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Rickard Bergstrom

Department of Computational Mathematics
Chalmers University of Technology
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Abstract

In this thesis, we develop and apply finite element methods to problems of div-
curl type, mainly from applications in electromagnetics. In particular, we focus on
least-squares formulations for problems with singularities, edge elements in eddy
current computations, and the implementation of the finite element method.

We introduce discontinuous elements in the least-squares finite element method
(LSFEM) and enforce continuity and boundary conditions weakly. For this scheme,
we prove stability and optimal a priori error estimates for the div-grad and the div-
curl problems posed on nonconvex domains. Numerical studies in three dimensions,
confirming the theoretical results, are presented. Moreover, combining LSFEM and
a Galerkin formulation, a scheme for wave propagation problems with beneficial
dispersion properties is proposed.

To efficiently solve eddy current problems, we use tetrahedral and hexahedral
edge elements in an ungauged potential formulation combined with adaptive mesh
refinement. We also introduce anisotropic mesh refinement to compute the power
loss for a hydrogenerator with laminated materials.

A software environment for implementation of finite element methods is de-
veloped. It is based on object-oriented programming techniques and combines
generality with sufficient efficiency.

Keywords: least-squares finite element method, div-curl problem, adaptivity,
computational electromagnetics, nonconforming elements, edge elements, eddy cur-
rent problems, object-oriented software
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1 Introduction

Physical phenomena described by mathematical models involving the div-
and curl-operators arise in many different applications. In this thesis, we fo-
cus our attention on applications originating in electromagnetics. Problems
of this type can be found in a wide range of applications, including radar
and cellular phones, medical applications involving, e.g., cancer treatments,
power generation with hydrogenerators or by wind power, and the electricity
network to and in our homes.

The physics behind these phenomena was mainly explored during the
19:th century. Faraday and Ampere stated laws that bridged electric cur-
rents and magnetism, and in 1864, Maxwell joined the relations into one
system of equations, and later also predicted the occurrence of electromag-
netic waves.

Despite their simple appearance, div-curl problems are often difficult to
treat computationally due to the kernels of the operators and the singular-
ities that occur in nonconvex domains. In the case of Maxwell’s equations,
the solution also behaves very differently depending on the frequency and
application.

As a science, the area of computational electromagnetics (CEM) is thus
challenging and relatively new. Wave propagation problems on geome-
tries without curved boundaries can be solved successfully with the FDTD
method introduced by Yee in 1966, but it is only recently that problems
with general geometries have been successfully solved. In low frequency
problems, the geometrical object is often large while there are thin layers
that still must be resolved. Therefore, one is in many cases restricted to two
dimensional approximations.

1.1 Thesis objectives

The main objectives of this thesis are:

e development of least-squares finite element methods for div-curl prob-
lems posed on nontrivial geometries in three spatial dimensions,

o development of existing methods for electromagnetics, mainly low fre-
quency, problems, and

e implementation of an environment for general finite element compu-
tations.
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Figure 1: A schematic picture of the components of the thesis.

Previous work on least-squares finite element methods (LSFEM) mainly
treats relatively simple geometries, often convex, in two dimensions. The
step from two to three dimensions leads to interesting applications, diffi-
culties with the regularity of the solution, and increasing computational
complexity. Standard least-squares methods demand high regularity of the
solution which leads to serious problems in most applications, for instance,
problems posed on domains with corners. Qur approach to overcome these
obstacles is to weaken the norm in the least-squares functional or enrich the
finite element spaces.

In high frequency electromagnetic problems, the edge elements are dom-
inant. However, these elements are not yet as common in the potential for-
mulations used in low frequency applications, nor is adaptivity. Our work
is concerned with adaptive methods based on tetrahedral and hexahedral
edge elements in the context of eddy current computations in laminated
materials.

Throughout the thesis, a wide variety of finite element formulations and
elements are used to solve the different applications. We have therefore
implemented a flexibly, yet efficient, computational environment for general
finite element methods to meet this demand. The software is based on object
oriented programming techniques.

1.2 Main results
1.2.1 LSFEM for div-curl problems

e In an interface problem with corners, we use weak enforcement of
interface and boundary conditions, and obtain convergence for the



energy with standard LSFEM in numerical computations. We also
show this convergence theoretically using duality arguments. (Paper

)

e Optimal convergence on nonconvex domains is proved when introduc-
ing discontinuous elements in the least-squares formulation (DLSFEM)
and the performance of this scheme is illustrated by computations.
(Papers II and III)

e The LL*-finite element method, i.e. using a dual norm in the least-
squares functional but computing in the dual variables, is successfully
used for a magnetostatic problem. Also, we derive an a posteriori error
estimator which is used for adaptive mesh refinement. (Paper IV)

e Test problems in 3D, motivated by industrial applications, have suc-
cessfully been solved using these modified least-squares techniques.

e A hybrid scheme, combining Galerkin and least-squares finite element
methods, is proposed for wave propagation problems, and its disper-
sion relation is investigated numerically. (Papers VII and VIII)

1.2.2 Development of existing methods

e Combining edge elements and adaptivity, an efficient method for solv-
ing eddy current problems is presented. (Paper V)

e The properties of tetrahedral and hexahedral edge elements in eddy
current computations with laminated materials are analyzed and we
show that hexahedral elements aligned with the laminations correctly
represent the solution. (Paper VI)

e Anisotropic mesh refinement and hexahedral edge elements are com-
bined and used to compute the power loss in a simplified hydrogener-
ator model in 3D. (Paper VI)

1.2.3 General computational environment

e With object-oriented programming techniques, a general environment
for finite element computations has been developed. (Paper IX)

e Several different finite element methods and element types have been
implemented demonstrating its generality. (Paper IX)



e The software has been used in a wide range of applications. (Papers
I-1X)
1.3 Future directions

As already mentioned, this area of computational science is relatively new
and there are many questions to answer. Natural extensions of the work in
this thesis include:

e applying LSFEM to more realistic industrial applications,
e incorporating multigrid techniques to solve these problems, and

e developing efficient anisotropic a posteriori estimates for edge elements
and mesh refinement algorithms that exploit these estimates.

2 Maxwell’s theory for electromagnetic fields

2.1 Maxwell’s equations

The system of equations governing all macroscopic electromagnetic phenom-
ena, called Maxwell’s equations, takes the form of the following first order
system of partial differential equations:

0B

VXE:—E, (21&)
oD
H= - 21
V x J+ 5 (2.1b)
V-D =p, (2.1c)
V.B =0, (2.1d)

in R3. E and H are the electric and magnetic field intensities respectively,
and D and B are the corresponding flux densities, J = J,. + oF is the
total current density, Js. is an imposed current density, ¢ is the electric
conductivity, and p is the charge density.

In simple materials, the electric and magnetic fields are connected to the
fluxes through the following constitutive relations

B = uH, (2.2a)
D =¢E, (2.2b)

where p is the magnetic permeability and € is the electric permittivity. Of-
ten, one expresses these parameters as € = €, ¢g and p = p, pg, where the



index r refers to a relative value and the index 0 is the value in free space,
po = 47 x 1077 H/m and ¢y = ﬁ F/m, where c is the speed of light. In the
general case of anisotropic media, these parameters are tensors and can be
functions of both space and time. They may also depend on the magnetic
and electric fields and fluxes, and in lossy media they are complex-valued.
Solutions to (2.1) satisfy the following continuity conditions at material

interfaces:

[E] x n =0, (2.3a)
[H] xn =0, (2.3b)
[D]-n =0, (2.3¢)
[B]-n =0, (2.3d)

where [-] denotes the jump across the interface, and 7 is a unit normal to the
surface, stating that the tangential components of £ and H are continuous
as well as the normal components of D and B. These conditions imply that
since B = puH, the normal component H - n will be discontinuous across an
interface of discontinuity of u. Corresponding relations hold for the other
fields. One further observation is that in corners and on edges, where the
normal vector abruptly changes direction, these conditions are in conflict
leading to a singularity in the solution, see e.g. Costabel and Dauge [26]
and Assous et al. [4].

In the special case where one material is a perfect conductor or a perfect
magnetic wall, which cannot sustain fields, the interface conditions reduce
to the following conditions in the other material:

E xn=0, (2.4a)
B-n=0, (2.4b)
and
Hxn=0, (2.5a)
D.-n=0, (2.5b)

respectively. For computations on bounded domains, these conditions will
also act as boundary conditions.
2.2 The quasi-static approximation

In most low frequency applications one may set ¢ = 0, and thus D = 0.
This low frequency assumption is applicable when the wave length is larger



than the object we are modeling, see the work of Ammari et al. [1] for the
validity of this approximation.

We are thus lead to the following so called quasi-static form, or eddy
currents model, of Maxwell’s equations:

0B
E=—" 2.
V x 5 (2.6a)
VxH=J, (2.6b)
V-B=0, (2.6¢)

where as before, J = Js. + 0F and B = pH. The interface conditions (2.3)
reduce to

[E] x n =0, (2.7a)
[H] x n =0, (2.7b)
[B] -n=0. (2.7¢c)

However, since V-J = 0 by (2.6b), we have the additional interface condition,

[J]-n=0. (2.8)

2.2.1 The time-harmonic quasi-static equations

Assuming a harmonic time dependence of the form e/“!, we obtain the fol-
lowing time harmonic analog to (2.6):

V x E = —jwB, (2.9a)
VxH=J (2.9b)
V-B=0. (2.9¢)

In this case, we work with complex-valued fields even in lossless media. The
elimination of the time dependency can of course be performed also on the
full system (2.1).

2.3 The static equations

In the static case, with no time variation, the equations decouple into an
electrostatic system

VxE=0, (2.10a)
V.D=p, (2.10Db)



and a magnetostatic system

VxH=J, (2.11a)
V-B=0. (2.11b)

Equations (2.10) is normally modeled by introducing a scalar electric poten-
tial which results in a Poisson problem for this potential. The magnetostatic
problem (2.11) is not as easily treated. It appears as a special case of the
quasi-static applications and includes the complication of magnetic materi-
als, leading to discontinuities and singularities in the field variables. Also
here one normally introduces a potential which becomes a vector potential
for the magnetic flux. This formulation is considered in Section 3.2.

2.4 Examples of applications
2.4.1 Wave propagation problems

In high frequency problems, one often wants to solve a wave propagation
problem in the time domain. This may be the case when computing the
characteristics of a microwave antenna or trying to minimize the radar cross
section of an aircraft. Equations (2.1) are rewritten as a second order equa-
tion, similar to the ordinary wave equation, as described in Section 3.1. A
complication in this type of simulations, is that the computational complex-
ity increases rapidly with the physical dimensions of the object. This is due
to the fact that the mesh needs to resolve the wave length which may be
considerably smaller than the object.

2.4.2 Eddy current problems

In the construction of a hydrogenerator, typically working at low frequencies
(f <200 Hz), one wants to reduce power loss from eddy currents induced
by the magnetic fields. To compute this loss, the quasi-static equations
need to be solved, often in laminated highly anisotropic materials. Another
complication is that the eddy currents are concentrated to thin layers at the
surface of conductors in the generator, layers that thus must be resolved by
the mesh.



3 Computational methods for electromagnetic
problems

Traditionally, finite element methods have not been applied directly to the
first order form as written in (2.1). Instead the problem has been rewritten
as a second order problem, either by eliminating one of the fields, or by
introducing scalar and vector potentials. Which approach to choose depends
on the frequency range in question: eliminating the magnetic field and using
a second order curl-curl equation for E is normally used for wave propagation
problems, while different potentials have been used in low frequency, e.g.
eddy current, computations.

3.1 Second order formulation in F

One can derive second order equations for both the electric and the mag-
netic fields. Which one to choose depends on the application, and in some
problems it can be interesting to use both [14]. To get an equation for the
E-field, which is often used in e.g. radar computations, equation (2.1a) is
used to eliminate H from equation (2.1b). We get the following basic second
order equation for the electric field:

O*FE

-1

A Galerkin method for this problem leads to the weak form
(4™'V x B",V x V) + (BE", V) = f(V), (3.2)

where E™ denotes the approximate solution for the next time step, 8 includes
the time step, and f depends on the approximate solutions on the previous
time steps.

3.2 Potential formulations

There are several ways to express the electric and magnetic fields as deriva-
tives of different potentials [9][34][51]. To exemplify the techniques, we
demonstrate the version used in Paper V for time-harmonic eddy current
computations.

In conducting regions, where no source currents are present, the diver-
gence of the magnetic flux density vanishes, and we can introduce a magnetic
vector potential A defined as V x A = B. Further, we use an electric scalar
potential V' which together with equation (2.1a) and the definition of the



vector potential yields £ = —jwA — VV. Inserting these expressions into
equation (2.1b), we arrive at

Vxpu 'VxA+to(jwA+VV)=0. (3.3)

In general also a gauge or divergence constraint is added to ensure unique-
ness of the potentials involved. We note that this problem leads to a weak
form similar to (3.2) and some results in the literature is valid for both
formulations.

In the coil region, the current density is specified and we do not need to
introduce the electric potential. Instead, we solve

Vxu 'V xA=J,. (3.4)

In simply connected regions where the current density vanishes, we may
simplify further by only solving for a magnetic scalar potential 1, such that
H = V1. We then solve only the Laplace problem

V- uVip = 0. (3.5)

3.3 Kernels, spurious solutions, and gauge conditions

The form of Maxwell’s equations, with two curl equations defining the fields,
leads in some cases to problems with non-unique solutions due to the ker-
nel of the curl-operator. In the full formulation, the divergence conditions
(2.1c)-(2.1d) yields uniqueness but in many numerical schemes these equa-
tions are considered superfluous and are excluded. In potential formulations,
they are implicitly included which makes the fields unique while the poten-
tials remain non-unique.

In field computations, this leads to the occurrence of spurious modes,
non-physical static or low frequency solutions that violate the divergence
conditions. See Jiang et al. [33] or Bossavit [13] for more information on
the history and analysis of this complication. In potential computations,
spurious solutions do not occur, but the non-uniqueness may still cause
numerical difficulties.

The most common way to circumvent these numerical problems, is to
apply a penalty ,or gauge condition, on the divergence of the magnetic vector
potential A [9]. The most common types are the Coulumb gauge, forcing
the condition V - A = 0, and the Lorentz gauge, V- A = —ouV. In field
computations, a Coulumb-type gauge on the field may be applied [46].



3.4 Element types for CEM

The question on which type of elements to choose for the finite element
computations is a topic of large interest. When using potential formulations,
continuous node based elements have most often been used. The drawbacks
are the loss of one order in accuracy since one differentiation of the solution
is needed to express the actual fields, and the need for a gauge condition
in order to avoid spurious solutions. There are however classes of problems
where node based formulation fails [8]. In wave propagation problems, node
based schemes have not been used due to the occurrence of spurious solutions
and the poor dispersion properties of the schemes. Instead, one has used
explicit finite difference (FDTD) methods [53], which however do not allow
local mesh refinement or curved geometries.

Today, the focus is instead on curl-conforming edge elements. These
elements have degrees of freedom associated with moments over edges and
faces and were introduced by Whitney and extended and popularized by
Nédélec in 1980 [45]. For the lowest order elements, the unknowns are vectors
aligned with the edges of the geometrical elements, see also Section 7.2.
The practical advantages when using these elements include that spurious
solutions do not occur and boundary and interface conditions are naturally
implemented since the tangential continuity of the elements fits with the
problem.

For eddy current computations, the use of edge elements is still fairly
new, and main questions involve how to treat the kernel of the curl-curl op-
erator with respect to solvability [8] and the application of efficient iterative
solver techniques such as multigrid algorithms [3][6][30]. In wave propaga-
tion problems these elements are more established [54]. The main difficulty
arising here, is the problem with not being able to lump the mass matrices,
thereby ruling out the use of explicit time stepping schemes [37]. Areas of
research are thus curl-conforming elements that can be lumped [35], and the
use of hybrid schemes, coupled to FDTD [49][53].

4 Development of established methods in CEM

4.1 Edge elements for eddy current computations

In low frequency computations, the edge elements have not yet reached the
same popularity as in wave propagation problem. Still, the properties of
these elements are desirable also in these applications. Since edge elements
lack continuity in the normal direction, it is not feasible to use the gauges

10



described in Section 3.3, involving the divergence of the fields. Therefore, the
system matrix becomes singular, and the solvability of this discrete algebraic
system becomes a crucial issue [8].

In cooperation with Bondeson and Liu in the Department of electro-
magnetics at Chalmers, we have performed eddy current computations on
a simplified model of a hydrogenerator using an ungauged formulation with
an orthogonalization process to assure solvability, i.e., we solve a Poisson
problem in order to clean the load vector from components that are not
in the discrete solution space and thus make it orthogonal to the kernel of
the curl-operator. The key to this procedure is the characterization of the
discrete kernel as gradients of standard polynomial elements. This work is
described in Paper V.

Further, we found that in laminated materials, it is difficult to achieve
accurate results using lowest order tetrahedral elements. Also for hexahedral
elements not aligned with the laminations, similar difficulties occur. This is
since these elements are not able to represent the solution, as explained in
Paper VI. In this paper, we also use anisotropically refined hexahedral edge
elements to restore optimal convergence order for the finite element method.

4.2 Galerkin least-squares method for wave propagation
problems

The main motivation for not using nodal elements in high frequency com-
putations is the possible occurrence of spurious solutions. In a wave propa-
gation problem, where we, e.g., send a wave towards an object and measure
the reflection, spurious solutions can be seen at corners and details in the
geometry and they vary rapidly in space but are typically of low frequency.

However, using the Lee-Madsen formulation of the first order system [38]
[40], see Paper VIII, we have performed numerical experiments in two and
three dimensions that indicate that these spurious solutions can be avoided
by means of local mesh refinement.

Another reported drawback is that the phase error in this formulation
has the same sign independent of the direction of propagation of the wave
relative to the element [42]. According to Wu and Lee [52], it is desirable if
the phase errors have different sign in different directions since on unstruc-
tured grids, this property is believed to lead to cancellation of the phase
errors.

Noting that a least-squares formulation of the Maxwell equations [44]
gives phase errors with opposite sign compared with the Lee-Madsen formu-
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lation, we propose a combined scheme: find U = [E, H] € V, such that
(1 —-a)Ag(U,U) + aArs(U,U)=0 forallU €V, (4.1)

where « € [0,1] is a parameter, Ag(-,-) is the bilinear form associated with
the standard Galerkin method, and Arg(-,-) is the bilinear form associated
with the least-squares method.

A numerical dispersion analysis shows that with a =~ 0.4, we get a scheme
with varying sign of the phase error and the region with small error is larger
compared to each of the methods, as well as compared to using formulation
(3.2) and edge elements [42]. Furthermore, the problem with spurious solu-
tion is not present in the least-squares method and thus nor in the combined
scheme.

5 Least-squares finite element method

Finite element methods based on least-squares techniques (LSFEM) were
first applied on electromagnetic problems by Jiang et al. [33][32]. Since LS-
FEM can be applied to over determined systems and is preferably applied
to a first order system, the method is suitable to apply directly to Maxwell’s
equations in the form of (2.1). We thus avoid the loss in accuracy of the
potential methods as well as the occurrence of spurious solutions. Discon-
tinuities in material parameters must however be handled by discontinuous
elements [23][47]. However, we have found that the high regularity require-
ments for the standard formulation of LSFEM hinders simulation of realistic
applications.

In this section we describe in some detail the basic principles of the least-
squares finite element method. We start with a general first order problem,
derive the least-squares functional and the weak form, and comment on ex-
tensions of the functional to include the weak treatment of boundary condi-
tions and constitutive relations. Finally, we state the a priori error estimates
that are standard in the least-squares methodology. In the next section we
discuss different ways suggested to relax the regularity requirements.

5.1 A general first order problem

Consider the following first order boundary value problem:

Lu=f inQ, (5.1a)
Bu=g onT, (5.1b)

12



where € is a bounded domain in R?® with boundary I". Here u is a vector of
m unknowns, £ is a linear differential operator of the form

3
)
Lu= ZAia—:; + Agu, (5.2)
i=1 t

and B is an algebraic boundary operator of the form
Bu = Bu, (5.3)

where A; and B are matrices with variable coefficients of type m x m and
n X m respectively, where n < m. These coefficient matrices are assumed to
be bounded.

Furthermore, we assume that problem (5.1) has a unique solution, w.

5.2 The least-squares formulation

Now, suppose f € [L2(Q)]™, g € [H/2(Q)]", let V = [H'(Q)]™, and define
the subspaces V, ={v eV :Bv=gon T} andVy={v €V:Bv=0o0nT}.

Form the functional
I(v) = ||Lv — f|* forv €V, (5.4)

and note that
0=1I(u) <I(v), (5.5)

Vv € V.

Thus a solution u to problem (5.1) minimizes the functional I, and the
least-squares method amounts to finding this minimizer, i.e., find u € V,
such that

I(u) = Uien)fg I(v). (5.6)

A necessary condition for a function u € V, to satisfy equation (5.6), is

tim 2 T(u + 7v) = 2(Lu — f, L) = 0, (5.7)

=0 OT

Yv € V.
So, the minimization of the least-squares functional I leads to the vari-
ational problem: find u € V, such that

a(u,v) = I(v), (5.8)

Yv € Vy, where
a(u,v) = (Lu, Lv), (5.92)
I(v) = (f, Lv). (5.9b)
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5.3 Weak enforcement of boundary conditions

Up to now, the boundary conditions Bu = g have been imposed strongly
by restricting the space in which we seek the solution. It is also possible
to impose them weakly by including equation (5.1b) in the definition of the
least-squares functional. We then redefine I(v) to

I(v) = |Lv = fI* + 1Bv — gl )pp  forveV, (5.10)

Seeking a minimizer to I in V leads to the following variational problem:
find v € V such that

a(u,v) = 1l(v), (5.11)

Vv € V, where
a(u,v) = (Lu, Lv) + (Bu, Bv) /a1, (5.12a)
l(v) = (f, Lv) + (g, Bv)1/2,r- (5.12b)

5.4 Incorporating constitutive relations

Additional equations describing constraints on, or relations between, vari-
ables arise in many applications, e.g., non-newtonian flows or Stokes flow.
Both the divergence constraint (2.1d) and the constitutive relations (2.2) in
the Maxwell equations may be considered as being of this type.

These extra constraints on the system of PDE:s are in general difficult
to handle in the analysis. However, in a least-squares method we treat these
equations in the same manner as we treated boundary conditions in the
previous section, i.e., by adding terms to the least-squares functional. We
can then use the tools for the least-squares method to analyze the complete
system.

In the general framework presented here, the matrices A; in equation
(5.2) are thus allowed to be rectangular matrices of type M x m, where
M > m.

5.5 The least-squares finite element method

We introduce a finite element space V}, as, e.g., the space of all continuous
piecewise vector polynomial functions vy, of degree less than or equal to p,
such that, in each element, v;, € P,. Furthermore, h denotes the mesh size
of the underlying triangulation.

Assuming that g can be exactly represented by continuous piecewise
polynomials, and if not, replacing it by its L?-projection Pg, we define the
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finite element subspace Vj, 4 of V, by Vj, ¢ = Vi, NV, and similarly we define
Vho = Vp N V.

The least-squares finite element method corresponding to (5.6) can now
be formulated by restricting the minimization problem: find u; € V, 4 such
that

I(up) = UeigfgI(v). (5.13)

Necessary conditions for a minimum in V}, 4 lead to the variational prob-
lem: find up € Vj 4 such that

a(up,v) = 1(v), (5.14)

Yv € Vj, 0, where a(-,-) and [(-) are defined as in equation (5.9).

5.6 A priori error estimates

Using standard techniques, it is possible to prove the following result for a
general least-squares finite element method:

Theorem 5.1 Let u € V = [HY(Q)]™ be a solution to problem 5.1. For
an approzimate solution up € Vy obtained by LSFEM, as defined by equa-
tion (5.14), there is a constant C, independent of u and h, such that

Il — unlll < CRPulps1, (5.15)
where |||v]||? = a(v,v).

Moreover, for elliptic problems, it is possible to derive an improved result.
We say that the problem is elliptic if the bilinear form a(-, -) is coercive with
respect to the H'-norm.

Theorem 5.2 Let u € V = [H(Q)]™ be a solution to problem (5.1), where
L is a continuous linear first order elliptic differential operator. For an
approrimate solution up € Vp obtained by LSFEM, as defined by equa-
tion (5.14), there are constants Ci and Co independent of u and h such
that

[ = unlly < CLbPlulpia, (5.16)

and
= wnll < CohP*fulp 1. (5.17)
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6 Least-squares formulations for the div-curl prob-
lem

As is clear from the previous section, LSFEM suffers from strong regularity
requirements on the exact solution. Optimal convergence will be achieved
only in very smooth domains with no corners or edges and the suboptimality
will remain even in the presence of mesh refinement. This is due mainly to
the use of L?-norms in the minimizing functional, combined with continuous
node based finite element spaces which are dense in H'.

Several attempts to resolve this shortcoming have been made, most of
them involve using a weaker norm such as a weighted L2-norm [22][27] or a
discrete version of the H~!-norm [5][15][17]. In Paper II and Paper III, we
present another approached based on enrichment of the finite element space
by allowing some discontinuity close to the singularities.

Theoretically, a natural approach to apply LSFEM to problems with low
regularity is to, when forming the least-squares functional, choose a norm
such that convergence is achieved. For practical reasons, we must however
be able to compute the functional and the inner products induced by the
norm.

A way to perform these computations in a discrete H '-norm was pre-
sented by Bramble et al. [15]. The method involves the construction of
a preconditioner that approximates the solution operator to a Laplace-type
problem. The main drawback with this approach is that it leads to algebraic
problems with dense matrices [10].

The idea when applying weighted L?-norms, is to introduce a function,
centered at the singularity, which exactly cancels the singularity and thus
yields convergence of the norm. These norms, together with mesh refine-
ment, were used by Cox and Fix [27] to restore optimal convergence of
LSFEM when solving the first order Laplace system on an L-shaped domain
in 2D. Manteuffel et al. [39] developed the idea and applied it to an interface
problem. The main drawback with this approach is that one needs exact
knowledge of the behaviour of the solution in the vicinity of the corner. This
is possible to handle in 2D but is considerably more difficult in 3D. Further,
the error at the singularity is still very large.

6.1 Minimization over the dual space

Cai et al. [22] recently constructed a method of least-squares type they
named First-Order System L£L*, FOSLL*, where L£* denotes the adjoint
of the linear operator £ of equation (5.2). Instead of using H !-norm,
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they consider minimization in the dual norm ||v||p = sup,,cp« (v, w)/||L*w||,
where D* is the domain of £*. They show that this is the same as minimizing
the L2-error over the dual space.

An application of this approach to the magnetostatic problem is pre-
sented in Paper IV. We apply adaptive mesh refinement techniques based
on an a posteriori error estimate for the magnetic energy which we derive
in the paper. We note that, with suitable scaling, the weak form for this
formulation becomes identical to a magnetic vector potential formulation
with the Coulumb gauge applied with penalty weight one.

6.2 Discontinuous LSFEM

The idea with this approach is to construct a finite element space, enabling
us to avoid the strong regularity requirements normally present for LSFEM.
This is done by introducing discontinuous elements in the least-squares
method, an idea first introduced by Bramble et al. [16]. We thus obtain
a convergent scheme also for problems with singularities.

In Paper IT we use discontinuous elements to approximate H(div) by
weakly imposing normal continuity, the penalty term for the discontinuity
is naturally incorporated in the least-squares functional. We prove stability
and optimal a priori error estimates for the proposed scheme. In Paper III
we extend the analysis to problems posed in H(div) N H(curl). Numeri-
cal computations on three-dimensional nonconvex domains are presented to
demonstrate the approach.

This method does not need any a priori knowledge about the solution
since we only use the standard L?-norm. The cost we have to pay is the extra
degrees of freedom introduced by the discontinuous elements. This cost can
be reduced by applying the conforming approximation spaces described in
Sections 7.1 and 7.3.

7 Finite element spaces for div-curl problems

We will in general terms describe some approximation spaces for these types
of problems. Let K be a decomposition of the domain  into, e.g., tetra-
hedral, finite elements K. The index h denotes the mesh function and is a
measure of the local size of the elements in the mesh, hx = h|x = diam(K),
and we assume a minimal angle condition on the triangulation, see Bren-
ner and Scott [18]. By P,(K) we denote the set of polynomial functions of
degree less than or equal to p defined on the element K.
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Figure 2: The degrees of freedom for the lowest order RT or BDM elements
are the normals on the faces.

7.1 H(div)-spaces

In order to construct a finite element space V), to approximate H (div) =
{v € [L%]": V -v € L?}, we need continuity (up to the sign) of v - n, where
v € Vp, at the element interfaces. Two established ways to achieve this
are the Raviart-Thomas (RT') elements [48] and the Brezzi-Douglas-Marini
(BDM) elements [19][20]. The book by Brezzi and Fortin [21] gives a good
overview of different element types for approximating H (div).

For the lowest order BDM-elements, the degrees of freedom are associ-
ated with linear moments of the normal field on the element faces. The most
important property is that the p:th-order interpolation operator g, based
on these elements, commute with the divergence operator in the following
sense,

V-mgv=PFP,_1kV-v, (7.1)

where P, ;¢ denotes the L2-projection onto P,(K). This property makes it
possible to obtain the following interpolation error estimate

IV (v — 7o)k < Chg|V - vlax, (7.2)

where C' does not depend h and 0 < «a < p; see [21] for proofs. Similar
results hold for the RT-elements.

The gain is that we may exploit the natural regularity of the problem
and establish estimates involving only the divergence of the solution, while
for continuous nodal elements we typically have to express our results in the
stronger | - |qo41,x-nOrm.
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Figure 3: The degrees of freedom for the lowest order Nédédec elements are
aligned with the edges.

7.2 H(curl)-spaces

Instead of ensuring normal continuity, we need for H(curl) = {v € [L?]" :
V x v € [L%]"} to impose tangential continuity on the finite element space.
The most popular construction used in the electromagnetic community is
due to Nédélec [45] and the elements are called Nédélec or edge elements,
since the degrees of freedom for the lower order elements are located and
aligned with the edges of the element.

Similarly to how interpolation on the BD M-elements commute with the
divergence-operator, the interpolation on edge elements commute with the
curl-operator. We thus have an analogous interpolation error estimate [25]:

|V x (v —7gv)||k < ChY|V xv|or, 1/2<a<p. (7.3)

The reasons why the edge elements are so well suited to approximate
Maxwell’s equations are still an area of research. The concept of discrete
compactness [12][36][41] coupled to the property of commuting de Rahm
diagrams [11][29] are steps towards a theoretical understanding. In [24],
Caorsi et al. show convergence of the edge element by considering the fact
that the operator of the underlying variational eigenproblem is non-compact.
For the engineer, the more important property of the Nédélec spaces may
be that the kernel of the curl-operator in the discrete space, is exactly the
gradient of a standard node based finite element function.

7.3 H(div) N H(curl)-spaces

We describe here in short the use of the Crouzeix-Raviart (CR) elements
for a non-conforming approximation of H(div) N H(curl). The linear CR-
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Figure 4: The degrees of freedom for the lowest order Crouzeix-Raviart are
the field at the midpoint of the faces.

elements ensure continuity of the average over the element faces. The degrees
of freedom are the constant moments on the faces. As for scalar polynomial
elements, we use a tensor product element [CR]? in the approximation of
vector functions. The generalization to higher order is not straightforward,
and since we only need low order C R-elements we do not discuss that issue
further.

An interpolation operator based on these elements commute with both
the curl and the divergence operator, and both (7.2) and (7.3) are valid with
O0<a<l

8 Error control and adaptive mesh refinement

8.1 Computational errors

When modeling physical phenomena with finite element methods we only
obtain an approximate solution. It is important to have an idea of which
errors we get and how to control them to achieve better accuracy. We can
split the error into three components: the modeling error that has to to do
with how well the mathematical model we use describes the actual physics,
the algebraic error which arises when using iterative (approximate) solvers
for the discrete matrix problem, and the discretization error which comes
from seeking the solution of the mathematical model in finite dimensional
function spaces.

The algebraic error is in general easy to control and small in compari-
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son to the other. Moreover, in electromagnetics, Maxwell’s equations (2.1)
are normally considered to be exact. Modeling error arises never the less
when describing different materials; the constitutive equations (2.2) are a
simplification for general materials.

A large portion of the research in the finite element area is concerned
with handling the discretization error. The goal is to minimize the error
in the finite element model, measured in some way, compared with the
mathematical model and to do it at a low cost. This is done by deriving an
error indicator and increase the accuracy of the discrete model only where
it is most needed. The indicator is based on an a posteriori error estimate,
i.e., a bound of the error based on information on the computed solution.

8.2 Residual based a posteriori estimates

The simplest error estimates are derived for the energy norm, i.e., the (semi)
norm induced by the bilinear form. For least-squares methods this is an easy
derivation, since the energy norm of the error is equal to the least-squares
residual.

Let |||[v]]|> = a(v,v), where a(-,-) is defined as in equation (5.9), and
e = u — uy, where u denotes the exact solution and u; the LSFEM solution.
Then we have

llelll* = ale, ) = (L(u —un), L(u = up)) = ||f = Lun|? = | R(un)|*. (8.1)

This exact representation of the error is only of interest as an error estimate
if the energy norm is a relevant quantity, but it is never the less a natural
indicator for mesh refinement. However, if the bilinear form is coercive with
respect to an appropriate norm, e.g. the H'-norm, we also get a relevant
error estimator. This is then no longer an exact representation.

This estimator has been used as mesh refinement indicator for most
LSFEM computations in this thesis. In Papers V and VI, we apply a version
of the energy error estimator by Beck et al. [7]. For the derivation of this
estimator, we refer to their paper.

8.3 Estimates based on duality

For a better estimate, one can introduce a dual problem which, loosely
speaking, describes error propagation and the stability of the problem. This
dual problem can then be solved and used in the error estimate. By varying
data it is possible to achieve estimates in different norm or for various func-
tionals of the solution. In Paper I, we used a duality argument to prove a
priori convergence results for LSFEM applied to the magnetostatic problem.
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8.4 Mesh refinement algorithms

It is clear that adaptively refined meshes are crucial in order to achieve good
convergence [28][31], but there are many ways to perform this refinement
process. First of all, there is the choice of which mesh refinement indicator
to use; a choice that depends on the finite element method, which quantity
to minimize, and in which norm [43]. In LSFEM, as noted in Section 8.2,
there is an indicator naturally imposed by the least-squares functional which
also may act as an a posteriori error estimate, depending on the coercivity
of the bilinear form.

There is also the choice of how to split an element marked for refinement.
In most computations in this thesis, isotropic mesh refinement was used. By
this, we mean that one or more of the element’s edges were split in halves
starting with the longest edge. This procedure yields shape regular meshes
without stretched elements; see Paper IV for more details.

In some applications it is necessary to use anisotropic mesh refinement
which allows elements which are very thin in one direction. For Paper VI,
where the eddy currents only exist in thin layers on the conductor surfaces,
we extended the work on a posteriori analysis for anisotropic meshes by
Siebert [50] and the work on anisotropic interpolation estimates by Apel [2]
to the eddy current problem formulated with edge elements on hexahedrals.

9 General environment for finite element compu-
tations

All computations in this thesis has been performed using a finite element
software developed by Bergstrém in cooperation with Levenstam, Samuels-
son and Liu. The code is written in C++ and implements a general frame-
work for finite element computations, including several different element
types and an easy realization of different equation formulations. For a more
thorough description of implementation details, we refer to Paper IX.

10 Summary of papers

10.1 Paperl

Least-Squares Finite Element Methods with Applications in Electromagnet-
ics: In this paper we apply the least-squares finite element method (LSFEM)
to two magnetostatic test cases, supplied by ABB Corporate Research, and
a common time-harmonic test problem. We prove basic error estimates for
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the method formulated with weak enforcement of boundary and interface
conditions. We find that, in general, it is uncertain when LSFEM yields a
correct solution, since the least-squares functional may not converge to zero
due to the low regularity of the exact solution. However, we prove by dual-
ity arguments that convergence can be achieved in certain quantities, such
as the magnetic energy, even in many of these cases. We present numerical
computations in three spatial dimensions, illustrating our theoretical results.

10.2 Paper II

Discontinuous/Continuous Least-Squares Finite Element Methods for Ellip-
tic Problems: Here, we propose a hybrid least-squares formulation combining
discontinuous/continuous approximation in the vicinity of geometric singu-
larities, where standard LSFEM fails, with continuous approximation else-
where. The larger discontinuous approximation space enables us to avoid
the strong regularity requirements normally present for LSFEM and exploit
the natural stability of the problem, thus obtaining a convergent scheme
even for problems with singularities. We prove stability and optimal a pri-
ori error estimates for the proposed scheme. The method is demonstrated
by numerical examples for the first order Poisson system posed on three
dimensional domains with corners. The problems include line and point
singularities and discontinuous coefficients.

10.3 Paper III

Discontinuous Least-Squares Finite Element Methods for the Div-Curl Prob-
lem: In this paper we extend the formulation in Paper II to include the
div-curl system. An analysis, including stability and error estimates, is pre-
sented for a model problem. We successfully solve both the Poisson system
of Paper II, now stabilized with a curl-term, as well as a problem from Paper
I where standard LSFEM encountered difficulties.

10.4 Paper IV

The LL* Finite Element Method and Multigrid for the Magnetostatic Prob-
lem: This paper was presented at the GAMM Workshop on CEM held in
Kiel in January 2001. The £L£* finite element method [22] is applied to the
magnetostatic system (2.11) and the resulting discrete system is solved using
multigrid techniques. We derive an a posteriori error estimate for the error
in magnetic energy, and implement this estimate in an adaptive mesh refine-
ment algorithm. Introducing a suitable scaling, we note that this method is
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identical to a vector potential formulation using Coulumb gauging with the
penalty weight equal to one.

10.5 Paper V

Eddy Current Computations Using Adaptive Grids and Edge Elements, pub-
lished in IEEE Trans. Mag., vol. 38, 2002: This paper was presented by
Dr. Liu at the CompuMag conference in the summer of 2001. We employ
tetrahedral edge elements in an ungauged potential formulation together
with adaptive mesh refinement techniques to compute the eddy currents in
a model of a hydrogenerator. In the absence of a gauge condition, a pro-
cedure to assure solvability of the resulting algebraic system of equations
is presented. The use of the ungauged formulation with vector and scalar
potentials significantly improves the rate of convergence for the iterative
algebraic solver, and the reasons for this improvement are discussed.

10.6 Paper VI

Edge Element Computations of Eddy Currents in Laminated Materials, sub-
mitted to IEEE Trans. Mag.: This paper will be presented by Dr. Liu at
the 10th International IGTE Symposium on Numerical Field Calculation in
Electrical Engineering in Graz, Austria, in September 2002. Here, we apply
the formulation presented in Paper V to three dimensional computations
of the power dissipation in laminated conductors. Results for hexahedral
and tetrahedral elements are compared and we conclude that hexahedral
elements aligned with the laminations give best results. Anisotropic mesh
refinements techniques as described in section 8.4 are also included in the

paper.

10.7 Paper VII

FEM Algorithms for Mazwell’s Equations: This paper was presented by Ry-
lander at EMB 98 - Electromagnetic Computations for Analysis and Design
of Complex Systems in Linkoping 1998. The paper is a joint contribution by
Chalmers Finite Element Center presenting the activity in computational
electromagnetics, including field computations using edge element by Ry-
lander and Bondesson, together with results of Bergstrom, Levenstam, and
Johnson using node based schemes for the time dependent Maxwell equa-
tions.
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10.8 Paper VIII

Dispersion Analysis of Galerkin Least Squares Approzimations of Mazwell’s
FEquations: The results of this paper were presented at Mathematical and
Numerical Aspects of Wave Propagation in Santiago de Compostela, Spain,
in 2000 and appears in the printed proceedings. A formulation for electro-
magnetic wave propagation based on a standard Galerkin approach together
with a least-squares formulation is analyzed. We show that the disper-
sion properties for this mixed formulation is superior to both the standard
Galerkin scheme and the least-squares method on their own.

10.9 Paper IX

Object Oriented Implementation of a General Finite Element Code: This
technical report describes the structure of our code developed for general
finite element computations. The code is written in C++ and utilizes the
possibilities of this language to offer easy extension of the code to new prob-
lems, element types, quadrature rules, etc. This report is included in the
thesis in order to complement Papers I-VIII by supplying more details on
the software used to perform the numerical computations.
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Least-Squares Finite Element Methods
with Applications in Electromagnetics *

Rickard Bergstrom'

Abstract

We investigate the application of the least-squares finite element
method (LSFEM) to static and time harmonic Maxwell’s equations in
three spatial dimensions in cases of industrial significance. We find
analytically and numerically that, with suitable residual weighting
and mesh adaptivity, LSFEM gives satisfactory results for problems
with discontinuous magnetic permeabilities of largely different orders
of magnitude, but without strong corner singularities.

1 Introduction

In a least-squares finite element method (LSFEM) a sum of suitable residual
norms is minimized over a piecewise polynomial space. The residuals may
contain differential equations, constitutive equations, interface and bound-
ary conditions.

LSFEM is a general method with the following features, see, e.g., Bochev
and Gunzberger [5], Jiang [12], and [1]:

e applicability to general, possibly overspecified, first order systemms,

e stability follows directly from well posedness of the continuous prob-
lem,

e essential boundary conditions may be imposed weakly, and

e the resulting discrete system of equations is symmetric positive defi-
nite.

*This research is supported by ABB Corporate Research

tSupported by the Swedish Foundation for Strategic Research through the National
Graduate School in Scientific Computing and the National Network in Applied Mathe-
matics



In particular, LSFEM is applicable to Maxwell’s equations in first order
form. With the divergence equations included, LSFEM does not suffer from
the spurious solutions which may occur in certain Galerkin methods, see,
e.g., Jiang, Wu, and Povinelli [13] and the book by Jiang [12].

The strong norm residual minimization of LSFEM in its standard form,
makes computation of singular solutions difficult. Another difficulty con-
cerns the weighting of the different residuals. In this paper, we address
these problems, with focus on static and time harmonic problems.

The paper is organized as follows. In Section 2 we present the magne-
tostatic problem and formulate the least-squares method, in Section 3 we
prove a priori and a posteriori estimates, in Section 4 we apply the method
to magnetostatic problems, and in Section 5 we extend the method to time-
harmonic problems.

2 The least-squares finite element method

2.1 A magnetostatic model problem

Assume that Q@ = U7, Q' is a domain in R3, where Q and each Q' are
bounded and either of class C!, but may be non-convex, or convex, and
denote the interface between regions ¢ and Q7 by I'¥/, with ¢ < 7, see Figure
1.

Let

V= évi, (2.1)
=1

with V¢ = [H'(9)]3. Assume that each subdomain have the magnetic
permeability p|oi = pl o where ul > 0 is constant and y is the magnetic
permeability in free space, uo = 47 x 10~7 H/m. The magnetostatic system
then takes the form: find B € V such that

Vxp 'B=J inQ, (2.2a)
V-B=0 in, (2.2b)
B:-n=0 onT, (2.2¢)

and the interface conditions

[W'Bxn]=0 onT¥ (2.3a)
[B-n]=0 onTI¥, (2.3b)



hold. Here n is the exterior unit normal on the boundary I' and a fixed unit
normal on each interior interface I', and [u(z)] = lim,_,g+ u(z +sn) —u(z —
sn) with z € 'Y, denotes the jump in u across the interface I'*/.

Remark 2.1 The assumption that the domains are convex or of class C:!
is not realistic for engineering applications where we typically only have
Lipschitz domains. We will discuss and relax this regularity constraint when
we have proved error estimates in Section 3.

r12
Figure 1: The notation used when a region is split into subregions.

2.2 Finite element spaces

Let K',i = 1,...,n, be decompositions of the subdomains )¢ into, e.g., tetra-
hedral, elements K, and let K = U?leCi denote the resulting decomposition
of Q. Let h denote the mesh function defined by h|x = hx = diam(K),
i.e., a measure of the local size of the elements in the mesh, and let h =
maxgex h(K) denote the global mesh size. Non-matching meshes are al-
lowed, but we assume local quasi-uniformity and a minimal angle condition

on the triangulation, see Brenner and Scott [8]. Let
n .
i=1
with V}'L defined by

Vi = {v e [C°@)]} : v|x € Pp(K),for all K € K},

where P, is the set of all vector polynomials of degree less than or equal to
r. Thus V}, is the set of all piecewise vector polynomial functions of degree



r which are continuous in the subdomains €* such that, in each element,
U‘ x € P, (K ) .

For the error analysis following below, we need the following approxima-
tion property of Vy, see, e.g., [14] for a proof. There is an interpolation oper-
ator m = @, «* with ? : [H1(Q%)]® — V), such that for v € @, [H*(Q)]3,
it holds

||'U - ﬂ”UHm,K < Ch?(_m|v‘a,S(K)a m=0,1, (25)

where a = min(r 4+ 1, s), S(K) is the patch of elements neighboring K, and
the constant C' is independent of the mesh parameter h.

2.3 The least-squares finite element method with weak bound-
ary and interface conditions

The solution B to problem (2.2)—(2.3) minimizes the least-squares functional

n

1B) =3 (I6(V x (5~ B) = )3 + |V - BI%:) (2.6
=1
+ > (IRl B x Al + 2B n]l)
1<i<j<n

+|h12[B - n] .

Here we have introduced a weight y in the volume integral terms contain-
ing the curl equation. This is a natural scaling of the equations and the
least-squares functional is thus better balanced between the curl and the
divergence conditions. The parameter ji corresponds to the multiplication
with g in the volume integrals, but is an average value since y is not de-
fined on the interface. We will return to the exact definition of this average.
Moreover, on the boundary and interfaces, the L?(T')-norm scaled by h~1/2
has been used instead of the computationally cumbersome H'/?(T")-norm,
see Bochev and Gunzberger [5] and the references therein. For non-matching
meshes it may be necessary to use an average also for h. The least-squares
method amounts to finding this minimizer: find B € V such that

I(B) = ;Iellf; I(v). (2.7)

Remark 2.2 Note that the boundary condition (2.2c) and the interface
conditions (2.3) are imposed weakly. Strongly imposed boundary and inter-
face conditions have been suggested in e.g. Jiang, Wu, and Povinelli [13],



(a) Conforming triangulation (b) Non-conforming triangulation

Figure 2: Examples of matching and non-matching triangulations of two
subdomains. In the first case, we have the choice of both strong and weak
enforcement of interface conditions. For the non-matching grid, however,
we must use weak enforcement.

but are non-trivial to implement in polyhedral domains since the normal
is not defined everywhere. Further, enforcement through the least-squares
functional makes it possible to use different finite element spaces on either
side of the surfaces, and the convergence properties of the method is better
when using weakly imposed conditions, see Costabel and Dauge [11] and
Bao and Yang [3].

A necessary condition for a function B € V to satisfy equation (2.7), is
o _ . .
lim —I(B + 7B) =2(a(B,B) — I(B)) =0, (2.8)
70 OT

for all B € V, where

n

a(B,B) =Y (VX B,V x B)qi+(V-B,V-B)g (2.9)

=1
+ > (0Tl B o] il B X ]
1<i<j<n

+ (WU [B -, [B ) )
+ (h™'B-n,B-n)r,

and
I(B) =Y (u],uV x (™' B))g;. (2.10)
i=1



Thus seeking a minimizer to I in V leads to the variational problem: find
B €V such that

a(B,B) =1(B), (2.11)

for all B € V.
The least-squares finite element method is defined by seeking an approx-
imation By, in Vj, such that

1(By) = inf 1) (2.12)

with corresponding variational form: find By, € V}, such that
a(By, B) = U(B), (2.13)

for all B € V.

3 Error estimates
3.1 A priori error estimates
We begin by introducing the energy norm
llvlll? = a(v,v) forv eV, (3.1)

Under our assumptions, ||| - ||| is a norm in V when there exists a unique
solution to problem (2.2)-(2.3).
Further, we have the following interpolation error estimate.

Lemma 3.1 If v € @] ,[H*(Q)]?,s > 1, then there is an interpolation
operator 7 : @7, [H*(Q)]? — V), such that
=1

llo = mol|| < CA*ola, (3.2)

with & = min(r + 1, s) and where C only depends on p and .

Proof. Let n = v — wv. We show that

llnll* < € > hillimlli + Inf? & (3-3)
Kek

The desired result (3.2) then follows from (2.5). For the interior terms, we
directly have
IV xnllk < Clnli k., (3-4)
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and
IV -nll% < Clnl? k- (3.5)

For the boundary term we get

11?0 |t = > IR0 nll3ker (3.6)
{KeK:0KNT'#£0}

< S endnllk (gt nllx + Inlix)
{KeK:0KNT#0}

<c¢ > rllnllk+ I
{KeK:0KNT'#p}

where we used the trace inequality |v]|2, < Cl|lv||x(hx |vllx + |[v]1,K)-
Finally, for the interface jump terms we use the triangle inequality

=12 I nllf < B2 0" nlf + B2 0 onliEs, (37)
and

1A [t x nlllfsy < B2 ()7 0 x ol (3.8)

+ B2 (W) xRy,
and then treat them with the same technique as for the boundary term.
Remark 3.1 If the meshes K¢ match on the interfaces and mv satisfies the
interface conditions (2.3), then the constant C is also independent of x since

the interface terms vanish.

Now we are ready to state the following result:

Theorem 3.2 Let B € @], [H*(Q)]? be a solution to (2.11) and By, € Vy
the approzimate solution defined by (2.13). Then there is a constant C,
independent of h, such that

1B = Bll| < Ch*7!|Bla, (3.9)

with o = min(r + 1, s).



Proof. Let e = B — By, denote the error. Then

llell* = a(e, B — By) (3.10)
=a(e,B— 7B+ 7B — Bp)
= a(e, B —wB),

where we use the Galerkin orthogonality a(e, B) = 0, for B € V,, in the
last equality. Using the Cauchy-Schwarz inequality and dividing by |||e||| we
arrive at

lelll < [[|1B —=B]|
< Che™ | Blq, (3.11)
where we used Lemma 3.1 in the last inequality. 0

3.2 A posteriori error estimates

A simple calculation gives that the energy norm of the error when using a
bilinear form derived from least-squares principles simply equals the residual.
Thus we can state the following a posteriori error estimate in the energy
norm.

Theorem 3.3 Let B € V be a solution to (2.11) and By, € V), the approzi-
mate solution defined by (2.13). Then

1B — Bull* = > Ri(Bn) - R (Bh) (3.12)
Kek

where the element residual Ry (Bp,) € R* is defined by

1(V x p 1By — J)|l
IV - Bplx

Z5lIh 2 alu™ By x nlllasyr |
I 2 [Br - n]llox

Rk (Bn) = (3.13)

where a is a function, such that « = 1 on faces F with FNT' # () and o = 2
otherwise.



Remark 3.2 Under our assumptions, these results are meaningful since we
have enough regularity on the solution B. In more realistic situations where
Q is only Lipschitz, we have B € @ ;[H*(Q)]? for s € (1/2,1], see Am-
rouche, Bernardi, Dauge and Raviart [2], and the least-squares finite element
method generally fails to converge to the correct solution, see e.g. Bramble,
Lazarov and Pasciak [7] or the regularity results of Costabel [10]. However,
the use of weak boundary and interface conditions still gives a theoretical
convergence, see Costabel and Dauge [11].

For many applications, one wants to measure the error in other quantities
than the energy norm. In the remainder of this section, we use duality
arguments to derive an a posteriori estimate for the the error in energy,

1 _ 1 _
Werror = 5/ 12 1|B|2 — 5/ M 1|Bh‘2- (3.14)
Q Q

Moreover, this estimate shows that we can have convergence even when
B ¢V, as is the case for a general Lipschitz domain with corners.
3.2.1 Definition of the dual problem

To prove estimates of the error in the energy, we start by studying the
following problem: find (¢, p) € H*(Vx,Q) x H}(Q) satisfying

VxuVx¢—Vp=T inQ (3.15a)
V-¢p=1 inQ, (3.15b)
p=0, ¢xn=0 onT, (3.15¢)

with interface condition

W 'pxn]=0 onT¥, (3.16a)
[¢p-n]=0 onTI%, (3.16b)

WV x pxn]=0 onT¥, (3.16¢)
[p] =0 onT¥. (3.16d)

Here we introduced the space H*(Vx,Q) = {v € [H(Q)? : Vxuv €
[H*(2)]3}. This problem is analysed in Chen, Du, and Zou [9], where it
is shown that there exists a unique solution. Furthermore, p = 0 for all ¥
with V- ¥ = 0.



3.2.2 Estimate of the error in energy

Using the Helmholtz decomposition, see e.g. Bossavit [6], we can write the
error e = B— By, = BY—(BY+ Bj"), where we have V-F? = 0, and F+ = Vf
for some scalar function f. We choose

¥ =B"+B), (3.17)

making V - ¥ = 0 and thus p = 0, and % such that it satisfies the auxiliary
weak problem: find ¢ € H'() such that

n

(Vip, Vo) =D (V- (u'By),v)i — > (0 'Bi-nl,v)rs, (3.18)

i=1 1<i<j<n

for all v € H'(2). This problem is well posed and we have the equality
—(V4, Bif) = (u Bjt, Bi) since Bj- is a gradient of a scalar function.

Taking the inner product of (3.15a) with p'e® = p~1(B® — B)) and of
(3.15b) with V - e+ = —V - B, yields for the right hand side

(u'B°,B%) — (u™'B}, BY) — (4, V - By) (3.19)
= (u'B%, B%) — (u™' By, B) + (V4, By)
- (wa [Ble_ ) n])r - Z (sza [BlJL_ ' n])l“if

1<i<j<n

= Werror — (V - 9, [B}JL_ : n])l" - Z (v - 9, [B}Jz_ : n])I‘”"

1<i<j<n
We thus get

n
Werror = Z ((M_lBoaBO)Qi - (N_IB}?,’BI?,)Q' - (N_IB}J;’B#,—)Q‘) (320)

=1

+ Y (V-¢,[By i + (V- ¢,[Bi -nl)r

1<i<j<n
n
=3 ((VxuV x gou )i = (Vo )i + (V-6 Ve

+ Z (V - 9, [eJ_ : 'n’])I"'f + (V - 9, [eJ_ ' n])F

1<i<j<n

10



= (V6.9 x )i +(V- 4.V - e + (2, V- )
i=1

+ 37 (Vx5 s e xn])pss + (1, el s+ (T fe o))
1<i<j<n

+(V-¢,[n-e'r
_Z< V x ¢,V xe)g + (V-(ﬁ,V-e)Qi)

+3° ((WVxe, [ exn)rs + (Vx s e-n])rs ) + (Vx b, [e*n))r

1<i<j<n
_Z( (V % (p—76),V x e)gs + (V- (¢ — 76),V - €)q )

+Z( (W25 uV %+ B2 [~ (p—ng) xn], ih™ [ exnl)p

1<i<j<n

+ (B2 g+ B — 7)), e m)ps )
+ (W2 - ¢+ b2 (¢ — 7)), b2 [e - m))r.

The following estimate for the error in the energy is thereby proved

Theorem 3.4 Let ¢ be the solution to (3.15) with data according to (3.17)

and (3.18), B the solution of (2.11), and By the LSFEM approzimation
(2.13), then the error in energy is bounded as

W (B) — W (By) < Y Rk (Bn) - Wk(9), (3.21)
Kek

where the elementwise residual R (By) is defined in (3.13) and the element
weight Wi (¢) is

73 6~ ndle

V(¢ —7d)|k

W)= | JolIn 2tV s o 120 (6= m9) e |+ 022)
| Jh'/2V - 6+ b= Y2[(6 — 76) - o

with « as in (3.13).

Remark 3.3 Assuming ¢ € @]_,[H**(Q)]* and B € @} [H*Z(Q)]?, the

11



most important consequence of Theorem 3.4 is that for a geometry such
that sy + sp > 2, we have convergence in the energy even if convergence in
the solution itself can not be proved. The analysis in [9] and [2] makes it
reasonable to believe that sy, > 2sp, with sp € (1/2, 1], making this true in
many cases. A fact further indicated by our numerical experiments.

4 Two magnetostatic problems

4.1 Computational set up

Although not explicitly mentioned in the previous sections, one may also
weight the different terms in the least-squares functional by constants with-
out changing the analysis. We have used this possibility to make the enforce-
ment of the interface terms stronger. For the first problem we weighted the
terms containing the normal components by a factor 103, while the tangen-
tial condition was left unweighted. For the second problem considered, we
weighted the tangential condition by a factor 10® and left the normal con-
dition unweighted. This choice of coefficients has been based on numerical
experiments.

Adaptivity was based on the a posteriori result in Theorem 3.4, and an
assumed regularity s; = 4/3 of ¢, the solution to the dual problem. We
have thus not solved the dual problem numerically. The element indicator
used was then

Ix = WP Ri(By), (4.1)

with R (Bp) as in equation (3.13).

4.2 Problem 1
4.2.1 Description of the problem

The geometry of this problem is described in Figure 4(a). The problem is
axisymmetric in order to make two dimensional computations possible as
reference. A three dimensional view can be seen in Figure 5. The model
consists of an iron cylinder core encircled by a copper winding. The configu-
ration is enclosed in air and surrounded by a box with perfectly conducting
surfaces. The winding is modelled as a homogeneous copper coil.

Data for this problem are relative magnetic permeabilities i, pe = 10
and iy cy = freir = 1 and pg = 47 X 1077 H/m and the current density J
is constant over the cross section of the coil and the total current is 1 A.

12



‘ ‘ Linear ‘ Quadratic ‘ Reference

No of elements 505 710 247 800 -

No of nodes 91 510 339 936 -

Weair (J) 8.967 x 10-7(0.013) | 9.081 x 107(0.001) | 9.089 x 10~7

Weu (J) 3.333 x 1078(0.078) | 3.581 x 10~5(0.009) | 3.614 x 108

Wee (J) 4.885 x 10719(0.033) | 4.802 x 10~10(0.015) | 4.731 x 10~ 1°

Table 1: The computed magnetic energies for Problem 1, using LSFEM
and piecewise linear and quadratic polynomial elements, compared with
reference values; the relative error is given in parenthesis. The reference
values are from two dimensional computations done at ABB [4].

Reference computations in two dimensions done by ABB and reported
in [4], gave the values of the magnetic energies in the different materials as
listed in Table 1, where the magnetic energy is defined by

WQI-:1 B - H dz. (4.2)
2 0l

4.2.2 Computational results

This problem was solved successfully to good accuracy, see Table 1. A field
line plot is shown in Figure 5. In Figure 3(a) we plot the relative error in the
magnetic energy as a function of the degrees of freedom, N, for quadratic
and linear polynomial basis functions, and in Figure 3(b) the error indicator
(4.1) and the least-squares functional are plotted.

We can note that the rate of convergence is the same for both linear
and quadratic polynomials due to the low regularity of the problem, only
the accuracy is different. Another indicator of the low regularity is that
the least-squares functional does not decrease with refinement, in fact it
increases. However, the increase is smaller with quadratic polynomials.

4.3 Problem 2

4.3.1 Description of the problem

The second problem is also an axisymmetric magnetostatic problem, but the
geometry is more complicated than in Problem 1. It is given in Figure 4(b).
The copper winding is the same, but the iron part has been extended and

13



v Fe O Least-squares functional
o % foa
}%\ - --®
107 El 107°F ggmmm i T 20T T 4
IR E
- Cv N B
o e SRR
. R e
S
107 El 1037/v®,9//9//e/'f€ : 3
10° E 107 V\?\“V\—v\v E
107 1 1 1 1 1 1 1 1 10° 1 1 1 1 1 1 1 1
o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9
x10° x10°
(a) Relative error in energy in the dif- (b) Error indicator and least-squares
ferent parts functional

Figure 3: Computations for Problem 1 with quadratic (solid lines) and linear
(dashed lines) basis functions.
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Figure 4: Geometry of the two axisymmetric problems. The dimensions are
given in meters.
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Figure 5: The magnetic field lines in a slice through the three dimensional
solution of the axisymmetric Problem 1.

Figure 6: Detail of the mesh after adaptive refinement. The part shown is
the top of the iron core of Problem 1.
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‘ ‘ Linear ‘ Quadratic ‘ Reference ‘

No of elements 1267028 198863 -

No of nodes 258537 261362 -
Wair (J) 8.199 x 1077(0.200) | 7.573 x 1077(0.261) | 1.025 x 10~°
Weu () 3.274 x 1078(0.086) | 3.345 x 10~8(0.066) | 3.596 x 108
Wie (J) 2.113 x 107%(0.407) | 1.516 x 10~5(0.575) | 3.564 x 10~°

Table 2: The computed magnetic energies for Problem 2, using LSFEM and
piecewise linear and quadratic polynomial elements, compared with refer-
ence values. The reference values are from two dimensional computations
done at ABB [4].

almost encloses the coil. The problem has been tested with p, pe = 10% as
well as with y, pe = 102, the other data are the same as in Problem 1.

4.3.2 Results

This problem has not been satisfactorily solved with LSFEM. For the case
with prpe = 10?2 we still have convergence, but with poor accuracy, see
Figure 7 and Table 2. The computations with u, ., = 10* is not successful
and not reported further.

We can also see that the use of quadratic polynomials does not give
better results, the singularities are too dominant in this geometry.

5 Extension to the time-harmonic case

5.1 Description of the problem

As a third problem the “asymmetrical conductor with a hole problem” [15],
as illustrated in Figure 10, has been used. It consists of an aluminium plate
with a hole, placed under a copper winding, modeled as a homogeneous
coil. There are no symmetries in this problem. The aluminium plate has
a conductivity of o = 3.526 x 10" S/m and the magnetic permeability is
pr,a1 = 1, as in the air and the copper. Since no magnetic material is
present there are no singularities as in the previous two problems. Instead,
we will get induced eddy currents in the conducting aluminium plate.

The coil is carrying a sinusoidal total current of 2742 A. The frequency
is 50 Hz and the current density is constant over the cross section.
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Figure 8: The magnetic field lines in a slice through the three dimensional

solution of the axisymmetric Problem 2.
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Figure 9: Detail of the mesh after adaptive refinement. The part shown is
a top view of the interior of the iron core of Problem 2.

5.2 The equations

Since the current is sinusoidal and the frequency is low, we use the quasistatic
time-harmonic equations

Vx E=—jwB inQ, (5.1a)
VxH=J in Q (5.1b)
V-B=0 in Q°, (5.1c)
where
B = puH, (5.2a)
J=Jse+0E. (5.2b)

Note that equation (5.1b) implies that V - J = 0. The interface conditions
for this problem then becomes

[Exn]=0 onI%, (5.3a)
[Hxn]=0 onT¥ (5.3b)
[J-n]=0 onT¥, (5.3¢)
[B-n]=0 onT%¥ (5.3d)



where 7 is a unit normal to the interface and [-] denotes the jump across
the surface as before. Since y, = 1 in the whole region, the magnetic field
is continuous over surfaces. The same is true for the tangential component
of the electric field, E;, while (5.3c) implies that Ezl -n = 0, where Ejl
denotes the field inside the aluminium plate, since J = 0 in the air. No
further restrictions apply on the electric field.

The boundary conditions applied are

Exn=0 onT, (5.4a)
B-n=0 onT. (5.4b)

The placement of the outer boundary is not specified in description of the
test case. We have enclosed the coil and the aluminium plate in a cube of
approximately three times the size of a side in the plate.

5.3 The least-squares formulation

Even though the magnetic field is continuous in the whole region, we still
have to introduce the discontinuous elements along the surfaces, due to the
jump in the normal component of F. Setting up the least-squares functional
for this system of equations then leads to the following expression,

3
(B, H) =Y (||v x E + jwpH|; (5.5)
=1
+IVXH—0E — Jg|% + ||V (uH)II?p-)

+ Y (I E xR + B2 B ng?,,)
1<4<5<3

+ > (I xnl Ry + A2 [ i)
1<i<j<3
B2 (B nl|f + 17 uH - n]

where the second of the interface terms signify that the normal component
of the FE field inside the aluminium should be zero on the interface.

The conditions for a minimum of I(E, H) give the following variational
formulation for U = (E, H): find U such that

aq(U,U) + a1(U,U) + a2(U,U) + a3(U,U) = I(T), (5.6)

19



for all U, where

3
ag(U,U) = (V x E + juwH,V X E + jwuH)g (5.7a)
i=1
+(VXH—-0EV xH—-0E)qi
+ (V- (uH),V - (uH))qi,
3
WO) =Y (Jse, V X H— 0E)g;. (5.7b)
=1

and for the interface terms,

ai(U,0)= Y (h'[Exn],][Exn])p; (5.8a)
1<i<j<3
+(Mh'EY-n, ET -n)r,,
awU0) = Y ((h—l[H s ], [H x 1)) (5.8b)
1<i<j<3
+ (" [uH -], [uH - ) ),
a3(U,0) = (h[E x n],[E x n])r (5.8¢)

+ (W [uH -], [uH -n))r.

Note that in these expressions we are dealing with complex vector fields.
In practise, one separates the real and imaginary parts and thus has to work
with 12 unknown variables.

5.4 Computational results

As expected, in the absence of singularities, this problem could be solved
successfully with LSFEM. Comparison with experimental data is shown in
Figure 11(a). The currents induced in the aluminium plate are shown in
Figure 12. However, due to the size of the problem, we have only been able
to compute using linear polynomial basis functions and not reaching the
desired accuracy. The convergence though is good as shown in Figure 11(b),
since the L? norm of the residual is equivalent to the error in energy norm.
In this example we do not have an increasing residual, see Figure 11(b),
which caused problems in the previous examples. Hence, it has been possible
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Figure 12: Vector plot of the induced current in the aluminium plate of
Problem 3.

to use the least-squares residual as refinement criterion:

Ik = ||V x E + jwpH|% (5.9)
+ ||V x H—0E — J,.||%
+ IV - (uH) %>
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Discontinuous/Continuous Least-Squares
Finite Element Methods for Elliptic
Problems *

Rickard Bergstrom' and Mats G. Larsont

Abstract

Least-squares finite element methods typically suffer from require-
ments on the solution to be very regular. This rules out, e.g., appli-
cations posed on nonconvex domains. In this paper we study a least-
squares formulation where the discrete space is enriched by discontinu-
ous elements in the vicinity of singularities, making computation of less
regular problems possible. We apply this technique to the first order
Poisson problem, show coercivity and a priori estimates, and present
numerical results in 3D.

1 Introduction

Despite the fact that the least-squares finite element method (LSFEM) suf-
fers from several short comings, mainly concerning the regularity of the
exact solution, the advantages it offers, such as yielding symmetric positive
definite matrix problems, have made the method attractive in several areas.
Applications include among others the convection-diffusion equation [22],
the Stokes [5] and the Navier-Stokes equations [4], Helmholtz’ equation [21],
Navier’s equation [11], and Maxwell’s equations [19]. For a review of the
least-squares finite element method and more references to the mentioned
applications, we refer to the paper by Bochev and Gunzberger [6].

This paper is concerned with the complication involving nonconvex poly-
hedral domains, possibly in the context of an interface problem. The diffi-
culty that arises with the least-squares finite element method is due to the

*Research supported by ABB Corporate Research, Sweden

tSupported by the Swedish Foundation for Strategic Research through the National
Graduate School in Scientific Computing and the National Network in Applied Mathe-
matics

iSupported by Swedish Research Council for Engineering Sciences



strong regularity requirement for the method, a requirement only fulfilled in
smooth domains. In [14], weighted L?-norms were used in two space dimen-
sions to achieve optimal convergence. A similar formulation is studied in [20]
for an interface problem. Also in [13], a weighted norm is used when stabiliz-
ing Maxwell’s equations with a quadratic divergence term. This approach,
however, requires a precise knowledge of the behaviour of the solution at the
geometric singularity, a knowledge which one may not have.

Another approach is based on a discrete minus one inner product by
Bramble et al. [7]. Combined with the Raviart-Thomas elements a for-
mulation which is optimal with respect to regularity and approximation on
general polygonal domains is derived. The construction of the inner product
leads however to dense matrices.

Here we study a least-squares formulation, based on the use of discon-
tinuous elements to approximate H(div), which allows us to get optimal
estimates in the H(div)-norm. The interface problem has been handled
in [12] and we use a similar approach. The introduction of discontinuous
elements in this setting was made by Bramble et al.[8].

We prove optimal convergence results for the method applied to the first
order system formulation of the Poisson problem. Moreover, we present nu-
merical results for model problems in three spatial dimensions. In order to
reduce computational cost, we introduce an adaptive hybrid scheme based
on discontinuous approximation only in the vicinity of singularities and con-
tinuous approximation elsewhere, combined with adaptive mesh refinement.

The model problems include a line singularity, a point singularity, and an
interface problem including both types of singularities. The proposed hybrid
scheme performs well for all these problems. In some cases, depending on
the formulation of the boundary conditions, we find that also the standard
least-squares method performs surprisingly well, but does not capture the
singularity correctly.

The rest of this paper is organized as follows. In Section 2, we present the
problem and formulate the discontinuous/continuous least-squares method;
in Section 3, we state and prove coercivity of the bilinear form and a pri-
ori error estimates based on interpolation on the BDM spaces and introduce
variations on the scheme; in Section 4, we introduce the adaptive hybrid for-
mulation for efficient computations and discuss adaptivity issues; in Section
5, we present the numerical results.



Figure 1: A polygonal domain with two subdomains.

2 The least-squares finite element method

2.1 Model problem
We consider the problem: find u such that

-V -AVu=f inQ, (2.1a)
n-AVu =gy on Iy, (2.1b)
u=gp onlp, (2.1c)

where @ C R? is a polyhedral domain with boundary T' = I'p U Ty, see
Grisvard [17] for a definition, f € L?(f), n is the exterior unit normal,
gy € H'?(Ty) and gp € H3?(T'p). A is a symmetric piecewise constant
matrix A = A’ for z € QF, with {Q} a partition of © into polyhedral
subdomains Q. Further we assume that there are constants ¢4 and Cy
such that ca|z|? < z- Az < Calz|2
Introducing the flux
o = AVu, (2.2)

we may write problem (2.1) as the first order system: find (u, o) such that

—V-.o=f inQ, (2.3a)
c—AVu=0 in, (2.3b)
n-oc=gn only, (2.3c)
u=g¢gp onlp. (2.3d)

Under our assumptions on data, the solution (u,o) to (2.3) resides in at
least H(Q) x H (div; Q), with u uniquely determined if 'y # §. To be more



precise, we have for a nonconvex (2, that the minimal regularity for u is
H3/ 2+5((2), with 0 < § < 1/2 depending on the geometry, and consequently,
for o we have [H'/?+%(Q)]3, see e.g. [1], [15], and [17]. By minimal regularity,
we mean that for some f, there are solutions u such that u ¢ H3/2+9((Q),
but u € H3/?t9=¢(Q), for all € > 0 [2]. We denote the space in which the
solution resides by V x W. The space H (div;{2) mentioned above is defined
as

H(div; Q) = {v € [L2(Q)]?: V-v € L*(Q)}, (2.4)

and is a Sobolev space with the product norm

1ol @iy = 1V - olI* + 1ol (2.5)

2.2 Finite element spaces

Let K be a triangulation of €2 into shape regular tetrahedra K which respects
the subdomains, i.e., all K C Q* for some 7. Denote the set of all faces F' by
F and divide it into three disjoint sets

F=FrUJFpUFn, (2.6)

where Fr is the set of all faces in the interior of €2, Fp the faces on the
Dirichlet part of the boundary I'p, and Fx the faces on the Neumann part
I'ny. We let h : © — R denote the mesh function such that h|x = hx =
diam(K) and h|p = hp = diam(F), i.e., a measure of the size of the element
K or the face F'. Finally, we define the piecewise polynomial space

Vi X Wy, = CP, x [DP,)?, (2.7)
where
CP, = DP, N C(Q), (2.8)
DP, = @ P, (K), (2.9)
Kek

and Pp(K) is the space of all polynomials of degree less than or equal to
p defined on K. The degree of the polynomials, as well as the meshsize,
may vary from element to element so that p|x = pg, and thus we allow h-p
adaptivity.



2.3 The discontinuous/continuous least-squares finite
element method

The discontinuous/continuous least-squares finite element method (D/C LS-
FEM) reads: find (up,o0p) € Vi X Wy, such that

I = inf I 2.10
(uha Uh) (v,x)éghxwh (Ua X)7 ( )

where the least-squares functional I(-,-) is defined by

I, ) =Y (IV-x+ fll% + 1472 (x — AVo)|%) (2.11)
KekK
A 12 exdlF + ) e (= gm)lF + D182 (0 = gp)|[3-
FeFr FeFn FeFp

Note that the both Dirichlet (2.3c) and Neumann (2.3d) boundary condi-
tions as well as normal continuity of the flux on interior faces, are imposed
weakly through the least-squares functional. Furthermore, we assume that
boundary data can be represented by functions in the finite element space.
Remark 2.1 We have the option of applying a weighting of the different
terms in the least-squares functional by inserting a constant in front of each
term, and still get equivalent schemes [12][25]. For a clearer presentation we
have not included these weights in the notation.

The corresponding variational equation takes the form: find (up,0p) €
Vi, X W), such that
Cl(’U/h,O'h;’U,X) = l(”aX)a (212)
for all (v,x) € Vi x Wp. Here a(- ;-) is a bilinear form and [(-) a linear
functional, defined by

a(u,o;v,x) = Z(V o,V-X)k + (A7 o — AVu), (x — AVv))k

Kek
+ Z “n-o),[n-x)r (2.13a)
FeFr
+ Z (n-o,n-x)r
FeFn
+ Z (b u,v)p
FeFp
Ww,x) = Y (LEV-0x+ D (gvn-X)r+ Y, (b 'gp,v)r
Kex FeFn FeFp

(2.13b)



3 Error estimates

3.1 Coercivity and continuity

We begin our analysis by introducing the (semi) norm

(P =D (IV - allic + 1147 2olli + (|4 Vul%) (3.1)
KeK
+ Y 7ol + Y ol + Y (A7 2ullf
FeF; FeFn FeFp

We then have the following basic estimates.

Proposition 3.1 It holds

m|||(u,0)|||2 < a(u,o3u,0) Y(u,0) € Vi X Wh, (3.2)
a(u, 030, x) < Ml||(u, 0)[[| [[[(v,x)[I] V(u,0) and (v,x) €V xW, (3.3)

with constants m and M independent of h.
Remark 3.1 In our analysis, we do not consider m and M’s dependence
on A. Following [20] it is reasonable to believe that these constant do not

depend on the size of the discontinuities of A, only its variations in each
subdomain.

In order to prove Proposition 3.1, we need the following version of
Poincare’s inequality.

Lemma 3.2 For v € H'(2), we have
ol < C (IVollg + lIol?,) - (3.4)

Proof of Proposition 3.1. To prove (3.2) we start from the definition
(2.13a) of the bilinear form

a(u,05u,0) = Y (IV- ol + 147 %(0 — AVa)|I%) (3-5)
Kek
+ Y IR ok 4+ Y - ollE+ Y Rl
FeF; FeFn FeFp



We have

14720 — A2V = | A7 20 |? — (Vu,0) + | AV Vu? (36)
> A7 20| = |(Vu, o) + A2 Vul2. (3.7)

We thus only need to estimate |(Vu,o)|. Using Green’s formula we get

(VU,U):_Z(UaV'G)K+ Z(ua[n'a])F+ Z (u,n'U)F'
Kek FeFr FeFNUFp
(3.8)

The first term on the right hand side in (3.8) may be estimated using the
Cauchy-Schwarz and e-inequalities followed by an application of Lemma 3.2,

Z (u,V - 0)g < Cellul|?> + Ce Y|V - a]? (3.9
KeK

<Ce [ |AVulP+ D (I Pulf | +CeHV -0,
FeFp

for any € > 0 and h < 1. Next, for the second term, we again invoke the
Cauchy-Schwarz and e-inequalities to get

> (uwn-ol)p <C Y ellhPullp + A0 o) (3.10)
FeF; Ferr

<Ce| D NIAPVulF+ D I ulf (3.11)
KeK FeFp

+Ce Y R P o7 (3.12)
FeFr

Here we estimated the first term on the right hand side in (3.10) using
elementwise trace inequalities followed by Lemma 3.2,

SRl <Y lulli + B2 Vullk (3.13)
FeF; KeK
<C Y NAPVul+ Y IBTPulE |- (3.14)
KeK FeFp



Finally, the third term on the right hand side in (3.8) can with the same
technique be estimated as follows:

> wneo)p<C Y (R Pulp+eln P olE)  (3.15)
FeFpUFnN FeFp

+C Y (ellulf +¢Hn-ol})

FeFn
<ce Y (I429ul} + 4~ 20l%) (3.16)
KeK
+ O Y |In-olff + Cle+ ) D n72ulff,
FeFn FeFp

for all € > 0. In (3.16) we used the inverse inequality
1h'/?n - ollax < CIA™ 0]k, (3.17)

for o € Pp(K). Note that the constant C depends on the order of polyno-
mials p. Collecting these estimates, we get

(Vu,0)| < Cre > (|A2Vulk + |4 Voli) + Cre P 37 ||V ok
KekK KeK

+Coc™ | D lneolf+ Y 1A 2ol (3.18)

FeFyn FeFy

+ (Cre+ Coe™) Y B 2ulF
FeFp

Inserting (3.18) into (3.5) and (3.6), we get

a(u,o3u,0) > (1 — Coe Z |V -o|l% (3.19)
KeK
+(1-Ge) Y (14720 + |42Vl )
KeK

+(1=Coe) [ D In-alf+ D 1B -0l

FeFn FeF;
+(1—Cre—Coe™) Y |h2ulff.

FeFp



Choosing € such that Cie < 1/2 and increasing the weights «; on the re-
maining terms so that o; — Coe™! > 0, we have

a(u,05u,0) > m|l|(u,0)||, (3.20)

where a(-,-) denotes the weighted least-squares functional, see Remark 2.3.
Finally, we note that all forms with positive weights are equivalent and thus
the proof of (3.2) follows.

The continuity (3.3) is a direct consequence of the Cauchy-Schwarz and
triangle inequalities. 0

3.2 A priori error estimates

We begin by introducing the interpolation operator, II : (u, o) — (myu, 7,0),
with 7, the standard Scott-Zhang interpolation operator, see [23], and 7,
an interpolation operator onto the Brezzi-Douglas-Marini (BDM) spaces,
see [10]. These elements have the degrees of freedom associated with the
moments of the field in the interior of the element and the normal trace on
the faces. The BDM-interpolant ensures normal continuity across element
faces and can be defined for functions satisfying o € [L°]> and V - o € L?,
with s > 2. This restriction is necessary to define the normal traces of the
definition and we remark that solutions to (2.1) satisfy this condition. The
most important property of 7, is that on an affine element,

V- 70 =PF_1,kV -0, (3.21)

where P,_; i denotes the L?(K)-projection onto P,—1(K). This identity
can be seen by elementwise integration by parts and using the definition of
the interpolant, see [9].

We then have the following interpolation error estimate.

Lemma 3.3 Let K be an affine element and w, the BDM-interpolation op-
erator. Then there is a constant C depending only on the polynomial order

and the shape of K, such that

(o — mp0)||k < Ch%|o|a K, 1/2<a<p+1, (3.22a)
|V - (0 —750)||xk < Ch%|V -0lakK, 0 <a<p. (3.22b)

An estimate in the energy norm can now be formulated.



Lemma 3.4 For (u,0) € H*1(Q) x H*(div; ), with s > 0, it holds

(2, 0) = (muu, moo)II” < C > W& (IV - olla i + o)z x + lullasi k),
KeK
(3.23)

with a = min(p, ).

Proof. Note that the BDM-interpolant of ¢ has continuous normal com-
ponent, so all interior face terms cancel. The boundary conditions may be
exactly represented in the approximating space and are thus also zero. The
result then follows by applying Lemma 3.3 and the corresponding estimate
for the Scott-Zhang interpolator [23]. 0

Now, we are ready to state the following main result:

Theorem 3.5 Let (u,0) € HTY(Q) x H(div; Q) with s > 0 be the ezact
solution to (2.3) and (up,op) € Vi X Wy, the approzimate solution defined
by (2.12). Then it holds

ll(u—up, 0 —on)lI> < C Y hE(IV-0ll5 k +llola ik + lullzi,x)s (3:24)
Kek

with o = min(p, s) and the constant C independent of the meshsize h.

Proof. We first add and subtract an interpolant and then use the triangle
inequality to get

[1(w—=un, o —on)ll| < l[[(v=muu, o =moo)||| 4+l (muts—un, moo —an)]|| (3.25)

For the second term, invoking coercivity (3.2), we obtain

m||(ryu — up,mo0 — o)1 (3.26)
< G,((ﬂ'u’u, — Up, g0 — Uh)’ (ﬂ'u'uf — Up, g0 — Uh))
= a((myu — U, 7e0 — 0), (Tut — Up, TeT — O})) (3.27)
<|[[(mur = u, o0 — )| [[(uts — up, 7o — an)ll], (3.28)

where we used the Galerkin orthogonality (2.12) in (3.27) and continuity of
the bilinear form (3.3) in (3.28). Dividing by |||(7yu — up, 7o0 — op)||| and
inserting this estimate in (3.25), we arrive at

ll(w —un, 0 = an)|I* < (1 +1/m)?|l[(u — mur, 0 — w50) || (3-29)
<CY RV olZk +lolak + luldii),
KekK

10



where Lemma 3.4 was used in the last inequality. 0

3.3 Variations on the same theme

Up to now, we have presented the method using nodal finite elements and
only made the flux discontinuous. There are of course other ways to imple-
ment this formulation, which only leads to small variations in the analysis.

3.3.1 Discontinuous least-squares finite element method

For practical reasons, one may choose to have also u discontinuous. This
will lead to easier implementation since we may group the unknowns into
small blocks, one for each node. We would then add the term

D [ 41 (3.30)

FeFr

to the least-squares functional (2.11) in order to impose continuity of w.

3.3.2 BDM/continuous least-squares finite element method

Instead of making the flux discontinuous and imposing the normal continuity
weakly, one may instead use a conforming approximation of H(div), such
as the BDM or RT-elements [10]. As discussed in Section 3.2, this ensures
continuity of n - o at the interfaces and thus these terms will be zero in the
least-squares functional.

4 An adaptive hybrid method

Since the solution to problem (2.3) is of low regularity only close to corners
and edges and standard continuous finite elements work well to approxi-
mate the regular part of the solution, it is natural to combine completely
continuous and discontinuous/continuous approximations. It is thus suffi-
cient to use the discontinuous approximation in the vicinity of a geometric
singularity, where the extra degrees of freedom inflicted by the discontinuous
method pay off.

Denote by Qp a region, conforming with the triangulation X, surround-
ing the geometric singularities, where we have to use D/C LSFEM, and let
Qc = Q\Qp. In Q¢ we have the solution (u,0) € H¢H! x [H¢]?, with
sc > 1, and may use continuous LSFEM with polynomials of degree po. If

11



the decomposition 2 = QcUCQp is chosen such that s¢ is considerably larger
than s, we can also benefit from this by using high order polynomials in Q.
Further, let Kp = {K € K : K C Qp or K N Qp # 0} be the elements
covering Qp and the neighboring elements, and define K¢ analogously.

We then have the following extension of our earlier a priori error estimate:

Theorem 4.1 Let (u,0) € HTY(Q) x H%(div; Q) with s > 0 be the ezact
solution to (2.8) and (up,on) € Vi X Wy, the approzimate solution of the

hybrid method proposed in this section. Using the notation introduced above,
it holds

(= up,0 —on)I> < C D BR(IV-ol2 k + llollax + el )
KeKp
(4.1)

+C Y B (lol? e sa ke + Ul i1 k),
KeKe

with & = min(p, s) and ac = min(pc, s¢) and the constant C independent
of the meshsize.

The natural mesh refinement indicator in a least-squares method is the
the functional we try to minimize, i.e.,

nic = V-0 + flli + | A72(0 — AVu)|i (4-2)
+ 10720 oll3knz, + I (o — 9m)3xnry
+ A2 (u = g0)3xr7p

where 7 denotes the element indicator. We use isotropic mesh refinement,
splitting each element marked for refinement into two to eight new elements
by successively dividing the longest edge, see [3] for more details. However,
for problems with singularities like we treat in this paper, it would be de-
sirable to use anisotropic or graded mesh refinement [16][24]. This seem to
be an unexploited area in the least-squares society.

5 Numerical examples

In order to illustrate the theoretical results, we present numerical results
for three examples, all computed in three spatial dimensions and using the
adaptive method described in section 4: an L-shaped domain representing a
line singularity, a sphere where a cone has been removed representing a point
singularity, and finally a cube, where one octant has a different material
parameter. For the first two examples analytic solutions are known.

12
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(a) The z-y plane (b) The domain (c) Inmitial mesh

Figure 2: The L-shaped domain with a line singularity.

5.1 Line singularity

We consider the problem

—V.0=0 in Q, (5.1a)
c—Vu=0 in Q, (5.1b)
u=g(p,0,z) onTp, (5.1c)
n-oc=>0 on 'y, (5.1d)

where Q is the domain showed in Figure 2 with z € (0,0.2), 'y = {z €
Q;2=0.0 or z=0.2} and I'p = 9Q\I'y. The function g is chosen so that
the exact solution of u is

u(p,0,z) = p*/®sin(20/3 + 7 /3). (5.2)

We remark that the solution is independent of the z-coordinate and is thus
two dimensional.

The error for the discontinuous/continuous least-squares finite element
method compared with standard LSFEM is presented in Figure 3. We
clearly see that D/C LSFEM shows better performance. The continuous
method can not represent the solution correctly in the vicinity of the corner.
It seems as if the geometry is rounded off and the singularity is absent. In
Figure 4(a) we see that the computed flux is incorrect for standard LSFEM
while, with discontinuous elements we can represent the solution correctly
at the corner as in Figure 4(b). The error is however local and does not
pollute the solution far from the singularity. We remark that the reason the
standard LSFEM gives a solution that is only locally erroneous, is that on
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Figure 3: Error for standard LSFEM and D/C LSFEM in the line singularity
example. Circles denote the error for standard LSFEM and triangles the
error for D/C LSFEM measured in the H'(2) x H (div; Q2)-norm; stars denote
the D/C LSFEM residual.

a Dirichlet boundary, and specifically in the corner, we have no condition
on the flux o . Thus the least-squares method is able to adapt in the way
shown in Figure 4(a).

5.2 Point singularity

In this section we solve the following problem, described in spherical coor-
dinates,

—-V.0=0 in Q, (5.3a)
c—Vu=0 in Q, (5.3b)
u = P,(cos(f)) onIp, (5.3¢)

where Q = {(r,0,¢) : r € [0,1),0 € (8,7],¢ € [0,2m)} with f = n/16, P,
is the first class Legendre function of order v, and I'p = 092. The exact
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(a) Standard LSFEM (b) D/C LSFEM

Figure 4: The flux in the vicinity of the corner of the L-shaped domain.
Note that for standard LSFEM, the flux is not correctly represented.

Figure 5: The mesh achieved after 20 refinement steps.
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(a) Geometry (b) Initial mesh

Figure 6: The cone problem with a point singularity.

solution of u to this problem is
u(r,0) = r”P,(cos(6)), (5.4)

with v depending on f; in our case v ~ 0.215 for 8 = 7 /16, see [18].

Also in this problem, the Discontinuous/Continuous LSFEM is superior
to the standard LSFEM, c¢f. Figure 7. The behaviour of the standard
LSFEM is similar to the previous case and also here the singularity is absent.

5.3 Interface problem

In the previous examples, the material parameter is constant in the whole
domain. We will now demonstrate an example where A has a jump across
an interior interface. The domain is Q = Q; Uy where Q1 = {z € (0,0.5)3}
and Q9 = {.Z‘ S (0, 1)3}\51

The problem we solve is

—V.o=1 inQ, (5.5a)
c—AVu =0 inQ, (5.5b)
u=0 onTp. (5.5¢)

We choose A; = 1.0 and let A; = {10,100,1000} for three different cases
respectively. Figure 9(a) shows the domain and the initial mesh.
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Figure 7: Error for standard LSFEM and D/C LSFEM in the cone singu-
larity example. Circles denote the error for standard LSFEM and triangles
the error for D/C LSFEM measured in the H'(Q) x H(div)(f2)-norm; stars
denote the D/C LSFEM residual.
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(a) A slice through the mesh

(b) The ball with discon-
tinuous elements at the
cone tip

Figure 8: The mesh achieved after 8 refinement steps.

.........

........

......

.......................

(a) Geometry

(b) Initial mesh

Figure 9: The cube domain in the interface problem.
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Figure 10: The mesh achieved after 14 refinement steps.

For this problem we do not have an exact solution to compare with.
However, based on the experience of previous two examples, we rely on the
least-squares functional as an error indicator.

Two methods were tested: first with continuous elements in each of the
subdomains, but with weakly enforced interface conditions, and secondly
with a layer of discontinuous elements around the interface.

The method with continuous elements in each subdomain shows a perfor-
mance similar to the first example. Since the normal continuity is enforced
only weakly, the standard method is able to adapt by rounding off the corner
as discussed in Section 5.1. We have therefore chosen not the present the
convergence results for this setting.

The least-squares residual for the discontinuous/continuous solution in
the three cases with different material parameters is shown in Figure 11.
As we clearly see from the plot, the convergence is not affected by the ratio
of the size of the parameters. However, with increasing ratio, the algebraic
system of equations becomes more difficult to solve.

6 Conclusions

We have formulated and analysed the discontinuous/continuous least-squares
finite element method. To obtain an efficient scheme, we propose an adap-
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Figure 11: The least-squares functional for A;/As = 10 (diamonds),
Ai1/As =100 (triangles), and A;/As = 1000 (squares).
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tive hybrid method based on discontinuous/continuous approximation only
in the vicinity of singularities and fully continuous approximation elsewhere,
combined with adaptive mesh refinement.

Furthermore, we present numerical results for the Poisson problem posed
on nonconvex domains in three spatial dimensions, which lead to geometrical
singularities in the solution, as well as an interface problem.

From the numerics, we see that the standard least-squares finite ele-
ment method manages to produce a solution only as long as the conflicting
conditions on the flux that causes the singularities, are not explicit in the
problem. However, the computed solution does not capture the singularities
and it appears the corners have been rounded off. This defect does not seem
to pollute the solution.

In contrast, the proposed hybrid method performs well in all these cases,
and the approximate solution displays a correct normal flux at the corner.
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Discontinuous Least-Squares Finite
Element Methods for the Div-Curl
Problem *

Rickard Bergstrom' and Mats G. Larson!

Abstract

In this paper, we consider the div-curl problem posed on noncon-
vex polyhedral domains. We propose a least-squares method based on
discontinuous elements with normal and tangential continuity across
interior faces, as well as boundary conditions, weakly enforced through
a properly designed least-squares functional. Discontinuous elements
make it possible to take advantage of regularity of given data (diver-
gence and curl of the solution) and obtain convergence also on non-
convex domains. In general, this is not possible in the least-squares
method with standard continuous elements. We show that our method
is stable, derive a priori error estimates, and present numerical exam-
ples illustrating the method.

1 Introduction

The least squares finite element method is a general technique for finding
the approximate solution of first order partial differential equations based on
minimization of the L?-norm of the residual over a suitable finite element
space. Second order problems are first written as first order systems by
introducing additional, often physically motivated, variables. The method
manufactures symmetric positive definite algebraic systems which are suit-
able for applying iterative techniques to find the solution, for instance multi-
grid. For an overview of least-squares finite element methods, we refer to
[7] and the references therein.
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In this paper, we develop a least-squares method for the div-curl prob-
lem posed on a nonconvex polyhedral domain with discontinuous piecewise
constant coefficients and a right hand side, defined on a partition of the do-
main into (possibly nonconvex) subdomains, which is piecewise sufficiently
smooth (H*, & > 0). This problem serves as an important model problem in
electromagnetics and also arises when a curl-term is added as stabilization
when solving the second order elliptic problem, see, e.g., [10] and [21].

Standard least-squares finite element methods typically require rather
strong regularity on the exact solution. For instance, in most works a con-
vex domain is required. This problem has been studied and at least two
different solution approaches have been presented, both based on weaker
measurements of the residual. The first uses a weighted norm with a radial
weight in the vicinity of corners, see Cox and Fix [13] and Manteuffel et
al. [19]. The second approach is to replace the L2-norm by a discrete ap-
proximation of the H !-norm, see Bramble et al. [9]. Both these methods
are somewhat complicated to implement; the first requires knowledge of a
local weight of suitable strength at each corner or line singularity and in
the second, an implementation of the discrete version of the H !-norm is
needed.

Instead, we propose using discontinuous approximation spaces where
tangential and normal continuity, as well as boundary conditions, are weakly
enforced through a properly defined least-squares functional. Such spaces
make it possible to take advantage of the regularity of the given right hand
side and obtain convergence also in the nonconvex case. For efficiency rea-
sons we formulate a hybrid scheme, where discontinuous elements only are
employed in the vicinity of corners where it is necessary. Away from the
singularities, the solution is regular and continuous, typically higher order,
polynomials may be used.

In the analysis we consider the simplified case when the coefficient equals
the identity, and comment on the extension to space varying data. We prove
coercivity with respect to the H(div,curl)-norm and a priori error estimates
of optimal order.

We also present numerical results for model problems in three spatial
dimensions. The problems include a line singularity, a point singularity and
a magnetostatic interface problem, where the coefficient exhibits a large
jump across the interface.

The paper is organized as follows. In Section 2, we present the div-curl
problem and the least-squares method; in Section 3, we prove coercivity of
the bilinear form with respect to the H(div, curl)-norm for simplified model
problems and a priori error estimates; in Section 4, we introduce a hybrid



Figure 1: A polygonal domain with two subdomains.

formulation suitable for efficient computations together with the natural
mesh refinement indicator; in Section 5, we present numerical results.

2 The least-squares finite element method

2.1 Model problem

We consider the problem: find u : Q — R? such that

VxAu=w inQ, (2.1a)
V-u=p inQ, (2.1b)
nxAu=0 onI7, (2.1c)
n-u=0 only, (2.1d)

where Q C R3? is a polyhedral domain with boundary I' = 'y U 'y, see
Grisvard [16] for a definition. By subscripts 7" and N we refer to the tan-
gential and normal traces, w and p € [L?(2)]? are given functions, n is the
exterior unit normal to I', A is a piecewise constant function A = A* for
z € QF, with {Q'} a partition of Q into polyhedral subdomains Q.

Natural spaces for this problem are

H(div;Q) = {v € [L2(Q)? : V-v € L*(Q)}, (2.2a)
H(curl4; Q) = {v € [L2(Q)]? : V x Av € [L*(Q)]*}, (2.2b)
H(div, curl4; Q) = H(div; Q) N H(curl4; Q), (2.2¢)



which are Sobolev spaces with their respective product norms,

lollF vy = IV - oll* + [loll?, (2.3a)
ol (eurty = IV x 0l + (o], (2.3b)
1ol Fiv.cury = IV - 0l* + 1V x 0| + o], (2-3¢)

Under our assumptions on data, the solution u to (2.1) resides in at least
[H'/2(0)]3, since the subspace of H(div, curl; Q) restricted to functions with
traces that fulfil (2.1c)-(2.1d), are embedded in [H*(Q2)]3, with s > 1/2, see
[1] and [12]. For convex domains, we have s = 1.

2.2 Finite element spaces

Let K be a triangulation of € into shape regular tetrahedra K which respects
the subdomains, i.e., all K C Q¢ for some i. Denote the set of all faces F by
F and divide F into three disjoint sets,

F=FrUFrUFy, (2.4)

where F7 is the set of all faces in the interior of 2, Fr the faces on I'r,
and Fu the faces on I'y. We let h : © — R denote the mesh function such
that h|g = hx = diam(K) and h|p = hp = diam(F), i.e., a measure of the
size of the face F'. Finally, we define the discontinuous piecewise polynomial
space

Vi = [DP,]3, (2.5)
where
DP, = P Pp(K), (2.6)
KeK

and P,(K) is the space of all polynomials of degree less than or equal to
p defined on K. The degree of the polynomials, as well as the meshsize,
may vary from element to element so that p|x = pg, thus allowing h-p
adaptivity.

2.3 The discontinuous least-squares finite element method

DLSFEM, the discontinuous least-squares finite element method, reads: find
up, € Vp, such that

I(up) = Uienvfh I(v), (2.7)

4



where the least-squares functional I(-) is defined by

I(w) = 3 (I14772(V x Av - )|k + [ 4V2( -0 = p)lI%) (2.8)
Kek
+ 3 (In2Ar P Qo x AvlE + 2 A R x o]l )
FeFUFr
+ > (In2AQoln - llF + B4 Pofn - o]l}).
FeFiUFn

Here we used the following notation: Py is the L2-projection on constant
functions on each face F' and Q¢ = I — Py with I the identity opera-
tor; n is a fixed unit normal to F' € F; and the exterior unit normal for
FeFrUFy; [v] =vt —ov™ for F € Fr and [v] = v* for F € Fr U Fy,
where vE(z) = lims_y0 550 v(z F sn) for x € F; Ay = 24T A7 /(AT + A7)
and A = (AT + A7)/2. Note that both differential equations (2.1a) and
(2.1b) and boundary conditions (2.1c) and (2.1d), as well as tangential and
normal continuity on interior faces, are imposed weakly through the least-
squares functional.

Remark 2.1 We may use weighting of the different terms in the least-
squares functional by inserting a positive constant in front of each term, see
[11]. Weighting leads to a different, but equivalent, discrete approximation.
To simplify the notation, we have not included these weights.

The corresponding variational equation takes the form: find up € V
such that

a(up,v) = l(v), (2.9)

for all v € V,. Here a(-,-) is a bilinear form and I(-) a linear functional,
defined by

a(u,v) = Y (A7'V x Au,V x Av)g + (AV -4,V - 0)g (2.10a)
KekK

- Y (b Qoln x Aul,Quln x Adl)
FeFUFr
+ (WY A7 Py[n x Aul, Py[n x Av])F)
+ Y ((hAyQoln - u], Qoln - v])p
FeFiUFn
+ (W™ Ay Poln - u], Pyl - o)) ),

(0) = > (A7'w,V x Av)g + (4p,V - v). (2.10b)
KekK



3 Error estimates

Throughout this section, we assume that A = I, with I the identity matrix,
Q) is a nonconvex polyhedral domain, and I' = I'y. Based on the decomposi-
tions by Bonnet-Ben Dhia et al.[8], our analysis can directly be extended to
the case I' = 'y and, with sufficiently smooth interface boundaries, A # I.
These assumptions are necessary to prove the coercivity of Theorem 3.1,
while the error estimate in the least-squares norm in Theorem 3.5 holds for
the general problem (2.1).

3.1 The least-squares norm
We define the natural least-squares norm, or energy norm,
lol[* = a(v, v), (3.1)

for all v € V), + H(div, curl; Q) N H'/2(Q). We then have the following result
which shows that ||| - ||| is indeed a norm on this space.

Theorem 3.1 There is a constant C, independent of h, such that
o]l < Cllll], (3.2)
for all v € Vy, + H(div, curl; Q) N H'/2(Q).

In order to prove this estimate we first establish a suitable Helmholtz de-

composition of [L%(2)].

Lemma 3.2 For each v € [L2(Q)]? there is x € [H']3(2) and ¢ € H*(Q)
such that

v=V xx+ V. (3.3)

Furthermore, the stability estimates
Ixlli < Cllvll, (3.4a)
16l < Cliwl, (3.4b)

hold.

Proof. Let ¢ be the solution of the Neumann problem: find ¢ € H!(Q)
such that

(Vé,Vw) = —(V -v,w) + (n - v,w)r, (3.5)



for all w € H'(Q2). Then V- (v — V¢) = 0 and n - (v — V¢) = 0 on
I'. Thus there exists xo € H(curl;2) such that V x xo = v — V¢ and
n x xo = 0 on I' [15]. Note that the boundary condition n x xp = 0 implies
n-Vxxo=n-(-—Ve¢) =0.

Using Lemma 2.1 in Pasciak and Zhao [20] there exists x € [H'(Q)]?
withn x x = 0on T and V x x = V X xg. Furthermore, the stability
estimate

Ixlls < ClIIV X xoll, (3.6)
holds.
The decomposition (3.3) is thus established. Finally, we note that
loll* = IV % xoll* + IVII*. (3.7)
Then (3.4b) follows immediately and (3.4a) follows by using (3.6). 0

Proof of Theorem 3.1. Using Lemma 3.2, we write
v=Vxx+ Vo (3.8)

Multiplying with v, integrating, and using integration by parts, gives

ol = > @,V x X)x + (v, V)x (3.9)
KeK
=Y (Vxv,x0)k— (V-v,9)k (3.10)
KekK
+ Z ([n x U],X)F + Z([n 'U]a¢)F'
FeFr FeF
Using the Cauchy-Schwarz inequality, definition of the ||| - |||-norm , and
stability estimates (3.4), we get
D (Vxux)k < Y IV xolklxlx < Clloll o] (3.11)
KeK KeK
Y (Vv )k < Y IV-vllxliglx < Clloll o]l (3.12)
KeK Kek

Next we turn to the edge terms. Writing v = Qov + Pov, we have

([n x o], x)r| < 820 x Q]| kx| Qoxl (3.13)
+ 1k 2 x Pov]||ehil?|| x| -



We recall the trace inequality ||w||r < C(h}1/2||w||K + h}(/2||Vw||K), with
F a face on 0K. To estimate ||Qox||r, we first write Qox = (I — Py)x on F
and then use the trace inequality

R 1Qoxlle < Ch (W lIx — Poexix (3.14)
+ B2V (x = Poxx) &)
< C|Vxlk, (3.15)

where Py  is the L?(K) projection on Py(K) and we applied the standard
estimate ||x — Po,xx||x < Chil||Vx]|-
Next we have

R Ixlle < ChZ (h P xllx + B2V xl%) (3.16)
< Cllxll,k- (3.17)

Collecting these estimates and using stability estimate (3.4a), we arrive at
[([n x 0], x)r| < Clljo]]| |v]] (3.18)

The remaining boundary term is estimated in the same way. Finally, divid-
ing by ||v||, the desired estimate follows. 0

3.2 Interpolation error estimates

We begin by introducing the interpolation operator « : H(div,curl; Q) N
[H'?(Q)]* = Vp, such that 7ulx = mxu where 1 : H(div, curl; K) N
[HY2(K)]? = [P1(K)]? is defined by

/u-vdS:/ﬂKu-v ds, (3.19)
F

F

for each face F C 0K and all v € [Py(F)]3. From this definition we derive
the following two identities

V x TKU = P()’KV X u, (3.20&)
V TTKU = P()’KV s U, (3.20b)

where Py  is the L?(K)-projection on [Py(K)]3. For instance, we have
/Vx(u—m{u)-vdx:/ n X (u—mgu)-vdS =0, (3.21)
K oK
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for all v € [Py(K)]3. Using (3.20), we arrive at
Vxu—Vxrgu=(I—Pyr)V xu. (3.22)

Applying standard estimates for the L2-projection, we can deduce the fol-
lowing lemma.

Lemma 3.3 Let K be an affine element. Then there is a constant C de-
pending only on the shape of K, such that

IV x (u—mu)||xk < ChE|V x ulg k, (3.23)
IV - (u —7u)lx < CHE|V -ulp x, (3.24)
with 0 < g < 1.
We then have the following interpolation error estimate.
Lemma 3.4 For u € [H*(Q)?, a > 1/2, with V x u € [H?(Q)]® and
V.u€ H(Q), >0, it holds

2
= wull® < € Y7 W lullg i + b (IV x ullf e + 1V -ul5 i), (3:25)
KeK

with the constant C independent of h.

Proof. Using the interpolation error estimates in Lemma 3.3, we get
IV x (u— mu)||x < LIV x ullx,g, (3.26)
IV« (u — 7u) | < CHg |V - ul k.- (3.27)

We now turn to the face contributions. Using the triangle inequality we
have

1Qoln x (u — mu)]l|lF < |Qor x (u—mu")||p +|Qon x (u—mu")|F, (3.28)

where face F = K+ N K~ is shared by elements K+ and K—, and mu® =
7u|g+. Each term on the right hand side of (3.28) can now be estimated as

hil|Qon x (u = mu) |7 + hel|Qon - (u — 7u)|f = hel|Qou — mu) |7
< Chpllu—mul% /2 < ChEllulfq, (329)
with o > 1/2, K = K*, and mu = 7u®. For the second face contribution
we have the identity
hit [|Pon x (u — mu) [ + hit | Por - (u — wu) || = hi' | Po(u — wu)|F = 0,
(3.30)
where we used the definition of the interpolant in the last equality. 0



3.3 A priori error estimate

Now, we are ready to state the following main result:

Theorem 3.5 Let u € [H*(Q)]?, a > 1/2, with V x u € [H?(Q)]® and
V-u € H?(Q), B > 0, be the exact solution to (2.1) and up € Vj the
approzimate solution defined by (2.9). Then it holds

2
= unll> < € 32 B2 Nul2 i+ 2 (IV x ull} i+ 1V -ull} ), (3:31)
KeK

with constant C independent of the meshsize h.

Proof. By the definition of the least squares method we have
Il = walll < [[lw = mull], (3.32)

and thus estimate (3.31) follows immediately from the interpolation error
estimate. O
Combining Theorems 3.1 and 3.5 we get the following corollary.

Corollary 3.1 Under the same assumptions as in Theorem 3.5 it holds

2

Z Hu_uhH%I(K,div,curl) <C Z h%(aH““i,K"‘hlg(”VXU”%,K“‘”V'UH%,K)-
Kek Kek

(3.33)

4 A hybrid formulation

Since the solution is of low regularity only close to the singularities, it is
natural to use the computationally expensive discontinuous elements only in
this region and use continuous elements in the smooth region. Denote by 2p
a region, conforming with the triangulation K, surrounding the geometric
singularities, where we have to use DLSFEM, and let Q¢ = Q\Qp. In Q¢ we
have the solution u € [H*¢]3, with s¢ > 1, and may use continuous LSFEM,
with polynomials of degree p¢. If the decomposition 2 = Q¢ UQp is chosen
such that s¢ is considerably larger than s, we can also benefit from this by
using high order polynomials in Q¢. Further, let Kp = {K € K: K C Qp}
be the elements covering €2p, and define K¢ analogously. An interpolation
operator of Scott-Zhang type [22] is used for the continuous approximation.

We then have the following extension of our earlier a priori error estimate:
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Corollary 4.1 Under the same assumptions as in Theorem 3.5 it holds

ZHU_U”L”%{(div,curl,K) < CZ h%?||u|
KeK KeKp

+C Y b Nullfe k- (4.1)
KeKco

2
2k PRIV xul3 g +11V-ul? &)

with ac = min(pc + 1, s¢).

5 Numerical examples

We present in this section examples in domains in three spatial dimensions
having corners, or subdomains with corners. We use the least-squares func-
tional as mesh refinement indicator, since it exactly represents the error
measured in energy norm ||| - ||| [18]. Moreover, we use an isotropic mesh
refinement algorithm, splitting each element marked for refinement into two
to eight new elements by successively dividing the longest edge, see [6] for
more details. For these singular problem, it is however clear that we would
gain from using an anisotropic error estimator and mesh refinement, see for
instance [2], [14], and [23].

5.1 First order Poisson system

Here we consider the Poisson system: find p such that

—Ap=f inQ, (5.1a)
n-Vp=gn only, (5.1b)
p=gp onlp. (5.1c)
Introducing the flux

u = Vp, (5.2)

we may write problem (5.1) as a first order system: find (p,u) such that
—V-u=f in Q, (5.3a)
u—Vp=0 in €, (5.3b)
Vxu=0 in Q, (5.3¢)
n-u=gn on 'y, (5.3d)
nxu=nxVgp onlp, (5.3e)
P=4gp onT'p. (5.3f)

11



The curl-constraint (5.3c) is added since we then, on a convex domain,
achieve H'-coercivity for the system [10]. Tt arises from equation (5.2) and
the fact that the curl of a gradient is identically zero.

We note that (5.3a), (5.3c), (5.3d), and (5.3e) completely define u, which
thus can be solved independently of p in a first step. The latter is computed
in a second step, by solving (5.3b) and (5.3f) with u as data.

We have applied the method described in this paper to solve the div-curl
system of the first step on two problems posed on nonconvex domains, and
then computed p by standard LSFEM [19].

5.1.1 Line singularity

We solve problem (5.3) and Q the L-shaped domain displayed in Figure 2
with z € (0,0.2), 'y = {z € Q;2 = 0.0 0r z = 0.2} and I'p = IO\I'y,
f =0, and gp chosen so that the exact solution p is

p(p,0,2) = p**sin(20/3 + 7/3). (5.4)

The error, measured in H'(Q) x H (div, curl; Q)-norm, is plotted in Figure
3. In this figure, also the least-squares functional is plotted. We note that
the behaviour of our modified method is the same as reported in [5] when
the stabilizing curl-term was not included. The convergence of the algebraic
solver is however much better when considering this compatibility constraint.
In Figure 4(b) we can see the solution in the corner, displaying correctly the
singularity and with the flux orthogonal to the boundary. On the contrary,
standard LSFEM does not work in this setting. Instead we note that, in
order to satisfy the conflicting constraints, the flux tends to zero in the
corner, see Figure 4(a).

5.1.2 Point singularity

In this section, the domain where we solve (5.3) is Q = {(r,0,¢) : r €
[0,1),0 € (B,7],¢ € [0,2m)} with = 7/16, described in spherical coordi-
nates.

Also here f = 0, and we choose gp = P,, where P, is the first class
Legendre function of order v, and I'p = 0€2. The exact solution p to this
problem is

p(r,0) =P, (cos(h)), (5.5)

with v depending on f; in our case we have v ~ 0.215 for f = 7/16, see
[17]. A plot of the error is shown in Figure 6. The behaviour is similar as
for the previous case, and also here the use of continuous elements fails.
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Figure 2: The L-shaped domain with a line singularity.

l()1 T T
2 2 12
V. Ulo=0y, oyclliiv, curnoy1U=Un prcllia)) 1
0 1O piethorc)
10° -
10’1 I I
107 10° 10* 10°

N
element

Figure 3: Error for DLSFEM in the line singularity problem. Triangles
denote the error measured in the H'(Q2) x H(div, curl; Q)-norm and squares
denote the least-squares residual.
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(a) Standard LSFEM (b) Discontinuous LSFEM

Figure 4: The computed flux in the vicinity of the corner of the L-shaped
domain. Note that for standard LSFEM, the flux incorrectly tends to zero
in the corner.

(a) Geometry (b) Initial mesh

Figure 5: The cone problem with a point singularity.
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Figure 6: Error for DLSFEM in the point singularity problem. Triangles
denote the error measured in the H'(Q2) x H(div, curl; Q)-norm and squares
denote the least-squares residual.

(a) Solution (b) Refined mesh

Figure 7: The solution and the refined mesh for the point singularity prob-
lem.
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5.2 The magnetostatic equations

The equations that define static magnetic fields are

VxH=J, (5.6a)
V-B=0, (5.6b)

where H is the magnetic field intensity, B is the magnetic flux density, and
J the imposed current density. The two fields H and B are related through
the constitutive relation

B = uH, (5.7)

where 1 = p,p1o is the magnetic permeability with pg = 47 x 1077 H/m and
pr > 0. At the interface between two materials, equations (5.6) imply the
continuity conditions

[H] x n =0, (5.8a)
[B]-n=0, (5.8b)

stating that the tangential components of H are continuous, as well as the
normal component of B. In view of equation (5.7), the normal component H -
n and the tangential components B x n will thus be discontinuous across an
interface of discontinuity of 1. At the boundary, we have either a prescribed
field, a symmetry condition or a perfectly conducting wall, B - n = 0.

5.2.1 Model problem

We have previously reported problems in applying LSFEM to magnetostatic
problems with realistic data [5]. Applying the discontinuous least-squares
method to system (5.6), we have however successfully solved a model prob-
lems of this kind. Never the less, the mesh refinement indicator does not
seem to yield optimal convergence. The problem is axisymmetric in order to
make two dimensional reference computations possible, and is also reported
in [3] and [4].

The geometry of this problem is described in Figure 10(a). A three
dimensional view can be seen in Figure 10(b). The model consists of an iron
cylinder core encircled by a copper winding. The configuration is enclosed in
air and surrounded by a box with perfectly magnetic surfaces. The winding
is modeled as a homogeneous copper coil.

Data for this problem are relative magnetic permeabilities y, pe = 10*
and iy cy = Hrair = 1, and the current density J is constant over the cross
section of the coil with a total current of 1 A.
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‘ DLSFEM ‘ Reference
No of elements 348 373 -
No of nodes 59 970 -

Wair (J) 8.322 x 1077(0.08) | 9.089 x 107
Weu (J) 3.434 x 1078(0.05) | 3.614 x 1078
Wi (J) 5.358 x 10710(0.13) | 4.731 x 1010

Table 1: The computed magnetic energies compared with reference values
using DLSFEM; the relative error is given in parenthesis. The reference
values are from two dimensional computations done at ABB [4].

10
v air
o cu
O fe

107

element

Figure 8: Relative error in the energy for DLSFEM in the magnetostatic
problem. Triangles denote the error in the air region, squares represent the
copper region, and diamonds the iron core.

Reference computations in two dimensions done by ABB and reported
in [4], gave the values of the magnetic energies in the different materials as
listed in Table 1, where the magnetic energy is defined by

1

0l

W B-Hdz. (5.9)
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Figure 9: The least-squares residual for the magnetostatic example.
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Figure 10: Geometry and the solution for the magnetostatic example.
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Figure 11: Detail of the mesh.
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The LL* Finite Element Method and
Multigrid for the Magnetostatic Problem *

Rickard Bergstrom!, Mats G. Larson} and Klas Samuelsson

Abstract

We develop the £L*-method for a magnetostatic model problem
with large jumps in material parameters in three spatial dimensions.
A priori and a posteriori error estimates are presented as well as an
adaptive algorithm. We employ a multigrid method to solve the re-
sulting algebraic equations. Finally, we present numerical results.

1 Introduction

In this paper we are concerned with finite element approximation of first or-
der elliptic partial differential equations of the form Lu= f. More precisely,
we study a model problem from magnetostatics in three spatial dimensions
with large jumps in the material coefficients. Typically, due to corners in the
geometry, the solution develops singularities and does not reside in H', and
thus cannot be accurately approximated in spaces of continuous piecewise
polynomials. As a remedy, we instead introduce the dual variable v such
that u = ML*v, where M is a bounded symmetric operator with bounded
inverse. Substituting into the equation Lu = f, we obtain the symmetric
second order problem LML*v = f, which can be approximated by stan-
dard continuous polynomials, since v € H'. Choosing M properly, the
energy minimized is the physical energy, which is a desirable property. We
refer to this approach as the £LL*-method. The resulting algebraic system
is symmetric positive definite and can be efficiently solved by a multigrid
method.

*This research is supported by ABB Corporate Research

tSupported by the Swedish Foundation for Strategic Research through the National
Graduate School in Scientific Computing and the National Network in Applied Mathe-
matics

iSupported by Swedish Research Council for Engineering Sciences



The L£L*-method was recently suggested by Cai et al. [11] for solving a
second order elliptic problem by first rewriting it as a first order system of
equations and then applying the aforementioned approach. Here the method
is viewed as a remedy of the difficulties which the least-squares finite element
method exhibits on problems which are not sufficiently regular. The least-
squares method, see for instance [3], [5], [6], [14], and the references therein,
determines an approximate solution u; which minimizes the L?-norm of the
residual || Lup, — f||?. Thus u is required to be in H! for the residual to be
well defined. It is also shown that L£L*-method is closely related to least-
squares methods based on dual norms of the residual, see Bramble et al. [7]
and Cai et al. [10].

We may also view the LL*-method as a generalization of the classical
potential methods in electromagnetics, see for instance Jin [16] for a general
introduction to such techniques. In the case of the £LL*-method, we allow
for a more general potential v defined by u = ML*v.

We prove optimal a priori and a posteriori error estimates, and based on
the later we develop an adaptive algorithm for refinement of the mesh. We
also discuss implementation details of the mesh refinement algorithm.

The remainder of the paper is organized as follows: in Section 2 we
introduce the model problem and derive the £LL£L*-method; in Section 3 we
prove a priori and a posteriori error estimates and describe the adaptive
algorithm together with some details on the mesh refinement procedure; in
Section 4 we formulate the multigrid algorithm; in Section 5 we present some
numerical results.

2 The LL* formulation

2.1 A magnetostatic model problem

Assume that Q = |J}_,; ' € R? with boundary T, and denote the interface
between regions Q¢ and Qf by 'V, with i < j, see Figure 1. We allow
' to be nonconvex and have corners, while € is assumed to be convex or
have sufficiently smooth boundary. In applications, this is in general not
a restrictive assumption. Assume that each subdomain have the magnetic
permeability u|qi = pl po. The magnetostatic system then takes the form:

VxputB=J inQ, (2.1a)
V-B=0 in @ (2.1b)
n-B=0 onT, (2.1¢c)



Figure 1: The notation used when a region is split into subregions.

and the interface conditions

[u'B]xn=0 onT%, (2.2a)
[B]-n=0 onI¥, (2.2b)

hold. Here, n is the exterior unit normal on the boundary I' and a fixed
unit normal on each interior interface '/, and [u(x)] = lim,_, o+ u(z + sn) —
u(x — sn) with z € 'Y, denotes the jump in u across the interface T'¥.
Furthermore, it is necessary that

V.J=0, (2.3)

for (2.1) to have a solution.

2.2 An associated first order operator

By adding a slack variable b to (2.1) we can show ellipticity of this system
[15]. This extra variable is in fact zero in the continuous problem as we show
below, but this is not necessarily the case in the discrete problem. Further-
more, adding the slack variable creates a suitable Hilbert space setting for
the analysis.



The extended system thus becomes

Vxu'B-Vb=J inQ, (2.4a)
V-B=0 inQ, (2.4b)
n-B=0 onT, (2.4¢)

b=0 onT, (2.4d)
[0 1Bl xn=0 onT¥ (2.4e)
[B]-n=0 onI¥, (2.4f)

The slack variable b is identically zero, since by taking the divergence of
(2.4a) we get the following Poisson problem for b:

—Ab=V -J-V-(Vxpu 'B) inQ, (2.5)

together with the boundary condition (2.4d). From equations (2.1), (2.2)
and (2.3) we see that the right hand side of (2.5) is zero, thus b is indeed
zero and hence system (2.4) is equivalent to (2.1).

We introduce the Hilbert space

V = [L*(Q)]? x L*(Q), (2.6)

and employ the notation V = [V ]l € V, with V € [L?(Q)] and v € L*().
We also define

Vo={VeV:v=0onT} (2.7)
Next we define the first order operator £ and its formal adjoint £L* as follows

[V xp TtV =V wvnr _ (BIV X W — Vuw
v (I (T g

for V,W € V.

To derive the boundary conditions associated with £* we compute

(LV, W) =(V,L'W) +/

vn-W-l—/n-Vw
r r

(2.9)

nx(u_lV)-W+/
I

= (V,L*W)+/n>< (V) - W,
I

where we used (2.4c) and (2.4d). Using the scalar triple product, n.x (u~'V)-
W = —(u 'V)-n x W and thus the remaining boundary term vanishes if
and only if the condition

nxW=0 onT, (2.10)



holds.
The domains of £ and L* are,
D(L) = {V € H(Y x u~,0) N H(V-,0) x H'(®) (2.11a)
n-V=0,u=0o0nT},
D(L*)={V € HVx,QNH(V-Q) x H(Q)/ R:nxV =0onT},

(2.11b)
where
H(V xpu h0) ={V e [L*V]P:Vxu 'V e [L2(Q)}, (2.12a)
H(V.,Q) ={Ve[l?(Q]}:V -V eL*2)}, (2.12b)
are Hilbert spaces with the norms
VI ety = IVIZ+ IV x = V2, (2.13a)
Vw0 = IVIZ+ V- V]2 (2.13b)

H(Vx,) corresponds to (2.12a) with gy = 1. Thus, D(L£) and D(L*) are
Hilbert spaces, dense in Vy and V respectively, with the product norm

IVIpey = IVIP+ IV x p V2 + V- VG + 19l ) (2.14)

and similarly for D(L*).

2.3 The LL* variational formulation

We can now in a standard manner derive a variational problem for (2.1) by
integrating by parts: find B € D(L) such that

(J,V) = (LB, V) = (B,L*V), (2.15)

for all V- € D(L*).
Next we introduce dual variables U such that

B = ML'U, (2.16)

where M denotes a symmetric positive definite bounded operator with
bounded inverse. A suitable choice of M is presented below. Thus, we
obtain the weak problem: find U € D(L*) such that

a(U,V) =1(V), (2.17)



for all V' € D(L*). Here the bilinear form and functional are defined by

a(U,V) = (ML'U, LV), (2.18)
(V) = (J,V). (2.19)

We now turn to the operator M. For our application, we assume
that M : v — Mwv where M is a 4 x 4 diagonal matrix with diagonal
[m1 m1mq mg]. To determine the parameters m; and my we note that the
energy of the bilinear form is

a(U,U) = (ML*U, L*U) (2.20)
= (B,M™'B) (2.21)
= (m]'B, B) + (m5 'b,b). (2.22)

For the exact solution b = 0, and we should preferably obtain proportionality
to the physical energy

1 1
E(BaH) = i(BaU_lB), (2'23)
and thus m; = u. Next, to determine mo we note that
a(U,U) = (u(p™'VxU—=Vu),u 'V XU - Vu)+ (meV-U,V-U). (2.24)

Balancing the terms involving U, we are led to choosing my = p~ .

Using Lemma, 2.1 below, the bilinear form finally simplifies to
a(U,U) = (p 'V x UV xU)+ (p 'V-UV-U)+ (uVu,Vu). (2.25)
Lemma 2.1 For V € D(L*),

(V x V, Vo) = 0. (2.26)

Proof. The identity follows using Green’s formula,
(VXxV,Vv) = (V,V x Vo) + (n x V,Vo)r, (2.27)

sincenxV =0onT for V € D(L*). 0
We are now ready to state the following theorems.



Theorem 2.2 There are constants ¢ and C, which depend only on u, such
that
dIVIi <a(V,V)<C|VIL, (2.28)

for all V € V. Furthermore, there ezxists a unique solution U to (2.17) and

the a priori estimate
Ul < el|J][-1, (2.29)

holds.

Proof. To prove the lower bound we note that
a(V,V) = (u 'V x V,V x V) + (u 'V -V,V-V) + (uVo, Vo)
> C'min(pY)[[V[F + C min(u) o], (2.30)
since (2 is assumed to have smooth boundary [13]. This concludes the proof
of the coercivity. The upper bound is an obvious consequence of the Cauchy-
Schwarz and triangle inequalities. The existence and uniqueness of the solu-

tion to (2.17) follows from the Lax-Milgram lemma and the a priori estimate
is straightforward. 0

Theorem 2.3 There is a unique solution B € D(L) to (2.4), and B =
ML*U is the unique solution to (2.15).

Proof. We need to show that B = ML*U € D(L). Then B satisfies (2.15)
and the uniqueness of this solution follows from the stability estimate

(B, L*V) = (1,V) < | JlIV]- (2.31)

To do this, we first note that from Theorem 2.2 we can conclude that £~*
is continuous. Furthermore, we get continuity of £~! if we can show

IV by < CIEVIIS. (2.32)
This is clear since for V' € D(L),
1LV3 = (V x p~ 'V, V x p7'V) + (Vu, Vo) + (V- V,V-V)  (2.33)
> C(IVIP + lvl*) = CIVI3,

and

Vb < CULVIZ + IVIE). (2.34)
From Lemma 2.2 in [11], we now know that R(L) = V and R(L*) = W,
thus B € Vy 2 D(L). n



3 The LL* finite element method

3.1 The finite element method

Let K be a decomposition of 2 into, e.g., tetrahedral, elements K, with
diameter hx = diam(K). We assume a minimal angle condition on the
triangulation, see Brenner and Scott [8]. Let

Wi =D(L) N{V € [C(Q)]*: VIk € [P(K)]'}, (3.1)

where P, is the vector space of all polynomials of degree less than or equal
to r. Thus W, is the set of all piecewise vector polynomial functions of
degree r, which are continuous across element edges.

For the error analysis following below, we need the following approxima-
tion property of Wy, see Scott and Zhang [17]. Given a function V' € D(L*)N
[H*()]*, for r > 1, there is an interpolation operator 7 : D(L*) — W}, such
that

IV —aV]k1 < ChE 'V n)er 1<a<r+1, (3.2)

where N(K) denotes the union of all elements bordering K.
The LL* finite element method finally takes the form: find Uy, € W),
such that

a(Up, V) =U(V), (3-3)

for all V € W,

In the computations, we can benefit from the fact that uy is zero. This
is clear since the equations for components Uy, and uy separate according to
Lemma 2.1, and we have zero data for up. The bilinear form and the linear
functional used in computations thus take the form

ap,(U, V)= 'VxUVxV)+ @ vV-UV-V), (3.4a)
(V)= (J,V). (3.4Db)

Furthermore, functionals involving the magnetic field B should be computed
via the variational form (3.4a). Hence the energy, e.g., is computed as

1
W), = §ah(Uha Up). (3.5)

3.2 A priori error estimate

Using standard techniques we derive the following a priori error estimate.



Theorem 3.1 Let U € D(L*) N[H?(Q)]* be a solution to (2.17) and U}, €
Wi, the approzimate solution defined by (3.3). Then there is a constant C,
independent of h, such that

U -l <C > 03 UR 5 00 (3.6)
Kek

with @ = min(r + 1, s).

Proof. Let E = U — Uy, denote the error. Then

c| Bl < a(E,U —Uy) (3.7)
=a(E,U —nU + wU — Uy)
=a(E,U —7U)

< C|ER|IU - U1,

where (3.3) was used in the last equality. Dividing by ||E||;, and finally
using the interpolation estimate (3.2) proves the estimate. 0

3.3 A posteriori error estimate

Introducing the energy norm
IVII* = a(v, V), (3.8)
we can state the following a posteriori error estimate.

Theorem 3.2 Let U € D(L*) N[H(Q)]* be a solution to (2.17) and U}, €
Wy, the approxzimate solution defined by (3.3). Then there is a constant C,
independent of h, such that

IIU — Unll> < C Y Rx(Un)?, (3.9)
Kerx

where

Ri(Up)? = wi|[RM™V2T — LML UR)|[% + wol B 2K M (U)]|[3 -

(3.10)
The boundary flux A\, (V') is defined by
(nx (Tt XV)+nuTiV-V
wv) = ( g , (3.11)

9



and K is a diagonal matriz with diagonal [k1k1k1ks] where

—\1/2

Ky /fﬁlu’ (3.12a)
(&)?
pt U opm

Remark 3.1 Note that the constant C' = C(w1, we, Cyr, C;). To achieve a
constant free error estimator, one may instead solve local problems, see [2],
in general at the cost of more expensive computations.

Remark 3.2 Note that

IIlU=Ulll = a(U — Uy, U = Up) = a(U,U) — a(Up,Up) = 2(W — Wy).

(3.13)
Thus the error in the energy is directly related to the error in the energy
norm of the dual variables, motivating adaptation of the grid with respect
to the error measured in the energy norm .

Proof. Let E = U — Uy}, denote the error. Then

IIE||> = o(U — Up, E) (3.14)

a(U—-Up,E —7E)

= (ML (U —Uy),L*(E — 7E))

=Y (J—LMLUp, E —7E)k + (M(U) = Ma(Un), E — 7E)ox
KeK

=Y (J=LMLUp, E — 7E)k + (A(Up) — M (Up), E — 7E) g,
KexK

where A\, (V') is defined above in (3.11) and A,(U},) is a discrete approxi-
mation of the true flux A, (U). The replacement of A\, (U) with A,(U}) in
the last equality is possible since on all internal edges, the boundary contri-
butions from the neighbouring elements cancel for A\, (U), and this should
be true for A, (U}) by construction. Also on external edges A, (Up) should
satisfies the boundary conditions.

In a standard derivation of an energy norm a posteriori error estimate,
e.g., as in Eriksson and Johnson [12], one constructs a discrete flux as the
average of the approximate flux on each element side, i.e.,

MaU2) = S OnUF) +2alU), (3.15)

10



which leads to the standard jump terms [\, (U})]. However, in order to

correctly distribute the error in the fluxes across interfaces with large dis-
continuities in u, we here choose a weighted average

An(Up) = (M* + M™) (M~ X, (US) + MTA(Uy)), (3.16)

which instead lead to a jump term similar to the one derived by Cai and
Samuelsson [9].
We will now get

IE? = > (J —LMLU,,E - 7E)k (3.17)
KeK
+ (An(Un) = Mn(Uh), E — 7E) i

=Y (J—LMLUy E—7E)k
KeK
+((MT+ M) "M M\ (Up)), E —7E)pk

<cy (||hM—1/2(J —LMLUY) ||k |h" MV2(E - nE)|x
Kek
+ R+ M) M)A (U] o

X [h"/2M (B ~ 7)ok )
1/2
<c (Z R(Uh>2> IIE1l,
KeK

where we made use of the Cauchy-Schwarz inequality and the trace inequal-
ity |vl2x < Clvllx(hitlvllx + |Volk). Finally the aforementioned ap-
proximation property

IR MV —a V)P < CIMIPPVE < CIMYPV V2 < C| VP

was used. 0

3.4 An adaptive algorithm

We start the adaptive algorithm from an initial coarse decomposition Ky
consisting of tetrahedra. It is important that the interfaces between dis-
continuous materials are respected by the triangulation, i.e., the material
interfaces consist of element sides.

11



The initial triangulation is then adaptively refined level by level. There
are two main components in this process: the error estimator and the local
grid refiner. The role of the error estimator is to locally determine which
elements are to be bisected to construct a refined grid. It is not critical which
refinement method is used, except that it should have the property that the
refinement is stable, i.e., the refined grid should remain shape regular even
after many adaptive local refinements.

We will briefly describe the refinement method used in our implementa-
tion. The refinement algorithm is also used in [9] and implemented in the
adaptive module of [1].

e Compute for each element K of the triangulation an indicator value
I, where a large value of I indicates a large error. Based on the a
posteriori estimate (3.9) we use Ix = Rx(Up)?.

e From the indicator values Ik , each tetrahedron K of K is assigned
an integer ix € {0,1,2,3,4,5,6}. The integer ix denotes the minimal
number of edges of tetrahedron K where new nodes are inserted in the
refinement.

Given a parameter 8 € (0,1) and the maximal indicator value I,q; =
maxgcx Ik the integer i is computed by
i 0 if IK S ,BGImaz;
ITK = ) .
joif BT e < Ik < B II,4, for j=1,...6.
e Mark the ix longest edges in the elements for new node insertion. By

the next step, the neighbour elements might need to mark additional
edges to guarantee stability of the refinement.

e The following two rules are recursively applied to mark the neighbour
elements: If any edge in a tetrahedron is marked, then the longest edge
is also marked, and if any edge on a face of a tetrahedron is marked,
then the longest edge of that face is also marked.

e The tetrahedra having any marked edges is refined by repeated bisec-
tion until there are no more marked edges. The length of the marked
edges of the tetrahedron determines the order of tetrahedral bisection.
The longest edge is bisected first which, together with the marking
of edges in the previous step, guarantees that the refinement will be
regular.

12



e Project nodes at the curved outer boundaries or internal interfaces to
the correct geometry.

The method have the property that the sequence of grid refinements are
nested and the minimum number of edges where new nodes are added to the
refined grid is controlled. If the geometry model has curved outer boundaries
or internal interfaces the refinement will not be strictly nested, due to that
the newly introduced nodes need to conform to the curved geometry model.
For more information on the geometry model and implementational issues
we refer to [4].

4 The multigrid method

Let Ky, k = 0,...,m be a sequence of decompositions of {2 and let Wy, , k =
0,...,m, be the associated spaces of piecewise vector polynomial functions.
We assume that the spaces are nested Wy o C W1 C ... C Wh .

The operator Ag : Wh i — Wiy is defined by (AxUy, V) = a(Uy, V)
for all V. € Wy and Ly = (V) for all V. € W ;. The finite element
discretization (3.3) on Ky then takes the form

AUy = L,
for k=0,...,m.
We define the projection operator Qy : Wy 41— Wh i by
(QU,V)=(U,V) forall Ve Wy;.

We denote one multigrid V-cycle with (n1,ny) pre- and post-smoothing
operations by T" = T}, where T}, : Wy = Whyi, 1 < k < m, is defined
recursively by Tp = A, L and

TkLk — Un1+n2+1,
where
0 0 it k<m
v’ = .
Up1 if kE=m

v =0T £ Sy (Ly, — A’ ™Y, for j=1,...,n4,
v =T Qe (L — Apv™),
ol =0l 4 Si(Ly — Ak’l)jil), forj=n14+2,...,n1 +no+ 1.

Here Sy : Wy +— Wh represents one smoothing operation which can
consist of a step of a preconditioned Krylov method.

13
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Figure 2: The geometry of the axisymmetric problem. The dimensions are
given in meters.

5 Examples

The L£L£* method described above was tested for problem (2.1) in three
dimensions on an axisymmetric geometry that describes an electromagnet,
see Figures 2 and 3. The model consists of an iron cylinder core inserted
in a copper winding. The configuration is enclosed in air and surrounded
by a box with perfectly conducting surfaces. The winding is modeled as a
homogeneous copper coil.

Data for the problem are relative magnetic permeabilities of ;. pe= 10%
and pr.cy = prair = 1 and pg=4m x 10~7 H/m and a current density J that
is constant over the cross section of the coil with a total current of 1 A.

14



Figure 3: The magnetic field lines in a slice through the three dimensional
solution of the axisymmetric problem.

The geometry and data for the problem was suggested by ABB Corpo-
rate Research, who also provided reference two dimensional axisymmetric
solutions, reported in [4]. Note that the problem includes a large discon-
tinuity in the coefficients of the problem, as well as edges where the field
solution is singular.

The problem was solved using multigrid as described above, with three
iterations of GMRES, preconditioned with one SSOR sweep at each level.
The coarsest problem was solved using stabilized bi-conjugated gradient
(BCGSTAB). Mesh adaptation was based on the energy norm a posteriori

15



‘ Nociements ‘ Nonodes ‘ ls [S] ‘ €r,air ‘ €r,Fe ‘ €r,Cu ‘ €r,total ‘
14401 2580 4.1 0.23 | 0.47 | 0.47 0.24
32498 5938 41.29 | 0.14 | 0.33 | 0.29 0.15

104304 18868 | 172.56 | 0.07 | 0.18 | 0.13 0.07

294521 53417 | 967.69 | 0.04 | 0.09 | 0.07 0.04

645947 | 116506 | 3257.73 | 0.02 | 0.05 | 0.05 0.02

970767 | 175165 | 6331.57 | 0.02 | 0.04 | 0.03 0.02

Table 1: The time to solve the problem on each level and relative error
in the computed magnetic energies using the L£L*-method and piecewise
linear polynomial elements. The reference values are from two dimensional
computations done at ABB, see [4].

‘ | Linear | Reference |
Wair (J) | 8.947e-7 | 9.089%e-7
Wre (J) | 4.539-10 | 4.731e-10
) | 3.494e-8 | 3.614e-8
J) | 9.301e-7 | 9.455e-7

Table 2: The computed magnetic energies compared with reference values
using the £LL*-method and piecewise linear polynomial elements. The mesh
used to obtain these values had 970,767 elements and 175,165 nodes. The
reference values are from two dimensional computations done at ABB, see

[4].

error indicator derived above.
Table 1 gives the errors in energy, €,, and the solution times, ts, on each
level of the computation. The error is defined as

_ |[Weep — Will

ep = 1res 7 7RI 5.1
R T (5-1)

where W,..; denotes the magnetic energies in the reference solution computed
by ABB, and W}, denotes the ones computed from the LL* solutions through
(3.5). The actual computed energies are shown in Table 2 for the finest mesh.

Due to the use of unstructured grids together with non-uniform mesh re-

finement, asymptotic order of convergence is difficult to measure. However,
in Figure 4 we show convergence of the error in energy compared with the

16
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Figure 4: Convergence in error compared with the indicator derived in Sec-
tion 3.3.

error indicator, and we can see that the error shows the same behaviour as
the indicator. Thus, the convergence rate appears to be O(h) as expected.

The convergence in multigrid is measured by the decrease in algebraic
residual between two V-cycles on the same level in the grid hierarchy. In
Table 3 these factors, called p, are given as the geometric mean value for
all V-cycles on each level, and for different sizes of the discontinuity in
material parameters. As expected, the convergence increases for smaller
discontinuities.
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Ligir ‘Noelements Nonodes Y

10000 14401 2580 | 2.43e-14
32498 5938 | 1.42e-1
104304 18868 | 3.59e-1
294521 53417 | 6.13e-1
645947 | 116506 | 7.21e-1
970767 | 175165 | 7.07e-1
1000 14401 2580 | 2.36e-14
32282 5898 | 9.86e-2
104162 18850 | 2.87e-1
294581 53430 | 4.92e-1
582500 | 105255 | 5.86e-1
1318174 | 237107 | 6.67e-1
100 14401 2580 | 2.26e-14
31418 5741 | 4.90e-2
102341 18515 | 1.65e-1
266466 48356 | 2.33e-1
594002 | 107212 | 2.89%e-1
1235205 | 222242 | 2.94e-1
10 14401 2580 | 1.66e-14
25239 4583 | 9.74e-3
84852 15395 | 2.86e-2
193051 34983 | 3.25e-2
492963 89041 | 3.38e-2
1098954 | 197763 | 3.38e-2
1 14401 2580 | 7.66e-15
21895 3982 | 6.69e-3
55870 10095 | 8.64e-3
96370 17475 | 9.53e-3
290141 52226 | 1.18e-2
516202 93285 | 1.03e-2

Table 3: Convergence factors for the multigrid iterations for different sizes
of discontinuity. The factor p is the geometric mean of the decrease in the
algebraic residual between two consecutive V-cycles for all V-cycles on each
level.
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Eddy-Current Computations Using Adaptive Grids
and Edge Elements

Yueqiang Liu, A. Bondeson, R. Bergstrom, C. Johnson, M. G. Larson, and K. Samuelsson

Abstract—Results are presented from eddy-current computa-
tions using adaptive techniques, based on rigorous a posteriori
error estimates. The adaptivity restores the quadratic conver-
gence with grid size of the magnetic energy, despite singularities
occurring at corners. A new procedure is introduced to satisfy
the solvability condition for the curl-curl equation. The methods
are applied to a model of a hydrogenerator, with anisotropic con-
ductivity and permeability. The ungauged formulation with both
vector and scalar potentials gives very significant improvements
in rate of convergence for this problem. Reasons for the improved
convergence are discussed.

Index Terms—Adaptivity, AV formulation, edge elements, hy-
drogenerator, ungauged.

I. INTRODUCTION

HREE-DIMENSIONAL (3-D) eddy-current problems in
T realistic geometry are still demanding, and improvements
in solution techniques are very valuable. In the present paper, we
present results obtained using adaptive finite-element method
(FEM) techniques based on a recent a posteriori error estimate
[1]. We also demonstrate and discuss the advantages of the “un-
gauged” formulation with vector and scalar potentials [2]-[4]
which significantly improves the convergence rate for iterative
solvers.

The methods are applied to a simplified model of a hydrogen-
erator, assuming a time-harmonic field. The geometry is shown
in Fig. 1. The simulated region contains an angular segment of
the four stacks at the axial end of the hydrogenerator. In the cir-
cumferential direction of the generator, the simulation region
includes a slot and half a tooth, and its physical dimensions
are 50 mm x 749 mm x 400 mm. The geometry is described
in detail in [5]. The material properties are listed in Table I.
Both the electric conductivity and the magnetic permeability
are anisotropic. The boundary conditions have been prescribed
as vanishing normal magnetic flux density B,, = 0 on certain
symmetry planes (essentially the surfaces facing the viewer in
Fig. 1), and the tangential components of the magnetic field H s
as calculated from the Biot—Savart law for the currents in the
rotor coil, on the remaining surfaces.
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stator coreé
(A-V) . .
alir (Psi)

clamp.plate
(Psi)
If inger (A-V)
.‘ rotor end
, (Psi)

coil (A)

Fig. 1. Geometry of the hydrogenerator model. The simulation region is half
a tooth and a slot of the generator. The region is elongated in the radial direction
of the generator (y) and narrow in the azimuthal direction (z).

TABLE 1
MATERIAL PARAMETERS IN DIFFERENT REGIONS. L REFERS TO THE 2y PLANE

Bril  Brzz  C11[S/m] O [S/m]
Stator core | 465 13.9 2% 10° 0
Finger 3 3 1x10"7  1x10
Plate 600 600 0 0
Rotor end 600 600 0 0
Rotor core | 3255 14.1 0 0

II. FORMULATION

In simply connected regions where the current density van-
ishes, we use the magnetic scalar potential v/, such that H=
V1p, and solve V - 71 - Vop = 0. The permeability 7z is in general
a tensor.

In coil regions, the current density is specified, and the mag-
netic vector potential satisfies

VxptvxA=J,. )

In conducting regions, the most efficient formulation uses
both the vector and scalar potential, so that £ = —jwA — VV,
and imposes no gauge [2]-[4]. Instead of a gauge condition, it

is advantageous to impose the condition that the divergence of
the conduction current vanish

Vxﬁ’IVxE—O—?(wa—I—VV) -0 ?)
v -7 (jwﬁ vv) =0. 3)

We call this the AV formulation. ¢ is a parameter that can be
chosen. The conductivity 7 is typically a tensor to model lami-
nations. We have solved (1) together with (2) and (3) using the

0018-9464/02$17.00 © 2002 IEEE
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lowest order edge elements for Aand piecewise linear, nodal el-
ements for V. The magnetic scalar potential ¢ is also expanded
in piecewise linear, nodal elements.

III. SOLVABILITY CONDITIONS

The V x =1V x operator in (1) has a large nullspace, to
which the source-term J: must be orthogonal, in order for the
equation to have a solution. Within the space of the lowest order
edge elements, the nullspace for the discretized curl—curl oper-
ator consists of gradients of piecewise linear functions. Thus, the
right-hand side of (1) must be orthogonal to the gradients of all
piecewise linear functions U. Although the exact coil currents
are divergence-free, the orthogonality will in general not be
exact for the finite-element representation. To ensure V - J,=0
numerically, we add a gradient as a correction to the prescribed
current J

J,=J-VU. &)
‘We assume that (1) holds in a region €2 with the boundary condi-
tions 71 x A = 7 x A, (to specify B,,) on 8§24 and A X p~1V x
A =#xH ondQy. U is determined by multiplying (1) by all
gradients VU of piecewise linears, and integrating over Q:

VU - (n x ﬁ) s = / i (.7— VU) dv. (5
oy Q

(U of course vanishes on all nodes on surfaces where fﬁ is spec-
ified). Equations (4) and (5) remove any projection of J, on the
null space of the curl—curl equation and guarantee that (1) has a
solution. Iterative solvers converge also for singular systems of
equations if the right-hand side is consistent.

Another procedure to achieve consistency was given by [6],
who constructed a vector potential for the current. However, in
addition to making the current divergence-free, the new proce-
dure also provides a way of dealing with numerically generated
boundary conditions for H’f,. The left-hand side of (5) vanishes
if H = V1 on the entire boundary of €2.

Solvability has to be considered also in connection with the
divergence condition (3). Since we do not want (3) to add any
new information that is inconsistent with Ampere’s law (2), the
weak form of (3) is constructed by projecting (2) on test func-
tions VV that span the null space of the curl—curl operator,
giving:

vV - (n x Hr) dS+/ vV -7 (ijJrvv) dv = 0.
2
6

ele3%4

IV. EFFICIENCY OF ITERATIVE SOLVERS

It has already been established for eddy-current problems that
iterative solvers converge much faster in the ungauged AV for-
mulation (2) and (3) than in the pure A formulation or other
gauged formulations [2]-[4]. Our study confirms this. In fact,
we find even larger improvement from the ungauged formula-
tion than previous authors, presumably because the A formu-
lation gives very badly conditioned matrices in the regions of
anisotropic conductivity, as discussed in Section V.
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TABLE 1I
NUMBER OF ITERATIONS FOR DIFFERENT FORMULATIONS IN THE CONDUCTING
AND NONCONDUCTING REGIONS FOR THE STATIC AND TIME-HARMONIC
HYDROGENERATOR PROBLEM

Repr. Freq- | Number of | Itera-
(6#0, | uency | unknowns | tions
o =0) (complex)
(AA) 0 16590 49
26786 81
(A,A) | 50Hz 16590 4622
26786 6943
18336 269
(AV,A) | 50Hz | 22640 327
59134 453
12987 67
(AVYy) | 50Hz 27948 163
67542 221

‘We have used the PETSc package for preconditioned Krylov
methods [7]. For these eddy-current problems, transpose-free
quasi-minimized residuals (TFQMRs) are generally the most
efficient solver. As preconditioner, we used the ILU decompo-
sition of a matrix obtained from the system matrix by multi-
plying the diagonal elements for A by a factor ~1.1. Without
such a multiplication, the preconditioning fails, apparently be-
cause of the null space of the curl—curl operator. The incomplete
LU decomposition has been tried with different levels of fill in
(ratio of the number of fill ins to the number of nonzero diagonal
elements in the original matrix, indicated in parenthesis). Al-
though the default ILU(1) works well for simple test problems,
ILU(3) was considerably more efficient for the hydrogenerator
problem. To reduce the memory requirement, we used ILU(2)
for the largest grids, at the expense of a larger number of itera-
tions.

Table II shows the number of iterations for the different grids,
generated by adaptive mesh refinement, and different formula-
tions in the conducting and nonconducting regions. In the coil
region, we always use the A formulation in (1), with the source
current modified according to (4) and (5).

Notably, the number of iterations is very high for the A for-
mulation at 50 Hz, and the AV-formulation achieves a very sig-
nificant reduction. The number of iterations is further reduced
by using the magnetic scalar potential in the nonconducting
regions. The combination of the A or AV formulations with
the scalar magnetic potential was made following the standard
Galerkin procedure. If the equations are combined in such a way
that the boundary terms are symmetric, the matrix representing
the highest derivatives is no longer definite.

V. EIGENVALUE DISTRIBUTION

Insights into why the AV formulation speeds up the conver-
gence can be gained by considering the eigenvalue distribution
for the different formulations. When the discretization is free of
“spurious solutions” (as are the discretizations using edge ele-
ments for the vector potential), it is sufficient to consider the
eigenvalues of the analytic operators applied to complex expo-
nentials exp(jk - 7), where 7 /| k| ranges from the longest spatial
scale of the problem to the smallest, i.e., the grid size.
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Fig. 2. Numerical spectrum in the complex plane for a discritized conducting
cube with the A formulation. The side of the cube is 1 m, the frequency 50 Hz,
the conductivity 10* S/m, ¢ = 1/(uo), and the number of edges is 250.
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Fig. 3. Numerical spectrum in the complex plane for a discritized conducting

cube with the AV formulation. The parameters are the same as in Fig. 2.

For isotropic ¢ and y, the eigenvalues of the A formulation,
where the operator is V x p7'V x +jwo, are A1 2 = k*/p +
jwo (electromagnetic) and A3 = jwo (electrostatic A= Vo).

For the AV operator in a homogeneous medium

Vxp 'Vx A+F (juA+VV) =24 )
-V -5 (JuA+VV)=AV (8)

the eigenvalues in the isotropic case are A\, 2 = k?/p + jwo
(electromagnetic), A3 = cok? + jwo (electrostatic) and Ay = 0
(gauge transformation). Thus, in addition to creating zero eigen-
values connected with gauge transformations, the AV formula-
tion gives the electrostatic eigenvalues a real part. This brings
them closer in the complex plane to the electromagnetic eigen-
modes. Since all the nonzero eigenvalues have a part propor-
tional to k2, the AV formulation makes the problem elliptic
(excepting the gauge transformations, of course). Since eigen-
values that are exactly zero do not affect iterative solvers if the
right-hand side is consistent, and the nonzero spectrum for the
AV formulation covers a smaller region of the complex plane,
this formulation gives faster convergence. The gain from the AV

formulation depends on the size of the imaginary part in com-
parison to the smallest and largest real parts, i.e., on the relation
of the skin depth to the macroscopic scales and the grid size.
Figs. 2 and 3 show the eigenvalue distributions for the test case
of a discretized cube, with the A and AV formulations, respec-
tively. Close examination shows that the separation between the
electrostatic and electromagnetic eigenvalues of the matrix for
the A formulation is not perfect (it would be if the normalization
included the “mass matrix” M;; = [ N; - ]\7]- dv where N de-
note the edge basis functions for the vector potential). However,
when the number of elements is large enough to resolve the skin
depth well, the eigenvalues separate as found analytically, and
there is one “electrostatic” set very close to the imaginary axis.
For an anisotropic conductivity corresponding to laminations
in the zy plane, & = o(£& + ), the differences are even
more significant. For the A formulation the eigenvalues are:
A1 = k?/p + jwo (electromagnetic), while A2 3 (mixed elec-
tromagnetic/electrostatic) satisfy the quadratic equation

N =X (K /p+ jwo) + jwok? /i =0 )
with &7 = &2 + k2. Equation (9) shows that numerically small

eigenvalues occur (for nearly electrostatic modes) when k2 >>
i

A3 =~ jwak? k2.

Since the largest possible & is inversely proportional to the ele-
ment size h, we see that the effective condition number (ratio
of largest to smallest nonzero eigenvalue) of the A formula-
tion, varies as h~* to be compared with the h~2 scaling for
the isotropic case. Thus, the A formulation gives an unfavor-
able scaling of the number of iterations when the grid is refined
in the anisotropic case. This is confirmed by our numerical re-
sults.

For the AV formulation, the two mixed electromagnetic/elec-
trostatic eigenvalues satisfy
N =K /p+ jwo + K co) + jwok? /p+ kY cok® /=0

(10)

[which reduces to (9) when ¢ = 0]. These eigenvalues are well
behaved when k§ > k2, in the sense that the small eigenvalues
approach k2 co, which is bounded from zero when the mesh
is refined, and the condition number scales as 2 2. Thus, for
laminated materials, the AV formulation strongly reduces the
condition number in comparison with the A formulation.

VI. ADAPTIVITY

We have implemented a scheme for adaptive mesh refine-
ment, based on an error estimate in energy norm [1]. Which
elements are to be refined is decided from their contributions
to the total error. For the AV-formulation, the contribution /()
from element ¢ is

I(¢) = i % (ﬁ‘aﬁt

f=1 -

I |
+ = |6Jn\2> Ay
wao

- - 12
+R2E |+ J, ) Ve (D)

where §H, is the jump in tangential H across element bound-
aries, 6.J,, the jump in the normal component of the conduction
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Fig. 4. Convergence of the magnetic energy with adaptive grid for the
hydrogenerator at 50 Hz.

current, Ay the area of face f, V. the volume of the element,
and bars refer to averages defined in [1]. Similar estimates have
been applied previously, on more heuristic grounds [8]. For the
9 formulation, we used the error indicator [9]

4
3 —
He)=>" ?fu L16B,[2Ay.
f=1

-~

Fig. 4 shows that the energy [ H.-Bdv converges for the hy-
drogenerator problem as O(h?), where h is an average element
size defined as N~1/3, and NN is the number of elements. Be-
cause of singular behavior at corners where the permeability is
discontinuous, (B o 7~ P, where r is the distance to the corner,
and p ~ 1/3 if ;1 has a large jump), computations with uniform
grids only give O(h*/?) convergence, so that adaptivity clearly
improves the convergence. In addition to refining the grid at
corners, the adaptivity also refines regions of the stacks where
the skin effect makes the solution vary rapidly. Fig. 5 illustrates
how the magnetic field along a stator pole varies in the direction
across the stacks.

VII. CONCLUSION

For eddy-current computations with edge elements, the un-
gauged AV formulation gives much faster convergence than the
pure A formulation, in particular when combined with a scalar
magnetic potential in nonconducting regions. The improvement
is explained by the eigenvalue distribution: the ungauged AV
formulation moves the eigenvalues of the electrostatic compo-
nents away from the imaginary axis, and closer to the electro-
magnetic eigenvalues. We have also introduced a procedure, that
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Fig. 5. The radial component of the flux density along an axial line, crossing
the stacks of the generator.

only requires the solution of a Poisson equation, to make both
the source current and boundary conditions for Ht consistent, SO
that the singular, ungauged AV formulation has a solution. Fi-
nally, adaptive mesh refinement, based on a local error estimator
recovers the nominal O(h?) convergence, despite the presence
of singularities. These techniques have been tested successfully
on a model of a generator, including anisotropy and large vari-
ations in material properties.
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Edge Element Computations of Eddy Currents in
Laminated Materials

Yueqiang Liu, A. Bondeson, R. Bergstrom, M. G. Larson, and K. Samuelsson

Abstract— Results are shown from three-dimensional computations of
the power dissipation in laminated conductors, using edge elements. It is
found that the lowest order hexahedral edge elements, with Nedélec con-
straints, give much more accurate results than the corresponding tetrahe-
dral elements. Whenever possible, the best choice is to use hexahedral grid
aligned with the laminations. If this is not possible, the dissipation can still
be accurately computed with the lowest order hexahedral elements, by us-
ing midpoint integration. Tetrahedral grids work well only with the com-
plete basis, at the expense of doubled number of degrees of freedom in the
conducting regions. Midpoint integration improves the convergence of the
power dissipation also for the complete tetrahedral basis.

Keywords— Anisotropic conductivity, Hexahedral, Tetrahedral, Edge el-
ements, Adaptivity.

I. INTRODUCTION

DDY current computations with anisotropic electric and

magnetic material properties are needed to understand the
power loss distributions in large electrical machines and gener-
ators.

Three-dimensional eddy current computations for laminated
materials have been made with nodal based finite elements ap-
plied to different formulations, e.g., AV [1] and T® formula-
tion [2], or a single-component electric vector potential [3][4].
Recently, edge elements for the electric vector potential or mag-
netic vector potential have also been implemented, but only with
hexahedral grid and the laminations aligned with the grid [5][6].

In an eddy current computation [7] using the lowest order
Nédélec tetrahedral elements, we found that it is very difficult
to achieve reasonably accurate results for the power loss, even
though the magnetic field converged well. The error of the com-
puted power loss can readily exceed 50%, even for a simple cube
test problem with well resolved skin layer. We found similar
difficulties for hexahedral grids when the laminations are not
aligned with the grid. In this paper, we point out the reason
for this and show some possible solutions. We also show that
adaptive techniques, with anisotropic refinement, can be used to
improve the convergence on hexahedral grids.

II. BASIS FUNCTIONS AND NOTATIONS

For a tetrahedral grid, we first use the lowest order Nédélec
elements, denoted here as Tet-(1,0) elements. We follow the
standard choice of the basis functions

N =&, V&, — &, V&, (6]

Manuscript submitted March 27, 2002. This work was supported in part by
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i=1,...6.

where &}, j = 1,...,4 s the linear basis functions associated with
the nodes of a tetrahedron.

For the complete basis, denoted as Tet-(1,1) elements, we add
6 more basis functions to (1)

Ni =&, V&, +&, V&, = V(& &), @

Thus, for Tet-(1,0) elements, we assign 1 degree of freedom
(DOF) to each edge; and for Tet-(1,1) elements, we assign 2
DOFs to each edge. Clearly, Tet-(1,1) spans the same space as
the Mur type [10] elements: Nij =& VE;.

For a hexahedral grid, we denote as Hex-(1,0) elements the
set of 12 vector basis functions, which are constant along the
associated edges, and vary linearly in the transverse directions,
e.g., N(X,y,2) = xyZ in a reference element, where Z is the unit
vector of z-coordinate. The Hex-(1,1) elements are obtained by
adding 12 more basis functions, which vary linearly not only in
the transverse directions, but also in the longitudinal direction,
e.g., N(x,y,z) = xyz2. Therefore, for Hex-(1,0) elements, 1 DOF
is assigned to each edge; and for Hex-(1,1) elements, 2 DOFs are
assigned to each edge.

One observation is that for the tetrahedral grid, the space
spanned by {V x NjJ =1,...,,12} from Tet-(1,1) is the same
as that spanned by {V x Nj, j = 1,...,6} from Tet-(1,0), which
means that Tet-(1,1) can not improve the accuracy of the so-
lutions, as long as only the magnetic field is concerned (e.g.
in the static calculations). On the contrary, for the hexahedral
grid, the space spanned by {V x Nj,j = 1,...,24} from Hex-
(1,1) is larger than that spanned by {V x Nj, j = 1,..., 12} from
Hex-(1,0). Therefore, even the field representation should be
improved.

i=1,...6.

III. THE DIFFICULTY WITH OBLIQUE LAMINATIONS

In the case of laminations not aligned with the mesh, the
power loss computed with the lowest order Nédélec elements
can be very inaccurate. This is demonstrated for an eddy current
problem in a cube, refered hereafter as the cube problem.

Assume an Im x Im X 1m conducting cube, with homoge-
neous permeability {1 = {1y and anisotropic conductivity . The
magnetic field at the surface of the cube is specified as a given
time-harmonic field A x H = A x I:|5. We want to compute the
power dissipation due to the induced current in the cube. The
computational domain is Q = {(x,Y,2)|(x,¥,2) € [0,1]*}.

In the simplest case, the given field is homogeneous Hs =
Hyy = const. If the laminations are effective so that there is little
or no eddy current, the magnetic vector potential A satisfies

A A
Wy _ %A =By = const.

0z ox ®
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If the lamination is aligned with the (hexahedral) grid, e.g.

- 1 00
o=co| 0 1 0 |, (4)
000
the solution of the time-harmonic problem is a homogeneous
field H = I:|S, with zero eddy current. Therefore, Ex = 0 and
Ax = 0. Equation (3) then shows that Az, and consequently E,
are linear functions of X. Such solutions can be represented ex-
actly by the mixed order hexahedral elements Hex-(1,0).
For the oblique lamination, e.g.,

_ 05 0 —05
o=co| 0 1 0 |, )
05 0 05

the solution is still a homogeneous field with zero current, which
means Exy = E; and Ax = A;. Equation (3) and Ax = A; yield

0A;  O0A«

7w
Therefore, at least one of 0Ex/dx and dE;/dz does not vanish.
Such E-field can not be represented exactly by the mixed order
edge elements, where the basis functions have constant tangen-
tial components along the associated edges. The mixed order el-
ements represent Ey (Ez) as piece-wise constant functions along
X (2).

The approximation error of the power dissipation can be es-
timated from (6). Equation (6) implies that the eddy current
|| =0.560(Ex — Ez)| = [0.500 jo(Ax — Az)| ~ GohwBy, where
his the mesh size. The power loss density can then be estimated
as J?/cg ~ O'thszg, which is quite large even for a fine grid.

The exact power loss is zero for the problem described above.
In more general cases, the eddy current does not vanish with the
oblique lamination (5). Let us consider an example, when the
given field His at the surfaces of the cube is due to an infinitely
long wire, located outside the cube, with a time-harmonic cur-
rent flowing in the z-direction. We compare the accuracy of
power loss computations with different types of elements.

©)

(b) Hex(1,1)

(a) Hex(1,0)
~
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Fig. 1. Eddy current pattern of the cube problem with external field from a
straight wire and oblique lamination in the Xz-plane. The current is computed
with (a) Hex-(1,0) and (b) Hex-(1,1), and plotted at the same plane. One quarter
of the solution plane is shown.

Figure 1 shows the eddy current pattern with oblique lamina-
tion (5) in the Xz-plane. The current is computed with Hex-(1,0)

and Hex-(1,1) and plotted at the same plane at Gaussian quadra-
ture points. (In this calculation 8-points Gaussian quadrature for
a hexahedron is used, which gives exact integration for element
matrix calculation.) Figure 1(a) shows that Hex-(1,0) elements
gives a current pattern with oscillations, whereas the Hex-(1,1)
elements, which approximate correctly a linear E-field along all
directions, give a much more regular current pattern, as shown
in Fig.1(b).

The oscillating pattern in Fig.1(a) can be understood by look-
ing at the electric field in the conductor. Figure 2 shows the x-
and z-components of the E-field, plotted along X. For Hex-(1,0)
elements, Ey is piece-wise constant along X, and E; is piece-
wise linear along X. Since for this lamination, Jx = 0.56¢(Ex —
E;),J; = 0.500(Ez — Ex), both Jx and J; will have oscillating
characteristics along X. Obviously, both Jy and J; are oscillating
also along z, since Ey is piece-wise linear and E; is piece-wise
constant along z

-5

1% 10 - - - -
e
solid: Hex(1,0) e
051 dashed: Hex(1,1) e |
g 0:E p*
x 2
°*
w
« or b
w
-0.5r ]
1) ]
9%
J =050(E -E)
X xSz
-15¢ ]
J =050, -E)
2 2" x
2 . . . .
0 0.2 0.4 0.6 0.8 1

Fig. 2. The x- and z-component of the electric field along x, for the cube test
problem with oblique lamination and hexahedral grids. Solid curves correspond
to Hex-(1,0) elements; dashed curves correspond to Hex-(1,1) elements. Curves
marked with “0” are Ex-fields, curves without makers are E,-fields. The E-fields
from Hex-(1,1) elements are shifted up by 8E = 0.5 x 10~ in the plot.

The approximation with Tet-(1,0) elements is even worse,
since in this case the grid can never be aligned with any lam-
ination in a fixed direction. The current pattern seems rather
chaotic as shown in figure 3, where the same cube problem with
non-uniform field is solved for the lamination (4). The analyti-
cal solution in this case again has zero eddy current, which can
be obtained with Tet-(1,1) elements, even at the coarsest grid.

Figure 4 shows the convergence of the computed power loss
with respect to the grid refinement, for tetrahedral and hexahe-
dral grids. Here, we consider the cube problem with oblique
lamination (5) and external field from an infinite wire. From the
figure, one can see that all four types of elements give the same
converged loss value. However, the accuracy is very different on
finite grids. With Tet-(1,0) elements, the relative error is about
68% even on the finest grid, where the mesh size is about 30%
of the skin depth. With the same number of nonzero matrix
elements, the Hex-(1,0) grid gives a relative error of 57%. In
contrast, the Tet-(1,1) and Hex-(1,1) give 2.9% and 4.5% error,
respectively, with the same number of nonzero matrix elements
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Fig. 3. Eddy current pattern of the cube problem with 6, = 0, shown at the
xy-plane. The lowest order Nédélec tetrahedral elements are used.

at coarser resolution.
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Fig. 4. Convergence of power loss with grid refinement, for the cube problem
with oblique lamination and external field from an infinite wire. Different el-
ements are used. Ny, is the number of non-zero matrix elements. The loss is
calculated with exact integration.

Since the oscillating current pattern from Hex-(1,0) elements
(see Fig.1(a)) has quite regular behavior, one would expect that
some interpolation techniques could help in establishing better
results [11]. We found that a suitable procedure is to apply mid-
point integration to compute the dissipation. Another, similar
way is to average the current over Gaussian points before com-
puting the power dissipation. Both techniques, applying to Hex-
(1,0) elements, give quite accurate power dissipation even on
very coarse grids.

Figure 5 shows the convergence of the computed power loss
with respect to the grid refinement. The difference with figure 4
is that here we applied midpoint integration to compute the loss.
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Fig. 5. Convergence of power loss with grid refinement, for the same problem
as in Fig. 4, but the loss is calculated by midpoint integration. N,, is the number
of non-zero matrix elements.

The advantage of averaging technique for Hex-(1,0) elements is
obvious: the error of power dissipation decreases from 57% to
less than 1%. The averaging is not very helpful for Tet-(1,0)
elements: the error decreases only from 68% to 39%, for the
finest grid. The averaging does not increase the accuracy for
Tet-(1,1) and Hex-(1,1) elements, for this test problem.

IV. COMPUTATIONS FOR A GENERATOR MODEL

For the generator problem, discussed in [6][7], the simulated
region contains an angular segment of the four stacks at the axial
end of the hydrogenerator. In the circumferential direction of the
generator, the simulation region includes a slot and half a tooth,
and its physical dimensions are 50mm x 749mm X 400mm.
The geometry and the material properties are described in de-
tail in [6][7]. In this problem, both the electric conductivity and
the magnetic permeability are anisotropic. Particularly, the lam-
inated cores in the four stacks are replaced by a homogeneous
material with zero conductivity along the axial direction. The
boundary conditions have been prescribed as vanishing normal
magnetic flux density B, = 0 on certain symmetry planes I'g and
the tangential components of the magnetic field Hs, as calculated
from the Biot-Savart law for the currents in the rotor coil, on the
remaining surfaces I'y.

In this problem, there are several non-connected conducting
regions Q. (laminated stator cores, finger), a simply connected
non-conducting region Q¢ (air, rotor part, clamping plate), and
the coil region Qg, where the source current J is specified. The
coil region is separated from the conducting regions.

In the non-conducting region ¢, we solve an equation for the
magnetic scalar potential

—V-H.Vy=0, %)
where the permeability I:J is in general a tensor. The magnetic
field is calculated as H = —Vy.

In the coil region Qg, where the time-harmonic source current
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is specified, we solve the curl-curl equation for the magnetic
vector potential A

-1 L
VxHl VxA=J (8)

In conducting regions Q, we use the so-called ungauged AV
formulation, which improves dramatically the convergence rate
of the iterative solver, compared with gauged A-formulations

[7].

=1 R
Vx U VxA+
_vV.

C)]
10)

(joA+WW) =0,

o-
o -(joR+VV)=0.
The conductivity G is typically a tensor to model the lamina-
tions, and ® is the angular frequency. The electric field in the
conductors is computed as E = —(jowA+ VV), and the eddy cur-
rent is Jg =0 E.

Galerkin’s method is applied to solve Egs. (7)-(10). A scalar
function ¢ is introduced in the coil region to guarantee solvabil-
ity of the discretized equations [7]. The first order nodal-based
elements are used to approximate all the scalar functionsV, ¢, y,
and the first order incomplete/complete edge elements are used
to approximate vector potential A.

Fig. 6. Power loss distribution at the surface of the first stack of the laminated
stator core, calculated for the generator problem with the lowest order Nédélec
hexahedral elements.

Figure 6 shows the power loss distribution at the surface of
the first stack of the laminated stator core, calculated for the
generator problem with hexahedral elements Hex-(1,0). (In or-
der to show the eddy current effect clearly, this figure, as well
as figures 8 and 9, is plotted with a distorted aspect ratio along
X, Y, and z directions. Therefore, the elements could look “elon-
gated” along certain direction.) The eddy current is distributed
mainly along one of the bottom corners of the stack, as a result
of the magnetic field distribution and laminations.

The eddy current in the corner region is plotted in figure 7,
at the lamination plane. A regular pattern is observed. Such
pattern is also obtained with Hex-(1,1) elements.
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Fig. 7. Eddy current pattern in the corner region of the first stack, computed for
the generator problem with Hex-(1,0) elements.
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Fig. 8. Power loss distribution at the surface of the first stack of the laminated
stator core, calculated for the generator problem with lowest order Nédélec tetra-
hedral elements.

Figure 8 shows the power loss distribution at the surface of the
first stack of the laminated stator core, calculated for the same
problem with tetrahedral elements Tet-(1,0). The irregular be-
havior of the solution is clearly seen. The computed total power
loss is more than 20 times larger than that from the hexahedral
grid shown in Fig. 6. Contrary to this, the complete basis Tet-
(1,1) gives much better results, as shown in figure 9. The eddy
current has the same density distribution as that computed with
Hex-(1,0) elements (see Fig. 6). The total losses computed with
Tet-(1,1) and Hex-(1,0) agree within 4%.

The current pattern at this corner shows clear differences be-
tween Tet-(1,1) and Tet-(1,0) elements. Figure 10 shows the
eddy current in xy-plane across the corner, for both Tet-(1,0)
and Tet-(1,1) elements. The current computed with Tet-(1,0) is
highly oscillatory. Tet-(1,1) elements give a much more regular
pattern.

Figure 11 shows By, computed along a line across the stator
core of the generator with Tet-(1,1), Hex-(1,0), and Hex-(1,1)
elements. The field from the tetrahedral grid has been smoothed
in the plot. One can see that different basis functions give quite
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Fig. 9. Power loss distribution at the surface of the first stack of the laminated
stator core, calculated for the generator problem with lowest order complete
tetrahedral elements.
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Fig. 10. Eddy current pattern at the corner of the first stack, computed for the
generator problem with Tet-(1,0) and Tet-(1,1) elements.

similar results.

V. ADAPTIVE MESH REFINEMENT

For the adaptive mesh refinement, we use an a posteriori,
element-wise, local error estimator 1

1 _ L o
ne=hg EHV»BHSWHVXHfJGstuﬁ +
N

———

o Qo UQs

2hs

1, = 1 - . _
t\l[ﬁ‘B]H%+6—H[ﬂ~Jo]H%+uH[ﬁX H]II3
78 go” T

o o QoU0s

where {B,H,J5} is the FEM solution on the current grid, he is
the characteristic dimension of the element considered, and h ¢
is the characteristic dimension of the element face f, [-] denotes
the jump value across the element face, and || - || is the L»-norm.
This estimator can be derived using the energy norm for the
local residuals, following Refs. [9] and [8]. Some aspects con-
cerning this error estimator can be noted:
o For the first order tetrahedral elements and Hex-(1,0) ele-
ments, since V - B as well as V x H vanishes inside each element,
these two terms give no contribution to the error estimator.
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Fig. 11. By computed along a line across the stator core of the generator with
Tet-(1,1) (solid line), Hex-(1,0) (dashed), and Hex-(1,1) (dotted) elements. The
results from the two hexahedral grids are almost indistinguishable. The fre-
quency is f = 50Hz.

« If two neighboring elements have different material properties
U or o, some average value of the coefficients before the inter-
face face integral has to be taken, we adopt the one described in
Ref. [9].
« For the tetrahedral grids with isotropic refinement, the choice
of the parameters he and h¢ has little influence on the refine-
ment process. This is not the case for the hexahedral grids and
anisotropic refinement. The refinement here is more sensitive to
how these parameters have been chosen. For instance, one could
choose hg as the shortest edge of the hexahedron, or the longest
one, or the averaged edge lengths. According to [8], the proper
choice is to set hg = hyi, and hy = hy, where hy,, is the mini-
mum distance inside the local element, and hp, is the dimension
of the element along the direction, perpendicular to the face f.
We found that this choice does restore the O(h?) convergence
rate for the power dissipation.
« Since we are using conforming hexahedral grids, local refine-
ment is not possible. Instead, we use global refinement for hex-
ahedral grids, based on “global” error estimators computed as
the sum of local ones along certain directions. For anisotropic
refinement of hexahedral grids, we adopted the following pro-
cedure.

The local error estimator M can be rewritten as

Mo =Mge + (Mag)* + (M)> + (M%),

where Nee represents the contribution from the volume integrals,
n:‘fy’z represent the contributions from the surface jump integrals
at surfaces which have normal vector along X, Y,z directions, re-
spectively. Thus, each local estimator is splitted into three parts:

(€52 =ne+ (E)% (ED)? =na+ (%)%, (E2)* =+ (%)™

The global error estimator along X direction is defined as

G(x) =2 [oge +B(E +E)].

e
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where the sum is taken over all elements € whose center has the
same X-coordinate. The parameters o. and 3 are defined such
that

oa+2p=1, B =Cao.

The estimators along y and z directions, {y(y) and {,(2), are
defined in a similar manner. Finally, the grids are refined ac-
cording to the global indicators § = {{x, {y,{,}. The refinement
is anisotropic if the parameter C4 # 1.

34 T T

solid: exact integration
dashed: midpoint integration

o: Tet—(1,1)
+: Hex(1,0)

30

Power Loss
N
o

22 R
~+:::+:::+‘57—7;, ’11"—\*;,
i
18 . . . .
0 0.5 1 2
Nnz % (- h) x10°
Fig. 12. Convergence of power loss with grid refinement, for the generator

problem, using different elements and different integration schemes.

The convergence of the power loss with grid refinement for
the generator problem is shown in Fig. 12, both for exact and
midpoint integration in the laminated region. The problem has
been solved with Tet-(1,1) and Hex-(1,0) elements. Also Hex-
(1,1) elements were tested but always gave worse convergence
than both Tet-(1,1) and Hex-(1,0). For the tetrahedral grids,
we did isotropic refinement; for the hexahedral grids, we used
anisotropic refinement with he = hp;, and hy = hy. The best
choice of parameter C; we found for the generator problem is
Ca = 2 for Hex-(1,0) elements. The nominal O(h?) convergence
rate can be easily recovered with local refinement, as shown for
tetrahedral grids. With global refinement (for hexahedral grids),
it is still possible, but more difficult to recover O(h?) conver-
gence for the power dissipation. Nevertheless, the values ex-
trapolated to zero grid size for these schemes agree within 4%.
Figure 12 shows that Hex-(1,0) elements give much more accu-
rate results, with the same number of non-zero matrix elements
(hence approximately the same computation effort). Midpoint
integration improves the convergence slightly for the Hex-(1,0)
elements. For Tet-(1,1) the improvement from midpoint inte-
gration is considerable, and this solution gives almost as good
convergence as the Hex-(1,0) elements aligned with the lamina-
tions. Similar differences between the different bases are found
for the convergence of the magnetic energy, but here the con-
verged values agree within 1%.

Figure 13 shows the refined hexahedral mesh for the generator
problem at 50Hz, after 5 steps of anisotropic refinement. Shown

Fig. 13.  The refined hexahedral mesh for the generator problem at 50Hz.
Anisotropic mesh refinement is used to recover O(f?) convergence.

also the 2-D geometry (bold lines) of the generator in Xy and yz
planes.

VI. CONCLUSION

For anisotropic conductivity, we found that the first order
Nédélec elements on tetrahedral grids give very inaccurate re-
sults, for the power dissipation from conduction currents. In
practice, this type of elements can not be used for realistic prob-
lems, such as the generator problem considered in this paper.
The hexahedral elements give much better results, even on quite
coarse grid, when the grid is aligned with the laminations. If this
is not possible, good convergence is found for the currents at the
midpoints of the hexahedral elements and the Hex-(1,0) basis.

The complete first order Nédélec elements give significant
improvement on tetrahedral grids, at the expense of almost dou-
bled number of DOFs in the conducting regions. When com-
bined with midpoint integration, they perform almost as well as
the Hex-(1,0) elements.

The main conclusion is that for laminated eddy current com-
putations, the lowest order hexahedral element is the best
choice, in the sense of both accuracy and efficiency. Further-
more, midpoint integration is generally favorable in regions of
laminated materials.

When the grid is aligned with the laminations,we found it
is possible to recover the O(h?) nominal convergence rate for
the power dissipation with conforming hexahedral grids, by us-
ing anisotropic adaptive refinement techniques. For this kind
of calculations, non-conforming hexahedral grids with local
anisotropic refinement may be more efficient and we plan to im-
plement such schemes in the future.
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FEM ALGORITHMS FOR MAXWELL'S
EQUATIONS

T. Rylanderl, R. Bergstrémz, M. Levenstam?, A. Bondeson!, C. Johnson?
!Department of Electromagnetics, 2Department of Mathematics
Chalmers University of Technology, Géteborg

1 Introduction

Although the FDTD (Finite-Difference Time-Domain) scheme [1,2] has been very suc-
cessful for electromagnetic problems, its connection to structured grids makes it difficult to
use in applications with complicated geometry. For complex geometry, which frequently
arises in technical applications, unstructured grids are generally needed, and in such cases
FEM is the method of choice. Unstructured tetrahedral grids allows the use of powerful
grid generators [3].

This is the basis for a collaborative project started early 1998 at Chalmers University
of Technology between the Department of Electromagnetics and the Department of Math-
ematics. The project is connected to the Chalmers Finite Element Centre ¢ and involves
two graduate students under the NGSSC program. The aim of the project is to implement
FEM schemes for Maxwell’s equations in 3D that are accurate, efficient and flexible for
multi-purpose applications and can deal with complex geometries.

2 Choice of elements

Several FEM schemes have been developed for solving Maxwell’s equations, both in the
frequency [4-8] and time [9] domains. Early approaches mainly used Galerkin formula-
tions and nodal elements for the scalar and vector potentials [4,5]. However, we prefer
formulations in terms of the physical fields E and H because they are more accurate for the
fields and should be easier to couple to calculations involving other physical phenomena or
to other methods for solving Maxwell’s equations.

There are well known difficulties in solving Maxwell’s equations using finite elements
[7,8, 10]. Straightforward application of nodal elements for E and H in frequency-domain
calculations gives rise to “spurious solutions”, which are rapidly varying spatially, yet have
low frequencies. The occurrence of such spurious solutions can be understood by means
of “numerical dispersion relations” [10—13]. Paulsen and Lynch [10] added a penalty term
x (V- ¢E — p)? to the variational form to eliminate the spurious solutions. This approach
can be used to turn Maxwell’s equations into a vector Helmholtz equation. Unfortunately
this procedure introduces other extra solutions for which V - E # 0. (Quite obviously, the
solutions of the Helmholtz and Maxwell equations are not identical.)



A FEM approach, that is well suited to high frequency applications, uses the Galerkin
method with the edge elements of Nédélec [6,7]. In fact, the lowest order edge elements
on a cubic grid together with mass lumping leads to the FDTD. Edge elements avoid spu-
rious solutions and have mixed order. For the lowest order edge elements, this means that
in any direction, the component transverse to that direction is a linear function, while the
longitudinal component is constant inside one cell. At the cell boundaries the tangential
components are continuous (the elements are curl-conforming), while the normal compo-
nent is discontinuous.

It may be thought therefore that edge elements cannot deal correctly with space charge
and cannot be used for an electrostatic problem. However, as will be shown in the following
section, the edge elements work well also for almost electrostatic problems. A disadvantage
of the edge elements on tetrahedrons compared with the FDTD is that “mass lumping” leads
to a mass matrix that is not guaranteed to be positive definite, so that explicit timestepping
cannot in general be used [9].

The other approach that we are pursuing is a node-based scheme for both E and H
in the time-domain which permits mass lumping and explicit time-stepping. Although a
frequency-domain analysis of such elements together with the strict Galerkin method show
spurious eigenmodes, these can be avoided in time-domain calculations by adaptive grid
techniques. We have carried out tests of such node-based elements and find good perfor-
mance in the time-domain. We will study the stabilization of the spurious modes by means
of the combined Galerkin/least squares method [14].

We plan to test higher order finite elements and time-stepping and the resulting schemes
will be compared for accuracy, efficiency, stability and the absence of spurious solutions.
We are also examining the possibilities of implementing different forms of boundary con-
ditions and of matching the solutions to those of other schemes for Maxwell’s equations
(the FDTD and the Method of Moments), as well as to FEM modeling of other physical
processes coupled to the electromagnetic fields. Adaptive mesh generation based on a pos-
teriori error estimates will be applied to optimize the computational work required to reach
a certain accuracy.

3 Edgeedements

Edge elements are constructed for solving the electromagnetic problem
1 . , o\ =
Vx|[-VXE +(]w0—w )EZO. €))
I

The edge elements contain a null space for the operator V x V x, (“electrostatic” compo-
nents). Furthermore, there are solutions whose eigenvalues converge towards those of the
correct “physical” solutions as the resolution is increased and there are no spurious solu-
tions at low frequencies [7, 8]. We have verified that this holds true on a 2D rectangular
region with perfectly conducting boundaries. The eigenvalues converge quadratically with
the grid spacing h, and the convergence can be both from below and above.



It is not well known how edge elements handle space charge, and we therefore decided
to test the elements in a capacitance problem at low frequency w/2m. Because of the null
space for the V x VX operator, the frequency cannot be chosen as exactly zero. The
test case is an idealized problem from the field of lossy dielectrics: calculate the effective
dielectric constant of a dielectric medium containing small particles with finite conductiv-
ity. Specifically, Eq. (1) is solved in the two dimensional computational domain shown in
Figure 1. In the dielectric medium (domain I) the dielectric constant is ef = 4, and the con-
ductivity 7 = 0. In the cylindrical conducting regions (domain II) the dielectric constant
is the same ¢! = 4, and the conductivity o/f = 1075 S/m. The simulation domain is 1
m X 1 m and the radius of subdomain II is 0.309019 m. The upper and lower boundary

I

®)

Figure 1: Computational domain with two different materials.

of the square are perfect electrical conductors. The simulation domain is discretized using
triangular elements and the electric field is expressed in terms of the standard linear edge
elements. The electric field is forced to be periodic in the horizontal direction and we apply
Galerkin’s method to Eq. (1). The voltage between the plates is prescribed as V = [ E-dl
along the vertical boundaries and this is imposed by means of a Lagrange multiplier. (As a
consequence, Maxwell’s equations are not strictly satisfied on the vertical boundaries.) The
resulting system of equations is solved for 7 frequencies from 200 Hz to 2 MHz. Figure 2
shows the electric field for the frequency 15.4 kHz.
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Figure 2: The real and the imaginary part of the solution, to the left and right respectively.



We have computed solutions for discretizations with 322 triangles and then doubled the
linear resolution twice to make a convergence study for the resulting complex capacitance
per unit length, C(w, h) = co+c1h®+... . There are different ways to extract the capacitance
from the solution and the order of convergence is affected by this definition. A simple
definition is C = @/V, where the charge @ = [ eE,dl, for example along the conducting
plates. With this definition, the order of convergence « is typically between 1 and 1.5. By
contrast, we find clearly quadratic convergence when C' is computed from the quadratic

form .
oV :/ (e— E) |EJ2dS.
I+I1 w

Convergence is worst at the frequency where the imaginary part of C' maximizes. For this
case, the relative error on the coarsest mesh with 322 triangles is about 4 per mille. The real
and imaginary part of the effective permittivity eiﬁ are shown in Figure 3 as circles.
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Figure 3: Left - real and right - imaginary part of the effective permittivity.

An excellent approximation to C'(w) can be obtained as the complex conductance of
a circuit consisting of the high frequency capacitor Cy = 4e in parallel with the series
combination of a resistor R and a capacitor C; giving
Ci
C=0Cy+ 14 jwRC, 2)
This gives a Padé approximation for C' and for our particular test case R = 333.6 k)
and C; = 30.46 pF. The low frequency limit agrees with the result of a Boundary Element
analysis at zero frequency. The fit (2) is shown as the curve in Figure 3. If we exclude the
highest frequency 2 MHz (where finite wavelength, or electromagnetic, effects are nonneg-
ligible) and the lowest frequency 200 Hz (where convergence is uncertain because of an
ill-conditioned matrix) the relative error of the fit (2) is less than 0.3 per mille.
We conclude that the lowest order edge elements converge as O(h?) in an integral sense
(although the local field components tend to converge as O(h)) and handle space charge



correctly. Furthermore, although edge elements cannot be used in strictly static problems,
they work well at surprisingly low frequencies.

4 Node-based Schemes

When using node-based elements we solve the Maxwell’s equations directly. For time
dependent problems we apply the Lee-Madsen formulation [15, 16]

(¢Ew.§) + (0B, 8) = (Vx H,6) = (J,9) 3)
(nH, %)+ (E,V x¥) = 0 )

for 0 < ¢ < T and with initial conditions E(0) = Ej and H(0) = H, where Hy satisfies
V- (uHo) = 0in Q and Hy - 7i = 0 on T. The boundary condition 7i x & = 0 on T x (0, T
is then fulfilled in a weak sense which simplifies the implementation. If not the whole of
the boundary consists of perfect conductors, a boundary integral has to be added in Eq. (4).

In two dimensions this formulation has been tested successfully. Problems with spuri-
ous eigenmodes in reflected waves could effectively be avoided by resolving the reflecting
objects and only eight nodes per wavelength were needed to get the phase velocity within
one per cent of the correct one.

We have now tested this in three dimensions with promising results. In Figure 4 we
show an electromagnetic wave in three dimensions, interacting with a complex object. The
mesh consisted of approximately 1.1 million elements. In this particular case an implicit
time stepping algorithm was used but, as mentioned above, mass lumping and explicit meth-
ods can be used.

For magneto- and electrostatic problems we have used the least squares finite element
method [17]. In this formulation the equations are solved in primitive variables and the
divergence constraint is included in the formulation. In this approach the boundary condi-
tions are fulfilled by imposing them in a strong sense. The solution strategy is based on an
adaptive multigrid solver. In figure 5 an example of a magnetostatic problem can be seen. It
is the resulting magnetic field produced by a constant current in a solenoidal wound around
a core. Both the surrounding air and the inside of the coil and core have been meshed us-
ing an advancing front mesh generator. This mesh has then been adaptively refined by the
solver. In figure 5 isolines of the magnitude of the magnetic field can be seen in a plane. In
fig 6 an isosurface of the same quantity is shown.
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Figure 4: Time evolution of the magnitude of the electric field.
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Figure 5: Magnitude of the magnetic field around a coil

Figure 6: Isosurface of the same quantity as above
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Dispersion Analysis of Galerkin Least Squares
Approximations of Maxwell’s Equations *

Rickard Bergstrom! Mats G. Larson'

Abstract

The Galerkin Least Squares (GLS) finite element method is obtained by interpo-
lation between the standard Galerkin method and the usual least squares method for
the time-harmonic Maxwell’s equations. A dispersion analysis of the GLS method is
presented and it is shown that by choosing a scalar interpolation parameter properly a
method with an improved discrete dispersion relation is obtained.

1 Introduction
In this note we introduce a Galerkin Least Squares (GLS) finite element method for
Maxwell’s equations by interpolating, or simply taking a linear combination, between the
standard Galerkin method and the least squares finite element method. For details on the
least squares method see, for instance Monk and Wang [5] and the book [1], by Jiang.
One motivation for introducing the GLS method is to improve the numerical dispersion
relation. As is well known the phase error in the standard Galerkin method always have
the same sign, independent of the propagation direction of the wave, see for instance Monk
[6]. Here we extend the dispersion analysis to the GLS method, and as a special case,
the least squares method. We find that in the least squares method the phase error also
have the same sign independent of the direction, but with opposite sign compared with
the standard Galerkin method. Further we show that by choosing the parameter in the
interpolation between the standard Galerkin and the least squares method we may improve
the dispersion relation. In particular, the phase error may have different sign depending
on the direction of the wave. This property is believed to be desirable for computations on
unstructured grids where cancellations of phase errors with different signs may occur, see
the discussion in Wu and Lee [7].

2 The Galerkin Least Squares Method

For the dispersion analysis we consider the time-harmonic Maxwell’s equations in R?, with
d = 2,3: find the electric and magnetic fields, £ and H, such that

(1) —iwE -V x H=0,
—iwH+V x E =0,
V.-E=V-H=0,

*In the printed proceedings, this papers starts on page 748.
tChalmers Finite Element Center and Department of Mathematics, Chalmers, University of Technology,
Gothenburg, Sweden.
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where w is the frequency.

To discretize this system of equations we introduce a triangulation of R? and the
corresponding finite element space V of piecewise linear continuous vector polynomials. The
Galerkin least squares (GLS) method is obtained by interpolation between the standard
Galerkin method and the least squares method and takes the form: find U = [E, H] € V,
such that

(2) (1-a)Ag(U,U) +aArs(U,U) =0 forallU €V,

where a € [0,1] is a parameter. Further Ag(,-) is the bilinear form associated with the
standard Galerkin method

(3) A¢(U,U) = —(iwE,E) — (V x H,E) — (iwH,H) + (V x E, H),
and Arg(-,-), is the form associated with the least squares method

(4) Aps(U,U) = (iwE + V x H,iwE + V x H)
+ (iwH — V x E,iwH — V x E)
+(V-BE,V-E)+(V-HV-H).

Note that for @ = 0 we obtain the standard Galerkin method and for @ = 1 the least
squares method. For all @ € [0, 1] we obtain a scheme with optimal order of convergence.
The dispersion relation may however be improved by choosing the proper a. We now turn
to this topic.

3 The Dispersion Analysis and Examples

To compute the numerical dispersion we consider a uniform triangulation of R¢ and assume
a plane wave solution propagating in the k direction (|k| = 1), of the form

(5) E(z) = Eoe™**  and  H(z) = Hoe'*Fe

where Fy and H, are constant vectors and k is the wave number. For the continuous
equations, this assumption yields the following dispersion relation between w and k:

(6) w= |k|7 w:_|k|7 w =0,

independent of the direction k.

If we instead insert (5) into the GLS finite element formulation (2) we get an eigenvalue
problem for each node in the triangulation, which determines the numerical frequency @
in terms of k and k. Solving these eigenvalue problems for a range of k& and k gives the
numerical dispersion relation &(k, k).

Here we consider two different triangulations, one with equilateral triangles and one
with right angled, see Figure 1. For each triangulation, we use symmetry to conclude that
the eigenvalue problems associated with the nodes are identical. Thus, we obtain only one
(small) eigenvalue problem for each triangulation.

In Figures 2 and 3 the numerical dispersion relation is plotted for the standard Galerkin
and the least squares methods respectively. The contour lines are 0.02 apart, and the
quantity plotted is |@/k|, which should, of course, be 1. Thus the plots give an easy visual
way to study the dependence of the error in the phase speed on the wavenumber k£ and
propagation direction k.
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Fig. 2. Contour maps of the phase speed error as a function of £ = khk for the standard
Galerkin method, where h is the length of the side of a triangle in the triangulation.

We can see that for the least squares method, the phase speed will become larger than
the exact value for increasing k, while for the standard Galerkin method we instead get a
smaller phase speed. We can also see the dependency of I;:, which is slightly favourable for
the least squares method, at least on the equilateral triangulation.

The different behaviours of the standard Galerkin and least squares method suggest that
a properly chosen « in the GLS method (2) should produce a method with an improved
dispersion relation. In Figure 4 we show the dispersion relation for the GLS method with
a = 0.4. This particular value of « is somewhat arbitrarily chosen and we plan on studying
the choice of « in a future work.

We can see that the region |@/k| ~ 1 is larger for both triangulations compared with
the other two methods. In particular, in Figure 5 we compare the regions for the standard
Galerkin and least squares methods where the phase speed error is less than 4%. In addition,
for the GLS method we also obtain a phase speed that is larger than the exact value in
some regions and smaller in other. This property is considered important when using
unstructured triangulations, since in that case, the phase error may cancel as the wave
propagates from element to element. See Wu and Lee [7] for further discussions of this
topic.
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(a) Egquilateral triangulation (b) Right angled triangulation

Fi1Gc. 3. Contour maps of the phase speed error as a function of & = khk for the least squares
method, where h is the length of the side of a triangle in the triangulation.

(a) Egquilateral triangulation (b) Right angled triangulation

F1G. 4. Contour maps of the phase speed error as a function of £ = khk for the GLS method
with a = 0.4, where h is the length of the side of a triangle in the triangulation.

05 1 15 2 25
k.h

(a) Galerkin least squares method (b) Standard Galerkin method

F1c. 5. The coloured zone indicates the region where the phase speed error is less than 4%,

for an equilateral triangulation.
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Object Oriented Implementation of a
General Finite Element Code

Rickard Bergstrom

Abstract

We present the framework of a finite element code, written with
the explicit aim of being as general and as close to the mathemati-
cal viewpoint as possible. Due to the object oriented programming
paradigm, the weak form of the mathematical model is easily imple-
mented in a style close to the mathematical formula, and element types
and quadrature rules can quickly be changed or easily implemented.
This work only concerns the discretization of the problem, and does
not consider mesh generation or solvers for the linear system.

1 Introduction

The finite element method (FEM) is a general framework for solving several
classes of PDE:s and ODE:s, and there are several program packages that
have implemented the method, both commercial and free. Many of these
implementations are however written for a certain engineering application
in, e.g., solid mechanics, and it may be difficult to adapt the code to a
specific need. This paper describes a code which instead tries to stay close
to the mathematical framework of FEM. The benefits include an accessible
problem formulation and easy extension with new element types etc.

This implementation is made in C++4, a language gaining popularity in
the numerical society. Advances in compilers and programming techniques
have made efficiency comparable to that of simpler structural languages
such as Fortran. The possibility of creating new types, called objects, and
specify their properties makes it possible to write programs which are highly
readable and with the same notations as in the literature on the subject.

There are similar object oriented code projects with different generality
and level of abstraction. In solid mechanics, large scale design is described
in e.g. [11] and [21] and a smaller “idea testing” design is presented in
[25]. A more general approach can be found in [13]. Also SIFFEA [15] is



close to this projects but is written for 2D calculations. Another inspiration
for this code has been the Norwegian commercial package DiffPack [1], also
described in [18].

2 Aim of the code

When this coding project started, there was a need for a flexible finite el-
ement code for research purpose. Different research projects imposed the
necessity for an easy change of the weak form in which the problem was
posed, as well as the possibility of implementation of different types of ele-
ments. Multiphysics with coupled equations or hybrid methods was also a
possible extension. Moreover, the different applications made it necessary
to have a large range of algebraic solvers to use.

These specifications have to a large extent been met by the implementa-
tion presented in this paper. The weak form is isolated and easily readable.
This makes the change of finite element formulation or the implementation
of a new equation straightforward. Several different types of elements have
been incorporated, including standard nodal elements of various polynomial
order and the Nédélec edge elements.

Many different projects have started with the core of this code and later
been transformed to more specific, and thus more fine tuned and efficient,
codes. The applications include least-squares FEM for interface problems
[8], discontinuous LSFEM [6][9], magnetostatic computations with coupled
scalar and vector potentials [14], eddy current computations with edge el-
ements [19][20] , hybrid FEM-FDM for the wave equation [5], and incom-
pressible flow in porous media [23], as well as smaller in-house projects con-
cerning, e.g., error estimators for higher order polynomial finite elements
and eddy current/heat transfer coupled problems. A parallel version of the
code has also been developed.

3 The abstraction of FEM

The strength of object oriented programming is that it is possible to im-
plement abstractions of the underlying problem, which make the code easy
to read, understand, and maintain. The code can be written in a way that
makes the coupling to the underlying problem direct and apprehendable.
In the case of scientific computing, it is natural to use the objects that
are present in the mathematical or physical formulation of the problem.
On the highest level, it is the equation (or rather the weak form when it



concerns finite element methods) together with boundary conditions, the
domain and possibly algebraic or constitutive relations that further define
the computational problem.

In the finite element method the element is the centerpoint. We will
adapt to the definition of Brenner and Scott [12] for this, i.e. a finite element
consists of

e a subdomain for the element,
e a function space defined on the domain, the shape functions,
o the degrees of freedom.

This is a general definition that includes all types of elements and methods.
Furthermore the concept of inner products, or integration, is needed to
form the weak form.

3.1 Implementation issues in object oriented numerical pro-
gramming

In scientific computing the efficiency of the code is an important issue. A
high level of abstraction in the code may impede performance greatly. It
is therefore necessary to compromise to get a code that is both general
and readable as well as efficient. To keep inner loops free of time consuming
function calls or other constructions, some of the abstract objects mentioned
above have been collected into the same class to facilitate numerically effi-
cient code. The different concepts are however clearly present.

4 Code details

The components described in this section have been used directly in the
main function of a C++ program. To hide details even further and make
the usage cleaner, it would of course be possible to wrap the objects together
in problem modules. One might thus see the program described in Section
5 as one part of a larger code.

The notation used in describing the code is based on that of Rumbaugh
et al. [22]. To represent a class, we use a box divided in three sections. The
first contains the class name, the second shows the class attributes, while the
third lists the methods in the class. Object relationship is shown with lines
connecting the class objects. A symbol on the line indicates the type and
number of relationships: no symbol identify only one object, a solid circle



termination means zero to many objects, diamonds indicate aggregation, i.e.
the class is made-up-of the attached classes, and finally, triangles are used to
indicate inheritance with the base of the triangle towards the derived class
and the tip towards the parent class.

4.1 Extent of the code

In this paper, we are only concerned with finding the discrete finite ele-
ment solution on a given geometry and mesh. Thus, no routines to generate
meshes or post-processing (except for adaptive mesh refinement) are in-
cluded. In practise, we have used either meshes from a separate program
package (such as ProEngineer or Matlab) or written routines to generate
meshes for a specific problem. Post-processing has been handled in the same
way. Most of the classes to handle the meshes have been provided through
another code project, related to DiffPack [1][18] and partly described in [7],
while some have been developed for this project. For self-containment a brief
description of the code used for grids, geometry and adaptivity is provided.

Furthermore, to have a large library of solvers to choose from, we have
used the software package PETSc [4][24]. This package is written in object
oriented C, and provides a nice interface to work with sparse matrices and
vectors and the solution process of matrix problems. For the parallel version
we used the METIS-package [2][16][17] to decompose the problem.

4.2 General structure
4.2.1 Basic objects

Some basic mathematical objects are essential when numerically solving
PDEs: matrices and vectors. We have chosen to use the implementation in
PETSc. It provides a basic Matriz type which is the interface to different
implementations, i.e. storage formats, of sparse matrices such as the tradi-
tional row oriented MatSeqA1J or the blocked version MatSeqBAlJ. Parallel
versions are also provided, e.g. MatMPIAIJ and MatMPIBAIJ. The Vector
object is analogous.

4.2.2 Element

An Element object contains all three parts of the definition of a finite element
cited above, following the discussion in Section 3.1. The parts are however
separated in the class. The object includes one part containing the grid
information concerning this particular element, i.e. the nodes and their
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Figure 1: Description of the Matriz and Element classes. Vectors are handled
analogously to Matriz.

coordinates. Note that there is not an Element object for each element
in the grid, but the information in Element is continuously updated with
geometrical information.

There is a Basis function object corresponding to the shape functions
mentioned above. However, objects of this type are only used as an interface
when communicating with the Equation class, the actual description of the
function space is implemented in different instances of Element, such as
quadratic polynomials on tetrahedrons, FlementTetQuad, or edge elements
on hexahedrons, ElementEdgeHex. The shape functions are implemented for
a reference element and operations on the functions are performed through
the Mapper. Finally, a map for going from local to global degrees of freedom
is needed.

4.2.3 Equation

In objects of this class, we include the weak form and routines to perform the
integration needed to form these functionals. For some applications it would
have been advantageous to isolate the integration, with the possible problem
of time consuming function calls or overloaded operators in the inner loops.
We have mainly considered integration by numerical quadrature and this
construction has been flexible enough.

Using information from an element and a quadrature rule, the Equation
has functionality to compute the element matrices by numerical integration.
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Figure 2: Description of the classes for the equation and boundary condi-
tions.

In order to do this, also element neighbor information is needed. Further-
more, the mapping from local to global degrees of freedom, provided by the
element, is used to compute global matrix indices for the element matrix
terms.

Different problems have been implemented in instances of Equation, e.g.
FEquationLaplace or EquationHarmonicMazwell, in a form very similar to the
analytical variational formulation, see the example in Section 5.

4.2.4 Boundary condition

Essentially, there are two methods implemented for boundary conditions.
The first is a direct implementation of Dirichlet conditions, BCStrong. In
this case we have chosen to keep the structure of the system matrix and
not eliminate the unknowns corresponding to degrees of freedom on the
Dirichlet boundary. In the case of a scalar Dirichlet condition, this consists
of zeroing rows in the matrix and inserting ones in the diagonal and data
values in the right hand side vector. When the condition involves normal or
tangential traces, a local coordinate transformation has been implemented
to be performed before operating on the matrix.

The second method, BCWeak, includes inhomogeneous natural bound-
ary conditions and weakly imposed conditions. Then additional integrals are
added to the weak form in a procedure identical to the one in Equation. For
interface problems or the discontinuous Galerkin method, there are classes
corresponding to BC Weak performing the same integration.
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Figure 3: Description of the Quadrature rules and Mapper classes.

4.2.5 Quadrature rule

This class a straightforward implementation of the quadrature rules used. It
isolates the implementation of the points for the quadrature rule and their
corresponding weights.

4.2.6 Mapper

The Mapper takes care of the transformation from the actual element in the
grid to a reference element. For a parametric mapping it uses an Element
object to define the mapping and to update the values of the shape function
in the quadrature points.

4.2.7 Discretiser

This is where the different parts are put together to assemble the system
matrix. The Element is updated for each element in the grid, new function
values are computed by the Mapper, element matrices are integrated in
Equation and assembled into the Matriz. In the case of the parallel version
of the code, this is also where partitioning of the problem is handled.

4.2.8 Solver

The Solver class we use is picked from the PETSc package. It contains a
large range of Krylov subspace methods, together with different precondi-
tioners. They are also implemented for parallel computations. We refer to
the manual of PETSc [3] for more details.



(" Element
Element

;

BasisFcn

Discretiser WW

H

- J

—— QuadRule

Matrix
\ J Equation
(" Vector )

Vector
E———
- J

Figure 4: The relation between the Discretiser and other classes.

Apart from the PETSc solvers, a multigrid solver has been implemented
and tested, see [10].

4.2.9 Grid and geometry

A Grid object contains the elements, nodes, and coordinates of the nodes of
the computational mesh. Elements and nodes are not implemented as sep-
arate classes but are represented as arrays in Grid. Derived from the base
class is, e.g., objects to handle nested adaptively refined meshes, GridFE-
Hier, and meshes for discontinuous/interface problems, GridDiscont. There
is also a class for surface meshes to handle boundary conditions, GridSur-
face.

The geometry description is handled by NURB curves and surfaces, and
collected into GridGeometry. The GridGeometry is used to compute correct
normals on boundary and interface surfaces, and to make sure that a refined
mesh respects the geometry by projecting new nodes onto the geometrical
surface.

5 An example: the Poisson problem

To get a better conception of how these classes interact in a code, we will
present a computation of the Poisson problem, written in pseudo C++ lan-
guage.
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Figure 5: The relation between the classes that handle geometry and meshes.

The starting point is to model the problem,

—V-AVu=f inQ, (5.1a)
n-AVu =gy only, (5.1b)
u=gp onp. (5.1c)

For simplicity we choose f(z) = A(z) = 1, T'p = 99, and gp(z) = 0. The
variational formulation of the problem is then: find u € Vy such that

(Vu,Vv) = (f,v), Yv €V, (5.2)

or, writing out the functionals explicitly,

+ =y

oudv Ou (91) Ou Ov

This is implemented in the class EquationPoisson as

real £ {
return 1.;

}
EquationPoisson:: biLin() {
BasisFcn v = *testFcn

BasisFcn u = *trialFcn

bilin = u.x(O)*v.xO+u.yO*v.yO+u.zQO*v.z()



EquationPoisson:: load() {
BasisFcn v = *testFcn

load = £()*v()

In the main function, the domain is loaded into the Grid and GridGeom-
etry classes. Then equation, element, and quadrature rule are chosen before
the Discretiser is called to create the linear system of equations. Finally the
Solver generates the approximate solution by solving the matrix problem.
This will look like

main(){

// Set up the problem
int quadOrder = 4;
int noSpaceDim = 3;

Grid grid;

GridGeometry geom;
QuadRuleTetGauss quad (quadOrder) ;
ElementTetLin element;
EquationPoisson equation(noSpaceDim) ;
BCStrongDirichlet  bc;

MapIsoparametric mapper (noSpaceDim) ;
Discretiser discrete;

SolverGMRES solver(discrete);
Vector U;

// Read mesh and geometry
geom.scan(’geom.file’);
grid.getSurface() .attachGeom( geom );
grid.scan(’grid.file’);

// Create and assemble the system matrix and rhs vector

discrete.createSeqProblem( grid, equation );
discrete.discretise( equation, bc, mapper, element, quad, grid );

10



// Solve the matrix problem
U=solver.solve();

As we can see, the Discretiser is the kernel of this program. The member
function discretise performs the actual assembling of the problem and
looks like

Discretiser:: discretise( Equation eq,
BC bc,
Mapper map,
Element elm,
QuadRule quad,
Grid grid){

for( el=0; el < grid.getNoElms(); el++ ){
elm.update( el, grid );
map.map( quad, elm );
eq.integrateBiLin( quad, elm, elmMat );
MatSetValues( elmMat, A );
eq.integrateload( quad, elm, elmVec );
VecSetValues( elVec, b );

}

bc.setBC( A, b )
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