconditioned Conjugate Gradient (PCG) method

The third method is the preconditioned conjugate gradient method for solving the normal
equation system AT Ax = AT b. We use the matrix D = diag(ATA) for preconditioning.
This technique is usually called diagonal scaling preconditioning. This method is well
known but for completeness we give the algorithm here in MATLAB code:

function x = pcgnorm(A,D, b, start, iter)
x = start;
r = A′ ∗ (b − A ∗ x);
q = r./diag(D);
rgnorm = r′ ∗ q;
for i = 1 : iter,
aq = A′ ∗ (A ∗ q);
alpha = rgnorm/(q′ ∗ aq);
x = x + alpha ∗ q;
r = r − alpha ∗ aq;
br = r./diag(D);
rnorm = r′ ∗ br;
beta = rnorm/rgnorm;
q = br + beta ∗ q;
rgnorm = rnorm;

end

We comment that performing just one iteration of the preconditioned conjugate gradient
method is equivalent to one iteration with the preconditioned steepest descent method.
An advantage with the preconditioned conjugate gradient method, compared to the MBA
method, is that we may perform several iterations in order to compute a more accurate
approximation to the true least squares solution. In fact this method converges for all sys-
tems (1) with matrices A of full rank, see Reference [2]. Indeed, we find in the numerical
experiments that this method converges also for rank deficient problems. This observa-
tion is outside the theory in Reference [2] and has to be studied more thoroughly from a
theoretical point of view in the future.

The computational complexity for one iteration of the preconditioned steepest descent
method, when starting with the zero vector, is of order 6mn, for computing D = diag(ATA),
r = AT b and Aq, where q = D−1r. Observe that (in the first iteration) α (alpha in the
code above) may be computed by

α =
rT q

qT AT Aq
=

rT q

(Aq)T (Aq)
. (3)

For each new iteration in the preconditioned conjugate gradient method the computational
cost is of order 4mn for computing aq = AT (Aq).

4 Numerical experiments

The computational tests are based on four different kinds of data i.e. columns of the matrix
A. In all cases entries of the matrix is at first computed as equally distributed random
numbers in the interval (0, 1) and a vector x is computed with normally distributed

random numbers with expectation 0 and standard deviation, std=1, and finally a vector y
is computed by y = Ax.

The columns of A and y are adjusted in four different ways, such that they become:
Case 1: not centered, std=1
Case 2: centered, std=1
Case 3: centered, various std, the first column with std=1 until the n’th column with
std=n.
Case 4: centered, various std, the first four columns almost the same, the numbers differ
only by normally distributed numbers with std=0.001.
Case 5: centered, various std, the first four columns exactly the same, the rank of the
matrix is then n − 3.

For completeness the different cases are given in MATLAB code, As is the adjusted A and
y is adjusted similarly:

A = rand(m,n);
x = randn(n, 1);
y = A ∗ x;
As = A./(ones(m, 1) ∗ std(A)); %Case1
As = (A − (ones(m, 1) ∗ mean(A)))./(ones(m, 1) ∗ std(A)); %Case2
As = (A − (ones(m, 1) ∗ mean(A))). ∗ (ones(m, 1) ∗ [1 : n]); %Case3
for k = 2 : 4, As(:, k) = As(:, 1) + 0.001 ∗ randn(m, 1); end %Case4
for k = 2 : 4, As(:, k) = As(:, 1); end %Case5

Guided by the nice results regarding the MBA method in Reference [1], the columns of
the matrix are sorted according to the size of the scalar product of each column and the
righthand side i.e in MATLAB code:

c = As′ ∗ ys;
[s, I] = sort(abs(c),′ descend′);
As = As(:, I);

The possible presens of different amount of noise in the right hand side, the vector y, in
the different cases, is modeled in MATLAB by

ys = ys ∗ (1 − noise) + randn(m, 1) ∗ std(ys) ∗ noise; %Amount of noise

The amount of noise used in the present experiments is 0, 0.5 or 1.

The experiments are performed on three different sizes of matrices with different degree of
overdetermination, number of rows (always) m = 600 and number of columns n = 200, n =
60 or n = 10. The results are presented in Figure 1 up to Figure 10 and is commented on in
the section to follow. In each figure the coefficients of determination, R2, see Reference [3],
are given for different numbers of columns in the computed order as described above. The
plotted result are everages of 100 runs with different random values of the kinds presented
above.

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

solid − backslash i.e. the MLR method

dashed − two iterations with the PCG method

dashdot − the MBA method

noise=0

noise=0

noise=0.1

noise=0.5

number of columns

co
eff

ici
en

ts
of

de
ter

mi
na

tio
n

Figure 1: Coefficients of determination, R2, for three different solution methods, 600 rows,
200 columns, various amount of noise, not centered data, standard deviation one

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise=0

noise=0

noise=0.2

noise=0.5

solid − backslash i.e. the MLR method

dashed − two iterations with the PCG method

dashdot − the MBA method

number of columns

co
eff

ici
en

ts
of

de
ter

mi
na

tio
n

Figure 2: Coefficients of determination, R2, for three different solution methods, 600 rows,
60 columns, various amount of noise, not centered data, standard deviation one

1 2 3 4 5 6 7 8 9 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

solid − backslash i.e. the MLR method

dashed − two iterations with the PCG method

dashdot − the MBA method

noise=0

noise=0

noise=0.5

noise=0.5

noise=1

number of columns

co
eff

ici
en

ts
of

de
ter

mi
na

tio
n

Figure 3: Coefficients of determination, R2, for three different solution methods, 600 rows,
10 columns, various amount of noise, not centered data, standard deviation one

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

solid − backslash i.e. the MLR method

dashed − two iterations with the PCG method

dashdot − the MBA method

noise=0

noise=0.5

noise=1

number of columns

co
eff

ici
en

ts
of

de
ter

mi
na

tio
n

Figure 4: Coefficients of determination, R2, for three different solution methods, 600 rows,
200 columns, various amount of noise; centered data, standard deviation one

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise=0

noise=0.5

noise=1

solid − backslash i.e. the MLR method
dashed − two iterations with the PCG method
dashdot − the MBA method

number of columns

co
eff

ici
en

ts
of

de
ter

mi
na

tio
n

Figure 5: Coefficients of determination, R2, for three different solution methods, 600 rows,
60 columns, various amount of noise, centered data, standard deviation one

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

solid − backslash i.e. the MLR method

dashed − two iterations with the PCG method

dashdot − the MBA method

noise=0

noise=0.5

noise=1

number of columns

co
eff

ici
en

ts
of

de
ter

mi
na

tio
n

Figure 6: Coefficients of determination, R2, for three different solution methods, 600 rows,
10 columns, various amount of noise, centered data, standard deviation one

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise=0

noise=0.5

noise=1

solid − backslash i.e. the MLR method
dashed − two iterations with the PCG method
dashdot − the MBA method

number of columns

co
eff

ici
en

ts
of

de
ter

mi
na

tio
n

Figure 7: Coefficients of determination, R2, for three different solution methods, 600 rows,
200 columns, various amount of noise, centered data, varying standard deviation

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

solid − backslash i.e. the MLR method

dashed − two iterations with the PCG method

dashdot − the MBA method

noise=1

noise=0

noise=0.5

number of columns

co
eff

ici
en

ts
of

de
ter

mi
na

tio
n

Figure 8: Coefficients of determination, R2, for three different solution methods, 600 rows,
60 columns, various amount of noise, centered data, varying standard deviation

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise=0

noise=0.5

noise=1

solid − backslash i.e. the MLR method

dashed − two iterations with the PCG method

dashdot − the MBA method

number of columns

co
eff

ici
en

ts
of

de
ter

mi
na

tio
n

Figure 9: Coefficients of determination, R2, for three different solution methods, 600 rows,
10 columns, various amount of noise, centered data, varying standard deviation

1 2 3 4 5 6 7 8 9 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

solid − backslash i.e. the MLR method

dashed − two iterations with the PCG method

dashdot − the MBA method

noise=0

number of columns

co
eff

icie
nts

 of
 de

ter
mi

na
tio

n

Figure 10: Coefficients of determination, R2, for three different solution methods, 600
rows, 10 columns, without noise, centered data, varying standard deviation, almost rank
defficient system, rank ≈ 7

5 Discussion and conclusion

At first we observe that in all cases, the MLR method, computed by backslash i.e QR-
facorization, gives the largest coefficient of determination, R2. However, for large matrices
this method is too expensive, the computational cost, the number of floating points oper-
ations, is of order 2mn2 while the MBA method and the PCG method with two iterations
requires approximately 4mn and 10mn operations, respectively.

From the experiments it becomes clear that the idea in Reference [1] of selecting the columns
(variables) according to the size of the scalar product of each column and the righthand
side is very powerful also when the fit ability, the value of the coefficient of determination,
R2, is conserned.

From Figure 1 up to Figure 3, it can be seen that the MBA method is no good for not
centered data (Case 1). The PCG method with two iterations, however, comes very close
to the MLR method, in particular for strongly overdetermined systems.

By Figure 4 up to Figure 6, it becomes clear that for centered data, standard deviation
one, and not very ill-conditioned systems (Case 2), the MBA method approaches the MLR
method as the system becomes more overdetermined.

With respect to fit ability, the PCG method with two iterations is a good approximation
to the MLA method in all cases studied. As for the solution of the overdetermined systems
involved, the solutions obtained by these two methods are also very close, if the system
has full rank.

It can be realised from Figure 7 up to Figure 9 that no change to speak of is observed if the
columns have various standard deviations, Case 3 compared to Case 2, as long as the data is
centered. The results of the methods look pretty much the same. Considering the number
of columns needed for a certain level of the coefficients of determination, R2, however,
there is an observable difference. For instance, detailed studies of Figure 4 and Figure 7
unveil that for n = 200, about 140 columns are needed for R2 = 0.9 in Case 3 (varying
standard deviation), compared to about 100 columns in Case 2 (standard deviation one).
This can be explaned by the fact that the condition number of the matrix in Case 3 is much
larger than in Case 2. In the present example the (average) condition number is about 80
times larger in Case 3 (compared to Case 2). The MBA method completely breaks down
for almost rank deficient systems (Case 4), as can be seen in Figure 10, where n = 10
and the rank is almost only 7. Remember that the MBA method could still be very good
for selection of the most important variables, as pointed out in Reference [1]. The PCG
method with two iterations, on the other hand, works very well in such situations, giving
results very close to the MLA method for strongly overdetermined systems. Notice that
in the present case, the condition number of the matrix is fairly large. For n = 200 the
average condition number was about 1.7 ·105 and for n = 10, the result presented in Figure
10, the average condition number was about 5.9 · 103. Similar results are obtained in Case
5, when the system is exactly rank deficient with rank equal n − 3. The actual figure was
almost identical to Figure 10 and is therefore omitted.

As a very nice side result, in the present investigations, it is observed that the PCG method
gives the smallest norm solution to a rank deficient system (Case 5). This solution is
actually the same as is given by the pseudoinverse method, see Reference [2]. Futhermore,
the approximations computed by few iterations of the PCG method always have smaller
norms than the true minimum norm solution (obtained after fully converged PCG method
or by the pseudoinverse method). These latter observations motivate further theoretical
studies regarding the PCG method for rank deficient problems.

6 Acknowledgement

The author thanks Sven Ahlinder at Volvo GTT Advance Technology for pointing out the
very problem in Big Data and for helpful guidance during the development work contained
in the current paper.

7 References

[1] Ahlinder, Gustafsson. A real life engineering problem in Big Data solved by Pearson’s
correlation coefficient.
[2] Demmel. Applied Numerical Linear Algebra, Society for Industrial and Applied Math-
ematics, 1997.
[3] Box, Hunter, Hunter. Statistics for Experimenters ISBN 0-417-09315-7 1978 John Wiley
& Sons, Inc.

