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Abstract

The thesis consists of the following nine papers:

I

II

111

v

Multi-avoidance of generalized patterns. (Discrete Mathematics, to ap-
pear) Recently, Babson and Steingrimsson introduced generalized permu-
tation patterns that allow the requirement that two adjacent letters in a
pattern must be adjacent in the permutation. We investigate simultane-
ous avoidance of two or more 3-patterns without internal dashes, that is,
where the pattern corresponds to a contiguous subword in a permutation.

Generalized pattern avoidance with additional restrictions. (Séminaire
Lotharingien de Combinatoire, to appear) We consider n-permutations
that avoid the generalized pattern 1-32 and whose k rightmost letters
form an increasing subword. The number of such permutations is a linear
combination of Bell numbers. We find a bijection between these permuta-
tions and all partitions of an (n — 1)-element set with one subset marked
that satisfy certain additional conditions. Also we find the e.g.f. for the
number of permutations that avoid a generalized 3-pattern with no dashes
and whose k leftmost or k rightmost letters form either an increasing or de-
creasing subword. Moreover, we find a bijection between n-permutations
that avoid the pattern 132 and begin with the pattern 12 and increasing
rooted trimmed trees with n + 1 nodes.

Simultaneous avoidance of generalized patterns (joint work with Toufik
Mansour). In [Kitl] Kitaev considered simultaneous avoidance (multi-
avoidance) of two or more 3-patterns with no internal dashes, that is,
where the patterns correspond to contiguous subwords in a permutation.
There either an explicit or a recursive formula was given for all but one
case of simultaneous avoidance of more than two patterns. In this pa-
per we find the exponential generating function for the remaining case.
Also we consider permutations that avoid a pattern of the form z-yz or
zy-z and begin with one of the patterns 12...k, k(k —1)...1, 23...k1,
(k—1)(k—2)...1k or end with one of the patterns 12...k, k(k—1)...1,
1k(k —1)...2, k12...(k — 1). For each of these cases we find either the
ordinary or exponential generating functions or a precise formula for the
number of such permutations. Besides we generalize some of the obtained
results as well as some of the results given in [Kit3]: we consider permuta-
tions avoiding certain generalized 3-patterns and beginning (ending) with
an arbitrary pattern having either the greatest or the least letter as its
rightmost (leftmost) letter.

On multi-avoidance of generalized patterns (joint work with Toufik Man-
sour). In [Kit1] Kitaev discussed simultaneous avoidance of two 3-patterns
with no internal dashes, that is, where the patterns correspond to con-
tiguous subwords in a permutation. In three essentially different cases,
the numbers of such n-permutations are 2"~!, the number of involutions
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in §,,, and 2FE,,, where E, is the n-th Euler number. In this paper we give
recurrence relations for the remaining three essentially different cases.

To complete the descriptions in [Kit3] and [KitMans1], we consider avoid-
ance of a pattern of the form z-y-z (a classical 3-pattern) and beginning
or ending with an increasing or decreasing pattern. Moreover, we general-
ize this problem: we demand that a permutation must avoid a 3-pattern,
begin with a certain pattern and end with a certain pattern simultane-
ously. We find the number of such permutations in case of avoiding an
arbitrary generalized 3-pattern and beginning and ending with increasing
or decreasing patterns.

Partially Ordered Generalized Patterns. (Discrete Mathematics, to ap-
pear) We introduce partially ordered generalized patterns (POGPs), which
further generalize the generalized permutation patterns (GPs) introduced
by Babson and Steingrimsson. A POGP p is a GP some of whose letters
are incomparable. Thus, in an occurrence of p in a permutation 7, two let-
ters that are incomparable in p pose no restrictions on the corresponding
letters in 7. We describe many relations between POGPs and GPs and
give general theorems about the number of permutations avoiding certain
classes of POGPs. These theorems have several known results as corollar-
ies but also give many new results. We also give the generating function
for the entire distribution of the maximum number of non-overlapping oc-
currences of a pattern p with no dashes, provided we know the e.g.f. for
the number of permutations that avoid p.

Partially ordered generalized patterns and k-ary words (joint work with
Toufik Mansour). We study the generating functions (g.f.) for the num-
ber of k-ary words avoiding some POGPs. We give analogues, extend and
generalize several known results, as well as get some new results. In par-
ticular, we give the g.f. for the entire distribution of the maximum number
of non-overlapping occurrences of a pattern p with no dashes (that allowed
to have repetition of letters), provided we know the g.f. for the number of
k-ary words that avoid p.

Counting the occurrences of generalized patterns in words generated by a
morphism (joint work with Toufik Mansour). We count the number of
occurrences of certain patterns in given words. We choose these words
to be the set of all finite approximations of a sequence generated by a
morphism with certain restrictions. The patterns in our considerations
are either classical patterns 1-2, 2-1, 1-1----- 1, or arbitrary generalized
patterns without internal dashes, in which repetitions of letters are al-
lowed. In particular, we find the number of occurrences of the patterns
1-2, 2-1, 12, 21, 123 and 1-1----- 1 in the words obtained by iterations of
the morphism 1 — 123, 2 — 13, 3 — 2, which is a classical example of a
morphism generating a nonrepetitive sequence.

i



VIII The Peano curve and counting occurrences of some patterns (joint work
with Toufik Mansour). We introduce Peano words, which are words cor-
responding to finite approximations of the Peano space filling curve. We
then find the number of occurrences of certain patterns in these words.

IX The sigma-sequence and counting occurrences of some patterns, subse-
quences and subwords. We consider sigma-words, which are words used
by Evdokimov in the construction of the sigma-sequence [Evdokl]. We
then find the number of occurrences of certain patterns, subsequences and
subwords in these words.

Key words and phrases. Generalized pattern avoidance, partially ordered
generalized patterns, occurrence of a pattern in a word or permutation, iterated
morphism, Peano curve, sigma-sequence, Dragon curve

AMS 2000 subject classification: 05A05, 05A15, 05A18, 68R15
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In mathematics, if a pattern occurs, we can go on to ask, Why does
it occur? What does it signify? And we can find answers to these

questions. In fact, for every pattern that appears, a mathematician
feels he ought to know why it appears.

— W. W. Sawyer






Introduction

In the last decade a wealth of papers has been written on the subject of
pattern avoidance in permutations, also known as the study of “restricted per-
mutations” and “permutations with forbidden subsequences.” This topic is the
main focus of the present thesis (the first five papers are about this). In the sixth
paper, which extends and generalizes the fifth paper, we study certain patterns
in k-ary words. The last three papers are dedicated to counting occurrences of
certain patterns in certain words related to sequences generated by morphisms,
the Peano curve and the sigma-sequence, respectively.

0.1 Permutation patterns

We write permutations as words m = aqas - - - a,,, whose letters are distinct and
usually consist of the integers 1,2,...,n.

An occurrence of a pattern 7 in a permutation 7 is “classically” defined as a
subsequence in 7 (of the same length as 7) whose letters are in the same relative
order as those in 7. Formally speaking, for r < n, we say that a permutation
o in the symmetric group S, has an occurrence of the pattern 7 € S, if there
exist 1 < i1 < 42 < -+ < 4 < m such that 7 = o(i1)0(42) . ..0(i,) in reduced
form. The reduced form of a permutation o on a set {ji,ja,...,jr}, where
j1 < j2 < --- < jr, is the permutation o; obtained by renaming the letters of
the permutation o so that j; is renamed i for all 4 € {1,...,r}. For example,
the reduced form of the permutation 3651 is 2431.

We denote by S, (7) the set of all permutations in S, which avoid 7, that is
have no occurrences of 7. If R = {r,72,..., 71}, we let

1<i<k

The reverse R(w) of a permutation 7 = aiaz . .. a, is the permutation a,a,—1 - .. a1 .
The complement C(w) is the permutation biby...b, where b; = n + 1 — a;.
Also, R o C is the composition of R and C. For example, R(13254) = 45231,
C(13254) = 53412 and R o C(13254) = 21435. We call these bijections of S, to
itself trivial, and it is easy to see that for any pattern 7 the number |S,(7)| of
permutations avoiding the pattern 7 is the same as for the patterns R(r), C(7)
and R o C(7). For example, the number of permutations that avoid the pattern
132 is the same as the number of permutations that avoid the pattern 231. This
property holds for sets of patterns as well. If we apply one of the trivial bijec-
tions to all patterns of a set R, then we get a set R’ for which |S,,(R')| is equal to
|Sn(R)|- For example, the number of permutations avoiding {123,132} equals
the number of those avoiding {321, 312} because the second set is obtained from
the first one by complementing each pattern.

Fundamental questions are to determine |S,(R)| viewed as a function of n,
and if | S, (R)| = |Sp(R')] to find an explicit bijection between S, (R) and S, (R').
It is also interesting to find relations between S,,(R) and other combinatorial



structures. By determining |S,(R)| we mean finding an explicit formula, or
ordinary or exponential generating functions (g.f. and e.g.f. respectively).

In cases when one does not succeed in finding |S,(R)|, there appear other
questions. For example, does there exist a constant ¢ such that |S,(R)| <
¢"? (see [Bonad]). One more example is the following question: is |S,(R)| P-
recursive? We recall that a function f : N — C is called P-recursive if there
exist polynomials Py, Pi,..., P € C[n], so that

Pe(n)f(n+k) + Pea(n)f(n+k—1)+---+ Fo(n)f(n) =0

for all n € N (see [Bonad, NooZeil]). However, in the present thesis we only deal
with the fundamental questions.

The most studied case has been to forbid a single pattern of length 3.
Because of obvious symmetry arguments, namely the trivial bijections, there
are only two essentially distinct cases to enumerate, |S,(123)| and |S,(132)].
As it happens, these two functions are equal to the nth Catalan number,
Cn = 25 (%), which was shown by Knuth [Knuth]. The first bijection be-
tween the two cases was presented by Simion and Schmidt [SimSch], a second
one was given by Richards [Rich]; West described in [Westl] a construction
using trees; and recently, Krattenthaler [Krat] connected the 123-avoiding and
132-avoiding permutations via Dyck paths.

While there are 24 permutation patterns of length 4, for many of them the
sequences |S,,(7)| are identical. In fact, there are only three different classes of
patterns from this point of view [West, Stank]. The patterns 1342, 1234 and
1324 are distinct representatives of these classes. Table 1 shows the present
state of research on permutations avoiding given patterns of length 4, where

"2k (n\” 3k2+2k+1—n—2kn
(*):2;<k>(k) G+ Pk Dm—F+n

(o = T2 ety $ e G () s

il —2)! 2

The second column there corresponds to the question of existence of a constant
¢ such that |S,(7)| < ¢™. Stanley and Wilf conjectured that such a constant
exists for any pattern 7.

For the patterns of length greater than 4, the following result by Regev
[Regev] is worth mention.

Theorem 1. For all n, the number N,(12...k) of permutations in S, that
avoid the pattern 12 ...k is asymptotically equal to

(k— 1)

)\km.

Here

Ak :’7k2/ / / [D(xl,x2,...,mk)-e_(k/2)$2]2 dridxs ... dzy,
z12>22 Jx2>23 Tp_1>Th



pattern p | |S,(p)| < ¢ | formula for N,(p) | P-recursive

1234 yes (%) yes
Regev [Regev] Gessel [Gessel] Zeilberger [Zeil]

1342 yes (k) yes
Béna [Bona] Béna [Bonal] Béna [Bonal]
1324 yes open open

Boéna [Bona]

Table 1: Present state of research on avoidance of patterns of length 4

where D(z1,%2,...,T1) = H(‘T’ — ), and v, = (1/V2m)k 1. kK2,
i<j
Another general result, involving generating functions, is due to Gessel [Gessel].

Theorem 2. Let {(n) = |S,(12...k)|; then

x2n

Li(z) = Y ly(n)=— = det(Iji—j (z))1<i, i<k

nl
n>0

where I;(x) is a Bessel function:

p2nti on+i\ z2nti
Ii(w)=2mzz( n )W

n>0 n>0

This result was later explained in terms of lattice walks by Gessel, Weinstein
and Wilf [GWW].

A natural question is the consideration of those permutations that avoid two
or more patterns simultaneously. This problem was solved completely for the
patterns from Ss (see [SimSch]). We summarize some of the results from that
paper in Table 2. The trivial bijections break the set of all possibilities into 12
classes of equivalence; we pick one representative from each class.

For the case of simultaneous avoidance of two patterns 7y and 75, where
71 € S3 and 1 € Sy see [West2]. We summarize the known results in Table 3.

The results in Table 4 were given by West.

For the case of simultaneous avoidance of two patterns in Sy, see [Bona2,
Kremer] and references therein. Several recent papers [ChowWest, MV1, Krat,



{123,132, 213}
{123,132,231}
{123,132, 312}
{123,132, 321}
{123,231, 312}
{132,213,231}

patterns enumeration
{123,132} 2n—1
{123,231} (5) +1
{123,321} zero for n > 4
{132,213} 2n—1
{132,231} 2n—1
{132,312} 2n-1

Fibonacci numbers
n
n
zero for n > 4
n

n

Table 2: Simultaneous avoidance of patterns of length 3 ([SimSch])

restrictions formula author
Sn(123,4321) 0 West
S, (123,3421) (M +2(3%) +n West
S,(132,4321) 20+ (5)+ () +1 West
Sn(123,4231) | (3)+2(}) + (5)+ (5) +1| West
S,(123,3241) 3-2n1 — (") —1 West
Sn(123,3412) | 2"+l — (") —2n—1 | Stanley
S, (132,4231) 1+ (n—1)2n—2 Guibert
Sn(132,3421) 1+ (n—1)2n"2 West
S, (132,3214) gl s West

Table 3: Simultaneous avoidance of a 3-pattern and a 4-pattern




restrictions restrictions formula
Sn(123,2143) | S,(312,1342)

S.(123,2413) | S,.(312,3241)

Sn(132,2314) | S.(312,3214)

Sn(132,2341) | S,(123,3214) Fon
Sn(312,2314) | S,(312,4321) (Fibonacci number)
Sn(132,3412) | S,(312,3421)

Sn(312,1432) | S,(132,3241)

Sn(3142,2413) | S,,(4132,4231) | the (n — 1)-st Schréder number

Table 4: Some results given by West

MV3, MV2] deal with the case 71 € S3, T2 € Sy, for various pairs 71, 7. Erdés
and Szekeres [ErdSze| gave the following general result.

Theorem 3. For alln > ({—1)(m —1) +1,

1S, (12...6,m ... 21)| = 0.

0.2 Generalized permutation patterns

In [BabStein] Babson and Steingrimsson introduced generalized permutation pat-
terns that allow the requirement that two adjacent letters in a pattern must be
adjacent in the permutation. In order to avoid confusion we write a ” classical”
pattern, say 231, as 2-3-1, and if we write, say 2-31, then we mean that if this
pattern occurs in a permutation 7, then the letters in « that correspond to 3
and 1 are adjacent. For example, the permutation # = 516423 has only one
occurrence of the pattern 2-31, namely the subword 564, whereas the pattern
2-3-1 occurs, in addition, in the subwords 562 and 563. If we use ”[” in a pat-
tern, for example if we write p = [1-2), we indicate that in an occurrence of p,
the letter corresponding to the 1 must be the first letter of the permutation,
whereas if we write, say, p = (1-2], then the letter corresponding to 2 must be
the last (rightmost) letter of the permutation. Thus, a parenthesis at either
end of a pattern corresponds to a dash, and a square bracket corresponds to the
absence of a dash. However, when a pattern begins and ends with a parenthesis,
we omit these parentheses, writing simply 123 instead of (123).

The motivation for introducing these patterns in [BabStein] was the study
of Mahonian statistics. A number of interesting results on generalized patterns
were obtained in [Claes]. Relations to several well studied combinatorial struc-
tures, such as set partitions, Dyck paths, Motzkin paths and involutions, were



patterns P | |S,(P)] description

1-23 B, partitions of [n]

1-32 B, partitions of [n]

2-13 Chn Dyck paths of length 2n
1-23, 12-3 B non-overlapping partitions of [n]
1-23, 1-32 I, involutions in S,

1-23, 13-2 M, Motzkin paths of length n

Table 5: Generalized pattern avoidance ([Claes])

shown there. The main results from that paper are given in Table 5, where B,,
is the n-th Bell number, ), is the n-th Catalan number, and B} is the n-th
Bessel number.

For some other results on generalized permutation patterns see [ClaesMansl,
ClaesMans2, Kitl, Kit2, Kit3, KitMans1, KitMans2]

Paper I. In Paper I ([Kitl]) we consider 3-patterns without internal dashes,
that is, generalized patterns of the form zyz. Thus, such patterns correspond to
contiguous subwords anywhere in a permutation. For example the permutation
m = 12345 has 3 occurrences of the pattern 123 but 10 occurrences of the classical
pattern 1-2-3. Patterns without internal dashes were considered by Elizalde and
Noy in [ElizNoy]. In that paper, there is a number of results on the distribution
of several classes of patterns without internal dashes. In particular, formulas are
given for the bivariate exponential generating functions that count permutations
by the number of occurrences of any given 3-pattern.

As in the paper by Simion and Schmidt [SimSch], dealing with the classical
patterns, Claesson [Claes] considered a number of cases when permutations
have to avoid two or more generalized patterns simultaneously (see Table 5).
However, except for the simultaneous avoidance of the patterns 123 and 132,
and three more pairs each of which is essentially equivalent to one of these,
there were no other results for multi-avoidance of the patterns without internal
dashes. In Paper I we give either an explicit formula or a recursive formula
for almost all cases of simultaneous avoidance of more than two patterns. We
also mention what is known about double restrictions. There are 18 classes of
equivalence. As we did before, we choose a representative from each class and
record all the known results in Table 6, where we define the double factorial n!!
by 0!! =1, and, for n > 0,

w_fn-(n=2)---3-1, if nisodd,
ne= n-(n—2)---4-2, if n is even.

Besides, in order to complete the description of simultaneous avoidance of two
generalized patterns without internal dashes, we put in the same table some



results from papers III ([KitMansl1]) and IV ([KitMans2]).

Paper II. In Paper IT ([Kit3]) we consider avoidance of some generalized 3-
patterns with additional restrictions. The restrictions consist of demanding that
a permutation begin or end with the pattern 12. ..k or the pattern k(k—1)...1.
We observe that avoidance of some pattern with the additional restrictions de-
scribed above in fact is equivalent to simultaneous avoidance of several patterns.
For example, beginning with the pattern 12 is equivalent to the avoidance of
the pattern [21) in the Babson-Steingrimsson notation. Thus avoidance of the
pattern 132 and beginning with the pattern 12 is equivalent to simultaneous
avoidance of the patterns 132 and [21). Also, ending with the pattern 123 is
equivalent to simultaneously avoiding the patterns (132], (213], (231], (312] and
(321]. So, demanding that a permutation must begin or end with some pattern
is equivalent to simultaneous avoidance of a set of generalized patterns. A mo-
tivation for considering additional restrictions such as beginning or ending with
some patterns is their connection to some classes of trees mentioned below.

It turns out that the number of permutations that avoid the pattern 1-32
and end with the pattern 12...% is a linear combination of the Bell numbers.
We find a bijection between these permutations and all partitions of an (n — 1)-
element set with one subset marked that satisfy certain additional conditions.
In particular, we get that the total number of partitions of an (n —1)-element set
with one part marked, is equal to the number of (1-32)-avoiding n-permutations
that end with a 12-pattern. Also, we get an identity involving the Bell numbers
and the Stirling numbers of the second kind, which seems to be new. Besides,
we prove that the number of 132-avoiding n-permutations that begin with the
pattern 12 is equal to the number of increasing rooted trimmed trees with n + 1
nodes. In an increasing rooted tree, the nodes are numbered and the numbers
increase as we move away from the root. A trimmed tree is a tree where no
node has a single leaf as a child (every leaf has a sibling).

In Sections 4-7 of Paper II, we give a complete description, in terms of
exponential generating functions, for the number of permutations that avoid a
pattern of the form zyz and begin or end with the pattern 12.. .k or the pattern
k(k—1)...1. We record all the results concerning these e.g.f. in Table 7. The
case k = 1 is equivalent to the absence of the additional restriction. This case
was considered in [ElizNoy] and Paper I.

Paper III. As mentioned above, Paper II dealt with the avoidance of a gener-
alized 3-pattern p with no dashes and, at the same time, beginning or ending
with an increasing or decreasing pattern. Theorem 2 in Paper IIT ([KitMans1])
generalizes some of these results to the case of beginning (resp. ending) with an
arbitrary pattern p that has the greatest or least letter as the rightmost (resp.
leftmost) letter. To write down this theorem, we need the following definitions.
Let EP(r) denote the exponential generating function for the number of per-
mutations that avoid the pattern ¢ and begin with the pattern p. Also, ['*n
(resp. I'}***) denotes the set of all k-patterns with no dashes such that the least



class restrictions formula
1 123, 321, 231, 213 2
2 321, 213, 231, 312 2
3 132, 231, 213, 312 2
4 123, 321, 132, 231 2ifn=3; 0ifn>3
5 231, 312, 213, 123 n—1
6 123, 321, 132, 213 2C, if n = 2k + 1

Cr + Cg-1,if n =2k
7 231, 312, 321 (1n72))
8 123, 213, 312 n
9 132, 213, 312 1+ 272

recursive formula:
10 123, 213, 231 A(0)=1; A(1) = 1;
Am) =Y ("_?'_1>A(n_2i—1)+((n+1) mod 2)
- i
the first few numbers: 1, 1, 2, 3, 6, 13, 29, 72, 185...

11 123, 321, 231 (n — D!+ (n —2)!!
12 123, 231, 312 e.g.f.: 1+ z(secx + tanzx), Paper III
13 321, 132 recurrence relation, Paper IV
14 213, 231 recurrence relation, Paper IV
15 132, 213 recurrence relation, Paper IV
16 123, 321 2FE,,, where E,, is the n-th Euler number
17 321, 231 the number of involutions in S, Claesson [Claes]
18 132, 231 an-1

Table 6: Simultaneous avoidance of generalized 3-patterns (mostly Paper I)




avoid | begin end e.g.f.
123 | 12...k -
123 - |12k Bl ipp=1
cos( z+%)
321 | k...21 - @ewﬁ sec(§x+ —3-— @tan(@x—k ), if k=2
321 - k...21 0,if k>3
123 | k...21 -
_ VB e ep
123 k...21 / Cos(§x+%),lfk 1
321 | 12...k -
e@/2 (2 o—t/24k—1 m\/§ -
321 - 12...k Jo T snCaHEN A e > 9
(k— 1)'cos( :z:+ )
132 | 12...k -
213 - 12...k —[Fe AT itk =1
312 | k...21 - e 21— [Fe P at)y  —p—1,if k=2
F— — T ptp_ _2
231 - k...21 (A= [Fe /2 d) =t [ [ [ (e /2
(b + 1) — [T e /2 dt))dtrdts - - dby_o, if k> 3
132 | k...21 -
z —t2/2 —1 e
213 - k...21 (1= fyetat)y ifk=1
_ 1 k—1,—t 2/2
312 | 12...k O T dt)f t dt, if k> 2
231 - 12...k
213 [ 12...k| - —[Fe TP a i k=1
132 - 12...k
k: 2 T(t) T(s) .
231 kE...21 - N fo = 2) = 5 )dsdt if k> 2, where
—t2/2
312 — k...21 (.’E) —T /2+f0 m dt
z _—t2/2 —1 . _
213 | k...21 - (1= fPe®Pat)y Y itk=1
n t1 Chen(t)+6n p—
132 B k...21 (k 1)' +Zf0 fo 01 1if0ie—m2/2kdnjdtdtl“-dt"’
231 | 12...k - if k> 2, where Ci(z) =@ [¥ fot’“‘2---f0tl e T,
e—t2/2
312 — 12.k' m —t—1 dtdtl "'dtk_z and T(x) as abOVe

Table 7: Avoiding a pattern zyz with additional restrictions (Paper II)




(resp. greatest) letter of a pattern is the rightmost letter. Now, we formulate
Theorem 2 from Paper III:

Theorem 4. Suppose p1,p2 € T and p1 € Sk(132), po € Sk(123). Thus,
the complements C(p1),C(p2) € T* and C(p1) € Sk(312), C(p2) € Sk(321).
Then, for k > 2,

Jotkte /2 gt
(k=111 = [ e /2 at)

EPL,(2) = EG 3V () =

and
D2 _ Cp2) (. _ e"/? foz etk sin(?t +5)) dt
Ef5s(z) = Egyy ' (2) = 73 .
(k—1)!cos(Hz + %)

Propositions 4-15 (resp. 16-27) in Paper III give a complete description
for the number of permutations avoiding a pattern of the form z-yz or zy-z
and beginning with one of the patterns 12...k or k(k—1)...1 (resp. 23...k1
or (k—1)(k—2)...1k). For each of these cases we find either the ordinary
or exponential generating function or a precise formula for the number of such
permutations. Theorem 28 in Paper III generalizes some of these results:

Theorem 5. Suppose p1,p> € T7" and p1 € Sy(1-23), p2 € S(1-32). Thus,
the complements C(p1),C(p2) € T7*** and C(p1) € Sk(1-23), C(p2) € Sk(3-12).
Then, we have
c c
EP3() = E5 5 () = B (0) = B3 (0) =

(e /(k = 1)) fy th=te~"H dt, ifk>2,
e 1, ifk=1.

Moreover, the results from Propositions 4-27 in Paper III give a complete
description for the number of permutations that avoid a pattern of the form z-yz
or zy-z and end with one of the patterns 12...k, k(k—1)...1, 1k(k—1)...2
and k12...(k—1). To get the last one of these we only need to apply the reverse
operation defined above.

Paper IV. In Paper IV ([KitMans2]) we continue consideration of generalized
pattern avoidance with additional restriction. In Section 4 of Paper IV, we con-
sider avoidance of a pattern z-y-z, and beginning or ending with an increasing
or decreasing pattern. This completes the results given in Paper III, which con-
cerns the number of permutations that avoid a generalized 3-pattern and begin
or end with an increasing or decreasing pattern.

In Sections 5-8 of Paper IV, we consider stronger restrictions, which gener-
alize many results from Papers II, ITI, IV. Namely, we give enumeration for the
number of permutations that avoid a generalized 3-pattern, and begin and end
with increasing or decreasing patterns. We record our results in terms of either
generating functions, or exponential generating functions, or formulas for the
numbers in question.
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In Section 9 of Paper IV, we discuss possible directions for generalization
of the results from Sections 5-8. The first direction is to consider avoidance of
more than one pattern, beginning with some pattern and ending with another
pattern. The second direction concerns permutations in S, containing a pattern
T exactly r times, beginning with some pattern and ending with another pattern.

0.3 Partially ordered generalized patterns

Suppose we are interested in finding the number of permutations that avoid
all patterns from the set {12-4-3,13-4-2,23-4-1} simultaneously. There is a
way to code these three patterns into one pattern, and instead of considering
three patterns to consider one. This is done by allowing some letters of a
pattern to be incomparable. Thus the set of patterns above can be replaced
by the pattern p = 1'2'-3-1", where in an occurrence of p in a permutation
m the letter corresponding to the 1" in p can be either larger or smaller than
the letters corresponding to 1’2, but all of them must be less than the letter
corresponding to the 3 in p. Such patterns are discussed in Papers V ([Kit2])
and VI ([KitMans3]). These patterns allow us to determine the distribution of
non-overlapping occurrences of patterns without internal dashes.

Paper V. In Paper V ([Kit2]) we introduce a further generalization of gener-
alized patterns (GPs)—mnamely partially ordered generalized patterns (POGP).
A POGP is a GP some of whose letters are incomparable. For instance, if we
write p = 1-1'2' then we mean that in an occurrence of p in a permutation 7 the
letter corresponding to the 1 in p can be either larger or smaller than the letters
corresponding to 1'2'. Thus, the permutation 31254 has three occurrences of p,
namely 3-12, 3-25, and 1-25.

We consider two particular classes of POGPs—shuffle patterns and multi-
patterns. A multi-pattern is of the form p = o1-09-+- - o and a shuffle pattern
is of the form p = 0g-a1-01-a2-+ -+ - ak-0k, where for any ¢ and j, the letter a; is
greater than any letter of o; and for any i # j each letter of o; is incomparable to
any letter of o; These patterns are investigated in Sections 4 and 5. A corollary
to Theorem 13 is the result of Claesson [Claes, Proposition 2] that the number
of n-permutations that avoid the pattern 12-3 is the n-th Bell number.

Let p and ¢ be two patterns. An occurrence of p overlaps an occurrence of
q in a permutation 7 if these two occurrences share a letter in 7. For example,
if p =123, ¢ = 231 and 7 = 623514 then 235 and 351, being occurrences of the
patterns p and q respectively, overlap.

Let p = 01-09-----0} be an arbitrary multi-pattern and let A;(x) be the
exponential generating function (e.g.f.) for the number of permutations that
avoid o; for each i. In Theorem 28 we find the e.g.f., in terms of the A;(z), for
the number of permutations that avoid p.

Theorem 6. Let p = 01-02-----0% be a multi-pattern and let A;(x) be the
e.g.f. for the number of permutations that avoid o;. Then the e.g.f. B(x) for

11



the number of permutations that avoid p is

k i—1
Bla) = 3~ @) [[((z = DA,@) + ).

In fact, this allows us to find the e.g.f. for the entire distribution of the
maximum number of non-overlapping occurrences of a pattern p with no dashes,
if we only know the e.g.f. for the number of permutations that avoid p:

Theorem 7. Let p be a GP with no dashes. Let A(x) be the e.g.f. for the
|7

number of permutations that avoid p. Let D(z,y) = Z yN (™ T—“ where N ()
!

is the mazimum number of non-overlapping occurrences of p in w. Then

A(x)
1—y((z —1DA() +1)

_D(.Z‘,y) =

In many cases, this theorem gives nice generating functions. The following
two examples are corollaries to Theorem 7. We recall that a descent in a per-
mutation 7 = aqas...a, is an ¢ such that a; > a;41. Two descents ¢ and j
overlap if j =1 + 1.

Example 1. If we consider descents then A(z) = e”, hence the distribution of
the maximum number of non-overlapping descents is given by the formula

D(w,y) = 1—y(l+(z—1)e?)

The reader might want to compare this result with some known results related
to descents. To this end we recall the following. The number of descents in a
permutation 7 is denoted des7 (and is equivalent to the generalized pattern 21).
Any statistic with the same distribution as des is said to be Fulerian. The
Eulerian numbers A(n, k) count permutations in the symmetric group S,, with
k descents and they are the coefficients of the Eulerian polynomials A, (t) defined
by An(t) =3 s, t1797. The e.g.f. for Eulerian polynomials is given by

5 a2 - =0

e?t — te®
n>0

Example 2. If we consider the maximum number of non-overlapping occur-
rences of the pattern 132 then the distribution of these numbers is given by the

formula
1

l—ya:-i—(y—l)/ e 1 at
0

D($7y) =

12



We will talk about bivariate generating functions, or b.g.f., exclusively as
generating functions of the form

were Ay, is the number of n-permutations with k£ occurrences of the pattern p.

In order to apply the last two theorems, as well as some other results from
Paper V, we need to know how many patterns avoid a given ordinary GP with
no dashes. We are also interested in different approaches to studying these
patterns. There is a number of results on the distribution of several classes of
patterns with no dashes. These results can be used as building blocks for some
of the results in Paper V. The most important of these is the following result
by Elizalde and Noy:

Theorem 8. ([ElizNoy, Theorem 3.4]) Let m and a be positive integers with
a <m,letc =12...a7(a + 1) € Sp42, where T is any permutation of the
letters {a +2,a +3,...,m + 2}, and let A(u, z) be the b.g.f. for permutations
where u marks the number of occurrences of o and z marks the length of the
permutation. Then A(u,z) = 1/w(u, z), where w is the solution of

szu,+1

_—— I:
(m—a+1)!w 0

w4+ (1 —w)

with w(0) = 1, w'(0) = =1 and w® (0) = 0 for 2 < k < a. In particular, the
distribution does not depend on T.

In Paper V we give alternative proofs, using inclusion-exclusion, of some of
the results of Elizalde and Noy [ElizNoy]. Our proofs result in explicit formulas
for the coefficients of the e.g.f. whereas Elizalde and Noy obtained differential
equations for the same e.g.f..

Paper VI. From now on we are not discussing permutations and generalized
permutation patterns. Instead we consider k-ary words and occurrences of pat-
terns in them. First of all we need some definitions, most of which are intuitively
clear from the preceding discussion.

Let [k]™ denote the set of all the words of length n over the (totally ordered)
alphabet [k] = {1,2,...,k}. We refer to these words as n-long k-ary words.
A generalized pattern 7 is a word in [£]™ (possibly with dashes between some
letters) that contains each letter from [£] (possibly with repetitions). We say that
the word o € [k]™ contains a generalized pattern 7 if o contains a subsequence
order-isomorphic to 7 in which the entries corresponding to consecutive entries
of 7 that are not separated by a dash must be adjacent. Otherwise, we say
that o avoids 7 and write o € [k]"(7). Thus, [k]"(7) denotes the set of all the
words in [k]™ that avoid 7. Moreover, if P is a set of generalized patterns then
[[k]™(P)| denotes the set all the words in [k]™ that avoid all patterns from P
simultaneously. For example, a word @ = ajas .. .a, avoids the pattern 13-2 if

13



m has no subsequence a;a;+1a; with j > ¢+1and a; < a; < a;11. Also, m avoids
the pattern 121 if it has no subword a;a;+1a;4+2 such that a; = a;42 < @;41.

Burstein [Burstein] considered patterns without repeated letters on words
instead of permutations. In particular, he found the number |[k]"(P)| of words
of length n in a k-letter alphabet that avoid all patterns from a set P C S3 simul-
taneously. Burstein and Mansour [BurMansl] (resp. [BurMans2, BurMans3])
considered forbidden patterns (resp. generalized patterns) with repeated letters.

In Paper VI ([KitMans3]) we introduce a further generalization of the gener-
alized patterns, namely partially ordered generalized patterns in words (POGPs),
which are analogues of POGPs in permutations [Kit2]. A POGP is a general-
ized pattern some of whose letters are incomparable. For example, if we write
7 = 1-1'2', then we mean that in an occurrence of 7 in a word o € [k]™ the letter
corresponding to the 1 in 7 can be either larger than, smaller than, or equal to
the letters corresponding to 1'2'. Thus, the word 113425 € [5]® contains seven
occurrences of 7, namely 113, 134 twice, 125 twice, 325, and 425.

Following Paper V, we consider two particular classes of POGPs— shuffle
patterns and multi-patterns, which allows us to give an analogue for all the main
results of [Kit2] for k-ary words.

Let 7 = 79-71- - - --75 be an arbitrary multi-pattern and let A, (z;k) be the
ordinary generating function (g.f.) for the number of words in a k-letter alphabet
that avoid 7; for each i. In Theorem 4.7 of Paper VI we find the g.f., in terms
of the A;,(x; k), for the number of k-ary words that avoid 7:

Theorem 9. Let 7 = 11 -T2-- - - -Ts be a multi-pattern. Then

=ZS:ATj($k 1:[ kr —1)A;, (z;k) + 1).
j=1 =1

In particular, this allows us to find the g.f. for the entire distribution of
the maximum number of non-overlapping occurrences of a pattern 7 with no
dashes, if we only know the g.f. for the number of k-ary words that avoid 7:

Theorem 10. Let 7 be a generalized pattern with no dashes. Then, for all

B2 L (3 k)
o) n A (x; k
> Z Y™z T 1—y((kx — 1)A, (23k) + 1)’

n>0c€k

where N, (o) is the mazimum number of non-overlapping occurrences of T in o.

Thus, in order to apply our results from the last two theorems we need to
know how many k-ary words avoid a given ordinary generalized pattern with
no dashes. This question was examined, for instance, in [BurMans1, Sections 2
and 3], [BurMans2, Section 3] and [BurMans3, Section 3.3].

All of the following examples are corollaries to Theorem 10.

Example 3. If we consider rises (the pattern 12) then Ais(z;k) = lz),c

(see [BurMans2]), hence the distribution of the maximum number of non-overlapping
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descents is given by the formula:

o n __ 1
2 2 v T (-2 +y(l—kz—(1—2)k)

n>0 oclk]™

Example 4. The distribution of the maximum number of non-overlapping oc-
currences of the pattern 122 is given by the formula:

2 Z me(")m" — x
— r2)\k _ _ 2 _ —\k)’
o e (1—a2)k +2—1+y(1 — ka2 — (1 — 22)k)

since, according to [BurMans3, Theorem 3.10], A122(z; k) = (l_ﬁ)ﬁﬁ

1

k—1
Example 5. If we consider the pattern 212 then Asyo(z;k) = [ 1 — = j:ZO 152

(see [BurMans3, Theorem 3.12]), hence the distribution of the maximum num-
ber of non-overlapping occurrences of the pattern 212 is given by the formula:

n>0 ge[k]™ 1 1
1_x21+ja:2 toy Zl+jx2 B

0.4 Counting occurrences of certain patterns in
certain words

The most attention, in the papers on classical or generalized patterns, in par-
ticular in Papers I-VI, is paid to obtaining exact formulas and/or generating
functions for the number of words or permutations avoiding, or having k oc-
currences of, certain patterns. In Papers VII-IX we suggest another problem,
namely counting the occurrences of certain patterns in certain words. These
words were chosen to be the set of all finite approximations of certain sequences.
In Paper VII ([KitMans4]) this is a sequence generated by a morphism (a
system of substitutions, to be defined below) with certain restrictions. In Paper
VIII ([KitMans5]) the sequence is obtained from the Peano curve. The Peano
curve was studied by the Italian mathematician Giuseppe Peano in 1890 as
an example of a continuous space filling curve. Finally, in Paper IX ([Kit4])
this sequence is the sigma-sequence, which was used by Evdokimov [Evdokl] to
construct chains of maximal length in the n-dimensional unit cube.
Independent interest in the sigma-sequence appears in connection with the
well-known Dragon curve, discovered by the physicist John E. Heighway and
defined as follows: Fold a sheet of paper in half, then fold in half again (so that
the folds are parallel), and again, etc. and then unfold in such a way that each
crease created by the folding process is opened out into a 90-degree angle. The
“curve” refers to the shape of the partially unfolded paper as seen edge on (see
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Figure 1: Dragon curve

Figure 1). If one travels along the curve, some of the creases will represent turns
to the left and others turns to the right. Now if 1 indicates a turn to the right,
and 2 to the left, and we start travelling along the curve indicating the turns,
we get the sigma-sequence [Evdok].

Paper VII. In Paper VII ([KitMans4]) we count the occurrences of certain
patterns in certain words. We choose these words to be a set of all finite ap-
proximations (to be defined below) of a sequence generated by a morphism with
certain restrictions. The motivation is to study classes of sequences and words
that are defined by iterative schemes [Lothaire, Salomaal. The pattern 7 in our
considerations is either a classical pattern (with repeated letters allowed) from
the set {1-2,2-1,1-1----- 1}, or an arbitrary generalized pattern without inter-
nal dashes, in which repetitions of letters are allowed. In particular, we find
that there are (3 - 4" ! + 27) occurrences of the pattern 1-2 in the n-th finite
approximation of the sequence w defined below, which is a classical example of
a nonrepetitive sequence.

Let ¥ be an alphabet and X* the set of all words over ¥. A map ¢ : ¥* — X*
is called a morphism if we have p(uv) = p(u)p(v) for any u,v € X*. It is easy
to see that a morphism ¢ can be defined by defining (i) for each i € X.
The set of all rules i — (i) is called a substitution system. We create words
by starting with a letter from the alphabet ¥ and iterating the substitution
system. Such a substitution system is called a DOL (Deterministic, with no

16



context Lindenmayer) system [LindRoz]. DOL systems are classical objects of
formal language theory. They are interesting from a mathematical point of
view [Frid], but also have applications in theoretical biology [Lind]. Let |X|
denote the length of a word X, that is the number of letters in X.

Suppose a word ¢(a) begins with a for some a € ¥, and that the length of
¢*(a) increases without bound. The symbolic sequence Jim ¥ (a) is said to

be generated by the morphism ¢. In particular, klim ©*(a) is a fized point of
—00

. However, in this paper we are only interested in the finite approximations of
Jim ¥ (a), that is in the words ¢*(a) for k = 1,2,....

An example of a sequence generated by a morphism is the following se-
quence w. We create words by starting with the letter 1 and iterating the
substitution system ¢,,: 1 +— 123, 2 — 13, 3 — 2. Thus, the initial letters of
w are 123132123213.... This sequence was constructed in connection with the
problem of constructing a nonrepetitive sequence on a 3-letter alphabet, that is,
a sequence that does not contain any subwords of the type X X, where X is any
non-empty word over a 3-letter alphabet. The sequence w has that property.
The question of the existence of such a sequence, as well as the questions of
the existence of sequences avoiding other kinds of repetitions, were studied in
algebra [Adian, Justin, Kol], discrete analysis [Carpi, Dekk, Evdok2, Ker, Pleas]
and in dynamical systems [MorseHedl]. In Examples 2.2, 2.6 and 3.3 of Paper
VII we give the number of occurrences of the patterns 1-2, 2-1, 1-1----- 1, 12,
123 and 21 in the finite approximations of w.

Suppose N7 (n) denotes the number of occurrences of a pattern 7 in a word
generated by some morphism ¢ after n iterations. Suppose W = AXBYC,
where A, X, B, Y, and C are some subwords. We say that an occurrence of a
pattern 7 in W is external for the pair of words (X,Y), if this occurrence starts
somewhere in X and ends somewhere in Y. Also, an occurrence of 7 in W is
internal for the word X if this occurrence is a subsequence of X. For example,
if W =12324265, A =1, X =23, B =2 and Y = 426 then an occurrence of the
generalized pattern 213, namely 324 is external for (X,Y). On the other hand,
the word X = 231 has two internal occurrences of the pattern 2-1, namely 21
and 31.

The following theorem was proved in Paper VII.

Theorem 11. Let A ={1,2,...,k} be an alphabet, where k > 2 and a pattern
T € {1-2,2-1}. Let X1 begins with the letter 1 and consists of £ copies of each
letter i € A (£ > 1). Let a morphism ¢ be such that

1= X4, 22 Xo, 3= Xs,..., k= Xy,

where we allow X; to be the empty word € for i = 2,3,...,k (that is, » may be
k

an erasing morphism), Z |Xi| = k-d, and each letter from A appears in the
i=2

word XoX3 ... Xy, exactly d times. Besides, let e; j (resp. e;) be the number of

external occurrences of T for (X;, X;) (resp. (X;,X;)), where i # j. We assume
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that e;; = e;; for all i and j. Let s; be the number of internal occurrences of
T in X;. In particular, s; = e; = e;; = e;; = 0, whenever X; = €; also,
e; = |Xi| - (|Xi| — 1)/2, whenever there are no repetitive letters in X;. Then
Ng(1) = s1 and for n > 2, NZ(n) is given by

k ) n_on k
Z-(d+£)”‘2Zsi+<£ (d;@ )Zei+€2-(d+6)2n_4 > ey
=1 i=1

1<i<j<k

Paper VIII. Let us define the Peano curve and the Peano words. We fol-
low [GelbOlm] and present a description of a curve that fills the unit square
S =[0,1] x [0,1], given in 1891 by D. Hilbert.

As indicated in Figure 2, the idea is to subdivide S and the unit interval
I =[0,1] into 4™ closed subsquares and subintervals, respectively, and to set
up a correspondence between subsquares and subintervals so that inclusion re-
lationships are preserved (at each stage of subdivision, if a square corresponds
to an interval, then its subsquares correspond to subintervals of that interval).

We now define the continuous mapping f of I onto S: If x € I, then at
each stage of subdivision x belongs to at least one closed subinterval. Select
either one (if there are two) and associate it to the corresponding square. In
this way a decreasing sequence of closed squares is obtained corresponding to a
decreasing sequence of closed intervals. This sequence of closed squares has the
property that there is exactly one point belonging to all of them. This point is
defined to be f(x). It can be shown that the point f(z) is well-defined, that is,
independent of any choice of intervals containing z; the range of f is S; and f
is continuous.

- et T
6 1 _, ——f— T I B I
| | ! | ! _ 11 [ | Lda [
2 3 ! I ! I : ! ;
T T T
,,,,,,,,,, i |
I i ! | ! | bl e
| 1 5 ——q-- ' L P
| | | | i ) Ll 1 14 L
| | : | | B
i T | T +
| | 1 3 | | I“r-1o r=|==-T" !
| | 4 [ __ r——14-- 1 ! 1
I ! | L]d 4L 14
1| 14 ! I ; N
i
1 ! | T -5 rt- 1A
,,A,,\z N S T + T 1 1
| [ A Lt~
Xy X; X3

Figure 2: The Peano words

The following discrete analogue of the Peano curve was given by Evdokimov
[Evdok]. For subdivision stage (iteration) n we construct a word X,, as follows:
Go through the curve inside S starting at the point 1 (see Figure 2), and coding
any movement “up” by 1, “right” by 2, ”down” by 3, ”left” by 4. Thus, we start
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Yy N‘rl(w,y) (X2k+1) N‘rz(z,y) (sz-',-l) Nﬁ(z,y) (X2k+2) er(z,y) (X2k+2)

1 (4211_1) (421;_1) (42k+1+32k+1_1) (42k+1+32k+1_1)

TR I I Y
I G = B

Table 8: Generalized patterns having 2 letters (Paper VIII)

with the first iteration X; = 123, the second iteration is Xo = 214112321233432.
More generally, it is easy to see that the n-th iteration is given by

Xn = 01(Xn-1)1Xn-12X,,_1302(X0n-1),

where the function ¢q(A) reverses the letters in the word A and makes the
substitution corresponding to the permutation 4123, that is, 1 becomes 4 etc.
The function @2 does the same, except with 4123 replaced by 2341. In this
paper, we are interested in the words X,,, for n = 1,2,..., which appear as the
subdivision stages of the Peano curve. We call these words the Peano words.

In Paper VIII ([KitMans5]) we consider the Peano words and find the number
of occurrences of the patterns

127 217 ]_Z’ Tl(xay) = [:U_ye)a 7'2(55',:1/) = (:L.Z_y] and 7'3(»’17;%2) = [a:—yf—z],

where z,y,2 € {1,2,3}, y* = y-y----- y (€ times), and we recall that “[“ in
p = [z — w) indicates that in an occurrence of p, the letter corresponding to the
« must be the first letter of the word. For example, the number of occurrences
of the pattern 12 in X,,, according to Theorem 4 in Paper VIII, is equal to either
2(4-16% + 1) or (1651 — 1) depending on whether n is odd or even.

Let N (W) denote the number of occurrences of the pattern 7 in the word W.
Let S; and Sy denote the following;:

42k _ 22k 42k 42k: + 22k -1 42k+1 42k+1 _ 22k+1
Sl‘( ¢ )*(A*( ‘ )’SQ‘(e)+< ‘ )

Tables 8 and 9 give all the results concerning the patterns 71 (z,y), 72(x,y) and
73(x,y, 2) except those triples (z,y, ), for which Ny, , -)(Xy) = 0 for all n.

Paper IX. Let us define the sigma-sequence and the sigma-words. In [Evdokl,
Yab], Evdokimov constructed chains of maximal length in the n-dimensional
unit cube using the sigma-sequence. The sigma-sequence w, was defined there
by the following recursive scheme:
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T Yy |z NT3($,:U,Z) (X2k+1) NT3(m,y,z) (X2k+2)
EFT
111 0 *,
112 (N 0
T[2]1 0 S
1]2]2 ) 0
212 0 7
1 2 3 (42k +§2k 71) 0
1{3]2 ("2 0

Ci41 =CylDy, Dyy1 = Ci2Dy
k=1,2,...

and w, = klim Ck. Thus, the initial letters of w, are 11211221112212.... We
—

oo
call the words C}, the sigma words. The first four values of the sequence {Cj }x>1
are 1, 112, 1121122, 112112211122122.

In [Kit] an equivalent definition of w, was given: any natural number n # 0
can be presented unambiguously as n = 2¢(4s + o), where o < 4, and t is the
greatest natural number such that 2! divides n. If n runs through the natural
numbers then o runs through some sequence consisting of 1s and 3s. If we
substitute 2 for 3 in this sequence, we get w,.

In Paper IX ([Kit4]) we give either an explicit formula or recurrence relation
for the number of occurrences for some classes of patterns, subwords and subse-
quences in the sigma-words. In particular, Theorem 4 allows us to find the num-
ber of occurrences of an arbitrary generalized pattern without internal dashes of
length £, provided we know certain four numbers that can be easily calculated
for the words Cy, Dy, Cxy1 and Dgy1, where k = [log, £]. Theorem 9 gives a
recurrence relation for counting occurrences of patterns of the form 7-75. In

Section 6 we discuss occurrences of patterns of the form 71-72- - - - -3, where the
pattern 7; does not overlap with the patterns 7;_; and 7;41 fori =1,2,...,k—1.
Finally, Section 7 deals with patterns of the form [r-7o-----7%], [T1-T2- -+ -T)
and (71-12----- 71] in the Babson-Steingrimsson notation.

To formulate some of the results from Paper IX we need the following defi-
nitions.

Suppose a word W = AaB, where A and B are some words of the same
length, and a is a single letter. We define the kernel of order k for the word
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W to be the subword consisting of the k — 1 rightmost letters of A, the letter
a, and the k — 1 leftmost letters of B. We denote it by K (W). For example,
K3(111211221) = 12112. If |A] < k — 1 then we set Kx(W) = ¢, that is the
kernel in this case is the empty word. Also, my(7, W) denotes the number of
occurrences of the pattern 7 in K (W).

The following theorems are proved in Paper IX.

Theorem 12. Let 7 = m7...7¢ be an arbitrary generalized pattern with-
out internal dashes that consists of 1s and 2s. Suppose k = [log, £, a =
mye(1, Dk 1Ck), and b = my(r, D2C%). Then for n > k + 1, we have

= (a+b+ciy +diy,) 2772 -,

d, =(a+b+chy +dpy ) 272 —a.

Theorem 13. Let p = 11-12 be a generalized pattern such that |mi| = k1 and
|72| = ko. Suppose k = [log, (k1 + k2 —1)]. Let the following denote the number
of occurrences of the subwords 71 and T in the kernels (recall that by definitions

|Cn| = |Dn|)-'

(J,-,—1 = mkl (n,DkICk) CL-,—2 = mk2(T2,Dk10k)
b-,—1 = Mg, (Tl,DkZCk) b7—2 = Mk, (TQ,DkZCk)

Also, let v (resp. r$, r2, r) denote the number of occurrences of overlapping
subwords 71 and 1 in the word Dp1Cy, (resp. Dy1Cy, Dy2Cy, Dy2C}), where
1 € ICkl(DkICk) and 75 € Cy ('I"@Sp. 71 € Dy and 75 € Kk2(Dklck), T €
Kkl (DkZCk) and T € Ck, 71 € Dy and 7 € Kk2(Dk2Ck)).

Besides, we assume that we know cl} and d]i for n > n;, i =1,2. Then for
n > max(k+1,n1 +1,n2 + 1), ¢}, and d], are given by the following recurrence:

(e)-(o) )+ (0)

where
Qan = (021_1 +ar — ’r%)d;rzz—l + (aTz - Tg)c:;—l
and
/Bn = (0:1171 + bT1 - Tllj)d:ffl + (b‘r2 - 7‘12))02171-
Theorem 14. Let T = 11 -T2---- Ty, be a generalized pattern such that || = k;

fori=1,2,.... k. We assume that fori =1,2,...,k — 1, the subword 1; does
not overlap with the subwords 7;_1 and ;41 in the following sense: no suffix of
Ti—1 15 a prefix of 7; and no suffix of 7; is a prefix of Tiy1.
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Suppose £; = [log, ki], £ = max; {;, and for the subwords 7; we have a; =
mp; (Ti, DziICgi) and bi = Mk, (T,', DeiZCgi), fOT 1= 1, 2, ey k.

We assume that we know ¢[*™;"™™ and d;;*]”"* for each 1 <i < k—1 and
for all n > n*. Then for all n > max(¢ + 1,n* + 1), ¢}, and d], are given by the
following recurrence:

cr 11 Cch_q
= +
dr, 11 1

[ | e
2\ e | T2 e g,
where e(i) = 71-12-- - -7; and f(i) = Tip1-Tiya-- - -Tp.

Theorem 15. Suppose 7, and 75 are two patterns without internal dashes such
that |11| = k1 and |12| = ka. Also, suppose €1 = logy (k1 + 1), £y = logy (k2 + 1)
and £ =logy (k1 + ko + 1).
Let a(11,72) be the number of overlapping subwords 71 and 12 in Cy such that
71 consists of the ki leftmost letters of Cy; b(1,72) is the number of overlapping
subwords 7 and T in Cy such that 7o consists of the ko rightmost letters of Cy.
We assume that we know c]i and d} for i =1,2 and for all n > n*.

i. For n > max({y,n*),

[r1-12) _
Cn =

{ ez —a(m,m), if Cp, begins with 1,

0, otherwise.
it. For n > max({a,n*),

et —b(r, 1), if Cyy ends with 1o,
c(n‘rl-rz] —

0, otherwise.
1. Forn > ¢,

fracra] { 1, if C; begins with T, and ends with T,
oy =
0

, otherwise.
w. For n > max(fy,n*),
i { dr —a(m,m), if Dy, begins with 1,
T1°7T2)
I =

0, otherwise.
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v. For n > max({3,n*),

e dir —b(r,m2), if De, ends with 13,
" 0, otherwise.

vi. Forn >/,

J | 1, if Dy begins with 7 and ends with T,
T1-7T2 —
" 0, otherwise.

So, in Paper IX we count occurrences of certain patterns, subsequences and
subwords in the sigma-words, which are particular initial subwords of w,. How-
ever, the challenging question is to find the number of occurrences of patterns,
subsequences and subwords in an arbitrary initial subword of w,, or more gen-
erally, in a subword of w, starting in position ¢ and ending in position j.
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Multi-Avoidance of Generalised Patterns

Sergey Kitaev !

Abstract

Recently, Babson and Steingrimsson introduced generalized permutation
patterns that allow the requirement that two adjacent letters in a pattern must
be adjacent in the permutation. We investigate simultaneous avoidance of two or
more 3-patterns without internal dashes, that is, where the pattern corresponds
to a contiguous subword in a permutation.

1.1 Introduction and Background

We write permutations as words m = ayas - - - a,, whose letters are distinct and
usually consist of the integers 1,2,...,n.

An occurrence of a pattern p in a permutation 7 is “classically” defined as
a subsequence in 7 (of the same length as the length of p) whose letters are in
the same relative order as those in p. Formally speaking, for r < n, we say that
a permutation ¢ in the symmetric group S, has an occurrence of the pattern
p € Sy if there exist 1 <4y < i < --- <4, < nsuchthat p=0(i1)o(i2)...0(ir)
in reduced form. The reduced form of a permutation ¢ on a set {j1,j2,--.,4r};
where j1 < jo < --- < jr, i a permutation o1 obtained by renaming the letters
of the permutation & so that j; is renamed i for all i € {1,...,r}. For example,
the reduced form of the permutation 3651 is 2431.

In [1] Babson and Steingrimsson introduced generalised permutation patterns
that allow the requirement that two adjacent letters in a pattern must be ad-
jacent in the permutation. In order to avoid confusion we write a ”classical”
pattern, say 231, as 2-3-1, and if we write, say 2-31, then we mean that if this
pattern occurs in the permutation, then the letters in the permutation that cor-
respond to 3 and 1 are adjacent. For example, the permutation 7 = 516423 has
only one occurrence of the pattern 2-31, namely the subword 564, whereas the
pattern 2-3-1 occurs, in addition, in the subwords 562 and 563.

The motivation for introducing these patterns in [1] was the study of Ma-
honian statistics. A number of interesting results on generalised patterns were
obtained in [5]. Relations to several well studied combinatorial structures, such
as set partitions, Dyck paths, Motzkin paths and involutions, were shown there.

In this paper we consider 3-patterns without internal dashes, that is, gener-
alised patterns of the form zyz. Thus, such patterns correspond to contiguous
subwords anywhere in a permutation. For example the permutation 7 = 12345
has 3 occurrences of the pattern 123 but 10 occurrences of the classical pattern
1-2-3. Patterns without internal dashes were considered by Elizalde and Noy
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in [6]. In that paper, there is a number of results on the distribution of several
classes of patterns without internal dashes. In particular, formulas are given for
the bivariate exponential generating functions that count permutations by the
number of occurrences of any given 3-pattern. Those formulas give rise to the
exponential generating functions for the number of permutations that avoid any
3-pattern.

As in the paper by Simion and Schmidt [11], dealing with the classical pat-
terns, one can consider the case when permutations have to avoid two or more
generalised patterns simultaneously. A number of such cases were considered
in [5]. However, except for the simultaneous avoidance of the patterns 123 and
132, and three more pairs that are essentially equivalent to this, there are no
other results for multi-avoidance of the patterns without internal dashes. In
this paper we give either an explicit formula or a recursive formula for almost
all cases of simultaneous avoidance of more than two patterns. We also mention
what is known about double restrictions.

1.2 Preliminaries

Since we only treat patterns of length 3, and permutations of length 1 or 2 avoid
all such patterns, we always assume that our permutations have length n > 3.

Obviously, no permutation avoids all six patterns of length three. Only
the increasing permutation 12...n avoids all 3-patterns but 123, and only the
decreasing permutation avoids all but 321.

Consider now permutations that avoid all but one 3-pattern, different from
123 and 321, Obviously, there is exactly one such 3-permutation. However, for
n > 4 there is no such permutation. Indeed, if the permutation 7 = aias ...a,
avoids the patterns 123 and 321, then the letters of 7 alternate in size. That
means that ajasas and asazay form different patterns and thus = has an occur-
rence of a forbidden pattern.

There are, of course, (2) sets consisting of k different 3-patterns, so we have
15 sets of two 3-patterns, 20 with three 3-patterns and 15 with four. So we have
50 different sets having more than one restriction. But we can simplify our work
by partitioning the sets into equivalence classes in the way shown below and it
will be enough to consider only 18 sets of restrictions.

The reverse R(w) of a permutation m = ajas...a, is the permutation
Qnan—1 ...a;. The complement C(r) is the permutation bibs .. .b, where b; =
n+1—a;. Also, RoC' is the composition of R and C. For example, R(13254) =
45231, C(13254) = 53412 and R o C'(13254) = 21435. We call these bijections
of S, to itself trivial, and it is easy to see that for any pattern p the number
Ap(n) of permutations avoiding the pattern p is the same as for the patterns
R(p), C(p) and Ro C(p). For example, the number of permutations that avoid
the pattern 132 is the same as the number of permutations that avoid the pat-
tern 231. This property holds for sets of patterns as well. If we apply one of
the trivial bijections to all patterns of a set G, then we get a set G' for which
Agr(n) is equal to Ag(n). For example, the number of permutations avoiding
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{123,132} equals the number of those avoiding {321,312} because the second
set is obtained from the first one by complementing each pattern.

So up to equivalence modulo the trivial bijections we need to investigate 18
sets of restrictions that are represented in the table below.

We define the double factorial n!! by 0!! = 1, and, for n > 0,

n-(n—2)---3-
n!!:{ n-(n—2)--4-

1, if nis odd,
2, if n is even.

Recall that the n-th Catalan number is defined by
1 2n
Cn = n+1 (n ) '

Instead of writing Ag(n) for a set G of patterns, we will write A(n) since it
will be unambiguous what set of patterns is under consideration.

| Class | Restrictions | Formula
1 123, 321, 132, 312
123, 321, 231, 213 2
123, 312, 132, 213
2 321, 213, 231, 312 2

123, 231, 231, 132
321, 132, 312, 231

3 132, 231, 213, 312 2

4 123, 321, 132, 231 2,ifn=3
123, 321, 312, 213 0,ifn >3
132, 213, 312, 321

5 231, 312, 213, 123 n—1

213, 132, 231, 321
312, 231, 132, 123

6 123, 321, 132, 213 2Cy, ifn =2k + 1
123, 321, 231, 312 Cy + Cr_1, if n = 2k
7 123,132, 213
231, 312, 321 )
123, 132, 231
8 123, 213, 312 n
132, 231, 321
213, 312, 321
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Class |

Restrictions

Formula

132, 213, 231
132, 213, 312
132, 231, 312
213, 231, 312

14272

10

123, 132, 312
123, 213, 231

132, 312, 321

213, 231, 321

Recursive Formula:

A0)=1; A1) =1;

—i=1
A(n):Z(n ’ )A(n—Zi—l)—i—((n—i—l) mod 2)
- i
The first few numbers: 1, 1, 2, 3, 6, 13, 29, 72, 185...

11

123, 321, 132
123, 321, 231
123, 321, 312
123, 321, 213

(n =1+ (n—2)1

12

123, 231, 312
132, 213, 321

13

123, 231
321, 132
321, 213
123, 312

14

213, 231
312, 132

15

132, 213
231, 312

16

123,321

2E,, where E, is the n-th Euler number

17

123, 132
321, 231
321, 312
123, 213

the number of involutions in S,
(Claesson, [5])

18

132, 231
312, 213

2n—1

We now give proofs and comments for the results represented in the table.

1.3 Proofs, remarks, comments

From now on, when talking about class i, we mean the first set of patterns in
the equivalence class 1 according to the table above. Thus, for instance, 8 will
be taken to refer to the set of patterns {123,132, 231}.

Let us consider class 1. There are only two patterns, namely 231 and 213,
that are allowed to occur. Suppose a permutation @ = aias...a, avoids the
patterns from 1. If a;asa3 forms a 231-pattern then asazas has to form a 213-
pattern since as > az. It is easy to see that azasas has to form the pattern
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231 and so on. Moreover, if we consider the letters in even positions from left
to right then we get an increasing sequence any element of which is greater
then any element in an odd position; letters in odd positions form a decreasing
sequence when read from left to right. From this we see that there is a unique
such permutation in which the letters {1,2,...,[(n 4+ 1)/2]|} are in the odd
positions in decreasing order, and all other letters are in the even positions in
increasing order.

By the same argument there is only one permutation that avoids 1 and be-
gins with a 213-pattern. Thus, in this case A(n) = 2.

For class 2 there are only two permutations that avoid it, namely m; =
nin—1)(n—2)...1 and 73 = (n — 1)n(n — 2)(n — 3)...1. This is because n
has to be either in the leftmost position or in the second position from the left,
for otherwise we have either an occurrence of the pattern 123 or of the pattern
213 that involves n. To the right of n we have to have decreasing order because
otherwise we have an occurrence of a 312- or a 213-pattern. Moreover, if n is
in the second position from the left then in the leftmost position we must have
the letter (n — 1) because otherwise (n — 1) must be in the third place and the
first three letters form a 132-pattern.

There are obviously only two permutations that avoid class 3. They are
m =12...nand m =n(n —1)...1.

For class 4, only the patterns 213 and 312 are allowed. Obviously, for n = 3
we have A(n) = 2. Suppose n > 3. If a permutation 7 = ajas ...a, avoids
4, then it has to be that as < a3, because ajasaz forms either a 213- or a
312-pattern. But this means that asaza, cannot form a 213- or a 312-pattern,
whence A(n) = 0.

For class 5, n has to be either in the rightmost position or in the second

position from the right, for otherwise we have an occurrence of a 312- or a
321-pattern. Moreover we must have increasing order to the left of n because
otherwise we have an occurrence of a 213- or a 312-pattern. Thus there is only
one permutation with n in the rightmost position.
If n is in the second position from the right then (n — 1) cannot be in the right-
most position, because in this case we have an occurrence of a 132-pattern that
involves n and (n—1). So in this case (n—1) has to be in the third position from
the right, and we can put any letter ¢ other than n — 1 and n in the rightmost
position. This means that A(n) =1+ (n—2) =n—1.

Class 6 will be considered in Theorem 2 below.

Theorem 1. For class T we have A(n) = (LT:}?J)‘

Proof. Let us construct a permutation that avoids class 7 by inserting the
numbers 1,2,...,n into n slots and observing the following:
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The number 1 can be placed either in the rightmost slot or in the second slot
from the right, since otherwise, independently of what we have to the right of 1
in the permutation, we get either a 123- or a 132-pattern, which is prohibited.
If 1 has already been placed then 2 must be placed in such way that:

1. The two slots immediately to the right of 2 are not both empty, for other-
wise we will get an occurrence of either a 123- or a 132-pattern involving 2;

2. If 1 is not in the rightmost slot then 2 cannot be immediately to the left of
1, because in this case we will get an occurrence of a 213-pattern involving
the letters 1 and 2.

In general it is easy to see that if ¢ letters have been placed then for some j
such that 0 < j <4 the rightmost j slots are non-empty and the 2 - (i — j) slots
immediately to the left of these j slots are alternatingly empty and non-empty.
By an argument analogous to the above we can only place the letter (¢ + 1) into
either

0) the rightmost empty slot or

1) the second empty slot to the left of the leftmost non-empty slot.

If we place 1 next to the rightmost slot we assume that we use option 1).

Let us call the leftmost two slots critical slots. When we fill one of the critical
slots, there is only one way to place the remaining letters, using option 0), since
in this case, option 1) can not be applied any more.

So any permutation with the right properties can be written as a sequence of
0s and 1s according to which option we use in placing the ith letter
(1 =1,2,...) and we stop writing a (0,1)-sequence whenever we reach one of the
critical slots.

Let us call the (0,1)-sequences thus constructed legal sequences.

Example 1. Let n = 6. The (0,1)-sequence 01101 is a legal sequence that
corresponds to the permutation 5736241. But 1111 is not a legal sequence,
because after 3 steps, namely 111, we are already in a critical slot and must
stop writing the (0,1)-sequence.

Since obviously there is a bijection between legal sequences and permutations
in class 7, our problem is to count all possible legal sequences. We prove by
induction on n that the number of such sequences is equal to (Ln7/L2 J)'

It is easy to check this for n = 3.

Assuming that for all ¢ < n we have A(i) = (Wi2 J), we prove the statement
for A(n). We consider separately the cases when n is even and odd.
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Suppose n is even. The number of legal sequences that begin with 0 is
obviously equal to

Aln=1= (L(nn—_1)1/2J> B ((nn—_z)l/z’)'

Now we prove that the number of legal sequences beginning with 1 is equal
to the number of legal sequences beginning with 0. We shall show that a bijec-
tion between these legal sequences is given by the correspondence 0X « 1X,
where 0X is any legal (0,1)-sequence of length £, 3 < £ < n—1, that starts with
0. From this it follows that

An) =24(n = 1) = (75 2) + (22 2) =

= (") + (n2) = () = (1))

So the problem is to prove that 0X < 1X is a bijection.

We use induction on even n. If n = 2 then we only have the critical slots
and thus there are only two legal sequences possible, namely 0 and 1. In this
case X = () and we have that 0X < 1X is a bijection.

Suppose for all even m less than n the correspondence 0X + 1X is a bijec-
tion. We consider the case m = n. Recall that n is even.

By n-permutation we mean a permutation of elements 1,2,...,n.

A (0,1)-sequence po = 00X’ is a legal sequence that corresponds to some
n-permutation avoiding 7 if and only if pj = X' is a legal sequence that corre-
sponds to some (n — 2)-permutation. To see this we observe that after the first
two steps, py fills in the two rightmost slots. We can strike them and forget about
the first two steps of po; by this, we are left with the (0,1)-sequence X' that can
be investigated (if it is a legal sequence) with respect to (n — 2)-permutations.

By the same reasoning, a (0,1)-sequence p; = 10X’ is a legal sequence that
corresponds to some n-permutation avoiding 7 if and only if p{ = X' is a legal
sequence that corresponds to some (n — 2)-permutation.

From these arguments we conclude, that if X = 0X' then the correspon-
dence 0X + 1X is a bijection.

For any natural number k, we write (k) instead of writing k consecutive
letters 1. In particular (0) = 0.

Suppose X = (k)0X' and k > 1. Reasoning as before, pg = 0(k)0X’ is a
legal sequence with respect to n-permutations if and only if py = 0(k — 1) X' is
a legal sequence with respect to (n — 2)-permutations. Also, p; = 1(k)0X' is a
legal sequence with respect to n-permutations if and only if p} = 1(k—1)X'is a
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legal sequence with respect to (n — 2)-permutations. By induction, for (n — 2)-
permutations, the correspondence 0Y < 1Y between legal sequences 0Y and
1Y is a bijection, thus the correspondence 0X < 1X, when X = (k)0X') is a
bijection for n-permutations as well.

The last thing we need to observe is that since n is even, py = 0(k) is a legal
sequence if and only if p; = 1(k) is a legal sequence.
This proves that the correspondence 0X « 1X is a bijection.

Suppose n is odd. If a legal sequence begins with 0, then we obviously have
that there are A(n — 1) = ((nrfl)l /2) such legal sequences. So to prove the
statement we need to prove that the number of legal sequences that begin with
1 is equal to ((n’jr_l)l /2) because if it is so then we have

A= (mn__l)l/z) " (<nn+_1>1/z> B (<n —nl)/2> B (Ln72J>'

If a legal sequence begins with 1 then either
i) the number of 1s always exceeds the number of 0s, or
ii) at some point the number of 1s is equal to the number of Os.

Let us consider case i). Here we deal with Catalan numbers, which, among
many other things, count the Dyck paths. A Dyck path of length 2n is a lattice
path from (0,0) to (2n,0) with steps (1,1) and (1, —1) that never goes below the

. . . . _3
z-axis. Le‘t us explaln'why in case i) we have m ((nﬁ3) /2) legal sequences
with the right properties.

We can see that the number of ones is fixed in this case and equal to (n—1)/2.
We can complete our (0,1)-sequence with Os if necessary (in order to complete a
Dyck path that corresponds to the (0,1)-sequence under consideration). More-
over, we can forget about the leftmost letter 1 because we know that it is followed
by another letter 1, so we have (n —3)/2 ones. We thus substitute k = (n—3)/2
in the formula for the Catalan numbers, C} = ﬁ(%f), which completes the
consideration of i).

In case ii) we apply induction. Let us consider the first time, say step i,
when the number of 0s is equal to the number of 1s. Obviously it can occur at
any even step (and not at any odd one). Moreover, because it is the first such
time, if we consider initial subsequences of length less then ¢, we always have
that in such subsequences the number of 1s exceeds the number of 0s. So in
case ii), if we apply the induction hypothesis to the A(n — i), the number of
legal sequences is equal to

n—3 n—3

2 736 aye) A= 2 726 a) (=)
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So to complete the case when n is odd we need only check the following
equality:

( n—1 ) _
(n+1)/2)
”ii<z‘—2)( n—i >+ 1 (n—3)
= i/2\(i—2)/2/\(n—i—1)/2 (n=1)/2\(n —3)/2
7 18 even
The last term can be moved inside the sum. Since n is odd, we have n =
2m + 1 and the equation above can be rewritten as

( 2m ) _il(Q(i—l)) (2(m—i)+1>
m+1 _z':li i—1 m—i '

We give a combinatorial proof of this identity. We observe that the left
hand side of it counts the number of all lattice paths from (0,0) to (2m, —2)
with steps (1,1) and (1,-1).

The i-th term in the right hand side counts the number of such paths whose
first step below the z-axis is just after step 2(¢ —1). Now the first 2(i —1) steps of
any such path determine a Dyck path of length 2(i — 1). So there are (2(:__11)) /i
possibilities for a such path to pass the point (2(¢ —1),0) and come to the point
(2i — 1,—1) with the (1, —1) step. We multiply this number with (2(";:2.“)
which counts the number of all lattice paths from (2i — 1, —1) to (2m, —2) with
steps (1,1) and (1, —1). Thus, the right hand side counts the same paths as the
left hand side.

This completes the case when n is odd and thereby the proof. O

Example 2. For n = 4 there are indeed (;1) = 6 permutations avoiding class
7. In the table below we show these permutations and legal sequences that
correspond to them.

Permutation | Corresponding legal sequence
4321 0000
3421 001
4231 01
4312 100
3412 101
2413 11

Theorem 2. For class 6 we have

[ 20y, ifn=2%k+1,
A(n)_{ Ck + Cr—1, ifn=2k,

where Cy, is the k-th Catalan number.
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Proof. We consider n empty slots. If we fill the slots successively with the
letters 1,2,...,n then we always have one or two possibilities, namely, either

0) we place the current number in the rightmost empty slot, or
1) we place it in the second empty slot left of the leftmost non-empty slot.

Observe that we can use option 0), except in the first step, only if there
is a non-empty slot to the left of the rightmost empty slot. This is a crucial
difference between classes 6 and 7.

As in the proof of Theorem 1 we can consider the critical slots as well as (0,1)-
sequences that appear in the obvious way (we have always one or two possibilities
until we reach a critical slot and uniquely place all remaining numbers). After
that we can associate the (0,1)-sequences with Dyck paths and apply the formula
for the number of Dyck paths.

The number of legal sequences that correspond to the permutations avoiding
class 6, whose rightmost letter is 1, is equal to

1 (2- [(n—l)/2J)
l(n=1)/2] +1\ [(n-1)/2] )
The number of legal sequences that correspond to the permutations avoiding
class 6, with the second letter from the right equals 1, is equal to

i o )

From these facts we have that

1 2wl (2 lm-1)2)
Alm) = Ln/2J+1( In/2] )* L(n—l)/2J+1( L(n—1)/2] )

Substituting n by 2k + 1 and 2k, respectively, completes the proof. O

For class 8, 1 must be either in the rightmost position or in the second
position from the right. It is easy to see that the letters to the left of 1 must
be in decreasing order. So there are n ways to choose the rightmost element
of a permutation and all other elements can be placed uniquely, so there are n
permutations avoiding 8.

For class 9, if 1 is in the rightmost position then we must place all other
letters in decreasing order, so in this case we have the permutation 7 = n(n —
1)...21 that avoids class 9.

Assume that 1 is not in the rightmost position. The letters to the left of 1
must be in decreasing order. On the other hand it is easy to see that the letters
to the right of 1 must be in increasing order (the set of such elements is non-
empty). But 2 can not be to the left of 1 since in this case we obviously have an
occurrence of a 213-pattern in the permutation that involves the letters 1 and
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2. So 2 is immediately right of 1. Thus, to determine a permutation in class
9 is equivalent to partitioning the letters {3,4,...,n} into two blocks. There
are 2"~2 ways of doing it. One of the blocks is all elements of a permutation to
the right of 12, and the other one is all elements to the left of 12. So there are
1+ 2"~2 permutations avoiding class 9.

Let us consider class 10. We explain how to get a recurrence relation for
A(n) in this case.

It is easy to see that 1 is either in the rightmost position or in the second
position from the right. In the first case there are A(n — 1) permutations that
avoid 10. In the second case we can place the letter 2 either in the position
immediately left of 1 or in the second position left of 1.

In the first of these cases we choose from the remaining (n — 2) letters a
candidate for the rightmost position. One can do this in (n — 2) ways. Then
we multiply this by A(n — 3) since three of rightmost positions do not affect to
placement of all other letters in a permutation.

So we need to consider the case when 2 is in the second position left of 1.
In general, we need to consider the case when the letters 1,2,...,7 have been
already placed in such way that 2¢ rightmost positions are alternatingly empty
and non-empty, the rightmost position is empty, and these 4 letters are in de-
creasing order from the left to the right. If we place (i + 1) immediately left of
the leftmost non-empty position then we choose i elements from the remaining
(n—i—1) elements in order to fill in 7 of rightmost empty positions. We observe
that we must fill in the chosen elements in increasing order from the left to the
right, otherwise we get an occurrence of a 312-pattern that is prohibited. Then
we multiply this by A(n — 2¢ — 1) because in this case the (27 + 1) rightmost
letters do not affect the placement of the other letters in the permutation. So
we need to consider the case when (i + 1) is in the second position left of i and
SO on.

So we have

—i—=1
A(n):Z(n ! )A(n—2i—1)+((n+1) mod 2).
- i
The last term appears because if n is odd we have to consider the permuta-
tion
n+ln—1n+3n-3
= 5 5 3 ...2(n—1)1n,

which avoids 10 and which is not counted in the sum.
As initial conditions one can take A(0) =1, A(1) = 1.

Theorem 3. For class 11 we have A(n) = (n — D)1 + (n — 2)!L.

Proof. Since the patterns 123 and 321 can not occur in the permutations avoid-
ing class 11, such permutations are alternating or reverse alternating, that is, of
the form a; > ay <az > -+ ora; < as > az < --+, with one more restriction.
One can easily see that 1 is either in the rightmost position or next to this
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position, for otherwise we have an occurrence of a 123- or 132-pattern. If we go
from the right to the left starting from 1 and jumping over one element then we
get an increasing sequence of letters because otherwise we have an occurrence
of the pattern 132.

Let P;(n) be the number of permutations having 1 in the rightmost posi-
tion and let P2(n) be the number of permutations having 1 in the next to the
rightmost position. Then obviously

A(n) = Pi(n) + Py(n).
It is easy to see that

Pl(n) :PQ(’I’L—].),
Py(n) = (n—1)Pa(n —2)

whence P;(n) = (n — 2)!! and Py(n) = (n — 1)!I. O

Class 16 is a classically studied object. Permutations that avoid 16 are
the alternating and the reverse alternating permutations. It is well known that
the exponential generating function for the number of such permutations is
2(tan z + sec x)2. The initial values for A(n) are 1,2,4,10, 32,122, 544,2770, . ..

For the result on class 17 we refer the reader to Porism 10 in [5].

Finally, for class 18 we can observe that to the left of 1 in such a permutation
we must have a decreasing subword and to the right of 1 we must have an
increasing subword, since otherwise we have either a 132- or a 231-pattern.
Thus we can choose the elements to the right of 1 from the set {2,3,...,n} in
2"~! ways and then arrange uniquely the right hand side and the left hand side
(elements of a permutation to the left of 1). So there are 2"~! permutations
that avoid class 18.
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Abstract

Babson and Steingrimsson introduced generalized permutation patterns that
allow the requirement that two adjacent letters in a pattern must be adjacent
in the permutation. We consider n-permutations that avoid the generalized
pattern 1 — 32 and whose k rightmost letters form an increasing subword. The
number of such permutations is a linear combination of Bell numbers. We find a
bijection between these permutations and all partitions of an (n— 1)-element set
with one subset marked that satisfy certain additional conditions. Also we find
the e.g.f. for the number of permutations that avoid a generalized 3-pattern with
no dashes and whose k leftmost or k rightmost letters form either an increasing
or decreasing subword. Moreover, we find a bijection between n-permutations
that avoid the pattern 132 and begin with the pattern 12 and increasing rooted
trimmed trees with n + 1 nodes.

2.1 Introduction and Background

All permutations in this paper are written as words m = ajas - - - a,, where the
a; consist of all the integers 1,2,...,n.

A pattern is a word on some alphabet of letters, where some of the letters
may be separated by dashes. In our notation, the classical permutation patterns,
first studied systematically by Simion and Schmidt [SchSim], are of the form
p = 1 — 3 — 2, the dashes indicating that the letters in a permutation
corresponding to an occurrence of p do not have to be adjacent. In the classical
case, an occurrence of a pattern p in a permutation 7 is a subsequence in 7 (of
the same length as the length of p) whose letters are in the same relative order
as those in p. For example, the permutation 264153 has only one occurrence of
the pattern 1—2 — 3, namely the subsequence 245. Note that a classical pattern
should, in our notation, have dashes at the beginning and end. Since most of
the patterns considered in this paper satisfy this, we suppress these dashes from
the notation.

In [BabStein] Babson and Steingrimsson introduced generalized permutation
patterns (GPs) where two adjacent letters in a pattern may be required to be
adjacent in the permutation. Such an adjacency requirement is indicated by
the absence of a dash between the corresponding letters in the pattern. Thus,
a pattern with no dashes corresponds to a contiguous subword anywhere in a



permutation. For example, the permutation 7 = 516423 has only one occurrence
of the pattern 2-31, namely the subword 564, but the pattern 2-3-1 occurs also
in the subwords 562 and 563. The motivation for introducing these patterns in
[BabStein] was the study of Mahonian statistics.

A number of interesting results on GPs were obtained by Claesson [Claes].
Relations to several well studied combinatorial structures, such as set partitions,
Dyck paths, Motzkin paths and involutions, were shown there. In [Kitl] the
present author investigated simultaneous avoidance of two or more 3-letter GPs
with no dashes. Also there is a number of works concerning GPs by Mansour
(see for example [Mansl, Mans2]).

In this paper we consider avoidance some generalized 3-patterns with addi-
tional restrictions. The restrictions consist of demanding that a permutation
begin or end with the pattern 12...k or the pattern k(k —1)...1.

It turns out that the number of permutations that avoid the pattern 1 — 32
and end with the pattern 12...k is a linear combination of the Bell numbers.
The n-th Bell number is the number of ways a set of n elements can be parti-
tioned into nonempty subsets. We find a bijection between these permutations
and all partitions of an (n — 1)-element set with one subset marked that satisfy
certain special conditions. In particular, in Theorem 1, we investigate the case
k = 2. We get that the total number of partitions of an (n — 1)-element set with
one part marked, is equal to the number of (1 — 32)-avoiding n-permutations
that end with a 12-pattern. Lemma 1 gives us an identity involving the Bell
numbers and the Stirling numbers of the second kind, which seems to be new.
In Theorem 3 we prove that the number of 132-avoiding n-permutations that
begin with the pattern 12 is equal to the number of increasing rooted trimmed
trees with n + 1 nodes.

In Sections 4 — 7, we give a complete description (in terms of exponential
generating functions (e.g.f.)) for the number of permutations that avoid a pat-
tern of the form zyz and begin or end with the pattern 12...k or the pattern
k(k —1)...1. We record all the results concerning these e.g.f. in the table
in Section 7. The case k¥ = 1 is equivalent to the absence of the additional
restriction. This case was considered in [ElizNoy] and [Kit2].

We observe that avoidance of some pattern with the additional restrictions
described above, in fact is equivalent to simultaneous avoidance of several pat-
terns. For example, beginning with the pattern 12 is equivalent to the avoidance
of the pattern [21) in the Babson-Steingrimsson notation. Thus avoidance of
the pattern 132 and beginning with the pattern 12 is equivalent to simultaneous
avoidance of the patterns 132 and [21). Also, ending with the pattern 123 is
equivalent to simultaneously avoiding the patterns (132], (213], (231], (312] and
(321].

2.2 Set partitions and pattern avoidance

We recall some basic definitions.
A partition of a set S is a family, 7 = {A1, As, ..., Ay}, of pairwise disjoint
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non-empty subsets of S such that S = U;A;. The total number of partitions of
an n-element set is called a Bell number and is denoted B,,.

The Stirling number of the second kind S(n, k) is the number of ways a set
with n elements can be partitioned into k disjoint, non-empty subsets.

Proposition 1. Let P(n,k) be the number of n-permutations that avoid the
pattern 1 — 32 and end with the pattern 12...k. Then

gy |
LU ( i )B

=0
Proof. Suppose a permutation 7 = o171 avoids the pattern 1 — 32 and ends with
the pattern 12... k. The letters of 7 must be in increasing order, since otherwise
we have an occurrence of the pattern 1 — 32 involving 1. Also, ¢ must avoid
1 —32. If |o| = i then obviously 0 < ¢ <n — k and we can choose the letters of
o in (";') ways. By [Claes, Proposition 5], the number of i-permutations that
avoid the pattern 1 — 32 is equal to B;, hence there are B; ways to form . [

n—1 n
Lemma 1. We have Z (7) B; = Zz -S(n,i).
=0 =0

Proof. The identity can be proved from the recurrences for S(n, k) and By, but
we give a combinatorial proof.

The left-hand side of the identity is the number of ways to choose ¢ elements
from an n-element set, and then to make all possible partitions of the chosen
elements.

The right-hand side is the number of ways to partition a set with n elements
into ¢ disjoint non-empty subsets (¢ = 1,2,...,n) and mark one of the subsets.
For example if n = 4 then T — 24 — 3 and 1 — 24 — 3 are two different partitions,
where the marked subset is overlined.

A Dbijective correspondence between these combinatorial interpretations is
given by the following: For the left-hand side, after partitioning the ¢ chosen
elements, let the remaining n — i elements form the marked subset in the par-
tition. O

The formula for P(n, k) in Proposition 1, applied to £ = 2, and Lemma 1
now give the following theorem:

Theorem 1. The total number of partitions of an (n — 1)-element set with one
part marked, is equal to the number of (1 — 32)-avoiding n-permutations that
end with the pattern 12.

We give now a direct combinatorial proof of this theorem.

Proof. Suppose P =S; — Sy —--- — Sy is a partition of an (n — 1)-element set
into k£ subsets with one marked subset and T; is the word that consists of all
elements of S; in increasing order. We may, without loss of generality, assume
that min(S;) < min(S;) if ¢ > j. In particular, 1 € Si. There are two cases
possible:
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1) S = {1} (Sk is not marked set);
2) Either Sy, =1 or 1 € Sg and |Si| > 2.

In the first case, to a partition P = S; — Sy — -+ = 8; — -+ — Sp_1 — 1
we associate the permutation 7(P) = nT1Ts...T; 1T;41 ... Ti—11T;, which is
(1 — 32)-avoiding and ends with the pattern 12 since S; # 0. For example
4—23 -1+ 54123.

In the second case we adjoin n to a marked subset, and then consider the
permutation w(P) = T1T5 ... T). This permutation is obviously (1—32)-avoiding
since min(S;) < min(S;) if ¢ > j and the letters in T; are in increasing order.
Also it ends with the pattern 12. For example 5 — 34 — 12 — 534612, and
5—234 — 1 523416.

Obviously in both cases we have an injection.

Now it is easy to see that the correspondence above is a surjection as well.
Indeed, for any (1 — 32)-avoiding permutation 7 that ends with the pattern 12,
we can check if 7 begins with n or not and according to this we have either
case 1) or 2). In the first case, we remove n, then read 7 from left to right and
consider all maximal increasing intervals. The elements of each such interval
correspond to some subset, and we let all the letters to the right of 1 constitute
the marked subset. In the second case, we divide 7 into maximal increasing
intervals, and let the letters of each interval correspond to a subset. Then we
let the interval containing n be the marked subset. Thus we have a surjection.
So the correspondence is a bijection and the theorem is proved. O

The following theorem generalizes Theorem 1.

Theorem 2. Let P = S; — Sy —--- — S; be a partition of {1,2,...,n—1} into
£ subsets with subset S; marked. We assume also that 1 € Sy. Then P(n,k)
counts all possible marked partitions of {1,2,...,n—1} that satisfy the following
conditions:

1) if i = £ (the last subset is marked) then |S¢| > k —1;
2) ifi# L and |Sy| # 1 then |Se| > k;
3) ifi# L and |S¢| =1 then |S;| > k — 1.

Proof. A proof of this theorem is similar to the proof of Theorem 1. We assume
that min(S;) < min(S;) for i > j and consider three cases.

If a partition satisfies 1), that is P = S; —So—---—S; and |S¢| > k—1, then
adjoining n to Sy guarantees that the permutation 7w(P) = T1T» ... T, which is
(1 — 32)-avoiding, ends with k letters in increasing order.

In case 2), we adjoin n to the marked subset and consider 7(P) = T1T5 . .. Ty.
This permutation avoids the pattern 1 — 32 and ends with the pattern 12...k
since |S¢| > k.

In case 3), to a partition P = S —Sy—- - .—8;—-+-—8Sk_1 —1 we associate the
permutation 7(P) = nTh\To ... T;— 1Tt .. . T—11T;, which is (1 — 32)-avoiding
and ends with at least k letters in increasing order since |S;| > k — 1.
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That this correspondence is a bijection can be shown in a way similar to the
proof of Theorem 1. O

2.3 Increasing rooted trimmed trees and pat-
tern avoidance

In an increasing rooted tree, nodes are numbered and the numbers increase as
we move away from the root. A trimmed tree is a tree where no node has a
single leaf as a child (every leaf has a sibling).

Theorem 3. Let A, denote the set of all n-permutations that avoid the pattern
132 and begin with the pattern 12. The number of permutations in A, is equal
to the number of increasing rooted trimmed trees (IRTTs) with n + 1 nodes.

Proof. A right-to-left minimum of a permutation 7 is an element a; such that
a; < a; for every j > i.

We describe a bijective correspondence F' between the permutations in A,
and IRTTs with n + 1 nodes.

Suppose m € A, and 7 = PyagPia; - . . Prag, where a; are the right-to-left
minima of 7 and P; are (possibly empty) subwords of 7. We construct a IRTT
T = F(w) with n 4+ 1 nodes as follows. The root of T is labelled by 0 and
ag,at,- - .,a are the labels of the root’s children if we read them from left to
right. Then we let the right-to-left minima of P; be the labels of the children
of a; and so on. It is easy to see that, since 7 avoids 132 and begins with 12, T
avoids limbs of length 2. Also, T is an increasing rooted tree and hence T is a
IRTT. For instance,

F(2910531111314812746) = 0

Obviously, the correspondence F' is an injection.

To see, that F' is a surjection, we show how to construct the permutation
w € A, that corresponds to a given IRTT T'. The main rule is the following: If
a; and a; are siblings, and a; < a;, then the labels of the nodes of the subtree
below a;, are all the letters in 7 between a; and a;, that is, a;11, aiy2,.-.,a_1.
If a; is a single child, then the labels of the nodes of the subtree below a; appear
immediately left of a; in 7. That is, if there are k nodes in the subtree below a;
then the k corresponding labels form the subword a;—a;—g+t1 - .- a;—1. We now
start from the first level of T, which consists of the root’s children, and apply
this rule. After that we consider the second level and so on. The fact that T is
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a IRTT ensures that 7 avoids the pattern 132 and begins with the pattern 12.
Thus, F is a bijection. |

2.4 Avoiding 132 and beginning with 12...%k or
k(k—1)...1

Let EP(x) denote the e.g.f. for the number of permutations that avoid the
pattern ¢ and begin with the pattern p.

If £ = 1, then there is no additional restriction, that is, we are dealing with
avoidance of the pattern 132 (no dashes) and thus

1

= 21
1_f0$ €7t2/2 dt’ ( )

Ei32 ()

since this result is a special case of [ElizNoy, Theorem 4.1] and [Kit2, Theorem
12].

Theorem 4. We have

12 67m2/2
ElSQ('Z.) = 1_f0z €7t2/2 dt _1'_17
and for k>3
T th—2 to
t 1
Ei35* () = Bg(x) / / / (e‘t%/ - %) dtydts -~ - dtg_o.
o Jo 0 Ei35(t1)

Proof. Let E, j denote the number of n-permutations that avoid the pattern
132 and begin with an increasing subword of length k£ > 0. Let m be such a
permutation of length n + 1. Also, suppose k # 2. If 7 = 017 then either o = €
or o # € where € denotes the empty word. If ¢ = € then 7 must avoid 132 and
begin with an increasing subword of length ¥ — 1. Otherwise ¢ must avoid 132
and begin with an increasing subword of length k, whereas 7 must begin with
the pattern 12, or be a single letter (there are n ways to choose this letter), or
be €. This leads to the following:

n
Eppix=Epp_1+ 2 (l)EZkEn—n +nE,_ 1+ Ep - (2.2)
i>0

Multiplying both sides of the equality with z™/n! and summing over all n
we get the following differential equation

d (k=
B (@) = (Bl (@) + 2+ DEG @) + Bl V@), (23)

with the initial conditions E}25*(0) = 0 for k > 3.
Observe that equality (2.3) is not valid for £k = 2. Indeed, if k¥ = 2, then
it is incorrect to add the term E, ;1 = E, in (2.2), since this term counts
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the number of permutations 7 = 17 with the only restriction for 7 that it must
avoid 132. The absence of an additional restriction for 7 means that the 3
leftmost letters of m could form the pattern 132. However, we can use (2.3) to
find Ej2,(z) by letting k equal 1. In this case we have

d
%Eisz(m) = (Bi3(z) + 2 + 1) Ejay (),

which gives
1o e—:c2/2
E132($) = m —x—1. (24)
For the case k > 3, it is convenient to write E{2,(z) in the form
Ei3(z) = B'(z) -z -1,
where B(z) = —In(1— f; e~t*/2 dt) and thus B'(z) = exp(B(z) — “”2—2) So (2.3)
is equivalent to the differential equation

d
B (@) = B'(0) Bl (2) + Bygy V(@)

Wthh has the SO]u‘iOH
k B(z _B E12 (k—1)
E11§2 (.’L‘) =€ ( )/ € ® 132 (t) dt =

Elz (k— 1)
E1132 / )d =
132

" E 132 - 2) )
E! / / LE I
t22( Elsy(t1

th—2 t2E12()
El 132 St dty - - - dtg—o.

Using (2.1) and (2.4) we now get the desired result. O

Using the formula for E}2;*(z) in Theorem 4 one can derive, in particular,
that .
z2 N (1+&)e=/2-1
T 12 °
2 2 1— [y e /2 dt




Theorem 5. For k > 2

—1)... EIA xXr z 1 42
ERE=D-1 gy = (klzf(l))'/o th=te=t"/2 dt.

Proof. We proceed as in the proof of Theorem 4.

Let R, denote the number of n-permutations that avoid the pattern 132
and begin with a decreasing subword of length k& > 1 and let 7 be such a
permutation of length n + 1. Suppose also that # = olr. If 7 = € then,
obviously, there are R,, ;, ways to choose o. If |[7| = 1, that is, 1 is in the second
position from the right in 7, then there are n ways to choose the rightmost
letter in 7 and we multiply this by R —1, which is the number of ways to
choose o. If |7| > 1 then 7 must begin with the pattern 12, otherwise the letter
1 and the two leftmost letters of 7 form the pattern 132, which is forbidden.
So, in this case there are Y, () Ri,x En—i,2 such permutations with the right
properties, where ¢ indicates the length of ¢ and E,_; > is defined in the proof
of Theorem 4. In the last formula, of course, R;; = 0 if i < k. Finally we have
to consider the situation when 1 is in the k-th position. In this case we can
choose the letters of o in (,",) ways, write them in decreasing order and then
choose 7 in Ej, 41,2 ways. Thus

n n
Ropyip=Rpp+nRo_11+ E (i)Rz’,kEn—i,Q + (k _ 1) En_kt1,2- (2.5)
i>0

We observe that (2.5) is not valid for n = k — 1 and n = k. Indeed, if 1
is in the k-th position in these cases, the term (,",)En_g41,2, which counts
the number of such permutations, is zero, whereas there is one “good” (n + 1)-
permutation in the case n = k — 1 and n “good” (n + 1)-permutations in case
n = k. Multiplying both sides of the equality with =™ /n!, summing over n and
using the observation above (which gives the term zF~1/(k—1)!+ kz* /k! in the
right-hand side of Equalion (2.6)), we get

d _k(k-1)..1 k(k—1)...1 !
B @ = Eh@) +o+ ) (B @ ), @9
with the initial condition £33 ) (0) = 0. We solve the equation in the way
proposed in Theorem 4 and get

_ El(z) [T (BZ,(t) +t+ 1)kt El,(z) [* 2
Erk-1).1 oy Piss / 132 _ T2 / k=1p,—t7/2 g4
@) =T, Elo® oo, e T

O

For instance,

1—e2/? 1 1— ze—""/?
21 — 321 N
E132 (.’L‘) - 1_ foz e—t2/2 dt and E132 (.’L‘) 9 ( 1+ 1_ focc e—12/2 dt .
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Moreover, the integral [y th=1¢=t"/2 gt from the formula for EXE=1(z)
can be solved to show that Efég _1)"'1(:17) equals

(k/2 — 1)12k/2-1 L g2

N
(k—1)!IA = (/% erf(x)) ! z 241 |7

=0

if k£ is even, and

(k=3)/2 i
1 —1+ 1 1—e /2 ﬂ
(k-1 1— /% erf(z) P (2e + 1)1

if k£ is odd.
In the formula above, erf(z) is the error function:

2 z 2
erf(z) = ﬁ/o e”t dt.

2.5 Avoiding 123 and beginning with k(k—1)...1
or 12...k

If k = 1, we have no additional restrictions and, according to [ElizNoy, Theorem

4.1],
\/5 e:c/2
E%23(~'U) =5

2 cos (@m%— %)

Theorem 6. For k > 2

z/2 z
ERE=D-1 gy = = / e t/2th1 sin (ét + E) dt.
(k—1)!cos (ﬁx—i—%) 0 2 3

2

In particular,

Ef%3(.7)) = 7 tan 7.’1: —+ 6

V3 V3 om 1

-t
Proof. Let P, denote the number of n-permutations that avoid the pattern
123 and begin with a decreasing subword of length k. We observe that we can
use arguments similar to the proof of Theorem 5 to get the recurrence formula
for P, 1. Indeed, we only need to write the letter P instead of R and E in (2.5):

n n
Pojip =Pop+nPr_q1p+ Z (i>Pi,kPn—i,2 + (k - 1) Pr_pt12.  (2.7)
>0
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This formula is valid for £ > 1. Multiplying both sides of the equality with
z" /n!, summing over n and reasoning as in the proof of Theorem 5, we get:

d k(k-1)..1 k(k—1)...1 g1
B @) = (B () + 2+ 1) (E< @+ gom) @9
with the initial condition Efégil)”'l(O) = 0. To solve (2.8), we need to know

E32}.(z). To find it, we consider the case k = 1. In this case we have almost the
same recurrence as we have in (2.7), but we must remove the last term in the
right-hand side:

n
Piopii=FPua+nPp11+ Z (i>Pi,kPn—i,2-
i>0

After multiplying both sides of the last equality with z™/n! and summing
over n, we have

d
7o Plas(2) = (Bizs () + 2 + 1) Blyy(2),
and thus
45 By (2) V3 N 1

Now we solve (2.8) in the way we solved Equalion (2.6) and get

z/2 T
Efé’;_l)"'l(m) = ¢ / e t/2¢k—1gin (ﬁt + ﬁ) dt.
(k—l)!cos(‘/gaﬂr—%) 0 2 3

2

The following theorem is straightforward to prove.

Theorem 7. We have Ei2;F(x) =0 for k > 3 and

\/3 et/2 1 \/g \/?_) .
Pibe) = Pha() = Flbto) = 3 == P (7“ g) _
2.6 Avoiding 213 and beginning with k(k—1)...1
or 12...k

If k¥ = 1, then by [ElizNoy, Theorem 4.1] or [Kit2, Theorem 12]

1

o) = e g
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Theorem 8. For k > 2

z ot k—2,T(t)—T(s)
Bk (z) = / / S dsdt,
o Jo (k=21 - [y e ™ /2dm)

2
where T(z) = —2* /2 + [§ — S dt.

1-[le=*2/2ds
Proof. Let A,, denote the number of n-permutations that avoid the pattern 213
and let B, denote the number of n-permutations that avoid 213 and begin with
the pattern 12...k. Let C, denote the number of n-permutation that avoid
213, begin with the pattern 12...%k and end with the pattern 12 and let D,
denote the number of n-permutations that avoid 213 and end with the pattern
12. Also, let A(zx), B(z), C(z) and D(z) denote the e.g.f. for the numbers A,
B,,, C,, and D,, respectively.
We observe, that

x
D) = By @) =2/ [ et a1,
0
since, by using the reverse and complement discussed in the next section, there
are as many permutations that avoid the pattern 213 and end with the pattern
12 as those that avoid the pattern 132 and begin with the pattern 12. Also,
A(z) = Bly,(2) and B(z) = Bi* (a).

Suppose now that 7 = o(n + 1)7 is an (n + 1)-permutation that avoids the
pattern 213 and begins with the pattern 12...%k. So ¢ must avoid 213, begin
with 12... k&, but also end with the pattern 12 since otherwise the two rightmost
letters of o together with the letter (n + 1) form the pattern 213, which is
forbidden. For T, there is only one restriction — avoidance of 213. So if |o| =4
then we can choose the letters of o in (7) ways, which gives 3,5, (7)Cid;
permutations that avoid the pattern 213 and begin with the pattern 12...k.
Moreover, it is possible for (n + 1) to be in the kth position, in which case we

choose the letters of o in (,",) ways and arrange them in increasing order. Thus

n n
Bpi1 = Z (i>CiAn—i + (k B 1) A (k-1)-

i>0

Multiplying both sides of this equality with z™/n! and summing over n, we

get
k-1

with the initial condition B(0) = 0.

To solve (2.9) we need to find C(z). Let 7 = o(n + 1)7 be an (n + 1)-
permutation that avoids the pattern 213, begins with the pattern 12...%k and
ends with the pattern 12. Reasoning as above, ¢ must avoid the pattern 213,
begin with the pattern 12...k and end with the pattern 12, whereas 7 must

59



avoid 213 and end with the pattern 12. This gives Y5 (7)CiDn—; permu-
tations counted by Cyy1. Also, the letter (n + 1) can be in the kth position,
which gives (") D;,_(k—1) permutations, and this letter can be in the (n +1)st
position, which gives C,, permutations that avoid the pattern 213, begin with
the pattern 12...k and end with the pattern 12. Also, if n + 1 = k and all the
letters are arranged in increasing order, then (n+ 1) is in the (n+ 1)st position,
but this permutation is not counted by C,, above. So

Cn+1 = Z (?) CiDn—i + (k i 1) an(kfl) + Cn + 5n,k—1;

i>0

where dy,  is the Kronecker delta, that is,

(Snkz

)

1, ifn=2k,
0, else.
Multiplying both sides of the equality with 2™ /n! and summing over n, we
get

.’L'k_l

(k—1)"
To solve (2.10), it is convenient to introduce the function T'(z) such that
T'(z) = D(z) + 1. Thus

C'(z) = (D(z) + 1)C(z) + (D(x) + 1) (2.10)

z ) z e—t2/2
T(x :;v+/ D(t)dt = —=x 2+/ —_— dt,
() 0 () / o 1—‘[(:6752/2618
and we need to solve the equation
! ! ! ‘Z.kil
C'(e) = T'@)0) + T'(@)

with C'(0) = 0.

The solution to this equation is given by

@) [* Ty bt e [T
Cx)=¢€"''"" —HWT (¢ dt = ——— i .
(@) =e /0 ° %1 "¢ /0 S (T
Now we substitute C(z) into (2.9) to get the desired result. O

Theorem 9. For k > 2
k1 k—2 T tn t1 C (t) + )
ERR=1 oy € + / / k—n k=2 Jdt <o dty,
213 (z) (k—1)! 7;] o Jo o 1—f0t€_m2/2dm 1
where

T th—o t1 67t2/2
Cr(z) = eT(@) / / ... / e~ T®) - . —t—1] dtdt, - - dtg_o,
o Jo 0 1— [y e~™/2dm

. T —t2/2
with T(z) = =2 /2 + [ =g,

dt.
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Proof. Let A,, denote the number of n-permutations that avoid the pattern 213
and let B, denote the number of n-permutations that avoid 213 and begin
with the pattern k(k —1)...1 for k > 2. Let Cp denote the number of n-
permutation that avoid 213, begin with k(k —1)...1 for ¥ > 2 and end with
the pattern 12 and let D,, denote the number of n-permutations that avoid 213
and end with the pattern 12. Also, let A(x), Bi(z), Cr(xz) and D(x) denote
the e.g.f. for the numbers A,, Bp i, Cp and Dy, respectively In the proof
of Theorem 8 it was shown that D(z) = e /2/ N e~t*/2dt) — z — 1 and
A(z) = Ely,(x). Moreover, By(z) = Ey\y "' ().

Suppose now that 7 = o(n 4+ 1)7 is an (n + 1)-permutation that avoids
213 and begins with the pattern k(k —1)...1. So o must avoid 213, begin with
k(k—1)...1, but also end with the pattern 12 if |o| > 2, since otherwise the two
rightmost letters of o together with the letter (n+1) form the pattern 213 which
is forbidden. For 7, there is only one restriction - avoidance of 213. So if |o| =i
then we can choose the letters of o in (T:) ways, which gives ) .-, (’Z) CinA;
permutations counted by B,i1x. Also, it is possible for (n 4+ 1) to be the
leftmost letter, in which case the remaining letters must form a n-permutation
that avoids 213 and begins with the pattern (k — 1)(k —2)...1. Thus

n
Bn+1,k = Z <l)cz,kAn—z + Bn,k—l- (211)

i>0

However, this formula is not valid when ¥ = 2 and n = 0. Indeed, since
By,1 = Ag =1, it follows from the formula that By s = 1, which is not true,
since By, must be 0. So, in the right-hand side of (2.11), we need to subtract

the term
1, fn=0and k=2,
Tnk 0, else.

Multiplying both sides of the obtained equality by z™/n! and summing over n,
we get, that for k£ > 3

%mwzgwm@+m4@, (2.12)

with the initial condition Bg(0) =0, and

%&@=@@M@+&m—h (2.13)

with the initial condition B2(0) = 0.
The solution to differential equations (2.12) and (2.13) is given by

i t

" 1Ck n +6nk 2
B = E dtdty - - - dt,,
k() _1 + / / / l—fe ™22, 1

So, to prove the theorem, we only need to find Cy(z).
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Suppose m = o(n+1)7 be an (n+1)-permutation that avoids the pattern 213,
begins with the pattern k(k —1)...1 and ends with the pattern 12. It is clear
that o must avoid 213, begin with the pattern k(k — 1)...1 and end with the
pattern 12, whereas 7 must avoid 213 and end with the pattern 12. There are
>0 (1) CikDn—i permutations with these properties. Also, the letter (n + 1)
can be in the leftmost position, which gives C, x—1 permutations, and (n + 1)
can be in the rightmost position, which gives C,, ; permutations, since in this
case, two letters immediately to the left of (n + 1) cannot form a descent. So,

n
Cntik = Z (i)ci,an—i + Chk—1 + Crke.

i>0

Multiplying both sides of the equality with z™/n! and summing over n, we get
the following differential equation

Ch(z) = (D(z) + 1)Ck(z) + Cr—1(z). (2.14)
As when solving Equation (2.10), it is convenient to introduce the function
T(z) such that T'(z) = D(x) + 1. Moreover, Equation (2.14) is similar to

Equation (2.3) and we can solve it in the same way. Also we observe that from
the definitions, Cy(t) = D(t), and thus

T tk_2 tl
Ck(.fll‘) = eT(z) / / . / e_T(t)Cl (t)dtdtl s dtk,Q =
0 0 0

x th—2o 11 e—t2/2
eT(z)/ / / e~ T  —— —t—1)dtdt; - dty_s.
o Jo 0 1— [, e=™/2dm

O

2.7 Summarizing the results from sections 2.4, 2.5
and 2.6

We recall that the reverse R(w) of a permutation 7 = ajas ...a, is the per-
mutation anan—_1 ...a; and the complement C(r) is the permutation b1bs ... b,
where b; = n+ 1 — a;. Also, R o C is the composition of R and C. We call
these bijections of S, to itself trivial. Let ¢ be an arbitrary trivial bijection. It
is easy to see that, for example, there are as many permutations avoiding the
pattern 132 as those avoiding the pattern ¢(132). Moreover if, for instance, a
permutation 7 begins with a decreasing pattern of length k, then depending on
@, ¢(m) either begins with an increasing pattern, or ends with either a decreas-
ing or increasing pattern of length k. This allows us to apply Theorems 6 — 11
to a number of other cases. We summarize all the obtained results concerning
avoidance of a generalized 3-pattern with no dashes and beginning or ending
with either increasing or decreasing subword, in the table below.
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avoid | begin end e.g.f.
123 | 12...k -
123 - 12...k Vi e =1
2 cos(§z+%)
V3 »/2 1 V3 V3 Ty : —
321 - k...21 0,if k>3
123 | k...21 -
_ V3 e g =
123 k...21 D ifk=1
321 | 12...k -
321 - 12...k /2 J TP sin (P F) dt e p S o
e (kfl)!cos(§w+%) ’ -
132 | 12...k -
213 - |12,k (1—[Fe /2 an itk =1
312 | k...21| - e 21— [Fe P at)y  —p—1,if k=2
231 - k...21 (1= e /2 at)= [ [le=2... [l (e t/2
t1+ 1)1 — [ 2 dt))dtrdts - - dtp_o, if k> 3
0
132 | k...21 -
213 - | k.21 (- [Fe /2 an) ifk=1
- 1 @ k—1,—t%/2 :
312 | 12...k ETTeRy T JEthle dt,if k> 2
231 - 12...k
213 | 12...k - (1= [Pe Ol at)y Y itk=1
132 - 12...k
3 z ot k=2, T(H)=T(5) .
231 k...21 NN e R dsdt , if k > 2, where
_ 9 z —t2/2
312 - k21 T(w)——x /2+fomdt
213 | k...21 - (- fFe @l dt) Y itk =1
-1 N Chon(t)+6
- T n t () +oy k—
132 - ko2l | —&+ X;)fo Jimo g lffge_m2/;dnj dtdty - - - dtn,
o
231 | 12...k - if k > 2, where Ci(z) = eT(®) [ [ih=2... [11 ¢=T ().
—t2/2
312 - 12.. .k m —t—1)dtdt1---dtr—> and T(z) as above
—Jo
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Simultaneous avoidance of generalized patterns

Sergey Kitaev! and Toufik Mansour 2

Abstract

In [BabStein] Babson and Steingrimsson introduced generalized permuta-
tion patterns that allow the requirement that two adjacent letters in a pattern
must be adjacent in the permutation. In [Kit1] Kitaev considered simultaneous
avoidance (multi-avoidance) of two or more 3-patterns with no internal dashes,
that is, where the patterns correspond to contiguous subwords in a permutation.
There either an explicit or a recursive formula was given for all but one case
of simultaneous avoidance of more than two patterns. In this paper we find
the exponential generating function for the remaining case. Also we consider
permutations that avoid a pattern of the form = — yz or xy — z and begin with
one of the patterns 12...%, k(k —1)...1,23... k1, (k—1)(k —2)...1k or end
with one of the patterns 12...k, k(k —1)...1, 1k(k —1)...2, k12...(k - 1).
For each of these cases we find either the ordinary or exponential generating
functions or a precise formula for the number of such permutations. Besides
we generalize some of the obtained results as well as some of the results given
in [Kit3]: we consider permutations avoiding certain generalized 3-patterns and
beginning (ending) with an arbitrary pattern having either the greatest or the
least letter as its rightmost (leftmost) letter.

3.1 Introduction and Background

Permutation patterns: All permutations in this paper are written as words

T = Q102 - .. Gy, where the a; consist of all the integers 1,2,...,n. Let a € S,
and 7 € S be two permutations. We say that a contains 7 if there exists
a subsequence 1 < 4 < ip < --+ < i < m such that (ay,,...,q;, ) is order-

isomorphic to 7, that is, for all j and m, 7; < 7, if and only if a;; < a;,;
in such a context 7 is usually called a pattern. We say that a avoids 7, or is
T-avoiding, if a does not contain 7. The set of all 7-avoiding permutations in S,
is denoted by S, (7). For an arbitrary finite collection of patterns T', we say that
a avoids T if a avoids each 7 € T'; the corresponding subset of S,, is denoted
by Sp(T).

While the case of permutations avoiding a single pattern has attracted much
attention, the case of multiple pattern avoidance remains less investigated. In
particular, it is natural, as the next step, to consider permutations avoiding
pairs of patterns 71, 7. This problem was solved completely for 71,7 € S3 (see
[SchSim]), for 7 € S5 and 72 € Ss (see [W]), and for 71,72 € Sa (see [B, K]
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and references therein). Several recent papers [CW, MV1, Kr, MV3, MV2] deal
with the case 7 € S3, 79 € S}, for various pairs 71, 7».

Generalized permutation patterns: In [BabStein] Babson and Stein-
grimsson introduced generalized permutation patterns (GPs) where two adjacent
letters in a pattern may be required to be adjacent in the permutation. Such
an adjacency requirement is indicated by the absence of a dash between the
corresponding letters in the pattern. For example, the permutation 7 = 516423
has only one occurrence of the pattern 2-31, namely the subword 564, but the
pattern 2-3-1 occurs also in the subwords 562 and 563. Note that a classical
pattern should, in our notation, have dashes at the beginning and end. Since
most of the patterns considered in this paper satisfy this, we suppress these
dashes from the notation. Thus, a pattern with no dashes corresponds to a
contiguous subword anywhere in a permutation. The motivation for introducing
these patterns was the study of Mahonian statistics. A number of results on
GPs were obtained by Claesson, Kitaev and Mansour. See for example [Claes],
[Kit1, Kit2, Kit3] and [Mansl, Mans2, Mans3].

As in [SchSim], dealing with the classical patterns, one can consider the case
when permutations have to avoid two or more generalized patterns simultane-
ously. A complete solution for the number of permutations avoiding a pair of
3-patterns of type (1,2) or (2,1), that is, the patterns having one internal dash,
is given in [ClaesMans]. In [Kit1] Kitaev gives either an explicit or a recursive
formula for all but one case of simultaneous avoidance of more than two pat-
terns. This is the case of avoiding the GPs 123, 231 and 312 simultaneously. In
Theorem 1 we find the exponential generating function (e.g.f.) for the number
of such permutations.

As it was discussed in [Kit3], if a permutation begins (resp. ends) with
the pattern p = p1pa...pk, that is, the k leftmost (resp. rightmost) letters
of the permutation form the pattern p, then this is the same as avoidance of
k! — 1 patterns simultaneously. For example, beginning with the pattern 123
is equivalent to the simultaneous avoidance of the patterns (132], (213], (231],
(312] and (321] in the Babson-Steingrimsson notation. Thus demanding that a
permutation must begin or end with some pattern, in fact, we are talking about
simultaneous avoidance of generalized patterns. The motivation for considering
additional restrictions such as beginning or ending with some patterns is their
connection to some classes of trees. An example of such a connection can be
found in [Kit3, Theorem 5]. There it was shown that there is a bijection between
n-permutations avoiding the pattern 132 and beginning with the pattern 12 and
increasing rooted trimmed trees with n 4+ 1 nodes. We recall that a trimmed tree
is a tree where no node has a single leaf as a child (every leaf has a sibling) and
in an increasing rooted tree, nodes are numbered and the numbers increase as
we move away from the root. The avoidance of a generalized 3-pattern p with
no dashes and, at the same time, beginning or ending with an increasing or
decreasing pattern was discussed in [Kit3]. Theorem 2 generalizes some of these
results to the case of beginning (resp. ending) with an arbitrary pattern avoiding
p and having the greatest or least letter as the rightmost (resp. leftmost) letter.
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Propositions 4 — 15 (resp. 16 — 27) give a complete description for the
number of permutations avoiding a pattern of the form z — yz or xy — z and
beginning with one of the patterns 12...% or k(k —1)...1 (resp. 23...k1 or
(k —1)(k — 2)...1k). For each of these cases we find either the ordinary or
exponential generating functions or a precise formula for the number of such
permutations. Theorem 3 generalizes some of these results. Besides, the results
from Propositions 4-27 give a complete description for the number of permuta-
tions that avoid a pattern of the form z — yz or xy — z and end with one of the
patterns 12...k, k(k —1)...1, 1k(k—1)...2 and k¥12...(k — 1). To get the
last one of these we only need to apply the reverse operation discussed in the
next section. The results of Theorems 2 and 3 can also be used to get the case
of ending with a pattern from the sets AT or AT introduced in the next
section.

Except for the empty permutation, every permutation ends and begins with
the pattern p = 1. To simplify the discussion we assume that the empty per-
mutation also begin with the pattern 1. This does not course any harm since,
to count the generating functions in question for this, we need only subtract 1
from the generating functions obtained in this paper.

3.2 Preliminaries

The reverse R(n) of a permutation # = ajas . . . a, is the permutation a,a,—1 . .. a;.
The complement C(w) is the permutation biby...b, where b; = n + 1 — a;.
Also, R o C is the composition of R and C. For example, R(13254) = 45231,
C'(13254) = 53412 and R o C'(13254) = 21435. We call these bijections of S,, to
itself ¢rivial, and it is easy to see that for any pattern p the number A,(n) of
permutations avoiding the pattern p is the same as for the patterns R(p), C(p)
and Ro C(p). For example, the number of permutations that avoid the pattern
132 is the same as the number of permutations that avoid the pattern 231. This
property holds for sets of patterns as well. If we apply one of the trivial bijec-
tions to all patterns of a set G, then we get a set G' for which Ag/(n) is equal
to Ag(n). For example, the number of permutations avoiding {123,132} equals
the number of those avoiding {321, 312} because the second set is obtained from
the first one by complementing each pattern.

In this paper we denote the mth Catalan number by C; the generating
function for these numbers by C(z); the nth Bell number by B,,.

Also, NP(n) denotes the number of permutations that avoid the pattern g
and begin with the pattern p; G?(z) (resp. EP(z)) denotes the ordinary (resp.
exponential) generating function for the number of such permutations. Besides,
[min (resp. I'Me%) denotes the set of all k-patterns with no dashes such that
the least (resp. greatest) letter of a pattern is the rightmost letter; AT (resp.
AT**) denotes the set of all k-patterns with no dashes such that the least (resp.
greatest) letter of a pattern is the leftmost letter.
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Recall the following properties of C(z):

1-i—4s 1
2x  1—zC(x)’

C(z) = (3.1)

3.3 Simultaneous avoidance of 123, 231 and 312

The Entringer numbers E(n,k) (see [SloPlo, Sequence A000111/M1492]) are
the number of permutations on 1,2,...,n + 1, starting with k£ + 1, which, after
initially falling, alternately fall then rise. The Entringer numbers (see [Ent]) are
given by

E(0,0)=1, E(n,0) =0,

together with the recurrence relation
E(n,k) =E(n,k+1)+ E(n—1,n—k).

The numbers E(n) = E(n,n), are the secant and tangent numbers given by the
generating function
secx + tanwx.

The following theorem completes the consideration of multi-avoidance of
more than two generalized 3-patterns with no dashes made in [Kit1].

Theorem 1. Let E(x) be the e.g.f. for the number of permutations that avoid
123, 231 and 312 simultaneously. Then

E(z) =1+ z(sec(z) + tan(x)).

Proof. Let s(n;i1,...,%y) denote the number of permutations 7 € S,,(123,231, 312)
such that my7y ... 7T, =i162.. .9, and f : S, — S, be a map defined by

flmma...omp) = (m + D) (me+1) ... (7p + 1),

where the addition is modulo n. Using f one can see that for alla =1,2,...,n—
L,

s(n;a) = s(n;a+ 1). (3.2)
Thus, |S,(123,231,312)| = ns(n;1) and we only need to prove that s(n;1) =
E,, 1, where E,, is the nth Euler number (see [SloPlo, Sequence A000111/M1492]).

Suppose 7 € S,(123,231,312) is an n-permutation such that 7y = 1 and
me = t. Since 7w avoids 123, we get w3 <t — 1 and it is easy to see that

t—1 t—2
S(’l’l,].,t)z s(n,l,t,g)z S(n_17t_17.7)7
=2 j=1
o)
t—1 t—2
s(n;1,t+1) = s(n;1,t) + Zs(n —1;t,5) — s(n—1;t—1,5).
j=1 j=1
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Using (3.2) we get

t—1 t—2
s(n; 1,t+1) = s(n; 1,8)+s(n—1;t, 1)+Zs(n—1;t—l,j—l)—Zs(n—l;t—l,j),
=2 =1

and by (3.2) again, we have for all t =2,3,...,n—1,
s(n;1,t+1)=s(n;1,t) + s(n—1;1,n—t+1).
Besides, by the definition, it is easy to see that s(n;1,2) = 0 for all n > 3, hence
using the definition of Entringer numbers [Ent] we get s(n;1) = isﬂ;l,t =
t=2

E,_1, as required. O

3.4 Avoiding a 3-pattern with no dashes and be-
ginning with a pattern whose rightmost let-
ter is the greatest or smallest

The following theorem generalizes Theorems 7 and 8 in [Kit3]. Recall the defi-
nition of EP(z) in Section 3.2.

Theorem 2. Suppose p1,p2 € T and py € S(132), p» € Si(123). Thus,
the complements C(p1),C(p2) € T7** and C(p1) € Sk(312), C(p2) € Sk(321).
Then, for k > 2,

foz th=1o—t2/2 34

1 _ pC(p1) —
Efsy(z) = Egpy " (2) = (k— 1)I(1— T P72 dt)

and

EP2 — gCP2) (5 — e”/? Jo e 2tk Sin(\/Tgt +5)) dt
123(7) 321 (%) 7 .
(k—1)!cos(LEz + %)

Proof. To prove the theorem, it is enough to copy the proofs of Theorems 7
and 8 in [Kit3], since the fact that the first £ — 1 letters of p are possibly not
in decreasing order is immaterial for the proofs of that theorems. Thus we can
get the formula for EV,,(z) and Ef,;(z), and automatically, using properties
of the complement, the formula for B (z) and ES.# (x), directly from these
theorems. However we give here a proof of the formula for EY;,(x) and refer
to [Kit3, Theorem 8] for a proof of the formula for EY,, ().

If £ = 1, we have no additional restrictions, that is, we are dealing only
with the avoidance of 132 and, according to [ElizNoy, Theorem 4.1] or [Kit2,
Theorem 12],

1

1 —
Praal) = 7 e g

73



Also, according to [Kit3, Theorem 6],

2
e~ ® /2

Hianle) = T e gy -

z—1.

Let Ry (resp. Fy ) denote the number of n—permutations that avoid the
pattern 132 and begin with a decreasing (resp. increasing) subword of length
k > 1 and let 7 be such a permutation of length n + 1. Suppose 7 = ol7. If
T = € then, obviously, there are R, ways to choose . If |7| = 1, that is, 1
is in the second position from the right, then there are n ways to choose the
rightmost letter in = and we multiply this by Ry 1, which is the number of
ways to choose o. If |7| > 1 then 7 must begin with the pattern 12, otherwise
the letter 1 and the two leftmost letters of 7 form the pattern 132, which is

n
forbidden. So, in this case there are Z ( ) R; i F;,_; 2 such permutations with

i

i>0

the right properties, where ¢ indicates the length of ¢. In the last formula, of
course, R;, = 0 if i < k. Finally we have to consider the situation when 1 is
in the k-th position. In this case we can choose the letters of o in (") ways,
write them in decreasing order and then choose 7 in F,, ;112 ways. Thus

n n
Rn+1,k = Rn,k + TLRn—l,k + Z (i)Ri’an_i’2 + <k _ 1> Fn—k+1,2- (33)

i>0

We observe that (3.3) is not valid for n = k — 1 and n = k. Indeed, if 1 is
in the k-th position in these cases, the term (,")Fy,_g41,2, which counts the
number of such permutations, is zero, whereas there is one “good” (n + 1)-
permutation in case n = k — 1 and n good (n + 1)—-permutations in case n = k.
Multiplying both sides of the equality with 2™ /n!, summing over n and using the
observation above (which gives the term z*~1/(k—1)!4+kz*/k! in the right-hand
side of equality (3.4)), we get

d .’L‘k_l
%E&'z(m) = (E11§2(m) +z+ 1)Ef32(37) + (Ellgz(m) +z+ 1)@;

with the initial condition Ef;,(0) = 0. We solve this equation and get

Ely(z) [T (BR2,(t) + 1t + 1)tk El,(z) [° .
EP _ iz / 132 _ fa32 / k=1,—12/2 g4
132() = B (1) dt H—1)! /, t" e dt

O

Remark 1. It is obvious that if in the previous theorem p; & Si(132) and
p2 & Si(123), then Ef3,(z) = Ef33(x) =0.
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3.5 Avoiding a pattern x-yz and beginning with
an increasing or decreasing pattern

In this section we consider avoidance of one of the patterns 1 — 23, 1 — 32,

2-31,2-13,3—12 and 1 — 32 and beginning with a decreasing pattern. We

get all the other cases, that is, avoidance of one of these patterns and beginning

with an increasing pattern, by the complement operation. For instance, we have
k(k—1)...1

B (@) = B2t (@),

Proposition 1. We have

Rty pkk=1)d (e /(k=1)) [y tF e e Tt at, ifk>2,
1-23 (z) = Ey 3 () = "1 Fh=1
et 1 ifk=1.

Proof. We prove the statement for the pattern 1 — 23. All the arguments we
give for this pattern are valid for the pattern 1 — 32. The only difference is that
instead of decreasing order in 7 (see below), we have increasing order.

Suppose k > 2. Let B, denote the number of n—permutations that avoid
the pattern 1 — 23 and begin with a decreasing subword of length k. Suppose
m = ol7 be one of such permutations of length n + 1. Obviously, the letters of
7 must be in decreasing order since otherwise we have an occurrence of 1 — 23
in 7 starting from the letter 1. If |o| = ¢ then we can choose the letters of ¢ in
(T;) ways. Since the letters of 7 are in decreasing order, they do not affect o and
thus there are B;j possibilities to choose ¢. Besides, if |o| = k — 1 and letters
of ¢ are in decreasing order, we get (kfl) additional possibilities to choose 7.
Thus

Bk = Z (T;) B; + (k i 1)-

i>0

Multiplying both sides of the equality with z™/n! and summing over n, we
get the differential equation

d _k(k—1)... k(k—1)... Tkt
_E1£231) 1(53) = (E1£231) l(m) + —)e’

dx (k—=1)!
with the initial condition Efg;;l)'”l(O) = 0. The solution to this equation is
given by

BV N @) = (e /(k - 1)) /0 th=leme'+t gy, (3.5)

If kK =1, then there is no additional restriction. According to [Claes, Prop.
2] (resp. [Claes, Prop. 5]), the number of n-permutations that avoid the pattern
1-23 (resp. 1-32) is the nth Bell number and the e.g.f. for the Bell numbers is
e¢”~1. However, all the arguments used for k£ > 2 remain the same for the case
k = 1 except for the fact that we do not count the empty permutation, which,
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of course, avoids 1-23. So, if k¥ = 1, we need to add 1 to the right-hand side
of (3.5):

T
Ef 55(z) =€ / et dt+1=e" N
0

Proposition 2. We have

® t t"
e [ree E — dt, ifk>2
k(k—1)...1 0 p 5 =4
E3£12 ) (z) = n>k—1 "

et 1 ifk =1

Proof. Suppose k > 2. Let B, denote the number of n-permutations that
avoid the pattern 3 — 12 and begin with a decreasing subword of length k.
Suppose m = a(n + 1)7 be such a permutation of length n + 1. Obviously, the
letters of 7 must be in decreasing order since otherwise we have an occurrence
of the pattern 3 — 12 in 7 starting from the letter (n+1). If |o| = 7 then we can
choose the letters of ¢ in (7;) ways. Since the letters of 7 are in decreasing order,
they do not affect o and thus there are B; j possibilities to choose 0. Besides,
if n > k — 1, then 7 can be decreasing, that is, (n + 1) can be in the leftmost

position. Thus
n
Boiigp= Z:o (z)B’k + Onk
z_

where
{ 1, ifn>k—1,

O,y = 0, else.

)

Multiplying both sides of the equality with z™/n! and summing over n, we
get the differential equation

LR @ =B w0 Y D

dz n!
n>k—1
with the initial condition Eg&klgl)“'l(O) = 0. The solution to this equation is
given by
R(k—1).1, \ oo [* et t"
EyM D @) =e e Y — dt. (3.6)
0 n>k—1

If k = 1, then there is no additional restriction. In [Claes, Prop. 5] it is shown
that E] .,(z) = e¢" . Using the complement, the number of n-permutations
that avoid 1 — 32 is equal to the number of n-permutations that avoid 3 — 12.
We get that El ,,(z) = e®" ~!. However, all the arguments used for the case
k > 2 remain the same for the case k = 1 except the fact that we do not count
the empty permutation, which avoids 3-12. So, if £ = 1, we need to add 1 to
the right-hand side of (3.6):

E} ,(z) =€ / e el dt+1=e""",
0

76



Proposition 3. We have

0, if k>3,
BV @) =S e fye et - 1) dt, if k=2,
et 1 ifk=1.

Proof. For k > 3, the statement is obviously true. If £ = 1, then the statement
follows from [Claes, Prop. 2] and the fact that there are as many n-permutations
avoiding the pattern 1 — 23, as n-permutations avoiding the pattern 3 — 21. For
the case k = 2, we can use exactly the same arguments as those in the proof of
Proposition 2 to get the same recurrence relation and thus the same formula,
which, however, is valid only for k = 2. O

Recall the definition of N? in Section 3.2.

Proposition 4. We have

—1)... Chn_kt+1, ifn>k,
N2k£k131) 1(”) :{ 0, o e];se.

Proof. If k = 1, then the statement follows from [Claes, Prop. 22]. Suppose
k > 2 and let 7 = on7 be an n-permutation avoiding 2 — 31 and beginning with
the pattern k(k —1)...1. Suppose, without loss of generality that o consists of
the letters 1,2,...,£. Now £ must be the rightmost letter of o, since otherwise
£, the rightmost letter of o and n form the pattern 2—13. Also, the letter (£—1)
must be next to the rightmost letter of o since otherwise the letter (£ —1), next
to the rightmost letter of o and the letter £ form the pattern 2 —13. And so on.
Thus ¢ must be increasing, which contradicts the fact that 7 must begin with a
decreasing pattern of length greater than 1. So |o| = 0 and 7 must begin with
the pattern (k — 1)(k — 2)...1. Now, we can consider the letter (n — 1) and,
by the same reasoning, get that it must be in the second position of . Then
we consider (n — 2), and so on up to the letter (n — k + 2). Finally, we get that
m=n(n—1)...(n—k+2)x', where 7’ must avoid the pattern 2 — 13 and thus,
there are Cj,_j+1 ways to choose 7 ([Claes, Prop. 22]). O

Recall that C'(z) is the generating function for the Catalan numbers. Also
recall the definition of G in Section 3.2.

Proposition 5. We have

GRODd gy zhCFH(2), ifk>2
251 C(2), ifE=1.

Proof. If k = 1, then there is no additional restriction, and thus G}_s; (z) =
C(z) (applying the complement operation to [Claes, Prop. 22]).
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Suppose k > 2. Using the reverse, we see that beginning with k(k —1)...1
and avoiding 2 — 31 is equivalent to ending with 12...%k and avoiding 13 — 2,
which by [Claes] is equivalent to ending with 12...%k and avoiding 1 — 3 — 2.

Suppose m = w'nw” ends with 12...% and avoids 1 — 3 — 2. Each letter of
7' must be greater than any letter of 7, since otherwise we have an occurrence
of the pattern 1 — 3 — 2 involving the letter n. Also, 7’ and 7" avoid the
pattern 1 —3 — 2, and 7" ends with the pattern 12...k. In terms of generating
functions (the generating function for the number of permutations ending with

12...k and avoiding 1 — 3 — 2 is, of course, Gg(_k;ll)“'l(a:)) this means that

G357 @) = 2C@)GUE " @) + 2GS @), (3.7)

where the rightmost term corresponds to the case when 7'’ is empty. Now, (3.1)
and (3.7) give

G350 @) = 74 C(a) /(L ~ aC(@)* = 2*CMH ().

O

3.6 Avoiding a pattern xy-z and beginning with
an increasing or decreasing pattern

First of all we state the following well-known binomial identity

n_mz_:m (H;Tl_l) (m +ni— 1) _ <m1k> (3.8)

i=1

Let s4(n) denote the cardinality of the set S,(q) and sq(n;i1,42,...4m) de-
note the number of permutations 7 € S, (q) with mim2 ... 7T, =192 .. . im-

In this section we consider avoidance of one of the patterns 12-3, 13-2 and
23-1 and beginning with an increasing or decreasing pattern. We get all the
other cases, which are avoidance of one of the patterns 32-1, 31-2 and 21-3
and beginning with an increasing or decreasing pattern, by the complement

operation. For instance, we have Ni2-:k(n) = NEK D1 (p),

3.6.1 The pattern 12 -3

We first consider beginning with the pattern p = k...21. In [ClaesMans,
Lemma 9] it was proved that

s12-3(n;1) = S (l ; 1) s12-3(n —2 —j),

J=0

together with 812_3(7’L; n) = S12—-3 (n; n — 1) = 812_3(7’L — 1).
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On the other hand, from the definitions, it is easy to see that

n—k+1 .
- n—1 .
N1k2(531)1(n) = Z (k _ 1) 812_3(7’L —-k+1; ’I,).

i=1

Hence, using (3.8) and the fact shown in [Claes] that s15_3(n) equals B,, we
get the following proposition.

Proposition 6. For alln > k+ 1, we have
NEESY () = (k + 1) Bt
n—
8 ()~ = (59) By

together with lez(k31) k) =1 and N1k2(k31)'"1(n) =0 foraln<k-1.

Now, let us consider beginning with the pattern p = 12...k. From the
definitions, it is easy to see that NiZ-:¥(n) = 0 for all n, where k > 3, and
NL,_5(n) = s12_3(n) = B, (see [ClaesMans, Prop. 10]). Thus, we only need to
consider the case k = 2.

Suppose m € S12_3(n) is a permutation with m; < ma. It is easy to see that
7y = n. Hence Ni2 5(n) = (n—1)s12—3(n—2), for all n > 2, and by [ClaesMans,
Prop. 10], we get the truth of the following

Proposition 7. We have

(0, ifk >3,

d

k
z2 1-—jz) -1 x , ifk=2,
B33 (@) = 4 Z; Z;CL—MU—Qm.“U—d@ f

2@

ifk=1.

Z (1—z)(1—-2z)...(1—dz)’

. dzo

3.6.2 The pattern 13 — 2

Let us introduce an object that plays an important role in the proof of the main
result in this case. For n > m + 1 > 0, we define

A(n,m) = Z 51_3_2(n;i1,i2,...,im).

1< <+ <ig <ig <n—1
We extend this definition to m = 0 by A(n;0) = s1_3_2(n).

Lemma 1. For alln >m >0,

i20
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Proof. For m = 0 the lemma holds by definitions. Let m > 0; so

n
A(n7m) = Z 2517372(71;2'177:27'"77'.7117.7.)7
1<im <---<i2<i1<n—1 j=1
:A(n;m+1)+ Z 31,3,2(n;i1,i2,...,im,n),
1<im < <ia<ig<n—1
=A(n;m+1)+ Z 81_3_2(7’L—l;il,ig,...,im)7
1<, < <i2<ir<n—1
=A(n;m+1) + > s1_3-2(n—Lin—1,is, ... im)+

1<im <+ <ia<n—2
+ E 51_3_2(n—1;i1,i2,...,im)

1<, <+ <ig<ig <n—2

=A(n;m+1)+An—1L;m) + Z s1-3-2(n — 2541, ..., im—1),
1< 1 <r<i1 <n—2

=---=An;m+1)+ A(n —1;m)+---+ A(n —m — 1;0).

Hence, using induction on m, we get

Anym+1) = Z(—l)j (m +j1 B j) s1-3-2(n—j)

i20

—ZZ(—l)j (m_d+ 1 _j>5132(n— 1 —d—j).

d=0 j>0 J

Using the identity (}) — (1) + -+ (=1)*(7) = (", "), we get

s 8

) _ Y m+1—j o
A(n,m+1)—§( 1)( i )8132(n 7)
S (M st —1— ).
d;, ( d ) !

Now using the identity (}) + (,",) = ("}"), we get

Alnym+1) = Z(—l)j (m +j2 B j) s1-3-2(n — j),

j>0
which means that the lemma holds for m + 1. O

Now we find Nf?’(fgl)"'l(n).
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Proposition 8. Let k> 1. For all n > 0,

k—2 .
—1)... (k+1—-d—
N1k3(§21) '(n) = Cpyri + Z Z(—l)’ ( ) J) Cn—a—j-

d=03j>0 J

Proof. Claesson [Claes] proved that the set of permutations that avoid the pat-
tern 13—2 is the same as the set of permutations that avoid the pattern 1—3—2,

hence
N5tV ) = N (). (3.9)
If the leftmost letter of a permutation avoiding 13-2 and beginning with
the pattern k(k — 1)...1 is n, then, obviously, there are Nl('i;%k&)'“l(n -1
such permutations. Otherwise, it is easy to see that there are A(n;k) such
permutations. So, by Lemma 1 and the considerations above, also using the
fact that the number of (1 — 3 — 2)-avoiding n-permutations in S,, is Cy,, we get

- 1)k h1—j
NEES D1y = (k=D 2>"'1(n—1)+2(—1)f( * ”)cnj.
j=>0

Moreover, using the definitions and Equation (3.9), we have Ni;_,(n) = s1_3_2(n)
= Ch, for all n > 0. Hence, by induction on k, the proposition holds. O

Now, let us consider the case of Ni2-:¥(n).

Proposition 9. Let k > 1. For all n > k, we have
Niz=y (n) = Cpyroi.

Proof. Suppose m = 7w'nzn" is a permutation in S,(13 —2) = S,(1 — 3 — 2)
(see (3.9)), such that m < mp < --- < 7. It is easy to see that there exists an
m such that

r=m+1)(m+2)...(m+k—1)8na",

where 3 is a 1—3—2-avoiding permutation on the letters m+k, m+k+1,...,n—1,
and " € S;,(1 — 3 — 2). Hence, in terms of generating functions, we get

>N f ()" = 2k C2(a).
n>0

The rest is easy to check using the identity zC?(z) = C(z) — 1. O

3.6.3 The pattern 23 —1

We first consider beginning with the pattern p = k(k—1)...1.
Proposition 10. For allk > 1,

d

FRk=1)- 0y k1 x -1
23-1 () == ;} (1—-z)(1-2z)---(1 —dzx)
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Proof. Let m € S,(23 — 1) be a permutation such that m < 72 < -+ < 7.

Since 7 avoids 23 — 1, we have m; = j, for each j = 1,2,...,k — 1. Hence
7w =12...(k — 1)7', where 7’ is a non-empty 23 — l-avoiding permutation in
Sn+1—k- The rest is easy to get by using [ClaesMans, Prop. 17]. O

Now let us consider beginning with the pattern p = 12...k.

Proposition 11. Suppose k > 1. For alln > k+1,

() S > [ B G |

with Nz (k) = 1.
Proof. In [ClaesMans, Lemma 16] proved that for all 2 <i <n—1,

i—2

s23—1(n;i) = Z (z ; 2) s23-1(n — 2 — j),

=0

together with sa3_1(n;n) = sa3_1(n;1) = sa3_1(n — 1) = By—1.
On the other hand, by the definitions, it is easy to see that

n—k+1 .
n—i )
Nygtm) =) (k _ 1) sa3—1(n —k +1;7).
i=1

Hence, using (3.8) and the fact that [Claes] s23_1(n) is given by B,, we get the
desired result. O

3.7 Avoiding a pattern xy-z and beginning with
the pattern (k—1)(k—2)...1k or 23...k1

In this section we consider avoidance of one of the patterns 12—3,13—2,23—1,
21 — 3,31 — 2 and 13 — 2 and beginning with the pattern (k — 1)(k — 2)...1k.
The case when a permutation begins with the pattern 23...k1 and avoids a
pattern xy — z can be obtained then by the complement operation.

3.7.1 Avoiding 12—3 and beginning with (k—1)(k—2)...1k
Proposition 12. We have

—1)(h— n—1
NP0 = (1) B

Proof. Suppose m = w'nw’" avoids the pattern 12—3 and begins with the pattern
(k—1)(k—2)...1k. We have that 7' must be decreasing, since otherwise we
have an occurrence of the pattern 12 — 3 involving the letter n, and 7" must
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avoid 12 — 3. Also, since 7 begins with (k —1)...21k, the length of 7' is k — 1.
Hence, by [Claes] (the number of permutations in S, (12 — 3) is given by B,,),

we have )
1) (ke n—
NE=D=2) 1k gy (k - 1) By

O

3.7.2 Avoiding 13—2 and beginning with (k—1)(k—2)...1k

By [Claes], a permutation 7 avoids the pattern 13 — 2 if and only if 7 avoids
1-3-2.

Suppose m = w'nx'" is an n-permutation avoiding 1 — 3 — 2 and beginning
with (k —1)(k — 2)...1k. Obviously, #’ and #"" avoid 1 — 3 — 2 and each letter
of ' is greater than any letter of 7", since otherwise we have an occurrence of
the pattern 1 — 3 — 2 involving the letter n. Also, 7' begins with the pattern
(k—1)(k=-2)...1kor7' =(k—-1)(k—2)...1.

By [Knuth], the generating function for the number of permutations that
avoid 1 — 3 — 2 is C(z), hence, using the considerations above,

G5y P @) = 2GR )Y M @) C @) + ok O(w),
Therefore, by (3.1), we get the following.
Proposition 13. We have

G5y " P @) = 24P (a).

Hence
(k=1)(k=2)..1k \ _ | Cn_(k=1), fn>k
Niz (n) = { 0, else.

3.7.3 Avoiding 21 —3 and beginning with (k—1)(k—2)...1k

If k£ > 3 then, by the definitions, we have Nz(f:;)(k_”“'lk(n) =0.
If k =1 then, by the definitions and [Claes], we have N3, 5(n) = B,.
Suppose k = 2 and 7 = «'n7” is an n-permutation avoiding the pattern
21 — 3 and beginning with the pattern (k—1)(k—2)...1k = 12. It is easy to see
that 7’ must be increasing, and the length of 7’ is at least 1. Thus, using the
fact that the number of permutations in S, (21 — 3) is given by B,, (see [Claes]),
we have

n—1
k—1)(k—2)...1k n—1
N2(1—3)( ) (n) = Z ( - )Bn—l—j- (3.10)
=1~ Y
-1
Since B, = z ( j )Bn_l_]-, equality (3.10) gives that
=0

Néf:;)(k_m...m(n) —B,—B, ..

Thus we have proved the following,.
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Proposition 14.

0, if k>3
NE=DE=2- 2k )y = L B B, 4, ifk=2,
B, if k= 1.

3.7.4 Avoiding 23 -1 and beginning with (k—1)(k—2)...1k

Proposition 15. We have that Nég:ll)(k_m”'lk(n) is given by

n—k+2 t—2
t+k—3 t—2 .
Bn_k + § ( E—9 >§ ( i )Bn—k—l—j; ifk>3
t=2

j=0
By_1, if k=2,
By, if k=1.

Proof. Suppose k = 2. We are interested in the permutations = € S,,(23—1) that
begin with the pattern 12. It is easy to see that 7, = 1, hence B?~'(n) = B,,_;
for all n > 2.

Suppose k > 3. We recall that ss3_1(n;t) is the number of permutations in
Sn(23 — 1) having t as the first letter. By [ClaesMans], s(n;1) = B,_; and for

t > 2, we have
t—2
t—2
s(n;t) = Z ( i )Bn_z_j.

§=0
On the other hand, if a permutation # = 7'1¢tx"” avoids 23 — 1 and begins
with the pattern (k —1)(k —2)... 1k, then «' is decreasing of length k¥ — 2, and
using s(n;t), we get

n—k+2 t—2
—1)(k—2)... t+k—3 t—2
N2(§711)(k 2 Y(n) =B,y + E E . ) Br—g—1—j-
k—2 : j
t=2 j=0
O

3.7.5 Avoiding 31 —2 and beginning with (k—1)(k—2)...1k

By [Claes], a permutation 7 avoids the pattern 31 — 2 if and only if 7 avoids the
pattern 3 — 1 — 2.

Suppose 7 = 7’17 is an n-permutation avoiding 3 — 1 — 2 and beginning
with (k —1)(k —2)...1k. Obviously, 7' and 7" avoid 3 — 1 — 2 and each letter
of 7' is smaller than any letter of 7", since otherwise we have an occurrence of
the pattern 3 — 1 — 2 involving the letter 1. Also, 7’ begins with the pattern
(k=1)(k—2)...1kor ' = (k—1)(k—2)...2 and 7" is not empty. So, using
the generating function for the number of permutations avoiding the pattern
3 —1—2, which is C(z) ([Knuth]), we get

G5y (@) = 2G )T @) Cl) + #* () - 1),
Therefore, using (3.1), we get the following.
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Proposition 16. We have

k3 .
(k—1)(k—2)..1k,  _ | z"C°(z), if k>2,
a1 (z) = { C(z), ifk=1.

Hence
1) (k=2).. Cotrs — Coprrs ifk>2,
N?Efi;)(k 2) lk(n) _ { o k42 k+1 Z‘ck i~y
3.7.6 Avoiding 32—1 and beginning with (k—1)(k—2)...1k

Proposition 17.

0, ifk>4
N(k—l)(k—2)...1k(n) _) Bn1i— (n—2)B,-3, ifk=3andn>3,
32-1 B, —(n—1)B,_», ifk=2andn > 2,
By, ifk=1.

Proof. Using the definitions and [Claes], it is easy to see that the statement is
true for k =1,2 and k£ > 4.

Suppose now that k¥ = 3 and 7 = 7’'1#x"” is an n-permutation avoiding the
pattern 32 — 1 and beginning with the pattern (k — 1)(k —2)...1k = 213. We
have that 7' must be increasing, since otherwise we have an occurrence of the
pattern 32 — 1 involving the letter 1, and 7"’ must avoid 32 — 1. Moreover, since
7 begins with 213, the length of 7 is 1 and the rightmost letter of 7" is greater
than the letter of 7'. Also, it is easy to see that the number of permutations
in S;,-1(32 — 1) beginning with the pattern 12 is the same as the number of
permutations in S,(32 — 1) beginning with the pattern 213 (one can see it by
placing 1 in the second position). Hence Ng:ll)“‘mk(n) =Bp—1—(n—2)B,_3
for all n > 3. O

3.8 Avoiding a pattern x-yz and beginning with
the pattern (k—1)(k—2)...1k or 23...k1

In this section we consider avoidance of one of the patterns 1 —23,1—32, 231,
2—13,3 —12 and 1 — 32 and beginning with the pattern (k — 1)(k —2)...1k.

The case when a permutation begins with the pattern 23...%k1 and avoids a
pattern x — yz can be obtained by the complement operation.

Proposition 18. We have

ez : t" .
(k2. et [, e ¢ Z — dt, ifk>2,
E&aé)(k ? 1k(¢”) = n>k—1 nt

e 1, ifk=1.
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Proof. Suppose k > 2. Let B, denote the number of n-permutations that
avoid the pattern 1—32 and begin with the pattern (k—1)(k—2)...1k. Suppose
m = ol is such a permutation of length n + 1. Obviously, the letters of 7 must
be in increasing order, since otherwise we have an occurrence of the pattern
1 — 32 in 7 starting from the letter 1. If |o| = ¢, then we can choose the letters
of o in (’:) ways. Since the letters of 7 are in increasing order, they do not affect
o and thus there are B; ;, possibilities to choose o. Also, if n > k—1, then 1 can
be in the (k — 1)th position, and in this case, since 7 begins with the pattern
(k—1)(k—2)...1k, it must be that 7 = (k—1)(k—2)...21k(k+1)...(n+1).
Thus, in the last case we have only one permutation. This leads to the recurrence

relation
n
By = Z (Z>sz + Onk
i>0
where
P 1, ifn>k—1,
wk =1 0, else.

This recurrence relation is identical to the one given in the proof of Propo-
sition 2, so using this proof we get the desired result. O

Proposition 19. We have

et fow f(f %J_et drdt, ifk>2,

By (@) = {
et 1, ifk=1.
Proof. If k = 1, then the statement is true due to Proposition 1.

Suppose k > 2. Let B, ; denote the number of n-permutations that avoid
the pattern 1 — 23 and begin with the pattern (k — 1)(k — 2)...1k. Suppose
m = ol7 is such a permutation of length n + 1. Obviously, the letters of 7 must
be in decreasing order since otherwise we have an occurrence of the pattern
1 — 23 in 7 starting from the letter 1. If |o| = ¢, then we can choose the letters
of o in (77) ways. Since the letters of T are in the decreasing order, they do not
affect o and thus there are B;; possibilities to choose . Besides, if n > k — 1,
then 1 can be in the (k —1)th position, and in this case, since 7 begins with the
pattern (k—1)(k—2)...1k and 7 is decreasing, it must be that the kth letter of
7 is (n + 1) and there are (}~,) ways to choose the letters of o and then write
them in decreasing order. Thus,

n n—1
Bt i,k =Z (.)Bi,k+ ( )
s 1 k—2

Multiplying both sides of the equality with z™/n! and summing over n, we
get the differential equation

d (k1) (k—2)..1k, \ _ (k—1)(k—2)...1k ¢ n—1\z"
£E1—23 (z) = E1Zs3 e +¥0 E—9) 0

86



with the initial condition E{S?(k_Z)“'lk(O) = 0. If F(z) denotes the last term,
then it is easy to see that F'(z) = %ew, and thus

T k—2

Now, the solution to the equation above is given by

T . . [T rt k—2 "
Efligé)(k_2)"'1k(x) =e° / e F(t)dt=e° / / r 7€ drdt.
0 o Jo (k=2

(3.11)
For example, if k¥ = 2, then (k — 1)(k —2)...1k = 12 and (3.11) gives

T
El2,, = / e ¢ (et — 1) dt,
0

which is a particular case of Proposition 3, since the number of n-permutations
that avoid the pattern 3 — 21 and begin with the pattern 21 is equal to the
number of n-permutations that avoid the pattern 1 — 23 and begin with the
pattern 12 by applying the complement. O

Proposition 20. We have

0, ifk>3
G @) = { 220 @), i k=2
C(z), if k=1.

Hence
k—1)(k—2)...1k 0, if k>3
NFIPED M) = 8 Coly — Cpa, if k=2
Ch, ifk=1.

Proof. For the case k = 1, see Proposition 4. If k > 3, then the statement is
true, since in this case the pattern (k — 1)(k — 2)...1k does not avoid 2 — 13.

Suppose now that k = 2. Using the reverse, we see that beginning with the
pattern 12 and avoiding 2 — 13 is equivalent to ending with the pattern 21 and
avoiding 31 — 2, which by [Claes] is equivalent to ending with the pattern 21
and avoiding the pattern 3 — 1 — 2.

Let 7 = 7’1" be an n-permutation avoiding 3 — 1 — 2 and ending with the
pattern 21. Obviously, 7' and 7" avoid 3 —1— 2 and each letter of 7’ is less than
any letter of 7", since otherwise we have an occurrence of 3 — 1 — 2 involving
the letter 1. Also, 7" ends with the pattern 21 or |#”| = 1. So, using the
generating function for the number of permutations avoiding 3 — 1 — 2, which
is C(z) ([Knuth]), we have

G3215(x) = 2G5 15(2)C(x) + 2(C(z) — 1).

Therefore, using (3.1), we get the desired result. O
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Proposition 21. We have
k—1)(k—2)...1k
G (@) = 2R (a).
Hence

_ _ ) >
NG D203k { g:n—(k—l)a ZSZ_ k
Proof. Using the reverse, we see that beginning with the pattern (k — 1)(k —
2)...1k and avoiding the pattern 2— 31 is equivalent to ending with the pattern
k12...(k — 1) and avoiding the pattern 13 — 2, which, by [Claes], is equivalent
to ending with the pattern k12...(k — 1) and avoiding the pattern 1 — 3 — 2.

Let 7 = #n'nw" be an n-permutation avoiding the pattern 1 — 3 — 2 and
ending with the pattern k12...(k — 1). Obviously, 7' and 7" avoid the pattern
1 — 3 — 2 and each letter of 7’ is greater than any letter of 7", since otherwise
we have an occurrence of the pattern 1 — 3 — 2 involving the letter n. Also, 7"
ends with the pattern k12...(k—1) or 7" =12...(k - 1).

Using the reverse operation, the generating function for the number of per-
mutations ending with the pattern £12...(k —1) and avoiding 1 —3 — 2 is equal
to Gg’:})(k_z)“'lk (z). In terms of generating functions, the considerations above
lead to

G @) = G @) 0w) + 2h ),
Therefore, by (3.1), we get the desired result. O

Proposition 22. We have

(e /(k = 1)) [y th—te=e+ dt, if k> 2,

Fk) (k=2). 1k )
() { L
Proof. Suppose k > 2. Let B, denote the number of n-permutations that
avoid the pattern 3 — 12 and begin with a decreasing subword of length k. Let
7 = o(n + 1)7 be such a permutation of length n + 1. Obviously, the letters of
T must be in decreasing order since otherwise we have an occurrence of 3 — 12
in 7 starting from the letter (n+1). If |o| = ¢ then we can choose the letters of
o in (7;) ways. Since the letters of 7 are in decreasing order, they do not affect
o and thus there are B;j possibilities to choose o. Also, if |¢| = k — 1 and the
letters of o are in decreasing order, we get (kfl) additional ways to choose 7.
Thus

n n
By = Z <i>Bi,k + (k _ 1)-

i>0

This recurrence relation is identical to the one given in the proof of Proposition 1,
and we get the desired result using that proof. O
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Proposition 23.

0, if k>4
BB ) = & (e J(k = 1)) [T thteme' H at, if k=2 or k=3,
et 1, ifk=1.

Proof. If k > 4 then the statement is true, since in this case the pattern (k —
1)(k—2)...1k does not avoid the pattern 3 — 21. In the other cases, we use the
same arguments as we have in the proof of Proposition 22. The only difference
is that instead of decreasing order in 7, we have increasing order. O

3.9 Conclusions

The goal of our paper is to give a complete description for the numbers of
permutations avoiding a pattern of the form z —yz or zy—z and either beginning
with one of the patterns 12... &k, k(k—1)...1,23... k1, (k—1)(k—2)...1k, or
ending with one of the patterns 12... &k, k(k—1)...1, 1k(k—1)...2, k12...(k—
1). This description is given in Sections 5-8. However, some of our results can
be generalized to beginning with a pattern belonging to I'*" or I'"*® and thus
to the ending with a pattern belonging to AT" or A7 (see Section 3.2 for
definitions). An example of such a generalisation is given in Theorem 3 below.
This theorem generalizes Propositions 1 and 22 and can be proved by using the
same considerations as we do in the proofs of these propositions.

Theorem 3. Suppose p1,p> € I and py € Sp(1 — 23), po € Sp(1 — 32).
Thus, the complements C(p1),C(p2) € T and C(p1) € Si(1 —23), C(p2) €
Sk(3 —12). Then, we have

B 5 () = B5 51 (@) = Bl 55(0) = B5 13 (2) =

(€ /(=1 fy th=te~H dt, ifk>2,
et 1 ifk=1.
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Abstract

In [Kit1] Kitaev discussed simultaneous avoidance of two 3-patterns with no
internal dashes, that is, where the patterns correspond to contiguous subwords
in a permutation. In three essentially different cases, the numbers of such n-
permutations are 27!, the number of involutions in S,, and 2E,, where E,
is the n-th Euler number. In this paper we give recurrence relations for the
remaining three essentially different cases.

To complete the descriptions in [Kit3] and [KitMans], we consider avoidance
of a pattern of the form z-y-z (a classical 3-pattern) and beginning or ending
with an increasing or decreasing pattern. Moreover, we generalize this problem:
we demand that a permutation must avoid a 3-pattern, begin with a certain
pattern and end with a certain pattern simultaneously. We find the number of
such permutations in case of avoiding an arbitrary generalized 3-pattern and
beginning and ending with increasing or decreasing patterns.

4.1 Introduction and Background

Permutation patterns: All permutations in this paper are written as words

T = aiaz...dan, where the a; consist of all the integers 1,2,...,n. Let a € S,
and 7 € S be two permutations. We say that a contains 7 if there exists
a subsequence 1 < 43 < iy < --- < 4 < n such that (a;,,...,q;, ) is order-

isomorphic to 7; in such a context 7 is usually called a pattern. We say that
a avoids T, or is T-avoiding, if such a subsequence does not exist. The set of
all 7-avoiding permutations in S, is denoted by S, (7). For an arbitrary finite
collection of patterns T', we say that « avoids T if a avoids any 7 € T; the
corresponding subset of S, is denoted by S, (7).

While the case of permutations avoiding a single pattern has attracted much
attention, the case of multiple pattern avoidance remains less investigated. In
particular, it is natural, as the next step, to consider permutations avoiding
pairs of patterns 71, 7. This problem was solved completely for 71,75 € S3 (see
[SchSim]), for 7y € S3 and 75 € Sy (see [W]), and for 71,75 € Sy (see [B, K]
and references therein). Several recent papers [CW, MV1, Kr, MV3, MV2] deal
with the case 7, € S3, 7o € S, for various pairs 71, 7.

!Research financed by EC’s THRP Programme, within the Research Training Network
” Algebraic Combinatorics in Europe”, grant HPRN-CT-2001-00272



Generalized permutation patterns: In [BabStein] Babson and Stein-
grimsson introduced generalized permutation patterns (GPs) where two adjacent
letters in a pattern may be required to be adjacent in the permutation. Such
an adjacency requirement is indicated by the absence of a dash between the
corresponding letters in the pattern. For example, the permutation 7 = 516423
has only one occurrence of the pattern 2-31, namely the subword 564, but the
pattern 2-3-1 occurs also in the subwords 562 and 563. Note that a classical
pattern should, in our notation, have dashes at the beginning and end. Since
most of the patterns considered in this paper satisfy this, we suppress these
dashes from the notation. Thus, a pattern with no dashes corresponds to a
contiguous subword anywhere in a permutation. The motivation for introducing
these patterns was the study of Mahonian statistics. A number of results on
GPs were obtained by Claesson, Kitaev and Mansour. See for example [Claes],
[Kit1, Kit2, Kit3] and [Mansl, Mans2, Mans3].

As in [SchSim], dealing with the classical patterns, one can consider the case
when permutations have to avoid two or more generalized patterns simultane-
ously. A complete solution for the number of permutations avoiding a pair of
3-patterns of type (1,2) or (2,1), that is the patterns having one internal dash, is
given in [ClaesMansl]. In [Kit1] Kitaev discussed simultaneous avoidance of two
3-patterns with no internal dashes, that is, where the patterns correspond to
contiguous subwords in a permutation. In three essentially different cases, the
numbers of such n-permutations are 2" !, the number of involutions in S, and
2FE,,, where E, is the n-th Euler number. The remaining cases are avoidance
of 123 and 231, 213 and 231, 132 and 213. In Section 4.3 we give recurrence
relations for these cases.

In Section 4, we consider avoidance of a pattern z-y-z, and beginning or
ending with increasing or decreasing pattern. This completes the results made
in [KitMans], which concerns the number of permutations that avoid a general-
ized 3-pattern and begin or end with an increasing or decreasing pattern.

In Sections 5-8, we give enumeration for the number of permutations that
avoid a generalazed 3-pattern, begin and end with increasing or decreasing pat-
terns. We record our results in terms of either generating functions, or expo-
nential generating functions, or formulas for the numbers appeared.

In Section 4.9, we discuss possible directions of generalization of the results
from Sections 5-8.

4.2 Preliminaries

The reverse R(w) of a permutation ™ = ayas . . . a, is the permutation a,, . . . asa; .
The complement C(w) is the permutation byby...b, where b; = n + 1 — a;.
Also, R o C is the composition of R and C. For example, R(13254) = 45231,
C(13254) = 53412 and R o C(13254) = 21435. We call these bijections of S, to
itself trivial, and it is easy to see that for any pattern p the number A,(n) of
permutations avoiding the pattern p is the same as for the patterns R(p), C(p)
and Ro C(p). For example, the number of permutations that avoid the pattern
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132 is the same as the number of permutations that avoid the pattern 231. This
property holds for sets of patterns as well. If we apply one of the trivial bijec-
tions to all patterns of a set G, then we get a set G' for which Ag/(n) is equal
to Ag(n). For example, the number of permutations avoiding {123,132} equals
the number of those avoiding {321, 312} because the second set is obtained from
the first one by complementing each pattern.

In this paper we denote the mth Catalan number by C),; the generating
function for these numbers by C(z); the nth Bell number by B,,.

Also, Nf(n) denotes the number of permutations that avoid the pattern p
and begin with the pattern ¢; G{(z) (respectively, El(z)) denotes the ordinary
(respectively, exponential) generating function for the number of such permu-
tations. Besides, NJ'"(n) denotes the number of permutations that avoid the
pattern p, begin with the pattern ¢ and end with the pattern r; G (z) (re-
spectively, E{7(z)) denotes the ordinary (respectively, exponential) generating
function for the number of such permutations.

Recall the following properties of C(x):

1-v1-4dz 1
2z - 1-20(x)

C(z) = (4.1)

4.3 Simultaneous avoidance of two 3-patterns
with no dashes

4.3.1 Avoidance of patterns 123 and 231 simultaneously

We first consider the avoidance of the patterns 123 and 231 simultaneously.
Let a(n;i1,42,...,%mn) denote the number of permutations © € S,(123,231)
such that w72 ... 7 = d192 .. .1, and let a(n) = |S,(123,231)|.
By the definitions, we get that a(n) = 3°7_, a(n; j) and a(n;n) = a(n — 1).
Hence
a(n) =aln—1)+a(n;1) +a(n;2) +--- + a(n;n — 1). (4.2)

Also, by the definitions, for all 1 <i <n —1, we get

a(n;i) =ia(n;i, i+ Y almsi,g). (4.3)
j=1 Jj=i+1

Suppose ® € S,(123,231) is such that 7y = ¢ and 72 = j. If i > j then
there is no occurrence of the pattern 123 or 231 that contains 71, so a(n;,j) =
a(n — 1;7). If i < j then since 7 avoids 123 and 231, we get that i < 73 < j,
and thus in this case a(n;i,j) = a(n—2;i) +a(n—2;i+1)+---+a(n—2;j—2).

Hence, using (4.2) and (4.3), we get the following theorem.

Proposition 1. Let s, = |S,(123,231)|. For alln > 3,

Sn = 8n—1+8n(1) +8,(2) +---+sp(n —1),
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where for all 1 < i < n,

=3 sna) Y= 1 snali)

and s3(1) =1, s3(2) =1, s3(3) = 2.

Using this theorem, we get quickly the first values of the sequence |5, (123,231)]
forn=0,1,2,...,10:

n 01,2345 6 7 8 9 10
|Sn(123,231)] | 1| 1| 2| 4| 11| 39| 161 | 784 | 4368 | 27260 | 189540

4.3.2 Avoidance of patterns 132 and 213 simultaneously

We consider avoidance of the patterns 132 and 213 simultaneously.

Let b(n;i1,i2,...,0n) denote the number of permutations 7 € S,(132,213)
such that myme ... 7T, = i142 ... 4, and let b(n) = |5,(132,213)|.

Suppose m € S,(132,213) is such that m; = i and w2 = j. If i > j then,
since 7 avoids 213, we get 3 < ¢ — 1. Thus

b(n; i, §) Z b(n — 15, k). (4.4)

k=1, k#j

If ¢ < j then, since 7 avoids 132, we get m3 < ¢ — 1 or w3 > j + 1. Thus
n—1
b(n;i, j) an—l] ,k)—}—Zb(n—l;j—l,k). (4.5)
k=j

Using (4.4) and (4.5), we get the following theorem.

Proposition 2. Let s, = [5,(132,213)|. Then s, = 3 7',
s(n;i,4) =0 for all nyi > 1;
s(nsi,4) = Yoy s(n = 13 k) i i > 4
s(n;i,§) = Yimy s(n— 1,5 — Lk) + 332 s(n — 1,5 — 1,k) if i < j;
and 5(2;1,2) = 5(22,1) =1, 5(21,1) = 5(2;1,1) = 0.

s(n;i,J) with

Using this theorem, we get

n 012 10
|Sn(132,213)] | 1| 1| 2| 4|11 | 37| 149 | 705 | 3814 | 23199 | 156940

w
I
ot
D
\]
o0
NeJ
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4.3.3 Avoidance of the patterns 213 and 231 simultane-
ously

We now consider avoidance of the patterns 213 and 231 simultaneously. This
case is equivalent to avoidance of the patterns 132 and 312 by applying the
reverse operation.

Let ¢(n;i1,i2,-..,%m) denote the number of permutations 7 € S,,(132,312)
such that m7ma ... 7y, = i102.. .1y and let ¢(n) = |S,(132,312)|. We proceed as
in the previous case. For n >4 > j > 1, we have

j—1 n—1
c(nii,j) =Y c(n—1;5,k) + > cln — 1;5,k). (4.6)
k=1 k=i
For 1 <i < j < n, we have
i—1 n—1
c(n;i,j) ch—lj k)+2c(n—1;j—1,k). (4.7
k=1 k=j

Using (4.6) and (4.7), we get the following theorem.

Proposition 3. Let s, = [5,(132,312)|. Then s, =37,
s(n;i,4) =0 for allm,i>1;
s(n;i,§) = gy s(n = 1;j,k) + 05 s(n—155,k) if i > j;
(s, ) = St 80— 154 —1,8) + St s(n— Lig — LK) if i <
and 5(2;1,2) = s(2;2, 1) —1 3(2,1,1) —5(2 ,1)=0.

s(n;i, ) with

Using this theorem, we get

n 01|23 4|5 6 7 8 9 10
|Sn(132,312)| | 1 | 1| 2| 4| 10| 30 | 108 | 454 | 2186 | 11840 | 71254

4.4 Avoiding a pattern x-y-z and beginning or
ending with certain patterns

Recall the definitions of G¥(z), NP(n), C(z) and Cy, in Section 4.2.

q
Proposition 4. We have

G2k (2) = 2% C? ().

Proof. Suppose 7 = w'nn"” € S,(1-3-2) is such that m < w2 < --- < 7 and
m; =n. It is easy to see that = avoids 1-3-2 if and only if 7’ is a 1-3-2-avoiding
permutation on the letters n —j +1,n —j +2,...,n, and 7" € S,_;(1-3-2). If
we now consider two cases, namely j =k and j > k + 1, we get

G2 (w) = 2 C(2) + 2G1225 () C ().
Thus, Gi2%:-%(z) = 2*C(z)/(1 — zC(x)) and, using (4.1), we get the desired
result. O
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Proposition 5. We have
Gl (k= 1) (m) = ghCkH ().

Proof. Suppose m = w'nr” € S,(1-3-2) is such that m; > my > --- > 7, and
m; = n. It is easy to see that 7 avoids 1-3-2 if and only if 7’ is a 1-3-2-avoiding
permutation on the letters n —j + 1,n—j+2,...,n, and 7" € S,_;(1-3-2). If
we consider separately the cases j =1 and j > 2, we get

GHE) M (@) = 2GEL) T @) + 2GRS (2)C ().

Hence,
GHE @) = 26T T @) /(1 - 20(x))

and, using (4.1), we get G'ffg__zl)“' () = zC(z )le3 12)(19_2)"'1(37). By induction
on k, using the fact that G}_;_,(z) = C(z) — 1 = zC?(z), we get the desired
result. O

Proposition 6. We have
Gy (2) = 2 C* (2).

Proof. One can use the same considerations as we have in the proof of Propo-
sition 5, by considering a permutation 7 = 7'lx"” € S,(2-1-3) such that m; <
my < --- < mp and 7 = 1. O

Proposition 7. We have
GO (@) = 24P ().

Proof. One can use the same considerations as we have in the proof of Propo-
sition 4, by considering a permutation 7 = 7’'1x" € S, (2-1-3) such that m; >
my > .-+ > 7 and 75 = 1. O

Let s,(i1,...,%m) denote the number of permutations 7 € S,(1-2-3) such
that w7y ... 7 = 4102 .. .4, It is easy to see that

sn(n) = sp(n —1) = Cpq, (4.8)
and t—1 t—1
sn(t) = sp(t,n) + Z sn(t,7) = sn—1(t) + Z sn—1(J). (4.9)

Now, (4.8) and (4.9) with induction on ¢ give

(n—1t) i ( )Cn_j (4.10)

=0

Let us prove the following proposition.
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Proposition 8. We have

0, if k>3,
Gi%s(x) = ¢ 2°C%(z), k=2,
zC%(x), ifk=1.

Proof. For k > 3, the statement is obviously true. If kK = 1 then G1_, ;(z) =
C(z) — 1 =zC?*(z).

Suppose now that k¥ = 2. From the definitions, for all n > 2, we have

n—1 n
NiZ3(n) = Z Z sn (1, J)-
i=1 j=i+1

In this formula, j can only be equal to n, since otherwise we have an occurrence
of the pattern 1-2-3. Using this fact with (4.8) and (4.9), we get for n > 2,

n—1 n—1
N11—22—3(”) = Z sn(i,n) = Z s$n-1(i) = Cn—1.
i=1 =1
Hence, G1%_5(z) = z(C(z) — 1) = 22C*(=). O

Proposition 9. We have

k(k—1)...1 mEE -t ifn—t—j
Nyl (n) = Z E—1 (-1) i Crnt—j-

Proof. From the definitions, we have

n i1—1 ip—1—1 n+l—k n—t
k(k—1)...1 . . -
N1-(2-3 ) (n) = Z Z Z Sp(i, ... 0k) = Z (k— 1)sn(t‘)
1=k ia=1 =1 t=1

Using (4.10), we get

Nk(kfl)...l B n+l—k n—t n—t . i(n- ¢ _j o '
1-2-3 (n) = Z 1 Z( ) j n—t—j-
t=1 =0

4.5 Avoiding a pattern x-y-z, beginning and end-
ing with certain patterns simultaneously

Recall the definitions of G5 (z) and N}*"(n) in Section 4.2.

Proposition 10. We have
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(1) G}%g_g,l?é(m) — wk+g_10£+1 ((L‘) + ™ _gphte—1

1-z
(i) Gy TV (@) = M2 (a).
(iff) GRAD-BHED- A gy = w""’“’lck“(x)-l-%, where m = max(k, £).

(iv) the generating function Gi-32(2,y,2) = D4 450 Gfﬁ’g_‘;"“l’““'“(x)y
for the sequence -
{Gk(k—1)...1,12...e

kL

z

1-3.9 (@) }k,e>0 (where k and £ go through all natural numbers)

C(z)—1 )
(1 -zyC(z))(1 —z2C(x)) )

18
1

1—2z(y+2)

(w(y+z+yz) +

Proof.

]E{eginning with 12...k and ending with /(¢ — 1)...1: Suppose 7 =
w'nr" € S,(1-3-2) is such that m < my < -+ < W, Tp < Ty < o0 <
Tn—e+1 and 7; = n. It is easy to see that 7 avoids 1-3-2 if and only if #'
is a 1-3-2-avoiding permutation on the letters n — 5 +1,n— 5+ 2,...,n, and
7' € Sp—;(1-3-2). We now consider three cases, namely j =k, k+1<j <n—/
and j =n — £+ 1. In terms of generating functions, we have
G2 =D gy = G () + 2G5k (2) GEET) (1) + 2  GREE (o) + 2R
where we observed that to avoid 1-3-2 and end with £(£—1) .. .1 is the same as to
avoid 2-1-3 and begin with £(£—1)...1 by applying the reverse and complement
operations. Also, we added the term z*+¢~1, since when j = k =n — £ + 1,
we have one “good” (k + ¢ — 1)-permutation, which is not counted by our three
cases.

From Propositions 4 and 7, we have that

GiZif (x) = 24 CP(2) and G315 (@) = o' CP(@).
Thus, using the fact that zC?(z) = C(z) — 1, we get

Gl T @) = 2¢O (2) (2 + 2C2 (2)) + 2k
= g1 (C(z) — 1)(C(z) + 1) + k1 = ghH-102 ().,

Beginning with 12...% and ending with 12...¢: Suppose 7 = 7'nzn" €
Sn(1-3-2) is such that 71 < 72 < -+- < W, T > Tp_1 > -+ > Tp—g+1 and
m; = n. As above, m avoids 1-3-2 if and only if 7’ is a 1-3-2-avoiding permutation
on the letters n —j+1,n—j+2,...,n,and 7" € S,,_;(1-3-2). We consider the
cases j =k, k+1<j<n—/{and j=n. In terms of generating functions, the

first approximation for the function G2 % R CO BT

G212t (o) m P G2 (o) + 2GY% K (2)GY%5 () + 2Gr2ys > D (@),

where we observed that to avoid 1-3-2 and end with 12...7¢ is the same as to
avoid 2-1-3 and begin with 12...¢ by applying the reverse and complement

102



operations. We use the sign “~” because there are some “good” permutations,
which are not counted by our considerations. We discuss them below.
From Propositions 4 and 6, we have that G125 (z) = 2¥C?(x) and G1%:4(z) =
#!C1(z). Thus, using the fact that zC2?(z) = C(z) — 1 and G2 (z) =
G1%-k(x) = 2%C?(x) (Proposition 4), we get

G}23 §12 l(x)
~ HH O (g) + O3 (g) +mG}23 ;c 12...(£— 1)( )
= ghHCt+2(g) +:EG}23 ;ﬂ 12...(¢— 1)( )

= gHHOH (7) + O (2) + 22G T (@)

= = O @) (O (@) + (@) 4+ 1) + L)

= 21 (O () — 1)C(0) S0 + eh 10 (2) = 2k H O (a).

To complete the proof of this case, we observe that in our considerations above,
we do not count increasing permutations of length m = max(k, £), m+1,...,k+
¢ — 2, which satisfy all our restrictions. We did not count them because the k-
beginning and f-ending in these permutations overlap in more than one letter.
So, to get the desired result, we need to add the term

™ 4 $m+1 4.+ $k+172 — (.’Em _ :L'k+£71)/(1 _ .Z')
to the approximate value of G}?é'_'g 12--£(3). For example, expanding G}i{? (z),
we have, in particular, that there are 2002 10-permutations that avoid 1-3-2,
begin with the pattern 12 and end with the pattern 123.

Beginning with k(k — 1)...1 and ending with £(¢/ —1)...1: If £ =1
then, by Proposition 5, G’f(g 21 Ll(g) = zkCk+1(z). Suppose £ > 2, and
T —7r17r” € S,(1-3-2) is such that m > m > <+ > T, Tn < Ty < -+ <
Tn—t+1 and 7; = 1. Obviously, 7" is the empty word, since otherwise we have
an occurrence of the pattern 1-3-2 starting from the letter 1. Thus, the first

approximation for the function G’f(g 21) LD g

fog;l)...l,l(é—l)...l( ) ~ a:G k 1) 1,(=1)(£=2).. T(g) = «vo = Lok (g,
Like in the previous case, we did not count decreasing permutations of length
m = max(k,l), m+1,...,k+£—2, which satisfy all our restrictions. Thus, to
get the desired result, we add the term (z™ —z*+t¢~1) /(1 —2) to the approximate
k(k—1)...1,6(¢—1)...1

value of Gy 35, (z).

Beginning with k(k —1)...1 and ending with 12.../: Suppose 7 =
w'nx" € S,(1-3-2). Any letter of 7’ is greater than any letter of #", since
otherwise we have an occurrence of the pattern 1-3-2 in 7 containing the letter
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n which is forbidden. Also, 7' and 7"’ avoid 1-3-2. If 7 begins with k(k—1)...1,
ends with 12...7 and #’ and 7" are not empty, then 7' must begin with k(k —
1)...1 and 7" must end with 12...¢. If 7' is empty then 7' must begin with
(k—1)(k—2)...1 and end with 12...¢. If 7" is empty then 7' must begin with
k(k—1)...1 and end with 12...(¢ — 1). In terms of generating functions, the
discussion above leads to the following:

Gl @)~

2GS (@) GRh (@) + G @) 4 2GS T @),

where we observed that to avoid 1-3-2 and end with 12...¢ is the same as to
avoid 2-1-3 and begin with 12...£. However, to put the sign “=" instead of “~”,
we have to correct the right-hand side of the recurrence relation by observing
that when either k =1 and { =0,ork=0and £=1,0or k=1 and £ =1, the
formula do not count the permutation 7 = 1 which satisfies all the conditions
needed. Thus, if we make correction of the right-hand side, then multiply both
parts of the obtained equality by z*y* and sum over all natural k and £ we get
(recall the definition of G1-3-2(x,y, z) in the statement of the theorem):

Gr-aa(m,y,2) =2 Y G550 (2)GRis (0)y* 2 +a(y+2) Gr-s-a (2, y, 2)+a(y+2+y2).
k,£>0

From Propositions 5 and 6, GXE70 1 (2)G12-4 (z) = a*+CH++2(z), and thus

Gi--2(7,9,2) = 1ty | o+ 2 +y2) + T GRHORE (gt

k,£>0
= =7 | 2+ 2 +92) +20%(2) Y (ayC(2)F Y _(22C(x))*
k>0 £>0
_ C(z)—1
= =7 (3 + 2 +92) + marctowy )
where we used that C?(z) = C(z) — 1. O
Proposition 11. We have
_ 2™ _pkte-1
(i) G55t (z) = b+t ORHY (g) 4 2ogE—,

( ) Gk(k 1) 112...[(x)=xk+[_102(m).

k+£—1

(iff) GEUZD-BHED A gy = ghH-106 () + 2222 = yhere m = max(k, £).

(iv) the generating function G2-1-3(2,y,2) = 24 ;>0 G;%'l';l;’e(e_l)"'l(a:)ykzl

for the sequence

{Géi’ig’lu*l)“'l(w)}uzo (where k and £ go through all natural numbers)
18
;(:ﬂ( +z+yz)+ Olz) — 1 )
T—aly+2) "V YO T U= oyC@)(1 - 22C () )
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Proof. We apply the reverse and complement operations and then use the results
of Proposition 10. For example, to avoid 2-1-3, begin with 12...% and end with
12 .../ is the same as to avoid 1-3-2, begin with 12... £ and end with 12.. . k. O

Let h%t(t; s) denote the number of 1-2-3-avoiding n-permutations such that
T = t, Tpegy1 = S, M > Tg > -+ > Mg, a0d Tp_gp1 > Tp_gya > -0 >
7. Also, we define g, (1,42, ..,%m;b) to be the number of 1-2-3-avoiding n-
permutations such that my7o - -7 = @192...40, and m, = b. We need the
following two lemmas to prove Proposition 12.

Lemma 1. For alln > 2,

0, 2<a+1<b<mn,
(»2), 1<a<n-1,
gn(a;b) =< 2.t , = _ )
> (=1)i(meY) (Z -0i(") Cn_Q_,-_i) , 1<b<a<n.
j=0 J i=0
Proof. By definitions we have
(1) gn(a;b) =0forall2<a+1<b<n
(2) gn(asa+1) =gn(a,;a+1) +... + gn(a,a — La+1) + gn(a,a + 250 +
1)+...+gn(a,n—1;a+1)+ gn(a,n;a+1). Using the fact that no there exists
a permutation 7 € S,,(1-2-3) such that 7 = a, 12 < a—2, and 7, = a+ 1 we
get

gn(a;a+1) =gpla,a—1;a+ 1) + gula,a+2;a+ 1) + ... + gula,n;a + 1).

Using the fact that no there exists a permutation = € S,,(1-2-3) such that m; = a
and a < 1 < n—1 we get g,(a;a+1) = gn(a,a—1;a+ 1) + gu(a,n;a + 1).
On the other hand, it is easy to see that g,(a,a —1;a+1) = g,_1(a—1;a) and
gn(a,n;a+1) = g,—1(a;a + 1). Hence,

gn(a;a+1)=gu_1(a—1;a) + gn—1(a;a + 1).

Using induction we get that gn(a;a+1) = (?~7) foralln >2and 1 < a <n-—1.
(3) Similarly as (2) we have for all a > b,

9n(a;0) = gn-1(b—1;0) + gn—1(b + 1;0) + gn—1(b+ 2;0) + -+ - + gn—1(a; ).
Using Equation (4.10) we get
on(ai 1) = gna2) = snosla =1 = S (-7 (" T4 oo
=0

Using induction on b, we get

et = - ("0

1 .
b—1—
(—1)1( . Z) cn_z_j_i> :
=0 i=0 ¢

7=
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Lemma 2. We have
(o) o) ge—e-yss—(e-n(n + 2=k =6), fl1<s<t<m;

hit(t;s) = ¢ BEA(E+151), ifs=t+1;
REE (s — 1) + hE V(s — 1), f2<t+1<s<n.

Proof. (1) Let n >t > s > 1; so by definitions we get

- -1
o) = (1 71) (571 )t = (6= 1) = (€= 1)

(2) Let s =t + 1; so it is easy to see hEt(t;t + 1) = hEL(t + 1;¢);

(3) Let 2<t+1 < s <mn. Let 7 any permutations in S, (1-2-3) such that
m, =t and Tp41—¢ = s where 1 > --- > 7w and wp41-¢ > -+ - > Tp; so there
two possibilities either m,12_¢ = s—1or m; = s—1 where j < k—1. In this first
case we get that there exist h'c e (t; s— 1) permutations, and in the second case
we have that there exist hfl_ll Z(t, s — 1) permutations. (we extend the number
hEt(a;b) as 0 for any £ < 0 or k < 0. O

We recall that the Kronecker delta dy, , is defined to be

5 = 1, ifn=xk,
k=0, else.

Proposition 12. We have

N o~12k12.6, ) 0, ifk>3o0rf>3
() G55 (z) = { zC%(x), ifk=1andl=1"
12,12 |0, ifn=3
N5%5(n) = { Ch_s, else , and
N%l(n) = Ny g(n) = Coy
(i) Nyt ) =
0’ ng Z 3:
n—k net1 n—t—1 et 1 )
t; ( k—1 ) 20 ( ) ( JJ )C"_t—j—l + (k - 1)6n,k+13 ’Lff = 2:
n—_f—lfk "-77; e t )
(o= 1) 2 (=1) ( ])Cn—t—ja if £ =1.
t=1 j=0
(iif) N11_22.._.?{c,e(e—1)...1(n) _
0’ sz Z 37
n—~e t1 n—t—1 et 1 )
t; ") 20 (=1)7( JJ )Cn—t—j—1 + (€ = 1)oney1, ifk=2,
nji-l—é n]—; t )
( ) (=1) (n J)Cn—t—j; ifk=1.
t=1 7=0
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(iv) Ny 0Dty = SmkFE ST Wbt (t;5), where i (t;5) is given
i Lemma 2.

Proof. Beginning with 12...%k and ending with 12...0: If k >3 or £ > 3,
the statement is obvious, since in this case 12...%k or 12...¢ does not avoid
the pattern 1-2-3. If k =1 or £ = 1, we get the statement from Proposition 8
(in the first of these cases we apply the reverse and complement operations).
Suppose now that k = 2, £ = 2, and an n-permutation 7 avoids 1-2-3, begins
with the pattern 12 and ends with the pattern 12. The letter n must be next to
the leftmost letter, since otherwise two leftmost letters and n form the pattern
1-2-3. Also, the letter 1 must be next to the rightmost letter, since otherwise
1 and two rightmost letters form the pattern 1-2-3. It is easy to see now that
there are C,_» possibilities to choose 7, since we can take any 1-2-3-avoiding
permutation on the letters {2,3,...,n—1} (there are C,,_» such permutations),
then let the letters n and 1 be in the second and (n— 1)-st positions respectively.
These considerations are fail only when n = 3, since in this case the second
and (n — 1)-st positions coincide. However, in this case we obviously have no
permutations with the good properties.

Beginning with k(k—1)...1 and ending with 12...¢: The statement is
true for £ > 3, since in this case 12...¢ does not avoid 1-2-3. For the case £ =1
we use Proposition 9. Suppose now that £ = 2, and an n-permutation 7 avoids
1-2-3, begins with the pattern k(k — 1)...1 and ends with the pattern 12. The
letter 1 must be next to the rightmost letter, since otherwise 1 and two rightmost
letters form the pattern 1-2-3. So, to form 7 we can take any (n—1)-permutation
on the letters {2,3,...,n} that avoid 1-2-3 and begin with the pattern k(k —
1)...1 (the number of such permutations is given by Proposition 9), and then
let the letter 1 be in the (n — 1)-st position. Also, we observe that in the case
n = k+ 1 we have k — 1 extra permutations, which are obtained from the
(n — 1)-permutations having the k¥ — 1 leftmost letters in decreasing order and
two rightmost letters in increasing order.

Beginning with 12...%k and ending with £(£ — 1)...1: By the reverse
and complement operations, to avoid 1-2-3, begin with the pattern 12...%k and
end with the pattern £(¢ — 1)...1 is the same as to avoid 1-2-3, begin with
the pattern £(¢ —1)...1 and end with the pattern 12...k, so we can apply the
results of the previous case.

Beginning with k(k—1)...1 and ending with /(£ —1)...1: The state-
ment is straitforward to prove. O

4.6 Avoiding a pattern xyz, beginning and end-
ing with certain patterns simultaneously

Recall the definitions of EF'"(z) in Section 4.2.

Proposition 13. We have
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. Ei3Hx), ifk=1
0 B = { G TR L where Bl (o) and Bt @)

are giwen in [Kit3, Theorem 6] and [Kit3, Theorem 10] respectively. For
k0> 2, Ezlfg'k’u“'e(x) satisfies

.Z‘k_l

S ER ) = B ) (B + ) Bl ),

0(6—1)...1 .
.. 12...k,0(£—1)...1 _J E z), ifk=1 £(6—1)...1
(i) Eal (z) = { E;Iiéz"k(w),( ) i;E =, o where By, (2) and

Ei%:k(z) are given in [Kit3, Theorem 7] and [Kit3, Theorem 10] respec-
12...k,6(8—1)..1

tively. For k,£> 2, Eyj; () satisfies
SO0 ) = %E%fg"“(xﬂ
(E%fé"k’u(.’lf) n (:k__i)!) Efgg—l)...l(m) n <k;:f; 2) (kafztz)!.
(iii) Efl(g_l)"'l’u“'l(m) = { gztfchl(f)’l(x), Z?:ll , where E1%%(z) and

Egl(';_l)"'l(;v) are giwen in [Kit3, Theorem 6] and [Kit3, Theorem 11] re-

spectively. For k,£ > 2, Egl(g_l)"'l’u“'e(m) satisfies

%E;l(g*l)---l,ll--f(x) _ Eé’f;l)"'l’12“'l(w)+

Efl(lg_l)"'l’m(x)Ellgé"z(flf) + E;cl(g—l)...1,12...(e—1) (@).

~ ~ By k=1 )
i) EFR=D L1y 132 ) , where E (£=1)...
(iv) Exjz (z) Efl(ﬁ‘”'“l(x), ifr=1 where Ly39 (z)

and E¥ED1(2) are given in [Kit3, Theorem 7] and [Kit3, Theorem 11
213

k(k—1)...1,6(6—1)...
E21(3 R 1(55)

respectively. For k, 0> 2, satisfies

or 213

{—1
L(£—1)... z )b :
(B 0+ ) SO 0)

0 ERED- 1D gy Eé’f;l)"'l’e(e_l)"'l(:z:)+

Proof.

Beginning with 12...%k and ending with ¢(¢/ — 1)...1: The statement
is obviously true when £ = 1 and ¢ = 1. Suppose now that £k > 2, £ > 2 and
an (n + 1)-permutation 7 avoids 213, begins with the pattern 12...% and ends
with the pattern 12...£¢. The letter (n + 1) can only be in the position k, or
in the position 4, where (k+ 1) <4 < n — £+ 1, or in the position n — £ + 2.
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In the first case, we choose the (k — 1) leftmost letters in ( kfl) ways, rearrange
them into the increasing order, and observe, that the letters of 7 to the right of
(n+1) must form an (n— k+ 1)-permutation, that avoids 213 and ends with the
pattern £(£ — 1)...1 (the number of such permutations, using the reverse and
complement operation, is equal to the number of (n — k + 1)-permutations that
avoid 132 and begin with the pattern £(£—1)...1). In the third case, we choose
the (¢ — 1) rightmost letters in (lfl) ways, rearrange them into the decreasing
order, and observe, that the letters of 7 to the right of (n + 1) must form an
(n — £+ 1)-permutation, that avoids 213, begins with the pattern 12...k, and
ends with the pattern 12 (if it ends with the pattern 21, the letter (n + 1) and
two letters immediately to the left of it form the pattern 213). In the second
case, we choose the letters of 7 to the left of (n + 1) in (Zfl) ways and observe,
that these letters must form a (i — 1)-permutation that avoids 213, begins with
the pattern 12...% and ends with the pattern 12. In the same time, the letters
to the right of (n + 1) must form an (n —4 + 2)-permutation that avoids 213 and
ends with the pattern £(¢ — 1)...1. Besides, we observe that if n = k + £ — 2,
that is || = k+ £ —1, and first k-letters of 7 are rearranged into the increasing
order, whereas the last £ letters are rearranged in the decreasing order, we have
a number of extra “good” permutations. The number of such permutations is
the number of ways of choosing the first (k — 1) letters, that is (kzﬁz) This
discussion leads to the following:

ok (E—1)... £(e—1)...
N21123 (=0 1(”"‘ 1) = (kf1)N1§2 Y 1(”_k+1) + (321)N21123 Fin—t+1)

o (T M 120 k12 Arl(E—1)... o (k+e—2
+Z(i)N%fs B2 G)NYE Y 1<n—z)+( 1 )an,k+e_2,
i=0

where 0y, j4¢—2 is the Kronecker delta. We get the desirable result by multiplying
both sides of the last equality by z"/n! and summing over n.

Beginning with 12...k and ending with 12.../: The statement is ob-
viously true when ¥ = 1 and £ = 1. Suppose now that £ > 2, £ > 2 and an
(n+1)-permutation 7 avoids 213, begins with the pattern 12. ..k and ends with
the pattern 12...¢. The letter (n + 1) can only be in the position %, or in the
position i, where (k + 1) <i < n — ¥, or in the (n + 1)-th position. In the last
case, the number of such permutations is obviously NyZ ¥ ¢~1(n). In the
first case, we choose the (k — 1) leftmost letters in (kﬁl) ways, rearrange them
into increasing order, and observe, that the letters of 7 to the right of (n + 1)
must form an (n—k+1)-permutation, that avoids 213 and ends with the pattern
12...¢ (the number of such permutations, using the reverse and complement
operation, is equal to the number of (n — k + 1)-permutations that avoid 132
and begin with the pattern 12...£). In the second case, we choose the letters of
7 to the left of (n + 1) in (,") ways and observe, that these letters must form
a (i — 1)-permutation that avoids 213, begins with the pattern 12...% and ends
with the pattern 12 (if it ends with the pattern 21, the letter (n + 1) and two
letters immediately to the left of it form the pattern 213). In the same time, the
letters to the right of (n + 1) must form an (n — i + 2)-permutation that avoids
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213 and ends with the pattern 12...£. This discussion leads to the following:

12...k,12...6 A 1200k,12. 61
Njis (n+1) = Nyj; (n)

2 (i)Néfg PN i) + (k_ 1)N11§2 “n—k+1).
=0

We get the desirable result by multiplying both sides of the last equality by
z" /n! and summing over n.

Beginning with k(k — 1)...1 and ending with 12...¢ or with £({ —
1)...1: We proceed in the same way as we do under considering the previous
case. |

Proposition 14. We have

o 12k, 12...0 Eifx), ifk=1
(i) Eyi3; (z) = { Eilézk((m)), ife=1" where E325-*(z) and E12;* (x)

are giwen in [Kit3, Theorem 10] and [Kit3, Theorem 6] respectively. For
k0> 2, Ellgé"k’w"'e(m) satisfies

0 k12,8 k—1,12...0 12..0 zt!
5Bl @) = By @) (B 0) + gy ) Bl @)
E12"'k(a:) ifﬂ =1
2k (1)1 _ 133" (&),
o2 W), k=1
Eﬁ%ﬁl)“'l(m) are giwen in [Kit3, Theorem 6] and [Kit3, Theorem 11] re-

(i)

, where E125%(z) and

spectively. For k,£ > 2, E}??;’“’““)“'l(x) satisfies
0 _12..ke(t—1)..1 12..k,(4—1)...1
%EISQ (= (z) = Ey39 (= (z)+

2,0(£-1)... o (k=1),(£-1)...
By TV @) Bl k(o) + Bpgy D (),

B E12...£(z.) 'Lfk =1
) pR-1). 1120 _ 213" \%),
(i) Elsy (z) Ef§§ 1.1 (x), iflt=1

Efég_l)”'l(m) are given in [Kit3, Theorem 10] and [Kit3, Theorem 7] re-

spectively. For k,£ > 2, Efé';*l)"'l’lz"'f(x) satisfies

, where E3%Y(z) and

k(k—1)...1,12...2 gk
2Egs Y (@) = =y B3ty (@)

12,12...¢ £-1 k(k—1)...1 k40— k+£-2
+ (E132 (z) + h) BTV @) + ( 212)m-

£(e—1)...1 .
. —1)..1,6(6—1)... E (z), ifk=1 E(k—1)...1
iv) ERE-D-LAED 10y 213 ’ , where E x
(iv) Eis (z) Efg_l)'“l(x), ife=1 132 (z)

and Eﬁgg_l)"'l(x) are given in [Kit3, Theorem 7] and [Kit3, Theorem 11]

respectively. For k,£ > 2, Efég_l)“'l’eu_l)“'l(;U) satisfies

0 — - — -
FFk=1)- 1,60 1)"'1(55) — g1 1k(k 1)...1(w)+

% 132 132

110



_1)... gt _1)...
(B 0+ gy ) B 0

Proof. We apply the reverse and complement operations and then use the results
of Proposition 14. For example, to avoid 213, begin with 12... %k and end with
12...¢ is the same as to avoid 132, begin with 12...¢ and end with 12... k. O

Proposition 15. We have
() Eizi 124 (0) =

(0, ifk>3o0rl>3,
w—%—@tan(?x—}—%)—}—

) sec(§$+%) (4(6”/2+e_$/2)—sin(§m+§)), ifk=2and =2,
?e”ﬂsec ‘/7§a:+% -1, ifk=1and =1,

\ L er/2 sec LB+ 2 — 1 V3tan (‘/753:%—%), else;

0, ifk >3,
by(x) = (zi—/f)!sec (73:U+ t+§) dt, if k=1,
Jysec (Bt +1) (sin (Pt +3) = Fe ) (@ult) + by ) b, if k=2

(iif) Ef§§—1)...1,12...e($) _

0, if €23,
Dy (z) = (g%/f), sec (@x + %) Jo e 2tk sin VAT %) dt, ifl =1,
Jysec (Bt +3) (sin (Pt +3) = Fe2) (qult) + by ) dts if£=2
k(k—1)...1,6(¢—1)...1 Bigg ) (@), k=1,
() By M @) = 4 B ), =1,

Efs @) - B (@), ife=2;
For k 2 2 and f Z 3} E{CQ(;C—I)...I,Z(Z—I)...I(m) satisﬁes

0 k(k—1)..1,6-1)..1 £(£—1)...1 gt ! k(k—1)...1,21 k—1)...1,6(6—1)...
3_xE12(3 ) - (z) = E1gs ) () + m E12(3 ) ($)+E§23 ) -

where Efég_l)“'l(a:) is given in [KitMans, Theorem 2]:

e?/? [ emt/2¢k—1 sin(‘/Tgt +Z)) dt

ERED-1 () =
128 (k—1)! cos(@x + %)

?
k(k—1)..1,12 . . L
and E12(3 )12 given in this theorem above.
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Proof.

Beginning with k(k —1)...1 and ending with 12...¢: If £ > 3 then
the pattern 12...¢ does not avoid 123, thus the statement is true. If £ = 1,
the statement is true according to [Kit3, Theorem 8] and the observation that
if kK =1 then this formula gives the expression

\/gw/Z \/g ™
76 sec 7x+6 -1,

which is true according to [ElizNoy, Theorem 4.1] and the assumption that the
empty permutation does not begin or end with the pattern p = 1. So, we need
only to consider the case £ = 2. Recall the definitions of EF(z) in Section 4.2.
Let Py (n) denote the number of n-permutations that avoid the pattern 123,
begin with a decreasing subword of length k and end with the pattern 12. Also,
let Ri(n) denote the number of n-permutations that avoid the pattern 123 and
begin with a decreasing subword of length k. Let # = m;1ms be an (n + 1)-
permutation that avoids the pattern 123, begins with the pattern k(k —1)...1
and ends with the pattern 12. We observe that 7; avoids 123 and begins with
k(k—1)...1; my ends with the pattern 12 and |m3| > 0 since otherwise 7 cannot
end with the pattern 12; if |m3| > 1 then 7 must begin with the pattern 21
since otherwise we have an occurrence of the pattern 123 beginning from the
letter 1. If |m;| = ¢ then the letters of m can be chosen in (7) ways. So, there
are at least
Z (?) R (1) P2(n — i) + nRg(n — 1)
i>0
(n+ 1)-permutations with the good properties, where the first term corresponds
to the case |m2| > 1 and the second term to the case |m2| = 1. By this formula,
we do not count the permutations having |m| = k — 1, although in this case
7 begins with the pattern k(k —1)...1. So, we can choose the letters of 71 in
(")) ways, and according to whether |r| > 1 or || = 1, we have two terms:

n
(k‘— 1>P2(’I'L— k+ ].) +k6n,k;

where d,, , is the Kronecker delta. Thus,

Pu(n+1) =3 (?)Rk(i)PQ(n—i)+an(n—1)+ (

)PQ(n—k+1)+k6n,k.
i>0

n
k-1

After multiplying both sides of the last equality with z"/n! and summing
over n, we have

k—1

d _k(k-1)...1,12 , 1), z
B V) = (B0 +o) (B U@+ gy ) @)

with the initial condition EF~-112(0) = 0. Since
k(k—1)... k(k—1)...1,
E1§3 Y 1(33) = E1§3 R 1($) =
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e¥/2 V3 T Ty V3 T
Vo _ —t/24k—1 . [ VO, T
(k_l)!sec 2x+6 /0 e t"" sin 2t-|-3 dt,

to solve (4.11), we only need to know E?33(x). To find it, we set k = 2

into (4.11) and solve this equation. For an example how to solve such an equa-
tion, we refer to [Kit3, Theorem 6]. We get

E12;312($) = —x + sec ﬁaH— T e*””/2/ et’? cos @t+ ) .
2 6 0 2 6

Now, we put the formula for Ea3">(z) into (4.11) and solve this differential

equation to get the desired result.

Beginning with 12...%k and ending with £(£ — 1)...1: By the reverse
and complement operations, to avoid 123, begin with the pattern 12...k and
end with the pattern £(£ —1)...1 is the same as to avoid 123, begin with the
pattern £(£ — 1)...1 and end with the pattern 12...%, so we can apply the
results of the previous case.

Beginning with 12...% and ending with 12.../: The statement is ob-
vious if k>3 or £> 3. If k =1 and £ = 1 then the statement is true according
to [ElizNoy, Theorem 4.1] (but we need to subtract 1, since by our assumption
the empty permutation does not begin or end with the pattern p=1). If £ =1
and k = 2, the statement is true according [Kit3, Theorem 9]. If £k = 1 and
£ = 2, we apply the reverse and complement operations, and use again [Kit3,
Theorem 9]. So, we only need to consider the case k = 2 and ¢ = 2. It is easy
to see that

Eip;”(2) = Egy (¢) — Biyy *(2),

and from the previous cases

3 3 1
E1lél32($) = %655/2 sec (%w + %) 5~ \/gtan (ﬁx + E) )

and

3
Eleém(x) = —x + sec (%w + %) (sin (?w + g) - ?emﬂ) .

Beginning with k(k —1)...1 and ending with ¢({ —1)...1: If £ = 1,
the statement is trivial. If & = 1, we get the statement by using the reverse
and complement operations. For the case £ = 2, we observe that the number of
n-permutations that avoid the pattern 123, begin with the pattern k(k—1)...1
and end with the pattern 21 is equal to the number of n-permutation that
avoid 123 and begin with the pattern k(k — 1)...1 minus the number of n-
permutations that avoid the pattern 123, begin with the pattern k(k —1)...1
and end with the pattern 12. Suppose now that k > 2 and £ > 3 and an (n+ 1)-
permutation 7 avoids 123, begins with k(k—1)...1 and ends with (¢ —1)...1.
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It is easy to see that the letter (n + 1) can be either in the first position, or in
the position ¢, where (k+ 1) <14 < (n—¥£), or in the position (n — £+ 1). In the
first of these cases, obviously we have Nl(;c?’_ 1)“'1’e(€_1)“'1(n) permutations. In
the second case, we choose the letters of 7 to the left of (n 4+ 1) in (,",) ways.
These letters must form a permutation that avoids 123, begins with the pattern
k(k—1)...1, and ends with the pattern 21 (if the last condition does not hold,
the letter (n + 1) and two letters to the left of it form a 123-pattern. In the
same time, the letters to the right of (n+ 1) form a permutation that avoids 123
and ends with the pattern £(¢ — 1)...1. In the third case, we can choose the
letters to the right of (n+1) in (,”,) ways, rearrange them into the decreasing
order, and form from the letters to the left of (n+ 1) a permutation that avoids
123, begins with the pattern k(k —1)...1 and ends with the pattern 21 (by the

same reasons as above) in Nfg -1, ?(n — £+ 1) ways. Thus,

le2(§_1)...1,e(e_1)...1(n +1) = Nl(gg_l)...1,e(z_1)...1(n)

=~ (n k(k—1)...1,21 ;.\ Ar£(£—1)... . n k(k—1)...1,
+Z<i>N12(3 D2 i) Nyg ) 1(n—z)+(€_1)N1§3 D -2 ),
=0

where we observed, that to avoid 123 and end with £(£ — 1)...1 is the same
as to avoid 123 and begin with £(£ — 1) ...1 using the reverse and complement.
Now, we multiply both sides of the equality by z™/n! and sum over n to get the
desirable result. O

4.7 Avoiding a pattern x-yz, beginning and end-
ing with certain patterns simultaneously

Proposition 16. We have
= t t"
et [Te e E —dt, ifk>2
12...k,1 0 | =
(i) EiSs (z) = E%ggzk(l') = n>k—1 e :
e 1, ifk=1
For £ > 2, E{%;"" () satisfies

-2

T 12. k z ,maz(lk)—1
7>El32 z) + ez (6k)—1

0 _12..k12. Y
%Ell?mk’m = (

=0
(ii) Ellféiz'k’l(e_l)"'l(m) satisfies

RN o
ot L2k (=1l 0y e foe Z ] dt, ifk=>2,
Hpl—1 132 (z) = n>k—1

e 1, ifk=1.

(iii)
k(k—1)...1, k(k
El—(32 R 1(37) 1(32 b 1($) =
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(€ /(k— 1)) [T th—te=e"tt at, if k> 2
e 1, ifk=1
For (> 2, Effg“;”'"l’”'"f(x) satisfies

ﬂEk(k—l)...l,lz..l( )= (e — lf z* =Dty [ f AN
Bz 1732 R I Rt AR o I T

=0

(IV) E]I-c(g:z—l)...l,f(f—l)...l (iI)) Satisﬁes

ot ph=1).16(e-1)...1 gmaez(k,f) _ ghtt-1
Spt-1 1-32 (z) - 1—2

@ o et ifk >,
e 1 ifk=1.

Proof.

Beginning with 12...%k and ending with ¢(/ —1)...1: If £ = 1 then
the result follows from [KitMans, Proposition 5], since to avoid 1-32 and begin
with 12...k is the same as to avoid 3-12 and begin with k(k—1)...1. Suppose
now that £ > 2 and a permutation 7w avoids the pattern 1-32, begins with the
pattern 12...k and ends with the pattern £(£ — 1)...1. Since £ > 2, we have
that the letter 1 must be in the rightmost position since otherwise, this letter
and two rightmost letters of = form the pattern 1-32, which is forbidden. Thus,

N11_2?;.2.k,£(ﬁ—1)...1(n) _ N11_2?;.2.k,(£—1)(€—2)...1(n )= = NIZR g4 1),
Multiplying both sides of the equality Nll_zéé'k’e(f_l)"'l(n) =N{Z%5 - 041)
by 2" ¢*1/(n — £+ 1)! and summing over n, we get

Ol 1o ke(e-1).1
WEI—EIQ A= (z) = E%—232k(37)a

where El%:%(z) is given in [KitMans, Proposition 5], since to avoid 1-32 and
begin with 12...k is the same as to avoid 3-12 and begin with k(k —1)...1.

Beginning with k(k—1)...1 and ending with /(/—1)...1: We use the
same arguments as those given under consideration of the previous case, but
instead of [KitMans, Proposition 5] we use [KitMans, Proposition 4]. However,
we observe, that when we use the argument

k(k—1)...1,6(¢—1)...1 k(k—1)...1,(£—1)(£—2)...1 k(k—1)...1,1
Nl-(32 ) “-u (")=N1—(32 S EEDE=) (n—1)=---=N1_(32 ) (n—£+1)

for k,£ > 2, we do not count the decreasing permutations of length maz(k, £),

max(k,f) +1,...,k + £ — 2, since in this case, the patterns k(k —1)...1 and
£(£—1)...1 overlap in more than one letter, which causes the observation. So,
we need to consider additionally the term

xmaz(k,é) — gkt

mmaz(k,l) + mmaw(k,f)+1 4ot $k+Z72 — : ’
- X
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which vanishes if k =1 or £ = 1.

Beginning with 12...k and ending with 12.../: The only interesting
case here is the case k > 2 and £ > 2. Using the reverse and complement, instead
of considering avoiding 1-32, beginning with 12...% and ending with 12...¢, we
consider avoiding 1-32, beginning with 12. ../ and ending with 12...k. Suppose
an n-permutation 7 satisfies all the conditions. We observe, that the letter n
can be in the position i, where £ < i < n — k. Also, n can be in the rightmost
position if n > max(¢, k). In any case, the letters of 7 to the left of n must be
in the increasing order, since otherwise we have an occurrence of the pattern
21-3. This means that in the second case we have the only one permutation. In
the first case, the letters of 7 to the right of n must avoid 21-3 and end with
the pattern 12...k. The number of such permutations, using the reverse and
complement, is given by N1%5*(n —4). Thus, for n > maxz (¢, k),

n—k
012,k n—1 :
NiEst et = 3 (17 ) Nt i)+ 1.
i={

This gives
n -1

Ntk =30 (12 )Mt -0 - X (1) ) WtEt e - 1
=1 =1

which leads to the desirable result after multiplying both sides of the last equal-
ity by 2" /n! and summing over n.

Beginning with k(k —1)...1 and ending with 12...¢: The only inter-
esting case here is the case k > 2 and £ > 2. Using the reverse and complement,
instead of considering avoiding 1-32, beginning with k(k — 1)...1 and ending
with 12...¢, we consider avoiding 1-32, beginning with 12...¢ and ending with
k(k —1)...1. Suppose an n-permutation 7 satisfies all the conditions. We ob-
serve, that the letter n can only be in the position i, where £ < i < n — k,
or in position (n — k + 1) (in the case n > k + £ — 1). In the first case, it is
easy to see that the letters of 7 to the left of n must be in the increasing order,
and the letters of 7 to the right of n must avoid 21-3 and end with the pattern
k(k —1)...1. Using the reverse and complement, the total number of permu-

-1 -
tations counted in the first case is Z (n 1 ) Nf_(fz 1)"'l(n —1). In the second
=L

case, the letters to the left of n are in the increasing order, whereas the letters
to the right of n are in decreasing order. The number of such permutations is
(2” 1), which is the number of ways to choose the last k — 1 letters. Thus,

n—k
b k(k—1)... n—1\  kk-1)... . n—1
Ny HE D1 () = 5 (i— 1)N1'(32 T+ (k— 1)'

=L

Multiplying both parts of the equality by z"~!/(n — 1)! and summing over n,
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we get

0 12 4k(k=1)..1, \ _ n—1) z"!
B 213 @=2 {5, (n—1)!
n>k+¢
-1
Z1).. . n—1 _ . g1
T (S ()M emn- X (12w -0
n>0 i=1
which leads to the desirable result. O
Proposition 17. We have
(i) Go%z""> f( ) = gkt OM (g) 4 £
(i) Gli5 V) @) = A2 a).
(ii) GEEZD-LUE=D-1 gy — phtt—1 ot (g )—I—% where m = max(k, £).

(iv) the generating function Ga-13(z,y,2) =

for the sequence

12...k,0(£—1)...1
{Gy1s

1

C(z) -1

12...k,6(£—1)...1
Zk,ezo Gy

(z)yk2t

(@) }k,e>0 (where k and £ go through all natural numbers) is

=212 (m(y+z+yz)+(

1—zyC(z))(1 — z2C(x))

).

Proof. By [Claes], to avoid the pattern 2-13 is the same as to avoid the pattern

2-1-3. Thus we can apply the results of Proposition 11.

Proposition 18. We have
0,
B %M (@),

i E1?...k,12...£
0 Fis Ef3!(z).

(z) =

2
fo tEf3 5(t) dt + %7,

where Ei2:5%(z) and Ei%3*

Proposition 6] respectively:

O

ifk>3 orl>3,
ifl=1,
ifk=1,
ifk=2and { =2,

(x) are given by [KitMans, Proposition 10] and [KitMans,

(0, ifk>3,
2 - -1 z
T (1-jz) ifk=2,
Ei2:5k(z) = < _]:ZO ; (1-2)(1—2z)...(1 —dx)
> 7
ifk=1;
| = 1-2z)1-2x)...(1—dx)
0, itk >3,
B4t (a) = ByU5 ) @) = e [Fe (e = 1) dt, ifk=2,
e 1 if k=1.



(i) Nll?égk’f(f_l)"'l(n) _
(0, if k>3,
0, if k=2 and
n </,
=2 /m-1
§ L+ NBEVED G oy Y ( . 1)N%?23(n —J), ifk=2and
j=t+1 N T
n>0+1,
| Vi ), ifk=1,
where the numbers Nfé‘fgl)”'l(n) are given in [KitMans, Proposition 9], and the

numbers Ni%(n) are given by ezpending the exponential generating functions
in [KitMans, Proposition 6].

(iii)
Bl ) =
0, ife>3
z t —1_et—e™+m ght?! :
(k—ll)! Jo Jo tm*le T dmdt + %’ =2,
(e /(k—1)!) fy th—te~e"+ at, ift=1

where Ef_(g?,_l)"'l’l(n) = Ef_(g?,_l)l(n) is given by [KitMans, Proposition 4], and
Nl’e(e_l)'“l(n) = Nféegl)"'l (n) is given by [KitMans, Proposition 9];

1-23
(iv) For k> 2 and £ > 2, Ef_(ggl)"'l’e(z_l)"'l(x) satisfies

0 _ _ _ _
%Ef% 1)...1,6(¢ 1)...1($) _ Ef(§3 1)...1,(¢ 1)"'1(x)+

(ew - m’) (Ek(kl)"'l(m)+ zk >
- o 1-23 N
— i (k—=1)!

Proof.

Beginning with k(k —1)...1 and ending with 12...¢: If £ > 3 then
Ef_(g?,_l)"'l’u“'e(x) = 0, since in this case the pattern 12...¢ does not avoid
1-23. If £ = 1 then we use [KitMans, Proposition 4], since in this case the
only restrictions to the permutations are avoiding 1-23 and beginning with the
pattern k(k —1)...1. Suppose now that £ = 2 and an (n + 1)-permutation 7
avoids 1-23, begins with k(k —1)...1 and ends with the pattern 12. The letter
1 must be in next to the rightmost position, since otherwise this letter and two
rightmost letters form the pattern 1-23. We can choose the rightmost letter of
in n ways, and the letters to the left of 1 must form a 1-23-avoiding permutation
that begins with k(k — 1)...1. Besides, if n = k, and the k — 1 letters to the
right of 1 are in the decreasing order, we get n extra permutations that satisfy
our restrictions. Thus,

le_(éc3—1)...1,12(n + 1) — ank_(2k3—1)...1(n) + n(sn,k,
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where 0, is the Kronecker delta. Multiplying both sides of the equality by
z™/n! and summing over n we get

z k+1
k(k—1)...1, k(k—1)... kx
B2 0y :/0 tEFED-1 gy gt + O

Using the formula for EF5-Y-1() in [KitMans, Proposition 4], we get the
desirable result.

Beginning with 12...k and ending with 12.../: The first three cases are
easy to prove in the same manner as we do in the proves of previous propositions.
The only interesting case is when £ = 2 and £ = 2. Using the reverse and
complement operations, instead of considering avoiding 1-23, beginning with 12
and ending with 12, we consider avoiding 12-3, beginning with 12 and ending
with 12, which we find to be more easy. Suppose an (n + 1)-permutation 7
satisfies all the restrictions. It is easy to see that |7| # 1 and |7| # 3, as well as
if || = 2 (that is n = 1) then 7 must be 12. Suppose |7| > 4. Since 7 begins
with the pattern 12, it is impossible for the letter (n + 1) to be somewhere to
the right of the second letter of 7 or to be the leftmost letter. Thus, (n + 1)
must be in the second position. We can choose the leftmost letter of 7 in n
ways, since any choice of this letter will not lead to an occurrence of the pattern
12 — 3 beginning with two leftmost letters. If # = a(n + 1)7’ then 7' must avoid
12-3 and end with the pattern 12. The number of such permutations, using the
reverse and complement, is given by N12;(n —1). Thus,

Multiplying both sides of the equality by 2™ /n! and summing over all n, we get
(Bryg (z)) = 2E{%(z) + 2,

where the term z corresponds to the permutation 12. We have the desirable
result by integrating both sides of the last equality.

Beginning with 12...k and ending with (¢ — 1)...1: All the cases
but £k = 2 and n > £+ 1 are easy to prove. Let us consider this case. Using
the reverse and complement operations, instead of considering avoiding 1-23,
beginning with 12 and ending with £(£ — 1)...1, we consider avoiding 12-3,
beginning with £(£/—1)...1 and ending with 12, which we find to be more easy.
Let an n-permutation 7 satisfies all the conditions. We observe, that the letter
n is either in the first position, or in position j, where k +1 < j < n — 2,
or in the last position. Obviously, in the first of these cases the number of

“good” permutations is given by Nl(ﬁ__31)(€_2)"'1’12(n — 1), which is equivalent
to Nf?z;é“”“‘”“'l (n — 1) by using the reverse and complement. In the second

case, we choose the letters to the left of n in (;”:11) ways, rearrange them to the
decreasing order (we do it since otherwise we have an occurrence of the pattern
12-3 having the letter n). After that, the letters to the right of n must form
a permutation that avoid 12-3 and end with the pattern 12. Using the reverse
and complement, there are N{%;(n — j) such permutations. So, totally, in the
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second case there are E?:_ZQH (?:11)N11_223 (n—j) permutations. Finally, if n is at
the last position, we have the only one such permutation, since the other letters
must be in the decreasing order.

Beginning with k(k —1)...1 and ending with ¢(¢ — 1)...1: The only
interesting case here is the case k¥ > 2 and ¢ > 2. Using the reverse and
complement operations, instead of considering avoiding 1-23, beginning with
k(k—1)...1 and ending with £(£—1)...1, we consider avoiding 12-3, beginning
with £(£—1)...1 and ending with k(k —1)...1, which we find to be more easy.
Let an n-permutation 7 satisfies all the conditions. We observe, that the letter
n is either in the first position, or in position j, where £ +1 < j < n —k, or
in the last position n — k + 1. We proceed as in the previous case to get the
following

n—k
£(8=1)...1,k(k=1)...1 £=1).1,k(k—1)...1 n—1\ g(k=1)..1 N, (n—1
N1§—3 ) (=) :N1(2—3) (htty Z (i— )Nl—(23 ) ("_1)+(k_1

i=f+1 1
where three terms in the right-hand side correspond to the three cases described
above. We now multiply both sides of the equality by z"/n!, sum over n and
observe the following detail. We cannot write instead of i = £+ 1 (in the sum
above) i = 1 as we did in most of the cases above, since, for instance, the case
i = 1 do not necessarily make the term of summation equal 0 as it was before.

il

-1 i
Thus, instead of the factor e”, we have the factor (e”” - Z a: ) O
i=0

4.8 Avoiding a pattern xy-z, beginning and end-
ing with certain patterns simultaneously
Proposition 19. We have
(1) G}g._.z.k,ll..f(x) — xk_;’_e_lce_;’_l(w) + ™ _gkti-1 .

11—z
(i) Gio5" "V (@) = M1 O (a).

).

(iid) Gllcglgl)...l,e(z—1)...1(w) _ $k+1710k+1($)+wj where m = max(k, £).

1-z
(iv) the generating function Gi3-2(z,y,2) = 32y ;>0 G’fg’f;l)"'l’lz"'e(Z)ysz

for the sequence

{G’fé’f;l)"'1’12"'4(:1:)}19,4320 (where k and € go through all natural numbers) is
;(m( +2z4+y2)+ ) — 1 )
T—a(y+2) " TPV T 0 T 0yC(@) (1 — 22C()) )

Proof. We apply the reverse and complement operations and then use the results
of Proposition 17. For example, to avoid 2-13, begin with 12...%k and end with
12... /¢ is the same as to avoid 13-2, begin with 12...¢ and end with 12... k. O

Proposition 20. We have
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() E3lP'(x) = ER2k(x) is given by [KitMans, Proposition 14]. For £ > 2,

BEy2 k2 () satisfies
0 2
S @) = (ew -2 ﬁ) B2 (a) + eramer(6h L,
i=0

where Ei2%5%(x) = E3(€2 V-Y(3) is given by [KitMans, Proposition 5].
(i) Fort > 2, E;f'_gk’e(e_l)"'l(a:) satisfies

a k—2$z~ k—2$ 71
12...k,0(6—1)...1 z £(0—1).. 1
2t = (- S ) w58 ) oy

i=0 1=0

where E1(g2 1.1 (z) is given by [KitMans, Proposition 4].

(iii) E;l(lf?fl)"'l’m"'z(x) satisfies

PR n .
akflEk(k 1)...1,12.. z(): e Jye Zmdta if£>2,

63:’“‘1 21-3 . n>{—1 '
e 1, if £ =1.

(iv) Efl('f;l)"'l’é(e_l)"'l(:17) satisfies

okt k(k—1)...1,6(6—1)...1 gmox(k.t) _ gphti—1
ork—1 <E2—13 (z) — -z >

o Jy e, if £ > 2,
e 1, ifl=1.

Proof. We apply the reverse and complement operations and then use the results
of Proposition 16. For example, to avoid 1-32, begin with 12...%k and end with
2...101s the same as to avoid 21-3, begin with 12...¢ and end with 12...k. O

Proposition 21. We have

0, ifk>3 ortl>3,
R C =1,
O B0 = 4 Blgt(a), ifk=1,

JTtBR2, () dt+ 5, ifk=2and £ =2,

where Ei2:5%(x) and Ei%3%(z) are given in Proposition 18.

0, if k>3,
(11) Ei?z.ék,f(f—l)...l(w) — (l 1 ' fo fo tmf 1 e —e™+m dmdt + (l+1)'7 1,f k = 2’
(e /(£ —1)) [5 t~ le=e'+t gy, ifk=1;
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(iv) Nfz(f“;”“'l’”“'e(n) _

(0, if € >3,
0, if £ =2 and
n <k,
n—2 n—1
| 1+ NGIEDE Gy N ( . 1)N??}Zl(n — ), ift=2 and
j=k+1 -
n>k+1,
[ N ), ife=1,
where the numbers Nfz(g_l)"'l(n) are giwen in [KitMans, Proposition 9], and the

numbers N3%,(n) are given by expending the exponential generating functions
in [KitMans, Proposition 6].

(iv) Nfﬁg_l)“'l’l(n) = ng(g_l)”'l(n) is giwen by [KitMans, Proposition 9],
and Nllz’{(;*l)'“l(n) = Nfg;l)”'l(n) is given by [KitMans, Proposition 4]. For
k>2andl>2, Efé’f;l)"'l’e(e_l)"'l(.7:) satisfies

O _k(k—=1)...1,6(f—1)...
%Eléﬁ Db HED 1(55):

k=1 ’
Eg__;)“'l’e(f_l)“'l(m) + (ez _ Z %) (Ef(l;;)'“l(x) + (gf 1)!) )

=0

Proof. We apply the reverse and complement operations and then use the results
of Proposition 18. For example, to avoid 1-23, begin with 12...% and end with
12.../ is the same as to avoid 12-3, begin with 12...¢ and end with 12... k. O

4.9 Further results

In this section, we propose two directions of generalization of the results from
the previous sections. The first one is a consideration of avoiding more than
one pattern, beginning with some pattern and ending with another pattern.
For example, suppose that v = 12-3, w = 21-3, p = 12...k, ¢ = 12...4,
and EDY(x) denotes the exponential generating function for the number of
permutations that avoid the patterns v and w simultaneously, begin with the
pattern p and end with the pattern ¢. It is easy to see that if k > 3 or £ > 3
then E%§_3,k2’11_23£ (x) = 0. For the other k£ and ¢, one can prove the following
theorem:

Theorem 1. We have
(i) Eiél_3’21_3(x) =evte’/2 1,
(i) B350 5(@) = em e’ /2 (1 -y e‘t_t2/2dt) - 1.
(i) B}3 o1-5(2) = fy tet*¥/2dt.
(iv) Ei22113?21_3(w) =122+ [ [et+t2/2 (1 - fot e_r_rz/2dr) - 1] dt.
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The second direction is a consideration of permutations in S, containing
a pattern v exactly r times, beginning with some pattern and ending with
another pattern. For example, suppose that v = 12-3, r = 1, p = 1...k,
g = 1, and NP;(n) denotes the number of n-permutations that contain the
pattern v exactly r times, begin with the pattern p, and end with the pattern
q. It is easy to see that the only interesting case is 1 < k£ < 3, since otherwise
N1122_“3'ﬁ’1 (n) = 0. Moreover, one can prove the following theorem:

Theorem 2. Let F,, denote the number of n-permutations containing 12-3 ex-
actly once. Then, for all n > 3,

N112’21_33;11 (n) = Fanlgié;l(n) =(n—-1)F,—1+(n—2)B,_a,
Ni333.4(n) = (n — 2)Bp-s,

where By, is the nth Bell number, and F, is given by [ClaesMans2, Corol-
larly 13].
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Abstract

We introduce partially ordered generalized patterns (POGPs), which further
generalize the generalized permutation patterns (GPs) introduced by Babson
and Steingrimsson [BabStein]. A POGP p is a GP some of whose letters are
incomparable. Thus, in an occurrence of p in a permutation m, two letters
that are incomparable in p pose no restrictions on the corresponding letters
in 7. We describe many relations between POGPs and GPs and give general
theorems about the number of permutations avoiding certain classes of POGPs.
These theorems have several known results as corollaries but also give many new
results. We also give the generating function for the entire distribution of the
maximum number of non-overlapping occurrences of a pattern p with no dashes,
provided we know the e.g.f. for the number of permutations that avoid p.

5.1 Introduction and Background

All permutations in this paper are written as words m = aqas - - - a,,, where the
a; consist of all the integers 1,2,...,n.

We will be concerned with patterns in permutations. A pattern is a word on
some alphabet of letters, where some of the letters may be separated by dashes.
In our notation, the classical permutation patterns, first studied systematically
by Simion and Schmidt [SchSim], are of the form p = 1 — 3 — 2, the dashes
indicating that the letters in a permutation corresponding to an occurrence of
p don’t have to be adjacent. In the classical case, an occurrence of a pattern p
in a permutation 7 is a subsequence in 7 (of the same length as the length of
p) whose letters are in the same relative order as those in p. For example, the
permutation 41352 has only one occurrence of the pattern 1 — 2 — 3, namely the
subword 135.

Note that a classical pattern should, in our notation, have dashes at the
beginning and end. Since all patterns considered in this paper satisfy this,
we suppress these dashes from the notation. Thus, a pattern with no dashes
corresponds to a contiguous subword anywhere in a permutation.

In [BabStein] Babson and Steingrimsson introduced generalized permutation
patterns (GPs) where two adjacent letters in a pattern may be required to be
adjacent in the permutation. Such an adjacency requirement is indicated by
the absence of a dash between the corresponding letters in the pattern. For
example, the permutation 7 = 516423 has only one occurrence of the pattern



2-31, namely the subword 564, but the pattern 2-3-1 occurs also in the subwords
562 and 563. The motivation for introducing these patterns in [BabStein] was
the study of Mahonian statistics.

A number of interesting results on GPs were obtained by Claesson in [Claes].
Relations to several well studied combinatorial structures, such as set partitions,
Dyck paths, Motzkin paths and involutions, were shown there. In [Kit] the
present author investigated simultaneous avoidance of two or more 3-letter GPs
with no dashes. This work is of particular interest here since avoidance of
the patterns considered in this paper has a close connection to simultaneous
avoidance of two or more GPs with no dashes. Also important here is the work
of Elizalde and Noy [ElizNoy] where they find the distribution of several patterns
with no dashes.

In this paper we introduce a further generalization of GPs — namely partially
ordered generalized patterns (POGP). A POGP is a GP some of whose letters
are incomparable. For instance, if we write p = 1 — 1’2’ then we mean that in
an occurrence of p in a permutation 7 the letter corresponding to the 1 in p
can be either larger or smaller than the letters corresponding to 1'2’. Thus, the
permutation 13425 has four occurrences of p, namely 134, 125, 325 and 425.

We consider two particular classes of POGPs — shuffle patterns and multi-
patterns. A multi-pattern is of the form p = 01 — 02 — -+ — 0} and a shuffle
pattern is of the form p = 09 —a; — 01 —as — --- — ay — op, where for any
and j, the letter a; is greater than any letter of o; and for any ¢ # j each letter
of o; is incomparable with any letter of o; These patterns are investigated in
Sections 5.4 and 5.5. A corollary to one of our theorems (Theorem 5) about the
shuffle patterns is the result of Claesson [Claes, Proposition 2] that the number
of n-permutations that avoid the pattern 12 — 3 is the n-th Bell number.

Let p = 01 — 03 — - - - — 0y be an arbitrary multi-pattern and let A;(x) be the
exponential generating function (e.g.f.) for the number of permutations that
avoid o; for each 4. In Theorem 11 we find the e.g.f., in terms of the A;(x), for
the number of permutations that avoid p. In particular, this allows us to find
the e.g.f. for the entire distribution of the maximum number of non-overlapping
occurrences of a pattern p with no dashes, if we only know the e.g.f. for the
number of permutations that avoid p. In many cases, this gives nice generating
functions.

We also give alternative proofs, using inclusion-exclusion, of some of the
results of Elizalde and Noy [ElizNoy]. Our proofs result in explicit formulas
for the e.g.f. in terms of infinite series whereas Elizalde and Noy obtained
differential equations for the same e.g.f..

5.2 Definitions and Preliminaries

A partially ordered generalized pattern (POGP) is a GP where some of the letters
can be incomparable.

Example 1. The simplest non-trivial ezample of a POGP that differs from the
ordinary GPs is p=1' —2 — 1", where the second letter is the greatest one and
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the first and the last letters are incomparable to each other. The permutation
3142 has two occurrences of p, namely, the subwords 342 and 142.

It is easy to see that the number of permutations that avoid p in Example 1
is equal to 2" 1. Indeed, if # = a; . ..ay and a; is the leftmost letter in 7 that is
smaller than its successor, then all letters to the right of a; must be in increasing
order. So any permutation 7 avoiding p can be written as 711wy , where 7y is
decreasing and 7 is increasing and there are 2"~! ways to pick the permutation
71, which determines 7.

Definition 1. If the number of permutations in S,, for each n, that avoid a
POGP p is equal to the number of permutations that avoid a POGP q, then p
and q are said to be equivalent and we write p = q in this case.

If A, is the number of n-permutations that avoid a pattern p, then the
exponential generating function, or e.g.f., of the class of such permutations is

Az) = ZAn%.

n>0

We will talk about bivariate gemerating functions, or b.g.f., exclusively as
generating functions of the form

were Ay, is the number of n-permutations with & occurrences of the pattern p.

The reverse R(w) of a permutation # = ajaz...a, is the permutation
Ananp—1 ---a1. The complement C(r) is the permutation bibs . ..b, where b; =
n+1—a;. Also, Ro(C is the composition of R and C. For example, R(13254) =
45231, C(13254) = 53412 and R o C(13254) = 21435. We call these bijections
of S, to itself trivial, and it is easy to see that any pattern p is equivalent to the
patterns R(p), C(p) and R o C(p). For example, the number of permutations
that avoid the pattern 132 is the same as the number of permutations that avoid
the patterns 231, 312 and 213, respectively.

It is convenient to introduce the following definition.

Definition 2. Let p be a GP without internal dashes. A permutation m quasi-
avoids p if ™ has exactly one occurrence of p and this occurrence consists of the
|p| rightmost letters of .

For example, the permutation 51342 quasi-avoids the pattern p = 231,
whereas the permutations 54312 and 45231 do not. Indeed, 54312 ends with
312, which is not an occurrence of the pattern p, and 45231 has an occurrence
of p, namely 452, in a forbidden place.

Proposition 1. Let p be a non-empty GP with no dashes. Let A(x) (resp.
A*(z)) be the e.g.f. for the number of permutations that avoid (resp. quasi-
avoid) p. Then

A*(z) = (z — 1)A(z) + 1.
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Proof. We first show that

AX =nA,_, — A,. (5.1)

If we consider all (n—1)-permutations that avoid p and all possible extending
of these permutations to the n-permutations by writing one more letter to the
right, then the number of obtained permutations will be nA4,, 1. Obviously, the
set of these permutations is a disjoint union of the set of all n-permutations
that avoid p and the set of all n-permutations that quasi-avoid p. Thus we get
(5.1). Multiplying both sides of (5.1) with z™/n! and summing over all natural
numbers n, observing that Aj = 0, we get the desired result. |

Definition 3. Suppose {09,01,...,0r} is a set of GPs with no dashes and
p =01 — 09— - — o where each letter of o; is incomparable with any letter of
oj whenever ¢ # j. We call such POGPs multi-patterns.

Definition 4. Suppose {o9,01,...,0r} is a set of GPs with no dashes and
aias...ay is a permutation of k letters. We define a shuffle pattern to be a
pattern of the form

00 —QG1 —01 —Q2 =+ — 01 — Ak — Ok,

where for any i and j, the letter a; is greater than any letter of o; and for any
i # j each letter of o; is incomparable with any letter of 0;. We also allow o
and oy, but not the other o;, to be empty patterns.

The pattern from Example 1 is an example of a shuffle pattern. It follows
from the definitions that we can get a multi-pattern from a shuffle pattern by
removing all the a;.

Let Sy, denote the disjoint union of the S, for all n € N. The POGPs
(which include the GPs, as well as the classical patterns), can be considered as
functions from So, to N that count the number of occurrences of the pattern
in a permutation in So,. This allows us to write a POGP (as a function) as a
linear combination of GPs. For example,

'-2-1" = (1-3-2) + (2-3-1),

from which, in particular, we see that to avoid 1’ — 2 — 1" is the same as to
avoid simultaneously the patterns 1 —3 — 2 and 2 — 3 — 1. A straightforward
argument leads to the following proposition.

Proposition 2. For any POGP p there exists a set S of GPs such that a
permutation w avoids p if and only if ™ avoids all the patterns in S.

The following theorem can be easily proved by induction on k:
Theorem 1. Let py =09 —a; — 01 —as — +++ — Og—1 — G — Of (resp. P2 =

09 — 01 — - -+ — gy ) be an arbitrary shuffle pattern (resp. multi-pattern) with
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lo;| = £; for alli =0,...,k. Then to avoid the pattern p; (resp. p2) is the same
as to avoid

ﬁ bo+1Ll,+---+¥; _ lo + 44 bo+ 01+ 0 bo+ L1+ -+ 4
l; - 2 12 4,

i=1
ordinary GPs.

Example 2. Letp =1'2'—=3—1". That isc = 12 and 7 = 1. By Theorem 1, to
avoid p is the same as to avoid (g) = 3 GPs simultaneously, namely 12 —4 — 3,
13—4—2and 23 —-4-1.

There is a number of results on the distribution of several classes of patterns
with no dashes. These results can be used as building blocks for some of the
results in the present paper. The most important of these is the following result
by Elizalde and Noy [ElizNoy]:

Theorem 2. [ElizNoy, Theorem 3.4] Let m and a be positive integers with
a<m,leto=12...ar(a+ 1) € Sp42, where T is any permutation of {a +
2,a+3,...,m+2}, and let P(u, z) be the b.g.f. for permutations where u marks
the number of occurrences of 0. Then P(u,z) = 1/w(u,z), where w is the

solution of
m—a+1

w4+ (1 — u) z w' =0

(m—-a+1)
with w(0) = 1, w'(0) = =1 and w® (0) = 0 for 2 < k < a. In particular, the
distribution does not depend on T.

5.3 GPs with no dashes

In order to apply our results in what follows we need to know how many patterns
avoid a given ordinary GP with no dashes. We are also interested in different
approaches to studying these patterns. The theorems in this section can be
proved using an inclusion-exclusion argument similar to the one given in the
proof of Theorem 12 and we omit these proofs. This allows us to get explicit
formulas for the e.g.f. in terms of infinite series instead of having to solve
differential equations as done by Elizalde and Noy [ElizNoy] for the same e.g.f..
However, in particular cases, we use certain differential equations to simplify
our series.

Theorem 3. [GoulJack] Let Ay (z) be the e.g.f. for the number of permutations
avoiding the pattern p =123 ... k. Then
Ak(."[,') = l/Fk(."L'),

ki pkitl
where Fi(x) = Z (ki)! (ki + 1)1
>0

i>0
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For some k it is possible to simplify the function Fy(z) in the theorems
above. Indeed, Fj(x) satisfies the differential equation F,gk) (z) = Fi(z) with
the k initial conditions Fi(0) = 1, F/(0) = —1 and F\?(0) = 0 for all i =
2,3,...,k — 1. For instance, if k = 4 then

1
Fy(z) = E(cosa: —sinz + e~ 7).

Theorem 4. Let k and a be positive integers with a < k, let p=12...a71(a +
1) € Sk41, where T is any permutation of the elements {a+2,a+3,..., k+1},
and let Ay () be the e.g.f. for the number of permutations that avoid p. Let

|y U
Fkﬁa(m)—; (ki +1)! g(k—a)'
Then

Apa(z) =1/(1 = 2 + Fio(2)).

If k=2 and a = 1 in the previous theorem, corresponding to the pattern
p = 132, then from Theorem 4 the function F (), which is the same for the
patterns p, 231, 312 and 213 because of the trivial bijections, can be written as:

(—1)it1ghi+t /z e
Fpy(n) =S W _
21(7) ;i!(k!)’(ki-l-l) T e d

That is
1

x )
1—/ et qt
0

which is a special case of Theorem 4.1 in [ElizNoy].

Asq =

5.4 The Shuffle Patterns

We recall that according to Definition 4, a shuffle pattern is a pattern of the
form 09 —a1 — 01 —ag — -+- — o—1 — ap — oy, where {09,01,...,0%} is a set
of GPs with no dashes, ajas . ..ay is a permutation of k letters, for any ¢ and j
the letter a; is greater than any letter of ¢; and for any ¢ # j each letter of o;
is incomparable with any letter of ;.

Let us consider a shuffle pattern that in fact is an ordinary generalized
pattern. This pattern is p = o — k, where ¢ is an arbitrary pattern with no
dashes that is built on elements 1,2,...,k—1. So the last element of p is greater
than any other element.

Theorem 5. Let p = 0 — k and let A(x) (resp. B(x)) be the e.g.f. for the
number of permutations that avoid o (resp. p). Then B(z) = eF' (@AW ywhere

Fla,Aw) = [ " AWy) dy.
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Proof. Suppose that m € S,+1 and that 7 avoids p. Suppose the letter (n + 1)
is in the -th position and 7w = 71 (n + 1)m2, where 7 and 7y might be empty.

Since 7 is p-avoiding, m must be o-avoiding, because otherwise an occur-
rence of ¢ in 71 together with the letter (n + 1) gives an occurrence of p in .
But if m; is o-avoiding then there is no interaction between m; and o, that is,
if o is p-avoiding and 7 is o-avoiding then 7 is p-avoiding. To see this it is
enough to see that if an occurrence of ¢ in 7 contains the letter (n + 1), then
this occurrence of o can not lead to an occurrence of p = ¢ — k containing the
letter (n + 1).

From the above, considering all possible positions of (n + 1), we get the

recurrence relation
n
Bn+1 = Z (Z)AZBH_“

i
where B; (resp. A;) is the number of j-permutations that avoid p (resp. o),

because we can choose the elements of 7y in (7}) ways.
Multiplying both sides of the equality by z™/n! we get

Bny Ai ; Bnoi i
L L gt T _gnet
n! Z il (n—1)!

Taking the sum over all natural numbers n leads us to

where the derivative of B is with respect to z. Since B(0) = 1, the solution of
the differential equation is B(z) = e¥'(#-4®)), O

Example 3. Letp=1—2. Hereoc =1, so A(z) =1 since A,, =0 for alln > 1
and Ag = 1. So
B(z) = @1 = ¢

This corresponds to the fact that for each n > 1 there is exactly one permutation
that avoids the pattern p, namely * =n(n —1)...1.

Example 4. Suppose p = 12— 3. Here 0 = 12, so A(z) = €*, since there is
ezactly one permutation that avoids the pattern o. So

B =
B(z) = Y Zrgn = oFleet) = -1,

n!
n>0

According to [Claes, Proposition 2], for all n > 1, B, is the n-th Bell number
and the e.g.f. for the Bell numbers is e 1.

The table below gives the initial values of B, for several patterns p = o —
k. These numbers were obtained by expanding the corresponding B(z). The
functions A(z) are taken from the previous section.
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pattern initial values for B,
132-4 1, 2, 6, 23, 107, 585, 3671, 25986, 204738
123-4 1, 2, 6, 23, 108, 598, 3815, 27532, 221708
1234-5 | 1, 2,6, 24, 119, 705, 4853, 38142, 336291
12345-6 | 1, 2, 6, 24, 120, 719, 5022, 40064, 359400

Theorem 6. Let p be the shuffle pattern o0 —k —7. So k is the greatest letter of
the pattern, and each letter of o is incomparable with any letter of . Let A(z),
B(z) and C(z) be the e.g.f. for the number of permutations that avoid o, T and
p respectively. Then C(x) is the solution of the differential equation

C'(z) = (A(z) + B(2))C(z) — A(z)B(z),
with C(0) = 1.

Proof. As before, we consider the symmetric group S,41 and a permutation
m € Sp+1 that avoids p. Suppose the letter (n + 1) is in the i-th position and
m =71 (n + 1)72, where 7y and 7o might be empty.

There are exactly four mutually exclusive possibilities:

1) m; does not avoid o, w2 does not avoid 7.
2) m avoids o, my does not avoid T;

3) 1 does not avoid o, 7y avoids T;

4) m avoids o, mo avoids T;

Obviously, the situation 1) is impossible, since an occurrence of o in m; with
(n+1) and with an occurrence of 7 in 72 gives us an occurrence of p in 7. On the
other hand, if p occurs in 7 then it is easy to see that the letter (n + 1) cannot
be one of the letters in the occurrences of ¢ or 7, so all p-avoiding permutations
are described by the possibilities 2)-4). We count these permutations in the
following way.

In () ways we choose first ¢ elements from the letters 1,2...n, that is, the
elements of m,. Let A;, B; and C; be the number of i-permutations that avoid
o, T and p respectively.

If m; is o-avoiding, we let mo be any p-avoiding permutation of the remain-
ing (n — i + 1) letters. This accounts for all ”good” permutations from the
possibilities 2) and 4). There are (%) A;Cr—; such permutations.

If 7y is T-avoiding, we let m; be any p-avoiding permutation of chosen i let-
ters. This covers all “good” permutations from 3) and 4). There are (’;) B;C,_;
such permutations.

But we have counted p-avoiding permutations that correspond to 4) twice,
so we must subtract (%) A;Bn—;, which is the number of such permutations.

So we have

Cny1 = Z (?) (AiCp—i + B;Cp_i — A;Bp_;).

i
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Multiplying both sides of the equality by z™/n! we get

Cot1 p Ai+B; ; Coi i Ai i Bnoi s
a e =2 (7 Tt T m—® )

SO
C'(z) = (A(z) + B(z))C(x) — A(z)B(x).

O

Example 5. Letp=1'—-2—1". Thatis,c =1 and7=1. So A(z) = B(z) =1
and we need to solve the equation

C'(z) = 20(z) — 1

with C(0) = 1. The solution of this equation is C(z) = 3(e** + 1), so for all
n > 1 we have C,, = 2", as in Example 1.

In the table below we record the initial values of C,, for several patterns
p=oc—-k-—r.

o T initial values for C,

1 12 1, 2, 6, 21, 82, 354, 1671, 8536, 46814
1 132 | 1, 2, 6, 24, 116, 652, 4178, 30070, 240164
1 123 | 1, 2, 6, 24, 116, 657, 4260, 31144, 253400
1 |1234 | 1, 2,6, 24, 120, 715, 4946, 38963, 344350
12 12 | 1, 2,6, 24, 114, 608, 3554, 22480, 152546
12 | 132 | 1, 2,6, 24, 120, 710, 4800, 36298, 302780
12 | 123 | 1, 2,6, 24, 120, 710, 4815, 36650, 308778
12 | 1234 | 1, 2, 6, 24, 120, 720, 5025, 39926, 355538
123 | 123 | 1, 2,6, 24, 120, 720, 5020, 39790, 352470
123 | 132 | 1, 2,6, 24, 120, 720, 5020, 39755, 351518
132 | 132 | 1, 2,6, 24, 120, 720, 5020, 39720, 350496

Remark 2. The pattern p = 0 — k from Theorem 5 is a particular case of the
pattern p = o — k — 7 from Theorem 6 when 7 is the empty word. The e.qg.f.
for the number of permutations that avoid the empty word is zero, because no
permutation avoids the empty word. So if T is empty, we can use Theorem 6
to get Theorem 5. Indeed, B(x) = 0, and after renaming C with B we get in
Theorem 6 exactly the same differential equation as we have in Theorem 5.

We now give two corollaries to Theorem 6.

Corollary 1. Suppose we have the shuffle pattern p =0 — k — 7. We consider
the pattern p(p) = @1(0) —k—p2(T), where 1 and o are any trivial bijections.
Then p = o(p)-
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Proof. We just observe that if A(x) (resp. B(z)) is the e.g.f. for the number of
permutations that avoid o (resp. 7) then A(z) (resp. B(z)) is the e.g.f. for the
number of permutations that avoid ¢1 (o) (resp. pa2(T)). O

Corollary 2. We haveo —k—1=7—k — 0.

Proof. This follows directly from the differential equation of Theorem 6 (A(x)
and B(z) are symmetric in that equation), but we can also obtain this as a
corollary to Corollary 1. By Corollary 1, the pattern ¢ — k — 7 is equivalent to
the pattern o — k — R(7). Reversing the pattern o — k — R(7), we obtain the
pattern

R(oc — k— R(1)) = R(R(1)) —k — R(c) =7 — k — R(0),

which thus is equivalent to ¢ — k — 7. Finally, we use Corollary 1 one more time
to get
7T—k—R(o)=7—k—R(R(0))=7-k—o0.

5.5 The Multi-Patterns

We recall that according to Definition 3, a multi-pattern is a pattern p = o1 —
o9 — --- — o, where {09,01,...,0%} is a set of GPs with no dashes and each
letter of o; is incomparable with any letter of o; whenever i # j.

We first discuss patterns of the type p = o0 — 7 which are a particular case
of the multi-patterns to be treated in this section.

If o or 7 is the empty word then we are dealing with ordinary GPs with
no dashes, some of which were investigated in [ElizNoy] and Section 3. The
analysis of the case when ¢ or 7 is equal to 1 can also be reduced to the analysis
of ordinary GPs. For example, suppose that ¢ = 1, that is, p = 1 — 7, and we
want to count the number of permutations in S,, that avoid p. We can choose the
leftmost letter of a permutation avoiding p in n ways, then the remainder of the
permutation must avoid 7, so we multiply n by the number of permutations in
S,_1 that avoid 7. For instance, if p = 1—1'2' then the number of permutations
in S, avoiding p is exactly n.

Theorem 7. Let p=o0 — 7 and q = p1(0) — p2(7), where @1 and @2 are any
of the trivial bijections. Then p and q are equivalent.

Proof. The theorem is equivalent to the following statement:

Let p=0 — 7 and ¢ = 0 — ¢(7), where ¢ is a trivial bijection. Then p and
q are equivalent.

It is obvious that the statement follows from Theorem 7. Conversely, suppose
we have p = o — 7. We observe that any two trivial bijections commute, that is
for any trivial bijection v, we have ¥ (R(x)) = R(v(x)). This observation, the
statement and the fact that z = R(z) give

p=0—7=0—(1) = R(pa(7)) — R(0) = R(p2(7)) — ¢1(R(0)) =
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R(p2(7)) = B(p1(0)) = ¢1(0) — 9a(7)-

So to prove the theorem we now prove the statement.

Let p =0 —7 and ¢ = 0 — ¢(7), where ¢ is a trivial bijection. Let A, (resp.
B,) be the number of n-permutations that avoid p (resp. ¢). We are going to
prove that A, = B,.

Suppose 7 avoids p and m = w0’ 72, where 70’ has exactly one occurrence
of the pattern o, namely o’. Then w3 must avoid 7, ¢(m2) must avoid ¢(7)
and 7, = mo'p(ms) avoids g. The converse is also true, that is, if 7, has no
occurrences of ¢ then 7w has no occurrences of p. If © has no occurrences of
o then 7 has no occurrences of p as well as no occurrences of q. Since any
permutation either avoids o or can be factored as above, we have a bijection
between the class of permutations that avoid p and the class of permutations
that avoid ¢. Thus A,, = B,,. O

We get the following corollary to Theorem 7:
Corollary 3. The pattern o — 7 is equivalent to the pattern 7 — o.

Proof. We proceed as in the proof of Corollary 2. From Theorem 7 we have:

We observe that the presence of the dash in the patterns in Theorem 7 is
essential. That is, generally speaking, the pattern o7 is not equivalent to the
pattern ¢;(0)p2(7) for any trivial bijections ¢ and 2. For example, there
are 66 permutations in S5 that avoid the pattern 122’1’ but only 61 that avoid
121'2". In Section 6 we investigate the pattern 122'1'.

Theorem 8 and Corollary 4 generalise Theorem 7 and Corollary 3:

Theorem 8. Suppose we have multi-patterns p = o1 — o9 — -+ — o and ¢ =
Ty — Ty — - — Tk, where T Ty ... Ty @S a permutation of 0103 ...0. Then p and
q are equivalent.

Proof. We proceed by induction on k. If k& = 2 then the statement is true
by Corollary 3. Suppose the statement is true for all ¥’ < k. Suppose p has
exactly k blocks. If a permutation 7 avoiding p has no occurrences of o; then
it obviously avoids both p and ¢q. Otherwise we factor 7 as m = w0} 72 where
m o1’ has exactly one occurrence of the pattern o1, namely o;’. Then 75 must

avoid o9 — - - - — 0. Moreover it is irrelevant from which letters w04’ is built and
therefore we can apply the inductive hypothesis. We can rearrange o3 . ..o, of
02 ...0k in such a way that the blocks in 7375 ... 7} corresponding to o3, ...,0%

are arranged in the same order as the 7’s. Now we consider separately two cases:
T, 7 01 and 7, = o1. In the first case we use the following equivalences:

p=o01—0y—-—0r=01—03 —---— 0}, = R(o},) — - -- — R(0%) — R(01).
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For the pattern R(o},) —--- — R(03) — R(01) we use the factorisation of a
permutation 7 avoiding this pattern, where the role of o, is played by R(oy,).
So by the inductive hypothesis we put the pattern R(cy) in the right place
somewhere to the left of R(c}) and apply R to get that p = q.

In the second case we have:

p=R(o}) — -+ — R(03) — R(01) = R(o}) — -+ — R(01) — R(03) =

Oh— 01—+ — 0, =0y — "—0),—01=(

The first equivalence here is taken from the considerations above; the second
one uses the inductive hypothesis; then we use the fact that R(R(z)) = = and
apply the inductive hypothesis again. O

Corollary 4. Suppose we have multi-patterns p = o1 — g9 — +++ — o and
g = p1(01)—p2(02)—- - — (o), where each @; is an arbitrary trivial bijection.
Then p and q are equivalent.

Proof. We use induction on k, Theorem 8 and the factorisation of permutations,
which is discussed in the proof of Theorem 8. If k¥ = 2 then the statement is
true by Theorem 7. Suppose the statement is true for all ¥’ < k. Then

p=01—02— =0 =01~ p2(02) =+ —pr(ox) =
p2(02) — o1 — -+~ — pr(ok) = p2(02) — p1(o1) — -+ — pr(ok) =
p1(01) — p2(02) —--- — prlok) = ¢,
where first we apply the inductive hypothesis then Theorem 8 then the inductive
hypothesis and finally Theorem 8 again. O

Theorem 9. Suppose p = o—p', where p' is an arbitrary POGP, and the letters
of o are incomparable to the letters of p'. Let C(x) (resp. A(z), B(x)) be the
e.g.f- for the number of permutations that avoid p (resp. o, p'). Moreover let
A*(z) be the e.g.f. for the number of permutations that quasi-avoid o. Then

C(z) = A(z) + B(z)A* ().

Proof. Let A, B, C,, be the number of n-permutations that avoid the patterns
o, p' and p respectively. Also A% is the number of n-permutations that quasi-
avoid o. If a permutation 7 avoids ¢ then it avoids p. Otherwise we find the
leftmost occurrence of o in 7. We assume that this occurrence consists of the
|o| rightmost letters among the ¢ leftmost letters of . So the subword of 7
beginning at the (i + 1)st letter must avoid p’. From this we conclude

We observe that we can change the lower bound in the sum above to 0, because
Ar=0fori=0,1,...,|0| —1. Multiplying both sides by 2™ /n! and taking the
sum over all n we get the desired result. O
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Corollary 5. Suppose p =01 — 03 — --- — 0y, is a multi-pattern where |o;| = 2
for all i, so each o; is equal to either 12 or 21. If B(x) is the e.g.f. for the
number of permutations that avoid p then

1o (14 (@ D)k
n 1-2 '

B(z)

Proof. We use Theorem 9, induction on k and the fact that A(z) = e* and
AX(z) =14 (z — 1)e*. O

The following corollary to Corollary 5 can be proved combinatorially.

Theorem 10. There are (n — 2)2" ! + 2 permutations in S, that avoid the
pattern p = 12 — 1'2' or, according to Theorem 7, the pattern p = 12 — 2'1.

One more corollary to Theorem 9 is the following theorem that is the basis
for calculating the number of permutations that avoid a multi-pattern, and
therefore is the main result for multi-patterns in this paper.

Theorem 11. Let p = 01 — 03 — -+ — 0} be a multi-pattern and let A;(x) be
the e.g.f. for the number of permutations that avoid o;. Then the e.g.f. B(x)
for the number of permutations that avoid p is

k i—1
B(a) = Y- A4i@) [[((@ = )4,@) + 1.

Proof. We use Theorem 9 and prove by induction on & that

k i—1
B(z) =Y Ai(=) [] 45(=).
i=1 j=1
Then we use Proposition 1 to get the desired result. O

Remark 3. One can consider the function B(x) from Theorem 11 as a function
in k variables B(z) = B(A1(x),As(x),...,Ax(x)). Then, by Theorem 8, this
function is symmetric in the variables Ay (), As(x), ..., Ax(x). That means that
we can rename the variables, which may simplify the calculation of B(x).

5.6 Patterns of the Form ot

Theorem 12. Let B(x) be the e.g.f. for the number of permutations that avoid
the pattern p = 122'1'. Then

1 1 1
B(z) = ot1 tanz(1 + €*® + 2¢® sinx) + 56”“ COs .
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Proof. Let B, be the number of n-permutations that avoid p and A, be the
number of n-permutations that avoid p and begin with the pattern 12. Let also
A(z) be the e.g.f. for the numbers 4,,. We set By = A9 = A; = 1. Suppose
7 is a (n + 1)-permutation that avoids p. There are three mutually exclusive
possibilities:

1) m=(n+ 1)my;
2) T =m(n+1);
3) m=mi(n+1)my and 7, w2 # €.

Obviously, in 1) and 2) the letter (n + 1) does not affect the rest of the
permutation 7, and therefore in each of these cases we have B,, permutations
that avoid p. In 3), it is easy to see that if 7; has more than one letter then
m, must end with a 21 pattern whereas if 72 has more than one letter then o
must begin with a 12 pattern. The key observation is that the number of n-
permutations that avoid p and end with a 21 pattern is the same as the number
of n-permutations that avoid p and begin with a 12 pattern. To see this it is
enough to apply the reverse function to any n-permutation = that begins with
12-pattern and avoids p and observe that R(p) = p, that is, R(w) avoids p and
ends with a 21 pattern. Obviously this is a bijection. So if |m| = i then we
can choose the letters of 7; in (T;) ways and then choose a permutation 7; in
A; ways and a permutation my in A,_; ways, since the letters of 7; and w5 do
not affect each other. From all this we get

Bn+1_23n+z< )AA Z_2Bn+2( )AAn i — 24,.

i=1
We multiply both sides of the last equality by z™/n! to get

n

:c" . T
Bn+1 + Z ’l z n z Ilfn ' 2An_'
n — l n

Summing both sides over all natural numbers n we get:
B'(z) = 2B(z) + A%(z) — 2A(z). (5.2)

To solve this differential equation with the initial condition B(0) = 1, we
need to determine A(z). One can observe that if a permutation 7 avoids p and
begins with the pattern 12 then 7 has the structure m = a1biasbaasbs - - -, where
a; < b; for all i. Moreover, if by < a2 then we must have a; < by < as < by <
as < --- since otherwise we obviously have an occurrence of the pattern p. A
first approximation is that A4, = (’2’) A, _o, because we can choose a1b; in 7 in
(%) ways and then pick an arbitrary (n—2)-permutation that avoids p and begins
with the pattern 12, to be asbzasbs . . ., in A,,_» ways. But it is possible that b; <
as in which case byasbsas can be an occurrence of p in 7, and it is an occurrence
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of p unless as < bz < az < ---. So in order to avoid this we must subtract
the number of permutations of the form abedrn’, where a < b < ¢ < d and «’
is any (n — 4)-permutation that avoids p, from the first approximation of A,,.
Thus the second approximation is that A, = (3)An—2 — (}) An—s. We observe
that in the second approximation we do not count the increasing permutation
123...n. Moreover, among the permutations counted by (Z)An_4, there are
the permutations that begin with 6 increasing letters. Except for the increasing
permutation, such permutations are not counted by ('2‘) A, _>. We must therefore
add the number of such permutations. So the third approximation is that

An=(3)An2—(})An-a+ (3)An_6 and so on. That is,

1 e e i S )

(5.3)
We observe that if n = 4k or n = 4k + 1 then we do not count the increasing
permutation in our sum. This, together with Equation 5.3, gives us

Z(_l)i MY g 1, ifn=4korn=4k+1,
o~ 2i) %710, ifn=4k+2o0rn=4k +3.

Multiplying both sides of the equality with z"/n! and summing over all
natural numbers n we get

A2 $2 $4 1,6 oo $4k $4k+1
(Ao + Arz+ Sra”+ - )= o5+ p = +-) kzzo ((4k)! * (4k+1)!>

The left hand side of this equality is equal to A(x)cosz. Let F(x) be the
function in the right hand side of the equality. Then it is easy to see that
F(z) is the solution to the differential equation F(*)(z) = F(x) with the initial
conditions F(0) = F'(0) = 1, F®(0) = F®(0) = 0. So F(z) = L(cosz +
sinz + e*) and

A@) =2 (14 tanz+ -
) = — nr .
2 CoS T

Now we solve the differential equation (5.2) and get

1 1 1
B(z) = 3 + 1 tanz(1 + €** + 2¢® sinx) + §ew COS Z.

Remark 4. The series expansion of B(x) in Theorem 12 begins with
3 11 7
B =1 2 3 .4 -5 .6 o i eee
() to et et gt et + onat + opat et +
That is, the initial values for B, are 1, 2, 6, 18, 66, 252, 1176, 5768.
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5.7 The Distribution of Non-Overlapping GPs

A descent in a permutation 7 = ajaz...ay, is an ¢ such that a; > a;41. The
number of descents in a permutation 7 is denoted des 7 (and is equivalent to
the generalized pattern 21). Any statistic with the same distribution as des
is said to be Eulerian. The Eulerian numbers A(n, k) count permutations in
the symmetric group S,, with k descents and they are the coefficients of the
Eulerian polynomials Ap(t) defined by A,(t) =3 #1+des T The Eulerian
polynomials satisfy the identity

antk — ( An(t)

—)ntl’
= 1-¢t)m

TESH

Two descents ¢ and j overlap if j =i+ 1. We define a new statistic, namely
the mazimum number of non-overlapping descents, or MND, in a permutation.
For instance, MND(321) = 1 whereas MND(41532) = 2. One can find the
distribution of this new statistic by using Corollary 5. This distribution is given
in Example 6. However, we prove a more general theorem:

Theorem 13. Let p be a GP with no dashes. Let A(x) be the e.g.f. for the
number of permutations that avoid p. Let D(z,y) = Z yV(m TJT—W“ where N (7)
is the mazximum number of non-overlapping occurrencgs of pinw. Then

A(z)
1—y((x —1DA(x) + 1)

Proof. We fix the natural number k& and consider an auxiliary multi-pattern

D('Z':y) =

P, =p—p—---—p with k copies of p. If a permutation avoids Py then it has

at most k — 1 non-overlapping occurrences of p. From Theorem 11, the e.g.f.
k i-1

By () for the number of permutations avoiding Py, is equal to Z A(z) H((x -
i=1 j=1
k1 i1

1)A(z) + 1). If we subtract By(z) from the e.g.f. Byy1(z) = ZA(a:) H((m -
i=1 j=1

1)A(z) + 1) for the number of permutations avoiding Py, which is obtained
by applying Theorem 11 to the pattern Py, then we get the e.g.f. Dy (x) for
the number of permutations that have exactly k non-overlapping occurrences of
the pattern p. So

Dy(z) = an,k% = By (2) — Br(2) = A@)((w — 1)A(z) + 1)F.

Now

B " _ A(z)
D) = 3, Puat'p = 2 D = Ty D am T 1
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All of the following examples are corollaries to Theorem 13.

Example 6. If we consider descents then A(x) = €*, hence the distribution of
MND is given by the formula:
xz

D(z,y) = 1—y(1+ (z—1)er)

Example 7. Theorems 8 and 13 give the distribution of the maximum number
of non-overlapping occurrences of the increasing subword of length k (the pattern
123...k), which is equal to

1
D(a:,y) = (1 _ x)y + (1 — y)Fk(x)’
ki pkit1
were Fi(z) = 1220 (ki) QZO (ki+ 1)1

Example 8. If we consider the maximum number of non-overlapping occur-
rences of the pattern 132 then the distribution of these numbers is given by the

formula
1

- .
1—y:c+(y—1)/ e V12 gy
0

D(z,y) =

Example 9. The distribution of the maximum number of non-overlapping oc-
currences of the pattern from Theorem 4 is given by the formula:

1
D(x,y) = 1—z+ (]_ - y)Fk,a(m)7

N O ey
where Fy o(x) = Z (ki 1) H k—a)
i>1 j=2
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Abstract

Recently, Kitaev [Ki2] introduced partially ordered generalized patterns
(POGPs) in the symmetric group, which further generalize the generalized per-
mutation patterns introduced by Babson and Steingrimsson [BS]. A POGP p is
a GP some of whose letters are incomparable. In this paper, we study the gen-
erating functions (g.f.) for the number of k-ary words avoiding some POGPs.
We give analogues, extend and generalize several known results, as well as get
some new results. In particular, we give the g.f. for the entire distribution of
the maximum number of non-overlapping occurrences of a pattern p with no
hyphens (that allowed to have repetition of letters), provided we know the g.f.
for the number of k-ary words that avoid p.

6.1 Introduction

Let [k]™ denote the set of all the words of length n over the (totally ordered)
alphabet [k] = {1,2,...,k}. We call these words by n-long k-ary words. A
generalized pattern T is a word in [£]™ (possibly with hyphens between some
letters) that contains each letter from [¢] (possibly with repetitions). We say that
the word o € [k]™ contains a generalized pattern 7, if o contains a subsequence
isomorphic to 7 in which the entries corresponding to consecutive entries of 7,
which are not separated by a hyphen, must be adjacent. Otherwise, we say
that o avoids T and write o € [k]"(7). Thus, [k]"(7) denotes the set of all the
words in [k]™ that avoid 7. Moreover, if P is a set of generalized patterns then
[[k]™(P)| denotes the set all the words in [k]™ that avoid each pattern from P
simultaneously.

Example 1. A word m = ajas ... a, avoids the pattern 13-2 if © has no subse-
quence a;a;y10; with j > i+ 1 and a; < aj < a;1. Also, ™ avoids the pattern
121 if it has no subword a;a;y1a;12 such that a; = a;42 < Qjq1.-

Classical patterns are generalized patterns with all possible hyphens (say,
2-1-3-4), in other words, those that place no adjacency requirements on o. The
first case of classical patterns studied was that of permutations avoiding a pat-
tern of length 3 in S3. Knuth [Knuth] found that, for any 7 € Ss, [Sp(7)| = Ch,

!Research financed by EC’s THRP Programme, within the Research Training Network
” Algebraic Combinatorics in Europe”, grant HPRN-CT-2001-00272



the nth Catalan number. Later, Simion and Schmidt [SS] determined the num-
ber |S,(P)| of permutations in S, simultaneously avoiding any given set of pat-
terns P C Ss. Burstein [Bu] extended this to |[k]™(P)| with P C S3. Burstein
and Mansour [BM1] considered forbidden patterns with repeated letters. Also,
Burstein and Mansour [BM2, BM3] considered forbidden generalized patterns
with repeated letters.

Generalized permutation patterns were introduced by Babson and Stein-
grimsson [BS] with the purpose of the study of Mahonian statistics. Claesson
[C] and Claesson and Mansour [CM] considered the number of permutations
avoiding one or two generalized patterns with one hyphen. Kitaev [Kil] exam-
ined the number of |S, (P)| of permutations in S, simultaneously avoiding any
set of generalized patterns with no hyphens. Besides, Kitaev [Ki2] introduced a
further generalization of the generalized permutation patterns namely partially
ordered generalized patterns.

In this paper we introduce a further generalization of the generalized patterns
namely partially ordered generalized patterns in words (POGPs), which is an
analogue of POGPs in permutations [Ki2]. A POGP is a generalized pattern
some of whose letters are incomparable. For example, if we write 7 = 1-1'2’,
then we mean that in occurrence of 7 in a word o € [k]™ the letter corresponding
to the 1 in 7 can be either larger, smaller, or equal to the letters corresponding
to 1'2'. Thus, the word 113425 € [5]® contains seven occurrence of 7, namely
113, 134 twice, 125 twice, 325, and 425.

Following [Ki2], we consider two particular classes of POGPs — shuffle pat-
terns and multi-patterns, which allows us to give an analogue for all the main
results of [Ki2] for k-ary words. A multi-pattern is of the form 7 = 79-71-...7¢
and a shuffle pattern of the form 7 = 7%-a;-7'-as- - - - -7°~-a,-7°, where for any
i and j, the letter a; is greater than any letter of 7/ and for any i # j each letter
of 7t is incomparable with any letter of 77. These patterns are investigated in
Sections 6.3 and 6.4.

Let 7 = 79-71-- - .- 7% be an arbitrary multi-pattern and let A.:(z; k) be the
generating function (g.f.) for the number of words in k-letter alphabet that
avoid 7¢ for each i. In Theorem 6 we find the g.f., in terms of the A.:(z;k), for
the number of k-ary words that avoid 7. In particular, this allows us to find
the g.f. for the entire distribution of the maximum number of non-overlapping
occurrences of a pattern 7 with no hyphens, if we only know the g.f. for the
number of k-ary words that avoid 7. Thus, in order to apply our results in
what follows we need to know how many k-ary words avoid a given ordinary
generalized pattern with no hyphens. This question was examined, for instance,
in [BM1, Sections 2 and 3], [BM2, Section 3] and [BM3, Section 3.3].

6.2 Definitions and Preliminaries

A partially ordered generalized pattern (POGP) is a generalized pattern where
some of the letters can be incomparable.

Example 2. The simplest non-trivial example of a POGP that differs from
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the ordinary generalized patterns is T = 1'-2-1", where the second letters is the
greatest one and the first and the last letters are incomparable to each other.
The word o = 31421 has five occurrences of T, namely 342, 341, 142, 141, and
121.

Let A-(z;k) = ) ,50a-(n; k)z™ denote the generating function (g.f.) for
the numbers a,(n; k) of words in [k]"™ avoiding the pattern 7. For 7 = 1'-2-1",
we have

k—1
1 T
A11_2_1// (IL', k) = (1 — $)2k71 — E (1 — a;)zj . (61)
=1

Indeed, if o € [k]™ avoids 7, and o contains s > 0 copies of the letter k, then the
letters k appear as leftmost or rightmost letters of o. If ¢ contains no k then
o € [k —1]". So, for all n > 0, we have

ar(n; k) = ar,(n; k—1)+2a,(n—1;k—1)+3a,(n—2; k—1)+- - -+ (n+1)a,(0; k—1),

since there are (i + 1)a,(n — i; k — 1) possibilities to place 4 letters k into o, for
0 < i < n. Hence, for all n > 2,

ar(n; k) —2a-(n — 1;k) + a-(n — 2;k) = a-(n; k — 1),

together with a,(0,k) = 1 and a,(1,k) = k. Multiplying both sides of the
recurrence above with 2™ and summing over all n > 2, we get Equation 6.1.

Definition 5. If the number of words in [k]", for each n, that avoid a POGP
T is equal to the number of words that avoid a POGP ¢, then T and ¢ are said
to be equivalent and we write T = ¢.

The reverse R(c) of a word ¢ = 0102 ...0, is the word o, ...0201. The
complement C(o) is the word § = 616> ...6, where §; = k + 1 — o; for all
i = 1,2,...,n. For example, if 0 = 123331 € [3]%, then R(c) = 133321,
C(o) = 321113, and R(C(o)) = 311123. We call these bijections of [k]™ to
itself trivial. For example, the number of words that avoid the pattern 12-2 is
the same as the number of words that avoid the patterns 2-21, 1-12, and 21-1,
respectively.

Following [Ki2], it is convenient to introduce the following definition.

Definition 6. Let 7 be a generalized pattern without hyphens. A word o quasi-
avoids 7 if o has exactly one occurrence of T and this occurrence consists of the
|| rightmost letters of o, where |T| denotes the number of letters in 7.

For example, the word 5112234 quasi-avoids the pattern 1123, whereas the
words 5223411 and 1123345 do not.

Proposition 1. Let 7 be a non-empty generalized pattern with no hyphens. Let
A*(z; k) denote the g.f. for the number of words in [k]™ that quasi-avoid T.
Then

Al(z; k) = (kz — V) A (z; k) + 1. (6.2)
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Proof. Using the similar arguments as those in the proof of [Ki2, Proposition 4],
we get that, for n > 1,

az(n; k) = kar(n —1;k) — ar(n; k),

where a*(n; k) denotes the number of words in [k]™ that quasi-avoid 7. Mul-
tiplying both sides of the last equality by ™ and summing over all natural

numbers 7, we get the desired result. O
Definition 7. Suppose {7°,71,...,7°} is a set of generalized patterns with no
hyphens and

r=7%7t- .- T,

where each letter of T¢ is incomparable with any letter of T/ whenever i # j. We
call such POGPs multi-patterns.

Definition 8. Suppose {7°,7%,...,7°} is a set of generalized patterns with no
hyphens and aias - . .as is a word of s letters. We define a shuffle pattern to be
a pattern of the form

r=1%a-1 -ag---- -5 L eay-18,

where each letter of ¢ is incomparable with any letter of 79 whenever i # j, and
the letter a; is greater than any letter of ™7 for any i and j.

For example, 1’-2-1" is a shuffle pattern, and 1’-1"” is a multi-patterns. From
definitions, we obtain that we can get a multi-pattern from a shuffle pattern by
removing all the letters a;.

There is a connection between multi-avoidance of the generalized patterns
and the POGPs. In particular, to avoid 1'-2-1" is the same as to avoid simulta-
neously the patterns 1-2-1, 1-3-2, and 2-3-1. A straightforward argument leads
to the following proposition.

Proposition 2. For any POGP T there exists a set T of generalized patterns
such that a word o avoids T if and only if o avoids all the patterns in T'.

For example, if 7 = 12'-3-1", then to avoid 7 is the same to avoid 5 patterns,
12-3-1, 12-3-2, 12-4-3, 13-4-2, and 23-4-1. Moreover, the following proposition
holds:

Proposition 3. Suppose 7 = Ti-a-12 (resp. ¢ = ¢1-¢2) is a shuffle pattern
(resp. a multi-pattern) such that 71, ¢1 € [r1]%, 7, ¢2 € [r2]® and each
letter of [r1] is incomparable with any letter of [r2]. Also, without lose the
generality, suppose 1 > ro. Then to avoid T (resp. @) is the same as to avoid

T2 .
—
E (rl ) (TQ ) (rl e ) generalazed patterns. In particular, the number of
) 1 ? T

=0

generalized patterns does not depend on the lengths £1 and f5.
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Proof. Obviously, to prove the statement, we need to find the number of ways
to make a total order on [r1] U [r2] (the letter a does not play any roll, since it
is always the greatest letter). Any total order on [r1] U [r2] is an alphabet that
can consist of ry + ro — i letters, where 4 is the number of letters in [r3] that
supposed to coincide with some letters in [rq]. Clearly, 0 < i < r and we can
choose coinciding letters in ("}) ("2) ways. Now, after choosing the coinciding
letters, we can make a total order in (“tff_") ways, which is given by [Ki2,
Theorem 8]. O

6.3 The shuffle patterns

We recall that according to Definition 8, a shuffle pattern is a pattern of the
form
T =71%a;-mt-as----- 5 a1,

where {79, 71,...,7%} is a set of generalized patterns with no hyphens, a1as . .. as
is a word of s letters, for any ¢ and j the letter a; is greater than any letter of
77 and for any i # j each letter of 7¢ is incomparable with any letter of 77.

Let us consider the shuffle pattern ¢ = 7-f-7, where £ is the greatest letter
in ¢ and letters each letter in the left 7 is incomparable with any letter in the
right 7.

Theorem 1. Let ¢ be the shuffle pattern 7-€-1 described above. Then for all
k>,

Ag(x; k) = i xAT(::v;k —y (A¢(m;k —1) —zA%(z;k — 1))

Proof. We show how to get a recurrence relation on k for Ay(x; k), which is the
g.f. for the number of words in [k]"(¢$). Suppose o € [k]"(¢) is such that it
contains exactly d copies of the letter k. If d = 0 then the g.f. for the number
of such words is Ay (x;k —1). Assume that d > 1. Clearly, o can be written in
the following form:

o =0"ko'k---ko?,

where o7 is a ¢-avoiding word on k — 1 letters, for j = 0,1,...,d. There are two
possibilities: either o7 avoids 7 for all j, or there exists jo such that ¢7° contains
7 and for any j # jo, the word o7 avoids 7. In the first case, the number of
such words is given by the g.f. z¢A%+!(z;k — 1), whereas in the second case,
by (d + 1)z¢A%(z;k — 1)(Ag(z;k — 1) — A (z;k — 1)). In the last expression,
the multiple (d + 1) is the number of ways to choose j, such that ¢/ has an
occurrence of 7, and Ag(z;k — 1) — A-(z;k — 1) is the g.f. for the number of
words avoiding ¢ and containing 7.
Therefore,
Ap(z; k) = Ag(ms k — 1)+

D @+ D)2t A (k- V) Ag(wsk — 1) = Y da® AT (35 — 1),

d>1 d>1
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equivalently,
Ag(w; k) = Ag(a;k — 1)+

20 A, (v3k — 1) — 22 A% (2% — A2 (g k—1
A¢($;k—1) .’E T(x’k ) * AT(w’k 1) _ T T(x7k ) )
(1—-zA,(z;k—1))2 (1—zA,(z;k —1))2
The rest is easy to check. |

Example 3. Let ¢ =1'-2-1". Here 7 =1, so A-(x;k) =1 for all k > 1, since
only the empty word avoids 7. Hence, according to Theorem 1, we have
Ag(z;k—1)— =

A¢(.Z',k) = (1 —IL')2 )

which together with Ay(z;1) = ﬁ (for any n only the word 11...1 avoids ¢)

n times

gives Equation 6.1.

More generally, we consider a shuffle pattern of the form 7°-£-7!, where £ is
the greatest element of the pattern.

Theorem 2. Let ¢ be the shuffle pattern 7-L-v. Then for all k > €, Ay(x; k) =

1
(1-zA(z;k—1))1 —zA,(z;k — 1))

(A¢(:c; k=1)—zA (z;k-1)A, (z; k—l)) .

Proof. We proceed as in the proof of Theorem 1. Suppose o € [k]™(¢) is such
that it contains exactly d copies of the letter k. If d = 0 then the g.f. for the
number of such words is Ag(z;k —1). Assume that d > 1. Clearly, o can be
written in the following form:

o =00k ko?,

where 07 is a ¢-avoiding word on k — 1 letters, for j =0,1,...,d. There are two
possibilities: either o7 avoids 7 for all j, or the_re exists jo such that ¢7° contains
7,09 avoids T forall j = 0,1,...,jo—1 and 07 avoids v for any j = jo+1,...,d.

In the first case, the number of such words is given by the g.f. z?A%! (z;k—1).
In the second case, we have

d
o> Al (i — )AL (w3 k — 1)(Ag (a3 k — 1) — A (03 k — 1)).

J=0

Therefore, we get

d
Ag(my k) = Ag(z; kb — 1) + Ap(z3k — 1) 3 2% > Al(z;k — 1) AL (235 — 1)
d>1  j=0
d
- Y 2ty Az k- AT (25 - 1),
a>1  j=1



equivalently,

d
Ag(s k) = (Ag (w3 k=1)—z A (2 k—1) Ay (2:k—1)) D 2> Al (2;k—1) AL (2 k-1).

>0  j=0

n
Hence, using the identity Z " Zpﬂqn—] I S
n>0  j=0 (1 —zp)(1 —=zq)

sired result. O

we get the de-

We now give two corollaries to Theorem 2.

Corollary 6. Let ¢ = 7°-£-1! be a shuffle pattern, and let f(¢) = f1(7°)-L-fo(71),
where f1 and fy are any trivial bijections. Then ¢ = f(P).

Proof. Using Theorem 2, and the fact that the number of words in [k]™ avoiding
7 (resp. v) and fi(7) (resp. f2(v)) have the same generating functions, we get
the desired result. O

Corollary 7. For any shuffle pattern 7-£-v, we have
T-l-v = v-0-T.

Proof. Corollary 6 yields that the shuffle pattern 7-f-v is equivalent to the pat-
tern 7-¢-R(v), which is equivalent to the pattern R(7-¢-R(v)) = v-¢-R(r). Fi-
nally, we use Corollary 6 one more time to get the desired result. O

6.4 The multi-patterns

We recall that according to Definition 7, a multi-pattern is a pattern of the form
7 =7%71...7% where {70, 7!,...,7°} is a set of generalized patterns with no
hyphens and each letter of 7% is incomparable with any letter of 7/ whenever
i# 7.
The simplest non-trivial example of a multi-pattern is the multi-pattern
¢ = 1-1'2". To avoid ¢ is the same as to avoid the patterns 1-12, 1-23, 2-12,
2-13, and 3-12 simultaneously. To count the number of words in [k]™(1-1'2"), we
choose the leftmost letter of o € [k]™(1-1'2') in k ways, and observe that all the
other letters of o must be in a non-increasing order. Using [BM1], for alln > 1,
we have
niq 1l0n| n+k—2
[[&]™(1-12")| =k - ( ne 1 )

The following theorem is an analogue to [Ki2, Theorem 21].
Theorem 3. Let 7 = 7°-11 and ¢ = f1(7°)-f2(71), where f1 and f2 are any of

the trivial bijections. Then T = ¢.
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Proof. First, let us prove that the pattern 7 = 7°-7! is equivalent to the pattern

¢ = 7°-f(7'), where f is a trivial bijection. Suppose that o = olo?0® € [k]"
avoids 7 and o'o? has exactly one occurrence of 7°, namely o?. Then o® must
avoid 7', so f(o?) avoids f(7%) and oy = o'0? f(0®) avoids ¢. The converse is
also true, if o7 avoids ¢ then ¢ avoids 7. Since any word either avoids 7° or can
be factored as above, we have a bijection between the class of words avoiding 7
and the class of words avoiding ¢. Thus 7 = ¢.

Now, we use the considerations above as well as the properties of trivial
bijections to get

T=1"fo(r") = RO fo(r))
R(f2(r")-f1(R(r°))

R(f2(r!))-R(r°) =
R(fa(r"))-R

Using Theorem 3, we get the following corollary, which is an analogue to [Ki2,

Corollary 22].
Corollary 8. The multi-pattern 7°-1' is equivalent to the multi-pattern 7' -1°.

Proof. From Theorem 3, using the properties of the trivial bijection R, we get

911 = %-R(r") = R(R(m"))-R(7°) = r'-R(R(1%)) = r'-7°.

O

Using induction on s, Corollary 8, and proceeding in the way proposed
in [Ki2, Theorem 23], we get

Theorem 4. Suppose we have multi-patterns T = 0-71-- .. 1% and

¢ = @d0-p -----¢°, where T'72 - -- 7% is a permutation of ¢'¢% ---¢*. Then
T = ¢.

The last theorem is an analogue to [Ki2, Theorem 23]. As a corollary to
Theorem 4, using Theorem 3 and the idea of the proof of [Ki2, Corollary 24],
we get the following corollary which is an analogue to [Ki2, Corollary 24].

Corollary 9. Suppose we have multi-patterns 7 = 1°-7'---- 7% and ¢ =
fo(r0)-fi(71)-+ - -f5(7%), where f; is an arbitrary trivial bijection. Then T = ¢.

The following theorem is a good auxiliary tool for calculating the g.f. for the
number of words that avoid a given POGP. For particular POGPs, it allows to
reduce the problem to calculating the g.f. for the number of words that avoid
another POGP which is shorter. We recall that AX(x;k) is the generating
function for the number of words in [k]™ that quasi-avoid the pattern 7.

Theorem 5. Suppose T = 7°-¢, where ¢ is an arbitrary POGP, and the letters
of 7° are incomparable to the letters of ¢. Then for all k > 1, we have

A, (z3k) = Aro(zs k) + Ag(z; k) Ao (33 k).
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Proof. Suppose o = olo%0® € [k]" avoids the pattern 7, where olo? quasi-

avoids the pattern 7°, and o2 is the occurrence of 7°. Clearly, o® must avoid ¢.
To find A, (z; k), we observe that there are two possibilities: either o avoids 7°,
or o does not avoid 7°. In these cases, the g.f. for the number of such words
is equal to Aro(x; k) and Ay (x; k)AL (x; k) respectively (the second term came
from the factorization above). Thus, the statement is true. O

1

Corollary 10. Let 7 = 71 -72---- -7° be a multi-pattern such that 77 is equal to

either 12 or 21, for j = 1,2,...,s. Then

2 ()

1—kx
Proof. According to [BM2], Aia(z;k) = Ao (23 k) = ﬁ Using Theorem 5,
Proposition 1 and induction on s, we get the desired result. O

More generally, using Theorem 5 and Proposition 1, we get the following
theorem that is the basis for calculating the number of words that avoid a
multi-pattern, and therefore is the main result for multi-patterns in this paper.

Theorem 6. Let 7 = 7t-12-... - 7% be a multi-pattern. Then

Ar(z; k) = iATj (; k)ﬁ((kx —1DAi(z;k) +1).

6.5 The distribution of non-overlapping gener-
alized patterns

A descent in a word o € [k]" is an ¢ such that o; > 0;41. Two descents ¢ and j
overlap if j = i+ 1. We define a new statistics, namely the mazimum number of
non-overlapping descents, or MND, in a word. For example, MND(33211) = 1
whereas MND(13211143211) = 3. One can find the distribution of this new
statistic by using Corollary 10. This distribution is given in Example 4. How-
ever, we prove a more general theorem:

Theorem 7. Let 7 be a generalized pattern with no hyphens. Then for all

k>1,
T3 yNegn = Ar(z; k)
1—y((kz — 1) Ar(z;k) + 1)

n>0oclk]™

where N (o) is the mazimum number of non-overlapping occurrences of T in o.

Proof. We fix the natural number s and consider the multi-pattern ®; = 7-7-- - - - T
with s copies of 7. If a word avoids ® then it has at most s — 1 non-overlapping
occurrences of 7. Theorem 6 yields

J

As, (z;k) = ZAT(.’E; k) ﬁ((kx — 1A (z;k) + 1).

=1
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So, the g.f. for the number of words that has exactly s non-overlapping occur-
rences of the pattern 7 is given by

Ag, i (w3 k) — Ao, (z; k) = Ar(z; k) ((kz — 1) A (z; k) + 1)°.

Hence,

SNy =3 A (@ k) (ke — D) A (w5 k) +1)° =

n>0 o €[k §>0
Ar(z; k)
—y((kz — 1) A (z;k) + 1)
O
All of the following examples are corollaries to Theorem 7.
Example 4. If we consider descents (the pattern 12) then Aiz(x;k) = a 1z)k

(see [BM2]), hence the distribution of MND is given by the formula:

o n __ 1
Z Z y " S (-2)k 4yl —kz— (1 —x)k)’

n>0c0€lk

Example 5. The distribution of the mazximum number of non-overlapping oc-
currences of the pattern 122 is given by the formula:

35 o x
(1—22)k +2—1+y(l — kz2 — (1 —z2)k)’

TL>0 (76

since according to [BM3, Theorem 8.10], Ai22(z;k) = T

Example 6. If we consider the pattern 212 then Asis(z; k) 11—z Z 112
jx

(see [BM3, Theorem 3.12]), hence the distribution of the mazimum number of
non-overlapping occurrences of the pattern 212 is given by the formula:

Z Z yN212(0)xn: k—1 1 k—1

n>0 o€lk]™ 1 1
l_le+jm2+my Zl+ja:2_k
=0 =0

Example 7. Using [BM3, Theorem 3.13], the distribution of the mazimum
number of non-overlapping occurrences of the pattern 123 is given by the for-

mula:
Z Z lezs(O')m" L ’
k k
n>0 o€k Za ( >w1+y 1—km—zaj<.];;)1’j
Jj=

7=0

where agm =1, agmy1 = —1, and azpmy2 =0, for all m > 0.
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Abstract

We count the number of occurrences of certain patterns in given words. We
choose these words to be the set of all finite approximations of a sequence gener-
ated by a morphism with certain restrictions. The patterns in our considerations
are either classical patterns 1-2, 2-1, 1-1--- - - 1, or arbitrary generalized patterns
without internal dashes, in which repetitions of letters are allowed. In particu-
lar, we find the number of occurrences of the patterns 1-2, 2-1, 12, 21, 123 and
1-1----- 1 in the words obtained by iterations of the morphism 1 — 123, 2 — 13,
3 — 2, which is a classical example of a morphism generating a nonrepetitive
sequence.

7.1 Introduction and Background

We write permutations as words © = ajas - - - a,, whose letters are distinct and
usually consist of the integers 1,2,...,n.

An occurrence of a pattern p in a permutation 7 is “classically” defined as
a subsequence in 7 (of the same length as the length of p) whose letters are in
the same relative order as those in p. Formally speaking, for r < n, we say that
a permutation ¢ in the symmetric group S, has an occurrence of the pattern
p € Sy if there exist 1 <4y < iy < --- <4, < nsuchthat p=0(i1)o(i2)... o)
in reduced form. The reduced form of a permutation ¢ on a set {j1,j2,...,jr};
where j1 < j2 < --- < jr, is a permutation o1 obtained by renaming the letters
of the permutation & so that j; is renamed i for all i € {1,...,r}. For example,
the reduced form of the permutation 3651 is 2431. The first case of classical
patterns studied was that of permutations avoiding a pattern of length 3 in Ss.
Knuth [Knuth] found that, for any 7 € Ss, the number |S, ()| of n-permutations
avoiding 7 is C,,, the nth Catalan number. Later, Simion and Schmidt [SimSch)]
determined the number |S,,(P)| of permutations in S,, simultaneously avoiding
any given set of patterns P C Ss.

In [BabStein] Babson and Steingrimsson introduced generalised permutation
patterns that allow the requirement that two adjacent letters in a pattern must
be adjacent in the permutation. In order to avoid confusion we write a ”classi-
cal” pattern, say 231, as 2-3-1, and if we write, say 2-31, then we mean that if

!Research financed by EC’s THRP Programme, within the Research Training Network
” Algebraic Combinatorics in Europe”, grant HPRN-CT-2001-00272
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this pattern occurs in the permutation, then the letters in the permutation that
correspond to 3 and 1 are adjacent. For example, the permutation 7 = 516423
has only one occurrence of the pattern 2-31, namely the subword 564, whereas
the pattern 2-3-1 occurs, in addition, in the subwords 562 and 563. A moti-
vation for introducing these patterns in [BabStein] was the study of Mahonian
statistics. A number of interesting results on generalised patterns were obtained
in [Claes]. Relations to several well studied combinatorial structures, such as
set partitions, Dyck paths, Motzkin paths and involutions, were shown there.

Burstein [Burstein] considered words instead of permutations. In particular,
he found the number |[k]"(P)| of words of length n in k-letter alphabet that
avoid each pattern from a set P C S3 simultaneously. Burstein and Mansour
[BurMans1] (resp. [BurMans2, BurMans3]) considered forbidden patterns (resp.
generalized patterns) with repeated letters.

The most attention, in the papers on classical or generalized patterns, is paid
to counting exact formulas and /or generating functions for the number of words
or permutations avoiding, or having k occurrences of, certain pattern. In this
paper we suggest another problem, namely counting the number of occurrences
of a particular pattern 7 in given words. We choose these words to be a set
of all finite approximations (to be defined below) of a sequence generated by
a morphism with certain restrictions. A motivation for such a choice is big
interest in studying classes of sequences and words that are defined by iterative
schemes [Lothaire, Salomaa]. The pattern 7 in our considerations is either a
classical pattern from the set {1-2,2-1,1-1----- 1}, or an arbitrary generalized
pattern without internal dashes, in which repetitions of letters are allowed. In
particular, we find that there are (3 - 4"~1 4 2") occurrences of the pattern 1-2
in the n-th finite approximation of the sequence w defined below, which is a
classical example of a nonrepetitive sequence.

Let X be an alphabet and X* be the set of all words of ¥. A map ¢ : ¥* — X*
is called a morphism, if we have p(uv) = p(u)p(v) for any u,v € ¥*. It is easy
to see that a morphism ¢ can be defined by defining (i) for each i € X.
The set of all rules i — (i) is called a substitution system. We create words by
starting with a letter from the alphabet ¥ and iterating the substitution system.
Such a substitution system is called a DOL (Deterministic, with no context
Lindenmayer) system [LindRoz]. DOL systems are classical objects of formal
language theory. They are interesting from mathematical point of view [Frid],
but also have applications in theoretical biology [Lind]. Let |X| denote the
length of a word X, that is the number of letters in X.

Suppose a word ¢(a) begins with a for some a € X, and that the length of
©*(a) increases without bound. The symbolic sequence klgiolo ©*(a) is said to be

generated by the morphism ¢. In particular, klim ¢k (a) is a fized point of .
—00

However, in this paper we are only interesting in the finite approzimations of
Jim ©*(a), that is in the words ¢*(a) for k = 1,2,....
—00

An example of a sequence generated by a morphism can be the following
sequence w. We create words by starting with the letter 1 and iterating the
substitution system ¢,,: 1 — 123, 2 — 13, 3 — 2. Thus, the initial letters of
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w are 123132123213.... This sequence was constructed in connection with the
problem of constructing a nonrepetitive sequence on a 3-letter alphabet, that is,
a sequence that does not contain any subwords of the type X X = X2, where X is
any non-empty word over a 3-letter alphabet. The sequence w has that property.
The question of the existence of such a sequence, as well as the questions of
the existence of sequences avoiding other kinds of repetitions, were studied in
algebra [Adian, Justin, Kol], discrete analysis [Carpi, Dekk, Evdok, Ker, Pleas]
and in dynamical systems [MorseHedl]. In Examples 1, 4 and 5 we give the
number of occurrences of the patterns 1-2, 2-1, 1-1--- - - 1, 12, 123 and 21 in the
finite approximations of w.

To proceed further, we need the following definitions. Let N (n) denote the
number of occurrences of the pattern 7 in a word generated by some morphism
¢ after n iterations. We say that an occurrence of 7 is external for a pair of
words (X,Y), if this occurrence starts in X and ends in Y. Also, an occurrence
of 7 for a word X is internal, if this occurrence starts and ends in this X.

7.2 Patterns 1-2, 2-1 and 1-1-----1

Theorem 1. Let A = {1,2,...,k} be an alphabet, where k > 2 and a pattern
T € {1-2,2-1}. Let X1 begins with the letter 1 and consists of £ copies of each
letter i € A (£ > 1). Let a morphism ¢ be such that

1+ X1, 2> X5, 32 X3,...,k—= X,

where we allow X; to be the empty word € for i = 2,3,...,k (that is, » may be
k

an erasing morphism), Z |Xi| = k- d, and each letter from A appears in the
=2

word Xo X3 ... Xy, exactly d times. Besides, let e; ; (resp. e;) be the number of
external occurrences of T for (X;, X;) (resp. (Xi,X;)), where i # j. We assume
that e;; = e;; for all i and j. Let s; be the number of internal occurrences of
T in X;. In particular, s; = e; = e;; = ej; = 0, whenever X; = €; also,
e; = |Xi| - (| X:] — 1)/2, whenever there are no repetitive letters in X;. Then
Nj(1) = s1 and for n > 2, N7(n) is given by

k ) n_o\ k
£-(d+€)”2Zs,~+(£ (dJ;E) )Zei+£2-(d+£)2"4 > ey
=1 =1

1<i<j<k

Proof. We assume that 7 = 1-2. All the considerations for this 7 remain the
same for the case 7 = 2-1.

If n =1 then the statement is trivial.

Suppose n > 2. Using the fact that X;X5X3... Xy, has exactly d + ¢
occurrences of each letter 4, i+ = 1,2,...,k, one can prove by induction on n,
that the word ¢™(1) is a permutation of £ - (d + £)"~2 copies of each word X,
where i = 1,2,..., k. This implies, in particular, that [¢"(1)| = k-£-(d+£)" L.
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An occurrence of 7 in ¢™(1) can be either internal, that is when 7 occurs
inside a word X, or external, which means that 7 begins in a word X; and ends
in another word X;. In the first of these cases, since there are £-(d+£)" 2 copies
of each X;, we have £- (d+£)" 2 Ele s; possibilities. In the second case, either
i = j, which gives (Z'(‘H;)"_z) Ele e; possibilities, or 4 # 7, in which case there
are - (d+ €)™ 2 possibilities to choose X; (resp. X;) among £- (d+£)™ 2 copies
of X; (resp. X;), and using the fact that e; ; = e;,; (the order in which the words
X; and X occur in ¢™(1) is unimportant), we have £2-(d+£)*""* 32, ;i< €i
possibilities. Summing all the possibilities, we finish the proof.

Let s (resp. e) denote the vector (si,ss2,...,55) (resp. (e1,e2,...,€x)),
where s; and e; are defined in Theorem 1. All of the following examples are
corollaries to Theorem 1.

Example 1. If we consider the morphism ¢,, defined in Section 7.1 and the
pattern T =12 thend =0 =1, s = (3,1,0), e = (3,1,0) and e1,2 = €21 = 2,
ei3=e31 =1, es3=-e32=1. Hence, the number of occurrences of T is given
by N;2(1) = 3 and, for n > 2, N;(n) = (3-4"' +2")/2. If 7 = 2-1 then
§ = (0,0,0), € = (3,1,0) and €12 = €21 = 2, €1,3 = €3,1 = 1, €23 = €32 = 1.
Hence, Nj ' (1) = 0 and, forn >2, N;'(n) = (3-4""" - 2")/2.

Example 2. If we consider the morphism ¢: 1 — 1324, 2 - ¢, 3 — 14, and
4 — 23 then for the pattern 7 = 1-2, we have d = £ = 1, s = (5,0,1,1),
e=(6,0,1,1), and e; j, for i # j, are elements of the matriz

- 0 3 3
0 — 0 0
3 0 — 2
3 0 2 -

Hence, Nj?(1) =5 and, forn >2, Ny?(n) =3-4""1 + 11272

Example 3. If we consider the morphism ¢: 1 — 13542, 2 — 423, 3 — ¢,
4 — 5115, and 5 — 234 then for the pattern T = 1-2, we have £ = 1, d = 2,
s = (6,1,0,2,3), e = (10,3,0,4,3), and e;;, for i # j, are elements of the
matriz

- 6 0 8 6
6 — 0 6 3
0 0 — 0 O
8 6 0 — 6
6 3 0 6 -—

Hence, Nj?(1) = 6 and, forn >2, Nj?(n) =5-9""1 +2-3" 2
Using the proof of Theorem 1, we have the following.

Theorem 2. Let a morphism ¢ satisfy all the conditions in the statement of
Theorem 1 and the pattern 7 = 1-1----- 1. Then, for n > 2, the number of
——

r times
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occurrences of T in ¢™(1) is given by k - (Z'(d"‘f)"_l)

£
k- (r) -
Proof. From the proof of Theorem 1, we have that if n > 2 (resp. n = 1) then

™ (1) has exactly £- (d + €)™~ (resp. £) copies of each letter from A. We can

choose r of them in (l'(‘”f)n_l) (resp. (%)) ways to form the pattern 7. The
rest is clear. O

, whereas for n = 1, by

The following example is a corollary to Theorem 2.

Example 4. If we consider the morphism ¢,, defined in Section 7.1 and the
pattern 7 = 1-1-1-1 then d = £ = 1, r = 4, hence the number of occurrences of

7 in ¢"(1) is 0, whenevern=1 orn =2, and 3 - (2n4_1) otherwise.

7.3 Patterns without internal dashes

In what follows we need to extend the notion of an external occurrence of a
pattern. Suppose W = AXBYC, where A, X, B, Y and C are some subwords.
We say that an occurrence of 7 in W is external for a pair of words (X,Y), if
this occurrence starts in X, ends in Y and is allowed to have some of its letters
in B. For instance, if W = 12324245, where A =1, X =23, B=2and Y = 424
then an occurrence of the generalized pattern 213, namely the subword 324 is
an external occurrence for (X,Y).

Theorem 3. Let A = {1,2,...,k} be an alphabet and a generalized pattern T
has no internal dashes. Let X1 begins with the letter 1 and consists of £ copies
of each letter i € A (€ > 1). Let a morphism ¢ be such that

1-X1, 25Xy, 30 Xs,..., k> X,

where we allow X; to be the empty word € for i = 2,3,...k (that is, ¢ may
k

be an erasing morphism), Z | Xi| = k- d, and each letter from A appears in

i=2
the word XoX3... Xy e:z:acztly d times. Besides, we assume that there are no
external occurrences of T in ¢™ (1) for the pair (X;, X;) for each i and j. Let s;
be the number of internal occurrences of T in X;. In particular, s; = 0, whenever
X;=¢€. Then NJ(1) = s1 and forn > 2,

k
Nj(n)=1L-(d+ 0" s

i=1

Proof. The theorem is straightforward to prove by observing that for n > 2,
¢™(1) has £-(d+£)"~2 occurrences of each word X; (see the proof of Theorem 1).
O
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Remark 5. In order to use Theorem 3, we need to control the absence of
external occurrences of a pattern T for given T (without internal dashes) and
a morphism ¢. To do this, we need, for any pair (X;,X;), to consider all the
words X;W X;, where |W| < |1| — 1, and W is a permutation of a number of
words from the set {X1,Xa,..., Xy}

The following examples are corollaries to Theorem 3.

Example 5. If we consider the morphism ¢,, defined in Section 7.1 and the
pattern T = 12 then all the conditions of Theorems 38 hold. In this cased = £ =1
and s = (2,1,0). Hence, the number of occurrences of the patterns 12, that is
the number of rises, is given by N2 (1) = 2 and, for n > 2, Nj2(n) = 3-2">.
If 7 = 123 then we can apply the theorem to get that for n > 2, Nj>*(n) = 2772,

If we want to count the number of occurrences of the pattern T = 21, that is
the number of descents, then we cannot apply Theorem 1, since for instance, the
pair (X1, X2) = (123,13) has an external occurrence of T. However, it is obvious
that the number of descents in ¢™(1) is equal to [¢"(1)|=N;2 (1)—1 = 3-2">—1.

Example 6. If we consider the morphism ¢: 1 — 1243, 2 — 3, 3 — €, and
4 — 124 then for the pattern T = 123, all the conditions of Theorems 3 hold.
In this case d = £ =1, s = (1,0,0,1). Hence, for n > 1, Nj**(n) = 2"~". For
7 = 321 we cannot apply Theorem 8, since the pair (X4,X1) has an external
occurrence of T (look at X4X>X, = 12431243). Consideration of the words
X4 Xo and X4 X4 implies that the theorem cannot be apply for the patterns 132
and 231 respectively. However, we can apply the theorem to the pattern 213 to
prove that it does not occur in ¢"(1) for any n.
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Abstract

We introduce Peano words, which are words corresponding to finite approxi-
mations of the Peano space filling curve. We then find the number of occurrences
of certain patterns in these words.

8.1 Introduction and Background

We write permutations as words © = ajas - - - a,, whose letters are distinct and
usually consist of the integers 1,2,...,n.

An occurrence of a pattern p in a permutation 7 is “classically” defined as
a subsequence in 7w (of the same length as the length of p) whose letters are in
the same relative order as those in p. Formally speaking, for r < n, we say that
a permutation ¢ in the symmetric group S, has an occurrence of the pattern
p € Sy if there exist 1 <41 < i < --- <4, < nsuchthat p=0(i1)o(i2)...0(;)
in reduced form. The reduced form of a permutation ¢ on a set {j1,j2,...,4r};
where j; < j2 < --- < jr, iS a permutation o; obtained by renaming the letters
of the permutation ¢ so that j; is renamed i for all i € {1,...,r}. For example,
the reduced form of the permutation 3651 is 2431. The first case of classical
patterns studied was that of permutations avoiding a pattern of length 3 in Ss.
Knuth [Knuth] found that, for any 7 € Ss, the number |S,,(7)| of n-permutations
avoiding 7 is Cy,, the nth Catalan number. Later, Simion and Schmidt [SimSch]
determined the number |S,,(P)| of permutations in §,, simultaneously avoiding
any given set of patterns P C S3.

In [BabStein] Babson and Steingrimsson introduced generalised permutation
patterns that allow the requirement that two adjacent letters in a pattern must
be adjacent in the permutation. In order to avoid confusion we write a ” classi-
cal” pattern, say 231, as 2-3-1, and if we write, say 2-31, then we mean that if
this pattern occurs in the permutation, then the letters in the permutation that
correspond to 3 and 1 are adjacent. For example, the permutation 7 = 516423
has only one occurrence of the pattern 2-31, namely the subword 564, whereas
the pattern 2-3-1 occurs, in addition, in the subwords 562 and 563. A moti-
vation for introducing these patterns in [BabStein] was the study of Mahonian

!Research financed by EC’s THRP Programme, within the Research Training Network
” Algebraic Combinatorics in Europe”, grant HPRN-CT-2001-00272
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statistics. A number of interesting results on generalised patterns were obtained
in [Claes]. Relations to several well studied combinatorial structures, such as
set partitions, Dyck paths, Motzkin paths and involutions, were shown there.

Burstein [Burstein] considered words instead of permutations. In particular,
he found the number |[k]"(P)| of words of length n in a k-letter alphabet that
avoid all patterns from a set P C Sz simultaneously. Burstein and Mansour
[BurMansl1] (resp. [BurMans2, BurMans3]) considered forbidden patterns (resp.
generalized patterns) with repeated letters.

The most attention, in the papers on classical or generalized patterns, is
paid to finding exact formulas and/or generating functions for the number of
words or permutations avoiding, or having k occurrences of, certain patterns.
In [KitMans] the present authors suggested another problem, namely counting
the number of occurrences of certain patterns in certain words. These words
were chosen to be the set of all finite approximations of a sequence generated
by a morphism with certain restrictions. A motivation for this choice was the
interest in studying classes of sequences and words that are defined by iterative
schemes [Lothaire, Salomaa].

In the present paper we also study the number of occurrences of certain
patterns in certain words. But here we choose these words to be the discrete
analogue given by Evdokimov, of subdivision stages from which the Peano curve
is obtained. We call these words the Peano words. The Peano curve was stud-
ied by the Italian mathematician Giuseppe Peano in 1890 as an example of a
continuous space filling curve. We consider the Peano words and find the num-
ber of occurrences of the patterns 12, 21, 14, [z-y*), (zy] and [z-y*-2], where
r,y,2 € {1,2,3}, y* = y-y----- y (£ times), and “[“in p = [z — w) indicates that
in an occurrence of p, the letter corresponding to the z must be the first letter
of the word.

8.2 The Peano curve and the Peano words

We follow [GelbOlm] and present a description (of a curve that fills the unit
square S = [0,1]x][0, 1]) given in 1891 by the German mathematician D. Hilbert.

As indicated in Figure 8.3, the idea is to subdivide S and the unit interval
I =[0,1] into 4™ closed subsquares and subintervals, respectively, and to set
up a correspondence between subsquares and subintervals so that inclusion re-
lationships are preserved (at each stage of subdivision, if a square corresponds
to an interval, then its subsquares correspond to subintervals of that interval).

We now define the continuous mapping f of I onto S: If x € I, then at
each stage of subdivision x belongs to at least one closed subinterval. Select
either one (if there are two) and associate the corresponding square. In this
way a decreasing sequence of closed squares is obtained corresponding to a
decreasing sequence of closed intervals. This sequence of closed squares has the
property that there is exactly one point belonging to all of them. This point is
by definition f(z). It can be shown that the point f(x) is well-defined, that is,
independent of any choice of intervals containing z; the range of f is S; and f
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is continuous.
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Figure 8.3: the Peano words

The following discrete analogue of the Peano curve was given by Evdokimov [Evdok].
We consider a subdivision stage (an iteration), go through the curve inside S
starting in the point 1 (see Figure 8.3), and coding any movement “up” by 1,
“right” by 2, "down” by 3, "left” by 4. Thus, we start with the first iteration
X3 =123, the second iteration is X = 214112321233432. More generally, it is
easy to see that the n-th iteration is given by

Xn=01(Xn 1)1Xn 12X, 1302(X5 1),

where the function ¢q(A) reverses the letters in the word A and makes the
substitution corresponding to the permutation 4123, that is, 1 becomes 4 etc.
The function g2 does the same, except with 4123 replaced by 2341. In this
paper, we are interested in the words X,,, for n = 1,2,..., which appear as the
subdivision stages of the Peano curve. We call these words the Peano words.

8.3 The main results

It is easy to see that the length of the curve after the n-th iteration is |X,| =
4™ — 1. Moreover, the following lemma holds.

Lemma 1. The number of occurrences of the letters 1, 2, 3 and 4 in X,, is
given by 471, 4n—1 L on—1 _ 1 4n—1 gpd 471 — 271 respectively.

Proof. Suppose d} (resp. d%, d%, d}) denote the number of occurrences of the
letter 1 (resp. 2,3,4) in the word X,,. It is easy to see, using the way we construct
X, that

i 2 101 dp=t 1
a |l [ 1210 dy=t 1
a | =lo1r 2|l a1
7 101 2 dy! 0
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Using the diagonalization of the matrix in the identity above, namely the fact
that

2 101

1210

012 1|~

101 2

-1 -1 0 1 0000 —1/4 1/4 -1/4 1/4
1 0 -1 1 0200 -1/2 0 1/2 0

-1 1 01 0020 0o -1/2 o0 1/2 |’
1 0 11 000 4 1/4  1/4 1/4 1/4

we get that the vector (d},d%,dy, d?) is equal to the vector

(4n—174n—4,+_2n—1 __174n—174n—4,__2n—1)

As a corollary to Lemma 1 we have the following.

Corollary 11. The number of occurrences of the pattern 7 = 1-1---- - 1=1¢
———

¢
i X, is equal to

4n—1 _2n—1 +9 4n—1 + 4n—1 +2n—1 -1
4 4 L ’

Proof. The number of occurrences of a subsequence j-i----- i in X,, for i =
———

¢
1,2,3,4, is obviously given by (%), where d is defined and determined in the
proof of Lemma 1. The rest is easy to see. |

Definition 9. Let r(A) (resp. d(A)) denote the number of occurrences of the
pattern 12 (resp. 21), that is the number of rises (resp. descents), in a word A.

Lemma 2. Suppose A =1X3 and B = 2Y2 for some words X and Y. Then
TE%)(A)) =d(A) + 1, d(p1(A)) = r(4) — 1, r(2(B)) = d(B) and d(p2(B)) =
r(B).

Proof. If A and B denote the reverses of A and B then r(4) = d(4), d(4) =
r(4), r(B) = d(B), and d(B) = r(B). . B B
We consider two factorizations of each word A and B. We can write A as

11 12 1k

where A;, for i = 1,2,...,k is a word over the alphabet {2, 3,4}, only A; can
be the empty word €, and i; > 1 for j =1,2..., k. Also, we can write A as

A=3Ap4.. 4A 4. 4A,. A, 4. AA1,

! g .7
iy iy iy,
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where A;-, fori =0,1,...,k is a word over the alphabet {1,2,3}, only AE) and
A;c can be €, and z'] >1lforj=1,2...,k.
The word B can be written as

B=2Byl...1By1...1By...By_11...1B2,
—— —— ——
J1 J2 Je
where B;, for i = 0,1,...,¢, is a word over the alphabet {2, 3,4}, only By and
By canbee, and j; > 1 for i =1,2...,¢. Also, B can be written as

B=2By4...4B,4...4B,...B, ,4...4B;2,
Tl ——
i g gy

where B;, fori =0,1,...,¢, is a word over the alphabet {1,2,3}, only B(') and
B;f can be ¢, andj; >1lfori=1,2...,¢

It follows from the definitions that ;(A) and ¢1(B) (resp. ¢2(A4) and
¢2(B)) are obtained from A and B by permuting the letters with the function
m1 (resp. m2) that acts as the permutation 4123 (resp. 2341).

We now consider the first factorizations of A and B, and the function 7.
It is easy to see that if W is equal to A;, or B;, or 34;, or 2By, or B2,
then (W) = r(m (W)) and d(W) = d(w (W)), since 7, is an order-preserving
function when it acts from the set {2,3,4} to the set {1,2,3}. From the other
hand, occurrences of the rises 12, 13 and 14 (resp. the descents 41, 31 and 21)
in A and B, give occurrences of the descents 41, 42 and 43 (resp. the rises 34, 24
and 14) in 7; (A) and 7, (B) respectively. If we now read the first factorizations
of A and B from the left to the right, then the occurrences of the subwords
al alternate with the occurrences of the subwords 1b, where a,b € {2,3,4}.
Moreover, in the factorization of A, we begin and end with the subword al

for some a € {2,3,4}, which gives that d(4) +1 = r(4) + 1 = r(m (4)) =
r(p1(A)) and r(A) — 1 =d(A) — 1 = d(m1(A)) = d(p1(A)); in the factorization
of B, we begin with the subword al and end with the subword 1b for some
a,b € {2,3,4}, which gives that d(B) = r(B) = r(m(B)) = r(¢1(B)) and
r(B) = d(B) = d(m1(B)) = d(¢1(B)). -

If we consider the second factorizations of A and B, and the function 2,
one can see that if W is equal to A;, or B;, or 3A6, or Alkl, or 2BE,, or B:q2,
then (W) = r(me(W)) and d(W) = d(my(W)), since 7 is an order-preserving
function when it acts from the set {1, 2,3} to the set {2,3,4}. From the other
hand, occurrences of the rises 14, 24 and 34 (resp. the descents 41, 42 and
43) in A and B, give occurrences of the descents 21, 31 and 41 (resp. the rise
12, 13 and 14) in m(A) and w3 (B) respectively. If we now read the second
factorizations of A and B from the left to the right, then the occurrences of the
subwords a4 alternate with the occurrences of the subwords 4b, where a,b €
{1,2,3}. Moreover, in both cases, we begin with the subword a4 and end
with the subword 4b for some a,b € {1,2,3}, which gives that d(4) = r(4) =
r(ma(A)) = r(pa(A)), r(A) = d(A) = d(m2(A)) = d{p2(A)), d(B) = r(B)

r(m2(B)) = r(p2(B)) and r(B) = d(B) = d(r2(B)) = d(¢2(B)). O

179



Theorem 1. Let r, (resp. d,,) be the number of occurrences of the pattern 12
(resp. 21) in X,,. Then for all k >0,

Toky1 = 2(4-16% + 1),
Tokgo = 2(16F+! — 1),
dory1 = 2(16% — 1),

dopr2 = 3(1651! —1).

Proof. Using the properties of ¢1 and @2, as well as the way we construct X,,,
it is easy to check by induction, that Xs,41 and Xsp4o can be factorized as
follow:
Xoppr =1XW112vW222y 1233213,
e~ S~ S~ N~

v1(Xar) Xak Xar p2(Xar)

Xoppo = 2XP4 11Y?®321v33 4223 |

©1(Xar41) Xar+1 Xak+1  p2(Xak41)

where X&), Y@ and Z® are some words for i = 1,2.

Suppose we know 79541 and dogy1 for some k. Since Xopy1 = 1W3 for
some word W, using Lemma 2 and the factorization of the word Xogyo, we
can find T2k42 and d2k+2. Indeed, 1 (X4k+1) has d2k+1 + 1 rises and rop+1 — 1
descents; a2 (Xap41) has dagy1 rises and rogy1 descents; two subwords Xagi1
give 2ropy1 rises and 2dagpy1 descents. Besides, we have some extra rises and
descents appeared between different blocks of the decomposition. They are one
extra rise between the letter 3 and the subword 2 (X4x+1), and 3 extra descents
between the subword ¢ (X441) and the letter 1, the subword Xsx41 and the
letter 2, the letter 2 and the subword Xag41. Thus, ragyra = 2regs1 + 2dogy1 + 2
and dagya2 = 2rop+1 + 2dag41 + 2, which shows, in particular, that for even n,
in X,,, the number of rises is equal to the number of descents.

We now analyze the factorization of X3, which is similar to that of Xog41.
Using the fact that Xogp42 = 2W'2 for some word W' and Lemma 2, we can
find 72p+3 and dogy3. Indeed, we can use the similar considerations as above to
get ropts = 2rapyo + 2dogyo + 2 = 8rapy1 + 8dog41 + 10 and dap43 = 2ropt2 +
2d2k+2 = 8rag41 —|—8d2k+1 + 8. Thus, if z denote the vector (T2k+1, dgk_;,_l) then

8 8 10
.Z'k+1=<8 8)$k+< 8 );

with o = (2,0), since in X; = 123, there are two rises and no descents. This
recurrence relation, using diagonalization of the matrix in it, leads us to

2 8 ,
Ty = (3(4 -16% + 1), g(16’c -1)).

Finally, ropyo = dogta = 2ropq1 + 2dapyr + 2 = (1681 —1). O

180



Let N, (W) denote the number of occurrences of the pattern 7 in the word W.

Using Lemma 1 and the proof of Theorem 1, we can count, for X,, the
number of occurrences of the patterns 71 (z,y) = [z-y%), T2(z,y) = 2-y] and
7-3($7y7z) = [w—y"—z], where zT,Y,2 € {17 273}7 yf =Y-Y----- Y (E times)7 and “[“
in p = [z — w) indicates that in an occurrence of p, the letter corresponding to
the z must be the first letter of the word, whereas “|” in 73(z,y, 2) indicates
that in an occurrence of 73(x,y, 2), the letter corresponding to the z must be
the last (rightmost) letter of the word.

If we consider, for instance, the pattern 71(1,2) = [1-2¢) then the letter 1
in this pattern must correspond to the leftmost letter of the word X,,. Now if
n = 2k+1 then from the proof of Theorem 1 X,, = 1W for some word W, which
means that to the sequence 2¢ there can correspond any subsequence i in X,,,
where ¢ = 2,3,4. Thus, using Lemma 1 and the way we prove Corollary 11, there

42k _ o2k 42k 42k 92k _q .
are ("7 )+(Y,)+ (" 17 71) occurrences of the pattern 71(1,2) in Xppy1.
If n = 2k + 2 then X,, = 2W for some word W and for the sequence 2¢ there
correspond any subsequence i¢ in X,,, where i = 3,4. Thus, Nr1,2)(Xogy2) =

2k
() + ().

In the example above, as well as in the following considerations, we assume
£ to be greater then 0. If £ = 0 then obviously N;, () (Xn) = Nr,(2,4)(Xn) =1,
whereas Ni,(4.y,2)(Xrn) is equal to 1if 2 < z and n = 2k + 1, or z = 2z and
n = 2k + 2, and it is equal to 0 otherwise.

When we consider 73(z,y, 2)(X,), we observe that since Xogyo = 2W2 for
some W, N_,(z.y.2)(X2ky2) = 0, whenever z # z. Also, since Xopy 1 = 1W3 for
some W, Nr, (442 (X2r41) = 0, whenever z > z.

Let us consider the pattern 73(2,1,3) = [2-1¢-3]. As it was mentioned before,
Nry(2,1,3)(Xorg2) = 0. But, if we consider Xoz1 1 = 1W3, then it is easy to see
that N.,(2,1,3)(Xok41) = 0, since the leftmost letter of Xz is the least letter,
which means that it cannot correspond to the letter 2 in the pattern. As one
more example, we can consider the pattern 73(1,1,2) = [1-1¢-2]. We are only
interested in case X, = Xogy1, since Npy(1,1,2)(Xogy2) = 0. The number of
occurrences of the pattern is obviously given by the number of ways to choose
¢ letters among 42F — 1 letters 1 (totally, there are 42 letters 1 according to
Lemma 1, but we cannot consider the leftmost 1 since it corresponds to the
leftmost 1 in the pattern). Thus, N, 1 2)(Xakt1) = (4%[1).

All the other cases of x, y, z in the patterns 71 (z,y), 72(z,y) and 73(z,y, 2)
can be considered in the same way. Let S; and S> denote the following:

42k _ 22k 42k 42k + 22k -1 42k+1 42k+1 _ 22k+1
Sl:( ‘ )*(f)*( ‘ )’52:<e)+( ‘ )

The tables below give all the results concerning the patterns under consideration,
except those triples (z,y, 2), for which N, .)(X,) = 0 for all n.
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Nri@y)(Xok41) | Negog)(Xart1) | Nry(a,y) (Xokt2) | Neg(a,y) (Xort2)
) ) SR N G
51 () + 52 ()
0 ) () Sa
Y| 2| Ny Xort1) | Negay,z)(Xokt2)
1|11 0 ()2
1]1]2 (Y 0
12 0 S5
1]2]2 ) 0
212 0 "
1l2]3] @+ 0
1]3]2 ("2 0
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The sigma-sequence and counting occurrences of some
patterns, subsequences and subwords

Sergey Kitaev !

Abstract

We consider sigma-words, which are words used by Evdokimov in the con-
struction of the sigma-sequence [Evdok]. We then find the number of occur-
rences of certain patterns, subsequences and subwords in these words.

9.1 Introduction and Background

We write permutations as words © = ajas - - - a,, whose letters are distinct and
usually consist of the integers 1,2,...,n.

An occurrence of a pattern p in a permutation 7 is “classically” defined as
a subsequence in 7 (of the same length as the length of p) whose letters are in
the same relative order as those in p. Formally speaking, for r < n, we say that
a permutation ¢ in the symmetric group S, has an occurrence of the pattern
p € S, if there exist 1 <41 < i < --- <4, < nsuchthat p=0(i1)o(i2)... o)
in reduced form. The reduced form of a permutation ¢ on a set {j1,j2,...,7r},
where j1 < jo < --- < jp, is a permutation o; obtained by renaming the letters
of the permutation ¢ so that j; is renamed i for all ¢ € {1,...,r}. For example,
the reduced form of the permutation 3651 is 2431. The first case of classical
patterns studied was that of permutations avoiding a pattern of length 3 in Ss.
Knuth [Knuth] found that, for any 7 € Ss, the number |S, ()| of n-permutations
avoiding 7 is C,, the nth Catalan number. Later, Simion and Schmidt [SimSch]
determined the number |S,,(P)| of permutations in S, simultaneously avoiding
any given set of patterns P C Ss.

In [BabStein] Babson and Steingrimsson introduced generalised permutation
patterns that allow the requirement that two adjacent letters in a pattern must
be adjacent in the permutation. In order to avoid confusion we write a ”classi-
cal” pattern, say 231, as 2-3-1, and if we write, say 2-31, then we mean that if
this pattern occurs in the permutation, then the letters in the permutation that
correspond to 3 and 1 are adjacent. For example, the permutation 7 = 516423
has only one occurrence of the pattern 2-31, namely the subword 564, whereas
the pattern 2-3-1 occurs, in addition, in the subwords 562 and 563. A moti-
vation for introducing these patterns in [BabStein] was the study of Mahonian
statistics. A number of interesting results on generalised patterns were obtained
in [Claes]. Relations to several well studied combinatorial structures, such as
set partitions, Dyck paths, Motzkin paths and involutions, were shown there.
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Burstein [Burstein] considered words instead of permutations. In particular,
he found the number |[k]"(P)| of words of length n in a k-letter alphabet that
avoid all patterns from a set P C 83 simultaneously. Burstein and Mansour
[BurMansl1] (resp. [BurMans2, BurMans3]) considered forbidden patterns (resp.
generalized patterns) with repeated letters.

The most attention, in the papers on classical or generalized patterns, is
paid to finding exact formulas and/or generating functions for the number of
words or permutations avoiding, or having k occurrences of, certain patterns.
In [KitMansl] the authors suggested another problem, namely counting the
number of occurrences of certain patterns in certain words. These words were
chosen to be the set of all finite approximations of a sequence generated by
a morphism with certain restrictions. A motivation for this choice was the
interest in studying classes of sequences and words that are defined by iterative
schemes [Lothaire, Salomaa]. In [KitMans2] the authors also studied the number
of occurrences of certain patterns in certain words. But there they choose these
words to be the subdivision stages from which the Peano curve is obtained. The
authors called these words the Peano words. The Peano curve was studied by the
Italian mathematician Giuseppe Peano in 1890 as an example of a continuous
space filling curve.

In the present paper we consider the sigma-words, which are words used
by Evdokimov in construction of the sigma-sequence [Evdok]. Evdokimov used
this sequence to construct chains of maximal length in the n-dimensional unit
cube. Independent interest to the sigma-sequence appears in connection with
the well-known Dragon curve, discovered by physicist John E. Heighway and
defined as follows: we fold a sheet of paper in half, then fold in half again, and
again, etc. and then unfold in such way that each crease created by the folding
process is opened out into a 90-degree angle. The “curve” refers to the shape
of the partially unfolded paper as seen edge on. If one travels along the curve,
some of the creases will represent turns to the left and others turns to the right.
Now if 1 indicates a turn to the right, and 2 to the left, and we start travelling
along the curve indicating the turns, we get the sigma-sequence [Evdokimov].
In [Kitaev] the sigma-sequence was studied from another point of view. It was
proved there that this sequence cannot be defined by iterated morphism.

Since the sigma-sequence w, is a sequence in a 2-letter alphabet, we consider
patterns in 2-letter alphabets. Moreover, the patterns in a 1-letter alphabet
(for example 1-1-1) correspond to two subsequences (for this example, these
subsequences are 1-1-1 and 2-2-2), whereas the patterns in a 2-letter alphabet
(with at least one letter 2) uniquely determine the subsequences in w, that
correspond to them, and conversely. For example, an occurrence of the pattern
1-2-1 is an occurrence of the subsequence 1-2-1, whereas an occurrence of the
subsequence (subword) 211 is an occurrence of the pattern 211. Thus, any our
result for a pattern, can be interpreted in term of subsequences or subwords,
depending on the context, and conversely.

In our paper we give either an explicit formula or recurrence relation for the
number of occurrences for some classes of patterns, subwords and subsequences
in the sigma-words. In particular, Theorem 1, allows to find the number of
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occurrences of an arbitrary generalized pattern without internal dashes of length
£, provided we know four certain numbers that can be easily calculated for the
sigma-words Cy, Dy, Cr+1 and D41 (to be defined below), where k = [log, £].
Theorem 2 gives a recurrence relation for counting occurrences of patterns of
the form 71-75. In Section 9.6 we discuss occurrences of patterns of the form

T1-To- - - --Tk, Where the pattern 7; does not overlap with the patterns 7;_; and
Tiy1 for i = 1,2,...,k — 1. Finally, Section 9.7 deals with patterns of the form
[r1-To- -+ -Tk], [T1-T2--" - 7%) and (71-T9----- 7] in Babson and Steingrimsson

notation, which means that we use ”[x” in a pattern p to indicate that in an

occurrence of p, the letter corresponding to the x must be the first letter of
a word under consideration, whereas if we use “y]”, we mean that the letter
corresponding to y must be the last (rightmost) letter in the word.

9.2 Preliminaries

In [Evdok, Yab], Evdokimov constructed chains of maximal length in the n-
dimensional unit cube using the sigma-sequence. The sigma-sequence w, was
defined there by the following inductive scheme:
Cl == ]., D1 =2
Ck+1 = CxlDg,  Dypy1 = Ci2Dy,
E=1,2,...

and w, = klim C%. Thus, the initial letters of w, are 11211221112212.. ..

— 00
We call the words C the sigma words. The first four values of the sequence
{Ck}r>1 are 1, 112, 1121122, 112112211122122.

In [Kitaev] an equivalent definition of w, was given: any natural number
n # 0 can be presented unambiguously as n = 2¢(4s + o), where ¢ < 4, and
t is the greatest natural number such that 2¢ divides n. If n runs through the
natural numbers then ¢ runs through some sequence consisting of 1 and 3. If
we substitute 3 by 2 in this sequence, we get w,.

In this paper we count occurrences of patterns in the sigma-words, which
are particular initial subwords of w,. However, the challenging question is to
find the number of occurrences of patterns or subwords in an arbitrary initial
subword of w,, or more generally, in a subword of w, starting in the position 4
and ending in the position j.

It turns out that for counting occurrences of certain patterns or subwords
in C,,, one needs to know the number of occurrences of certain patterns in D,,.
So, in the most cases, we give results for both C,, and D,,. However, our main
purpose is the words C,, for n > 1, and in some propositions and examples we
do not consider D,,.

In what follows, we give initial values for the words C; and D;:
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Ci=1 Dy =2

Cy =112 Dy =122

Cs; =1121122 D3 = 1122122

Cy = 112112211122122 D4 = 112112221122122

Cs = 1121122111221221112112221122122
D5 =1121122111221222112112221122122

We now give some other definitions.

A descent (resp. rise) in a word w = ajas . ..a, is an ¢ such that a; > a;41
(resp. a; < ajq1). It follows from the definitions that an occurrence of a descent
(resp. rise) is an occurrence of the pattern 21 (resp. 12).

Let ¢, (resp. d7) denote the number of occurrences of the pattern 7 in C),
(resp. Dy).

Suppose a word W = AaB, where A and B are some words of the same
length, and a is a letter. We define the kernel of order k for the word W to
be the subword consisting of the k¥ — 1 rightmost letters of A, the letter a,
and the k& — 1 leftmost letters of B. We denote it by K (W). For example,
K3(111211221) = 12112. If |A| < k — 1 then we assume K (W) = ¢, that is, the
kernel in this case is the empty word. Also, my(7, W) denotes the number of
occurrences of the pattern (or the word, or the subsequence depending on the
context) 7 in K (W).

We denote z-z----- z (£ times) by z
number b such that a < b.

t. Also, [a] denotes the least natural

9.3 Patterns 1-1-----1, 1-2 and 2-1

It is easy to see that |C,| = |D,| = 2" — 1. The following lemma gives the
number of the letters 1 and 2 in C),, and D,,.

Lemma 1. The number of 1s (resp. 2s) in Cy, is 2" (resp. 21 —1). The
number of 1s (resp. 2s) in D, is 2"~ 1 — 1 (resp. 2"~ 1).

Proof. Tt is enough to find the number of 1s ¢, and d,, in C), and D,, respectively,
since the number of 2s in C,, and D,, are obviously equal to |Cy,|—c¢y, and |Dy|—d,
respectively.

It is easy to see from the structure of C), and D,, that

Cp =Cp—1+ dn—l + 17
dp =cp_1 + dn—l;

together with ¢; = 1 and d; = 0. The solution to this recurrence is ¢, = 2"~}
and d, =271 — 1. O
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Proposition 1. The number occurrences of the subsequence 1% (resp. 2%) in

. 2n—1 2n—1_1
C, is ( & ) (resp. ( A )) Thus, the number of occurrences of the pattern
1% in C,, is equal to

s 2n—1 N 2n—1_1 B m _ k 2n—1_1
T\ k ko) Ttk k)

Proof. From Lemma 1, there are 2”1 (resp. 2"~! — 1) occurrences of the letter
n—1

1 (resp. 2) in Cy, and thus there are (2"k_1) (resp. (* ")) occurrences of the
subsequence 1* (resp. 2%) there. O

Proposition 2. We have that for alln > 2, c.? =d
and ' =d21 =2.47"2 —p . 2" 2,

2 =24"24(n-2)-2"2,

1 -
n

Proof. Let us first consider the pattern 1-2. An occurrence of this pattern in
Cn = Cp_11D,_4 is either inside C,,_1, or inside D,,_1, or the letter 1 is from
the word C,,_11, whereas the letter 2 is from the word D,_;. Thus

cl? = "2, +d~% +{ (the number of 1s in C,,_1) + 1}-{ the number of 2s in D,, ;}.
Using the same considerations for D,, = C,,_12D,,_1, one can get
dr? = 2 +d5 2, +{ the number of 1s in C,,_; }-{ (the number of 2s in D,,_;) + 1}.
The number of 1s and 2s in C},_; and D,,_1 is given in Lemma 1. So,
e’ = ety F 2 #2027 4 1)
dp? =2y +d2 +207 - (2070 4 )
el 11 2 2n=2. (272 4 1)
= + (9.1)
di? 11 2, 2n=2. (272 4 1)
together with ¢} = 2 and di™ = 2. Here, and several times in what follows,
we need to solve recurrence relations of the form
Ty = Axp_1 +0b,

where A is a matrix, and z,, ,_1 and b are some vectors, where b sometimes
depends on n. We recall from linear algebra that such relations can be solved
by diagonalization of the matrix A, that is, by writing A = VDV ~!, where D
is a diagonal matrix consisting of eigenvalues of A, and the columns of V' are
eigenvectors of A. For example, if A is a 2 X 2 matrix that consists of 1s, then

we use
1 1) [ 11 00 1/2 —-1/2
11)-(-11 0 2 12 1/2

for computing powers of A, and thus for solving the recurrence relations. For

the recurrence 9.1, we get that for alln > 2, ¢l = d2 = 2.4 24 (n—2)-2"2.
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In the same manner, we can get that for the pattern 2-1,
=l 4@ 42 (2o 1),
it =ity dpt A2m (20 - 1),

together with ¢3! = 2 and d3' = 2. This gives, that foralln > 2, ¢! =d*! =
2472 _p . 2n2 0

Proposition 2 shows that asymptotically, the numbers of occurrences of the
patterns, or the subsequences, 1-2 and 2-1 in C,, or D,, are equal.

9.4 Patterns without internal dashes

Recall the definitions in Section 9.2.

Theorem 1. Let 7 = 172 ... 7¢ be an arbitrary generalized pattern without in-
ternal dashes that consists of 1s and 2s. Suppose k = [log, €], a = my(7, D 1Cy),
and b= my(1, Dx2Cy). Then for n > k + 1, we have

cn=(a+b+cpyy +dpy) 2" 2 —b,

dy=(a+b+cp, +dp,y) 2" 2% —a

Proof. Suppose n > k+ 1. In this case, C,, = Cp—11D,—1 = W1 K(D1C)Wa,
for some words Wy and Ws such that |W;| = |W2|. Because of the definition
of the kernel K;(Dg1C}), an occurrence of the pattern 7 in C), is in either
Cn-1, or Dy_1, or K (Dy1C) (from the definitions |Cp—1 N Kp(Dp1Cyk)| =
|Dp—1NK(Dr1C%)| = £—1 and thus these intersections cannot be an occurrence
of 7). So,

cp=Cpatdy +a,

whereas in the same way, we can obtain that

dT = C;fl + d;fl + b

n
By solving these recurrence relations, we get the desirable. O

In particular, Theorem 1 is valid for £ = 1, in which case the number of
occurrences of 7 in C), (or D,,) is the number of letters in C,, (or D). Indeed,
in this case, k =0,a=b=rc} =d{ =1, hence ¢, =d}, =2"—1=|Cy| = |Dy|-
Also, as a corollary to Theorem 1 we have, that ifa =b=c}_ , =dj,, =0 for
some pattern 7, then this pattern never appears in sigma-sequence.

All of the following examples are corollaries to Theorem 1.

Example 1. Suppose 7 = 12. We have that k = 1, a = my(12, D11C1) = 0 and
b =my(12,D,2C;) = 0. Besides, c3?> =1 and di? = 1. Thus using Theorem 1,
for alln > 2, k2 = 2n=2. So, the number of rises in C,, is equal to 22, for
n > 2.
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Ifr =21, again k = 1, but nowa = m2(21,D11Cy) =1, b = my(21,D,2C; ) = 1.
Besides, c3' =1 and d3' = 1. From Theorem 1, for alln > 3, ¢2} =272 -1,
which shows that the number of descents in C,, is one less than the number of
rises.

Since in both cases a = b, using the recurrences in Theorem 1, we have that
cl2 = @2 = 2"=2 whereas 2! = d2! = 2772 — 1.

Example 2. Suppose T = 112. We have that k = 2, a = m3(112, D51C5) = 0,
and b = m3(112,D52Cs) = 0. Besides, ci'? = 2 and d3'> = 1. Now, from
Theorem 1, we have that for all n > 3, ci!? = dL12 = 3. 274,

Example 3. Suppose T = 221. We have that k = 2, a = m3(221, D,1C5) = 1,
and b = m3(221,D52C5) = 1. Besides, c3>! = 0 and d3*' = 1. Now, from
Theorem 1, we have that for alln > 3, ¢221 =221 =3.2n1 — 1.

Example 4. If 7 = 2212221 then k = 3, a = m7(221,D31C3) = 0, b =
m7(221, D32C3) = 1, 3212221 = 0, and d3?'22%! = 0. Thus for n > 4, c2212221 —
24 1,

9.5 Patterns of the form 7-m

Theorem 2. Let p = 11-72 be a generalized pattern such that |11| = k1 and
|T2| = k. Suppose k = [log, (k1 + k2 — 1)]. The following denote the number of
occurrences of the subwords 7 and > in the kernels:

Ay, = Mp, (Tla -Dk]-Ck) Ary = My (7'2, Dk]'ck)
bn = Mg, (7—17 DkQCk) bTZ = Mgy (Tz’ DkQCk)

Also, let v (resp. r$, r2, r5) denote the number of occurrences of overlapping
subwords 71 and T in the word Dp1Cy, (resp. Dy1Cy, D2Ck, Dx2C}), where
71 € Ki,(Dr1Cy) and 72 € Cy (resp. 71 € Dy and 75 € Ky, (Di1Ch), 71 €
’Ckl (DkZCk) and 7o € Cy, 71 € Dy, and 5 € ICk2(Dk2Ck)).

Besides, we assume that we know ¢l and d]} for n > n;, i =1,2. Then for
n > max(k+1,n1 +1,n2 + 1), ¢}, and d7, are given by the following recurrence:

()=o) )+(n)

On = (c:Ll—l +an — r%)d:f—l + (ar, — 7‘5)02—1

39

where

and
ﬂn = (Czl—l + le - Tll))d?—l + (bT2 - T’g)c;l_l.

Proof. Suppose n > max(k + 1,n1 + 1,n2 +1). Let us find a recurrence for the
number ¢, (one can use the same considerations for df).

An occurrence of the pattern 7 in C,, = C,,_11D,,_; is either inside C,_1,
or inside D,_1, or begins in Cj,_1 or the letter 1 between C,,_1 and D,,_; and
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ends in D,,_; or the letter 1. The first two cases obviously give ¢,—1 and d,,_1
occurrences of 7. To count the contribution of the last to cases, we work with
words instead of patterns. We do it to take in account the situations when 7 or
T9 consists of copies of only one letter. In this case, we cannot count occurrence
of these patterns separately, and then use this information, since, for instance,
occurrences of the pattern 73 = 111 are subwords 111 and 222 (the last one of
these subwords we do not need), whereas occurrences of the pattern 7, = 222
are not defined at all (222 is not a pattern).

If an occurrence of 71-1 does not entirely belong to C,,_1 or D,, 1 then we
only have one of the following possibilities:

(a) the subword 7y entirely belongs to C,,—; and the subword 7> entirely be-
longs to Dy—1;

(b) the subword 71 belongs entirely to C,,—1 and the subword 7» belongs to
the kernel Ky, (Dy1C}), where k = [log, (k1 + k2 — 1)] is the least number
that allow to control, in C,, (n > k), overlapping occurrences of subwords
71 and 75 where 7 is entirely from Cp,—1 and 12 € Ky, (Dy1Ck);

(c) the subword 7 belongs entirely to D,_; and the subword 7 belongs to
the kernel Ky, (Dy1Ch).

In (a) we obviously have ¢! ; - d7? | possibilities.

In (b) we have ¢ | - a,, — c[' | - r§ possibilities, since we need to subtract
those occurrences of 7y and 7 that overlap.

Analogically to (b), in (¢) we have d;> , - a,, —d;> ; - r{ possibilities, which
completes the proof. O

Remark 6. For using Theorem 2, one needs to know c, and dI, for patterns T
without internal dashes. These numbers could be obtained by using Theorem 1.

The following corollary to Theorem 2 is straitforward to prove, using the
fact that for non-overlapping patterns 7, and 7, ¢ = 7§ =r? =} = 0.

Corollary 12. We make the same assumptions as those in Theorem 2. Suppose
additionally that the words 71 and 15 are not overlapping in the following sense:
no one suffiz of T is a prefix of To. Then for n > max(k+1,n1+1,n,+1), ¢,
and d, are given by the same recurrence as that in Theorem 2 with

— 71 T2 71
Qp = (cn—l + aTl)dn—l + AryCp_1

and
/Bn = (c;1—1 + le)d:Lz—l + b‘l’2c:zl—1'

Remark 7. Corollary 12 is valid under more weak assumptions, namely we
only need the property of non-overlapping of the patterns 7 and 75 when one
of them is in its kernel and the other one is not in its kernel. Example 7 deals
with the pattern T that has overlapping blocks 11 and 12, but Corollary 12 can be
applied. However, from practical point of view, checking the fact if two subwords
are non-overlapping is more easy than considering the kernels and checking the
non-overlapping of the subwords there.
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Example 5. Suppose 7 = 12-21. We have that |11| = |12| = 2. Now, in the
statement of Theorem 2 we have that k = 2, a;, =0, a;, = 1, b, = 0 and
by, = 1. Also, since there are no overlapping occurrences of the subwords 12
and 21 in K3(1221112) and K3(1222112), we have r§ = 0, ¢ = 0, 2 = 0 and
r5 = 0. Besides, from example 1, c!2 = d'2 =22 gnd 2! = 42! =272 — 1.
Thus, an, = B, = 4773, Using the fact that c}*' = 0 and d}*™2! = 1, this
allows us to get an explicit formula for cl27?' and d?>™*' for n > 3:

12-21 _ d;2-21 _ 1471—2 _3.9n—4

Cn

In particular cj>™?* = 5.

Example 6. Suppose 7 = 1-221. We have that |11| = 1 and |12| = 3. Moreover,
the words 71 and T are not overlapping, hence we can use Corollary 12. We
have that k = 2, ar, =1, a;, = 1, by, = 0 and b, = 1. From ezample 3,
d??1 = 3.2n=* — 1. Also, the number of occurrences of the letter 1 (the subword
71 = 1) is given by Lemma 1: ¢}, =2"1. So, a,, =6-4""* +3-2"5 -1 and
Bn = 647" One can get now an explicit formula for c; ' and d. 22! for
n > 4:

Ck_221 — %4n72 +27- 21175 —n— 77

A2 = Ign=2 4 91 .9n=5 _ g,
In particular, ct™22! = 47.

Example 7. Suppose 7 = 112-21. We have that |7i| = k1 = 3 and || =
ko = 2. The other parameters in Theorem 2 are k = 3, ar, = 0, a, = 1,
by, =0, b, =1,7¢ =7¢ =12 =1r5 = 0. From Ezample 2, for n > 4,
c12 = 3.274  and from Example 1, d2' = 2"~2 — 1. Thus, in Theorem 2,
an = Bn = (2L, +1) = 3-4""*. Now, we solve the recurrence relation

from the theorem to get, that for n > 3

C

3
112-21 112-21 n—3 n—4

9.6 Counting occurrences of 7-1---- -7}

In this section we study the number of occurrences of a pattern 7 = 71-72- - - - -7%,
where 7; are patterns without internal dashes. We say that 7 consists of k
blocks. We assume that for ¢ = 1,2,...,k — 1, the pattern 7; does not overlap
with the patterns 7;_; and 7;41. In this case we give a recurrence relation for
the number of occurrences of 7, provided we know the number of occurrences
of certain patterns consisting of less than, or equal to, £ — 1 blocks, as well as
2k certain numbers which can be calculated by considering the words D,1C,
and Cy2D,, where £ is the maximum number such that £ < max;[log, |7|]. The
cases of k = 1 and k = 2 are studied in the previous sections; they give the
bases for our calculations. However, the case of overlapping patterns 7; is not
solved, and it remains as a challenging problem, since an answer to this problem
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gives the way to count occurrences of an arbitrary generalized pattern, or an
arbitrary subsequence, in o-words.

Theorem 3. Let 7 = 11-13--- - -1}, be a generalized pattern such that |7;| = k;
fori=1,2,...,k. We assume that for i = 1,2,...,k — 1, the subword 7; does
not overlap with the subwords 1,1 and ;41 in the following sense: no one suffiz
of Ti—1 is a prefiz of T; and no one suffix of T; is a prefix of Tiy1.

Suppose £; = [logs ki], £ = max; £;, and for the subwords 7; we have a; =
mg, (1i, De, 1Cy,) and by = my, (13, D¢, 2Cy,), fori=1,2,...,k.

We assume that we know ¢[*™;"™™ and d;*1”" 7" for each 1 <i < k—1 and
for all n > n*. Then for all n > max(¢ + 1,n* + 1), ¢}, and d], are given by the
following recurrence:

cn 11 cn_q
= +
dy, 11 (-

I SN I of (R
Py ;1_'~1~~-Ti R d;iji_---_Tk =1 bz . c‘TFLl_"l"'Ti—l . d::-_}-i'""‘l'k
Proof. We consider only c],, since the same arguments can be applied to d,. We
use the considerations similar to those in Theorem 2.

An occurrence of the pattern 7 in C,, = C,_11D,_; can be entirely in
C, or D,. The first term counts such occurrences. Otherwise, we have two
possibilities: either the letter 1 between the words C\,—1 and D,_; does not
belong to an occurrence of 7, or it does do it, in which case there exist 7 (exactly
one) such that the subword 7; occurs in its kernel. The first sum in the statement
is obviously responsible for the first of this cases, whereas the second sum is
responsible for the second case (in the last case we use the fact that subwords
7; are not overlapping). O

As a corollary to Theorem 3, we have Corollary 12.
The following example is another corollary to Theorem 3.

Example 8. Suppose T =2—1—221, that is, 1. =2, 75 =1 and 13 = 221. So,
parameters in Theorem 3 are the following: k1 = ke =1, ks =3, {1 =l =1,
b3 =2,¢=2. From D11C; = 211 we obtain ay = 0, as = 1. From Dy1Cy =
1221112 we obtain a3 = 1. From D,12C7; = 221 we get by = 1, bo = 0. From
D>2Cy = 1222112 we get b = 1. Besides, from Proposition 2, Examples 3
and 6, we have

=27t =242 — . 2772, forn > 1,
de =d?* =3-2"* —1,forn > 3;
A = di?? = 1.47=2 4 21.975 _ 8 forn > 4.
Also, the number of occurrences of the subword 7 = 2 in Cy, is given by Propo-

sition 1: ¢Tt = ¢2 =271 — 1. So, the number of occurrences of the pattern T
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in Cp and D, for n > 5, satisfies the following recurrence relation:

- — ?
dy, 1 1 (- 105ﬁ8n + 212563n4n _ontl

with initial conditions cf = 70 and df = 74.

9.7 Patterns of the form [r-79- - - - =7%], [T1-T2- - - - -T%)
and (71-79- - - - =7y

We recall that according to Babson and Steingrimsson notation for generalized
patterns, if we use ”[” in a pattern, for example if we write p = [1-2), we indicate
that in an occurrence of p, the letter corresponding to the 1 must be the first
letter of a word under consideration, whereas if we write, say, p = (1-2], then
the letter corresponding to 2 must be the last (rightmost) letter of the word.

In the theorems of this section, we assume that we can find the numbers
e and d7r ™7™ for any patterns 7;, ¢ = 1,2,. .., k, without internal
dashes. For certain special cases, these numbers can be obtained using the
theorems of Sections 9.5 and 9.6.

Theorem 4. Suppose 71 and 1o are two patterns without internal dashes such
that |11| = k1 and |12| = k2. Also, suppose €1 = log, (k1 + 1), €3 = log, (ke + 1)
and £ = logy (k1 + k2 + 1).
Let a(r1,72) be the number of overlapping subwords 7 and 72 in Cy such that
T1 consists of the ki leftmost letters of Cy; b(mi,T2) is the number of overlapping
subwords 7, and 1 in Cy such that 7o consists of the ko rightmost letters of Cy.
We assume that we know cli and dfi for i =1,2 and for all n > n*.

i. For n > max(f1,n*),
To _ ; ) )
() = { ¢ —a(n, ), if Cy, begins with 7,

0, otherwise.

it. For n > max(f2,n*),

(r1-72] et —b(ri, 1), if Cy, ends with 1,
T2 —
" 0, otherwise.

5. Formn > /£,

T1-7T2]

: { 1, if C; begins with 71 and ends with T3,
o =

0, otherwise.

197



w. For n > max({y,n*),

dLl”'Tz) _ { d2 —a(m,m), if Dy, begins with 7,

0, otherwise.

v. For n > max(fs,n*),

dsln -r2]

drt —b(my, 1), if Dy, ends with 7,
0, otherwise.

vi. Forn >/,

dlm ] —

n

{ 1, if Dy begins with 71 and ends with T,

0, otherwise.

Proof. We prove case i, all the other cases are then easy to see.

Clearly, if Cy, does not begin with 7y then C), does not begin with 7 for all
n > {1, which means that 1™ — 0 in this case. Otherwise, to count occur-
rences of the pattern [r1-72) is the same as to find the number of occurrences
of the pattern 75 in C),, and then subtract the number of such occurrences of 7

that begin from the i-th letter of C,,, where 1 <1i < ky. O
The following two examples are corollaries to Theorem 4.

Example 9. Suppose we have the patterns oy = [1122 — 21211) and o2 =
(21221 — 12]. From Theorem 4, c2* = d% = 0, since C3 does not begin with
1122 (¢, = 3). Also, c?> =d?> = 0, since C3 does not end with 12 ({2 = 3).

Example 10. Suppose T = [112-21). We have that ky = 3, {1 = 2 and C»
begins with the subword 112. Besides, a(112,21) = 1 and, from FEzample 1,
Al = @21 =27=2 — 1. Theorem 4 now gives, that for n > 3, we have e

CZQ - G(Tl,Tz) =272 _ 29,

The following theorem is straitforward to prove using the assumptions con-
cerning non-overlapping of certain subwords.

Theorem 5. Let {71, 72,..., 7} be a set of generalized patterns without internal
dashes. Suppose |11| = s1, |Tk| = sk, €1 = logy(s1 + 1) and £, = logy(sk +1).
Also, £ = max(ly,4y,).

1. With the assumption that the subword T, does not overlap with the subword
Ta, that is, no one suffix of 71 is a prefix of T2, we have

(a)

T2-T3™ " "Th > N N
R { cr , if Cy, begins with T,
[ =

0, otherwise.
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(b)
g dpzs™ " if Dy, begins with 11,
" 0, otherwise.

it. With assumption that the subword 1,1 does not overlap with the subword
Tk, that is, no one suffix of 7x—1 is a prefiz of T, we have

(a) o
[ { cn' TR if Gy, ends with Ty,
Cp =
0

, otherwise.

(b)
d(n-'rz_..-—‘rk] = { d;rm_“._ﬁe_l’ 'Lf le ends with Tk,
o =

0, otherwise.

i11. With the assumption that the subword 7 does not overlap with the subword
T, and the subword T,_1 does not overlap with the subword T, we have

(¢)

Jriraeri _ { e PTTTTRRYif Cy begins with T and ends with Ty,

0, otherwise.
(b)

I { dy? TR if Dy begins with 1 and ends with Ty,

0, otherwise.

The following example is a corollary to Theorem 5.

Example 11. Suppose T = [112-1-221-22]. The parameters of Theorem &5 are
k1 =3, ky=2,0=2,0,=2,¢=2. Cs begins with the subword 112 and
ends with the subword 22. Thus by Theorem 5 and Example 6, e
e = g4 4 272" —n = T,
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