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Abstract

Let k be a real quadratic field, and let A be a totally indefinite quaternion
algebra which allows an involution of type 2, that is, an involution inducing
the non-trivial automorphism on k. Let A be a maximal order in A. The
elements of A with norm 1 act naturally on H x H, where # is the complex
upper half plane. Let T’ denote the image of A in Aut(H# xH), and X the
quotient surface HxH/I'. We let Y be the minimal desingularisation of the
compactification of X. If A = My(k), then X is a so called Hilbert modular
surface. Such surfaces are rather well investigated. We look at the case
when A is a skew field. In this case, X is compact, so it only has quotient
singularities. We also examine quotients by some extensions of I to larger
discrete subgroups of Aut(H xH).

We construct a family of curves on Y, which corresponds to the so called
modular curves in the case of Hilbert modular surfaces. The main part of
the work consists of a study of various aspects of these curves. They are
parametrised by the elements 8 of a quaternary lattice (L, ¢), which consists
of what we call integral A-hermitian forms. There is a close connection
between the quadratic space L and the order A via Clifford algebras.

To each curve Fp there is an associated quaternion order Ag over Z and
a map ’H/A}i — Fp, which is generically 1 to 1 or 2 to 1. We determine the
genus of the order Ag. To do this, we study, among other things, a certain
one-to-one correspondence between primitive orders and hermitian planes
in the local case.

For each positive integer N, we define a curve Fly in the same way as it
is done in the case of Hilbert modular surfaces. We determine the number
of irreducible components of F. To each intersection point of curves, we
associate an integral binary quadratic form. We derive a formula for the
number of points on X, which are associated to a given form. This gives a
possibility to completely determine the configuration of curves.

Finally, we study the particular case when k& = Q(v/13) and the
discriminant of the algebra A is (3). We construct a natural tower
I c It € T'ip C Tip of discrete subgroups of Aut(#H x #H), where each group
extension is of degree 2, and consider the minimal desingularisation of the
corresponding quotients. We prove, using the modular curves, that Y is
a minimal surface of general type, Y7 is a K3-surface blown up 4 times,
Y11 is an Enriques surface blown up 2 times, and Y117 is a rational surface
with Euler characteristic e = 12. We also construct an elliptic fibration on
Y11, which we use to conclude that Y7y is a so called special Enriques surface.

Keywords: Shimura surface, quaternion order, Clifford algebra, hermitian
form, Kodaira classification
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1 Introduction

In this thesis, we consider surfaces constructed from unit groups of totally
indefinite quaternion orders over the integers in real quadratic fields. Hence
the thesis involves concepts from both algebraic geometry and number the-
ory. We start with an informal introduction.

Let H denote the upper complex half plane

H={2€C|Imz > 0}.

The group SLy(R), consisting of real 2 x 2-matrices with determinant 1, acts
on H via Moebius transformations:

ailr a2 5= 112 + a12
a1 a22 212 + a22

Consider now the action of the discrete subgroup I' = SLy(Z) of SLy(RR).
In this very classical situation, it is well known that, under the action of T,
every point of H is equivalent to a unique point in the set F indicated in
the following figure:

Im

—-1/2 1/2 Re
il il
T T

F is a so called fundamental domain for the action of I' on H. Now the
quotient of H by any discrete group has a natural structure of a complex
curve. In this particular case, it is well known that #/T" = C. If we add
one point at the “cusp” of F in the direction of the imaginary axis, we get
a compact curve, the projective line P!(C).

Let now R be the ring of integers in a real quadratic field k, and z — =
the non-trivial automorphism of k. Consider the group I' = SLo(R). Since
k is a subfield of R, we can let T" act on H x?H by

/\(21, ZQ) == (AZl,XZQ).

Hilbert was interested in this group action. The quotient surface X =
HxH/T is called a Hilbert modular surface. X has in general quotient
singularities coming from so called elliptic elements of I, i.e. elements of
finite order acting non-trivially on H X H. Furthermore, X is not compact,
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but as in the case of SLy(Z), it can be compactified by adding points at the
so called cusps. The cusps give rise to highly non-trivial singularities, which
were first resolved by Hirzebruch.

Consider the canonical minimal resolution Y of the compactification
of X. On Y we have the curves which are exceptional divisors of the
singularities. There are also other important curves on Y, the so called
“modular curves” Fp, for positive integers N. For example the diagonal
{(#2,2) | z € H} in H xH gives the curve F;. Using these curves, one suc-
ceeded to fit the Hilbert modular surfaces into the Kodaira classification of
algebraic surfaces. For example, it was shown that Y is a rational surface
for small discriminants of k.

The group I' = SLy(R) is a subgroup of the unit group in the ring of
2 X 2-matrices over R, which is a special instance of a quaternion order.
However, the surfaces that we will consider are not constructed from this
group, but from groups related to other quaternion orders. The classical
Hamiltonian quaternion algebra is the R-algebra H = R + R + Rj + Rij,
where i2 = j2 = —1 and ij = —ji. Now, quaternion algebras can be
considered over any field F. If a,b are non-zero elements of F', then we can
define

A=F + Fi+ Fj + Fij,

where i? = a, j2 = b and ij = —ji. There is a canonical multiplicative map
nr : A — F, called the norm map, given by nr(zg + 17 + z2j + z3ij) =
73 — az? — bx} + abz?, for z; € F. If F is a number field, then for every
embedding F — R, we get a real quaternion algebra R ® p A, which is
either isomorphic to M3(R) or H. If we have the former case for all real
embeddings, then we say that A is totally indefinite. Assume now that A
is a totally indefinite quaternion algebra over a real quadratic field k. Let
A be a so called R-order in A, i.e. a subring of A containing R, which is
finitely generated as an R-module and such that kA = A. Consider now
the group A!, which consists of elements A € A with nr(\) = 1. The two
embeddings A — M(R) give two embeddings A! — SLy(R), and hence an
action of A! on H xH.

If every non-zero element of A is invertible, then we say that A is a
skew field. This is the case we will consider. In this case, the quotient
surfaces 1 x H/A! are automatically compact. To be able to say something
about these surfaces, we need to find a suitable construction of curves which
correspond to the modular curves Fy in the case of Hilbert modular surfaces.

We can construct such a family of curves if we add one extra condition
requiring that A allows a so called involution of type 2, i.e. an involution
which acts non-trivially on the center k£ of A. The curves are parametrised



1.1 Hilbert modular surfaces 3

by the elements of a quaternary quadratic lattice, which is the set of what
we call integral A-hermitian forms. There is a close connection between
this quadratic space and the order A via Clifford algebras. This makes
it possible to calculate the number of components of Fy, as well as the
geometric genus of the curves. To each intersection point of the curves, we
associate an integral positive definite binary form. We get a formula for the
number of points of X that belong to a certain form, and using this, it is
possible to determine the configuration of curves in concrete examples.

Finally, we apply this theory to a particular case when k = Q(+/13). We
consider not only the group I', but also a natural family of larger discrete
subgroups of Aut(H xH). We get rather detailed geometrical information
about these surfaces. We prove that Y is a minimal surface of general
type. The quotients with the larger groups give a K 3-surface and a special
Enriques surface. The quotient surface with respect to the largest group is
rational.

1.1 Hilbert modular surfaces

Since the surfaces we will study are closely related to the Hilbert modular
surfaces, we give a very brief description of what is known about these. For
more information see [17].

Let k& be a real quadratic field extension of Q and z +— T its non-trivial
automorphism. We have k¥ = Q(v/d), where d is a positive square free
integer. Let R be the ring of integers in k and let D be the discriminant
of R. Hence we have D =d if d =1 (mod 4), and D = 4d otherwise.

In its general form, the construction of Hilbert modular surfaces is as fol-
lows. Let b be an R-ideal. Consider the group PSLo(R,b) = SLo(R, b)/{£1},
where SLo(R,b) = {) € (Ib2 b;) | det(A\) = 1}, acting on H X H. In the lan-
guage of the rest of this thesis, the choice of b corresponds to a choice of
a maximal order in My (k). For simplicity, we will in this subsection only
consider the case b = R. We write I' = PSLy(R) and X = Hx#H/T.

Hilbert was interested in this group action, and his student Blumen-
thal worked on finding a fundamental domain. Later Siegel computed the
hyperbolic volume of the fundamental domain for the action of I on H x .

X has in general quotient singularities coming from elliptic elements of T'.
The number of such singularities was computed by Prestel in [33].

As we have mentioned, an important feature of the Hilbert modular sur-
faces is the presence of so called cusps. Maass pointed out that the number
of cusps equals the class number of k. The surface X can be compactified by
adding one point for each cusp, but from each cusp we get a singularity. The
difficulty of resolving these singularities was for a long time a problem that
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inhibited the development of the theory of Hilbert modular surfaces. Even-
tually, they where resolved by Hirzebruch (see [24]), and the exceptional
curves of the resolutions turned out to consist of cycles of curves related to
certain continued fractions expansions. Let Y = Y (D) denote the minimal
desingularisation of the compactification of X.

The resolution of the cusp singularities opened up new possibilities to
study the Hilbert modular surfaces using methods from algebraic geometry.
It is then important to find sufficiently many curves on Y. In addition to
the curves coming from the resolution of the singularities, there are also the
so called modular curves. These are constructed as follows. Consider the
set of skew-hermitian matrices of the form

( aD /\\/1_7>’

F=\3vD

(1.1)
where a,b € Z and A\ € R. These matrices form a Z-lattice of rank 4, which
we denote by L. An element § of L is called primitive if it is not of the form
B = np', where n € Z, n > 1 and B’ € L. Consider the curve Cg C HxH
defined by

Cﬁ = {(Zl,ZQ) c HXH ‘ (22 1) ,3 (le) = 0} (1.2)

The image of Cz in X is denoted by Fj3. For positive integers N, we let Fiy
denote the union of all curves Fg where 3 runs over all primitive elements in
L with determinant N. The curves Fy have a finite number of irreducible
components. Franke computed the number of components of Fiy in the case
that k£ has prime discriminant, see [14]. Hausmann extended these results
to arbitrary k in [20].

Using numerical invariants of the surfaces, which were computed by sev-
eral authors, and the configurations of curves, it was possible to fit the curves
into the Enriques-Kodaira classification of surfaces. The result is (see [23])
that Y (D) is rational surface for D = 5, 8, 12, 13, 17, 21, 24, 28, 33 and 60,
Y (D) is a blown up K 3-surface for 12 values of D, and a blown-up honestly
elliptic surfaces for 14 values of D. For all other values of D, Y (D) is of
general type.

Define the curve Tn = UFy 2, where the union is taken over all positive
integers ¢ such that #2 | N. It was discovered by Hirzebruch and Zagier,
that the intersection numbers of these curves appear as Fourier coefficients
of certain modular forms of so called Nebentypus. The intersection numbers
TnTa for N, M € 7 were computed in [22]. This aspect of the theory Hilbert
modular surfaces can also be studied for the surfaces that we will consider.
It is however not treated in this thesis.
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1.2 Quaternionic Shimura surfaces

We say some words on the construction of quaternionic Shimura surfaces.
This is a special case of a construction of algebraic varieties introduced by
Shimura (see e.g. [42]). Let A be a totally indefinite quaternion algebra
over k. This implies that there exist two inequivalent real representations

0it A= My(R), i=1,2.
Let A be a maximal order in A, and A' the group
A" ={N €A |nr()) =1}.
Now ¢; maps Al into SLa(R) for i = 1,2, so Al acts on the H x#H by

Az1,22) = (e1(M)z1, 02(N)22)- (1.3)

Notice that this action is not faithful. An element A acts trivially on H x#H
if and only if it belongs to the center k of A, i.e. if and only if A = £1.

The image of Al in Aut(# xH) is a discrete subgroup, and we let X
denote the quotient surface,

X =HxH/A.

Note that if we choose a different set of representations p; in (1.3), then we
get a quotient which is isomorphic to the original. This is clear since the
two actions are just conjugated by an element in Aut(H xH).

If 7 is an involution on A which restricts to the nontrivial automorphism
on the center k£ of A, then we say that 7 is an involution of type 2. Not
every quaternion algebra A has such an involution. In this thesis, we will
only consider quaternion algebras having an involution of type 2. We need
this assumption to construct the modular curves.

We are interested in the case where A is a skew field over a real quadratic
field k. In this case, the quotient surface X = H x#/A! is compact (see [44],
chapter 9). The only singularities of X are quotient singularities correspond-
ing to finite cyclic subgroups of Al. These surfaces have been examined by
some authors.

Shavel studies, in [37], the case when X is non-singular, and determines
all cases when the surfaces X have geometric genus p, = 0. There are 3
such cases, one with & = Q(v/2) and two with & = Q(+/3). He also considers
the corresponding question for certain extensions of the group I'. This gives
many more cases with p; = 0.

Takeuchi [45] determines all cases when the corresponding construction
in dimensions higher than two, with respect to the group I' = A!/{%1},
gives a smooth variety of geometric genus 0.
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We are rather interested in the case when X has singularities. On the
other hand, we restrict to the case when the algebra allows a so called
involution of type 2. With this restriction, there are for instance no cases
where py(X) = 0. But, as we will see, we may get surfaces with p, = 0 if
we consider extensions of I'.

We remark that the surfaces X are moduli spaces of abelian surfaces
with some extra structure. This is of course an important and interesting
aspect of these surfaces, but it is not treated in the thesis.

1.3 Summary of the thesis

We now give a brief overview of the contents of the thesis.

Chapters 2 and 3 are of a somewhat preparatory nature. For the con-
venience of the reader, we present some aspects of the theory of Clifford
algebras and orders in quaternion algebras which we will need later. How-
ever, we present some minor new results that will be used later on. There is
a well known connection between orders and ternary quadratic lattices. This
connection can be established in a very natural way, and using this we can
get for instance a natural correspondence between quadratic orders embed-
ded in the quaternion order and rank 2 sublattices of the ternary quadratic
lattice. Another thing we do, is to present an algorithm that can be used to
compute minimal over-orders of a given quaternion order.

In chapter 4, we examine involutions of so called type 2, i.e. involutions
on A which act non-trivially on the center k of A. We introduce the concept
of special involutions with respect to a maximal order A. An involution 7
is special if the fixed point set A; = {X € A | 7(X) = A} satisfies (A;), =
My(Zy) for all primes p that are ramified in k. We prove that there always
exists a special involution, so we can without loss of generality assume that
the involutions we consider are special.

In chapter 5, we consider hermitian forms in different settings. In fact,
two different topics are considered. The first one is the following. We in-
troduce the concept of A-hermitian forms, which in the 1-dimensional case
simply are maps ® : A x A — A which satisfy ®(z+y, z) = (=, z) + ®(y, 2),
®(za,y) = ®(z,y)a and &(z,y) = 7(P(y,z))* for all a,z,y,2 € A. If A is
a maximal order, then we define in a natural way what it means for ® to
be integral (only if 2 is ramified in k extra care has to be taken). The
set of so called integral A-hermitian forms is what later will be the lattice
that parametrises the modular curves which we construct in chapter 7. We
compute the local number of classes of such forms. This computation is es-
sentially a disguised form of the local computation of the number of classes
of integral skew-hermitian forms in [20].
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The second topic is the following. We consider a construction of orders
from hermitian planes. This construction, but on the level of algebras in-
stead of orders, occurs for instance in [43], section 4. Let F' be a field with
maximal order P, and K be a separable quadratic F-algebra with maximal
P-order S. We say that a quaternion P-order A is an S-primitive order if
there exists an embedding f : S — A. Let h : M x M — S be a hermitian
form on an S-lattice M of rank 2. Define

Ap = {X € Endg(M) | h(z, \y) = h(X*z,y) for all z,y € M }.

Now, we construct a map going the other way: given an S-primitive order we
construct a hermitian S-plane. We prove that, in the local case, these maps
are inverses of each other. In particular, we have that A, is S-primitive. A
useful corollary is that the orders that we construct in chapter 7 are Bass
orders. In the global case, the map h — Ay is in general not bijective, but
it is always surjective.

In chapter 7, we construct the curves which correspond to the so called
modular curves on Hilbert modular surfaces. We construct a quaternary
quadratic Z-lattice L parametrising them, which replaces the skew-hermitian
matrices (1.1). This is where we use the concept of A-integral forms. So, for
every primitive element 5 € L with ¢(3) > 0, we have a curve Cg C H xH.
We let Fg denote the image of Cg in X and I'g the stabiliser of C3 in Al,
so g = {X € A' | \Cs = C}. For every non-zero 3 € L, there is a natural
quaternary Q-subalgebra Ag of A. If we let Ay = AN Ag, then A}j is a
subgroup of I'g of index 1 or 2.

The key fact is that A and (L, q) are closely connected via Clifford al-
gebras. More precisely, there is a dual quaternary space (L#,q#) and an
embedding of rings

¢ : Co(L*,q") — A.

¢ is not an isomorphism in our case, and, in fact, ¢ is an isomorphism if and
only if A is a split algebra. But the image © of ¢ is rather close to being all
of A, we have for example that A = RO.

We use this connection to derive the following formula for the discrimi-
nant of Ag: d(Ag) = (¢(8))N(d(A)NZ). If we combine this with a computa-
tion of d(Ap) and the results of chapter 5, we get a complete description of
the genus (i.e. the local isomorphism class) of the order Ag. This, together
with the description of the group extension I'g O Aé, makes it possible to
determine the genus of the curve Cg/T'g.

In chapter 8, we determine the number of irreducible components of
the curve Fy. To do that, we exploit the fact that the problem can be
formulated as a question about classes of integral A-hermitian forms. Then
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we essentially use the ideas of Franke [14] and Hausmann [20], who solved
the corresponding problem in the case of Hilbert modular surfaces. They
used an approximation result of Shimura [41] on hermitian lattices (in the
usual sense). This result is straightforwardly carried over to our theory of
integral A-hermitian forms and we can just proceed in the same way to
compute the number of components.

In chapter 9, we examine how the curves intersect each other. To each
intersection point of modular curves, we associate a binary quadratic form.
We introduce, in the same way as it is done in [22] for the case of Hilbert
modular surfaces, a rational number s(p) which mainly depends on how
many points in X that are associated to the form ¢. We determine, under
the assumption that neither 2 nor 3 is ramified in k, which forms ¢ can occur
and, in particular, we describe which forms correspond to elliptic points. It
turns out that it is natural to divide the elliptic points into two groups,
points of type I and type II respectively, according to the associated binary
form. The main result, however, is a formula for s(y), see theorem 9.16.

In chapter 10, we leave the surfaces for a while and consider the situation
when A is a Z-order in an indefinite rational quaternion algebra and A! acts
on H. Specifically, we consider discrete subgroups of Aut(H) extending the
image of A! and show how one can compute the number of fixed points of
the different involutions, which we get on the quotient curve. One reason to
do this, is that it is needed to compute the genus of some of the curves Fjp
(recall that I's may be an extension of Ajp).

In chapter 11, we recall some well known facts about the numerical
invariants of the surfaces Y. We also consider how the group I' can be
extended to a larger discrete subgroup of Aut(# xH). We show, for instance,
that if £ has class number 1, prime discriminant and d(A) = (g) where ¢
a prime, then there exists an extension T of T such that F/I‘ = Dy, the
dihedral group. We also consider some of the quotient singularities that
can arise on the surface Hx%/f The reason that we have to make such
thorough investigations in the well known area of resolutions of quotient
singularities is that we do not only need to know the exceptional divisors of
the minimal resolutions, but we also need to know how these divisors meet
the modular curves Fg.

In chapter 12, we study an example where k& = Q(v/13) and d(A) = (3).
This example is chosen since it has one of the smallest hyperbolic volumes of
the fundamental domain and at the same time 2 and 3 are not ramified in &,
so we can use the results of chapter 9. We choose a small number of curves
Fx and using the results of the previous sections, we determine the inter-
section points of these curves, as well as their genus and self-intersections.



Also, we have a natural tower of discrete subgroup of Aut(H xH)
rcrycI'y C I,

where each extension is of degree 2 and I'ii/T" 2 Dy. We let Y1 denote the
minimal desingularisation of H x 7 /T'1, and similarly for Yi; and Yi;. We
prove that Y is a minimal surface of general type, Y7 is a K3-surface blown
up 4 times, Y11 is a special Enriques surface blown up 2 times and Y11 is a
rational surface with Euler number e = 12.

It would be a very nice further step if one could give explicit equations
for the surface Y, as it has been done for some Hilbert modular surfaces,
see for example [18]. However, we have not managed to do that.

2 Algebras and orders

In this preparatory chapter, we state mostly well known results about alge-
bras and orders. Two things are maybe not standard. One is the formulation
of corollary 2.9, which describes a natural connection between an order and
its corresponding quadratic lattice. That point of view will be very im-
portant to us in the following. The other is an algorithm in section 2.7 to
produce larger orders containing a given one. It will be useful, in particular,
for producing maximal orders.

Throughout the chapter, we use the following conventions. If not explic-
itly stated otherwise, P is a Dedekind domain with quotient field F. We
always assume that char F' = 0. If we say that F' is a local field, then we
mean the following: We additionally assume that P is a complete discrete
valuation ring where the valuation is denoted by v. Let 7 be a generator of
the maximal ideal of P. Let P denote the residue class field P/(n).

2.1 Preliminaries

Let V be a finite dimensional vector space over F. A P-lattice L on V is a
finitely generated P-module such that FIL =V.

Let L be a free lattice with basis e1,...,e,. We say that an element
z € L is primitive, if {r € F | rz € L} = P. An integral quadratic form on
L is amap g : L — P such that

q(zie1 4+ + zpey) = E aijTi%j,
1<i<j<n

where z; € Pfori=1,...,n, and a;; € P for all 4, j. The form is said to be
primitive, if the P-ideal generated by all coefficients a;; equals P. The form
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is said to be isotropic, if there exists a non-zero element x € L such that
g(z) = 0, otherwise it is said to be anisotropic. To the quadratic form ¢, we
associate the bilinear form b(z,y) = q(z + y) — qg(x) — q(y), where z,y € L.
We have ¢(z) = $b(z, z) for all z € L. The matrix

My = (b(es, €5)) (2.1)

is called the matrix of ¢ (with respect to the given basis). The discriminant
d(g) of ¢ is the ideal (det(My)) if the rank is even, and (3 det(My))(C P) if
the rank is odd (see [28], p. 208). The form ¢ is said to be non-degenerate if
d(q) # 0, and it is said to be unimodular if d(q) = P. Two quadratic forms
q1 and g9 on L are said to be equivalent, or in the same class, if there exists
an automorphism ¢ : L — L such that g1(z) = ¢2(g(z)) for all z € L. Two
forms are said to be in the same genus, if they are equivalent over P, for
all prime spots p of F'. The forms ¢; and ¢» are said to be similar, if ¢; is
equivalent to cgo for some non-zero ¢ € F'. The form ¢ is called modular if
it is similar to a unimodular form.

We recall the definition of the Hilbert symbol. Let F' be a local field. If
a,b € F*, then the Hilbert symbol (a,b) is defined by

(a,b) {1 if the form 22 — ay® — bz% on F? is isotropic,
a,b) =

—1 otherwise.

If p is a prime and F = Q,, then we will often write the Hilbert symbol
as (a,b)p, for a,b € Q. We also write (a,b)c, for a,b € R*. Using the
following proposition, it is possible to compute (a,b), for all primes p. For
a proof, see for example [2], p. 56 and [31], theorem 71:18.

Proposition 2.1. The Hilbert symbol satisfies the following properties:

i) for any a,b,c € F*, we have (a,bc) = (a,b)(a,c), (ac®,b) = (a,b),
(b,a) = (a,b) and (a,—a) =1,

i) if p is an odd prime and a,b € Zj, then (a,b), =1 and (a,p), = (2),

where (5) 1s the Legendre symbol,

iii) if a,b € Z5, then (a,b)y = (1)@ DO/ gnd (a,2)y = (1)@ 1/8,
where a,b € Z with @ = a (mod 8) and b =b (mod 8),
w) if a,b € R*, then (a,b)oc = —1 if and only if a < 0 and b < 0.

Furthermore, if a and b are non-zero rational numbers, then (a,b), =1 for
almost all primes, and we have the Hilbert product formula

[1(a,b), =1, (2.2)

p
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where p runs over all primes and oo.

Consider again a general field F. Let K be a separable F-algebra of
degree 2. Let x — T denote the non-trivial automorphism of K over F. Let
S denote the ring of integral elements in K. Assume now that F' is local. If
K =2 F x F, then we say that K/F is a split extension. Assume that K is
a field. Let II denote the generator of the maximal ideal of S. If ILS = 7S,
then we say that the extension is unramified, otherwise it is ramified.

2.2 Quaternion algebras

Let A be a finite dimensional F-algebra. A is central, if the center of A is F.
A is simple, if A has no non-trivial two-sided ideals. The Jacobson radical
J(A) is the intersection of all maximal left (or equivalently right) ideals of A.
A is semi-simple if J(A) = (0). It is well known that a semi-simple algebra
is a direct product of simple algebras (see e.g. [26], theorem 3.6).

Definition 2.2. If F' is a field and A is a central simple algebra of dimension
4 over F', then A is called a quaternion algebra.

Let A be a quaternion algebra over F'. There is a unique anti-involution
z — x* on A, called the canonical involution, such that tr(z) =z + z* € F
and nr(z) = zz* € F for all x € A. The map tr : A — F' is called the
reduced trace of A, and nr : A — F the reduced norm. It is also well known
that there exists an F-basis of A of the form 1,4, j, 15, where i2, j2 € F* and
i +ji = 0.

If A is a quaternion algebra over F', then by Wedderburn’s theorem (see
e.g. [26], theorem 2.5), we have that A = Ms(F') or A is a skew field, i.e. an
algebra in which every non-zero element is invertible. If F' is a local field,
then we say in the former case that A is split, and in the latter that A is
ramified.

If F is a local field, then it is well known that there is a unique quaternion
algebra over F, which is a skew field (see [46], théoréme II.1.1). The unique
skew field over Q,, where p is a prime, will be denoted by Hi,.

Definition 2.3. If A is a quaternion algebra over the field F', and p is a
prime spot of F', then we define

(A) ) =1 if Ay is ramified,
p )1 if Ay is split.

The discriminant dp(A) is then defined as the formal product of all

prime spots p of F' (including the infinite ones) such that (%) = —1. The
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number of factors of dp(A) is even, and for any product of an even number
of prime spots, there exists a quaternion algebra A having that product as
its discriminant. Two quaternion algebras A; and As are isomorphic if and
only if dp(A1) = dr(As2) (see [46], théoréme I11.3.1). We let d(A) denote
the product of all finite primes dividing dr(A), so d(A) is an ideal in P.

If u is an invertible element in A, then the map A — A given by z —
uzu~"' is called an inner automorphism of A. The following result, known
as the Skolem-Noether Theorem, is central in the theory of simple algebras.
For a proof, see for example [35], theorem 7.21.

Proposition 2.4. Let B be a simple F-subalgebra of A. If p: B — A is
a non-trivial algebra homomorphism, then there exists an invertible element
u € A such that p(x) = uzu~" for all x € B.

We formulate a variation of this result, which we will need later.

Lemma 2.5. Let K be a separable mazximal commutative subalgebra of A.
If p1 and ps are embeddings of K into A, then there exists an invertible
element u € A such that p1(z) = ups(z)u=! for all z € K.

Proof. If K is a field, then such an element u exists by the Skolem-Noether
theorem. Assume therefore that K = F x F. Since K has a zero divisors,
we have A = My(F). Fix an identification of K with F' x F. It is sufficient
to show the claim in the case where py is given by pa(z,y) = (§ 2), for
z,y € F. Let now e; = p1(1,0) and e; = p1(0,1). We have e; + ey = 1,
e% = ey, e% = e9 and ejeg = 0. It is clear that there exists a vector v such
that e1(v), ea(v) # 0. The vectors e;(v) and ez(v) are linearly independent,
and we let u be the invertible matrix with columns given by the vectors

e1(v) and ey (v). It is straightforward to check that u satisfies the claim. [
If K is a separable maximal commutative subalgebra of A, then
KQ®p A= My(K) (2.3)
(see e.g. [26]). If K is a field, then K is called a splitting field of A.

Definition 2.6. A P-order A in A is a subring of A containing P which is
a finitely generated P-lattice and such that FA = A.

Let A C A be a P-order and let
A* ={z € A|tr(zA) C P}

be the dual lattice of A. Now it is well known (see e.g. [4]) that the P-ideal
[A# : A] is a square, so
[A* : A] = d(A)?
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for some P-ideal d(A) C P. d(A) is called the reduced discriminant of A. If
P =7, then we will for convenience let dy(A) denote the positive generator
of the ideal d(A). We will use the symbol dy(A) also in other situations when
it makes sense, i.e. when it is known that the ideal d(A) is generated by a
rational integer.

2.3 Clifford algebras

We recall now the construction of Clifford algebras. Let L be a P-lattice on
the F-vector space V such that FL =V. Let

q:V > F

be a quadratic form such that ¢(L) C P. Define the tensor algebras

o o0

T(L) =@ L¥ and To(L) = P L¥*.

k=0 k=0

Let I and I be the ideals in 7 (L) and 7y(L) respectively, generated by all
elements z @ z — ¢(z), where z € L. Now C(L,q) = T(L)/I is called the
Clifford algebra of (L,q), and Cy(L,q) = To(L)/Io the even Clifford algebra
of (L,q).

We can, of course, analogously define F-algebras C(V,q) and Cy(V,q).
We have that C(L,q) is a P-order in C(V,q) and that Cy(L, q) is a P-order
in Co(V,q).

Let us now consider ternary quadratic spaces. In this case, the F-
algebras C(V,q1) and C(V, ¢2) are isomorphic if and only if the quadratic
forms ¢; and g¢o are similar (cf. [31], theorem 58:4). It is well known that
if ¢ is a non-degenerate ternary quadratic form, then Cy(V,q) is a quater-
nion algebra over F. Assume now that P is a principal ideal domain. Let
e1,e3,es be a P-basis of L and suppose that ¢ is given by

qg(xz1e1 + xoey + x3€3) = E i T;%5,
1<i<j<3

where z; € P. We let a;; = aj; if i > j. A P-basis of Cy(L, q) is given by
Ey =1, Ey = eze3, Ey = e3e1, F3=eie, (2.4)
and straightforward calculations give that multiplication satisfies the rules

Ez2 = ijEz' — Q;jj0kk,
E;E; = ap(aij — Ey), (2.5)
E;E; = a1p By + agg Eo + azpF3 — ajkajy,
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where ¢, j, k is an even permutation of 1,2,3. The first of these three equa-
tions implies that the canonical involution is given by

E; =aj; — E;. (2.6)
The matrix associated to the ternary quadratic form ¢ by (2.1) is:

2a11 @12 a3
Mq == ai12 2@22 a3
a13 a3 2a33

We have that d(q) = (% det Mq) = (a12a13a23 — a%3a22 — a11a33 — a%2a33 =+
4ai11a99a33). The following result can be shown by a direct calculation
(see [32], Satz 7).

Proposition 2.7. If A = Cy(L,q), then the reduced discriminant of A is
given by d(A) = d(q).

We also remark that Co(V,q) = My(F) if and only if ¢ : V — F is
isotropic. Assume namely that (V, q) is isotropic. We can choose an F-basis
e1, ez, e3 for V such that g(e3) = 0. Then, by (2.5), we get that E1Es = 0, so
Co(V, q) has zero divisors. The converse now follows since isomorphic even
Clifford algebras correspond to similar quadratic forms.

2.4 Orders and Clifford algebras

Assume now that P is a principal ideal domain. In this case, any quaternion
order A over P is isomorphic to the even Clifford algebra of some ternary
quadratic form ¢ : L — P. We recall the construction of the lattice L and
the form q. We show that the isomorphism Cy(L,q) = A can be realised in
a natural way.

Let dy be a generator of d(A). Fix a P-basis g = 1,21, x2,xz3 of A. We
have a corresponding dual basis o, y1, y2, y3 of A#, which satisfies tr(ziyy) =
05 if 0 < 4,5 < 3.

Let Ay = {z € A | tr(z) = 0}. We define a P-lattice L, by

L = A% N A,.

Since o = 1, it follows directly that L = (y1,y2,y3) (i.e. the P-module
generated by y1,y9,y3). We define a quadratic form g on L, by

q(l) = donr(l),

for [ € L. The following result can be found in [32], Satz 8. Note that it
shows, in particular, that ¢(l) € P for all [ € L.
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PI‘OpOSitiOl’l 2.8. A= <1, doy;yg, d0y§y1, doyfy2> =P+ d(A)A#A#
By proposition 2.8, we can define a P-linear mapping L ® L — A, by
L ®ly— dolTlg (27)

for I1,l € L. This map can be uniquely extended to a ring homomorphism
¢ : To(L) — A. It is clear that if | € L, then ¢(l ® I — ¢(I)) = 0. Hence
¢ factors through the Clifford algebra Cy(L,q). In fact, by proposition 2.8
again, we have that ¢ is surjective. Hence we have shown:

Corollary 2.9. The natural ring homomorphism ¢ : Co(L,q) — A induced
by (2.7) is an isomorphism.

2.5 Maximal orders in the local case

Assume that F' is a local field. In this case, there are only two isomorphism
classes of quaternion algebras over F'. For the convenience of the reader, we
will recall the description of the maximal orders in these two cases.

The following result is proved in [35], theorem 17.3.

Proposition 2.10. If A is a mazimal order in My(F'), then there exists an
invertible element u € My(F) such that A = uMy(P)u~".

If A = My(P), then clearly A# = A and d(A) = (1). A basis of the
lattice L constructed in section 2.4 is therefore

(1 0 {01 (00
yl_ O _17 y2_ O 0’ y3_ 1 07

and the ternary quadratic form ¢ is

q(z1y1 + z2y2 + T3Y3) = —37% — T2Z3,

where z; € P for 1 = 1,2,3. The claim of corollary 2.9 can now be explicitly
verified.

Now we turn to the case when A is a skew field. It appears that in this
case, A has a unique maximal order. Consider the quadratic form

q(z1e1 + xoes + x3€3) = ww% — ew% — ToT3 — :L‘%
on the lattice L = Pe; + Pey+ Pes, where ¢ € P and 1 —4e € P*\ (P*)? i.e.
the polynomial 22 +x +e€ is irreducible in F[z]. We have that g is anisotropic,
so the Clifford algebra A = Cy(L, q) is an order in the unique skew field over
F, which we denote A. It has a P-basis 1, F, Ey, E3, where

E}=_—€—E,, E’=n, E3=FEFE, FyE +(E +1)E;,=0, (2.8)
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by equations (2.5). The norm form can now be computed:

nr(ap + a1 E1 + agEs+a3Es3) = 9.9
= a3—apa1 + eal — w(a3 — agaz + €a3) (2.9)
for a; € F.

We claim that A = {a@ € A | nr(a) € P}. Take a non-zero element o € A
such that nr(a) € P. We want to show that € A. There is a minimal
integer n such that a = 7"a € A. We have a = Z?:o a;F;, where a; € P
for all i. Assume now that n > 1. Then we have 72 | nr(a) so, noting that
the binary form a2 — aga; + ea? (where ag, a; € P) is irreducible modulo T,
we get that 7 | ap and 7 | a1. But then we get, by the same reasoning, that
also 7 | ag and 7 | a3. Hence a = wa' where o’ € Q2. But this contradicts the
minimality of n. Hence we must have n = 0, and our claim is proved. In
fact, we have shown the following well known result (see [35], theorem 12.5):

Proposition 2.11. If F is a local field and the quaternion algebra A over
F is a skew field, then A = {z € A | ur(z) € P} is the unique mazimal order
in A.

If p is a prime, then we let €2, denote the unique maximal order in the
unique skew field Hj, over Q,.

We now state some results about ideals in maximal orders. If J is a A-
ideal, then we let nr(J) denote the P-ideal generated by all elements nr(j),
where j € J. The following result is theorem 18.3 in [35]:

Proposition 2.12. If A is a maximal order, then A has a unique mazimal
two-sided ideal I,. If A is split, then I, = wA, and if A is a skew field, then
I, = Ag for any g € A with v(nr(g)) = v(n). Furthermore, any two-sided
ideal I is a power of I,. In particular, we get in the case A = My(F') that
I =1iA, where i is the P-ideal i=1NF.

We immediately get the following corollary, which also holds in the global
case:

Corollary 2.13. If J is a two-sided ideal in a mazimal order A, then J can
be uniquely written in of the form J = iJy, where i is an ideal in P, and Jy
is a two sided ideal in A with nr(Jy) dividing d(A).

The following elementary result will be useful in the sequel. If b € A
with b # 0, define the ideal

ma(b) = {z € F | zb € A}. (2.10)
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Lemma 2.14. If A = Ms(P) and a,b € A with my(b) = P, then AaA C bA
if and only if a € nr(b)A.

Proof. Assume that mp(b) = P, i.e. b€ A and b ¢ wA. By proposition 2.12,
we have AaA = 7" A for some integer n. We get AaA C bA if and only if
7" A C bA if and only if 7"6*A C nr(b)A if and only if b € 77" nr(b)A. By the
hypothesis on b, this is equivalent to 7™ € (nr(b)). The claim follows. O

2.6 Classification of orders

In this section, we recall some concepts and results about the classification
of orders in quaternion algebras.

An order A is said to be a Gorenstein order (see [9], §37), if A% is
projective as left (or equivalently right) A-module. If A is an order, then
there exists a minimal Gorenstein order containing A, which we denote by
G(A). We have

A =P +bG(A) (2.11)

for some P-ideal b C P (see [3], prop. 1.4). The order A = Cy(L,q) (see
section 2.3) is a Gorenstein order if and only if (L,q) is a primitive form
(see [4]).

An order A is called hereditary, if every (left) A-module is projective.
An order is hereditary if and only if the discriminant d(A) is square free (see
e.g. [3], proposition 1.2). An order A is called Bass order if every order A’
containing A is a Gorenstein order. If d(A) is cube free, then A is a Bass
order ([3], corollary 1.5). An order A is a Gorenstein (Bass) order if and
only if A, is a Gorenstein (Bass) order for every prime ideal p (see [9], §37).
We say that being Gorenstein (Bass) is a local property.

Assume now that F' is local. Recall that J(A) denotes the Jacobson
radical of A, i.e. the intersection of the maximal left (or right) ideals of A.
Any idempotent of A/J(A) can be lifted to A (see proposition IV.2.2 in [36]).

A/J(A) is a semi-simple algebra, by lemma 1.4.17 in [36]. An order A
is said to be an Azumaya order, if A/J(A) is a non-trivial central simple
algebra over P. We have that A C J(A), so A/J(A) is a P-vector space
with dims A/J(A) < 4. If A is Azumaya, then we must have A/J(A) =

M;,(P), since there are no skew fields over a finite field (see theorem IT1.6.7
in [36]). By lifting idempotents of A/J(A) to A, it is possible to construct

an isomorphism A = M(P).

Definition 2.15. If A is a Gorenstein order which is not Azumaya, then
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the Eichler invariant e(A) is defined by

—1 if A/J(A) is a quadratic field extension if P,
e(A) =41 ifA/J(A)=PxP,
0 ifA/J(A) P

One can verify that the cases in definition 2.15 in fact cover all possibil-
ities for A/J(A).

Proposition 2.16. If A is an order with e(A) = +1, then A is a Bass order.
If e(A) =1 and d(A) = (n™), for some integer n > 1, then A is isomorphic

to the order
P P
P P)°

For a proof, see e.g. [3], propositions 2.1 and 3.1. The second statement
follows once again from the existence of a pair of orthogonal idempotents
in A.

2.7 Resolution of orders

Assume that F is a local field. Let (L, q) be a ternary quadratic space over
P, A = Cy(L,q) and dy a generator of the ideal d(A). Let L = L/nwL. We
have that L = P3 as a P-vector space. Consider now the reduction ¢ of the
quadratic form ¢ modulo (7):

Proposition 2.17. The quadratic form q gives the following information
about the order A:

i) if tkqg =3, then A = My(P),

it) if rkq = 2 and q is irreducible, then e(A) = —1,

w

)
)
1) if tkq = 2 and q is reducible, then e(A) =1,
) if tkqg =1, then e(A) =0,

)

v) if ¢ =0, then A is not Gorenstein.

Proof. If ¢ = 0, then (L, q) is not a primitive form, and hence Cy(L,q) is
not a Gorenstein order.
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Assume now that g g # 0. Let M be the null space of g, so the quadratic
form L/M — P is non- n-degenerate. We clearly have a surjective ring ho-
momorphism A — CO(L/M g). Since CO(L/M ) is a simple algebra, this
gives a surjection

AJJ(A) = Co(L/M, §). (2.12)

Considering the possible isomorphism classes of the two rings A/J(A) and
C’O(L /M. ), the only possible case when the map (2.12) could fail to be an
isomorphism is if A/J(A) = P x P and Co(L/M,§) = P, i.c. if e(A) =1 and
rk(g) = 1. But from proposition 2.16, it follows directly that if e(A) = 1,
then rk(q) = 2. Hence we have that the map (2.12) is an isomorphism and
the claim follows. O

The proofs of the following results can be found in [3]:

Proposition 2.18. If e(A) = 1, then A is a Bass order. If d(A) = (7"),
then A =2 (,n.nPP 11;). There exists exactly two minimal over-orders A’ of A.
We have that [\ : A] = () and e(A;) = 1 if A’ is not mazimal. There are

exactly 2™ chains of orders
A=AyC AL C---CA,

such that Ai+1 is a minimal order containing A; for i =0,1,...,n—1, and
A, a mazimal order. Every mazimal order containing A occurs in such a
chain. Furthermore, A is the intersection of two uniquely defined mazimal
orders.

Proposition 2.19. If e(A) = —1, then A is a Bass order. If A is not
hereditary, then there is a unique minimal order A’ containing A. It satisfies
[A': A] = (7?), and if A’ is not mazimal, then e(A') = —1. Furthermore
J(A) =7/

Corollary 2.20. If e(A) = —1, then there is a unique chain of orders
A=Ay CA C---CA,

such that [Aj11 : Ag] = (72) and e(A;) = —1 fori =0,1,...,n — 1, and A,
is a mazimal order.

If A is a Gorenstein order with e(A) = 0, then A is not necessarily a Bass
order.

Proposition 2.21. If e(A) = 0, then A has a uniquely determined over-
order A" with [A' : A] = (n). If A is not hereditary and A' is Gorenstein,
then e(A") = 0.
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Corollary 2.22. Ife(A) =0 and A is a Bass order, then there is a unique
chain of orders
A=Ay CA C---CA,

such that [Aj11 : Aj]) = (7), e(A;) =0 fori =0,1,...,n—1, and d(A,) = (7).

If A is a Bass order with e(A) = —1 or 0, then the first hereditary order
in the chain of orders in corollary 2.20 or corollary 2.22 respectively, is called
the hereditary closure of A and is denoted H(A). We also have that H(A)
is the intersection of all hereditary orders containing A.

We now prove two results which show how the minimal over-orders of a
Gorenstein order can be computed. We state the results locally for simplic-
ity, but the point is that they can immediately be applied in the global case
and hence give an algorithm to compute the maximal orders which contain
a given order.

Proposition 2.23. Let A be an order with e(A) = 0 or e(A) = 1. Let
Il : L — P be a linear factor of the reducible quadratic form q. Take 2
generators of kerl, and let e; and e be liftings of these elements to L. Then
we have that

1
A=A+ =d(A)efes
m

is an over-order of A with [A' : A] = (w). This order only depends on the
choice of l. If e(A) = 1 and q = l1ly, then the two over-orders constructed
using Iy and ly respectively are different.

Proof. There is an element e3 such that e,es,es is a basis of L. The
quadratic form g on L is given by ¢(z) = dy nr(z). We have g(ae; +bes) € ()
for all a,b € P. We define L' = (e, e9, me3), with quadratic form ¢'(z) =
nldgnr(z). It is clear that ¢ is integral. The natural images, i.e. the images
of the maps ¢ given by corollary 2.9, of the orders Cy(L,q) and Cy(L',q")
are A = (1,dpefes, dpeles, dpeles) and A = (1,7r_1doe’1‘eg,doe’{63,doe§eg>
respectively. The claim follows.

Consider the case e(A) = 1 and assume that ¢ = l1l5. We can choose
a basis ey, ez, e3 for L such that l;(e;) = la(e2) = l1(e3) = l2(e3) = 0. The
orders we get are A + L1d(A)ejes and A + 1d(A)ebes respectively, and these
are clearly different. O

Proposition 2.24. Let A be a non-hereditary order with e(A) = —1. If e;
is a primitive element of L such that q(e1) € (), then we have that

1
A=A+ —d(A)erL

is the unique over-order of A with [A': A] = (n?).
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Proof. Since e; is a primitive element of L, we can choose a P-basis e1, e, e3
of L. Let b(z,y) = q(z+vy) —q(z) —q(y) be the bilinear form on L associated
to ¢. Using that the form g is irreducible of rank 2, it is straightforward to
verify that the matrix M = (b(e;, e;)) must be of the form

2(](61) a2 Ta13
M = Ta12 20,22 a923 )
Ta13 a3 2a33

where a;; € P. Since the rank of § is 2, we get that 4assass — a%3 € P*.
Furthermore, we have that 272 | det(M), since A is not hereditary. Since
we now have det M = 2q(e;)(4aass — a33) (mod 27%), we get 72 | g(e1).
Hence, if we define the lattice L' = (e1,me2,me3) with quadratic form
¢'(z) = n2dynr(x), we have that ¢' is integral. The natural images of
the orders Cy(L,q) and Cy(L',q') are A = (1,dpefes, dpefes, dyeses) and
A= (1,W‘ldoe{eQ,ﬂ_ldoe{eg,doegeg> respectively. Thus

1 1 1 1
N = A+ =d(A)ejea + —d(A)efes = A+ =d(A)efL = A+ =d(A)e; L. O
s s s s

2.8 Eichler orders

Definition 2.25. An order A is an FEichler order if it is an intersection of
two maximal orders.

The following characterisation of Eichler orders, was first proved by Eich-
ler in [12]. We give a proof for completeness.

Lemma 2.26. An order A is an Eichler order if and only if the following
holds for every prime ideal p in P: Ay, is a mazimal order or a Bass order

with e(Ay) = 1.

Proof. Assume that the local conditions are satisfied. Then the existence
of two maximal orders A1, Ay such that A = Ay N Ay follows from proposi-
tion 2.18.

Assume that A C A is an Eichler order and p a prime ideal. If A,
is a skew field, then A, contains a unique maximal order, so A, must be
maximal. Assume that Ay is split. Let A = Ay N Ay, where Ay and Ay are
maximal. We have Ay = My(P,), so we can identify A; with My(P,). Now,
by proposition 2.4, there exists € A* such that Ay = zAz~!. We may
assume that x is a primitive element of A;, and hence x = e1xge2, where

€1,€62 € A} and 3o = (§ %) with r € B,. We get

_ 1\ — P, P, _
A=A NzAz ' = e1(A1 NzoAizg 1)61 l—¢ (r}%, P::) €] L
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Thus Ay is maximal if p { r, and e(Ap) = 1if p | 7. We are done. O

Lemma 2.27. Let A be an Eichler order in a quaternion algebra A and
assume that d(A) = d(A)Ny, where Ny C P is an ideal. Let a be the
number of different prime ideals dividing Ny. There are 2* mazimal orders
A1 containing A, such that there exist some mazimal order Ay with A =
AN As.

Proof. Follows directly from proposition 2.18. O

Lemma 2.28. If A/Z is an Eichler order in an indefinite quaternion alge-
bra, then nr : A — Z is surjective.

Proof. Consider the map nr : A — Z as a quaternary quadratic form. This
form is then indefinite, so, by theorem 1.5 in [7] (see also theorem 3.8 in
the next chapter), it is sufficient to show that nr : A, — 7Z, is surjective for
every prime p. But this follows immediately from the local description of an
Eichler order given in lemma 2.26. U

2.9 Primitive orders

Let S be a maximal order in a quadratic separable F-algebra K.

Definition 2.29. We say that an order A is S-primitive if there exists an
embedding of S into A.

If an order is S-primitive for some S, then it is a Bass order. This follows
immediately from (2.11). The following result follows from proposition 1.12
and remark 1.16 in [5]:

Proposition 2.30. Assume that P is a local ring and that A is an S-
primitive order which is not Azumaya. If K/F is unramified, then e(A) =
—1. If K/F is split, then e(A) = 1. If K/F is ramified and A is not
hereditary, then e(A) = 0. Furthermore, assume that d(A) = ("), where
n € Z. Then:

i) If e(A) = —1, then A= S + J(H(A))™, where m = n/2 if H(A) is an
Azumaya algebra, and m = n — 1 otherwise.
ii) If e(A) =0, then A =S+ J(H(A))™, where m =n — 1.

If A; and Ay are two S-primitive orders, then by conjugating one of
these orders if necessary, we may (by lemma 2.5) arrange so that they both
contain the same copy of S. Hence the situation is

A CA
U U (2.13)
S CAs.
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Lemma 2.31. Assume that F is a local field, and that K is a field. Let
A; be two non-mazimal S-primitive orders in a quaternion algebra A. Then
H(A) =2 H(Ap).

Proof. If A is a skew field, then there is nothing to prove since A contains a
unique hereditary order. Assume that A = My(F'). If K/F is an unramified
field extension, then e(A;) = —1, for ¢ = 1,2, by proposition 2.30. Hence
we get that H(A;) = My(P) by corollary 2.20 and we are done. If K is a
ramified field, then we get, for i = 1,2, that e(A;) = 0, and hence that H(A;)
is a non-maximal hereditary order by corollary 2.22. Such orders must have
Eichler invariant equal to 1, and hence they are isomorphic to (.5, ). O

We have the following result, which is a version of the Eichler-Hasse-
Noether-Chevalley-Schilling theorem (cf. [13], Satz 7):

Proposition 2.32. Let S be a mazimal order in a separable mazximal com-
mutative subalgebra K of A, and let A1, Ay be two isomorphic orders in A
containing S. Then there exists a non-trivial ideali C S such thatiA; = Aqi.

Proof. We only need to check this locally. If K is split, then we may identify
A with My(F). We can assume, by lemma 2.5, that the embedding of
S = P x P isgiven by § = (103 19,). We get that the orders A; are of the
form A; = (bJI_JP a}'JP), for j = 1,2, where a;,b; € F. Since A1 = Ay, we get
that (a1b1) = (agby) C P. It is now clear that if we choose an invertible
element g € S of the form g = z( ¢ aol ), where z € F, then gA; = Aqg.

Assume now that K is a field. If the orders A; are hereditary, then the
claim follows by theorem 1.8 in [6] (it states that the embedding numbers
e«(S,A;) (defined therein) are equal to 1, which gives the claim).

Assume that the orders are not hereditary. By proposition 2.30, we have
that e(A1) = e(As) # 1. We get, by proposition 2.30, that there exists an
integer m such that

Aj =S5+ J(H(A;)™,

for i = 1,2. We have that H(A;) = H(A2), by lemma 2.31, but we know
that the assertion holds in the hereditary case, and hence we have that

gH(A1) = H(A3)g for some invertible element g € S. Consequently, we get
gJ(H(A1)) = J(H(A2))g, and we are done. O

Proposition 2.33. Let F' be a local field, K a separable mazimal commu-
tative subalgebra of A and S a mazimal order of K. Let A1,As C A be two
S-primitive orders. If d(A1) = d(Ag), then A1 = As.
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Proof. If the orders are maximal, then there is nothing to prove. Assume
that the orders are non-maximal. We can assume without loss of generality
that the situation is as in diagram (2.13). By lemma 2.31, we have that
H(A1) = H(A3), and hence there exists, by proposition 2.32, an invertible
element g € S such that gH(Ay)g~' = H(A;). We get, for a suitable
integer m as in proposition 2.30, that gAig~ ! = g(S + J(H(A1))™)g ! =
S+ J(H(A2))™ = As. O

2.10 Automorphisms of orders

In this section, we present some results about normalisers and automor-
phisms of orders which we will need later. If A is a quaternion algebra, then
we let v denote the map A* — Aut(A) given by v(w) = (z — wzw™!). We
define the normaliser of A:

N(A) = {w € A* | wAw™" = A}.

It is clear that Aut(A) = v(N(A)). The proof of the following result can be
found in [5] (see theorem 2.2).

Proposition 2.34. Assume that F is a local field. If A =2 Ms(P), then
Aut(A) = v(A*). If A is a Bass order with e(A) = £1, then [Aut(A) :
v(A*)] =2, and

Aut(A) = v(A* UA%s),

where s € A is as follows: If e(A) = 1, then A = (ﬂnPP 1’;) and we let s be
the element which corresponds to the matriz (Won (1)) under this isomorphism.
Assume now that e(A) = —1. If A is a skew field, then s is any generator

of J(H(A)). If A is split, then s is a suitable element in H(A)* \ A*.

Lemma 2.35. If F is a number field and A is a P-order, then [N(A) :
F*A'] < oco.

Proof. From theorem 55.19 and theorem 55.22 in [10], it follows that
[N(A) : F*AY] < o0.
Now we have an exact sequence of groups:
(1) = P*A' — P*A* — P*/(P*)?,

where the last map is given by z ~ nr(z)(P*)2. By Dirichlet’s theorem,
we have that P*/(P*)? is finite, and hence we get [P*A* : P*A'] < co. It
follows that [F*A* : F*A'] < oo, and we are done. O
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3 Quadratic forms

In this chapter, we state some preparatory results on quadratic forms that
we will need later. Most of the results are of course well known. One thing
that can be mentioned though, is that the natural correspondence between
quaternion orders and Clifford algebras described in corollary 2.9, gives a
natural correspondence between quadratic orders in the quaternion order
and rank 2 sublattices of the ternary quadratic lattice. This is lemma 3.4.

3.1 Oriented binary forms

Let L be a Z-lattice. Two bases e1,...,e, and fi,..., f, of L are said to
have the same orientation, if the map ¢ : L — L, induced by g(e;) = f;
for all 4, satisfies det(g) = 1. By an oriented Z-lattice, we mean a lattice
together with a choice of orientation, i.e. with a basis that is declared to have
positive orientation. Let L; and Lo be two oriented lattices. We say that
an isomorphism g : Ly — Lo is orientation preserving, if g(e1),...,g(e,) is
a positive basis of Lo for any positive basis e1,...,e, of Lj.

An oriented integral binary form on L is a pair (L,q), where L is an
oriented lattice of rank 2 over Z with some positive basis e1,e2, and g : L — Z
is a map

zey + yeg — az? + bry + cy? (3.1)

for all z,y € Z, where a,b,c € Z. We say that two oriented binary forms
(L1,q1) and (L9, g2) are equivalent if there exists an orientation preserving
isomorphism f : Ly — Lo such that g1 = ¢ o f. We write ¢ = g2. The
oriented binary form obtained by reversing orientation of the underlying
lattice of g is denoted by g. We write q; ~ g2 if g1 = ¢ or q1 = q,.

If the choice of an oriented basis e, ey is clear from the context, then
the oriented binary form (3.1) will be denoted by ¢ = [a, b, c|. If ¢ = [a, b, c],
then we let do(g) denote the generator b?> — 4ac of the discriminant ideal
d(q). The form ¢ is positive definite if and only if dy(q) < 0 and a > 0.
The content m(g) of the form ¢ is the ideal generated by a, b and c. If
m(q) = (1), then we say that ¢ is a primitive form.

Definition 3.1. If N < 0, then we let h(N) denote the number of equiv-
alence classes of primitive positive definite oriented binary forms ¢ with
d() (q) =N.

Now it can be shown that any positive definite binary form is equivalent
to a unique form [a, b, ¢] satisfying —a < b < a,c>aandc>aifb>0
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(see [48], p. 121). Hence h(N) is finite for all N < 0, and

h(N) = #{(a,b,c) € Z> |N = b*> — 4ac, (a,b,c) =1,
—a<b<a,c>aand c>aif b> 0}

Clearly h(N) =0if N = 2,3 (mod 4).

3.2 Binary forms and quadratic orders

Let K be a complex quadratic field with non-trivial automorphisms x +— =
and with a choice of orientation. By this we mean that we have chosen a
Q-basis x1,z2 of K, and we say that any other Q-basis y1,y2 of K is positive
if the change of basis matrix has positive determinant. Let O be an order
in K. Let N = d(O) be the discriminant of O, so N is a negative integer.
We have that K = Q(v/N), and O is the unique order with discriminant
N in K. An O-module M is a subgroup of K such that OM = M, M is
finitely generated over O and QM = K. From now on, we only consider
O-modules which satisfy

O={zeK|zM= M)}

We say that a Z-basis m1, me of M is positive if it is positive as a (*basis
of K. Note that mq,mo is positive basis if and only if 1,m1m9 is positive
Q-basis of K. We say that two O-modules M and M’ are equivalent if there
exists an element « € K such that aM = M'. We let cl(O), or alternatively
cl(N), denote the number of equivalence classes of O-modules.

Take an oriented quadratic binary lattice (L, q), with g(z1e; + z2e2) =
az% + briz9 + ca:%, where eq, e is a positive basis of L. Consider the even
Clifford algebra Cy(L,q) = Z[eiez]. If we let z = ejeq, then a calculation
gives that 22 —bz+ac = 0 and hence the discriminant of the quadratic order
Co(L,q) is dy(q). Furthermore, we can choose an orientation of Cy(L,q) by
declaring that 1,ejes is a positive basis. Observe that this orientation is
well defined, i.e. it only depends on the orientation of L.

A classical result by Gauss says that h(N) = cl(N) (see [48], p. 94). As
an illustration of some techniques that will be used later in this work, we
will now show this fact using Clifford algebras (cf. [27]).

Let us fix an oriented Z-lattice L with a positive basis e, ea. We will now
give a one-to-one correspondence between equivalence classes of primitive
forms with discriminant N on L and equivalence classes of O-modules.

Let ¢ : L — Z be a primitive form with dy(q) = N. Consider the Clifford
algebra C(L,q). It has a Z-basis 1, e1, eg, e1e5. It naturally contains a copy
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of Cy(L,q) and L respectively, so we have maps

CO(La q) - C(La Q)
L

It is clear, that this gives L a natural structure as a Cy(L, g)-module, since
L is the odd part of C(L, g). Furthermore, there exists a unique orientation
preserving isomorphism of orders ¢ : Co(L,q) — O. Hence, we can associate
to g the O-module

Mq == (5(61]_-1)

The converse mapping is the obvious one: Let M be an (O-module.
Choose a positive Z-basis m1, my of M and define a quadratic form gus :
L — Z by

qu(z1e1 + x2e2) = cnr(zymy + zo9ms),

where c is the unique positive rational number which makes this form prim-
itive integral.

It is clear that these maps are also well defined on classes of binary forms
and O-modules respectively. We claim that they are inverses of each other.
That the form gy, is equivalent to g is clear, since we have

an/Q((S(ell)) = lererl = q(e1)q(l),

for every | € L. Conversely, we want to show that the O-module M,,, is
equivalent to M. It is clear that the map 0 : Co(L,qpr) — O is induced by
the map L ® L — O given by:

TRy cg(x)g(y),

where g : L — M is such that g(z1e1 +z2e9) = z1mq + zo9mo, for z1,z9 € Z.
Hence, we get
5(61[’) = (le)M,

which shows the claim.

3.3 Some results on binary forms

We make a few observations about binary forms over the integers Z that
we will need later. The following result is well known (see e.g. [7], p. 165,
example 14):
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Lemma 3.2. If q is a definite oriented binary form with non-trivial auto-
morphisms (i.e. with more than two automorphisms), then q = mqq, where
m is an integer and qo(z,y) = 22 + 4 or qo(z,y) = % + 2y + 32,

Lemma 3.3. Let A < —4 be an integer and r an odd prime with r 1 A. If
(L,q) is a primitive binary form representing r and with discriminant A,
then any other such form is equivalent to q or q. Furthermore, if ¢ = q, then
q represents r exactly four times and if ¢ % q, then both q and q represent r
exactly twice.

Proof. Take e; € L with g(e;) = r. Then it clearly exists es € L such that
e1, e is a basis of L and

q(zer + yeo) = rz? + bry + cy?, (3.2)

where —r < b < 7 and ¢ = (b — A)/(4r). Now we have b> = A (mod 4r),
and this congruence has exactly two solutions b modulo 2r. Hence the
presentation in (3.2) is unique up to the sign of b.

Assume now that g represents r more than twice, so g(e}) = r for some
e} # tej. Then, by the above, there exists e}, such that g(ze| + ye)) =
rz? + abzy + cy?, where o = +1. We know that ¢ has no non-trivial
automorphisms by lemma 3.2, since A < —4. Hence we conclude that
a = —1, which means that § = q. We also see that ¢ cannot represent r more
than four times, for otherwise we could construct a non-trivial automorphism
of (L,q).

Assume now that § = g, so there exists g : L — L such that det(L) =1
and q(g(ze1 +yes)) = ro? —bry + cy?. Since we have b # 0 by hypothesis, it
is clear that we must have g(e;) # *e;. Hence ¢ represents r four times. [

3.4 Quadratic orders in quaternion orders

As before, we let P be a principal ideal domain and F its field of fractions.
A is a quaternion algebra over F' and A C A a P-order. Let L, d and g be
as in section 2.4. The isomorphism ¢ : Cy(L,q) — A is as in corollary 2.9.

A lattice M C L is said to be optimally embedded in L if M = FM N L.
A P-order S in an algebra over F' of dimension 2 is called a quadratic order
over P. If S is a quadratic order with S C A, then S is called optimally
embedded if S =FSNA.

Lemma 3.4. There is a natural bijection between optimally embedded sub-
lattices M C L of rank 2 and optimally embedded quadratic orders S C A.
It is given by

M Sy = C()(M,C]‘M),
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where Co(M,q|pr) is naturally embedded as a subalgebra of Cy(L,q) = A.
The inverse mapping is given by

S Mg := {z € L | tr(Sz*) = (0)}.

Proof. Let dy be a generator of d(A). Take an optimally embedded sublattice
M C L of rank 2. We want to show that Sy, is optimally embedded in A.
Choose a P-basis mi, mo of M. Since M is optimally embedded in L, we
can extend it to a P-basis mq,mo,l of L, and hence

1, domfmg, d()m;l, dol*m1

is a P-basis of A. Now we have Sy = P|w], where w = dgm}ms, and hence
Sy is optimally embedded in A. Furthermore, it is clear that tr(wm}) =
tr(wmi) = 0, so M C Mg,,. But M is optimally embedded and hence we
have equality M = Mg,,.

Conversely, assume that S is optimally embedded in A with a generator
wg, 80 S = Plwg]. It is clear that Mg is an optimally embedded sublattice
of L. Let mj, my be a basis of Mg and put w = dym]mg. Then

wsw = wgdymime = —dymiwgmg = dymimaws = wWws.

Now F|wg] is a maximal commutative subalgebra of A and hence Flwg] =
Flw]. Since both Pwg]| and P|w] are optimally embedded in A, we get

Plw] = Flw]N A = Flws] N A = Plws],

i.e. SZSMS. |

3.5 Embedding numbers

Let P, F and A be as in section 3.4, and let K be a separable quadratic
F-algebra. Let A C A and S C K be P-orders.

We say that an embedding f : S — A is optimal if the image of f is
optimally embedded in A, i.e. f(S) = (Ff(S)) N A. Let

E={f|f:8 — A is an optimal embedding}.
The units A € A* act on E by
(A F)(a) = Af (@)

Let e(S,A) denote the number of orbits in E under this action. It is called
the embedding number of S into A.

Let now FF = Q and P = Z. If p is a prime, then for simplicity we often
write e, (S, A) for e(Sp, A,). We have the following result:
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Proposition 3.5. If A is an Eichler order over Z, then

e(S,A) =nh(S) J[ ep(SA).

p prime

For a proof, see [46], théoréeme II1.5.11. (In the formulation in [46] of
that result there is a constant h, but it follows from theorem 5.2.11 in [30]
that h = 1 in the case of Eichler orders.) To use proposition 3.5, we need
to be able to compute the local embedding numbers e, (S, A). In the case of
hereditary orders, they are given by:

Proposition 3.6. Let p be a prime, F = Q, and P = Z,.
i) If A= My(Zy), then e(S,A) =1 for every S.

it) If A = (Zp Zp), then e(S,A) = 2 if K is split, and if K is a field
Ly ZLp

we have
2 if S is non-mazimal,
e(S,A) =<1 if S is mazimal and K/F is ramified,
0 if S is mazimal and K/F is unramified.

iii) If A= Qy,, then e(S,A) =0 if K is split, and if K is a field we have

2 if S is mazimal and K/F is unramified,
e(S,A) =<1 if S is mazimal and K/F is ramified,

0 if S is non-mazimal.

For a proof of these results, we refer to [46] and [6].
The next lemma deals with a related type of embedding numbers which,
in the case that we will consider, coincides with the above.

Lemma 3.7. Let A be an Eichler order in an indefinite quaternion algebra
over Q, and let S be a complex quadratic order over Z. Let the group A' act
by conjugation on the set of optimally embedded orders S' C A with S" = S.
The number of orbits is then e(S, A).

Proof. Let
E'={8" |8 CA, =S and S'=(Q5)NA}L

We want to show that #(E'/A') = #(E/A*).
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Since A is an indefinite Eichler order, there exists A € A with nr(\) = —1.
Assume that f : S — A is an optimal embedding such that A- f = f. Then A
commutes with all elements in f(S). But Qf(S) is a maximal commutative
subalgebra of A, so we must have A € Qf(S). Now, Qf(S) is a complex
field, which contradicts nr(\) = —1. Hence we have #(E/A') = 24(E/A¥)

Take now S’ € E' and A € A'. Assume that AsA~! = s* for every s € §'.
Take j € S’ with j* = —j and 5 # 0. We have A\j — 5*A = 0, but also
Aj + A = tr(Aj) € Z, so we get j*(A+ A*) € Z. Hence A + A* = 0, so
A2 = —1. We get A=Q()\,j), where A2 < 0, j2 < 0 and \j = —j\, but this
contradicts that A is indefinite. We conclude that #(E/A) = 2#(E'/AY),
and we are done. O

3.6 Some results on quaternary quadratic forms

We list some results about quaternary quadratic forms for future reference.
First we cite the very important result concerning the numbers represented
by indefinite quaternary quadratic forms over Z. It is theorem 1.5 in [7]:

Theorem 3.8. Let g be a non-degenerate indefinite integral form in n > 4
variables and let N # 0 be an integer. Suppose that N is represented by q
over all Zy. Then N is represented by q over Z.

Further, let P be a finite set of primes and for p € P let B, € Zy, be any
representation of N. Then there is f € Z" representing N such that (3 is
arbitrarily close to B, for every p € P.

We also have a simple local result:

Lemma 3.9. Let (L,q) be a unimodular quaternary quadratic lattice over
Zp. Let M be rank 2 sublattice of L with L/M torsion free, and let M+
denote the orthogonal complement of M in L. Let ¢ = q|r, ot = gL
and assume that ¢ is non-degenerate. Then we have d(p) = d(¢*) and

m(p) = m(p").

Proof. Let g(z) = b(z, z), where b is a symmetric bilinear form on L. Since

¢ is non-degenerate, we have that M + M is a sublattice of L of rank 4.
We want to show that

[L: M+ MY =d(y). (3.3)

If (3.3) is true, then we get d(¢) = d(p") by symmetry.

Let e1,e2 be a Zj,-basis of M, and extend it to a Z,-basis e1, ez, e3,€s
of L. Let @ be the 4 x 4 matrix (b(e;,e;)) and write @ = (4 o), where
A, B and C are 2 X 2 blocks. We have d(p) = (det(A)). Identifying L with
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column vectors, we have that M is the column space of the 4 X 2 matrix
(}). Using that (L,q) is unimodular, it is straightforward to check that it
is always possible to arrange so that the matrix B is invertible by changing
the basis if necessary (consider the column space of the two top rows of
the reduced matrix Q € M4(ﬁ)) We get that M is the column space of
(BifA). Hence [L : M + M) = (det(A)), and we have proved (3.3).
Assume now that m(p) = (m), m € Z,. From the description of M=+
above, we have that ML C ZLper + Zpea + Zymes + Zpmey, and hence we
get ¢(z) =0 (mod m) for all x € M*. Therefore, m(y) | m(p*). But then,
by symmetry, we also must have m(p*) | m(¢), and we are done. O

4 Involutions

In this chapter, k is a quadratic field over Q, whose non-trivial automorphism
is denoted by z +— Z, and R is the ring of integers in k. We let A be a
quaternion algebra over k. We investigate under which conditions on A
there exists a so called involution 7 of type 2 on A. Let A be a maximal
order in A. We define what we mean by 7 being optimal respectively special
with respect to A. We prove that for every maximal order A, there exists
an involution which is special with respect to A.

4.1 Algebras with involutions

Definition 4.1. An involution of type 2 on A is a map 7 : A — A such that
72(a) = a, 7(a + b) = 7(a) + 7(b), 7(ab) = 7(a)7(b) and 7(za) = T7(a) for
alla,b€ A and z € k.

First we observe that if 7 is any involution of type 2, then it commutes
with the canonical involution on A, i.e.

7(a*) = 7(a)* (4.1)

for all @ € A. To see this, note first that 7 preserves the center k of A. Now,
if a € A\ k, then a* is uniquely determined by the conditions that a+a* € k
and aa* € k. We get 7(a) + 7(a*) € k and 7(a)7(a*) € k which shows that
7(a*) satisfies the conditions which characterise 7(a)*, and hence (4.1) is
proved. For completeness, we prove the following well-known result (see [39],
theorem 7.4, p. 301):

Lemma 4.2. Let 7 and v be two involutions of type 2 on A. Then there
exists an invertible element m € A such that T(m)* = m and v(a) =
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m~'r(a)m for all a € A. Furthermore, if my is another invertible ele-

ment in A satisfying T(m1)* = my and v(a) = m{'7(a)my for all a € A,
then there exists v € Q such that m1 = rm.

Proof. Consider the map v o 7. This is a k-linear automorphism of A so,
by the Skolem-Noether theorem (proposition 2.4), there exists an invertible
element n € A such that v o 7(a) = nan~! for all a € A. Since 7 is an
involution, we get that

v(a) =n"tr(a)n

for all ¢ € A. Now if we use that v o v is a the identity, we get that
a = (7(n)n)"tar(n)n for all a € A, and hence that 7(n)n € k, the center
of A. This implies that

T(n) = an®

for some o € k. If we now apply 7 and the canonical involution to this
equality, we get n* = @r(n) and hence @ = 1. By Hilbert’s theorem 90
(see [26], p. 34) there exists p € k such that a = p/p. If we let m = pn, it
is clear that m satisfies the claim.

Consider now an alternative element m;. We get that a = v(v(a))

(1(m)my) tar(m)m; for all a € A. Hence 7(m)m € k, so m; = ar(m)* =
am, where a € k. We get m; = 7(m1)* = ar(m)* = am, so @ = « and
thus a € Q. O

If there exists an involution 7 of type 2 on A, then we can define
A, ={a€A|7(a) =a}.

It is clear that A, is a Q-subalgebra of A. We have VdA, = {a € A | 7(a) =
—a}, 80 A= A, ®+dA,, since 7 is an involution. Hence A, has dimension
4 over Q. Furthermore, we have A = kA; and hence A; must be a simple
algebra, since A is a simple algebra.

Conversely, suppose there exists a Q-subalgebra Ag C A, which is a
quaternion algebra. We claim that kAg = A. Assume that this is not the
case. Then there exist non-trivial elements a1, a2 € Ag such that ap = Vda;.
But Ag is simple, hence we get Ag = V/dAg, which implies that k C Ag.
Since k is the center of A, we conclude that the 2-dimensional k-algebra Ag
is commutative, a contradiction. Now A = kAg implies that A = k ®q Ag,
and we can define a natural involution on k ®qg Ag by

rTRat—TRa.

Hence A has an involution of type 2.
The following lemma, gives the relation between the discriminants of A
and Aq respectively if A =k ®q Ag.
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Lemma 4.3. A is ramified at a prime spot q of k if and only if ¢ #q and
P = qq is a split prime spot of Q such that (Ag), is ramified.

Proof. If p is a prime spot of Q such that (Ag), = M2(Q,) and ¢ is a prime
spot of Q above p, then it is clear that A, = My (k).

Assume now that p is a prime spot such that (Ag), is isomorphic to the
skew field H,, over Q,. If p is split, that is p = gig2 with g1 # go, then
kg ®g Ag = Q) ®g Ag = H,, so A is ramified at ¢; for ¢ = 1,2. Assume
now that p is an unramified or ramified prime spot. Consider first the case
p = 00. Then k is a complex field so ko ®g Ag = C®r H = M5(C). Let p
be a finite prime. Then we know that the field £, can be embedded into H,
(see proposition 3.6). Hence, we have &, ®q, H, = My (k,). O

If A is a quaternion algebra over k£ with ramification as described in the
lemma, then clearly it is possible to choose a quaternion algebra Ag over Q
such that A and k®qg Ag are ramified at the same set of spots. Hence A and
k @q Ag are isomorphic (see [46], théoréme II1.3.1). We have now shown:

Proposition 4.4. If A is a quaternion algebra over a quadratic field k, then
the following properties are equivalent:

i) A has an involution of type 2;
i1) A contains a rational quaternion subalgebra;

iii) A is ramified at a finite number of pairs of conjugated (different) prime
spots of k.

4.2 Subalgebras corresponding to involutions

Let 7 be an involution of type 2 on A. Take an invertible element 5 € A
and consider the map 6 : A — A given by

0(a) = B'7(a)p.
0 satisfies 6(za) = 76(a) for all z € k and a € A. Define
A g={a€alb(a) =a}.
It is clear that A; g is a Q-algebra.

Lemma 4.5. The natural map g : k ®q Arp — A is injective.
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Proof. Let fi,..., f; be a Q-basis of A, 5. Assume that z =) z; ® f; is a
non-trivial element of k®g A, g which maps to 0, i.e. g(z) = > z;f; = 0. We
can without loss of generality assume that z; = 1. Since we have 6(f;) = f;
for all 4, we get 0 = g(z)+0(g(z)) = )_ try)@(z;) fi- This contradicts the fact
that the f;’s are linearly independent over Q, since tryg(71) =2#0. O

If we put B = kA, 3 C A, then B is a k-subalgebra of A. By lemma 4.5,
we have
B=k®qgArp

and hence dimy B = dimg A; 3. Now it is clear that dimg A; 3 = 4 if and
only if @ is an involution. Since 6%(a) = (7(8)B8) 'a(7(B)B), we get that 6
is an involution if and only if 7(3) is an element of the center k of A.

Assume that 6 is not an involution. We have that 8(7(8)8) = 7(8)8, so
7(B8)B € A, 5. Since 7(8)3 ¢ k, we conclude that

dimg A, g5 > 2.

It is not possible to have dimg A, = 3. To see this, consider the map

6? : A — A, which is an inner automorphism given by a +— (7(8)8) La7(8)B-

But 62 acts trivially on B, so 7(8)3 commutes with all elements in the
3-dimensional k-subalgebra B. But then 7(8)f must commute with all
elements in A and hence 7(3)5 € k, a contradiction. Thus we have proved:

Proposition 4.6. A, g is either a quaternion algebra over Q or a 2-dimen-
sional Q-subalgebra of A. The former happens if and only if T(8)B € k.
4.3 Orders and involutions

Let 7 be an involution of type 2 on A and A C A a maximal R-order.

Definition 4.7. We let A, denote the order consisting of elements fixed
under the involution, i.e.

A-={XAeA|T()) =2}
In other words, we have A; = A N A,. The situation is
R——A
7 — A, .

It is clear that, in general, the isomorphism class of A, depends on 7. How-
ever, in the constructions that we will do it will be important to choose an
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involution with certain good properties. For a given maximal order A, it
is in general not so clear what should be considered as the best choice of
involution 7. The ideal situation is if 7 can be chosen to be optimal in the
following sense:

Definition 4.8. We say that an involution 7 on A is optimal with respect
to a maximal order A if d(A;) = d(A) N Z.

Locally, for any maximal order there exists an optimal involution. Glob-
ally, this is in general not true. To see this, consider for example any algebra
A which is ramified at an odd number of pairs of prime spots in k. But it
need not be possible even if A is ramified at an even number of pairs of prime
spots. Consider for example the case where A = Ms(k), but A 2 Ms(R)
(such orders exist for some fields k). If 7 is optimal, then A, = My(Z),
which gives that A D RA; = Ms(R), so we get a contradiction.

It turns out that it is most important to have good behaviour of A, at
those prime spots that divide D = d(k).

Definition 4.9. We say that an involution 7 of type 2 on a maximal order
A is special, if for all primes p such that p | D, we have (A;), = My (Zp).

Note that the involution is special if and only if d(A;) and D are relatively
prime. Another way to formulate this, is to say that 7: A, — A, is optimal
with respect to A, for all primes p, which are ramified in &.

Lemma 4.10. Let A be a quaternion algebra over a real quadratic field and
assume that it exists an involution of type 2 on A. If A is a mazximal order
in A, then there exists an involution of type 2 on A which is special with
respect to A.

Proof. Let T be some involution of type 2 on A. Let p be a prime ramified
in k, so R, = Z, + VdZ,. From lemma 4.3, we know that A, = My(k,)
and hence we get that the maximal order A, is isomorphic to My(R,) by
proposition 2.10. We fix such an isomorphism. We let ¢, denote the natural
involution on Ma(kp), which is given by element-wise conjugation on the
entries of the matrices z € My(k,). By lemma 4.2, there exists an element
my € A, such that 7(m,)* = my, and ,(z) = m;lT(w)mp for all z € A,.
Let t, be an integer such that ptpm; L e 2pA,.

If welet W = {z € A| 7(z)* = z}, then m, € W, for all p. Choose
now an element 8 € W such that 8 —m, € p» A, for all ramified primes p.
Define an involution of type 2 on A by

v(z) = B 7(z)B.
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We want to show that v is a special involution with respect to A. Let
Ay ={reA|v()) =2}

Let again p be a prime ramified in k. If we let v, = m;lﬁ, then v(\) =
Y, tp(A)yp for all X € Ay and 1p(7p)* = 7p. Now 7 — 1 =m, (8 —my) €
ptpmllep C 2pAp, 50 vp = ap + 2\/3bp, where a,, € Z; and b, € pM2(Zy)
with b = —b,. We have (A,), = {X € Ay | 1p(N)yp = WA}, If we write
A = z+Vdy with 2,y € My(Z,), then t,(\)7, = Y\ if and only if yb,+byy =
apy + bpx — xb, = 0. It is straightforward to verify that we can define a Z,-
linear map g, : M2(Z,) — (Ay)p by

gp(z) =z + \a/—j(a:bp — bpx).

We get nry /g (9p(7)) = z2* + da, * nry /g (bpyz — xbp), which gives that

nry /g, (9p(z)) = det(z) (mod p)

for all z € My(Zp). But the determinant form on My(Zy) has discriminant 1,
and hence the norm form on (A, ), has discriminant 1 too. Hence (A,), =
M>(Z,) and we are done. O

We formulate a local result on optimal involutions in a special case,
which we will need later.

Lemma 4.11. If p is a prime such that p | d(A), then any involution T
on Ay is optimal. Furthermore, there exists an isomorphism €, x Q, — A,
such that the induced involution on Q, x Q, is given by T(z,y) = (y,z) for
all (z,y) € Qp x .

Proof. We can identify A, with Q, x €, and let ¢ be the involution given
by u(z,y) = (y,z) for all (z,y) € Qp x Q,. By lemma 4.2, there exists
m = (b,b*) such that 7(A) = m~L(A\)m™! for all A € A,. We get that
A ={(z,y) € Qp x Q| yb = bz} = Q,, so T is optimal.

We clearly have R,A; C A,, but on the other hand we have that R,A,
is a maximal order, hence we get A, = R,A;. The claim follows. O

We conclude this section with a result which will be used to construct
involutions on the surfaces that we will study.

Lemma 4.12. Let 7 be an involution of type 2 on A such that A, is an
Eichler order. Then there exists an element s € A, such that sT(A)s™! = A,
s?2 € ZAL and nr(s) > 0.
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Proof. We write do(A;) = NogNj Na, where Ny contains those primes p which
are unramified in £ and satisfy (A;), = ©,, Ni contains those primes p which
are split in £ and e((A¢)p) = 1, and Ny all other prime factors.

We claim that if p { NoNy, then 7(A,) = A,. If (A;), = My(Z,), then
Ap = Ry(A;)p, so the claim follows. If &, is a field and e((A,)p) = 1, then
the claim follows from proposition 2.18. Namely, this result implies that we
may identify A, with Mz (kp) in such a way that 7, is given by element-wise
conjugation and (A;), is given by (,%p & ). It follows from proposition 2.18,
that every maximal Rj,-order containing (A;), is invariant under 7. If p is
split in k and (A;), = Q,, then the claim follows from lemma 4.11. Finally,
if p is ramified in k¥ and (A;), = €2,, then by corollary 2.20 we have that the
R,-order R,(A;), is contained in a unique maximal Rj-order, so the claim
follows.

Now we want to construct the element s. If p | Ny, choose an element
sp € (Ar)p with vp(nr(s,)) = 1. If p | Ny, let s, € (A;)p be as in proposi-
tion 2.34. Define the Z-lattice

M= [ (AN (Ar)psy) C Ar.

p|No Ny

Consider the integral indefinite quaternary form nr : M — Z. It is clear
that this form represents NyN; locally for every prime p, and hence there
exists by theorem 3.8 an element s € M such that nr(s) = NyN;. We have
(NoNy)~1s? € (A;), for every prime p, and hence s? € NoN;Al. We need
to show that

sT(Ay)s™ = A, (4.2)

for every prime p.

If p t NoN1, then the claim follows directly by the above, since s is a
unit in (A, ).

Consider now the case p | No. We get that R,A; is a hereditary R,-order
with e(R,A;) = 1. Hence R,A; is included in exactly two maximal orders,
namely A, and 7(A,). Furthermore, s does not normalise neither A, nor
7(Ap), since vp(nr(s)) is odd. Hence (4.2) holds in this case.

Consider finally the case p | N;. We identify A, with My(Zy) x Mo (Zy).
Let ¢ be the involution of type 2 on A, which is given by «(z,y) = (y,z).
There is By € A, satisfying ¢(89)* = o such that 7(\) = 85 ¢«(\)By for
all A € A,. We can assume that 8y = (m,m*), where m € My(Zy) is a
primitive element. We must then have det(m)Z, = N1Z,. We can therefore
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write m = 61((1) ]31 )62, where €1, e; € My(Zy)*. We get

(Ar)p ={A €Ay | BoA = v(N)Bo} =
= {(z,mzm™") | x € My(Z,) N m ™ My(Zp)m} =

Zy N17Z
_ -1 —1 (Lp N1ty
= {(z,mzm ") | z € & (Zp z, ) €}

Proposition 2.34 implies that s is of the form

1 (a11N1 a12Ny annN1 a2 1
s = (e €2, €1 € ),

ag1  axlVi a1 N1 azoNy
where a;; € Zp and ai2a21 € Z;. Now if follows that sﬂal € A;,, SO

s*r(!\;,,)s*1 = sﬁalb(Ap)ﬂosfl = sﬂoflAp(sﬁofl)*1 =A,. O

5 Hermitian structures

In this chapter, we consider two different questions.

We introduce the concept of an integral A-hermitian form, where A is a
maximal order in a quaternion k-algebra A having an involution of type 2,
where k is a real quadratic field. We compute the number of local classes
of such forms in sections 5.2 to 5.5. We want to make clear that the main
cases are already proved by Hausmann in [20], so this should essentially be
considered as a reformulation of his results to make them better adopted to
our situation.

In the sections 5.6 and 5.7, we consider a construction of orders from
hermitian planes. We prove that there is a certain one-to-one correspondence
in the local case. A useful corollary is that the orders that we construct in
chapter 7 are Bass orders.

5.1 Preliminaries on hermitian lattices

In this section, we will recall the basic concepts on hermitian lattices. Let
P, F, S and K be as in section 2.1.

Let V be a finite dimensional vector space over K. Amap h: V xV —
K is called a hermitian form on V if it satisfies the following properties:
h(z +vy,z) = h(z,z) + h(y, 2), h(az,y) = ah(z,y) and h(y,z) = h(z,y) for
all z,y,z€V,a € K.

It is well known that any hermitian form has an orthogonal basis, i.e.
there exists a K-basis eq,...,e, of V such that h(e;,e;) =0 if ¢ # j.
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Let L be a finitely generated S-lattice in V. If h restricts to an S-valued
function on L, i.e. h : L x L — S, then (L, h) will be called a hermitian
lattice. If L has rank 1, then we call (L, h) a hermitian line. If the rank of
L is 2, then L is called a hermitian plane.

Take two hermitian lattices (L1, hq) and (Lo, hg). An isomorphism g :
L1 — Lo of S-modules is called a similarity if there exists an element a € F*
such that hi(z,y) = aho(g(x),g(y)) for all z,y € Ly. If a = 1, then g is an
isometry and we say that L; and L are isometric.

Ifey,...,e, is an S-basis of L, and z = ), z;¢; and y = ), y;e; are two
arbitrary elements of L, then h(z,y) = Zi,j J;aijxj, where a;; = h(ej,€;).
The matrix H = (a;j) € M,(S) satisfies H' = H. We often specify an isome-
try class of hermitian lattices by simply giving such a matrix. If det(H) # 0,
then we say that (L, h) is non-degenerate. From now on we will only consider
non-degenerate hermitian lattices.

Let €f,...,e; be another basis of L with e; = >, Ajje;. The matrix
A = (X\ij) is then unimodular, i.e. \,A" € M,(S). If the form h is repre-
sented by the matrix H' in the basis €/,...,el,, then H and H' are related
by

H = XHA.

We have det(\) € S*, since A is unimodular, and hence we get that det(H)
and det(H') determine the same class in F*/nry/(S*). This class is de-
noted by d(h), the discriminant of (L, h).

If L = M1®Ms and h(M;, M;) = (0), then we say that L is an orthogonal
sum of M7 and M. We write L = My | Ms. Given two arbitrary hermitian
lattices M1 and Mo, it is clear how to construct a hermitian form A on
L = M; & My such that L = My L M.

We say that (L, h) is isotropic if it represents 0, i.e. there exists z € L,
z # 0, such that h(z,z) = 0. A lattice which is not isotropic is called
anisotropic.

The so called scale s(L) of L, is the S-ideal generated by all elements
h(z,y), where z,y € L. The norm n(L) is the S-ideal generated by all
h(z,x), x € L. We clearly have n(L) C s(L). If n(L) = s(L), then we say
that L is normal, otherwise subnormal.

Assume now that K is a local field. Let II be a prime element of K
and 7 a prime element of F. A vector z € L is primitive if z ¢ IIL. Let
i > 0 be an integer. We say that L is II*-modular if h(z, L) = ITI* P for every
primitive vector € L. An example of a II'-modular plane is given by the
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wo- (5 ).

We say that L is modular if L is II*-modular for some i. Any lattice can
be written as the orthogonal sum of modular lines and planes (see [25],
prop. 4.3). We also have the following result, which is proposition 4.4 in [25]:

so called hyperbolic plane

Proposition 5.1. Let h be a hermitian plane. Then h is isometric to a
sum of two lines if and only if h is normal.

If a € F*, then we define the scaled lattice a o L, to be the lattice
L together with the hermitian form (z,y) — ah(z,y). We say that the
hermitian lattice (L, h) is primitive if = { s(L). By suitable scaling, we can
always replace a hermitian form on a lattice with a primitive hermitian form.
A primitive modular plane is either IT°- or IT'-modular.

We finally remark that many of the concepts that we have defined for
hermitian lattices also have an obvious meaning in the case of hermitian
spaces. Just note that if (V, h) is a non-degenerate hermitian space, then it
is natural to consider the determinant as a class in the group F™*/ nrg/p(K™).
Recall that if K is a local field, then this group is isomorphic to Z/2Z (see
e.g. [31], corollary 63:13a). By considering an orthogonal basis, it is clear
that the class —d(h) is trivial if and only if the hermitian space (V,h) is
isotropic.

5.2 Isometry classes of hermitian lattices over R,

Let k = Q(v/d), where d is a square free integer, and R the ring of integers
in k. Let p be a rational prime and assume that k, is a field. Let R, =
R®gzZ,, and let II be a prime element in R, which we choose as follows: If
p # 2, the non-dyadic case, then II = v/d. If p =2 and d = 3 (mod 4), the
so called dyadic ramified unit case, then I =1+ +/d. If p =2 and d = 0
(mod 2), the so called dyadic ramified prime case, then II = /d.

In this section, we will, for convenience, write down a complete set of
isometry classes of primitive hermitian planes over R,. All statements in
this section follow from the results in [25]. As it turns out, the isometry class
of a hermitian plane is almost always determined by the discriminant class
d(h). Indeed, if things are reformulated in terms of integral A-hermitian
forms instead, see section 5.4, we get a one-to-one correspondence between
isometry classes and their corresponding discriminants. We remark that, in
the case of Hilbert modular surfaces, the same goal was achieved by instead
considering integral skew-hermitian forms in the sense of [20].
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Consider first the case that k, is unramified. In this case, we have:

Lemma 5.2. Any hermitian plane is normal and, in fact, any primitive
form is isometric to a unique form among the following

We remark that the form given by (5.1) is isotropic if and only if & is
even.

Assume now that kj, is ramified. Choose an element e € Zj \ nr(R}).
The normal planes are described by the following lemma;

Lemma 5.3. Letl > 0 be an integer, and let M(l) denote the set of isometry
classes of normal primitive hermitian planes h over R, with v,(d(h)) = .

i) If 1l < vy(D), then M(l) consists of 2 classes, one class consisting of
isotropic planes and one class consisting of anisotropic planes.

ii) If 1 > v,(D), then M(l) consists of 4 classes. In this case, a class is
characterised by the following two properties: If its forms are isotropic
or not, and if its forms represent trivial elements in Z,/ nry, g, (R})
or not.

We write down representatives of all isometry classes of normal planes.
The forms in part i) of lemma 5.3 are represented by

1 0 .
(O —Ei Ilr(H)k) ) 0 S k< 'Up(D), 1= 0, 1. (52)
The form in (5.2) is isotropic if and only if 4 = 0. The forms in part ii) of
lemma 5.3 are represented by

¢ 0 y
(0 —e IlI‘(H)k> k> UP(D)a 6, =0,1. (53)

The form in (5.3) is isotropic if and only if i = j. It represents trivial
elements in Z;/ nry, /g, (Ry) if and only if 4 = 0.

We now want to write down all the subnormal primitive planes. When
we do this, we will write the planes in a particular order. The reason behind
this ordering will become apparent later.

Cousider first the ramified non-dyadic case. In this case, there is only
one subnormal plane, namely H(1):

(-?/Zz ?) . (5.4)
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Consider now the dyadic ramified unit case. In this case, we have 3
classes of subnormal primitive planes h. When vy,(d(h)) = 0, we have H(0):

((1’ é) , (5.52)

and when v, (d(h)) = 1, we have the isotropic plane H(1) and one anisotropic

plane:
(% 13) and (% 1;) (5.5b)

Consider finally the dyadic ramified prime case. In this case, we have
5 classes of subnormal primitive planes h. First, we have h = H(1), with

op(d(h)) = 1:
(—(\)/E ?) . (5.6a)

We also have two planes h with v,(d(h)) = 0, namely H(0) and one plane

which is anisotropic:
01 2 1
(1 O> and (1 _2) . (5.6b)

Finally, we have two more planes h with v,(d(h)) = 1:

2 Vd 2 Vd
d . 5.6
(—\/E 0 ) o (—\/3 2d) (5-6¢)
The first plane in (5.6¢) is isotropic and the second plane is anisotropic.
Now we want to compute the set of norms of automorphism of a hermi-

tian plane h. Let k, be a an arbitrary field extension of (, again. We let
R; denote the elements of R, with norm 1:

R,={peRy|pp=1}.
If h is a hermitian plane with matrix H, then we define
R,(h) = {det(\) | A € My(R,), N HX = H}.
Clearly Ry (h) is a subgroup of R},, and we introduce the following concept:
Definition 5.4. We say that the hermitian plane h is rigid if Ry(h) # R,
We now have the following result:

Lemma 5.5. If h is a primitive hermitian plane, then h is rigid in ezactly
the following cases:
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i) in the ramified non-dyadic case and in the dyadic ramified prime case,
when h is isometric to H(1),

i1) in the dyadic ramified unit case, when h is isometric to H(0).

In these cases, we have
R,(h) ={p€ Rll, |p=1 (mod VD)}, (5.7)
and hence the group indez (R} : Ry(h)] = 2.

Proof. (Compare with proposition 2.28 in [20].) Assume first that A is nor-
mal, so we may choose H = (6‘ 2), where a,b € Z,. Assume that p € R‘,,l,. If
we let A = (5 9), then we have nr(\) = p and NH) = H. Hence Ry(h) = R},
in this case.

We need to show that the planes given by (5.5b), (5.6b) and (5.6¢) are
not rigid. It is easy to see that all these planes represent 2, hence H can
be chosen of the form H = (% %), where a € Ry, b € Zs. If p € Ry with
pp = 1, then it is easy to verify that (p — 1)/2 € Ry. If we now choose
A= (g "‘(”_11)/2), then we get det(A) = p and NH) = H.

Consider now the planes, which we claim to be rigid. Observe that, in all
cases, the plane is isometric to H = (7?/& ‘/Oa). If X = (z45), then NHN=H
implies that ZT11299 — 19721 = 1. Hence det()\) = I11T99 — T19T91 = 1
(mod v/D). Conversely, assume that p € R}, with p = 1 (mod v/D). Then
there exists e € R} such that p = ¢/€ (in fact, we may choose € = (1 + p)/2
except possibly in the dyadic ramified unit case, where we may have to use
e = Vd(1 — p)/2 instead). If we let A = (§ 1%), then det()\) = p and

YH) = H. The lemma is proved. U

In other words, the rigid planes are the ones in (5.4), (5.5a) and (5.6a).

5.3 A-hermitian forms

Let A be a quaternion algebra over k, and V a vector space over A, i.e. V
is a right A-module.

Definition 5.6. A map ®:V xV — A is called an A-hermitian form if
i) ®(z +y,2) = 0(z,2) + (y, 2),

ii) ®(za,y) = ®(z,y)a,

*

i) ®(z,y) = ®(y,z) ,
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for all z,y,z € V and a € A. The pair (V, ®) is called an A-hermitian space.

Two A-hermitian spaces (Vi,®1) and (Va, ®2) are isometric, if there ex-
ists an invertible A-linear map f : Vi — Vs such that ®o(f(z), f(y)) =
& (z,y) for all z,y € V1.

In the sequel, we will only consider 1-dimensional A-hermitian spaces V,
which naturally will be identified with A. In this situation, an A-hermitian
form is simply a map ® : A x A — A of the form

®(z,y) =y vz,

where v is an element in A satisfying 7* = 7. If ® # 0, then we define the
determinant of ® by

det(®) = nr(y) nrg o (k"),

which is a class in the group Q" / nry (k). The following result is a special
case of corollary 6.6, p. 376, in [39]:

Theorem 5.7. Two A-hermitian spaces (A, ®1) and (A, ®2) are isometric
if and only if det(®1) = det(P2).

We define the groups of isometries of an A-hermitian form:

Definition 5.8. The unitary group of an A-hermitian form @ is
U4, @) ={s € A| ®(sz,sy) = (z,y) Va,y € A}
and the special unitary group is

SU(A,®) ={s € U(4,®) | nr(s) = 1}.

By a (free) A-lattice in A, we mean a set £ of the form £ = vA, where
v € A is such that Q€ = A. We say that two A-lattices £ and L' lie in
the same class with respect to SU(A, ®), if there is o € SU(A, ®) such that
oL = L'. We say that the lattices lie in the same genus if for all primes p
there is o), € SU(A4,, ®p) such that op L, = L.

5.4 Integral A-hermitian forms

Let A be a maximal order in A and let 7 be a type 2 involution on A, which
is special with respect to A. Let ® : A x A — A be an A-hermitian form
with respect to the involution 7. We introduce the following concept:
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Definition 5.9. We say that the A-hermitian form ® is integral with respect
to the order A if it satisfies the properties

i) ®(z,y) € Afor all z,y € A,
ii) ®(z,z) € R+ VDA for all z € A.

Let us comment on condition ii) in definition 5.9. Since we have assumed
that the involution is special, we claim that this condition only matters in
the case that 2 is ramified in k. Namely, take x € A. We have ®(z,z) €
R+ /DA if and only if ®(z,z) € (R + vDA), for all primes p. Now, if p
is a prime not dividing D, then (R + v'DA), = Ay, since v/D is a unit in
R,, so condition ii) follows from condition i). Let now p # 2 be a prime
dividing D. Since the involution is special, A, can be identified with M»(R,),
where the involution 7 acts element-wise on the entries of the matrices. Let
B = ®(z,z) € My(R,). Since R, = Z,[v/D], the condition 7(3)* = 8 gives

that \/_ \/_
b= (a;\?ﬁD aib\eﬁ> ’

where a,b,c,d € Z,. Hence g € (R+ \/l_)A)p as required.

It turns out that this extra condition ii), imposed if 2 is ramified in k, is
essential for the computations that we will do.

We say that two integral A-hermitian forms ®; and &, are equivalent if
there exists a unit A € A! such that ®y(z,y) = ®1(\z, \y), for all z,y € A.
We say that a A-hermitian form & is primitive if it is true that for any
r € Q such that r® is a integral form, we have r € Z. For each A-hermitian
form & : A x A — A, we define d(®) = nr(®(1,1)) € Z. It is clear that
d(®1) = d(®2) if &; and Py are equivalent.

Definition 5.10. Let N € Z, N # 0. The number of equivalence classes
of primitive integral A-hermitian forms ® with d(®) = N is denoted by
n(A,T,N).

5.5 Local classification of integral A-hermitian forms

We remark that most of the results of this section are implicitly given in [20],
but we give proofs of all statements for completeness and since we have a
slightly more general setting.

Let A, A and 7 be as in section 5.4 and take N € Z,, N # 0. We want
to compute the number n(Ay, 7, N) of equivalence classes, with respect to
A;}), of Ap-hermitian forms ® on (A,,7), which are primitive integral with
respect to A, and satisfy det(®) = N.
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Assume first that &, is a field. We let « be an optimal involution on A,.
Then we have (A,), = My(Zp), and hence A, = R,(A,),. We can there-
fore, without loss of generality, identify A, with M3(R,) and assume that
the involution ¢ is given by element-wise conjugation on the matrices, i.e.
t((aij)) = (@i;). A primitive integral A-hermitian form ® with respect to ¢
is determined by its matrix

“‘/1_)> , (5.8)

R PR

where p € R, and a,b € Z, are such that (a,b,p) = (1) in the unramified
case and (a,b,p) 2 (II) in the ramified case. Two matrices 8; and [y are
equivalent if there exists a matrix A € SLa(R)) such that N B = Bo.

In section 5.2, we studied isometry classes of hermitian planes. This is
equivalent to studying the orbits of primitive matrices

H= (; Z) (5.9)

with a,b € Zjp, p € R),, where we say that H is primitive if (a,b,p) = (1) in
the unramified case and (a, b, p) O (II) in the ramified case. The group action
is A\ H = NH) for \ € GL2(Rp,). We will now translate the classification
of hermitian R,-planes to a classification of A,-hermitian forms.

Assume first that £, is an unramified field. Recall that we have not
assumed that 7 is an optimal involution on A,

Lemma 5.11. If k, is unramified, then for every non-zero N € Z,, there
exists exactly one class of primitive A-hermitian forms ® with d(®) = N,
i.e. n(Ap, 7, N) = 1.

Proof. First we show that the statement holds for the optimal involution ¢,
i.e. that n(Ap,¢, N) = 1 It is clear, that for any N # 0, there exists a
primitive form ® such that det(®) = N. Assume that ®; and ®, are two
primitive Ap-hermitian forms with respect to ¢ such that det(®;) = det(®,).

Let 8; = ®;(1,1) and H; = (7(\)/3 ‘ga)ﬁz for 1 = 1,2. It is clear that Ff = H,.
By lemma (5.1), there exists v € GLa(R,) such that 7" Hyy = Ho. It is clear
that det(y) € R}). Since H; is not rigid, there exists u € My(R,) such that
EiHllJ = H; and det(y) = det(y) !. If we choose A = py, then we have
A 1A = B, so &1 and P, are equivalent.

Consider now a general involution 7. By lemma 4.2, we have 7(z) =

m~'i(z)m, for some invertible element m € A, such that m € A,, m & pA,
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and ¢(m)* = m. An integral Ap-hermitian form is given by an element £ in
A, such that 7(8)* = 8 and 7(A,)*BA, C A,. We have

T(Ap)*BA, C A, & m™(Ay)*mBA, C A,
& AympBA, CmA,
& mf € nr(m)A,
& B emrA,,

where the third equivalence follows from lemma 2.14. Let now 8 = m*zx,
where z € Ay. We get that 7(8)* = f if and only if ((z)* = z. Hence we
have that the map

= m'z,

gives a one-to-one correspondence between the elements of A, representing
integral Ap-hermitian forms with respect to «+ and the elements representing
integral Aj-hermitian forms with respect to 7. O

Assume now that k, is a ramified field. In this case, 7 is by hypothesis
an optimal involution on A, so we identify 7 with the involution ¢ as above.

Lemma 5.12. There is a one-to-one correspondence between primitive her-
mitian matrices H in the sense of (5.9) and primitive integral matrices [
in the sense of (5.8) defined in the following way:

,3 = g(H) = OAHGH,
where the factor ap € ky is given by

1/v/d if H is rigid,
ag =< Vd if H is subnormal but not rigid,
VD  if H is normal,

and G is the matriz (% §). Furthermore, we have g(XtH)\) = X'g(H) for
every A € SLo(Ry),

Proof. Straightforward calculations give that if a matrix H satisfies H=H
and if A € SLy(R,), then 8 = g(H) satisfies B = B and g(XtH/\) = XBA.
It remains to show that the factor ay is such that g(H) is primitive if H
is primitive. If H is normal, then this is clear. In the cases where H is
subnormal, we can verify this claim by inspection of the matrices given in
equations (5.4)—(5.6). O

Lemma 5.13. Let k, be ramified. Then we have the following result
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i) if N € Z, and (d, N)p, = —1, then n(Ap,t, N) =0,

i) if N € Zy, and (d,N), = 1, then n(Ap,1,N) = 2, and for any such
form ® we have that —® ~ @ if and only if p 1 d (i.e. in the dyadic
ramified unit case),

iii) if 1 <wp(N) < 2u,(D), then n(Ap,t,N) = 1.

i) if vp(N) > 2vp(D), then n(Ap,t, N) = 2. Furthermore, for such a
form ®, we have that —® ~ ® if and only if (—1,D), = 1.

Proof. If we write p =z +dy, =,y € Zjp, and 3 is as in (5.8), then we have
det(B) = z? — dy* — Dab, (5.10)

and (z,y,a,b) = (1). It is clear that the form (5.10) represents N primitively
if and only if the equation

2> —dy* =N (mod DZ,), z,y € 7Z,

has a solution. It is easy to see that this equation is unsolvable precisely if
N € Zy and (d, N), = —1. In particular, we get i). To prove the rest of this
lemma, we use lemma 5.12 and follow the idea in the proof of lemma 5.11.

ii) Assume that N € Zj; and (d, N), = 1. If det(3) = N, then we have
that H = g~'(8) is a rigid hermitian matrix. Since [R,(H) : R}] = 2, we
have 2 classes of forms. Furthermore, since for every form 3 thereisay € A
such that «()* 8y € Zj, we see that (3 is equivalent to —f if and only if there
is some 7y € A}, with ¢(y) = —y. This is the case if and only if p { d.

iii) If 1 < vy(N) < vp(D), then g~1(B) is a subnormal non-rigid form. If
vp(D) < vp(N) < 2v,(D), then g 1(B) is a normal plane h with v,(d(h)) <
vp(D). The claim now follows.

iv) In this case, we get that g~1(f) is a normal plane h with v,(d(h)) >
vp(D). There exist two classes of hermitian matrices with a given determi-
nant. These two classes are distinguished by the elements in Zj that they
represent, according to lemma 5.3. Hence we get that S and —f are equiva-
lent if and only if —1 € nr(R,). This happens if and only if (-1, D), =1. O

Now we turn to the split case, so assume that k, = (), x Q,,. We consider
first the case p | d(A). By lemma 4.11, any involution is optimal, and we
can in fact identify A, with Q, x Q, and let 7(z,y) = (y,z) for z,y € Q,.
Consider two integral Ap-hermitian forms ®; and ®2 with d(®1) = d(P3).
We have for ¢ = 1,2 that ; = ®;(1,1) = (b;, b)), where b; € Q, with
nr(b;) = nr(by). By proposition 2.11, we see that ®; is primitive if and
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only if p? { d(®;). Let ¢ = b; b1 € Q and A = (c,1) € AL. Then we get
7(A)*B2A = B1. Hence,

1 ifp?fN

n(Qy x Qp, 7, N) =
(p 7 ) {0 otherwise.

Consider now the case p { d(A). We have A, = My(Zp) x Mo(Zp). Let ¢
be the optimal involution given by ¢((z,y)) = (y, ), for all z,y € My(Z,).
First we compute n(A,, ¢, N). A primitive integral Aj-hermitian form ® with
respect to ¢ is given by ®(z,y) = ¢(y)*Bz, where S = (b, b*) with b € M2 (Zp)
and b & pMy(Z,). If A € Al, then X = (a,c) where a,c € SLy(Z,), and we
get t(A)*BA = (c*ba, a*b*c). Assume now that ®; and P, are two primitive
forms with d(®,) = d(®1). Let ®; be given by 5; = (b;,b}), i = 1,2. We
have det(b1) = det(bs) and by, by € Mo(Zp) \ pM2(Z,). It is easy to see that
there exist elements a, c € SLy(Z,p) such that by = c*b1a, so we get that @,
and P, are equivalent. Hence, we have

n(Ma(Zp) X Ma(Zp),t,N)) =1,
for all non-zero N € Z,. Now, this holds in fact for any involution 7:

Lemma 5.14. If p is split in k and p t d(A), then n(A,, 7, N) =1 for every
non-zero N € Zp.

Proof. Instead of changing the involution, we will change the order A, in
M (Q,) x My(Qy). We let Ay, = My(Zy) x m™ My(Zy)m, where m is an
invertible element in M(Q,) such that m € My(Zy) and m ¢ pMs(Zy).
Take a Ap-hermitian form ® and let § = ®(1,1). By lemma 2.14, we get
T(Ap)*BA, C A, if and only if My(Z,)m* My (Z,) C m*My(Z,) if and only
if m*x C nr(m)Msy(Z,) if and only if € mMy(Z,). The claim now follows
as in the proof of lemma 5.11. O

For future reference, we now summarise the results of this section. We
first introduce two functions: For every prime p dividing D, we define a
character Xpp : Zp — {£1,0}, by

(D,N)p ifptN,

Xpp(N) = {0 itp| N

If p is a prime such that p | D, and N € Z,, N # 0, then we define

2 ifu,(N) > 2v,(D)
N — D = D
aD’p( ) { 1 otherwise.
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Proposition 5.15. Let 7 be an involution of type 2 on A, which is special
with respect to A. Let N € Z,\ {0}. If we let n =n(Ap,7,N), then we have

i) if kp is unramified, then n =1,

iii) if kp is split and p t d(A), then n =1,

)
i) if kp is ramified, then n = (Xpp(N) + 1)ap p(N),
)
i)

if kp is split and p | d(A), then n =1 if p>{ N and n = 0 otherwise.

5.6 Hermitian spaces and quaternion algebras

The results in this section can be found in [43], p. 23-25, but are included
for completeness. Let F be a field, and K a separable quadratic algebra
over F' with [ — [ the non-trivial automorphism of K over F.

Proposition 5.16. Let (V,h) be a 2-dimensional non-degenerate hermitian
space over K. Then

Qn ={f € Endg(V) | h(f*z,y) = h(z, fy) Vz,y € V}

is a quaternion algebra. Furthermore, Qy, is split if and only if — det(h) is
trivial in F* [ nrg p(K*), i.e. if and only if h is isotropic.

Proof. 1t is clear that @y is an F-algebra. We now identify V with 2 x 1
K-matrices, and let i be given by

h(u,v) = v'Hu,

where H is some 2 x 2 K-matrix such that ' = H. Tt is clear that the
isomorphism class of @, only depends on the similarity class of h. Hence,
by choosing an orthogonal basis for h, and scaling h if necessary, we may
assume that H is of the form
10
H =
()

where s € F*. Now we get that @)}, consists of those K-matrices v = (Lcl Z)

which satisfy 7' H = H~*, and so by an easy calculation we get

Qn="{r= (CCL —;E) |a,c € K}.



52 5 HERMITIAN STRUCTURES

From this description, it is clear that Q@ ® K = Ms(K). Hence @, is a
central simple algebra of dimension 4. If we now consider the norm form on
Qpn, which is given by

nr(y) = aa + scc,

we see that this form is isotropic if and only if —s € nr(K*). This shows the
proposition. O

5.7 Orders and hermitian planes

Let P and F be as is chapter 2, and K as in section 5.6. Let S be the
maximal order of K, so we have the following diagram of inclusions:

F—K

P——S.
Let M be a projective S-module of rank 2. Any such M will be called an
S-plane. Let V= K ®gs M, so V is a 2-dimensional vector space containing

M as a lattice. If h: M x M — § is a hermitian form, then we construct a
P-order Ay, by

Ap ={X € Endg(M) | h(z, A\y) = h(X*z,y) for all z,y € M }. (5.11)

In the notations of section 5.6, we have A, = @, N Endg(M). Note that
Endg(M) is a maximal order in Endg (V). It is clear that the isomorphism
class of Ap, only depends on the similarity class of h.

Recall from definition 2.29 that a quaternion P-order A is S-primitive if
it exists an embedding of S into A. Recall also the fact that an S-primitive
order is a Bass order. Conversely, it is true, if P is a local ring, that any
Bass order A is S-primitive for some maximal order S in some quadratic
extension of F' (see proposition 1.11 in [5]). We will see later in this section
that if P is a local ring, then the order Aj in (5.11) is in fact S-primitive.
As a consequence we get, for an arbitrary base ring P, that A, is a Bass
order.

To a similarity class of hermitian S-planes, we have by (5.11) associated
a P-order. Now we want to give a construction going in the opposite direc-
tion. Given an S-primitive order, we want to construct a similarity class of
hermitian S-planes.

Let A be an S-primitive order with a fixed choice of an embedding of S
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into A. Let A= F ®p A, so we have the following diagram of embeddings:

K—A

N

S—A.

We want to construct a hermitian form hp, on some S-plane M, such that
the similarity class of hy is well defined. Now A can be naturally considered
as an S-plane by multiplication from the left, so it is sufficient to construct
a hermitian form on A. Consider now the natural embedding of A into
Endg(A) given by

A= A= (v vAY),
for all A € A. This induces the following commutative diagram of ring

embeddings

A—— EndK(A)

T T (512

A ——Endg(A).
With these identifications, it is clear that we have
A= ANEndg(A). (5.13)
Now we claim that there exists a map

0:A—- K (5.14)

satisfying §(F) = F, 6(la) = l6(a) for all ] € K, a € A, and é(a*) = (a)
for all @ € A. We can construct § as follows. Let u € A be such that
I =ulu™! for all ] € K. Such an element u exists by lemma 2.5. Now we
get that A = K ® Ku and we let § be projection on the first summand. It
is straightforward to verify that this map has the required properties. The
map J is uniquely determined up to a non-zero factor of F. We choose one
such map ¢ satisfying 6(A) C S and we define the hermitian form

ha:AXA—S

by
ha(z,y) = é(zy").

Using this construction, we get in particular:
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Proposition 5.17. If A is an S-primitive order, then A is isomorphic to
Ay, for some S-plane (M, h).

Proof. We want to show that we can choose (M, h) as the hermitian S-plane
(A, hp), or in other words that the composition A +— hp — Ay, induces
the identity on the set of isomorphism classes of S-orders. It is clear that
ha(z, A(y)) = ha(A*(z),y) for all z,y, A € A. Furthermore, we claim that
the copy of A in Endg(A) given by diagram (5.12), equals

{f € Budic(4) | ha(z, f(1)) = ha(f*(@),y) for all o,y € A}, (5.15)

Namely, A is clearly an F-subalgebra of the algebra defined by (5.15). On
the other hand, both these algebras are 4-dimensional vector spaces over
F, and hence equal. Now, using equality (5.13), we get that A, = A as
desired. O

The following lemma is the key step to prove that we get a one-to-
one correspondence between similarity classes of S-planes and isomorphism
classes of S-primitive orders in the local case.

Lemma 5.18. If v € M, then Ap(v) = M if and only if n(h) = (h(v,v)).

Proof. First we show that the condition is necessary. Assume that Ay (v) =
M. Take an element w € M. Then there exists by hypothesis an ele-
ment A\, € Ap such that A\, (v) = w. We get h(w,w) = h(Ap(v), Ay (v)) =
h(v, \i, A (v)) = nr(Ay)h(v,v) € (h(v,v)). Hence n(h) = (h(v,v)), since w
was arbitrary.

Now we want to show that the condition is sufficient. If v € M is
any element with n(h) = (h(v,v)), then clearly A(v) C M. To show
that we have equality, it is sufficient to show that we have equality for all
localisations. Hence we can assume that P is a local ring. It is furthermore
sufficient to show that Aj(v) = M for some element v with n(h) = (h(v,v)).
Let namely u € M be some other element satisfying n(h) = (h(u,u)). By
hypothesis, we have u = Ay (v) for some element A\, € Aj. But then we
get, as above, that (h(u,u)) = nr(A,)(h(v,v)) and hence A, is a unit in
Ap. Therefore, Ap(u) = (ApAy)(v) = Ap(v) = M. Scaling h with a suitable
constant, we can assume that A is a primitive hermitian formon M = S&®S.
We identify M with 2 x 1 S-matrices, and a hermitian form A is then given
by h(z,y) = y'Hz, for some 2 x 2 matrix H with H' = H. With these
identifications, we get

Ap = {)\ € My(S) | N'H = H\*}.
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We want to show that there exists an element v € M such that Ap(v) = M.
There are several cases.

Assume that K is a split algebra, so S = P x P. Let e; and es be the
orthogonal idempotents of S, so €, = ey. It is clear that we can find a basis
of M such that h is similar to the form given by the matrix H = (}9),
z € P. We get

Ap={e1X +eY | X,Y € My(P) and Y'H = HX*},
which gives Ay = {e1(® "3°) +e2(¢ ") | a,b,c,d € P}. The claim follows
by choosing v = (1 O)t.

Assume now that K is a field. The valuation is denoted by = — |z|. Let
7 be a prime element of P and II a prime element of S. We are now going
to use the classification of hermitian planes in [25] to verify the claim.

Assume first that M has an orthogonal basis, so we can choose a basis
such that H is given by H = (§ ) with |a| > |B]. We get

m=((2 ) Jaces)

so if we choose v = (1 O)t, then Ap(v) = M and we are done. If K
is an unramified field extension of F', then every hermitian plane has an
orthogonal basis (see [25], p. 453). Hence we assume from now on that K is
ramified.

Consider first the non-dyadic case. In this case, we can choose m and
IT such that II = /7. By proposition 8.1 in [25], if h does not have an
orthogonal basis, then h is similar to a hyperbolic plane, which is given by

the matrix .
H) = 0o Ir
YEAT o

Ay = {(‘Z Z) la,d € P, c,d € S, Te=—Tl'c, b= —1T'b}.  (5.16)

for i = 0,1. We get

If i = 0, then we get Ay, = {(& ) | a,b,c,d € P}, so Ap(v) = M
if v = (1 1)t. If i = 1, then we get A, = Ms(P), and we can choose
t
v = (1 H) .
Now we consider the dyadic case, i.e. we assume that |2| < |1|. If we can

choose IT and 7 such that IT = 4/7, then we have the so called ramified prime
case. Otherwise IT can be chosen as IT = (14++v/1 + 726+15) /7%, where § € P
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with |§| = |1| and k is an integer with |4| < |7|?**! < |1]. This is the so
called ramified unit case (see [25], section 5, for a discussion of these cases).
According to (9.1) in [25], we have, for i = 0,1, that n(H(i)) = (27*) in the
ramified prime case, and n(H(i)) = (27 %) in the ramified unit case. In the
former case, the situation is analogous to the non-dyadic case using (5.16).
In the latter case, it is straightforward to check, using (5.16), that we get
Ap(v) = M if we choose v = (1 H)t when i = 0 and v = (1 1)t when
1 =1.

There are even more subnormal planes h to consider in the dyadic case.
According to propositions 9.1, 9.2 and 10.2 in [25], they are given by the
following: Let i = 0 or ¢ = 1, and assume that h is II*-modular. We have
n(h) D n(H(3)). Assume that n(h) = (7). Then h can be given by the

matrix .
m HZ
II o

where |a| < |7™|. It is straightforward to verify that

_fa Hi(a—a)/wmfaé/ﬂm
An = {<c a+ (e +1'e)/a™

)|a,c€S}

and hence v = (1 O)t will do. O

Assume now that there exists an element v € M satisfying Ap(v) = M.
Then, for any element s € S, there exists a unique element \; € Aj such
that As(v) = sv. Hence we get an embedding of S into Aj, by the map

s+ Ag,

and consequently Ap is S-primitive. Furthermore, consider the map ¢ :
Ap — S defined by
0(A) = h(v, A(v)).

This map § clearly satisfies all the requirements we made concerning the
mapping (5.14). Using this, it is clear that the composition of maps h —
Ap — hyp, is the identity on the set of similarity classes of hermitian S-
planes.

If P is a local ring, then the existence of an element v € M as in
lemma 5.18 is clear. As a special case of proposition 2.32, we get in the
local case that if p; : S — A, j = 1,2, are two embeddings, then there exists
an element n in the normaliser N(A) of A such that np;(s)n™! = pa(s) for
all s € S. Hence we get that the two hermitian spaces constructed by using



57

this two choices of embeddings are isomorphic. In other words, the hermi-
tian form hy is well defined, that is, it does not depend of the embedding of
S into A. Hence we have shown

Proposition 5.19. If P is a local ring, then the map h — Ay gives a one-
to-one correspondence between similarity classes of hermitian S-planes and
isomorphism classes of S-primitive orders.

Since being Bass is a local property, and we know that S-primitive orders
are Bass orders, we get the following global result:

Corollary 5.20. The orders Ay are Bass orders.

We now want to give a simple global example when the map h — Ay is
not injective. Let P = Z and S = Z[i]. We let hy be the hermitian form given
by (42), and hy the form given by (29). We have that hy and ks do not
belong to the same similarity class of hermitian forms over S. This can be
seen by noting that there is no element v such that (hg(v,v)) = n(he) = (1),
but such an element clearly exists for h;. A straightforward calculation gives
that Ah1 = Ah2.

6 Quaternionic Shimura surfaces

6.1 Construction

We will now define the surfaces that are the main subject of this thesis. Let
k = Q(/d) be a real quadratic field with R = O and d(k) = D, as in
section 1.1. Let A be a totally indefinite skew field over k& which allows an
involution of type 2. Let A be a maximal R-order in A. Assume that a — @
is an involution of type 2 on A which is special with respect to A.

We fix a real representation

00 : A= MQ(R),

and hence implicitly an embedding of k into R. We note that gy and A —

00(\) are inequivalent representations of A. We can therefore choose the
action of Al in (1.3) as

A(z1,22) = (00(A)(21), 00(A)(21)), A € A',

or, more compactly written,

)\(Zl,ZQ) = ()\Zl,le). (6.1)
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We denote by p the induced map
0: A — Aut(H xH).

Let I' denote the image of A! in Aut(# x#H). We have I' = A'/{£1}. Let
X denote the quotient surface X = H xH/AL.

Now, X is a compact complex surface, since A is a skew field (see [44],
proposition 9.3), and the only singularities of X are quotient singularities. In
fact, it is well known (cf. [29]) that X is a projective surface. Furthermore,
X is even defined over some number field (cf. [11]).

We let Y denote the canonical minimal desingularisation of X.

6.2 Elliptic points

The singularities of X come from points z € H X H with non-trivial isotropy
group in Al. Consider an element o« € GL*(R) acting on . It has an
isolated fixed point if and only if (tr(a))? — 4 det(a) < 0. Hence an element
XA € A', which does not act trivially, has a fixed point if and only if it is a
so called elliptic element, i.e. (tr \)2 — 4nr A € k is negative under both the
real embeddings, which we write

(tr \)? —4nr ) << 0. (6.2)
For z = (21, 22) € HxH, we define the isotropy groups
Al={xeA' | xz=12}

and
F,={ el | Xz =2z}

For any z we have {1} C Al, and the group ', = AL/{£1} acts faithfully
on HxH. A discrete subgroup of SLy(R) x SLy(R), which fixes a point z,
is necessarily finite. Furthermore, since we actually have an embedding
00 : A — SLy(R), and finite subgroups of SLy(R) are cyclic, we have that
Ai and I', are cyclic groups. If I', is non-trivial, then z is called an elliptic
point, and the order of I', is called the order of the elliptic point z.

Since we only consider elements A with nrA = 1, we have that (6.2)
gives a finite set of possibilities for tr A\, namely tr A = 0, +1, +v/2, £1/3 or
(1 £ 1/5)/2. These correspond to elements of T' of orders 2, 3, 4, 6 or 5
respectively. Hence we have the following well known result:

Proposition 6.1. The possible orders of elliptic points are 2, 3, 4, 5 and 6.
The order 4 is only possible if k = Q(V2), the order 5 is only possible if
k = Q(\/5) and the order 6 is only possible if k = Q(v/3).

We also remark that if A is a Z-order in an indefinite rational quaternion
algebra, then only elliptic points of orders 2 or 3 are possible.
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6.3 The two actions of Al

Given a maximal order and an involution 7 of type 2, one can consider the
action of A! on either H x# or on H x#H ™, where H~ is the lower complex
half plane, by

Az1, 22) = (00(A)z1, 00(T(A))22)-

These two actions may or may not be holomorphically equivalent. They
are holomorphically equivalent for example if there exists some A € A with
nr(\) = —1. If they are not, then it may happen that the corresponding
quotient surfaces are not equivalent. It may even happen that they have
different Kodaira dimensions (see [23]). See [19] for the complete answer to
the question regarding when the two actions are holomorphically equivalent
in the case A = My (R).

Let us observe that, since we have the freedom to choose the involution 7,
we can without loss of generality restrict to actions on HxH. In fact,
take an element b € A with 7(b)* = b and nr(b) < 0. Such elements
clearly exist. Define o(z) = br(z)b ! for z € A, so o is an involution
of type 2 on A. Define a biholomorphic map ¥ : HxH~ — HXH by
WU(z1,22) = (21,00(b)2z2). Consider the two maps A! — SLy(R) x SLy(R)
given by 97 (A) = (20(A), 00(7(A))) and 95(A) = (00(A), 00(c(A))). We have
that the diagram

(O
Hx%‘w—(l%x?{_

|
Yo (N)

HXH ——HXH

commutes for every A € A'. Hence the action of A' on H x# ™~ induced by
the involution 7 is holomorphically equivalent to the action of A' on H xH
induced by the involution o.

7 A family of curves

We will construct and study a family of curves on the quotient surface X.
These curves will be parametrised by primitive elements in a certain qua-
ternary Z-lattice L. The underlying set L consists in fact of integral A-
hermitian forms (see section 5.4).

When we construct our surface, we start with a maximal order A in A.
Then we have to make a choice of an involution 7 : A — A of type 2, and
the surface is the quotient X of H xH by the group action given by (6.1).
For a given order A, we can at most get two different equivalence classes
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of the surface X when we choose different involutions 7. Namely, if o is
another involution of type 2 given by o(z) = br(z)b !, where 7(b)* = b
and nr(b) > 0, then the surfaces we get are equivalent. This fact is just
a special case of the remark we made about the freedom of choice of the
representations g; in (1.3). Hence, we get at most two possible equivalence
classes of surfaces if we use different involutions, and they correspond to the
situation discussed in section 6.3, where we fix 7 and consider the action on
HxH and HxH™ respectively. We now fix 7 and we will from now on only
consider involutions o related to 7 by an element b as above with nr(b) > 0.

Now, by lemma 4.10, we know that there always exist special involutions,
so from now on we will assume that 7 is special with respect to A. We know,
by proposition 4.4, that the R-ideal d(A) is generated by a positive integer,
which we denote dy(A). We also write dz(A) = d(A) N Z.

In section 7.2, we construct a quaternary quadratic lattice (L, g;) which
parametrises the curves. The construction can be regarded as a generali-
sation of the constructions made when studying modular curves on Hilbert
modular surfaces using certain skew-hermitian matrices, see (1.1). In that
case, the quadratic form is the determinant of the skew-hermitian matrices.

We show that we get a well-defined isometry class (L., q;) up to what
we call the local type of 7. The number of local types is finite. We have
not been able to find an example when two involutions of different local
types give non-isometric forms, but we have not ruled out the possibility.
However, since the genus of the form does not depend on the local type, for
our purposes this will not be a problem. Hence, we will simply fix a choice
of local type and then drop the subscript 7 from the notation, so we will
denote the lattice by (L, q).

Following the terminology in [17], we will for convenience call the curves
Fg, where 8 € L, modular curves. Also, the curves Fy, which are finite
unions of curves Fjg, will be called modular curves.

7.1 Construction of curves

Consider an element 8 € A. If nr(8) > 0 (under the embedding k¥ — R
induced by gg, which we have fixed), then we can define the following curve
in HXH:

Cs ={(z,82) | z € H}.

This curve maps to some set F3 C X. We remark that the curve Fjg and
the group I'g below, do depend on the choice of involution 7. However, for
easier notations we have chosen to not explicitly indicate this.

Now, Fj need not in general be an algebraic curve on X. We want to
examine for which elements 3 it happens that Fj is a subvariety of X. This
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is the case if the stabiliser group
Tg={AeA'|X-C5=0Cp}

of Cg C HxH is sufficiently large in the sense that Cg/T'g is a compact
curve. We will now examine for which elements 3 this holds. For A € A!,
we have

A-Cg={(Az,7(A\)Bz | z€ H} =
= {(7(NBX2) | z € H) = (.1)

= Cr(npass

and hence X\ € I'g if and only if 7(X)BA\* = zf for some = € k*. Applying
the norm form nr : A — k to both sides of this equation, we get that z? = 1.
Hence we have that an element A € A! belongs to I's if and only if

T(N)BXT = 5. (7.2)

Definition 7.1. If 8 is an invertible element in A, then we define a Q-
subalgebra of A:

Arp={a € A fa=r7(a)B},

and an order A; g in A, g:
AT”g = AT”g N A.

We get that the group Ai’ 5 1s a subgroup of I'g of index 1 or 2 depending
on whether the minus sign in equation (7.2) occurs for some A € A’

Proposition 7.2. A, g is either a quadratic field over Q or a non-split
indefinite quaternion algebra over Q, and the latter happens if and only if 3
is of the form 8 = xry, where x € k and v € A with T(y)* = 7.

Proof. This follows directly from proposition 4.6. The condition 7(5)8 € k*
is clearly (compare with the proof of lemma 4.2) equivalent to the condition
stated in the proposition. Now, if A, g is 2-dimensional, then A, 3 must be
a field since A is a division algebra. If A; g is a quaternion algebra, then it
must be non-split and indefinite by lemma 4.3. O

We see that Cs/I's is a compact curve if and only if A, 3 is a quaternion
algebra. With 8 and v as in proposition 7.2, we have that A, 5 = A, ,.
Hence we only need to consider elements 3 € A satisfying the equation

T(B)" = B. (7.3)
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We define
Wr={B€A|7(B)" =B}, (7.4)
which is a 4-dimensional vector space over Q. Consider now the norm form

nr: A — k. If § € W, then nr(8) = nr(7(8)*) = nr(f). Hence nr restricts
to a quadratic form on W, taking rational values:

or |y, : W, = Q. (7.5)

Since A7 is indefinite, there exists a (-basis of A of the form 1,4, j,4j,
with 72 > 0, 52 > 0 and ij + ji = 0. We get that

1,Vdi,Vdj, Vdij

is a basis of W,. We see from this that the form (7.5), when diagonalized
over R, is of the type + + ——. Since A is a skew field, the quadratic form
nr : A — k is anisotropic. In particular, we get that the form (7.5) is
anisotropic.

For every element 8 € W, such that nr(8) > 0, we consider the curve
Cg € HxM and we have that the quotient Cg/T'g is a compact complex
curve. The subgroup Ai, 3 of I'g is such that the map

Cs/Az 5 — C5/Ts
is either an isomorphism or a double cover. The map
C B / Pg - X

is generically one-to-one, and its image, denoted by Fpg, is an irreducible
complex curve on X. The map

Cg/rﬁ — Fg

is just the normalisation map of Fj.

Assume that [I'g : Ai,ﬂ] = 2. We have I'g = Ai,ﬁ U 'yAi”B, for some
element y € A! with 7(y)8 = —fv, by (7.2). Let v4 = Vdv. It is clear
that v4 € Ar, 74 € N(A;g) and nr(yg) = d. The map Cg — Cp defined
by (z,8¢) — (v4z,74B%) gives an involution on Cp /Ai,ﬁ, which we denote
by ¢4 (compare with section 10.2):

ta: Cp/Ar g — Cg/A] . (7.6)

We have that Cg/T'g is the quotient of C/J’/Ai,ﬁ by tq-
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As we saw in equation (7.1), if A € A!, then A\- Cp = Cr(n)px+- Hence
B € W, and 7(A\)BA* € W, define the same curve on X. It is therefore
natural to define an action of A' on W, by

A- B =T(NBAY, (7.7)

so with this notation, we have F).g = Fj3. In fact, two curves Fp, and Fpg,
are equal if and only if there exist € Q and A € A! such that 8y = z\- .
Note also that

nr(A- B) = nr(B)

for all elements X\ € A' and 8 € W,. Hence, the action of A is an isometry
of (W,,nr).

7.2 The lattice parametrising the curves

In this section, we are going to construct a lattice L, in the vector space W,
which is invariant under the action (7.7) of A*. We will follow the convention
to always use primitive elements 8 of L; when we study the curves Fj3. By
a primitive element B in L, we mean an element with the property that if
zf € L, for some x € Q, then z € Z. With this convention, we get that
Fg, = Fg, if and only if

P2 =EX-B (7.8)
for some A\ € A'. We will also define a quadratic form ¢, : L, — Z, where
g-(l) = cnr(l) for some rational number ¢ > 0.

We will see (in proposition 7.13) that (L, q;) is essentially independent
of the choice of 7 and therefore we will eventually drop the subscript 7 from
the notation.

Let v and 7 be two special involutions. By lemma 4.2, there exists an
element 7 = v, € A such that 7(y)* = v and v(z) = v 17(z)y for all
z € A.

Definition 7.3. We say that v and 7 are of the same local type if the integers
vp(nr(vy)) are even for all primes p dividing d(A).

Now to the construction. Let 7 be a special involution. For any 8 in W,
we define a hermitian form ®, 5: A x A — A, in the sense of section 5.3, by

@, 5(z,y) = 7(y)" Bz (7.9)
We are interested in those elements 3 for which @, g satisfy definition 5.9:

Definition 7.4. We define a Z-lattice L, of rank 4 by
L, ={p € W, | ®, 3 is integral}. (7.10)
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It is clear that L; is an invariant subset of W, under the action (7.7)
of Al. The following, somewhat technical, lemma, relates the lattices we get
if we use different involutions of the same local type.

Lemma 7.5. If 7 and v are special involutions, which belong to the same
local type, then there exists an element v € W, such that v(z) = v~ '7(z)y

forallx € A and L, = v*L,.

Proof. By lemma, 4.2, there exists an element w € W, such that

for all z € A. If © € A, then by a straightforward calculation, we get that
v(w*z)* = w*z if and only if 7(z)* = z. Hence, we conclude that

W, = w'W,,

so the two lattices L, and w* L span the same 4-dimensional Q-vector space,
i.e. they are commensurable. We are done if we can show that in fact there
exists r € Q such that

L, =rw*L,. (7.11)

Now we realise that we only need to check equation (7.11) locally, i.e. we
need to show that for any prime p, there is a r, € Q, such that

(Ly)p = rpw*(L7)p. (7.12)

Since for almost all primes p, we have (L,), = w*(L;)p, this would imply
that there exists an element 7 € Q such that (7.11) holds.

Fix now a prime p. We want to prove that (7.12) holds for some r,. We
examine the different cases.

We consider first the case p | d(A). By lemma 4.11, we can make the
identification A, = €, x Q, with 7(z,y) = (y,z). Consider now the involu-
tion v given by v(A) = w lr(A)w, where w = (c,c*) with ¢ € Q,. By the
hypothesis that these two involutions are of the same local type, we have
that vp(nr(w)) = vp(nr(c)) is even. This implies that c is of the form se, for
some s € (, and € € ;. We now get

(Ly)p ={(z,z") | z € Qp} (7.13)

and
(Ly)p = {(z,ex*e ) | 2 € Q).

Hence we get (L,), = s~ 'w*(L,), and we are done in this case.
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Assume now that p { d(A). We have that A, = My(R,) and we let ¢ be the
optimal involution on My(R,), which is given by element-wise conjugation,
ie.

1((agy)) = (@ij)
if (a;;) € Ma(R). We now claim that it is sufficient to show the following:

Claim. For any special involution o on A,, there exists v, € W, such that
the following holds

i) o(z) = v, (z)y, for all z € A,.
ii) Ly =L,

Assume namely that this claim is true. Then it is easy to check that the
following holds: 7(v, 'v,)* = v, 'y, v(z) = (v, ') 17(z)y, Ly, for every
z € Ap and (L,)p = (77 19)*(Lr)p. By the uniqueness part of lemma 4.2,
we have ~y, 17, = r,w for some r, € Q,, and hence we have shown that (7.12)
holds if the claim holds. We will now prove the claim in the different cases.

Assume first that p is unramified in k. Let 7, € W, be some element
satisfying i) in the claim. Replacing, if necessary, 7, with s, for some
suitable s € Q,, we may assume that ma,(7,) = (1) (see (2.10)). Now we
have

L, ={zeW,| ApzAp C Ap} (7.14)

and
La = {’7;'!/ ‘ Y € WL7 O-(AP)IY:'yAp g Ap}

But o(Ap)viyAp C A, if and only if yiA,zA, C Ay, which, by lemma 2.14,
is equivalent to A,zA, C A,. Hence, we get L, =y, L,.

Assume now that p is ramified in k. By the hypothesis that ¢ is special,
we have that A, = My(Zp). We claim that this implies that, replacing 7,
with sy, for some s € Q, if necessary, we can assume that -, is of the form

Yo = t(€)€, (7.15)

for some unit € € A,. To see this, fix an isomorphism A, — A,. Since
RyA, = RyA, = A,, this map can be extended to an automorphism of A,.
By the Skolem-Noether theorem this automorphism is inner, and hence there
exists an invertible element g in A, such that A, = g7!'A,g. Then we also
get that g satisfies gA, = A,g, so gA, is a two-sided ideal. Hence gA, = aA,
for some a € kp, and therefore g = ae for some € € A;. Thus, we get

Ay =€ tAe.



66 7 A FAMILY OF CURVES

Now, for any A € A,, we have o(e~'Ae) = €' Xe. Hence t(€)y,e~" € k, and
we get that -y, must be of the form

*

Yo = tu(€)*e,
for some t € k,. Taking into account that nr(y,) € Q,, we get t* € Q,.
Hence t € Q, or t € \/EQP We want to exclude the latter case. If t €
VDQ,, then i(y,)* = 7, is equivalent to ei(e)* + t(e)*e = 0. Now we
note that for any A € A,, we have +(\) = X (mod vDA,). Hence, we
get ee* + €*¢ = 0 (mod VDA,), ie. 2nr(e) = 0 (mod VDR,). But this
contradicts that € is a unit. Hence we have ¢t € Q,, so replacing 7, with
t~1v,, we have demonstrated (7.15).

Now we get

L ={zeW,|z€eR,+VDA,}

and
Lo ={vy |y € W,, 73z € Ry + VDA,}.

With 7, as in (7.15), it is clear that for any y € A,, we have y € R, ++/DA,
if and only if vjy € R, + \/EAP. It follows that L, = v;L,. We have now
proved the claim in the case that k, is a field.

Assume finally that p is split in k£ and that p { d(A). Then Ry, = Zy, X Zp,
and we identify A, with My(Z,) x M3(Z,), where ¢(a,b) = (b,a). Hence

L, ={(z,z") | x € Ma(Zyp)}.

Let v = (b,b*), where b € My(Z,) with det(b) # 0. Without loss of
generality, we can assume that b is primitive, i.e. b € pMo(Zp). We get

LU’ = {’7:'11/ | Yy € WL; J(Ap)’Y;yAp g Ap}

Ify e W,,s0y = (z,2*), where z € M>(Q,), then we have o(A,)viyA, C A,
if and only if b* My(Z,)2M3(Zy,) C My(Zy). According to lemma 2.14, this
is equivalent to z € My(Zp). Hence we get L, = 7} L,, so the claim holds in
the split case too. O

Definition 7.6. Define a quadratic form ¢, on L, by

do(A)

w(8)= gy 08) (7.16)

for g € L,.
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Definition 7.7. Define a dual lattice L7# to L; by
L# ={l e W, | tr(I*L,) C Z}. (7.17)
We define a quadratic form qi‘?6 on Lf by
g (1) = Ddo(A7) nx(l). (7.18)

A priori we have that ¢, and qf are quadratic forms with values in Q,
and at this point it is not obvious that they are in fact integral forms.
We therefore define quadratic forms ¢, : L; — Z, ¢;(8) = z,nr(8) and
i LY 57, 6" (1) = yr nr(l), where z, and y, are the uniquely determined
positive rational numbers such that ¢, and 47# are primitive integral forms.
We will see later (in lemma 7.12) that ¢, = ¢, and q7# = (17#.

If . is an involution on A;, which does not necessarily come from a global
involution on A, then we can still define ¢, and (jf’ﬁ. These forms will of course
only be well defined up to a factor in Z;. We now write down an explicit
local description of the lattices for an optimal involution ¢ on A,. If p | d(A),

then we have
L ={8=(z,2%) |z €Qp} (7.19a)

and
L¥ ={l=(y,y") |y € QF}, (7.19b)

where ¢,(8) = nr(z) and ¢ (1) = pur(y). If pt d(A), then we have

a aVD
= (b\/f? - ) | @« € Ry, a,b € Zp} (7.20a)

and

L#:{l:( @ “/‘/5) |a € R¥, a,be Z,)}, (7.20b)

b/vVD @ P’
where ¢,(8) = det(8) and ¢,(I) = D det(l).
Consider now the quaternary quadratic lattice (L7# ,(L# ) and the even
Clifford algebra Cq(L¥ , §¥) associated to it. Define a function

¢y LF @z L — A

by
¢T(ll ® 12) = yTlIZQ-

We can extend ¢, in a natural way to the even tensor algebra, so we get a

map ¢, : 75(L7#) — A. This map clearly vanishes on the ideal generated by

the elements | ® [ — (j7#(l) giving an embedding of the ring Cy (Lf, q7#) into

the algebra A.
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Definition 7.8. ©, will denote the image of the map
¢r: Co(LF,q7) —» A

O, is a subring of A, but it should be noted that it is not in general an
R-order.

Definition 7.9. For a primitive element 8 € L,, we define the ternary
quadratic lattice (Lfﬁ, qfﬂ), where

¥, ={le L¥ | tx(I’B) = 0}
and qffﬁ denotes the restriction of q7# to Lffﬂ.

We also consider cjfﬂ, the restriction of q# to Lfﬂ. Now, by restriction

of ¢,, we get an embedding of the quaternion order C’O(Lfﬂ,qu) into A.
The image is in fact a suborder of A; 3.

Lemma 7.10. The image of Co(Lff/B,q'fﬁ) under ¢, is O N A, 3.

Proof. If we take 1,1y € ijﬂ, then plily = —118*le = L1156 = 7(I7l2)B, so

¢-(l ® o) € Ar 3. We conclude that CO(Lffﬁ,(jfiB) C A;p.

To show the inverse inclusion, take A\ € ©, N A; 3. It follows from the
definitions of the lattices and the fact that 3 is a primitive element of L, that
L7# = Lfﬂ @ Zw for some w € L7# with tr(w*$) = 1. Since A belongs to ©,
it can be written in the form A\ = \g + y, 3w + 42313l w, where )\g lies in the
image of Co(Lf”B, cjffﬁ) and l1,...,l4 € Lffﬁ. A direct calculation gives now
0= BXA—1(\)B = —7(y-lF + y213151F). Hence A = \o + (-1 + y2050305)w =
Ao € dJT(CO(L#ﬂ,q?)) and we are done. O

T,

Lemma 7.11. We have that ©, C A and [A : ©,] = dz(A)?. In fact, we
have A/O, = (Z/dy(A))2.

Proof. Let v be another special involution of the same local type as 7, and
v as in lemma 7.5. We have L, = v*L;, so a calculation gives that

L¥ =yLf,

and from this we clearly have that y, = | nr(y)|y,. Take arbitrary elements

Y yly € vLE = LE. We get ¢, (vl ® 7l2) = yoliv*vlo = £¢,(l1 ® Ip) and
hence we have
0, = 6’7’5
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i.e. ©; does not depend on the choice of involution (up to the local type).
Fix a prime p and let ¢ be an optimal involution on A,. If p { d(A), then
we need to show that ©, = A,. This is just a straightforward calculation
given the description of L} in (7.20).
Consider now the case p | d(A). With notations as in (7.19) and in
equation (2.8) (with 7 = p), we have that

1 1
(1,1), (B1,—1—E1), —(E2, —E»), —(E3,—E3)
p p
is a basis of L¥. A Zyp-basis of (©;), is hence given by: (1,1), (pE1,—p —
pE1), (B2, —E»), (B3, —E3), (B2 + B3, E3), (€E2, eEs+ E3), (14 E1,1+ Ey),

(pe — p — pE1,—pe). Thus (0,), is a Z,-sublattice of A, of index p?. We
also note that (©;), can be written in a convenient coordinate free way:

©r)p ={(z,y) € Q x Q| nr(z —y) € (p)}

={X €A, |nr(A —7(}) € (p)}. (7.21)

This follows directly from the above description and equation (2.9). O

Note that ©, is not an R-algebra if A is a skew field, but from equa-
tion (7.21), we immediately get

RO, = A.

Lemma 7.12. We have that q; = ¢, and q7# = 47#. In particular, we get

that g and qq# are primitive integral quadratic forms.

Proof. We need to show that

and
(yr)p = Dd(AT)p

for all primes p.

If p | d(A), then (z;) = (1) and (y,) = (p) by (7.19). We also have
dz(A)p = d(Ar)p = (p), so we are done.

If p | D, then we have by hypothesis that dz(A), = d(A;), = (1). The
claim now follows by the explicit description in (7.20).

If finally p { d(A) and p t D, then we have L{ = L,, d(L,) € Z} and
Ap = CO(LZ&,QZ#). Furthermore, we have (L), = v*L,, where v € L, is
primitive. Hence z, € nr('y)_IZ; and y,; € nr(y)Z,. By lemma 7.10, we
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have A, , = CO(LZ?, qui,). But A, = (A;)p, so we are done if we show that
d((Lly, il5)) = (mx(7).

We have vZ,+ Lﬁ, CL¥. Using the fact that -y is a primitive element of
L,, we get tr(y*L¥) = Zp. On the other hand, we get tr(y*(yZ, + Lﬁ,)) =
tr(y*y)Zp = 2nr(y)Z,, and so we see that [L¥ - YLy + Lfv] = (2nr(y)).
Using this, we get

d(vZy+ L) = (2nr(y))*d(LF).

We can also compute d(’yZp+L#7) by noting that 'yZp-I—LfAY is an orthogonal
sum, and hence we have

d(vZy + LYE.) = 2nr(y)2d(LE).
We conclude that d(Lf;) = (nr(y)), since d(L{) = (1). O

The next result is a statement of the fact that the quadratic lattice
(L+,q;), together with the action of A! on L, is essentially independent on
the choice of 7.

Proposition 7.13. Let 7 and v be two special involutions on A of the same
local type. Then there exists an isomorphism of Z-lattices f,; : Ly — L,
such that q,(fu+(B)) = surq-(B) for all B € L,, where s, = +1. The
isomorphism f,; also commutes with the actions of A on L, and L, re-
spectively, i.e. the following diagram commutes

ALy 1, QDT

Idx f”l f”l (7.22)

A N)BA*
Al % Lu( B)—v(N)B I,.

Proof. Let vy be as in lemma 7.5. Define f, r by f, -(I) = v*I. Since the map

L, — Z given by B — q,(fu+(B)) = nr(y)z,/zq;(B) is a primitive integral
form, and ¢, is a primitive integral form, we get that s, , = sign(nr(y)).
To show that the diagram commutes, we have to verify that

Y TN)BAT = v(A)y BN

for all 3 € L, and A € Al. But this holds, since v(\) = y~!7(\)y by
hypothesis. O
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By proposition 7.13, we can now fix one choice of a special involution 7
and we write 7(z) = Z. This choice will correspond to a choice of a local
type of involutions, but it will have no practical importance. We now write

Ag=A; and Az =A,,

and furthermore we will from now on suppress the index 7 from the notation,
so we write for example (L,q) instead of (L;,q,), and similarly (L#, ¢#),
(L¥,q}), W, Ag and Ag.

We now formulate a result which gives a complete local description of
the lattice (L, q).

Proposition 7.14. (L, q) is an integral lattice with discriminant dz(A)%2D?
and (L#,q%) is an integral lattice with discriminant dz(A)2D. More pre-
cisely, if p is a prime and we let q, : L, — Zp denote the localisations of q
at p, then we have

i) if p is split in k and p{ d(A), then g, is isometric to the form zy+ zw,
i) if p is split in k and p | d(A), then gp is isometric to nr : Qp — Zy,

iit) if p is unramified in k, then gy, is isometric to > — dy® + zw if p # 2
and to v> + xy + 9> + 2w if p =2,

w) if p is ramified in k, then gy is isometric to n(z? — dy* — Dzw), where
N 18 a unit in Zy.

Proof. Follows directly from (7.19) and (7.20). O

Lemma 7.15. The discriminant of the ternary quadratic lattice (L#,qéﬁ)
is q(B)dz(A).

Proof. We have that 8Z + L? C L#. Using the fact that 8 is a primitive
element of L, we get tr(8*L#) = Z. On the other hand, we get tr(8*(8Z +
Lg)) = tr(8*B)Z = 2nr(B)Z, and so we see that [L¥ : BZ + L};&] = 2nr(f).
Using this, we get

d(BZ+ L¥) = (2nr(B))2d(L¥).

We can also compute d(SZ + ng) by noting that SZ + LEE is an orthogonal
sum, and hence we have

d(BZ + Lf) = 2q* (8)24(L)-
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Solving for d(L#) gives

(2nr(B))%d(L*)
4q7 (B)

and, recalling that d(L*) = d(A)2D and ¢*(8) = do(Az)D nr(B), we get

d(L}) =

dz(A)?

d(L¥) = 2()

B

nr(8) = q(B)dz(A). O

Theorem 7.16. The discriminant of Ag equals the least common multiple

of q(B) and do(A).

Proof. By lemma 7.10 and lemma 7.11, we know that the image of the order
CO(L?, q?e) is AgNO. If ptd(A), then we have by lemma 7.11 that A, = O,

and hence (Ag), = CO(LEE, q?) The claim therefore follows from lemma 7.15
and proposition 2.7. If p | d(A), then we know that (Ag), = Q,. Hence the
claim follows, since by the description of g, in part ii) of proposition 7.14,
we have that p? { ¢(B). O

Corollary 7.17. The quaternary space (L,q) represents do(Az)/do(A).

Proof. We can use theorem 7.16 to determine L NZ. Let LNZ = (b),
where b > 0. We have Ay = Az, and hence we get that dy(Az) is the least
common multiple of do(A)b?/dg(Az) and dg(A). From this we get that the
only possibility is b = dy(Az)/do(A). We now get g(b) = do(Az)/do(A) and
we are done. O

We remark that from corollary 7.17, it follows that the unit n € Z;
occurring in part iv) of proposition 7.14 can be chosen to be dy(Az)/do(A).

7.3 Local description of the order Ag

In this section, we are going to determine the local isomorphism classes of
the order Ag, i.e. determine the genus of Ag.
If p | d(A), then we already know that (Ag), = €, by lemma 4.11.
Assume that p { d(A). Then we have A, = My(k,) by lemma 4.3. Con-
sider the 2-dimensional kp-module V), = k;, ® k;, and the R)-module M, =
R, ® R, C V). We identify A, with Endy,(V}), and A, with Endg, (M,).

Lemma 7.18. There exists a non-degenerate hermitian form h : V, XV, —
ky such that

h(av,u) = h(v,a*u) for all a € Ap, u,v € V).
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In other words, the hermitian form h has the map a — @* as its adjoint
involution. Furthermore, h is uniquely determined up to a mon-zero factor

in Q.

Proof. Let g be a non-degenerate hermitian form on V,. Then g(au,v) =
g(u,a*v) for all u,v € V,, where a — a is some involution of type 2 on
Ap. Now, by lemma 4.2, there exists an invertible element m € A, such
that m* = m and @ = m~'am for all a € A,. Let h(u,v) = g(mu,v). We

have h(u,v) = g(mu,v) = g(u, mv) = g(mv,u) = h(v,u), so h is a hermitian
form. Furthermore, we get h(au,v) = h(u, m~'a@*mv) = h(u,@*v) and hence
h has the required properties. The uniqueness is clear. O

_ Choose now one form & as in lemma 7.18. Given an element 8 € A with

[ =, we want to determine whether
(Ag)p ={a € Ay | fa=1ap}
is a skew field or not. We define
hg(v,u) = h(Bv,w),
for v,u € Vj. It is readily verified that hg is a hermitian form on V,.

Lemma 7.19. fa = a@p if and only if hg(av,u) = hg(v,a*u) for all u,v €

Vp.
Proof. hg(av,u) = hg(v,a*u) if and only if h(Bav,u) = h(Bv,a*u) if and
only if h(Bav,u) = h(aBv,u). The claim follows. O

We have thus shown that (Ag), is isomorphic to the order constructed
from the hermitian R,-plane (M,, hg) by (5.11). In particular, we have by
proposition 5.19:

Proposition 7.20. If p{d(A), then (Ag), is Ry-primitive.

We remark that the orders Ag are not R-primitive in our case, since
do(A) # 1. Namely, if p | d(A), then it is impossible to embed R, = Z, x Z,,
in (Ag)p = €.

If we apply proposition 2.30, we get the following corollary of proposi-
tion 7.20:

Corollary 7.21. The FEichler number of the order (Ag), is given by
i) e((Ag)p) =1 if p is split and p 1 d(A),
ii) e((Ag)p) = —1 if p is unramified and p | d(Ag),
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iii) e((Ag)p) = 0 if p is ramified and p* | d(Ag).

Now we want to determine whether (Ag), splits or not. If p splits in &
(and p1d(A)), then we know from lemma 4.3 that (Ag), splits.

Assume that p is unramified in £. Then, by corollary 2.20, we have that
(Ag)p splits if and only if v,(d(Ag)) = v,(g(B)) is even.

Assume that p is ramified in k. According to proposition 5.16, we have
that (Ag), is a split algebra if and only if

—det(hg) = — det(h) nr(B)

defines a trivial class in Q} /nry, /q, (k,) (recall that Qf /nry /q, (ky) is iso-
morphic to Z/2 if k, is a field). If 8 = 1, then Ag = Ag, so Ag splits
since the involution ¢ — @ is assumed to be special. We conclude that
—det(h) € nry /q, (k;). We summarise:

Proposition 7.22. Let p be a prime. If p is split in k, then (Ag), is split if
and only if p{ d(A). If p is unramified in k, then (Ag), is split if and only
if vp(q(B)) is even. If p is ramified in k, then (Ag), is split if and only if
nr(f) € nry, q, (k)

By proposition 2.33, we have now completely determined the genus of
the order Ag. More precisely, we have:

Proposition 7.23. If p is split in k and p | d(A), then (Ag), = Q. Other-
wise (Ag), is the unique Bass order, which allows an embedding of R,, has
discriminant given by theorem 7.16 and splitting behaviour as described in
proposition 7.22.
7.4 The curves Fly
Definition 7.24. For every positive integer N, we define

Fy =|JFs,

B

where ( runs over all primitive elements 8 € L such that ¢(8) = N.

The following result will also be a consequence of the calculations in
chapter 8, but we present an independent proof.

Proposition 7.25. Every curve Fx is a finite (possibly empty) union of
irreducible curves.
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Proof. Let O*(L, q) denote the group of proper integral automorphisms of
(L, q). By general theory of integral quadratic forms, we know that if N is
a non-zero integer, then the set of f € L with ¢(8) = N decomposes into
finitely many orbits under the action of O7 (L, q) (see [7], lemma 6.1). The
group A! generates a subgroup of Ot (L, ¢) under the action given by (7.7).
We need to show that this subgroup has finite index in OT (L, q).

If w is an invertible element of A with nr(8) € Q, then we define the

map gy : W — W by

gu(z) = Wzw ™.

Clearly g,, € O (W, q) and, in fact, every element of O* (W, q) is of the form
gw for some w (see [34], proposition 2). Hence we have

O™(L,q) = {gw | w € A, nr(w) € Q*, WL = Lw}.
Assume now that w € A with nr(w) € Q* and WL = Lw. We get
wl? = L7 w,
and hence w 'Ow = ©. By lemma, 7.11, we get therefore
wAw = A,

i.e. w € N(A), the normaliser of A. Now [N (A) : k*A!] < oo by lemma 2.35,
so we get that

{gr | A e A"}

is a subgroup of OT (L, q) of finite index. O

7.5 Construction of involutions on X

It is clear that there exists # € L such that Ag is an Eichler order — take
for example 8 such that ¢(8) = N is square free. Using such elements 3, we
can construct involutions on X by the following result:

Lemma 7.26. Assume that Ag is an Eichler order. There exists a map
T =Tp € Aut(HxH)\ Aut(H) x Aut(H) such that

i) TUTT is a subgroup of Aut(H xH),

ii) T(Cp) = C.
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Proof. Let s € Ag be the element given by lemma 4.12, when this lemma is
applied to the involution o(z) = 8 'ZA. Define the map T by

T(z1,22) = (88" 22,3P21),
for z1,29 € H. We get, for all z € HxH,
TXT(z) = (s8°X38)(2) = (s87 ' A8s™)(s%)(2).

Now, by hypothesis, we have that s~ 'A\8s~ ! € A! and s € ZA', and this
shows that TT'T" = I". Furthermore, we get that

T(C,H) = {(sB*Bzp,3Bz) | z0 € H} =
— {(s20, Bs0) | 20 € H} =
= Cg. O

It may be of interest to note that we also get the following result:

Corollary 7.27. Let A be a quaternion algebra over k and assume that o
is an involution of type 2 on A. If A is a maximal order in A, then we have

o(A) = A.

Proof. By lemma 4.10, there exist an involution 7 which is special with
respect to A. Take w € A* such that 7(z) = wo(z)w™! for all z € A. Take
B € L, such that A; g is an Eichler order. Let s be the element given by
lemma 4.12 applied to the involution z + =17 (z)B. If we put v = s~ 1w,
then yo(A)y™! = sp~17(A)Bs! = A. O

8 The number of components of Fy

In this chapter, we will determine the number of irreducible components of
the curves Fy and the group index [['s : Ag] for § € L. The method we
will use is to relate these questions to a question about integral A-hermitian
forms in the sense of section 5.4. In the case of Hilbert modular surfaces,
Franke [14] and Hausmann [20] solved the corresponding problem using the
theory of (ordinary) hermitian lattices. Hence, our proof is just a generali-
sation of theirs, using a suitable reformulation of the problem.

The technical tool, which we need, is an approximation result stating
that every SU(A, ®)-genus of A-lattices only contains one class (recall the
definitions from section 5.3). In [41], Shimura shows that every SL(V,h)-
genus of R-lattices M C V, where h : V' — k is a hermitian form (in the
usual sense) of rank 2, consists of only one class. That situation can be
translated to our setting in the following way.
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Fix a 2-dimensional k-vector space V with a non-degenerate hermitian
form h and a free R-lattice My C V. Let A = Endi (V') be a k-algebra with
the maximal R-order A = Endr(My). Define implicitly a type 2 involution
a — a, by

h(au,v) = h(u,a*v),

for all u,v € V. Define an A-hermitian form ® on A by ®(z,y) = z*y. We
have a natural one-to-one correspondence between free R-modules M C V
and free right A-modules L, given by the maps

M — Endg(My, M) C A,

and
L E(M()) cV.

It is straightforward to check that this gives a one-to-one correspondence
between SL(V, h)-classes of free R-lattices M and SU(A, ®)-classes of free
A-lattices L.

Hence, one can say that we extend some of the results in [41] from the
case A = M>(k), to the case where A is a totally indefinite quaternion
algebra over k& which has a type 2 involution. As it turns out, the proofs
in [41] work almost unchanged in this more general setting, but we include
all modified proofs for completeness.

8.1 Approximation theory

Consider an A-hermitian space (4, ®), where A is considered as a right A-
module, and ® : A x A — A is a non-degenerate A-hermitian space in the
sense of section 5.3. Recall the definition of SU(A, ®)-classes of A-lattices
L in section 5.3. Our goal in this section is to show that each genus of
A-lattices only contains one class.

The following lemma is well known (see lemma 5.3 in [41]):

Lemma 8.1. Let W be a finite dimensional vector space over Q, and M a
Zp-lattice in W. If f,g € GL(W) and (f — g)(M) C pf(M), then f(M) =
g(M).

The following result should be compared with theorem 5.12 in [41]:

Theorem 8.2. Let P be a finite set of primes and let o, be an element of
SU(Ap, ®) for each p € P. Let L be a A-lattice in A and e a positive integer.
Then there exists an element o € SU(A, ®) such that (6 —op)L, C p°L, for
every p € P and oL, = L, for all primes p not in P.
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Proof. Define the quaternion algebra
Ag ={a € A| ®(az,y) = ®(z,a"y) for all z,y € A}.

Ag is an indefinite quaternion algebra, and SU(A,®) = AL. Take an R-
order A’ in A such that Al = A’ N Ag is a maximal order in Ag. Choose
a positive integer f such that fo, € (A}), for all p € P. Let P; be the
set of primes p such that £, # A;,, P, the set of prime divisors of f and
Q = PUP; UP,. There is an integer d > e such that pdﬁp C A;, C p*dﬁp
for all p € Q. Take v € A% such that v = fo, mod f3p3¢(A}), for p € P
and v = f mod f3p3¢(A}), for p € Q\ P. Then yy* = f? mod f3 [peo p3e.
By Eichler’s approximation theorem (see [30], theorem 5.2.10), there exists
an element « in Ay such that ae* = f? and @ = v mod prer?’dAﬁp.
Putting ¢ = f~la, we have o0o* = 1, so o € SU(4,®). Now, for p € P
we get (0 —0p)Ly Cp U fa— Ty + [Ty — op)A, C p¥A;, C piL,.
IfpeQ\P,weget (c—1)L, C flp7Ha—vy+vy-— A, C pL,, so by
lemma 8.1, we get 0L, = L,. Finally, if p € (), then f is a unit in Z,. Hence
o is a unit in A}, s0 0L, = fT Al = A = L), O

The following is closely related to theorem 5.19 in [41]:

Theorem 8.3. With respect to SU(A, @), every genus of A-lattices consists
of only one class.

Proof. Let £ and L' be A-lattices in A belonging to the same genus with
respect to SU(A, ®). Let P be the set of primes p such that £, # L. For
each p € P there exists an element o, of SU(A,, ®) such that 0,L, = L. By
theorem 8.2, there exists an element o of SU(A, ®) such that (o — 0,)L, C
poLy, for p € P and 0L, = L, for p ¢ P. Lemma 8.1 now gives us that
oLy = opLly = L}, for p € P. Hence (0L), = L, for all primes so we have
ol =L O

8.2 The number of components

Let N > 0 be an integer. Let fy denote the number of components of the
curve F. To be able to compute fy, we first need some technical lemmas.

Lemma 8.4. If 8 € A is an element with E* = f and nr(B) # 0, and if
x € k* with T = 1, then there exists v € A with ¥*y = 8 and nr(y) = x.

Proof. Put Ag = {a € A | fa = @fB}. We observe that nr : Ag — Q is
surjective, since this map is an indefinite quaternary quadratic form (this
follows e.g. from Meyers theorem, see [40], p. 43). Take an element 7 € k
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with 7/ = z, which exists by Hilbert’s theorem 90 (see [26], p. 34), and
an element ¢ € Ag such that ngnr(c) = 1. Let v = nc. We get that

nr(y) = n’nr(c) = n/7 = x and * By = nigc*fe = nimr(c) 8 = B. O

Lemma 8.5. Let B1,82 € L with nr(B1) = nr(fB2). Then there exists a
hermitian form ® : A x A — A and elements x1,z2 € A such that nr(z,) =
nr(zz) and

Bi = @(4, 1),

fori=1,2.

Proof. Define two forms ®; by ®;(z,y) = y*Biz, for i = 1,2. According to
theorem 5.7, there exists an element s € A such that ®,(sz,sy) = Po(z,y)
for all z,y € A. Thus By = ®o(1,1) = P4(s,s) = 5*B1s. Let z = nr(s) L.
Then we have that 2T = 1, so, by lemma 8.4, there exists v € A with

nr(y) = z and ¥*B1y = B1. Now we get that By = ®1(vs,ys), so we can
choose ® = @1, z1 =1 and z2 = 7s. |

Lemma 8.6. Let @, §8; and x; be as in lemma 8.5. Define the two A-lattices
L; = z;A\, for i = 1,2. Then there exists o € SU(A,®) such that oLy = L4
if and only if there exists i € A' such that By = I* 1.

Proof. Assume first that Lo = £; for some o € SU(A, ®). Then ozoA =
z1A, so o9 = x1p for some p € A*. This gives nr(u) = 1, and furthermore

B2 = @(z2,72) = ®(0w2,022) = (11, T1) = " P1s-

Assume now that By = *Biu, where p € Al. If we put o = 11;1/”:2_1, then
oLy = L1 and nr(c) = 1. Furthermore,

®(0x9,002) = O(z1pt, T11t) = B Pipp = P2 = B(x2,72),
so o € SU(A4, D). O

We write 81 ~,1 B if there exists u € A such that By = *Bip. Let
analogously £1 ~ AL B2 denote the corresponding property in the local case.
Then we get the following corollary to theorem 8.3:

Corollary 8.7. If 81,82 € L, then B1 ~x1 B2 if and only if b1 ~AL B2 for
every prime p.

Now we are prepared to compute fn. Let L(NN) denote the set

L(N) ={p € L | g primitive and ¢(8) = N}.
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Two elements 31, 82 € L(N) are equivalent if there exists u € A' such that
Bo = £ B1p, i.e. if B ~ 1 £51. We have that fy is the number of classes
in L(N) under this equivalence relation.

Take an element 3 € L(N). Recall that the group I's is a group extension
of A}j of degree 1 or 2. We have in fact that [I'g : A}j] = 2 if and only if
—fB ~a1 B. Hence, we get the following result from corollary 8.7, lemma, 5.13
and proposition 5.15 (and the observation that if (=1, D), = 1, then p | d):

Proposition 8.8. [['s: Aé] = 2 if and only if the following conditions hold
for every prime p such thatp | D :

i) if (=1,D)p =1, then p | q(B),
i) if (—1,D)p, = —1, then vp(d) < vp(g(B)) < 2vp(D).

Since [I'g : Aé] only depends on ¢(f3), proposition 8.8 defines implicitly
a function k on the set of all integers, which are primitively represented by
(L, q), such that

[T : Al = K(N),
for all 8 € L(N).

We now want to determine which positive integers NV that are primitively
represented by ¢, i.e. when L(N) is non-empty. By theorem 3.8, N is prim-
itively represented by ¢ if and only if N is primitively represented by ¢, for
every prime p. Using the local description of ¢ given in proposition 7.14 and
the fact that ¢ represents the integer B = do(A;)/do(A) by corollary 7.17,
we get: g represents N if and only if p? t N for every prime p | d(A) and
Xpp(NB) # —1 for every prime p | D.

Assume now that N is such that if p is a prime with p | d(A), then p? { N.
Then we get, by proposition 5.15, that the number of Al-orbits of L(IV) is

[[X0p(NB) + 1)ap,(N).
p|D

If K(N) =2, then — ~1 B for all B € L(N). If k(N) =1, then —f %1 8
for all § € L(N). We have therefore proved:

Theorem 8.9. If there exists a prime p such that p | d(A) and p? | N, then
fn = 0. Otherwise
k(N
v = " T 0top(VB) + ap (V).
p|D

where B = do(A;)/do(A).
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9 The intersection points of the curves

In this chapter, we will examine how the curves Fj intersect each other. To
each intersection point z € H xH of two curves Cg, and Cpg,, we associate
an oriented binary form ¢,. For a given oriented positive definite binary
form ¢, we introduce, in the same way as it is done in [22] for the case of
Hilbert modular surfaces, a rational number s(¢) which mainly depends on
how many points in X that satisfy g, = ¢.

We determine which forms ¢ that can occur. It turns out that there
exists a point z € H xH such that ¢, = ¢ if and only if ¢, is primitively
representable by g, for every prime p (proposition 9.14). We also describe
the classes of forms that correspond to elliptic points. The main result is a
formula for s(y) given in theorem 9.16.

Observe that in this chapter, all results are proved under the assumption
that neither 2 nor 3 is ramified in &.

9.1 Special points

For the rest of this chapter, we will for simplicity make the following as-
sumption: We assume that neither 2 nor 3 is ramified in k, i.e. we assume
that d = 1 or d = 5 (mod 12). In particular, the only orders of elliptic
points that can occur are 2, 3 and 5.

We want to investigate the intersection points of the curves Fg on X.
First, we make the following observation.

Lemma 9.1. Let 5; be elements of L with q(5;) > 0, for i =1,2. The two
curves Cg, and Cg, intersect each other if and only if 31 and B2 generate a
positive definite sublattice of (L,q).

Proof. The claim is obvious if Cg, = Cp,, so we can assume that 8; and
(o are linearly independent. A straightforward calculation shows that the
binary form

(.Z',y) = nr(xﬂl + yﬂ?) T,y € Z

is positive definite if and only if

tr(B7 ' B2)? < Anr(8; ' Ba),

i.e. if and only if S 18, is an elliptic element. But the existence of an
intersection point between Cp, and Clp, is clearly equivalent to the existence
of a fixed point of the mapping S, 18y : H — #, so the claim follows. O

If z is the intersection point of two different curves C, and Cp,, then
either z maps to a singular point on X, or to a transversal intersection point
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between the curves Fg, and Fp,. If it happens that Fjg, = Fj,, then this
curve has a node at this point.
Let z = (21, 22) be a point in H x# and define

L,={B€L|q(B)>0and Bz =z}U{0}.

We also let W, = QL, be the corresponding subspace of W, so L, = LNW,.
If L, is non-trivial, then it is a positive definite sublattice of L, and hence
L, is a Z-lattice of rank 1 or 2.

Definition 9.2. The point z is called special if the lattice L, has rank 2.

We want to show that it is possible to make consistent choices of orien-
tations on all the lattices L,, where z is a special point. Consider therefore
the set

L={(z,0) € (HxH) x Ma(R) | det(8) > 0 and Bz = 22} UH xH x {0}.

L is a 2-dimensional real vector bundle on H x#. It is possible to extend
the action of SLo(R) x SLy(R) on H xXH to an action on L by

v(z,B) = (72,7287 1),

if v = (y1,7) € SLy(R) x SLo(R). Hence, a choice of orientation on a
specific fiber £, extends naturally to an orientation on the vector bundle L,
and the orientation is preserved under the action of SLy(R) x SLy(R). In
particular, it is preserved under the action of A'. From now on, we fix such
a choice of orientation.

If z is a special point, then the lattice L, is naturally embedded via g
in the fiber £, of £. Hence, we can choose a Z-basis e, es of L,, which is
positive as an R-basis of £, and define an oriented binary form (L,,q,) by

9, = q|Lza

and declaring that ey, es is a positive Z-basis of L,. If 2/ = Az, where XA € A!,
then we have g, = ¢,. Hence, to any A'-orbit of special points in H x#,
we have associated an isomorphism class of positive definite oriented binary
forms.

If the point ¢ in X is the image of z € H xXH, then we say that ( is
special if z is special in the previous sense and we denote the isomorphism
class of g, by g¢. The goal of this chapter is to compute, for a given oriented
positive definite binary form ¢, the number of points in the set

X(p)={C€X|q =9},

Following Hirzebruch and Zagier (see [22]), we make the following definition:
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Definition 9.3. Let ¢ be an oriented binary form. Then we put

sy = > e, (9.1)

ceX(p) i

where w,, is the number of elements in the group of oriented automorphisms
of ¢, and v¢ is the order of the isotropy group in A of a point z € HxH
representing ¢ (so w, and v¢ both take values in the set {2,4,6}).

Let now M be any optimally embedded sublattice of L of rank 2 such
that g|as is positive definite. Take two generators i, Sz of M. The curves
C3, and Cl, intersect, by lemma 9.1, in some point z, and we have M = L,.
The lattice L, is oriented, and hence we can associate to M an isomorphism
class of oriented binary forms.

Definition 9.4. For M as above, we define
M+ = {z € L¥ | tr(z* M) = (0)},
We let q#/[ denote the restriction of ¢# to M=.

We have that M~ is an optimally embedded sublattice of L# of rank 2.
Note that q#/[ is a binary integral quadratic form, but that we do not consider
it as an oriented binary form.

If ¢ is a positive definite oriented binary form, then a necessary condition
for the existence of a point z € H xH such that ¢ = g, is that (Ly, gp) repre-
sents ¢, primitively for every prime p. We will see later, in proposition 9.14,
that this condition is in fact sufficient.

Lemma 9.5. Let p be a prime and ¢, a non-degenerate binary quadratic
form over Z,. Then (Ly,qp) represents ¢, primitively if and only if the
following conditions are satisfied:

i) if p is unramified in k, then p{m(pp),

i) if p | d(A), then @, is anisotropic, and it is either a modular form
with p*> { m(pp) or a non-modular form with d(vp) = (p) if p # 2 and
d(pp) = (8) if p=2,

iii) if p | D, then p | d(pp) and p? t m(p,). Purhermore, if m(pp) = 1,
then ¢, represents B = do(Az)/do(A), and if m(pp) = p, then @,
represents —BD.
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Proof. Recall the local description of (Ly, g,) given in proposition 7.14. We
will show that the conditions given are necessary for ¢, to be primitively
representable by (L, gp). That they are sufficient is straightforward to check
in each case, by using the local classification of binary forms over Z, (see
e.g. [7], chapter 8). In particular, it is clear that if p is split in k¥ and p 1 d(A),
then every non-degenerate binary form over Z, is primitively represented by
(Lp gp)-

i) Assume that p is unramified in k. Assume that p | m(pp). Then there
exists a basis of L, such that the matrix of g, is of the form @ = (7(’;2 g),
where A, C and E are 2 X 2 matrices, and A (and E) has even entries on
the diagonal if p = 2. If p # 2, then we immediately get det(Q) = (det(C))?
(mod p), which would contradict proposition 7.14. If p = 2, then a calcu-
lation gives that det(Q) is a square modulo 8, so we get a contradiction in
this case too.

ii) Assume now that p | d(A), so we have that (L,,q,) = (Qp,nr). It
is clear that ¢, must be anisotropic, since g, is anisotropic. Furthermore,
recall that if z € Q, and p? | nr(z), then x € p€2,. Hence p? { ¢(z) for every
primitive element z € L. In particular, we get p® { m(yp,). Assume now that
¢p is non-modular. Then there exists an orthogonal basis e, ez of M, and
since p? { q(e1),q(e2), we get that d(p,) is as claimed.

iii) Assume now that p | D. We have that g, is isometric to the form
B(z? — dy? + Dzw). Now, if we reduce this form modulo p, the form we get
has rank 1. Hence, every binary form ¢, represented by ¢, has rank at most
1, when reduced modulo p. This shows that p | d(¢,).

Assume now that p? | m(p,). Then we get that the matrix of g,, in some
basis, is of the block form Q) = (péf g) Since the rank of the matrix
reduced modulo p is 1, we must have that C is of the form pCy. But this
implies that p? | det(Q), which is a contradiction. Hence we have p? { m(y,).

If p  m(pp), then it is clear that ¢, represents B. Assume that p | m(ep,).
If ¢, is modular, then it is clear that ¢, represents —BD, so assume that
p3 | d(¢p). Let a € Z, be an element represented by ¢, such that v,(a) = 1.
In a suitable basis, the matrix of g, is now

2 0 pb  pc

o=|0 2p%a pe pf
pb pe 2B 0 |’

pc pf 0 2pg

where a,b,c,e, f,g € Z,. We get det(Q) = —4p?f2Ba (mod p*). Hence

( —4p f;Ba/p ) _ (B‘*Dps/p ) (a_/p> E( D/P). This shows that ¢,

represents —BD. [l
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Lemma 9.6. With M as above, we have that the binary form q#/[ 15 negative

definite, it has discriminant

and content
m(qyy) = m(qum)/t,

where t is the product of all primes p dividing D such that qpr is modular
at p.

Proof. 1t is clear that q]#é[ is negative definite. Let p be a prime, and let

¢ = (qur)p and o = (g7;)p-

If pt d(A)D, then (Ly,qp) is unimodular, and the claim follows directly
from lemma 3.9.

Ifp | d(A), then (Lp,gp) = (£, nr). Let A be the matrix of an anisotropic
unimodular binary quadratic form over Z,. The matrix of g, is then given
by (‘3134) in a suitable Zy-basis eq, ez, e3,e4 of L. A Z,-basis of Lf is then
given by pe, peo, e3, eq, and qf = % nr. By the symmetry of the roles played

by (Lp,¢p) and (L;"?E , q# ), and part ii) of lemma 9.5, it is sufficient to prove
the claim when ¢ is modular. Assume first that ¢ is unimodular. If this is
the case, then it is easy to see that M must be the column space of a 4 x 2
matrix (4). Then M* is given by the column space of (47 5°4). Hence
we get that ¢+ is unimodular. The same type of calculation shows that if
¢ is p-modular, then so is also ¢*.

If p | D, then we use explicit calculations to verify the claim. Let
€1,--.,€es be a basis for L, such that the matrix of g, (up to a constant
factor in Z;) in this basis is

2 0 0 O
0 -2d 0 O
@= 0 0 0 4d
0 0 4d 0

(recall that p # 2). We have the dual basis %61, ;—;62, ﬁe;;, ﬁeg of L#.
The matrix Q# of the dual form, in this basis, is

2d 0 0 0
0 -2 00

# =
¢ 0 0 01
0O 0 10
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Now we identify sublattices M of L, with column spaces of matrices U.
The orthogonal complement M+ C L# of a sublattice M is identified with
the column space if some matrix U+. The matrices of ¢ and ¢ are then
given by UQU and (U+)!Q# U~ respectively. It is easy to see that it is

sufficient to verify the claim when U is one of the matrices Uy, ..., Uy given
in table 1, where a, b, c,e € Z,. We can verify that we have d(p;) = 4dd(yp;)
10 —a —c p1=[1+4dac,4d(bc+ae),d(4be—1)]
U, = (0 1) Uit = (b e) i =[da®—b%,2dac—2be+1,dc? —€?]
ab 1 1 0 _ 1y—
ce 0 1 m(p1)=(1), m(p;)=(1)
10 —a —c pa=[1—da? 2d(2c—pab),Ade—p>db?]
Uy = 8 Plb Uil = (i)b Oe> wé—:[daz—l,Zdac—pli,d@—e]
ce 0 1 m(p2)=(1), m(py)=(1)

e m(ps)=(),  mlpt)=(p.etc)

0

1

e

pb N (1) (1) pa=[p%(a?—dc?),—2p?dce+2p2ab+4d,p? (b2 —de?)]

pe U4 = o7 =[d+p?ab,p?(bc+ae),p’ce—1]
m(pa)=(p), m(p3)=(1)

—pa —pc

pa pb 1 0 p3=[p%a?—d,2p? ab+4dc,p?b®+4de]
Us = ( ) U3J- = (—pa _C> o3 =[d—p?a®,—2pac—pb,—c?—e]
( —pb —pe

Table 1: Explicit computations of ¢! in the case p | D

for i = 1,2,3,4. Furthermore, the claim about m (') follows by inspection
and the following two additional remarks: p® | d(y3) if and only if p | e+ c2,
and p* { d(¢4). m

9.2 The binary form of an elliptic point

We will prove that an elliptic point of order 2 or 3 is a special point and we
will determine which equivalence classes of binary forms that can appear for
such points. It turns out that there are two families of binary forms that can
occur, and we say that an elliptic point is of type I or type II according to
the type of its associated form. We start with a technical lemma on complex
quadratic fields in A.

Let k1 C A be a complex quadratic field over Q. Let k1 = Q(1) where
7?2 € Q with 72 < 0. Let K be the totally complex biquadratic field

K =k(n) C A

K contains exactly 3 non-trivial subfields, namely k&, k1 and ko = Q(72),
where vo = Vdi.

Lemma 9.7. There exists an orthogonal decomposition W = W1 L Wy such
that dimg W; = 2, WW,; = k; and W;k; = W;, for i =1,2.
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Proof. We will treat the two cases 7(K) = K and 7(K) # K separately. We
consider first the case 7(K) = K.

In this case, we have that K is closed under the two commuting in-
volutions 7 and z — z*. Observe now that we must have 7(y;) = 7 or
7(y1) = 7%, since the minimal equation of 7(vy;) is the same as the minimal
equation of ;. In the former case, we have that 7(y2) = 73, so exchanging
k1 and ko if necessary, we may without loss of generality assume that

T(’Yl) =

Define
Wi=KnWw.

Now in fact Wi = ki, so Wj clearly has the properties required by the
lemma. Let now

Wo=Wi ={weW |tr(w*K) = (0)}.

Since nr |y, is definite, we get that WiNWy = (0), and hence W = Wy L Ws.
Take now a,b € Wy and ¢z € K. We get a*br = —a*zb = za*b, so all
elements of W5 W5 commute with all elements in K. Hence we get Wy Wy C
K, since K is a maximal commutative subalgebra of A. Furthermore, we
have that W5 W5 is a complex field, since nr |y, is definite, so we must have
that W2*W2 = k‘g.

It remains to show that Way, = Ws. Take a € Wy, so we have tr(a) =
tr(ay1) = 0. Then

T(ay2)* = —Vdyia = Vda*y} = Vday = ay,,

so ay2 € W. Furthermore, tr((ay2)*K) = tr(a*y5K) = tr(a*K) = (0), so
we get that in fact aye € Wy. We are done in the case 7(K) = K.

Now we consider the case 7(K) # K, which clearly implies that 7(K) N
K =k. Let i be 1 or 2. We have A = K + 7(v;)* K, since 7(;)* ¢ K, and
we conclude that

]-a Yi» T(’)’i)*, T(')’z)*')’z
is a k-basis of A. We define the (Q-vector space

Wi={weW |wy] = 7(yi)w}.

It is clear that Wi N Wy = (0). Furthermore, it is straightforward to check
that

Yi + T(0)*, T(%) i+ € Wi (9.2)
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It is clear that elements in (9.2) are linearly independent over QQ, since they
are linearly independent over k. Hence W = W1 @ W5 and dimg W; = 2. It
is easy to check that W;y; = W,.

Now we want to show that W;W,; = k;. Let a,b € W;. Using avy; =
7(vi)a, by = 7(7;)b and nr(vy;) € Q, we get

yia'h = a*r(3)"b = a’by;

s0 a*b commutes with ;. Hence a*b € K, since K is a maximal commutative
subalgebra of A. We conclude that W;*W; is a subfield of K. Since we have
Wiv; = Wi, the only possibility is that WW; = k;. Finally, using (9.2), it
follows immediately that W = W, L Ws. O

Let z be an elliptic point of order n = 2 or n = 3. There exists an
element p € Al with p>? +1=0ifn =2, or with p2 +p+1=0if n = 3.
Consider now the field

K =k(p) C 4,

which is a totally complex field of degree 4 over (. We also consider the
rings

S1 = Zlp|
and

9 =

Z[Vdp] ifn =2,
Z[Vdp+ (Vd+1)/2] ifn=3.

By our assumption on k, we have that both S7 and S are maximal quadratic
orders. We also have S1,S2 C A and d(S2) = Dd(S1).

Proposition 9.8. If z € H x?H is an elliptic point of order 2 or 3, then z is
a special point. Furthermore, we have that either L,S1 = L, or L,Sy = L,.

If z € HxH is an elliptic point of order 5, then L, = {0}, i.e. there
exist no B € L such that z € Cj.

Proof. Let first z be an elliptic point of order 2 or 3. By lemma 9.7, there
exists an orthogonal decomposition

W =W, LW, (9.3)

such that W1 51 = Wi and WySe = Ws. We have that both ¢|w, and q|w,
are definite quadratic forms. Let ¢ be such that g|w;, is positive definite.
We have that Wip = W1, and therefore we get

T(p)Wip" = 1(p)W1 = 7(p)T(W1)" = 7(W1p*)* = 7(W1)" = W1.
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Since the map w +— 7(p)wp* is an isometry of (W, q), we conclude that it
must respect the orthogonal decomposition (9.3). Hence we have

for j =1,2.

Let now M be the lattice M = L N W;. By lemma 9.1, we have that
M = L, for some point 2’ € H xH. Since 7(p)Mp* = M, p must preserve
the intersection point 2z’ of the curves Cg for § € M, ie. pz’ = 2. Hence
7' = 2z, 80 z is a special point and

L,=LnNW,.

It remains to show that L,S; = L,. Take 8 € L, and A € S;. We have
W;S; = W;, so we know that S\ € W;. We also get ABAA C ABA C A, so
BX € L. We are done.

Let now z be an elliptic point of order 5 and choose p € Al with p® =1,
p # 1. Assume that we have z € C3 for some 8 € L. First we want to show
that we must have p ¢ I'3. Assume to the contrary that p € I'z. Since we
have [I'g : Aé] =1 or 2, we would get that p € Aé. But this is impossible,
a unit root of order 5 can not exist in a quaternion order over Z. Hence
we must have 7(p)Bp* # £ for every element S € L, \ {0}. But then the
binary form ¢, represents every non-zero value at least 10 times, which is
absurd. O

Corollary 9.9. Let q, be the quadratic form of an elliptic point z of order
n =2 or n =3. There are two cases:

i) q. 2 mDy, where ¢ =[1,0,1] if n=2 or p =[1,-1,1] if n =3, and
where m is a positive integer with m | d(A). If n = 2, then we have
Aln Ak = {*1} and A} C T for all B € L, \ {0}, and if n = 3, then
we have AL NTz = {£1} for all B € L, \ {0}.

i1) ¢, = me, where do(¢) = —4D if n = 2 or do(p) = —=3D if n = 3,
and m is a positive integer with m | d(A). We have AL C Aé for all
B e L, \{0}.

Proof. We use the notations of the proof of proposition 9.8.

Consider first the case L,S1 = L,, which implies that L, = LN W;. We
want to show that i) holds. We have that WySe = Ws, so So C WoW, =
Co(Ws,¢*|w,). Furthermore, since we have that Wy C Wj for all non-zero
B € L,, we get So C Ag, and therefore

Sa gA/D’a
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for every g € L, \ {0}.

Take now an element 3 € L,\{0}. Since we have Sy C Ag, we necessarily
get S1NAg =Z. Hence AL N Aé = {#1}, and from this follows, that p € I'g
if and only if 7(p)8 = —Bp. Since Bp € W, we get Bp = 7(Bp)* = 7(p*)p-
Hence, we see that p € I'g if and only if p* = —p. This gives p € I'g if n = 2,
and p g g if n = 3.

Since L, is an S;-module, and since we know that D | d(g,), we get that
g = mDyp, where m € Z and do(p) = d(S1). We must show that m | d(A).
By lemma 9.6, we have dg(qy) = m?Dd(S), so we get

m2Dd(81)Z = d(qF) = d(S2 N ©) = d(S2)[S2 : S2 N O]

We know by lemma 7.11 that [Se : So N ©] | d(A), and hence m | d(A).
Consider now the case L,So = L,. The argument is similar in this case.

We want to show that ii) holds. We have Wyp = Wy, so p € Co(W1, ¢ |w,)-

Furthermore, since Wi C Wp for all non-zero 8 € L,, we get p € Ag, and

hence
S C Aﬂa

for every B € L, \ {0}. In particular, we have Al C Aé.

Now, since L, is an Sy-module, we get q, = myp, where ¢ is a primi-
tive form with do(¢) = d(S2) = Dd(S1). By lemma 9.6, we get do(q)) =
m?2d(S1), so

m2d(81)Z = d(¢}) = d(S1 N ©) = d(S1)[S1 : S1 N O
As in the previous case, this implies m | d(A). O

We say that an elliptic point which satisfies condition i) (respectively ii))
in corollary 9.9, is an elliptic point of type 1 (respectively II).

9.3 The number of special points

We want to determine which oriented binary forms ¢ that are equivalent
to g, for some point z, and furthermore compute the value s(¢). This
computation is somewhat long and technical, but much of the complication
arises since we want to handle also non-primitive forms. It is especially the
factor mg (see below) that complicates things. The reader who so wishes,
can only consider the case ms = 1, which is all we need in the applications
in chapter 12.

Let us now fix a positive definite oriented binary form ¢ such that ¢ = ¢,
for some point z € HxH. Let A = dy(p) and m(p) = (m), where m > 0.
We write m = mimeomg, where m; contains those prime factors which divide
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D, my those prime factors which divide d(A) and mg contains all other prime
factors. By lemma 9.5, we have that m; | D, that ms | d(A) and that every
prime dividing mg is split in k.

Recall now the classical result saying that any primitive binary form rep-
resents infinitely many primes. Hence we can choose a prime r not dividing
Dd(A)A, such that N = mr is represented by ¢. The curve Fy is now
non-empty, and by theorem 8.9, we have

fv=2""1Tg: Aj] =22 1K(N), (9.4)

where (3 is any primitive element in L with ¢(8) = N and b is the number
of primes which divide D but which do not divide m. Assume that

FN:FBIU---Upng.

Since ¢ represents N, we have that if ( € X with q; = ¢, then ( € Fy.
Hence, for every z € H xH with g, = ¢, we have that ( is equivalent under
A' to some point z' on some curve Cp,. Our first goal is to compute the
number of Aéi-orbits of points z € Cp, with g, ~ ¢.

Let us now fix one element 8 among ;. The order Ag is an Eichler order

of discriminant Ndy(A)/ma = mimsdy(A)r. Define

U,3={2€Cs|q, ~p}

We want to calculate the number of Ak-orbits of Uy 5.

For every z € ¥, g, consider the lattice LY = (L,)* with the quadratic
form g7 = q#\L#. We define SO to be the image of C’O(Lf, q?&) in A, so S?
is a quadratic order. Let

Lemma 9.10. S, is an optimally embedded complex quadratic order in Ag
with discriminant ﬁ.
2

Proof. We have d(S%) = A/D by lemma 9.6, and S is optimally embedded
in A3 N O by lemma 3.4. Note also that we have S = S, N O, so if ptd(A),
then (S,), = (S2),. If p | d(A), then (S,), is a optimally embedded order
in (Ag)p, = Q,, which implies that (S5,), is a maximal order in its quotient
field. But the only case where (S?), is not a maximal order in its quotient
field is if p | mo. The claim follows. O

Since all the quadratic orders S,, for z € ¥, 5, are isomorphic, we let
S, denote an element in this isomorphism class. Note that |Sj| # 2 if and
only if the corresponding special points are elliptic points of type II.
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To be able to handle the case m3 # 1, we first need a local result.
Recall the correspondence between optimally embedded quadratic orders
and optimally embedded sublattices given in lemma 3.4.

Lemma 9.11. Let p be a prime, k a positive integer and A = p?* A1, where
Ay is the discriminant of a non-degenerate integral binary form over Zi,.
Let Ay be an Eichler order over Z, with d(A1) = (p*) and identify A1 with
Co(M, g) for some ternary quadratic Z,-lattice (M,g). If S is a quadratic
order over Zy, which is optimally embedded in A1, then we denote the binary
form g|mg by gs. Let Ay and Ajy be the two unique mazimal orders such that
A =AgNAy. Let S be a quadratic order over Zy.

i) Let S be an optimally embedded quadratic order in A1, and assume that
d(S) = A and p* | m(gs). Then S is optimally embedded in ezactly
one of Ay and Aj.

it) For any optimally embedded S C Ay with d(S) = A, there exist A € Aj
such that 8" = ASA~1 C Ay, and p¥ | m(gs).

iii) Let S and S’ be optimally embedded in Ay, and assume that S, S’ C Ay,
d(S) = d(S'") = A and that p* | m(gs), m(gs). If S' = ASA™!, where
A € Aj, then X € A].
Zp T
Proof. Let A1 = (kaI’p ZZ
we choose M as the lattice

). Using the canonical construction of section 2.4,

—k
M:{Oz:(l‘ p y)\x,y,zEZp},

z —Z

with quadratic form g(a) = —p* det(a) = pFz%+yz for « € M. The maximal

. Zp 7 Zp p~*7Z .
orders Ay and Aj, are given by (ZZ ZZ) and (pkzpp z, p) respectively. We

» Zp
szZp Zp)’

i) Let S = Zp|w], where w = (p%C Z) and (tr(w))? —4det(w) = (a —d)? +
4pFbc = A. Since S is optimally embedded in A;, and we have p | A, we get
that (b,c) = (1). Assume first that b is a unit. Computing Mg = {a € M |
tr(aS) = (0)}, we get

b 0 0 —p kb
MS:Zp(d—a —b)+Zp<c 0 )

Thus p* | m(gs) if and only if p* | c and p* | a — d. Hence, S is optimally
embedded in Ay but not in Aj. Similarly, if we assume instead that c is

also introduce the order Ay =
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a unit, we get that S is primitively embedded in A}, but not in Ay. This
proves 1i).

From the calculation in the proof of i), we also get the following fact: If
S is optimally embedded in Ay with d(S) = A and S C Ay, then p* | m(gs)
if and only if S C As.

ii) Let S = Zp[w], where w = (2%) with (a — d)? + 4bc = A. By
optimality, we must have (b,c) = (1), and we assume that b € Z;. The
case ¢ € Z, is analogous. By the above remark, we need to find an element
A € A} such that AwA ™! € Ay. Let A = (f ,3{1) By a calculation, we get that
AwA~! € Ay if and only if

4p% | Aw? — (2bz — (a — d)w)?.

1 0
Hence, if p = 2 and A; =1 (mod 4), then we may choose A = ( a—d+2k 1),

2b
. 10
and otherwise we may choose A = ( a=d | )

iii) Let S = Z,[w]. By the hypothesis on S, we have that w = (pz%gc Z),
with (a —d)? + p**bc= A and b€ Z2. If A= (£Y) € Ao with det()) € Z3,
then by a direct calculation, we get that AwA~! € Ay if and only if p* | 2.
This shows the claim. O

Lemma 9.12. The number of equivalence classes of points z € ¥, g, under
the action of Aé, is
QaB(S(p, Ao),

where Ay is any order containing Ag such that d(Ag) = m3d(Ag) and a is
the number of different primes dividing mg.

Proof. Take a point z € ¥, 5. The successive construction of the quadratic
order S, C Ag outlined above goes as follows

2z Ly LF = Co(L¥,qF) — S,.
If A € A}, then one can verify that the corresponding chain for Az is

Az = ALY = AL = ACo(LT, ¢ )Nt = AS, AL
Hence, to every class of points in ¥, 3, we may associate a A}j-conjugacy
class of quadratic orders S C Ag.
We want to examine this construction in the opposite direction. Take
therefore a quadratic order S C Ag, which is isomorphic to S, and optimally
embedded in Ag. We consider the order S® = SN ©, which is optimally

embedded in the image of Cy (LEE, q?) There is a sublattice Mg C AEE such
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that S° is the natural image of CO(MS,qEqMS). Let Lg be the orthogonal
complement of Mg inside L, i.e. Lg = {z € L | tr(z*Mg) = (0)}. Note
that we have 8 € Lg. Furthermore, the lattice Lg is positive definite with
respect to ¢, end hence Lg = L, for some point zg € C3. We denote the
oriented binary form g¢,, of this point by ¢s. Note though that we do not
necessarily have z € ¥, g, i.e. that ¢g ~ ¢. It is clear, using lemma 9.6,
that we must have dy(¢ps) = A, but we may have m(ps) # (m).

Claim. We have v,(m(ps)) = vp(m) for every prime p with p { ms.

We have that g represents N = mr, so m(ypg) | mr. Now, since r 1 A,
we can not have r | m(pg), and hence m(pg) | m. To prove the claim, we
need to show that mims | m(pg).

Assume that p | m; and assume to the contrary that p { m(¢pg). Then
¢s is a primitive form with p? | d(pg). Such a form can not represent
an element o € Z, with v,(a) = 1. But g represents N and we get a
contradiction. Hence p | m(ygs)-

Assume now that p | ms. Since ¢, is modular, we have that (S,), = (S),
is unramified and hence we must have that (¢g), is modular anisotropic.
But ¢g represents N and v,(N) = 1, so we must have p | m(¢g). This
proves the claim.

If now S is such that m(¢g) = (m), then by lemma 3.3, we have pg ~ .
Hence the Aé—classes of points z € ¥, g correspond one-to-one to Aé—classes
of optimally embedded orders S C Ag with S = S, which satisfy the addi-
tional requirement that ms | m(ps).

Let A be the set of orders Ay C Ag which have the following properties:

i) Ao D Aﬁ,
ii) d(Ao) = d(Ag)/ms,

iii) there exists an order A{j D Ag such that d(A}) = d(Ag) and Ag =
Ao N AL

By lemma 2.27, we have that A contains 2% orders. By lemma 9.11, we
get that if z € U, 3, then S, is optimally embedded in a unique order
Ay € A. Furthermore, we get from this lemma that the number of Aé—
classes of orders S, which are optimally embedded in Ay equals the number
of A}-conjugacy classes of optimally embedded orders S € Ag with S & Sy
By lemma 3.7, this number is e(S,, Ag). Furthermore, by proposition 3.5,
the number e(S,, Ag) does not depend on the particular choice of Ag. We
are done. O
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Lemma 9.13. If p 2 @, then exactly half of the A}ji—orbits of points z € Cp,
with q, ~ @ consist of points with q, = .

Proof. Let the map T = T : HXxH — HxH be as in lemma 7.26, so
T(z1,22) = (s8%22,5621), where s € Ag. Fix a special point z = (29, Bzp) €
Cp with g, = ¢. We want to show that g, = @, where 2’ = T(z) € Cjs.
First we show that

Sy = 8,.

Take an element A € Ag such that Az = z,i.e. A € §,. We have Azy = 2z and
BA = A\B. We get that 2’ = (s8*Bz0,3B20) = (520, 8520), 50 (sAs™1)(2') = 2.
We also have sAs~! € Ag, since s belongs to the normaliser of Ag. This
shows that S, = sS,s~!. In particular, we get that d(q,') = d(q,). We also
need to show that m(q,) = m(q,). If we can prove that this holds, then
we claim that we are done. We get namely, by lemma 3.3, that ¢, ~ ¢,
since both ¢, and g,s represent N primitively. But the map T reverses the
orientation of the vector bundle £, so we must have ¢, = q,.

As in the proof of lemma 9.12, we get that v,(m(q,)) = vp(m(g,)) for
every prime p which is not split in k, and for the split primes p such that
p | d(A). We now want to show that this holds also if p is a split prime with
p1d(A). We will need to use a different approach to settle this case.

If a € L with g(a) > 0, then we get T(C,) = Csgarps+- We define
therefore a map f: W — W, by

f(x) = nr(sB)"Ls5pz*Bs*.

We have ¢(f(z)) = q(z) for all z € W. We also have T(Cy) = Cf (4 for all
a € L with g(a) > 0, so f(W,) = W,. The problem is that in general we
have f(L) # L. We want to show that if p is split in & with p { d(A), then
we have f(L,) = L,. As a consequence of this, we will get that f(L,) = L,
and hence

(2)p = (g2)p-
As usual, we identify A, with My (Zp) x M2(Zp) and let ¢ be the involution
given by «(z,y) = (y,z). Let v € W, be the element given by lemma 7.5, so

we have 7 = vy 1i(z)y for all z € A and L, = v*L,. Furthermore, we let 3,
be as in the proof of lemma 4.12 if applied to the involution z — Bz, so

,BO_IL(III)B() = B71ZB, 1(Bo)* = Bo and fy is primitive in A,. We get 78 = uf
for some u € kj, so we have
f(Lp) = nx(sf)~'sALyBs" = nr(sp) ' fsL,yfs" =
= nI‘(Sﬁo)_l’)’*ﬂosLLﬁos* = 7*LL = Lp-
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Here, the next to last equality follows from the fact that nr(s)~!8ys € A} and
nr(By) Pos* € Aj, which follows immediately from the explicit description
of By and s in the proof of lemma 4.12. We are done. O

Proposition 9.14. If ¢ is a positive definite oriented binary form, then
there exists a point z € HxXH such that ¢ = q, if and only if g, represents
pp primitively for every prime p.

Proof. Assume that ¢ is a positive definite oriented binary form such that g,
represents ¢, primitively for every prime p, i.e. ¢ satisfies the conditions of
lemma 9.5. Let A, m = mimam3 and N = mr be as above. Since g, repre-
sents ¢, primitively for every prime, and ¢ represents N primitively, we get
that g, represents N primitively for every prime p. Hence, by theorem 3.8,
we get that g represents N primitively, say by € L.

Consider now the imaginary quadratic order which has discriminant
A/(m3D). We denote this order by S,. Let p be a prime. Since g, represents
©p, we can follow the opposite construction given in the proof of lemma 9.12,
but this time locally at p, and get that (S,), is primitively embeddable in
(Ag)p- But Ag is an Eichler order, and hence we get by proposition 3.5 that
there exists a primitive embedding f : S, — Ag.

Consider the image S = f(S,). We choose an over-order Ay of Ag as
in the proof of lemma 9.12. Using a suitable conjugate ASA~! C Ag, where
A € A}, we can now follow the opposite construction, and arrive at some
point z € Cg which satisfies g, ~ ¢. If it should happen that g, % ¢, then
by lemma 9.13 there is some other point 2z’ € Cg such that g, = ¢. O

Definition 9.15. If ¢ is a binary form over Z and p a prime, then we let

() 1 if ¢, is modular,
o =
¥ 2 otherwise.

We also introduce the modified class number A’ (compare e.g. [22]), which
counts forms ¢ with multiplicity 2/w,. Hence h'(—3) = 1/3, h'(—4) = 1/2
and h/(N) = h(N) otherwise.

Theorem 9.16. A positive definite oriented binary form ¢ is represented
by q if and only if o, satisfies the conditions of lemma 9.5 for every prime p.
For such a form, we have

st0) =2 (5 ) ITowto) IT o7 (9.5
p|D

pdin) ()

where a is the number of different primes dividing ms.
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Proof. We claim that, with NV, 8 and Ag as above, we have

s(p) = 2 L0
K(N)[S5]

Let C denote the disjoint union of the curves Cg, / Aéi, fori=1,..., fn-
Let ¥, consist of those points of C' which map to points ( € X with gc ~ .
By lemma 9.12, we have that #(¥,) = fn2%(S,, Ao).

Assume first that w, = 2 and that the points are not elliptic. Assume
that kK(N) = 1. If ¢ 2 @, then by lemma 3.3, we get that through every
point ( € X with g; = ¢ there passes exactly one branch of FN Hence,
we get s(p) = #(X(p)) = #(¥y)/2, by lemma 9.13. If ¢ = B, then
two branches of Fy pass through each point of X(¢), and hence we get
s(p) = #(X(p)) = #(¥,)/2 in this case too.

If K(N) = 2, then the groups T'g, /A act on U, g. /A without fixed
points, since the points are not elliptic, and hence we get s(cp) #(V,)/4,
which is in agreement with (9.6).

Consider now the case that w, > 2 and that the points are not elliptic.
We have w,/2 branches of Fy passing through each point of X(¢). But
we want to count every point with multiplicity w,, and hence (9.6) holds in
this case too by the same reasoning as above.

Assume now that the points are elliptic of type II. The above argument
applies in this case too. We have for instance, by corollary 9.9, that the
groups I'g, /A%z act on ¥, g /A,IBZ without fixed points if K(N) = 2. Fur-
thermore, the points are to be counted with multiplicity 2/|S7[, so we get
that (9.6) holds.

Assume finally that the points are elliptic of type I. These points are to
be counted with multiplicity 1. Counsider first elliptic points of order 2. In
this case we have, by corollary 9.9, that x(N) = 2, |S}| = 2 and that I‘Igi/Aéi
acts trivially on ¥, g,/ A%i. Furthermore, there are 4 branches of Fiy through
each point of X (¢). Hence s(p) = #(X(¢)) = #(¥,)/4, which agrees with
formula (9.6). Consider now elliptic points of order 3. In this case, we
have |S3,| = 2 and that Fﬂi/Aéi acts without fixed points on \I’w,ﬂi/Aéi if
k(N) = 2. We have 2 branches of F through each point of X(¢), so
s(p) = #(X(p)) = #(¥,)/(26(N)). Hence (9.6) holds in this case too.

We need to check that (9.6) simplifies to (9.5). By (9.4) and proposi-
tions 3.5 and 3.6, we get that

S((p) _ ga-1 2h§f ) er(cha AO (2bH S(p,AO ) H e S(p,AO)
155 pld(A)
Now we only need to use proposition 3.6, and our assumption that e, (S, Ao)
is non-zero for every prime p, to get the result. O

(9.6)
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10 Curves

In this chapter, we treat the case of groups constructed from indefinite
rational quaternion algebra acting on H.

Let A be such an algebra, and A a Z-order in A. In section 10.1, we
recall some well known facts about the action of A' on .

Many authors, see e.g. [8], study congruence subgroups of A! and de-
termine the genus of the corresponding quotient curves. In section 10.2,
we will instead consider extensions of the group A!/{%1}, coming from the
normaliser of A. The motivation for doing this, is that such extensions arise
naturally when we study the modular curves Fjg.

In section 10.3, we consider the example where A is a maximal order
with discriminant 39. The reason that we choose this particular example is
that it appears in chapter 12, and there we need to know the genus of the
quotients given by some of the extended groups.

10.1 General theory

We will now recall some general facts about the situation when groups of

units in a quaternion order over Z act on 7. These facts are generally known,

see for example [46] and the references therein for proofs and further details.
Let w be the arithmetical hyperbolic measure on #,

1 dz Ady
——

Com Y

where z = = + iy. Let A be an indefinite rational quaternion algebra, and
let p: A = M3(R) be an embedding. Let A C A be a Z-order, and let
Al act on H via the map p. Let F C H be a fundamental domain of this
action. Let e, denote the number of equivalence classes of elliptic points of
order r. We have that e, = 0 if r > 4. Let ey, denote the number of cusps,
i.e. the number of equivalence classes of parabolic elements. Let C' denote
the compactification of the quotient /A’ and let g be the geometric genus
of C.
The genus g of the curve C' can be computed from the fundamental
equation
1 2
2—2g=/ w+ e+ -e3 + exo. (10.1)
F 2 3
The numbers which occur on the right hand side of (10.1) can be computed
for a general order A, but it will be sufficient for our purposes to consider
the case of Eichler orders.
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Assume that A is an Eichler order, and that d(A) = Nyd(A). Then the
hyperbolic volume is given by

__1 p—1
/}_w— Sdo(4) H) -

pld(A

1
12 (10.2)
p|No p

The numbers of elliptic points are given by

o — {wa (=) oo (14 (51)) 10408
0 if 4| Ny,

and

_ (=3 =3 i
oo {Toay (1= (B T, (1 (3)) 100480 (0
0 if 9| Np.
If we furthermore assume that A is a skew field, then we have of course no
CUSPS, SO €5 = 0.

10.2 Actions of extended groups

We use the notations of section 10.1. Let I' denote the image of A! in
Aut(H), so T' = A /{+1}. However, this subgroup of Aut(#) is not in gen-
eral a maximal discrete subgroup. Hence, it will sometimes be of interest to
study extensions of I'. In this section, we will study group extensions which
are constructed using elements v € A such that nr(y) | d(4) and nr(y) > 0.
It is of course possible to use other elements of AT which normalise A,
to generate extensions of I'. But for simplicity, we will only consider this
restricted class of extensions.

Recall that the norm nr : A — Z is surjective, by lemma 2.28. Hence,
for any positive divisor n of d(A), there exists an element v € A with
nr(y) = n. Such an element acts on # via the Moebius map given by the
matrix o(y) € GLJ (R). We have the following elementary result:

Lemma 10.1. Let A be an FEichler order over Z and n a positive divisor of
d(A). We have

) if v € A and nr(y) = n, then YAy~ = A,
i) if v € A and nr(y) = n, then there exists A € A' such that v* = n),
)

if 1,72 € A and nr(y1) = nr(y2) = n, then there ewists A € A such
that yo = Av1.
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Proof. i) This follows directly from proposition 2.11.

ii) The claim follows if we show that v?n~! € A, for all primes p. This
is clear if p t d(A), since in that case n is a unit in Z,. Take a prime p
with p | d(A). In this case, the claim follows since nr(y?n~!) = 1 and
Ap ={z € Ay | nr(z) € Z,} (proposition 2.11).

iii) Analogously with the proof of ii), we get that oy, L e A, for all
primes p, and the claim follows. O

Let n and v be as in the lemma. By assertions i) and ii), it is clear that
<y generates an extension in which I' has index at most 2. By iii), it is clear
that two elements with the same norm n induce the same group extension.
Furthermore, it is clear that this extension is trivial if and only if n = 1.

Hence, for every positive divisor n of d(A), we can choose an element
v € A with nr(y) = n and consider the map g(7y) : X — #. This induces a
well defined map

tn: C — C.

If n # 1, then 4, is an involution on C, and we have that ¢; is the identity
map. Hence, we have a 2-group

G={wn|n€Zsiandn|dA)}

acting on C. The number of elements of G is 2!, where ¢ is the number of
prime divisors of d(A).

We now want to study the set of fixed points of any non-trivial involution
in G. Since G is a 2-group, it is clear that if ¢, and ¢, are two different non-
trivial elements in G, then the sets of points fixed by ¢, and ¢,/ respectively
are disjoint.

To compute the number of fixed points, we first make some elementary
observations about traces of elements.

Lemma 10.2. Let p be a prime and consider €, the mazimal order in the
skew field H, over Q. If v € Q, with p | nx(7y), then p | tr(y).

Proof. Recall that the norm and trace of an element v € €2, in the coordi-
nates of section 2.5, are given by

nr(y) g —apa; + ea% - p(a% —agas + ea%)
r

=a
t (IY) = 20’0 +G,1,

where € € Zy and 1 —4e € Z2\ (Z3)?. If p | nr(y), then p | (a§ — aoa1 + ea?).
Hence p | ap and p | a1, so p | tr(y). O

As a direct consequence, we get:
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Corollary 10.3. Ify € A is an element with nr(y) = n and n | d(A), then
n | tr(7y).

If A € A\ Z, then we let S(\) denote the quadratic order over Z given
by
S(A) = QN NA.

By construction, we have that S()) is an optimally embedded order in A
containing A. If A # 0 is an integer with A =0 (mod 4) or A =1 (mod 4),
then we let SA be a quadratic order over Z with discriminant A.

Now we are ready to determine the number of fixed points of an involu-
tion ¢y, where n > 1 and n | d(A). Take an element v € A with nr(y) =n
and a point z € H. The point z maps to a fixed point of ¢, in C, if and only
if there exists a A € A! such that vz = Az. This gives that v := A~y is an
elliptic element. By corollary 10.3, we have tr(y;) = kn for some integer k,
and hence we get

tr(y1)? — 4nr(y;) = k?n® — 4n < 0.

This inequality implies that ¥ = 0 or £ = £1, and the latter case can only
happen if n =2 or n = 3.

Counsider first the case k¥ = £1. Replacing y; with —v; if necessary,
we can assume that tr(y;) > 0. Consider first the case nr(y;) = 2 and
tr(y1) = 2. Then we get that 41 —1 € A and (y; —1)? = —1, and hence z is
in fact an elliptic point with respect to the group A'. Similarly, if nr(y;) = 3
and tr(7y;) = 3, then y; —2 € Al and (y; — 2)® = 1, so z is an elliptic point
of order 3. Conversely, it is clear that if n = 2 or n = 3, then every elliptic
point of C of order n is a fixed point of ¢,.

Now we want to study those fixed points of an involution ¢,, which are
not elliptic points of C. If y; € A with nr(y;) = n and tr(y;) = 0, then
the order S(7y) contains a copy of the order Z[\/—n]. Conversely, if S is
a quadratic order optimally embedded in A and which contains a copy of
Z[v/—n], then S determines a fixed point of ¢,.

Take now elements 7,7 € A with nr(y) = nr(y’) = n and tr(y) =
tr(y') = 0, and let 2,2’ € H be the fixed points of v and +' respectively.
These points map to the same point in C if and only if 2/ = Az for some
X € Al. But then v and A~ 'y’ both have z as fixed point and hence they
generate the same subfield of A. We get that the quadratic orders S(v) and
S(v') satisfy S(7') = AS(y)A L.

Hence, we have that the fixed points of ¢, correspond to A'-conjugacy
classes of optimally embedded orders S in A which contain Z[\/—n|. By
lemma 3.7, the number of such classes is e(S, A). Furthermore, n is square
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free, and hence the only possible isomorphism classes for S are orders of
discriminant —n or —4n. We have proved

Proposition 10.4. Let A be an Eichler order over Z and n > 1 an integer
with n | d(A). Then the number of fized points of i, is given by

i) ea+e(S_g,A) if n =2,
i1) ez +e(S_12,A) if n =3,
1) e(S_pn,A) +e(S_4pn,A) if n =3 (mod 4),
i) e(S_4n,A) otherwise.
The embedding numbers can be calculated using the results cited in
section 3.5.
10.3 An example

As an example illustrating the group of involutions studied in section 10.2,
we consider the case where A is a maximal order with discriminant 39. By
the formulas of section 10.1, we get f}-w = —4 and es = e3 = 0. Hence the
genus g of C is 3. We have that the group G of involutions acting on C is

G = {Lla L3,113, [‘39}
in this case. By proposition 10.4, we get:

Involution ‘ Number of fixed points
L3 es +e(S_12,A) =0
13 e(S_52,A) =4
L39 e(S_39,A) +e(S_156,A) =4+4=28

Given the number of fixed points of an involution ¢, it is easy to calculate
the genus of the curve C/. using Hurwitz’ formula. Doing this, we get the
following diagram consisting of all possible quotients of C' by subgroups of G:

C/Lg C/ng C/L3g
g=2 g=1 g=0

oA

C/G

9=0
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In this diagram, a number at an arrow indicates the number of ramifi-
cation points of the corresponding map. We have also indicated the genus
g of each of the curves.

One conclusion we can draw from this investigation is that the curve C
is hyperelliptic, since C/t39 is a rational curve. Since the genus of C is 3,
an equivalent way to express this is to say that C' is not a plane curve.

11 Swurfaces

First we will recall some general facts about numerical invariants of projec-
tive surfaces in general, and about Shimura surfaces in particular. We also
recall the notion of local Chern divisors associated to quotient singularities,
which are needed to compute self-intersections of the modular curves.

In section 11.3, we study extensions of the subgroup. It turns out that for
the case we will study in chapter 12, there is a canonical discrete extension
T of T such that f/ I" is isomorphic to the dihedral group Dy.

In section 11.4, we study the resolution of singularities generated by fi-
nite subgroups of Aut(# x#). Such quotient singularities are of course well
investigated, the reason that we treat this subject at such great lengths is
that we will need rather detailed information about how the proper trans-
forms of the curves Fg meet the exceptional divisors of the singularities. In
section 11.5, we show a way to get that information which is practical in
concrete examples.

11.1 Numerical invariants

We first recall some well known general definitions and facts about non-
singular projective surfaces, see for example [1] for more details.

Let Z be a non-singular surface. We let e(Z) denote the topological
Euler characteristic of Z, and Kz the canonical divisor of Z. The geometric
genus of Z is defined by py(Z) = h?(Oz), and the so called irregularity of
Z is ¢(Z) = h'(Oz). The arithmetic genus of Z is

X(2)=1—q(Z) +py(Z). (11.1)

(Note that in many books x(Z) —1 is called the arithmetic genus.) p,, ¢ and
x are birational invariants. The arithmetic genus can be computed using
Noethers formula: K2 1 e(2)
5 +e
X(2)= ="
The following result will be useful to compute x for the various surfaces in
chapter 12 (see [1], p. 183):

(11.2)
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Lemma 11.1. Let Z be a non-singular surface with an involution v : Z — Z.
Assume that the set of fixed points of v is the union of a finite set of rational
curves B;, 1 =1,...,n. Then we have

X(Z]1) = 3x(7) + (B +2)

To prove that surfaces are rational, the following corollary of Casteln-
uovo’s criterion for rationality of a surface (see [21], corollary 1, p. 255) is
useful:

Proposition 11.2. Let Z be a non-singular surface with ¢q = 0. If Z con-
tains a non-singular rational curve D with D? > 0, then Z is rational.

We now summarise some well known results about the numerical invari-
ants of Shimura surfaces. For a more detailed discussion, we refer to [21]
and [47].

Let A and A be as in chapter 6. Let I be a discrete subgroup of Aut(H) x
Aut(H), which contains the image " of Al. Let F be a fundamental domain
for the group action, let X be the quotient surface X = HxH/T" and let Y
be the minimal desingularisation of X.

Let w be the Gauss-Bonnet form on H xH:

1 dri ANdn A dxo N dys
2m)? oy vi

where zp, = zr +iyg, k = 1,2 are the standard coordinates on the two factors
of Hx?H. The Euler characteristic e(X) is given by

e(X):/}_w—I—ZeTr;1, (11.3)

r>1

w =

where e, is the number of classes of elliptic points of order r (see [21], p. 197).

Assume now that IV = I'. The formula for the volume of the fundamental
domain F can be found for example in [47], p. 193. In our case, when A is a
maximal order and the quaternion algebra A admits an involution of type 2,
the formula may be written as

[o=200 I o-1" (11.4)
d pldo(A)

Here (j, is the zeta-function of the field k. The value (;x(—1) can be easily
computed using a formula of Siegel (see e.g. [21], p. 192).
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By Satz 8 in [15], we have that the irregularity g of the surface Y vanishes:
q¥Y)=0 (11.5)

In our case, we also have, since A is a skew field, that

X(X) = 7e(X) (11.6)

(see [47], p. 206-207).

11.2 Quotient singularities

Let p > 1 be an integer, p a primitive p-th root of unity, and ¢; and ¢o two
integers which are relatively prime to p. We define an action of the cyclic
group C;, of order p on C?, generated by the mapping

(21, 22) = (pT 21, p 22).

The origin of C? maps to a singular point of C/C,, which we denote by P.
A singular point of a complex space, which are locally isomorphic to P, is
said to be a quotient singularity of type (p;q1,q2)-

Let z be a quotient singularity on X. Let D; be the components of the
minimal resolution of the singularity. The Chern divisor of the singularity

is defined to be
o = > a;Dj,
J
where the rational numbers a; satisfy

Zaj(DiDj) =2+ DZZ,
J

for all 4. If the singularity is of type (2;1,1), then the exceptional divisor
is a single (—2)-curve, and if the singularity is of type (3;1,2), then the
(2)

exceptional divisor consist of two transversal (—2)-curves. Hence clz =0in
these cases. If the singularity is of type (3;1, 1), then cgz) = %Dl, where Dy
is the (—3)-curve which is the resolution.

The following result is needed to compute the self-intersections of the

modular curves. For a proof, see [21], section 4.3.

Proposition 11.3. Assume that X has s quotient singularities, and let

(

clu), forv=1,....s, be the corresponding Chern divisors on Y. Consider
a modular curve Fg on'Y. We have:

c1|F :2/ w+ c(u)F, 11.7
1[Fp] . > & Fp (11.7)

v=1
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where w is the Gauss-Bonnet form on Cg (and c1[Fg] = —Ky F).

11.3 Extensions of the group I

We will now construct discrete subgroups of Aut( x#) which extend the
group I'. Recall that we have a natural sequence

(1) = Aut(H) x Aut(H) - Aut(HxH) — Sz — (1).
We will construct a tower of discrete subgroups of Aut(H x#H)
rcryCry,Ccrsct, (11.8)

where T's C Aut(H) x Aut(¥) and T ¢ Aut(H) x Aut(H).
First we need some preparatory results. The following can be found, for
example, in [42], lemma 1.3.

Proposition 11.4. If k is a totally real number field with ring of integers
R and A is a mazimal order in a totally indefinite quaternion algebra over
k, then the norm map nr: A — R is surjective.

This result is originally by Eichler. So is the following, which is a version
of his norm theorem (see [35], theorem 34.9):

Proposition 11.5. If J is a two-sided A ideal, then J is principal if and
only if the R-ideal nr(J) is principal.

Let C1T (k) be the class group of k in the narrow sense (i.e. two ideals i;
and iy are equivalent if i; = ziy for some z € k with nr(z) > 0). For a proof
of the following result, see [16], theorem 39.

Proposition 11.6. Let k be a real quadratic field with discriminant D, and
let t be the number of different primes dividing D. Then

#(CI* (k)/ CIF (k)?) = 2"

Furthermore, the subgroup of 2-torsion elements of C1t (k) is the subgroup
generated by ideals g with g | D.

Let now t be the number of primes dividing D and let ¢ be the number
of prime ideals in R dividing d(A). Let p1ps...p, be a prime factorisation
of the ideal d(A) C R, where we assume that we have ordered the factors so
that paj = py;_1 for j =1,2,...,a/2. Let ¢ be a fundamental unit of R. If
nrey = 1, then we assume that € is chosen to be totally positive.
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Let AT be the set of all elements in A with totally positive norm. If
A € AT, then X acts on H xH by

A(z1, 22) = (00(M)21, 00(N)22),

so we can extend the definition of the map ¢ and get a map
0: AT = Aut(HxH)

such that ker p = k* and T’ = p(A!). As we will see, it is never the case that
the group I' is a maximal discrete subgroup of Aut(H x#).

The most obvious way to extend the group I is to use more units in A,
if that is possible. Let RT denote the group

RT ={r € R* |z >> 0}.

We have that RT D (R*)2. The index [R* : (R*)?] equals 2 or 1, depending
on whether the fundamental unit ¢y of R is totally positive or not. Let

AY ={xeA|nr)eR"},

and define
Iy = o(AWM).

We have that A D R*AL. Tf A € A®), then p()\) is an element of T if and
only if A € R*A'. Assume that ¢y € Rt. By proposition 11.4, there exists
an element A\ € A such that nr A = ¢y and therefore I'y = T' U p(A\)T" is an
extension of I' of degree 2. We have that A\ acts as an involution on the
surface H xH /T

We can go one step further and use elements in AT normalising A. We
define

Nt(A)={ne€ AT |nAn"t = A}

and
I3 = o(N*(A)).

Proposition 11.7. T's is a finite extension of I' which contains T as a
normal subgroup. Furthermore, the quotient group T's/T is a 2-group with
at most 21791 elements.

Proof. Tt is clear that T is a normal subgroup of I's. Take n € N*(A). We
can, without loss of generality, assume that n € A. Define

J = An(=nA),
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which is a two-sided A-ideal. By corollary 2.13, we have that J can be
uniquely written in the form

J = iJq, (11.9)

where i is an ideal in R and Jj is a two-sided ideal in A such that nr(Jy)
divides d(A). Such an ideal Jy must necessarily satisfy JZ = nr(Jp)A.

We want to show that I's/T" is a 2-group. Taking the norm of both sides
of equation (11.9), we get i> nr(Jy) = nr(n)R. Hence we get n?A = i2J2 =
i2nr(Jo)A = nr(n)A. If we put € = (nr(n)) 'n?, then we have e € A! and
o(n?) = o(¢) € T'. This shows that I'3/T" is a 2-group.

For each prime factor p of d(A), we define a map

by Jp(x) = vp(z) + 2Z. Here v, denotes the valuation corresponding to the
prime ideal p. We may extend the definition of 1, to all non-zero R-ideals.
Let now

9: NT(A) — (Z/272)%°

be defined through

a
9(n) = (P, (ax(o(m)))
Here Jyp(n) denotes the unique two-sided A-ideal given by equation (11.9),
i.e. we have nA = i(n)Jy(n), Jo(n) C A and nr(Jy(n)) | d(A). It is clear that

the map ¥ factors through I'3, and we get a group homomorphism
9 : T3 — (Z/27)%°.
Let now
Iy = ker(9).

We have I' C Ty and [I'3 : T'y] < 2% We want to estimate [I'y : T']. To
each element g(n) € 'y, we can, by equation (11.9), associate an ideal class
[i] € Cl(k), where the ideal i satisfies

nA = iA. (11.10)
We get a group homomorphism
9 : Ty — Cl(k).

It is clear that the kernel of 9 is I';.

Taking the norm of both sides of equation (11.10), we get that i =
nr(n)R. Hence the ideal class of i? is trivial in the group CI* (k). Consider
now the (well defined) map

1 Cl(k) — CI™(k),
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given by [i] = [i?], and the natural map
g : CI* (k) — Cl(k).
We have seen that 9(I's) C ker f, and hence we get
[Tz :T] = [ : [1][I'y : ] < #ker(f)# ker(g) = #ker(f og),

where the last equality holds since g is surjective. Now, the kernel of fog
consists of the 2-torsion elements of C17(k), so we get

[Ty : T] < #(CIT(k)/ CIH(k)?) = 201,
by proposition 11.6. The claim follows. O

We know, by proposition 11.6, that the set of all ideal classes [g], where g
is a square free ideal in R such that g | D, generates the subset of 2-torsion
elements in CIT (k). Hence we can reformulate the construction of T'y as
follows. If g is a square free ideal in R such that g | D, then we define the
set

A ={\ecgA|Xe A" and nr(\)R = ¢*}.

We claim that A® is non-empty. Namely, note that the ideal g? is generated
by some positive integer k. By proposition 11.5, there is an element A; € gA
such that nr(\;) = ek, with € € R*. By proposition 11.4, there is Ay € A such
that nr(Ag) = e !, and hence A\; Ay € A%. From the proof of the proposition,
we now see that
To=[J oa9).
g|D
g square free

Now we want to construct the group T in (11.8), which also contains
elements shifting the factors of Hx#H. Let T be a choice of a map T :
HxH — HxH, as given by lemma 7.26. We have that T is of the form
T(z1,22) = (wz2,wz1), where w € A with wA = Aw, ww € ZA! and
nr(w) >> 0. If A € Al, then we get

To(N)T = o(wA@) = o(wlw™)p(ww) € T. (11.11)

Hence we have TTT =T', so ' UTT is a group extension of I'. We conclude
that 7" acts as an involution on H xH/I". The group I' UTT does depend
on the particular choice of T' though.

Take an element n € NT(A). As in (11.11), we get that To(n)T =
o(whw™!) o(ww). Since we have wiw™" € NT(A), we get TT'sT = I's. Hence
we can also conclude that the set

T=T3;UTT;
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is a group. In particular, we have that 7" acts as an involution on H X H /T'3.
We also note that T is well defined extension of I's, i.e. it does not depend on
the choice of w. Consider namely two different choices of elements w1 and we,
corresponding to maps T1 and 15 respectlvely Then we get wow; lenN T(A),
and hence Ty = p(wow; YTy, where o(waw; 1) € I's. From now on, we fix
the choice of T.
Consider the group
G =T/r,

which we can identify with a group of automorphisms of X. We have natural
subgroups G2 C G3 C G, where G = I'y/T" and G3 = I'3/T". The 2-group
G consists of involutions on X. We want to determine the group structure
of G. We have an exact sequence

1—+G3—=G— S — 1L (11.12)

This sequence splits, by sending the generator of Sy to T' € G. The group
structure of I'/T" is determined by the action of 7" on G3 given by conjugation
with T'. We have an exact sequence

(1) > Gy = G5 5 (z/22,)°

Lemma 11.8. Conjugation by T acts trivially on Go. The induced action
on G3/Ge = T's/Ty is the restriction to the image of ¥ of the map linear
map (Z/22)%* — (Z)27)®°, which is given by the matriz

0 1
10

O =

Proof. Let g be a square free ideal in R with g | D. Let A € A%. We have
that nr(A\)R = g2, AA = gA and nr(\) >> 0. Since the ideal g? is generated
by a rational integer, we get nr(A) = ez, where ¢ € R* with nryq(e) = 1
and z € Z. Now we have To(A)T~! = p(whw™!). Therefore,

wiw A = wMw ™! = wghw! = gA = MA,
so whw™! = Av for some v € A*. We get nr(v) = nr(A)/nr()\) = &/e =

€72 € (R*)?, s0 o(v) € T. Hence To(A\)T~! = o(N)o(v) € o(A)T, so we have
shown that conjugation by T acts trivially on Gs.
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Assume now that n € NT(A)NA. If we write nA = iJj as in (11.9), then
we get whw A = {(wjowfl). We have that wJow ' C A is a two-sided
A-ideal with nr(wJow™') = nr(Jp). Hence we see that ¥(wnw™') = Md(n)
under our assumption on the ordering of the ideals p;. This proves the
lemma. ]

Remark. When a = 0, i.e. when I' is a Hilbert modular group, then I's
is the well known Hurwitz-Maass extension of I'. It can be shown that
[[3 : T] = 2t°! and that T3 is the unique maximal discrete subgroup of
Aut(H) x Aut(#H) containing I'. See for example [17], p. 11, for further
details.

Proposition 11.9. Assume that D = p is a prime, h(k) =1 and dy(A) = g,
where q is a rational prime. Then G = Dy, the dihedral group.

Proof. In this case, we have that ¢t = 1 and a = 2, so we get I'o = I' and
[3:T] < 4.

We have that the prime q is split in k. Since h(k) = 1, we can therefore
write a prime factorisation ¢ = wv, with u,v € R. Since p = 1 (mod 4),
we have that R contains a unit with norm —1. Hence we can assume that
both w and v are totally positive. Since nr : A — R is surjective, by
proposition 11.4, we can choose elements Ay, A, € A, with nr()\,) = u and
nr(\,) = v. Hence, we have that [I's : I'| = 4, so the map 9 is surjective in
this case.

If we use the additive notation, then the sequence (11.12) is

05 2Z/2x7Z/2—T/T = 7/2 0,

where the action of 7' by conjugation on I's/I" =2 Z /2 x Z@ is given by the
linear map with matrix (¢ §). This gives immediately that I'/T" is isomorphic
to the dihedral group Dj. O

Finally, we remark that one open question remains. We do not know
whether I is a maximal discrete subgroup of Aut(H x#) in the case that A
is a skew field.

11.4 Finite subgroups of Aut(H xH)

Let " be a discrete subgroup of Aut(Hx?H) and z = (z1,22) a point in
HxH. Let T', be the finite subgroup of I" consisting of all v € T" such that
vz = z. Let ', o denote the group

T, =T, N (Aut(H) x Aut(H)).
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We make the assumption that both the projections of ', into the two
factors Aut(#) are injective. This implies, in particular, that I, g is a cyclic
group. Let n denote the order of I';, and let ng denote the order of I, j.

Consider the quotient surface HxH /T',. We are interested in the singu-
larity of this surface, and its resolution. Furthermore, we will also examine
curves of the form

Cs = {(u, Bu) | u € H} C HxH, (11.13)

where 3 € SLy(R). If Cs is such a curve which happens to contain the
point z, consider the proper transform of the image of Cg in HxH/T', in
the resolution of H x?# /T',. We want to find out how this curve intersects
the exceptional divisors of the resolved singularity.

Let A denote the unit disc A = {¢ € C | [¢| < 1}, and let A? denote
the pluridisc A x A. Consider the map 7 : H xH — A? given by

n(C1, o) = (41 —a G ‘zQ) . (11.14)

Gi—71" C— 72

Let v € I', 0 be given by (v1,72) € SL2(R)?, where v; = (7 bj) for j = 1,2,

¢ dj

and let s; = tr(y;) and n; = det(y;). Then we get
(moyon ) (G, ) = (riéi,ral),

2 2 2
= [ 2 1) “isign(sie)a]1- [ SE 1
"= 2’)’7,]' & e 2’)’7,]' '

The factors 71 and ry will be called the factors of rotation of the group
element . They are of course roots of unity and they have the same order
by the assumption we have on I',o. It is clear that n transforms I', to a
subgroup G of GLy(C). Let Gy denote the subgroup of G corresponding to

I',0. Hence, we have
_/(p O
Go=((6 1))

where p = >/ and k is an integer with (k,ng) = 1. Assume that G # G,
and choose an element ¢ € G\ Gy. After replacing the variable (o with a
suitable multiple if necessary, we may assume that g is given by a matrix of
the form ((1) g), where o € C. Since we have g°> € Gy, we get 0 = p™ for
some integer m. We will use the notation

G(no, k,m) = <(§ ,?k) ’ ((1) p(;n>>'

where
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Let now Cg be a curve as in (11.13), where 8 = (¢%) € SLy(R). If
z € Cg, then a calculation gives that n(Cjg) is the line

{(u, Mu) | u € A} C A2 (11.15)
where the factor M € C, which satisfies | M| = 1, is given by

_ cz1+d
e +d

The action of G on A? can of course be extended to an action on C?.
Note that this action is equivalent to the induced action of I', on the tangent
space T, of the point z € H X H.

Let H be a normal subgroup of G. We let (; and ¢, be coordinates on C?.
Let a,b € C, with (a,b) # (0,0). The line a¢;+b(s = 0 in C?> maps to a curve
in C>/H. If Y is a resolution of C?/H, then we let l4¢, 1b¢,=0 denote the
proper transform of this curve in Y. We will let [ denote a generic member
of this family of curves.

In the example in chapter 12, the cases described in the following lemma,
will occur.

Lemma 11.10. Assume that T', # T',o. IfT', = Z /12, then the action of
T, on T, is equivalent to G(6,1,1) and if T', = Dg, then it is equivalent to
G(6,—1,0). IfT', = Z/4, then the action is equivalent to G(2,1,1) and if
', =27Z/2x7Z/2, then it is equivalent to G(2,1,0).

Proof. k is only significant modulo ng, so if ng = 2 then we may choose
k =1 and if nyp = 6 then we may choose k = £1. Consider first the case
k = 1. By conjugation with matrices of the form v = (6’ p% ), where a € Z,
we see that G(ng,1,m) and G(ng,1,m + 2a) are equivalent. (Note that
the set of lines in C? given in (11.15) is preserved under action of v, since
|| = 1.) Hence, we only need to consider the cases m = 0 and m = 1. In

particular, we are done in the case |I',| = 4. If kK = —1, then we only need
to consider the cases p™ = 1. Hence, in the case |I',| = 12, we have four
cases and the claim now follows by inspection of these. U

Now we will examine the four cases of lemma 11.10. For certain normal
subgroups H of these groups GG, we will describe the minimal resolution of the
singularity C? /H and how the exceptional divisors intersect the curves . In
each case, we will successively introduce notations as follows: If we consider
normal subgroups H; C Hy C ..., then we let Y; denote the canonical
resolution surface H x#H/H;, and E; the corresponding exceptional divisor,
fori=1,2,...
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Consider first the case G = G(6,1,1), so G is generated by ((1) 6’), where
p = e?™/6. We have G = Z/12 and Gy = G?. The singularity of C? /G is of
type (12;1,7) in the notation of section 11.2. We will consider the actions
induced by the successive subgroups G% <Gy < G. If we blow up 0 € C2,
then G2 acts trivially on the exceptional divisor. Taking the quotient with
G?% yields a (—3)-curve E; as exceptional divisor on the surface Y;. Every
curve [ intersects F; transversally. Consider the involution ¢1 on Y7 induced
by Gy. It has F; as fixed point set. Hence the quotient Y;/¢1 is smooth and
we get a (—6)-curve Ey as exceptional divisor. Every divisor [ is transversal
to Fs. Finally G induces an involution to on Ys. It has two fixed points,
the intersection points of Eo with the curves I¢,—¢, and l¢,—¢, respectively.
Blowing up these points and taking the quotient, we arrive at the following
configuration:

lCzZCl lCzZ*Q

So, with two exceptions, all proper transforms of images of lines in C? in-
tersect the (—4)-component transversally.
Consider now the case G = G(6,—1,0), so G = <(g pgl ), (95§)), where

p = €®™/6 and we have G = Dg. We first consider the action of G3. Blowing
up 0 € C?, we get two isolated fixed points. Blowing up these, we get the two
(—1)-curves fixed by the group action. Taking the quotient, the (—3)-curve
maps to a (—1)-curve, which we blow down. We get the configuration

where [; and [s illustrate two generic curves [. They intersect transversally.
The induced action of Gy now has three fixed points, the intersection point
of the two (—2)-curves and the intersection points of these curves with l¢, ¢
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and [¢,—o respectively. When we blow up these and take the quotient, we
get

The involution induced by G on this surface has got the divisors l¢,—¢, and
l¢;=—¢, as fixed point set so the quotient has the configuration

The configuration of the (—1)-curve and the two (—2)-curves can now be
blown down. Hence, we have shown that C2/G is non-singular. This can
also be seen directly, since one can verify that

Cl¢1,¢2]% = CI¢P + 3, 1o

and so C? /G is simply isomorphic to the affine plane. Define an isomorphism
Clu, v] = C[¢1, ()% by u > 8+ ¢S and v +— (1¢2. Then the lines ¢; = 0 and
(2 = 0 map to the line v = 0, and the line {, = a(; for a # 0 maps to the
curve au = (1 + a%)v®. Hence two general lines in C? are either mapped
to the same curve, or to two smooth curves in C?/G having intersection
multiplicity 3. The only exceptions are the two lines that are invariant
under the subgroup Gy. They are mapped to one curve, which meets the
other curves in the family transversally.

lei—o
ZC2:*41

lCz=C1
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Consider now the case G = G(2,1,1). The group G is generated by
(Y!) and G = Z/4. The singularity of C?/G is of type (4;1,3). The
action of Gy gives, as above, an exceptional curve E; with self-intersection
—2 intersecting all curves [ transversally. The induced action of G on Y; has
two fixed points. Blowing up these and then taking the quotient, we get the
configuration

Hence the proper transforms of the images of the two lines in C? invariant
under the group action meet the outer (—2)-curves transversally, the proper
transforms of the image of any other line intersect the middle (—2)-curve
transversally.

Consider finally the case G = G(2,1,0) = ((3 %), (93)), which is
isomorphic to Z/2 x Z/2. The action of Gy is as in the previous case. The
induced action of G has l¢,—¢, and l¢,—_¢, as fixed point locus. Taking the
quotient, we hence get a (—1)-curve which we blow down. C?/G is smooth
and the images of two lines in C2 either coincide or intersect transversally.

11.5 The action on P(W,)

Let again I' be as in chapter 6, and let I DT be a discrete subgroup of
Aut(H x#H) as in section 11.3. Let z = (21,22) € HxH be a special point
which is also elliptic with respect to I'. We want to show how an action of fz
on P(W,) can be used to determine how the curves Fjg meet the exceptional
divisor of the minimal resolution of the quotient singularity.

Now fz acts naturally on the tangent space T, of the point z in H X #H,
and this action determines the structure of the corresponding singularity of
the quotient surface H x H/ I'. Consider the induced action on the projective
line Pc(T7):

Fz X ]P’(c(Tz) — ]P(C(Tz)-

As we saw in section 11.4, how a curve Fg meets the exceptional divisor can
in many cases be determined by finding out for which elements in I', the
tangent vector of F determines a fixed point in Pc(75).
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Ifgel,and B € W, \ {0}, then we have that gCs = Cp for some
B € W, \ {0}. More precisely, 3’ can be chosen as 73v* if g is of the form
g(C1, ) = (y¢1,7¢2) for some v € AT, and as ¥B*v* if ¢ is of the form
9(¢1,¢2) = (7¢2,7¢1) for some v € A*. Since § is well defined up to a non-
zero rational factor, this gives a well defined action of I', on the projective
space Pg(W,):

T, x Po(W,) — Po(W,). (11.16)
We want to clarify the relationship between the two actions obtained.
Consider therefore the group
G, ={g9g € Aut(HxH) | gz =z},
and the 2-dimensional real vector space

W, = {B € Ma(R) | det(8) > 0 and Bz1 = z2} U {0}.

For each non-zero element S € W,, we consider the curve Cg = {({,5¢) |
¢ € H} > z. By letting G, act on these curves, we get analogously a natural

action of G, on Pr(W,) by g[B] = [91895], if g is of the form ¢((1,(2) =
(911, 92¢2), and by g[B] = [918"g3], if g is of the form g((i1, (2) = (91(2, 92C1)
for some g; € SLy(R), i = 1, 2.

We have a map W, — W, given by the representation gy. By the
following lemma, we see that the image of the Q-vector space W, is dense
inW,.

Lemma 11.11. The map W ®g R — M(R), given by w ® z — zoo(w), is
an isomorphism.

Proof. Recall that we have the isomorphism
f:A (20) R MQ(R) X MQ(]R)
a®z — (zoo(a), Too(a)).

We have W = {w € A | w = w*}, and hence the image of W ®qg R under f
is the diagonal {(X, X*) | X € M2(R)}. This set projects surjectively onto
the first factor of My(R) x Ms(R). We are done. O

We have hence natural inclusions
PQ(WZ) — Pr(W,) < Pc(T%). (11.17)

The first inclusion in (11.17) is given by g, the second inclusion is given
as follows: To each non-zero element 8 € W,, we associate the line in T,
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generated by a tangent vector of the curve Cg at the point z. It is clear that
the maps in (11.17) commute with the actions of I,.
We conclude that all the information we need to determine the inter-

section of the curves Fg with the exceptional divisors is available in the
action (11.16).

12 An example

We will now consider the example where k = Q(v/13) and do(A) = 3. This
is one of the cases with the smallest hyperbolic volume of the fundamental
domain. Since h(k) = 1 in this case, there is only one maximal order in A
up to isomorphism (by proposition 11.5 and lemma II1.5.6 in [46]).

We will see in section 12.4, that we have a natural tower of discrete
groups acting on H x H

I'cltcI'y CTI'. (12.1)

Each group extension in (12.1) is of index 2 and we have I'r;; = T in the
notation of section 11.3. We will consider the 4 quotient surfaces X, X1 =
HXH/PI, XH = HXH/PH and XHI = ’HX’H/FHI. We let Y, Yi, Yh and th
respectively denote the canonical minimal resolution of the corresponding
quotient surface. The main result is:

Theorem 12.1. Y is a minimal surface of general type, Y7 is a K3-surface
blown up 4 times, Yir is a special Enriques surface blown up 2 times and Yyr
is a rational surface with FEuler number e = 12.

12.1 The order A and the lattice L

Consider the ternary form
f =22+ z129 + 235 — 223

over Z. Using the notation of section 2.3, we write the even Clifford algebra
of f as Az = Z + E1Z + E3Z + EsZ. The order Az is a maximal and has
discriminant 6.

Denote by fi the form f considered over k. Let A = Cy(fr). We have a
natural embedding of Az in A. Since 2 is unramified and 3 is split in k&, we
get that the R-order RAz in A is contained in exactly two maximal orders.
We choose A to be one of them, namely

E1 - ’r‘EQ

A= R+ RE, + RE; + R————,
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where r = (1 +4/13)/2 (so ANA = RAz). Since A contains a unit with
norm —1 (for example 1 + F3), we only need to consider one action of A’
(cf. section 6.3).

Since 2 is not ramified in k, we get that the lattice L is given by

L={BeA|B =pand A C A} (12.2)
We have the following Z-basis By, ..., 83 for L:
2, r —V13Es, V13E,, V13E,. (12.3)
The form ¢ on L is given by ¢(8) = 1/2nr(5), and we get
q(tofo + -+ + t3f3) = 2t> + tot + 5ty % — 13(ta? — otz +t3%)  (12.4)
In a suitable basis, the dual form ¢# is given by
g = 2502 + sps1 + 5s12 — (322 — 8983 + 332)

The discriminants of ¢ and ¢# are 3213% and 3213 respectively.
We now summarise some facts about the curves F. By theorem 8.9,
the number of components of Fy is
0 if (£)=1or9|N,
fn=<¢2 if132| N and 91N, (12.5)
1 otherwise.
If 3 is a primitive element of L, then we have, by theorem 7.16, that do(Ag) is

the least common multiple of ¢(8) and 3. Furthermore, by proposition 7.22,
we have that the discriminant of the algebra Ag is given by

do(Ag) = 3d3dy,

where

g 13 (§) = 1, where Nyg = q(B)137v12(a(8),
B otherwise,

and d,, is the product of those primes p which are unramified in ¥ and such
that vp(g(B)) is odd. Finally, by proposition 8.8, we have

2 if13| N

1 otherwise.
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Elliptic element | Order | Binary form | Discriminant Branches
€1, € 2 (13,0, 13] —4.13? Fig, Fi3
€3, €4 2 [39,0,39] | —4-13%2-32 Fig, Fig
€5, €6 2 [2, 2, 7] —4-13 F2
€7, €8 2 [6,6,21] —4-13-3? Fy
pL, P2 3| [13,-13,13] —3-13? Fi3, Fig

P3 3 [2, 1,5] —3-13 FQ, Fs, F5, F15
P4 3 [2, -1, 5] -3-13 F, Fg, Fs, Fi5

Table 2: Elliptic points

12.2 Elliptic points

There is a formula in [38] which gives the number of equivalence classes of
elliptic points in H x?H with respect to the group I'. We will not use it
though, but instead we will use corollary 9.9 and theorem 9.16. The point
is that in this way, we will also get information about which binary forms
that are associated to each of the elliptic points.

First we determine the elliptic points of order 2. The elliptic points
of type I have binary forms ¢ = [13,0,13] or ¢ = [39,0,39], and we have
s(p) = auz(p)h' (=52) /as(p) = 2. Since w, = v = 4 in equation (9.1), we
get 2 equivalence classes of points for each of these forms. Hence we have 4
points of type I. The elliptic points of type II has binary form [2,—2,7] or
[6,—6,21]. We get s(¢) = 1 for each of these forms, and since w, = 2 and
ve = 4, we get a total of 4 points of type II.

The elliptic points of order 3 can be determined in the same way. We
get 2 points of type I, with form [13,—13,13], and 2 points of type II, one
with form [2,1, 5] and one with form [2, -1, 5].

Table 2 shows, for each elliptic element, the binary form associated with
the corresponding singular point. The last column in this table has one
entry for each branch of the curves Fy, where N € {2,6,5,15,13,39}, which
passes through the quotient singularity on X. Observe that for the elliptic
elements p; and po, the corresponding binary forms represent the values 13
and 39 six times each. But, as we will see in section 12.5, the corresponding
three branches of curves in H x? are identified under the action of T', so
we get just one branch of Fi3 and Fjg respectively through each of the
corresponding singularities. (We will see that these two singularities are of
type (3;1,2), so the isotropy groups of the corresponding points z € H xH
act non-trivially on the branches through the points.)
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39 13 15 5 6 2
2 | [2,0,39] - [2,+1,5] [2,4+1,5] [2,+1,5 -
6 = [6,0,13]  [2,41,5] [2,+1,5] -
5| [5,0,39]  [5,-3,5] [5,£2,8 [5,—3,5]
[5,—5,11] [2,£1, 5]
15 | [15,-9,15] [15,0,13] [15,—9,15]
[7,—1,7]

13| [13,0,39] [13,—13,13]
[13,—13,13] [13,0,13]
39 | [13,—13,13]
39,0, 39]

Table 3: Intersections

12.3 Modular curves

We need to study sufficiently many curves on Y to be able to draw conclu-
sions about the surfaces that we consider. It turns out that the curves F5,
Fy, F5, F15, F13 and F39 will be interesting in this case. We know, by (12.5),
that each one of these curves is irreducible.

Take 8 € L. If g(8) =2 or 6, thenT'g = A%, where Ag is a maximal order
with discriminant do(Ag) = 6. By the results referred to in section 10.1, we
get that C3/I'3 is a rational curve.

If g(B) = 5 or 15, then T'g = Aé, where Ag is a maximal order with
discriminant dy(Ag) = 15. We get that Cg/T's is an elliptic curve.

If ¢(8) = 13 or 39, then Ag is a maximal order with discriminant
do(Ag) = 39 and [I'g : Ak] = 2. We know from (7.6), that the involu-
tion acting on Cp /Aé is the involution induced by an element n € Ag with
nr(n) = 13. Hence, we have the situation described in the example in sec-
tion 10.3, and we get that Cg/I's is an elliptic curve.

Now we want to determine the intersection points of the curves Fy,
including the case when a curve Fy is intersecting itself, i.e. it has a node.
So, for all pairs N1, Ny € {2,6,5,15,13,39}, we select from the finite list of
definite binary forms which represent N; and No (with non-trivially different
representations if Ny = Ns), those that are primitively representable by
(L,q). Since we only need to check that a form satisfies the condition of
lemma 9.5 for every prime p, this is straightforward to do. The result is
shown in table 3. In table 4, we give the values of s(¢) for the binary forms
occurring in table 3 which do not correspond to elliptic points.
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Binary form | Branches Discriminant s(p)
2,0, 39] Fy, Fay —8.3-13 | h(—24) =2
[6,0,13] Fe, Fiy ~8.3.13 | h(-24)=2
5,-3,5] | F, Fs, Fis —7.13 2(=T) = 2

[15,-9,15] | Fi5, Fi5, F39 | —32-7-13 2h(=T) =2
[5,2, 8] Fs, Fis ~4.3.13 | A(-12) =1
[5, -2, §] Fs, Fis —4.3.13 | A(-12) =1
[5,0,39] Fs, Fyy | —4-3.5-13 | h(—60) =2
[15,0, 13] Fis, Fi3 | —4-3.5-13 | h(—60) =2
(5,5, 11] Fs, Fy ~3.5.13 | h(-15) =2
[7,-1,7) Fis, Fis 3.5-13 | h(-15) =2
[13,0,39] Fy3, Fsg —4-3-132 | h(-156)/2 =2

We determine the self-intersections of the curves. Take an element 8 € L.

Table 4: Special points

If ¢(8) = 2 or 6, then we have the following situation on Y

Since fCB/FBw =

Fj = -2, since g(F3) = 0.
Assume now that ¢(8) = 13 or 39. On Y we have:

—%, we get by (11.7) that ¢;[Fg] = 0. Hence we get

Since fCB/FB w= %fCB/A}; w = —2, we get ¢1[Fg] = —4. Since g(Fp) = 1, we

get FBQ = —4.

Assume finally that ¢(8) = 5 or 15. We have the following configuration

onY:
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S

Since fc’ﬂ/rﬂ w = —%, we get ¢[Fg] = —2. Blow up Y in the two points

which are nodes of Fg. Let Z denote the resulting surface, let D; and Dy
be the two exceptional curves and p the map p: Z — Y. We have Kz =

p*Ky+D; —|—D2, and the proper transform Fg of Fg is Fg = p*F3—2C1—2C5.
Hence KZFﬂ = Ky Fs — 2C? — 2D% = 6. Since Fj is an elliptic curve, we
get Fﬁ = —6. From this follows directly that Fﬁ =2.

12.4 The extended groups

In the present case, we have, by proposition 11.9, that I's/T" is a 2-group
with 4 elements. It is given as follows. Let v = 4 + /13, so 3 = 7.
There exists A\; € A such that nr(\;) = = for x = v, 7 and 3, and we let
Yo = 0(Az) : HXH — H xH. This gives three well defined involutions on
X, which we denote 3, ¢, and 7.

Lemma 12.2. If 8 € L, then 13 | q(B) if and only if B € V/13A. Further-
more, if q(8) = 13, then we have

1.
6L =L (12.6)

Proof. The first statement is trivial to check using (12.3) and (12.4). Equa-
tion (12.6) can be checked by hand when f is, for example, v/13(r — E; — E3).
Let B/ € L be another element with g(8') = 13. We have 8’ = £AB\*
for some A € A!, since Fi3 only has one component. Hence, we get that

%8 L*B' = L. O

If w € A with nr(w) >> 0, then we define a map Q(w) : HxH — HxH,
by
Qw)(2z1,22) = (wze,wz1). (12.7)

Let us now fix an element 13 € L with ¢(f813) = 13, and define a map
Tyt : HXH — HXH, by

Tray = Q(B13)-

From lemma 12.2, it follows that 5¢f13 (L#) ﬂ13 L# which implies that
A,Blg = A. Hence we get TM € I‘ sol = s U Ty l's. We also
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have that be(,{ is the identity, and that T[Ty = . Hence Ty
determines an involution on X, which we denote 1. We have

TLJ; = LjT,

for z € {1,v,7, 3}.

ForAeasier notation, we now define I't = T' U 3, I'it = 't U 4, I'1 and
' =T, Thus we have a sequence of group extensions as claimed in (12.1).
We let G1 = {t1,t3}, Gir = {¢1, by, Lz, 3} and

GIII = {['15 by, Ly L3, Ta TLU) Tl’ﬁ’ TL3}

denote the corresponding groups acting on X, so G 2 Dy. We have that
G is the center of Gryr, so the filtration (12.1) is in some sense canonical.

Lemma 12.3. If w € AT, then Q(w) € Ty if and only if wBiz € N(A).
Proof. Follows immediately from the construction of I'ryr. O

The induced action of the elements of the group G on the set of
curves Fy, is described by the following lemma:

Lemma 12.4. For every positive integer N represented by q, we have that

L3(FN) = FN. (128&)
and
T(Fyn) = Fn. (12.8b)
If 31 N, then
tz(Fn) = F3n and 1,(F3n) = F, (12.8¢)

forx =v and z =7.

Proof. We show (12.8¢) first. Let z = v or v, and take A\; € A with nr(\;) =
z. Take a positive integer N such that 3 { N, and assume that 8 € L is a
primitive element with g(8) = N. We have \;Cs = Cgr, where 8/ = A\;8)%.
It is clear that ' € L, primitively for every prime p # 3. Recall now that
by proposition 7.14, we have that if w € W3, then w € Ljs if and only if
g(w) € Zs. Since we have that ¢(8') = 3¢(8), (12.8c) follows.

As an immediate consequence of (12.8c), we get that v3(Fy) = Fy for
all N, since 13 = tyly-

Finally, we prove (12.8b). If 8 € L, we get that Ty (Cs) = Cp,
where 3 = B136*13. By lemma 12.2, we can define a function g : L — L
by g(8) = %ﬁlgﬁ*ﬁlg. We have that ¢ is an isometry of (L,q), and that
T (Cp) = Cy(p) for every B € L, so we are done. O
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12.5 Points with non-trivial isotropy group

In this section, we want to find the points on H x#H which have a non-
trivial isotropy group in I'r;p and describe how the exceptional divisors of
the corresponding singularities meet the modular curves.

We start by searching for the fixed points on X of the elements of Giij.
First, we examine whether the involution ¢, has any fixed points. The point
z = (21,22) € HxH maps to a fixed point of 4, on X if and only if there
exists an element A\ € A! such that

(szl,XUZQ) = ()\Zl,XZQ).
Hence, we want to find A € A! such that u = \*)\, is elliptic, i.e.
tr(p)? — 4nr(p) << 0. (12.9)

Now we have nr(u) = v, and it is straightforward to check that tr(u)? << 4v
if and only if tr(x) = 0. Hence, we get
p? = —v.

Consider now the field K = k(u). We get that 2 = —(v+7) = -8 =1
(mod (v)). Hence K is split at the prime spot (v), and therefore Kz can
not be embedded in the skew field A (). This shows that no such element u
exists, and we conclude that the involution ¢, on X does not have any fixed
points. The same conclusion holds for vz too, by the same argument.

Now we want to determine the fixed points of t3. By the same reasoning
as above, we want to find g € A with nr(y) = 3 and

tr(u)? << 12.

From this, we get the possibilities tr(u) = 0 or tr(u) = %‘/ﬁ In the latter
cases, we again get a contradiction if we try to embed k(p) into A. Hence,
we get the only possibility

p? = —3.

Consider the quadratic order S; = Q(u)NA. Since p € S1, we have two cases,
either d(S1) = —3 or d(S1) = —12. In the first case, we have (u+ 1)/2 € A,
and hence z is an elliptic point of order 3 with respect to I'. These are
known from section 12.2. It remains to examine the case d(S;) = —12, i.e.
Sy = Z[u]. We now proceed as in section 9.2. Let S = Z[v13u]. By the
same argument as in the proof of proposition 9.8, we get that L,S; = L, for
i =1 or s = 2. In the first case, we get g, = 13¢p, where dy(p) = —12, i.e.
g, = [13,0,39]. There are s([13,0,39]) = h(—156)/2 = 2 such points. In the
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second case, we get that ¢, is a primitive form with discriminant —156, so
we get ¢, =2 [5,£2,8]. There is 1 point on X corresponding to each of these
two forms.

We now search for fixed points of 7" on X. Let w = /373 and take a point
2z € HxH. We have Ty (2) = Az if and only if wzo = Az; and Wz = Az,

which is equivalent to

- (12.10)
Z1 = wAw* Az

{2’2 = w*Az1

If (12.10) is satisfied, then we have two cases. Either we have wAw*\ € k,
or wAw*A is elliptic.
Assume first that wAw* A € k. This is equivalent to the condition

w*A = z(wN),

for some x € k. Since nr(\),nr(w) € Q, we get 2 = 1. Consider first the
case z = 1. This means that w*\ € W. Since w* € L, we get Aw*\ € A\ =
A, so w*A € L. Conversely, every point of Cyxy is a fixed point of \* Ty .
Hence we get that Fi3 is point-wise fixed by T on X. Consider now the case
z = —1. We want to show that this case is not possible. We would have

\/%w*)\ € W and, as above, ﬁw*)\ € L, for every rational prime p # 13.

Since furthermore w € +/13A, we would get K13¢%w*A = A13\/L1—3w*)\ C

AN = A, so \/%w*)\ € Ly3 too. Hence \/%w*)\ € L, but this contradicts the
fact that (L, q) does not represent 1.

We now consider the case that wAw*) is elliptic. Let u = wAw™'\.
Since wAw ™! € A, we have u € A'. We get u(z1,22) = (21,22), and hence z
is an elliptic point with respect to I'.

In exactly the same way, we get that the fixed points of (37" are given by
F39, and possibly additional isolated points which are elliptic with respect
to I

Consider now the maps ¢, T and ;7. Since (1,T)% = (15T)? = 13, we
have that the fixed points of these two maps form a subset of the fixed points
of L3.

Now that we have located all points with non-trivial isotropy group in
I, we want to describe them in more detail. Take z = (z1,22) € HXH.
If v € 't is non-trivial, but I'yy , is trivial, then we know from the above
that z € Cg for some 3 € L with ¢(8) = 13 or ¢(8) = 39, and that vz’ = 2/
for every z' € Cp. Hence we only need to study points z such that I'rr, is
non-trivial. We first note that, since ¢, and w7 lack fixed points on X, we
have I'y;, = I't, for every point z € H xH. Furthermore, we have:

Lemma 12.5. If [T',| =2, then |T'y,| = 2. If [T',| =3, then |T'y,| = 6.
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Proof. Assume first that |I",| = 2. We have I', = (g(¢€)) for some € € A with
€2 = —1. Consider the ring S = R[e]. We have that S is a maximal order
in the biquadratic field K = k(e), so S = AN K. To prove that |11 .| = 2,
it is now sufficient to check that S does not contain any element x with
an/k(:v) = 3. Let £ = a1 + age, where a1, € R. If an/k(w) = 3, then
o? + o3 = 3. In particular, we get of, a3 << 3, which implies that a1, @y =
0,+1. Hence the equation nrg/(z) = 3 does not have any solution z in S.

Assume now that |T',| = 3, so we have ', = (o(p)) for some p € Al
with p2 + p+1 = 0. We get o(p — 1) € T, and o(p — 1)2 = o(p), since
(p—1)* = -3p. O

We now claim that the isotropy groups of all points with non-trivial
isotropy group I'11, are as given in table 5. We already know which binary

r, 'y, T, [,

[2,-2,7] | Z/2
[2,-2,7] | Z/2

Z/2

J

S| By
13,018 | z/2y

SEIE M
iy | s 2w} Bz
Egiiiii} %g %?g}z/ﬁ Ds
Hgggg% EB %;;}Z/Z 7.2 % 7.]2
EA I I e TR 7Y

Table 5: Overview of points z with non-trivial isotropy group I'rr ,

forms that can occur for such points z. All we have to do is to make some
explicit calculations to verify the claim. When we do that, we will also
investigate how the modular curves meet the exceptional divisors of the
resolutions of the quotient singularities. We have 6 cases to consider:

Case 1: points with form [2,—2,7] or [6,—6,21]. We have 2 equivalence
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classes of points on H X H associated with each of these two forms. Consider
the element
e=14+FE; —2FE3 EAI,

which satisfies €2 = —1. Let z be the point such that ez = z. Since € = ¢,
we get 1 € W,. Since also v/13e € W, it follows immediately

L, =27+ (V13e¢ - 1)Z,

so we get that the corresponding quadratic form ¢, is [2,—2,7]. Consider
now the element g = Q(e — 1). We have (e — 1)813 € 2v/13A!, so g € T
by lemma 12.3. Furthermore, we have g? = o(¢), since (e —1)(e — 1) = —2e.
This shows that I'rip , is a cyclic group of order 4 generated by g. Hence the
action of T'ry , is equivalent to G(2, 1, 1), by lemma 11.10, and the singularity
is of type (4;1,3). The action of g on P(W,) (see section 11.5) is induced
by the linear map W, — W, given by

I (e—D)i*(e—1)*.

2 and 2v/13¢ are two eigenvectors of this map. Therefore, the special curves
meeting the exceptional divisor of the singularity are F5 and Fss. We now
summarise the situation. We have 4 equivalence classes, with respect to I',
of points with form [2,—2,7] or [6,—6,21], and these are identified by I'f.
Hence, on X we have 4 singularities of type (2;1,1) corresponding to these
forms, so on Y we have the following situation:

-2 -2

Fy

Fg

The involution ¢3 identifies the two points associated with [2, —2,7] and the
two points associated with [6, —6,21] respectively, so on Y1 we have

-2

Fy

Fg

The involution on Y] identifies F5 and Fg, so on Yj; the situation is
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—2

Fyg

Fy

where we have also drawn the curve Fyg. The involution on Yir has now
two isolated fixed points on this configuration, the intersection points of the
(—2)-curve with Fy and Fyg respectively. Blowing up these and taking the

quotient, we get
-2

All other curves Fy meeting this exceptional divisor intersect the middle
component of the three (—2)-curves.

Case 2: points with form [13,0, 13] or [39,0, 39]. There are two I'-classes
of points on H xH for each of these forms. Consider the element

_14+v13 9+ V13
2 4

E» + (14 V13)Es,

3
—F
+2 1+

which satisfies €2 = —1. It can be verified that fi3¢ = —€f13, i.e. € € Cpis,
which implies that
L, = B13Z + Pi3€Z.

In particular, ¢, = [13,0,13]. Furthermore, it is clear that Tyq € I'tr,z, SO
I, 27Z/2x 7Z/2. On'Y, we have:

(Y
/\/_\F?’g
YO

on Yi:
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and on Yir:
-2

/7 N\
[ y o

The involution 7" on Yj; fixes the points on Fi3, so the (—2)-curve maps to
a (—1)-curve on the quotient. If we blow down this curve, we get that Fi3
has a node on Yir:

Fi3

Case 3: points with form [2,1,5] or [2,—1,5]. There is one I'-class of
points on H X #H corresponding to each of these forms. If we let p = —Fj3,
then p? + p+ 1 = 0. We have that 1 € W,, since p = p, and we also clearly
have that v/13E5 € W,. We conclude that

L,= BIZ + ﬂZZa

0 ¢, = [2,%1,5]. By lemma 12.5, I'1p, is a cyclic group of order 6 generated
by o(p—1). Let now w =1+ %E{;. We get that wfiz = 2v/13), where
Ao € A with nr()\g) = 7, so Q(w) € 'y by lemma 12.3. Furthermore, since
ww = 2(1 — p), we get that I'yr, is a cyclic group of order 12 generated by
g = Qw). Therefore the group action is equivalent to G(6,1,1), and the
quotient singularity is of type (12;1,7). If we compute the action of g on
P(W,), we get that it can be given by a matrix m = ( *; =2). This matrix
lacks rational eigenvectors in W, so the action on P(W,) is fixed point free.
On Y, we have two configurations

Fy, |Fg |F5 |Fis

i

The involution ¢3 fixes the (—3)-curves, so on Y1, we have two configurations

Fy |Fg |F5 |Fi5

:
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Now the involution on Y7 identifies F5 with Fg and F5 with Fi5 respectively.
On Y11, we have one configuration
Fy F;
—6

[ V o/ )

The involution 7' has two fixed points on the (—6)-curve. None of these
points belong to any curve F. Blowing up these points, and then taking
the quotient, we arrive at the following picture on Yiir:

F Fx

-2 -2

NS

Case 4: points with form [13, —13,13]. There are two I'-classes of points
on H xH having this form. Let

7+ 2413 13+ 5v13
p=-3—-V13+ 2 Ei+ 1

E> + (5+2V13)E;3,
which satisfies p? + p + 1 = 0. It can be verified that
phi3p = s, (12.11)

and therefore we get

L, = B13Z + pi3pZ.
In particular, g, = [13,—13, 13]. Furthermore, g = o(1—p) € ', so 11, is a
cyclic of order 6 generated by g. We also have Ty € I'ir,. By (12.11), we
get T'g = ¢°T. Hence we get that I, is isomorphic to the dihedral group
Dg. The group action of Gy, is equivalent to G(6, —1,0). The action of g’

on W, = 13Q(p) is
B3z — p(Brar)p” = (B13z)p,

where z € Q(p), by (12.11). This map clearly lacks eigenvectors. The action
of T on the other hand, is given by fi3z — Si3z*, so the eigenvectors are
given by (13 and B13(2p — 1). On Y, we have two configurations

-2 =2

Fi3
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Blowing up the three fixed points of i3 on each of these two configurations
and taking the quotient, we get two copies of

Finally, taking the quotient by the induced involution on Y17, and blowing
down the resulting exceptional curves, we get two branches of Fi3 meeting
with order 3 on Yi:

Fi3

Fi3

Case 5: points with form [13,0,39]. There are two I'-classes of points on
H xH for this form. If we let

By + (4 — 2V13)E3,

1— 1 213 —
A=+13 -2+ 4‘/_3E1+ \/_g’ 5

then we have A € A, A2 = —3 and B3\ = — B3, 50
L, = p13Z + P13 A\Z.

I'rr,, has order 2, and is generated by g = o(A). We clearly have Tyyq €
Lz, so T, 2 Z/2x Z/2. On'Y the we have just the two branches of Fi3
and F3g intersecting transversally at each of the two points. On Y1, we have
two configurations
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Fi3 F3g
-2

On Y11 and on Yy, the pictures are exactly the same as for the forms
[13,0,13] and [39, 0, 39].

Case 6: points with form [5,+2,8]. There is one I'-class of points on
H xH for each of these two forms. Consider the element

11 — 3v/13
A=2-V13+ — B+t (V13 —5)Ey + (10 — 3V13) E3.
We have A € A and nr(\) = v. Let w = ASf3, and g = Q(w). Furthermore
ww = 267, where v € A with 42 = —3. This implies that I'rr, is cyclic
of order 4 generated by g, and the singularity is of type (4;1,3). It can be
verified that v € Ag, and, in fact, we get

14+ 13
L, = BoZ + ,82772-

It can also be verified that the action of g on W, can be given by the matrix
(_11 %) This matrix has no rational eigenvectors. On Y, we have just the
two branches of F5 and Fis intersecting transversally at each of the two
points. On Y7 we have two configurations

Fs Fi5
)

On Y11, we have one configuration

-2
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12.6 Surfaces

We now have all the information necessary to present the configurations of
curves on the different surfaces, we are studying. We start with the surface
Y and proceed by a sequence of blow ups and quotient constructions. We
will use the convention that whenever we have two surfaces Z and Z, then
Z is isomorphic to the surface Z blown up in a finite set of points. For
easier navigation among the surfaces, we first summarise in a diagram the
sequence of surfaces that we will construct:

Y
blow V Xl
Y Y

Y

\fi Aw up\ﬁ (12.12)

Yir 1~/IH

w down

Y

We have drawn the configuration of curves on Y in figure 1. Here all
curves drawn with thick lines are exceptional curves coming from the canon-
ical resolution of the singularities of X. If the self-intersection number of
such a curve is not explicitly given in the figure, then it is —2. Furthermore,
the rational curves F5 and Fg have self-intersection —2 and the elliptic curves
F13 and F39 have self-intersection —4. The nodal elliptic curves F5 and Fi5
have self-intersection 2.

The involution ¢3 has 8 fixed points on X. On the surface Y, the fixed
point locus of the lifted involution consists of the two (—3)-curves coming
from the (3;1,1) singularities and the 10 isolated points z1, ..., %19, which
are indicated in figure 1. Blowing up these 10 points on Y to the surface
17', and thereafter taking the quotient, we get a surface which, in fact, is the
minimal desingularisation Y1 of X7. We indicate the configuration of curves
in figure 2. We have that F22 = FG2 = —1, that Fi3 and Fj9 are non-singular
rational curves with F4 = FZ = —4, and that F5 and Fy5 are nodal rational
curves with F2 = FZ% = 0.

We let ¢1 denote the involution on Y7 induced by the group I';p. It is
fixed point free. If N is not divisible by 3, then ¢y maps Fy to F3y and vice
versa. We denote their common images in Y11 by Fy. We have of course that
the self-intersection of F5, Fi3 and Fj respectively, are the same as for the
corresponding curves on Y. The configuration on Yy is drawn in figure 3.
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y F3g
1 7
Aj \ N\ N
Fs
—6 —6
Fys
VW / y 4
I
A, 6

Figure 2: Y1
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Fw\//\@\//\
N N

—6 Ys

e

D Y3

Ya

——

Ye

Figure 3: Y11

The involution on Yir induced by I'rir has the curve Fi3 and the 6 isolated
points 1, ..., ys as fixed point locus. We blow up these points and then we
take the quotient. The surface we get is Y11 blown up 5 times, see figure 4.
On this surface, we have that F5, Fi3 and F5 are non-singular rational curves
and we have Fy = —1, F% = —8 and F2 = 0.

5 -1 7 -1
Fi3 \ )i [N\ \
_2 16 / _2 9 \

14 D 9
_2/ 8/_2 _2\10

Figure 4: 17111

We blow down the exceptional curve configurations which meet Fi3 and
we get the surface Yi1. See figure 5, but disregard for now the curves C'g
and Clg.

We determine the numerical invariants. Since (x(—1) = %, we get that
Jxw= % by equation (11.4). Furthermore e, = 8 and e3 = 4, so by (11.3),
we get e(X) = 8. It is now straightforward, using lemma 11.1 and the
additivity property of the Euler characteristic, to compute the numerical
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7
m| O AL
_2 16 / _2 9 \
_21/4 15 =2 o _9\o

17 Cis Cig
-2 -2
13 11
—4 \ 12/
F2 F5

Y Y1 Yn Ym

e 22 28 14 12
x |2 2 1 1
K?2|2 —4 -2 0
g |0 0 0 0
pg | 1 1 0 0

Table 6: Numerical invariants of the surfaces

invariants of all surfaces. We summarise the result in table 6.
Proposition 12.6. Yjy; is a rational surface.

Proof. If we blow down the configuration consisting of Fy, C14, C15 and Cig,
then the image of Cio is a non-singular rational curve with CZ, = 0. Hence,
by proposition 11.2, we get that Y77 is a rational surface. U

Now we want to compute the canonical divisors of the surfaces. We con-
sider first 17111. This is a rational surface, so linear and nl}vmerical equivalence
of divisors coincide. Furthermore the Euler number of Y717 is 17, and hence
the rank of the unimodular lattice Pic(ﬁn) is 15. Consider now the sublat-
tice of Pic(?m) generated by the 17 curves C;, where we have indicated the
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numbering in figure 4. The intersection matrix (C;C}) is given by
210 00 000 0000000 0 O
1210000000000 00 0 0
0 1 -100 2000000000 0 0
00 0-10 20000000000 O
000 0-12000020000 00 0
00 2 2 2-840000 000 0 0 1
00000400100 10000 0
000 00O00-2102020TU0TU0TU0TO0 0
000 0O0O0O11-211002000 00 (12.13)
00000000 T1-200200T00 0
00000000000 -2102000 0
0000001000 1 —41200 0 1
00000000000 OT1-207020 0
000000000 O0O OO OO0 -21 0 1
00000000000 OO OO0 1-210
0000000000 O0OO OO0 O0 1 —-20
00000 T10000GO0T1O0T1O0O0-1

The rank of this matrix is 15, and hence the curves C; generate a sublattice
of Pic(?m) of full rank. We can compute the relations among the curves,
and doing that we see that we can, for example, eliminate Ci3 and Cig.
Computing the determinant of the resulting intersection matrix, we get the
value 4. We conclude that index of the sublattice in Pic(Yir) generated by
the curves Cj is 2.

We now know that the canonical divisor of i/v'm is a linear combination
of the curves C; (with rational coefficients). Since all curves C; are rational,
we have, by the adjunction formula, that

(K + C;)C; = —2

fori =1,...,17. Solving this system of linear equations, we get for instance
the following representation of 2K on Yrir:

2K = 4Fy — Fi3+ 3C14 + 2C15 + Cig. (12.14)

Using (12.14), we can trace 2K backwards and get the following relation
on Yii:
2K = 4F, + 2A. (12.15)

Let now Z denote the surface we get if we blow down first 5 and then A
on Yy1. By (12.15), we have that 2K = 0 on Z. Furthermore, e(Z) = 12 and
q(Z) = 0. This shows that Z is an Enriques surface (see [1], chapter VI).
We have shown:

Proposition 12.7. Yy is an Enriques surface blown up 2 times.

Since the map Y7 — Yi1 is unramified, we immediately get the following
corollary:

Proposition 12.8. Y7 is a K3-surface blown up 4 times with K = 2F5 +
A+ 2Fg + As.
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The presentation of K in proposition 12.8, now implies that the canonical
divisor on Y is given by

K:2F2+2F6+ZAZ-+ZBi.

We conclude that Y is a minimal surface (since if F an exceptional divisor
on Y, then KE = —1, which is impossible since K is effective and does not
contain any exceptional component). Furthermore, since K is effective and
K? > 0, we have that Y is of general type (see [1]).

Proposition 12.9. Y is a minimal surface of general type.

Lemma 12.10. On Yy there exist two rational (—1)-curves Cig and Cig,
which meet the curves Cg, Cig, C11 and Ci3 as indicated in figure 5 (where
we have possibly swapped the numbers of the curves Cg and Cig). We also
have C1gF13 = C19F13 = 2 (which is not indicated in the figure), but neither
Cig nor Cig intersect any of the other curves in the figure.

Proof. We will construct C1g, the construction of Cig is analogous. Blow up
the intersection point of F5 and Cis. Let Ey denote the exceptional curve.
Blow down, in the following order, the curves F5, Ci4, Ci5, Cig, Ci2, Ci1,
F5, and Cy. We now have a rational surface with Euler characteristic e = 5
and which contains the following configuration:

Cs Cro
-1 -1

It is clear that if we blow down one of these two curves, we get the
surface P! x P!, and if we blow down the other curve, we get P? blown up
in one point. We can suppose, after possibly swapping the numbers of these
two curves, that we get the latter situation of we blow down Cg.

It is now straightforward to check (using (12.13)) that the curves Ey, Cs
and Ci3 are configured as in the following picture:

(12.16)
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This gives that the unique exceptional curve on the surface, which we denote
by FE4p, must necessarily be situated as indicated in (12.16). Furthermore,
we get by (1213) that F13E0 = 20 and F13013 = 8. Since EO = 2(013+E1),
this gives that Fi3FE; = 2.

Let now Cig be the proper transform of E; in Y. Since Cig is disjoint
with the locus of the curves being blown down, it is clear that Cig is a
(—1)-curve and F13C1g = 2. We are done. O

We can now blow down Yiyy in the following way: Fy, C14, C15, C16 and
Cig, Cg and Cig, C1g. The surface we get is isomorphic to P! x P!, and the
image of Fi3 is a divisor of bi-degree (4,4). We get that Yi; is birational to
the double cover over P! x P! ramified in Fi3, Ci3 and Ci1, i.e. a divisor of
bi-degree (4,6). The two projections of P! x P! on its two factors induce
two pencils of curves on Yir: one elliptic fibration and a pencil of genus 2
curves.

It would of course be interesting to further study this elliptic fibration.
In particular, it would be interesting to determine the type of the two double
fibers. But to do so requires more detailed knowledge about how the curves
Cig and Cig meet Fi3 on Yirr. We know that the intersection numbers
Ci1sF13 and CigF13 equal 2, and we know the singularities of Fi3, but this
leaves us with 4 possible ways in which C1g may meet Fi3, and similarly for
C1g. Unfortunately we have not been able to settle this question.

There is however one more thing that we can say about Yi7. Recall
that an Enriques surface is called special if it has an elliptic pencil with a
2-section which is a (—2)-curve (see [1], p. 275). The curve F5 on Y1 is a
fiber of the elliptic fibration, so we get that the (—2)-curve D on Yy is a
2-section. Hence we get

Proposition 12.11. Yj; is a special Enriques surface.

This completes the proof of theorem 12.1.
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