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Abstract

Let P(z, ) denote the Poisson kernel in the unit disc. Poisson extensions of
the type P\f(z) = [; P(z, ©)M1/2 f(p) dy, where f € L*(T) and X € C, are
then eigenfunctions to the hyperbolic Laplace operator in the unit disc. In
the context of boundary behaviour, Py f(z) exhibits unique properties.

We investigate the boundary convergence properties of the normalised ope-
rator, Pyf(z)/Pol(z), for boundary functions f in some function spaces.
For each space, we characterise the so-called natural approach regions along
which one has almost everywhere convergence to the boundary function, for
any boundary function in that space. This is done, mostly, via estimates of
the associated maximal function.

The function spaces we consider are L”*° (weak LP) and Orlicz spaces which
are either close to LP or L>®. We also give a new proof of known results for
P, 1 <p < cc.

Finally, we deal with a problem on the lack of tangential convergence for

bounded harmonic functions in the unit disc. We give a new proof of a result
due to Aikawa.

Keywords: Square root of the Poisson kernel, approach regions, almost
everywhere convergence, maximal functions, harmonic functions, Fatou the-
orem.
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BOUNDARY BEHAVIOUR OF EIGENFUNCTIONS FOR
THE HYPERBOLIC LAPLACIAN

MARTIN BRUNDIN

1. INTRODUCTION

This thesis deals mainly with the boundary behaviour of solutions to a
specific partial differential equation. We shall content ourselves in this in-
troductory paper with a discussion of the relevant harmonic analysis on the
unit disc, where our differential equation is defined. In Section 5, however,
we show how some of the concepts treated can be carried over to a different
setting (the half space).

We shall be concerned with pointwise, almost everywhere, convergence. The
solutions to our differential equation will be given by Poisson-like integral
extensions of the boundary functions. More precisely, the integral kernel is
given by the square root of the Poisson kernel and possesses unique proper-
ties relative to other powers. The associated extensions are eigenfunctions
of the hyperbolic Laplacian, at the bottom of the positive spectrum. To
recover the boundary values, the extensions must be normalised.

It is a well-known fact that solutions to boundary value problems behave
more and more dramatically the closer one gets to the boundary. A priori,
it is often not even clear in which sense the boundary conditions should be
interpreted. Of course, in some sense, the solution should be “equal to the
prescribed boundary values on the boundary”, but that statement is not
precise. It will be clear that if we approach the boundary, the unit circle,
too close to the tangential direction, then almost everywhere convergence
of the extension to the boundary function will fail. The question we wish
to answer is, somewhat vaguely, the following:

Given a space A of integrable functions defined on the unit circle, how
tangential can our approach to the boundary be in order to guarantee a.e.
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convergence of the extension to the boundary function, for any boundary
function in A?

A few comments are in order. The notion of tangency to the boundary
will be measured by so-called approach regions, which will depend on the
space A, beside the integral kernel. It is to my knowledge impossible to
give an answer to the question above for all A. Instead, we shall consider
more or less explicit examples of A. The examples we cover are A = LP for
1 <p< oo, A= LP™ (weak LP) for 1 < p < co and A = L® (Orlicz spaces)
for certain classes of functions ®. These results are covered in the papers
[MB2], [MB1] and [MB3], respectively.

The paper [MB4] deals with a classical problem concerning the lack of con-
vergence of bounded harmonic functions in the unit disc. We give a modified
proof of a result by Aikawa, which in turn is a considerably sharpened ver-
sion of a theorem of Littlewood (see below).

In the following sections we give an outline of the underlying theory and
our results.

2. THE POISSON KERNEL AND HARMONIC FUNCTIONS IN THE UNIT DISC

Let U denote the unit disc in C, i.e.
U={z€C: |z <1}.

Then OU = T = R/27Z = (—n,n]. Whenever convenient, we identify T
with the interval (—m,7].

The Dirichlet problem is the following: Given a function f € L!(T), find
a function u which is harmonic in U and such that u = f on T. As we
shall see below, this question makes sense if f € C(T). If we only assume
that f € L'(T), this is a typical example where one has to be very careful
with the meaning of the condition u = f on T (see the results of Fatou and
Littlewood below).

Let P(z,) be the Poisson kernel in U,

Pl f) = . 1l

T2 |z — B2
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where z € U and 8 € T. It is readily checked that P(z, () is the real part
of the holomorphic function

1 e + 2
U =

so that P(-, /) is harmonic in U.

The Poisson integral (or extension) Pf of f € L'(T) is defined, for z € U,
by

PI) = | P(.8)1(6) db.
Note that, if we write z = (1 — £)e?, then
Pf(z) = Ky * f(0),
where the convolution is taken in T and

1 @2t
Kt(QO) - % ’ |(1 _ t)ei(p _ ]_|2

For positive functions f and g, we say that f < g if f < ¢g for some constant
c>0.If f <gandg < f, we say that f ~ g. For later use, we note that

Ki(p) ~ Li(p) = m

The Poisson extension Pf defines a harmonic function in U. Moreover,
we have the following classical result (solution to the continuous Dirichlet
problem):

Theorem (Schwarz, [10)). If f € C(T), then Pf(z) — f() as z — € and
zeU.

A natural question is what happens when the boundary function f is less
regular, e.g. when f € LP(T). First of all, of course, the best thing one
can hope for is convergence at, at most, almost every boundary point (i.e.,
convergence fails on at most a set of measure zero). However, it turns out
that a.e. convergence may very well fail if the approach to the boundary is
“too tangential”. To guarantee a.e. convergence, one has to approach the
boundary with some care, in the sense of staying within certain approach
TegionSs.
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Definition 1. For any function h : Ry — R, we define the (natural)
approach region, determined by h at € € T, by

Ap(0) ={z €U :|argz—0| < h(1 —|z|)}.

If h(t) ~t, as t — 0, we say that A,(0) is a nontangential cone.

There are also other kinds of approach regions. Maybe the most interesting
are those of so-called Nagel-Stein type, being given by means of a “cone
condition” and a “cross-section condition”. We shall not consider such ap-
proach regions, but will instead focus only on those given in Definition 1.
Theorem (Fatou, [6]). Let h(t) = O(t). Then, for all f € L'(T) one has
for almost all @ € T that Pf(z) — f(6) as z — € and z € Ay(6).

In this case, to relate to what we said earlier, the condition u = f on T
should be interpreted as a nontangential limit.

Let us sketch a proof of Fatou’s result:

Proof. To keep the proof as simple as possible, assume that h(t) = ¢. As
we shall see later, in Section 3, it is now sufficient to see that the maximal
operator given by

Mf(z) = sup |Pf(2)l,
|z|>1/2,| arg z—0|<t

is of weak type (1,1). Note that

Mf(z) S sup 7L+ [f](6),
t<1/2,|nI<t

where 7,, denotes translation, i.e. 7,F(§) = F (6 — n) for any function F.
Since |n| < t, it is easily seen that

TnLt(<P) ~ Lt(‘P)'

Now, since ||L¢||1 < 1 uniformly in ¢, it follows by standard results (see [14],
§2.1) that

Mf(z) S Murf(0),
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where Mg denotes the ordinary Hardy-Littlewood maximal operator, and
the weak type estimate follows, as desired. O

Littlewood [7] proved that Fatou’s theorem, in a certain sense, is sharp:

Theorem (Littlewood, [7]). Let v C U U {1} be a simple closed curve,
having a common tangent with the circle at the point 1. Let g be the rotation
of v by the angle 0. Then there exists a bounded harmonic function f in U
with the property that, for a.e. @ € T, the limit of f along g does not exist.

Littlewood’s proof was not elementary. He used a result of Khintchine con-
cerning the rapidity of the approximation of almost all numbers by rationals.
Zygmund [15] gave two new proofs, one of which was elementary. The other,
which was considerably shorter, used properties of Blaschke products.

Since then, Littlewood’s result has been generalised in a number of direc-
tions. Aikawa [1] and [2] sharpened the result considerably. A discrete
analogue was given by Di Biase, [5]. In the last paper [MB4], we present
a new proof of Aikawa’s result: If the function h : Ry — Ry is such that
Ap(0) is a tangential approach region (i.e. h(t)/t — oo as t — 0T), there
exists a bounded harmonic function in U which fails to have a boundary
limit along A (6) for any 6 € T.

For further results on Fatou type theorems and related topics, the book [4]
by Di Biase is recommended.

3. POISSON EXTENSIONS WITH RESPECT TO POWERS OF THE POISSON
KERNEL

For z = x + iy define the hyperbolic Laplacian by

1
Lo = (1 - |=)2(8% + 82).

Then the A\-Poisson integral

u(z) = Pxf(2) = / P(z, B M2 f(8)dB, for A € C,
T
defines a solution of the equation

Lou= (A —1/4)u.
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In representation theory of the group SL(2, R), one uses the powers P(z, §)it1/2,
a € R, of the Poisson kernel.

From now on we shall deal only with real powers, greater than or equal to
1/2, of the Poisson kernel, i.e. A > 0.

It is readily checked that
Py1(z) ~ (1 - |2/

as |z| = 1if A > 0, and that

Py1(z) ~ (1~ [2]) /2 log -

1—|z]

as |z| — 1. To get boundary convergence we have to normalise Py, since
Py1(z) does not converge to 1. If one considers normalised A\—Poisson in-
tegrals for A > 0, i.e. P)f(z) = P\f(z)/P)\1(z), the convergence properties
are the same as for the ordinary Poisson integral. This is because the ker-
nels essentially behave in the same way. However, it turns out that the
operator Py has unique properties in the context of boundary behaviour of
corresponding extensions. A somewhat vague explanation is that this is due
to the logarithmic factor in Py, which is absent in Py for A > 0.

If f € C(T) then Pyf(z) — f(#) unrestrictedly as z — € for all € T,
just as in the case of the Poisson integral itself. This is because Py is a
convolution operator, behaving like an approximate identity.

Theorem (Sjogren, [11]). Let f € LY(T). For a.e. @ € T one has that
Pof(z) = f(0) as z — €¥ and z € Ap(0), where h(t) = O(tlog1/t) as
t—0.

This result was generalised to LP, 1 < p < oo, by Ronning [9]:

Theorem (Ronning, [9]). Let 1 < p < oo be given and let f € LP(T). For
a.e. 0 € T one has that Pof(z) — f(0) as z — € and z € Ap(0), where
h(t) = O(t(log1/t)?) ast — 0.

RoOnning also proved that Sjogren’s result is the best possible, when the
approach regions are given by Definition 1 and A is increasing, and that in
his own theorem for LP, the exponent p in h(t) = O(t(log1/t)P) cannot be
improved.
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The method used to prove these theorems was weak type estimates for
the corresponding maximal operators. The continuous functions, for which
convergence is known to hold, are dense in LP, so the results follow by
approximation.

The case of f € L* was (thought to be, see below) a deeper question, basi-
cally because the continuous functions do not form a dense subset. However,
using a result by Bellow and Jones [3], Sjogren [12] managed to determine
the approach regions:

Theorem (Sjogren, [12]). The following conditions are equivalent for any
increasing function h: Ry — Ry :

(i) For any f € L*(T) one has for almost all @ € T that
Pof(z) = £(0) as z — € and z € Ap(6).
(43) h(t) = O(t'=%) ast — 0 for any € > 0.

The content of paper [MB1] is the following result for LP»*° (weak LP):

Theorem. (Brundin, [MB1]). Let 1 < p < oo be given. Then the following
conditions are equivalent for any function h: Ry — Ry :

(1) For any f € LP**°(T) one has for almost all @ € T that

Pof(z) = f(0) as z — e and z € Ar(9).

h(s)

.. o0 _ ___"\J)
(i) > _k—o Ok < 00, where o = SUPy_ sk (o sk—1 SHoa(1/5))7 "

Clearly, (i7) is slightly stronger than the condition h(t) = O(t(log1/t)?)
appearing in Ronning’s LP result. The proof of the LP>*° result above follows
the same lines as Sjogren’s proof for L®, in the sense that it relies on a

(e eb))

“Banach principle for LP»>°” which is established in the paper.

In paper [MB2] we give a new proof for the LP case, 1 < p < oco. It
is considerably shorter and more straightforward than the earlier proofs.
Also, the L* case is proved without using the Banach principle. The key
observation is that one part of the kernel, which previously was thought
to be “hard”, actually is more or less trivial. In the last section of paper
[MB2], the L™ case is generalised to higher dimensions (polydiscs).

Paper [MB3], which contains what should be considered our main results,
deals with specific classes of Orlicz spaces. The point is to get an insight in
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the difference between the approach regions for LP (finite p) and L™ (note
that the approach regions for LP are optimal, whereas no optimal approach
region exists for L°).

Orlicz spaces generalise L? spaces. One simply replaces the condition [ |f[? <
oo by

[ s <o,

for some “reasonable” function ® : R, — R, . Here ® should be increasing
and convex, and ®(0) = ®'(0) = 0. The space defined depends only on the
behaviour of ®(z) for large z.

In general, the integral condition defining our Orlicz space does not give a
linear space of functions. But with a few modifications, which we omit here,
we actually get a linear space.

The first class of Orlicz functions ® treated is denoted by V. It consists
basically of functions ® for which M (z) = log (®'(z)) grows at least poly-
nomially as £ — oo. The precise growth condition imposed is given by

M(2
lim inf (22)

Lm In M(.’L‘) =mg > 1.

This implies that ® itself grows at least exponentially at infinity, i.e. we are
in some sense closer to L* than to LP. A typical example is ®(z) ~ e” for
large .

The other class we consider is denoted A. It consists basically of functions
® whose growth at infinity is controlled above and below by power functions
(polynomials). Here, the precise growth condition is given by

z®"(z) )

'(z)
uniformly for > z( (some zy > 0). A contains, for example, functions of
growth ®(z) ~ zP(log (1 + |z|))® at infinity, for any p > 1 and o > 0. The
Orlicz spaces related to A are closer to LP than to L.

The following two theorems are proved:

Theorem. (Brundin, [MB3]). Let ® € V be given. Then the following
conditions are equivalent for any function h: Ry — Ry :
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(i) For any f € L® one has for almost all § € T that Pof(z) — f(6)
a.e. as z — € and z € Ay(6).
M (C log1/t

logg(t))
— o0 ast— 0 for all C > 0, where g(t) = h(t)/t.
0 (t) = ht)/

(id)

An example would be ®(z) ~ €**, for a > 0, i.e. M(x) ~ 2% Tt is easily
seen that here condition (i%) is equivalent with

log g(t) = o ((log 1/8)2/*V)

so that, expressed in a somewhat unorthodox way,

h(t) = texp (0 ((log l/t)a/(a+1))).

Clearly, no optimal approach region exists.

Theorem. (Brundin, [MB3]). Let ® € A be given. Then the following
conditions are equivalent for any function h: Ry — Ry :

(i) For any f € L® one has for almost all § € T that Pof(z) — f(0)
a.e. as z — € and z € Ay(6).
(13) h(t) = O(t®(logl/t)), ast — 0.

The natural example here is ®(z) = zP, p > 1. Condition (i) is then
equivalent with Ronning’s LP condition.

The key proposition to prove these results could be thought of as an Orlicz
space substitute for Holder’s inequality. It is formulated and proved in
[MB3].

It is worth noting that optimal approach regions exist in the case the bound-
ary functions are in LP, 1 < p < oo, and in L®, where ® € A. For LP»>®, [*®
and L%, where ® € V, the conditions on & for a.e. convergence do not yield
an optimal h. Given an admissible approach region, in these cases, one can
always find an essentially larger region which is also admissible. Why is
there a difference? It is reasonable to believe that the difference has to do
with the fact that the “norms” in the latter spaces are not given by simple
integral conditions.
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4. ALMOST EVERYWHERE CONVERGENCE AND MAXIMAL OPERATORS

In this section we shall discuss the concept of almost everywhere convergence
and how it is related to maximal operators.

Let M = M(T) denote the set of Lebesgue measurable functions on T.
Assume that we are given a sequence of sublinear operators Sy, : A(T) — M,
where A(T) is some normed subspace of L'(T) (e.g. A(T) = LP(T)). We
say that S,f converges almost everywhere (w.r.t. Lebesgue measure m) if
Snf(6) converges for a.e. @ € T. This is equivalent to

m (E)\) = 0’
for all A > 0, where

E\(f) = {9 €T : limsup [Snf(0) — Smf(0)] > )\} .

n,m—00

Define
S*f(0) = sup S, f(0)|

n>1
and let
EX(f) ={0 €T : ($7f)(6) > A}.
S* is referred to as a mazimal operator. Somewhat vaguely, one could say
that maximal operators are obtained by replacing limits by suprema of the
modulus.

Note that E)(f) C E;/Q(f). Now, assume that g € A(T) is some function
for which S,g — g a.e. as n — oo. Then E)\(f) = E\(f —g) C EfVQ(f -9).
Thus, it follows that

m(Ex(f)) < m(E5)o(f —9))-

We are interested in proving a.e. convergence for all functions f € A(T),
where A(T) is equipped with a norm which we denote by || - || 4.

In order to deduce that m (E)(f)) = 0 for all A > 0, when f € A(T), it
now suffices to have some weak continuity of S* : A(T) — M at 0, and to
be able to approximate any f in the norm || - |4 with a “good” function g.
We sum up this discussion in a theorem:

Theorem. Let A(T) C L'(T) be a function space, equipped with a norm
| - lla. Assume that the following two conditions hold:
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(i) §* : A(T) — M(T) is weakly continuous at 0, i.e. m (E3(f)) =
C(N)o(1) as ||flla = O for all f € A(T) and some function C :
R, - Ry,

(17) There ezists a set D(T) C A(T), dense in A(T), such that, for all
g € D(T), S,g(0) — g(8) a.e. as n — o.

Then, for all f € A(T), S,f(0) — f(0) a.e. as n — occ.

To be specific, if A(T) = LP(T), part (z) follows if one for example establishes
a weak type (p,p) estimate for S*. In our case, later on, the continuous (or
bounded) functions on T will serve as the set D(T).

It should be pointed out that our results concern families of operators Si,
t € (0,1), and not sequences. However, the difference is slight and the
above reasoning works just as well for families (as ¢ — 0) as for sequences
(as n — 00).

A natural question is what one loses by studying the maximal operator in-
stead of the sequence itself. Remarkably enough, as was proved by Stein [13]
and by Nikishin [8], in a multitude of cases one does not lose anything. Con-
tinuity of the the maximal operator is quite simply often (without going into
any details) equivalent with a.e. convergence.

5. AN EXAMPLE

In this section, we prove a result for fractional Poisson extensions of LP
boundary functions in the half space. Thus, the setting but also the methods
that we shall use are a bit different from those in the papers [MB1], [MB2]
and [MB3]. I acknowledge the help received from Yoshihiro Mizuta, who
came up with the idea and a brief sketch of the proof.

Let P;(z) denote the Poisson kernel in the half space
R = {(z,t) e R**! : £ € R" and ¢ > 0},

that is
t

(t2 + |$|2)(n+1)/2’
where ¢, is the constant determined by

/n Py(x) do = 1.

P(z) =cy -
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We fix an open, nonempty and bounded set 2 C R™. In the unit disc we
consider the square root of the Poisson kernel, but in higher dimensions it
is the niﬂzth power of the Poisson kernel that exhibits special properties.
Therefore, for f € LP(R"), let

(Pof) (1) = / Py(z - y)7 £ (y) dy.

n

We normalise the extension, with respect to €2, by

Ponent) = iy

Let h: Ry — Ry be given and let xp € 2. We define the natural approach
region at zg, determined by h, to be

An(zo) = {(z,t) € R : \/|z — z0|2 + 2 < h(2)}.

1/p
Ap(f,r,w)=<rin /, )If(y)lpdy> ,

Lscp)(Q) ={reQ:A,(f - f(z),r,z) = 0 as r — 0}.

We define

and

Note that, if f € LP(R"), then [\ Lgcp) ()] = 0 (a.e. point is a Lebesgue
point).

Theorem. Let 1 < p < oo be given and assume that h(t) = O(t(log 1/t)P/™)
as t — 0%. PFurthermore, let f € LP(R™) be given. Then, for any zo €
Lgcp)(Q) (in particular, for a.e. xog € Q) one has that (Pof)(z,t) — f(xo) as
(z,t) = (z0,0) along Ap(zp).

Proof. We shall prove the result directly, i.e. without using estimates of
maximal operators.
As (z,t) = (z0,0) € Q x {0}, it is easy to see that

(Poxe) (@, ) ~ t741 log 1/t.

Now, let f € LP(R") and z¢ € Lscp )(Q) be given. We may, without loss of

generality, assume that f(z) = 0. Furthermore, we assume that (z,t) €

Ap(zg). For short, let r = \/|z — zo|? + t2. We write
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(Pof)(z,t) = /B( ,, P =0 1) dy

+/ Py(z — )7 £ (y) dy
B(m0,27‘)c

= Ii(z,t) + L(x,t).

By using Holder’s inequality, we obtain

1/q 1/p
_n_ dy
T T Ly S
| 1( )| ( ly—zo|<2r (t_|_‘$_y|)nq) ( |y—a:0|<2r| ( )|

dy 1/q
s i ([ o)A, 2nm0)
( |z—y|<3r (t + |"I" - y|)nq> P

S (/P -t - Ay(f, 2, mo).

Furthermore,

o0

S— P

B s Ry [ S —
’ B(z0,26+17)\ B(wo,2kr) (t+ |Zo — ¥])

k=1
00

1S (@hr) / ) dy

k=1 B($0,2k+17‘)

N

(o]
< Ry AL(S, 25 ).
k=1

We now note that

2k+2y

1
Al(fa 2k—|—1,’,,’ :L'O) ,S / Al(f,S,Z()) ds
2

2k kt1p

2*¥ir Al(f7 S, .’B())

Lk+1r S

174N

ds.
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Invoking this in the estimate above, we obtain

o) § Z .

5 tnL-l-l/ Al(f,S,.’E()) ds
T

P Ay o)

S
< /oo Ailf,20) 4
t S
Thus, it follows that
1
< -
(PN S gy (15 (0 + 12 )
1 © Ai(f,s,xo)
< ) n/p 21 9 20/
S a2 + [ AL g

Now, using the fact that 7 < h(t) < t(log1/t)P/", we get

! /OOS_IA (f,s,20)ds
logl/t ] 1\ 5,40

[(Pof)(z,t)] < Ap(f,2r,m0) +

It is clear that

/°° A1(f,s,z0) ds
t

S

is a convergent integral, since

Al(fa S, 3:0)

S

s~ s £l
s f |l
by Holder’s inequality.

Now, as t — 0 we also have r — 0. Since f(z¢9) = 0 and since we have
assumed that zg € Lsfp )(Q) (and thus that zg € Lgcl)(Q)), it follows that

(Pof)(z,t) = 0 = f(z0),

as (z,t) — (xo,0) along Ap(xg). This concludes the proof. O
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6. OPEN QUESTIONS

6.1. The unit disc. A more complete picture of the convergence results for
the “square root operator” in the unit disc would be desirable. The best one
could hope for is a unified convergence theorem, for all function spaces (of
some particular but general kind), where the convergence condition is given
in terms of the norm on the space. This is probably a very hard problem,
and most likely even impossible. However, more partial results would be
interesting in their own right, to complete the picture. For instance, results
for BMO(T) and for classes of Orlicz spaces, between V and A, would
be interesting. A typical example is given by the function ®(z) ~ ellogz)?
where p > 1. Attempts have been made to characterise the approach regions
for spaces related to such functions, but without success.

6.2. Higher dimensions. Results for polydiscs have been obtained by
both Sjogren and Rénning, for LP boundary functions. A natural questions
is what happens for Orlicz spaces, weak LP and so on. The results are of
“restricted convergence” type, i.e. the speed with which one approaches the
boundary should be approximately the same in all the discs. Whether or not
this is necessary is not known. The Russian mathematicians Katkovskaya
and Krotov claim that they have proved that a certain maximal operator
is of strong type (p,p), which immediately would yield unrestricted con-
vergence. However, the result has not been published. Another natural
generalisation is to replace the unit disc with a symmetric space. Results
have been obtained for rank 1 spaces, but higher rank generalisations are
still a relatively unexplored field.

6.3. Littlewood type theorems. It would be nice to replace the negative
results “not a.e. convergence” with “everywhere divergence”. This is done in
the paper [MB4] for the ordinary Poisson integral and bounded boundary
functions. An attempt was made to transfer the same machinery to the
square root case, but it failed. In this sense, the normalised square root
operator behaves completely differently from the ordinary Poisson integral.
A new approach is necessary.

6.4. Weakly regular boundary functions. One could increase the reg-
ularity of the boundary functions (e.g. by transforming L in some suitable
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way) and sharpen the convergence. The natural thing here is to replace
Lebesgue measure with some capacity or Hausdorff measure, and obtain
corresponding quasi everywhere results, which are stronger than almost ev-
erywhere.
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APPROACH REGIONS FOR THE SQUARE ROOT OF THE
POISSON KERNEL AND WEAK I’ BOUNDARY
FUNCTIONS.

MARTIN BRUNDIN

ABSTRACT. Let Pof(z) = [, +/P(z,B8)f(e”®)dB for f € L'(T), where
P(z,[) is the Poisson kernel in the unit disc. In this paper we consider
the convergence properties of the normalised operator Pof/Pol. We
give a characterisation of the natural approach regions along which one
has almost everywhere convergence for weak LP boundary functions,
1<p<oo.

1. INTRODUCTION

This paper is divided into four main sections. In this one, Introduction,
we introduce the problem and discuss related results. The essence of the
second section, Preliminaries, is to prove a converse Banach principle for
LP*>° needed to prove the main result, Theorem 2, which is done in Section
3. Section 4 concludes the paper with a brief discussion of open questions.

Let P(z, ) be the standard Poisson kernel in the unit disc U,
1 1—2?
21 |z —etf|2
where z € U and g € T = R/27Z = 0U. Note that
1 e’ + 2
P(z,8) = — Re [ 52
) =5 e (52 ).

eb — 2

P(z, )

so the mapping z — P(z,3), being the real part of a holomorphic function,
is harmonic.

1991 Mathematics Subject Classification. 42B25, 42A99, 43A85.
Key words and phrases. Square root of the Poisson kernel, approach regions, almost
everywhere convergence, maximal functions.
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In what follows, we shall be concerned with functions defined on T. In that
context, whenever convenient, we identify T with the interval (—m, 7], e.g.
we write f(0) instead of f(e¥).

Now, let
Pf(z) = /T P(z,8)1(8) dp,

the Poisson integral of f € L!(T). Then, if f € C(T) c LY(T), Pf(z) —
f(0) as z — €. This was shown in 1872 by Schwarz [7], and it is considered
to be a well known result today.

For any function h : Ry — Ry let
(1) Ap(0) ={z €U :|argz—0| < h(l —|z])}.

We refer to Ap(6) as the (natural) approach region determined by h at
0 € T. This is the only form of approach regions that we will be concerned
with, throughout the thesis. However, we point out that there are other
approach regions, defined in different manners. The Nagel-Stein approach
regions are examples of this (see [5]). The word “region” is usually used
only when the set (region) in question is open. However, we shall use it in
a wider sense, with no openness assumptions.

Now, if we only assume that f € L'(T), the convergence properties are
different than in the case of continuous functions. If h(t) = at, a > 0, then
Pf(z) — f(0) ae. as z — € and z € A,(0), i.e. the convergence is non-
tangential. This is proved by showing that the corresponding maximal op-
erator is dominated by the Hardy-Littlewood maximal operator, which is of
weak type (1,1). Then the result follows via approximation with continuous
functions. This result was first shown by Fatou [3] in 1906. Littlewood [4]
proved that the theorem, in a certain sense, is sharp.

For a more complete treatise on the concepts and theorems mentioned so
far, see Di Biase [2].
For z = x + iy let
Lo = (1~ oP2(2 + ),
the hyperbolic Laplacian. Then

u(z) = Prf(z) = /T P(z,B)M2f(B)dB, for A >0,



defines a solution of the equation

Lyau = (A —1/4)u.

The powers P(z, ﬁ)io‘“/ 2 of the Poisson kernel are used in connection with
representation theory of the group SL(2,R).

One can show that
Py1(z) ~ (1—|2))"/*™
if A > 0, and that

1
1—|z|’

Pyl(z) ~ (1 — |2)/? log

where f ~ ¢ means that there exists a constant ¢ > 0 such that ¢! <
f/g < c. This thesis is concerned with convergence properties of the square
root of the Poisson kernel (A = 0) and boundary functions f € LP**° (weak
LP). To get boundary convergence we have to normalise Py, since Pyl(z)
does not converge to 1:

_ PRf(z)

We point out that if one considers normalised A—Poisson integrals for A > 0,
i.e. Prf(z) = P\f(z)/P\1(z), the convergence properties are the same as for
the ordinary Poisson integral. This is because the kernels behave essentially
in the same way.

Pof(z)

If f € C(T) then Pof(z) — f(6) unrestrictedly as z — € for all § € T,
just as in the case of the Poisson integral itself. This is because Py is
a convolution operator with a kernel being an approximate identity in T.
Moreover, convergence results are known for f € LP(T), 1 < p < oco. The
case p = 1 was solved by Sjogren [8]:

Theorem (Sjogren, 1984). Let f € L'(T). For a.e. § € T one has Pof(z) —
f(0) as z — € and z € Ay(0), where h(t) = O(tlog1/t) ast — 0.

This result was generalised to LP, 1 < p < oo, by Ronning [6]:
Theorem (Ronning, 1992). Let 1 < p < oo be given and let f € LP(T).

For a.e. 0 € T one has Pof(z) — f(6) as z — € and z € Ax(0), where
h(t) = O(t(log1/t)?) as t — 0.
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Ronning also proved that Sjogren’s result is best possible, when the ap-
proach regions are given in the form (1) and h is increasing, and that in
his own theorem for LP, the exponent p in h(t) < t(log1/t)P cannot be
improved.

The method used in the proof of Ronning’s result was a weak type esti-
mate for the corresponding maximal operator. The continuous functions,
for which convergence is known to hold, are dense in LP, and a standard
approximation argument together with the weak type estimate then proves
the theorem.

The case of f € L* turned out to be different. Since the continuous func-
tions are not dense in this space, the weak type estimate approach would
be inadequate. However, using a result by Bellow and Jones [1], Sjogren [9]
managed to determine the approach regions:

Theorem (Sjogren, 1997). The following are equivalent for any increasing

function h: Ry — Ry
(1) For any f € L*®(T) one has for almost all @ € T that
Pof(z) = f(0) as z — € and z € Ap(6).

(i3) h(t) = O(t'¢) ast — 0 for any € > 0.

Actually, the assumption that h should be increasing is never invoked in
the proof. Thus, this result determines all admissible approach regions for
L, when given in the form (1). Note also that these approach regions
are strictly wider than the ones in the case of finite p (as anticipated, since
L>* C L for all p > 1).

Basically, the Bellow-Jones result for L™ states that a.e. convergence is
equivalent to continuity of the maximal operator at 0, when restricted to
the unit ball in L, in the topology of convergence in measure. Thus, what
Sjogren had to show was that if || f|lcc < 1 then for all e > 0 and all Kk > 0
there exists ¢ > 0 such that

[l <0 = {0 eT: Mf(0) >e}| <k,

where M denotes the relevant maximal operator. (It is easy to see that, in
the unit ball in L*°, the topology of convergence in measure is equivalent
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with the L!-topology.) This led to a kind of optimisation problem, where
the constraint basically was || f||co < 1.

As in the case of L, the continuous functions are not dense in LP*°. To
solve this, we shall extend the Bellow-Jones result to cover functions in
LP*°_ and by doing so we may adopt the approach used by Sjogren. The
significant difference, of course, is that LP>*° contains significantly “wilder”
functions than L* does.

Our main result, Theorem 2, shows that a convergence result similar to
Sjogren’s holds in case of LP**° boundary functions. We shall prove that
Ap(0) is an admissible approach region for almost every 6 € T if, and only
if,

o0

(2) ch2(17p)k < 00,
k=0

where ¢y, = supgi-1. <or h(27%)2557 1.

We conclude this section with a couple of equivalent ways of writing the
series condition (2).

First of all, for 26~ < s < 2F we have 2(-P)k  g1=P_ In other words, if
we substitute s'~? for 20-P)% we may move it inside the supremum defining
ci- In that way we get an equivalent condition for the admissible approach

regions:
o
de < 00,
k=0
where
dp, = sup h(27°%)2%°s7P.
2k71§5§2k

Secondly, if we let 0 = 27° we may rewrite dj as

h(o)

d ~ su —_—.
& P i o(logl/o)P

2-2F <5<

With this at hand it is easy to see that if we let h(t) = t(log1/t)? we have
a.e. convergence if, and only if, ¢ < p. The interesting feature here is the
strict inequality, since it reveals that we do not have convergence along
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Ronning’s LP-regions. Note that convergence, when ¢ < p, follows directly
from the inclusion LP-*° C L9 together with Ronning’s result.

Finally, note that, as in the case of L* boundary functions, there is no best
possible (i.e. largest) approach region in case of boundary functions in LP:>°.

2. PRELIMINARIES
We denote weak LP(T) by LP**®°, 1 < p < oo, with quasi-norm

11, = (supaasta) ) "

a>0

where A\f(a) = [{z : |f(z)| > a}|, | - | denoting Lebesgue measure. It follows
that on T, endowed with Lebesgue measure, we have the inclusions

LP C IP*® c L4

for 1 < g < p < co. However, L1'*® ¢ L'. That is, L1'® contains functions
which are not integrable, and thus we assume that 1 < p < oo in what
follows.

Note also that L>° C LP:*°. This means that we can expect smaller approach
regions for LP**° than for L°°.

We point out that for f,g € LP»**° we have [f + g], < 2([f]p + [g]p)- The
constant 2 cannot be replaced by 1, so the ordinary triangle inequality fails.

Let Bpoo = {f € LP** : [f], < 1}, the unit ball in L, and let M denote
the set of all measurable functions on T. Endow B, ., and M with the
topology of convergence in measure, given by the metric

1B —e(B)
0= | 7B — g8

f,9 € M. The metric d is induced by the “norm” p defined by
£ (B)]
n=| s,
D= oo

f € M (p is not a norm, since it fails to be homogeneous, but we still refer
to it in this way in lack of better terminology).

Lemma 1. For f,g € By, o we have d(f,g) < ||f — g|l1. Moreover, for all
e > 0 there exists a 6 > 0 such that d(f,g) <d§ = ||f —gl1L <e.



Proof. The inequality d(f,g) < ||f — gl is trivially true.
To prove the second statement let € > 0 be given and let ¢ = f — g. For
A > 0 fixed we have that

{z:]e(@)] > a} ={z: a <|pz)] < A} U{z: [p(z)| > A} C

CA{z:lp@@)|/(1+ o)) > /(1 + A} U{z: |p(z)] > A}.

Since [p], < 2([f]p + [g]p) < 4, we get the estimate

/Iw(m)ldﬁv = /Ooo)\w(a)da

A
< / Mo(a)da+C- AP
0

A
a 1—
< — . P
< /0 Mo (o) dac+ ANg(4) + O A
o0
< (1+4) Ao (a)da+C-A"P
0 14|
= (1+A)d(f,g)+C-A"?.
Now take A such that C' - A¥ P < /2, and then take § = SATAT- O

Lemma 2. C(T) is dense in (Bp o, d).

Proof. By Lemma 2, we have that d(f,g) < ||f — g|l1 for any f,g € B} .
Since C(T) is dense in L', the lemma follows. O

Theorem 1 below is a slightly modified version of Theorem 1 in [1]. The
main difference is that here L™ is replaced by LP:*°.

Theorem 1. Assume that we are given a sequence of operators {Sp}5>,
Sp 1 L™ — M, such that

(1) each Sy : LP»*° — M is sublinear,

(43) the mazimal operator is well defined, that is S* f (x) = supp>1 |Sn f(7)]
is finite a.e. for f € LP*°, and

(i73) S* : (Bp,oo,d) = (M,d) is continuous at 0.
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Then the set E of elements f € By for which (Syf) converges a.e. is
closed in (Bp o, d).

Proof. Let E be the closure of E in (B ,d). It follows that E C By .
Let f € E. We want to show that for all A > 0

{8 €T - limsup|Sp f(B) = Snf(B)] > A} = 0.

We know that |S,v(8) — Smo(B)| < [Spo(B)] + [Smu(B)| < 25%0(f) and
hence, for any g € E, we have

{BeT: liI?n,SnuP‘Smf(ﬂ) — Snf(B)| > A}
=H{BeT: lirfln;up\sm(f —9)(B) = Su(f — 9)(B)| > A}|
< B eT:25(f —g)(B) > A}

{/3 T 531~ 10)(B) > g}‘

Let € > 0 be given. For u € B), o we clearly have

/8
1+ /8

S*u(p)
BeT:Su(B)> A/8 g/ 5B 45 < p(5*u).
i /8] (9eT:5*u(9)>n/8y 1+ S*u(B)
By the continuity of S* at 0 in (B} «,d) and by Lemma 1, we can choose a
d = d(e, A/8) such that u € By, o and |ju|l; < ¢ implies p(S*u) < Ae/(A+38),
and therefore |[{8 € T : S*u(B) > \/8}| < e.

By Lemma 1 again we can choose g € FE such that ||f — g|[y < §. Then
(f —g)/4 € By« and of course ||(f — g)/4||i <. Thus

{pet:sGr-100> g}\ <.

O

The following trivial consequence of Theorem 1 is what we shall make use
of:

Corollary 1. Assume that, in addition to the hypotheses on {Sp}oe; in
Theorem 1, we also have that there is a set D C Bp o, dense in (Bp o, d),
such that lim, o Sy f(x) exists a.e. for each f € D.

Then limy,_, o0 Sy f(z) exists a.e. for all f € LP*°.
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Proof. Let E be the set of elements f € Bp  for which (S, f) converges
a.e. By assumption D C E, D = B, », and by Theorem 1 we have E = E.
Thus F = B, «,. By normalising g € LP>*°, the corollary follows. 0

Lemma 3. Let \g > 0 and 1 < p < oo be given. For g € By let
f(z) = g(z)X1g520)- Then || fll1 < C)\(l)_p, where C' only depends on p.

Proof. Note that A\g(a) < a Plglh < a? for all @ > 0. Consequently
A(a) = {z 1 g(z) > Ao} < ApP for 0 < a < Ag and Af(a) = Ag(a) < a™?
for a > Ag. This yields

Il = /0 M(e) da
A

0 o
= )\f(a)da—l—/ Af(a) da
0 Ao
1— 1
< X p+/ —do
x OF
p 1-p
< — .
< p—1>\0

3. THE MAIN THEOREM

This last part of the thesis is entirely devoted to the proof and some of the
consequences of the main result, Theorem 2.

Theorem 2. Let 1 < p < oo be given. Then the following are equivalent
for any function h : Ry — R, :
(i) For any f € LP*°(T) one has for almost all 6 € T that
Pof(z) = f(0) as z — € and z € Ap(0).
(i) 352, ck2(Pk < 0o where ¢ = SUPgk—1 <5<k h(27%)2%s 1.
3.1. Proof of Theorem 2. We shall prove that (i7) implies (¢) via Proposi-

tion 1 below, and that (¢) implies (¢7) via contraposition. First we introduce
a suitable notation.

If we write t = 1 — |2|, then z = (1 — t)e? and
Pof(z) = Ry * f(0),
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where the convolution is taken in T and

1 t(2—1) 1

V2 (T —t)et? — 1] Pyl(1 —t)

Here § € T = (—m, «]. Since Py1(1—t) ~ +/tlog1/t, the order of magnitude
of R; is given by

Ry(0)

1 1
~logl/t t+ 1]

Ry(0) ~ Q(0)

Since we are only interested in small ¢, we might as well assume that ¢t < 1/2.
Now let 7, denote the translation (or rotation, rather) 7,f(6) = f(6 — 7).
Then the convergence condition () in Theorem 2 above means

lim 7Ry * f(0) = f(0).
t—0
Inl<h(t)

The relevant maximal operator for our problem is

Mo f(0) = sup Pof (2)I-
|arg z—0|<h(1—|z|)
|z|>1/2

Notice that My f(0) is dominated by a constant times
3) Mf(0) = sup 7,Qq*|f[(6).

In|<h(t)

t<1/2
Proposition 1. Assume that condition (i7) in Theorem 2 holds and let
e > 0. Given k > 0 there exists 6 > 0 such that for f € By,

IfllL<é = |{#eT:Mf(O) >e}| < k.

Note that Proposition 1 precisely means that M is continuous at 0 in the
topology of convergence in measure, when restricted to By o,. We can then
apply Corollary 1 to the family of operators f — 7,R; * f, |n| < h(?),
t € (0,1/2). This is not a sequence of operators, but Corollary 1 is easily
extended to families. Thus, the implication (i7) = (i) in Theorem 2 is a
consequence of the proposition.

Proof. (Proposition 1) We may assume that f > 0, without loss of general-
ity. Write

Q(0) = Qu(0)xq10 <2n)r + Q) x{01>2n()) = Qi (6) + QF(6)-
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By letting

M;f(0) = sup 7,Q*f(8),j € {1,2},
|n|<h(t)
0<t<1/2

we get M f < M f+ Msf and hence
{Mf > 8} C {le > 8/2} U {Mgf > 8/2}.

To deal with My f we observe that when |n| < h(t)
1 1
2
0) < .
TQu(6) < logl/t t+41(6 -1
2 1
logl/t t+16|

X{lo—n|>2n(t)}

The last expression is a decreasing function of |#|, whose integral in T is
bounded uniformly in ¢. It is well known that convolution by such a func-
tion is controlled by the Hardy-Littlewood maximal operator My, so that
Msf < CMpyyrf. Since My, is of weak type (1, 1), we obtain

{Maf > e/2}| < Ce7V|flls.

Finally, we consider My f. If M;f(6) > ¢, there exists ¢t € (0,1/2) and
|n| < h(t) such that Q} * f(6 —n) > e. This means that

1 1
: FO—n—@)dp > e
/|go<2h(t) log1/t t+|p| O=n=y¢)dy

We decompose the kernel (¢ + |p|) ™! as

1 1 o0 1
—_— pu— —_— . + - o .
PP T el (#) T;tﬂﬂxw.z ti< gl <amiy ()

2X(7t,t)(90) ad 1
= ot + Z gm—ltX{w=|<p|<2mt}(90)-

m=1

For m € NU {0}, define
Km _ 1 1
t (‘P) = m : 2m—_1tX{<p:|<p|<2mt}((p)a

so that
1 1

log1/t it ||

<Y K@)
m=0
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We then have
o0
Mif <> MMy,

m=0
where
MM™f@) = sup K" * f(8).

| <h(t)
0<t<1/2

For some suitable sequence {j,}5° of positive numbers, with > gy, = 1,
we intend to use the inequality

(4) A, p(e) < Z A sy ¢ (BmE),

m=0
in order to show that M is continuous at 0 in the topology of convergence
in measure.

Let m € NU{0} be given and assume that M (™ f () > e. Then there exists
t € (0,1/2) and |n| < h(t) such that

X(=2mt,2m1) ()
om glog1/z 0N @)dp > e
/w<2h(t) 2m*1t10g l/t f( n (p) ©

If we let A(t) = min{2h(t),2™t} this yields

A(t)
/ f0—n—¢)de >e2™ tlogl/t,
—A(t)

which is equivalent to

(5) fl@)dp > 2™ tlog1/t.

/[enA(t),0n+A(t)]

Let Ay, = supy-vcyco-v+1 A(t), v > 2, and let A = sup,9A,. For j € N
let 7; be the number of v such that 27JA < A, <277t A. Note that, since
limg_,o0 Ay = 0, we have that i; is finite for all j. Let ~v(0) = 0 and for

j=>1let y(j) = ?c:1 Uk-
We write

277A< A, A, . <274

VG DL ) =

ie. vy, for y(j — 1) + 1 < k < v(j), denotes precisely those v for which
277A< A, <2794,
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Choose a maximal family of mutually disjoint open intervals I of lengths
2A(t), witht € [271, 27U U[27"®, 27" W) such that [, f(p)dp >
€2™ 1tlog1/t. Denote the union of these intervals by J;.

We now construct J; recursively: Given Ji for k& < j — 1 choose a maximal
family of mutually disjoint open intervals I of lengths 2A(t), with

te [2_V'y(j—1)+1,2_Vv(j—1)+1+1) U...U 27", 2_V7(j)+1),

disjoint also with Ug;llJi, such that [; f(¢) ¢ > 2™ 'tlog1/t. Denote the
union of these intervals by .J;.

Note that each chosen interval is of length 2A(t) for some ¢. Let N, v > 2,
denote the number of chosen intervals with corresponding values of ¢ in the
interval [27¥,27%*1). Denote their union by I,,.

Let v/ € N be arbitrary and define f = FX{f>ev(log2)/16} -

For 277 < t < 277t we have A(t) < 2™t < 2™7"+1 50 we get

I(F = Hxrlh

/Tf(w)X{fgsu'(log 2)/16} (@) x1, () dp
(ev'(log 2)/16)|1,|

(log 2) N, 2m~v+2¢) 24

(log2) N, 2™~V 2¢)/.

VANV

Furthermore, by (5), we get

Ifxnli > Nye2™ 127" 1og2”
= (log2)N,2™ " ev.
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Combining these two estimates, we get

IFl = > I

v>v
> Y (Il =1 = Hxelh)
v>v!
> CY (Ne2m vty - N2m v 2e)
v>v!

= C Z N, 2™ 2¢(2u — V)

v>v!

C Z N, 2" Yep.

v>u!

Y

This together with Lemma 3 gives

(6) CY N2 ew < |fll < Clev) .

v>v!

Upon dividing the left- and right-hand sides of (6) by v and estimating in
the obvious way, we get

(7) > N2 < %

v>v!
for all v € N, where the constant C' is independent of m.

Let h, = SUPy-v < s<g-v+1 B(s) and note that for 27 <t < 27*! we have
A(t) < 2h,,. Recall that T, is of the form

I, = Uiep) (0 — A(ti), 0 + A(t)),

for some index set E(r) and some mapping i — (6;,t;). For each interval in
1, we have

(0; — A(t;),0; + A(t;)) C (0; — 10h,,,0; + 10h,).

Let
I, = Uiep()(0; — 10hy, 0; + 10h,).
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We claim that {6 € T : M(m)f(H) > e} C U,,ng,,. To prove this, assume
that M(™ f(#) > e. Then there is a t € (0,1/2) and |n| < h(t) such that
(5) holds. Assume that 27% < t < 27¥*1. If § € I, we are done. If not,
the reason must be that [0 —n — A(t),0 — n + A(t)] intersects with some
interval I in Ji, for some k. The point is, however, that I, which is of the
form I = (0 — A(tyr),0y + A(ty)) for some ', by maximality must have
been chosen before the intervals in I,. Thus, by construction, when Ji is
scaled as above it contains 6.

It follows that

®) HM™ f > e} < O3 Ny,

for some positive constant C.

We want to show that the right-hand side of (8) tends to zero as || f||; — 0.
To that end, note first that the assumption ||f||; < d, by the definition of
N, and by (5), forces N, to be zero for v < 2%0, where ko = ko(0) — oo as
0 —0.

If we let a, = N,2™ Yve and b, = 2”‘”(1/6)‘%,,, we get

(9) Y Nh,= ) ab,.

v>2ko v>2ko

The definition of a,, and condition (7) immediately yield that for k& = ko +
1,ky + 2,.. we have

2k 2k
> e <2k Y N2
(10) y=2k—-141 v=2k—-141
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Furthermore,

max b, <2 Mgl sup

2k=141<p<2k

<02 Mgt sup (
2

2k—141<g<2k

(11) <C2 ™' sup (

2k—141<g<2k

<2 me! sup

ZS—ISwSZS

25571 sup  h(t)
2k—141<s< 2k 2-s<t<2—s+1

I 1) )

—s St5273+1 t log ]./t

<u h(z~Hz
b log z

h(z Yz

p2b—1 <peont  108T
<C27™me7l sup  A(279)247E
2k_1§t§2k
< C2 ™Me ey,

where ¢;, is defined in Theorem 2.

By (8), (9), (11) and (10), in that order, we get

(M f > e}

k=ko+1py=2k-141

o0
< C Z 2 Mgy

k=ko+1

ok

> e

v=2k—-141

o
< Q2 Mg Z 2Pk

k=ko
= C27 e PS(ky),
where S(ko) = Y50, k20 7Pk,
By invoking (4) with

9—m/(2p)
Hm = 5~ "oi/n)
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we have that
o0
M) < C-S(ko)e™ 27 uP
m=0
< Ce™?-S(ky).

By assumption S(kg) — 0 as kg — oo (i.e. as § — 0). To sum up, we have
shown that

>‘Mf(5) < >‘M1f(5/2) + >‘M2f(6/2)
< Ce'o+ CePS (ko)
- 0

as 0 — 0. That concludes the proof of Proposition 1. O

Proof. (Theorem 2) We have already shown that (4i) implies (i), as a con-
sequence of Proposition 1.

To prove that (i) implies (i7), assume that (47) is false, i.e. that

o
(12) chZ(l_p)k =00
k=l
for all [. We shall now construct a function f € LP**° that violates (7).

Let € > 0 be given. Assume for the moment that

(13) lim ¢, 2Pk =0,
k—o0
Recall that c; = supgr—1<5<ok h(27%)2%s~L. Thus, for all k € N, we can find
an s € [2¢~1 2%] such that
(14) ck/2 < h(27%%)2%k 51 < ¢

Let tx, = 27°. We shall now construct a subset of T consisting of a number,
ng, of intervals, each of length ¢, and with gaps h(tx), the first of these



18

intervals starting at € = 0. Then we do this again, starting from the point
where we last stopped, but this time with ngy1, tg+1 and h(txy1). We shall
proceed in this way and show that sooner or later this process yields a sub-
set whose endpoint exceeds § = w. Then we start over again, i.e. at 8 = 0,
with the next nyg, tx and h(ty).

We shall do this infinitely many times, and along the way we construct the
function f, which, as we finally shall show, disproves a.e. convergence.

The construction of the subsets of T mentioned above is done recursively:

Construction on level 1:

Let integers I < m be given. For [ < k < m, let s;, € [2¢~!,2*] be such that
(14) holds.

Let ny = [2% (sye) "1 (2%€)!P] (integer part) and recall that ¢, = 275%.

Define 7y, for I < k < m, recursively as 7; = 0 and 71 = 75 +ng(h(tx) +1x).
Now, let

(15) Bl =[m+ (G — D(hte) + te), 7 + (G — 1) (A(t) + t) + t],

1< j<mngand!l <k < m. Note that |E,Jc| = t; and that the distance
between EJ and Ei“ is h(tx) = h(27%F). The length (on T) required for
this construction is therefore > )", ni(h(tx) + tx). By (14) we have

nk(h(tk) + tk) < 2% (SkE)_l(Qk&‘)l_p(h(Q_sk) + 2_Sk)

16
(16) <e P20 Pk (g 45,1,

and by (13) it follows that the terms in (16) tend to zero as k — oc.

Hence, there exists an L € N such that for & > L we have ng(h(tx) +1tx) < 7.
We assume from now on that [ > L.
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Note that condition (13) implies that )z ; h(27°%) converges. Combining
this with (12) and (14), we get

S nklhte) + 1) > (2% (sge) (28e) P — 1)((2 ) +27%)
k=l k=l
2 571)2 (1 p)k Ck — Z _+_2 Sk)
k=l k=l
so that
(17) > " nk(h(te) + k) = oo
k=l

as m — oo. Now, (17) and the fact that ng(h(tx) + tx) < 7 yield the
existence of an m = m(l) such that

(18) m <> g (h(27%) +27%) < 2.

This concludes the construction on level [.

The first time we make this construction we get an [; € N,. l1 > L, and an
m1 = m(ly1) € N such that (18) holds. Let Ej = U?ilEi, L <k < my.
Take fi(6) = spexE, (0) and let

De) =3 fx(6)

k=0l

Given fU), with corresponding values of [ j and m;, we now describe how to
construct £+, Since mj; > L, we can make a new construction on level
lj+1 = mj + 1. This yields an m;11 = m(l;41) and a sequence of functions

{(F)pr - Let f0HD(0) = 7970 £u(6).
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Proceeding inductively, we get a sequence of functions { f (j)}ﬁla f@.T

Ry. Let

o0

F60) = > 190

=1

= Y fx(0).

k=l1

We shall now see that f is an element in LP**°, violating condition () in
Theorem 2. For any k' € Nwe have )", 1 58k < €Y jcpr_s ok < gk -1 <
€Sy, so that

A(swe) < Y |E

K>k —1

e? Y sy l20pk

k>k'—1

Ce™® Z 9Pk

k>k'—1

IN

IN

CePo Pk 1)
C(sge)P.

VANVAN

For small o > 0, o < C say, it is clear that o A\;(«) is bounded. If « is
large, take k' € N such that 28'e < a < 2¥'+1¢. Then, by what we have just
shown, As(@) < Af(2Fe) < C(2Fe) P < CaP. Tt follows that f € LP>.

Furthermore, we have

oo My

{OET:f(0) #0} < DO mty

§=1k=1;

o
< g? Z 3;12(1*P)k’
k=l

which can be taken arbitrarily small by just taking [; sufficiently large,
{6 € T : f(0) # 0} < 7/2 say.
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Let 6 € (0,7) C T be given. The claim is that there exists a subsequence
{tk; }32, of {tx} such that for each ty, there is a z;, € Ap(0) with |zx,| =
1 —tg,, and Pof(2g,) > € > 0, uniformly in 5. When we have shown this we
are done, since then it follows that

limsupPyf(z) > €

z—et?
2€A(0)

for all @ € (0, 7). But that in turn, compared with [{# € T : f(0) = 0}| >
7/2, disproves a.e. convergence.

Consider the construction done on level /;, i € N, above. The set obtained
there was

Let k;,j; € N, [; < k; <m; and 1 < j; < ny, be such that

1 . ity — . . . 1
(19) dist (6, Ey.) liglgnmilglg%kdmt(a’ %)

ie. E,JCZ is the interval closest to 8, among all intervals constructed on level

l;. Note that dist (6, E:) < h(t,)/2.

By (19) and (15) it follows that there exists 7, || < h(tg;)/2, such that
either (6 —n,0 —n + tx,/2) or (0 —n — tx,/2,0 — n) lies completely within
Eiz Assume, without loss of generality, that (6 — 7,0 —n + t,/2) C E,ch,
and let E(0) = (0 —n,0 —n + tg,/2).

Let 2z, = (1 — t3,)e’®=™. Then |zy,| = 1 — t;,, and trivially |0 — (8 — 1)| <
h(tki), S0 zg,; € Ap(0).

We now have

Pof(2k;) = Pofr(2k;)
> Po (51%8XE£@"> (zkz)
> Po (SkiEXE‘(b?)) (2k;)
xe@)(0 —n—¢)
> Cs .5/
ki T (log 1/tki)(tki + |(,0|)

0

_ dop
= Csy,(log 1/t 18/ —
( [k —ty,/2 Uk T |l

Ce.
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This concludes the proof in the case when (13) holds. Note that if (13) does
not hold, we should intuitively face an easier task than above, since then the
divergence of the series ) 2° o cx27P) is even worse than before, meaning
that h is larger. We shall construct a function H : Ry — R} such that for
all @ € T we have Ag(0) C Ap(0), and such that (12) and (13) holds, thus
disproving convergence (as above).

To make this precise let ay = ;21 P)¥ and assume that (13) does not hold.
That is, we have

Oék7L>0,

as k — oo. Now, there exists £ > 0 and a subsequence {ay; }52, C {ak}32y,
where jo > x~!, such that ag; > k for all j > jo. Let

g — 0 if ¢ # k; for all j > jo
i = %if;‘:kjforsomeijo

It is clear that B < a4 for all k¥ € N. Furthermore, limy_,,, 8 = 0 and
Zz‘;o Br = oo.

For each k € N fix an s € [2¥71, 2%] such that (14) holds. Let

B2~ ko=sk—1g, if { — 275 for some k € N
H(t) = . .

0 otherwise
Then H(27%) < ap2P~ k275K~ 15 — (¢/2)2 %55, < h(27°), the last in-
equality by (14), so that H(t) < h(t) for all (relevant) ¢. It follows that, for
all 0 € T, we have Ay (0) C AnL(0).

However, by construction, H satisfies (12) and (13) so we do not have con-
vergence along Ag(6), and consequently not along Ap(0) either. This con-
cludes the proof of Theorem 2. O

4. OPEN QUESTIONS

It is easy to see that the sequence of functions one gets by letting /1 increase
in the definition of f, defined above in order to disprove convergence, also
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disproves continuity of the maximal operator at 0 in the topology of conver-
gence in measure. It is reasonable to believe that this is not a coincidence.
As mentioned in section 1, the Bellow-Jones result [1] for L™ basically shows
that a.e. convergence is equivalent to continuity of the maximal operator at
0. A similar result for LP**° could very well hold and would be interesting
in its own right.

To understand better the significant difference between the approach regions
for LP and the ones for L* one could investigate “intermediate spaces”. Of
course LP"*/ via the inclusions L*° C LP'*° C L9 for ¢ < p, is an example
of such a one. Convergence results for boundary functions in BMO(T) or
suitable Orlicz spaces would certainly be a step along the very same lines.

The author intends to investigate these questions further.

Another generalisation would be to find the Nagel-Stein approach regions
for LP*°. Yet another would be to leave T and consider general symmetric
spaces of rank 1.
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APPROACH REGIONS FOR I’ POTENTIALS WITH
RESPECT TO THE SQUARE ROOT OF THE POISSON
KERNEL.

MARTIN BRUNDIN

ABSTRACT. If one replaces the Poisson kernel of the unit disc by its
square root, then normalised Poisson integrals of L” boundary functions
converge along approach regions wider than the ordinary nontangential
cones, as proved by Ronning (1 < p < o0) and Sjogren (p = 1 and
p = 00). In this paper we present new proofs of these results. We also
generalise the L™ result to higher dimensions.

1. INTRODUCTION

The point of this paper is firstly to present a new and simplified proof for
two theorems of almost everywhere convergence type. The advantage of
the proof, without being precise, is that it reflects that the convergence
results are natural consequences of the norm inequalities that characterise
the relevant function spaces (Holder’s inequality for L), and corresponding
norm estimates of the kernel (associated to the normalised square root of
the Poisson kernel operator). In the papers by Ronning, [6], and Sjogren,
[9], this correspondence is not obvious (even though, of course, present).

P(z, ) will denote the Poisson kernel in the unit disc U,

Pl ) = . 221

21 |z — €ib|?
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2
where z € U and § € OU = R/277Z = T = (—m, 7.

It is well known that P(-, () is the real part of a holomorphic function, and
thus that it is harmonic.

Let
Pi(z) = /T P(z, 8)1(8) db,

the Poisson integral (or extension) of f € L!(T). Poisson extensions of
continuous boundary functions converge unrestrictedly at the boundary, as
the following classical result shows:

Theorem (Schwarz, [7]). Let f € C(T). Then Pf(z) — f(0) as z — €',
zeU.

For less regular boundary functions, unrestricted convergence fails (see the
result by Littlewood below). One way to control the approach to the bound-
ary is by means of so called (natural) approach regions. For any function

h:Ry = Ry let
Ap(0) ={z €U :|argz—0| < h(l —|z])}.

We refer to Ap(0) as the approach region determined by h at § € T. If
h(t) = a - t, for some o > 0, one refers to Ap(f) as a nontangential cone
at § € T. It is natural, but not necessary, to think of h as an increasing
function. It should be pointed out that our approach regions certainly have
a specific shape. For instance, they are not of Nagel-Stein type.

Theorem (Fatou, [4]). Let f € L*(T). Then, for a.e. € T, one has that
Pf(z) = f(0) as z — € and z € Ap(0), if h(t) = O(t) as t — 0.

The theorem of Fatou was proved to be best possible, in the following sense:

Theorem (Littlewood, [5]). Let v C U U {1} be a simple closed curve,
having a common tangent with the circle at the point 1. Let vy be the rotation
of o by the angle 6. Then there exists a bounded harmonic function f in U
with the property that, for a.e. @ € T, the limit of f along g does not exist.

Littlewood’s result has been generalised in several directions. For instance,
with the same assumptions as in Littlewood’s theorem, Aikawa [1], proves
that convergence can be made to fail at any point 8 € T.

In this paper we treat convergence questions for normalised Poisson integrals
with respect to the square root of the Poisson kernel.
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If f and g are positive functions we say that f < g provided that there
exists some positive constant C such that f(z) < Cg(x). We write f ~ g if

fSgandg S f.
Let

Pof(z) = /T VP& B/ (B) dp.

To get boundary convergence, it is necessary to normalise Py, since it is
readily checked that, for |z| > 1/2,

1
P()l(z) ~ \/ 1- ‘Z| log 1—7|2,'|’

which does not tend to 1, anywhere, as |z| — 1. Poisson integrals, with
respect to powers greater than or equal to 1/2 of the Poisson kernel, arise
naturally as eigenfunctions to the hyperbolic Laplace operator. When one
considers boundary convergence properties of the corresponding normali-
sations, it is only the square root integral extension that exhibits special
properties. Normalisation of higher power integrals behave just like the
Poisson integral itself, in the context of boundary convergence. In con-
nection with representation theory of the group SL(2,R), one uses certain
complex powers of the Poisson kernel.

Denote the normalised operator by Py, i.e.

_ Pyf(z)

Pof(z) = Pyl(2)’

Definition 1. If 1 < p < oo let
Sp={h:Ry =R} : h(t) = O(t(log1/t)?) as t — 0},
and let

Seo=1{h:Ry =R, : h(t) =O(t'°) for all € > 0 as t — 0}.

Note that S, C Sco.-

Several convergence results for Py are known, in different settings. We state
a few below:

Theorem. Let f € C(T). Then, for any @ € T, one has that Pof(z) — f(6)
as z — €',
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This result follows if one just notes that Py is a convolution operator with a
kernel which behaves like an approximate identity in T. In the next section
we give explicit expressions for the kernel.

Theorem (Sjogren, [8]). Let f € L*(T). Then, for a.e. § € T, one has that
Pof(z) = f(0) as z = € and z € Ay(0), if h € S.
Theorem (Ronning, [6]). Let 1 < p < oo be given and let f € LP(T). Then,

for a.e. 0 € T, one has that Pof(z) — f(0) as z — € and z € Ay(0), if
h € S, (and only if if h is assumed to be monotone).

The results by Sjogren and Ronning were proved via weak type estimates for
the corresponding maximal operators, and approximation with continuous
functions.

Theorem (Sjogren, [9]). The following conditions are equivalent for any
increasing function h: Ry — Ry :

(1) For any f € L*®(T) one has for almost all @ € T that
Pof(z) = f(0) as z — € and z € Ap(6).
(13) h € Sxo.

In his proof, Sjogren never uses the assumption that h should be increasing.
Thus, it remains valid for an even larger class of functions h. The proof of
this result differs much from the LP case, since one has to take into account
that the continuous functions are not dense in L. Sjogren instead used a
result by Bellow and Jones, [2], “A Banach principle for L*°”. Following
the same lines, the author proved the following (L”*° denotes weak LP):

Theorem (Brundin, [3]). Let 1 < p < oo be given. Then the following
conditions are equivalent for any function h: Ry — Ry

(1) For any f € LP*°(T) one has for almost all € T that

Pof(z) = f(0) as z — e and z € Ap(0).

h(s)

.. o0
(49) Y p=o Ok < 00, where o) = sup,_,k <s<2-2"1 S(log 1/5)P "

In this paper we prove the following theorem, with simpler and different
methods than those of Rénning and Sj6gren.

Theorem 1. Let 1 < p < oo be given and let h : R — Ry be any function.
Then the following conditions are equivalent:
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(1) For any f € LP(T) one has, for almost all @ € T, that Pof(z) — f(0)
as z — €' and z € Ay(6).
(i1) h € Sp.

Obtaining (easily) the result for L™ first, we shall use this to treat the L?
case. As in the proofs of Sjogren and Ronning, we decompose the kernel into
two parts, one “local” and one “global”. The global part is easy. As it turns
out here, the local part is also easy. In previous proofs, rather complicated
calculations were used to prove that the associated maximal operator is
“sufficiently continuous” at 0 (e.g. weak type (p,p) estimates). As it turns
out, however, the local part simply does not contribute to convergence and
can be treated directly (without estimates of any maximal operator).

Later, we generalise the case p = oo to higher dimensions (see section
“Higher dimensional results for L°°”).

2. THE PROOF OF THEOREM 1

Before turning to the proof we introduce the notation that we shall use.
Let t=1-|z| and z = (1 — t)e?. Then

Pof(z) = Re* f(0),
where the convolution is taken in T and

1 12 —1) 1
" Var |- t)e? — 1] Bl(1—¢)°

Ry(0)

Since we are interested only in small values of ¢, we might as well from now
on assume that ¢+ < 1/2. Then Py1(1 —t) ~ v/tlog1/t, and thus the order
of magnitude of R; is given by
1 1
Ri(0) ~Q:(0) = ——— ——.
«(6) ~ Q:(6) logl/t t+16]
Now, let 7, denote the translation 7, f(8) = f(6 —n). Then the convergence
condition (i) in Theorem 1 above means
lim 7,R: * f(60) = f(9).

t—0
In|<h(t)



Let
R:(0) = R} (0) + R} (0)
where

R{(0) = Ry(0)x{01<2n(t)}»

and let Q! and Q? be the corresponding cutoffs of the kernel Q.

Define

(1) Mf(0) = sup 7,Q7F *|f|(6)-
In|<h(t)
t<1/2

Proposition 1. Assume that 1 < p < o0 is given and assume that condition
(#3) in Theorem 1 holds.

(a) For a given f € LP it holds for a.e. 8 € T that
lim 7,Q; * f(9) = 0.
t—0
n|<h(t)

(b) Mf < Mprf, where Myy, denotes the ordinary Hardy-Littlewood
mazimal operator.

Let us for the moment postpone the proof and instead see how Proposition
1 is used to prove the implication (i¢) = (¢) in Theorem 1.

Proof. (Theorem 1, (i1) = (i)) By Proposition 1, part (a), it suffices to
prove that, for almost all § € T, one has
(2) lim 7,R} * f(0) = f(6).
t—0
Inl<h(t)

Note that, if f € C(T), then

lim 7,R: * f(60) = f(9).
t—0
[n|<h(t)

This fact, together with Proposition 1, part (a), and C(T) C LP(T) gives
that (2) must hold for f € C(T). Hence, to establish (2) for any f € L?, it
suffices to prove that the corresponding maximal operator is of weak type
(1,1). But since it is dominated by M, which in turn is dominated by My,
by Proposition 1, part (b), we are done. O
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We now proceed with the proof of Proposition 1. The proof of implication
(4) = (i1) in Theorem 1 can be found in the end of this section.

Proof. (Proposition 1) We start by proving part (b). Since |n| < h(t), we
have that
BQHO) =
e logl/t t+160 — 1 X{|6—n|>2n(t)}
1 1

< - .-
~ logl/t t+6)

which is a decreasing function of #, whose integral in T is uniformly bounded
in ¢. It is well known that convolution with such a function is controlled by
the Hardy-Littlewood maximal operator. Part (b) is thus established.

We proceed now with the proof of part (a), in the case p = occ.

Let € > 0 be given. We have

1 F6-1—9)
QL+ |f|(6) = 7/ A/ Bk 21
QO = T ) ey T 19

< ||f||oo/ dyp
= log 1/t Jii<an t el

s g o).

By condition (44) in Theorem 1, we have that h(t) < Ct' ¢, and we get

limsuanQ% | £1(0) < el flloos
t—0
In|<h(t)
as desired.

Now, assume that 1 < p < oo and that ¢ = p/(p — 1) (where ¢ = oo if
p = 1). Assume also that f > 0, without loss of generality.

Note, first of all, that

1

3 <Cj=—F77+
(3 IQella < Coprooiy
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Write f = f_ + fr, where f_ = fx(s<gy € L*, and where R > 0 is
arbitrary. By (3) and by assumption we have, for ¢ € (0,1/2) and 6 € T,
that

Qb # fr(0) = / Qu) R0 — )
|p|<2h(t)

1 1/p
< - frl)Pd
t1/rlog1/t (/Icp+n—0|52h(t) nl) <,0)
1 1/p
< - Frlo)?d
t1/Plog1/t (/w—els:-xh(t) () w)

1/p
h(t) . 1 P
: (t(logl/t)” 6h(t) /|ga—e|ssh<t> fele) d¢>

1/p
1 v
(Gh(t) /|<p_e|§3h(t) frly) dw) .

For a.e. § € T (Lebesgue points of f}) we have (using Proposition 1, part
(a) for L*>) that

limsup7,Q; * f(0) < limsup7,Q; * f—(0) + limsup7,Q; * fr(0)

t—0 t—0 t—0
[nl<h(t) In|<h(t) [n|<h(t)
< 0+4C- fr(6).

By choosing R sufficiently large, we can make fg(6) = 0 on a set with mea-
sure arbitrarily close to 27 , so part (a) of Proposition 1 is now established
also for 1 < p < oo. O

Proof. (Proof of the implication (i) = (i1)) We assume here that 1 < p <
00, since the results for p = 1 and p = oo are already established by Sjogren'.
Assume that condition (i7) in Theorem 1 is false. We show that this implies
that () is false also.

n section “Higher dimensional results for L>” we give a proof of the case p = oo in
two dimensions, which is actually just a trivial extension of Sjogrens proof.



Assume that
h(t)

4 limsup ——— = o0,
4) o t(log 1/t)P

Pick any decreasing sequence {t;}7°, converging to 0, such that

h(t;)

(5) = Glog 1/6)7

T 00,

as 7 — oo. Let

. RV
file) =t/ " Vog1/t; - (W) “X{lpl<h(t:)}

Now,

A

h(t;) 1 p/(p—1)
Z’/(P_l) 1 1 .P/
2o [ (5)

/(=1 (log 1/ti)pt1—p/(p—1)
ti(log 1/t,’)p,

£l

174N

where the constant depends only on p. It follows that

h(t) _ h(t)
1 =P G 1/mp

By (5) the right hand side tends to co as ¢ — oo. Thus, by standard
techniques, we can pick a subsequence of {t;}, with possible repetitions, for
simplicity denoted {¢;} also, such that

(6) > h(ti) = oo,
1

(7) D illp < oo
1
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Let Ay = h(t1), and for n > 2 let A, = h(t,) + 372 1 2h(t;). By (6) one
has that lim,,_,, A, = oo.

Define (on T) Fj(p) = 7a, fj(¢), and let

FN)() = sup Fj(yp).
Jj>N

It is clear by construction that any given ¢ € T lies in the support of
infinitely many F:s.

Since [FN) (@)]P = sup;> n[Fj(9)]P < 325 n[Fj(9)]F, it follows that

IEME - < 23]

(] 1M8

1fill; = 0

I
=

as N — oo, by (7). Thus, in particular, FV) € LP for any N > 1.

For 8 € T and a given & > 0 we can, by construction, find 7 € N so
that @ € supp (F;) and so that ¢; € (0,&). We can then choose 7, with
[n| < h(t;), so that @ —n = A; mod 2. It follows that

limsup PoF™M((1—)e'®) > lim sup PoFj((1 — t;)e').
10, [n/<h(t) j—00

We have
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log 1/t; tj + ¢l

_ C / file) d
log1/t; Jig|<n(t;) ti + ||
1+1 1
= 204/®Y hm( )“P )dw

o
> 0.

. F:(A: —
PoFj((1—t;)e') > ¢ / 14 —¢) do
lp|<h(t;)

Y

To sum up, we have shown that for any 6 € T one has
limsup  PoFM((1—)e"=) > ¢ > 0.
10, [n|<h(t)

Take N so large so that the measure of {F(V) > Cy/2} is small, and a.e.
convergence to FV) is disproved. O

3. HIGHER DIMENSIONAL RESULTS FOR L%

In this section we prove results for the polydisc U™, with bounded boundary
functions. To simplify, we give the notation and proof for n = 2. The
generalisation to arbitrary n is clear.

We define the Poisson integral of f € L*(T?) to be

Pf(z1,2) = /TQP(Zlazzaﬂlaﬂz)f(ﬁbﬂz)dﬂl dfs,

where

P(z1, 22, b1, B2) = P(21, B1)P(22, B2)-
For any functions h; : Ry - Ry, 4 =1,2, let

(8) Ahl,h2(91a92) = {(21,22) c U2 : |argz,- — 91| < hz(l — ‘Zzl), 7 = 1,2}.

We refer to Ap, p,(61,62) as the approach region determined by hi, ho at
(01, 92) € T2

Let

Pyf(z1,22) = /TFZ V' P(z1, 22,1, B2) f(B1, B2) dB1 o,
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and denote the normalised operator by Py, i.e.

- B

We shall prove the following theorem:

Theorem 2. The following conditions are equivalent for any functions h,; :

Ry 2Ry, i=1,...,n:
(1) For any f € L>®(T™) one has for almost all (61, ...,0,) € T" that

Pof(zl, . Zn) — f(91, . 0n)

as (21, ..., zn) = (01,...,00) and (21, ..., 2n) € Any,. ph, (01,....0n).
(i7) h; € Soo, i = 1,...;n. (For S, see Definition 1.)

4. THE PROOF OF THEOREM 2

We may assume, without loss of generality, that lim;_,o h;(t)/t = oo, j =
1,2.
We shall begin by proving the implication (%) = (%) in Theorem 2.
Let t; = 1 — |zj| and z; = (1 — t;)e’%, j = 1,2. Then
Pof(z1,22) = Ruy t, * f(01,02),

where the convolution is taken in T? and

)_ﬁ 1 52 —1) 1
oy Ve |(L—t)e —1] pi1(1 — )

Ry, +,(01,602

Pél) denoting the square root operator in one variable.

As before, we are interested only in small values of ¢;, so we assume from
now on that t; < 1/2, j = 1,2. Then Po(l)l(l — 1) ~ +/tlog1/t, and thus
the order of magnitude of Ry, ;, is given by

Ry 45(01,02) ~ Qi ,1,(61,62)

B 13[ 1 1
o log 1/t +65]
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Now, let 7, », denote the translation 7, ,,f(61,62) = f(61 — m1,602 — 12).
Then the convergence condition () in Theorem 2 above means

lim Ty e Bty to * [(01,02) = f(61,62).

t1,t2—0
|Wj ‘<h‘j (tj)5-7:172

We are now ready to prove Theorem 2.

Proof. Assume that condition (4¢) holds. We prove that it implies ().
If we let
Ry, 1,(01,02) = Ry, 4,(01,02) + RY, 4, (61, 02)
where
R7(01,02) = Ry, 1,(01,02)x{0,152h, (1), j=1,2} (01, 02),

we claim that

9) lim Tnla'rﬂRtll,tz * f(61,62) =0
t1,t2—0
[nj|<h;(t;),j=1,2

and, for almost all (6;,6s) € T2,

(10) Hm Ty RE g, * £(01,02) = f(61,602).

t1,t2—0
[njl<hj(t;),j=1,2

To prove (9), it suffices to prove that

. 1 _
lim sup T”]l,"]ZQtl,tz * f(017 92) - 07
t1,t2—0

[nj|<hj(t;), j=1,2

where Qtll t, corresponds to Qy, ¢, as R%l +t, corresponds to Ry, ;,. Note that
Qi, 1, is supported in a set where [p;| < 2h;(t;) for j = 1 or j = 2. Assume,
without loss of generality, that |p1]| < 2hq(t1) and observe that we then have

2

1 1
Qi (1:902) < Xgipn <amuan (01:02) | [ 1
j=1

1/t1 tj+ il
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It follows that

Tmsz%l,tQ * | f](01,62)

IN

I£lle [, @by, 2) i i

£ lloo
(log 1/t1)(log 1/t2)

/ depy / dipa
lor|<2hi(t) t1+ 1] Jr t2 + 2|

S o og (b (1) 1),

Let € > 0 be given. By condition (7¢) in Theorem 2, we have that hq(t1) <
Ct} €. Thus,

lim sup Tm,an%l,tz * f(01,02) S ell flloos
t1,t2—0

Inj|<hj(t;),=1,2

and (9) follows.

To prove (10), it now suffices to prove that the maximal operator M, defined
by
Mf(O) = limsup 7y 0 QF 4, * |f1(61,62),

t1,t2—0
|Wj |<h‘j (tj)7]:1a2

is dominated by a strong type (p,p) operator, for some p > 1. Then con-
vergence follows by standard arguments, since the continuous functions, for
which unrestricted convergence holds for Rgl 15, form a dense subset of L”.
Since |n;| < hj(t;), j = 1,2, we have that

21 1

' X{16; —n;|>2h; (¢
jgll‘)gl/tj tj + [0 — [ MU0}

2
To1me Q1 ta (01, 6)

2
< T I S
iy log 1/t +105]

Each factor in the above product is a decreasing function of |f;| whose
integral in T is bounded uniformly in ¢;. Convolution (in one variable) with
such a function is dominated by the Hardy-Littlewood maximal operator, as
is well known. Since, for example, L>® C L? and since the Hardy-Littlewood
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maximal operator is of strong type (2,2), we have that

1 1 1
TT}I,TDQ%,:‘Q *|f|(01502) < IOg]./tQ At2+‘¢2|M1£]%,f(91,02_(p2)d¢27

M) M) £(61,02)

VAN

where M g}J denotes the ordinary (one-dimensional) Hardy-Littlewood max-

)

imal operator in variable j. But, since M S%MSL is of strong type (2,2)
(weak type is sufficient), we are done.

It remains to prove that (i) implies (¢7). The method is similar to that of
Sjogren. Assume that (i7) is false. Without loss of generality, we may as-
sume that there exists ¢ > 0 and a sequence s — 0, such that hi(sg)/s; © —
o0o. We may also assume that

00 l1—¢
Z *k < 0.
= ha(sk)

Let E; C T be the union of at most C/hs(s;) intervals of length s, *,
chosen such that the distance from Fj, to any point in T is at most hq(sg).
If 6, € OFy, it is clear that

. ) C
1 _ 101 1 —t 102) > .
PoxEyxT (( sk)e™, ( Je ~  (log1/sk)(log1/t)
/sllc_a d(Pl / d(pg
o Skter Jrt+|es

v

Ce.

Thus, for any (61,62) € T? we have

sup POXEkxT ((1 — Sk)ei(Hl—m)’ (1 _ t)ei(az—nz)) > Ce.
Inj|<h;(t;),5=1,2

Now, since |Eg| < si_s/hl(sk), we can choose kg so large that the measure
of E = Up>k, By is arbitrarily small. But clearly

limsup  PoxEexT ((1 — y)efOr=m) (1 — tg)ei(ez_m)) > Ce
t1,t2—0
nj|<h;(t;),5=1,2
for each (01,602) € T2. We have shown that a.e. convergence to xgxT along
the region defined by hi and hs fails. This completes the proof. O
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APPROACH REGIONS FOR THE SQUARE ROOT OF THE
POISSON KERNEL AND BOUNDARY FUNCTIONS IN
CERTAIN ORLICZ SPACES.

MARTIN BRUNDIN

ABSTRACT. If the Poisson integral of the unit disc is replaced by its
square root, it is known that normalised Poisson integrals of LP and
weak LP boundary functions converge along approach regions wider
than the ordinary nontangential cones, as proved by Ronning and the
author, respectively. In this paper we characterise the approach regions
for boundary functions in two general classes of Orlicz spaces. The first
of these classes contains spaces L®, having the property L> C L® C L?,
1 < p < co. The second contains spaces L? that resemble LP spaces.

1. INTRODUCTION

Let P(z,¢) be the standard Poisson kernel in the unit disc U,
11—z
21 |z — et?]?

where z € U and ¢ € OU =T = (—m, 7).

P(Z,(p) =

Let

/Pzw @) do,

the Poisson integral of f € C(T). Then Pf(z) — f(6) as z — €%, as was
first shown by Schwarz [12].

1991 Mathematics Subject Classification. 42B25, 42A99, 43A85.

Key words and phrases. Square root of the Poisson kernel, approach regions, almost
everywhere convergence, maximal functions, Orlicz spaces.
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For any function h: Ry — R, let
(1) An(0) ={z€U:|argz—0| < h(l —|z|)}.

We refer to Ay () as the (natural) approach region determined by h at § € T.
Note that, even though we use the word “region”, we have not imposed any
openness assumptions on Ay (6). It is natural, but not necessary, to think
of h as an increasing and continuous function, with h(t) — 0 as t — 0.
Later, we shall let z € U approach the boundary (z — €%) within A (6).
We may think of the function h as a parameter that measures the maximal
admissible tangency a curve along which z approaches the boundary may
have.

If we only assume that f € L!(T), the convergence properties are different
than in the case of continuous functions. Fatou [7] proved in 1906 that if
h(t) = at, a > 0, then Pf(z) — f(0) a.e. as z — €'/ and z € A(6), i.e. the
convergence is non-tangential. To prove this, one establishes a weak type
(1,1) estimate for the corresponding maximal operator. The result then
follows via standard techniques. Littlewood [8] proved that the theorem, in
a certain sense, is best possible:

Theorem (Littlewood, [8]). Let v C U U {1} be a simple closed curve,
having a common tangent with the circle at the point 1. Let g be the rotation
of o by the angle 0. Then there exists a bounded harmonic function f in U
with the property that, for a.e. @ € T, the limit of f along g does not exist.

Littlewood’s result has been generalised, in different directions. For exam-
ple, given a curve g C U U {1} that touches T tangentially at the point 1,
Aikawa [1] constructs a bounded harmonic function f in U such that, for
any point # € T, the limit lim, , i f(2) does not exist along the curve -y,
where 7y is the rotation of vy by the angle 6.

It is worth noting that one could consider more general approach regions, not
necessarily given in the form (1). This is done, for instance, in [9] by Nagel
and Stein. The essence of that paper is to prove that, whereas tangential
curves are not good for convergence (Littlewood), tangential sequences may
be.

For a more complete treatise on the theorems and the general theory men-
tioned so far, see [6].



For z = x + iy let

1
L, = 7 (1= [2")(0; + 9y),

the hyperbolic Laplacian. Then
u(e) = PSE) = [ Peol 2 (o) de,
for A > 0, defines a solution of the equation
Lyu = (A —1/4)u.

In connection with representation theory of the group SL(2,R), one uses
the powers P(z, )" *t1/2 o € R, of the Poisson kernel.

We shall use the notation f < g, for positive functions f and g, if there
exists a constant C' > 0 such that f < Cg at all points, and we write f ~ g
if f<gandg < f.
Since

1
1—|z|’

Pyl(z) ~ (1 = |2|)*?1og

as |z| — 1, one sees that the one has to normalise Py in order to get boundary
convergence (Pyl(z) does not converge to 1). Thus, the operator that we
shall be concerned with is defined by

Pof(z) = ??)ch((z))

For A\ > 0 one has that
Py1(z) ~ (1—|2)"/*7,

and if one considers normalised A—Poisson integrals for A > 0, i.e. Py f(z) =
Py f(z)/P\1(z), the convergence properties are the same as for the ordinary
Poisson integral. This is because the kernels essentially behave in the same
way.

We summarise the known convergence results in the following table. It
should be read from left to right as “For all f €[Function space] one has
for almost all § € T that Pof(z) — f(0) as z — €' and z € Ap(0) [Conv.]
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[Ax(6) determined by].” In the table it is assumed that 1 < p < oo and
1< p < o0, and
h(s)

ok = it k-1 S(log1/s)P1”

22k <5<o-

By LP* we mean weak LP (standard notation).

H Function space ‘ Conv. ‘ Ap(0) determined by ‘ Ref. H

C(T) if h(t) = +o0 -
LY(T) iff limsu ION < 00 [13]
t—0 P tlog1/t
. . h(t)
LP(T iff limsup ———— < o0 | [11], [4
™ 0 2(108 1/t)? 1
L>(T) iff lim sup @ =0Ve>0|[14]
t>0 1 °
LP1o°(T) iff D ok <o (3]
£>0

A few comments are in order. First of all, the convergence for continuous
functions is at all points, not only almost every point. This is because Py
is a convolution operator with a kernel which behaves like an approximate
identity in T.

The results for LP(T), for finite values of p, are proved via weak type (p,p)
estimates for the corresponding maximal operators. To do this, in [11],
Ronning uses a quite technical machinery. In [4], a significantly easier proof
is given (relying basically only on Holder’s inequality), and the sharpness
of the result is proved (without the assumption that A should be monotone,
which Ronning assumed). Actually, it is proved that Myf < (MyrfP)Y/?,
where

Mo f(6) = sup

|arg z—0|<h(1—|z|)
|2|>1/2

the relevant maximal operator, and My, is the classical Hardy-Littlewood

Pof ()],

maximal operator.

In LP(T) one concludes the proofs with a standard approximation argument
with continuous functions, for which convergence is known to hold. How-
ever, this is not an option in the case of boundary functions in L*°(T), since
the continuous functions are not dense in this space. The result by Sjogren,
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[14], is therefore deeper in its nature. It relies on a theorem of Bellow and
Jones, [2], “A Banach principle for L*°”. Basically, the Bellow-Jones result
for L*° states that a.e. convergence is equivalent to continuity of the max-
imal operator at 0, when restricted to the unit ball in L, in the topology
of convergence in measure. Actually, what Sjogren had to show was that
for all € > 0 and all ¥ > 0 there exists § > 0 such that

Iflln<é = {O€T: Myf(0) >e}| <k,

for any function f in the unit ball of L°°, where M, is the maximal operator
defined above. (It is easy to see that, in the unit ball in L*°, the topology
of convergence in measure is equivalent with the L!-topology.)

In [3], the author used a method similar to Sjégren’s to determine the ap-
proach regions for boundary functions in LP>*® (weak LP), 1 < p < oo. It
relied on a Banach principle for LP'*°, proved in the paper.

The author has also, with essential help and an original idea from professor
Mizuta, Hiroshima University, established a result for the corresponding
“square root operator” in the half space ]RT'l with boundary functions
f € LP(G), where G C R™ is nonempty, bounded and open. For this result,
see [5].

To understand better the significant difference in approach regions for LP
and L we consider, in this paper, two distinct classes of Orlicz spaces L.
Firstly, Orlicz spaces where log® grows at least as some positive power,
thus possessing the property that L>® C L® C LP for any p > 1. Secondly,
Orlicz spaces that resemble LP spaces. As a special case, with ®(z) = zP,
L® = LP. To make this more precise, we shall now define these two classes of
functions, V and A, from which we then define corresponding Orlicz spaces:

Definition 1. Let ® : [0,00) — [0,00) be a strictly increasing C?-function
with ®(0) = 0 and define M(z) = log ®'(z). Then, ® is said to satisfy the
V condition, denoted ® € V, if the following conditions hold:

(i) M'(z) > 0 for all z € (0, 00).
(41) M((0,00)) = R.

) hzn_1>£f M (@)

= mg > 1 (possibly mg = o00).
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We note immediately that the conditions in Definition 1 imply that, for
sufficiently small a > 0, one has

2) im @) _

r—o0o I

The space L®, & € V, that we shall define below (Definition 3) does not
depend on the behaviour of @ close to 0. Thus, without loss of generality,
we impose one further convenient assumption on M:

1
(3) /0 zM'(z) dz < oo.

Definition 2. A function ® : [0,00) — [0,00) is said to satisfy the A
condition, denoted ® € A, if the following conditions hold:

(i) ® € C%(0,00) with ®"(z) > 0 for z > 0.
(i1) limg_yo ®(z) = limg_0 D' (z) = 0.

. xd'(z)
141
U )
' (z).
Definition 3. For ® € V we define

L® = {f € L}(T) : ®(c|f]) € LY(T) for some ¢ > 0}.

~ 1, uniformly for z > z( for some zy > 0, where ¢(z) =

Definition 4. Let ® € A. For f € L(T) define || f|le = [|®(|f])||1 and let
L ={f € LX(T) : || flls < co}.

It is readily checked that L® is a vector space, regardless of if ® € V or
® € A. For further reading on Orlicz spaces, we refer to [10].

In this paper we shall prove the following two theorems:

Theorem 1. Let ® € V be given. Then, the following conditions are equiv-
alent for any function h : Ry — R, :

(i) For any f € L® one has for almost all € T that Pof(z) — f()
a.e. as z — € and z € Ap(6).
log1/t
(74) w — 00 ast — 0 for all C > 0, where g(t) = h(t)/t.
log g(t) ’
Theorem 2. Let ® € A be given. Then the following conditions are equiv-
alent for any function h : Ry — R, :
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(i) For any f € L® one has for almost all § € T that Pof(z) — f(6)
a.e. as z — € and z € Ay(6).

- g(t) _
) hr:lj(}lp B0z 177) < oo, where g(t) = h(t)/t.

We conclude this section with some examples of ® € V and ® € A, indicat-
ing what condition (i) in the theorems reduces to in these cases.

Let Li(z) = logz and, for n > 2, let L,(z) = L,_1(log z).

The convergence condition (i7) in Theorem 1 and Theorem 2 only takes
large arguments of M and ® into account, respectively. Thus, it is clearly
sufficient to know the order of magnitude of M(z) and ®(z) as x — oo.

Example 1 (® € V). Our first example is M (z) ~ 2P, p > 0, as x — oc.
This example covers all spaces L®, where ®(z) ~ z%exp[zP] as z — oo,
a € Rand p > 0.

Since M (z) ~ zP as £ — oo, we may (in this context) assume that M (x) =
zP. We now have

log1/t D +1
M(C5t5) . ((orr/
log g(1) log g(t)

Clearly, this expression tends to oo (for all C > 0) if and only if

log g(t)
(log 1/t)7+1
as t — 0. Note that the convergence is independent of o > 0.

— 0,

Obviously, there is no optimal approach region. Specific examples of admis-
sible functions h determining Ay () are h(t) = texp [C(log 1/t)* (L, (1/t))*],
for 0 < s <p/(p+1), n > 2 and arbitrary C,s’ > 0. O
Example 2 (® € V). In this example we assume that M(z) ~ exp [zP],
p > 0, as £ — oco. As above, we may assume that we have equality, i.e.
M (z) = exp [zP]. We get

M Clggl/t 0 P
1(0#?:)(0) = exp [(C%) —L2(g(t))]

— exp [Lg(g(t)) ((C LZ(g(tl)O)gl/ta/fog g(t))p - 1)] '
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Clearly this expression tends to co as t — 0, for all C' > 0, if and only if
log1/t
Ly(g(t))!/7log g(t)

— 0

ast — 0.

Again, there is no optimal approach region. Specific examples of admissible
functions h determining A, () are

log1/t
h(t) =t
() exp Ln(l/t)aLz(l/t)l/p ’
where a € (0,1) if n=1and a > 0ifn > 2. O

Example 3 (® € A). The natural example here is ®(z) = 2P, p > 1, which
obviously gives L® = LP. It is easily seen that we, in this case, recover
the convergence result by Ronning. More generally, if ® € A, we have
convergence along approach regions specified by h(t) = Ct®(log1/t), but
not along any essentially wider approach regions. This should be compared
to the result in Theorem 1, where in general no largest possible approach
region exists. 0

2. PRELIMINARIES, ® € V

In this section we assume that ® € V, without further notice. For ¢, > 0
define ¢ .(x) = Bexp[M(cz)]. Furthermore, let

"I)ﬁcx / ¢ﬂcy)dy
e Pa.(y) = (d5,0) ().
. Upoly) = /0 p.o(t) dt.

For abbreviation, if 8 = ¢ = 1, we write ¢, ®,1) and ¥ instead of ¢1 1, P1,1,%1,1
and ¥y 1, respectively.

Note that, if 8 = ¢ = 1, this definition is in agreement with Definition 1,
where M(z) = log ®'(z). The pair (®g., Up,) is referred to as a comple-
mentary pair.

We shall make use of the following standard inequality:
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Proposition (Young’s inequality). Let (®g.,Vg.) be a complementary
pair. Then

zy < @g () + Vg (y),
for any positive numbers x and y. Equality holds if and only if x = g .(y).
Lemma 1. If f € L® then ||f|1 < 27réii (11, fDI/(2m)).

Proof. ® is convex, so the result is just a restatement of Jensen’s inequality.
O

For the concluding approximation argument, in the proof of Theorem 1, we
need

Lemma 2. Assume that f € L®(T), i.e. assume that ||®1.(|f])|1 < oo
for some ¢ > 0. Then, for € > 0 given, there exists g € L*(T) such that

[@1,e(f — gDl <e.
Proof. Let g(x) = f(x)x{s/<r) for sufficiently large R > 0. O
Next, we prove an elementary lemma;:

Lemma 3. Assume that {ay} and {by} are two sequences of positive num-
bers, such that limy_, o ar = 0 and such that

. Qg
lim — =00
k—oo by,
Then there exists subsequences {ax;} and {bg;} and a sequence {N;} C N
such that
ZNiG’ki = 00,
i
and

Z Nibki < o0.
i

Proof. For i € N choose k; 1 oo such that ay, /by, > 2! and ay, < 1. Now,
choose N; € N such that 1 < Nay, < 2. Then ), Njay, > >, 1 and

S Nibk, S 52 u

The following proposition is a key observation, solving an extremal problem.
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Proposition 1. Let a,c and € be given positive numbers. Let g € LY be
a nonnegative function, not identically 0, supported in [—a,a]. Then there
erists a nonnegative and measurable function f, supported in [—a,a] and
satisfying [r f(p)g(p)dp = €, such that, for all nonnegative functions f
such that [ f(p)g(@)de > €, one has that

/ By .(f(p)) dip > / D1 (F(p)) do.
lpl<a

lel<a

Moreover, f(p) = P.c(9(p)), where B > 0 is the unique number determined
bY Jig1<a ¥.c(9(9))g(0) dp = €.

Proof. By the Young inequality we have, for any 8 > 0, that

/ flp)g(p) dp S/ <I>ﬂ,c(f(<p))d<p+/ Vg (9()) do,
lpl<a lpl<a

lpl<a

where equality holds if and only if f(¢) = f(¢) = ¥3.(9(¢)). Choose 8 > 0
(uniquely) such that

/||< F(@)g(p) dp = e.

For an arbitrary nonnegative function f with / flp)g(p)dp > €, we then
T

have

/ch,c(f(so))dga > /|(p|<af(<p)g(<p)d<p— [ adotonac

which is equivalent to

/ D1 .(f(p)) dip > / ®1.(F(9)) dp,
lpl<a

lel<a

as desired. 0
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3. THE PROOF OF THEOREM 1

Throughout this section we assume that g(t) = h(t)/t — oo as t — 0,
without loss of generality.

Before turning to the proofs of the two implications, we introduce a suitable
notation. If we write t = 1 — |z| and z = (1 — t)e”, then

Pof(z) = Ry x f(0),
where the convolution is taken in T and

1 t2—1) 1

Ry(0) = Vor (1 —t)ei® —1] Py1(1 —t)°

Here § € T = (—m, 7], as before. We are interested only in small values of ¢,
so we might as well assume from now on that ¢ < 1/2. Since Py1(1 —t) ~
Vtlog 1/t, the order of magnitude of R; is given by

o 1
~logl/t t+10]

Ry(0) ~ Q(0)

Now let 7, denote the translation 7, f(0) = f(0 —n). Then the convergence
condition (z) in Theorem 1 above means

lim 7, R, * f(0) = f(6).
t—0
Inl<h(t)

The relevant maximal operator for our problem is

Mof(0) = sup Pof(2)]-
|arg z—0|<h(1—|z|)
|z|>1/2

Notice that My f(0) is dominated by a constant times
(4) Mf(0) = sup 7Q:*|[f|(0).

| <h(t)
t<1/2
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3.1. Proof of (i7) = (i).

Proof. Let f € L® and ¢ > 0 be given.

We may assume that f > 0, without loss of generality. Write
Qi(0) = QuO)xya<aner) + Qe(0)X{0/>2n(1)}

= Qi(0)+Q7(0).
By letting
M;f(0) = sup TnQ{ * £(0),
Inl<h(t)
0<t<1/2

j€{1,2}, we get Mf < Mif+ Msf and hence
{Mf>2}C{Mif >ctU{Maf > ¢}

To deal with My f, we observe that when |n| < h(t)

1 1
2 —
T"Qt (0) - log ]./t : t+ |9 _ TI| X{|0_77‘>2h(t)}
2 1
logl/t t+160|

The last expression is a decreasing function of |#|, whose integral in T is
bounded uniformly in ¢. It is well known that convolution by such a func-
tion is controlled by the Hardy-Littlewood maximal operator Mgy, so that
Myf < CMpyrf. Since My, is of weak type (1, 1), we obtain

{Maf > e}| < Ce™'|f]s-

By invoking Lemma 1, we get

C- 811 (121Dl /27)

) {Maf > e} < :

Let us now turn our attention to M;. Assume that M f(6) > €. Then there
exists ¢ € (0,1/2) and |n| < h(t) such that

1 o
/ fO—n—¢) dop> e,
log 1/t J ,j<on(t) ®
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It follows then, by Proposition 1, that

1
B0 —1— ) dp > &1 ope (—1)) do.
©) /Mhm O — 11— @) dp > /Wh(t) (5, (HM)) o

where £ is chosen such that

1 1
7 / P 70( ) dp = elog1/t.
@ || <2h(t) fet+ lel) t+ el

We shall now use (7) to get an estimate of the size of 5. We have

1 1
elogl/t = / P ( ) . d
g1/ (p|<2h(t) Pelt+ lel ) t+]el v

_ 9 B 7[’,8,0(1’!) dy
EST0)
< 29g.(1/t) - log (1 + 29(t))
< Cipe(1/t) -logg(t),
so that
1 log 1/t
(8) = e (Cs log g(t)> '

Now, let B(s) = ®1,(¢1,c(s)). Then it is clear that B is increasing and
lim;_, o B(s) = oo. For convenience, let I; denote the interval [—2h(t), 2h(t)]-
We have

1 1
||q)1,c(¢ﬂ,c(r|<p‘))”Ll(It) = /ItB (m) dy
B

AV
S
>

=

We may now invoke (8) to get
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Sy

[P 1,e(vp.e( Dy > 4h(t)

t+ || 3h(t)

(m,c =0 )

Y

4h(t)B <Cexp [M (CE ll(j)gggl(/;) - logg(t)D
> C(e)h(t),

by condition (7¢) in Theorem 1. Thus, we have

h(tz <c
1@1.e(pe (g Dl

which gives, by (6),
Mt) < C [ @1u(fly) de

Iy

C f Q1(f(0 —n—o))de.

IA

To sum up, we have shown that for each 6 with M; f(0) > ¢ there exists a
t such that the interval J(0) = [# — 3h(t), 0 + 3h(t)] has the property

/ B1,0(f(¢)) dip > Chit).
J(6)

A covering argument now yields a sequence (0;,t;) with M; f(6;) > ¢ such
that the corresponding intervals J(#;) are disjoint, and such that the union
of the scaled intervals J'(6;) = [6; — 10h(t;),0; + 10h(t;)] covers the set
{M,f > €}. In particular we have

1@ 1,6(f)ln

\VARRN AV}
Q-
E
-~
= #
ey
<
S
5

Thus,



15

{Mif >e}| < ZIJ’(@)I
C Y h(t:)

Cl|®1,c(f)]]1-

IA

IA

It follows, from the above estimate and from (5), that

{M [ > 2e}| < Cu(e)|®1,e(F)Il + Cale) 1 (1Pre(f)11/(2m)) -

For each € > 0 the right hand side tends to 0 with ||®; .(f)||;. By Lemma
2 we are done (approximation with bounded functions).

O
3.2. Proof of (i) = (ii).
Proof. Assume that condition (7¢) in Theorem 1 is false. We show that this

implies that (i) is false also.

Assume that, for some Cy > 0,

log 1/t
LM (Colgggg(t))
hm 1nf—
t—0 log g(t)

= A < o0.

The claim now is that we may assume that

M (Co log 1/t

9) 1i£i§fﬁi§“)) — Ae(1/4,1/2).

To see that we may assume that A < 1/2 we note that, by the conditions
we have on M, there is a number m € (0, 1) such that M(z) < mM (2z) for
sufficiently large z. Thus we have

M (2_]\[00 log 1/t )
lim inf log g(t) < m" liminf _\loey(®)) =mN A.
t—0 log g(t) =0 log g(t)

M (C’o logl/t)

By choosing N = N(A) large enough, we can make m™ A < 1/2. Thus, we
can assume from now on that A < 1/2.
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To see that we may assume that A > 1/4, note that if for some ¢t > 0 we
have

log 1/t
M (Cologg(t)) <1/4

log g(2)

then we can clearly make g(t) smaller so that the quotient above is greater
than 1/4, say, and still smaller than 1/2. Then the corresponding approach
region for the new function g (at any 6 € T) is a subset of the original one,
and it suffices to disprove convergence in the new one.

Pick a decreasing sequence {¢;}{°, converging to 0, such that

M (Corsts)

— A
log g(t;)

(10)

?

log1/t;
log g(t;)

as 1 — oo. For convenience, let s; = Cj We may assume that

{ti}$° is chosen such that

M (si)
11 1/4 < <1/2,
1D /< log g(ti) — /
for all4 € N.
Let

1
filp) = g1 (m) “ X{lpl<h(t:)}>

where 8; ' = t;p(s;).
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Note that ®(z) < z - ¢(z), so that ®(yg1(z)) < 5 -YPgi(z) = 5 -(z/B),
and thus

1@ (i)l

IA

h(ts) 1 %
? /0 Bg(ii(t‘:;))) a
_ 2 /— ) g

ﬁi 1
B;(t;+h(t;))

1
o, . L /"”iMdy
Biti Jo Y

o(s:)
= 2 f(s) /0 @dy.

IN

At this stage we make a change of variables, y = ¢(z), and use (3) to get

1Bl < 26 d(si) /0 " oM(2) do

- (ss) (/Ola:M'(w) do + /1 oM (z) dx)

ots) (0451 [“ @) an)
2t; - $(si) (C + s: M (s4))
Cti - ¢(si) - 8iM (s;)

IA

2

o~
N

IN

2

o~

IA A
~

Now, using the above estimate, we get

h(t;) h(t;)
U = S b M)
> Kfﬁiexpuogg(ti)—M(si)]
Cy(t;)'/?

log1/t; ’

the last two inequalities by (11). For all ¢ > 0 sufficiently small, we have
that

log1/t
1/2 S M (Cologg(t)) S oo (log 1/t)a
= logg(t) T 7° (logg(t))' e’
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for some sufficiently small o > 0, by (11) and (2).

It follows that
_h(t:)

12) AR

— 00,

as ¢ — o0o.

It follows from (12), by Lemma 3, that we can pick a subsequence of {¢;},
with possible repetitions, for simplicity denoted {¢;} also, such that

(13) Zh tz = 00,

and

(14) Do le(f)lh < oo
1

We shall now proceed with the construction of a function that disproves
boundary convergence a.e. The idea is to distribute mass on T over and
over again, sufficient to make the relevant Poisson integral larger than some
positive constant, at all points in T, and at the same time being able to
make the function arbitrarily close to 0 on a set with positive measure.

Let Ay = h(t1), and for n > 2 let A, = h(t,) + Z?;ll 2h(t;). By (13) one
has that lim,, oo A = 0.

Define (on T) Fj(p) = 74, fj(¢), and let

FM(p) = sup Fj(y).
i>N

It is clear by construction that any given ¢ € T lies in the support of
infinitely many F:s.

Pointwise one obviously has that
o
(FM () < ) ®(F
J=N

so that
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[e(FM) < ZII‘D )l
Jj=N

o0

= Z (fi)lli =0

as N — oo, by (14). Thus, in particular, F*N) € L® for any N > 1.

For § € T and a given & > 0 we can, by construction, find 7 € N so
that 6 € supp (F;) and so that t; € (0,&). We can then choose 1, with
In| < h(t;), so that 8 —n = A; mod 2x. It follows that

limsup PoF™((1—)e'® ™) > lim sup PoFj((1 — t;)e' ).
150, [n|<h(t) iso0

We shall now conclude the proof by proving that the right hand side above
is always greater than some positive constant.

We have

o C F;(Aj — @)
PoF;((1 = t))e*) > / i1 ¥
0F;((1 = t;)e™) log 1/tj Jip<h(ty) 15 + 1ol

_ ¢ / 1) 4,
log 1/tj J\p\<n(ty) ti + |l

_ / ( (tjw )

log l/t tj+o
B C 5 P(y)
~ log1/t; / =4

1
Bj(tj+h(t;))

C /d)(s]') ¥(y)
—=dy.

log 1/t Yy

v
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In the last inequality, the lower limit

by (11) we have

Bi(tj +h(t;))

as j — oo.

L v v

m can be replaced by 1, since
VANH) J

Bih(t;)
exp [log g(t;) — M (s;)]
exp [(log g(t;))/2]

We continue the estimate by making the change of variables y = ¢(x), and

we get

PoF;((1 — tj)e')

v

v

v

C iz (x)
log 1/%; /W) #(x) dz

C 5 ,
_— zM'(z)dz
log 1/t; w(1)

s
_C_[7 zM'(z) dx
log1/t; Js; /2

Cs;
og 1;tj (M (s5) — M(s4/2)).

At this point we note that, by Definition 1 (44¢), we have M (s;) —M(s;/2) >
C M (s;) for some positive constant C' (depending only on mg). We may now,
finally, continue the estimate to get the desired conclusion. We have

PoFj((1 —t;)ei) >

the last inequality by (11).

Cs;jM(s;)

log 1/t
CM(s;)
log g(t5)
Ch,

\Y%
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To sum up, we have shown that for any 6 € T one has

(15) limsup PoFN((1 —1)ef0) > ¢y,
t—0, |n|<h(t)

Take N so large so that Apw)(C1/2) < m, say, and a.e. convergence is
disproved. O

4. THE PROOF OF THEOREM 2

In this section we assume that ® € A, without further notice. We use
basically the same notation as we did in the proof of Theorem 1, and we shall
carry out only those calculations that differ from that proof. Remember that
the parameter ¢ should have the value 1 when applying the other proof to
this. The results from Section 2 are easily seen to remain true for ® € A
(again with ¢ =1).

For 8 > 0, let ®g(z) = fP®(x). Furthermore, let

o dp(z) = Dp(x).
o P5(y) = (¢5) ' (1)-

o Us(y) = /Oy Pp(t) dt.

(®g, V) is referred to as a complementary pair, as before.

For short, if 8 = 1, we write ¢, ®,% and ¥ instead of ¢, ®1,%; and ¥y,
respectively.

Lemma 4. Assume that ® € A. Then the following hold, uniformly in
(g,00):

(1) ¢(2z) ~ ¢(z) and ®(2z) ~ D(x).
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Proof. To prove the first part of (i), note that

o20) [P0
8 Sw) T / o0 ™

|

~ 1

7

and the statement follows. If we can establish (7¢), then the second part of
() follows with the same techniques used to prove the first part. We have

B(z) = /O "ot dt

~ / mt¢’(t)dt
0
= z¢(z) — 3(a),

and thus ®(z) ~ z¢(z), so (i) is proved. Statement (4i7) is trivial, via the
change of coordinates given by y = ¢(t). O

4.1. Proof of (it) = (i).

Proof. All we need to prove, according to the proof of Theorem 1, is that
h(t)
12 (5 () e 2o

(16) <C.

In fact, all we need to do to show this, is to estimate § slightly differently.
Here we have

elogl/t = 2/ ——
Ly
t+2h(1)

< 2/t¢ﬁ_<y>dy
0

y
S vs(1/1),
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the last inequality by Lemma 4, (7i7), so that

(17) > td(C:log1/t) .

| =

Now, let B(s) = ®(¢/(s)). Then, by Lemma 4, (i7), we have B(s) ~ si(s).
For convenience, let I; denote the interval [—2h(t),2h(t)]. We have

1 1
o5 oDl = /ItB(—ﬁ(tWD)dw

1 1
~ C . d
Ve (t+|90\> Bt o) ™
Celogl/t

/8 bl

the last equality by (7). We may now invoke (17) to get

1

||‘1’(¢/3(r|(p|

D,y = Cile)t(log1/t)¢ (Celog1/t)
> Cs(e)t® (Cclogl/t)
~ C3(e)t® (log1/t),

where we have used Lemma 4, (i) and (i7). Thus, by assumption (i7) in
Theorem 2, the desired inequality (16) follows.

g
4.2. Proof of (i) = (ii).

Proof. Assume that condition (i) in Theorem 2 is false. We show that this

implies that (i) is false also.

Pick a decreasing sequence {t;}$°, converging to 0, such that

g(ti)

" Bog 1)
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as 1 — oo. Let s; = log1/t;, and define

1
filp) = g, (t +|<P|> * X{|p|<h(t:)}>
where 87! = t;¢(s;).
Using B(5(2)) ~ & - $s(z), we get

/ v (tﬂw)
0 )

e <

Ifille < O
_ 1 fan Yy
B / y ay

; 1
Bi Bi(ti+h ()

#(si)
teote) [ P gy

)
ti - d(s4)s;
t; - D(s5).

dep

IA

'ZANRZAN

Now, using the above estimate, we get

h(ti) S ¢ g(ti)

Ifille = — ®(sa)
Thus, by (18), we have
h(t:)
— 00,
I fille

as t — oo.

Copying the proof of Theorem 1, we now see that it suffices to prove that

1 5 zd!(x)
log 1/4; / o) =20

for some constant C' > 0, to disprove convergence. However, by Definition
2, (i41), we have
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1 /Sf zd () 1 /Sf
—_— ——dr > — Codz
log1/t; Jya)y ¢(z) — logl/t; Jo 0

We are done. O
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ON A THEOREM OF AIKAWA

MARTIN BRUNDIN

ABSTRACT. Let F' be a bounded harmonic function in the unit disc
U. Then F has a nontangential boundary limit at a.e. point, as is
wellknown. However, if Co is a tangential curve touching OU at 1 and
Cy is its rotation through an angle 8 about the origin, Aikawa constructs
a bounded harmonic function which, for any 8 € U, fails to have a
boundary limit along Cy. In this paper we present a modified proof of
this result.

1. INTRODUCTION

We let P(z,¢) be the Poisson kernel of the unit disc U, i.e.
1 1—|z)?
P = — T
(z9) = o PRETRE
where z € U and ¢ € U = T = (—m, 7.
From now on we will identify points on the boundary 90U, whenever conve-
nient, with points in the interval (—m, 7).

The Poisson integral of f € L!(T) is defined by

PI() = | Peo)i (o) de,
z € U. It is well known that Pf is a harmonic function.

Several boundary convergence theorems for Poisson integrals have been
proved through the years. We state the three most classical below.
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Theorem (Schwarz, [7]). Let f € C(T). Then Pf(z) — f(0) as z — €',
zeU.

Theorem (Fatou, [5]). Let f € LY(T). Then, for a.e. € T, one has that
Pf(z) = f(0) as z — € and |argz — 0| < C - (1 — |2|) (i.e., nontangential
convergence).

The theorem of Fatou was proved to be best possible, in the following sense:

Theorem (Littlewood, [6]). Let vo C U U {1} be a simple closed curve,
having a common tangent with the circle at the point 1. Let vy be the rotation
of o by the angle 6. Then there exists a bounded harmonic function f in U
with the property that, for a.e. @ € T, the limit of f along g does not exist.

Littlewood’s result has been generalised in several directions. In Zygmund’s
paper, [8], two new proofs appeared, one of which used complex analytic
methods (Blaschke products). Aikawa, [1], improved Littlewood’s theo-
rem by constructing, with the same assumptions as Littlewood, a bounded
harmonic function in U which fails to have a tangential limit at any point
0 € T. In [2], he generalised further what he did in [1]. Di Biase, [4], showed
that the notion of nontangential and tangential approach to the boundary
also makes sense in a tree!, and proved a theorem about everywhere diver-
gence for corresponding Poisson extensions, under the assumption that the
approach to the boundary is tangential.

For a more thorough treatise on Fatou type theorems, see [3].

In this paper we give a modified proof of the theorem in [1]. It is more or
less a translation of the discrete setting in [4] into the continuous setting on
U. The main advantage of our proof is that it is more explicit and somewhat
more straightforward than that of Aikawa. However, it should be pointed
out that we construct the counterexample function F' in the same spirit as
Aikawa (and Di Biase) did.

Let us now turn to the precise formulation of the theorem.

Throughout this paper, we let h : R, — R, be a given function such that
h(t)/t — oo ast — 0F. Let A(8) = {z € U : |argz — 0] < h(1 — |2])}.
Then A() is a tangential approach region at 6. It is natural to think of h
as a strictly increasing function with h(t) — 0 as ¢ — 0, but we actually

LA tree is an infinite connected graph which is locally finite and simply connected.
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do not need those assumptions in our proof. We let h>° denote the space of
bounded harmonic functions in U.

We shall prove the following:

Theorem 1. There exists a function F' € h*™ such that

lim  F(z)
z—eif 2e A(0)

does not exist for any 0 € T.

2. ESTIMATES OF THE POISSON EXTENSION

Versions similar to the results in this section can be found in [1]. All func-
tions that appear in the lemmas below are (of course) assumed to be mea-
surable.

Lemma 1. Let n € T be given and assume that f(p) =0 if |¢ —n| < s for
some (small) positive number s. Furthermore, assume that |f| < 1 on T.
Then there exists an absolute constant cg > 0 such that

. 1
Prren] < 1
ifl—oags <r<1.

Proof. Assume that 1 — aps < r < 1, for some ag € (0,2/w). Then, if
s < |p —n| <7, we have

lrefm — | > | — €| — (1 —7)

. Y-
sin
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n
‘—040\%’—7”
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if only «g is chosen small enough. 0

What we in fact shall make use of is the following “dual” version of Lemma
1:

Lemma 2. With the same assumptions as in Lemma 1, with the exception
that f(p) =1 if |¢ —n| < s, one has that

Pf(re™) >

bl

N =

if 1l —ags <r<1.

Proof. Write f =1+ 2g, where g = (f —1)/2. Then g satisfies the assump-
tions in Lemma 1 and Lemma 2 follows immediately. 0

Lemma 3. Let 0 < s < 1. Assume that ||f]lcc < 1 and that

1
i [lr@lde <e <1/
1] J1
for all intervals I C T such that |I| = 2s. Then
sup |Pf(z)] < CVE,

2/ <1-s

where C > 0 is an absolute constant.

Proof. This is exactly Lemma 3 in [1]. We refrain from proving it again. [0

3. THE PROOF

The proof of Theorem 1 is based on the following technical lemma. It
corresponds directly to Lemma 5 in [4].

Lemma 4. There exists a sequence {F}}5° C h™, an increasing sequence
{Ni}° C N and a number kg € N such that, for any 6 € T , there ezists a
sequence {22}% C U with the following properties:

(i) 20 € A(9), |22] <1 —m27Nk+1 and 20 — € as k — .
(i) (~1)FFu(zD) > 1/2.
(ii4) lim sup > |Fj11(2) - Fj(2)| =0.
k—)oo,\z\gl—WZ_N’Hl i>k

Moreover, F, — F € h*™ pointwise.
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We postpone for the moment the proof of Lemma 4. Instead we start by
proving Theorem 1:

Proof. (Theorem 1.) Let 6 € T be given. By the second statement in part
(1) of Lemma 4, and by part (7i7) it follows that

o
D IFja(zh) — Fi(zh)] < 1/4,
Jj=n
if n > ng for some ny. Note that
o0
F(z) = Fo(2h) + Z(Fj-i—l(zz) — Fi(28) =T+11.
Jj=n

If n > ng it follows that |I1| < 1/4, and by part (i7) of Lemma 4, I oscillates
beyond 1/2 and —1/2 respectively. Thus,

(—1)™(F(zy) — (~1)"/4) 2 0.

Since 2! — € within A(), it follows that osc A0)F(0) > 1/2 and conver-
gence at @ is disproved. O

We now conclude the paper by proving Lemma 4:

Proof. (Lemma 4.) Later in the proof we shall define the sequence {Ny}
more precisely, but for the time being let us just assume that it is a given
increasing sequence of natural numbers. If F is a set and z a point, we let
z+ E={z+e:e€ E}. Givenk €N, define S(k) as follows (see Figure
1): Let Iy(k) = (—m, —m + 272~ Ne27F) and I;(k) = j - 272~k + Ip(k). We
now define
2Nk —1
Stk)= | ILik).

J=0

It follows immediately that |S(k)| = 2m27%, so that Y, |S(k)| < co. By
the Borel-Cantelli Lemma we thus have that -

(1)

lim sup S(k) ‘ =0,

k—00



_r -
Level Ny:| } | | | | I

-_—

22~ Nk

Io(k) ©i(k) Ix(k) Is(k) 1a(k) Is(k) Is(k)

se: HOHOH OH H H H

S

22Nk =k

FIGURE 1. S(k) is defined as a the union of the “left dyadic
k-descendants” of the Ni:th dyadic decomposition of T.

where

limsupS(k) = () | Sk

k—o0 m>0k>m

= {z:z € S(k) for infinitely many k}.

If w € Up>15(k) we define Q(w) = max{i : w € S(i)}. Similarly, if w €
P_1S(k) we define Qn(w) =max{i <n : we S()}.

For any w € T let

[ (=19 if w € Up>1S(k) and Q(w) < oo
flw) = { 0 otherwise

and
B (_1)Qn(w) ifwe Uzzls(k)
fo(w) = { 0 otherwise

The properties of f,, and f that we will need are the following:

(2) |fn(w)] < 1.
(3) fnlw) = f(w) for a.e. w e T.
(4) falw) =(-1)" if w € S(n).

(5) | fat1 = fal < 2Xs(ng1) on T.



272 Nk 2w Neo—k

FIGURE 2. Ny is chosen such that 2/ € A(6), i.e. such that
tk > Sk

Equation (3) follows by equation (1). Equation (5) follows if one notes that
ifw¢ S(n+1), then Qpi1(w) = Qn(w) and thus fr11 = fp.

We let F'= Pf and F,, = Pf,. Then F}, and F are elements in A°° and, by
the dominated convergence theorem, F,, — F' pointwise.

We shall now construct the sequences {Nj} and, for a given § € T, {22}.
See Figure 2 for a geometric picture.

Let # € T and k € N be given. Going clockwise from 0 along T, we let 6
denote the midpoint of the first interval I;(k) in S(k) that we hit and which
does not contain #. Note that this determines 6 uniquely. This choice of 0
yields that |0 — 0| < 272 Nk + 272 Ne2 7% /2 = 727Nk (2 4 27F) < 4q2~ Nk,
Define ¢, = a2~ V¢27F where ay is the constant in Lemma 1. Define zz =
(1 — t)e®%. We claim that if Ny is chosen large enough (and increasing),
then 2! € A(0).

Note that 2§ € A(6) is equivalent to |§—0;| < h(t). Since [§—0| < 4m2~ Ve,
it suffices to prove that h(t;) > 472~k for sufficiently large choices of Ny,
which is equivalent to
4.2k
o)

h(tk)/te >

But k is fixed and h(t)/t — oo as t — 0T, so the claim follows (since tx — 0
as Ny — o0). If necessary, by choosing inductively the sequence { Ny} even
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larger we can obtain also the second claim in Lemma 4, part (i), which is
equivalent to 2Vk+1 > 2Nk2kq Tt

We have now proved Lemma 4, part (7). Part (i¢) follows immediately from
equation (4) and Lemma, 2.

To prove part (i), note that we have |F;11(2) — Fj(2)| < 2(Pxs(j+1))(2),
by equation (5). Now, with s = 72 Ni+1, we apply Lemma 3 to XS(j+1)s
where ¢ can be taken to be 277, Part (444) follows. O
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