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Numerical studies of an adaptive finite element
method applied to the reconstruction of shapes
of buried objects from experimental data

Larisa Beiling, Nguyen Trung Thnt?, Michael V. Klibanov and
John Bondestam Malmbeétg

Abstract We perform extended studies of an adaptive finite elemeriadeipplied

to the reconstruction of shapes of buried objects from ewpartal backscattering
data. We use experimental data which are collected by a wéu® scattering fa-
cility located at the University of North Carolina at Chaté&g USA. Our numerical
tests show accurate imaging of three components of inteféatgets: shapes, lo-
cations and refractive indices.

1 Introduction

In this paper we present extended studies of an adaptive él@iment method which
we use to improve reconstruction of shapes of buried objadtse dry sand from
experimental time-dependent backscattering data. Farstgd this study was pre-
sented in [10]. Experimental data were collected using aawiave scattering facil-
ity located at the University of North Carolina at CharlpttkSA. For the description
of data collection procedure we refer to recent works [8, 19]

We consider a coefficient inverse problem (CIP) for Maxvgetfquations in
three dimensions. This paper is a continuation of our restmties on this topic
[8, 9, 19], where we have reconstructed shapes, locaticthsedractive indices of
targets placed in air. To solve our CIP we use the two-stageniaal procedure pre-
sented in [5-7, 9]: on the first stage the approximately dlplcanvergent method
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of [5] is applied to get a good first approximation for the ebsalution of our CIP,

and on the second stage the local adaptive finite elemeniocheti{2] refines the
solution obtained on the first stage using the minimizatice Tikhonov functional.

It make sense to refine the solution obtained on the first stage in [15] was
shown that a minimizer of the Tikhonov functional is closertlie exact solution
than the first guess for this solution. In [7] the relaxatiooperty was shown for
mesh refinements. It states that the solution obtained onefireed mesh will be
closer to the minimizer of a Tikhonov functional than theuian obtained on the
coarse mesh. Using results of [7, 15] we conclude that we btairobetter approx-
imations and shapes of objects through the minimization ikhonov functional

on the adaptively refined meshes.

An outline of this paper is as follows. In sections 2, 3 weestae forward and
inverse problems on the first and the second stage, resplgctivSection 4 we de-
scribe the mesh refinement recommendation and the adafgveétlam. In Section
5 we present numerical studies of the adaptive finite elemeiiiod.

2 Statement of Forward and Inverse Problems on the first stage

In this section we state the forward and inverse problemshwvie use on the first
stage.

Let Q c R3 be a convex bounded domain with the bounday € C3, x =
(X, 2) € R® andCK+? denote a Hlder space wherk > 0 is an integer andr €
(0, 1). On the first stage we model the wave propagation by the fatigu@auchy
problem for the scalar wave equation

sr(X)%(x, t) —Au(x,t) = 3(z—2) (1), (x,t) eR®x (0,0), (1)
u(x,0) =0, %(x, 0) =0, xe RS (2)

Heref (t) # 0 is the waveform incident plane wave generated at the glarez}
and propagating along tleaxis. We consider the propagation of the electric wave
E(x,t) = (E1, Ez, E3) (x,1) in R® generated by the incident plane wave. In our
experiments only the single non-zero compongsnif the incident electric field
E (x, t) is excited while two other components are set to zero, and easare the
backscattering functio&,, which is the voltage. On the first stage we use only the
single equation (1) withu = E, instead of the full Maxwell's system. We do such
approximation since it was shown numerically in [3] that toenponen&; of the
electric fieldE dominates two other components. This observation is alsfiroted
by our experimental numerical studies - see Figure 1.

The functiong (x) = %‘) in (1) is the relative dielectric constant, wherg) is
the absolute dielectric permittivity of the material asads the dielectric permittiv-
ity of vacuum. We assume that is unknown inside the domai@ c R® and this
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function is known outside of it,
&€C?(R%), &(x)e[LbforxeR? &(x)=1forxeR3\Q, (3)

whereb > 1 is a known constant. In our experiments the plane wdtgis initial-
ized outside of the domai@, thatis,{z=2}NQ = @.

Coefficient Inverse Problem 1 (CIP1). Determine the functiog (x) for x € Q
with a known function g for a single incident plane wave gatest at the plane
{z= 2z} outside ofQ:

U(X, 1) =g (X, 1) V(X t) €T x (0, e0).
Here,[" C 0Q is a backscattering part of the boundady?.

Remark 1.

e The data functiom is extended numerically to a functigroi the whole bound-
ary 0Q, see Section 4 of [9]. Thus, we assume the¢ t) is known for every
(x,1) €0Q x (0, T).

e Global uniqueness theorems for multidimensional CIPs widingle measure-
ment are currently known only under the assumption thatest lene of initial
conditions does not equal zero in the entire donfif5, 12]. In the case of our
CIP we simply assume that uniqueness of our CIP holds.

e To solve CIP1 of the first stage we use the globally convergethod of [5].
Extended numerical studies of this method for the case afrax@ntal backscat-
tering data are presented in [8, 9, 18, 19].

3 Statement of Forward and Inverse Problems on the second
stage

On the second stage we model the electric wave propagatamigotropic and non-
magnetic space iR3 with the dimensionless relative magnetic permeabijlity= 1
and with the relative dielectric constag{x). We consider the following Cauchy
problem as the model problem for the electric filgk, t) = (Eq, Ez, E3)(X, )

0°E

& (X) 57 (%, 1) + 0 x (OxE(x,1)=F(zt), (x,t)eR3x(0,T),
0 (&(X)E(x, 1)) =0, (x,1)eR3x (0, T), (4
E(x,0) =0, (Z—E(X,O)ZO, x € R3.

HereF (zt) = (0, 6(z—2)f(t), 0), f (t) £0, is the incident plane wave. We assume
that the coefficieng; of equation (4) is the same as in (3). Let aghirc dQ be a
backscattering part of the boundat{?.
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Coefficient Inverse Problem 2 (CIP2). Determine the functiow; (x), X € Q,
assuming that the following vector functigiix, t) = (g1,02,93) (X, t) is known for
a single incident plane wave:

E(x,t)=g(x,t), V(x,t) el x(0,T). (5)

In (5) the vector functioy models time dependent measurements of the electric
field at the parl” of the boundary Q of the domainQ. As in the case of CIP1 we
again assume that we have uniqueness for our CIP2.

The functionE; in (4) models the voltage of one component of the electridfiel
E (x, t) which we measure in experiments. In our computer simulatafrSection
5.4, E; is the only non-zero component of the incident filed. The oth® com-
ponentsE; and Es, of electrical field are generated by the computed solution o
problem (4) with the known value & (x) € Q which we have obtained as the so-
lution of CIP1 via the approximate globally convergent aitijon on the first stage.
Then the experimental dageare immersed into the computed comporenbn the
surfacel”.

3.1 The model problem

In our simulations we choose computational dom@isuch thatQ ¢ G andG =
Qrem U Qrpm With Qrem = Q. We use domain decomposition finite element/finite
difference method of [3] for the solution of the problem (@here a finite element
method is used i2ggp and a finite difference method is used®apy.

By (3) we have that

&(x) > 1, for x € Qrewm,
&(x) =1, for x € Qrpm.

We choose the domain3 andG such that
Q=0rem={x=(xy,2):—a<x<a —-b<y<b -c<z<c},

G={x=(xY,2: —A<x<A -B<y<B,-C<z<zn},

where 0<a< A, 0<b< B, -C< —c< ¢ <2z, andQrpm = G\ Qrem. Denote
by

01G:=GN{z=2}, 06,G:=Gn{z=-C}, 03G:=0G)\(0.GUAG).

The backscattering side @ is ' = dQ N{z=c'}. Next, defined Gr := 3G x
(0,T),i=1,2,3. Lett’ € (0, T) be a point in time after which the initialization of
the plane wave a#; G stops. We assume that the functib(t) € C|0, t'].

Similarly with [3] we used stabilized model problem with tharameteé > 1:
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0’E

&(X) e (x,t)+0(0-E(x,t)) — O (OE(x, 1))

~&0(0- (&(EX D)) =0, (xHEGX(O.T), (6
E(x,0)=0, %E(K 0) =0, X e G, (7)
E(x,t) = (0, f (t),0), (x,t) € G x (0,t'], (8)
%(x, t) = —%E(x, t), (x,t) e aGx (', T), (9)
%(x, t)= —%E(x, t), (X, 1) € .G, (10)
%(x, t)=0, (x,t) € 95Gr, (11)

whered/dn is the normal derivative. Conditions (9) and (10) are firstevrab-
sorbing boundary conditions [14]. At the lateral boundares impose a homoge-
neous Neumann condition (11). In [3] it was shown that thetsmh to the original
Maxwell's equations is well approximated by the solution(6)—(11) in the case
whereé = 1 and the discontinuities ig are not too large. Here we have used the
well-known identity0) x (O x E) = O(0-E) — O- (OE). We refer to [3] for details

of the numerical solution of the forward problem (6)—(11).

3.2 The Tikhonov functional

Let I’ be the extension of the backscattering didap to the boundargs;G of the
domainG such that

M={x=xy2:-X<x<X,-Y<y<Y,z=c}.

Let G’ be the part of the rectangular priggnwhich lies between the two planés
and{z=—-C}:

G ={x=(xy,2:-X<x<X,-Y<y<Y,-C<z<c}.

Denote byQr =G’ x (0, T), andSy =9G' x (0, T).

In our CIP2 we have the datgn (5) only onl" . These data are complemented on
the rest of the boundadG'’ of the domairG’ by simulated data using the immersing
procedure of [9]. Thus, we can approximately get the veatoctiong:

g, t)=E(xt), (xt)eSr. (12)

To solve our inverse problem we minimize the Tikhonov fuoictl:
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F(E, &) =5 / ))Zza(t) dodt + %V/G (&(x) — er7g|ob(x))2dx,

(13)
wherey > 0 is the (small) regularization parameter angqp is the computed coef-
ficient which we have obtained on the first stage via the glglcahvergent method.
In our computations we use single value of the regularingt@rametey which we
choose in a computational efficient way such that the valtigs-00 give the small-
est reconstruction error. We refer to [1, 13] for differemthniques for the choice
of regularization parameter. In (13) the functigyit) is used to introduce the com-
patibility conditions atQ; N {t = T} for the adjoint problem. The functioms(t)
satisfies

() 1; t€<07T_6)a
z;€C20,T], {0<zst)<1, te(T-5,T-5/2),
z5(t) =0, te(T—58/2,T).

Let Egiop be the solution of the forward problem (6)—(11) wih= & giob. De-
note byp = dnEgiobls; - In addition to the Dirichlet condition (12), we set the Neu-
mann boundary condition as

JE
%(x,t) =p(xt), (xt)eSr.

Introduce the following spaces of real valued vector fuocdi
={fe )3 f(x,0) =0},
={fe )3 f(x, T) =0},

ul =H¢ (GT) x H} (GT) x B(G),

whereB(G) is the space of functions bounded @with the norm|/fllgq) =

sups | f1.
To minimize the functional (13) we introduce the Lagrangian

L(E, A, &) = F(E, e,)f/QT sr(x)%(x,t) dd'f (x, t) dxclt

—/ D-E(x7t)D-)\(x,t)dxdt+/ DE (x, )0A (x, t) dxct

+z/ JE(x, 1)) 0-A (x, t) dx it — / (x,1) - p(x, t)doct,

(14)
whereE and A are weak solutions of problems (16)—(18) and (19)—(21pees
tively, see details in [9].

To derive the Rechet derivative of the Lagrangian (14), we assume that4h (1
the elements of the vector functidg, A, &) can be varied independently of each
other. We search for a poimt € U* such that
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L'(w) (W) =0, vYweUL (15)

To find the Féchet derivativé’(w), we considet. (w-+ W) — L (w), for everyw € Ut
and single out the linear part of the obtained expressioanThe forward problem
in the domairG' is given by

&(X) ‘ZE (x,t)+0(0-E(x,1))
—0-(DE(x, 1)) — ED(IZI- (& (X)E(x, t))) —0, (xt)eQr,
(16)
E(x, 0) =0, ‘Z—f(x, 0)=0, xeG, (17)
JE
%(x,t):p(x,t), (x,t) € Sr.
(18)

The adjoint problem is:

92\
&(X) i (x,t)+0(0-A(x,1))
—0-(0A(x,1) —E&(x)0(0-A(x,1)) =0, (x,t) €Qr, (19)
A(x, T) =0, %(X,T) —0, xeG, (20)
8001 = 23 (0) (3%, 0 — B0 ) (1), (xves. (@1

4 Mesh refinement recommendation and the adaptive algorithm

For the finite element discretization @f we used stabilized finite element method
of [3]. To do that we define a partitid&, = {K} of G’ which consists of tetrahedra.
Herehis a mesh function defined b = hx — the local diameter of the elemeit
LetJ; = {J} be a partition of the time intervaD, T) into subintervals) = (tx_1,]

of uniform lengtht =t —tx_1. We also assume the minimal angle condition on the
K [11].

In our computations we have used local adaptive mesh refimsnadgorithm
which is based on ideas of [4], Theorem 5.1 and the criterfdRemnark 5.1 of [2].
From this criterion follows that the finite element mesh dbdwe locally refined
in such subdomain a2 where the maximum norm of the &het derivative of the
objective functional is large. The &chet derivative of the functional (13) is:
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ToAM JoET
Lﬁm(x):_ T{](X7t)7th(xvt)dt
- (22)
+& /0 0-EM(x, )0 AM(X, ) dt + y(ea™(X) — & giob(X)).
Here,mis the number of iteration in the optimization procedured €&, A", &)
are finite element approximations of the functiggs A, &), see details in [2, 3].

Adaptive algorithm

e Step 0. Choose an initial me&h in Q and an initial time partitiody of the time
interval (0, T). Start from the initial guessf? = & glob- Compute the approxima-
tions g in the following steps:

e Step 1. Compute the approximate soluti&jsandA" of the state problem (16)—
(18) and the adjoint problem (19)—(21) &® andJ,, using coefficieng])’, and
compute the Fechet derivative; ™ via (22).

e Step 2. Update the coefficient &@ using the conjugate gradient method:

&' (%) = &%) +ad™(x),

wherea > 0 is a step-size in the conjugate gradient method and cambputed
by a line search procedure, see, e.g. [17], and

d™(x) = —L;;"(x) + BMd™*(x),
with

!
L™, 0

mem=12
™12, 0

B~

9

andd®(x) = —L;%(x).

e Step 3. Stop updating the coefficient and get= e{f‘”, M := m+1, if either
|\L§;m|\L2(Q> < 6 or norms[g]l'||,(q) are stabilized. Heré is a tolerance num-
ber. Otherwise, seh:= m+ 1 and go to step 1.

e Step4. Computt-;;M via (22). Refine the mesh at all grid pointsvhere

LM (x)] > BrmaxiLi™ (x) .
xeQ

Here the tolerance numbgi € (0, 1) is chosen by the user.

e Step 5. Construct a new mekl in Q and a new partitioldk of the time inter-
val (0, T). On Ji the new time steg should be chosen in such a way that the
Courant-Friedrichs-Lewy (CFL) condition is satisfied.drgolate the initial ap-
proximationg; giop from the previous mesh to the new mesh. Next, return to step
1 atm= 1 and perform all above steps on the new mesh. Stop mesh refinem
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if norms defined in step 3 either increase or stabilize, costgpwith the previous
mesh.

5 Numerical studies

In this section we present results of reconstruction of se@bburied objects placed
inside a sandbox using the adaptive finite element metho@cid 4. We obtain
initial guesses in the Tikhonov functional (13) using thebgllly convergent algo-
rithm on the first stage, see [9] for details and these irgtisdsses.

For the experimental data collection scheme we refer to §3,18]. We note
that in this work we consider the objects placed inside alsaxdlo model buried
objects in dry sand we used the fact that the relative dietecbnstant of dry sand
is & (sand = 4. Thus, in our computational studies of [10, 18] and of thiskwve
scale our results of reconstruction by the factor 4. Tabkesdl2 present results after
scaling.

In our verification of the first stage we have used differepetyof targets, see
Table 1 of [18] for the full description of all data sets. We avorking with metal-
lic objects as with dielectrics which have large dielectanstants, see [16, 18]
for details, and we call therappearing dielectric constant$Ve choose values for
appearing dielectric constantich that

& (metallic target > 10. (23)

To compare our computational results with directly meaguedractive indices
n=,/& of dielectric targets and appearing dielectric constahtaetallic targets
(see (23)), we consider only the maximal values of the coetpfinctionse, ob-
tained on the first and second stages of our two-stage nustherioecedure. Thus,

we define
£F°MP = maxg; (x), PP = /g2, (24)
XeQ

5.1 Data preprocessing

In this work we have used the same data preprocessing precadwas used in
[10, 19]. Below we present main steps of our data preprocggsiocedure:

1. Data propagation.

2. Extraction of the target’s signal from the total signdieTotal signal is a mixture
of the signal from the target and the signal from the sands Bhiraction is
applied to the propagated data.

3. Data calibration: to scale the measured data to the saatirgsas in our simula-
tions. This was done by using calibrating objects.
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For data propagation we have propagated the measured datprépagated
plane This plane was located at about 4 cm from the targets. A aditaration pro-
cedure was used to scale the measured data by a ceatdiration factorobtained
in our computational simulations. The choice of this factepends on the data of a
knowncalibrating object The procedure of the extraction of the signal of the target
from the total signal is complicated, and it is describedli]]

5.2 Computational domains

The spatial domains in our experiments are set in meters.ndese our computa-
tional domainG as

G={x=(xy,2) € (—0.56,0.56) x (—0.56,0.56) x (—0.16,0.1)}.  (25)

The boundary of the domai@ is 0G = 9:GU d,GU 05G. Here,0,G and .G are
front and back sides of the doma®at {z= 0.1} and{z= —0.16}, respectively,
anddsG is the union of left, right, top and bottom sides of this domai

For the solution of the state problem (16)—(18) and the atjmioblem (19)—(21)
we have used the domain decomposition finite element/firfitereince method of
[3]. To do that the the domai@ is split into two subdomain®rgy = Q andQrpm
so thatG = Qrem U Qrpm and inner domain is defined as

Qrem = Q = {x=(x,y,2) € (—0.5,0.5) x (—0.5,0.5) x (~0.1,0.04)}.  (26)

The experimental data for both stages are given at the fidaf sof the domainQ
which is defined as

F={x=(xy,2€0Q:z=0.04}. (27)

5.3 Description of experimental data sets

Tables 1 and 2 describe the details of used data sets togéthéne burial depths of
the targets. After obtaining computational results, ttieive indices of all dielec-
tric targets were measured, and these measured refrautiees were compared to
those predicted by the computations.

We note that the burial depths of the objects of Tables 1 arati2d between 2
cm and 10 cm. Such depths are relevant for military appboatiwhere the burial
depths of antipersonnel land mines typically do not exceedr. The measured
data of the sandbox (without buried objects) was used focdlibration of all data
for the objects of Tables 1 and 2.
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5.4 Numerical examples of the second stage

From results of [18, 19] we can conclude that the first stageiges accurate loca-
tions and accurate values of the refractive indices /¢, of the dielectric targets
as well as large values of appearing dielectric constarfiar the metallic targets.
However, the globally convergent algorithm does not retans shapes well, see
Figure 4 in [10]. To refine shapes, we have used the secone, stagvhich we have
minimized the Tikhonov functional on locally adaptivelyireed meshes.

Our experimental backscattering data at the second staggivem only for the
second componert, of the electric fieldE in (5) and are measured on the front
sidel” of the domainQ defined as in (27). For generation of other two components
E; andE3 we solve the forward problem (6)—(11) in the computatiorahdin G
defined as in the first stage in (25) with the known value;ofhich we take from
the first stage of our two-stage numerical procedure. Themappty the data im-
mersing procedure described in Section 7.3.3 of [9] to stteeinverse problem
via the algorithm of Section 4. The immersing procedure $fif8t immerses the
time-dependent propagated experimental ddtat) = Ex (X, t)|xer into the com-
putationally simulated data and then extends the gétam I" to I’.

We choose the waveforrhin (6)—(11) as

f(t) =sin(wt), 0<t<t = %"
where we usev = 30 andT = 1.2. We solve the problem (6)—(11) using the explicit
scheme of [3] with the time step size= 0.003, which satisfies the CFL condition.

We obtain the image of the dielectric targets based on thetifume; giei, which
we define as

_ [ &(x) if &(x) > Baiermax g & (X),
£ diel (X) = { 1 otherwise. ©

For metallic targets we use a similar functiernetas

) & (x) if & (x) > Bmetalma)&eﬁ & (X),
£ metal(X) = 1 otherwise.

Here, Byeil, Bmetal € (0, 1) and & is the function computed by the algorithm of
Section 4. In generaf3gei and Bmetas May be different, but in this study we have
Bdeil = BmetaI: 0.5.

Tables 1 and 2 display computed and directly measured tefdgndices of di-
electric objects as well as appearing dielectric consfantsetallic objects, respec-
tively, their correct and calculated burial depths obtdina the first stage. On the
second stage we have obtained refractive indices of dreldergets and appear-
ing dielectric constants of metallic targets very closetieof the first stage, see
Table 3.
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1””"”;‘;{‘?‘\‘

Fig. 1 Backscattering simulated data of the electric figlet,t) = (E1, E2, E3)(x,t) of the electric
field at timet = 0.3: a) for Object #1 of Table 2; b) for Object #3 of Table 1. We abeedhat the
componeng; of the electric fielde dominates by amplitude two other componeiisE; which

are located very close to each other and are not distinguishaliles figure.

Figure 1 shows simulated backscattering data for all thmeponents of the
electric fieldE(x,t) for Object #1 of Table 2 and Object #3 of Table 1, respectively
To simulate these data we solve the problem (6)—(11) nuaibriwith the known
values of the functiorg; = & giop Obtained at the first stage. We observe that the
components; of the electric fielde dominates by amplitude two other components
E;, E3 for both objects. Figures 2, 3 show backscattering immeds¢al of the sec-
ond component of electric fiel, for Object #1 of Table 2 (metallic ball) and for
Object #3 of Table 1 (ceramic mug), respectively, at diffietenes.

Figures 4—-7 show adaptively refined meshes and obtainechstuaotions on
these meshes for Objects #1, #2, #5, and #6, respectiveyrdsults for adap-
tively refined meshes for all objects of Tables 1 and 2 are samzed in Table 3.
Using Table 3 we observe that local refinement of the mesh woidsave a signifi-
cant increase in the number of nodes and elements in theeciiigite element grid.
This fact indicates towards efficiency of the applicatiomdéptive algorithm to the
solution of our CIP. Using Figures 4—7 and results of Tablee3can conclude that
the locations as well as the shapes of most targets are saytiff improved on the
second stage of our two-stage numerical procedure.
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ObjectDescription Compute Exac{ DepthComputedMeasured Refractive

# depth (cm)depth (cm)error (% n njindex error (%

2 |Bottle filled with 3.6 4.0 10 4.7 4.88 4
clear water

3 |Ceramic mug 4.0 5.0 20 1.0 1.39 21

6 |Wet wooden block 5.5 9.8 44 4.2 4.016 1

Table 1 Results of the first stage: descriptions, burial depths, and tefeaodicesn = /& of non-
metallic targets. Errors are computed relative to the exact8ured value. Numbers for objects are
chosen to be consistent with those of [10].

ObjectDescription Computed Exact DepthComputeds,
# depth (cm)depth (cm)error (%

1 [Metallic ball 2.9 3.0 3 31.0

4 |Two metallic blocks| 3.8 4.0 5 99.8

separated by 1 cm 4.0 4.0 0 56.5

5 |Metallic prism 1.0 2.0 50 50.0

7 |Two metallic prismsg, 3.0 3.0 0 23.4

separated by 6 cm 3.6 3.0 20 30.5

8 |Two metallic prismg, 7.3 10.0 27| 23.4

separated by 6 cm 8.2 10.0 18 30.5

Table 2 Results of the first stage: descriptions, burial depths, and estneffesctive dielectric
constants of metallic targets. Object #4 consists of two metaligets with 1 cm distance between
their surfaces (a case of superresolution, see details in [1BjpcO#7 and Object #8 consist of the
same two metallic targets, but at different depths. Errors are st@dpelative to the exact value.
Numbers for objects are chosen to be consistent with those of [10].
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Object # coarse megh ref. mesh2 ref. mesh3 ref. mesié ref. mesh
1 # nodes 21853 21947 22211 226046
#elements 115200 115488 116868 119448
£0omP 245 246 247 246
2 # nodes 21853 21901 22231 22882
# elements 115200 115488 117054 120917
ncomp 4.7 4.7 4.7 4.7,
3 # nodes 21853 21893
#elements 115200 11544(
neomp 1.0 1.0
4 # nodes 21853 21961 22448 23228
# elements 115200 115844 118034 122967
g 75.6 100.0 100.0 100.0
5 # nodes 21853 21953 22438 23195
# elements 11520d 115800 117996 122784
g 52.0 52.0 51.2 50.4
6 # nodes 21853 21978 22432
# elements 115200 115950 117934
neomp 4.3 4.3 4.4
7 # nodes 21853 22003 22489 23214 24274
# elements 115200 116100 118224 12284( 129200
g 32.8 33.2 34.9 36.7| 38.4
8 # nodes 21853 21992 22463 23138 24040
# elements 115200 116034 118094 122432 127816
g 31.4 32.7 34.5 37.4 39.0

Table 3 Results of the second stage: Numbers of nodes and elements iivelyaefined meshes
for the objects of Tables 1 and 2. For dielectric objects, cdapuefractive indices®°™ are
shown, while for metallic objects appearing dielectric contsta™™ are shown. (See equation
(24) for definitions ofn®™P and &7°™P). If after a certain number of refinements no further data
are presented for a particular object, the computations cgedeat the last presented step for that
object.
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c)t=0.5 d) t=0.6

Fig. 2 Backscattering immersed data of the second compdgienitthe electric field for Object #1
of Table 2, without presence of signal from sand. Recall thafitiatime isT = 1.2.
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c) t=0.5 d) t=0.6

Fig. 3 Backscattering immersed data of the second compdgieuitthe electric field for Object #3
of Table 1, without presence of signal from sand. Recall thafitiatime isT = 1.2.
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