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Abstract: The vertical road input is the most important load for durability assessments of
vehicles. We focus on stochastic modelling of the parallel road profiles with the aim to find
a simple but still accurate model for such bivariate records. A model is proposed that is
locally Gaussian with randomly gamma distributed variances leading to a generalized Laplace
distribution of the road profile. This Laplace model is paired with the ISO spectrum and is
specified by only three parameters. Two of them can be estimated directly from a sequence of
roughness indicators, such as IRI or ISO roughness coefficient. The third parameter needed
to define the cross spectrum between the left and right road profiles is estimated from the
sample correlation. Explicit approximations for the expected fatigue damage for the proposed
Laplace-ISO model are developed and its usefulness is validated using measured road profiles.

Keywords: Road surface profile; road roughness; road irregularity; generalized Laplace dis-
tribution; non-Gaussian process; power spectral density (PSD); ISO spectrum; roughness co-
efficient; international roughness index (IRI); vehicle durability; fatigue damage.
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1 Introduction – parallel road tracks roughness

Modelling of road profiles is an important area of transportation engineering as durability
studies of vehicle components often require a customer or market specific load description.
The most desired properties of the models are robustness and simplicity, so that only a small
number of parameters is used to describe short homogeneous parts of the road.

Considering just a single path along the road is an oversimplification, as any four-wheeled
vehicle is subjected to excitations due to road roughness in the left as well as the right wheel
paths. Thus, accounting for both the paths should be an important aspect of vehicle fatigue
assessment. Hence, it is natural to search for an adequate and effective bivariate stochastic
model corresponding to parallel road tracks.

Homogeneous Gaussian loads have been extensively studied in literature and applied as
models for road roughness. Early applications of Gaussian processes to model road surface
roughness can be found in (Dodds & Robson, 1973). Direct Gaussian models are convenient
since linear filter responses to them are Gaussian processes as well. However, the authors of
that paper were aware that Gaussian processes cannot “exactly reproduce the profile of a real
road”.

In (Charles, 1993), a non-homogeneous model is proposed that is constructed as a sequence
of independent Gaussian processes of varying variances but the same standardized spectrum.
This approach was further developed in (Bruscella et al., 1999; Rouillard, 2004, 2009). The
variability of variances was modelled by a discrete distribution taking few values. In (Rouil-
lard, 2004) random lengths of constant variance section were also considered. In those pa-
pers the problem of connecting the segments with constant variances into one signal was not
addressed and thus the response was modelled as a sequence of homogeneous Gaussian pro-
cesses, i.e. by a process of the same type as the model of road surface. Another approach has
been proposed in (Bogsjö, 2007a) where a bivariate road model was constructed based on a
Gaussian process with added random irregularities.

Although models based on Gaussian distributions are standard in the field (see, e.g., (Sun et
al., 2001) and also (Múčka, 2004) for some recent studies), most experts of vehicle engineering
agree that road surfaces are not, in fact, accurately represented by a Gaussian distribution, see
(Dodds & Robson, 1973). One reason for this is that the actual roads contain short sections
with above-average irregularity. As shown in (Bogsjö, 2007b), such irregularities cause most
of the vehicle fatigue damage.

In the current paper a simple model for road profiles along two parallel paths taken by
vehicle left and right wheels is presented. The work is an extension to parallel track of the
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single track models presented in (Johannesson & Rychlik, 2013; Bogsjö et al., 2012). It can
be interpreted as a Gaussian vector valued process where the local variance is randomly vary-
ing according to a gamma distribution. More precisely, if the left and right road profiles are
denoted by ZL(x) and ZR(x), respectively, then their variances over short road segments, say
100 m, are assumed to have constant value and they are Gaussian otherwise. The value of
the variance is random between the short road segments and varies according to a gamma dis-
tribution. The so constructed process has a generalized Laplace distribution for its marginal,
see (Kotz et al., 2001), motivating the name Laplace road model. The novelty of this paper
lies in modelling dependence between two profiles ZL(x) and ZR(x) and providing a way to
evaluate the accuracy of the damage prediction for a mechanical system subjected to available
real road profiles.

The paper is organized as follows. First in Section 2 homogeneous Gaussian model having
the ISO spectrum and a normalized cross spectrum function is reviewed. Further, means to es-
timate parameters in the spectrum from IRI sequences are also given. In Sections 4 and 5 non-
homogeneous Gaussian and Laplace models, respectively, will be given. Then in Section 6
the damage index is introduced. In Section 7 means to evaluate the expected damage indices
from the model parameters are given. Section 8 is devoted to validation of the proposed model
using 70 km measured parallel road profiles. The paper closes with conclusions, acknowledg-
ments, references and three appendixes. In the first appendix some details of derivations of the
proposed estimate of expected damage index are given, while in the second one, an algorithm
and MATLAB code to simulate from the Laplace model for parallel road profiles are given.
Finally, in the third appendix some useful properties of the gamma distributed AR(1)-process
are presented.
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List of abbreviations

IRI - International Roughness Index
ISO - International Organization for Standardization
PSD - Power Spectral Density

List of symbols and notation

α - damage factor
b - scale parameter in exponential normalized cross spectrum function
C - roughness coefficient [m3/rad]
Dθ(k) - damage index
E [X] - expectation of random variable X
F - Fourier transform
g(x) - kernel for moving averages [m1/2]
Γ(·) - gamma function
hij(x; v) - kernels defining responses
hrfc - rainflow cycle range
Hv(Ω) - transfer function of force response filter at speed v
IRI - International Roughness Index [mm/m]
k - damage exponent
K(Ω) - normalized cross spectrum
L - length of road segments [m]
Lp - length of a road profile [m]
λi - spectral moments
ρLR - correlation between parallel road profiles
rj - factors describing variability of variances
rLR(τ) - covariance function between left and right profiles
S(Ω) - road profile model spectrum [m3/rad]
S̃(Ω) - normalized road profile model spectrum [m/rad]
Sθ(Ω) - spectrum of vehicle force response [Nm/rad]
SLR(Ω) - cross spectrum
v - vehicle speed [m/s]
V [X] - variance of random variable X
x - position of a vehicle [m]
Y (x) - force-response of a vehicle [N]
Yθ(x) - linear combination of responses
θ - angle defining the linear combination Yθ(x)
w - waviness parameter in ISO spectrum
Z(x) - road profile [m]
ZL(x) , ZR(x) - left, right road profile [m]
κ - kurtosis of road profile
ν - scale parameter in gamma distribution
σ2 - variance of road profile [m2]
ω - angular frequency [rad/s]
Ω - spatial angular frequency [rad/m]
ΩL , ΩR - cutoff frequencies defining the ISO spectrum [rad/m]
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2 Road models with ISO spectrum

In this section, the Gaussian model of road profiles roughness along two parallel lines rep-
resenting paths taken by vehicle left and right wheels are reviewed. Some material on the
variability of the local roughness is also presented. More detailed presentations can be found
in (Bogsjö, 2007a) and (Johannesson & Rychlik, 2013).

2.1 ISO road spectrum

The vertical road variability consists of the slowly changing landscape (topography), the road
surface unevenness (road roughness), and the high variability components (road texture). For
fatigue applications, the road roughness is the relevant part of the spectrum. Often one as-
sumes that the energy for frequencies < 0.01 m−1 (wavelengths above 100 metres) represents
landscape variability, which does not affect the vehicle dynamics and hence can be removed
from the spectrum. Similarly high frequencies > 10 m−1 (wavelengths below 10 cm) are
filtered out by the tire and thus are not included in the spectrum.

Following the ISO 8608 standard (ISO 8608, 1995), let us introduce the limits on the spec-
trum band of interest, viz.

ΩL = 2π/90 rad/m, ΩR = 2π/0.35 rad/m. (1)

Further, the ISO standard uses a two parameter spectrum to describe the road profile Z(x)

S(Ω) = C

(
Ω

Ω0

)−w
, ΩL ≤ Ω ≤ ΩR, and zero otherwise, (2)

where Ω is the spatial angular frequency, and Ω0 = 1 rad/m. The spectrum is parameterized
by the degree of unevenness C, here called the roughness coefficient, and the waviness w. The
ISO spectrum is often used for quite short road section (in the order of 100 metres). For road
classification the ISO standard uses a fixed waviness w = 2. This simplified ISO spectrum has
only one parameter, the roughness coefficient C. The ISO standard and classification of roads
have been discussed by many authors, e.g. recently in (González et al., 2008; Ngwangwa et
al., 2010).

The simplicity of the ISO spectrum makes it attractive to use in vehicle development. How-
ever, often the spectrum parameterized as in ISO 8608 does not provide an accurate description
of real road spectra, and therefore many different parameterizations have been proposed, see
e.g. (Andrén, 2006) where several spectral densities S(Ω) for modelling road profiles were
compared. Further, in a study of roads in the USA, see (Kropáč & Múčka, 2008), estimated
waviness values between 1 and 4 were found, with an average of w = 2.5. A typical waviness
value of about 2.5 has also been reported by others, see e.g. (Andrén, 2006) for a study of
Swedish roads and (Braun & Hellenbroich, 1991) for German roads. Therefore, two values of
waviness will be used in this work, namely w = 2 and w = 2.5.

We will also use an alternative parametrization of the ISO spectrum by introducing the
normalized ISO spectrum

S̃(Ω) = C0(Ω/Ω0)−w, C−1
0 =

(
Ω1−w
L − Ω1−w

R

)
/(w − 1) (3)

such that
∫
S̃(Ω) dΩ = 1. Here C0 = 0.0694 m3 if waviness w = 2, and C0 = 0.0273 m3 if

w = 2.5. If we denote by σ2 the fraction C/C0, then the ISO spectrum can be written as

S(Ω) = σ2 S̃(Ω). (4)
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For simplicity, in the following we will assume that the left and the right road profiles have the
same spectrum.

2.2 IRI - International Roughness Index

When monitoring road quality, segments of measured longitudinal road profiles are often con-
densed into a sequence of IRI values, see (Gillespie et al., 1986). The IRI is calculated using a
quarter-car vehicle model whose suspension motion at speed 80 km/h is accumulated to yield
a roughness index with units of slope (e.g. mm/m). Since its introduction in 1986, IRI has
become the road roughness index most commonly used worldwide for evaluating and manag-
ing road systems. Thus, IRI parameters are often available from road databases maintained by
road agencies and are typically reported for each 20 or 100 metres. For completeness, we give
formulas to estimate the parameter C in the ISO spectrum (2) if the IRI value is known, viz.

Ĉj = 10−6 ·

(
Îj

2.21

)2

, Ĉj = 10−6 ·

(
Îj

1.91

)2

(5)

for w = 2, 2.5, respectively, where Îj is an estimate of IRI in unit mm/m and Ĉj has unit m3.
A detailed presentation can be found in e.g. (Sun et al., 2001; Kropáč & Múčka, 2004, 2007;
Johannesson & Rychlik, 2013).

2.3 Local road roughness

Suppose that for a 10 km long road section IRI values are available for each 100 metres, giving
a sequence of estimates of the local roughness Ĉj , j = 1, . . . , 100, using Eq. (5). The observed
variability of estimates Ĉj could be caused by statistical estimation errors and hence could be
neglected. In such a case the road is homogeneous having PSD (2) with mean roughness C
estimated as the average of M roughness values

Ĉ =
1

M

M∑
j=1

Ĉj . (6)

Consequently the variance σ2 in (4) is estimated by

σ̂2 = Ĉ/C0, (7)

while factors
rj = Ĉj/Ĉ. (8)

The variability of rj is measured by means of variance, denoted by ν and estimated by

ν̂ =
1

M − 1

M∑
j=1

(rj − 1)2. (9)

Based on an extensive simulation study of homogeneous Gaussian road profiles it was found
that ν̂ is only negligibly biased, with mean bias of 0.017. Hence, if ν̂ is less than 0.02 then we
may assume that the variance σ2 is constant for the road profile and homogeneous Gaussian
model can be used, see Section 3.
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However, quite often the variability of rj is too large to be explained by solely statistical
estimation errors and should be treated in a suitable way. For example, one could use differ-
ent ISO spectra for each of the 100 metre road segments giving 100 parameters to describe
the spectral properties of a 10 km long road, giving a non-homogeneous Gaussian model as
presented in Section 4. An alternative is to propose a stochastic model for the variability of
the factors rj . Here the approach will be to model rj as gamma distributed random variables,
having mean one and variance ν, which results in the Laplace model presented in Section 5.

2.4 Correlation between road profiles

Recall that ZR(x) and ZL(x) denote the right and the left track elevations, respectively, at
the location x. Consider a homogeneous road section. As before we assume that the right
and the left tracks have the same distribution and ISO spectrum S(Ω) defined in Eqs. (2,4).
In order to fully define the correlation structure of the bivariate process, besides the PSD
one needs also to describe the cross-spectrum which is defined through the cross-covariance
rLR(τ) = E[ZL(x+ τ) · ZR(x)], as follows

SLR(Ω) =

∫ +∞

−∞
rLR(τ)e−iΩτ dτ.

Following (Bogsjö, 2007a; Bogsjö, 2008) we assume that for the parallel tracks the cross
spectrum is real valued and we define the normalized cross spectrum K(Ω), say, by

K(Ω) =
SLR(Ω)

S(Ω)
. (10)

The correlation between ZR(x) and ZL(x) is denoted by ρLR = rLR(0)/σ2 and is now given by

ρLR =

∫
S̃(Ω)K(Ω) dΩ. (11)

Note that |K(Ω)|2 is equal to the so-called (squared) coherence function.
As demonstrated in (Bogsjö, 2008), a function of the form

K(Ω) = exp(−b|Ω|) (12)

describes the correlation between the tracks in many measured signals rather well and will be
used to model the measured road profiles in Section 8. Further, in that section the relation (11)
will be used to estimate the parameter b, viz.

ρ̂LR =

∫
S̃(Ω) e−b̂ |Ω| dΩ, (13)

where ρ̂LR is the estimated correlation between ZR(x) and ZL(x). Unfortunately, there is no
direct way to estimate the correlation ρLR from the measured IRI sequence.

3 Homogeneous Gaussian road profiles

A zero mean homogeneous bivariate Gaussian processes is completely defined by its two
power spectra and the coherence function. There are several ways to generate Gaussian sample
paths. The algorithm proposed in (Shinozuka, 1971) is often used in engineering. It is based
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on the spectral representation of a homogeneous process. Here we use an alternative way that
expresses a Gaussian process as a moving average of white noise.

Roughly speaking a moving average process is a convolution of a kernel function g(x), say,
with a infinitesimal “white noise” process having variance equal to the spatial discretization
step, say dx. Consider a kernel function g(x), then a Gaussian process can be approximated
by

Z(x) ≈
∑

g(x− xi)Zi
√

dx, (14)

where the Zi’s are independent standard Gaussian random variables, while dx is the discretiza-
tion step, here reciprocal of the sampling frequency (often dx = 5 cm for road profiles). An
appropriate choice of the length of the increment dx is related to smoothness of the kernel.
The kernel g(x) is conveniently defined by its Fourier transform, viz.

(Fg) (Ω) =
√

2π S(Ω), (15)

where F stands for Fourier transform.
As can be seen in Figure 3 the parallel road profiles ZR(x) and ZL(x) are strongly corre-

lated. Now we give a method to generate bivariate Gaussian processes having a real valued nor-
malized cross spectrum. There are several means to do it and the algorithm proposed in (Shi-
nozuka, 1971) is most commonly used. Here we present a method proposed in (Kozubowski et
al., 2013) valid only for processes with real valued normalized cross spectrumK(Ω), however
also applicable to non-Gaussian moving averages.

Let us introduce two kernels g̃1(x) and g̃2(x) by means of the Fourier transforms

(F g̃1) (Ω) =
(√

1 +K(Ω) +
√

1−K(Ω)
)
/2,

(F g̃2) (Ω) =
(√

1 +K(Ω)−
√

1−K(Ω)
)
/2,

(16)

that will be used to introduce the correlation between tracks. As above, the kernel g(x), defined
in Eq. (15), will be used to get the desired PSD. Now define the two kernels g1(x) and g2(x)
by

(Fg1) (Ω) = (Fg) (Ω) · (F g̃1) (Ω), (Fg2) (Ω) = (Fg) (Ω) · (F g̃2) (Ω). (17)

Gaussian processes having spectrum S(Ω) and coherence |K(Ω)|2 are given by the Gaussian
moving averages

ZL(x) ≈
(∑

g1(x− xi)Z1i +
∑

g2(x− xi)Z2i

)√
dx,

ZR(x) ≈
(∑

g2(x− xi)Z1i +
∑

g1(x− xi)Z2i

)√
dx (18)

where Z1i, Z2i’s are independent standard Gaussian random variables and with equality in
limit as dx tends to zero.

4 Non-homogeneous Gaussian road profiles

Homogeneous Gaussian loads have been extensively studied in literature and applied as mod-
els for road roughness, see e.g. (Dodds & Robson, 1973) for an early application. However, the
authors of that paper were aware that Gaussian processes cannot “exactly reproduce the profile
of a real road”. In (Charles, 1993) a non-homogeneous model was proposed, constructed as a
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sequence of independent Gaussian processes of varying variances but the same standardized
spectrum. Similar approaches were used in (Bruscella et al., 1999; Rouillard, 2004, 2009).
Here an alternative approach to derive non-homogeneous bivariate Gaussian profiles will be
presented.

The homogeneous Gaussian model for ZL(x), ZR(x), presented in Section 3, are essentially
filters of sequences of independent standard Gaussian variables Z1i, Z2i, which serve as two
Gaussian noise sequences. Here we will use a similar constructions but allow Z1i, Z2i to have
variable variances. Then the profiles ZL(x), ZR(x), x ∈ [0, L], will be defined using the same
algorithms as described in Eq. (18). Consequently, in the special case when Z1i, Z2i have
constant variance, the homogeneous Gaussian model will be retrieved. We begin with the
definition of the non-homogeneous Gaussian noise.

Similarly as in (Bogsjö et al., 2012; Johannesson & Rychlik, 2013), let us assume that the
road consists of M equally long segments of length L = Lp/M , where the j:th segment has
the same normalized spectrum S̃(Ω) and variance rjσ2, where σ2 is the average variance of
the road profile, while rj’s are positive factors. Consequently, the spectrum of the j:th segment
is Sj(Ω) = rjσ

2 S̃(Ω).
Let Z1i, Z2i be sequences of independent standard Gaussian variables. Further, let dx be

the sampling step of the process and [sj−1, sj ], sj − sj−1 = L, the interval where the road
profile model have PSD Sj(Ω) = rjσ

2 S̃(Ω), viz. s0 = 0 < s1 < . . . < sM = Lp. Now
define the non-homogeneous Gaussian noise sequences Z̃1i, Z̃2i as follows

Z̃1i =
√
rj Z1i, if sj−1 < xi ≤ sj ,

Z̃2i =
√
rj Z2i, if sj−1 < xi ≤ sj . (19)

The non-homogeneous Gaussian processes, ZL(x), ZR(x), x ∈ [0, Lp], having locally PSDs
Sj(Ω) = rjσ

2S̃(Ω) and coherence |K(Ω)|2 are given by the moving averages

ZL(x) ≈
(∑

g1(x− xi) Z̃1i +
∑

g2(x− xi) Z̃2i

)√
dx,

ZR(x) ≈
(∑

g2(x− xi) Z̃1i +
∑

g1(x− xi) Z̃2i

)√
dx (20)

where the kernels g1(x), g2(x) are defined in Eq. (17).

5 Non-homogeneous Laplace road profiles

The non-homogeneous Gaussian model requires M parameters in order to model the vari-
ability in the variance, i.e. the varying local roughness. In order to reduce the number of
parameters it is desirable to use a stochastic model for the sequence of rj-values. A non-
homogeneous Laplace process is obtained by modelling the rj’s as gamma distributed random
variables, thus, only one parameter is needed to model the variability in the variance, namely,
the Laplace shape parameter ν.

By definition of the factors rj in Eq. (8), the gamma factors have mean one and variance ν
and hence the gamma distribution has the following probability density function

f(r) =
1

Γ(1/ν)ν1/ν
r1/ν−1 exp(−r/ν), (21)

where Γ(·) is the gamma function. In order to completely define the Laplace model one
also needs to specify the dependence structure of the sequence of factors rj . The simplest
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Laplace model is obtained by assuming that the factors are independent, i.e. the roughness of
the segments vary in an independent manner. Then, the non-homogeneous Laplace model can
be described by one extra parameter ν, compared to the homogeneous Gaussian model.

To summarize, the bivariate Laplace-ISO model with spectrum S(Ω) and normalized cross
spectrum K(Ω) is described by only three parameters, namely, the mean roughness C, the
Laplace shape parameter ν, and the correlation between tracks ρLR. The parameters are es-
timated according to Eqs. (6,9,13). Laplace profiles ZL(x), ZR(x), x ∈ [0, L], can be con-
structed in the same way as the non-homogeneous Gaussian profiles, by using Eqs. (19,20) but
replacing the rj-factors in Eq. (19) by random numbers generated from the gamma distribution
in Eq. (21). A MATLAB script to simulate parallel road profiles is given in Appendix II.

5.1 Laplace model with correlated variances

It seems reasonable to believe that the quality of the road surface varies slowly and hence
the factors rj defined in Eq. (8) are likely dependent between themselves. The degree of
dependence is a function of the chosen length of the constant variance segments (here 100
metres). In this section we present an autoregressive model for random variances rj .

The classical Gaussian AR(1)-process xj , having mean zero and variance one, is defined
by a recursion

xj = ρ xj−1 +
√

1− ρ2εj , (22)

where εj are independent zero mean variance one Gaussian variables (Gaussian white noise).
Further, the parameter ρ is the correlation between xj−1 and xj . Defining a gamma distributed
AR(1)-process for is a more difficult problem which is discussed in Appendix III. A MATLAB
script to simulate the gamma AR(1)-process is given in Appendix II. Here we just outline the
construction.

The gamma AR(1)-process rj can be defined by a recursion similar to Eq. (22) viz.

rj = ρ kjrj−1 + (1− ρ)εj , (23)

where εj are independent gamma distributed variables with mean one and variance equal to
the parameter ν. Here kj are random factors dependent on rj−1 and which in average are equal
one. The factors can be derived using the following relation

kj =
1

m

N∑
i=0

Wi,

where Wi are independent random variables, W0 = 0 while, for i > 0, Wi are exponentially
distributed. Further, N is a Poisson distributed integer having mean m equal to

m =
ρ/ν

1− ρ
rj−1. (24)

We observe two simple consequences of the above

E [kj |rj−1] = 1,

V [kj |rj−1] =
2ν(1− ρ)

rj−1ρ
.

Note that, for ρ = 0 Eq. (24) equalsm = 0, giving kj = 0, and consequently rj = εj becomes
a sequence of independent gamma factors (gamma white noise).
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It follows from the properties listed in Appendix III that the rj’s also have the same gamma
distribution and their autocorrelation function has the form

ρ(j) = ρj , j = 0, 1, 2, . . . .

The rj’s can be utilized by taking their one step autocorrelation coefficient ρ̂ as an estimate of
the autoregressive coefficient ρ

5.2 A simulation example

If the parameter ν is moderate then the contribution to the damage of transients caused by
changes of the normalized variance rj should be negligible. Thus, the expected damage index
will be the same for models with independent factors rj as with the correlated ones. However,
the variance of the damage index will not be the same.

In the Figure 1 two simulated road profiles are illustrated, both having ISO spectrum with
waviness parameter w = 2.5 and standard deviation σ = 0.02 m. The factors rj are gamma
distributed with parameter ν = 0.18, see Eq. (21). In the top plot the Laplace model has inde-
pendent gamma distributed variances, while in the bottom plot the variances form an AR(1)-
process with correlation ρ = 0.9. One can see that regions with larger/smaller variability of
road profiles are longer for correlated variances. Such a region may last for several kilometres.

−0.1

−0.05

0

0.05

0.1
ρ=0

0 2000 4000 6000 8000 10000
−0.1

−0.05

0

0.05

0.1
ρ=0.9

Figure 1: Comparison of 10 km simulated Laplace models having ISO spectrum, with wavi-
ness parameter w = 2.5 and parameters σ = 0.02 m and ν = 0.18, values are taken from
Table 3 sixth column. The variance of the factors rj is ν = 0.18. Top graph has independent
random factors (ρ = 0) and the bottom graph has correlated AR(1) factors with ρ = 0.9.
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6 Damage index

Models of roads along parallel tracks are often used to investigate more complex responses of
a vehicle, for example vertical and rolling motions which are then used to evaluate stresses in
some components, see (Johannesson & Speckert, 2013) for a more detailed presentation. For a
stiff structure, stresses used to predict fatigue damage are linear combinations of forces and/or
moments. Here, the left and right responses are simply denoted by Y1(x), Y2(x), respectively.
Subsequently, we use the rainflow damage estimates computed for

Yθ(x) = cos(θ)Y1(x) + sin(θ)Y2(x). (25)

to evaluate accuracy of the proposed model for the bivariate road profiles ZL(x) and ZR(x).
The fatigue damage accumulated in a material is expressed using a fatigue (damage) index

defined by means of the rainflow method. It is computed in the following two steps. First
rainflow ranges hrfcn , n = 1, . . . , N in Yθ(x) are found, then the rainflow damage is computed
according to Palmgren-Miner rule (Palmgren, 1924; Miner, 1945), viz.

Dk(Yθ) = α
N∑
i=1

(hrfci )k, (26)

see (Rychlik, 1987) for details. For compactness of the notation, we abbreviate Dk(Yθ) to
Dk(θ). Various choices of the damage exponent k can be considered, e.g. k = 3 which is the
standard value for the crack growth process, is often used. For comparison we consider also
k = 5, that is often used when a fatigue process is dominated by the crack initiation phase.
The index Dk(θ) is often called the multi-axial damage and was first introduced in (Beste et
al., 1992), see also (Rychlik, 1993a). A good model for ZL(x), ZR(x) requires good accuracy
of damage predictors for any choice of the angle θ.

For stationary loads, the damage intensity, measuring the average speed the damage grow,
is used as a damage index. For stationary Gaussian responses the damage index depends only
on the PSD Sθ(Ω) of the response Yθ(x) and it will be denoted by

Dk(Sθ) = E [Dk(Yθ)] /Lp, (27)

where Lp is the length of a road profile.
There are many approximation of theDk(Sθ) proposed in the literature for stationary Gaus-

sian responses, see (Bengtsson & Rychlik, 2009) for comparison of the methods. Here we will
use the narrow band bound, proposed first by (Bendat, 1964) and (Rychlik, 1993b) where it
was demonstrated that the approximation is actually a bound, viz. for a Gaussian response
with PSD S(Ω)

Dk(S) ≤ αλ(k−1)/2
0 λ

1/2
2 23k/2 Γ(1 + k/2)/2π. (28)

Here λ0, λ2 are spectral moments of S(Ω) defined by

λi =

∫ ∞
0

Ωi S(Ω) dΩ. (29)

Means to evaluate damage intensity for non-Gaussian is not as well developed. However some
works do exists, see e.g. (Bogsjö et al., 2012), (Rychlik, 2013) or (Kvanström et al., 2013) for
the multivalued case.
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6.1 Definition of responses

In general the responses Y1(x), Y2(x), are computed by linearly filtering signals ZL(x), ZR(x).
The responses depend on the velocity of the moving vehicle and could be computed as follows

Yi(x) =

∫ x

−∞
hi1(x− u; v)ZL(u) du+

∫ x

−∞
hi2(x− u; v)ZR(u) du, (30)

where hij(·; v), i, j = 1, 2 are impulse responses of the filter at a given speed v.
In this work the damage index is used to quantify the severity of road conditions and not to

actually predict the fatigue life of components. Consequently, we propose to use a very simple
uncoupled symmetrical filter to describe responses Yi(x) satisfying

h11(u; v) = h22(u; v) = hv(u), h12(u; v) = h21(u; v) = 0 (31)

where hv(u) and Hv(u) denote impulse response and transfer function, respectively, of the
quarter truck driving with constant speed v. Thus Y1(x), Y2(x) are responses of two quarter-
vehicles travelling with the same speed on left and right road profile. Such a simplification
of a physical vehicle cannot be expected to predict loads exactly, but it will highlight the
most important road characteristics as far as fatigue damage accumulation is concerned. The
parameters in the model are set to mimic heavy vehicle dynamics, following (Bogsjö, 2007b),
see Figure 2.

Quarter Truck
Symbol Value Unit
ms 3 400 kg
ks 270 000 N/m
cs 6 000 Ns/m
mt 350 kg
kt 950 000 N/m
ct 300 Ns/m

Figure 2: Quarter vehicle model.

Neglecting possible “jumps”, which occur when a vehicle looses contact with the road
surface, the response of the quarter-vehicle, i.e. the force Y (x) = msẌs(x), as a function of
vehicle location x, can be computed through linear filtering of the road profile. The filter at
speed v has the following transfer function

Hv(Ω) =
msω

2(kt + iωct)

kt −
(ks + iωcs)ω

2ms

−msω2 + ks + iωcs
−mtω2 + iωct

(
1 +

msω
2

ks −msω2 + iωcs

)
, (32)

where ω = Ω · v is the angular frequency having units rad/s.

7 Expected damage index for the Laplace model

Neglecting the contribution to damage from transients caused by variability of local variances
of road profiles leads to the following approximation

E [Dk(Yθ)] ≈ LpDk(Sθ)E
[
Rk
]
.
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Since R is gamma distributed according to Eq. (21)

E [Dk(Yθ)] ≈ LpDk(Sθ) νk/2
Γ(k/2 + 1/ν)

Γ(1/ν)
, (33)

where the PSD Sθ(Ω) is given by

Sθ(Ω) =
C

C0
|Hv(Ω)|2S̃(Ω) (1 + sin(2θ)K(Ω)) . (34)

The PSD Sθ(Ω) is a function of a number of loading parameters; C the mean roughness coeffi-
cient of the ISO model of the road profile; w the waviness parameter in the ISO spectrum; ρLR

the correlation between left and right road profiles, and v the speed of the quarter vehicle. In
addition the expected damage index depends on parameters α, k in S-N curve. For uncertainty
analysis it is desirable to have an explicit formula factorizing the dependence of E [Dk(Yθ)] on
the parameters. This is achieved by combining the narrow-band bound (28) for Dk(Sθ) with
Eq. (33) leading to the following factorization of the expected damage index for the Laplace
model of parallel road profiles

E [Dk(Yθ)] ≈ Lp·α·
(
C

C0

)k/2
·ck(θ, ρLR, w)·νk/2 23k/2 Γ(1 + k/2)Γ(k/2 + 1/ν)

2π Γ(1/ν)
·
(
v

v0

)k(w−1)/2−1

(35)
where v0 is the reference vehicle speed, here v0 = 10 m/s. An explicit formula for the factor
ck(θ, ρLR, w) is derived in Appendix I.

8 Validation of models

8.1 Measured road profile

The data are measurements of surface irregularity along two parallel tracks. The tracks are
separated by 2.4 metres and are about 70 km long. The signals are filtered and the harmon-
ics with wavelength longer than 100 metiers are removed. The removed signal is assumed to
represent landscape variability which does not influence the fatigue accumulation in heavy ve-
hicles. The left and right tracks are presented in Figure 3. Plots presented in Figure 3 indicate
that the data are likely non-homogeneous. Therefore, the data are divided into seven 10 km
long records. In this section some statistics for the measure profiles are presented, checking
whether the left and right measured profilers seems to have the same statistical properties.
Then the Laplace-ISO model will be fitted to the data. All calculations have been performed
using MATLAB together with the toolbox WAFO (Wave Analysis for Fatigue and Oceanog-
raphy), see (Brodtkorb et al., 2000; WAFO Group, 2011a), which can be downloaded free of
charge, (WAFO Group, 2011b).
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Figure 3: Road roughness for left and right tracks for 70 km of a Swedish road.

In Tables 1 and 2 some basic statistics for the seven segments are given, and the observed
damage indices D obs

k are also presented. The parameter α is chosen in such a way that
D obs
k (0) + D obs

k (π/2) = 2 for the 70 km long road profile. One can see that most of the
damage is accumulated in road profiles 1, 6 and 7. It is important that the proposed model
works well for these roads. Based on the presented statistics one can conclude that the same
statistical model can be used for left and right road profiles.

Table 1: Statistics for left profiles for the seven road segments. In rows 5 and 6 relative
damages for damage exponents k = 3, 5, respectively, are given.

Left profile
road segment 1 2 3 4 5 6 7

std [m] 0.023 0.017 0.017 0.014 0.017 0.026 0.023
correlation ρLR 0.89 0.92 0.91 0.86 0.92 0.83 0.80

skewness -0.11 0.04 0.08 0.27 0.29 0.13 -0.09
kurtosis 3.84 3.45 3.17 7.05 3.85 3.65 4.12
D obs

3 (0) 0.15 0.04 0.02 0.08 0.05 0.38 0.29
D obs

5 (0) 0.28 0.02 0.00 0.11 0.02 0.44 0.24
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Table 2: Statistics for right profiles for the seven road segments. In rows 4 and 5 relative
damages for damage exponents k = 3, 5, respectively, are given.

Right profile
road segment 1 2 3 4 5 6 7

std [m] 0.024 0.018 0.018 0.015 0.016 0.027 0.023
skewness -0.15 -0.02 0.06 0.28 0.24 0.05 -0.02
kurtosis 3.95 3.68 3.01 6.43 4.00 3.60 3.80

D obs
3 (π/2) 0.18 0.05 0.03 0.06 0.05 0.32 0.31

D obs
5 (π/2) 0.12 0.03 0.01 0.05 0.02 0.35 0.29

The Laplace models with ISO spectrum have been fitted to the seven road segments. The
parameters are presented in Table 3. Note that the standard deviations σ =

√
C/C0 of the

Laplace model for road profiles given in rows 3 and 6 of Table 3 are smaller than the estimated
standard deviations in measured road profiles given in Tables 1 and 2. This is not a bias
or an error but a consequence of the fact that the ISO spectra have been fitted using IRI.
This estimation method fits the ISO spectrum to the observed road spectrum in the frequency
region which is amplified by the golden car response filter. Finally, in the last row of Table 3
the correlations ρ between the successive factors rj are presented. The correlations are not
very strong.

Table 3: Parameters in the Laplace-ISO models for road profiles along parallel tracks. The
parameter b in the normalized cross spectrumK(Ω), see Eq. (12), was estimated using Eq. (13)
with correlation coefficient between left and right road profiles ρLR given in Table 1, row 2.

road segment 1 2 3 4 5 6 7
C/10−6 [m3/rad] when w = 2 2.90 1.21 1.10 1.31 2.34 7.06 6.31

σ [m] when w = 2 0.007 0.004 0.004 0.004 0.006 0.01 0.01
b when w = 2 0.41 0.27 0.31 0.56 0.29 0.72 0.91

C/10−6 [m3/rad] when w = 2.5 3.88 1.62 1.47 1.76 3.14 9.45 8.45
σ [m] when w = 2.5 0.012 0.008 0.007 0.008 0.011 0.019 0.018
b when w = 2.5 0.69 0.47 0.54 0.91 0.51 1.15 1.42

ν 0.48 0.76 0.44 1.18 0.34 0.33 0.24
ρ 0.15 0.58 0.46 0.33 0.55 0.41 0.21

8.2 Expected Damage index

In this section the observed damage indices Dobs
k (θ) will be compared to the expected damage

indices estimated for the Laplace model using formula (35). The parameters of the model are
presented in Table 3. The validation of the Laplace model will be done in two steps. Firstly,
the univariate case will be considered, i.e. we will check if the expected damage evaluated
for Laplace model agrees with the damage index estimated for left and right profiles sepa-
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rately. Secondly, the expected damage E [Dk(Yθ)] evaluated using Eq. (35) will be compared
to Dobs

k (θ).
Checking accuracy of the univariate Laplace model: The left and right tracks are modelled
by the same Laplace model E [Dk(Y0)] = E

[
Dk(Yπ/2)

]
hence only E [Dk(Y0)] will compared

with the average observed damage index (Dobs
k (0) +Dobs

k (π/2))/2 by means of the ratio

dk =
E [Dk(S0)]

(Dobs
k (0) +Dobs

k (π/2))/2
. (36)

The values of dk close to one means very good agreement between observed damages and
the one computed using the Laplace model. Values between 0.5 and 2 would indicate a good
agreement.

In Table 4 the damage ratios (36) are given for k = 3, 5 and two ISO models having
waviness parameters w = 2, 2.5, respectively. One can see that for the damage exponent
k = 3 both ISO models give a very good agreement between the indices computed using the
model and the observed ones. For the higher damage exponent k = 5 the agreement is not as
good. The damage indices for k = 5 have been underestimated. Further, one can see that the
ISO spectrum with w = 2.5 is working better giving underestimation of the total damage to
be 30% which is an acceptable accuracy for this kind of model.

Table 4: Relative damage indices dk, see Eq. (36), for 10 km long road segments for waviness
parameter w = 2 and w = 2.5 and two damage exponents k = 3, 5.

Relative damage index dk, see Eq. (36), for 10 km long roads
road segment 1 2 3 4 5 6 7
k = 3, w = 2 0.70 0.77 1.05 0.60 1.56 1.18 1.14
k = 5, w = 2 0.13 0.15 0.28 0.10 0.59 0.51 0.50
k = 3, w = 2.5 0.77 0.85 1.16 0.66 1.73 1.31 1.26
k = 5, w = 2.5 0.2 0.23 0.42 0.15 0.88 0.76 0.74

In (Bogsjö et al., 2012) and (Johannesson & Rychlik, 2013) the Laplace model was vali-
dated for a single road profile. Here we are again validating the univariate Laplace model on
the data presented in Section 8.1. The difference to the previously presented studies is that
now the average Laplace model fitted using both left and right profiles was employed.
Checking accuracy of bivariate Laplace model: For the univariate Laplace model the ex-
pected damage indices were independent of the correlation ρLR between the two tracks. Basi-
cally, in the univariate case the factor ck in Eq. (35) is constant and

ck(0, ρLR, w) = ck(0, 0, w)

for all values ρLR. In contrast, all other factors building up Eq. (35) are independent of the
values of ρLR or θ. Hence, the accuracy of the multivariate part of the Laplace model will be
validated by checking the accuracy of the factor ck(θ, ρLR, w) for observed values of ρLR and
all θ between 0 and 2π. This will be achieved by comparing the normalized factor

c̃k(θ, ρLR, w) =
ck(θ, ρLR, w)

ck(0, 0, w)
(37)
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to the corresponding observed factor

c̃ obsk (θ, ρLR, w) =
Dobs
k (θ)

(Dobs
k (0) +Dobs

k (π/2))/2
(38)

for k = 3, 5 and w = 2, 2.5.
The results are shown in Figures 4 and 5 where the normalized factors c̃k(θ, ρLR, w) and

c̃ obsk (θ, ρLR, w) are compared. As can be seen, the observed factors c̃ obsk (solid lines) are close
to c̃k (dashed lines) for both damage exponents k = 3, 5 and ISO spectra with waviness
parameter w = 2, 2.5.

9 Conclusions

A statistical model for road profiles along parallel tracks has been proposed and validated. The
proposed Laplace model involve a modification of a Gaussian model by introducing a random
variance process. The variance process is assumed to have a marginal gamma distribution
and its autocovariance follows an AR(1)-model. All parameters in the Laplace-ISO model
can be directly estimated from a sequence of IRI measurements and the correlation coefficient
between the profiles. A method to stochastically reconstruct road profiles has been given.
An estimate of the expected damage due to a Laplace road with ISO spectrum was given in
Eq. (35).
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Figure 4: Comparisons between the factors; c̃k(θ, ρLR, w), Eq. (37) (dashed line) and
c̃ obsk (θ, ρLR, w), Eq. (38) (solid lines) for the seven 10 km long roads having ISO spectrum
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Appendix I - Derivation of approximation (35)

The damage intensity Dk(Sθ) for a Gaussian response having PSD Sθ that appears in Eq. (35)
can be bounded using Eq. (28), viz.

Dk(Sθ) ≤ σk ck(θ, ρLR, w)
23k/2 Γ(1 + k/2)

2π

(
v

v0

)k(w−1)/2−1

,

where factor
ck(θ, ρLR, w) = λ

(k−1)/2
0 (θ)λ2(θ)1/2 (39)

and
λi(θ) =

∫ ∞
0

Ωi |Hv0(Ω)|2S̃(Ω)
(

1 + sin(2θ)e−b|Ω|
)
dΩ. (40)

Finally, some simple calculus leads to

λi(θ) = λi(π/4) sin(2θ) + λi(0)(1− sin(2θ)),

where

λi(0) =

∫ ∞
0

Ωi |Hv0(Ω)|2S̃(Ω) dΩ, λi(π/4) =

∫ ∞
0

Ωi |Hv0(Ω)|2S̃(Ω)
(

1 + e−b|Ω|
)
dΩ.
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Appendix II - simulation of bivariate Laplace model

A zero mean bivariate homogeneous Gaussian processe is completely defined by its two power
spectra and the normalized cross spectrum function. There are several means to simulate
sample paths, and the algorithm proposed in (Shinozuka, 1971) is most commonly used. Here
we present a method proposed in (Kozubowski et al., 2013) valid only for processes with real
valued normalized cross spectrum K(Ω) and the same power spectral density S(Ω).

Let us introduce two kernels g1(x) and g2(x) by means of the Fourier transforms

(Fg1) (Ω) =
(√

2πS(Ω)(1 +K(Ω)) +
√

2πS(Ω)(1−K(Ω))
)
/2,

(Fg2) (Ω) =
(√

2πS(Ω)(1 +K(Ω))−
√

2πS(Ω)(1−K(Ω))
)
/2.

(41)

Then two correlated Gaussian moving averages ZL(x), ZR(x) are given by

ZL(x) ≈
(∑

g1(x− xi)Z1i +
∑

g2(x− xi)Z2i

)√
dx,

ZR(x) ≈
(∑

g2(x− xi)Z1i +
∑

g1(x− xi)Z2i

)√
dx (42)

where Z1i, Z2i’s are independent standard Gaussian random variables, with equality in limit
as dx tends to zero.

Essentially, Gaussian processes ZL(x), ZR(x) are filters of sequences of independent stan-
dard Gaussian variables Z1i, Z2i, which serve as two Gaussian noise sequences. The Laplace
processes are constructed in a similar way, the difference is that now we allow Z1i, Z2i to
have variable gamma distributed variances, see Section 5 and Eqs. (19,20). For completeness
we give MATLAB code to simulate the Laplace model. Parameters estimated for the sixth
10 km long road section given in the sixth column of Table 3 rows 5-9 are used. In the code
some functions from the WAFO (Brodtkorb et al., 2000; WAFO Group, 2011a) toolbox are
used, which can be downloaded free of charge, (WAFO Group, 2011b). The statistical func-
tions rndnorm, rndpois and rndgam are also available in the MATLAB statistics toolbox
through normrnd, poissrnd and gamrnd. Note that WAFO also contains functions to
find rainflow ranges used to estimate fatigue damage.

>> b=1.15; C=9.45e-6; nu=0.33;
>> rho=0.41;
>> Lp=10000; L=100; dx=0.05;
>> N=Lp/L; M=L/dx;
>> riid=nu*rndgam(1/nu,1,N,1);
>> rAR1=riid;
>> for i=2:N
>> m=rho/(1-rho)/nu*rAR1(i-1);
>> NPois=rndpois(m);
>> if NPois>0, W=rndexp(1,NPois,1); else W=0; end
>> kj=sum(W)/m;
>> rAR1(i)=rho*kj*rAR1(i-1)+(1-rho)*riid(i);
>> end
>> Noise=[]; NoiseAR1=[];
>> for i=1:N
>> Nois=rndnorm(0,1,2,M)’;
>> Noise=[Noise; sqrt(riid(i))*Nois];
>> NoiseAR1=[NoiseAR1; sqrt(rAR1(i))*Nois];
>> end
>> wL=0.011*2*pi; wR=2*pi*2.83;
>> ww=2.5; C0=1/((1/wL.^(ww-1) - 1/wR.^(ww-1))/(ww-1));
>> sigma=sqrt(C/C0);
>> NM=N*M;
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>> w=pi/dx*linspace(-1,1,NM)’; dw=w(2)-w(1);
>> indw=find(abs(w)>wL & abs(w)<wR);
>> S=zeros(NM,1); S(indw)=C/2*1./abs(w(indw)).^ww;
>> K=zeros(NM,1); K=exp(-b*abs(w));
>> G1=sqrt(2*pi*S)/dx.*(sqrt(1+K)+sqrt(1-K))/2;
>> G2=sqrt(2*pi*S)/dx.*(sqrt(1+K)-sqrt(1-K))/2;
>> G1=ifftshift(G1); G2=ifftshift(G2);
>> zLiid = real(ifft(fft(Noise(:,1)).*G1)+ifft(fft(Noise(:,2)).*G2))*sqrt(dx);
>> zRiid = real(ifft(fft(Noise(:,1)).*G2)+ifft(fft(Noise(:,2)).*G1))*sqrt(dx);
>> zLAR1 = real(ifft(fft(NoiseAR1(:,1)).*G1)+ifft(fft(NoiseAR1(:,2)).*G2))*sqrt(dx);
>> zRAR1 = real(ifft(fft(NoiseAR1(:,1)).*G2)+ifft(fft(NoiseAR1(:,2)).*G1))*sqrt(dx);
>> figure(1), plot((1:NM)*dx,[zLiid zRiid])
>> figure(2), plot((1:NM)*dx,[zLAR1 zRAR1])

Using the code, 10 km long left and right profiles having ISO spectrum with waviness
parameter w = 2.5 sampled each 5 cm were simulated for independent and correlated factors
rj . Parts of the simulated profiles are shown in Figures 6 and 7. Since the factors are weekly
correlated (ρ = 0.41) the signals are quite similar. Note that the same gamma noise is used
in the both simulations. The resulting simulations can also be compared with two km long
measured profiles from the sixth road given in Figure 8. The variability of the signals presented
in Figures 6-8 looks very similar.
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Figure 6: Two kilometres of simulated Laplace models having ISO spectrum, with waviness
parameter w = 2.5, of left and right road profiles having parameters estimated for the sixth
10 km long road segment, top, bottom plots, respectively. The variances of 100 metre road
segments are independent gamma distributed.
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Figure 7: Two kilometres of simulated Laplace models having ISO spectrum, with waviness
parameter w = 2.5, of left and right road profiles having parameters estimated for the sixth
10 km long road segment, top, bottom plots, respectively. The variances of 100 metre road
segments are correlated gamma distributed variables.
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Figure 8: Two kilometres of left and right measured road profiles for the sixth 10 km long road
segment, top, bottom plots, respectively.
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Appendix III – gamma AR(1)-model for variances

There is a number of models in the literature of processes having a Gamma distribution for one
dimensional marginal with autocorrelation function equal to the one for the classical AR(1)-
model, (Kozubowski & Podgórski, 2008) and the references therein for a survey of the topic.
Here we have chosen to follow the model introduced in (Sim, 1971) although in our approach
we follow a certain invariance property shown in Proposition 2.6 of (Kozubowski & Podgórski,
2007) stating

Γ
d
=

1

1 + β
(Γ0 ◦N0 ◦ βΓ + Γ1) , (43)

where β > 0, d
= stands for distributional equality of the processes, ◦ for the superposition

of two functions so that f ◦ g(t) = f(g(t)), Γ, Γ1 and Γ0 are independent standard gamma
processes, i.e. ones that at time t = 1 are gamma distributed with the shape parameter and the
scale both equal to one, N0 is a standard Poisson process. We can rewrite it using a compound
Poisson process with exponential compounding (EC) defined as

N(t) = Γ0(N0(t)) =

N0(t)∑
i=1

Wi,

where N0(t) is a standard Poisson process and Wi = Γ(i)−Γ(i− 1) are iid with the standard
exponential distribution independent of N0(t). We note the following fundamental relations
for the moments

E [N(t)] = t,

V [N(t)] = 2t,

V [Γ(t)] = t,

V [N(βΓ(t))] = β(β + 2)t,

Cov (N(βΓ(t)),Γ(t)) = βt.

(44)

Moreover, N(t) is a non-decreasing and non-negative process that starts at zero and has ho-
mogeneous and independent increments. We remark thatN(t) is a Lévy process that is related
to the negative binomial process, see (Kozubowski & Podgórski, 2007, 2009) for details. By
using N(t) and taking G(t) = νΓ(t), ν > 0, the ν-scaled version of (43) can be written as

G(t)
d
=

ν

1 + β
N (βG(t)/ν) +

1

1 + β
G0(t). (45)

If we consider gamma variables G = G(1/ν), G0 = G(1/ν), so that they have mean one
and variance ν, we can write (44) as

G
d
=

β

1 + β
KG+

1

1 + β
G0, (46)

where a random scaling K is dependent on G and given by

K =
N(βG/ν)

βG/ν
.

The above can serve as a defining equation of the autoregressive time series of positive
variables

Y0 = G(0),

Yn = ρKnYn−1 + (1− ρ)G
(n)
0 ,

(47)
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where independent innovations G(n)
0 distributed as G0 are added at each step, while

Kn =
N (n)(βYn−1/ν)

βYn−1/ν
,

with N (n)’s being independent copies of N and ρ = β/(1 + β) ∈ [0, 1].
The following property implies AR(1) form of the covariance

E [Yn+k|Ym,m ≤ n] = ρkYn + k(1− ρ).

Indeed, the autocovariance function is given by

Cov (Yn+k, Yn) = Cov (E [Yn+k|Yn] , Yn)

= ρkV [Yn] .
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