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DIMENSIONAL POISSON’S EQUATION

MOHAMMAD ASADZADEH1 AND KRZYSZTOF BARTOSZEK 2

ABSTRACT. We construct and analyze a finite volume scheme for numerically solving a
three-dimensional Poisson equation. This is an extension of a two-dimensional approach
by Süli [26]. We derive optimal convergence rates in the discrete H1 norm and sub-optimal
in the maximum norm, using the maximal available regularity of the exact solution and
with minimal smoothness requirement on the source term. We also find a gap in the proof
of a key estimate in a reference in [26] and present a modified and completed proof. Fi-
nally, the theoretical results derived in the paper are justified through implementing some
canonical examples in 3D.

Keywords: Finite volume method, Poisson’s equation, stability estimates, convergence rates.

1. INTRODUCTION

Our motivation for the numerical study of the classical Poisson equation stems from
its appearance in coupled system of PDEs involving the Vlasov type equations of plasma
physics with a wide range of application areas, especially in modelling plasma of Coulomb
particles. The common approach has been to consider a continuous Poisson solver and fo-
cus the approximation strategy on the study of the associated hyperbolic equations of the
system of, e.g. Vlasov-Poisson-Fokker-Planck (VPFP) or Vlasov-Maxwell-Fokker-Planck
(VMFP) equations. However, in a discrete scheme including the continuous Poisson so-
lution, which is in an infinite dimensional space, requires an unrealistically fine degree
of resolution for the mesh size and hence an excessive amount of computational cost.
Even with availability of a computational environment, a miss-match will appear due to
the lack of compatibility between the resolution degree for the continuous Poisson solver
and a flexible numerical scheme for the discretized equations in the system. The present
study concerns numerical approximations of the Poisson equation that can both complete
the previous semi-analytic/semi-discrete schemes, for the Vlasov-type systems, and mean-
while are accurate enough to be comparable with the fully discrete numerical schemes for
the hyperbolic system of PDEs. To this approach, we construct and analyze a finite volume
scheme, prove stability estimates, and also derive optimal convergence rates in the discrete
H1 (corresponding to an order of O(h2) for the exact solution in the Sobolev space H2

0 (Ω))
as well as suboptimal convergence rates in the maximum norm (the maximum norm esti-
mates are optimal in 2D) for the Dirichlet problem for the following three dimensional
Poisson equation {

−∇2u = f in Ω

u = 0 on ∂Ω,
(1.1)

where Ω = (0,1)× (0,1)× (0,1).
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and Alice Wallenbergs travel fund, Paul and Marie Berghaus fund, the Royal Swedish Academy of Sciences, and
Wilhelm and Martina Lundgrens research fund.
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2 M. ASADZADEH AND K. BARTOSZEK

Problem (1.1) is a simplified form of the general Poisson equation formulated as{
−∇(A∇u) = f in Ω

u = 0 on ∂Ω,
(1.2)

where A is a conductivity matrix and Ω is a bounded convex domain in R3. To simplify
the calculus we have assumed that A = I (the identity matrix) and considered the cubic
domain Ω = (0,1)3. Considering Problem (1.2) with a variable coefficient matrix A will
be much more involved and shift the focus away from the study of the Poisson operator.
On the other hand, e.g. for a unifying finite element approach for VPFP, transferring the
Poisson equation to a hyperbolic system yields the simple but less advantageous problem,
(see. e.g. [3]), {

v = −∇u
div v = f . (1.3)

Therefore, considering the finite volume method (FVM) for the Dirichlet problem (1.1) we
can also circumvent these inconvenient issues.

The convergence results for Problem (1.1) here, being for a cell-centered finite volume
scheme in a quasi-uniform mesh, may be compared with that of a finite element scheme
with no quadrature procedure. A finite element scheme combined with a quadrature would
cause a reduce in the convergence rate by an order of ∼ O(h1/2). In this aspect and com-
pared to standard finite elements, the usual finite volume method (as the finite difference)
is quasi-optimal.

The main advantage of the finite volume method is its local conservativity property of
the numerical flux. This property makes the finite volume method an attractive tool in mod-
elling problems emphasizing the flux, like most hyperbolic PDEs, e.g. fluid problems and
conservation laws, see [14] for further details. In higher dimensions, a draw-back is that the
calculus, being seemingly involved, cannot be represented by simple, short-hand notation.
The finite volume method has been studied for both the Poisson equation, fluid problems
and other PDEs by several authors in various settings: e.g. the discontinuous finite volume
method for second-order elliptic problems in two-dimensions is considered in [7], where
the closeness of the FVM to the interior penalty method is demonstrated and optimal error
estimates are derived in L2- and L∞-norms. A three dimensional discrete duality finite vol-
ume scheme for nonlinear elliptic equations is considered in [12], where well-posedness
and a priori Lp-error bounds are discussed. These are convergence analysis, with no par-
ticular consideration of their optimality. A more computation oriented, second-order finite
volume scheme in three dimensions is considered in [28]. This paper deals with computing
eigenvalues of a Schrödinger type operator in 3D. As another computational exposition we
mention [24] where the authors construct a shape interface FVM for elliptic equations on
Cartesian grids in three dimensions with second order accuracy in L2- and L∞-norms. This
paper concerns variable coefficients as well with a particular piecewise trilinear ansatz. As
for the fluid problems, e.g. in [2] a 3D finite volume scheme is presented for the ideal mag-
netohydrodynamics. Theoretical analysis for the upwind FVM on the counter-example of
Peterson, for a two-dimensional, time dependent advection problem, can be found in [9].
For a detailed study of the finite volume method for compressible flow see [22].

However, the most relevant to our study are the works by Süli et. al., e.g. [26], for a two-
dimensional version of our work, and [27] and [23], considering the accuracy of cell-vertex
FVM for time-dependent advection- and convection-diffusion problems, respectively. Fi-
nally, a thorough theoretical study for the numerical solutions of general, linear, nonlinear
and quasilinear elliptic problems are given by Böhmer in [8], where most numerical meth-
ods are rigorously featured.

Below, for the sake of completeness, we recall some classical results concerning regu-
larities connecting the solution and the data for Problem (1.1) in different geometries. First
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we state these results for Rn and then for an open set Ω ⊂ Rn with smooth boundary. For
details we refer the reader to, e.g. Folland [15].

Proposition 1.1. Suppose f ∈ L1(Rn), and also that
∫
|x|>1 | f (x)| log |x|dx < ∞ in case

n = 2. Let N be the fundamental solution of the−∇2 operator: −∇2N = δ . Then u = f ∗N
is locally integrable and is a distribution solution of −∇2u = f .

Proposition 1.2. If f satisfies the conditions of proposition 1.1 and in addition f is C α(Ω)
for some α ∈ (0,1) on some open set Ω, then u = f ∗N is C 2+α on Ω.

Corollary 1.1. If f ∈ C k+α(Ω) for some integer k and α ∈ (0,1) then u ∈ C k+2+α(Ω).

To express in, L2-based, Sobolev spaces (see Adams[1] for details) we have

Proposition 1.3. If f ∈ Hk(Ω) then u ∈ H1
0 (Ω)∩H2+k(Ω).

In propositions 1.1-1.3, Ω is assumed to have a smooth boundary. For a general bounded
convex domain Ω, by Dirichlet principle, given f ∈H−1(Ω), there exists a unique solution,
u ∈ H1

0 (Ω), satisfying (1.1), and the mapping f 7−→ u is a Hilbert space isomorphism from
H−1(Ω) onto H1

0 (Ω). This is crucial in our study where, in order to derive optimal con-
vergence with minimum smoothness requirement on the exact solution, we shall assume
the data f belong to H−1, the dual of H1

0 (Ω). Then for f ∈Hσ (Ω), we have u ∈Hσ+2(Ω)
where −1 ≤ σ < 1. For justification of preserving regularity we refer the reader to ap-
proaches based on Green’s function, see, e.g. [16] and [21].

The purpose of this study is to generalize the two dimensional results in [26] for the
rectangular domain Ω = (0,1)×(0,1) to the cube Ω = (0,1)×(0,1)×(0,1). The study of
the finite volume scheme in three dimensions is somewhat different from a straightforward
generalization of the two dimensional case and there are adjustments that need to be made
for the dimension. We also provide a corrected (cf. [13]) proof of Theorem 4.2 (in [26])
utilized for the convergence of the finite volume method.

For Problem (1.1), existence uniqueness and regularity studies are extensions of two-
dimensional results in [17]: f ∈ H−1(Ω) implies that: there exists a unique solution
u ∈ H1

0 (Ω), and for f ∈ Hs(Ω), with −1 ≤ s < 1, s 6= ±1/2, u ∈ Hs+2(Ω). The finite
volume scheme can be described as: exploiting divergence from the differential equation
(1.1) integrating over disjoint ”volumes” and using Gauss’ divergence theorem to convert
volume-integrals to surface-integrals, and then discretizing to obtain the approximate so-
lution uh, with h denoting the mesh size. Here, the finite volume method is defined on the
Cartesian product of non-uniform meshes as a Petrov-Galerkin method using piecewise
trilinear trial functions on a finite element mesh and piecewise constant test functions on
the dual box mesh. The main result of this paper: Theorem 1.1, together with the optimal
finite element estimate in Theorem 1.2, justifies the sharpness of our estimate in L2. The
L∞ estimate in three dimensions is suboptimal.

Theorem 1.1. The finite volume error estimates for general non-uniform and quasi-uniform
meshes in Ω⊂ Rd , d = 2,3, are given by

‖u−uh‖1,h≤Chs|u|Hs+1 , ‖u−uh‖∞≤Chs+1−d/2| logh||u|Hs+1 , 1/2 < s≤ 2. (1.4)

whereas the corresponding finite element estimates can be read as:

Theorem 1.2. (cf [19])
a) For the finite element solution of the Poisson problem (1.1), in two dimensions, with a
quasiuniform triangulation we have the error estimate:

‖u−uh‖1,∞ ≤Chr| logh|×‖u‖r+1,∞, r ≤ 2

b) ∀ε ∈ (0,1) small, ∃Cε such that ‖u−uh‖1,∞ ≥Cε hr−ε | logh|.

Note that, in the two dimensional case, s = 2 in Theorem 1.1 corresponds to r = 1 in
Theorem 1.2, whereas the optimal L∞ estimate in 2D is not generalized to the 3D case.
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2. THE FINITE VOLUME METHOD IN 3D

A version of the three–dimensional scheme construction has also been discussed in
[6]. On our spatial domain Ω we construct an arbitrary (not necessarily uniform) mesh
Ω̄h = Ω̄h

x× Ω̄h
y× Ω̄h

z as a Cartesian product of three one–dimensional meshes,

Ω̄h
x = {xi, i = 0, . . . ,Mx : x0 = 0, xi− xi−1 = hx

i , xMx = 1}
Ω̄h

y = {yi, i = 0, . . . ,My : x0 = 0, yi− yi−1 = hy
i , yMy = 1}

Ω̄h
z = {zi, i = 0, . . . ,Mz : x0 = 0, zi− zi−1 = hz

i , zMz = 1}.

We further define Ωh
x := Ω̄h

x ∩ (0,1], Ωh
y := Ω̄h

y ∩ (0,1], Ωh
z := Ω̄h

z ∩ (0,1], ∂Ωh
x := {0,1}×

Ωh
y×Ωh

z , ∂Ωh
y := Ωh

x×{0,1}×Ωh
z , ∂Ωh

z := Ωh
x×Ωh

y×{0,1}, Ωh := Ω∩ Ω̄h and ∂Ωh :=
∂Ω∩ Ω̄h. With each mesh point (xi,y j,zk) ∈Ωh we associate the finite volume element

ωi jk := (xi−1/2,xi+1/2)× (y j−1/2,y j+1/2)× (zk−1/2,zk+1/2),

where
xi−1/2 := xi−

hx
i

2 , xi+1/2 := xi +
hx

i+1
2 ,

y j−1/2 := y j−
hy

j
2 , y j+1/2 := y j +

hy
j+1
2 ,

zk−1/2 := zk−
hz

k
2 , zk+1/2 := zk +

hz
k+1
2 ,

and denote the dimensions of the volume element ωi jk by,

h−x
i :=

hx
i +hx

i+1

2
, h−y

j :=
hy

j +hy
j+1

2
, h−z

k :=
hz

k +hz
k+1

2
,

see Fig. 1.

FIGURE 1. Part of mesh showing the grid and finite volume ωi jk (inside
box) in three dimensions.

The characteristic function of the box ωi jk, i.e. χi jk belongs to Hτ(R3) for all τ < 1/2.
This can be easily checked by the fact that the Fourier transform of the characteristic func-
tion of the unit interval χ(0,1) is the sinc function sinξ/ξ . Thus using the Fourier transform
we may determine the Sobolev class of χi jk. To this end, for each s ∈ R+ we recall the
operator Λs defined as (Λsξ )ˆ(χ) = (1+ |ξ |2)s/2χ̂(ξ ) and the Soblolev norm of order s,

‖χi jk‖2
s = ‖Λs

χi jk‖2
L2(R3)

=
∫

R3
(1+ |ξ1|2 + |ξ2|2 + |ξ3|2)s

( sinξ1

ξ1

)2
·
( sinξ2

ξ2

)2
·
( sinξ3

ξ3

)2
dξ .

(2.1)

We split the above integral as∫
R3
• dξ =

∫
|ξ |≤1
• dξ +

∫
|ξ |>1
• dξ ,
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and check for which s-values the integrals on the right hand side converge. For the first
integral, since limξi→0 sinξi/ξ1 = 1, i = 1,2,3, we get an immediate bound. As for the
second integral we have that,∫

|ξ |>1
(1+|ξ1|2 + |ξ2|2 + |ξ3|2)s

( sinξ1

ξ1

)2
·
( sinξ2

ξ2

)2
·
( sinξ3

ξ3

)2
dξ

≤
∫
|ξ |>1

(1+ |ξ1|2)s(1+ |ξ2|2)s(1+ |ξ3|2)s 1
|ξ 2

1 |
· 1
|ξ 2

2 |
· 1
|ξ 2

3 |
dξ

≤
3

∏
j=1

∫
|ξ j |>r j

(1+ |ξ j|2)s 1
|ξ 2

j |
dξ =

3

∏
j=1

∫
∞

r j

(1+ r2)s 1
r2 dr,

(2.2)

which converges for 2s−2 <−1, i.e. s < 1/2. Since χ ∈Hτ(Ω), τ < 1/2, we may assume
that f ∈Hσ (Ω) for σ >−1/2. Then the convolution χi jk ∗ f will be continuous on R3 and
if we have f ∈ L1

loc(Ω), then

−2
|ωi jk|

∫
∂ωi jk

∂u
∂n

ds =
1
|ωi jk|

(
χi jk ∗ f

)
(xi,y j,zk) , (2.3)

where |ωi jk| = h−x
i h−y

jh
−z

k. Let now Sh
0 be the set of piecewise continuous trilinear functions

defined on the cubic rectangular partition of Ω̄ induced by Ω̄h and vanishing on ∂Ω. We
can now construct the finite volume approximation uh ∈ Sh

0 of u as satisfying,

−2
h−x

i h−y
jh−

z
k

∫
∂ωi jk

∂uh

∂n
ds =

1
h−x

i h−y
jh−

z
k

(
χi jk ∗ f

)
(xi,y j,zk) for (xi,y j,zk) ∈Ω

h. (2.4)

Here the factor 2 appears due to the jump of χi jk across the inter-element boundaries on
∂ωi jk, and will not matter for any of the stability results and convergence rates as consid-
ered by [6] and [26] but only in numerical implementations of the scheme.

3. PROPERTIES OF THE SCHEME AND STABILITY ESTIMATES

To investigate the behavior of this scheme we will rewrite it as a finite difference
scheme. To this end, we define the averaging operators (all are presented, due to miss-
matches in indexing discrepancies they are not presentable in a single generic form)

µxyui jk := 1
16h−x

i h−y
j

(
hx

i hy
jui−1, j−1,k +hx

i+1hy
jui+1, j−1,k +12h−x

i h−y
jui jk

+hx
i hy

j+1ui−1, j+1,k +hx
i+1hy

j+1ui+1, j+1,k

)
,

µxzui jk := 1
16h−x

i h−z
k

(
hx

i hz
kui−1, j,k−1 +hx

i+1hz
kui+1, j,k−1 +12h−x

i h−z
kui jk

+hx
i hz

k+1ui−1, j,k+1 +hx
i+1hz

k+1ui+1, j,k+1
)
,

µyzui jk := 1
16h−y

jh
−z

k

(
hy

jh
z
kui, j−1,k−1 +hy

j+1hz
kui, j+1,k−1 +12h−y

jh
−z

kui jk

+hy
jh

z
k+1ui, j−1,k+1 +hy

j+1hz
k+1ui, j+1,k+1

)
,

(3.1)

and the divided differences,

∆−x ui, j,k = ui, j,k−ui−1, j,k
hx

i
, ∆+

x ui, j,k = ui+1, j,k−ui, j,k
h−x

i
,

∆−y ui, j,k = ui, j,k−ui, j−1,k
hy

j
, ∆+

y ui, j,k = ui, j+1,k−ui, j,k
h−y

j
,

∆−z ui, j,k = ui, j,k−ui, j,k−1
hz

k
, ∆+

z ui, j,k = ui, j,k+1−ui, j,k
h−z

k
.

Then, we can write

h−x
i h−y

jh
−z

k
(
∆

+
x ∆
−
x µyz +∆

+
y ∆
−
y µxz +∆

+
z ∆
−
z µxy

)
ui, j,k =

∫
∂ωi jk

∂u
∂n

ds.
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This allows us to restate the finite volume scheme, (2.4) as the following finite difference
scheme,

−2
(
∆+

x ∆−x µyz +∆+
y ∆−y µxz +∆+

z ∆−z µxy
)

uh = T111 f in Ωh,

uh = 0 on ∂Ωh,
(3.2)

where
(T111 f )i jk =

1
h−x

i h−y
jh−

z
k

(
χi jk ∗ f

)
(xi,y j,zk).

To extend (3.2) to higher than three dimensions, the same scheme will apply, however the
definition of µ will change. If we look at carefully how this averaging operator works then
it appears that the main difference will be what will correspond to the factor 12 appearing
as the coefficient of the central term in (3.1). In fact if we denote by d the dimension then,

µx1x2...xd−1ui1...id = 1
2d+1

1
h−

x1
i1

...h−
xd−1
id−1

(
3 ·2d−1 ·h−x1

i1 . . .h−xd−1
id−1

ui1...id

+hx1
i1

. . .hxd−1
id−1

ui1−1,...,id−1−1,id + . . .+hx1
i1+1 . . .hxd−1

id−1+1ui1+1,...,id−1+1,id

)
.

(3.3)

We will study the behavior of the scheme defined by (3.2) in the discrete H1 norm ‖ · ‖1,h,

‖v‖1,h =
√
‖v‖2 + |v|21,h,

where ‖ · ‖ is the discrete L2-norm over Ωh (we suppressed h in the discrete L2), i.e.,

‖v‖ =
√

(v,v), (v,w) =
Mx−1

∑
i=1

My−1
∑
j=1

Mz−1
∑

z=1
h−x

i h−y
jh
−z

kvi, j,kwi, j,k,

and | · |1,h is the discrete H1-seminorm given by

|v|1,h =
√
‖∆−x v|]2x +‖∆−y v|]2y +‖∆−z v|]2z ,

with

‖v|]2x = (v,v]x, (v,w]x =
Mx

∑
i=1

My−1
∑
j=1

Mz−1
∑

k=1
hx

i h−y
jh
−z

kvi, j,kwi, j,k,

‖v|]2y = (v,v]y, (v,w]y =
Mx−1

∑
i=1

My

∑
j=1

Mz−1
∑

k=1
h−x

i hy
jh
−z

kvi, j,kwi, j,k,

‖v|]2z = (v,v]z, (v,w]z =
Mx−1

∑
i=1

My−1
∑
j=1

Mz

∑
k=1

h−x
i h−y

jh
z
kvi, j,kwi, j,k.

In addition we define the discrete H−1 norm as,

‖v‖−1,h = sup
w∈H1,h

0 (Ω̄h)

|(v,w)|
‖w‖1,h

,

where the supremum is over all non–zero mesh functions on Ω̄h vanishing on ∂ Ω̄h.
We will now state and prove two coercivity-type estimates describing relationships be-

tween the above and our operators. These are essentially the same as Lemmas 3.1 and 3.2
in [26] with the coefficients adjusted for the three dimensional case.

Lemma 3.1. Let v be a mesh function on Ω̄h. If v = 0 on ∂Ωh
αβ

, then (µαβ v,v]γ ≥ 5
8‖v|]

2
γ ,

in the following three cases:
(i) αβ := xy, γ := z, (ii) αβ := xz, γ := y, and (iii) αβ := yz, γ := x.

Proof. We only prove i) here as all of the rest will be done in the same way. Note, in
particular, that v = 0 on ∂Ωh

xy, and we shall also use a2/2 + 2ab + b2/2 ≥ −a2/2−b2/2.
To proceed let

A1 :=
Mx−1

∑
i=1

My−1
∑
j=1

(
h−x

i h−y
jv

2
i jk +hx

i hy
jvi−1, j−1,kvi jk +hx

i+1hy
jvi+1, j−1,kvi jk

+hx
i hy

j+1vi−1, j+1,kvi jk +hx
i+1hy

j+ jvi+1, j+1,kvi jk

)
.
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Then we use the shift law, vanishing boundary conditions, and split the terms in A1 at the
end-point indices to obtain

A1 =
Mx−1

∑
i=2

My−1
∑
j=2

hx
i hy

j

(
vi−1, j−1,k + vi jk

)
vi jk +

My−1
∑
j=1

(hx
1hy

jv
2
1 jk)+

Mx−1
∑

i=1
(hx

i hy
1v2

i1k)

+
Mx−2

∑
i=1

My−1
∑
j=2

hx
i+1hy

j

(
vi+1, j−1,k + vi jk

)
vi jk +

My−1
∑
j=1

(hx
Mx hy

jv
2
Mx jk)

+
Mx−2

∑
i=1

(hx
i+1hy

1v2
i1k)+

Mx−1
∑

i=2

My−2
∑
j=1

hx
i hy

j+1

(
vi−1, j+1,k + vi jk

)
vi jk

+
My−1

∑
j=1

(hx
1hy

jv
2
1 jk)+

Mx−1
∑

i=2
(hx

i hy
Myv2

iMyk)

+
Mx−2

∑
i=1

My−2
∑
j=2

hx
i+1hy

j+1

(
vi+1, j+1,k + vi jk

)
vi jk +

My−1
∑
j=1

(hx
Mx hy

j+1v2
Mx jk)

+
Mx−2

∑
i=1

(hx
i+1hy

Myv2
iMyk).

Since the single sums in above identity are all nonnegative, removing them it follows that

A1 ≥
Mx−1

∑
i=2

My−1
∑
j=2

hx
i hy

jvi−1, j−1,kvi jk +
Mx−1

∑
i=2

My−1
∑
j=2

hx
i hy

jv
2
i jk +

Mx−2
∑

i=1

My−1
∑
j=2

hx
i+1hy

jvi+1, j−1,kvi jk

+
Mx−2

∑
i=1

My−1
∑
j=2

hx
i+1hy

jv
2
i jk +

Mx−1
∑

i=2

My−2
∑
j=1

hx
i hy

j+1vi−1, j+1,kvi jk +
Mx−1

∑
i=2

My−2
∑
j=1

hx
i hy

j+1v2
i jk

+
Mx−2

∑
i=1

My−2
∑
j=1

hx
i+1hy

j+1vi+1, j+1,kvi jk +
Mx−2

∑
i=1

My−2
∑
j=1

hx
i+1hy

j+1v2
i jk =: B1.

For simplicity we denoted the right hand side above by B1. Below, once again using the
shift law, we make B1 uniformly indexed, i.e. with all sums having the same index range.
Then we can easily verify that

B1 =
Mx−1

∑
i=2

My−1
∑
j=2

hx
i hy

jvi−1, j−1,kvi jk +
Mx−1

∑
i=2

My−1
∑
j=2

hx
i hy

jvi, j−1,kvi−1, j,k

+
Mx−1

∑
i=2

My−1
∑
j=2

hx
i hy

jvi−1, j,kvi, j−1,k +
Mx−1

∑
i=2

My−1
∑
j=2

hx
i hy

jvi, j,kvi−1, j−1,k

+
Mx−1

∑
i=2

My−1
∑
j=2

hx
i hy

jv
2
i jk +

Mx−1
∑

i=2

My−1
∑
j=2

hx
i hy

jv
2
i−1, j,k

+
Mx−1

∑
i=2

My−1
∑
j=2

hx
i hy

jv
2
i, j−1,k +

Mx−1
∑

i=2

My−1
∑
j=2

hx
i hy

jv
2
i−1, j−1,k

=
Mx−1

∑
i=2

My−1
∑
j=2

hx
i hy

j

(
v2

i−1, j−1,k +2vi−1, j−1,kvi jk + v2
i jk + v2

i, j−1,k+

+2vi, j−1,kvi−1, j,k + v2
i−1, j,k

)
≥− 1

4

(
Mx−2

∑
i=1

My−2
∑
j=1

hx
i+1hy

j+1v2
i jk +

Mx−1
∑

i=2

My−1
∑
j=2

hx
i hy

jv
2
i jk

+
Mx−2

∑
i=1

My−1
∑
j=2

hx
i+1hy

jv
2
i jk +

Mx−1
∑

i=2

My−2
∑
j=1

hx
i hy

j+1v2
i jk

)
.
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Now, recalling the definition of A1 and using the bound for B1 iteratively, we can derive
the following chain of estimates

1
16

Mx−1
∑

i=1

My−1
∑
j=1

(
12h−x

i h−y
jv

2
i jk +hx

i hy
jvi−1, j−1,kvi jk +hx

i+1hy
jvi+1, j−1,kvi jk

+hx
i hy

j+1vi−1, j+1,kvi jkhx
i+1hy

j+ jvi+1, j+1,kvi jk

)
≥ 1

16

Mx−1
∑

i=1

My−1
∑
j=1

(
11h−x

i h−y
jv

2
i jk−

1
4

(
Mx−2

∑
i=1

My−2
∑
j=1

hx
i+1hy

j+1v2
i jk

+
Mx−1

∑
i=2

My−1
∑
j=2

hx
i hy

jv
2
i jk

Mx−2
∑

i=1

My−1
∑
j=2

hx
i+1hy

jv
2
i jk +

Mx−1
∑

i=2

My−2
∑
j=1

hx
i hy

j+1v2
i jk

))

≥ 10
16

Mx−1
∑

i=1

My−1
∑
j=1

h−x
i h−y

jv
2
i jk + 1

16

(
Mx−1

∑
i=1

My−1
∑
j=1

hx
i +hx

i+1
4

hy
j+hy

j+1
4 v2

i jk−
Mx−2

∑
i=1

My−2
∑
j=1

hx
i+1hy

j+1
4 v2

i jk

−
Mx−1

∑
i=2

My−1
∑
j=2

hx
i hy

j
4 v2

i jk−
Mx−2

∑
i=1

My−1
∑
j=2

hx
i+1hy

j
4 v2

i jk−
Mx−1

∑
i=2

My−2
∑
j=1

hx
i hy

j+1
4 v2

i jk

)

= 10
16

Mx−1
∑

i=1

My−1
∑
j=1

h−x
i h−y

jv
2
i jk + 1

64 v2
i jk

(
hx

i hy
j

(
Mx−1

∑
i=1

My−1
∑
j=1

1−
Mx−1

∑
i=2

My−1
∑
j=2

1

)

+hx
i hy

j+1

(
Mx−1

∑
i=1

My−1
∑
j=1

1−
Mx−1

∑
i=2

My−2
∑
j=1

1

)
+hx

i+1hy
j

(
Mx−1

∑
i=1

My−1
∑
j=1

1−
Mx−2

∑
i=1

My−1
∑
j=2

1

)

+hx
i+1hy

j+1

(
Mx−1

∑
i=1

My−1
∑
j=1

1−
Mx−2

∑
i=1

My−2
∑
j=1

1

))
≥ 10

16

Mx−1
∑

i=1

My−1
∑
j=1

h−x
i h−y

jv
2
i jk,

where in the last step we used that all the differences of the sums are positive. Note in
particular the role of the coefficient 12 in the central differencing term and the splits in this
term. Finally, recalling the definition of (µxyv,v]z, we multiply the above estimate by h−z

k
and sum over k to obtain.

(µxyv,v]z ≥ 10
16

Mx−1
∑

i=1

My−1
∑
j=1

Mz

∑
k=1

h−x
i h−y

jh
−z

kv2
i jk = 10

16‖v|]
2
z ≥ 1

2‖v|]
2
z .

This completes the proof of the first assertion i) of the lemma. The other two estimates are
derived by similar calculus, alternating the relevant sub- and super-indices and therefore
are omitted. �

In the general case of d dimensions we can see that the coefficient will become 3·2d−2−1
2d .

The general ratio above is linked to the coefficient of the central term in the finite difference
case (3.3).

Lemma 3.2. Let v be a mesh function on Ω̄h that vanishes on ∂Ωh, then

‖v‖2 ≤ 1
3
|v|21,h.
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Proof. Using the definitions of the divided differences and following the notation, the de-
sired result is obtained through the successive estimates below

‖v‖2 =
Mx−1

∑
i=1

My−1
∑
j=1

Mz−1
∑

k=1
h−x

i h−y
jh
−z

kv2
i jk = 1

3

(
Mx−1

∑
i=1

My−1
∑
j=1

Mz−1
∑

k=1
h−x

i h−y
jh
−z

k|
i

∑
m=1

hx
m∆−x vm jk|2

+
Mx−1

∑
i=1

My−1
∑
j=1

Mz−1
∑

k=1
h−x

i h−y
jh
−z

k|
j

∑
m=1

hy
m∆−y vimk|2 +

Mx−1
∑

i=1

My−1
∑
j=1

Mz−1
∑

k=1
h−x

i h−y
jh
−z

k|
k
∑

m=1
hz

m∆−z vi jm|2
)

≤ 1
3

(
Mx−1

∑
i=1

My−1
∑
j=1

Mz−1
∑

k=1
h−x

i h−y
jh
−z

k

((
i

∑
m=1

hx
m

)(
i

∑
m=1

hx
m|∆−x vm jk|2

)
+
(

i
∑

m=1
hx

m

)(
j

∑
m=1

hy
m|∆−y vimk|2

)
+
(

i
∑

m=1
hx

m

)(
k
∑

m=1
hz

m|∆−z vi jm|2
)))

= 1
3

(
Mx

∑
m=1

My−1
∑
j=1

Mz−1
∑

k=1
hx

m|∆−x vm jk|2h−y
jh
−z

k

)(
Mx−1

∑
i=1

h−x
i

i
∑

m=1
hx

m

)
+ 1

3

(
Mx−1

∑
i=1

My

∑
m=1

Mz−1
∑

k=1
hy

m|∆−y vimk|2h−x
i h−z

k

)(
My−1

∑
j=1

h−y
j

j
∑

m=1
hy

m

)

+ 1
3

(
Mx−1

∑
i=1

My−1
∑
j=1

Mz

∑
m=1

hz
m|∆−z vi jm|2h−x

i h−y
j

)(
Mz−1

∑
k=1

h−z
k

k
∑

m=1
hz

m

)
≤ 1

3

(
‖∆−x v|]2x +‖∆−y v|]2y +‖∆−z v|]2z

)
= 1

3 |v|
2
1,h ≤

1
2 |v|

2
1,h.

�

In the general case of d dimensions the coefficient 1/3 above, becomes 1/d.
Based on these estimates we can prove the counterparts of Theorems 3.1 and 3.2 in [26]

in three (as well as higher) dimensions.

Theorem 3.1. Let Lhv =−(∆+
x ∆−x µyz +∆+

y ∆−y µxz +∆+
z ∆−z µxy)v, then

‖v‖1,h ≤
32
15
‖Lhv‖−1,h.

Proof. Evidently, we have the identities

(−∆
+
x w,v) = (w,∆−x v]x, (−∆

+
y w,v) = (w,∆−y v]y, (−∆

+
z w,v) = (w,∆−z v]z.

Therefore, using Lemmas 3.1 and 3.2 yields

(Lhv,v) = (−(∆+
x ∆−x µyz +∆+

y ∆−y µxz +∆+
z ∆−z µxy)v,v)

= (∆−x µyzv,∆−x v]x +(∆−y µxzv,∆−y v]y +(∆−z µxyv,∆−z v]z
≥ 5

8

(
‖∆−x v|]x +‖∆−y v|]y +‖∆−z v|]z

)
= 5

8 |v|
2
1,h ≥

15
32‖v‖

2
1,h.

Thus, by the definition of ‖ · ‖−1,h we obtain,

‖v‖1,h ≤
32
15
‖Lhv‖−1,h.

�

In d dimensions following the same procedure we obtain

‖v‖1,h ≤
2d (1+d)

d (3 ·2d−2−1)
‖Lhv‖−1,h.

Theorem 3.2. If f ∈ Hσ (Ω), σ > −1/2, then the convolution T111 is continuous and the
equation (3.2) has a unique solution uh. Further,

‖uh‖1,h ≤
32
30
‖T111 f‖−1,h.

Proof. Follows directly from Eq. (3.2) and Theorem 3.1. �
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In d dimensions we will obtain

‖uh‖1,h ≤
2d (1+d)

2d (3 ·2d−2−1)
‖T1...1 f‖−1,h.

4. CONVERGENCE ANALYSIS

In this section we derive convergence rate of the proposed finite volume scheme. Most
of the results in here hold true for the corresponding finite difference- and finite element-
schemes as well. In the convergence rate proofs, we shall use the following classical result:

Theorem 4.1. Let W be a Banach space and W1 a normed linear space. Let A : W →W1
be a compact linear operator and let S1 : W → R and S2 : W → R denote two bounded
sublinear functionals (i.e. Si(αu+βv)≤ |α|Si(u)+ |β |Si(v) for ,α, β ∈R and ,u, v∈W).
Further, assume that there exists a constant C0 such that,

‖v‖W ≤C0 (‖Av‖W1 +S2(v)) ∀v ∈W ,

and that Ker(S2)⊂ Ker(S1). Then

i) P := Ker(S2) is a finite dimensional vector space,
ii) there exists a constant C1 such that inf

p∈P
‖v− p‖W ≤C1S2(v) ∀v ∈W,

iii) there exists a constant C2 such that S1(v)≤C2S2(v).

Proof. Follows directly from Theorem 5.1 (see Appendix) by taking E = W , E0, E1, F =
W1, S1 = L and S2 = A1. �

Theorem 4.2. If u ∈ H1+σ (Ω), 1/2 < σ ≤ 2, then

‖u−uh‖1,h ≤Chσ |u|H1+σ (Ω),

where h = maxi, j,k(hx
i ,h

y
j,h

z
k) and the constant C > 0 does not depend on u and the dis-

cretization parameters.

This is an optimal result corresponding to a finite element approach without a quadrature
(gives an L2-estimate of order O(hσ+1)). With the same regularity, i.e. u ∈ H1+σ (Ω), the
corresponding L2-estimate for the finite element method with quadrature rule, and the finite
difference method, would have a lower convergence rate of order O(hσ+1/2).

Proof. For a cuboid ω = Πd
i=1ωi := Πd

i=1[ai,bi] ⊂ Rd and a d-dimensional multi-index
α := (α1, . . . ,αd), for i = 1, . . . ,d, we use the notation α i := (0, . . . ,0,αi, . . . ,0) (only the
i-th coordinate is non–zero) and set ω−i := ω \ωi. Further we denote by x−i the (d−1) di-
mensional vector x−i := (x1, . . . ,xi−1,xi+1, . . .xd). Then we define Hα(ω), the anisotropic
Sobolev space, that consists of all functions u ∈ L2(ω) such that

‖u‖Hαi (ω) =
(∫

ω−i

|u(x−i)|2Hαi (ωi) dx
)1/2

< ∞.

Hα(ω) is a Banach space with the norm,

‖u‖Hα (ω) =
(
‖u‖2

L2(ω) + |u|
2
Hα (ω)

)1/2
=

(
‖u‖2

L2(ω) +
d

∑
i=1
|u|2

Hαi (ω)

)1/2

,

see, e.g. [20]. Further we denote the global error function z = u−uh, then as T111 f = Lhuh

and f =−∆u we have,

Lhz =
(

T111
∂ 2u
∂x2 −∆

+
x ∆
−
x µyzu

)
+
(

T111
∂ 2u
∂y2 −∆

+
y ∆
−
y µxzu

)
+
(

T111
∂ 2u
∂ z2 −∆

+
z ∆
−
z µxyu

)
.
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We can easily verify that

(T111
∂ 2u
∂x2 )i jk = 1

2
1

h−x
i h−y

jh
−z

k

(
χi jk ∗ ∂ 2u

∂x2

)
(xi jk)

= 1
2

1
h−x

i h−y
jh
−z

k

zk+1/2∫
zk−1/2

y j+1/2∫
y j−1/2

∂u
∂x (xi+1/2,y,z)− ∂u

∂x (xi−1/2,y,z)dydx

= 1
2 ∆+

x (T−011
∂u
∂x )i jk,

where,

(T−011w)i jk =
1

h−y
jh−

z
k

zk+1/2∫
zk−1/2

y j+1/2∫
y j−1/2

w(xi−1/2,y,z)dydz.

(T111
∂ 2u
∂y2 )i jk, and (T111

∂ 2u
∂y2 )i jk are treated in analogous fashion, e.g.

(T−101w)i jk = 1
h−x

i h−z
k

zk+1/2∫
zk−1/2

xi+1/2∫
xi−1/2

w(x,y j−1/2,z)dxdz(T−101w)i jk

= 1
h−x

i h−y
j

y j+1/2∫
y j−1/2

xi+1/2∫
xi−1/2

w(x,y,zk−1/2)dxdy.

This gives us {
Lhz = ∆+

x η1 +∆+
y η2 +∆+

z η3 in Ωh,

z = 0 on ∂Ωh,
(4.1)

with
η1 = 1

2 T−011
∂u
∂x −∆−x µyzu,

η2 = 1
2 T−101

∂u
∂y −∆−y µxzu,

η3 = 1
2 T−110

∂u
∂ z −∆−z µxyu.

Now from Eq. (4.1) and Theorem 3.1 we can derive

‖z‖1,h ≤
32
15
‖∆+

x η1 +∆
+
y η2 +∆

+
z η3‖−1,h.

We can also show that for certain mesh functions (e.g. shape regular) defined on Ω̄h and
vanishing on ∂Ωh we have (−∆

+
(·)w,g) = (w,∆−(·)g]. Hence

|(∆+
x η1 +∆+

y η2 +∆+
z η3,w)| = |(η1,∆

−
x w]x +(η2,∆

−
y w]y +(η3,∆

−
z w]z|

≤ |‖η1|]x‖∆−x w|]x +‖η2|]y‖∆−y w|]y +‖η3|]z‖∆−z w|]z|
≤ (‖η1|]x +‖η2|]y +‖η3|]z)‖w‖1,h.

Thus, by the definition of the dual norm, we get

|(∆+
x η1 +∆+

y η2 +∆+
z η3,w)|‖w‖−1

1,h ≤ ‖η1|]x +‖η2|]y +‖η3|]z
‖(∆+

x η1 +∆+
y η2 +∆+

z η3,w)‖−1,h ≤ ‖η1|]x +‖η2|]y +‖η3|]z.
Therefore,

‖u−uh‖1,h ≤
32
15

(‖η1|]x +‖η2|]y +‖η3|]z) . (4.2)

We now have to bound the right–hand side of (4.2). Here we only consider the η1-term
as the other two can be treated in the same way. To this end, for a fixed x let Iyzw(x, ·, ·)
denote the piecewise interpolant of w(x, ·, ·) on the mesh Ω̄h

yz and

(µyzu)(x,y j,zk) = 1
16

1
h−y

jh
−z

k

(
hy

jh
z
ku(x,y j−1,zk−1)+hy

j+1hz
ku(x,y j+1,zk−1)

+12h−y
jh
−z

ku(x,y j,zk)+hy
jh

z
k+1u(x,y j−1,zk+1)+hy

j+1hz
k+1u(x,y j+1,zk+1)

)
,

then

(µyzu)(x,y j,zk) =
1

h−y
jh−

z
k

y j+1/2∫
y j−1/2

zk+1/2∫
zk−1/2

(Iyzu)(x,y,z)dzdy.
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Further, using

(µyzu)i jk− (µyzu)i−1, j,k =
xi∫

xi−1

∂

∂x (µyzu)(x,y j,xk)dx

=
xi∫

xi−1

∂

∂x
1

h−y
jh
−z

k

y j+1/2∫
y j−1/2

zk+1/2∫
zk−1/2

(Iyzu)(x,y,z)dzdydx

= 1
h−y

jh
−z

k

xi∫
xi−1

y j+1/2∫
y j−1/2

zk+1/2∫
zk−1/2

∂

∂x (Iyzu)(x,y,z)dzdydx

= 1
h−y

jh
−z

k

xi∫
xi−1

y j+1/2∫
y j−1/2

zk+1/2∫
zk−1/2

Iyz

(
∂u
∂x

)
(x,y,z)dzdydx,

we can write (η1)i jk as

(η1)i jk =
1

h−x
i h−y

jh−
z
k

xi∫
xi−1

y j+1/2∫
y j−1/2

zk+1/2∫
zk−1/2

(
1
2

∂u
∂x

(xi−1/2,y,z)−T011

(
∂u
∂x

)
(x,y,z)

)
dzdydx.

Now we split (η1)i jk into a sum of four terms:

(η11)i jk = 1
h−x

i h−y
jh
−z

k

xi∫
xi−1

y j+1/2∫
y j

zk+1/2∫
zk

(
1
2

∂u
∂x (xi−1/2,y,z)−T011

(
∂u
∂x

)
(x,y,z)

)
dzdydx,

(η12)i jk = 1
h−x

i h−y
jh
−z

k

xi∫
xi−1

y j+1/2∫
y j

zk∫
zk−1/2

(
1
2

∂u
∂x (xi−1/2,y,z)−T011

(
∂u
∂x

)
(x,y,z)

)
dzdydx,

(η13)i jk = 1
h−x

i h−y
jh
−z

k

xi∫
xi−1

y j∫
y j−1/2

zk+1/2∫
zk

(
1
2

∂u
∂x (xi−1/2,y,z)−T011

(
∂u
∂x

)
(x,y,z)

)
dzdydx,

(η14)i jk = 1
h−x

i h−y
jh
−z

k

xi∫
xi−1

y j∫
y j−1/2

zk∫
zk−1/2

(
1
2

∂u
∂x (xi−1/2,y,z)−T011

(
∂u
∂x

)
(x,y,z)

)
dzdydx.

Thus, to estimate η1 it suffices to estimate η11, η13, η13 and η14. Here, we only show how
to estimate η11 as the other three terms will follow in the same fashion. We introduce the
change of variables

x = xi−1/2 + shx
i , −

1
2
≤ s≤ 1

2
; y = y j + thy

j+1, 0≤ t ≤ 1; z = zk + rhz
k+1, 0≤ r ≤ 1,

and define

ṽ(s, t,r) := hx
i

∂u
∂x

(x(s),y(t),z(r)).

This gives us

(η11)i jk =
hy

j+1hz
k+1

hx
i h−y

jh−
z
k

η̃11,

with

η̃11 =

1/2∫
−1/2

1/2∫
0

1/2∫
0

1
2

ṽ(0, t,r)− (ṽ(s,0,0)(1− t− r)+ ṽ(s,1,0)t + ṽ(s,0,1)r)drdtds.

Note that ṽ(0, t,r) = ∂u
∂x (xi−1/2,y,z) and

ṽ(s,0,0)(1− t− r)+ ṽ(s,1,0)t + ṽ(s,0,1)r = (Iyz
∂u
∂x

)(x,y,z).

Hence we treat η̃11 as a linear functional with the argument ṽ defined on Hσ (ω̃) σ >
1/2, where ω̃ = (− 1

2 , 1
2 )× (0,1)× (0,1). Note that σ > 1/2 is due to the fact that all η

components, defined by T111, are convolutions with the characteristic function ξi, j,k. Since
ξ ∈ Hτ(R3), τ < 1/2, continuity requires σ > 1/2. Notice further that, for a given ṽ,
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η̃11 is constant and its value on the boundary is the same as anywhere inside the domain.
Therefore, by the trace theorem we have

|η̃11| ≤C‖ṽ‖Hσ (ω̃), σ > 1/2,

and using Theorem 4.1 with W = Hσ (ω̃), W1 = L2(ω̃), S1 = |η̃11|,

S2 =
(
| · |Hσ ,0,0(ω̃) + | · |H0,σ ,0(ω̃) + | · |H0,0,σ (ω̃)

)0.5
and with A : Hσ (ω̃)→ L2(ω̃) being the

compact embedding operator we obtain

|η̃11(ṽ)| ≤C
(
|ṽ|2Hσ ,0,0(ω̃) + |ṽ|

2
H0,σ ,0(ω̃) + |ṽ|

2
H0,0,σ (ω̃)

)0.5

for σ > 1/2. We let now ω
++
i jk = (xi−1,xi)× (y j,y j+1)× (zk,zk+1), then returning to the

original variables we obtain

|η̃11|2≤C

 hx2

i

hx2σ

i
hx

i hy
j+1hz

k|
∂u
∂x
|2Hσ ,0,0(ω++

i jk ) +
hx2

i hy2σ

j+1

hx
i hy

j+1hz
k
|∂u
∂x
|2H0,σ ,0(ω++

i jk ) +
hx2

i hz2σ

k+1

hx
i hy

j+1hz
k
|∂u
∂x
|2H0,0,σ (ω++

i jk )

 .

Thus

|(η11)i jk|2≤C

hy
j+1hz

k+1hx2σ−1
i

h−y2

j h−z2

k

| ∂u
∂x

2

|Hσ ,0,0(ω++
i jk ) +

hy2σ+1

j+1 hz
k+1

hx
i h−y2

j h−z2

k

| ∂u
∂x

2

|H0,σ ,0(ω++
i jk ) +

hy
j+1hz2σ+1

k+1

hx
i h−y2

j h−z2

k

| ∂u
∂x

2

|H0,0,σ (ω++
i jk )

 .

Similar estimates are derived for
ω

+−
i jk = (xi−1,xi)× (y j,y j+1)× (zk−1,zk),

ω
−+
i jk = (xi−1,xi)× (y j−1,y j)× (zk,zk+1),

ω
−−
i jk = (xi−1,xi)× (y j−1,y j)× (zk−1,zk),

leading to

|(η12)i jk|2 ≤C

(
hy

j+1hz
khx2σ−1

i

h−y2
j h−z2

k

| ∂u
∂x

2|Hσ ,0,0(ω+−
i jk ) +

hy2σ+1
j+1 hz

k

hx
i h−y2

j h−z2
k

| ∂u
∂x

2|H0,σ ,0(ω+−
i jk ) +

hy
j+1hz2σ+1

k

hx
i h−y2

j h−z2
k

| ∂u
∂x

2|H0,0,σ (ω+−
i jk )

)

|(η13)i jk|2 ≤C

(
hy

jh
z
k+1hx2σ−1

i

h−y2
j h−z2

k

| ∂u
∂x

2|Hσ ,0,0(ω−+
i jk ) +

hy2σ+1
j hz

k+1

hx
i h−y2

j h−z2
k

| ∂u
∂x

2|H0,σ ,0(ω−+
i jk ) +

hy
jh

z2σ+1
k+1

hx
i h−y2

j h−z2
k

| ∂u
∂x

2|H0,0,σ (ω−+
i jk )

)

|(η14)i jk|2 ≤C

(
hy

jh
z
khx2σ−1

i

h−y2
j h−z2

k

| ∂u
∂x

2|Hσ ,0,0(ω−−i jk ) +
hy2σ+1

j hz
k

hx
i h−y2

j h−z2
k

| ∂u
∂x

2|H0,σ ,0(ω−−i jk ) +
hy

jh
z2σ+1
k

hx
i h−y2

j h−z2
k

| ∂u
∂x

2|H0,0,σ (ω−−i jk )

)
.

Writing h = maxi, j,k(hx
i ,h

y
j,h

z
k), by the super–additivity of the Sobolev norm on a family

of disjoint Lebesgue measurable subsets of Ω,

‖η1|]2x ≤ Ch2σ

(
| ∂u

∂x |
2
Hσ ,0,0(Ω) + |

∂u
∂x |

2
H0,σ ,0(Ω) + |

∂u
∂x |

2
H0,0,σ (Ω)

)
,

‖η2|]2y ≤ Ch2σ

(
| ∂u

∂y |
2
Hσ ,0,0(Ω) + |

∂u
∂y |

2
H0,σ ,0(Ω) + |

∂u
∂y |

2
H0,0,σ (Ω)

)
,

‖η3|]2z ≤ Ch2σ

(
| ∂u

∂ z |
2
Hσ ,0,0(Ω) + |

∂u
∂ z |

2
H0,σ ,0(Ω) + |

∂u
∂ z |

2
H0,0,σ (Ω)

)
.

(4.3)

All together we arrive at,
‖u−uh‖1,h ≤Chσ |u|H1+σ (Ω),

for 1/2 < σ ≤ 2. �

From the above calculus we can see that the proof will also carry over to the d–dimensional
case, but then C will depend on d.

In [26] it is shown that on a two–dimensional quasi–uniform mesh (i.e. there is a
constant C∗ such that h := maxi, j(hx

i ,h
y
j) ≤C∗mini, j(hx

i ,h
y
j)) the finite volume method of

Eq. (2.4) is almost optimally accurate in the discrete (over the mesh points) maximum
norm ‖ · ‖∞, i.e. for u ∈ H1+σ (Ω), 1

2 < σ ≤ 2 we have

‖u−uh‖∞ ≤Chσ
√
| logh||u|H1+σ (Ω),
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where C depends on C∗. This does not hold in the three–dimensional case as,

‖u‖L∞(Ω) ≤C‖u‖W k
p (Ω), k > n/p,

here k is the number of derivatives and p is the parameter of the Lp-space (Ω should be
Lipschitz, as it is in our case). But n = 3 and p = 2, requires k > 3/2, and if we use the
inverse estimate to go down half of a derivative to H1(Ω), then we need to pay with half a
power of h. Thus in three–dimensional case the result is hσ−1/2, rather than hσ

√
| logh|.

5. NUMERICAL EXAMPLE

We implemented the finite volume scheme described by equation (2.4) according to the
finite difference scheme for the equation (3.2) in C++. The code is available from URL:
http://www.math.chalmers.se/~mohammad. The implementation is general and al-
lows for any dimension of the problem, a user defined mesh (through an external text file)
and a user defined data function, f . The data functions are implemented in an external
dynamically linked library and can be parametrized. The user can provide the values of
the parameters via a text file at execution. Therefore the user is completely free to spec-
ify a data function. Furthermore the program allows for comparison of the solution to
a user defined function (similarly in an external dynamically linked library and it can be
parametrized through a text file).

We use the uBLAS Boost and umfpack libraries for matrix operations. This has the one
consequence that the sparse solver collapses in the three dimensional case if we increase
the mesh size above 54 points in all directions. In the two dimensional case we did not
observe any problems with the sparse solver. For multidimensional numerical integration
we use the Cuba library [18]. We tested our code for a number of different functions based
on the normal distribution density and on mollifier functions. We define the shrunk to the
unit cube Gaussian function in k dimensions as,

u(x) = exp(−
k

∑
i=1

1
tan(πxi)2 )1unit cube(x)

a mollifier function shrunk to the unit cube in k dimensions as,

u(x) = exp((1−4‖x− (0.5, . . . ,0.5)‖2
2)
−1)1unit cube(x)

and a multidimensional Hicks–Henne sine bump function as,

u(x) =
(
sin
(
2π
(
0.25−‖x‖2)))3 1{x:∑(xi−0.5)2≤0.25}(x).

We considered the following as the difference of two functions G1 and G2 for x in the unit
cube,

u(x) = G1(x)−3 ·G2(2x−0.5).

G1 and G2 were both either a Gaussian, mollifier or Hicks–Henne sine bump.
The mesh points were randomly distributed in all dimensions. We present graphs of L2,

H1 and relative errors of our implementation in Figs. 2, 3 and 4 .

APPENDIX

Theorem 5.1. Let E be a Banach space and let E0, E1 and F be three normed linear
spaces, A0, A1 and L be linear continuous operators from E into E0, E1 and F respectively.
If

i)
‖g‖E = C0

(
‖A0g‖E0 +‖A1g‖E1

)
, (5.1)

ii) Lg = 0 if A1g = 0, i.e. Ker(L)⊂ Ker(A1),
iii) A0 is compact,
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FIGURE 2. Errors for different functions. Top: Gaussian function (left)
and difference of two Gaussians (right) in two dimensions and bottom:
Gaussian function (left) and difference of two Gaussians (right) in three
dimensions.
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FIGURE 3. Errors for different functions. Left: mollifier function and
right: difference of two mollifiers in two dimensions.

then, there exists a constant C such that,

∀g∈E , ‖Lg‖F ≤C‖A1g‖E1 . (5.2)

Proof. This theorem is an unpublished lemma of Tartar, mentioned as an exercise in [11]
and cited in [26]. Both of the works indicate that its proof can be found in [10]. The proof
starts by noticing that P := Ker(A1) is finite dimensional however the argument for this



16 M. ASADZADEH AND K. BARTOSZEK

0 50 100 150 200 250

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Mesh size

E
rr

or

●

●

●

●

●

●

●

●
●

●
●●

●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● H1  error
L2  error
Relative  H1  error
Relative  L2  error

0 50 100 150 200 250

0.
0

0.
5

1.
0

1.
5

2.
0

Mesh size

E
rr

or

●

●

●

●
●

●

●

●

●●
●

●

●
●
●
●●●

●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● H1  error
L2  error
Relative  H1  error
Relative  L2  error

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Mesh size

E
rr

or

●

●

●

●

●

●

●

● ●
● ● ●

●

●
● ●

● ●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● H1  error
L2  error
Relative  H1  error
Relative  L2  error

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Mesh size

E
rr

or

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● H1  error
L2  error
Relative  H1  error
Relative  L2  error

FIGURE 4. Errors for different functions. Top: Hicks–Henne sine bump
function (left) and difference of two Hicks–Henne sine bump functions
(right) in two dimensions, and bottom: Hicks–Henne sine bump function
(left) and difference of two Hicks–Henne sine bump functions (right) in
three dimensions

in [10] is that if weak sequential convergence implies norm convergence then it indicates
that P is finite dimensional. This argument is not clear however as due to Schur [25] we
have that in l1, weak sequential convergence is equivalent to norm convergence. Below we
provide an alternative proof.

We will use the property that a unit ball is compact iff the subspace is finite dimensional.
Let us take g ∈ P = Ker(A1)⊂ E and of course we have

‖g‖P ≡ ‖g‖E ≤C0
(
‖A0g‖E0 +‖A1g‖E1

)
= C0‖A0g‖E0

hence we can write
∀g∈P, ‖A0g‖E0 ≥C‖g‖E ≡C‖g‖P.

Let us assume that the kernel of A1, P is infinite dimensional and then P is not bounded
in particular not totally bounded and hence will not have a finite ε–net, meaning,

∃ε>0, ∀n, ∃g1 ,...,gn∈P,
‖gi‖P≤1

, ‖gi−g j‖P ≥ ε.

We assumed that A0 is compact so (denoting by KE the unit ball in E and by K0 unit ball
in E0)

A0(KE)⊆ ‖A0‖K0,

due to
∀x∈KE , ‖A0x‖ ≤ ‖A0‖‖x‖E .
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By P being infinite dimensional we can write,

‖A0gi−A0g j‖E0 ≥C‖gi−g j‖E ≡C‖gi−g j‖P ≥Cε.

This means that A0(KE) does not have a finite ε–net so A0(KE) would not be relatively
compact contradicting that A0 is compact. Hence P must be finite dimensional.

After establishing that dimP < ∞ one can follow the proof found in [10] but, for the
sake of completeness, we repeat it below.

The proof of Eq. (5.2) will be done in two steps. For all g ∈ E we define Q(g) :=
inf
p∈E
‖g− p‖E .

I: We show first that there exists a constant C1 such that

∀g∈E , Q(g)≤C1‖A1g‖E1 . (5.3)

II: Secondly we will show that there exists a constant C2 such that

∀g∈E , ‖Lg‖F ≤C2Q(g), (5.4)

giving Eq. (5.2) ‖Lg‖F ≤C‖A1g‖E1 .
Proof of I. We show Eq. (5.3) by contradiction, assume that there is a sequence
{gn} ⊂ E such that ‖A1gn‖E1 → 0 and Q(gn) = 1, i.e.,

∀n, ∃{gn} : Q(gn) > n‖A1gn‖E1

and for convenience we can rescale 1 > n
Q(gn)‖A1gn‖E1 , so we can take Q(gn) = 1.

As P is finite dimensional and totally bounded (hence compact) there exists a
sequence g̃n = gn− pn such that,

‖g̃n‖E = Q(gn) = inf
p∈P
‖gn− p‖E = ‖gn− pn‖E .

Therefore we have ‖A1g̃n‖E1 = ‖A1gn‖E1 → 0 as A1 pn = 0. Since the sequence
{g̃n} is bounded in E (‖g̃n‖E = 1 as Q(gn) = 1) it will contain a weakly convergent

subsequence g̃nk ⇀ g∗ ∈ E giving A0g̃nk

E0−→ A0g∗ and A1gnk

E1−→ A1g∗ implying

A1g̃nk

E1−→ A1g∗ = 0. Now by this and Eq. (5.1) gnk
E−→ g∗ as

‖gnk −g∗‖E ≤C0
(
‖A0gnk −A0g∗‖E0 +‖A1gnk −A1g∗‖E1

)
giving inf

p∈P
‖g̃nk − p‖E ≤ ‖g̃nk − g∗‖E → 0 but this contradicts Q(gnk) = 1 and so

there exists a constant C1 such that Q(g)≤C1‖A1g‖E1 .
Proof of II. We now turn to Eq. (5.4). As we assumed L is continuous and by the
assumption of the theorem Lp = 0 we have,

‖Lg‖F = ‖Lg−Lp‖F ≤C2‖g− p‖E .

Taking inf over p ∈ P on both sides gives,

‖Lg‖F ≤C2 inf
p∈P
‖g− p‖E = C2Q(g)≤C1C2‖A1g‖E1 ,

as desired.
�

Conclusion. We construct and analyze a finite volume method for Poisson’s equation,
using a quasi-uniform mesh, in the three dimensional cube Ω = (0,1)× (0,1)× (0,1).
We derive both stability and convergence estimates. The convergence rates are optimal
in an L2-setting, whereas the L∞ error estimates are sub-optimal. This generalizes the
two-dimensional result by Süli, [26] to three dimensions. We show that the underlying
theory for the two-dimensional case, studied by Grisvard in [17], is extendable to three
dimensions (with some draw-back for L∞ error estimate). We also include a corrected
proof of a classical result, cited in [26], and used in convergence analysis. Finally we have
implemented the scheme in the C++ environment, for a general k-dimensional unit cube,
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and for Gaussians, mollifier and multidimensional Hicks-Henne sine bump functions. The
implementations are justifying the convergence rates both in L2- and H1- norms. The
Figures 2-4 are showing the absolute and relative errors.
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