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Abstract

Let p be an odd prime and let Cpn be a cyclic group of order pn and ζn be a
primitive pn+1-th root of unity. There exists an exact sequence

0 → V −
n × V +

n → Pic ZCpn+1 → Pic ZCpn × Cl Z[ζn] → 0,

where V −
n is known explicitly. In this thesis we deal with some problems re-

garding V +
n . This group is a quotient of a group denoted V+

n and a conjecture of
Kervaire and Murthy from 1977 states the two groups are isomorphic. The con-
jecture also states that these groups are in fact isomorphic to the p-component
of Cl Z[ζn−1].

In the first paper in this thesis we introduce a new technique and give a new
proof of the known result that V+

n , and hence also V +
n , is trivial when p is a

regular prime. The proof is based on a generalization to Z[ζn] of Kummer’s
famous result stating that a unit in Z[ζ0] congruent to 1 modulo p is a p-th
power of another unit if p is a regular prime.

In the second paper we consider the structure of V+
n and its relations with V +

n

under three various assumptions on the prime p. All these assumptions are
valid for all primes up to 4.000.000 and no primes for which the assumptions
fail are known. Under two of these assumptions we prove that V +

n
∼= V+

n .

In the third paper we give an exact formula for V+
n under the most general as-

sumption, namely that p is semi-regular, which by Vandiver’s conjecture should
be all primes. We also prove that V+

n and Cl(p) Z[ζn−1] have the same number of
generators, which can be considered as a “weak version” of the Kervaire-Murthy
conjecture that V+

n
∼= Cl(p) Z[ζn−1].

In the final paper we discuss a family of rings Ak,l which in some sense fit in
between ZCpn and Z[ζn]. Under one of our assumptions above we give an exact
sequence

0 → V −
k,l ⊕ V +

k,l → PicAk,l → Cl Q(ζk+l−1) ⊕ Pic Ak,l−1 → 0

and calculate V −
k,l and V +

k,l explicitly.

Keywords: Picard group, Grothendieck group, integer group ring, cyclic group
p-group, cyclotomic field, class group, Kummer’s lemma, semi-regular prime.

2000 AMS Subject classification: 11R65, 11R18, 19A31.
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ON THE PICARD GROUP OF INTEGER GROUP RINGS

OLA HELENIUS

1. Introduction to K-groups and Picard groups

This thesis is made up of this introduction and the four papers [H1], [H-S], [H-S2]
and [H2], the middle two joint with Alexander Stolin. We concern ourselves with
Picard groups of integer group rings. Specifically we try to find information about
the Picard group of ZCpn , where Cpn denotes the cyclic group of order pn. Inside
the algebraic framework in which we work, Picard groups and K0-groups have a
lot in common and most mathematicians that have worked on our problem before
us have formulated it in the language of K0-groups. In this introduction we will
first give a very brief survey on the history of Picard- and K0-groups as well as the
history of our particular problem. We then go on and write down some definitions
and basic results on Picard- and K-groups to give the non-expert reader a clue
about what kind of objects we deal with. Finally we give an overview of the four
papers that make up this thesis, what kind of techniques we use and what kind
of results we prove.

In retrospective, papers by Higman 1940 ([Hig]) and Whitehead 1939 ([Wh]) are
considered the first steps towards K-theory. The techniques used by Grothendieck
1958 ([BSG]) in his proof of the generalized Riemann Roch Theorem involves the
functor K, now known as K0, and can maybe be considered the real start of
the subject. In 1961 Atiayh and Hirzebruch introduced topological K-theory
([A-H]) and this turned out to be a very fruitful theory leading to the proving
of many topological results. Algebraic K-theory first imitated its topological
predecessor but then quickly spread into domains where topology plays no central
role. K-theoretical methods were used to prove results in the theory of C∗-
algebras, number theory and non-commutative algebra. Several authors were
involved in the development but Hyman Bass was maybe the most influential and
his book Algebraic K-theory, [B], is still a very important source of information.

There are many (different) ways of defining higher K-groups of a ring, but here
we only concern ourselves with the Grothendieck group K0 and the Whitehead
group K1. Let A be a ring. In this thesis all rings will be commutative with

1991 Mathematics Subject Classification. 11R65, 11R21, 19A31.
Key words and phrases. Picard Groups, Integral Group Rings.
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2 OLA HELENIUS

identity and all ring homomorphism will map 1 to 1. The group K0A can be
seen as the group of (differences of isomorphism classes of) projective finitely
generated A-modules. An A-module P is called projective if there exists an A-
module Q such that P ⊕ Q is free. A module M is called finitely generated if
there exists a finite subset N of M such that RN = M . It is easy to see that a
module P is finitely generated and projective if and only if there exists a module
Q such that P ⊕ Q ∼= An :=

⊕n
i=1 A for some natural number n. Formally, if P

and Q are such modules we let brackets denote the isomorphism class and define
an operation by

[P ] + [Q] := [P ⊕ Q].

The set of all isomorphism classes with this operation is a monoid. The group
K0A is defined as the quotient of the free abelian group generated by this monoid
modulo the subgroup generated by all expressions [P ] + [Q]− [P ⊕Q]. It is easy
to see that every element of K0A can be represented as [P]-[Q] for some suitably
chosen P and Q.

The group K1A can be seen as a group of infinite matrices. Let GL(n, A) be the
group of n×n invertible matrices. For each n = 1, 2, . . . , consider the embedding
of GL(n, A) into GL(n + 1, A) defined by

H 7→
(

H 0
0 1

)

for H ∈ GL(n, A). Define the group GL(A) as the union of the sequence

GL(1, A) ⊂ GL(2, A) ⊂ GL(3, A) ⊂ · · · .

A matrix in GL(A) is called elementary if it coincides with the identity matrix
except for a single off-diagonal entry. It can be shown that the multiplicative
group E(A) generated by the elementary matrices coincides with the commutator
subgroup of GL(A). We define the group K1A as the quotient GL(A)/E(A). If
f : A → A′ is a ring homomorphism we can in the obvious way define a group
homomorphism f∗ : K1A → K1A

′.

For more facts about these groups and proofs of the statements above, see [M],
[Si] and [B].

Picard groups are an important concept in algebraic geometry. If X is scheme
(or a ringed space), an invertible sheaf is defined to be a sheaf of locally free
OX -modules of rank 1. The Picard group, Pic X, of X is then defined as the
group of isomorphism classes of invertible sheaves on X under the operation ⊗,
the tensor product of sheaves. One can show that Pic X can be expressed as the
cohomology group H1(X, OX) and if X is a an integral scheme, then Pic X is
isomorphic to CaCl X, the Cartier class group of X. Hence, if X is a noetherian,
integral, separated locally factorial scheme, then Pic X ∼= Cl X, the group of Weil
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divisors of X modulo linear equivalence. The latter statement holds for example
if X is a (complete non-singular) curve over an algebraically closed field.

The “geometric” definition of the Picard group carries over to our algebraical
setting but instead of considering sheaves of OX -modules we simplify a bit and
simply considers modules over a commutative ring with identity element (denoted
1).

An A-module M is called invertible if it satisfies any of the following equivalent
conditions:

i) M is projective and finitely generated of constant rank 1.

ii) M̂ ⊗A M ∼= A, where M̂ := HomA(M, A).
iii) There exists an A-module N with N ⊗A M ∼= A.

To define the local rank of A, let p be a prime ideal of A and let Ap denote the
localization of A at p. If M is an A-module the localization Mp of M at p is
isomorphic to Ap ⊗A M . Suppose M is finitely generated and projective. Then,
since Ap is a local ring, Mp is a free, finitely generated Ap-module and hence
Mp

∼= An
p

for some n. We can hence define rankp(M) = n. M is said to have
constant rank if rankp(M) is constant over all prime ideals p of A.

If A is a commutative ring with identity, we define Pic A as the group of isomor-
phism classes of invertible modules under the tensor product ⊗A. The identity
element of the Picard group is the class of A, considered as a module over itself,

and the inverse of the class of P is the class of P̂ , where P̂ := HomA(M, A).

The terminology invertible can be explained and this explanation also give a
connection between the Picard group and K0. First note that we can supply
K0A with a ring structure using the tensor product. By using the unique homo-
morphism i : Z → A we get a homomorphism i# : K0Z → K0A by sending a
projective module P over Z to i#P := A⊗Z P . One can show that every finitely
generated projective module over Z (or any principal ideal domain R or field F
for that matter) is free and that two free modules Zr and Zs (Rr and Rs or F r

and F s) are isomorphic if r = s. Hence K0Z ∼= Z (and K0R ∼= Z and K0F ∼= Z).
Since A is commutative we can also always find a homomorphism j from A to a
field or skew field F . Since j#i# is an isomorphism we get a direct sum decom-
position K0A = Im i# ⊕ ker j# where the first summand is free cyclic. ker j# is

an ideal in the ring K0A which is denoted K̃0A and called the projective class
groups of A. Clearly we have

K0A ∼= Z ⊕ K̃0A.(1.1)
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In the ring, K0A, consider the multiplicative group of units 1 + K̃0A. One can
show that two finitely generated projective modules, P and Q generate the same
element in K0A if and only if they are stably isomorphic, P ⊕ Ar ∼= Q ⊕ Ar for
some r. Moreover one can show that two invertible modules are stably isomorphic
if and only if they are isomorphic, This means we have an embedding of Pic A
into the group of units of K0A, so the elements in the Picard group are really
invertible elements in the ring K0A. One can also show the following results:

Proposition 1.1. If A = ZCpn , then Pic A ∼= K̃0A. If A is a Dedekind ring

K̃0A ∼= Pic A ∼= Cl A.

Moreover we also know that K0A ∼= Z when A is a field or a PID and this also
holds when A is a local ring.

Proposition 1.2. If A a principal ideal domain, a field or a local ring, then
K0A ∼= Z and hence K̃0A = 0 and Pic A = 0.

We will now define a pullback of a ring which we will use to extract some exact
sequences involving K- and Picard groups.

Let A1, A2 and D be commutative rings with unity and let jk : Ak 7→ D, k = 1, 2
be homomorphisms. A ring A and homomorphisms ik : A 7→ Ak, k = 1, 2, is
called a pullback (of A1 and A2 over D) if the following condition holds. For all
rings B and maps αk : B 7→ Ak, k = 1, 2 such that the outer part of the diagram
below commutes, there is a unique θ such that the whole diagram commutes.

B

α1

''PPPPPPPPPPPPPPPPPPPPPPP

θ

  
α2

��0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

A
i1 //

i2

��

A1

j1

��
A2

j2
// D

If A is a pullback of A1 and A2 over D we will call the rectangular part of the
diagram above a pullback diagram. It is easy to see that a pullback is unique up
to isomorphism. One can show that

A = {(a1, a2) ∈ A1 × A2 : j1(a1) = j2(a2)}

is a pullback of A1 and A2 over D. Often we will identify any pullback with A
defined above. If A is a commutative ring with unity and α and β ideals in A,
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then

A/(α ∩ β) //

��

A/α

��

A/β // A/(α + β)

(1.2)

is a pullback diagram. Pullbacks like this are the absolute starting point for all
papers making up this thesis.

Example 1.3. If we put A = Z[x], α = ((xpn − 1)/(x − 1)) and β = (x − 1)
we get α ∩ β = (xpn − 1) and α + β = (x − 1, pn). Since Z[x]/(x − 1) ∼= Z and
Z[x]/(x − 1, pn) ∼= Z/pnZ. Moreover ZCpn

∼= Z[x]/(xpn − 1). We hence have a
pullback diagram

ZCpn //

��

Z[x](
xpn

−1
x−1

)

��

Z // Z

pnZ

(1.3)

for each n = 1, 2, . . ..

Example 1.4. Again, put A = Z[x]. Let α = ((xpk+l+1 − 1)/(xpk+l − 1)) and

β = ((xpk+l − 1)/(xpk − 1)). Then, α∩ β = ((xpk+l+1 − 1)/(xpk − 1)) and α + β =

((xpk+l − 1)/(xpk − 1), p). Since Z[x]/((xp+l+1 − 1)/(xpk+l − 1)) ∼= Z[ζk+l], where
ζk+l is a primitive pk+l+1th root of unity, we have a pullback diagram

Z[x](
xpk+l+1

−1

xpk
−1

) //

��

Z[ζk+l]

��
Z[x](

xpk+l
−1

xpk
−1

) //
Fp[x](

xpk+l
−1

xpk
−1

)

(1.4)

Following Milnor, we now indicate how starting from a pullback diagram

A
i1

//

i2

��

A1

j1

��
A2

j2
// D

(1.5)
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and projective (finitely generated) modules P1 and P2 over A1 and A2 respectively,
one can extract projective (finitely generated) modules over D and A and get a
commutative square of additive groups where each group has a module structure
over the corresponding ring in the pullback diagram. We will need to make the
extra assumption that j1 or j2 is surjective. For a full treatment of the matters
below we refer to [M].

First consider a ring homomorphism f : A → A′. If M is a projective (finitely
generated) A-module, then we can define a projective (finitely generated) A′-
module f#M := A′ ⊗A M . We can also define a A-linear map f∗ : M → f#M
by f∗(m) = 1⊗ m. Now return to the pullback diagram above and suppose that
there exists a D-module isomorphism h : j1#P1 → j2#P2. Define

M = M(P1, P2, h) := {(p1, p2) ∈ P1 × P2 : hj1(p1) = j2(p2)}.
We get a A-module structure on M by setting

a(p1, p2) = (i1(a)p1, i2(a)p2).

The following results are Theorem 2.1, 2.2 and 2.3 of [M].

Proposition 1.5. Let M be the module constructed above. Then,

i) M is projective over A and if P1 and P2 are finitely generated over A1 and
A2 respectively, then M is finitely generated over A.

ii) Every projective A-module is isomorphic to M(P1, P2, h) for some suitably
chosen P1, P2 and h.

iii) The modules P1 and P2 are naturally isomorphic to i1#M and i2#M respec-
tively.

This gives us a commutative diagram of additive groups

M //

��

P1

hj1∗

��

P2

j2∗
// j2#P2

The definition of pullbacks for abelian groups is similar to the one for rings. It is
easy to see that our in commutative square M is actually a pullback of P1 and
P2 over j2#P2.

We are now ready to present the (K1, K0)-Mayer-Vietoris Sequence, originally
obtained by Milnor. The reason why the sequence below bears the name Mayer-
Vietoris is the resemblance with the Mayer-Vietoris long exact sequence of alge-
braic topology (see for example [R] p. 177).
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Proposition 1.6. Consider the pullback diagram of rings (1.5) with j1 or j2

surjective. There is an exact sequence of additive groups

K1A
α1→ K1A1 ⊕ K1A2

β1→ K1D
∂→ K0A

α0→ K0A1 ⊕ K0A2
β0→ K0D.

The homomorphisms αi and βi, i = 0, 1, are defined by

α1(a1) = (i1∗(a1), i2∗(a1))

β1(b1, c1) = j1∗(b1) − j2∗(c1)

α0(a0) = (i1∗(a0), i2∗(a0))

β0(b0, c0) = j1∗(b0) − j2∗(c0)

for ai ∈ KiA, bi ∈ KiA1 and ci ∈ KiA2. To define ∂ we first observe that an
element d of K1D can be represented by a matrix in GL(n, D) for some n. This
matrix determines an isomorphism hd from the free D-module j1#An

1 to the free
D-module j2#An

2 . Let M = M(An
1 , An

2 , hd) and define

∂(d) = [M ] − [An] ∈ K0A.

The verification that ∂ is a well defined homomorphism and that the sequence
is exact is routine. We will now indicate how one can obtain from the (K0, K1)-
Mayer-Vietoris sequence a similar sequence involving unit groups and Picard
groups.

Proposition 1.7. Let A be a ring. There exist surjective maps det0 : K0A →
Pic A and det1 : K1A → A∗

The proof of this can be found in [Si] p. 57 and p. 112. The map det0 is defined
using exterior (or alternating) product

∧n
A (see [L] p 731). If M is a projec-

tive finitely generated A-module of constant rank m, then
∧n

A M is a projective
finitely generated A-module of constant rank

(
m
n

)
. One can show that there exists

subrings H and RK0A of K0A such that K0A ∼= H⊕RK0A, where every module
in RK0A can be presented as [M ] − [An] for some M and n. The map det0 is
defined as the composition of the surjection K0A → RK0A with the map

RK0A → Pic A [M ] − [An] 7→
∧m

A M,

where m = rank M .

With our definition of K1A we can define det1 : K1A → A∗ as the map induced
by the usual determinant GL(A) → A∗. This is well defined since any elementary
matrix has trivial determinant.

Proposition 1.8. Consider the pullback diagram of rings (1.5) with j1 or j2

surjective. The diagram
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K1A
α1 //

det1

��

K1A1 ⊕ K1A2

β1
//

det1 ⊕ det1

��

K1D
∂ //

det1

��

A∗
α1

// A∗
1 ⊕ A∗

2 β1

// D∗
∂

//

∂ // K0A
α0

//

det0

��

K0A1 ⊕ K0A2

β0
//

det0 ⊕ det0

��

K0D

det0

��

∂
// Pic A α0

// Pic A1 ⊕ Pic A2
β0

// Pic D

is commutative and the rows are exact.

The bottom row is called the (∗, Pic)-Mayer-Vietoris exact sequence correspond-
ing to the pullback diagram 1.5. The maps in the this sequence are defined as
follows:

α1(a) = (i1(a), i2(a))

β1(a1, a2) = j1(a1)j2(a2)
−1

α0(P ) = (i1∗(P ), i2∗(P ))

β0(P1, P2) = j1∗(P1)j2∗(P2)
−1

for a ∈ A∗, ai ∈ A∗
i , P ∈ Pic A and Pi ∈ Pic Ai. To define ∂ we first observe that

an element d of D∗ can be thought of as an isomorphism h between j1#A1
∼= D

and j2#A2
∼= D. Let ∂(d) := M(A1, A2, h). The proof of the proposition can

be found in [Si]. In all four papers in this thesis, the starting point will be the
(∗, Pic)-sequence associated to a pullback of the type from Example 1.4. As an
illustration of how one can use this to find information on the Picard group of
some ring we will prove the following result, which is a simple generalization of
Rim’s theorem.

Proposition 1.9. For all n = 1, 2, . . . we have

Pic ZCpn
∼= Pic

(
Z[x]/

(xpn − 1

x − 1

))
.
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Proof. Consider the pullback from Example 1.3. The corresponding (∗, Pic)-
Mayer-Vietoris exact sequence reads

ZC∗
pn → Z∗ ×

( Z[x](
xpn−1
x−1

)
)∗ →

( Z

pnZ

)∗ → Pic ZCpn →

→ Pic Z × Pic
Z[x](
xpn−1
x−1

) → Pic
Z

pnZ
.

Since Z is a Dedekind principal ideal domain, Pic Z = 0 and since Z/pnZ is local
Pic Z/pnZ = 0. This yields the exact sequence

{1,−1} ×
( Z[x](

xpn−1
x−1

)
)∗ β→

( Z

pnZ

)∗ → Pic ZCpn
α→ Pic

Z[x](
xpn−1
x−1

) → 0

and if we can prove that β is surjective, exactness gives us that α is an isomor-
phism which is what we want to show. Obviously, it is enough to show that

( Z[x](
xpn−1
x−1

)
)∗

→
( Z

pnZ

)∗
, x 7→ 1

is surjective. Fix k ∈ (Z/pnZ)∗. Consider

xk − 1

x − 1
∈ Z[x](

xpn−1
x−1

)

which easily can be shown to map to k ∈ (Z/pnZ)∗. We need to show that
(xk − 1)/(x− 1) is a unit. Since (k, p) = 1 we can find integers r and s such that
ks − pnr = 1. Moreover,

x1+pnr − 1

xk − 1
=

xks − 1

xk − 1
=

= xk(s−1) + xk(s−2) + . . . + xk + 1 ∈ Z[x](
xpn−1
x−1

)

and since

xk − 1

x − 1

x1+pnr − 1

xk − 1
=

x1+pnr − 1

x − 1
=

= 1 + x(xpn(r−1) + . . . + xpn

+ 1)
xpn − 1

x − 1
= 1 ∈ Z[x](

xpn−1
x−1

)

which proves our statement.

Calculating K0G, for various groups G is important because of applications in
algebraic topology. For example, Suppose X is a topological space with fun-
damental group π, dominated by a finite CW-complex. C.T.C. Wall defined in
[Wa1] and [Wa2] a “generalized Euler characteristic”, χ(X), which is an element
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of K0Zπ and showed that X has the homotopy type of a CW-complex if and only
if χ(X) is an integer.

2. A Summary of this Thesis

Let p be an odd prime. Recall that Cpn denotes the cyclic group of order pn and
that ζn is a primitive pn+1th root of unity. The three first of the four papers in
this thesis we work on the problem of finding Pic ZCpn and in the last paper we
work on Picard groups of some rings which in some sense fits between ZCpn and
Z[ζn]. As mentioned, calculating Picard groups for these rings is equivalent to
calculating K0 groups. Calculating K0ZG for various groups G was mentioned
by R.G. Swan at his talk at the International congress of Mathematicians in
Nice 1970 as one of the important problems in algebraic K-theory. Of course,
the reasons for this is are applications in topology, like the one above. However,
calculating K0ZG seems to be pretty hard and even to this date there are no
general results. Even when we restrict ourselves to G = Cpn no general explicit
formulas are known. Several people have worked on this, though. Kervaire and
Murthy presented in [K-M] an approach based on the pullback

ZCpn+1 //

��

Z[ζn]

��

ZCpn // Fp[x]/(xpn − 1) =: Rn

(2.1)

which is a variant of 1.2. The (∗, Pic)-Mayer-Vietoris exact sequence associated
to this pullback reads

(ZCpn)∗ × Z[ζn]∗
j→ R∗

n → Pic ZCpn+1 → Pic ZCpn × Pic Z[ζn] → Pic Rn

Following Kervaire and Murthy, we observe that Picard groups of local rings are
trivial, that the Picard group of a Dedekind ring equals the class group of the
same ring and then define Vn as the co-kernel of the map j in the sequence above.
Then we get

0 → Vn → Pic ZCpn+1 → Pic ZCpn × Cl Z[ζn] → 0.(2.2)

Kervaire and Murthy set out to calculate Vn and their approach is based on
the fact that all rings involved can be acted upon by the Galois group Gn :=

Gal(Q(ζn)/Q). If s ∈ Gn, let s(ζn) = ζ
κ(s)
n . If we represent the rings in the

pullback as residue class rings of polynomials in the indeterminate X, the action
is generated by s(X) = Xκ(s) for all involved rings. Gn becomes a group of auto-
morphisms of ZCpn+1, ZCpn and Rn. The maps in the pullback above commutes
with the action of Gn and the exact sequence becomes a sequence of Gn-modules.
In particular, complex conjugation, which we denote by c, belongs to Gn and
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c(X) = X−1. When M is a multiplicative Gn-module, like the group of units
of one of the rings in the pullback, we let M+ denote the subgroup of elements
v ∈ M such that c(v) = v and M− denote the subgroup of elements such that
c(v) = v−1. Vn is a finite abelian group of odd order and hence we have that
Vn = V +

n ×V −
n . The main result in Kervaire and Murthy’s article is the following

theorem

Theorem 2.1 (Kervaire and Murthy).

V −
n

∼=
n−1∏

ν=1

(Z/pνZ)
(p−1)2pn−ν−1

2

and when p is semi-regular, there exists a canonical injection

Char V +
n → Cl(p) Q(ζn−1),

where Cl(p) Q(ζn−1) is the p primary component of the ideal class group of Q(ζn−1).

The calculation of V −
n is straightforward. Finding the information on V +

n turns
out to be much harder. Kervaire and Murthy instead proves the result above
with V +

n replaced by the +-part of

Vn :=
R∗

n

j(Z[zn]∗)
,

that is, constructs a canonical injection

Char V
+
n → Cl(p) Q(ζn−1)(2.3)

Then, since V +
n is a canonical quotient of V+

n , 2.3 extends to an injection

Char V +
n → Cl(p) Q(ζn−1)

via the canonical injection

Char V +
n → Char V

+
n .

The injection 2.3 is actually a composition of the Artin map in class field theory
and a canonical injection from Iwasawa theory. The actual proof is mainly based
on class field theory.

Kervaire and Murthy conjecture that Char V +
n = Cl(p) Q(ζn−1) ∼= (Z/pnZ)r(p),

where r(p) is the index of regularity of p, that is the number of Bernoulli numbers
B2, B4, . . . , Bp−3 with numerators (in reduced form) divisible by p. They also
conjecture that V+

n = V +
n .

When p is a regular prime it is known that Cl(p) Q(ζn−1) is trivial and hence
Vn = V −

n is determined completely in [K-M].
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In [U2], Stephen Ullom uses Iwasawa theory and studies the action of Aut Cpn

on Pic ZCpn. He proves in that under a certain extra assumption on p, the first
of Kervaire and Murthy’s conjectures holds exactly when the Iwasawa invariant
λ associated to p equals r(p).. More explicitly the assumption is the following.

Assumption 1. The Iwasawa invariants λ1−i satisfy 1 ≤ λ1−i ≤ p − 1

We refer you to [I] for notation. S. Ullom proves that if Assumption 1 holds then,
for even i,

eiVn
∼= Z

pnZ
⊕ (

Z

pn−1Z
)λ1−i−1.(2.4)

This yields, under the same assumption, that

V +
n

∼= (
Z

pnZ
)r(p) ⊕ (

Z

pn−1Z
)λ−r(p),(2.5)

where

λ =

r(p)∑

i=1, i even

λ1−i

Hence, when λ = r we get the first of Kervaire and Murthy’s conjectures. Note
however, that if λ > r the conjecture is false.

In the papers that make up this thesis we use a different approach.

Instead of directly studying ZCpn we study

An :=
Z[x](
xpn−1
x−1

)

and use Proposition 1.9 which reads Pic ZCpn
∼= Pic An Denote An mod p ∼=

Fp[x]/(x − 1)pn−1 by Dn. Then, the with k = 0 and l = n the pullback 1.4 looks
like

An+1
in //

jn

��

Z[ζn]

Nn

||yyyyyy
yyyyyy

y

fk,l

��

An

gk,l
// Dn

(2.6)

The “norm-map” Nn is constructed so that the lower right triangle of the diagram
becomes commutative.



ON THE PICARD GROUP OF INTEGER GROUP RINGS 13

From our pullback we get back the exact sequence 2.2 but a different representa-
tion of Vn, namely

Vn =
D∗

n

Im{A∗
n × Z[ζn]∗ → D∗

n}
=

D∗
n

Im{A∗
n → D∗

n}
,

where the second equality follows from the existence of Nn. Again using Nn we
construct an embedding of Z[ζn−1]

∗ into A∗
n. We consider this an identification

and define

Vn :=
D∗

n

Im{Z[ζn−1]∗ → D∗
n}

.

It turns out this definition is equivalent to the one in [K-M].

In paper 1, [H1], in this thesis we re-prove Kervaire and Murthy’s result in the
case when p is regular. The main part of our proof is based on calculation of the
orders of certain groups of units in Z[ζn−1]

∗. Specifically, let

Un,k := {real ε ∈ Z[ζn−1]
∗ : ε ≡ 1 mod (ζn − 1)k}.

If p is regular, a famous result by Kummer state that if a unit ε in Z[ζ0]
∗ is

congruent to a rational integer modulo (ζ0 − 1)p−1 (that is modulo p) then ε is a
p-th power of another unit. We prove a generalization of this (Paper 1, Theorem

3.1) stating that if ε ∈ Z[ζ0]
∗ is congruent to 1 modulo (ζn−1)pn+1−1, then ε = γp

where γ is a unit congruent to 1 modulo (ζn − 1)pn+1. If we let Up denote the
group of p-th powers of elements in U and define

rn :=
∣∣∣Un,pn+1−1

Up
n,pn+1

∣∣∣,

then our generalization of Kummer’s Lemma shows that rn = 0 when p is regular
which is something we use in our re-proving of Kervaire and Murthy’s result.

In Paper 2, [H-S] we work with three different assumptions on the prime p. The
first one is Ulloms Assumption 1 above. We also consider

Assumption 2. rankp(Cl(p)(Q(ζn))−) = rn

and

Assumption 3. rankp(Cl(p)(Q(ζn))−) = r(p) for all n.

Under Assumption 1 we prove that Kervaire and Murthy’s second conjecture,
V+

n = V +
n , holds even when conjecture number one does not. Under Assumption 2

we manage to calculate that the structure of V+
n is given by

V
+
n
∼=

( Z

pnZ

)r0 ⊕
( Z

pn−1Z

)r1−r0 ⊕ . . . ⊕
( Z

pZ

)rn−1−rn−2
.(2.7)
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This result follows from the existence of a surjection πn : V+
n → V

+
n−1 with

ker πn
∼= (Z/pZ)rn−1 and an inductive argument. Under Assumption 3 we first

prove that this implies rn = r(p) for all n and then get that V+
n
∼= (Z/pnZ)r(p).

Then we go on to prove by a direct construction that V+
n = V +

n .

In Paper 3, [H-S2], we construct an injection αn : V
+
n−1 → V+

n using some results
from [K-M] and some class field theory. By using our previous surjection πn

together with αn we manage to prove that the structure of V+
n is given by 2.7 for

all semi-regular primes. This in turn allows us to prove some structure results on
unit groups in Z[ζn]∗. We also get a result on class groups. Let for a multiplicative
p-group A, A(p) = {x ∈ A : xp = 1}. Corollary 4.3 in Paper 3 states:

Cl Q(ζn−1)(p) ∼= Char(V+
n /(V+

n )p) ∼= (Z/pZ)rn−1 .

This result can be considered as a weak version of Kervaire and Murthys conjec-
ture:

Cl(p) Q(ζn−1) ∼= Char V
+
n .

It also follows that Assumption 2 actually always holds which means that any
unramified extension of Kn := Q(ζn) of degree p is of the form Kn(ε1/p), where

ε ≡ 1 mod (ζn − 1)pn+1−1. For big n we also get a slightly stronger statement, see
Corollary 4.5 of [H-S2].

Finally, in the last paper [H2] we generalize some of our results from [H-S] to
rings

Ak,l :=
Z[x](

xpk+l−1

xpk−1

)

which in some sense fit in between ZCp and Z[ζn]. For semi-regular primes
satisfying Assumption 3 we give an exact sequence

0 → V −
k,l ⊕ V +

k,l → Pic Ak,l → Cl Q(ζk+l−1) ⊕ Pic Ak,l−1 → 0

and calculate V −
k,l and V +

k,l explicitly.
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KUMMER’S LEMMA AND PICARD GROUPS OF

INTEGER GROUP RINGS

OLA HELENIUS

Abstract. In this paper we reprove a result by Kervaire and
Murthy concerning Picard groups of integer group rings ZC, where
C is a cyclic group of prime power order. Our method is more
elementary than the one used by Kervaire and Murthy and relies
on the construction of certain multiplicative maps by Stolin and on
a generalization of Kummer’s Lemma on units in cyclotomic fields
presented here.

1. Introduction

For n = 1, 2, . . . , let Cpn be the cyclic group of order pn and let ζn be a
primitive pn+1-th root of unity. In [K-M], Kervaire and Murthy proved
the following theorem.

Theorem 1.1. Let p be a regular prime and let n ≥ 2. There is an
exact sequence

0 →
n−1∏

j=1

C
kj

pj → Pic ZCpn → Cl Z[ζn−1] ⊕ Pic ZCpn−1 → 0,

where kj = (p−1)2pn−j−2

2
for 1 ≤ j ≤ n − 2 and kn−1 = p−3

2
.

The sequence is a slight variation of a Mayer-Vietoris sequence asso-
ciated with a certain cartesian square of rings. The hard part of the
proof is finding out the structure of the first non-zero term which is a
cokernel of a map between unit groups of rings involved in the cartesian
square. Kervaire and Murthy’s proof relies on Iwasawa theory and the
aim of this paper is to give a more elementary proof. Our proof relies
mainly on a construction of certain multiplicative maps (see section 2)
and a generalization of Kummer’s lemma on units in cyclotomic fields
to the prime power case (see section 3).

1991 Mathematics Subject Classification. 11R65, 11R21, 19A31.
Key words and phrases. Picard Groups, Integral Group Rings.
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As a starting point for our proof of Theorem 1.1 we will use the fol-
lowing pullback diagram (or Cartesian square)

A0,n
h0,n

//

j0,n

��

Z[ζn−1]

N0,n−1

{{vvvvvvvvvvvvvv

f0,n−1

��

A0,n−1

g0,n−1
// D0,n−1

where

Ak,i :=
Z[x]

(
xpk+i−1

xpk−1

) ,

and the class of x is denoted by xk,i,

Dk,i :=
Ak,i

(p)
∼= Fp[x]

(x − 1)pk+i−pk
,

jk,i(xk,i) = xk,i−1, hk,i(xk,i) = ζk+i−1, fk,i−1(ζk+i−1) = x̄ and gk,i−1 is the
natural surjection. The maps Nk,i, that are constructed in section 2,
are multiplicative and such that the lower triangle of the diagram com-
mutes. The pullback diagram gives us a Mayer-Vietoris sequence

(1.1) Z[ζn−1]
∗ ⊕ A∗

0,n−1

β→ D∗
0,n−1 → Pic A0,n →

→ Pic Z[ζn−1] ⊕ Pic A0,n−1 → Pic D0,n−1.

This sequence can be used as a starting point for finding the sequence
involving Pic ZCpn since, by a generalization of Rim’s theorem, Pic ZCpn

∼=
Pic A0,n for each n ≥ 1 (see [R] and [S1]). From the sequence 1.1 we
get

0 →
D∗

0,n−1

β(Z[ζn−1]∗ ⊕ A∗
0,n−1)

→ Pic A0,n → Cl Z[ζn−1] ⊕ Pic A0,n−1 → 0.

The proof of the main theorem thus boils down to finding the structure
of D∗

0,n−1/β(Z[ζn−1]
∗ ⊕ A∗

0,n−1). We will indicate how this is done in
this introduction and leave the details to section 4.

Step 1: By viewing D0,n−1 as the ring consisting of elements a0+a1(x̄−
1) + . . . + apn−1−2(x̄− 1)pn−1−2, ai ∈ Fp, we see that |D0,n−1| = ppn−1−1.
Every element with a0 = 0 is nilpotent so we get that every element
with a0 6= 0 is a unit and that |D∗

0,n−1| = (p − 1)ppn−1−2. Clearly,
F∗

p ⊂ D∗
0,n−1 and by the structure theorem for abelian groups, D∗

0,n−1 =

F∗
p ⊕ D̃∗

0,n−1 where D̃∗
0,n−1 is a p-group.

Let c denote the map x̄ 7→ x̄−1 in D̃∗
0,n−1 and define

D̃∗+
0,n−1 := {u ∈ D̃∗

0,n−1 : c(u) = u}



PICARD GROUPS OF INTEGER GROUP RINGS 21

and

D̃∗−
0,n−1 := {u ∈ D̃∗

0,n−1 : c(u) = u−1}.

Since D̃∗
0,n−1 is an finite abelian group of odd order and since c has

order 2 we get

D∗
0,n−1

∼= F∗
p ⊕ D̃∗+

0,n−1 ⊕ D̃∗−
0,n−1.

Step 2: In Lemma 4.1 in section 4 we show that β(Z[ζn−1]
∗⊕A∗

0,n−1) =
β(A∗

0,n−1) = g0,n−1(A
∗
0,n−1). Moreover, Lemma 4.2 tells us that

g0,n−1(A
∗
0,n−1) ⊆ F∗

p ⊕ D̃∗+
0,n−1⊕ < x̄ >,(1.2)

where < x̄ >∼= Cpn−1 is the subgroup of D̃∗−
0,n−1 generated by x̄.

Step 3: We want to show that we have equality in Equation 1.2. By
elementary direct methods one can show that g0,n−1(A

∗
0,n−1) ⊃ F∗

p⊕ <
x̄ >. Clearly, g0,n−1(x0,n−1) = x̄ and a direct calculation shows that if
k̄ is the class of k in F∗

p, then g0,n−1 maps (xk
0,n−1−1)/(x0,n−1−1) on k̄.

The hard part is to show that D̃∗+
0,n−1 is also contained in g0,n−1(A

∗
0,n−1).

To do this we show that Z[ζn−2] can be embedded in A0,n−1 and that if
we consider this as an identification we actually have g0,n−1(Z[ζn−2]) ⊇
D̃∗+

0,n−1. This is done in Theorem 4.4. In short, it is proved by finding

a subgroup of real elements of Z[ζn−2] that maps onto D̃∗+
0,n−1. We

prove this by just counting elements in the image of the subgroup but
it turns out that this is fairly tricky and we use both the generalization
of Kummer’s Lemma exposed in section 3 and some classical number
theoretical techniques.

As a result, we get

D∗
0,n−1

β(Z[ζn−1]∗ ⊕ A∗
0,n−1)

∼=
D̃∗−

0,n−1

< x̄ >

Step 4: To finish of the proof of our main theorem we now only need to
find the structure of the p-group D̃∗−

0,n−1. This is done in Proposition 4.3

by an elementary calculation. The result is D̃∗−
0,n−1

∼=
∏n−1

j=1 C
sj

pj where

sj = (p−1)2pn−j−2

2
for 1 ≤ j ≤ n − 2 and sn−1 = p−1

2
.1 Since < x̄ >∼=

Cpn−1, we get

D∗
0,n−1

β(Z[ζn−1]∗ ⊕ A∗
0,n−1)

∼=
n−1∏

j=1

C
kj

pj ,

where kj are given in Theorem 1.1 and this completes the proof.

1If n = 2 we get D̃∗−

0,1
∼= C

p−1

2
p .
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2. Norm Maps

In this section, we construct certain multiplicative maps. The maps
were first constructed by Stolin, see for example [S3], but since the
construction may not be well known we repeat it here.

Before we start we need to make some observations. First, for each
k ≥ 0 and i ≥ 1 we have a pullback diagram

Ak,i+1

hk,i+1
//

jk,i+1

��

Z[ζk+i]

fk,i

��

Ak,i

gk,i
// Dk,i

An element a ∈ Ak,i+1 can be uniquely represented as a pair (ai, bi) ∈
Z[ζk+i]×Ak,i. Using a similar argument on bi, and then repeating this
we find that a can also be uniquely represented as an (i + 1)-tuple
(ai, . . . , am, . . . , a0) where am ∈ Z[ζk+m]. In the rest of this paper we
will identify an element of Ak,i+1 with both its representations as a pair
or an (i + 1)-tuple.

For k ≥ 0 and l ≥ 1 let Ñk+l,l : Z[ζk+l] → Z[ζk] denote the usual norm.

We want to prove the following result.

Proposition 2.1. For each k ≥ 0 and i ≥ 1 there exists a multiplica-
tive map Nk,i such that the diagram

Z[ζk+i]

fk,i

��

Nk,i

||yyyyyyyyyyyyy

Ak,i

gk,i
// Dk,i

is commutative. Moreover, if a ∈ Z[ζk+i], then

Nk,i(a) = (Ñk+i,1(a), Nk,i−1(Ñk+i,1(a))) = (Ñk+i,1(a), Ñk+i,2(a), . . . , Ñk+i,i(a)).

The maps Nk,i will be constructed inductively. If i = 1 and k is arbi-
trary, we have Ak,1

∼= Z[ζk] and we define Nk,1 as the usual norm map

Ñk+1,1. Since Ñk+1,1(ζk+1) = ζk we only need to prove that our map is
additive modulo p, which follows from the lemma below.

Lemma 2.2. For k ≥ 0 and i ≥ 1 we have

i) Ak+1,i is a free Ak,i-module under xk,i 7→ xp
k+1,i.

ii) The norm map N : Ak+1,i → Ak,i, defined by taking the determi-
nant of the multiplication operator, is additive modulo p.
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This is Lemma 2.1 and Lemma 2.2 in [S2] and proofs can be found
there.

Now suppose Nk,j is constructed for all k and all j ≤ i − 1. Let
ϕ = ϕk+1,i : Z[ζk+i] → Ak+1,i be defined by ϕ(a) = (a, Nk+1,i−1(a)). It
is clear that ϕ is multiplicative. From the lemma above we have a norm
map N : Ak+1,i → Ak,i. Define Nk,i := N ◦ ϕ. It is clear that Nk,i is
multiplicative. Moreover, Nk,i(ζk+i) = N(ζk+i, xk+1,i−1) = N(xk+1,i) =
xk,i, where the latter equality follows by a direct computation. To prove
that our map makes the diagram in the proposition above commute,
we now only need to prove it is additive modulo p. This also follows
by a direct calculation once you notice that

ϕ(a + b) − ϕ(a) − ϕ(b) =
xpk+i+1

k+1,i − 1

xpk+i

k+1,i − 1
· r,

for an element r ∈ Ak+1,i.

Regarding the other two equalities in proposition 2.1, it is clear that
the second one follows from the first. The first statement will follow
from the lemma below.

Lemma 2.3. The diagram

Z[ζk+i]
N

//

Nk,i

��

Z[ζk+i−1]

Nk−1,i

��

Ak,i
N // Ak−1,i

is commutative

Proof. Recall that the maps denoted N (without subscript) are the
usual norms defined by the determinant of the multiplication map. An
element in Ak,i can be represented as a pair (a, b) ∈ Z[ζk+i−1] × Ak,i−1

and an element in Ak−1,i can be represented as a pair (c, d) ∈ Z[ζk+i−2]×
Ak−1,i−1. If (a, b) represents an element in Ak,i one can, directly from
the definition, show that N(a, b) = (N(a), N(b)) ∈ Ak−1,i.

We now use induction on i. If i = 1 the statement is well known. Sup-
pose the diagram corresponding to the one above, but with i replaced
by i − 1, is commutative for all k. If a ∈ Z[ζk+i] we have

N(Nk,i(a)) = N(N((a, Nk+1,i−1(a))) = ((N(N(a)), N(N(Nk+1,i−1(a))))

and

Nk−1,i(N(a)) = (N(N(a)), N(Nk,i−1(N(a)))).
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By the induction hypothesis Nk,i−1 ◦N = N ◦Nk+1,i−1 and this proves
the lemma.

3. Kummer’s Lemma

Let λn be the ideal (ζn−1) in Z[ζn]. Here we will prove a generalization
of the theorem by Kummer that states that if a p is a regular prime
and ε is a unit in Z[ζ0], congruent to 1 modulo p, then ε is a p-th power
of a unit.

Theorem 3.1. Let p be a regular prime. Let ε ∈ Z[ζn]∗ and suppose

ε ≡ 1 mod λpn+1−1
n . Then ε = γp for some unit γ ∈ Z[ζn]∗.

The proof can be broken down into four lemmas. Before we state them
we need some notation. If R is the ring of integers of a number field
K and λ a prime, we let Kλ denote the completion of K at λ and Rλ

the valuation ring. By abuse of notation we let λ denote the (unique)
maximal ideal of the local ring Rλ.

Lemma 3.2. Let ε ∈ Z[ζn]∗ and suppose that ε ≡ 1 mod λpn+1−1
n .

Then ε ≡ 1 mod λpn+1

n .

Lemma 3.3. Let p be an odd prime. Let ε ∈ Z[ζn]∗ and suppose that

ε ≡ 1 mod λpn+1

n . Then ε ≡ 1 mod λpn+1+1
n .

Lemma 3.4. Let ε be a unit in (Z[ζn])λn
with ε ≡ 1 mod λpn+1+1

n ,
then there exists a unit γ in (Z[ζn])λn

such that ε = γp. Moreover,
γ ≡ 1 mod λpn+1

n .

Lemma 3.5. Let p be a regular prime. If ε ∈ Z[ζn]∗ and p
√

ε ∈
(Z[ζn])λn

, then p
√

ε ∈ Z[ζn].

It is clear that Theorem 3.1 follows.

The rest of this section is devoted to the proofs of the four lemmas.
The last three are simple generalizations of the corresponding results
for n = 0. Lemma 3.2 is a bit harder and is due to Stolin. His result,
which is a bit more general, can be found in [S1]. We give a similar
proof here, but in slightly more detail. For this we need to develop
some notation and we leave this to the end of the section. We prove
the remaining three lemmas first.

Proof of Lemma 3.3. By a well known result by Kummer, ε = εrζ
k
n

for some real unit εr and some k ∈ Z. Since ζk
n = (1 + (ζn − 1))k ≡

1 + k(ζn − 1) mod λ2
n and εr ≡ a mod λ2

n for some a ∈ Z and since
εrζ

k
n = ε ≡ 1 mod λ2

n, we get that λn divides k and hence that p



PICARD GROUPS OF INTEGER GROUP RINGS 25

divides k and k = pk1 for some k1 ∈ Z. It is easy to see that ε̄−1 ≡ 1
mod λpn+1

n and this shows that ζ2k
n = εε̄−1 ≡ 1 mod λpn+1

n . This in turn
means that p|ζ2k

n −1 = ζ2k1
n−1−1 in Z[ζn]. But then, (ζ2k1

n−1−1)/p ∈ Z[ζn−1]

and we get that λpn−pn−1

n−1 = p | ζ2k
n − 1 = ζ2k1

n−1 − 1 in Z[ζn−1]. Since

pn−pn−1 ≥ 2 this implies λn−1|(ζ2k1−1
n−1 +. . .+ζn−1+1) ≡ 2k1 mod λn−1

so λn−1|2k1 and hence we get that p|k1 and p2|k. This argument can be
repeated in Z[ζn−2] to show that p3|k and so on until we, from a similar
argument in Z[ζ0] get that pn+1|k. But this means that ε = εrζ

k = εr

so ε is real. Since (ζn − ζ−1
n ) = λn as ideals, ε ≡ 1 mod (ζn − ζ−1

n )pn+1
.

By representing ε in the basis (ζn − ζ−1
n )i, i = 0, 1, 2, . . . , pn(p− 1)− 1

and observing that all coefficients with odd index must be zero we get
the desired result.

We leave out the proof of Lemma 3.4 since it is just a simple general-
ization of the corresponding result for n = 0 (see for example the proof
of Theorem 5.36, p. 79 [W]).

Proof of Lemma 3.5. Let ω be a prime in Q(ζn) that ramifies in
Q(ζn, p

√
ε). Since all archimedian primes are complex, they do not

ramify so ω is not archimedian. Then ω divides the discriminant
∆(S/Z[ζn]) where S is the ring of integers in Q(ζn, p

√
ε). Let N =

NQ(ζn, p
√

ε)/Q(ζn) denote the relative norm and let f be the minimal poly-

nomial xp − ε. It is well known that ∆(S/Z[ζn])|N(f ′( p
√

ε) (see for ex-

ample [J], p. 39). But N(f ′( p
√

ε)) = N(pε(p−1)/p) = upp = uλpn+1(p−1)

for some unit u, so ω = λn. Assume that ε is not a p-th power. Then,
since Q(ζn, p

√
ε) is the splitting field of f(x) = xp−ε, Q(ζn, p

√
ε) ⊇ Q(ζn)

is an abelian extension of degree p . By assumption, (Q(ζn))λn
=

(Q(ζn))λn
( p
√

ε) so λn trivially does not ramify in (Q(ζn))λn
( p
√

ε) and
hence λn does not ramify in Q(ζn, p

√
ε) either so Q(ζn) ⊆ Q(ζn, p

√
ε) is

an unramified abelian extension of degree p. Q(ζn, p
√

ε) is thus a sub-
field of the Hilbert class field H of Q(ζn) and since [H : Q(ζn)] = hQ(ζn)

we get that p|hQ(ζn). But this is a contradiction since p is regular and
since p|hQ(ζn) implies p|hQ(ζ0) by Theorem 10.4 (a), p. 187, [W].

The rest of this section is devoted to the norm residue symbol and the
proof of Lemma 3.2. Let K = Q(ζn). If w is a valuation on K and
a ∈ K∗, we have a local Artin map

Ψw : K∗
w −→ Gal(Kw( p

√
a)/Kw).

For a ∈ K∗, we will denote the action of Ψw(b) on a by aΨw(b). We
define the norm residue symbol

( , )w : K∗
w × K∗

w −→ µp,

where µp is the group of p-th roots of unity, by (a, b)w = ( p
√

a)Ψw(b)( p
√

a)−1.
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Lemma 3.6. Let a, b ∈ K∗
w and let N = NKw( p

√
a)/Kw

. Then,

i) (a, b)w = 1 if and only if b ∈ N(Kw( p
√

a)∗)
ii) (a, b)w = 1 if a + b ∈ (Kw)p

iii)
∏

w(a, b)w = 1, where the product is taken over all valuations of
K.

Proof. i): This follows immediately by the well known fact that Ψw(b)
is the identity map if and only if b is a local norm.

ii): If F is any field that contains the p-th roots of unity, y ∈ F ∗ and
x ∈ F , then the element xp − y is a norm from F ( p

√
y) since if ζ is a

fixed primitive p-th root of unity, then

xp − y =

p−1∏

k=0

(x − ζk p
√

y) = NF ( p
√

a)/F (x − p
√

y).

This fact applied to F = (Q(ζn))λn
, y = a and xp = a + b shows that b

is a local norm and hence, by i) that (a, b)w = 1.

iii): It is well known that b is a local norm for almost all valuations. By
i), the product can be considered finite, taken over the set S consisting
of valuations where b is not a local norm and valuations where the
extension Kw( p

√
a)/Kw is unramified. Since Ψw(b) is the identity if

w /∈ S and since
∏

w Ψw(b) = 1 we get that
∏

w∈S Ψw(b) = 1 and the
result follows.

Now fix n and let λ = λn. Let for i = 1, 2, . . ., ηi = 1 − λi.

Lemma 3.7. Let w be a valuation of K. Then,

i) (ηi, ηj)w = (ηi, ηi+j)w(ηi+j, ηj)w(λj, ηi+j)w

ii) If w = λ and i + j > pn+1 then (ηi, ηj)w = 1
iii) If w = λ, i + j = pn+1 and 1 ≤ i ≤ p − 1, then (ηi, ηj)w 6= 1.

Proof. i): Since p is odd, (a,−1)w = 1 and by Lemma 3.6 ii), (a,−a)w =
1 = (a, 1−a)w for all a ∈ K∗. It is easy to see that ( , )w is (multiplica-
tively) bilinear so (a,−b)w = (a,−1)w(a, b)w = (a, b)w for all a, b ∈ K∗.
Hence (a, a)w = (a,−a)w = 1 and by applying the latter equality to
(ab,−ab)w we get that (a, b)w(b, a)w = 1 Since ηj + λjηi = ηi+j, we get
ηj

ηi+j
+ λjηi

ηi+j
= 1 and hence by Lemma 3.6 ii) that

1 =
( ηj

ηi+j
,
λjηi

ηi+j

)
w

and i) follows by a straightforward calculation, using the above identi-
ties.
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ii): Suppose i+ j > pn+1. Then ηi+j ≡ 1 mod λpn+1+1
n . By Lemma 3.4

any such element is a p-th power and hence a norm in any extension
Kλ( p

√
ηk)/Kλ. By i),

(ηi, ηj)λ = (ηi+j, ηi)
−1
λ (ηi+j, ηj)λ(ηi+j, λ

j)−1
λ = 1.

If on the other hand i+j = pn+1 and 1 ≤ i ≤ p−1, then i+j+i > pn+1

and i + j + j > pn+1, so

(ηj, ηi)λ = (ηi+j, ηj)
−1
λ (ηi+j, ηi)λ(ηi+j, λ

i)−1
λ = (ηpn+1, λi)−1

λ 6= 1

by Lemma 3.6 since λi cannot be a norm in the extension Kλ( p
√

ηpn+1)/Kλ.

Now, put R = Z[ζn] and for k = 1, 2, . . ., let Uk = {u ∈ R∗
λ : u ≡ 1

mod λk}. Then (the image of) ηk generates the group Uk/Uk+1 of order
p. This means that if u ∈ Uk \ Uk+1 there exists i such that (i, p) = 1
and uiη−1

k = t ∈ Uk+1.

Proof of Lemma 3.2. Let ε satisfy the conditions of the lemma. Let
v = vλn

be the valuation of K = Q(ζn) with respect to the prime λn

and let w be a valuation not equal to v. From for example the proof
of Lemma 3.5, we know that the extension Kw( p

√
u)/Kw is unramified

for every unit u ∈ Z[ζn], so ε is a norm in every such extension. By 3.6
i), (u, ε)w = 1 and then, by 3.6 iii), (u, ε)v = 1.
Now let u = η1. By the assumptions ε ∈ Upn+1−1. Suppose ε /∈ Upn+1 .
Choose i such that (i, p) = 1 and εiη−1

pn+1−1 = t ∈ Upn+1 and in a similar

way j such that tjη−1
pn+1 = s ∈ Upn+1+1. Then by Lemma 3.4 and 3.7 we

have (u, s)v = (u, ηpn+1)v = 1. All this implies

(u, ε)ij
v = (u, ηpn+1−1t)

j
v = (u, ηpn+1−1)

j
v 6= 1.

Hence (u, ε)v 6= 1 which is a contradiction by the first part of the proof.
Hence ε ∈ Upn+1 and this finishes the proof.

4. Proof of the Main Theorem

In this section we state and prove the results we needed to prove the
main theorem of this paper.

Lemma 4.1. β(Z[ζn−1]
∗ ⊕ A∗

0,n−1) = g0,n−1(A
∗
0,n−1).

Proof. Recall that β(a, b) = f0,n−1(a)g0,n−1(b)
−1. By setting k = 0

and i = n − 1 in the commutative diagram from Proposition 2.1 and
using the fact that the norm map maps units to units we get

f0,n−1(Z[ζn−1]
∗) ⊆ g0,n−1(N0,n−1(Z[ζn−1]

∗)) ⊆ g0,n−1(A
∗
0,n−1)
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Lemma 4.2. g0,n−1(A
∗
0,n−1) ⊆ F∗

p ⊕ D̃∗+
0,n−1⊕ < x̄ >.

Let c : A∗
k,i → A∗

k,i be the map defined by xk,i 7→ x−1
k,i . In Z[ζk] we also

denote complex conjugation by c. An element invariant under c will be
called real. If ε ∈ Z[ζk], a famous result by Kummer tells us that there
exists i ∈ Z and a real unit εr such that ε = ζ i

kεr. This result can be
generalized to the rings A0,i, where it can be used to prove the lemma.
Since the proof is almost identical to the proof of Lemma 3.2 in [K-M],
which is the corresponding result for ZCpn , we refrain from repeating
it here..

Proposition 4.3. |D̃∗+
0,n−1| = p

pn−1
−3

2 , |D̃∗−
0,n−1| = p

pn−1
−1

2 and

D̃∗−
0,n−1

∼=
n−1∏

j=1

C
sj

pj

where sj = (p−1)2pn−j−2

2
for 1 ≤ j ≤ n − 2 and sn−1 = p−1

2
.2

Proof. D̃∗
0,n−1 can be presented as {1+a1(x−x−1)+ . . .+apn−1−2(x−

x−1)pn−1−2}. Since c((x − x−1)j) = (−1)j(x − x−1)j it is not hard
to see that D̃∗−

0,n−1 can be represented as {1 + a1(x − x−1) + a3(x −
x−1)3 + . . . + apn−1−2(x − x−1)pn−1−2}. Hence |D̃∗−

0,n−1| = p
pn−1

−1
2 and

since |D̃∗
0,n−1| = ppn−1−2 we get |D̃∗+

0,n−1| = p
pn−1

−3
2 . Since D̃∗−

0,n−1 is a
p-group it is isomorphic to a product of copies of cyclic groups of prime
power order. By using the above presentation, taking pk-th powers and
counting the number of elements of different orders we get a system of
equations that gives us the sj in the lemma.

The rest of this paper is devoted to proving that

g0,n−1(A
∗
0,n−1) ⊃ D̃∗+

0,n−1(4.1)

For each k ≥ 0 and i ≥ 1 let ϕk,i : Z[ζk+i−1]
∗ → A∗

k,i be the injective
group homomorphism defined by ε 7→ (ε, Nk,i(e)). By Proposition 2.1,
ϕk,i is well defined. In what follows, we identify Z[ζk+i−1]

∗ with its
image in A∗

k,i.

Let Z[ζn−2]
∗+ be the subgroup of real units of Z[ζn−2]

∗. To show that
Equation 4.1 holds it is obviously enough to prove the following result

Theorem 4.4. Let p be a regular prime. Then, g0,n−1(Z[ζn−2]
∗+) ⊃

D̃∗+
0,n−1.

2If n = 2 we get D̃∗−

0,1
∼= C

p−1

2
p .
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The proof will rely on the following lemma which is Theorem I.2.7 in
[S3].

Lemma 4.5. ker(gk,i|Z[ζk+i−1]∗
) = {ε ∈ Z[ζk+i−1]

∗ : ε ≡ 1 mod λpk+i−pk

k+i−1 }

We will not repeat the proof here, but since the technique used is inter-
esting we will indicate the main idea. If a ∈ Z[ζk+i−1]

∗ and gk,i(a) = 1
we get that a ≡ 1 mod p in Z[ζk+i−1], Nk,i−1(a) ≡ 1 mod p in Ak,i−1

and that fk,i−1

(
a−1

p

)
= gk,i−1

(Nk,i−1(a)−1

p

)
. Since the norm map com-

mutes with f and g this means that Nk,i−1(
a−1

p
) ≡ Nk,i−1(a)−1

p
. The

latter is a congruence in Ak,i−1 and by the same method as above we
deduce a congruence in Z[ζk+i−2] and a congruence in Ak,i−2. This can
be repeated i− 1 times until we get a congruence in Ak,1

∼= Z[ζk]. The
last congruence in general looks pretty complex, but can be analysed
and gives us the neccesary information.

If for example i = 2, we get after just one step a ≡ 1 mod p in Z[ζk+1],

N(a) ≡ 1 mod p and N(a−1
p

) ≡ N(a)−1
p

mod p in Ak,1
∼= Z[ζk], where

N is the usual norm. By viewing N as a product of automorphisms,
recalling that N is additive modulo p and that the usual trace of any
element of Z[ζk+1] is divisible by p one gets that N(a) ≡ 1 mod p2 and
hence that N(a−1

p
) ≡ 0 mod p. By analysing how the norm acts one

can show that this means that a ≡ 1 mod λpk+2−pk

k

Proof of Theorem 4.4. For m = 1, 2, . . . , define

Um := {ε ∈ Z[ζn−2]
∗ : ε ≡ 1 mod λm

n−2}.

It is clear that U1 ⊇ U2 ⊇ . . . and that U1 = Z[ζn−2]
∗. Let U+

1 be
the subgroup of real units in U1. Since g0,n−1 commutes with complex

conjugation we have g0,n−1(U
+
1 ) ⊆ D̃∗+

0,n−1 and to prove the theorem it
is obviously enough to show that this is actually an equality. We will
prove this by induction on n. First, by Lemma 4.5, we have for any
n ≥ 2

g0,n−1(U
+
1 ) ∼= U+

1

U+
pn−1−1

.

Since g0,n−1(U
+
1 ) ⊆ g0,n−1(Z[ζn−2]

∗+) ⊆ D̃∗+
0,n−1 the group

U+
1

U+

pn−1
−1

is

finite. Similarly Z[ζn−2]∗+

U+

pn−1
−1

is finite. This shows that
∣∣Z[ζn−2]∗+

U+
1

∣∣ is finite

since

∣∣Z[ζn−2]
∗+

U+
1

∣∣∣∣ U+
1

U+
pn−1−1

∣∣ =
∣∣Z[ζn−2]

∗+

U+
pn−1−1

∣∣.
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If n = 2, this and Dirichlet’s theorem on units tells us that both U+
1

and U+
pn−1−1 = U+

p−1 are isomorphic to Z
p−3
2 . By the classical version of

Kummer’s lemma we get U+
p−1 = (U+

1 )p. Hence

U+
1

U+
p−1

∼= Z
p−3
2

(pZ)
p−3
2

∼= C
p−3
2

p .

This shows that

|g0,1(U
+
1 )| = p

p−3
2 = |D̃∗+

0,1|

so we have proved our statement for n = 2.

Now fix n > 2 and assume the statement of the theorem holds with n
replaced by n − 1. We can write

∣∣ U+
1

U+
pn−1−1

∣∣ =
∣∣ U+

1

U+
pn−2−1

∣∣∣∣U
+
pn−2−1

U+
pn−2+1

∣∣∣∣U
+
pn−2+1

U+
pn−1−1

∣∣(4.2)

By Dirichlet’s theorem on units we have (Z[ζn−2]
∗)+ ∼= Z

pn−1
−pn−2

2
−1

Since all quotient groups involved are finite we get that U+
1 , U+

pn−1−1,

U+
pn−2−1 and U+

pn−2+1 are all isomorphic to Z
pn−1

−pn−2

2
−1. The rest of the

proof is devoted to the analysis of the three right hand factors of 4.2.

By Theorem 3.1, Kummer’s Lemma in the prime power case, we have
U+

pn−1−1 = (U+
pn−2+1)

p so

U+
pn−2+1

U+
pn−1−1

∼= Z
pn−1

−pn−2

2
−1

(pZ)
pn−1

−pn−2

2
−1

∼= C
pn−1

−pn−2

2
−1

p .

This shows that

∣∣U
+
pn−2+1

U+
pn−1−1

∣∣ = p
pn−1

−pn−2

2
−1.

We now turn to the second factor of the right hand side of Equation 4.2.
We will show that this number is p by finding a unit ε 6∈ U+

pn−2+1 such
that

< ε >=
U+

pn−2−1

U+
pn−2+1

.

Since we know that the p-th power of any unit in U+
pn−2−1 belongs to

U+
pn−2+1 this is enough. Let ζ = ζn−2 and η := ζ

pn−1+1
2 . Then η2 = ζ

and c(η) = η−1. Let ε := ηpn−2+1−η−(pn−2+1)

η−η−1 . Then c(ε) = ε and one can

by direct calculations show that ε is the unit we are looking for.
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We now turn to
∣∣ U+

1

U+
pn−2−1

∣∣.

Consider the commutative diagram

Z[ζn−2]
∗

N0,n−2

zzvvvvvvvvvvvvvv

f0,n−2

��

A∗
0,n−2

g0,n−2
// D∗

0,n−2

Let Wm := {ε ∈ Z[ζn−3] : ε ≡ 1 mod λm
n−3}. It is clear that f0,n−2(U

+
1 ) ⊆

D̃∗+
0,n−2 and that g0,n−2(W

+
1 ) ⊆ D̃∗+

0,n−2. Recall that A∗
0,n−2

∼= Z[ζn−3]
∗ ⊕

B and that the norm map N0,n−2 acts like the usual norm map N =

Ñn−2,1 : Z[ζn−2]
∗ → Z[ζn−3]

∗. It is well known that N(ζn−2) = ζn−3.
By finding the constant term of the minimal polynomial (x−1)p−ζn−3

of λn−2 we see that N(λn−2) = λn−3 and by a similar argument that
N(ζk

n−2 − 1) = ζk
n−3 − 1 when (k, p) = 1. Since N is additive modulo p

we get that N0,n−2(U
+
1 ) ⊆ W +

1 . Hence we have a commutative diagram

U+
1

N

||zz
zz

zz
zz

zz
zz

zz

f

��

W+
1

g
// D̃∗+

0,n−2

We want to show that N is surjective. In Z[ζj], let wj := −ζ
pj+1+1

2
j and

consider

γj,l :=
wl

j − w−l
j

wj − w−1
j

.

If we fix ζj = e(2π
√
−1/pj+1) we see that

γj,l :=
sin(lπ/pj+1)

sin(π/pj+1)

and hence real. Moreover,

γj,l = w−l+1
ζ l
j − 1

ζj − 1

so when (l, p) = 1 the γj,l are units. Let Jj be the group of positive
real units in Z[ζj] and let J0,j be the subgroup generated by γj,l, l ∈
{2, 3, . . . , (pj+1 − 1)/2, (l, p) = 1}. This is a well known construction
and the details can be found in the proof of Lemma 8.1, p. 149 in [W].
Since γj,l is real, it is congruent to a rational integer a mod (λ2

j). Of

course, a 6≡ 0 mod (p). Hence ap−1 ≡ 1 mod (p) and this shows that
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γp−1
j,l ≡ 1 mod λj. With j = n−2 this shows that γp−1

n−2,l ∈ U+
1 and with

j = n − 3 that γp−1
n−3,l ∈ W+

1 . Now, a straightforward calculation shows

that N(γp−1
n−2,l) = γp−1

n−3,l so Jp−1
0,n−2 ⊂ N(U+

1 ). Let h+ be the class number

of Q(ζn−3)
+. It is well known that h+|hQ(ζn−3). Since p is regular we

get that (p, h+) = 1. By Theorem 8.2 on p. 145 of [W] we have

∣∣ Jn−3

J0,n−3

∣∣ = h+.

Now take arbitrary ε ∈ W +
1 . Then ε2 is positive and hence an element

of Jn−3. By the fact above there exists s ∈ Z such that (s, p) = 1 and
e2s ∈ J0,n−3. This means that e2s(p−1) ∈ N(U+

1 ). Since (2s(p−1), p) = 1
we can find u, v ∈ Z such that 2s(p−1)u+pv = 1 so ε = ε2s(p−1)u+pv =
(ε2s(p−1))u(εp)v ∈ N(U+

1 ). This shows that N is surjective.

We will now use our inductive hypothesis. This means that g(W +
1 ) =

D̃∗+
0,n−2, that is, the map g is surjective. But since the diagram above

is commutative this implies that f is also surjective. It is easy to see
that ker(f) = U+

pn−2−1 so

U+
1

U+
pn−2−1

∼= D̃∗+
0,n−2

and

∣∣ U+
1

U+
pn−2−1

∣∣ = |D̃∗+
0,n−2| = p

pn−2
−3

2

by proposition 4.3 This finally gives

∣∣ U+
1

U+
pn−1−1

∣∣ = p
pn−2

−3
2 · p · p pn−1

−pn−2

2
−1 = p

pn−1
−3

2 .

Hence |g0,n−1(U
+
1 )| = |D̃∗+

0,n−1| and this proves the theorem.
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Göteborg University, SE-41296 Göteborg, Sweden
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UNIT BASES IN INTEGER GROUP RINGS AND THE

KERVAIRE-MURTHY CONJECTURES

OLA HELENIUS AND ALEXANDER STOLIN

Abstract. In 1977 Kervaire and Murthy presented two conjectures regarding
K0ZCpn , where Cpn is the cyclic group of order pn and p an odd semi-regular

prime. There is a group Vn that injects into K̃0ZCpn ∼= PicZCpn . Vn is a
canonical quotient of an in some sense simpler group Vn. Both groups split
in a “positive” and “negative” part. While V −

n is well understood there is
still no complete information on V +

n . Kervaire and Murthy conjectured that
V +

n
∼= (Z/pnZ)r(p), where r(p) is the index of irregularity of the prime p and

that V+
n
∼= V +

n . Under an extra assumption on the prime p, Ullom proved in
1978 that V +

n
∼= (Z/pnZ)r(p)⊕ (Z/pn−1Z)λ−r(p), where λ is one of the Iwasawa

invariants. Hence Kervaire and Murthys first conjecture holds only when λ =
r(p). In the present paper we prove that under the same condition Ullom
used, conjecture two always holds. We also discuss a different assumption
on p regarding the p-rank of certain class groups in relation to the order of
certain groups of units. Under this assumtion, which is implied by Ulloms
assumption, we give a complete characteristation of V+

n . Finally, in the case
λ = r(p) we reprove Ulloms result by first proving that V+

n
∼= (Z/pnZ)r(p).

Then we construct a special basis for a ring closely related to ZCpn , consisting
of units from a number field. This basis is used to prove that V+

n
∼= V +

n .

1. Introduction

In his talk at the International Congress of Mathematicians in Nice 1970, R.G
Swan named calculation of K0ZG for various groups G as one of the important
problems in algebraic K-theory. In the paper [K-M] published in 1977, M. Ker-
vaire and M.P. Murthy took a big step towards solving Swans problem in the
case when G = Cpn is a cyclic group of prime power order. Before explaining

their results we recall that K0ZG ∼= Z ⊕ K̃0ZG and that K̃0ZG ∼= Pic ZG. In
this paper we will formulate the result in the language of Picard groups.

From now on, we let p be an odd semi-regular prime, let Cpn be the cyclic group
of order pn and let ζn be a primitive pn+1-th root of unity. Kervaire and Murthy

1991 Mathematics Subject Classification. 11R65, 11R21, 19A31.
Key words and phrases. Picard Groups, Integral Group Rings.
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prove that there is an exact sequence

0 → V +
n ⊕ V −

n → Pic ZCpn+1 → Cl Q(ζn) ⊕ Pic ZCpn → 0,

where

V −
n

∼= C
p−3
2

pn ×
n−1∏

j=1

C
(p−1)2pn−1−j

2

pj .

and Char(V +
n ) injects canonically in the p-component of the ideal class group of

Q(ζn−1).

The exact sequence originates as a Mayer-Vietoris sequence of a certain pullback
of rings. Explicitly, Vn is defined by

Vn :=
( Fp[X]

(Xpn−1)
)∗

Im{Z[ζn]∗ × ( Z[X]
(Xpn−1)

)∗ → ( Fp[X]

(Xpn−1)
)∗}

,

where R∗ denote the group of units in a ring R (see [K-M] for details). The

homomorphism c defined by X 7→ X−1 in ( Fp[X]

(Xpn−1)
)∗ extends to Vn and Kervaire

and Murthy define V +
n := {v ∈ Vn : c(v) = v} and V −

n := {v ∈ Vn : c(v) =
v−1}. Getting the exact structure of V −

n is then just a matter of a straightforward
calculation. When they get to the part of the proof that concerns V +

n things get
much harder, however. Kervaire and Murthy’s solution is to consider the group
V+

n defined by

Vn :=
Fp[x]/(xpn − 1))∗

Im{Z[ζn]∗ → Fp[x]/(xpn − 1))∗}
instead. They make extensive use of Iwasawa- and class field theory to prove
that Char(V+

n ) injects canonically into Cl(p)(Q(ζn−1)). This is actually enough
since Vn is a canonical quotient of Vn so clearly we have a canonical injection
Char(V +

n ) → Char(V+
n )

Kervaire and Murthy also formulate the following conjectures.

V +
n = V

+
n(1.1)

Char(V +
n ) ∼=

( Z

pnZ

)r(p)
,(1.2)

where r(p) is the index of irregularity of the prime p and Gr denotes r copies of
a group G.

In the case n = 1 both conjectures were proven in [K-M] for semi-regular primes
and in [ST1] complete information, without any restriction on p was obtained by
Stolin.
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In 1978 Ullom proved in [U2] that under a certain condition on the Iwasawa
invariants associated to the semi-regular prime p, conjecture 1.2 holds. More
explicitly the assumtion is the following.

Assumption 1. The Iwasawa invariants λ1−i satisfy 1 ≤ λ1−i ≤ p − 1

We refer you to [I] for notation. S. Ullom proves that if Assumption 1 holds then,
for even i,

eiVn
∼= Z

pnZ
⊕ (

Z

pn−1Z
)λ1−i−1.(1.3)

This yields, under the same assumption, that

V +
n

∼= (
Z

pnZ
)r(p) ⊕ (

Z

pn−1Z
)λ−r(p),(1.4)

where

λ =

r(p)∑

i=1, i even

λ1−i

Hence, when λ = r(p) we get 1.2. Note however, that if λ > r(p), then conjec-
ture 1.2 is false.

In this paper we concentrate on conjecture 1.1, which we will prove under the
same assumption on the λ1−i’s Ullom uses. In contrast to what happens to
conjecture 1.2 we prove that 1.1 hold even if λ > r(p) (only assuming As-
sumption 1). We also discuss two different assumptions, both concerning the
p-rank of certain class groups. Under the weaker one of these assumptions we
calculate the structure of V+

n . Under the stronger we prove both Kervaire-
Murthy conjectures by constructing a certain basis for a p-adic completion of
ZC+

pn := {a ∈ ZCpn : c(a) = a}, where c is the canonical involution of ZCpn

defined above.

2. Preliminaries

We start this section by defining some rings that in some sense are close to ZCpn.
We discuss why we can and want to work with these rings instead of ZCpn and go
on get an exact Mayer-Vietoris sequence from a certain pullback of these rings.

Let for k ≥ 0 and l ≥ 1

Ak,l :=
Z[x]

(
xpk+l−1

xpk−1

)
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and

Dk,l := Ak,l mod p.

We denote the class of x in Ak,l by xk,l and in Dk,l by x̄k,l. Sometimes we will,
by abuse of notation, just denote classes by x. Note that An,1

∼= Z[ζn] and that

Dk,l
∼= Fp[x]

(x − 1)pk+l−pk
.

By a generalization of Rim’s theorem (see for example [ST1]) Pic ZCpn
∼= Pic A0,n

for all n ≥ 1 so for our purposes we can just as well work with A0,n instead of
directly with ZCpn . It is easy to see that there exists a pullback diagram

Ak,l+1

ik,l+1
//

jk,l+1

��

Z[ζk+l]

Nk,l

{{www
wwww

wwww
www

fk,l

��

Ak,l

gk,l
// Dk,l

(2.1)

where ik,l+1(xk,l+1) = ζk+l, jk,l+1(xk,l+1) = xk,l, fk,l(ζk+l) = x̄k,l and gk,l is just
taking classes modulo p. The norm-maps Nk,l will be constructed later in this
paper. These maps are really the key to our methods.

The pullback 2.1 induces a Mayer-Vietoris exact sequence

Z[ζn]∗ ⊕ A∗
0,n → D∗

0,n → Pic A0,n+1 → Pic Z[ζn] ⊕ Pic A0,n → Pic D0,n,

Since D0,n is local, Pic D0,n = 0 and since Z[ζn] is a Dedekind ring, Pic Z[ζn] ∼=
Cl Z[ζn]. By letting Vn be the cokernel

Vn :=
D∗

0,n

Im{Z[ζn]∗ × A∗
0,n → D∗

0,n}
we get an exact sequence

0 → Vn → Pic A0,n+1 → Cl Z[ζn] ⊕ Pic A0,n → 0.

Note that definition of Vn is slightly different from the one from [K-M] but the
two groups are isomorphic. By abuse of notation, let c denote the automorphisms
on A∗

k,l, Z[ζn]∗ and D∗
k,l induced by c(t) = t−1 for t = xk,l, t = ζn and t = x̄k,l

respectively. We also denote the maps induced on Vn and Vn by c.

Before moving on we need to introduce the map Nk,l. An element a ∈ Ak,l+1 can
be uniquely represented as a pair (al, bl) ∈ Z[ζk+l]×Ak,l. Using a similar argument
on bl, and then repeating this, we find that a can also be uniquely represented
as an (l + 1)-tuple (al, . . . , am, . . . , a0) where am ∈ Z[ζk+m]. In the rest of this
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paper we will identify an element of Ak,l+1 with both its representations as a pair
or an (l + 1)-tuple.

For k ≥ 0 and l ≥ 1 let Ñk+l,l : Z[ζk+l] → Z[ζk] denote the usual norm.

Proposition 2.1. For each k ≥ 0 and l ≥ 1 there exists a multiplicative map
Nk,l such that the diagram

Z[ζk+l]

fk,l

��

Nk,l

||yyyyyy
yyyyyyy

Ak,l

gk,l
// Dk,l

is commutative. Moreover, if a ∈ Z[ζk+l], then

Nk,l(a) = (Ñk+l,1(a), Nk,l−1(Ñk+l,1(a))) = (Ñk+l,1(a), Ñk+l,2(a), . . . , Ñk+l,l(a)).

The construction of Nk,l can be found in [ST2]. Since it may not be well known
we will for completeness repeat it here. Before this we notice an immediate
consequence of the commutativity of the diagram in Proposition 2.1.

Corollary 2.2. Vn =
D∗

0,n

Im{A∗

0,n→D∗

0,n}

Proof. The maps Nk,l will be constructed inductively. If i = 1 and k is arbitrary,

we have Ak,1
∼= Z[ζk] and we define Nk,1 as the usual norm map Ñk+1,1. Since

Ñk+1,1(ζk+1) = ζk we only need to prove that our map is additive modulo p, which
follows from the lemma below.

Lemma 2.3. For k ≥ 0 and l ≥ 1 we have

i) Ak+1,l is a free Ak,l-module under xk,l 7→ xp
k+1,l.

ii) The norm map N : Ak+1,l → Ak,l, defined by taking the determinant of the
multiplication operator, is additive modulo p.

This is Lemma 2.1 and Lemma 2.2 in [ST2] and proofs can be found there.

Now suppose Nk,j is constructed for all k and all j ≤ l − 1. Let ϕ = ϕk+1,l :
Z[ζk+l] → Ak+1,l be defined by ϕ(a) = (a, Nk+1,l−1(a)). It is clear that ϕ is
multiplicative. From the lemma above we have a norm map N : Ak+1,l → Ak,l.
Define Nk,l := N ◦ϕ. It is clear that Nk,l is multiplicative. Moreover, Nk,l(ζk+l) =
N(ζk+l, xk+1,l−1) = N(xk+1,l) = xk,l, where the latter equality follows by a direct
computation. To prove that our map makes the diagram in the proposition above
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commute, we now only need to prove it is additive modulo p. This also follows
by a direct calculation once you notice that

ϕ(a + b) − ϕ(a) − ϕ(b) =
xpk+l+1

k+1,l − 1

xpk+l

k+1,l − 1
· r,

for some r ∈ Ak+1,l.

Regarding the other two equalities in Proposition 2.1, it is clear that the second
one follows from the first. The first statement will follow from the lemma below.

Lemma 2.4. The diagram

Z[ζk+l]
N //

Nk,l

��

Z[ζk+l−1]

Nk−1,l

��

Ak,l
N // Ak−1,l

is commutative

Proof. Recall that the maps denoted N (without subscript) are the usual norms
defined by the determinant of the multiplication map. An element in Ak,l can be
represented as a pair (a, b) ∈ Z[ζk+l−1] × Ak,l−1 and an element in Ak−1,l can be
represented as a pair (c, d) ∈ Z[ζk+l−2] × Ak−1,l−1. If (a, b) represents an element
in Ak,l one can, directly from the definition, show that N(a, b) = (N(a), N(b)) ∈
Ak−1,l. We now use induction on l. If l = 1 the statement is well known. Suppose
the diagram corresponding to the one above, but with i replaced by i − 1, is
commutative for all k. If a ∈ Z[ζk+l] we have

N(Nk,l(a)) = N(N((a, Nk+1,l−1(a))) = ((N(N(a)), N(N(Nk+1,l−1(a))))

and

Nk−1,l(N(a)) = (N(N(a)), N(Nk,l−1(N(a)))).

By the induction hypothesis Nk,l−1◦N = N ◦Nk+1,l−1 and this proves the lemma.

With the proof of this Lemma the proof of Proposition 2.1 is complete.

We will now use our the maps Nk,l to get an inclusion of Z[ζk+l−1]
∗ into A∗

k,l.
Define ϕk,l : Z[ζk+l−1]

∗ → A∗
k,l be the injective group homomorphism defined by

ε 7→ (ε, Nk,l(e)). By Proposition 2.1, ϕk,l is well defined. For future use we record
this in a lemma.
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Lemma 2.5. Let Bk,l be the subgroup of A∗
k,l consisting of elements (1, b), b ∈

A∗
k,l−1. Then A∗

k,l
∼= Z[ζk+l−1]

∗ × Bk,l

In what follows, we identify Z[ζk+l−1]
∗ with its image in A∗

k,l.

Before we move on we will state a technical lemma which is Theorem I.2.7 in
[ST3].

Lemma 2.6. ker(gk,l|Z[ζk+l−1]∗) = {ε ∈ Z[ζk+l−1]
∗ : ε ≡ 1 mod λpk+l−pk

k+l−1 }

We will not repeat the proof here, but since the technique used is interesting
we will indicate the main idea. If a ∈ Z[ζk+l−1]

∗ and gk,l(a) = 1 we get that
a ≡ 1 mod p in Z[ζk+l−1], Nk,l−1(a) ≡ 1 mod p in Ak,l−1 and that fk,l−1

(
a−1

p

)
=

gk,l−1

(Nk,l−1(a)−1

p

)
. Since the norm map commutes with f and g this means that

Nk,l−1(
a−1

p
) ≡ Nk,l−1(a)−1

p
. The latter is a congruence in Ak,l−1 and by the same

method as above we deduce a congruence in Z[ζk+l−2] and a congruence in Ak,l−2.
This can be repeated l − 1 times until we get a congruence in Ak,1

∼= Z[ζk]. The
last congruence in general looks pretty complex, but can be analyzed and gives
us the neccesary information.

If for example l = 2, we get after just one step a ≡ 1 mod p in Z[ζk+1], N(a) ≡ 1

mod p and N(a−1
p

) ≡ N(a)−1
p

mod p in Ak,1
∼= Z[ζk], where N is the usual norm.

By viewing N as a product of automorphisms, recalling that N is additive modulo
p and that the usual trace of any element of Z[ζk+1] is divisible by p, we get that
N(a) ≡ 1 mod p2 and hence that N(a−1

p
) ≡ 0 mod p. By analyzing how the

norm acts one can show that this means that a ≡ 1 mod λpk+2−pk

k+1

In the rest of this paper we paper will only need the the rings Ak,l and Dk,l in the
case k = 0. Therefore we will simplify the notation a little by setting Al := A0,l,
Dl := D0,l, gl := g0,l, fl := f0,l, il := i0,l, jl := j0,l and Nl := N0,l.

Now define Vn as

Vn :=
D̃∗

n

Im{Z̃[ζn−1]∗ → D̃∗
n}

,

where Z̃[ζn−1]
∗ are the group of all units ε such that ε ≡ 1 mod λn−1, where λn

denotes the ideal (ζn − 1), and D̃∗
n are the units that are congruent to 1 modulo

the class of (x̄− 1) in D∗
n. This definition is equivalent to the definition in [K-M]

by the following Proposition.

Proposition 2.7. The two definitions of Vn coincide.
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Proof. The kernel of the surjection (Fp[x]/(x − 1)pn

)∗ → (Fp[x]/(x − 1)pn−1)∗ =

D∗
n consists of units congruent to 1 mod (x − 1)pn−1. Let η := ζ

pn+1+1
2

n . Then

η2 = ζn and c(η) = η−1. Let ε := ηpn+1−η−(pn+1)

η−η−1 . One can by a direct calculation

show that ε = 1+(ζn−1)pn−1+t(ζn−1)pn

for some t ∈ Z[ζn]. If a = 1+apn−1(xn−
1)pn−1 ∈ (Fp[x]/(x − 1)pn

)∗, apn−1 ∈ F∗
p, Then it is just a matter of calculations

to show that a = fn(ε)apn
−1 . This shows that (Fp[x]/(x − 1)pn

)∗/f ′
n(Z[ζn]∗) ∼=

(Fp[x]/(x − 1)pn−1)∗/fn(Z[ζn]∗). Since

Z[ζn]∗

N

{{vvvvvvvvvvvvvv

f

��

Z[ζn−1]
∗ g

// D̃∗+
n

is commutative and N (which is the restriction of the usual norm-map) surjective
when p is semi-regular (Lemma 3.3) the proposition follows.

3. On Conjecture 2

Let V+
n := {v ∈ Vn : c(v) = v}. What we want to do is to find the structure of

V+
n . For n ≥ 0 and k ≥ 0, define

Un,k := {real ε ∈ Z[ζn]∗ : ε ≡ 1 mod λk
n}.

One of our main results is the following proposition.

Proposition 3.1. If p is semi-regular, |V+
n | = |V+

n−1|·|Un−1,pn−1/(Un−1,pn−1+1)
(p)|.

Here U (p) denotes the group of p-th powers of elements of the group U .

For k = 0, 1, . . ., define rk by

|Uk,pk+1−1/(Uk,pk+1)
(p)| = prk .

By Lemma 2 in [ST1] we get that Uk,pk+1−1 = Uk,pk+1 and since the the λn-adic
valuation of ε − 1, where ε is a real unit, is even, Uk,pk+1 = Uk,pk+1+1. We hence
have

Lemma 3.2. Uk,pk+1−1 = Uk,pk+1+1.

One can prove that r0 = r(p), the index of irregularity, since if the λ0-adic
valuation of ε ∈ Z[ζ0]

∗+ is less than p−1, then local considerations show that the
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extension Q(ζ0) ⊆ Q(ζ0, p
√

ε) is ramified. The result then follows from the fact
that

U0,p−1

(U0,2)p
∼= S0

pS0

where S0 is the p-class group of Q(ζ0).

Before the proof of Proposition 3.1 we will state and a lemma, which is well-
known.

Lemma 3.3. If p is semi-regular Nn−1 : Z[ζn−1] → An−1 maps Un−1,1 surjectively
onto Un−2,1.

Proof of Proposition 3.1. In a similar way as the ideal λn := (ζn − 1) equal
the ideal (ζn − ζ−1

n ) in Z[ζn] one can show that that (x̄ − 1) = (x̄ − x̄−1) in Dn.
It is easy to show that D̃∗+

n can be represented by elements 1 + a2(x̄ − x̄−1)2 +

a4(x̄ − x̄−1)4 + . . . + apn−3(x − x−1)pn−3, ai ∈ Fp. Hence |D̃∗+
n | = p(pn−3)/2. We

want to evaluate

|D̃∗+
n |/|gn(Un−1,1)|.

By Lemma 2.6 we have

gn(Un−1,1) ∼=
Un−1,1

Un−1,pn−1

.

Since gn(Un−1,1) ⊆ gn(Z[ζn−1]
∗+) ⊆ D̃∗+

n the group Un−1,1/Un−1,pn−1 is finite.
Similarly Z[ζn−1]

∗+/Un−1,pn−1 is finite. This shows that Z[ζn−1]
∗+/Un−1,1 is finite

since
∣∣Z[ζn−1]

∗+

Un−1,1

∣∣∣∣ Un−1,1

Un−1,pn−1

∣∣ =
∣∣Z[ζn−1]

∗+

Un−1,pn−1

∣∣.

We can write
∣∣ Un−1,1

Un−1,pn−1

∣∣ =
∣∣ Un−1,1

Un−1,pn−1−1

∣∣∣∣Un−1,pn−1−1

Un−1,pn−1+1

∣∣∣∣Un−1,pn−1+1

Un−1,pn−1

∣∣ =

=
∣∣ Un−1,1

Un−1,pn−1−1

∣∣∣∣Un−1,pn−1−1

Un−1,pn−1+1

∣∣∣∣Un−1,pn−1+1/(Un−1,pn−1+1)
p

Un−1,pn−1/(Un−1,pn−1+1)p

∣∣ =

=
∣∣ Un−1,1

Un−1,pn−1−1

∣∣∣∣Un−1,pn−1−1

Un−1,pn−1+1

∣∣∣∣ Un−1,pn−1+1

(Un−1,pn−1+1)p

∣∣∣∣ Un−1,pn−1

(Un−1,pn−1+1)p

∣∣−1

(3.1)

By Dirichlet’s theorem on units we have (Z[ζn−1]
∗)+ ∼= Z

pn
−pn−1

2
−1 Since all quo-

tient groups involved are finite we get that Un−1,1, Un−1,pn−1, Un−1,pn−1−1 and

Un−1,pn−1+1 are all isomorphic to Z
pn

−pn−1

2
−1. The rest of the proof is devoted to

the analysis of the four right hand factors of 3.1.
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Obviously,

Un−1,pn−1+1

(Un−1,pn−1+1)p
∼= Z

pn
−pn−1

2
−1

(pZ)
pn

−pn−1

2
−1

∼= C
pn

−pn−1

2
−1

p .

This shows that

∣∣ Un−1,pn−1+1

(Un−1,pn−1+1)p

∣∣ = p
pn

−pn−1

2
−1.

We now turn to the second factor of the right hand side of 3.1. We will show
that this number is p by finding a unit ε 6∈ Upn−1+1 such that

< ε >=
Un−1,pn−1−1

Un−1,pn−1+1

.

Since the p-th power of any unit in Un−1,pn−1−1 belongs to Un−1,pn−1+1 this is

enough. Let ζ = ζn−1 and η := ζ
pn+1

2 . Then η2 = ζ and c(η) = η−1. Let

ε := ηpn−1+1−η−(pn−1+1)

η−η−1 . Then c(ε) = ε and one can by direct calculations show
that ε is the unit we are looking for.

We now want to calculate

∣∣ Un−1,1

Un−1,pn−1−1

∣∣.

Consider the commutative diagram

Z[ζn−1]
∗

Nn−1

{{wwwwwwwwwwwwww

fn−1

��

A∗
n−1

gn−1
// D∗

n−1

It is clear that fn−1(Un−1,1) ⊆ D̃∗+
n−1 and that gn−2(Un−2,1) ⊆ D̃∗+

n−1. By Lemma 3.3
we have a commutative diagram

Un−1,1

N

{{xxxxxxxxxxxxxx

f

��

Un−2,1
g

// D̃∗+
n−1

where N is surjective. Clearly, f(Un−1,1) = g(Un−2,1).
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It is easy to see that ker(f) = Un−1,pn−1−1 so by above

Un−1,1

Un−1,pn−1−1

∼= f(Un−1,1) = g(Un−2,1).

Now recall that by definition V
+
n−1 = D̃∗+

n−1/g(Un−2,1). Hence

∣∣ Un−1,1

Un−1,pn−1−1

∣∣ = |g(Un−2,1)| = |D̃∗+
n−1||V+

n−1|−1 = p
pn−1

−3
2 |V+

n−1|−1.

This finally gives

|V+
n | = |D̃∗+

n ||g(Un−1,1)|−1 =

= p
pn

−3
2 · p− pn−1

−3
2 · |V+

n−1| · p−1 · p− pn
−pn−1

2
+1 ·

∣∣ Un−1,pn−1

(Un−1,pn−1+1)p

∣∣ =

= |V+
n−1| ·

∣∣ Un−1,pn−1

(Un−1,pn−1+1)p

∣∣

which is what we wanted to show.

Recall that λkZ[ζk+1] = λp
k+1 as ideals in Z[ζk+1]. By Lemma 3.2, the inclusion

of Z[ζk] in Z[ζk+1] induces an inclusion of Uk,pk+1−1 = Uk,pk+1+1 into Uk+1,pk+2+p ⊆
Uk+1,pk+2−1. Since a p-th power in Z[ζk] obviously is a p-th power in Z[ζk+1] we
get an homomorphism of

Uk,pk+1−1

(Uk,pk+1)(p)
→ Uk+1,pk+2−1

(Uk+1,pk+1+1)(p)
.(3.2)

If ε ∈ Uk,pk+1−1 is a not p-th power in Z[ζk] then one can show that Q(ζk) ⊆
Q(ζk, ε) is an unramified extension of degree p. If ε would be a p-th power
in Z[ζk+1] we would get Q(ζk+1) = Q(ζk, ε) which is impossible since Q(ζk) ⊆
Q(ζk+1) is ramified. Hence the homomorphism 3.2 is injective. This shows that
the sequence {rk} non-decreasing.

Since it is known by for example [K-M] that |V+
1 | = pr0 , by induction and Propo-

sition 3.1 we now immediately get:

Proposition 3.4. |V+
n | = pr0+r1+...+rn−1 .

On the other hand, recall that [K-M] provide us with an injection of Char(V+
n )

into Cl(p)(Q(ζn−1))
−, the p-component of the class group of Q(ζn−1). This shows

that the number of elements in V+
n is bounded by the number of elements in

Cl(p)(Q(ζn−1))
−. By Iwasawas theorem, there are numbers λ ≥ 0, µ ≥ 0 and ν

such that |Cl(p)(Q(ζn−1)
−| = pλ(n−1)+µpn+ν for all n big enough. It has later been

proved that µ = 0. This immediately implies the following proposition.



48 OLA HELENIUS AND ALEXANDER STOLIN

Proposition 3.5. There is a number n0 such that for n ≥ n0, |V+
n | ≤ pλ(n−1)+ν

By comparing the sequences {r0 + r1 + . . . + rn−1} and {λ(n− 1) + ν} for big n,
remembering that rk is non-decreasing, we now obtain the following

Proposition 3.6. rk ≤ λ for all k and that there exists a number N such that
rN+k = rN for all k ≥ 0.

Now recall that if Assumption 1 is satisfied, then 1.4 holds so

|V +
n | = pr0n+(λ−r0)(n−1) = pλ(n−1)+r0 .

Since V +
n is a quotient of V+

n applying this to n = n0 + 1 yields

r0 + λn0 ≤ r0 + r1 + . . . + rn0 ≤ r0 + n0rn0 ≤ r0 + n0λ.

This obviously implies that rk = λ for all k = 1, 2, . . ..

Lemma 3.7. When Assumtion 1 holds rk = λ for all k = 1, 2, . . ..

The following theorem is now immediate.

Theorem 3.8. If Assumtion 1 holds, then V+
n = V +

n .

We end this section by discussing another type of assumption on the semi-regular
prime p.

Assumption 2. rankp(Cl(p)(Q(ζn))−) = rn.

This assumtion always holds for n = 0. Note that by the proof of Proposition 4.1,
the rankp(Cl(p)(Q(ζn))−) is always greater or equal to rn. Under Assumption 1

it follows from [K-M] and [U2] that rankp(Cl(p)(Q(ζn))−) = λ when n = 1, 2, . . . .
This and Lemma 3.7 means that Assumption 1 implies Assumption 2. It is
worth noting that Assumption 2 implies that the character group of Sn/pSn,

where Sn = Cl(p)(Q(ζn))−, is generated by units from Un,pn+1−1.

Again, recall that r0 = r(p) and that the sequence {rk} is non-decreasing.

Theorem 3.9. If Assumption 2 holds

V
+
n
∼=

( Z

pnZ

)r0 ⊕
( Z

pn−1Z

)r1−r0 ⊕ . . . ⊕
( Z

pZ

)rn−1−rn−2 .

Before the proof we need some results.

Lemma 3.10. There exists a surjection πn : V+
n → V

+
n−1.
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Proof of Lemma 3.10. The canonical surjection jn : An → An−1 can be con-
sidered mod (p) and hence yields a surjection j̄n : Dn → Dn−1. Suppose that
ū ∈ D∗+

n−1, v̄ ∈ D∗+
n , j̄n(v̄) = ū and that v̄ = gn(v), where v = (ε, Nn−1(ε)),

ε ∈ Z[ζn−1]. Then jn(v) = Nn−1(ε), and ū = j̄n(v̄) = j̄ngnNn−1(ε). But
Nn−1(ε) = (Ñn−1,1(ε), Nn−2Ñn−1,1(ε)) by Proposition 2.1. In other words, if v̄
represents 1 in Vn, then j̄n(v̄) represents 1 in Vn−1 so the map j̄n induces a well
defined surjection V

+
n → V

+
n−1.

Proposition 3.11. For any semi-regular prime p, ker πn
∼= (Z/pZ)rn−1 .

Proof. Proposition 3.1 and the definition of rn clearly implies that | kerπn| =
prn−1 . We need to prove that any element in ker πn has order at most p. Suppose
that in the surjection D∗+

n → D∗+
n−1, the element u ∈ D∗+

n−1 is the image of
v ∈ D∗+

n and suppose u = gn−1((ε, Nn−2(ε))) for some ε ∈ Un−2,1 ⊂ Z[zn−2]. For
some a ∈ An, v = gn(a) and (ε, Nn−2(ε)) = jn(a). Since p is semi-regular we
know from Lemma 3.3 that the norm map Nn−1 resticted to Un−1,1 is surjective

onto Un−2,1 and acts as the usual norm Ñn−1,1. Hence there exists ε′ ∈ Un−1,1

such that Nn−1(ε
′) = (ε, Nn−2(ε)). This means that (ε′, Nn−1(ε

′)) ∈ A∗+
n maps to

(ε, Nn−2(ε)) under jn. Since fn−1(ε
′) = gn−1Nn−1(ε

′) = u and all the maps come
from a pullback we get that a = (ε′, Nn−1(ε

′)), that is, v is the image of a unit in
Un−1,1. Now define D̃∗+

n,(k) := {a ∈ D̃∗+
n : a ≡ 1 mod (x − 1)k}. Then

ker πn =
ker{D̃∗+

n → D̃∗+
n−1}

ker{D̃∗+
n → D̃∗+

n−1} ∩ gn(Z[ζn−1]∗+)
=

D̃∗+
n,(pn−1−1)

gn(Un−1,pn−1−1)
.

Now note that if b ∈ D̃∗+
n,(pn−1), then bp = 1 so such a unit clearly has order p. We

will show that any unit a ∈ D̃∗+
n,(pn−1−1) can be written as a = bgn(ε)k for some b ∈

D̃∗+
n,(pn−1), natural number k and ε ∈ Un−1,pn−1−1. Then ap = bpgn(ε)kp is clearly

trivial in ker πn ⊆ V
+
n . Let η := ζ

pn+1
2

n−1 . Then η2 = ζn−1 and c(η) = η−1. Let

ε := ηpn−1+1−η−(pn−1+1)

η−η−1 . One can by a direct calculation show that ε ∈ Un−1,pn−1−1\
Un−1,pn−1+1. In fact, ε = 1 + epn−1−1(ζn−1 − ζ−1

n−1)
pn−1−1 + t(ζn−1 − ζ−1

n−1)
pn−1+1 for

some non-zero epn−1−1 ∈ Z[zn−2], not divisible by λn−1, and some t ∈ Z. Suppose

a = 1 + apn−1−1(xn−1 − x−1
n−1)

pn−1−1 + . . . ∈ D̃∗+
n,(pn−1−1), apn−1−1 ∈ F∗

p. Since

epn−1−1 is not divisible by λn−1, gn(ε) ∈ F∗
p Hence we can choose k such that

kgn(epn−1−1) ≡ apn−1−1 mod p. Then it is just a matter of calculations to show

that a = bgn(ε)k, where b ∈ D̃∗+
n,(pn−1), which concludes the proof

Proof of Theorem 3.9. Induction with respect to n. If n = 1 the result is
known from for example [K-M]. Suppose the result holds with the index equal to
n − 1. There are no elements in D∗

n with order greater than pn and hence there
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are no elements in V+
n with order greater than pn. Since V+

n is a p-group,

V
+
n
∼=

( Z

pnZ

)an ⊕
( Z

pn−1Z

)an−1 ⊕ . . . ⊕
( Z

pZ

)a1 .

By Proposition 3.11 and the assumtion we have an exact sequence

0 →
( Z

pZ

)rn−1 →
n⊕

i=1

( Z

piZ

)ai →
n−2⊕

i=1

( Z

piZ

)r(n−1)−i−r(n−2)−i ⊕
( Z

pn−1Z

)r0 → 0.

The injection from [K-M], V+
n → Char Cl(p)(Q(ζn−1))

−) together with Assum-
pion 2 means V

+
n has at most rn−1 generators. Hence V

+
n has exactly rn−1 gener-

ators and we get

V
+
n
∼=

( Z

pnZ

)r0 ⊕
( Z

pn−1Z

)r1−r0 ⊕ . . . ⊕
( Z

pZ

)rn−1−rn−2

4. The Kervaire-Murthy conjectures when rn = r(p)

We now proceed by making a different assumtion under we will give a constructive
proof of the two Kervaire-Murthy conjectures.

Assumption 3. rankp(Cl(p)(Q(ζn))−) = r(p) for all n.

This holds for example if the Iwasava invariant λ satisfy λ = r(p) =: r which
follows from, for instance, certain congruence assumptions on Bernoulli num-
bers (see page 202 in [W]). Under this assumption we can prove the following
proposition.

Proposition 4.1. Let p be an odd semi-regular, prime and let r = r(p) be
the index of irregularity of p. Suppose the Assumption 3 holds. Then prn :=∣∣ U

n,pn+1
−1

(Un,pn+1)p

∣∣ = pr for all n ≥ 0.

Again, since it is proved in [K-M] that V
+
1
∼= (Z/pZ)r, induction and Propositions

4.1 and 3.1 now gives us the following theorem.

Theorem 4.2. When Assumption 3 holds, |V+
n | = pnr.

Proof of Proposition 4.1. By Lemma 3.2 we need to calculate the number
|Un,pn+1+1/(Un,pn+1)

p|. Denote the field Q(ζn) by Kn and let Ln be the max-
imal unramified extension of Kn of period p. Clearly, Gn := Gal(Ln/Kn) =

Cl(p)(Kn)/p Cl(p)(Kn). By the assumption |Gn| = pr. It is known by Iwasawa
theory that Gn = G−

n . If ε ∈ Un,pn+1+1 it follows from local considerations that
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the extension Kn ⊆ Kn( p
√

ε) is unramified so Kn( p
√

ε) ⊆ Ln. Using Kummer’s
pairing we get a bilinear map Gn × Un,pn+1+1 → 〈ζ0〉, (σ, ε) 7→ σ(ε)ε−1. The
kernel on the right is obviously the group of all p-th powers of elements in Z[ζn]
belonging to Un,pn+1+1 which is (Un,pn+1)

p. It is enough to prove that the kernel

on the left is trivial. Then,
U

n,pn+1+1

(Un,pn+1)p
∼= Char(Gn). Since |Gn| = pr this proves the

theorem. Suppose < σ, ε >= 1 for all ε. If we can show that every unramified ex-
tension Kn ⊂ L of degree p is given by L = K0(γ), where γ is a p-th root of some
ε ∈ Un,pn+1+1 we are done. Again, |Gn| = pr, so there are r distinct unramified
extensions of degree p. We now use induction. Let n = 0 and suppose K0 ⊂ L is
an unramified extension of degree p. It is well known that such an extension can
be generated by p

√
ε for some real unit ε. If ε ∈ U0,s and ε 6∈ U0,s+1, then local

considerations show that s ≤ p− 1 implies that K0 ⊂ K0( p
√

ε) is ramified. Hence
L = K0( p

√
ε) where ε ∈ U0,p = U0,p+1. Now suppose every unramified extension of

Kn−1 is given by a p-th root of a unit, that is we have r units ε1, . . . , εr ∈ Un−1,pn+1

such that each distinct extension Ei, i = 1, 2, . . . r is generated by a p-th root
of εi. Consider εi as elements of Kn. A straightforward calculation shows that
εi ∈ Un,pn+1+1. Hence a p-th root of εi either generate an unramified extension of
Kn of degree p or p

√
εi ∈ Kn. The latter case can not hold since then we would get

Ei = Kn which is impossible since Ei is unramified over Kn−1 while Kn is not.
Hence we have found r distinct extension of Kn and this concludes the proof.

Now recall that for n = 1 it is proved in [K-M] that V
+
1

∼= (Z/pZ)r. Suppose
the result holds for all k ≤ n. Then V

+
n−1

∼= (Z/pn−1Z)r and the surjection πn :
V+

n → V
+
n−1 from Lemma 3.10 means that V+

n has at least r generators. By our

assumtion Cl(p) Q(ζn−1) has r generators and by using the injection CharV+
n →

Cl(p) Q(ζn−1) we get that V+
n has at most, and hence by above exactly r generators.

By Theorem 4.2 |V+
n | = prn. Since no elements in D∗+

n and hence no elements in
V

+
n have order greater than pn we now get the following theorem by induction.

Theorem 4.3. If p is a semi-regular prime and r the index of irregularity and
Assumption 3 holds, then V+

n
∼= (Z/pnZ)r.

We now proceed to show how we can directly show that V+
n = V +

n when V+
n
∼=

(Z/pnZ)r. The proof of this relies of constructing a certain basis for D+
n−1 con-

sisting of norms of elements from Z[ζn−1]
∗ considered mod p.

Let Φ : Un−1,pn−pn−1 → D+
n−1 be defined by

Φ(ε) = Nn−1

(ε − 1

p

)
− Nn−1(ε) − 1

p
mod p.

Since Nn−1 is additive mod p one can show with some simple calculations that
Φ is a group homomorphism. See Lemmas 4.8 and 4.14 for details.
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Explicitly, what we want to prove is the following.

Theorem 4.4. If V
+
n
∼= (Z/pnZ)r, then Φ is a surjective group homomorphism.

As we can see by the following corollary, the theorem is what we need.

Corollary 4.5. If V+
n
∼= (Z/pnZ)r, then V +

n = V+
n

Proof of the Corollary. We want to show that for any (1, γ) ∈ A∗
n there exists

(ε, Nn−1(ε)) ∈ A∗
n such that (1, γ) ≡ (ε, Nn−1(ε)) mod p, or more explicitly that

for all γ ∈ A∗+
n−1, γ ≡ 1 mod p there exists ε ∈ Z[ζn−1]

∗ such that (ε, N(ε)) ≡ (1, γ)
mod p in An. This is really equivalent to the following three statements in Z[ζn−1],
An−1 and Dn−1 respectively

ε ≡ 1 mod p

Nn−1(ε) ≡ γ mod p

Nn−1

(ε − 1

p

)
≡ Nn−1(ε) − γ

p
mod p

Note that (1, γ) ∈ An implies gn−1(γ) = fn−1(1) in Dn−1, or in other words, that
γ ≡ 1 mod p. Hence we only need to show that for any γ ∈ A∗+

n−1 there exists
ε ∈ Un−1,pn−pn−1 such that

Nn−1

(ε − 1

p

)
− Nn−1(ε) − 1

p
≡ 1 − γ

p
mod p.

But the left hand side is exactly Φ(ε) so the corollary really does follow from
Theorem 4.4

We now proceed to start proving Theorem 4.4. Recall that r = r(p) are the
number of indexes i1, i2 . . . ir among 1, 2 . . . (p − 3)/2 such that the nominator of
the Bernoulli number Bik (in reduced form) is divisible by p.

Let Ēn : Dn → D∗
n be the truncated exponantial map defined by

Ēn(y) = 1 + y +
y2

2!
+ . . . +

yp−1

(p − 1)!

and let L̄n : D∗
n → Dn be the truncated logarithm map

L̄n(1 + y) = y − y2

2
+ . . . − yp−1

(p − 1)
.

We also consider the usual λ-adic log-map defined by a power series as usual.

We denote the cyclytomic units of Z[ζ0]
∗+ by C+

0 . Let M be the group of real
λ0-adic integers with zero trace. Any a ∈ M can be uniquely presented as a =∑m−1

i=1 biλ
2i
0 , m = (p−1)/2. Consider the homomorphism Ψ : Z[ζ0]

∗ → M defined
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by ε 7→ log(εp−1). Following [B-S], page 370-375, we see that there are exactly r
elements λ2i

0 , namely λ2ik
0 , such that λ2i

0 6∈ Ψ(C+
0 ). This implies that for exactly

the r indexes i1, i2 . . . ir we have (x̄1 − x̄−1
1 )2ik 6= g1(log(εp−1)) for any ε ∈ C+

0 .

Suppose (x − x−1)2is = g1(log ε) for some ε ∈ Z[ζ0]
∗+. It is well known that the

index of C+
0 in Z[ζ0]

∗+ equals the classnumber h+ of Q(ζ0)
+. Since p is semi-

regular there exists s with (s, p) = 1 such that εs ∈ C+
0 and by co-primality

of s(p − 1) and p we can find u, v such that 1 = s(p − 1)u + pv. Then ε =
εs(p−1)u+pv = (εs)p−1εpv so log((εsu)(p−1)u) = log ε− pv log ε ≡ log ε ≡ (x− x−1)2is ,
which is a contradiction. Hence (x − x−1)2is 6∈ g1(log Z[ζ0]

∗+). Since formally,
exp(log(1 + y)) = 1 + y it is not hard to see that E1(L1(1 + y)) ≡ 1 + y mod p
and that we have a commutative diagram

Z̃[ζ0]
∗+

log

��

L1

""E
EE

EE
EE

EE
EE

EE

g1

((QQQQQQQQQQQQQQQQQQQQQQQ

M
mod p

// D+
1

Ē1 //
D∗+

1
L̄1

oo

Recall that D∗+
n,(s) := {y ∈ D∗+

n : y ≡ 1 mod (x − x−1)s} and that we know that

V
+
1 := D∗+

1 /g1(Z[ζ0]
∗+) has r := r(p) generators. If we now apply the map E1

and do some simple calculations we now get the following proposition.

Proposition 4.6. The r elements Ē1((x1 − x−1
1 )2ik) generate D∗+

1 /g1(Z[ζ0]
∗+)

and belong to D∗+
1,(2) but do not belong to D∗+

1,(p−2).

We now want to lift this result to D∗+
n . From now on (exepting Lemma 4.11) we

will denote the generator x ∈ Dn by xn.

Proposition 4.7. If Assumption 3 holds, then the r elements Ēn((xn − x−1
n )2ik)

generate the group V+
n := D∗+

n /gn(Z[ζn−1]
∗+). The elements Ēn((xn−x−1

n )2ik)pn−1

are non-trivial in V+
n , belong to D∗+

n,(pn−1) but do not belong to D∗+
n,(pn−2pn−1)

Proof. Induction on n. If n = 1 this is exactly Proposition 4.6. Suppose the
statement holds for the index equal to n − 1. The diagram

Z[ζn−1]
∗+ //

Ñn,1

��

D∗+
n

��

Z[ζn−2]
∗+ // D∗+

n−1

(4.1)
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is commutative. Hence, if zn ∈ D∗
n is mapped to zn−1 ∈ D∗

n−1 and zn−1 6∈
Im Z[ζn−2]

∗, then zn 6∈ Im Z[ζn−1]
∗. Moreover, zp

n 6∈ Im Z[ζn−1]
∗ in this case.

This follows from the fact that V+
m

∼= (Z/pmZ)r for all m. Hence, if an element
z ∈ V+

n has order p, then the surjection V+
n → V

+
n−1 maps z to the neutral

element in V
+
n−1. Now, the elements Ēn((xn − x−1

n )2ik)pn−1
are not in the image

of Z[ζn−1]
∗ by Theorem 4.3 and since Ēn((xn − x−1

n )2ik)pn−2
clearly map onto

Ēn−1((xn−1 − x−1
n−1)

2ik)pn−2 6∈ gn−1(Z[ζn−2]
∗+) by induction. Finally, since 1 ≤

2ik ≤ p − 1 we get pn−1 ≤ 2pn−1ik ≤ pn − 2pn−1 and this means that all the
elements

Ēn((xn − x−1
n )2ik)pn−1

= (1 + (xn − x−1
n )2ik + . . .)pn−1

=

= 1 + (xn − x−1
n )2pn−1ik + . . .

fulfil our requirements.

Recall that c : Dn → Dn is the map induced by x̄ 7→ x̄−1 and that D+
n := {a ∈

Dn : c(a) = a} Define ϕ : U+
n−1,pn−pn−1 → D+

n−1 by ϕ(γ) = Nn−1

(
γ−1

p

)
mod p.

Lemma 4.8. ϕ is a homomorphism from the multiplicative group U+
n−1,pn−pn−1

to the additive group D+
n−1 and the kernel is U+

n−1,pn−1 = U+
n−1,pn+1.

Proof. Let ε and γ belong to ∈ U+
n−1,pn−pn−1. Then, since Nn−1 is additive mod

p and Nn−1(ε) ≡ 1 mod p,

Nn−1

(εγ − 1

p

)
≡ Nn−1

(ε(γ − 1) + (ε − 1)

p

)
≡

≡ Nn−1(ε)Nn−1

(γ − 1

p

)
+ Nn−1

(ε − 1

p

)
≡

≡ Nn−1

(γ − 1

p

)
+ Nn−1

(ε − 1

p

)
mod p

so ϕ is a homomorphism. Suppose Nn−1((γ − 1)/p) ≡ 0 mod p. Then, by
Proposition 2.1, fn−1((γ−1)/p) = 0 which means γ ∈ U+

n−1,pn−1 = U+
n−1,pn+1 (the

latter equality is due to Lemma 3.2).

In this notation, what we want to prove is the following

Proposition 4.9. If Assumption 3 holds, then the map

ϕ̃ : (Un−1,pn−pn−1)/(Un−1,pn+1) → D+
n−1

induced by ϕ is an isomorphism.

Since ϕ̃ is obviously injective it is enough to prove the following proposition
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Proposition 4.10. Suppose Assumption 3 holds. Then

|D+
n−1| =

∣∣∣Un−1,pn−pn−1

Un−1,pn+1

∣∣∣.

Proof. Recall that |D+
n−1| = p

pn−1
−1

2 so we need to prove that

|(Un−1,pn−pn−1)/(Un−1,pn−1)| = p
pn−1

−1
2 .

An element of V
+
n of the form b = 1+(xn−x−1

n )2s1 , where pn−1 < 2s ≤ 2s1 < pn−1,
correspond to a non-trivial element of

D∗+
n,(2s)

gn(Z[ζn−1]∗+) ∩ D∗+
n,(2s)

which is a canonical subgroup of V+
n . If t2s is the number of independent such

elements b, then

D∗+
n,(2s)

gn(Z[ζn−1]∗+) ∩ D∗+
n,(2s)

∼= (Z/pZ)t2s

By Proposition 4.7, t2s = 0 if 2s > pn − 2pn−1. On the other hand

gn(Z[ζn−1]
∗+) ∩ D∗+

n,(2s)
∼= Un−1,2s/Un−1,pn−1

since Un−1,pn−1 = ker(gn), and hence Un−1,2s/Un−1,pn−1
∼= D∗+

n,(2s) if 2s > pn −
2pn−1. The number of elements in D∗+

n,(2s) is p
pn

−1−2s

2 . Setting 2s = pn − pn−1

completes the proof.

We now have to do some carefull estimations of some congruences of our norm-
maps.

Lemma 4.11. Let 2 ≤ n and 1 ≤ k < n. If ε ∈ Z[ζn−1] and If ε ≡ 1

mod ps+1λpn−1−pk

n−1 , then (Nn−1(ε)−1)/p can be represented by a polynomial f(x) =

psf1(x) in An−1, where f1(x) ≡ 0 mod (x − 1)pn−1−pk−1
in Dn−1.

Before the proof, recall that the usual norm Ñn,1, 1 ≤ n, 1 ≤ k < n, can be
viewed as a product of automorphisms of Q(ζn) over Q(ζn−1). If tn ∈ Z[ζn] and

tn−1 ∈ Z[ζn−1] we immediately get Ñn,1(1 + tn−1tn) = 1 + TrQ(ζn)/Q(ζn−1)(tn)tn−1t
′

for some t′ ∈ Z[ζn−1]. Recall that the trace is always divisible by p. In the
proof below we will for convenience denote any generic element whose value is
not interesting for us by the letter t.
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Proof. Induction on n. If n = 2 (which implies k = 1), Nn−1 = Ñ1,1 : Z[ζ1] →
A1

∼= Z[ζ0]. Let ε := 1 + tps+1 Then ε = 1 + tpsλp2−p
1 = 1 + tpsλp−1

0 . By the note
above,

Ñ1,1(ε) − 1

p
= tpsλp−1

0

which is represented by some f(x) = ps(x − 1)p−1f1(x) in A1 Suppose the
statement of the Lemma holds with the index equal to n − 2. Let ε := 1 +

tps+1λpn−1−pk

n−1 . Note that ε = 1+tps+1λpn−2−pk−1

n−2 and by the note before this proof,

Ñn−1,1(ε) = 1 + tps+2λpn−2−pk−1

n−2 . Let (Nn−1(ε) − 1)/p be represented by a pair

(a, b) ∈ Z[ζn−2] × An−2. Then a = (Ñn−1,1(ε) − 1)/p = tps+1λpn−2−pk−1

n−2 . In An−2,1

a hence can be represented by a polynomial a(x) = ps+1(x− 1)pn−2−pk−1
a1(x) for

some a1(x). By the expression for Ñn−1,1(ε) and by the assumption, we get

b =
Nn−2(Ñn−1,1(ε)) − 1

p
=

Nn−2(1 + tps+2λpn−2−pk−1

n−2 ) − 1

p
= ps+1b1(x)

where b1(x) ≡ (x − 1)pn−2−pk−2
b2(x) mod p for some b2(x). Define b(x) :=

ps+1b1(x). We want to find a polynomial f(x) ∈ An−1 that represents (a, b),
that is, maps to a(x) and b(x) in An−2,1 and An−2 respectively. Note that

p =
xpn−1 − 1

xpn−2 − 1
+ t(x)

xpn−2 − 1

x − 1

for some polynomial t(x) ∈ Z[x]. Hence

a(x) − b(x) =
(xpn−1 − 1

xpn−2 − 1
+ t(x)

xpn−2 − 1

x − 1

)
ps((x − 1)pn−2−pk−1

a1(x) − b1(x))

Then we can define a polynomial f(x) by

f(x) : = a(x) + ps((x − 1)pn−2−pk−1

a1(x) − b1(x))
xpn−1 − 1

xpn−2 − 1
=

= b(x) + ps((x − 1)pn−2−pk−1

a1(x) − b1(x))t(x)
xpn−2 − 1

x − 1
.

Clearly, f maps to a(x) and b(x) respectively. We now finish the proof by ob-
serving that

f(x)/ps = p(x − 1)pn−2−pk−1

a1(x) + ((x − 1)pn−2−pk−1

a1(x) − b1(x))
xpn−1 − 1

xpn−2 − 1
≡

≡ ((x − 1)pn−2−pk−1

a1(x) − (x − 1)pn−2−pk−2

b2(x))(x − 1)pn−1−pn−2

=

= (a1(x) − (x − 1)pk−1−pk−2

b2(x))(x − 1)pn−1−pk−1

mod p.



THE KERVAIRE-MURTHY CONJECTURES 57

By setting s = 0 we in the lemma above we immediately get the following theo-
rem.

Theorem 4.12. Let 2 ≤ n and 1 ≤ k < n. Suppose ε ∈ Un−1,pn−pk. Then

gn−1((Nn−1(ε) − 1)/p) ≡ 0 mod (x − 1)pn−1−pk−1
in Dn−1

The following proposition is immediate by using that gn−1Nn−1 = fn−1.

Proposition 4.13. Let 2 ≤ n, 1 ≤ k < n and let ε ∈ Un−1,pn−pk \ Un−1,pn−pk−1.

Then gn−1((Nn−1((ε−1)/p))) ≡ 0 mod (x−1)pn−1−pk

but gn−1((Nn−1((ε−1)/p))) 6≡
0 mod (x − 1)pn−1−pk−1

in Dn−1.

Let ω : Un−1,pn−pn−1 → D+
n−1 be defined by ω(γ) := gn−1((Nn−1(γ) − 1)/p).

Lemma 4.14. ω is a homomorphism

Proof. Suppose ε and γ belong to Un−1,pn−pn−1. Then Nn−1(γ) ≡ 1 mod p in
An−1 because

Nn−1(γ) = (Ñn−1,1(γ), Ñn−1,2(γ), . . . , Ñn−1,n−1(γ))

and Ñn−1,k(γ) ≡ 1 mod p2 for all k = 1, 2, . . . , n − 1. Hence

ω(εγ) ≡ Nn−1(εγ) − 1

p
=

Nn−1(γ)Nn−1(ε) − Nn−1(ε) + Nn−1(ε) − 1

p
≡

≡ Nn−1(γ)
Nn−1(ε) − 1

p
+

Nn−1(γ) − 1

p
≡

≡ Nn−1(ε) − 1

p
+

Nn−1(γ) − 1

p
= ω(ε) + ω(γ) mod p

Note that if ε ∈ Un−1,pn−1 then ω(ε) = 0. This can be shown using similar, but
simpler, methods as we did in the proof of Lemma 4.11. We can hence define

ω̃ :
Un−1,pn−pn−1

Un−1,pn−1
→ D+

n−1.

Now, if a ∈ D+
n−1, let O(a) be the maximal power of (x− x−1) that devides a. In

this language we can combine Thereom 4.12 and Proposition 4.13 to the following
lemma.

Lemma 4.15. Let 2 ≤ n, 1 ≤ k < n and let ε ∈ Un−1,pn−pk \ Un−1,pn−pk−1. Then
pn−1 − pk ≤ O(ϕ̃(ε)) < pn−1 − pk−1 ≤ O(ω̃(ε)).

Proposition 4.16. The map Φ̃ := ϕ̃ − ω̃ is an isomorphism.
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Proof. By Proposition 4.9 ϕ is an isomorphism. Hence there exists (classes of)
units εi, i = 1, 2, . . . , (pn−1 − 1)/2 such that the set ϕ(εi) forms a basis for D+

n−1.

If a ∈ D+
n−1 there exist unique ai such that a =

∑(pn−1−1)/2
i=1 aiϕ(εi). To prove the

Proposition it is enough to show that the map

(pn−1−1)/2∑

i=1

aiϕ(εi) 7→
(pn−1−1)/2∑

i=1

ai(ϕ(εi) − ω(εi))

is invertible. Consider the matrix M for this map in the basis {(x − x−1)2j}.
Obviously this matrix can be written I − M ′, where I is the identity matrix
and M ′ is induced by ϕ(εi) 7→ ω(εi). By Lemma 4.15 the matrix M’ is a lower
diagonal matrix with zeros on the diagonal. This means M is lower triangular
with ones on the diagonal and hence invertible.

Proof of Theorem 4.4. The map Φ̃ is obviously induced by Φ which hence
must be surjective by prop 4.16.

5. Final remarks

We end this paper with some further discussion about how one can find a basis
for the groups D+

n . In the proof of Theorem 4.4 the main idea was that one could
find a basis for D+

n consisting of the image of certain elements from Z[ζn−2] under
a certain mapping. To be a bit more specific we can formulate this as a corollary
to Proposition 4.9.

Corollary 5.1. There is a basis for D+
n consisting of elements gn(Nn( ε−1

p
)),

where ε ∈ Un−1,pn−pn−1 .

Recall that this was proved under the assumption rk = r(p) for all k. Now
suppose that Assumption 1 holds instead. Then, by Lemma 3.7, rk = λ for
k = 1, 2, . . . and r0 = r(p). From Theorem 3.7 and Ullom’s result we conclude
V

+
k has λ generators for all k ≥ 2 and all of these generators have exponent at

least pk−1. In particular, V
+
k (p) ∼= (Z/pZ)λ and hence coincides with ker πk by

Proposition 3.10 and Lemma 3.6. Here for any abelian p-group A we denote by
A(pk) the subgroup generated by all elements of A of exponent pk.

It follows from the proof of Proposition 3.10 that there exist λ elements ai =
1 + (x2 − x−1

2 )p+si ∈ D̃∗+
2,(p+1), p2 − p − 3 ≥ si ≥ 1, which generate V

+
2 (p) (see the

proof of Proposition 3.10 for the definition of D̃∗+
k,(t)).

The natural projection D̃∗+
3,(p+1) → D̃∗+

2,(p+1). induces the following exact sequence

0 → ker π3 → V
+
3 (p2) → V

+
2 (p) → 0 which reads as 0 → (Z/pZ)λ → (Z/p2Z)λ →
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(Z/pZ)λ → 0. Let us consider elements bi = 1 + (x3 − x−1
3 )p+si ∈ D̃∗+

3,(p+1).

The commutativity of the diagram 4.1 implies that images of bi are nontrivial
in V

+
3 . Moreover, Proposition 3.10 implies again that bi are not in ker π3 and

therefore all bi have exponent p2 and generate V
+
3 (p2). Thus, we can conclude

that bp
i = 1 + (x3 − x−1

3 )p2+psi are not in the image of Z[ζ2]
∗.

On the other hand p3 − 3p ≥ p2 + psi ≥ p2 + p and bp
i generate V

+
3 (p) = ker π3.

It follows that
∣∣U2,p3−3p+2

U2,p3−1

∣∣ = p
3p−3

2

Proceeding in the same way we obtain the following

Lemma 5.2. Let n ≥ 3. If a ∈ D∗+
n,(pn−3pn−2+2) , then a ∈ gn(Z[ζn−1]

∗).

From this lemma, just as in the proof of Proposition 4.10, we get the following
proposition.

Proposition 5.3. Suppose Assumption 1 holds. Then
∣∣Un,pn+1−pn−1

Un,pn+1−1

∣∣ = p
pn−1

−1
2 .

Now define ϕ2 : Un,pn+1−pn−1 → D+
n−1 by ϕ2(γ) = gn−1(Nn−1(

1
p
Ñn−1,1(

γ−1
p

))). We

remind the reader that Ñn−1,1 is the usual norm Z[ζn] → Z[ζn−1] and Nn−1 :
Z[ζn−1] → An−1 is our “standard” multiplicative map. One can easily check
that ϕ2 is a group homorphism. A straightforward calculation gives us that
ker ϕ2 = Un,pn+1−1. We hence get an induced injective map

ϕ̃2 :
Un,pn+1−pn−1

Un,pn+1−1

→ D+
n−1.

Since
∣∣Un,pn+1−pn−1

Un,pn+1−1

∣∣ = |D+
n−1|

this map is surjective. Therefore we get the following proposition.

Proposition 5.4. Suppose Assumption 1 holds. Then ϕ2 : Un,pn+1−pn−1 → D+
n−1

is an isomorphism and there exists a basis for D+
n−1 consisting of elements ϕ2(γ)

where γ ∈ Un,pn+1−pn−1.

If we analyse the proof above we see that we really only require that r1 = r2 =
rank (V+

n ), n ≥ 1 (rank (V+
n ) is the number of generators of V+

n ) for Proposi-
tion 5.4 to hold. We know from Proposition 3.6 that rN = rN+k for some N and
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if Assumption 2 is true, then rN = rN+k = rank (V+
N+k), k ≥ 0. In this case it

follows that we have the following exact sequence

0 → ker πN+1 → V
+
N+1(p

2) → V
+
N (p) → 0

and the following two statements are now straightforward.

Lemma 5.5. Suppose Assumption 2 holds. Then D̃∗+
n,(pn−3pn−N +2)

⊂ gn(Z[ζn−1]
∗)

for n ≥ N + 1.

Now define ϕN : Un,pn+1−pn−N → D+
n−N by

ϕN (ε) = gn−N(Nn−N(
1

p
Ñn,N(

ε − 1

λpn+1−pn−N+1

n

))).

As before, it is straightforward to control that ϕN is a homomorphism and that
the kernel is Un,pn+1−1. We hence get an induced homomorphism

ϕ̃N :
Un,pn+1−pn−N

Un,pn+1−1

→ D+
n−N .

Since
∣∣Un,pn+1−pn−N

Un,pn+1−1

∣∣ = |D+
n−N |

this map is surjective and we get the following proposition.

Proposition 5.6. Suppose Assumption 2 holds. Let N be as in Proposition 3.6
and let n ≥ N + 1. Then there exists a basis for D+

n−N consisting of elements
ϕN(γ) where γ ∈ Un,pn+1−pn−N .

Finally, it is not hard to show that Vn and Vn do not differ by too much even
without any further assumption on p than semi-regularity. Recall from lemma 2.5
that A∗

n
∼= Z[ζn−1]

∗ ×Bn. If (1, ε) ∈ Bn, then ε ≡ 1 mod (p) and εp ≡ 1 mod (p2)
in A∗

n−2. This also means that (εp − 1)/p ≡ 0 mod (p) in A∗
n−2 which is enough

for (1, e)p ≡ (1, 1) mod (p) in A∗
n−1 to hold. By abuse of notation,

V +
n

∼= V+
n

Im{Bn → D̃∗
n}+

and Im{Bn → D̃∗
n}+ consist of elements of exponent p.
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PICARD GROUPS OF INTEGER GROUP RINGS AND UNITS

IN CYCLOTOMIC FIELDS

OLA HELENIUS AND ALEXANDER STOLIN

Abstract. In 1977 Kervaire and Murthy presented conjectures regarding
K0ZCpn , where Cpn is the cyclic group of order pn and p a semi-regular prime.

There is a group Vn that injects into K̃0ZCpn ∼= PicZCpn . Vn is a canonical
quotient of an in some sense simpler group Vn. Both groups split in a “positive”
and “negative” part. While V −

n is well understood there is still no complete
information on V +

n . In a previous paper we gave the explicit structure of V+
n

under some different extra assumptions on the semi-regular prime p. Here we
extend this result to all semi-regular primes. We also present results on the
structure of the real units in Z[ζn], prove that the number of generators of V+

n

coincides with the number of generators of Cl(p)
Q(ζn−1) and prove that the

extra assumption about an explicit form of the elements generating all unram-
ified extensions of Q(ζn) of degree p (which we used in the previous paper) is
valid for all semi-regular primes.

1. Introduction

This paper is an extension of a previous paper, [H-S], from the authors. We refer
you there for some history and more explicit notation.

Let p be an odd semi-regular prime, let Cpn be the cyclic group of order pn and
let ζn be a primitive pn+1-th root of unity. Kervaire and Murthy prove in [K-M]
that there is an exact sequence

0 → V +
n ⊕ V −

n → Pic ZCpn+1 → Cl Q(ζn) ⊕ Pic ZCpn → 0,

where

V −
n

∼= C
p−3
2

pn ×
n−1∏

j=1

C
(p−1)2pn−1−j

2

pj .

and Char(V +
n ) injects canonically in the p-component of the ideal class group of

Q(ζn−1). The latter statement is proved with V +
n replaced by a group V+

n , where
V +

n is a canonical quotient of V
+
n (which is obviously enough).

1991 Mathematics Subject Classification. 11R65, 11R21, 19A31.
Key words and phrases. Picard Groups, Integral Group Rings.
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Under an extra assumption on the prime p (concerning the Iwasawa-invariants of
p), Ullom proved in 1978 in [U] that V +

n
∼= (Z/pnZ)r(p) ⊕ (Z/pn−1Z)λ−r(p), where

λ is one of the Iwasawa invariants. In [H-S] we among other things proved that

under a certain condition on the p-rank of the class groups Cl(p) Q(ζn) (a weaker
condition than the one Ullom uses) we have

V
+
n
∼=

( Z

pnZ

)r0 ⊕
( Z

pn−1Z

)r1−r0 ⊕ . . . ⊕
( Z

pZ

)rn−1−rn−2 .

The numbers rk are defined as logp of orders of certain groups of units in Z[ζk]

and our assumption is exactly that rk = rankp Cl(p) Q(ζk).

In this paper we will show that V
+
n is given by the formula above for all semi-

regular primes. Throughout this paper we assume that p is semi-regular.

2. V+
n for semi-regular primes

We start by defining the numbers rn by

|Un,pn+1−1/(Un,pn+1)
(p)| = prn .

Here Un,k is the group of all real units in Z[ζn]∗ that are congruent to 1 modulo
λk

n where λn = (ζn − 1). We proved in [H-S] that rn is non-decreasing sequence
bounded by λ, where λ is one of the Iwasawa invariants for p.

Our main theorem is, as mentioned, the following.

Theorem 2.1. For every semi-regular prime p

V
+
n
∼=

( Z

pnZ

)r0 ⊕
( Z

pn−1Z

)r1−r0 ⊕ . . . ⊕
( Z

pZ

)rn−1−rn−2 .

Before we can prove this we need to recall some notation from [H-S]. Let for
k ≥ 0 and l ≥ 1

Ak,l :=
Z[x]

(
xpk+l−1

xpk−1

)

and

Dk,l := Ak,l mod p.

We denote the class of x in Ak,l by xk,l and in Dk,l by x̄k,l. Sometimes we will,
by abuse of notation, just denote classes by x. Note that An,1

∼= Z[ζn] and that

Dk,l
∼= Fp[x]

(x − 1)pk+l−pk
.
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By a generalization of Rim’s theorem (see for example [S1]) Pic ZCpn
∼= Pic A0,n

for all n ≥ 1 and this is why these rings are relevant for us. It is easy to see that
there exists a pull-back diagram

Ak,l+1

ik,l+1
//

jk,l+1

��

Z[ζk+l]

Nk,l

{{www
wwww

wwww
www

fk,l

��

Ak,l

gk,l
// Dk,l

(2.1)

where ik,l+1(xk,l+1) = ζk+l, jk,l+1(xk,l+1) = xk,l, fk,l(ζk+l) = x̄k,l and gk,l is just
taking classes modulo p. The norm-maps Nk,l are defined in [H-S], Proposition
2.1, and by Lemma 2.5 in the same paper we have an injection Z[ζk+l−1]

∗ → A∗
k,l.

In what follows, we identify Z[ζk+l−1]
∗ with its image in A∗

k,l.

In the rest of this paper we paper will only need the the rings Ak,l and Dk,l in the
case k = 0. Therefore we will simplify the notation a little by setting Al := A0,l,
Dl := D0,l, gl := g0,l, fl := f0,l, il := i0,l, jl := j0,l and Nl := N0,l.

By abuse of notation we let for each group (or ring) c denote the homomorphism
defined by sending a generator x to x−1 (this is complex conjugation in Z[ζn]).
We denote by G+ the group of elements of G invariant under c.

In our setting, V+
n is defined by

V
+
n :=

D̃∗+
n

gn(Un−1,1)
,(2.2)

where D̃∗+
n is the group of all units in D∗+

n congruent to 1 modulo (x − 1).

Note that this definition is not the same as the one used in [K-M]. They instead
look at

V
′
n :=

(Fp[x]/(xpn − 1))∗

Im{Z[ζn]∗ → (Fp[x]/(xpn − 1))∗}(2.3)

The confusion regarding the two definitions of Vn is cleared up by the following.

Proposition 2.2. The definitions of Vn and V′
n (2.3 and 2.2) coincide.

Proof. The kernel of the surjection (Fp[x]/(x−1)pn

)∗ → (Fp[x]/(x−1)pn−1)∗ = D∗
n

consist of units congruent to 1 mod (x − 1)pn−1. Let η := ζ
pn+1+1

2
n . Then η2 = ζn

and c(η) = η−1. Let εn := ηpn+1−η−(pn+1)

η−η−1 . One can by a direct calculation show

that εn = 1 + (ζn − 1)pn−1 + t(ζn − 1)pn

for some t ∈ Z[ζn]. If a = 1 + apn−1(xn −
1)pn−1 ∈ (Fp[x]/(x − 1)pn

)∗, apn−1 ∈ F∗
p, Then it is just a matter of calculations
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to show that a = fn(ε)apn
−1 . This shows that (Fp[x]/(x − 1)pn

)∗/f ′
n(Z[ζn]∗) ∼=

(Fp[x]/(x − 1)pn−1)∗/fn(Z[ζn]∗). Since

Z[ζn]∗

N

{{vvvvvvvvvvvvvv

f

��

Z[ζn−1]
∗ g

// D̃∗+
n

is commutative and N (which is the restriction of the usual norm-map) surjective
when p is semi-regular (a well known fact) the proposition follows.

We now introduce some techniques from [K-M].

Let P0,n be the group of principal fractional ideals in Q(ζn) prime to λn. Let Hn

be the subgroup of fractional ideals congruent to 1 modulo λpn

n . In [K-M], p. 431,
it is proved that there exists a canonical isomorphism

J :
P0,n

Hn
→ (Fp[x]/(x − 1)pn

)∗

f ′
n(Z[ζn]∗)

=: V
′
n.

Now consider the injection ι : Q(ζn−1) → Q(ζn), ζn−1 7→ ζp
n. It is clear we get an

induced map P0,n−1 → P0,n. Since ι map λn−1 to λp
n it is easy to see that we get

an induced homomorphism

α′
n :

P0,n−1

Hn−1
→ P0,n

Hn
.

Considered as a map α′
n : V′

n−1 → V′
n this map acts as (Fp[x]/(x − 1)pn−1

)∗ 3
xn−1 7→ xp

n ∈ (Fp[x]/(x − 1)pn

)∗. Since V′
n
∼= Vn (see Proposition 2.2) we can

consider this as a homomorphism αn : Vn−1 → Vn. Clearly we then get that
α is induced by xn−1 → xp

n Note however, that xn−1 7→ xp
n does not induce a

homomorphism D∗
n−1 → D∗

n.

Lemma 2.3. The map αn is injective on V
+
n−1.

Proof. In this proof, denote Q(ζn) by Kn. Let Ln be the p-part of the Hilbert
class field of Kn and let Mn/Kn be the p-part of the ray class field extension
associated with the ray group Hn. In other words we have the following Artin
map

ΦKn
: I0(Kn) → Gal(Mn/Kn),

which induces an isomorphism (I0(Kn)/Hn)(p) → Gal(Mn/Kn). Here I0(Kn)
is the group of ideals of Kn which are prime to λn, and (I0(Kn)/Hn)

(p) is the
p-component of I0(Kn)/Hn.
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The following facts were proved in [K-M]:

1) Gal+(Mn/Kn) ∼= Gal+(Mn/Ln) ∼= V
+
n

2) Mn−1 ∩ Kn = Kn−1 (lemma4.4).

Obviously the field extension Kn/Kn−1 induces a natural homomorphism

Gal(Mn−1/Kn−1) ∼= (I0(Kn−1)/Hn−1)
(p) → (I0(Kn)/Hn)(p) ∼= Gal(Mn/Kn)

which we denote with some abuse of notations by αn. Therefore it is sufficient
to prove that the latter αn is injective. First we note that the natural map
F : Gal(Mn−1/Kn−1) → Gal(Mn−1Kn/Kn) is an isomorphism. Let us prove that
Mn−1Kn ⊂ Mn. Consider the Artin map Φ′

Kn
: I0(Kn) → Gal(Mn−1Kn/Kn) (of

course F is induced by the canonical embedding I0(Kn−1) → I0(Kn)). We have
to show that the kernel of Φ′

Kn
contains Hn.

To see this note that F−1(Φ′
Kn

(s)) = ΦKn−1(NKn/Kn−1(s)) for any s ∈ I0(Kn).
If s ∈ Hn then without loss of generality s = 1 + λpn

n t, t ∈ Z[ζn], and thus,
NKn/Kn−1(s)) = 1 + pt1 for some t1 ∈ Z[ζn−1]. Now it is clear that Φ′

Kn
(s) = 0

since ΦKn−1(1 + pt1) = 0 (0 is the identical automorphism).

It follows that the identical map id : I0(Kn) → I0(Kn) induces the canonical
Galois surjection Gal(Mn/Kn) → Gal(Mn−1Kn/Kn) and we have the following
commutative diagram:

Gal(Mn−1/Kn−1)

αn

vvnnnnnnnnnnnnnnnnnnnn

F

��

Gal(Mn/Kn) // Gal(Mn−1Kn/Kn)

If αn(a) = 0 then F (a) = 0 and a = 0 because F is an isomorphism which proves
the lemma.

Proof of Theorem 2.1. Induction with respect to n. If n = 1 the result is
known from for example [K-M]. Suppose the result holds with the index equal to
n−1. Lemma 3.10 in [H-S] tells us that we have a surjection πn : V+

n → V
+
n−1 and

Proposition 3.11 in [H-S] that ker πn isomorphic to Crn−1
p . Suppose 1+(xn−1−1)k
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is non-trivial in V
+
n−1. Since

Z[ζn−1]
∗+ //

Ñn,1

��

D∗+
n

��

Z[ζn−2]
∗+ // D∗+

n−1

(2.4)

is commutative, 1+(xn−1)k is non-trivial in V+
n . Moreover, since αn is injective,

α(1 + (xn−1 − 1)k) = 1 + (xp
n − 1)k = (1 + (xn − 1)k)p

is non-trivial in V+
n . Now let 1+(xn−1−1)si generate V

+
n−1 and suppose πn(ai) =

1+(xn−1−1)si . Since πn(1+(xn−1)si) = 1+(xn−1−1)si we get ai = bi(1+(xn−
1)si) for some bi ∈ ker πn, which implies that bp

i is trivial. Suppose 1+(xn−1−1)si

has exponent pk for some 1 ≤ k ≤ n− 1. To prove the theorem we need to prove

that ai has exponent pk+1. Since ker πn
∼= C

r(p)
p ai has exponent less than or equal

to pk+1. But (1 + (xn−1 − 1)si)pk

= 1 + (xn−1 − 1)pksi is non-trivial in V
+
n−1 so

apk+1

i = bpk+1

i (1 + (xn − 1)si)pk+1

= (1 + (xn − 1)si)pk+1

is non-trivial in V+
n by above, which is what we needed to show

As an application of Theorem 2.1 we can get some results on the unit basis in
Dm previously obtained in [H-S] under an extra assumption. Let

Un,k := {γ ∈ Z[ζn]∗ : γ = 1 mod (λk
n)}

Define ϕN : Un,pn+1−pn−N → D+
n−N by

ϕN (ε) = gn−N(Nn−N(
1

p
Ñn,N(

ε − 1

λpn+1−pn−N+1

n

))).

In [H-S], p. 24, it is proved that ϕN is a homomorphism. The following corollary
now follows immediately in the same way as Proposition 5.8 of [H-S]

Corollary 2.4. Suppose p is semi-regular. Let N be as in Proposition 3.7 in
[H-S] and let n ≥ N + 1. Then there exists a basis for D+

n−N consisting of
elements ϕN(γ) where γ ∈ Un,pn+1−pn−N .

Furthermore, since Dk,i = Ak,i/(p), we can get a p-adic version of this result. Let

Ak,i,(p) :=
Zp[X](
xpk+i−1

xpk−1

)

be the p-adic completion of Ak,i and let A+
k,i be “the real elements” of Ak,i.

Let Un,k,(p) := {real ε ∈ Zp[ζn]
∗ : ε ≡ 1 mod λk

n} and let us define ϕ′
N :
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Un,pn+1−pn−N ,(p) → (A0,n−N,(p))
+ by

ϕ′
N(ε) = N0,n−N(

1

p
Ñn,N(

ε − 1

λpn+1−pn−N+1

n

))).

where the norm-maps are the obvious p-adic extensions of our usual norm-maps.

Corollary 2.5. Suppose p is semi-regular. There exists a basis for (A0,n−N,(p))
+

consisting of elements ϕ′
N (γ) where γ are global units, γ ∈ Un,pn+1−pn−N .

An interesting remark on Theorem 2.1 is that this result might be thought of
as an indication on that Assumption 2 in [H-S] is true. We will prove this later
in this paper and hence we will find a number of generators of the p-part of
Cl(p)Q(ζn).

Another interesting remark is that for every semi-regular prime V
+
n is (isomor-

phic to) a subgroup of Cl(p) Q(ζn−1) (under the injection from [K-M]), a subgroup
which we now by Theorem 2.1 now explicitly. Kervaire and Murphy also conjec-
tures that V+

n is actually isomorphic to Cl(p) Q(ζn−1). If this is true Theorem 2.1
of course would provide an explicit description of this class group.

3. An application to units in Z[ζn]

The techniques we developed in [H-S] also lead to some conclusions about the
group of units in Z[ζn]∗. From the previous results we know that

V
+
n+1 =

D̃∗+
n+1

gn+1(Un,1)
∼= D̃∗+

n+1
Un,2

U
n,pn+1

−1

Let sn,pn+1−1 = |Un,1/Un−1,pn+1−1|. A naive first guess would be that sn,pn+1−1 =
pn+1−1−2

2
= pn+1−3

2
which is the maximal value of this number. Incidentally, this

maximal value equals |D̃∗+
n+1|. In this case we say that Un,1/Un,pn+1−1 is full, but

this happens if and only if p is a regular prime. In other words V
+
n+1 is trivial

if and only if p is a regular. This fact is by the way proved directly in [H]. For
non-regular (but as before semi-regular) primes what happens is that there are
“missed places” in Un,1/Un,pn+1−1. We define 2k as a missed place (at level n)
if Un,2k/Un,2k+2 is trivial. Lemma 3.2 in [H-S] reads Un,pn+1−1 = Un,pn+1+1 and
hence provides an instant example of a missed place, namely pn+1 − 1. It follows
from our theory that every missed place corresponds to a non-trivial element of
V

+
n+1. Recall that Z[ζn−1]

∗ is identified with its image in An. We will now prove
that the map gn : Z[ζn−1]

∗ → D∗
n respects the filtrations λk

n−1 and (x − 1)k.

Proposition 3.1. Let 1 ≤ s ≤ pn − 1 and ε ∈ Z[ζn−1]
∗. Then ε ∈ Un−1,s if and

only if gn(ε) ∈ D∗
n,(s).
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Using this Proposition we see that an element of D∗+
n+1,(2s) which is non-trivial in

V
+
n+1 corresponds to a missed place 2s at level n.

Proof. To show that gn(ε) ∈ D∗
n,(s) implies ε ∈ Un−1,s we can use the same

technique as in the proof of Theorem I.2.7 in [S3] (also see Lemma 2.6 [H-S]).
For the other direction, first note that is s ≤ pn − pn−1 the statement follows
directly from the commutativity of the diagram

A∗
n

//

mod p

��

Z[ζn−1]
∗+

mod p

��

D∗
n
∼=

(
Fp[x]

(x−1)pn
−1

)∗
//
(

Fp[x]

(x−1)pn
−pn−1

)∗

(3.1)

What is left to prove is that ε ∈ Un−1,s implies gn(ε) ∈ D∗
n,(s) also for pn − pn−1 ≤

s ≤ pn − 1. For technical reason we will prove that if ε ∈ Un−1,pn−pk+r for
some 1 ≤ k ≤ n − 1 and 0 ≤ r ≤ pk − pk−1 then gn(ε) ∈ D∗

n,(pn−pk+r). Note

that ε ∈ Un−1,pn−1 is equivalent to gn(ε) = 1 ∈ D∗
n by Lemma 2.6 of [H-S].

Suppose ε = 1 + tλpn−pk+r
n−1 for some t ∈ Z[ζn−1]. By Lemma 4.11 of [H-S] we get

Nn−1(ε) = 1 + t′p(x − 1)pn−1−pk−1
for some t′ ∈ An−1. In An,

p =
xpn − 1

xpn−1 − 1
+ t(x)

xpn−1 − 1

x − 1

for some polynomial t(x). In An consider the element

p(t(x − 1)pn−1−pk+r − t′(x − 1)pn−1−pk−1

) =

=
( xpn − 1

xpn−1 − 1
+ t(x)

xpn−1 − 1

x − 1

)
(t(x − 1)pn−1−pk+r − t′(x − 1)pn−1−pk−1

).

By computing the right hand side and re-arrange the terms we get

f := tp(x − 1)pn−1−pk+r −
(
t(x − 1)pn−1−pk+r − t′(x − 1)pn−1−pk−1) xpn − 1

xpn−1 − 1
=

= t′(x − 1)pn−1−pk−1 − b(x)
xpn−1 − 1

x − 1
.

Using the two representations of f we see that in(1 + f) = ε and jn(1 + f) =
Nn−1(ε) so 1 + f represents (ε, Nn−1(ε)) (which represents ε under our usual
identification) in An. Since ≤ pk − pk−1 we now get gn(1 + f) ≡ 1 mod (x −
1)pn−1−pk+r in Dn as asserted.



PICARD GROUPS OF INTEGER GROUP RINGS 73

Theorem 2.1 and its proof now give us specific information about the missed
places which we will formulate in a Theorem below. We start with a simple
lemma.

Lemma 3.2. Let 1 ≤ s ≤ n + 1 and 1 ≤ k < s. Then ps − pk is a missed place
at level n if and only if s = n + 1 and k = 1.

Proof. Let η := ζ
(pn+1+1)/2
n . Then η2 = ζn and c(η) = η−1. Define

ε :=
ηps+pk − η−(ps+pk)

ηpk − η−(pk)
.

Clearly, ε is real and since

ε = η−ps ζps+pk

n − 1

ζpk

n − 1
,

ε is a unit. By a calculation one can show that ε ∈ Un,ps−pk \ Un,ps−pk+2.

Define for k = 0, 1, . . . the k-strip as the numbers pk + 1, pk + 3, . . . , pk+1 − 1.

Theorem 3.3. At level n we have the following

1. Let 0 ≤ k ≤ n. In the k-strip there are exactly rk missed places.
2. The missed places in the 0-strip are in one to one correspondence with the

numbers 2i1, . . . , 2ir0 such that the numerator of the Bernoulli-number B2ik

(in reduced form) is divisible by p.
3. Suppose i1, . . . , irk

are the missed places in the k-strip. Then pi1, . . . , pirk

are missed places in the k + 1 strip. The other rk+1 − rk missed places in
the k + 1 strip are not divisible by p.

Proof. We know from Proposition 4.6 of [H-S] that we have r0 missed places
in the 0-strip at level 0 and that they correspond exactly to the indexes of the
relevant Bernoulli numbers. As in Proposition 4.7 of [H-S] an induction argument
using the map πn to lift the generators of V

+
n−1 to V+

n show that we have r0 missed
places in the 0-strip at every level and that a missed place k at level n − 1 lift
to missed places k and pk at level n. What is left to prove is that the “new”
missed places we get when we go from level n − 1 to n all end up in the n-strip
and that no “new” missed places are divisible by p. First, pn − 1 can not be a
missed place (at level n) by the lemma above. It follows from our theory that
the “new” missed places correspond to the generators of V

+
n+1 of exponent p.

We need to show that each such generators al, l = 1, . . . , rn−1 − rn−2, belong
to D∗+

n+1,(pn+1). Suppose for a contradiction that al = 1 + t(xn+1 − 1)s, t 6= 0,

s < pn − 1, is a “new” generator. Then πn+1(al) = 1 + t(xn − 1)s is neccesarily
trivial in V+

n but not in D∗+
n . Hence πn+1(al) = gn(ε) for some ε ∈ Z[ζn−1]

∗.
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Since the usual norm map Ñn,1 is surjective (when p is semi-regular) and by
commutativity of diagram 4.1 of [H-S] we then get algn+1(ε

′)−1 = b for some

ε′ ∈ Z[ζn]∗ and b ∈ ker{D̃∗+
n+1 → D̃∗+

n } = D̃∗+
n+1(p

n − 1). Since pn − 1 is not a
missed place, b = gn+1(ε

′′) for some some ε′′ ∈ Z[ζn]∗. But this means al is trivial
in V

+
n+1 which is a contradiction. We conclude that al ∈ D∗+

n+1,(pn+1).

To prove no “new” missed places are divisible by p we need to show that if
al ∈ D∗+

n+1,(s) \ D∗+
n+1,(s+2) is a “new” generator of V

+
n+1, then p does not divide

s. Now, a generator can always be chosen of the form 1 + (xn+1 − 1)s. Then an
element of the form 1 + (xn+1 − 1)pk, with k 6∈ {i1, . . . , irn−1} cannot be a missed
place. This follows from the fact that if k is not a missed place, then 1+(xn−1)k

is trivial in V+
n and since αn is injective, 1 + (xn+1 − 1)pk = αn(1 + (xn − 1)k) is

also trivial in V
+
n+1.

4. Class groups and the Kervaire-Murthy conjectures

In this section we will prove that Cl Q(ζn−1)(p) ∼= V
+
n /(V+

n )p. Here A(p) := {x ∈
A : xp = 1}. It follows from Theorem 2.1 that V+

n /(V+
n )p has rn−1 generators,

and it was proved in [K-M] that Char(V+
n ) can be embedded into Cl(p) Q(ζn−1).

So, in order to prove the result we need, it suffices to prove the following

Theorem 4.1. There exists an embedding Cl Q(ζn−1)(p) → Char(V+
n ).

Proof. First note that all our maps, gn, jn, Nn etc and rings An and can be
extended p-adically. Recall that An,(p) is defined by

An,(p) :=
Zp[x](
xpn−1
x−1

)

We have a commutative diagram

An,(p)
in //

jn

��

Zp[ζn−1]

Nn−1

zzuuuuuuuuuuuuuuu

fn−1

��
An−1,(p)

gn−1
// Dn−1

(4.1)

Considering pairs (a, Nn−1(a)), where a ∈ Zp[ζn−1], we can embed Zp[ζn−1]
∗ into

A∗
n,(p). In [S2] it was proved that D∗

n is isomorphic to Zp[ζn−1]
∗/Un−1,pn−1,(p). We

hence have the following proposition
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Proposition 4.2.

Vn
∼= Zp[ζn−1]

∗

Un−1,pn−1,(p) · gn(Z[ζn−1]∗)
.

Now for any valuation ω of Kn−1 = Q(ζn−1) and any a, b ∈ Q(ζn−1)
∗ we have

the norm residue symbol (a, b)ω with values in the group of p-th (not pn) roots
of unity. Let ω = λn−1 = (ζn−1 − ζ−1

n−1) and let ηk = 1 − λk
n−1. Then

(ηi, ηj)λn−1 = (ηi, ηi+j)λn−1(ηi+j, ηj)λn−1(ηi+j, λn−1)
−j
λn−1

It follows that (a, b)λn−1 = 1 if a ∈ Un−1,k, b ∈ Un−1,s and k + s > pn. Further,
(ηpn, λn−1)λn−1 = ζ0 and therefore (ηi, ηj)λn−1 6= 1 if i+ j = pn, j is co-prime to p.

Let α be an ideal in Z[ζn−1] co-prime to λn−1 and such that αp = (q), where
q = 1+λ2

n−1t ∈ Z[ζn−1] (we can choose such q since ζn−1 = 1+λn−1ζn−1(1+ζn−1)
−1

and ζn−1(1+ ζn−1)
−1 ∈ Z[ζn−1]

∗). Define the following action of Cl Q(ζn−1)(p) on
U+

n−1,2,(p) :

τα(v) = (v, q)λn−1

Let us prove that this action is well-defined. First of all it is independent of the
choice of the representative α in Cl Q(ζn−1)(p) because if we use rα instead of α
then (v, rpq)λn−1 = (v, q)λn−1.

The action is independent of the choice of q by the following reason: another
generator of αp, which is 1 modulo λ2

n−1, differs from “the old” q by some unit

γ = 1 + λ2
n−1t1, and it can be easily verified that γ is either real or γ = ζpk

n−1γ1

with a real unit γ1. Hence we must consider τγq(v) for real γ. In other words we
have to prove that (v, γ)λn−1 = 1. But if the latter is untrue, then (v, γ)λn−1 = ζ0,
which is not consistent with the action of the “complex conjugation” (v and γ
are real, while ζ0 is not real).

Clearly (Un−1,pn−1,(p), q)λn−1 = 1. It remains to prove that (γ, q)λn−1 = 1 for any
unit γ and we will obtain an action of Cl Q(ζn−1)(p) on V+

n . For this consider a
field extension Kn−1(q

1/p)/Kn−1. Since (q) = αp, it can remify in the λn−1 only.
Then clearly (γ, q)ω = 1 for any ω 6= λn−1 and it follows from the product formula
that (γ, q)λn−1 = 1.

Therefore Cl Q(ζn−1)(p) acts on V+
n and obviously ταβ = τατβ.

The last stage is to prove that any α ∈ Cl Q(ζn−1)(p) acts non-trivially on V+
n .

Let (q) = αp and let q = 1 + λk
n−1t with some k > 1 and t, co-prime to λn−1.

Let us prove that k < pn − 1. Assume that k > pn − 1. Then the field extension
Kn−1(q

1/p)/Kn−1 is unramified. It is well-known that if p is semi-regular, then
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Kn−1(q
1/p) = Kn−1(γ

1/p) for some unit γ. Kummer’s theory says that q = γrp

and then obviously α = (r), i.e. α is a principal ideal. So, it remains to prove
that the case k = pn − 1 is impossible. For this consider ζn−1 and take into
account that ζn−1 = 1 + λn−1ζn−1(1 + ζn−1)

−1. Then clearly it follows from the
properties of the local norm residue symbol ( , )λn−1 that (ζn−1, q)λn−1 6= 1. On
the other hand (ζn−1, q)ω = 1 for any ω 6= λn−1 because ζn−1 is a unit and the
extension Kn−1(q

1/p)/Kn−1 is unramified in ω. Therefore (ζn−1, q)λn−1 = 1 by the
product formula and the case k = pn − 1 is impossible and k < pn − 1.

Now let us consider the cyclic subgroup of Cl Q(ζn−1)(p) generated by α and all
the qi which generate all αps for non-trivial αs (i.e. s is co-prime to p). Let us
choose that q ∈ Un−1,k,(p), which has the maximal value of k.

Then gcd(k, p) = 1 (otherwise consider q(1 − λ
k/p
n−1)

p). Next we prove that k
is odd. If untrue, consider the following element from our set of {qi}, namely
q/σ(q), where σ is the complex conjugation. Easy computations show that if k
is even for q, then q/σ(q) ∈ Un−1,s,(p) with s > k. On the other hand q/σ(q) is in
our chosen set of {qi} because it generates some ideal from the class of α2 since
Cl Q(ζn−1)(p) = Cl Q(ζn−1)(p)−. Therefore we have proved that k is odd. Then
(ηpn−k, q) 6= 1 and this means that ηpn−k is a non-trivial element of V+

n for which
τα(ηpn−k) 6= 1.

The theorem is proved.

Recall that one of the Kervaire-Murthy conjectures was that V+
n
∼= Cl(p) Q(ζn−1).

Now we partially solve this conjecture.

Corollary 4.3. Cl Q(ζn−1)(p) ∼= V+
n /(V+

n )p ∼= (Z/pZ)rn−1 (see Section 2 for the
definition of rn−1).

Proof. It remains to prove the second isomorphism only, which follows from
Theorem 2.1.

Now it is clear that the Assumption 2 from [H-S], which we used there to describe
V+

n , is valid for any semi-regular prime.

Corollary 4.4. Any unramified extension of Q(ζn−1) = Kn−1 of degree p is of

the form Kn−1(ε
1/p)/Kn−1, where ε is a unit satisfying ε = 1 + λpn+1

n−1 t.

Corollary 4.5. There exists an integer N such that rk = λ for k > N (here λ is
the Iwasawa invariant for p). Moreover, any unramified extension of Q(ζk) = Kk
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of degree p is of the form Kk(ε
1/p)/Kk, where ε ∈ Z[ζN ]∗ is a unit satisfying

ε = 1 + λpN+1+1
N t.

Finally we obtain Kummer’s Lemma for semiregular primes

Corollary 4.6. Let a unit ε ∈ Z[ζn−1]
∗ satisfy ε ≡ rp modλpn−1

n−1 . Then ε = γpγ1

with units γ, γ1 and γ1 ≡ 1 modλpn+1
n−1 .

Proof. If ε ≡ rp modλpn−1
n−1 then r−pε ≡ 1 modλpn−1

n−1 and it follows from the proof

of the theorem that in fact r−pε ≡ 1 modλpn

n−1. Then the extension Kn−1(ε
1/p)/Kn−1

is unramified and therefore ε = γpγ1, where γ1 ≡ 1 modλpn+1
n−1 . Clearly, then γ is

a unit.
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E-mail address : olahe@math.chalmers.se, astolin@math.chalmers.se



ON THE PICARD GROUP OF SOME POLYNOMIAL RINGS

OLA HELENIUS

Abstract. Let ζn be a primitive pn+1th root of unity and let Cpn be the
cyclic group of order pn. There exists an exact sequence

0 → V +
n ⊕ V −

n → PicZCpn+1 → Cl Q(ζn) ⊕ PicZCpn → 0.

V −

n is explicitly known and when p is semi-regular and satisfies some mild extra
assumptions, so is V +

n . In this paper we study rings Ak,l := Z[x]/(pk,l(x)),

where pk,l(x) = (xpk+l − 1)/(xpk − 1) which in some sense fits in between
ZCpn+1 and Z[ζn]. For each such ring Ak,l we exhibit an exact sequence

0 → V +
k,l ⊕ V −

k,l → PicAk,l → Cl Q(ζk+l−1) ⊕ PicAk,l−1 → 0

and calculate V +
k,l and V −

k,l explicitly when p is semi-regular and satisfies one
extra assumption.

1. Introduction

Let p be an odd semi-regular prime, let Cpn be the cyclic group of order pn and
let ζn be a primitive pn+1-th root of unity. Kervaire and Murthy prove in the
article [K-M] 1977, that there exists an exact sequence

0 → V +
n ⊕ V −

n → Pic ZCpn+1 → Cl Q(ζn) ⊕ Pic ZCpn → 0,(1.1)

where

V −
n

∼= C
p−3
2

pn ×
n−1∏

j=1

C
(p−1)2pn−1−j

2

pj .(1.2)

and Char(V +
n ) injects canonically in the p-component of the ideal class group of

Q(ζn−1). The latter statement is actually proved with a group V
+
n in place of V +

n ,
where V +

n is a canonical quotient of V+
n , which is obviously enough.

In [U2], Ullom proved under an extra assumption on the prime p, that

V +
n

∼= (
Z

pnZ
)r(p) ⊕ (

Z

pn−1Z
)λ−r(p),(1.3)

1991 Mathematics Subject Classification. 11R65, 11R21, 19A31.
Key words and phrases. Picard Groups, Integral Group Rings.
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where λ is one of the Iwasawa-invariants of p and r(p) is the index of regularity of
p, that is the number of Bernoulli numbers Bi, i = 1, 2, . . . , p−3 with nominators
(in reduced form) divisible by p.

In the articles [H-S] and [H-S2] we use that fact that Pic ZCpn
∼= Pic Z[x]

((xpn−1)/(x−1))

and concentrate our efforts on Z[x]
((xpn−1)/(x−1))

. Among other things we re-prove

Ulloms result using a different technique and also find the exact structure of V+
n

for all semi-regular primes. An important part of our technique is that we use

not only the ring Z[x]
((xpn−1)/(x−1))

but also Z[x]

((xpk+l−1)/(xk−1))
for different l and k. It is

hence a natural question for us to consider Pic Z[x]

((xpk+l−1)/(xpk−1))
and to try to find

a sequence corresponding to 1.1 and groups Vk,l. In this paper we will complete
this task for semi-regular primes satisfying one extra assumption, namely that
for all n, the p-part of the ideal class group of Q(ζn) has p-rank equal to r(p). It
is known this assumption holds for all primes p < 4.000.000.

Let for k ≥ 0 and l ≥ 1

Ak,l :=
Z[x]

(
xpk+l−1

xpk−1

)

and

Dk,l := Ak,l mod p.

We denote the class of x in Ak,l by xk,l and in Dk,l by x̄k,l. Sometimes we will,
by abuse of notation, just denote classes by x. Note that An,1

∼= Z[ζn] and that

Dk,l
∼= Fp[x]

(x − 1)pk+l−pk
.

It is easy to see that there exists a pull-back diagram

Ak,l+1

ik,l+1
//

jk,l+1

��

Z[ζk+l]

Nk,l

{{www
wwww

wwww
www

fk,l

��

Ak,l

gk,l
// Dk,l

(1.4)

where ik,l+1(xk,l+1) = ζk+l, jk,l+1(xk,l+1) = xk,l, fk,l(ζk+l) = x̄k,l and gk,l is just
taking classes modulo p. The multiplicative “norm” maps Nk,l, which make lower
right triangle of the diagrams commute, are defined in [H-S], Proposition 2.1. By
Lemma 2.5 in the same paper we have an injection ϕk,l : Z[ζk+l−1]

∗ → A∗
k,l. By

using the pull-back above with l replaced by l − 1 we see that every element of
Ak,l can be represented as a pair (a, b) ∈ Z[ζk+l−1] × Ak,l−1. The injection ϕk,l is
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defined by ϕk,l(ε) = (ε, Nk,l−1(ε). In what follows, we identify Z[ζk+l−1]
∗ with its

image in A∗
k,l. The pull-back 1.4 induces a Maier-Vietoris exact sequence

Z[ζk+l]
∗ × A∗

k,l → D∗
k,l → Pic Ak,l+1 → Pic Z[ζk+l] × Pic Ak,l → Pic Dk,l,

Since Dk,l is local, Pic Dk,l = 0 and since Z[ζk+l] is a Dedekind ring, Pic Z[ζk+l] ∼=
Cl Z[ζk+l]. By letting Vk,l be the cokernel

Vk,l :=
D∗

k,l

Im{Z[ζk+l]∗ × A∗
k,l → D∗

k,l}
we get an exact sequence

0 → Vk,l → Pic Ak,l+1 → Cl Z[ζk+l] × Pic Ak,l → 0.(1.5)

To find Vk,l we start by splitting this group in “positive” and “negative” parts.
For this we use the map c. By abuse of notation we let c act on all our rings Z[n],
Ak,l and Dk,l. On Z[ζn], c is just complex conjugation. On the other rings c is
the homomorphism induced by x 7→ x−1 (for x = xk,l ∈ Ak,l and x̄k,l ∈ Dk,l). If
B is a ring (or group) upon which c act, we define B+ = {b ∈ B : c(b) = b} and
B− = {b ∈ B : c(b) = b−1}. It is easy to see that c commute with all maps in
diagram 1.4, hence extends to Vk,l, so we can define V +

k,l and V −
k,l in the obvious

ways.

It turns out that the calculation of V −
k,l is easy and reasonably straightforward.

Once we have found the structure of the group D∗−
k,l the result follows from a

generalization of Kummer’s famous result that a unit in Z[ζ0]
∗ can be written as

a real unit times a power of ζ0.

When it comes to V +
k,l we run into more trouble. We first consider a group V

+
k,l

such that V +
k,l is a canonical quotient of V

+
k,l (see section 3 for a definition). We

then show that V
+
k,l

∼= V
+
0,k+l. Here we use a result from [H-S] that tells us that a

unit in D∗+
k,l congruent to 1 modulo a sufficiently high power of (x̄− 1) is actually

the image of an element from A∗+
k,l . After this, of course, we need only use the

structure of V
+
0,k+l, which we also calculated in [H-S], to get our hands on V

+
k,l.

Finally we prove that V +
k,l = V

+
k,l by a direct construction.

2. Structure of Dk,l and V −
k,l

We start off with some preliminary results.

Proposition 2.1.

Vk,l =
D∗

k,l

Im{A∗
k,l → D∗

k,l}
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Proof. fk,l = Nk,l ◦ gk,l.

We now zoom in on the structure of D∗
k,l. Clearly any element of Dk,l can be

represented by a0 + a1(x − 1) + . . . + apk+l−pk−1(x − 1)pk+l−pk−1, ai ∈ Fp, (x −
1)pk+l−pk

= 0, so |Dk,l| = ppk+l−pk

. Every element with a0 = 0 is nilpotent and
hence not a unit. Since, clearly, a0 6= 0 is a unit we see that every element with
a0 6= 0 is a unit, so |D∗

k,l| = (p − 1)ppk+l−pk−1. F∗
p ⊂ D∗

k,l, so D∗
k,l

∼= F∗
p × D̃∗

k,l,

where D̃∗
k,l is a p-group of order ppk+l−pk−1. Since the map c has order 2 we also

get D̃∗
k,l = D̃∗−

k,l × D̃∗+
k,l (for convenience we use the notation D̃∗+

k,l instead of the

maybe more correct (D̃∗
k,l)

+).

It is easy to see that we can also use (x − x−1)i, i = 0, 1, . . . , pk+l − pk − 1, as a
basis for D∗

k,l over Fp. Using this basis we see that

D̃∗−
k,l = {1 + a1(x − x−1) + a3(x − x−1)3 + . . . + apk+l−pk−1(x − x−1)pk+l−pk−1}

and

D̃∗+
k,l = {1 + a2(x − x−1)2 + a4(x − x−1)4 + . . . + apk+l−pk−2(x − x−1)pk+l−pk−2}

so |D∗−
k,l | = p(pk+l−pk)/2 and |D∗+

k,l | = p(pk+l−pk)/2−1. For later use we need to find

the exact structure of D̃∗−
k,l . By the structure theorem for Abelian groups,

D̃∗−
k,l

∼=
k+l∏

i=1

Csi

pi(2.1)

for some si. Observe that if

u = 1 + a1(x − x−1) + a3(x − x−1)3 + . . . + apk+l−pk−1(x − x−1)pk+l−pk−1,

then

up = 1 + a1(x − x−1)p + a3(x − x−1)3p + . . . + apk+l−1−pk−1−1(x − x−1)pk+l−pk−p.

Hence if up = 1 we must have a1 = a3 = . . . = apk+l−1−pk−1−1 = 0 so the

subset of elements in D̃∗−
k,l of order p has order p((pk+l−pk−1)−(pk+l−1−pk−1−1))/2 =

p(pk+l−pk−pk+l−1+pk−1)/2. Similarly, if we let oi denote the number of elements of
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order pi or less we get

logp o1 =
(pk+l − pk

2

)
−

(pk+l−1 − p[k−1]

2

)

logp o2 =
(pk+l − pk

2

)
−

(pk+l−2 − p[k−2]

2

)

...

logp ok+l−1 =
(pk+l − pk

2

)
−

(p − 1

2

)

logp ok+l =
pk+l − pk

2

where [m] = (m + |m|)/2 for an integer m. By comparing this with 2.1 we can
find the exponents si by.

s1 = 2 logp o1 − logp o2

s2 = 2 logp o2 − logp o1 − logp o3

s3 = 2 logp o3 − logp o2 − logp o4

...

sk+l−1 = 2 logp ok+l−1 − logp ok+l−2 − logp ok+l

sk+l = logp ok+l − logp ok+l−1

which gives us

s1 =
pk+l − pk

2
− 2

pk+l−1 − p[k−1]

2
+

pk+l−2 − p[k−2]

2

s2 =
pk+l−1 − p[k−1]

2
− 2

pk+l−2 − p[k−2]

2
+

pk+l−3 − p[k−3]

2
...

sk+l−2 =
p3 − p[−l+3]

2
− 2

p2 − p[−l+2]

2
+

p − 1

2

sk+l−1 =
p2 − p[−l+2]

2
− 2

p − 1

2

sk+l =
p − 1

2

We summarize this and some other facts proved above in a proposition.
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Proposition 2.2. |Dk,l| = ppk+l−pk

, |D+
k,l| = p(pk+l−pk)/2, |D̃∗

k,l| = ppk+l−pk−1.

|D∗−
k,l | = p(pk+l−pk)/2 and |D∗+

k,l | = p(pk+l−pk)/2−1. Moreover,

D̃∗−
k,l

∼=
k+l∏

i=1

Csi

pi ,

where

si =
pk+l−i+1 − p[k−i+1]

2
− 2

p[k+l−i] − p[k−i]

2
+

p[k+l−i−1] − p[k−i−1]

2

for i = 1, 2, . . . , k + l.

The following lemma, sometimes called Kummer’s Lemma, is well known. A
proof can be found in for example [W], p 3.

Lemma 2.3. For every unit ε ∈ Z[ζn]∗ there exists a natural number k and a
unit εr ∈ Z[ζn]∗+ such that ε = εrζ

k
n.

We now generalize this to the rings Ak,l.

Proposition 2.4. For every unit e ∈ A∗
k,l there exists a natural number k and a

unit er ∈ A∗+
k,l such that e = erx

k
k,l.

Proof. Induction with respect to l. If l equals 1, this in the lemma above. Fix
l ≥ 1 and suppose the statement holds in A∗

k,l−1 (for all k). Consider the dia-
gram 1.4 and let ek,l+1 ∈ A∗

k,l+1 be represented by (ε′, e′) ∈ Z[ζk+l]
∗ × A∗

k,l. By

the assumption there exists ε′r ∈ Z[ζk+l]
∗+ and e′r ∈ A∗+

k,l and integers k1, k2 such

that ε′ = ε′rζ
k1

k+l and e′ = e′rx
k2

k,l. Since the maps c commute with the pull-back

diagram, c((ε′r, e
′
r)) = (ε′r, e

′
r) and (ε′, e′) = (ε′r, e

′
r)(ζ

k1
k+l, x

k2
k,l). (ε′, e′) ∈ Ak,l+1 is

equivalent to fk,l(ε
′) = gk,l(e

′) and also c(fk,l(ε
′)) = c(gk,l(e

′)). We hence get

x̄k1
k,lfk,l(ε

′
r) = x̄k2

k,lgk,l(e
′
r)

and

x̄−k1
k,l fk,l(ε

′
r) = x̄−k2

k,l gk,l(e
′
r)

which implies x̄2k1
k,l = x̄2k2

k,l in Dk,l. Since x̄k,l ∈ D∗−
k,l , which is a p-group, this

implies x̄k1−k2

k,l = 1. Now recall that D∗−
k,l do have elements of order pk+l by

Proposition 2.2 and hence it is not hard to realize that x̄k,l then must have

order pk+l. This means k2 ≡ k1 mod pk+l which in turn means that x̄k2
k,l = x̄k1

k,l.

Now it follows that er := (ε′r, e
′
r) ∈ A∗+

k,l+1 and since xk1
k,l+1 = (ζk1

k+l, x
k1
k,l) we get

ek,l+1 = erx
k1

k,l+1.
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We also have the following lemma.

Lemma 2.5. F∗
p ⊂ Im{A∗

k,l → D∗
k,l}

Proof. Fix arbitrary t ∈ F∗
p. By Fermat’s little theorem, t ≡ tpk+l

mod p. Con-

sider xt−1
x−1

∈ Ak,l. Choose r, s ∈ Z such that tr − spk+l = 1. Then

xt − 1

x − 1

x1+spk+l − 1

xt − 1
− 1 =

x1+spk+l − 1

x − 1
− 1 =

=
x1+spk+l − x

x − 1
= x

xspk+l − 1

x − 1
=

= x(xs(pk+l−1) + . . . + x + 1)
xpk+l − 1

x − 1
=

= x(xs(pk+l−1) + . . . + x + 1)
xpk − 1

x − 1
· xpk+l − 1

xpk − 1
= 0

in Ak,l. Since

x1+spk+l − 1

xt − 1
=

xtr − 1

xt − 1
=

= xt(r−1) + . . . + xt + 1 ∈ Ak,l

this shows xt−1
x−1

∈ A∗
k,l. Now,

xt − 1

x − 1
− t = xt−1 + . . . + x + 1 − k = (x − 1)f(x)

for some polynomial f ∈ Z[x]. Hence, in Dk,l we get

gk,l

((xt − 1

x − 1

)pk+l)
− t = gk,l

(xt − 1

x − 1

)pk+l

− tp
k+l

=

= gk,l

(xt − 1

x − 1
− t

)pk+l

= (x − 1)pk+l

f(x)pk+l

= 0

We are now ready to prove the first proposition about the structure of Vk,l.

Proposition 2.6. V −
k,l = D̃∗−

k,l / < x̄k,l > and V +
k,l = D̃∗+

k,l /(gk,l(A
∗
k,l) ∩ D̃∗+

k,l ).

Proof. The first statement follows directly by Lemma 2.4 since x̄k,l is clearly in

D̃∗−
k,l . The second statement follows by Lemma 2.5.
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3. The structure of V
+
k,l and V +

k,l

In the quest for V +
k,l a main role will be played by a close relative to V +

k,l, namely

V
+
k,l :=

D̃∗+
k,l

Im{Z̃[ζk+i−1]∗+ → D̃∗+
k,l }

,

where Z̃[ζk+i−1]
∗+ consists of units congruent to 1 modulo (ζk+i−1−1). Recall that

we identify Z[ζk+l−1]
∗ with its image in A∗

k,l under the injection ϕk,l : Z[ζk+l−1]
∗ →

A∗
k,l, ϕk,l(ε) = (ε, Nk,l−1(ε)) (see Lemma 2.5 in [H-S]).

Our main goal for now is to find the structure of V
+
k,l. We will see that it is closely

related to the structure of V+
n which we have found in [H-S] (for semi-regular

primes with some extra condition) and [H-S2] (for all semi-regular primes). In
this paper we will do this under the following assumption, which is Assumption
3 in [H-S]. We will continue to call it Assumption 3 even though we do not use
any assumptions 1 and 2 here. Recall that r(p) denotes the index of regularity
of p.

Assumption 3. rankp(Cl(p)(Q(ζn))−) = r(p) for all n.

This holds for example if the Iwasawa invariant λ satisfy λ = r(p) which follows
from, for instance, certain congruence assumptions on Bernoulli numbers (see
page 202 in [W]) which calculations have shown holds for all p < 4000000.

Under this assumption we can prove the following theorem.

Theorem 3.1. If p is semi-regular and Assumption 3 holds, then V
+
k,l

∼= V
+
0,k+l.

Let D∗+
k,l (s) denote the group of real units congruent to 1 modulo (x̄k,l − x̄−1

k,l )
s.

Proof. By using the identifications

ϕ0,k+l : Z[ζk+l−1]
∗ → A∗

0,k+l

and

ϕk,l : Z[ζk+l−1]
∗ → A∗

k,l

we get a commutative diagram

Z[ζk+l−1]
∗

g0,k+l

zzuuuuuuuuuuuuuuu

gk,l

##H
HHHHHHHHHHHHH

D∗
0,k+l ρ̄

// D∗
k,l
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where ρ̄ is the natural surjection. We hence get an induced surjection

ρ̃ : V
+
0,k+l :=

D̃∗+
0,k+l

g0,k+l(Z̃[ζk+l−1]∗)
→

D̃∗+
k,l

gk,l(Z̃[ζk+l−1]∗)
=: V

+
k,l.

Suppose a ∈ D̃∗+
k,l is trivial in V

+
k,l, that is a = gk,l(ε) for some ε ∈ Z̃[ζk+l−1]

∗, and
that a = ρ̄(b). Then

ρ̄(b) = a = gk,l(ε) = ρ̄((g0,k+l(ε))

in D̃∗+
k,l which implies

bg0,k+l(ε
−1) ∈ D∗+

0,k+l(p
k+l − pk).

By the proof of Proposition 4.10 of [H-S] we have (when Assumption 3 holds)
that

D̃∗+
0,k+l(2s)

g0,k+l(Z̃[ζk+l−1]∗) ∩ D̃∗+
0,k+l(2s)

is trivial whenever 2s > pk+l − 2pk+l−1. Since pk+l − pk ≥ pk+l − pk+l−1 > pk+l −
2pk+l−1, this implies bg0,k+l(ε

−1) = g0,k+l(ε
′) for some ε′ ∈ Z̃[ζk+l−1]

∗ which means
b is trivial in V

+
0,k+l. In other words, ρ̃ is injective and hence an isomorphism.

By Theorem 4.3 in [H-S] we have that when Assumption 3 holds, V+
n
∼= C

r(p)
pn .

We hence get the following corollary of Theorem 3.1.

Corollary 3.2. When Assumption 3 holds, Vk,l
∼= C

r(p)

pk+l.

The rest of this paper is devoted to proving the following theorem.

Theorem 3.3. When Assumption 3 holds, V +
k,l = V

+
k,l.

Proof. Any element of A∗+
k,l can be presented as a pair (ε, e) ∈ Z[ζk+l−1] × Ak,l−1.

Recall that we make Z[ζk+l−1]
∗ a summand of A∗

k,l by using the map ϕk,l :

Z[ζk+l−1]
∗ → A∗

k,l. We have (ε, e) = (ε, Nk,l−1(ε))(1, eNk,l−1(ε
−1)) = ϕk,l(ε)(1, eNk,l−1(ε

−1)).

What we need to show is hence that for all (1, γ) ∈ A∗+
k,l there exists ε ∈ Z[ζk+l−1]

∗

such that

(1, γ) ≡ (ε, Nk,l−1(ε)) mod p.

This is equivalent to

ε ≡ 1 mod p in Z[ζk+l−1]

Nk,l−1(ε) ≡ γ mod p in Ak,l−1

Nk,l−1

(ε − 1

p

)
≡ Nk,l−1(ε) − γ

p
mod p in Ak,l−1.
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The last condition comes from that fk,l−1 = gk,l−1 ◦ Nk,l−1 (and gk,l−1 is the
surjection mod p) and we need to have

fk,l−1((ε − 1)/p) = gk,l−1((Nk,l−1(ε) − γ)/p)

in Dk,l−1 for

(ε − 1

p
,
Nk,l−1(ε) − γ

p

)
∈ Ak,l

to hold. Since we assume (1, γ) ∈ Ak,l we must have gk,l−1(γ) = fk,l−1(1) = 1
in Dk,l−1, that is, γ ≡ 1 mod p. What we need to prove is hence that for all
γ ∈ A∗+

k,l−1 such that γ ≡ 1 mod p there exists ε ∈ Z[ζk+l−1]
∗ with ε ≡ 1 mod p

such that

Nk,l−1

(ε − 1

p

)
− Nk,l−1(ε) − 1

p
≡ 1 − γ

p
mod p.(3.1)

Let Un,k : {real ε ∈ Z[ζn]∗ : ε ≡ 1 mod λk
n}, where λn := (ζn − 1). Recall that

in Z[ζk+l−1]
∗, e ≡ 1 mod p is equivalent to ε ≡ 1 mod λpk+l−pk+l−1

n . Consider the
map Φk,l−1 : Uk+l−1,pk+l−pk+l−1 → D+

k,l−1 defined by

Φk,l−1(ε) = Nk,l−1

(ε − 1

p

)
− Nk,l−1(ε) − 1

p
mod p.

If we can prove that Φk,l−1 is a surjective group homomorphism, then we can
obviously for any γ find ε such that 3.1 holds which in turn means Theorem 3.3
is proved. We will prove the surjectivity in Proposition 3.4 below and this ends
the proof of the theorem.

Proposition 3.4. When Assumption 3 holds, Φk,l−1 is a surjective group homo-
morphism for all k ≥ 0 and l ≥ 2.

This result will follow from the following lemma which is the corresponding result
for k = 0.

Lemma 3.5. When Assumption 3 holds, Φ0,n−1 is a surjective group homomor-
phism for all n ≥ 2.

This is Theorem 4.4 in [H-S]. We will not re-prove it here, but for the sake of
completeness we will give some indication of how the proof goes.

We start by looking the first part of Φ0,n−1, namely ϕ0,n−1 : U0,pn−pn−1 → D+
0,n−1

defined by ϕ0,n−1(ε) = N0,n−1((ε − 1)/p). It is easy to prove, using our standard
commutative diagram, that the kernel is U0,pn−1 which by Lemma 3.2 in in [H-S]
equals U0,pn+1. This gives us an injection

ϕ̃0,n−1 :
U0,pn−pn−1

U0,pn+1

→ D+
0,n−1.
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We then prove that this map is an also surjective, that is, an isomorphism.
This is done by showing that (U0,pn−pn−1)/(U0,pn+1) have the “correct” number of
elements and this is one of the harder parts of the proof. In short, to prove this
we use that we have (by definition) r(p) indexes i1, i2 . . . ir among 1, 2 . . . (p −
3)/2 such that the nominator of the Bernoulli number Bik (in reduced form)
is divisible by p. We prove that Ēn((xn − x−1

n )2ik) generate the group V
+
0,n :=

D∗+
0,n/g0,n(Z[ζn−1]

∗+) where Ēn : D0,n → D∗
0,n is the truncated exponential map

defined by

Ēn(y) = 1 + y +
y2

2!
+ . . . +

yp−1

(p − 1)!
.

We first use some old number theoretical techniques to prove the result for n = 1
and then lift the result to arbitrary n. To make the lifting work it is vital that we
already know that V

+
0,n

∼= (Z/pnZ)r(p). After this we use that we know “where”

to find a set of generators of V
+
0,n to show that D∗+

0,n(2s) ⊂ gn(Z[ζn−1]
∗+) when

2s > pn − 2pn−1. Since ker(g0,n) = U+
n−1,pn−1 (by Lemma 2.6, [H-S]) when g0,n

is restricted to units, one can now show that D∗+
0,n(2s) ∼= U+

n−1,2s/U
+
n−1,pn−1 if

2s > pn − 2pn−1. Finally we set 2s = pn − pn−1 and easily calculate the number
of elements in D∗+

0,n(pn − pn−1) to be the “correct” one.

Now let ω0,n−1 : U+
n−1,pn−pn−1 → D+

0,n−1 be defined by

ω0,n−1(γ) := gn−1((Nn−1(γ) − 1)/p).

As before one can show that ω0,n−1 is a group homomorphism and that we get
an induced map ω̃0,n−1 : (U0,pn−pn−1)/(U0,pn+1) → D+

0,n−1 Since ϕ̃0,n−1 is an iso-
morphism we can find units {εi} ⊂ U0,pn−pn−1 such that {ϕ̃0,n−1(εi)} is a basis of
D+

0,n−1. We now consider the map induced by ϕ̃0,n−1(εi) 7→ ϕ̃0,n−1(εi)− ω̃0,n−1(εi)

(in the “standard” basis (x − x−1)2i). After some pretty long calculations we fi-
nally manage to find some congruences on our norm maps which helps us conclude
that the matrix for the map above is upper triangular with invertible elements
on the diagonal, that is, invertible. This means that the map ϕ̃0,n−1 − ω̃0,n−1

is in particular surjective, which implies that Φ0,n−1 = ϕ0,n−1 − ω0,n−1 is also
surjective.

We are now ready to prove Proposition 3.4.

Proof of Proposition 3.4. We will show that Φk,l−1 = ρ̄ ◦ Φ0,k+l−1, where ρ̄ :
D0,k+l−1 → Dk,l−1 is the natural surjection, which means that Φk,l−1 is surjective
(by Lemma 3.5) as a composition of surjective maps. It is enough to show that
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gk,l−1 ◦ Nk,l−1 = ρ̄ ◦ g0,k+l−1 ◦ N0,k+l−1. Consider the diagram

A0,k+l−1

ρ

��

g0,k+l−1
// D0,k+l−1

ρ̄

��

Z[ζk+l−1]

Nk,l−1

99ttttttttttttttt

N0,k+l−1

%%J
JJJJJJJJJJJJJJ

Ak,l−1 gk,l−1

// Dk,l−1

(3.2)

The square part is obviously commutative. It is hence enough to prove that
the triangular part is commutative. Recall that an element a ∈ Ar,s can be
uniquely represented by a pair (zr+s−1, b) ∈ Z[ζr+s−1] × Ar,s−1 Using this re-
cursively we find that any element of Ak,l−1 can be uniquely represented by a
(l−1)-tuple in Z[ζk+l−2]×Z[ζk+l−2]× . . .×Z[ζk] and that any element of A0,k+l−1

can be uniquely represented by a (k + l − 1)-tuple in Z[ζk+l−2] × Z[ζk+l−2] ×
. . . × Z[ζ0]. As before we consider the tuple-representations as identifications.
If a = (zk+l−2, zk+l−2, . . . , z0) ∈ A0,+l−1 (with zj ∈ Z[ζj]) we have that ρ(a) =

(zk+l−2, zk+l−2, . . . , zk). For k ≥ 0 and l ≥ 1 let Ñk+l,l : Z[ζk+l] → Z[ζk] denote
the usual norm. By Proposition 2.1 of [H-S] we have that

ρ(N0,k+l−1(a)) = ρ((Ñk+l−1,1(a), . . . , Ñk+l−1,l−1(a), . . . , Ñk+l−1,k+l−1(a))) =

= (Ñk+l−1,1(a), Ñk+l−1,2(a), . . . , Ñk+l−1,l−1(a)) =

= Nk,l−1(a)

which completes the proof.

4. Conclusions and Discussion

We can now summarize and write down the main theorem of this paper. Recall
that [m] := (m + |m|)/2.

Theorem 4.1. Let p be a semi-regular prime satisfying Assumption 3. Then
there exists an exact sequence

0 → V +
k,l ⊕ V −

k,l → Pic Ak,l → Cl Q(ζk+l−1) ⊕ Pic Ak,l−1 → 0,

where

V +
k,l

∼= C
r(p)

pk+l
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and

V −
k,l

∼=
k+l∏

i=1

Cti
pi,

where

ti =
pk+l−i+1 − p[k−i+1]

2
− 2

p[k+l−i] − p[k−i]

2
+

p[k+l−i−1] − p[k−i−1]

2

for i = 1, 2, . . . , k + l. and tk+l = p−3
2

.

Proof. The exact sequence is just the sequence 1.5. The structure of V +
k,l follows

directly by Theorem 3.3 and Corollary 3.2. By Proposition 2.6,

V −
k,l =

D̃∗+
k,l

< x̄k,l >
.

The structure of D̃∗+
k,l can be found in Lemma 2.2. Since there exists elements of

order pk+l in D̃∗−
k,l it is easy to see that x̄k,l must have order pk+l which yields the

structure of V −
k,l.

One can ask the question if Assumption 3 really is necessary. The structure of
V −

k,l holds for all primes, so here lies no problem. Regarding the +-part, we prove
in [H-S2] that

V
+
0,n

∼= Cr0
pn ⊕ Cr1−r0

pn−1 ⊕ . . . ⊕ Crn−1−rn−2
p ,

where the numbers ri are given by the order of certain groups of units in Q(ζi)
and r0 can be shown to equal r(p) (see [H-S] for details). When Assumption 3

holds, all ri equal r(p) which gives us V
+
0,n

∼= C
r(p)
pn as mentioned. When we in the

present paper show that V
+
k,l

∼= V
+
0,k+l we for technical reasons use Assumption 3

but we still conjecture that

V
+
k,l

∼= Cr0

pk+l ⊕ Cr1−r0

pk+l−1 ⊕ . . . ⊕ Crk+l−1−rk+l−2
p

for each semi-regular prime. Showing that V
+
k,l = V +

k,l without using Assumption 3
seems to be harder and this result is not known even in the case k = 0.
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