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Functional Calculus and Bishop’s Property
(B) for Several Commuting Operators

Sebastian Sandberg

ABSTRACT. Let a be a commuting tuple of bounded operators on
a Banach space. Let g be holomorphic in a neighbourhood of the
Taylor spectrum of a and let f be holomorphic in a neighbourhood
of the Taylor spectrum of g(a). In the first paper the identity
fog(a) = f(g(a)) is proved using integral formulas.

In the second paper a generalisation of the so-called resolvent
identity to several commuting operators is given. Using this iden-
tity we prove that Taylor’s holomorphic functional can be extended
to functions whose J-derivative can be controlled by forms that de-
fine the resolvent.

Let D be a strictly pseudoconvex domain in C™ with smooth
boundary and let g be a tuple of bounded holomorphic functions on
D. Consider the tuple T, of operators on the Hardy space H?(D)
defined by T,f = gf. In the third paper we prove that T, has
property (8)g if p < 0o and in the case m = 1 then also if p = cc.
As a corollary we have that T, has Bishop’s property (8).

2000 Mathematics Subject Classification. 32A26,32A35,47A10,47A11, 47A13,
47A60.
Key words and phrases. Bishop’s property (3), Cauchy-Fantappié-Leray for-
mula, functional calculus, Hardy space, resolvent identity, Taylor spectrum.
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INTRODUCTION

SEBASTIAN SANDBERG

1. SPECTRUM OF SEVERAL COMMUTING OPERATORS

Let X be a Banach space and denote by L(X) the set of all con-
tinuous linear maps from X to X. An operator a in L(X) is said
to be non-singular if it is bijective. Now suppose that we have two
commuting operators ai,as € L(X). Then the pair (a;,as) is called
non-singular if the following three conditions are satisfied.

(1) Ve € X :3dr,20 € X : x = a1x1 + ao9.
(2) V1,20 € X 121 = a0 = Iz € X : 11 = a92, 29 = 01 7.

(3) Ve X :0=az and 0 =agx = z=0.

If one of the operator a; and ay is non-singular then the pair (ay, as) is
non-singular. To see this let z = a; ‘2, in (2); then ayx = a; 'asxs = 1.

The next example shows that the conditions (1), (2) and (3) are
independent of each other.

Example 1.1. Let X = [?(N?). Define the shift operator Sy € L(X)
by

Sk(z)(3,j) =x(i+k,j) if 0 < i+ k and Si(x)(4,j) = 0 otherwise.
Similarly define T}, € L(X) by
Ty(x)(i,5) =x(i,j + k) if 0 < j + k and Ty(z)(4,j) = 0 otherwise.

Thus Sy (or T}) is injective but not surjective if k£ < 0, surjective but
not injective if 0 < k and bijective if £ = 0. Furthermore S, and T
commute. Let ego(7,7) =1if i =0,7 =0 and eg(¢,j) = 0 otherwise.
If £,1 < 0 then the conditions (2) and (3) hold but (1) fails (let z = eq
in (1)). If £ < 0 < then (1) and (3) hold but (2) fails (consider z; = 0
and zo = egp in (2)). If 0 < &, then (1) and (2) hold but (3) fails (let
T = €p,0 in (3))

We now extend the definition of non-singularity to tuples consist-
ing of an arbitrary number of commuting operators. Denote by A =

p—o\F the exterior algebra of C* over C, and let s1,s,..., s, be the
canonical basis of C"*. Let APX = X ®cAP. Thus AP X consists of sums
of elements of the form zs;, A s;, A... A s;,, where z € X. Consider
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an n-tuple a = (ay, ag, ..., a,) of commuting operators in L(X). The
Koszul complex, K,(a, X), is defined as the complex

0— A"X oy An—ly Loy fa AOX
where

0a(@8iy N Siy N+ Nsi,) = 2mi Z(—l)k“aikxsil NSy NSg
k

The hat over s;, in the definition of J, means that s;, is to be omitted.

We have that

8, 06, = (27i)° Z(—l)k+l (@i @5, — Q3,Q5,) TSy N+ -5y =550+ N S5,
k<l

and thus ¢, o §, = 0 since a is commuting. The homology groups of

K.(a,X) are

Ker 6, : APX — AP7IX

Im §, : APH1X — APX

The tuple a is called non-singular if K,(a, X) is exact, that is if

Hy(a,X)=0

for all p. If a is not non-singular then it is called singular. Denote
by 1 the identity operator on L(X). The next proposition gives two
conditions for non-singularity.

H,(a,X) =

Proposition 1.1. Suppose that there exists an element s in A'L(X)
such that §,s = 1 and sa = as. Then a is non-singular. If (a,b) is a
commuting tuple and a is non-singular then (a,b) is non-singular.

Let the spectrum of a commuting n-tuple a be defined by
o(a) ={z € C" : z — a is singular} .

Proposition 1.2. The spectrum is non-empty if X # {0} and it is
compact. Moreover it has the projection property, that is

7T(0'(a, a’n+1)) = 0'(0,)
if (@, an41) is a commuting n + 1-tuple and 7(z, zp41) = 2.

A calculation shows that the spectra of the operators in Example 1
are

o(Sy) =o(T}) =D, o(Sy,T;) =D x D,
where D = {z € C: |2| <1}, if k,1 # 0.
In general we have the inclusion
o(a,b) C o(a) x o(b),
as seen from the projection property.
Example 1.2. Suppose that ai,as € L(X) and define the operators
A1, Ay € L(X?) by Ai(z,y) = (a12,0) and As(x,y) = (0, asz). Then

(A1, As) = (0(aq),0) U (0,0(asg)).
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That any compact set in C" is the spectrum of some tuple, follows
from the next example.
Example 1.3. Suppose that a; € L(C(K)), K a compact set in C", is
defined by a;(f)(2) = z;f(2). If w € K then

Sw—aN'C(K) C {f € C(K) : f(w) =0}
and thus K C o(a). If w ¢ K and u € APC(K) such that d,, ,u = 0

then
Suw-a ¥ (W — Z)si Au(2)/ [w — 2|* = u(2).
Hence o(a) = K.
The complex K,(a,X) is called split if there are continuous linear

operators h : A’X — APTL1X such that J,h + hd, =identity. The split
spectrum is defined as the set

sp(a) ={z € C": K.(z — a, X) is not split}.

If X is a Hilbert space then sp(a) = o(a). By an example of Miiller
[10] there is a Banach space X and a commuting pair of operators a in
L(X) such that o(a) is strictly included in sp(a).

The spectrum discussed in this section was defined by Taylor [16] in
1970.

2. FUNCTIONAL CALCULUS

Suppose that U is an open subset of C*. Let £(U, X) be the Frechet
space of all infinitely differentiable function on U with values in X,
where differentiable means that for each z € U there is R-linear map

f'(2) from C" to X such that
Gl FG+ B = 1) = Pl 0

as h — 0. Denote by O(U, X) the Frechet space of all holomorphic
function with values in X, that is f € O(U,X) if f € £(U, X) and
f'(z) is Clinear. By &, ,(U, X) we denote the space of smooth (p, q)-
forms, that is f € &, ,(U, X) if f can be written as a sum of element of
the form

gdzz-l N "'/\de'p Ad2j1 AN "'/\deq,
where g € £(U, X). If X = C then we omit X.

Suppose that f € O(C") and that a = (ay,...,a,) is a tuple of
commuting operators in L(X). We can then form a new operator f(a)
by replacing z; in the Taylor series of f by a;. We get a continuous
algebra homomorphism

(4) D ez Y caa® 1 O(C) = L(X).
acN? acN"

In Taylor [17| the following theorem is proved.
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Theorem 2.1. The mapping (4) extends to a continuous algebra ho-
momorphism

fr= fla): OU) = L(X)

for all open sets U such that o(a) C U. The operator f(a) com-

mutes with any operator that commutes with a. If f = (f1,..., fm) €
OU,C™), o(a) C U, then

fo(a)) = o(f(a)),

where f(a) = (fi(a), -, fm(a)).

The first proof of Theorem 2.1 was based on the Cauchy-Weil inte-
gral. In [18| Taylor generalised Theorem 2.1 to a more abstract setting
with aid of homological methods. The composition rule,

f(g(a)) = fog(a)

holds for all function g € O(U,C*), o(a) C U, and f € O(V), o(g(a)) C
U. This was proved by Putinar in [12]. In the article [AS1] the com-
position rule is proved using the definition of f(a) in (6) below. The
mapping in Theorem 2.1 is unique, see [13].

The exactness of K,(z — a,X), z € C* \ 0(a) implies that
(5) 0 = Eg(U, X) 225 . 220 g0 (U, X) = 0
is exact for all ¢ and all open sets U C C" \ o(a), see Taylor [17]. Since
6,00 = —06,_, we get a double complex (£_,,(U, X),6,_4,0). Let
L™U, X) = Br1=m€—-r1(U, X) be the total complex. The exactness of
(5) implies that

0— LU, X) ba 0, . e, LU, X)—0

is exact for all open sets U C C" \ o(a).
The resolvent of a single operator a € L(X) is defined as the operator
valued function

z (z—a) ' :C\ o(a) = L(X).

The following is a generalisation to several commuting operators. Let
a € L(X)" be a commuting tuple. Let u, € L71(C* \ o(a),X) be a
solution to the equation

(0,0 — O)uy = .

The resolvent of a, w, .z, is defined as the O-cohomology class of the
component of degree (n,n — 1) of u,. In Andersson [1] Theorem 2.1 is
proved, based on the integral representation

(6) fla)z = o f(2)wz—a,
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where f is holomorphic in a neighbourhood of D and o(a) C D. Let
ug be a solution to the equation (6,—, — 0)u, = x, let v, be a solution
to the equation (§,_, — 0)v, = x, and let

ce L72C" \ o(a) x C*\ o(a), X)

be a solution to the equation (8, 444 — 0)c = v, — u,. The O-
cohomology class w,_4 Awy—_q2 is defined as the class of the component
of degree (2n,2n — 2) of c.

It is easy to see that f — f(a), where f(a) defined by (6), is linear.
The multiplication property, fg(a) = f(a)g(a) is harder. To prove the
multiplication property for functions depending on one variable one
can make use of the resolvent identity,

(1) (=0 (w—a)" =(-w) " (w-0" - (z-w) " (z-a) "
We can reformulate (7) as
dz A dw dw dz dw dz

+ — A =0.
Zz—a w—a w—a Z—W Z—W 2z2—a

In the article [S1] the following generalisation of the resolvent identity
to commuting tuples is given. Let w, .z be a representative of w, ,x,
let w,_qx be a representative of w,_,z, and let w,_, A Wy_qx be a
representative of w,_, A wy,_,z. Moreover, let

9 9 n—1
5 . = 1' 0]z —w| /\(58|z—w|>

@)™ |z —w|’ [z — wl”

The current
(8) Wyeg N Wp—al + Wp—g N Dy + Wy N Wy o
defined on
(C*"\o(a)) xC"'NC" x (C*"\ o(a))
is O-closed if and only if i*@,_,x = i*@Wy_er, Where i : cCr — C? is
defined by i(7) = (7, 7). If i*w,_qx = i*Wy_ex then (8) is 0-exact.
It is desirable to be able to extend the holomorphic functional cal-

culus to a wider class of functions. Suppose that ¢ € L(X) and that
f is holomorphic on D, where D is open and o(a) C D. We have the

formula
-l
e / f(2)00(2) A (z — a)"'dz,

where ¢ is compactly supported in D and equal to 1 on a neighbour-
hood of o(a). By using the formula

-1
27”/8]” (z—a)""dz

Dynkin [4] extended the holomorphic functional calculus to functions
such that 0f is controlled by the resolvent. In Nugyen [11] this has
been generalised to tuples in a commuting Banach algebra. In Droste
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[5] the holomorphic functional calculus is extended to ultradifferen-
tiable functions in the case when the spectrum is contained in a totally
real submanifold in C*. In [S1| we extend the holomorphic functional
calculus to functions f € C?(C") such that

df AsA (8s)™
d(z, E)

n

D

=1

N Z Of As A (55)#1 AsA (55)171
k+l=n d(z, E)
where d(z, E) is the distance between z and E, and FE is a set such that
there is solution s € & o(C* \ E, L(X)) to the equation d,_,s = 1 such
that as = sa. The spectral mapping theorem
flo(a)) = a(f(a))

holds for these functions too.

< 00,

o0

3. BISHOP’S PROPERTY (/3)

Let z be an element in X. The local spectrum o,(z) of a at x
is defined as the set of all z € C" such that there do not exist an
open neighbourhood U of z and a function f € A'Q(U, X) such that
z = dy_of (W), w € U. Thus o,(z) is closed. From the pointwise
exactness of K,(z,a) it follows that

0 = A"O®U, X) 222 ... 222 A’O(U, X) — 0
is exact for all open pseudoconvex sets U in C" \ o(a), see |7]. Hence
the local spectrum of @ at z is contained in o(a). For a subset M C C",
define the spectral subspace X,(M) by

Xo(M)={z € X :0,(x) C M}.

The spectral subspaces are invariant under any operator that commutes
with a.

The tuple a is said to satisfy the condition SVEP (single-valued
extension property) if

Hy(z—a,0U,X))=0

for all open pseudoconvex sets U in C* and p > 0. If a satisfies SVEP
then one can show that there is a solution u, € L71(C" \ o,(z)) to the
equation (8, , — 0)u, = z. The local spectral mapping theorem, that
is f(04(x)) = 0p@)(x), where f is holomorphic in a neighbourhood of
o(a), holds if a has SVEP, see [6]. If a has SVEP then X,(0) = 0; if
a consists of only one operator then the converse also holds, see [8]. If
Xo(F) is closed for all closed sets F' then a is said to satisfy Dunford’s

property (C).
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If §,_,A'O(U, X) is closed in O(U, X) for all pseudoconvex sets U
in C" and a has SVEP then « is said to possess Bishop’s property (3).
If a has Bishop’s property (/) it has Dunford’s property (C). There is
an example of an operator ¢ with Dunford’s property property (C') but
without Bishop’s property (), see [9]. Suppose that X,Y are Banach
spaces and that ¢ € L(X)" and b € L(Y)" are commuting tuples with
Bishop’s property (/). Suppose that a and b are quasi-similar, that is
there are injective, continuous and linear operators S : X — Y and
T :Y — X with dense range such that Sa = bS and Tb = aT'. Then
we have that o(a) = o(b), see [14].

A tuple a is called decomposable if it has Bishop’s property (3) and

Xo(Uy UTs) = Xo(U) + Xo(Us)

for all open sets Uy, Uy C C". Let A be an algebra of functions defined
on some subset in C*. Suppose that 1,z; € A, that if f € A and
A € C" \ supp f then f = dy_,g for some g € A'A and that A admits
partition of unity. If there is an algebra homomorphism ¥ : A — L(X)
such that ¥(1) = 1 and ¥(z;) = a; then a is decomposable, see [7]
and [8]. The operator a is decomposable if and only if ' (here o' =
(a},...,a]) denotes the tuple of dual operators) is decomposable, which
happens if and only if @ and o’ have Bishop’s property (3), see [7]. A

decomposable resolution of a is an exact complex of Banach spaces,
d d d
0=-X—=>Xy—---—=X, =0,

such that da = aod and da; = a;41d, where a; € L(X)" is decompos-
able. The tuple a has Bishop’s property (3) if and only if it has a
decomposable resolution, see |7].

If

Hy(z—0a,E(C", X)) =0

for all p > 0 and 4, ,A'E(C", X) is closed in £(C", X) then a is said
to possess property (8)s. If a has property (8)s then a has Bishop’s
property (f). A commuting tuple a is called generalised scalar if there
exists a continuous algebra homomorphism £(C") — L(X) which ex-
tends the holomorphic functional calculus. Suppose that there is an
exact complex of Banach spaces,

(9) 0X35 XS 4 X, >0,

such that da = aod and da; = a;,1d, where a; € L(X)™ are gener-
alised scalars. By simple homological algebra it then follows that a has
property (5)e.

Let D be a strictly pseudoconvex domain in C™ with smooth bound-
ary and p be a strictly plurisubharmonic defining function such that
D = {C:p({) <0}. The Banach space of all bounded functions in
O(D) is denoted by H*®(D). The Hardy space H?(D), p < oo, is
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defined as the Banach space of all functions f in O(D) such that

vy = s0p [ 1O do(c) < o

where o is the surface measure.
For g € H® (D)™, define the tuple

T, : H?(D) — H?(D)"

by T,(f) = gf. In [3] it is proved that o(T,) = g(D) if p < co. The
case p = oo is equivalent to the corona theorem. We now claim that
T, has Dunford’s property (C). Let f € H?(D). We calculate o, (f).
Define D’ as the set of all ( € D such that there is no neighbourhood
U of ¢ where f =0 on U. The set D’ is open by the identity theorem.
Since D' also is closed, D’ consists of the components of D where f is
not identical equal to zero. Suppose that z ¢ o, (f). Let U be an open
neighbourhood of z such that there is a function h € A'O(U, H?(D))
that satisfies

f = (5w_Tgh(w), w € U.

Hence f = 0 on ¢7'(U) and thus ¢7'(2) C D\ D'. Therefore z ¢ g(D’)
and hence g(D’) C or,(f). Conversely, we have that

o1, (f) = o, (fl) € 0(Ty,) = g(D).

Hence o1, (f) = g(D'). Suppose that F'is a closed set in C*. We
have that g(D') C F if and only if g71(C" \ F) C D\ D'. To see this
suppose that ( € g7'(C* \ F). Then g(¢) € C*\ F c C"*\ ¢g(D') and
thus ¢ € D\ D'. Conversely suppose that z € g(D'). Then there is
a ¢ € D' such that z = g(¢). Thus ¢ ¢ ¢g~'(C" \ F) and therefore
z ¢ C" \ F and hence z € F. Thus

HY (D)7, (F) = {f € H'(D): f =0 on g™(C" \ F)}

and hence T, has Dunford’s property (C).

In the article [S2] it is proved that T, has property (5)¢ for 1 <
p < oo and if m = 1 also for the case p = oo. Under additional
conditions on g (boundedness of the derivative of g) this theorem has
been proved before, see [15] and [19]. The proof of the statement that 7,
has property (3)e amounts to the construction of a smooth resolution
of H?(D), (9). However a resolution such as (9) was not found. As a
substitute we have the following.

Let X = H?(D) and a = T,. In [S2| we define a complex

dm—l

(10) 0 X 5 X & X, & X, 5. 22 X, 50

of Banach spaces. Let a; € L(X;)" be generalised scalar tuples such
that ia = agi and d;a; = a;41d;. The complex (10) is exact at X;, 1 > 2,
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but not necessarily at X; and X,. Instead we find Banach spaces X|
and X{ and continuous mappings

r:Xo— Xyand d) : X] — Xo.

If dyzy = 0 then there is a solution x| € X| such that djz}] = x,. We
have commuting tuples aj € L(X})" and @} € L(X{)" such that rag =
agr and dja} = aqd;. Moreover there is a relation dyxy = 1+, where
zy € X, r1 € X; and 2} € X which satisfies the following conditions.
If xy € Xy then dyrzy = dozo, dj is linear and if dyzy = 21 + 2 then

Laoxy = arxy + ajx’. Moreover if f; € £(C*, X;) and f] € £(C", X))
then there is a function f§ € £(C*, X{) such that djfj = f1 + fi. We
also have that 77 is an isomorphism from X to {z}, € X{ : dyx = 0}.
By a similar proof to the one that the existence of a resolution (9)
implies that a has property (8)g it now follows that a has property
(B)e. The complex (10) has its origin in the Wolff-type proof of the
HP-corona problem.

REFERENCES

[1] Andersson, M., Taylor’s functional calculus for commuting operators with
Cauchy-Fantappie-Leray formulas, Internat. Math. Res. Notices 6, 247-258
(1997).

[2] Andersson, M., Taylor’s functional calculus and the resolvent mapping,
preprint (2000).

[3] Andersson, M., and Carlsson, H., Estimates of the solutions of the HP and
BMOA corona problem, Math. Ann. 316, 83-102 (2000).

[4] Dynkin, E. M., An operator calculus based on the Cauchy-Green formula
(Russian), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov 30, 33-39
(1972).

[5] Droste, B., Extension of analytic functional calculus mappings and duality by
O-closed forms with growth, Math. Ann. 261, 185-200 (1982).

[6] Eschmeier, J.,Local properties of Taylor’s analytic functional calculus, Invent.
Math. 68, 103-116 (1982).

[7] Eschmeier, J. and Putinar, M., Spectral decompositions and analytic sheaves,
London Mathematical Society monographs; new ser. 10, Oxford University
Press (1996).

[8] Laursen, K. and Neumann, M., An introduction to local spectral theory, Lon-
don Mathematical Society monographs; new ser. 20, Oxford University Press
(2000).

[9] Miller, T. L. and Miller, V. G., An operator satisfying Dunford’s condition
(C) but without Bishop’s property (8), Glasgow Math. J. 40, 427-430 (1998).

[10] Miiller, V., The splitting spectrum differs from the Taylor spectrum, Studia
Math. 123, no. 3, 291-294 (1997).

[11] Nguyen, t.H., Calcul fonctionnel dpéndant de la croissance des coefficients
spectrauz, Ann. Inst. Fourier 27, no. 4, 169-199 (1977).

[12] Putinar, M., The superposition property for Taylor’s functional calculus, J.
Operator Theory 7, 149-155 (1982).

[13] Putinar, M., Uniqueness of Taylor’s functional calculus, Proc. Amer. Math.
Soc. 89, 647-650 (1983).

[14] Putinar, M., Quasi-similarity of tuples with Bishop’s property (3), Integral
Eq. Operator Theory 15, 1047-1052 (1992).



10

[15] Putinar, M. and Wolff, R., A natural localization of Hardy spaces in several
complex variables, Ann. Polon. Math. 66, 183-201 (1997).

[16] Taylor, J. L., A joint spectrum for several commuting operators, J. Funct.
Analysis 6, 172-191 (1970).

[17] Taylor, J. L., The analytic-functional calculus for several commuting opera-
tors, Acta Math. 125, 1-38 (1970).

[18] Taylor, J. L., A general framework for a multi-operator functional calculus,
Adv. Math. 9, 184-252 (1972).

[19] Wolff, R., Quasi-coherence of Hardy spaces in several complex variables, In-
tegr. equ. oper. theory 38 (1) 120-127 (2000).



A CONSTRUCTIVE PROOF OF THE COMPOSITION
RULE FOR TAYLOR’S FUNCTIONAL CALCULUS

MATS ANDERSSON & SEBASTIAN SANDBERG

ABSTRACT. We give a new constructive proof of the composition
rule for Taylor’s functional calculus for commuting operators on a
Banach space.

1. INTRODUCTION

Let X be a Banach space, let £(X) denote the space of bounded
operators on X, and suppose that ay,...,a, € £(X) are commuting.
If p(2) = p(21, ..., 2,) is a polynomial then p(a) = p(ai, ... ,a,) has a
welldefined meaning. Since the polynomials are dense in O(C™) there
is a continuous algebra homomorphism

(1.1) O(C") = (a) C L(X),

where (a) denotes the closed subalgebra of £(X) that is generated by
ai, ... ,a,. The proper notion of joint spectrum o(a) of the operators
ai, ... ,a, was found by Taylor, [9]; it is a compact subset of C". Let

(a)" denote the subalgebra of L£(X) consisting of all operators that
commute with all operators that commute with each a,. It is easy to
see that (a)” is commutative. Taylor proved the following fundamental
result in [10].

Theorem 1.1 (Taylor). Let ai,...,a, be commuting operators on a
Banach space with joint spectrum o(a). There is a continuous algebra
homomorphism g — g(a) from O(o(a)) into (a)"” that extends (1.1).
Moreover, if g = (g1, .. , gm) is a holomorphic mapping, g; € O(o(a)),
and g(a) = (gl(a)’ T agm(a))f then

(1.2) a(g(a)) = g(o(a)).

1991 Mathematics Subject Classification. 47 A 60, 47 A 13, 32 A 25.
Key words and phrases. Taylor spectrum, functional calculus, Cauchy-
Fantappie—Leray formula.
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Taylor’s original proof of this theorem was based on representation of
holomorphic functions by means of Cauchy—Weyl formulas. Later on,
in [11] and [12], he made the construction with homological methods.
Suppose that g € O(o(a)) is a holomorphic mapping and that f €
O(g(o(a))). In view of (1.2), both f o g(a) and f(g(a)) has meaning
and it is natural to ask if they coincide. Putinar proved in [7] by
homological methods that this question has an affirmative answer.

Theorem 1.2 (Putinar). Suppose that g = (g1, ... ,9m) 1S a mapping,

gTjhE O(o(a)), g(a) = (91(a),---,9m(a)) and that f € O(g(o(a))).

(1.3) f(g(a)) = fog(a).
A simplified proof appeared in [6].

If a is one single operator and f € O(o(a)), then f(a) is given by
the formula

(1.4) fla)= [ f(2)ws—a,
aD
where w,_, is the resolvent
1 -1
Wyq = 2—m(z —a)” dz.

In the case with several commuting operators, the resolvent w, , is
an (a)”-valued cohomology class in C" \ o(a). In [1] we gave a new
constructive proof of Taylor’s theorem. From the very definition of
the spectrum o(a) we defined, for each z € X, a closed X-valued
(n,n — 1)-form in C* \ o(a) that represents the class w,_,z. Then
f(a) can be defined by the formula (1.4). The form w, ,x is sort of
an abstract Cauchy—Fantappie-Leray kernel. In special situations, for
instance outside any Stein compact set that contains o(a), the form
w,_qx can be realized as a classical Cauchy-Fantappie-Leray kernel.
(Contrary to the convention in [1] we include the factor (274)~" in
the definition of resolvent class here.) This constructive approach is
natural if one wants to extend the functional calculus to larger classes
of functions. In one variable this was done by Dynkin in [5]; in several
variabels partial results have been obtained by e.g. Droste; see also the
forthcoming papers [3] and [8].

The purpose of this note is to give a proof of Theorem 1.2 along the
lines of [1] and [2]. It can be viewed as a continuation of these papers
and we keep the same notation.



2. SOME AUXILIARY RESULTS

It is sometimes convenient to replace the boundary integral in (1.4)
by a smoothed out integral. If f € O(V), V a neighborhood of ¢(a),
and if ¢ is a cutoff function that is identically 1 in a neighborhood of
o(a) and has support in V', then

(2.1) f(a) = - / F(2)06(2) Awera:

This immediately follows from (1.4) and Stokes’ theorem.

Lemma 2.1. Suppose that T: C* — C™ is linear and ¢ € O(o(Ta)).
Then ¢(Ta) = T*¢(a).

We already know from Theorem 1.1 that To(a) = o(Ta) so both
sides make sense. The lemma is the special case of Theorem 1.2 when
g is linear; for a proof see, e.g., [1] Theorem 3.1.

Let us now consider commuting operators aq,... ,a,, b1, ... ,bp. It
follows from Lemma 2.1 that o(a,b) C o(a) x o(b).

We will now recall from [1] and [2] how the resolvent class w, 44,5 in
C*xC™\o(a,b) for (a,b) can be represented in terms of w, , and w,, 4.
Let @, _,z is an explicit form in C*\o(a) that represents the class w, ,z.
There is a smooth d-closed form @Wy_y A@,_ex in C* \ o(a) x C™ \ o(b)
which, for each fixed z € C" \ o(a), represents the class wy,_p A W,_4.
Let x(z, w) be a function in C* x C™ \ o(a) x o(b) such that {x,1— x}
is a partition of unity subordinate to the open cover

{C"\o(a) xC™",C* x C" \ ao(b)},
of C* x C™ \ o(a) x o(b). In the set C* x C™ \ o(a) x o(b), the class
Wy—aw—bT is then represented by the form
a_X A awfb A ('Ndzfaxa
cf., formula (3.6) in [1].

Let ¢(z) and ¢ (w) be cutoff functions that are identically 1 in neigh-
borhoods of o(a) and o(b) respectively. Moreover let G(z,w) be holo-
morphic in a neighborhood of o(a) x o(b). Then (2.1) applied to the
pair (a,b) gives

G(a,b)r = — // G(z,w)0(p @ 1Y) A OX A Gy N Wy_aX.

Integration by parts in this formula yields, cf., formula (3.7) in [1],

(2.2) G(a,b)z = // G(z,w)0(w) A OP(2) A WDy A @, o-
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In particular, if g; € O(o(a)), go € O(c (b)), and G = g1 ® go, it follows
by Fubini’s theorem that

(2.3) 91 ® g2(a,b) = g1(a)ga(b)-

3. PROOF OF THEOREM 1.2

We are now ready to prove Theorem 1.2. Let aq,...,a, be a com-
muting n-tuple of operators, let ¢ = (g1,...,9m) be a holomorphic
mapping, g; € O(o(a)), and let b = g(a).

Lemma 3.1. If ¢ is holomorphic at the origin of C™ and ®(z,w) =
d(w — g(2)), then ® € O(o(a,b)) and ®(a,b) = ¢(0).

Proof. 1t follows from the spectral mapping statement in Theorem 1.1
that o(a,b) = {(z,w); z € o(a), w = g(z)}. Therefore ®(z,w) is
holomorphic in a neighborhood of o(a, b).

There are holomorphic functions ¢1,... ,¢,, at the origin so that

$(§) = ¢(0) + X295 (). Therefore,

®(z,w) = ¢(0) + ZHj(z, w)Pr(z, w),
j=1
where @;(z,w) = ¢j(w — g(z)) and H;(z,w) = w; — g;(2). Now
Hj(a,b) = bj — gj(a) = 0, where the first equality follows from lin-
earity and (2.3), and the second equality follows from our assump-

tion. Since the functional calculus is multiplicative it follows that
®(a,b) = ¢(0). O

We can now conclude the proof of Theorem 1.2. Assume that f(w)
is holomorphic in a neighborhood of o (b). Then h(z,w, &) = f(§—(w—
g(z ))) is holomorphic in a neighborhood of o(a,b) x o(b) C C*™ x C™,
and in view of (2.2) above we can therefore write

h(a, b, b)z = / / ) 9(2))) 39 (2, 0) ANS(E) AT a0 s AT s,

if ¥(z,w) is 1 in a small neighborhood of o(a,b) and ¢(£) is 1 in a
small neighborhood of o(b). For each fixed £ we can evaluate the inner
integral by Lemma 3.1 and get that

h(a,b,b)x /f )0(&) A we px = f(b)z.
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Thus h(a,b,b) = f(b) = f(g(a)). On the other hand, by the linear
mapping 7": (z,71) — (z,w, &) = (z,71,7n) and Lemma 2.1, we have that

h(a,b,b) = h(T(a,b)) = T"h(a,b).

Now, T*h(z,m) = fog(z) ®1, and hence T*h(a,b) = fog(a) according
0 (2.3). Summing up, we get the desired equality f(g(a)) = f o g(a).
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ON NON-HOLOMORPHIC FUNCTIONAL CALCULUS
FOR COMMUTING OPERATORS

SEBASTIAN SANDBERG

ABSTRACT. We provide a general scheme to extend Taylor’s holo-
morphic functional calculus for several commuting operators to
classes of non-holomorphic functions. These classes of functions
will depend on the growth of the operator valued forms that define
the resolvent cohomology class. The proofs are based on a gener-
alisation of the so-called resolvent identity to several commuting
operators.

1. INTRODUCTION

Let X,Y be two Banach spaces. We denote by L(X,Y’) the Banach
space of all continuous linear operators from X to Y and we let L(X) =
L(X,X). We denote by e the identity operator of L(X). For a subset
A C L(X) we let A” denote the bicommutant, that is the Banach
algebra of all operators in L(X) which commute with every operator
b € L(X) such that ab = ba for all a € A.

Suppose that a € L(X). The spectrum of a is then defined as
o(a) ={z € C: z — a is not invertible},

where z — a is the operator ze — a. If f is a holomorphic function in
a neighbourhood of o(a) then one can define the operator f(a) by the
integral

(1.1) fla) = f( )(z —a) ldz,

where D is an appropriate nelghbourhood of o(a). This expression
defines a continuous algebra homomorphism

fr f(a): O(o(a)) = (a)",
such that 1(a) = e and z(a) = a, called the Riesz functional calculus.

We want to extend this algebra homomorphism to functions not nec-

essarily holomorphic in a neighbourhood of the spectrum. Following
Dynkin [6] we define f(a) by

(1.2) = 27”/6]” A(z—a) tdz

1991 Mathematics Subject Classification. 32A25, 47A10, 47A13, 47A60.
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for all f € S,, where S, is defined by
Sa={f€C.(C) : Ifll, = [|0f (2) A (z — @) 7"z, < o0}

It is evident that f(a) is a bounded linear operator on X which com-
mutes with each operator that commutes with a, that is f(a) € (a)".
By Stokes theorem the definition of f(a) only depends on the behaviour
of f near o(a). Suppose that D is an open set such that o(a) C D and
that f € O(D). Then if ¢ € C}(D) is equal to 1 in a neighbourhood
of o(a), we have that ¢f € S, and ¢f(a) defined by (1.2) equals f(a)
defined by (1.1).

We now prove that f +— f(a) is an algebra homomorphism and that
the spectral mapping theorem holds for function in S,. This is done
in Dynkin [6], we provide proof as we will generalize these theorems to
the several operator case.

Theorem 1.1. The mapping
frfla): Sy — (a)",

where a € L(X), is a continuous algebra homomorphism that continu-
ously extends the holomorphic functional calculus. Moreover, if f € S,

then o(f(a)) = f(o(a)).

Proof. The map f +— f(a) is obviously linear and continuous. We have
the so-called resolvent identity,

(1.3) (w=2)(z—a)(w—a)'t=Gz-a"'=(w-0a)"!

where z,w € C. The multiplicative property then follows,

1 S —1 a —1
f(a)g(a)zw/z/w@f(z)/\(z—a) dz A Og(w) A (w —a)” dw
1

/Z/ Of(2) A (z — a)"tdz A Og(w) A (w — 2) " dw

+

(271)?
1
(2mi)?

// Of(2) A (z —w)~'dz A Og(w) A (w — @) dw
1

9(2)0f(2) A (z —a) 'dz

2mi J,
1 - _

~3r [ F@g() A @ - a) Mdu = fo(a)
T S

by Fubini-Tonelli’s theorem.

Suppose that D is an open neighbourhood of o(a) and that f, €
O(D) is a sequence such that f, — 0 uniformly on compacts. Then if
¢ € C!(D) is a function equal to 1 in a neighbourhood of o(a) we have
that || fn¢||, = 0. Thus the mapping f — f(a) continuously extends
the holomorphic functional calculus.
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If w¢ f(o(a)) and ¢ € C}(C) is equal to 1 in an appropriate neigh-
bourhood of g(o(a)), then
¢
w— f
and hence w — f(a) is invertible and thus w ¢ o(f(a)). Therefore we

have the inclusion o(f(a)) C f(o(a)). Suppose that w € f(o(a)) and
assume that w = 0. Then 0 = f(() for some ( € o(a). Let

€ Sa;

9(z) = %
Then .
f@) = —5— [ (= )0g(z) A (= — @) 1dz

— (¢ a)i. /8g(z) A (2 = a)~\dz
__/ 2z —a)dg(2) A (z — a) " dz.

The last integral equals f((), which is 0, and hence 0 € o(f(a)) since
otherwise ¢ — a would be invertible. Therefore f(o(a)) C o(f(a)), and
hence the theorem is proved. O

Furthermore, we have a rule of composition for this functional cal-
culus.
Theorem 1.2. (Rule of composition) If g € S, and f is a holo-
morphic function in a neighbourhood of o(a), then ¢ (f og) € S, and
flg(a)) = ¢ (fog)(a), if ¢ € CHC) is equal to 1 in a neighbourhood
of o(a).
Proof. Suppose that 1 € C!(C) is equal to 1 in a neighbourhood of

o(g(a)). There is a function ¢ € C}(C) such that ¢ is equal to 1 in a
neighbourhood of o(a) and

¢

w—g

b=

€S,

for each fixed w € supp ‘51/)‘. The function ¢(f o g) is in S, since

(@ (fog) 3<f> df 9g
0z 9% T %uaz
We have that

i/ fw)0u(w) A (w — g(a)) ‘dw

flg(a)) = -5
w) Ot (w) A dw A 0,h(2) A (2 — a)tdz

o(z)dw
—9(2)

w) Opth (w) A A(z—a) dz




- /zaz (6f09) A (2 —a)"dz = 6(f o g)(a),

and hence the theorem is proved. ]

For further results regarding this functional calculus, see Dynkin [6].

Now to the notion of spectrum of a commuting tuple of operators.
Suppose that a = (ay,...,a,) € L(X)" is a commuting tuple of oper-
ators, that is a;,a; = a;a; for all 7 and j. Denote by

A=, (A
the exterior algebra of C* over C. If s1,--- , s, is a basis of C* then A
has the basis
S(g)zl, SI:Sil/\"'/\Sip7 I:{’il,"',ip},

where i; < --- < iy and 1 < p < n, and we denote A = A(s) in this
case. We let K,(a, X) be the Koszul complex induced by a,

o Ky (a, X) 2 Ko (0, X) 2 K,y (0, X) — -

where
Ky(a,X) = AP(s,X) = X ®@c AP(s)

and

p
dp(xsy) = 2mi Z(—l)k’laikxsil A== NS A==+ NS
k=1

If K,(a,X) is exact then a is called non-singular, otherwise singular.
The spectrum is defined as

o(a) ={z € C": z — a is singular} .
One also defines the split spectrum as
sp(a) ={z € C" : K,(z — a, X) is not split},

where split means that for every integer p there are operators h and
k such that e = §,11h + ké,. If X is a Hilbert space or n = 1 then
sp(a) = o(a). In general we have that o(a) C sp(a), but not the reverse
inclusion, see Miiller [11].

We will consider operators parametrized by a variable z, such as
z — z—a. In that case the boundary map J, depends on z and we will
henceforth suppress the index p and write 9, as d,_, for every p. We
also let s; = dz;.

Now suppose that T € L(X,Y) has closed range and let k(T") be the
norm of the inverse of 7" considered as a map from X/KerT to Im7T.
The next lemma is Lemma 2.1.3 of [7], and it implies that if q¢ is a
non-singular tuple then a is non-singular if ||ag — a| is small enough.
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Lemma 1.3. Suppose that X,Y,Z are Banach spaces, oy € L(X,Y),
Bo € LY, Z), Im By closed and Ker 35 = Im «g, that is

N LN

is exact. Let r be a number such that r > max {k(ay),k(Bo)}. If o €
L(X,Y), B e L(Y,Z), Ima C Ker and ||a — agl| , || — Bol| < 1/67
then Ima = Ker 8 and k(a) < 4r.

Hence o(a) is closed. Furthermore, the spectrum has the projection
property, see Theorem 2.5.4 of [7].

Theorem 1.4. If a € L(X)" and a' = (a,a,41) € L(X)"™! are
commuting and © : C**' — C" is defined by w(z,2,41) = z then
m(o(ad")) = o(a).

It follows that

o(a) Co(a)) X -+ x o(ay)

and hence o(a) is bounded. Thus o(a) is a compact subset of C".
Conversely, any compact set K in C" can arise as the spectrum of a
commuting tuple of operators. This one sees by letting the operators

ax to be multiplication by z; on the Banach space C'(K) of continuous
functions on K C C".

The next theorem says that pointwise exactness is equivalent to con-
tinuous exactness, see Corollary 2.1.4 of [7].

Theorem 1.5. Suppose that X,Y,Z are Banach spaces and that €2
1s a paracompact topological space. Furthermore suppose that a €
C(Q,L(X,Y)) and B € C(Q,L(Y, Z)) such that Im B(A) is closed and
Ker S(A) = Ima(A) for all A € Q. Then

Ker (C(Q,Y) 2, C(Q,Z)) = Im ((J(Q,X) LN C(Q,Y)) .
Moreover for each point A € Q and vector x € Kera(\) there is a
function f € C(Q, X) with af =0 and f(\) = z.

Thus the complex
K.(a,C(C*"\ 0(a), X))

is exact. The next theorem is more complicated to prove, see Taylor
[16], Theorem 2.16 and Eschmeier and Putinar |7], Section 6.4.

Theorem 1.6. Suppose that U is an open subset of C*, Y, are Banach
spaces, o, € O (U, L(Y,, Y,-1)) and that

ap+1(2) % ap(2)

"'_>va+1 p__)}/;il_)...

is exact for all z € U. Then the complex
10 CF(U, Vo) =55 C%(U,Y,) =5 C%(U, Ypr) = -+

18 exact.



Hence the complex
Ko(a,C=(C" \ o(a), X))

1s exact.

This notion of joint spectrum for a commuting tuple of operator was
introduced by Taylor, [15], in 1970. Furthermore, he proved the holo-
morphic functional calculus and the spectral mapping theorem for this
spectrum in [16]. His first proof of the holomorphic functional calcu-
lus was based on the Cauchy-Weil integral. Using homological algebra
he generalized the construction to not necessarily commuting tuples
of operators in [18]. See Kisil and Ramirez de Arellano [9] for more
recent developments of non-commuting functional calculus. In [1, 2]
Andersson proved the holomorphic functional calculus for commuting
operators using Cauchy-Fantappie-Leray formulas.

The purpose of this paper is to study generalisations of Theorem 1.1
to the case of several commuting operators. Suppose that F is a set
such there is a smooth function s such that §,_,s = e outside E. In
that case we can use the integral representation from [1| to extend
the holomorphic functional calculus. The main difficulty is to show the
multiplication property; for this we will generalize the resolvent identity
(1.3) to several commuting operators. In case E is a convex set we can
use approximation by holomorphic functions to show that the map f —
f(a) extends. Similiar results to the one in this paper has been proved
in Nguyen [13]. In the setting where one has a tuple a of elements in a
commutative Banach algebra (or more general a b-algebra) he extends
the holomorphic functional calculus. The method of the proof of the
multiplication property in [13] is to show that f(a)g(a) = f® ¢(Ta) =
f®goT(a) = fg(a), where T'(z) = (2, z). In Droste [5] the holomorphic
fuctional calculus is extended to ultradifferentiable functions in the case
when the spectrum is contained in a totally real submanifold in C*. His
method of proof is to use the denseness of the holomorphic functions
in the algebra ultradifferentiable functions.

I would like to thank my supervisor Mats Andersson for valuable
discussions about the results of this paper.

2. HOLOMORPHIC FUNCTIONAL CALCULUS

Remember that X is a Banach space, a € L(X)" is a tuple of com-
muting operators on X, and z € C" is a variable. Remember also the
fact that if the complex K,(z — a, X) is exact for every z in an open
set U then there is a smooth solution u in U to the equation §, ,u = f
if f is a closed and smooth X-valued form in U.



We now construct the resolvent on C* \ o(a). We have that

62_,15 Z fkdzk —2ms Z Zk — CLk —le —gdz_a Z fkdzk,
k k

and therefore 8,00 = —552,a for 1-forms and hence for all forms since
d, ¢ and O are anti-derivations. Suppose that K,(z — a, X) is exact
and z € X. Then we can define a sequence u; in C* \ o(a) by

(2.1) Opealll =T, Oy_qUiyr = OU;,

since 0 and §,_, anti-commute. If this sequence starts with z = 0 then
there is a form w,, such that u, = Ow,, this follows from the fact that
we successively can find w; such that

(22) w1 = 0, (5z_aw,~+1 = 5’(1)1 — Uj;.

Thus if one has two sequences u; and u} as in (2.1) then the difference
u, — u,, is exact. Hence u,, defines a Dolbeault cohomology class w,_,x
of bidegree (n,n — 1), which is called the resolvent cohomology class.

Suppose we have two cohomology classes, w, ,x and w, ,r, where
z,w € C", a,b € L(X)", corresponding to sequences u; and v;, respec-
tively. Then one defines the X-valued cohomology class w, , A Wy px
as the class of cy,, where ¢; solve

(23) ¢ =0, 5zfa aw—bCit1 = 561’ + v — Uy

To see that this really is a well defined cohomology class, let u}, v} and

c; be other choices of sequences. Let w} and w! be the sequences given
by (2.2) for the sequences u; — u; and v; — v} respectively. Then we
have that

o — ¢ +w) —wl =0
and
! v U _ N / v u
Oz—aw-b (Ci+1 — Gy T Wi — wi+1) =0(c; — ¢ +wi —wy).

Hence, by (2.2) again, there exists a sequence w§ such that cg, — ¢}, =
ows,,

Now suppose that we instead have operator valued forms, u;, such
that

(24) 5z—au1 =€, (Sz—auz'—l—l = 3uia

so that u,, represents the operator valued cohomology class w,_,. Then
we have that w,_,Aw,_px is the class of u, Av,, where v; is an X-valued
sequence defining w,, pz. This follows from the fact

5zfa (U1 A Un) = Un, 6zfa (ui+1 A vn) = g (uz A Un)

and the following proposition.
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Proposition 2.1. If v; is a sequence defining wy,_px and

5z—af1 = Un, 6z—af'i—|—1 = 5fza
then f, represents w,_q, A Wy_pT.

Proof. Let ¢; be any sequence that defines w,_4 A wy_px, so that c;
satisfies (2.3). Denote by ¢! the component of ¢; which is of degree &
in dz and degree [ in dw. We have that (5Z_ac?’l = 0, so there is a form
f such that c?’l =0,_of. This gives

5zfa,wfbci = 5zfa,w7b (ci - 6371 - 5wfbf) )

0, .
and hence we can assume that the component ¢;” vanishes. We have
that
1,n i+1l,n _ a i,n
5Z,acn+1 = Up, 5zfacn+z'+1 = acn+z’ﬂ
and therefore there is a form w,, such that
n,n a
fn—c5) + 0w, = 0.
. n,n o . .
Since cgy, = €y, the proposition is proved. O

In one variable there is only one possible representative for w,_,z,
a € L(X),
1

Wy g = 2—m(z —a) 'dzz,

and we have that w, , is operator valued. The key part of the proof
of the holomorphic functional calculus in one variable is the resolvent
identity (1.3), which we can reformulate as

Wy—a N Wy—g + Wy—a N Wy—p + Wey—y Awz—q = 0.

We will now generalize this equality to several commuting operators.
Let A = {(z,w) € C*" : z = w} be the diagonal in what follows.

Lemma 2.2. For every x € X, we have the equality

(2.5) Wy—g N Wy—al + Wy—q N Wy + Wy N wy_qx = 0,
on ((C*\ o(a)) x C*NC* x (C*\ o(a))) \ A.

Proof. Define the sequence my by

T T P A
(2.6) my = Zq”A(az w) .

@2mi)* |z —w|’ |z —wl”

The equalities,

1
(27) 5zfa,wfam1 = .725z7a,w7aa |Z — w|2 =1,
27i |z — w|

k
1 Oz —w| -
(2.8) 02—a,w—aMMk+1 = ( (8 i wQ‘ ) = Omy,

2mi)k
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for all k¥ < m, and my = 0 for all £ > n, hold on C** \ A. Let u;
be a sequence as in (2.1) that defines w, ,z. Define u; and u? by
u; = miu; and u? = mwiu,;, where (2, w) = 2z and m(z, w) = w are the
projections. Let ¢; be a sequence that satisfies the equalities

(2.9) c1=0, 6, quw aCit1= de, + ulQ — ull

Using the equalities (2.7), (2.8) and (2.9) (for [ > n), we get that

—g Z mk/\cl:(Sz,a,w,a Z mk/\cl—5 Z mk/\cl

k+l=2n k+l=2n+1 k+1l=2n
2n 2n—1

= E 5z—a,w—am2n+1—l ANe — E 6WLZn—l A ¢
l=n+1 l=n

n
+ Z mg A (50271—10 - 5z—a.,w—a02n+1—k)
k=1
= —0my, A ¢y + Cop + mp A (uy, — u2) .
Thus

(2.10) -0 Z my A ¢ = Cop + U2 Amy, +my, Au)

k+1=2n
outside the diagonal. We have that the component of m, which does
not contain dw and dw represents w,_,, and that the component of m,,
which does not contain dz or dZ represents w,,_,. Since ¢y, represents
Wy a N\ Wy o, the lemma follows from (2.10). O

Choose representatives W, &, Wyt and W,_g A Wy_ox for w, .z,
Wy o and w, 4 A wy o respectively on (C* \ o(a)) x C*NC" x (C*\
o(a)). Let @, o = my,. Then (2.5) says that the form

(2.11) Wyg N Wyp—al + Wyp—g N Wyp T + Wy—gy N Wy o,

defined on ((C*\o(a)) x C*NC" x (C*\ o(a))) \ 4, is exact. We
want this expression to be an exact current over A as well. Suppose
that (2.11) is exact on (C"* \ o(a)) x C* NC" x (C* \ o(a)). We have
that [A] = 0W,_,,, where [A] denotes the current of integration over A.
If we apply 0 to (2.11), interpreted as a current, we get

0=—Wy0aX A[A]+[A] AW,z = [A] A (D—0Z — Wyy—a)

since (2.11) is supposed to be exact and therefore is closed. Hence
i* (W, — Wy _ox) = 0, where i is a function defined by i(7) = (7, 7).
The next theorem gives the desired result in the case where we have
Wy g = 1" Wy—_qg .

Theorem 2.3. (Resolvent identity) Suppose that W, .z, Wy o and
Wy—q N\ Wy X are representatives for w, o, Wy o aNd W, o N\ Wy o,
respectively. Let @, ,, = my,, where m,, is defined in (2.6). Then the
current

ajz—a A aw—am + aw—a A az—wx + az—w A LN‘)z—ax



10

defined on (C" \ o(a)) x C* NC"* x (C* \ o(a)) is exact if and only if
¥ Wy ok = 1" Wy_aZ, where i : C* — C*" s defined by i(1) = (1, 7).

Proof. The necessity of having i* (W,_,* — Wy_ox) = 0 has already been
proved. Now suppose that i* (0, & — Wy _or) = 0. Let ul, u?, m; and
c; be the sequences in the proof of Lemma 2.2. Let 6 =, 44 4. Then
we have that i*0 = §,_,¢* by induction, since

i*0 (fdzy, + gdwy) = (7p — ag) f(r,7) + (1 — @) g(7, 7)
= 0, 40" (fdzp + gdwy)
and
FO(uAv) =duNitv — FuNiPTov = 0,01 (U A),
if u is a 1-form. Thus
i1 =0, O0r_qi*ciyy = 0i'c

and hence, by (2.2), there is a form w, of 7 such that i*c, = Ow,. For
all test forms f we have the identity

8_mn/\cn.f:/Ai*(cn/\f):/Agwn/\i*f:/Awn/\i*gf.

Therefore the calculation in the proof of Lemma 2.2 gives the equality

(2.12) -0 ([A] A w, + ka A an_k> = Cco, + ui ANmy, +m, A\ u,l1
k=1

Since W, oo and u, represent the same cohomology class, there is a
form ¢ such that @, @ —u, = dq. Let ¢' = nfq and ¢*> = 75q. Then
Wy N (cNuz_ax — Wy_ar — (ul — ui))
=W,—w A (0¢" — 0¢*) = [A] A (¢" — ¢°) — 0 (Bo—w A (¢" — %))

=0 (@ (¢ =)
Thus, since W,_q A Wy_o — Cop 1S an exact current, the theorem is
proved. O

Now we give the definition of f(a). If f is a holomorphic function in
a neighbourhood of o(a) then we define f(a) by the formula

(2.13) fla)x = — / fOPAw,_qv forall x € X,

where ¢ € C2° is equal to 1 in a neighbourhood of o(a). This definition
is independent of the choice of ¢. To see this, suppose that ¢ € C° is
equal to 0 in a neighbourhood of the spectrum. Then we have that

/5@/\%axz/é_hp/\un:/g(w/\un)zo,
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if u,, is a smooth form in C" \ o(a) representing w,_,x. Note also that,
by Stokes theorem, we have the equality

— / fOPNw,_ oz = fw,_qx,
aD
where D is a small enough neighbourhood of o(a). We now prove that
fla) € (a)".
Lemma 2.4. If f(a) is defined by the formula (2.13), then f(a) € (a)".

Proof. Suppose that z,y € X and ¢,d € C. Denote by u] the sequence
(2.1). Then

cz+dy T v\ —
0y—q (ul —cuj — du1> =0
and

cr+dy T Y _ A cx+dy T Y
0z—a (“i+1 T Uiy T dui—l—l) =0 <“z — cuy —duy ),

s0 u®t% and cu® + duY define the same cohomology class. Therefore
the resolvent is linear, i.e.,

Wz—a (C‘T + dy) = Wy—oT + dw,_aY,
and hence f(a) is a linear operator.

The map d,_, is linear, continuous and surjective between the Frechet
space of all C3%, (U, X) forms to the Frechet space of all §,_,-closed
Coo (U, X) forms, where U = C" \ o(a). Let K; C C"\ o(a) be a given
compact set and let ¢; = 0. Then the open mapping theorem gives the
existence of a sequence of compact sets K; C C" \ o(a) and natural
numbers t; such that the equation J,_,u = v has a solution u, which

satisfies
”u”Ki,t,-—e—l <C ||v||Ki+lati+1

for all closed v. Thus we can choose the sequence (2.1) so that

il tnrr < Clilli,yy 000, = C Il

and

||ui+1||Kn—i;tn—i+1 S C |‘5uiHKn_i+1,tn_i+1 S C ||ui||Kn—i+1;tn—i+1+1 .
Hence
@) f@al < [0 A ]| < Cflapyle]

and thus the operator f(a) is bounded.

Suppose that b € L(X) is an operator which commutes with the
tuple a. Then

0, abui = bz, 0, bui , = 5buf,
so bu? and u®® defines the same cohomology class. Therefore

bw,_,x = w,_sbx
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and thus f(a) € (a)". O

We can now prove Taylor’s theorem.
Theorem 2.5. (Taylor) The mapping

(2.15) f = f(a): O(o(a)) = (a)"
is a continuous algebra homomorphism such that 1(a) = e and z(a) =

ag.

Proof. The map f — f(a) is continuous by (2.14). We now prove that
f(a)g(a) = fg(a). Let u;, u}, u? and ¢; be as in Lemma 2.2. By
the proof of Proposition 2.1 we can assume that the component c?’Z
vanishes. Since

1n __ i+1,n i,Mm
5Z acn—l—l U’n(w) (5Z acn—|—z—|—1 8 n—|—z’

we have that cy, represents w, ,u,(w) and thus we have that
Faun(w) = = [ F(2)061(2) Awoemstial) = = [ F(:)001(2) A can

Multiplying this equality by g(w)d¢@,(w) and integrating with respect
to w we get

x—//f w) 3o (w) A Iy (2) A com.

The resolvent identity (2.12) then gives that the right hand side is equal
to

J[ 19061 n862 o nt+ [ [ £9801 8062 i wim,

and hence we get, by the Bochner-Martinelli integral formula,

- / (f9¢25¢1 + f¢195¢2) AUy = —/fgg (¢1¢2) AUy = fg(a)ac,

since u) = 7iu, and u2 = mju,. Since the map (2.15) obviously is
linear, it is an algebra homomorphism.

It remains to prove that 1(a) = e and zx(a) = ax. The first equality
follows by representing w,_, by

1
(2mi)n
cf. [1], and integrating against 0¢, where ¢ is a radial cutoff function

which is equal to 1 in a neighbourhood of o(a). The second equality
follows from the first equality and

(2% = za) " 8|22 A (80]2]2)" ",

1 1 -
(2 — ag) uy, = = (0,_alin) Adz, = %8 (Un—1 A dzy),

where u; is a sequence that satisfies (2.1). O
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Taylor also proved the spectral mapping theorem; if f € O(o(a))
then f(o(a)) = o(f(a)). Suppose that a is a commuting tuple and
that D is an open set such that o(a) C D. Then there exist a 6 > 0
such that o(b) C D if ||a—b|| < §. This follows from Lemma 1.3.
In Newburgh [12] it is proved that the spectrum of one operator is
continuous under commutative pertubations; the next proposition says
that the same is true for the Taylor spectrum.

Proposition 2.6. If a and b are tuples of operators such that a,b is
commuting then

sup inf |z—w|+ sup inf |z—w| <2 sup |z|<2|la—0|.
z€o(a) wea(b) wea(b) z€o(a) z€o(a—b)

Proof. Suppose that u € o(a). Since Po(a,b) = o(a), where P(z,w) =
z, there is a v in o(b) such that (u,v) € o(a,b). Since To(a,b) =
o(a —b), where T(z,w) = z — w, we have that v — v € o(a — b). Thus

sup inf [z—w|< sup |z
z€a(a) wET(D) z€0(a—b)

and by symmetry the proposition is proved. U

The next theorem says what happens when one has a norm conver-
gent sequence in L(X)". Notice that if 0(a) = sp(a) then the conclusion
would be that f(ax) — f(ap) in operator norm.

Theorem 2.7. Suppose that ar € L(X)" are commuting tuples (not
necessarily commuting with each other) for k > 0 and that ||ay — agl| —
0 as k — oo. If f is holomorphic in a neighbourhood of Ug>oo(ax), then
flag)z — f(ag)x for every x € X.

Proof. Consider the Banach space
o(X) = {(z) + lim [Jox — w0l = 0}
k—o00

with norm ||(2)72oll. = SubPgso ||2k|| and the tuple of n operators
a' € L(c(X))™ defined by a'(z)32, = (arxk)5,- Suppose that ay is a
non-singular tuple for every k£ > 0. Let f be a closed ¢(X)-form, that
is 04 f = 0. Then 6,, fr = 0 for every £ > 0. Hence there is a solution
ug of the equation d,,ug = fo since ag is non-singular. Lemma 1.3 gives
a uniform constant C and v such that d,, vy = d,,u0 — fr and

[0kl < Clldayuo = full < Cllda = Gaslll[uoll + Cllfo = fill-

Thus u, = ug — vi solve the equations 6, ur = fr and ux — wg if
k — oo. Hence u = (ug)32, is a solution of 6,u = f and the complex
K.(d',c(X)) is exact, and thus o' is non-singular. That is, we have
proved the inclusion

o(a') C U o(ag).

k>0
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Let u; be smooth ¢(X)-forms defined on C* \ o(a’) by the equations
5zfa’u1 = Z, 5zfa’ui+1 = guz

Thus (uy), represent w, o x for all k¥ > 0 and (up)o = limg_,e0 (Uy),
represents w,_,,z. Suppose that ¢ € C° is equal to 1 in a neighbour-
hood the union of o(ay). Then

Yim fax)e = Jim [ 106 (), == [ £06 1 (), = Flan)s

for all z € X, and hence the theorem is proved. U

3. NON-HOLOMORPHIC FUNCTIONAL CALCULUS

In this section we will extend the holomorphic functional calculus of
Section 2 to functions such that ‘3 f (z)| tends to zero when z approches
the spectrum. If f is a C'-function with compact support, we define
whenever possible

fla)z = —/5fAu2,

where uy is a form that represents w,_,x.

Several problems occur. There is a problem with the possible de-
pendence of the choice of representative u; of the class w,_,x. Other
problems are to investigate whether

fla) € ()", fla)g(a) = fg(a), o(f(a))= f(o(a)),

9(f(a)) = go f(a)
and whether f(a) =01if f =0 on o(a). We will prove that f(a)g(a) =
fag(a), f(a) € (a)" and o(f(a)) = f(c(a)) for a certain algebra S,
(3.7) of functions. In order to do this, we will need a slightly stronger
condition on Jf than in the case n = 1. To begin with, we will see
what is needed for the muliplicative property to hold.

Suppose that £ D o(a) is a compact set such that there exists a
sequence u; on C"\ E satisfying (2.4). Then we have that u,, is operator
valued and represents w, , in C* \ E. The definition of f(a) in this
case is

fla) = —/5f/\un.

Define a sequence ¢; by

(3.1) c1=0, 0, aquw-aCii1=0c+ ul — g,

where u} = 7y and u} = 7wy, Then we have that cy, represents
Wy_q N\ Wyw—a- We now prove the multiplicative property.
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Proposition 3.1. Let u; be a sequence defined on C* \ E, where E D
o(a) is a compact set, as in (2.4), and suppose that ¢;, n <1 < 2n are
forms that satisfies the condition,

(3.2) i*cn =0, Oy qw_aCiy1 =0 +u; —uy, Cop =u, AuZ,

where i(1) = (7,7). Moreover suppose that f,g € C? such that

[llornuml <o, [lognum]| <o

and

187) A Bg(w) A
(33) / /w d(2.B) d(w E) |z — w01 =%

for all l such that n <1< 2n. Then f(a)g(a) = fg(a).
Proof. First note that

f(@)g(a) = - / / 8F(2) A Bg(w) A ul A u?

and that, by the Bochner-Martinelli integral formula,

mw=—/@W+ﬁmA%

= // Of (2) A Og(w) Amy, Au,, — // Of(2) A 0g(w) Am, Aul.
Let x. be the convolution of the characteristic function of the set
{(z,w) : d((z,w), Ex C*"UC" x E) > 2¢}

and the function e *"p(-/¢), where p is a non-negative smooth function
with compact support in the unit ball of C?* such that its integral is
equal to 1. Since

Hgf(z) A 0g(w) A (uy Aul +my, A, —my, /\ui)”

is integrable, we must prove that

lim//ngf(z)/\gg(w)/\(ui/\ui—i—mn/\u}z—mn/\ui) =0.

e—0
The resolvent identity (2.10) gives that
-0 Z my A e+ [A] A ep = ul AuZ +my Aug —my Au?
k+1=2n

in the sense of currents (note that the proof of this formula only made
use of the forms ¢, for [ > n). Hence, since i*c, = 0, we must prove
that

(3.4) li_r)%/z/wxgaf(z) A Og(w) A O Z mi A ¢ = 0.

k+1=2n
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Integration by parts gives that (3.4) is equivalent to

(3.5) hm//(')xg/\af ) A Og(w ka/\q_o
k+l=n
Note that [Ox.| < Ce™ and that |Ox.| has support in
e <d((z,w),ExC'"UC" X FE) < 3¢.
We also have that
d((z,w), ExC"UC" x E) >min{d(z, E),d(w, E)}
>Cd(z,E)d(w, E)

on a bounded set, where C' > 0 is a constant (depending on the bound).
Thus (3.5) follows since

Haf /\89 W) A Dz ™ A i
// w),ExCUC xB) %

by (3.3). Hence the propos1t10n is proved. O

To be able to separate the condition (3.3) we will assume that w;
commute with a. We can then choose the sequence ¢; in the following
way.

Proposition 3.2. Suppose that u; is a sequence as in (2.4) and that

au; = u;a. Then
= Z u,lC A ulQ
k=i
satisfies (3.1).
Proof. We have that ¢; = 0, and since a¢ and u; commute,

8cCiy1 — Oc; = Z ((5u,1C A ul2 — u,lc A 5“12)
k+l=i+t1
- Z (bup oy Auf —ug Abuj,,) =ui — uj,
k=i
where 0 = 0, 444 Thus ¢; satisfies (3.1). O

Unfortunately, the sequence ¢; in Proposition 3.2 does not necessarily
satisfy 1*c, = 0. However, by the proof of Theorem 2.3 we have that
1*c, 1s exact.

We have an explicit choice of sequence that satisfies (2.4). Suppose
that s satisfies the equalities d,_,s = e and as = sa. Then

boaS=¢, 05y (s A (5s)i) = (9s)' =8 (s A (5s)i—1)

and hence u; = s A ((‘%)i_1 satisfies (2.4). The sequence ¢; of Proposi-
tion 3.2 is then

(3.6) ¢ = Z st A (asl)k_1 A s*A (582)1_1 ,

k+l=i
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where s! = 7is and s? = m}s. Note that if s A s = 0 then s A (0s) =
(53) A s and hence i*¢c, = 0.

Let E D o(a) be a compact set and let s be a given form such that
s is defined on C* \ E, 0,_,s = e and as = sa. Define the class S, by

(3.7) Sa={f€C2(C"):|fll, < oo},

where

af AsA (9s)

1flle =

— d(z, E)
Of AsA 83) /\s/\(és)li1
+ k;ﬂ d(z, E) N

Note that the second sum vanishes if s A s = 0. This is always the case
if n = 2 since then 6, ,(sAs) =s—s=0andd, ,injective. If n =1
then S, defined by (3.7) is a slightly smaller class than S, defined in
the introduction. This is because the left hand side in the resolvent
identity (2.10) is 0if n = 1. If f € S, then f(a) is defined by

—/5]“/\3/\(53)n_l

Of course we have that f(a) € L(X) if f € S,. Note that S, is an
algebra. In the next lemma we will use Proposition 3.1 to prove that

f(a)g(a) = fg(a) if f,g € Sa.
Lemma 3.3. If f,g € S, then f(a)g(a) = fg(a).

Proof. Let ¢; be the sequence defined by (3.6) and let
d; = Z 2 A (552)k_1 A s2A (532)1_1
k=i

By a computation similar to the proof of Proposition 3.2, we see that
the sequence d; satisfies the relation

5z—a,w—adi+1 = gdh

and hence that dd, = 0. For every | > n define ¢] by ¢} = ¢; and define
. by ¢, = ¢, — d,,. Then ¢ satisfies the condition (3.2) since dd,, = 0
and i*c, = i*d,. We have that |z —w|>"™" is a locally integrable
function on C*" and hence

// ‘af ) A Og(w) A |
(w, E) |z — w|™

H@f YA st /\(85 ‘89 ) A 8 /\(85 )l '
< g // 5T < 0.
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Similarly, we have that

// H(?f Agg(w)/\dn” c =
(w, E) |z — w|™ ! ’

since ||g||, < co. Thus the statement follows from Proposition 3.1. O

In order to prove that f(a) € (a)” we construct the resolvent w,_gq b
and use the multiplicative property of the functional calculus of the
tuple (a,b), where b € L(X) commutes with a.

Lemma 3.4. If f € S, then f(a) € (a)".

Proof. Suppose that b € L(X) is an operator such that ab = ba. Define
the form

1
- (w—b)"" dw

v(w) = oy

Define the sequence ¢, by
c1=0, ct=vASA (53)’“72.
Then we have the equations
c1 =0, Oqu-bCo=5—0
and
Or—amw—bCht1 = S A (58)’“71 —vA (58)1%1 =0cp + s A (58)1671

Let x be a smooth cutoff function such that {x,1 — x} is a partition
of unity subordinate the cover

H(z,w) 1 2 ¢ E, Jw] <3[b]|}, {(z,w) : |w] > 2][b[[}}
of C* x C\ E x {w: |w| < 2]|b||}. This is a special choice of function
X used in Lemma 3.2 of [1] which enables us to avoid an integration by
parts. Define the sequence a;, outside E x {w : |w| < 2b||} by
ag=xs+(1—=x)v, ar=xSA (53)1%1 — OX A Cp.
We then have that
5270.,107()0'1 =6, 5zfa,wfba'2 = ng + 5X A (8 - U) = 50[1
and that
b s0ks1 = X (05)" +Ox A (Ocx + 5 A (95)" ) = Oa.,
and thus B - .
Upy1 = —OXANVASA (83)”7

represents w,_, »—p. Choose ¢ € C°(C) which is 1 in a neighbourhood
of {fw € C: |w| < 3|b||}. Then we have that

(6f)(a,b) = // ) A s (2, 0)

= / FOud NDx AvAsA (Bs)"



/ 30, f AN Opwx AV A S A 85”1 /8f/\s/\ 1:f(a).
Let a; = mfay and a2 = mjay, where
Wl(zlawla z?an) == (zlawl) and 71'2(21,’(1)1,22,’(1)2) == (225w2)-
Define the sequence ¢, by

— 1 2
= g ap N\ a;

k+l=i
so that by Proposition 3.2,

_ ! _ .t 2 1
1 =0, Ox—auwi—bz—auw—bCip1 = OC + a; — a;.

Let FF = E x {w:|w| <2]b||}. Define the function g by g(z,w) =
wp(z, w) where ¢ € C is equal to 1 in a neighbourhood of F. We
have that

H _( ) N ag
d ((z,w), F) ||
XO(Sf) As A (9s)"
- d(z, F) o
B(Bf) ADXAvAsA (Ds) "
(= E) <o
since f € S,. Hence we have that
// Ha (w1) f(21)) A Og(z2, ws) /\cl” ‘o
(21, w1), F) d ((22, w2), F) [(21, w1) — (22, w2)‘2n+1

for all [. Define the forms ¢} by the equations ¢ = ¢} if l > n+ 1 and

I/
Cpnt1 = E - ap Naj.
k+l=n+1

Then we have that ¢, satisfies i*c),,; = 0 and hence by Proposi-

tion 3.1 we have that (¢f)(a,b)g(a,b) = g(a,b)(¢f)(a,b) since
// ”a Zl))/\ag(ZQawZ)/\Zk+l =n+1 ak/\GZQH
((z1,w1), F) d ((22, w2), F) |(21,w1) — (22,71)2)|2n+1

Thus f(a)b = bf(a) since g(a,b) = b by the holomorphic functional
calculus. 0

We can now prove a generalisation of the holomorphic functional
calculus.

Theorem 3.5. (Non-holomorphic functional calculus) Suppose
that a is an n-tuple of commuting operators and that E D o(a) is
compact such that it exists a smooth form s defined on C* \ E with
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0.—as = € and as = sa. Let S, be the class defined by (3.7) and let
f(a), f € S,, be the operator defined by

fla) = —/5f/\8/\ (5S)n_1.

Then we have that the map f — f(a) : S; — (a)” is a continuous
algebra homomorphism that continuously extends the map f — f(a) :

O(E) — (a)".

Proof. By Lemma 3.4 the map f — f(a) : S, — (a)” is well defined.
The map is continuous and linear. Lemma 3.3 gives that the map is
multiplicative, and thus the map is an algebra homomorphism. To see
that it continuously extends the map f — f(a) : O(E) — (a)", suppose
that we have a sequence f,, € O(U), where U is an open neighbourhood
of E, and that f, — 0 uniformly on compacts. Then

[fnelly = 0,
where ¢ € C°(U) is a function equal to 1 in a neighbourhood of £. O

We now go on and prove the spectral mapping theorem for this
functional calculus. To do this, we need the following lemma which
shows that f(w) acts as f(a) on Hy(w — a,c, X).

Lemma 3.6. Suppose that there is an operator valued form s outside
E such that §,_,s = e and sa = as. Furthermore, suppose that ¢ €
(@)™, w € o(a) and k € Ky(w — a,c, X) (with respect to a basis
dwy,...,dWn, €nt1, .- nim of C*T™) such that 6yy—qk = 0. If f € S,,
then

(f() f( k_(sw ac/af /\Zmn+1l/\8/\ 6)l71/\k‘,

where m] is defined in the proof.

Proof. We have that
6zfa,wfam1 =€, 5z aw—aTliy1 = amza

by (2.7) and (2.8), where m; is defined by (2.6). We also have that

rawas = € Ooapa (s (05)") =0 (s A (95)" "),

where s only depends on z. Therefore the same calculation as in the
proof of Proposition 3.2 shows that

Or—aw—a Z mE A s A (53)%1 -0 z mg A s A (55)171
k+l=i+1 k+l=i

=sA (gs)i_l —m;.
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Let ¢« = n and identify the component without any dw and dw in this
expression to get,

Ow—a Z my A s A (5s)l_1
k+l=n+1

=sA(0s)"t —ml +0, Z mi A s A (5s)l71 :
k+l=n

1 9 2 P 2\
mﬁc: - : |2 w2| A<527z|z_w2|)

where

2m0)* [z — w)| |2 — wl

and mj, is the component of m;, with one dw and no dw. Let x. be the
convolution of the characteristic function of the set

{z:d(z, FE) > 2}

and the function e 2"p(-/¢), where p is a non-negative smooth function
with compact support in the unit ball of C* such that its integral is
equal to 1. We have that

/af YAD, Y mi AsA(9s)
k+l=n
-1

= lim Xgaf YAD, Y mi AsA(Ds)

e—0
k+l=n

. 3 -1
_lg% Z(')zxs/\(')f k; mk/\s/\ ) =0

since ‘5)(5‘ < Ce™! and |5Xs| has support in € < d(z, E) < 3¢. Hence

we have that
_ /5f(z) A (s @s)" —mt)

:5w_a/5f(z)/\ Z TrLfc'/\s/\((is’)l_1

k+l=n+1
Therefore,

(F(a) = f(w)) k = 6 M/af /\Zmn+1 AsA(8s) A,
since (w — a,c¢) and s commute. O

We can now prove the spectral mapping theorem.

Theorem 3.7. (Spectral mapping theorem) If f is tuple of func-
tions in S,, where S, is defined by (3.7), then o (f(a)) = f (o(a)).
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Proof. Suppose that we can prove the statement; if z € o(a) then
(z — a, f(a)) is non-singular if and only if f(z) # 0. In that case
(z — a,w — f(a)) is non-singular if and only if w — f(z) # 0 and hence

o (f(a)) =m0 (a, f(a)) = m{(2,w) : w = f(2),2z € o(a)} = [ (o(a))
by Theorem 1.4.

Suppose that z € o(a). We have the induction hypothesis that if m
is a natural number then the tuple (z — a, f(a)) is non-singular if and
only if f(z) # 0 for all m-tuples f of functions in S,. The case m = 0
follows from Lemma 3.6. Assume that the hypothesis has been proved
for m. Given f' = (f1,-.., fmy1) let f = (f1,--., fm). Then there is a
long exact sequence

.= Hy(z—a, f(a),X) = Hy(z — a, f'(a), X)

S Hy (2 —a, f(a), X) =2 B —a, fa), X) > ...,
for this see Taylor [15], Lemma 1.3. Lemma 3.6 gives that the last
homomorphism is equal to f,,11(z). Hence

Hy(z - a, f'(a), X) = 0
if fouy1(2) # 0 and
Im Hy,(z — a, f'(a), X) = Hy—1(z — a, f(a), X)

if fin+1(2) = 0. Therefore the induction hypothesis hold for m + 1 and
hence the theorem follows. 0

We now consider a case where we can answer all the question we set
up in the beginning of this section. Denote by ch(E) the convex hull
of the set F.

Theorem 3.8. Let h be a positive decreasing function on [0,00). If
there is differential form u® on C* \ ch(o(a)) such that ||u®(2)|| <
||| h( ( E)) then we define the class Sp(a) by

={feCi(C"): |H8f ‘h (z,ch (o HLw<oo}.
Let the norm of functions in Sy(a) be given by
1£1ls, @ = [0 (2)| A (d (2, ch (a(a))))]] 1 -
Then the map
f f(a) : Sp(a) — (a), where f(a /8f/\u

is a continuous algebra homomorphism. If f € Sp(a) then o(f(a)) =
f(o(a)) and f(a) =0 if f =0 on ch(o(a)). Furthermore, if f € Sp(a),
g € Sp,(f(a)) (or g € O(c(f(a)))), where hy is a decreasing function
such that h(y/supldf|) < Chi(y), y € [0,00), and g(0) = 0 then

9(f(a)) =go f(a).



23

Proof. Suppose that 0 € ch(o(a)) and let fi(z) = f(tz) for t < 1.
Since h(d(z,ch(o(a))) < h(d(tz,ch(o(a))) we see that f; — f in Si(a)
by dominated convergence. We know that all the conclusions in the
theorem holds for functions that are holomorphic in a neighbourhood of
the spectrum. Since ||f(a)|,(x) < || flls, () We will be able to prove the
theorem using the approximation f;. Consider especially the spectral
mapping property. By Proposition 2.6 o(f;(a)) deforms continuously
to o(f(a)). Since fi(o(a)) also deforms continuously to f(o(a)), we get
that o(f(a)) = f(o(a)). For the composition rule we have that

lg(f(a))z — g o fla)z]| < lg(f(a))z — gs(f(a))z]
+19s(f(a))x — gs(fila))z]l + llgs © fia)x — g5 0 f(a)x]|
+lgs o fla)z —go fla)z] <llg = gslls, (s 7]l
+ llgs(f(@))x — gs(fe(a))ll + llgs 0 fr = g © fllg, a) 1]l

+llgso f —go fllg,@ llzll =0,
by Theorem 2.7 and

0(gs 0 f — g0 f)| hld(z, ch(o(a))))
< 10(gs — 9)I|0f| h(d(2, ch(o(a))))
+10 (g = 9) 10f [ ha(d(f (2), ch(f ((a)))))-
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PROPERTY (f)s FOR TOEPLITZ OPERATORS WITH
H*-SYMBOL

SEBASTIAN SANDBERG

ABSTRACT. Suppose that g is a tuple of bounded holomorphic
functions on a strictly pseudoconvex domain D in C™ with smooth
boundary. Viewed as a tuple of operators on the Hardy space
H?(D), 1< p < o0, g is shown to have property ()¢ and therefore
g possess Bishop’s property (8). In the case m = 1 it is proved
that the same result also holds when p = co.

1. INTRODUCTION

Suppose that X is a Banach space and that a = (ay,...,a,) is a
commuting tuple of bounded linear operators on X. Let E be one of
spaces X, £(C", X) or O(U, X ), where U C C". Denote by K,(z—a, E)
the Koszul complex

0 — AmE 222 Anlp 2oy L 2mey AOp g
with boundary map
P
Soalfsr) =2mi Yy (1) (2, — @) fsiy A-- ATy Ae-e Asi,
k=1
where I = (i1,...,7,) and p is an integer. Let H.(z — a, E) be the
corresponding homology groups.

The Taylor spectrum of a, o(a), is defined as the set of all z € C"
such that K,(z — a, X) is not exact. If for all Stein open sets U in C"
the natural quotient topology of Hy(z — a, O(U, X)) is Hausdorff and
Hy(z —a,0(U, X)) = 0 for all p > 0, then a is said to have Bishop’s
property (3). It has property (3)¢ if the natural quotient topology of
Hy(z —a,&(C", X)) is Hausdorff and if H,(z — a,&(C*, X)) = 0 for all
p > 0.

By Theorem 6.2.4 in [9], the tuple a has Bishop’s property (/) if and
only if there exists a decomposable resolution, that is, if and only if
there are Banach spaces X; and decomposable tuples (see [9] for the
definition) of operators a; on X; such that

05X5X % - 5X, 50

1991 Mathematics Subject Classification. 32A35, 47TA11, 47A13.
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is exact, da = aod and da; = a;41d. Property (f)¢ is equivalent to the
existence of a resolution of Fréchet spaces with Mittag-Leffler inverse
limit of generalized scalar tuples (that is tuples which admit a contin-
uous C*°(C")-functional calculus), see Theorem 6.4.15 in [9]. Property
(B)e implies Bishop’s property (3), see [9].

Suppose that D is a strictly pseudoconvex domain in C™ with smooth
boundary. We consider the tuple T, = (7, o Ty.)s gx € H®(D), of

g1y - -

operators on H?(D) defined by Ty, f = gxf, f € H?(D). The main
theorem of this paper is the following.

Theorem 1.1. Suppose that D is a bounded strictly pseudoconver do-
main in C™ with C*®-boundary and that g € H*®(D)™. Then the tuple
T, of Toeplitz operators on HP(D), 1 < p < oo, satisfies property (B)s,
and thus Bishop’s property ().

In case g has bounded derivative this theorem has previously been
proved in [14, 16, 17]. In case D is the unit disc in C, Theorem 1.1
also holds when p = oo; this is proved in Section 4. As a corollary
to Theorem 1.1 we have that 7, on the Bergman space OLP(D) has
property (3)e, see Corollary 3.4.

Let us recall how one can prove that 7, on the Bergman space
OL?*(D) has property (3)e under the extra assumption that g has
bounded derivative. Define the Banach spaces B as the spaces of
locally integrable (0, k)-forms u such that

lullg, = 1l 2oy + [0 1oy < 00
Since g has bounded derivate we have the inequality

(@ ogully, S sup (|o(2)] +]00(2)|) llull,
z€9(D)

for all ¢ € C*(C"). Hence ¢ +— Ty, is a continuous C*°(C")-
functional calculus, where 7T,,., denotes multiplication by ¢ o g on B.
Since we have the resolution

0= OLXD) =By 2B, % ... 2B, >0

by Hérmander’s L2-estimate of the 0 equation, the tuple T, on OL?(D)
has property ()¢ by the above mentioned Theorem 6.4.15 in [9].
To prove Theorem 1.1 we will construct a complex

(1) 0= HD) 5B, 2B %... %8B, >0,

where By are Banach spaces of (0, k)-forms on D. The spaces By, are
defined in terms of tent norms. We prove that ¢ — T, is a continuous
C°(C")-functional calculus, where T,,., denotes multiplication by pog
on By. If the complex (1) were exact the proof of Theorem 1.1 would
be finished. As we can solve the 0-equation with appropiate estimates
we will be able to prove that 7, on H? has property (8)s anyway.

More precisely (1) is exact at By, k > 3. If f € By and df = 0 then
there is a function u in another Banach space Bj such that ou = f.
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Mutiplication by g is a bounded operator on Bj. If f € B; and f' € B
such that 0f + df' = 0 then there is a solution u € LP(dD) to the
equation Oyu = f + f'.

The construction of the complex (1) in the case p < oo is inspired
by the construction in [5] and in the case p = oo and m = 1 it is
inspired by Tom Wolff’s proof of the corona theorem. Let us recall
the proof of the HP-corona theorem in the unit disc of C. Suppose
that ¢ = (g1,-..,9,) € H*®(D)", where D is the unit disc in C, and
that 0 ¢ g(D). Consider the complex (1); the definitions of the Bj-
spaces can be found in the beginning of Section 3 and Section 4. Sup-
pose that f € HP(D). Then the equation d,u; = f has a solution in
Ki(g, By), namely u; = >, Gr.fsk/ |g|2. Hence 6,0u; = 0 as &, and 9
anticommute, and we can solve the equation dyu; = Ou; by defining
uy € Ko(g, B1) as uy A Ouy. Since uy satisfies the condition

11 = [2]) wallgy + [|(1 = [2])” Bua| < o0,

by a Wolff type estimate there is a solution v in Ky(g, L?(0D)) to the
equation Jyv = uy (here T and T? denote certain tent spaces). Let
ul =uj —64v € Ki(g, LP(0D)), where uj is the boundary values of u.
Since Gyu) = 0 there is a holomorphic extension U] of v} to D which
satisfies the equation 6,U; = f.

The above proof also yields that o(7,) = ¢(D); the exactness of
higher order in the Koszul complex follows by similar resoning. That
o(T,) = g(D) is proved in [5] for the case D strictly pseudoconvex and
p < 0o. One main difference of the proof of that 7, has property (5)¢
and the proof of that o(T,) = ¢g(D) is the following. As a substitution
of the explicit choices of u; and uy one uses the fact that T, considered
as an operator on By has property ()¢, which in turn follows from the
fact that T, on By has a C*°(C")-functional calculus.

I would like to thank Mats Andersson, Jorg Eschmeier, Mihai Puti-
nar and Roland Wolff for valuble discussions and comments on this

paper.

2. PRELIMINARIES

Suppose that D is a bounded strictly pseudoconvex domain in C™
with C'*°-boundary given by a strictly plurisubharmonic defining func-
tion p. Let r = —p. All norms below are with respect to the metric

Q = riodlog (1/r),
and we have
FIP ~r? 5+ 7 [fAOP[G 47 |f A, + | f AdrAdr|),

where 3 = i00r, which is equivalent to the Euclidean metric.



The Hardy space HP is the Banach space of all holomorphic func-
tions, f, on D such that

111y = sup / FR)P do(z) < oo,
>0 Jr(z)=¢

where o is the surface measure. It is wellknown that a function v in
LP(0D) is the boundary value of a function U in H? if and only

/ uh =0
oD
forall h e C*®

e _1(D) such that dh = 0.
Let d(-, -) be the Koranyi pseudometric on 0D and let 2z’ be the point
on 0D closest to z € D,, where D, is a small enough neighbourhood
of 0D in D. For a point ¢ on the boundary let

Ac={z€D.:d(#,{) <r(z)}U(D\ D,).
For a ball B defined by B = {z € D : d(z,() < t} let, for small ¢,
B={zeD.:d(, () <t—r(2)},
and for large ¢
B={zeD,:d(?,{)<t—r(2)}uU(D\D,).
A function f is in the tent space TP, where p < oo and ¢ < oo, if

1/p

p/q
1fllzp = /aD (/EA If(z)l"r(Z)ml) do(Q) | < oo

The function f is in T2 if f is continuous with limits along A, at the
boundary almost everywhere and such that

1/p
||f||Tgo = (/a sup |f(z )|pda(§)) < 0.

D z€A ¢

A function f is in T if
< 00.

sup (g 1 (z)\qr(z)-l)l/q »

Note that f € TP if and only if r~1/Pf € LP(D) by Fubini’s theorem.
From [8] we have the inequality

2) [ 189177 S Ul gl
q

1l =

for 1 < p,q < 0o, where p’ and ¢’ denote dual exponents. By [§] Tg,
where 1 < p < oo and 1 < ¢ < o0, is the dual of T with respect to the



pairing
-1
(f,9) = /D fgr=t.

Suppose that f € T}, g € T;° and let ¢ = (CISI + qfl)_l. Then for all
h € Tg we have

-1 < ,
/D\fgh\r N ||fh||qu,1 lgllrge < 11F iz, llgllzge 117l s
by (2) and Holder’s inequality. Thus by the duality for T;f’ we get the
inequality
(3) Ifallzy S W fllzp ll9llze
for 1 < pand 1 < ¢ < oo. Since the inequality (3) is equivalent to
falze < fllzg gl

for 0 < ¢t < o0, (3) holds if 0 < p, qo, ¢1-
We will use the inequality (see [12])

(4) [fllzg, SWAlge, 2 >0
and (see e.g. [7] for p < 0o and |3| for p = o0)
(5) 77201 |y S Ufllins 2> 0.

Moreover, we use that [0f| < 7= '/2if f € H®. )
There is an integral operator K : Cg%, (D) — Coq(D), ¢ > 0, see
[5], such that OKu + Kdu = u, u € Cg5(D), s > 1,

6) " Kullyy S |72l g and [Kullpogopy S [|rul|
if r>0and 1 < p < oco. Furthermore,
(7) ||Ku||Lp(6D) S HTI/QU”T%Q + ||Tau||Tf .

To see that the inequality (6) follows from [5], note that by the defini-
tion of W=1/7 in [1], lrullze = llullyi-1p- By [4] the adjoint P of K
satisfies

1Pl ooy S Nl pooopy and (|1 2LPY|[ oy S 191l p2gap)

(where £ is an arbitrary smooth (1,0)-vectorfield). The L2-result is
proven by means of a T'1-theorem of Christ and Journé. By [10] it now
follows that

(8) 1PVl S Nlloopy, P> 1,
and
(9) IrLPYllgy S Wllpomy s 2> 1.

The inequality (7) follows from (8) and (9).



In section 4 we use completed tensor products of locally convex Haus-
dorff spaces, see e.g. Appendix 1 in [9]. Suppose that E and F' are
locally convex Hausdorff spaces. We denote by L(E, F) the space of
all continuous and linear maps from E to F'. The topology m on E® F
is defined as the finest locally convex topology such that the canonical
bilinear map E x F' — E ® F' is continuous. We denote by F ®, F,
the space £ ® F with the topology 7 and we denote the completion of
E®, F with EQ,F. There is another topology on E® F, the topology
€; in case F' is nuclear this topology coincides with the topology 7 and
we therefore omit the index 7 in this case. The Fréchet space £(C") is
nuclear and we have the isomorphism &€ (C", E) & £ (C") ®F.

3. PROPERTY (f)¢ FOR TOEPLITZ OPERATORS WITH H®-SYMBOL
ON HP

First we need to define the sequence (1) and prove that there is a
continuous C*°(C")-functional calculus on each of the spaces B.
Define the norms |-z , k > 0, by

(10) lull g, = llullgz, + [[r*7?dul;p + [|Irodu|
on C*®(D),
(11) lullg, = |7/*u]l g + lIrdullrp

on C§5 (D) and
(12) lull 5, = [|7*"2ullp + ||/ 20|,

on Cg5(D) for k > 2. Let B, be the completion of C5, (D) with
respect to the norm ||-||5 . We also define B as the completion of
C55(D) with respect to the norm [|-|| g, defined by

1/2

lull gy = [lr'*ullp + [[rOull,,

The injection 7 : H? — By is well defined and continuous by (4) and
(5). That 0 : By — Bgi1, k > 0 is continuous follows immediately
from the definitions. Thus we have defined a complex

(13) 0> HD) 5B, 2B, %... 2B, >0

Lemma 3.1. Suppose that g € H*®(D)". Then one can define T,, :
By — By by Ty,u = giu, 1 <1 < n, for all k > 0. The tuple Ty on
By, k >0, has a continuous C*®°(C")-functional calculus and property

(B)e-
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Proof. That T,, can be defined on By, follows from the calculation below
(let ¢(z) = 2; below). We begin with the case ¥ = 0. Suppose that
p € C°(C") and u € C*°(D). From (3) we have

1/2

[r'?udg]|py < Nullzz, [|I7'/?09] 7 »

I 1dul [9glllp < [|r'/?dul| gy [|770g| poe
and
[ 10g][| 7 S Nullzz, [|7 19917 [| o -

Since ||7*/29g]| .. < o0 by the inequality (5) we thus get
2
o o)y, < sup 162 lully, + a0 9l +
zZEQg

[ro(e 0 g) A Oul|yy + [[r0(¢ © g) A Dul| e + [[r03( 0 g)ulp S
sup (| (2)| + [De(2)| + [D*o(2)]) llullg, ,
z€g(D)
where Dy and D?¢ denotes all derivates of ¢ of order 1 and 2 respec-
tively. Note that (o o g)u & C*°(D) in general. Let g € C*®(D)" N
O(D)" be such that g, — ¢g in H?(D)™ with g, uniformly bounded as
[ — oo and suppose that u is fixed. We have the equalities

d(pog —pog) =) giogdg — ¢iogdg + ;o gdgi — ¢; 0 gdg’
7

and

00(pogi—pog) = ¢i;oqdg Adgi— ¢ 0gdg’ Adg,
2
where the index in ¢; denotes partial derivate and the upper index in
g; and g* denotes i:th component. Hence we get

[d(pogi—pog)l < |Dpoglldg — 09|+ |Dypog — Dpog||og|,
and
100 (¢ 0 g — ¢og)| < |D*¢oql|dg — 09| (10g] + |0g]) +
|D*po g, — D*pog||og|”.
By (4) we have
I o9 —pog)ullys + [/ (wog —¢pog)dul,
7 (w091 —¢o09)00ull Slleog—¢oglls Sllg— gl S

lg: = 9ll 7o -
We also have that

HT‘I/Zd (pogi—@og) uHT2p +rld(pog—pog) |du|||T{’ S

[r2d (¢ 0 gt — 00 9)|lzp S |72 1Dg 0 gil |09 — Dgl| 1 +



1/2

|72 |Dp o g = Dy o gl 10gl[| 5 < llgr = gl e

by (3),(4) and (5). Furthermore,
Hr(’?g (pogi—pog) uHTlp < HT‘ |D2<p o gl| |0g; — Og| (|0gi| + |8g|)HTf +

I [D*@ 0 g~ D*0 0 g| 109l p < llgr = ll o
by (3),(4) and (5). Thus
[(pogi—¢pog)ullg, — 0

as | — oo and therefore we have that (¢ o g)u is in the completion of
C*°(D) with respect to the norm ||-[| 5 . We extend the map
urs (pog)u:C®(D)— By

to a continuous map ¢(7,) : By — By, bounded by a constant times
sup (|o(2)] + [Dy(2)| + [ D*¢(2)|) -

z€g(D)

Hence T, on By has a continuous C'* (C")-functional calculus.
Next we consider the case k& = 1. Suppose that ¢ € C*(C") and
u € C§9(D). From (3) and (5) we have the inequality

[Eaterd |u|||T11’ S Hrl/QagHTgo HT1/2UHT§ N ”TI/QUHT;‘
Hence we get

(¢ ogullg, < sup (@) ullg, + lIrd( o g) Aullzr S
zeg

sup (|¢(2)] + [De(2)]) [Jull, -
z€g(D)
As in the case k = 0 we prove that (¢ o g)u is in the completion of

C59(D). When we extend the map
urs (pog)u:C®(D) — B
by continuity to a map ¢(7}) : By — By bounded by
sup (|p(2)| + [De(2)])

z€g(D)

and hence we have proved that T, on B; has a C* (C")-functional
calculus. )
In case k > 2 we suppose that ¢ € C*(C") and u € Cg5.(D). Since

10g| < /2 we have

(@ og)ullp, < sup, () Nlullg, + [[7*#41720(p 0 g) Al e S
zZ€Qg

sup (|¢(2)] + [De(2))) ||ull g, -
z€g(D)

As in the case k = 0 it follows that T, on By, k > 2, has a C*° (C")-
functional calculus.
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That each of the tuples T}, has property (5)¢ now follows from Propo-
sition 6.4.13 in [9]. O

We can extend the integral operator K : C§% (D) — Cox(D), k >
1, to a continuous operator K : Byy3 — By, kK > 2, and a continuous
operator K : By — Bj. This because

(14) 2 Kl S 725 2ullpp < llullg,,

and

P25 20K u] = ([P — KO |4y < s,

for all u € C§%,,1(D) by (6), (12) and (14). Also observe that Ku
is in the completion of C§%,(D) under the norm [l , (or ”'”Bi) by
dominated convergence and the fact that one can find f; € Cg5,(D) such
that f; — Ku,df; — 0Ku pointwise and | f;], |5fl| <1 (as Ku,0Ku €
C(D)). Approximation in By, yields that 0Ku + K0u = u for all
u € By, k > 1. Thus the complex (13) is exact in higher degrees.

Extend K : C§q(D) — C(9D) to continuous maps K : B; —
LP(0D) and K : B} — LP(0D), which is possible by (6) and (7).
Define the (1,0)-vector field £ by the equation

or 0
L= or| 7t == =
O =
where x is equal to 1 in a neighbourhood of 9D and 0 on the set where
Or = 0. Suppose that v € C*°(D) and let f = Ou. By integration by

parts we have
/ uh:/f/\h::V(f,h)
oD D

and

/(,)D“h:/Df/\h:/DO(T)f/\hJF/Tﬁ(f/\h)=:W(f,h)

D

for all h € C%,,_,(D) such that dh = 0. We extend V to elements f in
B! and W to elements in B;. We say that the equation Gyu = f + f/,
where u € LP(0D), f € B; and f' € Bj, holds if and only if

/aDuh,:W(f,h)JrV(f’,h)

for all h € C%,, (D) such that 0h = 0.

Lemma 3.2. If f € By, f' € By and Of +0f' =0 thenu = Kf +
K f' solves the equation Oyu = f + f'. Moreover, if ¢ € H*(D) then
Ob(pu) =T f + T, f".
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Proof. Suppose that f, f' € C§3(D). Since 0K (f + f')+ Ko(f + ') =
f+ f' we have

(15) /M(Kf—i-Kf’)h:W(f,h)+V(f’,h)—/DK(éf—i-gf’)/\h

for all h € C,,,_1(D) such that Ok = 0. For fixed h, we can estimate
each term of the above equality by a constant times || f||, + [[f'||z -
Thus approximation in B; and B yields that if f € B; and f' € B]
then

/ uh,:W(f,h)+V(f',h)—/K(5f+5f')/\h
oD D

for all h € C%,,_,(D) such that dh = 0. Hence the equation Gyu =

f =+ f" holds since we also have that Of + 0f = 0. Suppose that
o € C*®°(D)N O(D) are chosen such that ¢, — ¢ in H'(D). Replace
h in (15) by ¢,h and approximate to get

/ o (Kf + Kf'Yh=W(f,hp) + V(' he) — / oK (3f +3f') Ah
oD D

for all h € C,,,_,(D) such that 0h = 0, if f, f' € C§3 (D). We estimate
the terms to the right,

W(f, he)| < / 2 £ ol et + / r10f| ol + / rIf] 9l r <
D D

D

1f 1L, ol

IV (', he)] S/DTI/ZIfW el =" S Ny el g

and

[ eKt@r+amn h\ S 72K (3F + 381y Il S

|05 +0F | o, 1l S (115, + 171, ) Nl

for fixed h by (2), (4) and (5). Hence approximation in B; and Bj
yields that

/a uph = WL, 1) + V(T [ b

for all f € By, f' € B! such that 0f +0f'=0and h € Cfno,m,l(D) such

that Oh = 0. O

Next we prove that functions in By has boundary values in LP(0D).

Lemma 3.3. There is a continuous and linear operator u — u* from
By to LP(OD) such that u* is the restriction of u to 0D if u € C*(D)
and (Tru)* = f*u* if f € H®(D).
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Proof. Suppose that u € C*°(D). Then [Jul| ,,(5p) < [lull5, and hence
the restriction operator can be extended to a continuous operator from

By to LP(dD). Suppose that u € By and f € H®(D). Let u; € C*(D)
and fr € C*°(D) N O(D) be such that v, — u in By and fy — f in

HP(D) with fj uniformily bounded. Then
1f*u" = (Tyu) | poopy S W70 = £ Ui | pogopy + 11700 = frwi | ogony +
1(fru)” = (fu) M zoapy + 1(fur)” = (Tyu) Nl ooy — O

if one first let £ — oo and then | — oo. O
Note that if u € By then
(16) / w'h = W (du, h)
D

for all h € Cg,,_1(D) such that Ok = 0 by approximation in By and
Lemma 3.3.

Proof of Theorem 1.1

We want to prove that the complex K, (z — Ty, € (C*, H?)) has van-
ishing homology groups of positive order and that

> (ai = Ty,) € (C*, HP)
is closed in & (C*, HP).

Suppose that u¥ € Ki(z — T,,E(C*, H?)) and that &, ,u* — wug
in £(C*, H?). By Lemma 3.1 there is a u; € K;(z — T,,& (C, By))
such that sug = d,_7,u;. Again by Lemma 3.1 we can recursively find
u; € Ki(z—T,,E(C", B;_1)) such that 6, 1,u;41 = Ou; for i > 1. Then
we have that Qu,,,1 = 0. Define v,,41 € Kpi1(2—T,,E(C*, By, 2)) by
Umi1 = Ky Recursively define v, 1 > 2, by v; = Ku;— K6, 1,041
Thus v; € Ki(z — Ty, E(C*, Biy)) if i > 4, vy € A3¢(C", B}) and
the equation dv; = w; — 0,_1,vi41 holds for ¢ > 3. Furthermore
vy € A?2E(C", LP(OD)) satisfies the equation Gyvy = us — 0,_1,v3 by
Lemma 3.2.

Let u} = u} — §,_gvy. By Lemma 3.2 we have that 9,6, gv, =
0,—1,uz and thus

5z_g*1)2h = W(dz_Tg'UQ, h)
oD
for all h € Cg2,,_,(D) such that Oh = 0. Since by equation (16)

/ uih = W (0uy, h)
aD

/ uth =0
oD

we have proved that
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forall h € C%,,_;(D) such that dh = 0. Thus U] € K (2—T,,E(C", HP)),
where U] is the unique holomorphic extension of u}. Since ug = d,_1,U]
by Lemma 3.3 we have proved that

Y (= Ty) E(C", HY)

%

is closed in & (C*, HP).

Suppose that uy, € Ky(2z—T,, & (C*, H?)) is §,_1,-closed. Then there
is a upy1 € Kipy1(z — Ty, € (C", By)) such that u, = 0,_q,up41. Let
uip1 € Kip1 (2 — Ty, E(C, B;_y)) solve the equation 0, 7,u;11 = ;.
Then we have that 5um+k+1 = 0. Let vpigr1 = Ktpypr1 and v; =
Kui — KdszgUi—H- Thus 8vi = U; — 5z7T9Ui—|—1 and vak+2 = Ug42 —
0,-T,Vk+3 since 0 (u; — 8, 1gvir1) = 0. Define uy,, by the equation
Uy, = Upy, — O, T,Uks2- As in the case above we see that Uy, is
a solution of the equation u; = d,_1,U;,, and hence the theorem is
proved.

O

We now prove the analogue of Theorem 1.1 with the Hardy space
replaced by the Bergman space. In the case of when g has bounded
derivate this is proved in Theorem 8.1.5 in [9)].

Corollary 3.4. Suppose that D is a bounded strictly pseudoconvez do-
main in C™ with C*®-boundary and that g € H*(D)". Then the tuple
T, of Toeplitz operators on the Bergman space OLP(D), 1 < p < oo,
satisfies property (B)e and Bishop’s property (3).

Proof. Let p be a strictly plurisubharmonic defining function for D
and let D = {(v,w) € C™*! : p(v) + |w|* < 0}. Define the operators
P : H?(D) — OLP(D) and I : OL?(D) — H?(D) by Pf(v) = f(v,0)
and I f(v,w) = f(v) respectively. The operator P is continuous by the
Carleson-Hérmander inequality since the measure with mass uniformly
distributed on D N {w = 0} is a Carleson measure. The operator I is

continuous since

e—0

/6 WP o(o,0) ~ lime /D (=p(v) = [w)" [ (@) ~

ity [ (=)' 110 = [ )P,
€ D D

where o is the surface measure. Let g(v,w) = g(v). Then Tj; has
property (8)e and since PI = id, Tzl = IT, and PT; = T,P it is easy
to see that T, has property (f)e. O
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4. PROPERTY ()¢ FOR TOEPLITZ OPERATORS WITH H*-SYMBOL
ON THE UNIT DISC

In this section we will use the Euclidean norm. Let r(w) =1 — |w/[’
and let D be the unit disc in C. Let By be the Banach space of all
functions u € L*°(D) such that

||U||BO = ||u||L°°(D) + ||Tdu||L°°(D) + ”Tdu“T;o + HTZBguHTIw < 0.

Since ||rdul| ;o (py < 00, By consists of continuous functions on D. We
define B; as the Banach space of all locally integrable (0,1)-forms u
such that

lull g, = N7l poo ) + 7l e + [|r>0ul] oo < o0

Suppose that u € C®(D) and h € C*®(0D). Then the Wolff trick
(see the proof of Theorem 1.1) yields

/ uhdwz/ O(uPhdw) =
aD D

/ O(r)0(uPhdw) + / rLO(uPhdw) := S(u, h),

where Ph is the Poisson integral of h.
Asin Section 3 we need to know that functions in By has well defined
boundary values.

Lemma 4.1. If u € By then there is a u* € L*°(0D) such that

/ u*hdw = S(u, h)
aD
for all h € L*(0D) and (fu)* = f*u* if f € H*(D).
Proof. We have the estimate
S (u, WIS Ml gy 121l 2o -
Hence there is a function v* € L?(0D) such that
/ u*hdw = S(u, h)
aD

for all h € L*(0D). Suppose that h € C®(0D). Let u; be the dilation
ur(w) = u(tw). Since

1S (uy — u, h)| < / luy — ul +/ r|d(u, — u)[? +/ r |85(ut - u)|
D D D
for fixed h we have that

/ uphdw — u*hdw
oD aD
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ast /1. Therefore ||u”|| o 9p) < ||l g, since u} is uniformly bounded
by [[ullpoo(p)- Let fs(w) = f(sw) be the dilation of f. Then we have
that
/ fiufhdw :/ (f: —f*)ufhdw-i—/ [fuphdw — ffu*hdw
aD aD aD aD
as s,t /1, by dominated convergence. Since we also have

/ (fu);hdw — (fu)*hdw
aD

oD
as t /1 we see that (fu)* = f*u*. O

Let
W (u, ) = / O(r)u A hdw + / r£(u A hw)
D D

foru € By and h € H', where O(r) is the same O(r) as in the definition
of S(u, h).

Lemma 4.2. If f € £(C", By) then there is a u € E(C*, L>°(0D)) such
that Oyu = f, that is

| u@hdo =w(sG).h)
oD
for all h € H'(D) and z € C".

Proof. Consider the bilinear map W : B; x H' — C. This map is
continuous since we have the estimate

(WEMES I ls, 1l s

which is used in Wolff’s proof of the corona theorem. By the universal
property for m-tensor products (see 41.3.(1) in [13]|) there is a corre-
sponding linear and continuous map W; from B;®,H"' to C. Since
£(C*, B;) = £(C")&B; = L(£'(C"), By)

by Appendix 1 in [9], f ® id is a continuous map &'(C")QH'! —
B1®,H'. Compose with the map W to get a continuous functional on
E'(C*)®H'. The injection £'(C")Q®H' — &'(C")QL'(AD) is a topo-
logical monomorphism, and hence we can extend with Hahn-Banach
Theorem to a continuous functional on &'(C*)®L'(OD). Since the
dual of £'(C*)®L' (D) is isomorphic to £(C*, L>(dD)) by Theorem
A1.12 in [9] we have a u € £(C*, L®(dD)). If h € H' then

/u(z)hdw =W (f(2),h)

and thus u is a solution to the equation dyu = f in the sense of this
lemma. U

Theorem 4.3. Let D be the unit disc in C and suppose that g €
H*>(D)". Then the tuple T, of Toeplitz operators on H*®(D) satisfies
property (8)e, and thus Bishop’s property (53).
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Proof. The tuple T, considered as operators on By or By has a C*(C")-
functional calculus (the proof of this is similar to Lemma 3.1). Hence
they satisfies property (8)e¢ by Proposition 6.4.13 in [9]. Consider the
well-defined complex

(17) 0— H® — By 5 B, — 0.

Suppose that uf € Y, (z; — T,,)E(C*, H®) and uF — ug in E(C*, H™).
As T, on By has property (5)¢ there is a u; € K;(z — T,,E(C*, By))
such that uy = 6, r,u;. Since T, on B; has property (8)¢, there is a
uy € Ko(z —T,,E(C", By)) such that d,_7,up = Ou;. By Lemma 4.2
there is a v € A26(C", L®(AD)) such that

/ vhdw = W (us, h)
oD

for all h € H*(D). Therefore we have that
/ 0,—g=vhdw = W (d,_1,us, h)
oD

for all h € H'(D). Define v} € Ki(z — g*,£(C*, L*°(0D))) by the
equation v} = u} — J,_g-v. Then

/ uyhdw =0
oD
for all h € H" since

/ urhdw = S(uy, h) = W (0uy, h)
oD

by Lemma 4.1. Thus U] € Ki(z — T,,E(C*, H*)), where U] is the
holomorphic extension. Since uy = 5Z_T9U{ by Lemma 4.1 we have
proved that 0,_7, Ki(z — g,£(C*, H*)) is closed.

Suppose that u, € Ki(z — Ty, E(C*, H®)) is 6, r,-closed. Then
there is a solution ug11 € Ky1(z — Ty, E(C*, By)) to the equation
0,1, uk+1 = Uy since T, on By has property (B)e. Continuing in exactly
the same way as above we see that we can replace u,y; with U, €
Ky 1(2 =Ty, E(C*, H®)) such that 0,_7,Uy,; = ug. Thus the theorem
is proved. O
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