THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Robot Path Planning

Robert Bohlin

CHALMERS | GOTEBORG UNIVERSITY

Department of Mathematics
Chalmers University of Technology and Goteborg University
SE-412 96 Géteborg, Sweden
Goteborg, May 2002

Robot Path Planning
Robert Bohlin
ISBN 91-7291-168-9

© Robert Bohlin, 2002

Doktorsavhandlingar vid Chalmers tekniska hogskola
Ny serie nr 1850
ISSN 0346-718X

Department of Mathematics
Chalmers University of Technology
SE-412 96 Géteborg

Sweden

Telephone +46 (0)31-772 1000

Abstract

This thesis consists of three papers concerned with the basic path
planning problem for robots moving in a known static environment.
Our main interest has been industrial robots, but the methods are
general and apply to a wide range of robots. The path planning prob-
lem is to find a sequence of configurations that moves a robot from
an initial configuration to a goal configuration without colliding with
obstacles in the environment.

The first paper presents a variation of the Probabilistic Roadmap
Method (PRM). The new planner is called Lazy PRM and is tailored
for single query path planning. By introducing a scheme for lazy eval-
uation, the pronounced multiple query planner is converted into an
efficient single query planner.

The second paper presents a resolution complete, de-randomized
version of Lazy PRM. The planner uses an implicit, non-uniform grid
that allows local refinement to represent the configuration space.

The third paper presents a novel potential field method for free-
flying rigid bodies. The planning is performed directly in the group
SE(3) and is reinforced by a potential function in the workspace.
Thus, the planner benefits from the explicit representation of the
workspace obstacles at the same time as the planning takes place in the
6-dimensional configuration space. The potential function is harmonic
and is composed of translates of the Green kernel in SE(3).

Experimental results provided show that the planners are capable
of solving relevant problems in various environments.

Keywords: Collision avoidance, Green kernel, fundamental solu-
tion, harmonic function, motion planning, path planning, potential
field, probabilistic roadmap, randomized algorithm, robotics.

AMS 2000 Mathematics Subject Classification: 22E70,
34B27, 58J90, 65C99, 68W20

This thesis consists of an introduction and the following papers

Paper I: R. Bohlin and L.E. Kavraki. A lazy probabilistic roadmap planner
for single query path planning
This paper is a combination of the papers

e R. Bohlin and L.E. Kavraki. Path Planning Using Lazy PRM. In
Proc. IEEE International Conference on Robotics and Automa-
tion, 2000

e R. Bohlin and L.E. Kavraki. A Randomized Algorithm for Robot
Path Planning Based on Lazy Evaluation. Handbook on Random-
ized Computing, S. Rajasekaran and P. Pardalos and J. Reif and
J. Rolim Editors, Kluwer Academic Publishers, 2001

Paper II: R. Bohlin. Path planning in practice; lazy evaluation on a multi-
resolution grid. In Proc. IEEE/RSJ International Conference on In-
telligent Robots and Systems, 2001

Paper III: R. Bohlin. Rigid body path planning using the Green kernel in
SE(3)

Acknowledgements

First and foremost, I thank my advisor Bo Johansson for all the support and
encouragement he has given me throughout the work. Without his enthusi-
asm, comments and patience when listening to my sometimes confused ideas,
this work would not have been completed.

I also express my gratitude to the people at ABB Robotics who supported
this research. Special thanks goes to Henrik Berlin, Pernilla Johansson, Par
Oskarsson, Lars Ostlund, Anders Ekelund and Martin Hirnquist.

During my studies I had the great opportunity to visit the Physical
Computing Group at Rice University, and I am deeply indebted to Lydia
Kavraki. Working with Lydia has been a pleasure, and her comments on
various manuscripts have been invaluable for the development of Lazy PRM.

I would also like to thank the Robotics Group at Oxford University Com-
puting Laboratory, with whom I had the opportunity to spend three months.
Particularly, I give my gratitude to Stephen Cameron and Joe Pitt-Francis
for many fruitful discussions.

Many colleagues at the department have made me enjoy my time as a
Ph.D. student. In particular my thanks go to Tobias Adolfsson, Henrik
Berlin, Jan Rohlén and Magnus Oskarsson, but many others have contributed
to a nice working environment. I am also grateful to Peter Sjogren, Grigori
Rozenblioum and Bo Berndtsson for their help on Green kernels.

Finally, I wish to thank my wife Petra for her continuous support during
this work, and for being an unlimited source of joy and inspiration.

Goteborg, May 2002

Robert Bohlin

Robot Path Planning

An introduction

Robert Bohlin
Department of Mathematics
Chalmers University of Technology

SE-412 96 Goteborg, Sweden

This thesis deals with the basic path planning problem for robots moving
in a known static environment. Our main interest has been industrial robots,
but the methods are general and also apply to a wide range of other robots.
The path planning problem is to find a sequence of configurations that moves
a robot from an initial configuration to a goal configuration without colliding
with obstacles in the environment. Our aim has been to develop algorithms
capable of solving path planning problems that frequently occur in industry.
Automatic path planners are essential to autonomous robot systems and
increase the efficiency and applicability of off-line programming systems.

The mathematical aspects of path planning are of great variety. The re-
lationship with optimization comes immediately into one’s mind. There are,
however, major differences. One way to see the path planning problem is to
consider the initial configuration as a starting point, and then try to reach
a global minimum located at the goal configuration. In robotics, such tech-
niques are known as potential field methods, but in contrast with traditional
optimization our interest is not the optimum solution itself, but rather the
path that leads to the optimum.

Another way to formulate the path planning problem is to optimize over
all paths that connects the initial and the goal configurations. The objective
function should penalize colliding paths and promote short, smooth paths,
see [2]. Such a variational formulation generally leads to a highly non-convex
optimization problem. Owing to the complexity of the path planning prob-
lem, our primary interest is to find some feasible path. Finding an optimal
solution is far too difficult in most cases.

To deal with the complexity issue, approximate methods are most useful
in practice. Randomized techniques have gained much interest, and in par-
ticular the Probabilistic Roadmap Method (PRM), see [23, 24, 36]. Paper I
of this thesis further develops this method by introducing a planner called

2 Robert Bohlin

Lazy PRM. The planner uses a lazy evaluation technique in order to reduce
costly collision detection.

Paper II presents a de-randomized version of Lazy PRM. Instead of using
an explicit representation of a random network, the planner uses an implicit
grid. The grid is not necessarily uniform, but can be refined locally as the
planner proceeds. The work in Paper II was done independently of the
work presented in [6], although the methods have strong similarities. The
planners in [6] use quasi-random numbers to create lattices. Depending on
what quasi-random numbers are used, different lattices are generated. The
lattices can be represented implicitly and, in a special case, forms a regular
grid. A deeper discussion of randomized versus deterministic techniques can
be found in [7].

Paper 111 introduces a potential field method for planning for a rigid body
moving freely in space. The novel approach uses Green kernels in order to
create a harmonic potential function that guides the robot towards the goal.
Mathematical tools for a theoretical foundation are developed that open up
for further development in various directions. The technique is still prema-
ture, but our implementation and test examples show good performance and
looks promising for future improvements.

The remaining pages of this introduction give a short background of
robotics, describe some applications and different kinds of robots, and moti-
vate the use of automatic path planners. Section 3 introduces some notations
and defines the problem. Some variations of the problem are given in Section
2.1.

1 History and applications

The use of robots in a large scale started in industry in the 1960’s and has
grown continuously ever since. Initially, robots were mainly used for handling
materials, positioning, and for simple assembly tasks. The main objectives
were to relieve humans from repetitive or tedious tasks, work in hazardous
environments, and physically exacting work.

The development was fast and soon robots started to replace humans
where extreme precision or high repeatability was needed. Robots also be-
came easier to program, became more flexible, and could solve more complex
tasks. Spray painting and spot welding, for instance, were applications well
suited for being taken over by robots, see [34].

Introduction

Mobile robots, known as automated guided vehicles (AGVs), were deve-
loped in the 1970’s in order to transport material in factories. By following
guide wires buried in the floor, the robots were able to navigate and position
themselves. A decade later wireless navigation systems started to appear.
Laser sensors and beacons increased the flexibility and made it easier to
alter the map of predetermined paths.

Today robot applications have spread far beyond manufacturing industry.
Modern forestry, agriculture and construction industry have all been influ-
enced by robotics. See for example [34] for a sheep-shearing robot! Medical
robots assist surgeons and even perform remotely controlled operations, see
[21]. Also in our homes one can find autonomous cleaning robots and robots
cutting the lawn, see [37]. As can be seen from these applications, a robot
can be almost anything that moves in a controlled manner.

The examples until now have been robots that exist in the physical world.
However, extending our view a bit more, there is an endless number of vir-
tual robots with similar properties, see [29]. Movies and commercials with
animated characters are getting more and more common. These characters,
as well as vehicles, humans and animals in computer games, can be seen as
robots moving along specified paths and acting according to a certain pat-
tern. See for example [18, 22, 25, 26] for articles related to path planning.
Moreover, in pharmaceutical drug design, interactions between molecules are
essential. For instance, the docking of ligands inside protein cavities can be
simulated; see [11] for an overview of computer-aided drug design.

Closing the circle by going back to where we started — to manufacturing
industry — we find still more virtual robots. Long before a product is being
manufactured, its assemblies are designed with computer aid, see [20]. Vir-
tual prototyping and assembly planning shortens the development time for
new products, and production planning and simulation increase the efficiency
in factories. All parts that move when a process is simulated can be seen
as robots. Furthermore, an increasing number of industrial robots are being
programmed off-line. That is, instead of programming the physical robot
in a noisy workshop, programs are written in a comfortable office by using
a virtual copy of the robot and its environment. Programs can be edited,
simulated and verified before they are transfered to the physical robot. All
this can be done without interfering the flow in the production line.

In the examples mentioned so far, the robots have been single rigid ob-
jects or a collection of rigid objects, called links, that are connected to each
other by joints. The atoms and bindings of molecules, for instance, can be

4 Robert Bohlin

modeled by rigid pieces connected to each other by joints. However, robotics
also concerns robots that have an infinite number of joints, see [13] for an
overview. Flexible parts like sheet metal, clothing, and human tissues are
interesting to consider, see |1, 27|. Recent work in [12] also treats snake-like
robots.

In spite of the great variety of robots and applications, the basic concept
is the same; program some robot (real or artificial) to act such that a certain
task is accomplished. On a lower level, the essential operation it all comes
down to is to find a sequence of robot motions such that the task is solved.
During the motions certain constraints must be satisfied.

Levels: [Pick-and-place program }

Task planning

Open grippeﬂ [Move to A } [Close grippe} [Move to B} [Move hom%

Path planning 7~ |} / /

[Move topy j [Move to pz} Move to p

Trajectory planning

Joint forces
Closed loop control

Path following

Path execution

Figure 1: A simple pick-and-place program and its levels.

To illustrate the components of a robot program and give an idea of
how a task is divided into pieces, we will use a simple example. Consider a
robot with a gripper that shall move an object from location A to location
B. On the task level, the program is divided into a sequence of actions, see
Figure 1. Some of these actions involve motions from an initial configuration

Introduction

to a goal configuration. Typically, the procedure from planning to execution
of a motion looks as follows. Presumably, the straight-line path from start
to goal is impossible to follow due to obstacles. Then a detour, specified by
a sequence of via-points (py,...,p, in Figure 1), must be found in order to
pass the obstacles. This step is called kinematic path planning or just path
planning. Kinematic constraints, like how robot links are related to each
other and minimum turning radius for mobile robots, must also be taken
into account.

The second step is to calculate a trajectory, or a motion plan, and involves
the equations describing the dynamics of the robot. A desired velocity along
the path is determined and a plan is calculated that specifies the forces and
torques of the actuators. If limits of joint forces are exceeded, the velocity
profile along the path needs to be reconsidered. The trajectory may be pre-
calculated or determined in real time.

The third step is the execution of the trajectory and is sometimes called
path following. This is handled by a control unit or a simulation device and
is performed without human interaction. In general closed loop control with
sensor feedback is needed. If the trajectory is calculated in real time, the
second and third steps may be merged together.

Optimal control theory has been extensively used in the second step in
order to minimize the execution time for a path while the constraints on joint
forces are satisfied, see [34]. Time-optimal trajectories has, however, limited
practical use. Typically the solution requires bang-bang control, that is, at
all time during execution, the force on at least one actuator is maximal. The
input switches instantaneously between the limits, hence there are discon-
tinuous jumps in the actuator forces. In practice such ideal forces cannot be
produced, and even getting close to such a control scheme would prematurely
wear out the robot.

2 Automatic path planning

The human brain is extremely talented regarding spatial path planning. Ne-
vertheless, a tremendous amount of time is spent on manual path planning.
In many cases the programmer must specify complicated paths with long
detours containing a large number of via-points. This makes robot program-
ming time consuming and sometimes tedious.

Although robot programming is performed off-line in modern industry,

6 Robert Bohlin

the programming procedure is basically the same as it was 30 years ago —
to manually teach the robot how to move by specifying all locations along
a path. The difference is that a computer model is used instead of the real
robot. Thus, programmers still need to focus on the low level motions of the
robot. It would be more natural to raise the level of abstraction and focus on
what the robot shall do instead of how to do it. An essential component in
software that better supports the robot programmer is a path planner. Off-
line programmers and users in many other applications mentioned in previous
section could benefit a lot from automatic path planning.

Automatic path planning deals with the problem of finding a robot path
from an initial configuration to a goal configuration, or determining that
no such path exists. Depending on the robot and the environment, various
constraints may impose additional requirements on the motion. The most
obvious constraints come from obstacles that possibly are located in the
workspace. The path must be selected to assure that the robot does not
collide with the obstacles.

Kinematic constraints must also be satisfied. A robot may consist of
several links that are joined together. If the links are formed in a loop, the
loop must be maintained all along the path. Kinematic constraints are called
holonomic if they can be eliminated in some way by changing the parame-
terization the robot. On the contrary, non-holonomic constraints cannot be
eliminated and typically occur for mobile robots. Some vehicles may not be
able to move sideways, but only drive forward or backwards and turn with
limited radius. Tractor-trailer systems may have even more complicated non-
holonomic constraints.

In the last decades, the path planning problem has been extensively stud-
ied, and a large number of different approaches have been proposed. The
introductory parts of Paper I, Paper II, and Paper III give brief overviews
of randomized planners, grid-based planners, and potential field planners
respectively. For other techniques, we refer to [14, 17, 28].

2.1 Variations of the path planning problem

A challenging task is to coordinate several robots moving and possibly in-
teracting in the same workspace, see [31, 39, 41, 43, 44]. Naturally the
complexity grows rapidly with the number of robots. To reduce the com-
plexity, various levels of decentralized planning are currently the methods
of most interest. The general idea is to first plan for each robot separately

Introduction 7

and independently of the other robots. Then the paths must be modified
and coordinated in order to avoid collisions and to optimize some global
performance measure.

A variation of robot coordination is assembly planning, which deals with
the problem of finding motions that put an assembly together, see [15]. Ty-
pically, fine tolerances are involved, and a solution may require that the parts
are in contact with each other during the motion. Another special case of
robot coordination is known as manipulation planning. Then some of the
obstacles are movable and may be manipulated in order to accomplish a
task, see [10, 47].

The environment is sometimes unknown and needs to be explored in
order to detect the obstacles. The obstacles may also change or move in
an unpredictable way, see [33]. Uncertainties in positioning and sensing are
other aspects that must be considered in practice. A unifying framework that
covers several of these variations of the path planning problem is studied in

[30].

3 Configuration space

A robot may consist of one or more rigid bodies moving in a workspace
denoted by W. Each rigid body is called a link and has a coordinate system
attached to it. The placement of each link is described by a rigid body
transformation with respect to a fixed coordinate frame Fy, in W. In the
case of n links, their locations are given by a point in the n-fold product of
the space of rigid body transformations.

If some of the links are connected by joints, or if other kinematic con-
straints must be satisfied, the possible locations of the links are restricted.
The subset C of the n-fold product space for which all these constraints are
satisfied is called the configuration space of the robot. A point in C is called
a configuration. The dimension d of C is equal to the number of degrees of
freedom (dof) of the robot. The use of configuration space for path planning
was originally introduced in [32].

With the definition just given, the configuration space is not necessarily
connected. That is, there may be configurations in C that are not reachable
without first violating some constraints. See Figure 2 for a simple example
of a planar linkage with two separate components of C. For further reading,
see for example [35, 45]. The set of unreachable configurations will not be

8 Robert Bohlin

Figure 2: An example of a planar robot whose configuration space have two
disjoint components.

of our interest, so we simply exclude it from the configuration space. Thus,
from now on, the configuration space C is one connected component.

For many robots it is possible to parameterize C in a convenient way.
Consider an articulated robot arm. Given the position of the first link, the
position of the second link can be determined from the state of the joint
connecting them, and so on. Thus, a configuration of a robot arm with d
distinct joints can be specified with d joint values. The space of joint values,
typically a subset of R%, can be seen as a local coordinate system on C.

It is often convenient to identify the configuration space with a subset
of R%. However, this must be done carefully since the standard topology
in R% may be completely different from the topology of C. A single rigid
body, for instance, has six degrees of freedom but the space of rigid body
transformations is not homeomorphic to R®, see Paper III. Consequently, R?
is not always a good choice for parameterizing C. See also [46].

Consider the end-effector of an articulated robot arm. It may reach the
same position in W in several ways; in an "elbow up” or in an "elbow down”
pose. Moreover, when two joint axis coincide, the same position can be
reached in an infinite number of ways. Thus, to to avoid ambiguity, a path
must be specified in the configuration space. Therefore it is in general prefer-
able to consider the planning problem in the configuration space, where each
robot configuration is uniquely defined by a point.

The mapping from the configuration space C to the work space W is
called forward kinematics and the mapping in the other direction is called
inverse kinematics. Owing to the redundancy, there may be singularities

Introduction

in the multi-valued mapping from W to C. As a result, a smooth path in
C generally gives a smooth path in W, whereas the converse is not always
true. Typically, the forward kinematics is easy to calculate whereas the
inverse mapping is more difficult and, as just pointed out, may give several
solutions. There are, however, robots for which the inverse kinematics is easy
to calculate and the forward kinematics is more intricate, see e.g. [42].

3.1 Complexity

Several important results regarding the complexity of the path planning prob-
lem have been derived. As in many other disciplines, it is very large step
from a 2-dimensional workspace to a 3-dimensional workspace. For exam-
ple, the shortest path for a point among polygonal obstacles can be found
in O(nlogn), where n is the number of vertices of the obstacles, see [16].
This seemingly easy problem is much more complex in three dimensions; the
shortest path for a point in a polyhedral world is proven to be NP-hard, see
8, 9.

However, not all problems in 2-dimensional workspaces with polygonal
obstacles are easy to solve. The path planning problem for a robot arm with
polygonal links connected by revolute joints is PSPACE-hard, see [19]. In
this case, as in most path planning situations, the essential measure of the
size of the problem is the number of degrees of freedom of the robot.

One family of path planning problems is called the generalized mover’s
problem. This family includes, for example, planning for one or more rigid
bodies moving freely in space, and for robot arms. Reif showed in [38] that
also this family belongs to the class of PSPACE-hard problems. Complete
algorithms do exist, but they are rarely used in practice due to their compu-
tational complexity, see [8, 40]. It is believed that any complete algorithm
requires time exponential in the number of degrees of freedom of the robot.
This complexity bound is obtained by the complete algorithm in [8].

4 Qutline and contributions of the thesis

This thesis consists of three papers concerning the basic robot path planning
problem in a known static environment. We restrict our attention to robots
with a finite number of degrees of freedom and holonomic kinematic con-
straints. In this short introduction we do not want to go too deep into the

10 Robert Bohlin

details of the separate papers, but we wish to briefly outline their contents
and point out the main contributions of this work.

Paper I is a combination of the two papers [4] and [5], and presents a
variation of the Probabilistic Roadmap Method (PRM). The new planner is
called Lazy PRM and is tailored for single query path planning. The main
contributions of the first paper are:

e The concept of lazy evaluation in order to reduce collision checking
e Further development of node enhancement techniques for PRM
e A proof of probabilistic completeness for Lazy PRM.

By introducing lazy evaluation, the pronounced multiple query planner is
converted into an efficient single query planner. Experimental results pro-
vided show that the planner is capable of solving relevant problems in an
industrial environment.

Paper II presents a resolution complete, de-randomized version of Lazy
PRM. The main contributions of the second paper are:

e An implicit representation of the roadmap
e A non-uniform grid that allows local refinement.

The planner is compared with Lazy PRM and the experiments indicate that
the grid representation gives better performance.

Paper III presents a novel potential field planner that uses Green kernels.
The planner is tailored for rigid body path planning. The main contributions
of the third paper are:

e Path planning directly in the group SE(3)
e Explicit formulas for the Green kernel in SF(3) and S* x R3

e Application of harmonic functions in high-dimensional configuration
spaces.

e Combination of sampling and potential field methods.

Introduction

References

[1] E. Anshelevich, S. Owens, F. Lamiraux, and L. Kavraki. Deformable
volumes in path planning applications. In Proc. IEEE Int. Conf. on
Rob. & Aut., 2000.

[2] J. Barraquand and P. Ferbach. Path planning through variational dy-
namic programming. In Proc. IEEE Int. Conf. Robotics and Automa-
tion, pages 1839-1846, San Diego, CA, 1994.

[3] R. Bohlin. Path planning in practice; lazy evaluation on a multi-
resolution grid. In Proc. IEEE/RSJ Int. Conf. on Int. Rob. and Syst.,
2001.

[4] R. Bohlin and L.E. Kavraki. Path planning using Lazy PRM. In Proc.
IEEE Int. Conf. on Rob. & Aut., 2000.

[5] R. Bohlin and L.E. Kavraki. A randomized algorithm for robot path
planning based on lazy evaluation. In S. Rajasekaran, P. Pardalos,
J. Reif, and J. Rolim, editors, Handbook on Randomized Computing,
pages 221-249. Kluwer Academic Publishers, 2001.

[6] M.S. Branicky, S.M LaValle, K. Olson, and L. Yang. Quasi-randomized
path planning. In Proc. IEEE Int. Conf. on Rob. & Aut., 2001.

[7] M.S. Branicky, S.M. LaValle, K. Olson, and L. Yang. Deterministic vs.
probabilistic roadmaps. submitted to IEEE Transactions on Robotics
and Automation, 2002.

[8] J.F. Canny. The Complezity of Robot Motion Planning. MIT Press,
Cambridge, MA, 1988.

[9] J.F. Canny and J. Reif. New lower bound techniques for robot motion
planning problems. In Proc. 28th IEEE Symp. on Found. of Comp. Sci.,
pages 49-60, 1987.

[10] P. Ferbach and J. Barraquand. A method of progressive constraints for
manipulation planning. IEEE Tr. on Rob. & Aut., 13(4), 1997.

[11] P. Finn and L. Kavraki. Computational approaches to drug design.
Algorithmica, 25:347-371, 1999.

11

12 Robert Bohlin

[12] I.A. Gravagne and I.D. Walker. Ellipsoid analysis for planar continuum
robots. IEEE Tr. on Rob. & Aut., to appear.

[13] K. Gupta. Motion planning for flexible shapes (systems with many
degrees of freedom): a survey. Visual Computer, 14(5-6):288-302, 1998.

[14] K. Gupta and A.P. del Pobil. Practical Motion Planning in Robotics.
John Wiley, West Sussex, England, 1998.

[15] D. Halperin, J.C. Latombe, and R.H. Wilson. A general framework for
assembly planning: The motion space approach. Algoritmica, 26:577—
601, 2000.

[16] J. Hershberger and S. Suri. Efficient computation of Euclidean shortest
paths in the plane. In Annual Symp. on the Foundations of Computer
Science, 1993.

[17] Y.K. Hwang and N. Ahuja. Gross motion planning - a survey. ACM
Comp. Surveys, 24(3):219-291, 1992.

[18| J.J. Kuffner, Jr., K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Mo-
tion planning for humanoid robots under obstacle and dynamic balance
constraints. In Proc. IEEE Int. Conf. on Rob. & Aut., 2001.

[19] D.A. Joseph and W.H. Plantinga. On the complexity of reachability and
motion planning questions. In ACM Symp. on Computational Geometry,
pages 62—-66, 1985.

[20] L. Joskowicz and E. Sacks. Computer-aided mechanical design using
configuration spaces. Computing in Science & Engineering, 1, 1999.

[21] L. Joskowicz and R.H. Taylor. Computers in imaging and guided surgery.
Computing in Science & Engineering, 3, 2001.

[22] M. Kalisiak and M. van de Panne. A grasp-based motion planning algo-
rithm for character animation. Journal of Visualization and Computer
Animation, 12(3):117-129, 2001.

[23] L.E. Kavraki and J.C. Latombe. Randomized preprocessing of configu-
ration space for fast path planning. In Proc. IEEFE Int. Conf. on Rob.
& Aut., 1994.

Introduction

[24] L.E. Kavraki, P. Svestka, J.C. Latombe, and M. Overmars. Probabilis-
tic roadmaps for fast path planning in high dimensional configuration
spaces. IEEE Tr. on Rob. € Aut., 12:566-580, 1996.

[25] Y. Koga, K. Kondo, J. Kuffner, and J.C. Latombe. Planning motions
with intentions. Computer Graphics (SIGGRAPH’94), pages 395-408,
1994.

[26] J.J. Kuffner, Jr. Autonomous Agents for Real-time Animation. PhD
thesis, Stanford University, Stanford, CA, 1999.

[27] F. Lamiraux and L.E. Kavraki. Planning paths for elastic objects under
manipulation constraints. Int. J. of Rob. Research, 20(3), 2001.

[28] J.C. Latombe. Robot Motion Planning. Kluwer, Boston, MA, 1991.

[29] J.C. Latombe. Motion planning: A journey of robots, molecules, digital
actors, and other artifacts. Int. J. of Rob. Research, 18(11):1119-1128,
1999.

[30] S.M. LaValle. Robot motion planning: A game-theoretic foundation.
Algorithmica, 26, 2000.

[31] S.M. LaValle and S.A. Hutchinson. Optimal motion planning for mul-
tiple robots having independent goals. IFEE Tr. on Rob. & Aut.,
14(6):912-925, 1998.

[32] T. Lozano-Pérez. Spatial planning: A configuration space approach.
IEEE Tr. on Computers, 32:108-120, 1983.

[33] J.B. Mbede, X.H. Huang, and M. Wang. Fuzzy motion planning among
dynamic obstacles using artificial potential fields for robot manipulators.
Robotics and Autonomous Systems, 32(1):61-72, 2000.

[34] Phillip J. McKerrow. Introduction to Robotics. Addison-Wesley, 1991.
[35] R.J. Milgram and J.C. Trinkle. The geometry of configuration spaces

for closed chains in two and three dimensions. Homology Homotopy and
Applications, 2002. To appear.

13

14 Robert Bohlin

[36] M. Overmars and P. Svestka. A probabilistic learning approach to mo-
tion planning. In K.Y. Goldberg, D. Halperin, J.C. Latombe, and R.H.
Wilson, editors, Algorithmic Foundations of Robotics, pages 19-37. A K
Peters, 1995.

[37] E. Prassler, A. Ritter, C. Shaeffer, and P. Fiorini. A short history of
cleaning robots. Autonomous Robots, 9(3):211-226, 2000.

|38 J. Reif. Complexity of the mover’s problem and generalizations. In Proc.
20th IEEE Symp. on Found. of Comp. Sci., pages 421-427, 1979.

[39] M. Rude. Collision avoidance using space-time representation of motion
processes. Autonomous Robots, 4(1), 1997.

[40] J.T. Schwartz and M. Sharir. On the ‘piano movers’ problem: II. Gen-
eral techniques for computing topological properties of real algebraic
manifolds. Advances in Applied Mathematics, 4:298-351, 1983.

[41] T. Simeon, S. Leroy, and J.P. Laumond. Path coordination for multiple
mobile robots: A resolution-complete algorithm. IEEE Tr. on Rob. &
Aut., 18(1):42-49, 2002.

[42] S.K. Song and D.S. Kwon. Efficient formulation approach for the forward
kinematics of the 3-6 Stewart-Gough platform. In Proc. IEEE/RSJ Int.
Conf. on Int. Rob. and Syst., 2001.

[43] P. Svestka and M. Overmars. Coordinated path planning for multiple
robots. Robotics and autonomous systems, pages 125-152, 1998.

[44] P. Svestka and M. Overmars. Probabilistic path planning. In J-P. Lau-
mond, editor, Robot Motion Planning and Control, pages 255-304. Lec-
ture Notes in Control and Information Sciences, Springer, NY, 1998.

[45] J.C. Trinkle and R.J. Milgram. Motion planning for planar n-bar mech-
anisms with revolute joints. In Proc. IEEE/RSJ Int. Conf. on Int. Rob.
and Syst., 2001.

[46] K.D Wise and A. Bowyer. A survey of global configuration-space map-
ping techniques for a single robot in a static environment. Int. J. of
Rob. Research, 19(8), 2000.

Introduction 15

[47] J.H Yakey, S.M. LaValle, and L.E. Kavraki. Randomized path planning
for linkages with closed kinematic chains. IEEE Tr. on Rob. & Aut.,
17(6), 2001.

Paper 1

A lazy probabilistic roadmap planner for
single query path planning

Robert Bohlin Lydia E. Kavraki
Department of Mathematics Department of Computer Science
Chalmers University of Technology Rice University
SE-412 96 Géteborg, Sweden Houston, TX 77005, USA
Abstract

Autonomous path planning addresses the problem of finding collision-
free paths for moving objects — robots — among obstacles. In this
paper we consider robots operating in workspaces occupied by sta-
tionary, completely known obstacles. We describe a new approach
to probabilistic roadmap planners (PRMs). The overall theme of the
algorithm, called Lazy PRM, is to minimize the number of collision
checks performed during planning. Our algorithm builds a roadmap
in the configuration space, whose nodes are the user-defined initial
and goal configurations and a number of randomly generated config-
urations. Neighboring nodes are connected by edges representing the
straight line path between the nodes. In contrast with PRMs, our
planner initially assumes that all nodes and edges in the roadmap are
collision-free, and searches the roadmap at hand for a shortest path
between the initial and the goal node. The nodes and edges along
the path are then checked for collision. If a collision with the obsta-
cles occurs, the corresponding nodes and edges are removed from the
roadmap. Our planner either finds a new shortest path, or first up-
dates the roadmap with new nodes and edges, and then searches for a
shortest path. The above process is repeated until a collision-free path
is found.

Lazy PRM is tailored to efficiently answer single planning queries
in standard industrial applications. Experimental results presented in
this paper show that our lazy method is very efficient in practice.

Keywords: Collision avoidance, motion planning, path planning,
probabilistic roadmaps, robotics.

2 Robert Bohlin

1 Introduction and motivation

Autonomous path planning addresses the problem of finding collision-free
paths for moving objects — robots — among obstacles. In this paper we
consider robots operating in workspaces occupied by stationary, completely
known obstacles. Our main concern is path planning in industrial environ-
ments, where the need for automatic solutions is huge. A car body may have
thousands of spots to weld, and a ship may have miles of seams to arc weld.
Programming by hand is tedious and, in comparison to manual program-
ming, a powerful planner enables more complex motions to be executed and
increases the quality of the paths.

The position of a robot is described by a configuration, which is a set of
independent parameters such that the position of every point of the robot can
be determined relative to a fixed frame in the workspace. We let C denote the
set of all configurations — the configuration space — and Cx denote the open
subset of collision-free configurations. The dimension of C equals the number
of degrees of freedom (dof) of the robot. A path is simply a continuous curve
in C. Given an initial configuration g,,;, and a goal configuration g, in
Cr, the basic path planning problem is to find a path in Cx connecting these
points, or determine that none exists [28|.

A workspace in industry is designed for a specific task and for the robot of
interest to move as freely as possible. This typically means that the configu-
ration space is relatively uncluttered, i.e. a relatively large fraction, say more
than 15%, is collision-free. Unfortunately this does not imply that planning
becomes easy. Industrial applications are characterized by robot systems
with many dof and complex geometry of the robot and the obstacles. Ex-
isting algorithms applicable in high-dimensional configuration spaces either
heavily rely on fast collision checking or require long preprocessing. Due to
the complex geometry, which makes collision checking time consuming, these
planners are too slow for single planning queries in the industrial applications
we would like to cover.

1.1 Planner requirements

In industrial applications, the configuration space changes frequently. For
example, as soon as the robot changes tools, grasps or deforms an object, or
when a new obstacle enters the workspace, the feasible part Cr is affected. A
planner useful in practice must be able to plan in new configuration spaces

Lazy PRM 3

instantly, so long preprocessing must be avoided. Ideally, the time required
for planning should relate to the difficulty of the planning task, i.e., a simple
path in an uncluttered environment should be found quickly, while a more
complicated path may require more time.

In a similar way, the planning time should relate to the desired quality of
the solution path. The quality of a path is difficult to quantify (see further
discussion in Section 3.2.1), but in general we prefer short paths in C, with
respect to some metric. Consider a case where the planner generates a path
that will be executed continually. Then the quality of the path is more
important than the planning time, and we need a parameter, tuned by the
user, that intuitively adjusts the properties of the planner.

We would also like the planner to learn to some extent, i.e., to use infor-
mation from previous queries in order to speed up subsequent queries. For
example, if the algorithm finds a path through a narrow passage in Cz, it
should be able to use that information when searching for a new path back
through the passage.

1.2 Contributions and outline of this paper

In this paper we further develop probabilistic planning techniques in the
direction of achieving general and practically useful single query planners.
We present a new approach to the probabilistic roadmap method (PRM).
The algorithm — called Lazy PRM — is based upon a general scheme for
lazy evaluation of the feasibility of the roadmap. Lazy PRM is tailored for
single planning queries and has the properties discussed in Section 1.1. We
address standard industrial applications characterized by complex geometry
and high-dimensional, relatively uncluttered configuration spaces. To handle
the complex geometry, the main theme of the algorithm is to minimize the
number of collision-checks performed during planning. Experiments in a
typical industrial environment show that a very large percentage, in average
26%, of the total number of collision checks are actually performed on the
collision-free solution paths, and are therefore inevitable.

The scheme we suggest for lazy evaluation of roadmaps is general and
can be applied to any graph that needs to be explored. In addition to Lazy
PRM, other related algorithms, and variations of PRM, can benefit from
this scheme and significantly increase performance. We propose two simple
variations of Lazy PRM for the cases of more cluttered configuration spaces
and faster collision-checking than in typical industrial applications. These

4 Robert Bohlin

cases are handled to a certain extent, but neither these cases nor the narrow
passage problem (see [2, 8, 18]) are our main objectives. This paper extends
the results presented in [7] and [6]. Related ideas about lazy evaluation
has been developed concurrently and independently in [37]. Lazy PRM is
described in detail in Section 3. Its performance is theoretically analyzed in
Section 4, and experimentally evaluated in Section 5 using a real industrial
environment,.

2 Path planning techniques

Path planning is becoming increasingly important in automated manufactur-
ing industry and for mobile robots, but has also found applications in com-
puter graphics animations, medical surgery, and molecular biology [14, 29|.
The problem has been extensively studied in the last two decades, and
there exist a large number of planners based on a variety of approaches.
See [14], [21], and [28] for overviews.

The complexity of certain versions of the problem is proven to be very
high. In the case of a robot consisting of polyhedral bodies among polyhedral
obstacles, the problem is PSPACE-hard [40]. Hence, there is strong evidence
that a solution requires time that grows exponentially with the number of
dof of the robot.

An algorithm is called complete if it always will find a solution or deter-
mine that none exists. Most complete methods, however, are only applicable
to problems in low-dimensional configuration spaces, say of dimension three,
or less [15]. A complete algorithm, working for arbitrary dimension, was
given in [11]. Although the algorithm is exponential in the number of dof, it
has the lowest time complexity of all complete algorithms known so far. It is
too slow to be useful in practice, and is mostly used in theoretical analysis as
an upper bound on the complexity of the path planning problem, see [14, 28|.

We distinguish between deterministic and probabilistic algorithms. Trad-
ing completeness for speed and simplicity, probabilistic techniques have re-
cently gained considerable attention due to their capability of solving prob-
lems in high-dimensional configuration spaces. In this paper, we focus on
probabilistic algorithms and, in particular, we describe the Probabilistic
Roadmap method in detail since it is relevant to the rest of the paper and
forms the base of our solution.

Lazy PRM)

2.1 Probabilistic planners

Probabilistic algorithms have been successfully applied in a wide variety of
environments, and are now the methods of choice for complex problems. The
Randomized Path Planner (RPP) in [5] has successfully solved problems for
robots with more than 60 dof [27]. The planner uses a potential field as a
guidance towards the goal, and random walks to escape local minima.

Another interesting approach is presented in [36] — the Ariadne’s clew
algorithm. Considering the initial configuration as a landmark, the algorithm
incrementally builds a tree of feasible paths as follows. Genetic optimization
is used to search for a collision-free path from one of the landmarks to a
point as far as possible from previous landmarks. A new landmark is then
placed at this point, and a path to the goal configuration is searched. New
landmarks are placed until the goal configuration can be connected to the
tree.

2.2 Probabilistic roadmap method

The idea behind the basic Probabilistic Roadmap Method (PRM), described
in |25, 26, 39|, is to represent and capture the connectivity of C by a ran-
dom network, a roadmap, whose nodes and edges respectively correspond
to randomly selected configurations, and path segments. In a preprocessing
step, or a learning phase, a large number of points are distributed uniformly
at random in C, and those found to be in Cx are retained as nodes in the
roadmap. A local planner is then used to find paths between each pair of
nodes that are sufficiently close together. If the planner succeeds in finding
a path between two nodes, they are connected by an edge in the roadmap.
In the query phase, the user specified start and goal configurations are con-
nected to the roadmap by the local planner. Then the roadmap is searched
for a shortest path between the given points.

Even though a powerful local planner will require few nodes to obtain a
well connected roadmap, most implemented PRMs show that it is computa-
tionally more efficient to distribute nodes densely and use a relatively weak,
but fast, local planner, see [26, 39]. The local planner may for instance only
check the straight line between two nodes. Other local planners are discussed
and evaluated in [1].

Often the learning phase of basic PRM has a node enhancement step in
order to increase the connectivity of the roadmap by adding more nodes in

6 Robert Bohlin

difficult regions of Cx. Different techniques are used to identify these regions;
one way is to distribute new points close to a number of seeds randomly
selected among the existing nodes. In [25], the probability that a node is
selected is proportional to 1_41rb’ where b is the number of edges connected
to the node. An alternative selection can be based on a node’s ratio of
failed attempts by the local planner to find paths to other nodes [26]. Other
techniques to increase the connectivity of the roadmap are described in [2]
and [17].

Basic PRM has shown to work well in practice in high-dimensional config-
uration spaces, see [26]. Indeed, it is useful for multiple queries since once an

adequate roadmap has been created, queries can be answered very quickly.

2.3 Variations of PRM and related algorithms

Some of the methods using probabilistic roadmaps do not divide the planning
process into a learning phase and a query phase. Given an initial and a
goal configuration, the planner in [38| builds a tree by inserting randomly
distributed nodes in Cx, one at a time, and connecting them to the different
components of the roadmap by a local planner. New nodes are inserted
until the initial and goal configurations can be found in the same connected
component of the roadmap. See also [12] and [22] for relevant work. The
latter paper gives an adaptive scheme that could be used to adjust the power
of the local planner.

Although the node enhancement step was developed to increase the con-
nectivity of the roadmap, basic PRM still has weaknesses in finding paths
through narrow passages in Cx. Several recent approaches are intended to
improve basic PRM in this respect by using different sampling strategies.
The underlying idea is to distribute nodes close to the boundary of Cx. The
planner in [18] initially allows the robot to penetrate the obstacles to a cer-
tain extent. Small neighborhoods around the configurations just in collision
are then re-sampled in order to place nodes close to the boundary of Cx.
The Obstacle Based PRM (OBPRM) in [2]| and [3], repeatedly determines a
configuration in collision to be the origin of a number of rays. Binary search
is then used along each ray to find points on the boundary of Cx, where
roadmap nodes are placed. In [8], another idea is presented. The planner
identifies the boundary of Cx by distributing points in pairs. Each pair is
generated by first picking one point uniformly at random in C, and then
picking another point close to the first one. One of the points is added to

Lazy PRM

the roadmap only if it is in C» and the other point is not. Yet another tech-
nique to increase the number of nodes in narrow passages of C is presented
in [42]. Points are picked uniformly at random in C and then retracted onto
the medial axis of Cr. A related technique is described in [9], where points
are generated on the medial axis of the workspace and then transformed into
C.

The randomized methods described in [19, 20| and [31, 32], build two
trees rooted at the initial and goal configurations respectively. As soon as
the trees intersect, a feasible path can be extracted. The methods differ in the
way of expanding the trees. In [19, 20], the trees are expanded by generating
new nodes randomly in the vicinity of the two trees, and connecting them to
the trees by a local planner. The planner in [31, 32| iteratively generates a
configuration, an attractor, uniformly at random in C. Then, for both trees,
the node closest to the attractor is selected and a local planner searches for
a path of a certain maximum length towards the attractor. A new node is
placed at the end of both paths. A new attractor is selected until the two
trees intersect.

The algorithm in [30] is a method to keep the number of nodes in the
roadmap to a minimum. Candidate nodes are generated uniformly at ran-
dom, one at a time. A node is inserted to the roadmap only if it can be
connected to at least two components of the roadmap, or if it does not see
any other node. In the former case the components are merged, and in the
latter case a new component is created. Variations of PRM have also been
used for manipulation planning and for robots with closed kinematic chains,
see [16, 33, 37|.

The general theme for roadmap algorithms is to construct a network of
paths verified to be collision-free by a local planner. Unfortunately, it is
difficult to find a global strategy that can use these local planners efficiently
in order to avoid traps and dead ends. In industrial environments, with
complex geometry and expensive collision-checks, this often means that too
much time is spent on planning local paths that will not appear in the solution
path.

Our solution is to avoid using local planners as much as possible, and
instead keep a global view through the entire planning process. In the next
section we present Lazy PRM — a path planning algorithm tailored for single
queries in high-dimensional, relatively uncluttered configuration spaces. We
address the problem of finding simple paths quickly in industrial environ-
ments with complex geometry. In these environments collision-checking is

8 Robert Bohlin

computationally expensive, so to make the planner fast, the main theme is
to minimize the number of collision checks.

We have observed excellent performance in cases that do not involve ex-
tremely narrow passages. As in the case with all comparable PRMs and all
published work, it is hard to evaluate when Lazy PRM stops being efficient.
The only thing we can suggest is to apply Lazy PRM for a period of time
and if a solution has not been found, employ one of the PRMs with heuristics
explicitly for narrow passages [2, 8, 9, 18, 42]. However, these heuristics can
certainly benefit from the scheme for lazy evaluation of the feasibility of the
roadmap that we describe in next section.

3 Lazy PRM

This section describes a new algorithm for single and multiple query path
planning. The algorithm is similar to the basic PRM in [26] in the sense that
the aim is to find the shortest path in a roadmap generated by randomly
distributed configurations. In contrast with existing PRMs, we do not build
a roadmap of feasible paths, but rather a roadmap of paths assumed to be
feasible. The idea is to lazily evaluate the feasibility of the roadmap as
planning queries are processed.

In other words, let g, @goq>, @and a number of uniformly distributed
configurations form nodes in a roadmap. We connect by edges each pair of
nodes being sufficiently close together. Lazy PRM finds a shortest feasible
path in the roadmap by repeatedly searching for a shortest path, and then
checking whether it is collision-free or not. Each time a collision occurs, the
corresponding node or edge is removed from the roadmap, and then Lazy
PRM searches for a new shortest path.

This procedure can terminate in either of two ways. If there exist feasible
paths in the roadmap between gq;,;; and gq,,,, we will find a shortest one
among them. Otherwise, if there is no feasible path, we will eventually find
Qinit and g,y in two disjoint components of the roadmap. In the latter case,
we can either report failure, or, if we still have time, add more nodes to the
roadmap in a similar way to the node enhancement in |25, 26|, and start
searching again. A high-level description of the algorithm is given in Figure
1.

The point by using this scheme for lazy evaluation is that we only explore
the part of the roadmap that is needed for the current query. The scheme is

Lazy PRM 9

Qinit qgoal

Build initial
roadmap
Remove colliding Node

node / edge N Y enhancement

) Search for a §
Mai shortest path No path found
ain
loop ‘
Check path
Collision for collision

Collision-free path

Figure 1: High-level description of Lazy PRM.

simple, general and can be applied also to other roadmap planners in order
to increase performance. The strength is to either find a collision-free path
or to conclude that none exists in the roadmap by using a small number of
collision checks. It is always an advantage to use lazy evaluation since we can
never do more work, in terms of collision checking, than basic PRM would
do.

The rest of this section explains the different steps of the algorithm in
more detail, Section 4 gives a proof of its probabilistic completeness, and
Section 5 shows some experimental results.

3.1 Building the initial roadmap

The first step in the algorithm is to build a roadmap G in C. There are two
parameters that determine the size of G; the number of nodes, N;;;;, and the
expected number of neighbors, M;,gns, connected to each node.

3.1.1 Initial distribution of nodes

Initially, we distribute N;,; points uniformly at random in C. These points,
together with q;,,;; € Cr and q,,, € Cr, form nodes in G. An important
issue is the choice of Nj,;;. The initial density of nodes, determined by

10 Robert Bohlin

Ninit, 18 strongly correlated to the probability of finding a short path, if one
exists. The correlation is hard to quantify, but the following example may
give an illustration. Assume there exist only two ways to get to the goal
configuration; either a short path through a rather narrow corridor, or a
somewhat longer path through a wide corridor. If G is sufficiently dense, the
algorithm will find a short path through the narrow passage. If G is sparse,
the algorithm will find a longer path through the wide passage. In the worst
case, if the roadmap is too sparse, there will be no feasible path at all in the
roadmap, and the algorithm has to go to the enhancement step to generate
more nodes. On the other hand, if V;,; is too large, we will distribute more
nodes than necessary. Although we may obtain better paths, this will lead
to somewhat longer planning times.

However, the idea behind the algorithm is that only a small fraction of
the nodes in the roadmap will be necessary to check for collision. This makes
the algorithm relatively insensitive to high density of nodes, so we can choose
Ninit relatively large. (In our experiments we start with Ny,; = 10000 nodes
and check on average 320 nodes in one of the most difficult planning tasks,
see Task I — J in Table 1(a), Section 5.) The number of nodes required to
find a path is further explored in Section 4.

3.1.2 Selecting neighbors

To build the roadmap we connect each node in G by edges to a set of neighbor
nodes. An edge represents the straight line path in C between two nodes.
Neither the nodes nor the edges are being checked for collision in the initial
step, but we want, of course, to have edges which are likely to be feasible.
Since it would require far too much memory to connect all pairs of nodes,
and it is unlikely that the straight line path between two nodes far apart
is feasible, it is natural to only consider nodes which are sufficiently close
together.

In order to select appropriate neighbors, we need a metric peo; : C X C —
[0, 00) such that the distance between two configurations under this metric
reflects the difficulty of connecting them by a collision-free straight line path.
Then we connect each pair of nodes (g, q') such that peou(q,q’) < Rneigho-
For any fixed radius R,eigns, the number of neighbors of a node is a random
variable, so depending on the initial number of nodes Ny;;, we choose Ryeighs
such that the expected number of neighbors equals the parameter M,igns
introduced in the beginning of Section 3.1.

Lazy PRM

In many cases it is harder to make feasible connections in certain direc-
tions than in others. Consider for instance an articulated robot arm; then
it is more likely that a collision occurs when the base joint is moving one
unit, than if a joint close to the end-effector is moving one unit. With this
in mind, we let p.o; be a weighted Euclidean metric,

d \ o\ 1/2
pcoll(way) = (sz (xl_yz))
=1

1/2

= (-9 W—y)" M
where d is the dimension of C, {w;}?_, are positive weights,
W = diag(w?, ..., w?), and & is the transpose of . The weights are chosen

in proportion to the maximum possible distance (Euclidean distance in the
workspace) traveled by any point on the robot, when moving one unit in C
along the corresponding axis. This metric is easy to use and has been shown
to work well in our experiments presented in Section 5.

3.2 Searching the roadmap for a shortest path

The second step in the algorithm is to find a shortest path in G between g,,,,,
and g,,,, or determine that none exists. We use the A* algorithm [35], and
a metric ppan 1 C X C — [0,00) to measure the length of a path and the
remaining distance t0 g .-

If the search procedure succeeds in finding a path, we need to check it
for collision. Otherwise, if no path exists in the roadmap, we either report
failure, or go to the node enhancement step to add more nodes to the roadmap
and start searching again depending on the overall time allowed to solve the
problem.

3.2.1 Choosing an appropriate metric for A*

The tool available to give preference to certain paths and reject others is
the metric ppe,. Thus, by defining this metric we decide which paths are
assumed to be of high quality and which paths are assumed to be of poor
quality.

In this paper we focus on articulated robots and use the Euclidean con-
figuration space I; x --- x Iy, where I; is the range of joint ¢ and d is the
number of dof. Thus, we do not identify angles equal modulo 27 as being

11

12 Robert Bohlin

equal, although they define the same position in the workspace. This is be-
cause a real robot in general has supply wires, etc., which otherwise would
be entangled. The metric ppq, is a weighted Euclidean metric, similar to
(1), where the weights are equal to 1)%" i =1, ...,d, where v; is the maximum
angular velocity of joint 7. This tends to give preference to paths with short
execution time, which in many applications is the most interesting response
variable.

In the general case, however, there are a large number of other response
variables to consider. Some of them are measurable such as energy consump-
tion, dynamic forces on joints, etc. Others are more subjective; for example,
the motion should look natural and smooth from the user’s point of view.
Under any Euclidean metric, the straight line path in C between two config-
urations is the shortest, but considering all of these response variables, the
straight line path is not necessarily optimal. Thus, the choice of a configura-
tion space parameterization and an appropriate metric is a very difficult task
in itself. It is considered an open question that deserves further investigation
and will impact Lazy PRM and all other PRM based planners.

3.3 Checking paths for collision

When the A* algorithm has found a shortest path in the roadmap between
Qinir a0d qg,,, We need to check the nodes and edges along the path for
collision. In most applications it is straightforward to perform a collision
check for a given configuration, i.e. determine whether a point is in Cx or
not [41]. It is somewhat more expensive to calculate the minimum distance
between the robot and the obstacles [10, 34|, and it is considerably more
complex to obtain more information, for instance to check whether a path
segment is entirely in Cx or not. Our algorithm only requires a collision
checker for points in C. Path segments, i.e. edges in the roadmap, are
discretized and checked with a certain resolution.

The overall purpose of the Search, Check, and Remove steps of our algo-
rithm (the main loop in Figure 1), is roughly to identify and remove colliding
nodes and edges from the roadmap until the shortest path between g,,,;; and
Q400 15 feasible. Accordingly, when checking a path for collision, we are not
primarily interested in verifying whether an individual node or edge is in Cx
or not, but rather to remove colliding nodes and edges as efficiently as possi-
ble. Since a removal of a node implies all its connected edges to be removed,
it seems reasonable to check the feasibility of the nodes along the path before

Lazy PRM 13

checking the edges.

3.3.1 Checking nodes

Starting respectively with the first and the last node on the examined path
and working toward the center, we alternately check the nodes along the
path. As soon as a collision is found, we remove the corresponding node and
its connected edges from the roadmap, and search for a new shortest path.

The reason for checking the nodes in this order is that the probability of
having the shortest feasible path via a particular node is higher if the node
is close to either g;,;; or qg,,. Consider, for instance, the nodes connected
to q,,;;; a shortest feasible path (if one exists) must pass through at least
one of them. Since, in a cluttered space, we cannot give preference to certain
directions, the probability of having the shortest feasible path via a particular
neighbor of gq,,,;, is at least 1/b, where b is the number of neighbors of g;,,;-
Nodes connected to qg,, have a similar probability, whereas nodes further
away from both g;,;; and g,,, have a much lower probability of being in the
shortest feasible path. Therefore, we check the nodes along a path starting
from the end-nodes and working toward the center.

3.3.2 Checking edges

If all nodes along the path are in Cz, we start checking the edges in a sim-
ilar fashion; working from the outside in. However, to minimize the risk of
doing unnecessary collision checks, we first check all edges along the path
with a coarse resolution, and then do stepwise refinements until the specified
resolution is reached. As with the nodes, if a collision is found, we remove
the corresponding edge, and search for a new shortest path. If no collision is
found along the path, the algorithm terminates and returns the collision-free
path. Figure 3.3.2 offers an illustration. To make the overall algorithm effi-
cient, we record which nodes have been checked for collision, and to which
resolution each edge has been checked, in order to avoid checking any point
in C more than once.

The total number of collision checks depends on the resolution with which
the edges along the path are checked. Again, since p.y; reflects the proba-
bility of collision, we determine the resolution with respect to this metric.
The resolution is quantified by a step-size §, but we prefer not to let the
user specify the step-size by a certain number, because the resolution should

14 Robert Bohlin

depend on the scale of C and the weights defining the metric. A better way
is to introduce a parameter My, specifying the number of collision checks
required to check the longest possible straight line path in C. In other words,
assuming that C is a d-dimensional rectangle and g and q' are two opposite
corners, the step-size is related to the length of the diagonal of C according
to
5 = pcoll(Qa ql)
Mcoll '

3.4 Node enhancement

If the search procedure fails, no feasible path between gq;,,;; and gq,,,, exists
in the roadmap, and more nodes are necessary in order to find one. In the
node enhancement step, we generate N.,, new nodes, add them to G, and
select neighbors in the same way as when G was initially built.

We may not only distribute the new nodes uniformly, but rather use the
information available in the roadmap (or what is left of the roadmap), in
order to distribute new nodes in difficult regions of C. In a method similar
to the node enhancement in [25, 26|, we randomly select a number of points
in G, called seeds, and then distribute a new point close to each of them.
Our experience is that it is better to select many seeds and distribute one
new node around each of them, instead of selecting few seeds and distribute
several nodes around each of them; the latter method is more dependent on
the selection of seeds.

Although the seeds may help us identify difficult regions of C, we still want
to maintain a smooth distribution all over C, because the knowledge about C
is limited and we do not want to rely too much on the selection of seeds. To
ensure probabilistic completeness, we also distribute new nodes uniformly at
random in each step. In our algorithm, we let half of the enhancement nodes
be uniformly distributed, and the rest distributed around seeds.

3.4.1 Selecting seeds

The set of edges which have been removed from the roadmap and have at
least one end-point in Cx, will certainly intersect the boundary of Cx. Using
the mid-points of these edges as seeds may help us distribute points close to
the boundary of Cz, thus increase the probability of finding paths through
narrow passages in Cr.

Lazy PRM

(a): Lazy PRM searches for a short-
est path and checks the nodes. A
collision is detected (*) and corre-
sponding node is deleted.

(b): Then Lazy PRM searches for a
new shortest path, detects a new col-
lision (*) and deletes corresponding
node.

(c): After a few iterations, a se-
quence of feasible nodes is found.
When checking the edges with a
coarse resolution a collision is found
(¥). The edge is deleted from the
roadmap, and the planner searches
for a new shortest path.

(d): Eventually, the planner finds a
path whose nodes are collision-free,
and whose edges are collision-free to
a specified resolution.

15

Figure 2: Example of a planning query in a 2-dimensional configuration space
with rectangular obstacles (grey). All collision checks performed are marked

with * (collision) or e (collision-free).

16 Robert Bohlin

However, if the enhancement step is executed several times, this may
cause problems with clustering of nodes. Assume that we add a new node q.
This node will give rise to a number of edges which in the next enhancement
step may increase the probability of adding even more nodes close to q.
Thus, the distribution of new enhancement nodes depends on the preceding
enhancement steps, and may eventually cause undesired clusters of nodes.
To avoid this phenomenon, we only use edges whose end-nodes are generated
uniformly at random when selecting seeds.

3.4.2 Distributing new nodes

When distributing a new point ¢ around a seed 1, we use the multivariate
normal distribution. This distribution is smooth, easy to use, and allows
us to control the distribution of q in terms of the metric p.,;. Hence, we
can stretch the distribution in directions where the probabilities of making
feasible connections are higher.

Introducing two parameters o € (0,1) and A > 0, we can choose the
distribution such that

pcoll(qa 77) S)\Rneighb (2)

is an event with probability 1 — «, see Figure 3. Rpeigny is the maximum
length of an edge defined in Section 3.1.2. To achieve this property, we
define a covariance matrix > as follows:
.)‘QRieighb -1
=—5 W (3)
Xa(a)

Here W is the same as in (1) and x3(«) is the upper a percentile of a x*-
distribution with d dof. Then we let the new point g ~ Ny(n,Y), i.e.,
q is multivariate normally distributed with d dof, mean 7, and covariance
matrix Y. Since X is diagonal, this simply means that each component
gi,;t=1,...,d, of g is normally distributed with mean 7; and variance ¥; ;.

To show (2), we use that (g —n)"X7(q — n) is x>-distributed with d
dof [23]. Thus, the event

(@—n)"S g —n) < xi(@)

has probability 1 — «. Using (1) and (3) gives the confidence ellipsoid in (2).
We see in (3) that 3 depends on the the ratio A?/x%(«). Since both \?,
A > 0, and x%(a), @ € (0,1), are continuous functions whose ranges are

Lazy PRM

{q €C: pcoll(Qa TI) =)‘Rneighb}

\\\\\i\i -)\Rneighb
{ N wa
nei
AR ghb
a1 w1

Figure 3: Example of a seed m in a 2-dimensional configuration space. If a
new point g is distributed according to Ny(n,), with ¥ as in (3), then g is
distributed within the confidence ellipse (solid line) with probability 1 — «.
The dashed ellipses are contours of the distribution function. w; and w, are
the weights defined in (1).

(0,00), one of the two parameters o and) is redundant, so we can without
loss of generality choose @ = 0.05. Then, the parameter A controls the size
of the 95% confidence ellipsoid relative to Ryeigny as shown in Figure 3. In
our experiments we found that A = 1 is a suitable choice.

Another possibility of distributing the new point gq, is to let it be uniformly
distributed in a rectangular box centered at 1. If we let the sides of the box be
of equal length under p.,;, we stretch the box in a similar way as the ellipsoids
above. In our path planning algorithm, however, the normal distribution
has a major advantage compared to the uniform distribution; the contours
of the distribution function are ellipsoids around 7 (see Figure 3). Hence,
under the metric p..;, which reflects the difficulty of making connections, the
distribution is symmetric around 7). In contrast, the uniform distribution
favors the directions of the corners of the box, and nodes are more frequently
distributed there than in other directions.

3.5 Multiple queries

When the planner has found a collision-free path, it terminates and returns
the path. The information about which nodes and edges have been checked
for collision is stored in the roadmap. As long as the configuration space
remains the same, we use the same roadmap when processing subsequent

17

18 Robert Bohlin

queries. Thus, we benefit from the information obtained in each planning
query. The new initial and goal configurations are simply added to the
roadmap, and the same algorithm, except for the initial generation of nodes,
is run again.

As several queries are processed, more and more of the roadmap will be
explored, and the planner will eventually find paths via nodes and edges
which have already been checked for collision. This makes the planner effi-
cient for multiple queries.

Even in the long run, many nodes and edges may never be explored since
they are located in odd regions of C. Thus, given a fixed size of the roadmap,
the number of collision checks performed by Lazy PRM will never exceed
the number of collision checks performed by the basic PRM described in
Section 2.2. Accordingly, there is no reason to entirely evaluate the roadmap
unless we explicitly want it. The lazy evaluation scheme will find the shortest
feasible path in the roadmap by using less collision checks.

4 Probabilistic completeness

In this section we give a proof of probabilistic completeness of Lazy PRM.
First we need some notation. Let 7 : [0, L] — Cx be a curve (also called
path) parameterized by arc length and with continuous tangent. A tube T
of radius r around ~(s) is the set of points at distance r from y measured
perpendicular to the tangent 4'(s). Similarly, the corresponding solid tube is
the set of points at distance < r from 7. For simplicity, we usually omit the
word solid.

A regular tube is a tube that does not intersect itself. If v is enclosed
by a regular tube of radius r, this particularly implies that its curvature,
k(s) = |7¥"(s)|, is bounded from above by 1/r. Otherwise the tube would
be folded. The following lemma, proved in [13], states a useful property of
regular tubes.

Lemma 1. The volume enclosed by a reqular tube around a curve in a d-
dimensional Fuclidean space is the product of the length of the curve and the
(d — 1)-dimensional area of a cross-section.

In other words, if B¢ is the ball of radius r in a d-dimensional space, and
1tq the Lebesgue measure, we can express the volume of a regular tube 7 of

Lazy PRM

radius 7 around y as
pa(r) = Lpg 1 (B = Lrt™! pg 1 (BEY), (4)

where L is the length of ~.

Assuming there exists a path between g;,,;, and q,,,;, enclosed by a regu-
lar tube in C£, the following theorem gives an upper bound on the probability
of failure to find a path between gq;,,;; and gq,,,. The assumption of an en-
closing tube in Cr is relevant since Cx is an open subset of C. Moreover,
the theorem says that the probability of failure decreases exponentially in
the total number of uniformly distributed nodes N. Since N increases in
each enhancement step (Figure 1 and Section 3.4), the probability of fail-
ure vanishes as time tends to infinity. This is equivalent to the definition of
probabilistic completeness [21]. Thus, Lazy PRM is a probabilistically com-
plete path planner. Since the configuration space is at least 2-dimensional
(otherwise path planning is trivial), we assume that d > 2. Recalling the
parameter R,g;gny from Section 3.1.2 and the matrix W defined in (1) with
norm ||W/||, we formulate the theorem as follows.

Theorem 1. Let N be the total number of nodes generated uniformly at
random in C. If there exists a path v between @, and qg.y, enclosed by a
1

reqular tube T of radius R < WRMW’”’ entirely in Cx, then Lazy PRM

will fail to find a path with probability at most

Ld
B

R4 pg_1 (B!

where § = 34110 (©)) and L is the length of .

Proof. Let u = R/d,r = R(1—1/d), and k = |L/u|. The idea of the proof is
to take a tube of radius r, divide it into £ — 1 cells of length u, and calculate
the probability of having at least one node in each cell. We will show that
any two points in adjacent cells can be connected by a straight line, and that
one node in each cell is enough for the planner to succeed. Assume first that
k > 2. The case k < 2 is trivial and will be considered at the end of the
proof.

Let s; =iu, i = 1,...,k, and let 7; be the tube segment around 7(s) for

s € [si,8i41), i = 1,...,k — 1, see Figure 4. The tube segments {7;}*"! are

19

20 Robert Bohlin

Figure 4: Illustration to the proof of Theorem 1.

pairwise disjoint and, by (4),

pa(r) _ g1 pai(BiY)
=ur .
pa(C) pa(C)
Now, for d > 2, (1—1/d)? ! is a decreasing function whose limit is e, and
since J J J
R 1yd-1 R R
d-1 -1
== (1-2) >et>
. 7(1-3) =gtz
we get that
pal) o B paa(BE7) 5)
pa(C) — 3dpa(C)

The N points generated by the algorithm are uniformly and indepen-
dently distributed in C. Thus, the probability that 7; is empty equals (1 -

Z(fi((Tcl)))N’ which, by (5), can be estimated:

@—ﬁ%QNsa—mN (6)

Let B%(s) be a ball of radius R centered at y(s), i.e., B4(s) has the same
radius as 7. Unless B%(s) is close to the end-points of v, it will be covered by
T, see Figure 4. If it is close to the end-points, however, it might intersect the
circular discs at the ends of the tube. Nevertheless, the intersection between
Bé(s) and T is still convex, a property we will need later.

Lazy PRM

Now, let g, ; € 7,1 and q; € 7;. By the definition of a tube there exists
an o; € [s;, s.41) such that |g; — y(o;)| < r. Since 7y is parameterized by arc
length, it follows that |y(s) — y(t)| < |s — t|, and, by the triangle inequality,

\q; — (0i)| + [v(0:) — v(s4)]

lq; —v(si)] <
< r+u=R.

Hence, the ball B%(s;) contains 7;. Similarly, we can show that it also
contains 7;_1. Since both cells are covered by 7, they are contained in the
convex set B%(s;) N7 which is entirely in Cx. Thus, g;_; and g; are at most
2R apart and the straight line between them lies entirely in Cx. From (1) we
get that

la; 1 — q| |W]*?
2R |W||'/*

Rneighb7

pcoll(‘]ifla qi)

ININCIA

i.e., any node in 7;_; is in the neighborhood of any node in 7; and will
therefore be interconnected by Lazy PRM. Moreover, since g;,,;; € B%(s;) and
Qgoal € B (sg), they will be connected to any node in 71 and 7;_; respectively.
Consequently, it is enough to have at least one node in each of the cells
Ti,.-.,Tk—1, in order for Lazy PRM to find a collision-free path between g,,,,,
OT Qyoq-

The probability of failure for our algorithm, Pfujiure, can now be esti-
mated:

Proiure < P(some 7; is empty)
k—1
< Z P(7; is empty)
i=1

< (k=11 =",

where we used Boole’s inequality and (6) in the second and third step re-
spectively. Using that k — 1 < Ld/R and (1 — 3)N < e #N gives the desired
estimation.

What remains is the case k < 2, i.e., L < 2u = 2R/d < 2R. Then both
Qiniz and g, are contained in the convex set Bf(L/2)N7 which is entirely in
Cr. This guarantees that Lazy PRM will find the straight line path between
Qinit and g4, 50 the probability of failure is zero. O

21

22 Robert Bohlin

Note that a related theorem regarding basic PRM can be found in [4]
and [24]. Both theorems give a bound on the failure probability expressed
in terms of, among other variables, the density of nodes. An important
difference is that Lazy PRM has to reach a certain density of nodes in C,
while basic PRM has to reach approximately the same density in Cx. This
seems like a weakness of our method, but looking at how the nodes in basic
PRM are generated, we see that this is not the case. In order to reach the
desired density in C#, basic PRM has to distribute nodes uniformly all over C
and exclude those in collision. Consequently, for both algorithms to reach the
same density, the number of nodes checked for collision in the learning phase
of basic PRM has to be the same as the number of uniformly distributed
nodes in Lazy PRM. So whether the density is specified in C# or in C does
not matter. The difference of practical significance is that Lazy PRM avoids
checking all of the nodes for collision.

5 Experimental results

In this section we present performance tests of Lazy PRM when applied to
a six dof robot in a realistic industrial environment. The planner has been
implemented in C++ as a plug-in module to RobotStudio! — a simulation
and off-line programming software running under Windows N'T. The collision
checks are handled internally in RobotStudio. The experiments have been
run on a PC with a 400 MHz Pentium II processor and 512 MB RAM. In all
tests we let Njp = 10000, Mpeighy = 60, Moy = 200, and N, = 500.

5.1 Path planning tasks

The test example is a part of a real manufacturing process in which an
ABB 4400 robot is tending press breaking. Metal sheets are formed by the
hydraulic press shown in Figure 5. In this particular example, plane sheets
of metal are picked at a pallet, bent twice, and then placed at another pallet.

The process is divided into several steps, and our aim is to automatically
plan the unconstrained paths of the robot. We let A to J denote ten different
configurations shown in Figures 5,6 and 7. These are used as either initial
or goal configurations in four planning tasks, denoted for example A — B,
where A is the initial configuration and B is the goal configuration.

RobotStudio is developed by ABB Robotics, Goteborg, Sweden.

Lazy PRM

Figure 5: The workspace used in the experiments. The robot is in its home
configuration denoted by A.

The scenario is as follows. Starting from the home configuration A, the
robot picks a sheet of metal from the pallet at B (task A — B), adjusts the
grip at configuration C (task B — C), and puts the sheet-metal at the press
D (task C' — D). After the breaking, the robot grasps the sheet-metal at
E, moves to the re-gripper, F' (task E — F'), and places the sheet-metal.
The robot grasps the sheet-metal from the other side at G (task ' — G) and
moves to the press (task G — H). After the second breaking, the sheet-metal
is grasped at configuration I and placed at the pallet J (task I — J). Then
the robot returns to the home configuration A (task J — A).

Thus, we have eight paths to plan. Note that during this series of steps,
the configuration space changes several times. As soon as we grasp or place
a sheet of metal, the collision-free part, Cr, is changing. Neglecting the small
displacement of the sheet-metal caused by the centering operation at C, the
tasks B — C' and C' — D can be planned in the same configuration space.
Accordingly, we have seven different configuration spaces in which to plan,
and we have have to build one roadmap in each of them.

The results include the number of collision checks, the number of enhance-
ment steps, and the planning time. The minimum, average, and maximum
values, based on 20 consecutive runs for each task, are shown in Table 1(a) -
1(c). The average number of collision checks performed on nodes and edges
respectively are presented, as well as the average number of collision checks

23

24 Robert Bohlin

Configuration C

G

Figure 6: Configurations B to G used in the experiments.

performed on the collision-free paths that the planner returned. Since paths
are checked for collision with a certain resolution (see Section 3.3.2), the
latter figures correspond to the lengths of the collision-free paths.

Lazy PRM

\

Configuration H Configuration I

Configuration J

Figure 7: Configurations H to J used in the experiments.

The running times in Table 1(c) are divided into three parts. Firstly,
graph building, which includes distance calculations between nodes in C as
well as node and edge adding, secondly, graph searching, and finally collision
checking.

In the last column of Table 1, the average values of the recorded data are
summed up. Thus, the last column indicates the average number of collision
checks and average planning times for the entire press breaking operation.

In Table 1(d), we have included some results corresponding to the learning
phase without node enhancement of basic PRM. For each task, we generated
a roadmap in exactly the same way as Lazy PRM generates roadmaps in the
initial step. Then we checked all nodes for collision, deleted the colliding
ones, and then checked all of the remaining edges as described in Section
3.3.2. In other words, we checked the entire roadmap for collision as effi-

25

26 Robert Bohlin

ciently as possible. Due to the long running times, only one full roadmap
was explored for each task. The result gives an indication of how large frac-
tion of the roadmap that really has to be explored, and the amount of work
saved by our lazy approach, in this particular example. Note this is a conser-
vative estimate since even with this long preprocessing, there is no guarantee
that the remaining roadmap will contain a feasible path. Table 1(d) shows
whether a collision-free path was found or not. We see in 1(b) that several
enhancement steps are needed with Lazy PRM, thus indicating that node
enhancement also is needed with basic PRM, and this will further increase
running times and the number of collision checks.

5.2 Interpretation of results

We clearly see in Table 1(c) that collision checking represents the vast major-
ity of the planning time (80%), but also that the graph building takes a lot
of time (18%). Interestingly, the time spent on graph searching is negligible,
about 2%. Even though we carefully select the points to check for collision
by frequently searching the roadmap for a shortest path, the total time spent
on that is very short.

The initial roadmaps consists of N;,;; = 10, 000 nodes in all experiments.
We see in Table 1(d) that the number of collision checks required to explore
one entire roadmap is of order 500,000. Table 1(a) shows, on the other
hand, that Lazy PRM in average solves the same planning tasks in 92 to 682
collision checks. Thus, Lazy PRM only explores a small fraction, less than
0.1%, of the roadmap. This is the strength of the algorithm; to either find a
collision-free path or to conclude that none exists in the roadmap by using a
small number of collision checks.

We also see in Table 1(a) that a large percentage, 26%, of the total number
of collision checks are actually performed on the collision-free solution paths,
and are therefore inevitable. This large percentage can be explained by two
reasons. Firstly, the algorithm finds a sequence of collision-free nodes before
edges are being checked. This prevents from planning local paths in dead
ends and in regions from where no way out exists. Secondly, we check the
edges along the path starting from both ends with increasing resolution, and
stop as soon as a collision occurs. The colliding edge is removed from the
roadmap, and a new shortest path is found. Thus, we avoid using a local
planner and instead keep a global view throughout the planning process. As
a consequence, very few edges — often only the edges along the final path — are

Lazy PRM 27

checked with the finest resolution. This also makes the algorithm relatively
insensitive to the resolution with which the paths are checked.

Since all of the nodes in the initial roadmap are uniformly distributed,
the number of collision-free nodes found by basic PRM will give a good
estimation of the relative size of Cz. We see in Table 1(d) that for the tasks
A— B, F — G, and J — A approximately 40% of C is collision-free. For
the other tasks approximately 30% of C is collision-free. As expected, the
free part of C is reduced when the robot grasps a sheet of metal.

Furthermore, from the planner’s point of view, the robot’s tool includes
both the gripper and possibly also a sheet of metal attached to it. If the tool
is large and irregularly shaped, then its orientation becomes more important,
whereas if the tool is small (e.g. the gripper only), the wrist motions of the
robot, which basically determine the orientation, become less important. In
this kind of environment, the planning problem is significantly easier if the
tool is small. This explains why the tasks A — B, FF — G, and J — A are
successfully planned without any node enhancement, and reveals the strength
of our method in adapting to the difficulty of the problem.

6 Discussion

The aim of Lazy PRM is essentially to minimize the number of collision
checks while searching for the shortest feasible path in a roadmap in the
context of a PRM planner. This is done on the expense of frequent graph
search. For a complex robot working in a complex workspace, like our six dof
example, collision checking is an expensive operation, and careful selection of
the points being checked for collision reduces the planning time considerably.

However, if the robot and the obstacles have a very simple geometry,
then collision checking is very fast. Frequent graph searching may, instead
of speeding up the planning, become a bottleneck. Trading some collision
checking for less graph searching may increase performance of Lazy PRM.
So, instead of re-planning the entire path every time a collision is found, we
can try to remove several nodes from the roadmap in each iteration of the
main loop, see Figure 1. A simple way would be to always check all nodes
along a path before searching for a new path.

Another modification of Lazy PRM is necessary when the configuration
space is very cluttered. This is, for instance, the case with the ten dof robot
in [25], where more than 99% of the configuration space is infeasible. If we run

28 Robert Bohlin

our algorithm, we would need a large number of nodes in the initial roadmap,
and then remove from the roadmap approximately 99% of the nodes being
checked, which would take a lot of time. Fortunately, we can easily modify
Lazy PRM to check all nodes before we insert them into the roadmap. This
would certainly cause unnecessary nodes to be checked for collision, but, on
the other hand, we would save many inserting and removing operations in
the roadmap. After that, we still have the efficient way of exploring the edges
along paths. In this way, the lazy approach can be employed with most of
the existing sampling schemes and variations of PRM discussed in Section
2.3.

Our primary interest in this project has been path planning in industrial
environments, and the experimental results show that Lazy PRM works well
in practice. By using either or both of the two modifications of the algorithm
suggested above, we can tune the amount of graph search according to the
application and the time required to perform a collision check, so that Lazy
PRM becomes efficient for an even wider range of problems.

7 Future work

Lazy PRM has essentially one parameter that is critical for the performance —
Ninit, the initial number of nodes. Asindicated in Theorem 1, N;,; is strongly
correlated to the probability of finding a feasible path without using the node
enhancement step. The optimal choice depends on the dimension of C, the
workspace, the planning task, and the desired quality of the collision-free
path. Our future work includes an investigation of the dependence between
Nini+ and the planning time in different environments, as well as different
distributions of the nodes.

Probabilistic techniques, like Lazy PRM, often give very fast planning.
However, in Table 1(c), we can see that the maximum planning time is ap-
proximately twice as long as the average planning time. New improved en-
hancement techniques, in order to make the algorithms more robust in the
sense that the worst case performance is improved, will also be a topic of our
future research.

Lazy PRM

8 Summary and conclusions

In this paper we further develop probabilistic planning techniques in the di-
rection of achieving general and practically useful single query planners. We
address standard industrial applications characterized by complex geometry
and high-dimensional, relatively uncluttered configuration spaces. The algo-
rithm — called Lazy PRM — is based upon a general scheme for lazy evaluation
of the feasibility of the roadmap. The scheme is simple and general and can
be applied to any graph that needs to be explored. In addition to Lazy
PRM, most other existing variations of PRM, and other related algorithms,
can benefit from this scheme and significantly increase performance.

Acknowledgements

The authors would like to thank Bo Johansson and ABB Digital Plant
Technologies AB for initiating the project and for providing suitable soft-
ware. Parts of this work was performed during the visit of Robert Bohlin
to the Robotics and Physical Computing Group at the Computer Science
Department, Rice University. Robert Bohlin was supported by NUTEK, the
Swedish National Board for Industrial and Technical Development, project
P10499. Work on this paper by Lydia Kavraki has been supported in part by
NSF CAREER Award TRI-970228, NSF CISE SA1728-21122N, and a Sloan
Fellowship.

29

30 Robert Bohlin
References
[1] N.M. Amato, O.B. Bayazit, L.K. Dale, C. Jones, and D. Vallejo. Choos-

2]

3]

[4]

[5]

[6]

17l

18]

[9]

[10]

[11]

ing good distance metrics and local planners for probabilistic roadmap
methods. In Proc. IEEFE Int. Conf. on Rob. & Aut., 1998.

N.M. Amato, O.B. Bayazit, L.K. Dale, C. Jones, and D. Vallejo.
OBPRM: An obstacle-based PRM for 3D workspaces. In P. K. Agar-
wal, L. E. Kavraki, and M. Mason, editors, Robotics: The Algorithmic
Perspective, pages 630-637. AK Peters, 1998.

N.M. Amato and Y. Wu. A randomized roadmap method for path and
manipulation planning. In Proc. IEEFE Int. Conf. on Rob. & Aut., pages
113-120, 1996.

J. Barraquand, L. E. Kavraki, J. C. Latombe, T.-Y. Li, R. Motwani,
and P. Raghavan. A random sampling scheme for path planning. Int.
J. of Robotics Research, 16(6):759-775, 1997.

J. Barraquand and J.C. Latombe. Robot motion planning: A distributed
representation approach. Int. J. of Rob. Research, 10:628-649, 1991.

R. Bohlin. Motion Planning for Industrial Robots. Licentiate thesis,
Chalmers University of Technology, 1999.

R. Bohlin and L.E. Kavraki. Path planning using Lazy PRM. In Proc.
IEEE Int. Conf. on Rob. & Aut., 2000.

V. Boor, M.H. Overmars, and F. van der Stappen. The Gaussian sam-
pling strategy for probabilistic roadmap planners. In Proc. IEEE Int.
Conf. on Rob. & Aut., pages 1018-1023, 1999.

L. Kavraki C. Holleman. A framework for using the workspace medial
axis in PRM planners. In Proc. IEEFE Int. Conf. on Rob. & Aut., 2000.

S. Cameron. Enhancing GJK: Computing minimum distance and pen-
etration distanses between convex polyhedra. In Proc. IEEE Int. Conf.
on Rob. & Aut., pages 3112-3117, 1997.

J.F. Canny. The Complexity of Robot Motion Planning. MIT Press,
Cambridge, MA, 1988.

Lazy PRM 31

[12] B. Glavina. Solving findpath by combination of goal-directed and ran-
domized search. In Proc. IEEE Int. Conf. on Rob. & Aut., pages 1718—
1723, 1990.

[13] A. Gray. Tubes. Addison-Wesley, Redwood City, CA, 1990.

[14] K. Gupta and A.P. del Pobil. Practical Motion Planning in Robotics.
John Wiley, West Sussex, England, 1998.

[15] D. Halperin and M. Sharir. A near-quadratic algorithm for planning
the motion of a polygon in a polygonal environment. Discrete Comput.
Geom., 16:121-134, 1996.

[16] L. Han and N.M Amato. Kinematics-based probabilistic roadmap
method for closed chain systems. In Wokshop on the Algorithmic Foun-
dations of Robotics, 2000.

[17] T. Horsch, F. Schwarz, and H. Tolle. Motion planning for many degrees
of freedom - random reflections at C-space obstacles. In Proc. IEEE Int.
Conf. on Rob. & Aut., 1994.

[18] D. Hsu, L.E. Kavraki, J.C. Latombe, R. Motwani, and S. Sorkin. On
finding narrow passages with probabilistic roadmap planners. In P. Agar-
wal, L. Kavraki, and M. Mason, editors, Robotics: The Algorithmic Per-
spective, pages 141-154. A K Peters, 1998.

[19] D. Hsu, R. Kindel, J.C Latombe, and S. Rock. Randomized kinodynamic
motion planning with moving obstacles. In Wokshop on the Algorithmic
Foundations of Robotics, 2000.

[20] D. Hsu, J. C. Latombe, and R. Motwani. Path planning in expansive
configuration spaces. In Proc. IEEE Int. Conf. on Rob. & Aut., 1997.

[21] Y.K. Hwang and N. Ahuja. Gross motion planning - a survey. ACM
Comp. Surveys, 24(3):219-291, 1992.

[22] P. Isto. A two-level search algorithm for motion planning. In Proc. IEEE
Int. Conf. on Rob. & Aut., pages 2025-2031, 1997.

[23] R.A. Johnson and D.W. Wichern. Applied Multivariate Statistical Anal-
ysis. Prentice Hall, New Jersey, 1998.

32

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

Robert Bohlin

L.E. Kavraki, M.N. Kolountzakis, and J.C. Latombe. Analysis of prob-
abilistic roadmaps for path planning. In Proc. IEEE Int. Conf. on Rob.
& Aut., pages 3020-3025, 1996.

L.E. Kavraki and J.C. Latombe. Randomized preprocessing of configu-
ration space for fast path planning. In Proc. IEEFE Int. Conf. on Rob.
& Aut., 1994.

L.E. Kavraki, P. Svestka, J.C. Latombe, and M. Overmars. Probabilis-
tic roadmaps for fast path planning in high dimensional configuration
spaces. IEEE Tr. on Rob. & Aut., 12:566-580, 1996.

Y. Koga, K. Kondo, J. Kuffner, and J.C. Latombe. Planning motions
with intentions. Computer Graphics (SIGGRAPH’9/), pages 395-408,
1994.

J.C. Latombe. Robot Motion Planning. Kluwer, Boston, MA, 1991.

J.C. Latombe. Motion planning: A journey of robots, molecules, digital
actors, and other artifacts. Int. J. of Rob. Research, 18(11):1119-1128,
1999.

J.P. Laumond and T. Siméon. Notes on visibility roadmaps and path
planning. In Wokshop on the Algorithmic Foundations of Robotics, 2000.

S.M. LaValle and J.J. Kuffner, Jr. Randomized kinodynamic planning.
In Proc. IEEE Int. Conf. on Rob. & Aut., 1999.

S.M. LaValle and J.J. Kuffner, Jr. Rapidly-exploring random trees:
Progress and prospects. In Wokshop on the Algorithmic Foundations of
Robotics, 2000.

S.M. LaValle, J.H. Yakey, and L.E. Kavraki. A proababilistic roadmap
approach for systems with closed kinematic chains. In Proc. IEEE Int.
Conf. on Rob. & Aut., pages 1671-1676, 1999.

M.C. Lin and J.F. Canny. A fast algorithm for incremental distance
computation. In Proc. IEEE Int. Conf. on Rob. & Aut., pages 1008—
1014, 1991.

G.F. Luger and W.A. Stubblefield. Artificial intelligence and the design
of expert systems. Benjamin/Cummings, Redwood City, CA, 1989.

Lazy PRM 33

[36] E. Mazer, J.M. Ahuactzin, and P. Bessiére. The Ariadne’s clew algo-
rithm. J. of Art. Intelligence Research, 9:295-316, 1998.

[37] C.L. Nielsen and L.E. Kavraki. A two level fuzzy PRM for manipulation
planning. Technical Report TR2000-365, Rice University, 2000.

[38] M. Overmars. A random approach to motion planning. Technical Report
RUU-CS-92-32, Utrecht University, the Netherlands, 1992.

[39] M. Overmars and P. Svestka. A probabilistic learning approach to mo-
tion planning. In K.Y. Goldberg, D. Halperin, J.C. Latombe, and R.H.
Wilson, editors, Algorithmic Foundations of Robotics, pages 19-37. A K
Peters, 1995.

[40] J. Reif. Complexity of the mover’s problem and generalizations. In Proc.
20th IEEE Symp. on Found. of Comp. Sci., pages 421-427, 1979.

[41] F. Thomas and C. Torras. Interference detection between non-convex
polyhedra revisited with a practical aim. In Proc. IEEE Int. Conf. on
Rob. € Aut., 1994.

[42] S.A. Wilmarth, N.M. Amato, and P.F. Stiller. MAPRM: A probabilistic
roadmap planner with sampling on the medial axis of the free space. In
Proc. IEEE Int. Conf. on Rob. & Aut., pages 1024-1031, 1999.

Robert Bohlin

Table 1: Performance data for Lazy PRM based on 20 consecutive runs
for each task. Table 1(d) shows data for PRM based on one run for
each task. The initial number of nodes, N;,;;, is 10000 in all tests.

Task
A—-B|B—-C|C—D|E—-F
Lazy PRM
Collision checks
for nodes ave 9 41 172 263
for edges ave 83 125 273 235
for returned path ave 78 60 86 82
min 74 45 143 154
total ave 92 166 445 499
max 131 463 701 1010
Table 1(a).
No. of enh. steps
min 0 0 0 0
ave 0 0.3 0.8 1.9
max 0 1 2 5
Table 1(b).
Running time (sec.)
graph building ave 6.6 6.7 0.8 8.3
graph searching ave 0 0.1 0.5 1.3
coll. checking ave 6.1 13.3 354 42.3
min| 11.2 9.7 10.8 19.7
total ave 12.7 20.2 36.8 52.0
max | 16.2 45.7 60.9 97.3
Table 1(c).
PRM
Collision checks
for nodes 10000 10000 10000 10000
of which in Cx || 4085 2942 2975 3047
for edges 763063 | 409561 | 423443 | 451254
total 773063 | 419561 | 433443 | 461254
Running time (sec.)
total 56625 | 31428 | 32299 | 35840 |

Table 1(d).

Table 1: continued.

Lazy PRM

Task

FoG|GoH|I>J|J—A

Total

129 134 320 18 1088 (40%)
283 158 361 124 | 1643 (60%)
121 80 114 82 704 (26%)
175 135 139 81
412 293 682 142 2730
820 442 1290 299
Table 1(a).
0 0 0 0
0 0.8 1.6 0
0 2 4 0
Table 1(b).
6.5 7.3 8.2 6.6 51.0 (18%)
0.9 0.4 3.0 0 6.3 (2%)
383 | 247 | 598 | 11.6 | 231.6 (80%)
22.1 16.8 17.8 13.0
45.7 32.5 71.0 18.2 289.0
87.3 47.8 129.5 31.2
Table 1(c).
10000 | 10000 | 10000 | 10000
3976 3038 3090 4121
728012 | 447541 | 447000 | 787507
738012 | 457541 | 457000 | 797507

| 51774 | 35097 | 35200 | 56234 |

Table 1(d).

Paper 11

Path planning in practice;
Lazy evaluation on a multi-resolution grid

Robert Bohlin
Department of Mathematics
Chalmers University of Technology
SE-412 96 Goteborg, Sweden

Abstract

We present a resolution complete path planner based on an implicit
grid in the configuration space. The planner can be described as a
two-level process in which a global planner restricts a local planner to
certain subsets of the grid. The global planner starts by letting the
local planner search in a coarse subset of the grid, and successively
refines the grid until a solution is found. The local planner applies
a scheme for lazy evaluation on each subgrid in order to minimize
collision checking and thereby increase performance.

Experimental results in an industrial application show that lazy
evaluation on a grid is very efficient in practice. The algorithm is
particularly useful in high dimensional, relatively uncluttered config-
uration spaces, especially when collision checking is computationally
expensive. Single queries are handled quickly since no preprocessing
is required.

Keywords: Collision avoidance, motion planning, path planning,
robotics.

1 Introduction

Path planning for robots has received much attention over the last decades.
The general problem is to find collision-free paths for a robot in an environ-
ment containing obstacles. Algorithms for its solution are, however, rarely
used in practice due to their computational complexity.

To be useful in practice the planner must be fast, in particular for easy
problems, and generate paths that are short and smooth enough to be exe-
cuted by a real robot. In industrial applications, the geometry of the robot

2 Robert Bohlin

and its environment is typically very complex, making collision checking com-
putationally expensive. Since many existing planners rely on fast collision
checking, their practical use in these situations is limited.

Our aim with this paper is to meet the requirements above and design a
planner that is useful in industrial applications. By using an implicit multi-
resolution grid combined with a lazy evaluation technique, we can reduce
collision checking and thereby increase speed.

Before describing the algorithm, we introduce some notation and give a
brief overview of existing planners.

1.1 Notation

We let W denote a subset of R? or R? in which a robot A is moving. The
position of A is described by a configuration g such that the position of every
point on A can be determined relative to a fixed frame in W. The set of all
configurations is called the configuration space and is denoted by C. For a
configuration g € C, A(q) denotes the subset of W occupied by A.

The cardinality of C is generally infinite since the robot is assumed to
move continuously in W. In what follows we assume that C can be identified
with a subset of R¢, where d is equal to the number of degrees of freedom
(dof) of A. For convenience we let C also denote this subset of R?, thus g
also denotes a point in R?. For example if A is an articulated robot arm, we
can let C = I; x --- x I4, where I; is the range of joint j.

The aim of path planning is to avoid a set of obstacles Wy in W. If A
intersects Wy we say that A collides with the obstacles, and we define the
mapping ® : C — {0,1} as

®(q) = { 0 if Alg)NWo # 10 (1)

1 otherwise

This mapping, which is called the collision checker, divides the configuration
space into two disjoint sets Co and Cx such that Co = ®71(0) is the set
of colliding configurations and Cr = ®~'(1) is the set of collision-free (or
feasible) configurations.

Given an initial configuration g;,;, € Cr and a final configuration g, €
Cr, we define the path planning problem as follows: Find a continuous path
v : [0,1] — C such that y(0) = @i, Y(1) = @y and 7(t) € Cx for all
t € [0,1], or determine that no such path exists. An algorithm that solves
this problem, or a variation of it, is called a path planner or simply a planner.

Lazy evaluation on a multi-resolution grid 3

To measure distances in C we need a metric ppq,. This metric is also used
to measure lengths of paths. For simplicity paths are ranked by length, and
we prefer short paths with respect to ppan. So, by defining this metric, we
decide which paths are of high quality and which paths are of poor quality.

1.2 Previous work

The path planning problem has been extensively studied in the last decades,
and a number of different approaches are proposed; see [7, 11, 15] for overviews.
An algorithm is called complete if it always will find a solution or determine
that none exists. However, due to the complexity of the path planning prob-
lem, complete planners are too slow to be useful in practice [5].

Another category of planners discretize the configuration space. If these
planners are complete in the limit as the discretization approaches a con-
tinuum, they are called resolution complete. See [6, 8, 14] for resolution
complete planners.

A general problem of discretizing the configuration space is that the mem-
ory requirement grows rapidly with the dimension. In [8], this problem is
solved by an implicit representation of a grid. A version of the A*-algorithm
[17] is then used to find a feasible path in the grid. They also show different
ways of choosing the discretization of the configuration space.

Trading completeness for speed, randomized techniques have been suc-
cessfully applied to many problems in high-dimensional configuration spaces.
The Randomized Path Planner (RPP) in [2] uses a potential field as guidance
towards the goal, and random walks to escape local minima.

The Ariadne’s clew algorithm in [18| incrementally builds a tree of feasible
paths using genetic optimization. Considering the initial configuration as a
landmark, the planner finds a path from one of the landmarks to a point as
far as possible from all previous landmarks. A new landmark is placed at
this point. New landmarks are placed until the goal configuration can be
connected to the tree.

The Probabilistic Roadmap Method (PRM) [12, 13, 20] is a method that
has been shown to work well in practice in high-dimensional configuration
spaces. The idea is to represent and capture the connectivity of Cr by a
random network, a roadmap, whose nodes correspond to randomly selected
configurations. If a local planner finds a feasible path between two nodes,
they are connected by an edge. See also [1, 9] for methods to increase the
connectivity of the roadmap. If the start and goal configurations can be

4 Robert Bohlin

connected to the same component of the roadmap, then a solution has been
found. PRM is particularly useful for multiple queries, since once an adequate
roadmap has been created, queries can be answered very quickly.

Lazy PRM in [3] is a probabilistic roadmap planner well suited for single
queries. The underlying idea is to minimize collision checking by introducing
a scheme for lazy evaluation of the nodes and edges in the roadmap. The
scheme is particularly useful when collision checking is expensive, for example
in industrial applications with complex geometry. See also [19] for a related
technique. A recent approach using quasi-random sampling is described in
]

Other methods, described in [10] and [16], build two trees rooted at the
initial and goal configurations respectively. In [10], the trees are expanded
by generating new nodes randomly in the vicinity of the two trees, and con-
necting them to the trees by a local planner. The planner in [16] iteratively
generates a configuration, an attractor, uniformly at random in C. Then, for
both trees, the node closest to the attractor is selected and a local planner
searches for a path of a certain maximum length towards the attractor. A
new node is placed at the end of both paths. The process stops when the
two trees intersect.

1.3 Information collection

A path planner may obtain information about the configuration space, or
rather the obstacles in the configuration space, in different ways. Canny [5]
represents the boundary of Cr by a set of algebraic equations giving complete
information about the obstacles in C. Unfortunately, they are very complex,
and are difficult to use in practice.

A simpler, but much less informative way, is to sample at certain points
in C. To evaluate ® at a configuration g, we determine the position and
orientation of all links of the robot and check whether or not they intersect
the obstacles Wy. The minimum distance ¢ to the obstacles gives somewhat
more information. If § > 0, then it is possible to determine a ball around g
which is entirely in Cx, and if § < 0, then q € Cp.

Most of the resolution complete planners and roadmap planners men-
tioned in Section 1.2 use either of the two sampling methods above. For sim-
ple robots and obstacles they are relatively straightforward, but for robots
and obstacles with complex geometric descriptions (e.g. thousands of poly-
hedra) they are computationally expensive. In particular the latter method,

Lazy evaluation on a multi-resolution grid

to find the minimum distance to the obstacles, become very complex when
the geometric model contains curved surfaces.

The planner we describe in this paper can be used with either of the
above sampling methods. Our aim, however, is to keep the planner as simple
and general as possible. Therefore we only calculate intersections in W and
not distances, i.e., we require that the planner only obtains information by
evaluating ® point-wise.

2 The algorithm

The path planner presented in this paper is based on a discretization of the
configuration space. A dense graph (a grid) G is placed in C, and only paths
contained in the graph are considered. We assume that q;,,;; and g, have
been specified, and for simplicity we assume that they coincide with two
nodes (also denoted q;,;; and q,,,) in G. Unless otherwise stated, a path will
always refer to a path in G connecting g,,,;; and g,y

The planner is resolution complete in the sense that if a feasible path
exists in the graph, it will be found. The essential is to find a feasible path
in a minimum number of evaluations of ®.

2.1 Algorithm overview

The approach to search in G for a feasible path can, as many other planners
(e.g. [6, 13, 18]), be described as a two-level planning process. A global
planner on the top level restricts the local planner on the lower level to a
certain subset G’ of G. The subset G’ is successively extended until a solution
is found or G’ = G. If the local planner still fails in the latter case, then no
solution exists in G and the planner returns failure.

The motivation for using subsets of G is to let the local planner search for
simple solutions first. A relatively coarse subset of G is often sufficient to find
a solution in many practical situations, so the scheme of refining G’ makes the
planner efficient for simple as well as more difficult planning tasks. Before
going into the details of the global and local planners, we need to describe
the representation of G and G'.

6 Robert Bohlin

Figure 1: Example of a 35 x 25 grid defining G in a two-dimensional con-
figuration space. Thick lines show enabled hyper planes and thin lines show
diagonal edges of G'. Edges of G are omitted.

2.2 Configuration space representation

To simplify the presentation, we assume that C is an axis aligned rectangle
in R%. The nodes in G are defined by the points in a rectangular grid of size
ny X --- X ng. We would like to traverse G parallel with the coordinate axes
as well as along diagonals, so we add the appropriate edges. That is, each
interior node gets 3¢ — 1 neighbors.

The resolution specified by the parameters {n;}%, is the finest resolution
that will be used in C, and determines, for example, the step size with which
path segments are checked; if adjacent nodes are in Cx, we consider the edge
between them as being feasible. This means that & is only evaluated at nodes
in G.

The dimension d of C is often high and the number of grid points grows
rapidly with the dimension, so there is no way to explicitly represent G in
a computer. (In our experiments presented in the next section we let n;
be up to 255, giving more than 10'* nodes.) A convenient way of implicitly
representing the underlying grid is to define each grid point as the intersection
of d hyper planes. For each dimension i, place n; planes equally spaced
in C and perpendicular to the #:th coordinate axis. Then we get Hle n;
intersections between d planes which define the grid points.

Lazy evaluation on a multi-resolution grid

2.3 Subgraphs

We can get a sparser graph G’ by disabling some of the planes in the underly-
ing grid, and define the nodes in G’ as the intersections of the enabled planes
only, see Figure 1. Note that the only planes that must be enabled are the
planes that contain g;,,;; or q,,,; if these planes are disabled, g;,,;; and g,
will not be nodes in G'.

In G' we also introduce edges so that we can traverse the graph parallel
with the coordinate axes and along diagonals. Note that since we introduced
a number of new edges, G' is no longer a subgraph of G, but if we instead
associate each edge of G’ with the sequence of nodes in G that is “covered”
by the edge, we can consider G’ as a subgraph of G, see Figure 1.

2.4 Evaluated nodes

As the planning process proceeds ® will be evaluated at more and more nodes,
but since G is implicitly represented we cannot associate unique information
to each node. However, only evaluated nodes need to be represented; one set
of feasible nodes and one set of colliding nodes. These sets are kept updated
at any time in order to avoid any node being evaluated more than once. The
colliding nodes can be seen as nodes deleted from G.

Since evaluating ® is expensive (= 0.08 seconds on average in our test
example in Section 3), the number of nodes that within reasonable running
time can be evaluated is only a small fraction of the total number of nodes
in G. Thus, these sets of nodes will never be too large.

2.5 Global planning

The global planner controls to which subgraph G’ the local planner is re-
stricted. By starting with a sparse subgraph G’ defined by a only a few
enabled planes, the local planner quickly solves many easy planning tasks. If
no solution exists in G', the global planner refines the grid by enabling a few
more planes. If all planes are enabled and the local planner still cannot find
a solution, then there is no feasible path in G.

In our experiments presented in Section 3, we apply the planner to an
articulated robot arm with six dof. The following simple strategy of enabling
hyper planes show great performance. Initially, we enable the planes contain-
ing g;,;; and q,,,;, and in each of the dimensions 1,2 and 3, we enable another

8 Robert Bohlin

six planes as evenly as possible. (This generally gives (2 + 6) - 23 = 4096
nodes in G'.) Each time the local planner fails, we enable the plane in G
that is furthest from an enabled plane. Here, of course, the distances are
measured between parallel planes only.

2.6 Local planning

The local planner is given a subgraph G’ C G from the global planner and
starts an exhaustive search for a solution. The technique is similar to the
scheme of lazy evaluation presented in [3], i.e., the aim is to find the shortest
(with respect to the metric ppq) feasible path in G’ in a minimum number
of evaluations of ®.

Based on the current status of G’, in which some nodes have been evalu-
ated and others have not, the local planner picks the shortest path P, called
a candidate path. Recall that all nodes that have been evaluated to collision
are deleted from G. The candidate path is then checked for collision accord-
ing to a certain scheme described below. As soon as a collision is detected,
we know that this is not the path we are looking for, so we delete the collid-
ing node and pick a new candidate path. This procedure is repeated until a
feasible path is found or no candidate path exists in G'.

When checking the path, we first evaluate the nodes. Starting respectively
with the first and the last node on P and working toward the center, we
alternately evaluate the nodes along the path. If all nodes are feasible then
we check the edges on P, first with a coarse resolution and then we do stepwise
refinements until all edges are feasible. As soon as a collision is found, we
delete the corresponding node from G (recall that edges of G’ refers to a
sequence of nodes of G, see Figure 1), and reject P.

The hope when applying this scheme to a candidate path is of course
that it is feasible. On the other hand, if it is not feasible, we would like to
detect that as quickly as possible in order to avoid evaluating nodes on a path
that will be rejected anyway. At the same time we want to reject as many
other colliding candidate paths as possible. The following two observations
motivate the procedure of evaluating nodes before edges, and checking nodes
from outside in. First, a colliding node in G’ will cut away more than a
colliding edge in G'. Second, a node close to g,,;; Or g, is likely to cut away
a larger portion of the colliding candidate paths than a node far away from

Dinit and qgoal :

Lazy evaluation on a multi-resolution grid 9

Figure 2: The workspace used in our experiments. The robot is in its home
configuration denoted by A.

2.7 Tree of shortest paths

A question is how the local planner finds a candidate path in an implicitly
represented graph. Common for all graph search algorithms like Dijkstra’s
and A* [17] is that they visit nodes one by one and insert them into a tree
whose root is the start node. The tree contains the shortest path from each
of the visited nodes to the root. New nodes are visited until the goal node
is reached. Then the shortest path can be found by tracing the way back to
the root.

Our local planner uses the A* algorithm. Unfortunately one cannot avoid
an explicit representation of the tree, which in the worst case can contain
every node in the graph. The iterative behavior of the local planner makes
the candidate paths longer and longer, so the tree grows over larger and
larger portion of G’. However, what seems to be a problem is also a solution;
in each iteration one node is deleted, so the growth will be impeded as well.
In practice only a fraction of the nodes will be visited.

Each time a candidate path is rejected, the tree of shortest paths becomes
invalid because a deleted node is contained in the tree. Instead of rebuilding
the entire tree, we can update the part of the tree that is affected. Only
the subtree whose root is the deleted node needs to be updated, which saves
much time.

10 Robert Bohlin

Configuration C

G

Figure 3: Configurations B to G used in the experiments.

3 Experimental results

The planner described in previous section has been implemented in C++ as
a plug-in module to RobotStudio® — a simulation and off-line programming

RobotStudio is developed by ABB Robotics, Goteborg, Sweden.

Lazy evaluation on a multi-resolution grid

\

Configuration H Configuration I

Configuration J

Figure 4: Configurations H to J used in the experiments.

software running under Windows N'T. The collision checks are handled inter-
nally in RobotStudio. The experiments have been run on a PC with a 400
MHz Pentium II processor and 512 MB RAM.

Our test example is a part of a manufacturing process in which an ABB
4400 robot is tending press breaking. In this particular case, plane sheets of
metal are picked from a pallet, bent twice by the hydraulic press shown in
Figure 2, and then placed at another pallet.

Ten different configurations denoted A to J are shown in Figures 2 and
??. These are used as either initial or goal configurations in eight planning
tasks, denoted for example A — B, where A is the initial configuration and
B is the goal configuration. This setting is identical with the experiments
reported in [3] and we have chosen the parameters {n;}&, to conform to the
parameters in [3]. Our aim is to compare our planner with Lazy PRM.

11

12 Robert Bohlin

Collision checks Planning time

Task Total On returned path Total Collision checking
A— B 127 (92) 92 (78) 76 (12.7) 74 (6.1)
B—-C 63 (166) 59 (60) 5.0 (20.2) 4.9 (13.3)
C—D | 364 (445) | 103 (8)| 326 (36.8) | 27.8 (35.4)
E—F || 282 (499) | 80 (82) | 243 (52.0) | 235 (42.3)
F—-G| 33 (412) | 131 (121) | 264 (45.7) | 25.9 (38.3)
G—-H 67 (293) 54 (80) 5.0 (32.5) 4.9 (24.7)
I—-J 337 (682) | 111 (114) | 315 (71.0) | 28.8 (59.8)
J— A 98 (142) 87 (82) 6.8 (18.2) 6.4 (11.6)
Sum: 1671 (2730) | 717 (704) | 139.2 (289.0) | 129.8 (231.6)
43% (26%) 93% (80%)

Table 1: Performance data for our planner in a test environment. Within
parenthesis are corresponding data for Lazy PRM based on 20 consecutive
runs for each task.

Table 1 shows the total number of collision checks and the total planning
time required to solve each of the tasks. The number of collision checks on
the solution path and the time spent on collision checking are also shown.
Within parenthesis are the corresponding results for Lazy PRM reported in
[3]. Since Lazy PRM is a probabilistic planner, we use the average values
over 20 consecutive runs.

In Table 1 we find a significant difference between the planners. The
number of collision checks to solve all eight tasks is clearly reduced (1671
compared with 2730). This also reduces the planning time to the same extent
(139 seconds compared with 289 seconds).

To be a randomized planner, Lazy PRM is very efficient since as much
as 26% of the collision checks are on the solution path. Our new planner
is even more efficient, 43% are on the solution path. Moreover, our planner
spends less time building and searching in the graph. As much as 93% of the
planning time is spent on collision checking, whereas Lazy PRM spends 80%
on collision checking.

The underlying principle that makes the new planner better in many
situations is that the nodes are distributed on a grid. Sparse regions and
dense clusters certainly occur if the nodes are randomly distributed, but on
a grid (or a subgrid) these can be avoided, or even controlled to improve
planning.

Lazy evaluation on a multi-resolution grid

4 Summary

We have presented a resolution complete path planner based on an implicit
multi-resolution graph in C. To minimize collision checking, and thereby
increase performance, a scheme for lazy evaluation is applied to the graph.

The algorithm is particularly useful in high dimensional, relatively unclut-
tered configuration spaces, especially when collision checking is an expensive
operation. Single queries are handled very quickly since no preprocessing
is required. The planner uses only a boolean collision checker which makes
the planner easy to apply even in situations with complex geometry, like in
industry. A comparison with Lazy PRM shows significant improvements in
terms of planning time.

Acknowledgements

The author would like to thank Bo Johansson for valuable supervision and
support, Lydia Kavraki for discussions giving insights in the field of path
planning, and ABB Robotics for initiating the project and for providing
suitable software.

13

14

Robert Bohlin

References

[1]

2]

3]

[4]

[5]

[6]

7]

18]

[9]

[10]

[11]

N.M. Amato, O.B. Bayazit, L.K. Dale, C. Jones, and D. Vallejo.
OBPRM: An obstacle-based PRM for 3D workspaces. In P. K. Agar-
wal, L. E. Kavraki, and M. Mason, editors, Robotics: The Algorithmic
Perspective, pages 630-637. AK Peters, 1998.

J. Barraquand and J.C. Latombe. Robot motion planning: A distributed
representation approach. Int. J. of Rob. Research, 10:628-649, 1991.

R. Bohlin and L.E. Kavraki. Path planning using Lazy PRM. In Proc.
IEEE Int. Conf. on Rob. & Aut., 2000.

M.S. Branicky, S.M LaValle, K. Olson, and L. Yang. Quasi-randomized
path planning. In Proc. IEEE Int. Conf. on Rob. & Aut., 2001.

J.F. Canny. The Complexity of Robot Motion Planning. MIT Press,
Cambridge, MA, 1988.

P. C. Chen and Y. K. Hwang. SANDROS:a dynamic graph search al-
gorithm for motion planning. IEEE Tr. on Rob. & Aut., 14(3):390-403,
1998.

K. Gupta and A.P. del Pobil. Practical Motion Planning in Robotics.
John Wiley, West Sussex, England, 1998.

D. Henrich, C. Wurll, and H. Wérn. On-line path planning with optimal
c-space discretization. In Proc. IEEE/RSJ Int. Conf. on Int. Rob. and
Syst., 1998.

T. Horsch, F. Schwarz, and H. Tolle. Motion planning for many degrees
of freedom - random reflections at C-space obstacles. In Proc. IEEE Int.
Conf. on Rob. & Aut., 1994.

D. Hsu, J. C. Latombe, and R. Motwani. Path planning in expansive
configuration spaces. In Proc. IEEE Int. Conf. on Rob. & Aut., 1997.

Y.K. Hwang and N. Ahuja. Gross motion planning - a survey. ACM
Comp. Surveys, 24(3):219-291, 1992.

Lazy evaluation on a multi-resolution grid

[12] L.E. Kavraki and J.C. Latombe. Randomized preprocessing of configu-
ration space for fast path planning. In Proc. IEEE Int. Conf. on Rob.
& Aut., 1994.

[13] L.E. Kavraki, P. Svestka, J.C. Latombe, and M. Overmars. Probabilis-
tic roadmaps for fast path planning in high dimensional configuration
spaces. IEEE Tr. on Rob. & Aut., 12:566-580, 1996.

[14] K. Kondo. Motion planning with six degrees of freedom by multistrategic
bidirectional heuristic free-space enumeration. IEEE Tr. on Rob. & Aut.,
7(3):267-277, 1991.

[15] J.C. Latombe. Robot Motion Planning. Kluwer, Boston, MA, 1991.

[16] S.M. LaValle and J.J. Kuffner, Jr. Randomized kinodynamic planning.
In Proc. IEEE Int. Conf. on Rob. & Aut., 1999.

[17] G.F. Luger and W.A. Stubblefield. Artificial intelligence and the design
of expert systems. Benjamin/Cummings, Redwood City, CA, 1989.

[18] E. Mazer, J.M. Ahuactzin, and P. Bessiére. The Ariadne’s clew algo-
rithm. J. of Art. Intelligence Research, 9:295-316, 1998.

[19] C.L. Nielsen and L.E. Kavraki. A two level fuzzy PRM for manipulation
planning. In Proc. IEEE/RSJ Int. Conf. on Int. Rob. and Syst., 2000.

[20] M. Overmars and P. Svestka. A probabilistic learning approach to mo-
tion planning. In K.Y. Goldberg, D. Halperin, J.C. Latombe, and R.H.
Wilson, editors, Algorithmic Foundations of Robotics, pages 19-37. A K
Peters, 1995.

15

Paper 111

Rigid body path planning using the Green
kernel in SE(3)

Robert Bohlin
Department of Mathematics

Chalmers University of Technology
SE-412 96 Goteborg, Sweden

Abstract

In this paper we present a novel potential field method for rigid
body path planning. The planning is performed directly in the group
SE(3) and is reinforced by a potential function in the workspace.
Thus, the planner benefits from the explicit representation of the
workspace obstacles at the same time as the planning takes place in the
6-dimensional configuration space. The potential function is harmonic
and is composed of translates of the Green kernel in SFE(3). The plan-
ner collects information about the configuration space by sampling,
and updates the potential function accordingly. Experimental results
from challenging examples show that the method has great potential
for future research. We provide the mathematical tools needed for
further development in various directions.

Keywords: Collision avoidance, Green kernel, fundamental solu-
tion, harmonic functions, motion planning, path planning, potential
fields, robotics.

2 Robert Bohlin
Contents
1 Introduction
1.1 Notation
1.2 Previouswork
1.2.1 Potential field methods
2 Rigid body motions
2.1 The rotation group SO(3)
2.1.1 Eulerangles
2.1.2 Equivalent axis
2.1.3 Quaternions
2.2 The special Euclidean group SE(3)
2.3 M = 5% x R? representing SE(3)
3 Green kernels
3.1 Harmonic functions
3.2 Fundamental solutions and Green kernels . .
3.3 The Green kernel on M =S2xR?
3.3.1 The heat kernel on S®
3.3.2 The Green kernelon M
3.3.3 Negative gradient field on M
3.4 Green kernelon SE(3)
3.4.1 Negative gradient field on SE(3) . .
4 Harmonic functions in robot path planning

4.1 Planning using numerically computed fields

4.1.1 Potential fields in R and R®
4.1.2 Translating robots
4.2 Path planning using Green kernels
4.2.1 Overall description
4.2.2 Potential function
4.2.3 Selecting weights
4.2.4 Selecting start point
4.2.5 Variations L.
4.2.6 Potential fieldsin R¢

18
18
20
22
23
25
31
32
33

Path planning using the Green kernel in SE(3)

5 Rigid body planning using the Green kernel in SE(3)
5.1 Attracting potentialo oL,
5.2 Experimental results 00000,

6 Summary and discussion
A The Laplacian on S® x R?

Conversions

B.1 Euler anglesto SO(3)
B.2 Equivalent axis to SO(3)
B.3 Equivalent axis to quaternions
B.4 Quaternions to SO(3)

43
43
48

49

51

4 Robert Bohlin

1 Introduction

Path planning has been a central topic in robotics research for several decades.
The path planning problem is to find a feasible path for a robot from a given
initial configuration to a goal configuration. The increasing interest in auto-
matically generated paths is mainly due to the wide variety of applications.
Planners can be used for instance with off-line programming systems, in
computer animations, by autonomous vehicles and space craft, and in phar-
maceutical drug design, see [10, 17, 28, 34, 35, 38|. From these applications
we see that a robot, from the planner’s point of view, may be any object
moving in an environment containing obstacles.

To focus on the core of the problem, we consider the basic form of path
planning where we assume that a complete geometric model of the robot and
its environment is available. Then we have full knowledge of the kinematics
of the robot, no errors are present, and no sensing is needed. We also assume
that all constraints on the robot are holonomic. Such constraints can some-
how be eliminated by re-parameterizing the robot, whereas non-holonomic
constraints cannot be eliminated. Non-holonomic constraints typically ap-
pear for vehicles with limited turning radius, see [37].

One family of path planning problems is called the generalized mover’s
problem. This family includes, for example, planning for one or more rigid
bodies moving freely in space, and for robot arms. Complete algorithms
do exist, but they are rarely used in practice due to their computational
complexity, see |7, 49]. Reif showed in [46] that the generalized mover’s
problem belongs to the class of PSPACE-hard problems. It is believed that
any complete algorithm requires time exponential in the number of degrees
of freedom of the robot. This complexity bound is obtained by the complete
algorithm by Canny in [7] .

The complexity issue, the broad definition of robot, and the large varia-
tion of environments and applications, motivate the development of planners
customized for specific conditions. To circumvent the computational com-
plexity in high-dimensional configuration spaces, randomized methods have
recently gained much interest. Trading completeness for speed and applica-
bility, these methods have successfully solved many difficult planning tasks,
see [3, 30].

In this paper we develop the theoretical tools that are needed for a novel
potential field planner. The planner is tailored for rigid bodies whose con-
figuration space is a subset of the Special Euclidean group SE(3). Our aim

Path planning using the Green kernel in SE(3) 5

is to create a harmonic potential and conduct path planning directly in the
group SE(3). The planner collects information by sampling. The sampling
is directed by a harmonic potential in the workspace. Before describing the
theoretical tools and the algorithm, we introduce some notation and give a
brief overview of existing potential field planners.

1.1 Notation

Let W denote a workspace in which a robot A is moving. We assume that
W is a subset of R? or R? and that there is a fixed coordinate system Fjy in
W. The subset of W which is occupied by obstacles is denoted by Wp. Its
complement, Wx = W \ Wo, is the set of free points in the workspace.

The position of A is described by a configuration q such that the position
of every point on A can be determined relative to the fixed frame Fyy,. The
set of all configurations is called the configuration space and is denoted by C.
In general, the cardinality of C is infinite since the robot is assumed to move
continuously in W. For a configuration ¢ € C, A(q) denotes the subset of
W occupied by .A.

A configuration is said to be feasible if the robot does not violate any
constraint that may be imposed. The most obvious constraint arises from the
obstacles Wep, but other constraints such as joint limits and self-intersection
must also be considered. These constraints divide the configuration space
into two disjoint sets; the set of feasible configurations is denoted by Cr
and its complement, Co = C \ Cr, is called the configuration space obstacle.
Although all constraints not necessarily relate to collisions in the workspace,
we say that a configuration is colliding if it belongs to Cp.

The aim of path planning is to generate feasible paths between pairs
of configurations. In the configuration space the problem is formulated as
follows. Given an initial configuration g,,;;, € C» and a final configuration
4g0u € Cr, find a continuous curve in Cx from q;,,;; t0 g 4, Or determine that
no such path exists. An algorithm that solves this problem, or a variation of
it, is called a path planner or simply a planner.

1.2 Previous work

Many path planners have been proposed over the years, see [21, 24, 37|
for overviews. The planners can be divided into categories based on the

6 Robert Bohlin

ideas involved. In this paper we further develop potential field planners, and
restrict our overview to this category.

1.2.1 Potential field methods

The idea of potential field planners is to define a potential function over the
configuration space. The negative gradient of the potential function induces
a vector field that we interpret as a force field. Recall that the robot is a
point in the configuration space. Then we can let the force field influence
the robot and let the robot follow the flow of the field by simply iteratively
taking a small step in the steepest descent direction of the potential.

The crucial in potential field planning is to construct a potential field that
helps us solve the problem. In low dimensions, the space can be discretized
by a grid and each node can be assigned a potential in several ways. Starting
at the goal node, a breadth first search scheme (c.f. Dijkstra’s graph search
and wave front propagation) can be applied and assign a potential to each
grid point in proportion to the distance in Cx to the goal, see [3, 37| for
related techniques.

Another way to create a potential function in C is to connect neighbors
in the grid by edges of unit resistance, see [42, 52, 54]. By assigning 0 to the
grid points in Cp and —1 to the goal point and then calculating the resulting
potential in the rest of the grid, we get a potential function without local
minima except at the goal. In fact, the discretized function is harmonic. This
method is known as the resistive grid method and is basically the same as
the method described in [9, 12] and in Section 4.1.1. A similar technique is
used in [55].

The method of discretizing the configuration space with high resolution
and then numerically calculating a potential restricts the grid method to
low dimensional configuration spaces. In higher dimension, there are other
ways to construct the potential field. A frequently used method is to let
the potential be composed by one force field that pulls the robot towards
the goal and one force field that pushes the robot away from the obstacles.
The difficulty, however, lies in constructing a potential function without local
minima in which the robot gets stuck, see [32]. Several techniques have been
developed in order to escape from local minima, see [8]. The planner in [3],
for instance, uses random walks.

Other related techniques are considered in [29] and [45]. The former
method uses neural networks for developing potential fields. The latter

Path planning using the Green kernel in SE(3) 7

method is called the virtual springs method and considers a robot manipu-
lator as a dynamical system in which the links of the robot are somewhat
flexible springs. While the end-effector is attracted to a hare following a pre-
scribed trajectory in the workspace, the rest of the arm is repelled from the
obstacles by a force field. As with other potential field methods, the robot
sometimes get stuck in a local minimum without reaching the target.

If the configuration space is extended by a time dimension, similar tech-
niques can be used to coordinate multiple robots by adding more fields re-
pelling the robots from each other, see [32]. Also moving obstacles can be
treated in this way.

To create an ideal potential field in C, the obstacles in W must be mapped
into C. This is easy in cases that only involve translations. Then the confi-
guration space obstacle is the set Wp & A, see Section 4.1.2. In other cases,
the configuration space obstacle can be represented by a semi-algebraic set if
the robot is parameterized in a certain way, see [7|. However, the complexity
of these equations make them difficult to use for robots with many degrees
of freedom, say more than three. Moreover, as soon as rotations are involved
the configuration space obstacles become very complex. For practical robots,
for example rigid bodies and articulated robot arms in R?, this method is
difficult to apply.

To the author’s knowledge, potential fields arising from harmonic func-
tions that have been used for path planning have either been calculated
numerically, see [11, 12, 40, 42, 52|, or have only been applicable to special
cases in 2-dimensional configuration spaces, see [16, 26, 33, 52]. Similar tech-
niques for time-varying workspaces can be found in [16, 48]. In this paper
we introduce harmonic functions in the six-dimensional group SE(3). Then
we combine the potential field in SE(3) with a field in the workspace. The
latter field is computed using the well established method in [12].

2 Rigid body motions

For a rigid body robot A moving freely in space, a configuration specifies
the position and orientation of A. If we attach a coordinate frame to A,
we can identify each configuration with a unique rigid body transformation
of this frame with respect to a fixed frame in W. That is, we interpret the
configuration space as the space of rigid body transformations.

The most general displacement of a rigid body is a translation plus a

8 Robert Bohlin

rotation, see [19]. Hence, a rigid body transformation is a pair (R,t) where
R belongs to the rotation group SO(n) of R" and ¢ is a translation. The
set of vectors in R™ is a natural parameterization of translations, so in the
following sections we will first pay attention to the rotation group. Robotics
are mainly concerned with rotations in R? and R3, so from now on we restrict
our attention to SO(3), and to some extent SO(2).

Section 2.1 describes different ways of parameterizing SO(3). In Section
2.2 we return to general rigid body transformations and look into the struc-
ture of the set of pairs (R,t). Most of the results in this section are more
or less well known and references for further reading are given. Some results
will be explicitly referred to later in this article, whereas other are used in a
more latent way. In particular, most tools and formulas are needed for the
implementation described in Section 5.2.

2.1 The rotation group SO(3)

The group SO(3) is the special orthogonal group, here represented by the
space of orthogonal matrices with determinant +1. The conditions for pair-
wise orthogonality and unit length of columns give six equations that must
be satisfied. Thus, in principle, we can choose three suitable elements in the
matrix and then let the six equations determine the rest of the matrix. This
parameterization, however, is not very intuitive and useful in applications.
In what follows we will describe more common ways to parameterize SO(3).

Before going into the details of SO(3) we look at SO(2). The group
SO(2) is a subgroup of SO(3) and can be seen as rotations about the z-axis.
The group SO(2) can be represented by matrices of the form

cosf) —sinf
F= (sinH cos 6)
and can be parameterized by an angle 6 € [0, 27) together with modulo 27
arithmetic. This parameterization, however, is not a global chart, i.e. a
coordinate system, on SO(2), because the group manifold is homeomorphic
to a circle.
2.1.1 Euler angles

A widely used parameterization of rotations is Euler angles. A rotation is
specified by applying three successive elementary rotations around the z-, y-

Path planning using the Green kernel in SE(3)

or z-axis. The elementary rotations matrices R;(7y), Ry(3), and R,(«) are
explicitly given in Appendix B. The classical roll-pitch-roll Euler angles give
the rotation

REuler(aa /6: 7) = RZ (O‘)Ry (/B)RZ (7)7

and is interpreted as a rotation about the z-axis by an angle «, followed by
a rotation about the new y-axis by an angle 3, and finally a rotation about
the new z-axis by an angle 7. Another common set of elementary rotations
is the roll-pitch-yaw angles, which are interpreted in a similar fashion, and
give the rotation

Rrpy(a, B,7) = Rz(a)Ry(ﬁ)Rw(V)-

A drawback of Euler angles, or any similar combination of elementary
rotations, is that the parameterization is singular. Although the mapping
from the set of Euler angles onto SO(3) is continuous, the inverse is not
continuous. In particular

REuler (Oz, 0, 7) = REuler (7, 0, O./)

and
RRPY(a’a _7T/2a ’Y) = RRPY(% —7r/2, a)

for any pair (o, y). Singularities can never be eliminated in any 3-dimensional
parameterization of SO(3) for a similar reason that there is no global coor-
dinate chart on a sphere.

2.1.2 Equivalent axis

Euler’s theorem says that each rotation R € SO(3) is a rotation about some
axis, see [19]. This axis is called the axis of rotation, and vectors parallel to
this axis are unaffected by the rotation R. Without loss of generality, let the
rotation axis be specified by a unit vector a and let the angle of rotation, 6,
be in the range [0,27). Then the scaled vector fa € B(0,27) C R3, where
B(0,2r) is the ball of radius 27 centered at the origin. The vector fa is
called the equivalent axis, or exponential coordinates, of the rotation. For
convenience, we will also call the pair (6, a) exponential coordinates.

Let z(t) be a point moving with unit angular velocity about a unit vector
a. The velocity i(t) is perpendicular to both a and z(¢) and can be expressed
by the vector product

z(t) = a x z(t).

10 Robert Bohlin

If we write the vector product a x z(t) as a matrix multiplication, az(t),
where @ is obtained by the isomorphism

aq 0 —as as
a=\|ay]| «—a= as 0 —ai |, (1)
as —Q9 ay 0

we get a first order linear differential equation whose solution is z(t) =
e%x(0). Thus, a rotation of an angle about a is given by

R(a,0) = €. (2)

The matrix exponential can easily be calculated using Rodrigues’ formula,
see |25, 41]:
e =T +asinf + a*(1 — cos#).

That the mapping is many-to-one is easily seen. Even if the angle 6 is re-
stricted to the interval [0,], the mapping is singular. It is one-to-one except
for § = m where a and —a give the same rotation. As a consequence, and
because B(0, 7) is not homeomorphic to SO(3), the inverse is not continuous,
see Appendix B.

The exponential map (2) is a mapping from the Lie algebra so(3) onto
the Lie group SO(3). The Lie algebra so(3) is the tangent space at the
identity and consists of all skew-symmetric 3 x 3 matrices ¥G. (Here 9 can
be identified with #. The difference is that we have restricted 6 to [0,27)
whereas ¥ can be any real number.) By the isomorphism (1), so(3) can be
identified with the Euclidean space R3. We will use both representations of
so(3) and switch back and forth by (1). The Lie algebra product — or the
Lie bracket — so(3) x so(3) — so(3) is defined by

[0, W] = dw — wo = (v x W)
or

[v,w] =v X w.

2.1.3 Quaternions

A common way of representing rotations is by using quaternions. Just as
unit complex numbers can be used to represent a rotation in the plane,
unit quaternions can be used to represent rotations in space. Quaternions

Path planning using the Green kernel in SE(3)

generalize complex numbers into four dimensions and, unlike Euler angles
and equivalent axis, give a global parameterization of SO(3).
Quaternions are numbers of the form

C]=$1i+$2j+w3k+x4

where the coefficients x, r9, z3 and x4 are real, and ¢, 7 and k are the quater-
nionic units defined by

iP=3’=kK’=1ijk=—1.
Note that for example 13 = —j¢ = k, e.g. multiplication is not commutative.
It is convenient to treat ¢ as having a scalar part w = x4 and a vector part
v = (21, %, 23) and use the notation

q= [($1,$2,I3),$4] = [’U,’LU].

The set of quaternions, denoted by H, forms a group with respect to
quaternion multiplication. With the above notation we can write the product
as

[’Ul, wl]['vg, ’wg] = [w1'02 + w91 + V1 X Vo, W1W2 — V1 - ’02].

where - denotes the scalar product on R3. The unit element is the quaternion
1 and the inverse is given by

g =q"/l4?
where the conjugate ¢* and the modulus |g| are defined by
¢ = [v,w]" = [-v,w]
lal* = ¢"q = @i + 23 + 23 + af.

In what follows we will sometimes identify a real number w with the
quaternion [0,w], and a vector v € R? with the quaternion [v,0]. The
converse relations will also be used. By this convention we can multiply
vectors in R? with quaternions and scalars with quaternions. The product

with scalars coincide with the usual product for vectors, i.e. wiq = [0, w;]qg =
[wyv, wyw]. Together with the standard addition

1 + @ = [v1 + Vo, Wy + wa,

11

12 Robert Bohlin

H is a real vector space.

The group manifold of SO(3) is homeomorphic to the real projective space
PR?, see [50]. The space PR? can be regarded as the space of all lines in
R* passing through the origin, or as the unit sphere S C R* with antipodal
points identified. Hence we can create a mapping from S to SO(3) whose
pre-image of each element consists of two elements of S®. The following map,

1—2(23 4+ 23) 2(x1279 — 2324) 2(T173 + T2T4)
(21,29, 23, 24)" = | 2(m120 + 2374) 1 —2(z2 +22) 2(w0m3 —7174) |, (3)
2(z113 — Towy) 2(Towz +x174) 1 —2(2? + 23)

is a two-to-one map from S* to SO(3). See Appendix B for further details.
Under the mapping (3), the point

(aysin(/2), agsin(6/2), assin(8/2), cos(9/2))"

on S? representing the rotation (6,a) is mapped onto the same rotation
matrix as if (0, a) was mapped to SO(3) by Rodrigues’ formula.

The set of unit quaternions is a subgroup of H. From now on we identify
the unit quaternions with S* in the natural way.

[(551,332,333),:54] — ($1;$2,$3,$4)T-

With this identification, S? is a Lie group under quaternion multiplication.
The Lie algebra of S is the tangent space at the identity element [0,1].
Hence, the Lie algebra is the set of quaternions of the form

[v,0].

Here v is an arbitrary vector in R3.
The unit quaternion

q(0,a) = [asin(0/2), cos(0/2)] (4)

is a representation of the rotation (6, a). Notice that the quaternions ¢ and
—q corresponds to the same rotation. This is natural since rotating by an
angle € about a is equivalent to rotating by 27 — 6 about —a; the latter
rotation corresponding to —gq.
For a vector v € R?, we can calculate the rotated vector v' = R(f,a)v
by the formula
v' = qug’,

Path planning using the Green kernel in SE(3)

where ¢ = ¢(f, a) as in (4). The expression may need some explanation. The
vector v on the right hand side is interpreted as a quaternion [v, 0]. A simple
calculation shows that the quaternion product qug* has zero scalar part and
can therefore be interpreted as the vector v’.

The mapping (3) from S? to SO(3) is C* and preserves the group struc-
ture, i.e. it is a Lie group homomorphism. The property of preserving the
group structure is important in order to compose rotations. Clearly, the iden-
tity is mapped to the identity. Moreover, let ¢; and g» be two quaternions
mapped onto the matrices R; and R,, respectively. Then the image of the
composed rotation ¢ g, coincides with Ry R,. Since (3) is two-to-one, it is
called a double covering.

The major advantages of using unit quaternions for representing rota-
tions are the existence of a homomorphism onto SO(3), the compact way of
storage, and that there is an easy way of interpolating between quaternions.
The latter is important especially when animating motions, see [51|. As an
example of interesting techniques, see [14] where they use Bezier curves on S3
in order to interpolate between a sequence of rotations. The resulting motion
is smooth and looks natural to the observer, and would have been difficult
to achieve using other representations such as Euler angles, equivalent axis,
or matrix representation.

In this paper we are primarily interested in simple interpolation between
two rotations represented by two unit quaternions ¢; and ¢,. For s € [0, 1],
the shortest great arc on S® between ¢; and ¢, is the curve

s+ qi(q7q2)° (5)

Exponentiation of a quaternion g = [asin(0/2),cos(0/2)] is defined by the
exponential function and the logarithm function;
¢ = elat/20
log(q) = [a8/2,0],
q° = e*'°8% = [asin(s0/2), cos(s0/2)],

see [14]. The Lie algebra of S® consists of quaternions of the form [av/2, 0].
The exponential function above maps Lie algebra elements onto S®. Com-
paring with exponential coordinates, we see that the curve s — ¢° on S3
corresponds to the curve

s0a

S e

13

14 Robert Bohlin

in SO(3), and we immediately see that the curve has constant velocity. In
[14], it is shown that the great arc (5) between ¢; and ¢» also can be calculated
by

L, @ sin((1 — s)a) + ¢ sin(sa)
sin v

7

where « is the angle between ¢; and ¢y defined by cosa = ¢; - ¢o. (Here
¢, and g, are interpreted as vectors in R*.) The expression is not defined
for ¢ = +¢y, but then ¢; and ¢y correspond to the same rotation and no
interpolation is needed.

2.2 The special Euclidean group SFE(3)
A rigid body transformation (R, t) acts on a vector x € R" as
(R,t)x = Rx + t. (6)

The set of pairs (R, t) has the structure of a group which is denoted SE(n)
- the special Euclidean group, or the group of proper rigid body transforma-
tions in R™. This group is the semi-direct product of the special orthogonal
group with R",

SE(n) = S0(n) x R".

The effect of two successive transformations (Ri,t;) and (R, t3) is given by
the group operation

(Ro, t2)(Ra 1) = (RoRu, Rty + 1), (7)

It is common to identify a vector z in R™ by the vector z7 = (z7,1) in
R™! and use the representation

Rt
w0 (4 1)
of SE(n). Then we have

R t\ (z\ [(Rz+t
0 1 1) 1
and the product

Ry 12\ (R t1 _ [(RoRi Roti + 1o (8)
0 1 0o 1) 0 1

Path planning using the Green kernel in SE(3)

which exactly match the action (6) and the group operation (7). In the
case of n = 3 this representation is called the homogeneous representation
and is often used in robotics and computer graphics, see [22, 44]. In the
homogeneous representation, the identity element in SE(3) is the identity
matrix and the inverse of (R, 1) is

R" —R"t
0 1 ’
The structure of SE(n) is non-Euclidean, but locally SE(n) is a smooth
manifold diffeomorphic to R™™+1/2 see [37]. In fact, SE(n) is a Lie group,

see [50]. Elements of the Lie algebra se(3) are velocities of rigid bodies and,
in the homogeneous representation, are of the form

Jda v

0 O
where ¥a € so(3) for a unit vector a, and v € R3. For ¥ # 0, the above
matrix can be written as YM, where

M= (8 "’(/)19) .

Since M* = —M?, the exponential map from se(3) onto SE(3) can be written
as

M =T+ 9M + (1 — cos9) M? + (9 — sin 9) M3

_ (e’%‘ v + (1 — cosd)av/¥ + (Y9 — sin 19)&2'0/19)

For pure translations ¢ = 0 and the exponential map from se(3) onto SE(3)

gives the matrix
I v
0 1)

2.3 M = S? x R representing SE(3)

Because of the advantages of representing rotations by quaternions, we use
quaternions also when representing rigid transformations in SE(3). We know
that there is a double covering from S® onto SO(3), so by introducing the

15

16 Robert Bohlin

appropriate product on M = S® x R?, the manifold M will be a Lie Group.

Then we can find a double covering from M onto SE(3) = SO(3) x R3.
Let (q1,t1) and (qo,t2), where ¢; € S and t; € R3 for 1 = 1,2, be points

in M and let the group operation be the product M x M — M defined by

(g2, t2)(q1, t1) = (21, 2t1G5 + o). (10)

This product is the effect of the two successive transformations, (g;,;) fol-
lowed by (g2, t2), and corresponds exactly to the product in SE(3) defined by
(7). The identity is (1,0) (here 1 is interpreted as the quaternion [(0, 0, 0), 1])
and the inverse of (¢, t) is (¢*, —¢*tq). The latter follows since

(¢,)(¢", —q"tq) = (qq", ¢(—q"tq)q" +t) = (1,0)
(¢*,—q"tq)(q,t) = (¢"¢, ¢"tq — ¢*tq) = (1,0).

The mapping h : M — SFE(3) defined by

(g t) — (R(()q) i) : (11)

where R(q) is obtained by (3), is a two-to-one Lie group homomorphism. The
group structure is preserved because the identity is mapped to the identity
and the image of the product (go,t2)(q1,t1) is

(R(QZ))OR(%) R(Q’z)il + 752) ,

which, by (8), is easily seen to be equivalent to the product of the images of
(QQa tQ) and (Qb tl)

The Lie algebra m corresponding to the Lie group M contains elements
of the form

([ad/2,0], v),
were v is an arbitrary vector in R3?. Because of the homomorphism, the
exponential map from m onto M matches the exponential map from se(3)
onto SE(3) given by (9). Hence, letting t = v + (1 — cos¥?)av/9 + (¥ —
sin¥)a’v /9, the exponential map m — M is

e([e9/2000) — ((led/20] 1)

The exponential map takes the Lie algebra element u = ([af/2,0],v) €
m to the element (¢,t) € M, where ¢ = [asin(6/2),cos(0/2)]. By the

Path planning using the Green kernel in SE(3)

double covering (3), the quaternion +¢ corresponds to the rotation matrix
e® € SO(3). Hence, (£q,1) represents the rigid body transformation

et
(3 1)
in SE(3). Taking the logarithm of this matrix, i.e. inverting the exponential
mapping (9), we get the Lie algebra element

fa v
0 O

in se(3). This element can be identified with the Lie algebra element p that
we started with. In fact, the homomorphism A in (11) induces a Lie algebra
homomorphism dh : m — se(3) defined by

dh : ([ad/2,0], v) — (%“ B’) | (12)
Thus, we have confirmed that
h(e") = edh(u)

for any p € m, which is a useful property of Lie group homomorphisms.

A Lie algebra element can easily be translated to the tangent space at
an arbitrary point in the Lie group. In the case of a Lie algebra element
([a¥/2,0],v) € m, it can be translated to the tangent space at the point
(¢,t) € M by the product (g,t)([a/2,0],v). This property will be used at
the end of next section.

Interpolation in the product space M = S® x R3? is simply achieved by
interpolating in the two spaces separately. Interpolation along great arcs on
S3 is given in (5). Thus, a path on M from (gi1,%1) to (go,t2) of constant
velocity is given by

s (qu(g]q2)’, (1 — s)ty + sta), s €[0,1].

Notice that a consequence of the double covering of SE(3) is that a path on
M from the identity ([0, 1],0) to ([0, —1],0) is mapped onto a closed loop in
SE(3) starting and ending at the identity. This may seem like a drawback,
but as soon as one is aware of it, the double covering will cause no problem
at all.

17

18 Robert Bohlin

The ideal situation when manipulating rigid body transformations would
be to use SE(3) directly. However, seen as a subset of R”, the manifold M is
in many aspects easier to represent and work with. One particular advantage
of M will be apparent in the next section, where we are able to derive the
Green kernel on the manifold. Using that result, we will also, thanks to the
double covering, be able to determine the Green kernel on SE(3). After
that, the Green kernel on SF(3) is used to create a potential field in the
configuration space of a free-flying rigid body robot. The potential field will
then be an essential component in a path planning algorithm.

3 Green kernels

In this section we introduce the Green kernel on a Riemannian manifold and
state some properties of harmonic functions. The main result is a derivation
of the Green kernels on the manifolds M = S® x R? and SF/(3) respectively.
The group SE(3) and its Green kernel will be important in the rest of this
paper and will be explicitly used in Section 5.

3.1 Harmonic functions

Poisson’s equation

—Au=f (13)

models many physical phenomena, for example stationary temperature, elec-
trostatic potential, and chemical concentration in equilibrium. The equation
(13) is understood either point-wise or in the sense of distributions. On R¢
the Laplacian A in Cartesian coordinates is given by A = 66—; + -+ 86—;2,
but the operator can be generalized to an arbitrary Riemannian manifold R,
see [47]. The function f : R — R to the right in (13) is called a source term.
In what follows we will sometimes use the analogy of stationary temperature
distribution. Then f is the heat source distribution on R and the solution u
is the stationary temperature.

On open subsets U of R where f vanishes, u satisfies Laplace’s equation
—Au =0, (14)

and w is said to be harmonic on U. Harmonic functions have a large number
of nice properties, see |2, 15]. The properties we want to emphasize here and
use later on are the following:

Path planning using the Green kernel in SE(3)

1. u is smooth, in fact v € C*®°(U).
2. If u is constant in any open subset of U, then u is constant in all of U.

3. wu satisfies the mean value formulas:
1 1
=0 udS=——-—
|6B(x, 7‘)‘ dB(z,r) |B(.I, T)| B(z,r)

for each ball B(x,r) C U. Here dy is the Lebesgue measure on B(z,)
and dS is the surface measure on 0B(z,7). By |B(z,r)| and |0B(z,)|
we mean the Lebesgue measure of B(z,r) and the surface measure of
0B(z,), respectively.

u(z) u dy

4. u has no local maxima or minima in U.
Moreover, the Laplacian commutes with orthogonal transformations, i.e.
A(woT) = (Au)oT,

for any orthogonal transformation 7. In particular the property that there
are no local minima makes harmonic functions suitable for path planning, as
we shall see later in Section 4.2.

A consequence of property 4 above is that if v is not constant, then there
is a descent direction from each point in U. The negative gradient of u
points in the steepest descent direction and induces a tangent vector field
V = —grad v in U. Since R is smooth and u € C*®(U), the vector field V
varies smoothly over U. The only points where grad u vanishes are saddle
points. At a saddle point z, the Hessian matrix Hu(z) is indefinite so the
smallest eigenvalue A is negative. We define the steepest descent direction at
such a point z to be along any eigenvector of Hu(z) corresponding to .

A field line is a curve which has at each of its points the direction of the
field at that point. Where the field vanishes, we adopt the convention that
the field lines continue in a steepest descent direction. The field lines of V' are
smooth curves except at saddle points where the tangent is discontinuous.
By the definition of V' follows that u is strictly decreasing along field lines,
and by the convention follows that field lines cannot terminate in the interior
of U (c.f [31] p. 41). We summarize in the following lemma.

Lemma 1. Let u be harmonic in an open connected set U C R. Then either
u 1s constant, or through each point in U there is a field line of V = —grad u
terminating at OU or at infinity.

19

20 Robert Bohlin

3.2 Fundamental solutions and Green kernels

A function K : R x R - R satisfying
~AK(,z) =6, (15)

where 0, is the Dirac measure at x, is called a fundamental solution to the
Laplacian. The smallest positive fundamental solution, K, is unique and is
called the Green kernel, see [20]. The solution to Poisson’s equation (13) is
obtained by the inverse Laplacian operator,

u(@) = ~A ' f(z) = /R K(z,9)f(y)dy, (16)

i.e. integration against the kernel, see [20].

From equation (15) we see that the fundamental solution K(-,z) is har-
monic except at the point z, hence so is K. From the definition of Green
kernel follows that K(z,z') > 0 and that inf, K(z,2") = 0. The following
well known properties of the Green kernel K will also be used in this paper.

1. K(z,z') is singular along the diagonal in R x R.
2. K(z,2') = K(2,z) for z # 2.

In some cases the Green kernel can be expressed in a simple form. In R¢,
d > 3, for example, the kernel is

1
(d—2)[0B(0,1)] |z —2'|**

K(z,2') =

where B(0,1) is the unit ball in R¢. In R? there exist no Green kernel. In
fact, any positive harmonic function in R? \ {z} is constant, see [2]. There
is, however, a fundamental solution to the Laplacian in R?,

-1
K(z,2') = —log |z — 2'|.
(¢,2') = 5 log |z — 7|
Associated with Laplace’s equation is the heat equation

0
—u— Au = . 1
atu u=0,t>0 (17)

Path planning using the Green kernel in SE(3)
A function H(¢, -, z) : (0,00) x R x R — R satisfying (17) and for which
lim H(t, -, z) =, (18)

t—0+

is called a fundamental solution to the heat equation. In the same way as for
the Laplacian, the smallest positive fundamental solution, H, is unique and
is called the heat kernel, see [4]. The heat kernel is smooth in (¢, z, ') and is
symmetric on R X R, that is H(t,z,z') = H(t,z', x) for all ¢ > 0. Moreover,
if F'and G are two heat kernels on two spaces X and Y respectively, then the
product F'G is the heat kernel on the product space X x Y, see [4]. Indeed,
a simple calculation yields
%FG - AXxyFG = FtG + GtF - GA)(F - FAyG
= F(G; — AyG) + G(F, — AxF)
=0, fort >0

and
lim F(t,-,2)G(t, -, y) = 60y = O(zy),

t—0t

that is, (17) and (18) are satisfied.

It is generally not as easy as a multiplication to obtain the Green kernel
on a product space. However, if we know the heat kernels on the two spaces
we can multiply them and compute the Green kernel on the product space
by the following observation. Above we defined the Green kernel to be the
the smallest positive fundamental solution to the Laplacian, but the Green
kernel can equivalently be defined using the heat kernel H,

K(z,2') = /0 T H (52t (19)

whenever K is finite, see [20]. The Green kernel K(z,z') is known to be
finite for z # 2’, so when the integral diverges there is no Green kernel. One
can show that a geodesically complete non-compact Riemannian manifold R
has a Green kernel if and only if

 dr

Sty 7

where S(r) is the boundary area of the geodesic sphere dB(0,7) in R, see
[20]. By [* f(r)dr we mean the limit at infinity of the primitive function

21

22 Robert Bohlin

of f. This explains why there is a Green kernel on R? but not in R?. In
general, if the global dimension of the manifold is at least three, then we
can integrate the heat kernel in time from 0 to infinity to obtain the Green
kernel, see |4, 18].

The result (19) can easily be seen if we use another notation. We can see
(17) as a first order differential equation in ¢ whose solution is the operator
e Integrating in time from 0 to oo yields —A~!. The operator A~! is the
inverse of the Laplacian, which can be represented by the Green kernel as in
(16). The integral is convergent because the Laplacian is negative definite,
so e*® vanishes as t goes to infinity.

3.3 The Green kernel on M = S? x R?

So far we have seen explicit formulas for Green kernels and heat kernels on
R?. In other cases the calculations become more complex and in general
we cannot find explicit expressions. In Section 2 we used the Riemannian
manifold M = S% x R3 to represent rigid body transformations. Our aim in
this section is to derive an expression for the Green kernel on M.

We take M with its topology as a subspace of R” and with the Rieman-
nian metric induced by the standard inner product in R”. The metric on M
is then given by

dm(2,2)" = dss(q,4')° + |y — y',

where z = (q,y) € S® x R? and dgs is the geodesic distance on S°.
On S? we introduce spherical coordinates (1, ¢, 1), so on M we have the
cylindrical coordinates according to

21 = x1 = sinnsin ¢ sin ¢
29 = T9 = sin7sin ¢ cos Y

Z3 = T3 = sinncos ¢

Z4 = Xy = COST (20)
5 =1
26 = Y2
27T =1Ys

for 2= (q,y) € S®*xR% and 0< <7 0<d<m 0<1¢ <2mr. Let
the origin, denoted by 0, be the point on M for which n = |y| = 0, i.e. the

Path planning using the Green kernel in SE(3)

north pole on S® and the origin of R3. The distance from a point z = (g, %)
on M to the origin is then given by

dm(z,0)* = dss(g, 0)* + y|* = n* + r?

where 7 = |y|.

The idea now is to use the heat kernels on S® and R? respectively, multiply
them to get the heat kernel on M, and then integrate in time to get the Green
kernel on M. To simplify the notation we will derive the Green kernel on
M with a singularity only at the origin, that is we will find the Green kernel
K : M — R that solves

—AK =.
In R"”, the heat kernel is
Hit,yy) = — 35 150
YY) = (47Tt)n/2) .

Since the kernel depends only on |y — ¢'| we can express the heat kernel in
R? with singularity as ¢ — 0 at the origin as a function of 7 = |y|;

2

e_fi_t, t > 0.

HRS (t, T) = (47Tt)3/2
Similarly we define the heat kernel on S3. The kernel depends only on the
distance 7 to the north pole on S® and will be denoted by Hgs(¢,7). Accord-
ingly, the heat kernel Hgs(t,n)Hgs(t,r) on M, and thereby also the Green
kernel on M, depends only on 7 and r. The Green kernel on M with a
singularity at the origin will be denoted by K(n,r) and is obtained by the
integral

K(n,r) = / Hs(t, m) Hs (2, r)dt,
0

(c.t. (19)).

3.3.1 The heat kernel on S°

In order to find the Green kernel on M, we first need to find the heat kernel
on the sphere S"~! in R™ with a singularity at the north pole. In [53] we get
a solution to 5

—u=—1v%u on 8",

ot

23

24 Robert Bohlin

where —12 = Agn-1 — @. The kernel is

et = (27r_si1n778277) %19(77, b,

with

o0

1 —1 2
¥ t) == — E(Qﬂ—k'f'n) .
(1) = iz k_zooe
We want to find the heat kernel Hgs(t,n) on S3, i.e., n =4, so

Hgs(t,n) = ePss

— et(lfuz)
—-1 0
t
= —d(n,t).
¢ 2rsiny On (%)

In order to simplify later calculations we rewrite the sum in the expression
for ¥(n,t). Let

k) = — ¢ (tk>+ikn)

k) = o

Then, for ¢t > 0, ¢ is a Schwartz function on R, and its Fourier transform ¢
is easily seen to be

1

M= t)1/2e‘“l(k+")2-
s

Using the Poisson summation formula we get
D olk) =) ¢(2mk)
k k

= Z 4 zlf 1/262—t1(27T]CJH7)2
— (4nt)

= 9(n,t).

Path planning using the Green kernel in SE(3)
Hence, we rewrite the heat kernel on S? as
Hss(t,m) = t27r_mln77 8677 Z : e~ (Kb
— ¢t m g% otk +ikn)
= 4n? Zin n ; kel (21

3.3.2 The Green kernel on M

Now we are ready to apply (19) in order to calculate the Green kernel K (n,r)
on the product space M = S3 x R3. That is, we multiply the heat kernels
Hgs(t,r) and Hgs(t,n) and integrate in time from 0 to oo:

K(n,r) = /O " Hyo (4, v) Hea (2,) dt

_ /oo 1 o z Z Lot~ (k2 +ikn) g4
o (4mt)3/? A7 sinn £
_ i tk2+zkn
- 7/2 gi / 3 32¢ 7 Z ke
3277/2sinn t3/ o

Z (tk2+ik7)+%)dt
327r7/2 sin7 £ t3/2

- Z ke —r(k2=1)"2—ikn
167r37“ sin7) £

=—— Z fee (K" =1)? (cos kn — isinkn)

167r3r sin 7 #
— 7 k —T(kz—l) 2 k,
16737 sin n £ Z (=2isin k)
1 o
, Z ke "R DY gin o, (22)

:37
TOT SIn

The Green kernel K(n,r) is harmonic in M except at the singularity at
the origin where » = n = 0. A tedious calculation shows that K satisfies

25

26 Robert Bohlin

Laplace’s equation on M given in Appendix A. For the moment we will
consider K (n,r) for > 0,0 < n < . It is obvious that the series in (22)
is convergent, but the rate of convergence can be improved dramatically,
especially for small 7, by the aid of Kummer’s transformation: Let Y 7o | ay
and). by be two convergent series such that

Jim 5, =0

then
Zak—chk—i—Z <1_c _) .

If 77, by can be expressed in closed form and 1 — ¢ by/ax tends to zero
faster than ay, then the convergence rate is improved.
In (22), we have the series Y - | a) with

k ek =D smkn k=12,

ak = ax(n,r) = r 8m3sinn

The series Y -, by, with

k1 smk

is a good approximation to Y -, ax, especially for small 7. The estimates in
the following lemma guarantees that the series Y - (1 —c Z—’“) ay converges

much faster than Y- | a.

Lemma 2. Let 0 < n <7 and 0 < r < 0o, and define ay, by and c as above.
Then
0<1-c be <1—e "k
47

Proof. Let c;, = k— (k*—1)"/2. By the observation that t < t'/2 for 0 <t < 1
we see that

1 1 1/2
1_ﬁ—(1_ﬁ> = k-

1
<K-1DV? = g <=

| =
oyl

Path planning using the Green kernel in SE(3)

for all £ > 1. Moreover, by series expansion of (1 — 1/k%)'/? we get

o T T T

and we conclude that

and

The final inequality follows because (1 + t)e™* < 1 for all ¢. Letting £k — oo
in the estimates of b;/ay gives ¢ = 1, and the lemma follows. O

28 Robert Bohlin

The series) -, by can be expressed in closed form as follows

1 10 1\~ _
= ([=Z —rk in k
8m3siny (T 8r+)Ze ST

B 1 18+1 e "sinn
~ 8m3sinp \ r Or 1—2e"cosn+e?r

1 (-19 +1 1 1
T 16w \ r Or coshr — cosn

2r tsinhr + coshr — cosn
= : (23)
3273(cosh r — cosn)?

Thus, using Lemma 2 and (23), the Green kernel in (22) can now be expressed
as

2r~!sinhr + coshr — cosn

K(T],’f'): +Zak n,r _bk nr))
k=1

32m3(cosh r — cosn)?

2r~!sinhr + coshr — cosn

32m3(cosh r — cosn)?

o0

Ly (ke =k = 5) e sin kn, (24)

3
in
8morsinmn —

where ¢, = k — (k> — 1)'/? as defined in the proof of Lemma 2.

The kernel (24) is smooth on M except at the singularity at r = n = 0.
However, there are numerical problems along the curves (n,0) for 0 < n <
7, along (0,7) and (w,r) for r > 0. We will derive these limit functions
separately. The first part to the right in (24) causes no difficulty, so we focus
on the series in the second part.

First we consider the limit function as r — 0 for 0 < n < 7. The series
in (24) is multiplied by 1/r and since the limit is finite for all n € (0, 7], the

Path planning using the Green kernel in SE(3) 29

series must vanish as r — 0. The limit of the series is
1 .k T
1~ - v (__ e __ 1) —rk _: k‘
r1—1>%87r3sin77;r 2k+e ¢ S

=lim 1 i k (—— +reg + O((rck)2)> e~ ¥ sin kn

r—0 873 sinp &7 \ 2k

li 1 ik I +0(r)) e Fsink
=lim ———— -

r—0 873 sin 7 p 2k 1

o0

1 1Y\ .
:m Z (k‘Ck — 5) sin k"l] (25)
k=1

Here we have used the series expansion of e"%* and that 0 < ¢, < 1. Now, as
r~!'sinhr — 1 as r — 0, we can express the limit of (24) as

3 —cosn 1 - 1\ .
K(n,0) = ke, — = | sin k7. 26
(n,0) 327r3(1—c0s77)2+87r3sin77;< * Q)Sm 7 (26)
=l e

0(1/k2)

To see that the rate of convergence is of order 1/k%, we use the series expan-
sion of ¢, given in the proof of lemma 2,

111

B A T

The limit function on the curve (0,r) for » > 0, is obtained by letting
n— 0 in (24),

2r~lsinhr + cosh r — 1 T
K = k? —1——)e .
(0,7) 3273 (cosh 7 — 1)2 87r3 Z (Zk)

4+

Similarly, the limit of (24) as n — 7 gives the kernel on the curve (7,) for
r > 0;

2r~!sinh hr+1 1 O
K(m,r) = r_-sinhr +coshr+1 Z(_l)ka(1_L) e
k=1

3213 (coshr + 1)2 8mdr 2k

Finally, letting n — 7 in (26) gives the solution at the point n = 7,7 = 0,

K(r,0) = 3%3 ~ 53 Z (kck - %) .

30 Robert Bohlin

This expression can be rewritten by using Kummer’s transformation once
again. Notice that

Z(—l)’“% =—1In2 (27)

k=1
and that
1 1 & 11 1
K = ——) (=D kep— = — == + =
(m.0) = 3505 ~ g];() < T3 et 8k2>
2+ln2 1 <& . 11
= - -1 -
64r3 87 kz::l()k (kc’“ 2 8k2>

O(1/k?)

The order of convergence is easily seen from the series expansion of k¢, —1/2
above.
We have now proved the following theorem.

Theorem 1. Let g € S? with spherical coordinates (1, ¢,1) according to (20)
and y € R® with r = |y|. Then

2r~tsinhr + coshr — cosp
K(n,r)=

3273(cosh r — cosn)?

1 - T
— k(”k—l——) "k sin kn, >0,0<n<m,
+87r3rsinn; e % e "“sinkn, forr n<mw

3 —cosn 1 - 1\ .
K(,0) = key — = | sink 0<n<
(.0) = S5 —cosn)? | 8r¥siny ; (* 2) sinkay, - for 0 <m <,

K(0,r) = 2r~'sinh7 + coshr — 1 1 ikQ (er0k 1 L) .
k=1

32m3(coshr — 1)2 * 8mdr 2k
forr >0,
2r~tsinhr + coshr + 1 1 < f r
K = — -1 kQ(TCk_l__) —rk
(. 7) 3273(cosh r + 1)2 8m3r kz_;() ¢ ok) ¢
forr >0,

2+4In2 1 & . 11
K(w,o)=7_—z(-1)/g(kck—g‘@)’

Path planning using the Green kernel in SE(3)

is the Green kernel on M = S* x R?® with a singularity at the origin. The
coefficients ¢, k =1,2,..., are given in the proof of Lemma 2.

In the theorem, the Green kernel is expressed in the coordinates (7, 7). To
simplify the notation later and to be consistent with the notation in Section
2.3, we go back to the notation introduced in Section 3.3. That is, a point
on M is denoted by z and the Green kernel K is

K(z) = K(6/2[t)), (28)
where z = (¢q,t) = ([asin(8/2), cos(6/2)],1).

3.3.3 Negative gradient field on M

This far we have only considered the Green kernel on M with a singularity at
the origin. Since M is a Lie group it is easy to translate K along the manifold.
Let K¥(z) = K(w™'z). Then K" is the Green kernel with singularity at
w e M.

Let V¥ denote the negative gradient field of the Green kernel K and let
i denote the identity element. Since K™ is smooth except at w, the vector
field V* is a smooth mapping that to each point z € M\ {w} assigns a vector
V¥ in the tangent space at z. In terms of temperature, the Green kernel K
models the stationary temperature on M due to a unit heat source at w.
The heat flow starts at w and follows the field lines of V% towards infinity.
We define the positive direction of the field lines to be along the heat flow.

At the identity, the tangent vector V;* of V™is an element in the Lie
algebra m. To explicitly express the tangent vectors V;* for an arbitrary
z # w, it is convenient to first translate z to the origin, find the appropriate
element of the Lie algebra, and then translate the Lie algebra element to z.

Let w = (q,t), where ¢ = [asin(#/2),cos(0/2)] € S®. On S3, the kernel
K™ only depends on the geodesic distance from the identity to w. Hence,
the S3-components of V* are tangents to great arcs through the identity and
q, and are therefore a multiple of [a, 0]. Similarly, in R? the kernel K* only
depends on the distance from the origin. Hence, the R*-components of V;*
are a multiple of ¢.

Now, let K}’ = {%K(n, r)|w and K¥ = 2K (n,r)|, be the partial deriva-
tives of the Green kernel K evaluated at w (that is n = 0/2 and r = |¢|).
Then K7’ <0, Ky < 0, and the Lie algebra element V;* is

Vi" = (qla, 0] KY, t/[t] K3).

31

32 Robert Bohlin

By multiplying a Lie algebra element from the left by a group element
z, we get a vector in the tangent space at z. Thus, the negative gradient of
K™ at z is the tangent vector V = zV* '®_ where V;~'* is the Lie algebra
element owing to a singularity at z~'w. The tangent vector V at z points
away from the singularity at w, that is, V¥ is parallel with the field lines of
V* at z.

3.4 Green kernel on SE(3)

Our aim in this section is to calculate the Green kernel, denoted by G, on
the Lie group SE(3). Recall that M double covers SFE(3) by the Lie group
homomorphism A given by (11), and that dh given by (12) is an homomor-
phism from m to se(3). Using the double covering h, we can easily derive the
Green kernel on SE(3) from the Green kernel K on M.

The Laplacian on a Lie group depends on the inner product in the tangent
space at the identity. Thus, if we choose the inner product on se(3) such that
h becomes an isometry, then the inner product is preserved, hence so is the
Laplacian. Let

I = ([@191/2,0],v1) and Iy = ([ag¥2/2,0],vs)

be two elements in the Lie algebra m. On m, the inner product < , > is
inherited from R,

<lyly >n=a1- a9 019:/4 + v - vy,

where - is the dot product on R3. The Lie algebra homomorphism dh maps
{; and [, to the elements

_(Ya vy (V200 vy
dh(ly) = (0 0) and dh(ly) = (0 0)
in se(3). Thus, by defining the inner product <, >,.3) on se(3) by

< dh(ll),dh(lz) >se(3): ai - as 791192/4 + wv1 -9,

and defining the Laplacian Aggs) on SE(3) accordingly, the homomorphism
h becomes an isometry that also preserves the Laplacian. Consequently,

AM(F O h) = (ASE(S)F) O h

Path planning using the Green kernel in SE(3)

In particular, F' o h is harmonic on M whenever F' is harmonic on SE(3).
For a point z = (¢,t) € M, let Z denote the point Z = (—¢,t). From

Section 2.3 we know that z and Z correspond to the same rigid body trans-

formation and that h maps them to the same transformation 7 = h(z) = h(Z2).

Theorem 2. For 7 € SE(3), let z, and Z, denote the distinct points in M
for which h(z;) = h(Z;) = 7. Then

G(r) = K(z,) + K(z,)
is the Green kernel on SE(3) with singularity at the identity.

Proof. Assume without loss of generality that z, is closer to the identity
t € M than Z.. Then z, is the identity if and only if 7 = 4.
Notice that

—AspE)G (1) =(=AseE)G) o h(2;)
= — AmG(h(zr))
= - AMK(ZT) - AMK(Z’T)
=—ApK(z)
:5/\/1 ('ZT)
Z5SE(3) (7');

where we in the final equality used that h preserves the inner product. Thus,
G is a fundamental solution to the Laplacian with singularity at the identity.
Since G > 0 and G — 0 at infinity, the theorem follows. O

As with the Green kernel K on M, we can translate G along SE(3). Let
G denote the Green kernel with singularity at w. Then

G“(1) = G(w™ 7). (29)

3.4.1 Negative gradient field on SE(3)

Let W* denote the negative gradient field of G¥. Then W¥ = 7W/ “ for
each 7 # w. Thus, to express the tangent vector W it is sufficient to find
the Lie algebra element W7 ¢ in se(3).

33

34 Robert Bohlin

Lie algebra elements in m can be mapped to se(3) by the isometry dh.
Since

G“(1) =G(w™'7)
=K (zy-1,) + K(Z,-1,)

W = dh(V*) + dh(V*)
The Green kernels G and its gradient field will be used in the following
sections as essential ingredients in a path planning algorithm for rigid bodies.

4 Harmonic functions in robot path planning

That harmonic functions have no local minima is a well known property
that many potential field planners have taken advantage of. The lack of
local minima guarantees that there exists a steepest descent direction at
each point, c.f. Lemma 1. In low-dimensional configuration spaces, say
of dimension 2 or 3, it is possible to explicitly represent the configuration
space obstacles, discretize the space, and numerically calculate a harmonic
function with a unique minimum at the goal. Since discretization is needed,
these methods are restricted to low-dimensional configuration spaces.

There is a trade-off between obstacle complexity and robot complexity
when considering the planning problem in the workspace versus the config-
uration space. In C, the obstacles are generally very complex and difficult
to represent, whereas the robot is a simple point. On the other hand, in W,
the obstacles are known and explicitly described, whereas the robot typically
is more complex than a point. Thus, due to the complexity of the obsta-
cles Co in high-dimensional configuration spaces, we are restrained to partial
information obtained by sampling.

Our aim in this paper is to develop a planner that uses harmonic potential
functions also in high-dimensional configuration spaces. To avoid sampling
in all of C, we use information about the obstacles in W in order to direct
the sampling. By this method we can exclude large portions of C and instead
sample in regions that are promising.

The new planner is described in Section 5. The planner combines the
potential fields from two separate planners, so before describing the final
planner we need to introduce these two methods. The first one is a well
known numerical potential field method that was originally developed in

Path planning using the Green kernel in SE(3) 35

[12]. This method is described in detail in Section 4.1. The second method,
described in Section 4.2, is new and creates an exact potential function in C
by combining translates of the Green kernel. Then, in Section 5, we combine
these two techniques into a potential field planner specially designed for rigid
bodies moving in R3.

4.1 Planning using numerically computed fields

Fisrt, consider the problem of planning a path for a point robot moving in
RY for d = 2 or 3. If no obstacles are present, that is Cx = R%, the problem
is trivial, but a few observations are still worth considering. Assume that the
goal configuration is the origin, and let u be the solution to

Au = 0in R*\ {0}
w(0)=—1 (30)
u = 0 at infinity.

Clearly, the potential function u is harmonic in R?\ {0} and is bounded.
Our intuition may say that the negative gradient field will lead the particle
towards the origin. However, the solution to (30) is the function

u =0 in R*\ {0}
u(0) = —1.

That is, the gradient field is 0 wherever it is defined. In fact, there is no
meaning in specifying finite values at isolated points. There is a theorem
saying that isolated singularities of a bounded harmonic function are remov-
able, see [2]. This means that the function has a harmonic extension to all of
R3. In the example above, the constant function u = 0 is such an extension.
In terms of heat flow, the finite temperature v = —1 at the origin is not
capable of absorbing any heat from the surroundings at all.

Consequently, the potential at isolated points in C# acting like attractors
cannot be finite. Instead, near isolated singularities that influence the entire
space, the function v must behave like a fundamental solution to the Lapla-
cian. This may seem like a complication when solving Laplace’s equation
numerically, but it is not. When discretizing the space, we simply consider
each grid point being a representative for a ball around it rather than an
isolated point. Likewise, the value of u at a grid point is the average value

36 Robert Bohlin

over the ball instead of the value at the grid point itself. (However, the mean
value formulas in Section 3.1 say that these two values coincide if u is har-
monic in the entire ball.) Thus, by this interpretation it is possible to specify
a finite value at a single grid point and still get influence all over the space.

4.1.1 Potential fields in R? and R?

Now, consider the problem of finding a path for a point robot A in a bounded
workspace W. The position of A by can be specified by its coordinates with
respect to the fixed frame F)y, in W. In this simple case, the workspace and
the configuration space coincide, thus C = W, Cx = Wx, and Co = Wp.

Instead of considering the problem (30), we look at the following very
similar problem. Let € > 0 and

Au=0 inCr\ B(qupu€)
u=0 inCo (31)
u=—1 on dB(q,y;€),

Then the solution is a harmonic potential function u in Cx \ B(q,eq,€) that
will guide A to the goal B(qy,q,¢). A numerical solution to this problem
can be found by several methods. The simplest is a finite difference scheme
on an equally spaced grid in C, see [9, 12]; then the grid is equivalent to
the resistive grids used in [42, 52, 54]. An alternative is a finite element
mesh, either structured or unstructured, in Cx. In either case, a solution is
obtained by solving a sparse system of linear equations. For large systems,
iterative methods such as Gauss-Seidel iteration may be used. The rate of
convergence can be increased by successive overrelaxation, see |5, 12|.

By interpolation, the potential u and its partial derivatives can be ap-
proximated at any point in C. The potential u is strictly between —1 and
0 in the interior of C#, and from any point in C# the steepest descent path
leads to the goal. Since u is smooth, simple methods such as Euler forward
or low order Runge-Kutta methods will be sufficient in order to numerically
integrate the negative gradient.

4.1.2 Translating robots

The method above can easily be applied to other simple robots. Consider
for instance a spherical robot A of radius r. If we let the center of A be its

Path planning using the Green kernel in SE(3) 37

kA
o qgoal
3 \ §
Qinit

) g\

(a): A 2-dimensional workspace W (b): Corresponding 2-dimensional
with A in the initial (left) and final configuration space. The configura-
configurations. The lower left corner tion space obstacle is the set Co =
of A is the origin of F4. The obsta- Wy © A.

cles Wp are light grey.

Figure 1: Example of a polygonal robot A among polygonal obstacles. The
robot is only allowed to translate.

reference point, then rotations can be ignored, and a configuration is feasible
if and only if the reference point is at distance grater than r from any obstacle.
Thus, the configuration space obstacle Cp is obtained by expanding Wy by r
in all directions. The configuration space obstacle can then be calculated by
the Minkowski difference Wo ©6 A4 = Wp© B(0,). The Minkowski difference
is defined as X oY ={z —y: 2z € X, y € Y}. Once Cp is calculated, the
method for point robots described above in Section 4.1.1 applies.

More generally, if A is a robot which is only allowed to translate in W,
then we can expand the obstacles as follows. Let A be placed in its home
configuration, that is, the frames F4 and Fj, coincide. The configuration
space obstacle can then be defined as the set Co = Wp S A, see Figure 1 and
[37]. Again, we have transformed the robot into a point in the configuration
space with known obstacles. In low dimension, the configuration space ob-
stacle can be explicitly constructed and we can use the method in Section
4.1.1 to solve path planning problem.

38 Robert Bohlin

4.2 Path planning using Green kernels

The method above requires complete knowledge of C and that each grid
point (or vertex in a finite element mesh) can be categorized as either feasi-
ble or colliding. Analytic solutions to (31) are unattainable, so some kind of
discretization is needed. In low-dimensional configuration spaces with moder-
ately sized grids this is not a big problem, but the complexity grows rapidly
with increasing dimension. Already in dimension four, the grid needed to
achieve reasonable resolution is very large. On the other hand, the catego-
rization is only performed once, and can be seen as a pre-processing step that
all subsequent planning queries benefit from.

Instead of requiring complete knowledge of the configuration space ob-
stacles, our aim in this section is to develop a planner that tries to solve
the planning problem with partial information obtained from sampling in
C. Each sample is costly, so in order to reduce planning time, we wish to
sample in an iterative manner. In each iteration, the planner creates a po-
tential function based on the information obtained so far and tries to solve
the problem. In contrast with the technique discussed above, the potential
function is exact. No discretization or numerical approximation is needed.

The planner presented in this section is by no means complete; it is easy
to construct a problem for which the planner fails. However, in Section
5, this planner we will be reinforced with a numerically calculated potential
function according to the method in previous section. The combination gives
a powerful planner tailored for rigid bodies with six degrees of freedom.

The numerical method in Section 4.1 can be described as keeping the
obstacles Cp at the fixed temperature 0 and a sphere around the goal at the
fixed temperature -1 and then calculating the resulting temperature in the
interior of Cx. The same potential function can be obtained by a continuous
distribution of heat sources on 0dCr and a distribution of heat sinks on the
sphere around the goal. The latter observation inspired the construction of
the potential function used by planner to be presented. That is, heat sources
are placed at the colliding sample points and a heat sink is placed at the goal
configuration. A particle following the heat flow will then be repelled from
the heat sources and attracted to the goal.

In most planning task, the desired goal is a single configuration gq,,,, € Cr.
However, to simplify later extensions of the algorithm, we prefer to have a
set A = {ay,...,an}, m > 1, of goal configurations, all of which are in the
interior of Cx. Moreover, let B = {by,...,b,} denote the set of colliding

Path planning using the Green kernel in SE(3)

sample points at a certain state of the planning process. Initially B is empty,
but as soon as a colliding configuration is found it is added to B. From the
sampling scheme described later, it is clear that all points in B belongs to
the interior of C.

4.2.1 Overall description

The objective of the planner is to successively build a tree! T of feasible
configurations. The tree T is initialized with the point g,,,;;, and is expanded
as the planner proceeds. The planner uses a potential function u composed
of two parts; u = U, + U,. The first part, U,, attracts the robot towards the
set of goal points in A, while U, repels the robot from the set of colliding
sample points in B. As soon as a new colliding point is found, the set B is
updated and the potential u is recalculated.

In the beginning of each step, one configuration, g, € T, is selected as
start point. Then the potential function u is chosen such that the steepest
descent path from gq, is guaranteed to terminate at one of the goal configu-
rations in A. How this is done is described in Section 4.2.3. The potential
function u is harmonic in C \ (A U B), so there are no local minima, except
at the goal, that can trap the robot.

When the potential u is determined, the robot starts at g, and follows the
steepest descent path with a pre-specified step length and collects samples
along the path. As long as no collision is found, the tree 7" is updated with
the feasible configurations. If a collision is detected, the set B is updated and
the planner starts all over again by selecting a new starting point q,. The
planner terminates when it reaches a point in the set A. Then T contains a
feasible path that can be found by tracing the way back to the root g;,,;;-

Now, two choices remain; the potential function u, and the starting point
g, in the tree 7. We begin with the potential function.

4.2.2 Potential function

The idea is to let the attracting and the repelling potentials, U, and U,
respectively, be composed of translates of the Green kernel. Let GY denote
the Green kernel in C with singularity at y, and define

Uy(z) = — ZaiG‘” (x) for a; >0. (32)

LThe procedure of building a tree of feasible paths is a well established technique that
several planners use, see [23, 27, 30, 39, 43].

39

40 Robert Bohlin

From the definition of a Green kernel, see Section 3.2, follows that U, < 0 in
the interior of C, U, — 0 on the boundary or at infinity, and U, (a;) = —oc.

Each point b; € B is a configuration in Cp, and it is likely that configu-
rations near b; also are colliding. That is, we wish to keep the robot away
from the points in B. Similar to the attracting potential, we compose the
repelling potential of Green kernels;

Ur(z) =) B;G%(x) for p;>0.

Then U, > 0 in the interior of C, U, — 0 on the boundary or at infinity, and
Ur (b]) = OQ.

With these choices of U, and U,, the potential u is the solution to the
following partial differential equation:

—Au = — Z ;0q; + Z B;0b; (33)

u=0 on OC or at infinity.

Here 4, is the Dirac measure at the point a in C. The solution u can be
interpreted as a temperature distribution in C. Assume that we place heat
sinks of intensity a4, ..., oy, at the goal points a4, ..., a,,, and heat sources of
intensity [, . . ., B, at the colliding points b, ..., b,. Then u is the stationary
temperature distribution in C. The heat flows from the heat sources into the
sinks. It is possible that there is a flow from or towards the boundary of C
(or infinity if C is unbounded).

4.2.3 Selecting weights

One suitable choice of {«;}, 1 =1,...,m, is to let all of them have the same
weight, for example a; = 1. Then all sinks in A are equally strong. To our
help when selecting the weights {3;}, we have the following lemma:

Lemma 3. Let u be a solution to (33). Then, u(q) < 0 for a point q in the
interior of Cr implies that the steepest descent path from q leads to a point
in the goal set A.

Proof. Since there is at least one sink, the potential u is non-constant and
harmonic in C\ (AUB). From Lemma 1 in Section 1 follows that the steepest
descent path ends either at A, B or at the boundary of C. Since g is in the
interior of Cx, the potential u is strictly decreasing along the steepest descent
path, excluding A, 0C, and infinity as terminating points. O

Path planning using the Green kernel in SE(3)

The repelling potential U, shall prevent the robot from getting too close
to the colliding points in B. Clearly, the repelling force must be strong where
the attracting force is strong. A good choice is to let ; be proportional to
U,(b;) for j =1,...,n. These intensities are fast to calculate and works well
in our examples. They are given in the following theorem.

Theorem 3. Let q, be in the interior of Cx and let B; = —wy,Uy(b;), j =
1,...,n, where
_ Ua(q,)
Zzzl Ua(bk)Gbk (qs) ’
with U, given in (32). Then ; > 0, j = 1,...,n. Moreover, the steepest

descent path starting at q, of the potential u, as defined above, terminates at
a point in A.

Wn

Proof. Since U, < 0 in the interior of C and g, and b; are interior points, the
weight w,, is positive. Hence, 8; > 0.
The potential at g, is

u(q,) = Uas(q,) + U, (q,)

=U,(q,) + Z B8;G"% (q,)

Z?:l Ua(qs)Ua(bj)ij (qs)
=Uela) = =5 T G gy
—0

Clearly u = U, = U, = 0 on 0C, so the theorem follows from Lemma 3. [

4.2.4 Selecting start point

The simplest choice of starting point g, is to always select the root in 7', that
is, restart from g;,,;, each time. This method, however, does benefit from the
information obtained about the feasible points in 7'; only information about
colliding points is used. An alternative method is to pick a point in 7" at
random. A suggestion is to pick a point g € T" with probability in proportion
to —U,(q), c.f. the method in [23].

The method we have used here has been to pick a point g € T for which
u(q) is small. Recall that a starting point is selected before the potential u

41

42 Robert Bohlin

is updated. That is, when the planner detects a collision, the previous point
on the path is likely to be the point in 7" for which u is smallest. This point,
however, is very close to Co and may not be a good choice. To include the
new colliding point b, 1 when selecting q,, we pick the point g € 7" for which

u(q) — wpUg (b;)G+ (q)

is minimal. Here w, is the weight in Theorem 3 that was used when the
weights were calculated at previous time.

4.2.5 Variations

Inspired by the bi-directional planners in [23, 36|, we can build two trees of
feasible points; Tjn; rooted at q,p;; and Tyoq Tooted at g, ,,- By alternately
searching a path from a point in Tj,; to Ty, and vice versa, the trees are
simultaneously attracted towards each other. When Ti,; and T, grow
larger, subsets of the trees can be used in order to keep the complexity down.
This method may be more powerful than growing only one tree, because it
takes more advantage of the feasible points that have been found. However,
in some cases it is better to use only one tree, c.f. the discussion of uni-
directional versus bi-directional expansion in [23].

4.2.6 Potential fields in R?

In some simple, but yet important, configuration spaces the Green kernels
can be expressed in a simple form. The most important is probably R? since
many configuration spaces are isomorphic to R% or can be embedded in R,
If C is a proper subset of R? we can define all points outside of C as being
colliding configurations. That is, we extend C to cover all of R¢.

In R?, for d > 3, we have already seen the Green kernel in Section 3.2. In
R? there is no Green kernel. However, for any compact disk D in the plane,
there is one. The radius r of the disk can be arbitrary large, so in practice
this is no restriction. Recall from Section 3.2 that a fundamental solution to
the Laplacian in R? is K(z) = 5= log|z|. Assume for simplicity that D is
the unit disk and that we want a singularity at y in D. By reflecting y in
0D we get the dual point § = y/|y|?, and we can express the Green kernel

on D as N _
GY(z) = K(z —y) — K(ly|(z — 9)), (34)

Path planning using the Green kernel in SE(3) 43

see [15]. Appropriate scaling gives the Green kernel on a disk of arbitrary
radius.

5 Rigid body planning using the Green kernel
in SE(3)

In this section we turn our attention to path planning for rigid bodies moving
in a 3-dimensional workspace W. Our aim is to reinforce the planner in 4.2
by using a potential function in W similar to the one described in Section 4.1.
As before, the planner collects information about C by sampling. The aim of
the potential in W is to direct the sampling into regions that are promising
and thereby reduce the number of samples. Thus, the planner benefits from
the explicit representation of Wy at the same time as the planning takes
place in the 6-dimensional configuration space.

In what follows we assume that W is bounded and that the reference
point of A (that is, the origin of F4) is contained in A. To simplify the
presentation, we also assume that the set of goal configurations is a single
point @,,;;- Moreover, we will identify a point in W with the corresponding
vector in the coordinate system Fy,. That is, the reference point of A at
configuration q = (R, t) is identified with the vector ¢. Then we can define
the configuration space as the set C = SO(3) x W C SE(3).

Let ¢ = (R,t), where R € SO(3) and t € W, denote a configuration in C
and let g;.;; = (Rinit, tinit) and @0 = (Rgoats tgoar)- Recall the definition of
the Green kernel G%(q) from Section 3.4. Without confusion, we will also
use G9(R,t) to denote the same kernel.

5.1 Attracting potential

The essential difference between this planner and the sampling planner in
Section 4.2 is the attracting potential U,. We will modify U, such that it
has two parts ug and u; calculated in YW and one part (G-« calculated in C.
Define the set

5_7: = 50(3) X We.

Then Cr C é}. Let uy be the potential in W according to the method in
Section 4.1.1 with a minimum at the point ¢;,; and let u; be the harmonic

44 Robert Bohlin

function for which

Au; = 01in Wg
Ul(t) = quoal(Rgoal; t) on GW;

Then, this theorem gives the attracting potential.
Theorem 4. Let 6 = uy(tinit) — GI904(q,p.)- If 6 > 0, pick a such that

uo(tinit)

I<a<—
o 5

otherwise, pick any o > 0. For ¢ = (R,t), define
Ua(@) = uo(t) + alus(t) — Gt (q)).
Then,
a) Uy, > 0 on 9Cr,
b) U, is harmonic in Cr \{q:t="tgu},
c¢) U, has a singularity at qg.,, and U, — —00 as @ = oy,

d) U, has no local minima in Cr \ {@40a}, and

e) Ua(@init) <O.

Proof. Let G be the Green kernel in SE(3) with singularity at the identity
(1,0), where I denotes the identity in SO(3). Using (29) and (8), a simple
calculation gives

Gt (q) = G(q,yq)
=GR LR, R (t—t40a))

goal goal
and

qu"al(Rgoal: t) = G(qg_olal(Rgoal: t))
Gt).

goal

Path planning using the Green kernel in SE(3) 45

Since G(R,t) < G(I,t) for all (R,t), we see that G0a(q) < G900l (R g, t).
Hence, for g € OCr we have

Ua(q) - Uo(t) + Uy (t) — angoal (q)
> 0+ ouy (t) — @G99 (Rgoq, t)
= 0’

and a) follows.

Since ug(t) + auy(t) is harmonic in Wz \ {t40u}, the extension to C is
harmonic for ¢ # t4,4. Moreover, the extension has its minimum (and is con-
stant) in the set {q : ¢ = tgou }. Since —aG%oat(q) decreases monotonically
towards —oo as g approaches q,, along a geodesic, there can be no local
minima in Cr \ {94001}

To finally show e), assume first that 6 > 0. Since t;,;; is in the interior
of Wg, the potential ug(t;ni¢) is negative, so the interval (0, —ug(tinit)/d) in
non-empty. Thus,

Ua(@init) = vo(tinit) + (1 (tinie) — G5 (@inir))
= UO(tim't) + 015

uo(tinit)
5)

< ug(tinit) —

=0.
If 6 < 0, the statement e) follows immediately, and the proof is complete. [

Now, we can use the potential U, as the attracting potential in the sam-
pling algorithm presented in Section 4.2. The idea is that U, shall direct
the robot to configurations that are promising. In particular, since U, > 0
on 8Cf the robot will never leave C}' That is, the reference point of A will
never intersect the obstacles.

Remark 1: The set 5_7.' to which the planner is restricted, covers the set
Cr. It is therefore an advantage to find a set Cx that covers Cr as tightly
as possible. If A completely covers a ball of radius r with center at the
reference point of A, then the method in Section 4.1.2 applies; by expanding
the obstacles in W by r and defining C# accordingly, the planner has a more
accurate estimate of Cr.

46 Robert Bohlin

C1nit

Ogoal

Figure 2: An example of a narrow passage where the robot cannot pass
through.

Remark 2: A large value of in Theorem 4 can make U, > 0 on parts
of OCr, and therefore prevent the robot to reach certain regions in Cx that
may be essential to solve the planning task. A solution to this problem is
to successively decrease o towards 0 if the planner does not find a solution.
The region that the robot can reach increases to Cx as « tends to zero.

On the other hand, a very small value of o makes the sink at q,,, weak.
However, the robot will still be pulled towards the set {q : ¢t = t404} Where ug
is minimal. On this set, U, is not harmonic, so when the repelling potential is
added to U,, local minima may occur. Consequently, the robot may get stuck
at the right position %444, but with wrong orientation. This problem needs
further analysis, but a possible solution may be to switch off the potential
up as the robot comes very close to tgoq-

Remark 3: The sampling planner in Section 4.2 is not complete. The
potentials ug and wu; reinforce the planning capability a lot for rigid body
robots. However, there are still situations in which the planner takes very
long time to find a solution, or even fails. Imagine a situation like in Figure 2.
The robot is close to the goal, but cannot pass the narrow passage. Because
of the geometry of the robot, the obstacles in W cannot be expanded very
much (c.f. Remark 1). The flow due to ug will be strong through the narrow
passage, and it will take long time to “fill up” the passage with singularities
before the flow from g,,,;, takes the way through the large passage. In the
example, the obvious solution would be to approximate the robot with a
circular disk and expand the obstacles accordingly. Then the narrow passage

Path planning using the Green kernel in SE(3)

Figure 3: A truck (22284 triangles) escaping from a cage (1032 triangles).

would be closed. This is not a general solution, however.

Another solution, that has not yet been further investigated, would be
to modify uy gradually during the planning process. Assume that a collision
is found at ¢ = (R,t). In addition to updating the repelling potential, we
slightly increase the potential ug at ¢t. This will destroy the harmonicity at
t, but since we increase ug, only local maxima will occur. One suggestion is
to let the new value of uo(t) be yuo(t) for some v € (0,1) close to 1. (Recall

that ug is negative in the interior of Cx.) Of course uy must be updated in
the remaining part of Cr.

47

48 Robert Bohlin

o i

Figure 4: A bunny (2204 triangles) escaping from a cage (1032 triangles).

5.2 Experimental results

In this section we present some preliminary performance tests for the plan-
ner. The algorithm was implemented in C++ on a 1GHz PC and the collision
checks were handled by the Proximity Query Package (PQP) from the Uni-
versity of North Carolina.

In the two examples shown in Figure 3 and 4, we performed several ex-
periments. In each case, the start configuration was located inside the cage?
and the goal configuration was located outside the cage. The figures show
snapshots along paths that were generated by the planner. The upper left
pictures shows the initial configurations and the bottom right pictures shows
the goal configurations.

2The cage is delivered with the Motion Strategy Library (MSL) from the University of
Tllinois.

Path planning using the Green kernel in SE(3)

H Pre-proc ‘ Calc. ug and uy ‘ Min ‘ Average ‘ Max ‘

Truck 3.00 0.51 0.47 7.35 31.23
Bunny 0.73 0.09 2.04 | 10.70 | 20.87

Table 1: Running times for the examples with the truck and the bunny based
on 20 consecutive runs each.

The workspace was bounded by a box and the potentials uy and u; were
calculated on a grid with 40000 points in the truck® example and 10000 points
in the bunny* example. The reference points of the truck and the bunny
were enclosed by balls, and the obstacles Wy were expanded accordingly, see
Remark 1 on page 45. The first column of Table 1 shows the pre-processing
time required to cathegorize the grid points as inside or outside the expanded
obstacles.

A small change of the start or the goal configuration may affect the po-
tential field so that the planning process takes another course. Therefore the
running times vary somewhat for different start and goal configurations. We
performed 20 trials on each of the two examples. The second column of Ta-
ble 1 shows the average computation time used to calculate uy and u;. The
last three columns show the minimum, maximum, and average time used for
the iterative construction of the tree 7" until a solution is found.

Our experiment involving the truck is similar to one of the experiments
conducted in [6]. The planner in [6] uses a lattice in a cube in R® to represent,
C and the A* algorithm for searching on the lattice. A comparison of the
running times shows that the new potential field method presented in this
paper is significantly faster in the truck example than the lattice-based Lazy
PRM in [6].

6 Summary and discussion
In this paper we have introduced a novel approach to rigid body path plan-

ning. The fundamental tool used by the planner is the Green kernel in the
configuration space. A harmonic potential function composed of translates

3The truck was kindly provided by Steven LaValle, University of Illinois.
4The bunny is delivered with the Proximity Query Package (PQP) from the University
of North Carolina

49

50 Robert Bohlin

of the Green kernel is used to guide the robot towards the goal. The plan-
ning takes place directly in the group SFE(3) and is reinforced by a potential
function in the workspace.

The experiments are challenging and the results so far are promising,
although the planner is not complete. Having in mind that this is a novel
approach that is not as developed and mature as other planning techniques,
it shows great potential for future research. Several variations of the planner
are possible, and a few of them are proposed in Section 5 and in the remarks
on page 46. Some of them have yet to be investigated in theory as well as in
practice.

The applications for rigid body path planners are many. In addition to
free-flying robots, articulated robot arms may take advantage of a rigid body
planner. In industry, robots are typically articulated and their configuration
spaces are usually parameterized by a subset of R". However, the robot
may also be programmed by specifying the position and orientation of the
end-effector. The robot configuration (given by the joint values) is then
calculated using inverse kinematics. So, if the trajectory of the tool is of
great importance, or if the payload is large in comparison to the robot, it
may be an advantage to use the tool position and orientation in the planning
process instead of the joint angles. In such situations, the rigid body planner
presented here can work as a complement to an ordinary planner.

Acknowledgments

The author would like to thank Bo Johansson for valuable supervision, sup-
port and comments on the manuscript, and Peter Sjogren, Grigori Rozen-
blioum and Bo Berndtsson for their help on Green kernels.

Path planning using the Green kernel in SE(3)

A The Laplacian on S°® x R?

Spherical coordinates (r,¢,%) in R?® are related to Cartesian coordinates
(z,9,2) by

T =rsin@siny

Yy = rsin ¢ cosy

Z =1 COS ¢,

and the Laplacian is given by

1

r2sin? ¢

Au = Uy, + U + (ugsin @)y + Uy, (35)

1
r2sin ¢
see e.g. [1, 13]. Introducing cylindrical coordinates in R* as follows

T = rsin@siny
Yy = rsin ¢ cos ¢
Z =17Tcos¢
w=w,
we immediately obtain the Laplacian in cylindrical coordinates;

2
Au = U, + ;u,&—

(U¢ sin (15)¢ -+ Uapoyp + Ugpep- (36)

r2sin ¢ r?sin? ¢

In R* we have the following spherical coordinates
x = psinnsin ¢ siny
Yy = psinnsin ¢ cos Y

z = psinncos ¢

w = pCos. (37)

We see that the cylindrical variables (w, r) are related to the spherical vari-
ables (p,n) by the equations

w = pcosn

r = psinn.

ol

52 Robert Bohlin

These are exactly the equations relating polar and Cartesian coordinates in
the plane. Therefore, using the Laplacian in polar coordinates, we have

Uy + Upr = Upp + —Up + —5 Uy (38)
p’p
By the chain rule,
ou Ow n Ou Or cosm + u. si
Up=———+——=u Uy Sin
P owaop oOrop " 1 e S

Oudw Ouor

Uy = %% + 58_77 = —UyPSin 7 + Uypp COS).

Multiplying these equalities by sinn and p ! cosn respectively, and adding
them, gives
U, = u,sinng + p~u, cosn. (39)

Substitution of (38) and (39) into (36) gives

1
———u
r2sin¢ Y

((ugsin 9)g +

1 .
g (ugsin @)y +

n n 1 2cosn 1
=u —U, + U
op p p p2 mm n

AU = Upp + ;up + ?Um) + ;u,« +

5'v)
sin qbuww

. 1
(tsind + ghgo)

p?sin’ nsin ¢
1
p?sin? n)sin ¢

p?sin nu

= Upp + —Up + (uy sin” My +

p " prsin®y

On the unit sphere S in R* we have p = 1, and if u = u(n) the formula
simplifies to

2cosn 1 . 9
= 40

sin g Un = G2 n(un sin”)y, (40)
Let z € S y € R® and z = (7,y) € M = S x R®. By (40) and (35) we
see that the Laplacian for a function v : M — R such that u(z) = a(n,r),
where 7 is the angle from the north pole on S? (c.f. the spherical coordinates

(37)) and r = |y|, is

Au = Uy, +

1 - -
SinZ n(un sin® 1)y + tyr + ;“r-

Ay =

Path planning using the Green kernel in SE(3) 53

B Conversions

In this appendix we show the conversions between the different representa-
tions of rotations used in this paper. We use right-handed coordinate systems
and the direction of rotation about an axis is determined by the right-hand
rule: If the vector is held with the right hand and the thumb is pointing
along the vector, then the fingers point in the positive direction.

B.1 Euler angles to SO(3)

The elementary rotations about the coordinate axis are given by the matrices

1 0 0
Ri(v)= |0 cosy —siny
0 siny cosvy
cos 0 sinf
R@B=| 0 1 0
—sinf 0 cosf
cosae —sina 0
R,(a) = | sina cosa 0
0 0 1

For the Euler angles («, §,7) we have the rotation matrix

CaCBCy — SaSy —CaCBSy — SaCy CaSB
Rpuier (@, 8,7) = Ro () Ry (B)Ro(7) = | SaCpCy + Casy —SaCpsy + Caly Sasp
—5pCy SpSy Cs

Here ¢, = cos a, s, = sin a and similarly for the other angles.

Conversely, if we are given a rotation matrix R, then we can find a set of
Euler angles that matches R as follows. Looking at Rgye above, we see that
for -1 <r33<1= B #0,

a = atan2(rqg, r13)

B = atan2(4/72, + 12,,733)

v = atan2(rsg, —731),

54 Robert Bohlin

where 7;; are the elements of R and atan2(b,a) gives the argument in the
range [0, 27) for the complex number a +4b. For r33 =1 = = 0, we cannot
distinguish « from 7, so we arbitrarily define v = 0 and get the solution

a = atan2(ry, r11)
=0
7=0

Similarly, for r33 = —1 = [=7, we get

a = atan2(—ry1, —717)
B=m
7=0

The above formulas gives an invers solution for which « and + are restricted
to [0,27) and S is restricted to [0, 7].

B.2 Equivalent axis to SO(3)

Each rotation in R? can be seen as a rotation by an angle # about a vector
a = (ai, as,a3)’. Without loss of generality, we restrict 6 to be in the interval
[0,27). For 8 # 0, we let a be a unit vector and for # = 0 we define a = 0. The
vector fa is the equivalent axis of the rotation. Clearly, fa € B(0,27), where
B(0,27) is the ball of radius 27 centered at the origin. The equivalent axis,
fa, is also called exponential coordinates for the rotation. We will also refer
to the pair (#,a) as exponential coordinates, which will cause no confusion.
A rotation by an angle § about a is given by the matrix

R=¢% =1 +asinf + a*(1 — cosé), (41)

where [is the 3 x 3 identity matrix and

0 —as a9
a= as 0 —a
—Qa2 aq 0

The formula (41) is sometimes called Rodrigues’ formula |25, 41]. The map-
ping from B(0,27) to SO(3) is two-to-one except that the only pre-image

Path planning using the Green kernel in SE(3) 55

of the identity in SO(3) is 8@ = 0. For 6 # 0, the exponential coordinates
(2m — 0, —a) give the same rotation.

To convert from the rotation matrix R to equivalent axis representation,
we notice that

2
ai —1 aay aas

a>= | aias a2—1 ayas | =aa” —1
aaz3 agaz a3 —1

is symmetric, hence
R — RT = 2asiné,

and that
trace(R) = 3 — 2(1 — cos 6).

Let v be the vector for which ® = (R — R”)/2. Then v = asinf and one
solution is
6 = atan2(|v|, (trace(R) — 1)/2). (42)

For # = 0, we let @ = 0 and for § ¢ {0,7}, a follows from the relation
v = asinf. The case § = 7 requires some extra care. Let M = (R+ I)/2.
Then, for @ = 7, M = aa” and we can take a as the i:th column of M/\/M;,
where 7 is chosen such that M;; is the largest diagonal element of M. We
summarize: Let

0 if0=0
a = M,/\/Mu if =
v otherwise,

where 6 is given by (42) and M,; is the i:th column of M. Then the pre-image
of R € SO(3) in Rodrigues’ formula are the exponential coordinates (6, a)
and, if § # 0, (2r — 0, —a),

B.3 Equivalent axis to quaternions

The mapping
fa — q = [v,w] = [a” sin(6/2), cos(0/2)] (43)

from B(0,27) — H' is a bijection onto its range. The inverse is given by

s v if sin(6/2) #0

6 = 2 arccos w a=
’ { 0 otherwise.

56 Robert Bohlin

The only point in H' that is not in the range of the mapping (43) is the
quaternion [0, —1]. This point corresponds to a rotation by 27 about some
axis, and we define its inverse to be the exponential coordinates (6, a) = (0, 0).
Thus, we can use the formula for the inverse on all of H! having in mind
that the preimage of (0,0) are the quaternions [0, 1] and [0, —1].

B.4 Quaternions to SO(3)
The set of unit quaternions H! is a Lie group that we identify with S® by

q = [(x1, 2, 73), 14] +— T = (71, T2, T3,74)" -
Let fa be the equivalent axis that (43) maps to the quaternion
q = [(a1, az,a3) sin(0/2), cos(0/2)].

Then Rodrigues’ formula, the substitution [(zy, z2, z3), z4] for
[(a1,as,a3)sin(f/2), cos(f/2)], and an elementary calculation gives

R(q) = I + 2asin(0/2) cos(8/2) + 2a*sin?(0/2)
1—2(23 +22) 2(zim2 — 2374) 2(T173 + T274)
= | 2(z122 + 2374) 1—2(x2 +22) 2(zow3 — T174) (44)
2(x123 — Toxs) 2(Tox3 + T1w4) 1 —2(22 + 22)

A map between Lie groups is a (Lie group) homomorphism if it is differ-
entiable and preserves the group structure. The map (44) is a surjective
homomorphism from H' onto SO(3). A tedious calculation shows that
R(q)R(q") = R(qq") for two quaternions ¢ and ¢'.

To find the pre-image of R, we see that we can use the off-diagonal ele-
ments of R to determine z, x9, 23 and x4. The trouble is that we must divide
with either of zq,x9,23 or x4. Each of them can be zero, so to make sure
to avoid dividing with zero, and also to increase the numerical precision, we
wish to divide with the element with the largest modulus. Let

1 -1 -1 1 T11

v = -1 1 -1 1 T29
-1 -1 1 1 T33

1 1 1 1 1

Path planning using the Green kernel in SE(3) 57

and
1 rig+7To1 T3+ 731 T32 — T3
le T12 + T21 U To3 +T32 T13 —T31
2 | m3+73 T3+ T3 U3 To1 — T'12
T32g —T23 T13 —T31 To1 —T12 V4

Then v = 4(z%,23,22,22)T and M = 2(x,z, 207, x37, 242). Thus, if i is
chosen such that v; is the largest element in v, then the quaternion ¢ corre-
sponding to the 4:th column of =M/, /v; is the pre-image of R. The sign of
g cannot be determined, because ¢ and —q gives the same matrix R. Hence,
(44) is a two-to-one homomorphism.

58 Robert Bohlin
References
[1] G.B. Arfken and H.J. Weber. Mathematical methods for physicists. Aca-

2]

3]

4]

[5]

[6]

[7]

18]

19]

[10]

[11]

[12]

demic Press, 1995.

S. Axler, P. Bourdon, and W. Ramey. Harmonic Function Theory.
Springer, 1992.

J. Barraquand and J.C. Latombe. Robot motion planning: A distributed
representation approach. Int. J. of Rob. Research, 10:628-649, 1991.

N. Berline, E. Gretzler, and M. Vergne. Heat Kernels and Dirac Oper-
ators. Springer, 1992.

A. Bjorck. Numerical Methods for Least Squares Problems. SIAM,
Philadelphia, 1996.

M.S. Branicky, S.M LaValle, K. Olson, and L. Yang. Quasi-randomized
path planning. In Proc. IEEE Int. Conf. on Rob. & Aut., 2001.

J.F. Canny. The Complexity of Robot Motion Planning. MIT Press,
Cambridge, MA, 1988.

H. Chang. A new technique to handle local minimum for imperfect
potential field based motion planning. In Proc. IEEE Int. Conf. on
Rob. & Aut., 1996.

H. Choset and J. Burdick. Sensor based planning and nonsmooth anal-
ysis. In Proc. of IEEE Int. Conf. Robotics and Automation, pages 3034—
3041, San Diego, CA, 1994.

H. Choset and D. Kortenkamp. Path planning and control for free-flying
inspection robot in space. Journal of Aerospace Engineering, 12(2):74—
81, 1999.

C.1. Connolly and J.B. Burns. Path planning using Laplace’s equation.
In Proc. IEEE Int. Conf. on Rob. & Aut., pages 2102 — 2106, 1990.

C.I. Connolly and R.A. Grupen. The applications of harmonic functions
to robotics. Journal of Robotic Systems, 1993.

Path planning using the Green kernel in SE(3) 59

[13] R. Courant and D. Hilbert. Methods of mathematical physics Vol. 1.
Interscience Publishers, 1953.

[14] E.B. Dam, M. Koch, and M. Lillholm. Quaternions, interpolation and
animation. Technical Report DIKU-TR98/5, Dept. of Computer Sci-
ence, University of Copenhagen, Denmark, 1998.

[15] L.C. Evans. Partial Differential Equations. American Mathematical
Society, 1998.

[16] H.J.S. Feder and J.J.E. Slotine. Real-time path planning using harmonic
potentials in dynamic environments. In Proc. IEEFE Int. Conf. on Rob.
& Aut., pages 874-881, 1997.

[17] P. Finn and L. Kavraki. Computational approaches to drug design.
Algorithmica, 25:347-371, 1999.

[18] G.B. Folland. Introduction to Partial Differential Equations. Princeton
University Press, 1976.

[19] H. Goldstein, C. Pole, and J. Safko. Classical Mechanics. Addison
Wesley, 2002.

[20] A. Grigor'yan. Analytic and geometric background of recurrence and
non-explosion of the brownian motion on riemannian manifolds. Bulletin
of Amer. Math. Soc., 36:135—249, 1999.

[21] K. Gupta and A.P. del Pobil. Practical Motion Planning in Robotics.
John Wiley, West Sussex, England, 1998.

[22] D. Hearn and M.P. Baker. Computer Graphics. Prentice Hall, 1994.

[23] D. Hsu, J.C. Latombe, and R. Motwani. Path planning in expansive
configuration spaces. Int. Journal of Computational Geometry and Ap-
plications, 9(4-5):495-512, 1999.

[24] Y.K. Hwang and N. Ahuja. Gross motion planning - a survey. ACM
Comp. Surveys, 24(3):219-291, 1992.

[25] A. Iserles, H.Z. Munthe-Kaas, S.P. Ngrsett, and A. Zanna. Lie-group
methods. Acta Numerica, 9:215-365, 2000.

60 Robert Bohlin

[26] V.I. Utkin J. Guldner. Sliding mode control for an obstacle avoidance
strategy based on an harmonic potential field. In Conf. on Decision and
Control, 1993.

[27] J.J. Kuffner, Jr. and S.M. LaValle. RRT-connect: An efficient approach
to single-query path planning. In Proc. IEEE Int. Conf. on Rob. & Aut.,
2000.

[28] M. Kalisiak and M. van de Panne. A grasp-based motion planning algo-
rithm for character animation. Journal of Visualization and Computer
Animation, 12(3):117-129, 2001.

[29] A.A. Kassim and B.V.K.V. Kumar. Path planners based on the wave
expansion neural network. Robotics and Autonomous Systems, 26(1):1—
22, 1999.

[30] L.E. Kavraki, P. Svestka, J.C. Latombe, and M. Overmars. Probabilis-
tic roadmaps for fast path planning in high dimensional configuration
spaces. IEEE Tr. on Rob. & Aut., 12:566-580, 1996.

[31] O.D. Kellogg. Foundations of Potential Theory. Frederick Ungar Pub-
lishing Company, 1929.

[32] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. Int. J. of Robotics Research, 5:90-98, 1986.

[33] J.O. Kim and P. Kosla. Real-time obstacle avoidance using harmonic
potential functions. In Proc. IEEE Int. Conf. on Rob. & Aut., 1991.

[34] Y. Koga, K. Kondo, J. Kuffner, and J.C. Latombe. Planning motions
with intentions. Computer Graphics (SIGGRAPH’9/), pages 395408,
1994.

[35] J.J. Kuffner, Jr. Autonomous Agents for Real-time Animation. PhD
thesis, Stanford University, Stanford, CA, 1999.

[36] F. Lamiraux and L.E. Kavraki. Planning paths for elastic objects under
manipulation constraints. Int. J. of Rob. Research, 20(3), 2001.

[37] J.C. Latombe. Robot Motion Planning. Kluwer, Boston, MA, 1991.

Path planning using the Green kernel in SE(3) 61

[38] J.C. Latombe. Motion planning: A journey of robots, molecules, digital
actors, and other artifacts. Int. J. of Rob. Research, 18(11):1119-1128,
1999.

[39] S.M. LaValle and J.J. Kuffner, Jr. Randomized kinodynamic planning.
Int. J. of Rob. Research, 20(5):378-400, 2001.

[40] Z.X. Li and T.D. Bui. Robot path planning using fluid model. Journal
of Intelligent and Robotic Systems, 21:29-50, 1998.

[41] J.E. Marsden and T.S. Ratiu. Introduction to Mechanics and Symmetry.
Springer, 1999.

[42] G.F. Marshall and L. Tarassenko. Robot path planning using resistive
grids. In Int. Conf. on Artificial Neural Networks, 1991.

[43] E. Mazer, J.M. Ahuactzin, and P. Bessiére. The Ariadne’s clew algo-
rithm. J. of Art. Intelligence Research, 9:295-316, 1998.

[44] Phillip J. McKerrow. Introduction to Robotics. Addison-Wesley, 1991.

[45] A. McLean and S. Cameron. Path planning and collision avoidance for
redundant manipulators in three dimensions. In Int. Conf. Intelligent
Autonomous Systems, 1995.

[46] J. Reif. Complexity of the mover’s problem and generalizations. In Proc.
20th IEEE Symp. on Found. of Comp. Sci., pages 421-427, 1979.

[47] S. Rosenberg. The Laplacian on a Riemannian Manifold. Cambridge
University Press, 1997.

[48] G.K. Schmidt and K. Azarm. Mobile robot path planning and execution
based on a diffusion equation strategy. Advanced Robotics, 7(5):479-490,
1993.

[49] J.T. Schwartz and M. Sharir. On the ‘piano movers’ problem: II. Gen-
eral techniques for computing topological properties of real algebraic
manifolds. Advances in Applied Mathematics, 4:298-351, 1983.

[50] J.M. Selig. Geometrical Methods in Robotics. Springer, 1996.

62 Robert Bohlin

[61] K. Shoemake. Animating rotation with quaternion curves. Computer
Graphics, 19(3), 1985.

[52] L. Tarassenko and A. Blake. Analogue computation of collision-free
paths. In Proc. IEEE Int. Conf. on Rob. & Aut., 1991.

[53] M.E. Taylor. Noncommutative harmonic analysis. American Mathemat-
ical Society, 1986.

|54] N.C. Tsourveloudis, K.P. Valavanis, and T. Hebert. Autonomous vehicle
navigation utilizing electrostatic potential fields and fuzzy logic. IEFEFE
Tr. on Rob. & Aut., 17(4), 2001.

[55] Y. Wang and G.S. Chirikjian. A new potential fiel method for robot
path planning. In Proc. IEEE Int. Conf. on Rob. & Aut., 2000.

