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Numerical studies of an adaptive finite element
method applied to the reconstruction of shapes
of buried objects from experimental data

Larisa Beilina1, Nguyen Trung Th̀anh2, Michael V. Klibanov3 and
John Bondestam Malmberg4

Abstract We perform extended studies of an adaptive finite element method applied
to the reconstruction of shapes of buried objects from experimental backscattering
data. We use experimental data which are collected by a microwave scattering fa-
cility located at the University of North Carolina at Charlotte, USA. Our numerical
tests show accurate imaging of three components of interestof targets: shapes, lo-
cations and refractive indices.

1 Introduction

In this paper we present extended studies of an adaptive finite element method which
we use to improve reconstruction of shapes of buried objectsin the dry sand from
experimental time-dependent backscattering data. First part of this study was pre-
sented in [10]. Experimental data were collected using a microwave scattering facil-
ity located at the University of North Carolina at Charlotte, USA. For the description
of data collection procedure we refer to recent works [8, 19].

We consider a coefficient inverse problem (CIP) for Maxwell’s equations in
three dimensions. This paper is a continuation of our recentstudies on this topic
[8, 9, 19], where we have reconstructed shapes, locations and refractive indices of
targets placed in air. To solve our CIP we use the two-stage numerical procedure pre-
sented in [5–7, 9]: on the first stage the approximately globally convergent method
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of [5] is applied to get a good first approximation for the exact solution of our CIP,
and on the second stage the local adaptive finite element method of [2] refines the
solution obtained on the first stage using the minimization of a Tikhonov functional.
It make sense to refine the solution obtained on the first stagesince in [15] was
shown that a minimizer of the Tikhonov functional is closer to the exact solution
than the first guess for this solution. In [7] the relaxation property was shown for
mesh refinements. It states that the solution obtained on therefined mesh will be
closer to the minimizer of a Tikhonov functional than the solution obtained on the
coarse mesh. Using results of [7, 15] we conclude that we can obtain better approx-
imations and shapes of objects through the minimization of aTikhonov functional
on the adaptively refined meshes.

An outline of this paper is as follows. In sections 2, 3 we state the forward and
inverse problems on the first and the second stage, respectively. In Section 4 we de-
scribe the mesh refinement recommendation and the adaptive algorithm. In Section
5 we present numerical studies of the adaptive finite elementmethod.

2 Statement of Forward and Inverse Problems on the first stage

In this section we state the forward and inverse problems which we use on the first
stage.

Let Ω ⊂ R
3 be a convex bounded domain with the boundary∂Ω ∈ C3, x =

(x, y, z) ∈ R
3 andCk+α denote a Ḧolder space wherek ≥ 0 is an integer andα ∈

(0, 1) . On the first stage we model the wave propagation by the following Cauchy
problem for the scalar wave equation

εr(x)
∂ 2u
∂ t2 (x, t)−∆u(x, t) = δ (z−z0) f (t), (x, t) ∈ R

3× (0, ∞), (1)

u(x, 0) = 0,
∂u
∂ t

(x, 0) = 0, x ∈ R
3. (2)

Here f (t) 6≡ 0 is the waveform incident plane wave generated at the plane{z= z0}
and propagating along thez-axis. We consider the propagation of the electric wave
E (x, t) = (E1, E2, E3)(x, t) in R

3 generated by the incident plane wave. In our
experiments only the single non-zero componentE2 of the incident electric field
E (x, t) is excited while two other components are set to zero, and we measure the
backscattering functionE2, which is the voltage. On the first stage we use only the
single equation (1) withu = E2 instead of the full Maxwell’s system. We do such
approximation since it was shown numerically in [3] that thecomponentE2 of the
electric fieldE dominates two other components. This observation is also confirmed
by our experimental numerical studies - see Figure 1.

The functionεr(x) = ε(x)
ε0

in (1) is the relative dielectric constant, whereε(x) is
the absolute dielectric permittivity of the material andε0 is the dielectric permittiv-
ity of vacuum. We assume thatεr is unknown inside the domainΩ ⊂ R

3 and this
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function is known outside of it,

εr ∈Cα (
R

3) , εr(x) ∈ [1, b] for x ∈ R
3, εr(x) = 1 for x ∈ R

3\Ω , (3)

whereb > 1 is a known constant. In our experiments the plane wavef (t) is initial-
ized outside of the domainΩ , that is,{z= z0}∩Ω = ∅.

Coefficient Inverse Problem 1 (CIP1).Determine the functionεr (x) for x ∈ Ω
with a known function g for a single incident plane wave generated at the plane
{z= z0} outside ofΩ :

u(x, t) = g(x, t) ∀(x, t) ∈ Γ × (0, ∞) .

Here,Γ ⊂ ∂Ω is a backscattering part of the boundary∂Ω .

Remark 1.

• The data functiong is extended numerically to a function ˜g on the whole bound-
ary ∂Ω , see Section 4 of [9]. Thus, we assume thatg(x, t) is known for every
(x, t) ∈ ∂Ω × (0, T).

• Global uniqueness theorems for multidimensional CIPs witha single measure-
ment are currently known only under the assumption that at least one of initial
conditions does not equal zero in the entire domainΩ [5, 12]. In the case of our
CIP we simply assume that uniqueness of our CIP holds.

• To solve CIP1 of the first stage we use the globally convergentmethod of [5].
Extended numerical studies of this method for the case of experimental backscat-
tering data are presented in [8, 9, 18, 19].

3 Statement of Forward and Inverse Problems on the second
stage

On the second stage we model the electric wave propagation inan isotropic and non-
magnetic space inR3 with the dimensionless relative magnetic permeabilityµr = 1
and with the relative dielectric constantεr(x). We consider the following Cauchy
problem as the model problem for the electric fieldE(x, t) = (E1, E2, E3)(x, t)

εr(x)
∂ 2E
∂ t2 (x, t)+∇×

(
∇×E(x, t)

)
= F(z, t), (x, t) ∈ R

3× (0, T),

∇ ·
(
εr(x)E(x, t)

)
= 0, (x, t) ∈ R

3× (0, T),

E(x, 0) = 0,
∂E
∂ t

(x, 0) = 0, x ∈ R
3.

(4)

HereF(z, t) = (0, δ (z−z0) f (t), 0), f (t) 6≡ 0, is the incident plane wave. We assume
that the coefficientεr of equation (4) is the same as in (3). Let againΓ ⊂ ∂Ω be a
backscattering part of the boundary∂Ω .
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Coefficient Inverse Problem 2 (CIP2). Determine the functionεr (x), x ∈ Ω ,
assuming that the following vector functiong(x, t) = (g1,g2,g3)(x, t) is known for
a single incident plane wave:

E (x, t) = g(x, t) , ∀(x, t) ∈ Γ × (0, T) . (5)

In (5) the vector functiong models time dependent measurements of the electric
field at the partΓ of the boundary∂Ω of the domainΩ . As in the case of CIP1 we
again assume that we have uniqueness for our CIP2.

The functionE2 in (4) models the voltage of one component of the electric field
E (x, t) which we measure in experiments. In our computer simulations of Section
5.4, E2 is the only non-zero component of the incident filed. The other two com-
ponents,E1 andE3, of electrical field are generated by the computed solution of
problem (4) with the known value ofεr(x) ∈ Ω which we have obtained as the so-
lution of CIP1 via the approximate globally convergent algorithm on the first stage.
Then the experimental datag are immersed into the computed componentE2 on the
surfaceΓ .

3.1 The model problem

In our simulations we choose computational domainG such thatΩ ⊂ G andG =
ΩFEM∪ΩFDM with ΩFEM = Ω . We use domain decomposition finite element/finite
difference method of [3] for the solution of the problem (4),where a finite element
method is used inΩFEM and a finite difference method is used inΩFDM.

By (3) we have that

εr(x) ≥ 1, for x ∈ ΩFEM,

εr(x) = 1, for x ∈ ΩFDM.

We choose the domainsΩ andG such that

Ω = ΩFEM =
{

x = (x, y, z) : −a < x < a, −b < y < b, −c < z< c′
}

,

G = {x = (x, y, z) : −A < x < A, −B < y < B, −C < z< z0} ,

where 0< a < A, 0 < b < B, −C < −c < c′ < z0, andΩFDM = G\ΩFEM. Denote
by

∂1G := G∩{z= z0} , ∂2G := G∩{z= −C} , ∂3G := ∂G\ (∂1G∪∂2G) .

The backscattering side ofΩ is Γ = ∂Ω ∩{z= c′}. Next, define∂iGT := ∂iG×
(0, T), i = 1, 2, 3. Let t ′ ∈ (0, T) be a point in time after which the initialization of
the plane wave at∂1G stops. We assume that the functionf (t) ∈C[0, t ′].

Similarly with [3] we used stabilized model problem with theparameterξ ≥ 1:
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εr(x)
∂ 2E
∂ t2 (x, t)+∇

(
∇ ·E(x, t)

)
−∇ ·

(
∇E(x, t)

)

−ξ ∇
(

∇ ·
(
εr(x)E(x, t)

))
= 0, (x, t) ∈ G× (0, T), (6)

E(x, 0) = 0,
∂E
∂ t

(x, 0) = 0, x ∈ G, (7)

E (x, t) = (0, f (t) , 0), (x, t) ∈ ∂1G×
(
0, t ′

]
, (8)

∂E
∂n

(x, t) = −∂E
∂ t

(x, t), (x, t) ∈ ∂1G×
(
t ′, T

)
, (9)

∂E
∂n

(x, t) = −∂E
∂ t

(x, t), (x, t) ∈ ∂2GT , (10)

∂E
∂n

(x, t) = 0, (x, t) ∈ ∂3GT , (11)

where∂/∂n is the normal derivative. Conditions (9) and (10) are first order ab-
sorbing boundary conditions [14]. At the lateral boundaries we impose a homoge-
neous Neumann condition (11). In [3] it was shown that the solution to the original
Maxwell’s equations is well approximated by the solution to(6)–(11) in the case
whereξ = 1 and the discontinuities inεr are not too large. Here we have used the
well-known identity∇× (∇×E) = ∇(∇ ·E)−∇ · (∇E). We refer to [3] for details
of the numerical solution of the forward problem (6)–(11).

3.2 The Tikhonov functional

Let Γ ′ be the extension of the backscattering sideΓ up to the boundary∂3G of the
domainG such that

Γ ′ =
{

x = (x, y, z) : −X < x < X, −Y < y < Y, z= c′
}

.

Let G′ be the part of the rectangular prismG which lies between the two planesΓ ′

and{z= −C}:

G′ =
{

x = (x, y, z) : −X < x < X, −Y < y < Y, −C < z< c′
}

.

Denote byQT = G′× (0, T), andST = ∂G′× (0, T).
In our CIP2 we have the datag in (5) only onΓ . These data are complemented on

the rest of the boundary∂G′ of the domainG′ by simulated data using the immersing
procedure of [9]. Thus, we can approximately get the vector functiong̃:

g̃(x, t) = E (x, t) , (x, t) ∈ ST . (12)

To solve our inverse problem we minimize the Tikhonov functional:
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F(E, εr) :=
1
2

∫

ST

(
E(x, t)− g̃(x, t)

)2
zδ (t)dσ dt +

1
2

γ
∫

G

(
εr(x)− εr,glob(x)

)2
dx,

(13)
whereγ > 0 is the (small) regularization parameter andεr,glob is the computed coef-
ficient which we have obtained on the first stage via the globally convergent method.
In our computations we use single value of the regularization parameterγ which we
choose in a computational efficient way such that the values of γ > 0 give the small-
est reconstruction error. We refer to [1, 13] for different techniques for the choice
of regularization parameter. In (13) the functionzδ (t) is used to introduce the com-
patibility conditions atQT ∩ {t = T} for the adjoint problem. The functionzδ (t)
satisfies

zδ ∈C2 [0, T] ,





zδ (t) = 1, t ∈ (0, T −δ ) ,

0 < zδ (t) < 1, t ∈ (T −δ , T −δ/2) ,

zδ (t) = 0, t ∈ (T −δ/2,T) .

Let Eglob be the solution of the forward problem (6)–(11) withεr := εr,glob. De-
note byp = ∂nEglob|ST . In addition to the Dirichlet condition (12), we set the Neu-
mann boundary condition as

∂E
∂n

(x, t) = p(x, t) , (x, t) ∈ ST .

Introduce the following spaces of real valued vector functions

H1
E(QT) =

{
f ∈ [H1(QT)]3 : f (x, 0) = 0

}
,

H1
λ (QT) =

{
f ∈ [H1(QT)]3 : f (x, T) = 0

}
,

U1 = H1
E (GT)×H1

λ (GT)×B(G) ,

whereB(G) is the space of functions bounded onG with the norm‖ f‖B(G) =

supG | f | .
To minimize the functional (13) we introduce the Lagrangian

L(E, λ , εr) = F(E, εr)−
∫

QT

εr(x)
∂λ
∂ t

(x, t) · ∂E
∂ t

(x, t)dxdt

−
∫

QT

∇ ·E(x, t)∇ ·λ (x, t)dxdt +
∫

QT

∇E(x, t)∇λ (x, t)dxdt

+ξ
∫

QT

∇ ·
(
εr(x)E(x, t)

)
∇ ·λ (x, t)dxdt −

∫

ST

λ (x, t) · p(x, t)dσ dt,

(14)
whereE and λ are weak solutions of problems (16)–(18) and (19)–(21), respec-
tively, see details in [9].

To derive the Fŕechet derivative of the Lagrangian (14), we assume that in (14)
the elements of the vector function(E, λ , εr) can be varied independently of each
other. We search for a pointw∈U1 such that
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L′(w)(w) = 0, ∀w∈U1. (15)

To find the Fŕechet derivativeL′(w), we considerL(w+w)−L(w), for everyw∈U1

and single out the linear part of the obtained expression. Then the forward problem
in the domainG′ is given by

εr(x)
∂ 2E
∂ t2 (x, t)+∇

(
∇ ·E(x, t)

)

−∇ ·
(
∇E(x, t)

)
−ξ ∇

(
∇ ·

(
εr(x)E(x, t)

))
= 0, (x, t) ∈ QT ,

(16)

E(x, 0) = 0,
∂E
∂ t

(x, 0) = 0, x ∈ G′, (17)

∂E
∂n

(x, t) = p(x, t) , (x, t) ∈ ST .

(18)

The adjoint problem is:

εr(x)
∂ 2λ
∂ t2 (x, t)+∇

(
∇ ·λ (x, t)

)

−∇ ·
(
∇λ (x, t)

)
−ξ εr(x)∇

(
∇ ·λ (x, t)

)
= 0, (x, t) ∈ QT , (19)

λ (x, T) = 0,
∂λ
∂ t

(x, T) = 0, x ∈ G′, (20)

∂λ
∂ t

(x, t) = zδ (t)
(
g̃(x, t)−E(x, t)

)
(x, t) , (x, t) ∈ ST . (21)

4 Mesh refinement recommendation and the adaptive algorithm

For the finite element discretization ofQT we used stabilized finite element method
of [3]. To do that we define a partitionKh = {K} of G′ which consists of tetrahedra.
Hereh is a mesh function defined ash|K = hK — the local diameter of the elementK.
Let Jτ = {J} be a partition of the time interval(0,T) into subintervalsJ = (tk−1, tk]
of uniform lengthτ = tk− tk−1. We also assume the minimal angle condition on the
Kh [11].

In our computations we have used local adaptive mesh refinements algorithm
which is based on ideas of [4], Theorem 5.1 and the criterion of Remark 5.1 of [2].
From this criterion follows that the finite element mesh should be locally refined
in such subdomain ofΩ where the maximum norm of the Fréchet derivative of the
objective functional is large. The Fréchet derivative of the functional (13) is:
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L′,m
h (x) = −

∫

0

T ∂λ m
h

∂ t
(x, t) · ∂Em

h

∂ t
(x, t)dt

+ξ
∫ T

0
∇ ·Em

h (x, t)∇ ·λ m
h (x, t)dt + γ(εh

m(x)− εr,glob(x)).

(22)

Here,m is the number of iteration in the optimization procedure, and (Em
h , λ m

h , εm
h )

are finite element approximations of the functions(E, λ , εr), see details in [2, 3].

Adaptive algorithm

• Step 0. Choose an initial meshKh in Ω and an initial time partitionJ0 of the time
interval(0, T) . Start from the initial guessε0

h = εr,glob. Compute the approxima-
tionsεm

h in the following steps:
• Step 1. Compute the approximate solutionsEm

h andλ m
h of the state problem (16)–

(18) and the adjoint problem (19)–(21) onKh andJk, using coefficientεm
h , and

compute the Fŕechet derivativeL′,m
h via (22).

• Step 2. Update the coefficient onKh using the conjugate gradient method:

εm+1
h (x) := εm

h (x)+αdm(x),

whereα > 0 is a step-size in the conjugate gradient method and can be computed
by a line search procedure, see, e.g. [17], and

dm(x) = −L′,m
h (x)+β mdm−1(x),

with

β m =
||L′,m

h ||2L2(Ω)

||L′,m−1
h ||2L2(Ω)

,

andd0(x) = −L′,0
h (x).

• Step 3. Stop updating the coefficient and setεh := εm+1
h , M := m+ 1, if either

||L′,m
h ||L2(Ω) ≤ θ or norms||εm

h ||L2(Ω) are stabilized. Hereθ is a tolerance num-
ber. Otherwise, setm := m+1 and go to step 1.

• Step 4. ComputeL′,M
h via (22). Refine the mesh at all grid pointsx where

|L′,M
h (x) | ≥ β1max

x∈Ω
|L′,M

h (x) |.

Here the tolerance numberβ1 ∈ (0, 1) is chosen by the user.
• Step 5. Construct a new meshKh in Ω and a new partitionJk of the time inter-

val (0, T). On Jk the new time stepτ should be chosen in such a way that the
Courant-Friedrichs-Lewy (CFL) condition is satisfied. Interpolate the initial ap-
proximationεr,glob from the previous mesh to the new mesh. Next, return to step
1 atm= 1 and perform all above steps on the new mesh. Stop mesh refinements
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if norms defined in step 3 either increase or stabilize, compared with the previous
mesh.

5 Numerical studies

In this section we present results of reconstruction of shapes of buried objects placed
inside a sandbox using the adaptive finite element method of Section 4. We obtain
initial guesses in the Tikhonov functional (13) using the globally convergent algo-
rithm on the first stage, see [9] for details and these initialguesses.

For the experimental data collection scheme we refer to [8, 18, 19]. We note
that in this work we consider the objects placed inside a sandbox. To model buried
objects in dry sand we used the fact that the relative dielectric constant of dry sand
is εr (sand) = 4. Thus, in our computational studies of [10, 18] and of this work we
scale our results of reconstruction by the factor 4. Tables 1and 2 present results after
scaling.

In our verification of the first stage we have used different types of targets, see
Table 1 of [18] for the full description of all data sets. We are working with metal-
lic objects as with dielectrics which have large dielectricconstants, see [16, 18]
for details, and we call themappearing dielectric constants. We choose values for
appearing dielectric constantssuch that

εr (metallic target) ≥ 10. (23)

To compare our computational results with directly measured refractive indices
n =

√
εr of dielectric targets and appearing dielectric constants of metallic targets

(see (23)), we consider only the maximal values of the computed functionsεr ob-
tained on the first and second stages of our two-stage numerical procedure. Thus,
we define

εcomp
r = max

x∈Ω
εr (x) , ncomp=

√
εcomp

r . (24)

5.1 Data preprocessing

In this work we have used the same data preprocessing procedure as was used in
[10, 19]. Below we present main steps of our data preprocessing procedure:

1. Data propagation.
2. Extraction of the target’s signal from the total signal. The total signal is a mixture

of the signal from the target and the signal from the sand. This extraction is
applied to the propagated data.

3. Data calibration: to scale the measured data to the same scaling as in our simula-
tions. This was done by using calibrating objects.
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For data propagation we have propagated the measured data toa propagated
plane. This plane was located at about 4 cm from the targets. A data calibration pro-
cedure was used to scale the measured data by a certaincalibration factorobtained
in our computational simulations. The choice of this factordepends on the data of a
knowncalibrating object. The procedure of the extraction of the signal of the target
from the total signal is complicated, and it is described in [18].

5.2 Computational domains

The spatial domains in our experiments are set in meters. We choose our computa-
tional domainG as

G = {x =(x, y, z) ∈ (−0.56, 0.56)× (−0.56, 0.56)× (−0.16, 0.1)} . (25)

The boundary of the domainG is ∂G = ∂1G∪ ∂2G∪ ∂3G. Here,∂1G and∂2G are
front and back sides of the domainG at {z= 0.1} and{z= −0.16}, respectively,
and∂3G is the union of left, right, top and bottom sides of this domain.

For the solution of the state problem (16)–(18) and the adjoint problem (19)–(21)
we have used the domain decomposition finite element/finite difference method of
[3]. To do that the the domainG is split into two subdomainsΩFEM = Ω andΩFDM

so thatG = ΩFEM∪ΩFDM and inner domain is defined as

ΩFEM = Ω = {x =(x, y, z) ∈ (−0.5, 0.5)× (−0.5, 0.5)× (−0.1, 0.04)} . (26)

The experimental data for both stages are given at the front sideΓ of the domainΩ
which is defined as

Γ = {x = (x, y, z) ∈ ∂Ω : z= 0.04}. (27)

5.3 Description of experimental data sets

Tables 1 and 2 describe the details of used data sets togetherwith the burial depths of
the targets. After obtaining computational results, the refractive indices of all dielec-
tric targets were measured, and these measured refractive indices were compared to
those predicted by the computations.

We note that the burial depths of the objects of Tables 1 and 2 varied between 2
cm and 10 cm. Such depths are relevant for military applications where the burial
depths of antipersonnel land mines typically do not exceed 10 cm. The measured
data of the sandbox (without buried objects) was used for thecalibration of all data
for the objects of Tables 1 and 2.
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5.4 Numerical examples of the second stage

From results of [18, 19] we can conclude that the first stage provides accurate loca-
tions and accurate values of the refractive indicesn =

√
εr of the dielectric targets

as well as large values of appearing dielectric constantsεr for the metallic targets.
However, the globally convergent algorithm does not reconstruct shapes well, see
Figure 4 in [10]. To refine shapes, we have used the second stage, on which we have
minimized the Tikhonov functional on locally adaptively refined meshes.

Our experimental backscattering data at the second stage are given only for the
second componentE2 of the electric fieldE in (5) and are measured on the front
sideΓ of the domainΩ defined as in (27). For generation of other two components
E1 andE3 we solve the forward problem (6)–(11) in the computational domainG
defined as in the first stage in (25) with the known value ofεr which we take from
the first stage of our two-stage numerical procedure. Then weapply the data im-
mersing procedure described in Section 7.3.3 of [9] to solvethe inverse problem
via the algorithm of Section 4. The immersing procedure of [9] first immerses the
time-dependent propagated experimental datag(x, t) = E2 (x, t)|x∈Γ into the com-
putationally simulated data and then extends the datag from Γ to Γ ′.

We choose the waveformf in (6)–(11) as

f (t) = sin(ωt), 0≤ t ≤ t ′ :=
2π
ω

,

where we useω = 30 andT = 1.2. We solve the problem (6)–(11) using the explicit
scheme of [3] with the time step sizeτ = 0.003, which satisfies the CFL condition.

We obtain the image of the dielectric targets based on the function εr,diel, which
we define as

εr,diel (x) =

{
εr (x) if εr (x) ≥ βdielmaxx∈Ω εr (x) ,
1 otherwise.

For metallic targets we use a similar functionεr,metal,

εr,metal(x) =

{
εr (x) if εr (x) ≥ βmetalmaxx∈Ω εr (x) ,
1 otherwise.

Here, βdeil, βmetal ∈ (0, 1) and εr is the function computed by the algorithm of
Section 4. In general,βdeil andβmetal may be different, but in this study we have
βdeil = βmetal= 0.5.

Tables 1 and 2 display computed and directly measured refractive indices of di-
electric objects as well as appearing dielectric constantsfor metallic objects, respec-
tively, their correct and calculated burial depths obtained on the first stage. On the
second stage we have obtained refractive indices of dielectric targets and appear-
ing dielectric constants of metallic targets very close to ones of the first stage, see
Table 3.
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Fig. 1 Backscattering simulated data of the electric fieldE(x, t) = (E1,E2,E3)(x, t) of the electric
field at timet = 0.3: a) for Object #1 of Table 2; b) for Object #3 of Table 1. We observe that the
componentE2 of the electric fieldE dominates by amplitude two other componentsE1,E3 which
are located very close to each other and are not distinguishableon this figure.

Figure 1 shows simulated backscattering data for all three components of the
electric fieldE(x, t) for Object #1 of Table 2 and Object #3 of Table 1, respectively.
To simulate these data we solve the problem (6)–(11) numerically with the known
values of the functionεr = εr,glob obtained at the first stage. We observe that the
componentE2 of the electric fieldE dominates by amplitude two other components
E1,E3 for both objects. Figures 2, 3 show backscattering immerseddata of the sec-
ond component of electric fieldE2 for Object #1 of Table 2 (metallic ball) and for
Object #3 of Table 1 (ceramic mug), respectively, at different times.

Figures 4–7 show adaptively refined meshes and obtained reconstructions on
these meshes for Objects #1, #2, #5, and #6, respectively. The results for adap-
tively refined meshes for all objects of Tables 1 and 2 are summarized in Table 3.
Using Table 3 we observe that local refinement of the mesh doesnot have a signifi-
cant increase in the number of nodes and elements in the coarse finite element grid.
This fact indicates towards efficiency of the application ofadaptive algorithm to the
solution of our CIP. Using Figures 4–7 and results of Table 3 we can conclude that
the locations as well as the shapes of most targets are significantly improved on the
second stage of our two-stage numerical procedure.
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ObjectDescription Computed Exact DepthComputedMeasured Refractive
# depth (cm)depth (cm)error (%) n n index error (%)
2 Bottle filled with 3.6 4.0 10 4.7 4.88 4

clear water
3 Ceramic mug 4.0 5.0 20 1.0 1.39 21
6 Wet wooden block 5.5 9.8 44 4.2 4.016 1

Table 1 Results of the first stage: descriptions, burial depths, and refractive indicesn=
√

εr of non-
metallic targets. Errors are computed relative to the exact/measured value. Numbers for objects are
chosen to be consistent with those of [10].

ObjectDescription Computed Exact DepthComputedεr
# depth (cm)depth (cm)error (%)
1 Metallic ball 2.9 3.0 3 31.0
4 Two metallic blocks, 3.8 4.0 5 99.8

separated by 1 cm 4.0 4.0 0 56.5
5 Metallic prism 1.0 2.0 50 50.0
7 Two metallic prisms, 3.0 3.0 0 23.4

separated by 6 cm 3.6 3.0 20 30.5
8 Two metallic prisms, 7.3 10.0 27 23.4

separated by 6 cm 8.2 10.0 18 30.5

Table 2 Results of the first stage: descriptions, burial depths, and estimated effective dielectric
constants of metallic targets. Object #4 consists of two metallic targets with 1 cm distance between
their surfaces (a case of superresolution, see details in [10]). Object #7 and Object #8 consist of the
same two metallic targets, but at different depths. Errors are computed relative to the exact value.
Numbers for objects are chosen to be consistent with those of [10].
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Object # coarse mesh1 ref. mesh2 ref. mesh3 ref. mesh4 ref. mesh
1 # nodes 21853 21947 22211 22606

# elements 115200 115488 116868 119448
εcomp

r 24.5 24.6 24.7 24.6
2 # nodes 21853 21901 22231 22882

# elements 115200 115488 117056 120912
ncomp 4.7 4.7 4.7 4.7

3 # nodes 21853 21893
# elements 115200 115440
ncomp 1.0 1.0

4 # nodes 21853 21961 22448 23228
# elements 115200 115848 118034 122962
εcomp

r 75.6 100.0 100.0 100.0
5 # nodes 21853 21953 22438 23195

# elements 115200 115800 117996 122784
εcomp

r 52.0 52.0 51.2 50.4
6 # nodes 21853 21978 22432

# elements 115200 115950 117938
ncomp 4.3 4.3 4.4

7 # nodes 21853 22003 22489 23214 24274
# elements 115200 116100 118226 122840 129200
εcomp

r 32.8 33.2 34.9 36.7 38.4
8 # nodes 21853 21992 22463 23138 24040

# elements 115200 116034 118094 122432 127816
εcomp

r 31.4 32.7 34.5 37.4 39.0

Table 3 Results of the second stage: Numbers of nodes and elements in adaptively refined meshes
for the objects of Tables 1 and 2. For dielectric objects, computed refractive indicesncomp are
shown, while for metallic objects appearing dielectric constants εcomp

r are shown. (See equation
(24) for definitions ofncomp andεcomp

r ). If after a certain number of refinements no further data
are presented for a particular object, the computations converged at the last presented step for that
object.



Numerical studies of an adaptive finite element method applied tothe reconstruction... 15

0
10

20
30

40
50

60

0

20

40

60
−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

0
10

20
30

40
50

60

0

20

40

60
−0.4

−0.3

−0.2

−0.1

0

0.1

a) t=0.3 b) t=0.4

0
10

20
30

40
50

60

0

20

40

60
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0
10

20
30

40
50

60

0

20

40

60
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

c) t=0.5 d) t=0.6

Fig. 2 Backscattering immersed data of the second componentE2 of the electric field for Object #1
of Table 2, without presence of signal from sand. Recall that thefinal time isT = 1.2.



16 L. Beilina, Nguyen T.T., M.V. Klibanov, and J.B. Malmberg

0
10

20
30

40
50

60

0

20

40

60
−0.5

−0.4

−0.3

−0.2

−0.1

0

0
10

20
30

40
50

60

0

20

40

60
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

a) t=0.3 b) t=0.4

0
10

20
30

40
50

60

0

20

40

60
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0
10

20
30

40
50

60

0

20

40

60
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

c) t=0.5 d) t=0.6

Fig. 3 Backscattering immersed data of the second componentE2 of the electric field for Object #3
of Table 1, without presence of signal from sand. Recall that thefinal time isT = 1.2.
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(a) 1 ref mesh,xy-view (b)xz-view (c)yz-view (d) εcomp
r ≈ 24.6

(e) 2 ref mesh,xy-view (f) xz-view (g)yz-view (h) εcomp
r ≈ 24.7

(i) 3 ref mesh,xy-view (j) xz-view (k) yz-view (l) εcomp
r ≈ 24.6

Fig. 4 Adaptively refined meshes for Object #1 of Table 2 and respectivereconstructions.
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(a) 1 ref mesh,xy-view (b)xz-view (c)yz-view (d)ncomp≈ 4.7

(e) 2 ref mesh,xy-view (f) xz-view (g)yz-view (h)ncomp≈ 4.7

(i) 3 ref mesh,xy-view (j) xz-view (k) yz-view (l) ncomp≈ 4.7

Fig. 5 Adaptively refined meshes for Object #2 of Table 1 and respectivereconstructions.
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(a) 1 ref mesh,xy-view (b)xz-view (c)yz-view (d) εcomp
r ≈ 52.0

(e) 2 ref mesh,xy-view (f) xz-view (g)yz-view (h) εcomp
r ≈ 51.2

(i) 3 ref mesh,xy-view (j) xz-view (k) yz-view (l) εcomp
r ≈ 50.4

Fig. 6 Adaptively refined meshes for Object #5 of Table 2 and respectivereconstructions.
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(a) 1 ref mesh,xy-view (b)xz-view (c)yz-view (d)ncomp≈ 4.3

(e) 2 ref mesh,xy-view (f) xz-view (g)yz-view (h) ncomp≈ 4.4

Fig. 7 Adaptively refined meshes for Object #6 of Table 1 and respectivereconstructions.
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