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Abstract

Slepian models are derived describing the distributional form of a stochastic process observed at level
crossings of a moving average driven by a Laplace noise. The approach is through a Gibbs sampler of
a Slepian model for the Laplace noise and it allows for simultaneously studying a number of stochastic
characteristics observed at the level crossing instants. A method of sampling from the corresponding
biased sampling distribution of the underlying gamma process is also obtained from the same Gibbs
sampler. This is used for efficient simulations of the behavior of a random processes sampled at cross-
ings of a non-Gaussian moving average process. In particular, it facilitates comparisons of the behavior
when a Gaussian process vs. a non-Gaussian processes are crossing a level. It is observed that the
behavior of the process at high level crossings is fundamentally different from that in the Gaussian case,
which is in line with some recent theoretical results on the subject.

Keywords: Rice formula, level crossings, generalized Laplace distribution, moving average process, ex-
treme episodes, biased sampling distribution, tilted Rayleigh distribution, generalized inverse Gaussian
distribution.

1. Introduction

In the physical world, a random function is often described as a sequence of local maxima or minima,
constituting a series of random waves. In fact, not only the visual impression of the process but also
many technologically important implications in such fields as metal fatigue caused by random vibrations,
failure caused by excess load on a construction, etc., depend on the character of the process represented
in such a random wave form. The basic objects in this theory are level crossings and local extremes,
see [26] for computation of various crossing distributions, [7] for spatial wave characteristics, and [11]
for an overview of other engineering applications.

In analysis of extreme behavior of a time series or a stochastic process, the Rice formula is often
used to obtain the distribution of the process at the instants of high level crossings. For the purpose
of simulation or analysis it is convenient to have a Slepian model corresponding to the behavior of the
original process sampled at the level crossings. Here a Slepian model is understood as any explicitly
defined stochastic process that is distributed according to the crossing level biased sampling distribution
and thus is random function representation of the conditional behavior of a stochastic process after
events defined by level crossings. The original Slepian model developed for a stationary Gaussian
process is very helpful in analyzing behavior of the process at extreme levels. In general, a Slepian
model contains one regression term with random coefficients which describe the dependence on initial
conditions such as the slope at the crossing, the value of the process at a predetermined point, etc, and
one residual term, which describes the deviations from the path set out by the initial conditions.

In its classical form, such a model was first introduced in [27] to describe the behavior of a stationary
Gaussian process after a zero crossing. The model found applications in more theoretical studies of
various asymptotic sample path properties of a Gaussian random process, or a function of a vector
valued Gaussian process, see [19], [5], or [23]. Considerable work has been done on studying sample
properties of Gaussian or related fields around high local maximum or level set, see [29] and, for more
recent work, [6].

Typically, a Slepian model is defined for ergodic processes when the distribution of the model coincides
with the long-run empirical distribution of stochastic outcomes observed at crossing instants. However,
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a Slepian model was also defined for a non-stationary Gaussian process to study properties of the process
under conditioning that a local maximum occurs at time zero, see [12] and also [15] for an engineering
application. It is worth to mention here that in the approach presented in this paper, we analyze
non-Gaussian models obtained by a random distortion of the Brownian motion through conditioning
on the distortion which leads to (conditionally) non-stationary Gaussian process and through this our
work connects with [12].

In many practical situations, the assumption of Gaussianity is not supported by empirical data and
therefore derivation of a Slepian model for non-Gaussian processes is desirable. This need has driven
growing interest in studying level crossing distributions for non-Gaussian models, for example, see [3]
for results on the high level crossings and [28] for an example of practical context in which a Slepian
model for data exhibiting non-Gaussian features is of interest. In this paper, we present an approach
to obtain an effective Slepian models for a class of non-Gaussian models driven by a Laplace motion,
i.e. a non-Gaussian Lévy motion obtained by subordination of Brownian motion by a gamma process.
This class has proven to be sufficiently flexible to account for most non-Gaussian features observed in
practical applications and some work has been done on the level crossing distributions derived from a
generalized Rice formula applied to these processes, see [1], [2], [13].

The focus of this work is two-fold, firstly, we propose derivation general Slepian models by obtaining
Slepian models of the noise that is driving the considered models, secondly, we show how conditioning
on a variable or process can help in derivation of a convienient Slepian model for a non-Gaussian model.
The novelity of the approach is its focus on the Slepian models of the noise. An alternative approach
to building a Slepian model would be through a hierarichical approach to which one could employ a
non-stationary Slepian models as discussed in [12]. We prefer to consider a Slepian model of noise
for which we found a convenient simulation method through a Gibbs sampler. One advantage of the
presented approach is a possibility of simultaneous studies of various random functionals of such a noise
without necessity of constructing a separate Slepian model for each of the functionals. These benefits
are illustrated by examples and numerical studies. Our interest in simulations of Slepian models is
paralleling applied engineering papers on this subject [21]. They are useful, in particular, to study
non-linear dynamical systems where such Slepian models can be considered as input to the system to
study their responses at particular crossing events. For such an application our approach is more direct
than the one presented in [3], and here this is illustrated for stochastic road profile models.

2. Preliminaries

We consider a stationary random process X having almost surely absolutely continuous samples and
their derivatives. Moreover, it is assumed that the joint probability density function (pdf) fX,Ẋ of

X(0), Ẋ(0) exists. For u ∈ R, the u-level upcrossing set within interval [0, 1] is defined as

C(u) = {s ∈ [0, 1] : X(s) = u, Ẋ(s) > u}.
Let N(u) be the number of elements in C(u). The generalized Rice’s formula yields

E[N(u)] =

∫ +∞

0

zfẊ,X(z, u) dz,

where, for shortness, X denotes X(0) and Ẋ denotes Ẋ(0). Equivalently

(1) E[N(u)] =

∫ ∫ +∞

0

zfẊ,X|K(z, u|k)fK(k) dz dk,

where conditioning on the random variable or vector K is used to simplify evaluation of the integral.
Here and in what follows whenever the limits of integration are not shown in the notation they are
understood to be over the entire set of possible values of the corresponding variable. The focus of this
paper is on the Laplace moving average (LMA) processes for which K is a certain, possibly vector
valued, functional of the gamma process that serves as the subordinator in the representation of the
Laplace motion as a subordinated Brownian motion, [20].
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For a properly defined statement A on trajectories of another stationary stochastic process Y , define
N(A|u) to be the number of s ∈ C(u) such that Y (s+ ·) ∈ A. Similarly as for N(u) one can consider

E[N(A|u)] =

∫ +∞

0

P (Y ∈ A|Ẋ = z,X = u) · zfẊ,X(z, u) dz =

=

∫ ∫ +∞

0

P (Y ∈ A|Ẋ = z,X = u,K = k) · zfẊ,X|K(z, u|k)fK(k) dz dk

and use this to evaluate the u-level upcrossing distribution Pu of Y , see [30] for a derivation of this
formula for a general class of stochastic processes. The upcrossing distribution Pu is defined as the ratio
of the average number of the u-upcrossings at which a trajectory event occurs to the average number
of all u-uppcrosings

(2) Pu(A) =
E[N(A|u)]

E[N(u)]
.

Consequently, one has the following representation of u-level upcrossing distributions involving the
conditioning on K:

Pu(A) =

∫ ∫ +∞

0

P (Y ∈ A|Ẋ = z,X = u,K = k) · zfẊ,X|K(z, u|k)fK(k) dz dk∫ ∫ +∞

0

zfẊ,X|K(z, u|k)fK(k) dz dk

=

=

∫ ∫ +∞

0

P (Y ∈ A|Ẋ = z,X = u,K = k) · zfẊ|K,X(z|k, u)fK|X(k|u) dz dk∫ ∫ +∞

0

zfẊ|K,X(z|k, u)fK|X(k|u) dz dk

.(3)

A stochastic process Yu such that its finite dimensional distributions correspond to these given by
the upcrossing distribution is referred to as a Slepian model of Y at the u-up-crossings, i.e. for each
measurable A in the space of trajectories, Yu satisfies

P (Yu ∈ A) = Pu(A).

If a Slepian model can be expressed in an explicit form, it can be used for deriving approximations for
probabilities of interest as well as simulating trajectories interpreted as samples of the original process
observed at instants of the u-level up-crossings. It can also help to analyze asymptotic behavior of the
process crossing a high level and thus providing an insight into behavior of the process at extremal
episodes.

Example 1. If one takes Y = X, then a Slepian process Xu describes behavior of X at its own
up-crossings of u.

Example 2. Another case is to take Y = K for which a Slepian model Ku has distribution given by
the density

fKu
(k) ∝

∫ +∞

0

zfẊ|K,X(z|k, u)fK|X(k|u) dz.

Example 3. A joint Slepian model for Ẋ and K is a random vector with the distribution given by

fKu,Ẋu
(k, z) ∝ zfẊ|K,X(z|k, u)fK|X(k|u).

We observe that the distribution of Ku given Ẋu = z is the same as the distribution of K given Ẋ = z
and X = u.

Generalizing Example 3 one can conveniently write a scheme for obtaining a Slepian model for a
process Y . The following structural result is quite obvious and sets the foundation for many results of
this work.
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Proposition 1. Let a process Y (·|k, z, u) have distribution equal to that of Y conditionally on K = k,

Ẋ = z and X = u and (Ku, Ẋu) be a joint Slepian model for (K, Ẋ(0)). Then a Slepian model for Yu
is given by

(4) Yu(·) = Y (·|Ku, Ẋu, u).

In this note we discuss a Slepian model of a certain stochastic process Y at the crossings of the
Laplace moving average (LMA)

X(t) =

∫
g(s− t) dL(s),

where a Laplace noise dL is defined through a Laplace motion that can be defined through L(t) =
B(Γ(t)), where B is the Brownian motion (BM) and Γ is a gamma process, see [20]. Our approach
consists of two steps. In the first one, we obtain effective sample (l, γ, z) from the biased sampling joint

distribution of the motion Lu, the gamma process Γu and Ẋu, observed at the u level up-crossings of
the moving average process X. Once this sample is available, in the second step, we consider a suitable
model Y (t|l, x, u), l = l(·), z > 0, u ∈ R, the distribution of which coincides with the conditional

distribution of the process Y given that L(·) = l(·), Ẋ(0) = z and X(0) = u. The Slepian model Yu
for Y is obtained by substituting the sample l, x from the first stage, for l(·) and z in Y (t|l, z, u) of the
second stage as formally stated in Proposition 1.

Clearly, the key to the approach is effective sampling of (Lu,Γu, Ẋu). Here, we propose a Gibbs
sampler that uses the gaussianity of the conditional process L(t|γ, z, u) given that Γ = γ, X(0) = u

and Ẋ(0) = z. In the above γ = γ(·) stands for a realization of the process Γ(t), t ∈ R. This main
contribution is presented in Section 4.

Our approach provides an alternative to computing crossing level distributions as compared to the
results presented in [13], [1], [2], where approximations to the joint distribution of the process and
derivative at zero were used for the purpose. The benefits of considering Slepian models is that they
provide a unified frame for handling joint level crossing distributions for a variety of the variables
and functionals of stochastic processes. The next section illustrates our approach by showing how the
Slepian model in the Gaussian case can be presented through the Slepian noise model.

3. Slepian noise model for the Gaussian case

A moving average process is a convolution of a kernel function g, say, with an infinitesimal “white
noise” process having variance equal to the discretization step, say ds. Throughout the paper normal-
ization of the process in its value and its argument is assumed so that the variances of the process and
of its derivative are equal to one or, equivalently,

∫
g2 =

∫
ġ2 = 1. Here and in what follows,

∫
f stands

for the Lebesgue integral of a function f , i.e.
∫
f =

∫
R f(t) dt

The Gaussian moving average (GMA) model is given by

(5) X(t) =

∫ ∞
−∞

g(s− t) dB(s)

and its derivative Ẋ is given as the moving average with −ġ as the kernel. Consider a fixed level u ∈ R
and the probability distribution Pu on events A in the space of real continuous functions on R as defined
in (2). For a stationary Gaussian process X with variance one and variance of its derivative also equal
to one the Slepian model process Xu around u-upcrossing of X is given by

(6) Xu(t) = u r(t)−Rṙ(t) + ∆(t) = u r(t)− Ẋu(0) ṙ(t) + ∆(t),

where r(t) = g ∗ g̃ is the covariance function of X with g̃(s) = g(−s), R is a standard Rayleigh variable
independent from a non-stationary Gaussian process ∆ having covariance

r(t, s) = r(t− s)− r(t)r(s)− r′(t)r′(s).
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Figure 1. Top-Left: Six BM samples used in computing samples from the Slepian model
Bu(t). Top-Right: Deterministic part Fu,g for levels: u = 0.5, 1, 3, 5. Bottom: Six samples
of Bu corresponding to the BM samples; crossing levels: u = 0.5 (left) and u = 5 (right). A
single value for the Rayleigh variable is used for all these samples.

This form follows easily from the Rice formula that yields the Rayleigh distribution for Ẋu by application
of Proposition 1 because X(t|z, u) = u r(t)− z ṙ(t) + ∆(t). A more detailed presentation of this Slepian
model for Gaussian case can be found in [22] and [24].

For the purpose of this presentation, we derive another while equivalent Slepian model that explicitly
use the moving average form of the underlying process. We first ask for a Slepian model dBu(x) for the
noise dB(x) at the crossing levels u of X. As argued in the Appendix, the biased sampling distribution
of dB(x) is represented by the distribution of the following stochastic process Bu(t), t ∈ R:

(7) Bu(t) = u

∫ t

0

g −R
∫ t

0

ġ −
∫ t

0

g ·
∫
g dB −

∫ t

0

ġ ·
∫
ġ dB +B(t), t ∈ R,

where random variable R has the Rayleigh distribution and is independent of dB(t), while Bu(t) is
understood as a random measure of [0, t], with the convention that for t < 0, the measure is understood
as minus the measure of [t, 0].
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From this representation we can distinguish three components of the Slepian model for the noise.
Firstly, the level and kernel dependent non-random component

Fu,g(t) = u

∫ t

0

g.

Secondly, the kernel only dependent random component

Gg(t) =

(∫
ġ dB +R

)
· (g(0)− g(t))−

∫
g dB ·

∫ t

0

g,

and, finally, purely random noise represented by Brownian motion B(t). We note that Gg and B are
stochastically dependent and Gg conditionally on B is a linear combination of non-random functions
with one random coefficient distributed according to a Rayleigh distribution.

Example 4. Let us consider (normalized) kernel g(t) = (2/π)1/4 e−t
2

, t ∈ R. Direct calculations lead
to the following form of the Slepian model

Bu(t) = Fu,g(t) +Gg(t) +B(t),

with

Fu,g(t) =
4
√

2π u Φ0

(√
2t
)
,

Gg(t) =

(
4

√
2

π
R−

√
8

π

∫
se−s

2

dB(u)

)
·
(

1− e−t
2
)
−
√

2

∫
e−s

2

dB(s) · Φ0

(√
2t
)
,

where Φ0(s) = (2π)−1/2
∫ s

0
e−u

2/2 du.
In Figure 1, we show simulations of this Slepian noise for different levels u and compare them with

corresponding samples from a regular BM. We can observe how the behavior of Bu(t) depends on
the value of a level u. In particular, for a high level u the main contribution to Bu comes from the
deterministic part. Since term Gg(t) does not depend on u it is not shown in the figure.

There are several benefits of looking at the level crossing distributions through the Slepian model of
the noise. The discussed biased sampling representation of the noise allows for the Slepian model for any
process that is a functional of the BM by simply replacing B with Bu in the conditional representation
of such a process given B. Decomposition into three components: level depending, kernel depending,
and noise, allows separate studies of different aspect of process behavior at the crossing levels. This
is particularly beneficiary if the process under consideration is a linear functional of the noise. More
precisely, consider a vector of stochastic processes Y(t) = (Y1(t), . . . , Yn(t)), t ∈ R such that they arise
as a result of some functionals acting on B:

Yi(t) = Hi(t, B), i = 1, . . . , n,

where for a given trajectory B = b, Hi(t, b) can be random but independent of B (and thus independent

of Ẋ(0) andX(0)). Then the joint Slepian model Yu(t) for Y(t) at the instants when the moving average
process X(t) up-crosses level u is obtained by considering

Yu,i(t) = Hi(t, Bu), i = 1, . . . , n.

In particular, if functionals Hi(t, B) are linear in B, we obtain a joint decomposition

(8) Yi,u(t) = u ·Hi(t,
∫ t

0
g)−

(∫
ġdB +R

)
·Hi(t, ġ)−

∫
gdB ·Hi(t,

∫ t
0
g) + Yi(t), i = 1, . . . , n.

Example 5. To illustrate the convenience of the approach, we consider a pair of linear functionals of
dB, Y = (Y1, Y2), defined as follows.

The first component Y1(t), t ∈ R, is a filtered original process X(t) by means of a filter h(t), i.e. the
output from a linear system that is described by h(t) when the input is X(t) dt. Thus we have

Y1(t) =

∫
h(s− t)X(s) ds =

∫
h ∗ g(s− t) dB(s).
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Figure 2. Left: Six samples from the Gaussian moving average X – (top) and corresponding
samples from the Laplace moving average Y – (bottom). Samples are based on six samples of
the Brownian motion and a single sample of the gamma process that is used for process Y .
Middle: Samples from the joint Slepian model at the crossings of X at level: u = 0.5. Right:
Analogous samples at the crossings of level u = 5.

The second component, Y2(t), t ∈ R is a far more complex functional of B as it arises from a linear
scheme that alter Gaussian distribution of the moving average process. Namely, we consider the moving
average driven by a Lévy motion build upon the Laplace distribution – the Laplace motion. The Laplace
motion is obtained through subordination of the original BM to a gamma motion. For a kernel f and
the Lévy process Γ such that Γ(1) has the gamma distribution with shape τ and scale 1/τ (for negative
t, the process −Γ(t) is an independent copy of Γ(t), t ≥ 0), we define the Laplace moving average (LMA)

Y2(t) =

∫
f(s− t) dB ◦ Γ(s).

It is clear that although both the processes are linear in B, their mutual dependence is a fairly
complex due to randomness of the gamma subordinator. The direct approach to the joint distribution
of (Y1, Y2) at up-crossings of X would require analysis of the joint distribution of (Y1, Y2) together with

the distribution of X(0) and Ẋ(0). This is not straightforward due to non-Gaussianity of Y2 and a
complex nature of its dependence on Y1 and X. However, our approach through the Slepian model of



8

−10 −5 0 5 10

0
1

2
3

4
5

t

−10 −5 0 5 10

0
1

2
3

4
5

t

Figure 3. Level dependent components in the Slepian model, u = 0.5, 1, 3, 5 for Gaussian
(left) and Laplace (right) moving averages. Irregularity in the right picture is due to the
gamma process Γ that is present in this component – only one sample of this process is used
for all the presented levels.

dB as given in (8) yields

Y1u(t) =u · h ∗ r(t)−
(∫

ġ dB +R

)
· h ∗ ġ ∗ g̃(t)−

∫
g dB · h ∗ r(t) + Y1(t),

Y2u(t) =u ·
∫
f(s− t) dG ◦ Γ(s)

−
(∫

ġ dB +R

)
·
∫
f(s− t) dg ◦ Γ(s)−

∫
g dB ·

∫
f(s− t) dG ◦ Γ(s) + Y2(t),

where G(t) =
∫ t

0
g, g̃(t) = g(−t) and r = g ∗ g̃ is the covariance of X. The obtained decomposition

reveals complex dependence structure between processes.
For a graphical illustration, we take X as in Example 4 and consider Y1 = X, while Y2 = Y , where

(9) Y (t) =

∫
g(s− t) dB ◦ Γ(s),

which could be viewed as a modified X obtained by random distortion of time represented by gamma
process Γ. We have the following formulas

Xu(t) =u · e−t
2/2 +

(
R− 2

(
2

π

)1/4 ∫
se−s

2

dB(s)

)
· te−t

2/2 −
(

2

π

)1/4 ∫
e−s

2

dB(s) · e−t
2/2 +X(t),

Yu(t) =(2π)1/4 u ·
∫
e−(s−t)2 dΦ0

(√
2Γ(s)

)
−
√

2

π

(
R− 2

(
2

π

)1/4 ∫
se−s

2

dB(s)

)
·
∫
e−(s−t)2 de−Γ2(s)

− 23/4

π1/4

∫
e−s

2

dB(s) ·
∫
e−(s−t)2 dΦ0

(√
2Γ(s)

)
+ Y (t),

Using the above relation, we illustrate particular components of the Slepian model for the joint up-
crossing distribution of (Y1, Y2). We have chosen τ = 0.5 for the shape parameter of the gamma
process. The samples of underlying Brownian motion are the same as those in Figure 1.
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In Figure 2 (top), we observe samples simulated from bivariate process (X(t), Y (t)) (to facilitate
better visual comparison we have used the same sample of the underlying gamma process for all six
samples of the Laplace moving average). They reveal complex leptikurtic behavior of Y , which shows
much larger extreme values than X. In the middle and right columns we see a sample from the Slepian
model at level u = 0.5 and u = 5, respectively. The level crossing occurs at t = 0 as seen at the top
middle/right plots. We observe in the bottom graphs that the random time change introduced by the
gamma motion is adding to variability of Y at the crossing instants of X. For large level u the variability
relatively to the level is reduced however the process Y still significantly overshoots the crossing value
u = 5.

Our approach allows for investigating the role of particular components in the model. For example,
the level dependent components are presented in Figure 3, where we see that for the non-Gaussian case
this component is randomly affected by the presence of gamma process Γ.

4. Slepian noise model at crossings of a non-Gaussian moving averages

We have discussed a Slepian model for the Gaussian noise at crossings of a stationary Gaussian
moving averages. Our interest will turn now to the case of crossings by a moving average driven by a
non-Gaussian noise

(10) X(t) =

∫
g(s− t) dL(s) =

∫
g(s− t) dB ◦ Γ(s),

where, as before, Γ(t) is a gamma process with shape τ and scale 1/τ , i.e. Γ(1) has the gamma
distribution with these two parameters. The choice of a gamma process as a subordinator is dictated by
convenience of a simple parameterization and an available convenient Gibbs sampler (see the Appendix),
but in general one can consider other classes of non-negative second order Lévy processes.

Let us consider an arbitrary process Y and a process Y (·|γ, z, u) with the distribution equal to

conditional distribution of Y given Γ = γ, (γ = γ(·) is a trajectory of Γ), Ẋ(0) = z, and X(0) = u.

Then, as stated in Proposition 1, if one have a joint Slepian model (Γu, Ẋu) for (Γ, Ẋ), then a Slepian
model for Y can be obtained through

Yu(t) = Y (t|Γu, Ẋu, u),

where for shortness Ẋu = Ẋu(0). This approach splits finding a Slepian model for Y into two separate

tasks: firstly, finding Y (·|γ, z, u), then, secondly finding a Slepian model (Γu, Ẋu). While finding
Y (·|γ, z, u) is specific to a given process Y and need to be addressed in each case of Y individually, the

obtaining a Slepian model (Γu, Ẋu) is universal in the sense that it has the same structure dependent
only on the elements defining the moving average X but independent of the choice of Y . A Slepian
model (Γu, Ẋu) is considered next.

It is easier to consider an extended model (Lu,Γu, Ẋu) and express a Slepian model for sampling
from the crossing level distribution of this vector by a convenient Gibbs sampler. Namely, the model
will based on alternate samples from Γu conditionally on Lu, Ẋu and Lu, Ẋu conditionally on Γu. As
shown in the Appendix in (19), these two conditional distributions, given by through the Bayes relation

fΓu|Lu,Ẋu
(γ|l, z) ∼ fLu|Γu,Ẋu

(l|γ, z)fẊu|Γu
(z|γ)

fLu,Ẋu|Γu
(l, z|γ) ∼ fLu|Γu,Ẋu

(l|γ, z)fẊu|Γu
(z|γ),

can be simulated in a straightforward fashion.
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Figure 4. Left: Six samples from a regular Brownian motion (top) and corresponding sam-
ples for Laplace motion (bottom), τ = 0.5 (the same gamma trajectory was used for subordi-
nation in all six cases). Middle: Level dependent part Fu,g,γ of the Slepian model obtained for
u = 0.5 (top) and the corresponding Slepian noise (bottom). Right: The same but for level

u = 5.

It follows directly by the above conditional arguments and properties (18) and (20), stated in the
Appendix, that a Slepian model of L at the u-crossings of Y can be written in the form

(11) Lu(t) =
Gγ(t) + rγĠγ(t)

1− r2
γ

u√∫
g2dγ

− Ġγ(t) + rγGγ(t)

1− r2
γ

Ẋu +
∫
ġdB ◦ γ√∫
ġ2dγ

− rγĠγ(t) +Gγ(t)

1− r2
γ

∫
g dB ◦ γ√∫

g2dγ
+B ◦ γ(t),

where γ = Γu and rγ = −
∫
gġdγ/

√∫
ġ2dγ

∫
g2dγ, Gγ(t) =

∫ t
0
gdγ/

√∫
g2dγ, Ġγ(t) =

∫ t
0
ġdγ/

√∫
ġ2dγ.

Although the structure of the Slepian model is more complex as compared with the Gaussian case,
one can still identify similar components as before. We have the level and Γu = γ depending component

Fu,g,γ(t) =
Gγ(t) + rγĠγ(t)

1− r2
γ

u√∫
g2dγ

,

a linear combination of functions depending only on Γu, where the coefficients are random variables

GẊu,g,γ,B
(t) = − Ġγ(t) + rγGγ(t)

1− r2
γ

Ẋu +
∫
ġ dB ◦ γ√∫
ġ2dγ

− rγĠγ(t) +Gγ(t)

1− r2
γ

∫
g dB ◦ γ√∫

g2dγ
,
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Figure 5. Left: The samples from the Slepian noise for the Gaussian (top) and the Laplace
(bottom), both for the crossing level u = 5. Middle: The explicit level dependent component
of the Slepian model for the Laplace moving average for u = 0.5 (top) and u = 5 (bottom).
Right: The Slepian model itself for the LMA, u = 0.5 (top) and u = 5 (bottom).

and, finally, the time distorted random noise

B ◦ γ(t).

Using this notation, we can write

(12) Lu = Fu,g,Γu
+GẊu,g,Γu,B

+B ◦ Γu.

We observe that in this decomposition, in contrast to the stationary Gaussian case, all terms are
dependent on the level u. The Gibbs sampler given in (19) of the Appendix simulates from (Ẋu,Γu, Lu)
and thus allows for evaluation each of the three components in (12).

Example 6 (Crossings by LMA). To illustrate our approach, we consider the u-level crossings of the
Laplace moving average defined by (9) in the Gaussian kernel example. Six samples from such a process
are presented in Figure 2 (top-right). We want compare how the noise and its Slepian model differ from
the case when the crossings were taken by the GMA given in (5) and discussed in Example 4. As before,
the shape parameter for the Laplace noise is τ = 0.5.

Using the Gibbs sampler, six samples (Ẋu,Γu, Lu) are obtained for two different levels: u = 0.5 and
u = 5, and the components Fu,g,Γu

, GẊu,g,Γu,B
, B ◦ Γu are presented in Figures 4 and 5.

In Figure 4 (left), we see six samples from the Brownian motion (top) and the corresponding gamma
subordinated samples for the Laplace motion (bottom) (a single trajectory of the Gamma process has
been used in all samples). For comparison, in the next two columns the components in the decomposition
of the Slepian model (12) are shown, first for the level u = 0.5 (middle) and then for u = 5 (right). We
note the different vertical scales used in the plots for different crossing levels.
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Further, we illustrate how by simulating from the Slepian model for noise, we can obtain the Slepian
model Yu. Using (12) we obtain the following decomposition of Yu:

Yu(t) =

∫
g(s− t) dLu(s) =

∫
g(s− t) dFu,g,Γu

+

∫
g(s− t) dGẊu,g,Γu,B

+

∫
g(s− t) dB ◦ Γu

In Figure 5, we illustrate the components of Yu and their dependence on level u. This figure should
be compared with the analogous figures obtained for crossings of the Gaussian moving average process
in the top row of Figure 2. At the first sight the behavior of the Slepian at the high level crossing u = 5
shown at Figure 2 (right-top) for the GMA and at Figure 5 (right-bottom) for the LMA appears to be
very similar in these two cases. However, this initial impression is misleading as explained next.

For a large value of the crossing level u = 5, the Slepian model for the Laplace motion is having large
jumps at the crossing level and thus this jumps convoluted with the kernel are responsible for the shape
of the process at the crossing. The jumps in the Slepian model for the noise at level u = 5 are shown in
Figure 5 in the right-bottom graph are accumulating near the crossing instant. This is in contrast to
the Gaussian case where the convolution results in the non-random covariance function that is shown
in Figure 3 (left). Irregularities of the Slepian noise around the crossing instant for the Gaussian case is
spread over many values as presented at the right-top graph of that figure and result with convolution
of the kernel with itself. The corresponding function for the Laplace motion Slepian model is random
as seen in Figure 5 (middle-bottom), and it is narrower at its base due to the fact that the kernel is

proportional to e−t
2

while covariance is proportional to e−t
2/2 (convolution of the kernel with itself).

The difference would be more profound if the convolution of the kernel with its symmetrization around
origin would be more distinct from the kernel itself, as it is the case in the next application, see Figure 8.
It would be also interesting to investigate theoretically the observed behavior and obtain an asymptotic
result for large level crossings in the Laplace case, in the spirit of some previous work, see [5], [3], [29].
Finally it should be noted that not only behavior at the high level crossing is different but also the
frequency of reaching that level is for the Laplace case higher. For example using (1), one can evaluate
the intensity of crossing of the level u = 5 for the LMA which is approximately 4 times per 104 time
units much higher than that for the GMA which is less than 3 times per 105 time units.

5. Application

Durability applications of vehicle components often requires a customer or market specific load
description. It is desirable to have a model of load environment that is vehicle independent and which
may consist of many components, like driving habits, encountered road roughness, hilliness, curve
radius, cargo loading, and others. Of all the mentioned factors the road surface roughness is one of the
most important.

The road profile roughness is often quantified by means of the response of a quarter-vehicle model
traveling at a constant velocity on road profiles, see Figure 6 (left). Such a simplification of a physical
vehicle cannot be expected to predict loads exactly, but it will highlight the most important road
characteristics as far as durability is concerned. Often one choses the force acting on the sprung mass
ms as the response Y (x) which then is used to compute suitable indexes to classify severity of road
roughness. The parameters in the model are set to mimic heavy vehicle dynamics developed in SCANIA.
Here the parameters have the following physical interpretation. Properties of the tire are described by
kt, ct, which relate to vertical stiffness and damping of the tire, while properties of the suspension are
given by vertical stiffness and damping ks, cs, respectively.

By R(x) we denote the road surface elevation at location x (in [m]) and by X(x), U(x) the positions
of masses mt, ms, respectively, relatively to the height for the vehicle at rest. The response Y (x)

becomes a variable force acting on the mass ms, viz. Y = msÜ . Quantities X(x), U(x), and Y (x) are
all linear functionals of road profile R(x).

Modeling of true loads acting on components are difficult since tires filter nonlinearly the road
profile and the filters parameters depends on very uncertain factors, e.g. tire’s pressure, wear etc.
Consequently the response X(x) is difficult to model and one sometimes considers X(x) as an external
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Symbol Value Unit

ms 3400 kg
ks 270 000 N/m

cs 6000 Ns/m

mt 350 kg
kt 950000 N/m

ct 300 Ns/m
100 0 100

x

0.4

0.0

0.4

0.8

gR (x)

100 0 100

x

0.4

0.0

0.4

0.8

gX (x)

100 0 100

x

0.4

0.0

0.4

0.8

gY (x)

Figure 6. Left: Quarter vehicle model. Three right hand side plots: Kernels gR(x)
given in (15) and the pair gX(x), gY (x) given in (16).

input to calculate loads acting on the vehicle components, see [17] for a more detailed presentation.
Hence it is of interest to study and model both the response and the road profile at locations when
X reaches some extreme level. In what follows, we shall give Slepian models for Xu and Ru and Yu,
when X upcrosses u. We consider two moving average models of the road profile variability, namely,
the Gaussian and Laplace ones.

In the literature, many models for the power spectral density (psd) of road profiles have been pro-
posed, see [4] for a review. Here, for simplicity, we choose a Matérn type psd fited to a measured road
profile for a road in Sweden given in [9] viz.

(13) SR(ω) =
C cw1

(1 + (cω/ω0)2)w1/2
, 0.02π ≤ ω ≤ 5.65π,

and zero otherwise. The parameter values are ω0 = 1, w1 = 3, C = 10−4 and c = 10. Further one often
assumes that the energy for frequencies < 0.01 [m−1] (wavelengths above 100 [m]) represents landscape
variability, which does not affect the vehicle dynamics and hence can be removed from the spectrum.
Similarly high frequencies > 10 [m−1] (wavelengths below 10 [cm]) are filtered out by the tire and thus
are not included in the spectrum.

In order to simplify the discussion, we have chosen to normalize the spectrum as follows

(14) S(ω) = σ2 aSR(aω), σ2 = 46.5, a = 0.226,

so that
∫
S(ω) dω =

∫
ω2 S(ω) dω = 1. The road profile R(x) will be modeled as moving average having

a symmetrical kernel gR(x) which is introduced here through its Fourier transform

(15) GR(ω) = Fg(ω) =
√

2πS(ω).

The responses X(x), Y (x), defined in Figure 6 by means of a mechanical system, are obtained by
linearly filtering road profile R(x). The filters transfer functions will be given next.

First, by writing the equations of motion for the two masses, we obtain the transfer function for X:

HX(ω) =
i ωv ct + kt

Ht(ωv)−msω2
v(i ωv ct + kt)/Ht(ωv)

.

where ωv = ω · v and ω is a wave number and v is vehicle speed in [m/s].
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Figure 7. Slepian model for noise at a u = 4.5 upcrossing of X(x); Brownian motion
Bu(x) for the Gaussian model (left) and Laplace motion Lu(x) for the LMA (right).

Now, the response Y (t) is filtered X(t) by a filter having the following transfer function

HY (ω) =
−msω

2
v(i ωv cs + kts)

Hs(ωv)
,

where

Ht(ω) = −mt ω
2 + i ω ct + kt, Hs(ω) = −ms ω

2 + i ω cs + ks.

Consequently, the processes X(x) and Y (x) are moving averages with kernels gX and gY defined through
theirs Fourier transforms

(16) GX(ω) = HX(ω)GR(ω), GY (ω) = 4 · 10−6HY (ω)GX(ω),

respectively. Here, to ease comparisons, we scaled Y (x) by a factor 4 · 10−6. The kernels gR, gX and gY
are shown in Figure 6 (three right hand side plots).

The Gaussian moving average is commonly used to model the road profile variability. Although
it is well known that Gaussian processes do not describe the road profiles well, see [8] and references
therein, they are used because many tools are available for fast computations of probabilities of interest
for durability evaluations. In [9], the LMA road profile model was proposed and it was demonstrated
that it gives much more accurate than the GMA predictions of fatigue damage accumulations in vehicle
components.

Next, we shall illustrate some properties LMA that can be useful for a design of components. Our
application is kept simple for transparency of the example but it can be easily developed further to
address more realistic situations by changing kernels gX , gY and to include additional responses, linear
or even nonlinear functionals of X. The purpose of the example is to illustrate quantitative differences
between Gaussian and Laplace modeling.

Notably the GMA and LMA models for X,R and Y have the same mean and power spectral densities,
and hence variances but they differ in statistical distributions. The Laplace model of road surface has
kurtosis equal to 5, which is a typical value for this type of roads in Sweden. For kernel gX the kurtosis
5 gives the Laplace motion parameter τ = 0.37. We are interested in properties of extremal episodes,
here defined as evolution of the system responses, and properties of the road profile when the wheel
position reaches an extreme level (for simplicity we assume that the wheel can not lose contact with
the road).

To choose a level u which upcrossed by X will define the center of an extreme episode, we consider
the level that is crossed about once per 600 km for the stationary road considered here. In Figure 8 (left
column), some sample paths of the Gaussian and Laplace moving average models for road profile R and
responses X,Y are shown. One can see that the Laplace model reaches more extreme values than the
Gaussian model does. For example it can be evaluated using the Rice formula that the frequency of
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Figure 8. Simulation study. The Laplace case shown in the top three graphs of each
column and the Gaussian case shown in the bottom three graphs of each column. Left:
Road profile R(x) (middle) and responses X(x) (top), Y (x) (bottom). Right: Slepian
models Xu(x), Ru(x) and Yu(x) around the u = 7 upcrossing of X(x) in the Laplace
case (top three graphs) and around the u = 4.5 upcrossing of X(x) for the Gaussian
case (bottom three graphs).

upcrossings of level u = 4.5 (measured in standard deviations of the process) by the Gaussian process
is about the same at the frequency of upcrossings of u = 7 (also in the standard deviation unit) by
the Laplace process. This happens rarely but still frequently enough to be of importance in durability
analysis. Note that many components are designed to hold 200 thousands km with high probability. In
the following, the level u = 4.5, 7 has been chosen for the GMA, LMA models of X, respectively.

The Slepian models for “noises” Bu(x) and Lu(x) are shown in Figure 7. The processes seems to
vary in the same range but in Lu one can easily see jumps. The difference is actually very influential on
the properties of the Slepian models for processes X,R, Y around u level upcrossings by X, i.e. Xu, Ru
and Yu, which can be observed in Figure 8 (the plots in the right column).

First by studying kernels gX and gR, given in Figure 6 (three right hand side plots), we expect that
the paths of Xu and Ru are very similar. There will be some extra vibrations in the tire after passing
a large bump but those are relatively small. In contrast the kernel gY is very different from kernels gR,
gX . It is oscillatory and asymmetric. These oscillations are characteristic for the shape of the Yu for the
LMA model of a road profile which, in contrast to the Gaussian case, is not a time reversible process.
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Basically, the shape of extreme episodes Yu resembles the (asymmetric) kernel while for Gaussian model
the shape is given by the correlation function of Y which is symmetric in time.

Appendix

Slepian model for homogeneous Gaussian noise. Here we derive a Slepian model for the ho-
mogenous Gaussian noise that is driving a moving average process. Such a noise can be viewed as a
stochastic measure defined through a Brownian motion B(t), t ∈ R, obtained from a regular Brownian
motion by reflecting it independently at t = 0, so that B(t) represents the measure of [0, t] for t > 0 (for
negative t it equals to minus the measure of [t, 0]). This identification of the measures and processes
is kept throughout the paper. The biased sampling distribution for the finite dimensional distributions
of the Gaussian process B at the u-level up-crossings of X(t) =

∫
g(s − t) dB(s) are obtained by con-

sidering the conditional distribution of B(t), B(s), for some fixed t and s, |t| ≥ |s|, given X(0) = u and

Ẋ(0) = z.

The covariance matrix of normally distributed vector (B(t), B(s), X(0), Ẋ(0)) is given by

Σ =


|t| a G(t) g(0)− g(t)
a |s| G(s) g(0)− g(s)

G(t) G(s) 1 0
g(0)− g(t) g(0)− g(s) 0 1

 ,
where a = |s| if s and t have the same sign and zero otherwise, while G(t) =

∫ t
0
g. The ‘ones’ on

the diagonal are the consequence of the assumption:
∫
|g|2 =

∫
|ġ|2 = 1. Direct verification of the

covariances leads to the following representation of Gaussian noise B given X(0) = u, Ẋ(0) = z:

B(t|u, z) = u ·G(t) + z · (g(0)− g(t))−G(t)

∫
gdB + (g(0)− g(t))

∫
ġdB +B(t).

From the Rice formula it follows that this is a Slepian process for B at the up-crossing level dis-
tribution given that the derivative Ẋu at the up-crossings is equal to z. Taking into account that the
Rayleigh distribution is representing the biased sampling distribution of the derivative and using (4), a
Slepian model for the noise is given by

Bu(t) = u ·G(t) +R · (g(0)− g(t))−G(t)

∫
gdB + (g(0)− g(t))

∫
ġdB +B(t),

where random variable R has the Rayleigh distribution and is independent of B.

Conditional Slepian model of noise given subordinator, and derivative. An extension of the
representation of the noise from the previous section to a non-homogeneous Gaussian noise is important
for derivation of the Slepian model when a moving average with respect to the Laplace noise is crossing
a level u. Formally, we are interested in a conditional Slepian model Lu of non-Gaussian noise L given
that Γu = γ and Ẋu = z, where Γu and Ẋu are some Slepian models for subordinator Γ and the
derivative Ẋ(0). Here, the crossing levels are marked by the non-Gaussian moving average given in
(10).

As presented in (4), this conditional distribution is equivalent to that of L given Γ = γ, Ẋ = z, and
X = u. This in turn can be presented through conditioning a non-stationary Gaussian moving average
process

Xγ(t) =

∫
g(s− t) dB(γ(s)),

where γ(s) is a non-decreasing function, i.e. we consider a moving-average integral with respect to
stochastic measure Bγ defined on intervals as

Bγ(s, s+ ds] = B(γ(s), γ(s+ ds)] =
√
dγsZs,

where dγ=γ(s + ds) − γ(s) and Zs = Bγ(s, s + ds]/
√
dγs is a standard Gaussian variable that are

independent for different s as long as the intervals (γ(s), γ(s+ds)] do not overlap. We use the notation
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B(γ(s), γ(s+ ds)] = B(γ(s+ ds))−B(γ(s) to denote the corresponding independent increment process
Bγ . In what follows, we use

∫
fdγ for

∫
f(t)dγ(t).

The joint distribution of (Bγ(t), Bγ(s), Ẋ(0), X(0)) has the covariance matrix

Σγ =


|γ(t)| a

∫ t
0
gdγ

∫ t
0
ġdγ

a |γ(s)|
∫ s

0
gdγ

∫ s
0
ġdγ∫ t

0
gdγ

∫ s
0
gdγ

∫
g2dγ

∫
gġdγ∫ t

0
ġdγ

∫ s
0
ġdγ

∫
gġdγ

∫
ġ2dγ

 ,
where a = |γ(s)| if the signs of γ(t) and γ(s) are the same and zero otherwise. For compactness of the
presentation, let set

rγ = −
∫
gġdγ√∫

ġ2dγ
∫
g2dγ

,

gγ =
g√∫
g2dγ

, ġγ =
ġ√∫
ġ2dγ

,

Gγ(t) =

∫ t

0

gγdγ, Ġγ(t) =

∫ t

0

ġγdγ.

Direct verification of the covariances proves the following conditional Slepian model for the non-
homogenous noise Lu conditionally on Ẋu = z,Γu = γ:

(17) Bγ(t|u, z) =
Gγ(t) + rγĠγ(t)

1− r2
γ

u√∫
g2dγ

− Ġγ(t) + rγGγ(t)

1− r2
γ

z√∫
ġ2dγ

− Gγ(t)

1− r2
γ

∫
(rγ ġγ + gγ) dBγ −

Ġγ(t)

1− r2
γ

∫
(rγgγ + ġγ) dBγ +Bγ(t).

From this model samples can be taken from a Gibbs sampler scheme as discussed next.

Slepian model of noise, subordinator, and derivative based on Gibbs sampler. Here, we
discuss a Slepian model (Lu,Γu, Ẋu) that is based on a Gibbs sampler. Let us consider gamma process
Γ, i.e. the Lévy process such that Γ(1) has the gamma distribution with shape τ and scale 1/τ (for
negative t, the process −Γ(t) is an independent copy of Γ(t), t ≥ 0). For the computational and
practical reasons it is more convenient to consider a discretized version of the problem. We consider
a uniformly spaced grid dt (for compactness of the notation, we use dt both for the grid and for its
diameter) and assume that stochastic measures are approximated by the Lebesgue measure multiplied
by independently sampled random increments of the considered stochastic measure. In particular, dL is
a vector of values of the motion increments over this grid, dΓ are random gamma variances distributed
with shape τdt and scale 1/τ while Z is a vector of independent standard normal random variables so

that dL =
√
dΓZ, where the multiplication is coordinate-wise. We also use dΓu and dLu as notation

for Slepian models of dΓ and dL, respectively.
Further if g is a function, then

∫
g is a vector of values of the Lebesgue integrals of g over the cells of the

grid dt. With the assumed discretization, we write
∫
g dL =

∫
g ·dL, where · stands for the inner product

of the two vectors. Consequently, we write X =
∫
fdL =

∫
f
√
dΓZ and Ẋ =

∫
ḟdL =

∫
ḟ
√
dΓZ.

We first notice that (Γu|Lu = l, Ẋu = z)
d
= (Γ|L = l, Ẋ = z,X = u), where each of the sides denotes

a conditional distribution. Since, both Ẋ and X are deterministic functions of dL thus we can assume
from now on that

∫
ḟdl = z and

∫
fdl = u. The Bayes formula yields

fΓu|Lu,Ẋu
(γ|l, z) ∝ fL|Γ(l|γ)fΓ(γ) ∝

(
N∏
i=1

γ
τdt−3/2
i e−(2γi/τ−dl2i /γi)/2

)
,(18)
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which corresponds to the distribution of a vector of independent variables distributed as GIG(τdt −
1/2, 2/τ, dl2i ).

The Gibbs sampler from the Slepian model (Lu,Γu, Ẋu) will be based on alternate samples from the
conditional distributions

γ(j) ∼ (Γu|Lu = l(j−1), Ẋu = z(j−1))(
l(j), z(j)

)
∼ (Lu, Ẋu|Γu = γ(j)).

(19)

As we have seen above, the first sampling is reduced to sampling from independent GIG distributions
for which there exists a uniformly bounded rejection algorithm, see [16]. Let us next discuss how to

sample from Lu, Ẋu given that Γu = γ.
We note that it is equivalent to sampling z from Ẋu given that Γu = γ and, then l from Lu given

that Ẋu = z,Γu = γ which is the same as sampling from L given that Ẋ = z,Γ = γ,X = u, which was
discussed in the previous section, see (17).

To express the distribution of Ẋu given Γu, we further extend our notation for the discretized model.
For any integrable function g we write

∫
g dγ as the inner product between the vector of the Lebesgue

integrals of g over the grid cells and the vector of values of the gamma vector dΓ = dγ. Using this
convention we define

r = −
∫
gġ dγ√∫

ġ dγ
∫
g dγ

.

The density of the distribution of (Ẋu|Γu = γ) is proportional to the joint density of (Ẋu,Γu) as a
function of the first argument, say z, and the value for the second argument fixed to γ. By the Rice
formula as written in (3), with Y = (Ẋu,Γu), we observe that this joint density as a function of z is
proportional to

fẊu|Γu
(z|γ) ∼ zfẊ,X|Γ(z, u|γ)fΓ(γ)

∼ zfẊ,X|Γ(z, u|γ)

∼ z · exp

−
(
z − ur

√∫
ġ2 dγ/

∫
g2 dγ

)2

2(1− r2)
∫
ġ2 dγ


or, in a more compact way,

(20) fẊu|Γu
(z|γ) ∼ z · exp

(
− (z − a)

2

b

)
where

a = u · r ·

√∫
ġ2 dγ/

√∫
g2 dγ,

b = 2(1− r2)

∫
ġ2 dγ.

This distribution, that we term the tilted Rayleigh distribution, can be sampling by a rejection algorithm
that is presented next.

Conditional Slepian derivative model – the tilted Rayleigh distribution. We have seen
that the distribution of Ẋu conditionally on Lu = l and Γu = γ is given by a scaled random variable
distributed according to the density

(21) f(x; a) = Ca · xe−(x−a)2 , x > 0,
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Figure 9. Tilted Rayleigh densities: a = 0, 0.5, 1, 1.5, 2 (left) and a = 0,−0.5,−1,−1.5,−2
(right), the densities are more shifted toward left for smaller values of a.

where a ∈ R is a parameter (in our problem this parameter as well as the scaling parameter, which is
not considered here explicitly, will be determined by the model). The normalizing constant equals

Ca =
2

e−a2 + 2
√
πaΦ(

√
2a)

.

Observe that, for a = 0 the density corresponds to the classical Rayleigh distribution and thus we will
refer to the distribution given by (21) as the tilted Rayleigh distribution with the tilting parameter a.
In Figure 9, we show few densities from this class of distributions for positive values (left) and negative
values (right) of a.

Direct calculations lead to the cumulative distribution function

(22) F (x) = 1− e−(x−a)2 + 2
√
πaΦ(

√
2(a− x))

e−a2 + 2
√
πaΦ(

√
2a)

, x > 0.

In Algorithm 1 we state an accept-reject algorithm for which the rejection rate is a uniformly bounded
function of a. The main result is stated in the next theorem which is a direct consequence of the two
lemmas that are presented later along with the details of the algorithms. The acceptance rate obtained
in the theorem is illustrated graphically in Figure 10. In the formulation of the result we use the
following constant

Ka =
2

e−a2 − 1 +
√
πa erf(a)

,

where erf(x) = 2Φ0(
√

2x).
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Algorithm 1. Rejection algorithm for sampling tilted Rayleigh distribution

Require: parameter a > 0
1: generate U ∼ U [0, 1]
2: λ1 ← 1

e−a2+2
√
πaΦ(

√
2a)

3: λ2 ←
√
πaλ1

4: if U ≤ λ1 then
5: generate U1 ∼ U [0, 1]

6: X ← a+
√
− log(U1)

7: else if U ≤ λ1 + λ2 then
8: Z ∼ N(0, 1)

9: X ← a+ |Z|√
2

10: else
11: if a ≤

√
π then

12: repeat
13: generate U1 ∼ U [0, 1] and U2 ∼ U [0, 1]
14: X ← a

√
U2

15: until U1 ≤ exp
(
−(X − a)2

)
16: else
17: repeat
18: generate U1 ∼ U [0, 1] and Z ∼ N(0, 1)

19: X ← a− |Z|√
2

20: until U1 ≤ X
a

21: end if
22: end if
23: return X

Require: parameter a ≤ 0
1: if a > − 1√

2
then

2: repeat
3: generate U1 ∼ U [0, 1] and U2 ∼ U [0, 1]

4: X ← 2−1/2
√
−2 log(U2)

5: until U1 ≤ e2aX

6: else
7: repeat
8: generate X ∼ Γ(2, (−2a)−1) and U1 ∼

U [0, 1]

9: until U1 ≤ e−X
2

10: end if
11: return X

Theorem 1. Algorithm 1 generates a sample from the tilted Rayleigh distribution, with the acceptance
probability equal to

α(a) =



4a2ea
2

Ca
if a < −

√
2

2 ,

2ea
2

Ca
if −

√
2

2 ≤ a ≤ 0,

Ca

(
1

2
+

√
πa

2
+

2/Ca − 1−
√
πa

a2Ka

)
if 0 < a <

√
π,

Ca

(
1

2
+

√
πa

2
+

2/Ca − 1−
√
πa√

πaKa

)
if
√
π ≤ a,

which is bounded below by 0.345.

Before proving the theorem we state different sampling schemes that are used in the algorithm.
First we propose two sampling schemes for

h(x; a) = Ka xe
−(x−a)2 , x ∈ [0, a],

The first scheme is

(1) Sample X ∼ 2a−2x I[0,a](x) using the cdf inverse method,

(2) Sample U uniformly over [0, 1] and if U ≤ e−(X−a)2 accept X, else goto step (1).

The second scheme is

(1) Sample X ∼ 2√
π
e−(x−a)2I(−∞,a](x) using a normal random variable,
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Figure 10. Acceptance rate as a function of tilting a.

(2) Sample U uniformly over [0, 1], and if U ≤ X
a accept X, or else go to step (1).

We get explicit acceptance probability for both the schemes formulated in the following Lemma.

Lemma 1. Both scheme generates a random variables X with distribution h(x; a). The acceptance
probability for the first scheme is 2/(a2Ka), which is a strictly decreasing function of a. For the second
scheme the acceptance probability is 2/(

√
πaKa), which is strictly increasing in a. Moreover, the two

acceptance rates are equal to 0.63 at a =
√
π.

Proof. Both schemes are standard accept reject algorithm, and the distribution of X is immediate. By
a general property, see [10], the acceptance probability of the first scheme is given by

P
(
U ≤ e−(X−a)2

)
=

2

a2Ka

and for the second algorithm by

P

(
U ≤ X

a

)
=

2√
πaKa

.

To see the monotonicity of the acceptance rates note that the derivative in a is given by

1

Ka
=

√
π

2

∫ a

0

erf(t) dt,

so that

(
2

a2Ka

)′
=
√
π


∫ a

0

erf(t) dt

a2


′

=
√
π

a erf(a)− 2

∫ a

0

erf(t) dt

a3
=− 2

√
π

∫ a

0

(erf(t)/t− erf(a)/a) t dt

a3

< 0,

where the inequality is because erf(x)/x is strictly increasing.
Similarly, for the second acceptance rate

(
2√
πaKa

)′
=


∫ a

0

erf(t) dt

a


′

=

a erf(a)−
∫ a

0

erf(t) dt

a2
> 0,
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since erf(x) > 0 if x > 0. �

For a < 0, note that

f(x; a) = Cãxe
−x2−2ãx,(23)

where ã = −a > 0, and

Cã =
2e−ã

2

e−ã2 − 2
√
πã(1− Φ(

√
2ã))

.

Similarily, we also derive two sampling schemes for f(x; a) when a ≤ 0. The first scheme is

(1) Sample X ∼ Rayleigh(2−1/2),
(2) Sample U ∼ U [0, 1], if U ≤ e−2ãX accept X, else goto step (1).

The second scheme is

(1) Sample X ∼ Γ(2, (2ã)−2)

(2) Sample U ∼ U [0, 1], if U ≤ e−X2

accept X, else goto step (1).

For these two schemes we also get explicit acceptance probability:

Lemma 2. Both scheme generates a random variables X with distribution f(x; a) for a ≤ 0. The
acceptance probability of the first scheme is 2/Cã which is a strictly decreasing function of ã. The
acceptance probability for the second algorithm is 4ã2/Cã, which is a strictly increasing function of ã.

The two algorithm have the same acceptance rate at ã = 2−1/2, which equals 1−
√

2πeΦ̄(1) ≈ 0.344.

Proof. Both schemes are based on the standard accept reject algorithm, and the distribution of X is
immediate. We follow the same method of the proof in Lemma 5, and observe the respective acceptance
rates

P (U ≤ e−2ãX) =
2

Cã
, P (U ≤ e−X

2

) =
4ã2

Cã
.

To see that the function is strictly decreasing as a function of ã, note that

2/Cã = 1− 2
√
πãeã

2

(1− Φ(
√

2ã)) = 1−
√
πãeã

2

(1− erf(ã)) = 1−
√
πãeã

2

erfc(ã).

Thus, (
2

Cã

)′
= −
√
π(1 + 2ã2)eã

2

erfc(ã) + 2ã = −2(1 + 2ã2)M(ã) + 2ã < 0,

where the last inequality comes from [14] as a relation for the Mills ratio

M(x) = ex
2

∫ ∞
x

e−t
2

dt.

Similarily, (
ã2

Cã

)′
=ã
(
2(ã2 + 1)− 2(2ã2 + 3)ãM(ã)

)
> 0(24)

where the last inequality comes from [25] equation (7.8.5). �

We are now ready to state the proof of of Theorem 1.

Proof. We prove two complementary cases: a ≤ 0 and a > 0.
For a > 0, we have representation

f(x; a) = λ1h1(x− a) + λ2h2(x− a) + (1− λ1 − λ2)h(x; a),
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where

λ1 =
1

e−a2 + 2
√
πaΦ(

√
2a)

,

λ2 =
√
πaλ1 =

√
πa

e−a2 + 2
√
πaΦ(

√
2a)

,

and

h1(x) = 2xe−x
2

, x > 0,

h2(x) =
2√
π
e−x

2

, x > 0,

h(x; a) = Ka xe
−(x−a)2 , x ∈ [0, a].

Note that, h1 is the density of the Rayleigh distribution, and h2 is the density of the absolute value
of a normal random variable with variance 1

2 . This together with Lemma 5 demonstrates that the
algorithm generates tilted Rayleigh samples for a > 0. The acceptance rate function for a > 0 follows
from multiplying 1− λ1 − λ2 by the rates from Lemma 5.

Both sampling and acceptance rate for a ≤ 0 follow immediately from Lemma 2.
�

Generalized inverse Gaussian distribution. The generalized inverse Gaussian distribution with
parameters p ∈ R, a ≥ 0, and b ≥ 0, for shortness GIG(p, a, b), is given by the pdf

f(x) =
(a/b)

p/2

2Kp

(√
ab
)xp−1e−

ax+b/x
2 .

The parameters satisfy

a > 0 , b ≥ 0 , if p > 0,

a > 0 , b > 0 , if p = 0,

a ≥ 0 , b > 0 , if p < 0.

The moment generating function of a GIG distribution is given by

M(t) =

(
a

a− 2t

)p/2 Kp

(√
b(a− 2t)

)
Kp(
√
ab)

, t < a/2.(25)

The following formulas for the expectations of a GIG(p, a, b) random variable X hold

E[Xλ] = (b/a)λ/2
Kp+λ

(√
ab
)

Kp

(√
ab
) , λ ∈ R

E[log(X)] = log(
√
a/b) +

∂ logKp

∂p

(√
ab
)
,

(26)

where ∂ logKp/∂p(x) is the derivative of the Bessel function Kp(x) with respect of its order p and
evaluated at value (p, x), cf. [18]. Consequently, by setting Rp(x) = Kp+1(x)/Kp(x) we obtain

E[X] =

√
b

a
·Rp

(√
ab
)
,

E[X−1] =

√
a

b
· 1

Rp−1

(√
ab
) .(27)

This together with the following recurrence relation

Rp(x) = 2p/x+ 1/Rp−1(x),
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see [18], yields

E[X−1] =
a

b
· (E[X]− 2p/a) .(28)

The special case of p = 1
2 corresponds to the reciprocal inverse Gaussian and the following simple forms

of expectations hold

E[X] =

√
b

a

(
1 +

1√
ab

)
,

E[X−1] =

√
a

b
.
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[6] J-M Azäıs and M. Wschebor. Level Sets and Extremes of Random Processes and Fields. Wiley & Sons, 2009.
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