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Abstract

In this thesis we consider smoothing properties and approximation of
time derivatives for parabolic equations and error estimates for stochastic
parabolic partial differential equations approximated by the finite element
method.

In the first two papers, we study smoothing properties and approxima-
tion of the time derivative in time discretization schemes with constant and
variable time steps for an abstract homogeneous linear parabolic problem.
The time stepping schemes are based on using rational functions r(z) which
are A(f)-stable for suitable 6 € [0, 7/2] and satisfy |r(co)| < 1, and the ap-
proximations of the time derivative are based on using difference quotients
in time.

In the third paper, we consider the smoothing properties and time deriv-
ative approximations in multistep backward difference methods for a non-
homogeneous parabolic equation.

In the fourth paper, as an application of the error estimates for the time
derivative developed in the previous three papers, we study a postprocessed
finite element method for semilinear parabolic equations.

In the last two papers, we consider the finite element method for both
linear and nonlinear stochastic parabolic partial differential equations. Using
appropriate nonsmooth data error estimates for deterministic finite element
problems, we prove error estimates for both space and time discretization.

Keywords: parabolic, smoothing, time derivative, time discretization,
finite element method, stochastic parabolic equation, postprocessing.
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1. INTRODUCTION

This thesis consists of six papers. In papers [I, II] we consider the smooth-
ing properties and approximation of time derivatives in single step methods
for homogeneous linear parabolic equations. In paper [III] we consider the
smoothing properties and time derivative approximation in multistep back-
ward difference methods for nonhomogeneous linear parabolic equations. As
an application of the error estimates for the time derivative, we consider, in
paper [IV], the postprocessing of the finite element method for semilinear
parabolic equations. In papers [V, VI] we apply nonsmooth data error es-
timates in the context of the finite element method for stochastic parabolic
partial differential equations.

1.1. Homogeneous linear parabolic equations. In this subsection we
introduce the homogeneous linear parabolic equation

(1.1) u+ Au=0, fort>0, withu(0)=uv,

in a Banach space B with norm || - ||, where v € B and A is a closed, densely
defined linear operator, with domain of definition D(A) C B. We assume
that the resolvent set p(A) of A is such that, for some § € (0,7/2),

(1.2) p(A)DYXs={2€C:§<|argz| <, z#0}U{0},
and that its resolvent, R(z; A) = (2 — A)™!, satisfies
(1.3) |R(z; A)|| < M|z|7', forze€ %s, 2#0, with M > 1.

In particular, if B is a separable Hilbert space H and A is a linear, selfadjoint,
positive definite, not necessarily bounded operator with a compact inverse,
densely defined in D(A) C H, then (1.2) and (1.3) are satisfied with ¢
arbitrarily close to 0.

It is well known that —A is the infinitesimal generator of a uniformly
bounded analytic semigroup E(t) = e~*4, t > 0, which is the solution
operator of (1.1), so that u(t) = E(t)v. The following smoothing properties
hold, with D, = 0/0t, see Pazy [41],

(1.4) |IDIE(t)v|| = |ATEt)o| < Cjt 7 |v|, fort >0, j>0,

which shows that the solution is regular for positive time even if the initial
data are not.

We are mainly interested in the smoothing properties of discretizations of
(1.1). Let U™ be an approximation of the solution u(t,) = E(t,)v of (1.1)
at time t, = nk, where k is the time step, defined by a single step method,

(1.5) U™ = r(kA)U™ !, forn>1, withU’=wv,
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where r(z) is accurate of order p > 1, i.e.,
(1.6) r(z) —e ™ = 0(z!™), asz—0.

For example, the backward Euler method, given by r(z) = 1/(1 + z2),
is first order accurate and the Crank-Nicolson method, defined by r(z) =
(1—12)/(1+4 32), is second order. As another example, the method defined
by the (¢,q+ 1) subdiagonal Padé approximation r(z) = pi(z)/p2(z), where
p1 and py are certain polynomials of degrees g and g + 1, respectively, is
accurate of order 2¢g + 1.

Stability and error estimates for single step methods have been studied
by many authors, see Thomée [46] and references therein.

For the smoothing properties of the time discretization scheme (1.5), if
r(00) = 0, 7(z) is A(0)-stable with 6 € (4, 37| and A satisfies (1.2) and (1.3),
then we have, see, e.g., Hansbo [27] and Thomée [46, Lemma 7.3],

(1.7) |A7U™|| = ||ATEpv|| < Ot ||v||, fort, >tj, v € B.

Hansbo [27] also shows an optimal order error estimate in the nonsmooth
data case for the approximation (—A)U" = (—A)u(t,) = u(t,) of the first
order time derivative of the solution of (1.1). More precisely, if 7(z) is A(6)-
stable with 8 € (6, 7] and 7(c0) = 0, then

(1.8)  (=AU" = wy(ta)|| < CKPEPHol|, fort, >0, v € B.

It is natural to consider the case when r(c0) # 0. We know that (1.8) is
not valid when r(o0) # 0. In paper [I], we mainly consider the smoothing
properties for (1.5) when |r(oo)| < 1. To do this we introduce difference
quotients QfCU", which approximate DJu(t,) to a certain order. We then
obtain smoothing properties for (1.5) when |r(co0)| < 1 and error estimates
for the time derivative in case of both smooth and nonsmooth data.

In paper [IT], we consider the smoothing properties and time derivative
approximations for (1.1) with variable time steps. We introduce the so called
imcreasing quasi-quasiuniform assumptions for the time steps. Under these
assumptions we show the smoothing properties for discretization of (1.1)
and the error estimates for the time derivative, where we approximate the
time derivative u; by first and second order difference quotients.

1.2. Nonhomogeneous linear parabolic equations. In this subsection
we introduce the nonhomogeneous parabolic equation

(1.9) w+ Au=f, fort>0, withu(0)=owv,

in Hilbert space H with norm || - ||, where A is a linear, selfadjoint, positive
definite, not necessarily bounded operator with a compact inverse, densely
defined in D(A) C H, where v € H and f is a function of ¢ with values in
H.
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Further we introduce the multistep backward difference operator 5p, p>1
by
ki~

7 U™, where U™ = (U™ — U™ ) /k,

M%

(1.10) 0,U" =
j=1

and define our approximate solution U™ by, with U, --- ,UP~! given,
(1.11) U™+ AU™ = f", forn >p, where f" = f(t,).

It is well known from the theory for numerical solution of ordinary dif-
ferential equations, see, e.g., Hairer and Wanner [26], that this method is
A(0)-stable for some 6 = 6, > 0 when p < 6. The error estimates for such
method has been studied in Bramble, Pasciak, Sammon, and Thomée [6]. It
is easy to see that, for any smooth real-valued function u, see Thomée [46,
Chapter 10],

(1.12) ut(tn) = Opu™ + O(KP), ask — 0, withu” = u(ty).

The theory of stability and error estimates for the approximation of the
solution of (1.9) by using multistep methods have been well developed,
see Becker [5], Bramble, Pasciak, Sammon, and Thomée [6], Crouzeix [9],
Hansbo [28], LeRoux [36], [37], Palencia and Garcia-Archilla [40], Savaré
[44], Thomée [46]. The smoothing properties and the approximation of time
derivatives in single step methods for homogeneous parabolic problem have
been studied in Hansbo [27], [28].

In paper [III] we study the smoothing properties of discretization scheme
(1.11). We attempt to extend the results in papers [I, IT] for the single step
methods to the multistep backward difference methods.

1.3. Semilinear parabolic equations. In this subsection we introduce
the semilinear parabolic equation

—Au=F(u), inQ, forte(0,T],
(1.13) u =0, on 09, fort € (0,7T],
u(0) = v,

where  is a bounded domain in R%, d = 1,2, 3, with a sufficiently smooth
boundary 99, u; = du/0t, A is the Laplacian, and F : R — R is a smooth
function.

Let H = Ly(€2). We define the unbounded operator A = —A on H with
domain of definition D(A) = HZ(Q) N H(Q), where, for integer m > 1,
H™(2) denotes the standard Sobolev space W4*(Q), and H}(Q) = {v:v €
H'(), v|so = 0}. Then A is a closed, densely defined, and self-adjoint
positive definite operator in H with compact inverse. The initial-boundary
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value problem (1.13) may then be formulated as the following initial value
problem

(1.14) ut + Au = F(u), forte[0,T], withu(0)=wv,

in the Hilbert space H.

We are interested in the postprocessing of the finite element method for
(1.14). A postprocessing technique has been introduced to increase the
efficiency of Galerkin methods of spectral type, see Canuto, Hussaini, Quar-
teroni, and Zang [8], De Frutos, Garcia-Archilla, and Novo [16], De Frutos
and Novo [17], [19]. Postprocessed methods yield greater accuracy than stan-
dard Galerkin schemes at nearly the same computational cost. In Garcia-
Archilla and Titi [24], the postprocessing technique has been extended to
the h-version of the finite element method for dissipative partial differential
equations. There, the authors prove that the postprocessed method has a
higher rate of convergence than the standard finite element method when
higher order finite elements, rather than linear finite elements, are used. Er-
ror estimates in Ly and H' norms in spatially semidiscrete case are proved.
More recently, in De Frutos and Novo [18], the authors show that the post-
processing technique can also be applied to the linear finite elements and
the convergence rate can be improved in H' norm, but not in Ly norm. The
analysis is restricted to the spatially semidiscrete case.

Let {Sp} = {Sh,} C H;} be a family of finite element spaces with the
accuracy of order r > 2, i.e., Sp consists of continuous functions on the
closure Q of €, which are polynomials of degree at most r — 1 in each
triangle of the triangulation of 2, where h denotes the maximal length of
the sides of the triangulation.

The semidiscrete problem corresponding to (1.14) is to find the approxi-
mate solution uy(t) = up(-,t) € Sy, for each ¢, such that,

(1.15) Up,t + Ahuh = PhF(’U,h), with uh(()) = Up,

where v, € Sp, P, : Ly — S} is the orthogonal projection onto Sj, and
Ap : Sp — Sy is the discrete analogue of A, defined by

(116) (Ah'lan) = A('lan)a V¢aX € Sh,

Here A(-,-) is the bilinear form on H} obtained from A.

Error estimates for the semilinear parabolic problem based on finite el-
ement methods with various conditions on the nonlinear term have been
considered in many papers, see, e.g., Akrivis, Crouzeix, and Makridakis
[1], [2], Crouzeix, Thomée, and Wahlbin [10], Elliott and Larsson [21], [22],
Helfrich [29], Johnson, Larsson, Thomée, and Wahlbin [30], Thomée [46],
Thomée and Wahlbin [47], Wheeler [49]. The long time behavior of finite
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element solutions was studied by Elliott and Stuart [23], Larsson [32], [33],
Larsson and Sanz-Serna [34], [35].

Let us now describe the idea of the postprocessed finite element method
proposed by Garcia-Archilla and Titi [24]. Suppose that we want to obtain
high order approximation, for instance O(h"*2). Then we can use, in every
time step, either a family of high order finite element spaces Sj, := Sh,r+2
with the order 742 of accuracy, or a family of finite element spaces Sj, := Sﬁ,r
with accuracy of order r, but with finer partition 7; of the domain €, such
that, A”t2 = A", In [24], another technique, called the postprocessed finite
element method, is presented, which improves the convergence rate without
using a high order finite element space Sy, in every time step. Suppose that
we are interested in the solution of (1.14) at a given time 7. At time T,
rewriting (1.14), we have

(1.17) Au(T) = —u(T) + F(u(T)).

Thus, u(T) can be seen as the solution of an elliptic problem whose right
hand side is not known but can be approximated. Garcia-Archilla and Titi
first compute uy(T') by (1.15) in the finite element space Sy, then replace
u(T") by up+(T) and solve (or, in practice, approximate) the following linear
elliptic problem: find 4(7") € D(A), such that,

(1.18) A(T) = —ung(T) + F(un(T)),

which is the postprocessing step.
They obtained the following error estimate, with £, = 1 + log(T/h?),

(1.19) |%(T) — u(T)|| < C(u)ph™2, forr >4,

where C(u) is some constant depending on u. A similar result holds for
r > 3. The proof is based on superconvergence for elliptic finite element
methods in norms of negative order, which is the reason for the restriction
r > 3.

We note that the bound (1.19) is an improvement over the error estimates
for the standard Galerkin method, which is O(h"). In practice 4 can not
be computed exactly, since in general it does not belong to a finite element
space. However, one can approximate the solution % of (1.18) by some
@y, belonging to a finite element space S), of approximation order r + 2 as
described above. More precisely, we pose the following semidiscrete problem
corresponding to (1.18): find 4y, € Sy, such that,

(1.20) Apin(T) = Py (— upt(T) + F(un(7))),

where Py, : Ly — Sj, is the Ly projection onto Sy, and A, is the discrete
analogue of A with respect to S,. The standard error estimate reads, see,
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e.g., Brenner and Scott [7],

(1.21) 1n(T) — &(T)|| < C(u)h"™>.

Combining (1.19) and (1.21), we have

i (T) ~u(T) || < lan(T) ~a@(T)||+|1(T) ~w(T)|| < C(u)lph™?, forr > 4.

In paper [IV], we derive error estimates in the fully discrete case for the
postprocessed finite element method applied to (1.14). To do this, we intro-
duce a time stepping method to compute an approximate solution of (1.15)
and replace the time derivative in (1.18) by a difference quotient. We then
show error estimates for the completely discrete postprocessed method by
using error estimates for time derivatives based on our methods in papers
[L, IT, II1].

Our technique of proof is related to but different from the one employed
in Garcia-Archilla and Titi [24].

1.4. Stochastic parabolic equations. In this subsection we will introduce
the linear stochastic parabolic partial differential equation

(1.22) du+ Audt =dW, for0<t<T, withu(0)=ug,

in a Hilbert space H with inner product (-,-) and norm | - ||, where u(%)
is an H-valued random process, A is a linear, selfadjoint, positive definite,
not necessarily bounded operator with a compact inverse, densely defined in
D(A) C H, where W (t) is a Wiener process defined on a filtered probability
space (€2, F,P,{F;}+>0) and ug € H.

For the sake of simplicity, we shall concentrate on the case A = —A,
where A stands for the Laplacian operator subject to homogeneous Dirichlet
boundary conditions, and H = Ly(D), where D is a bounded domain in
R% d = 1,2,3, with a sufficiently smooth boundary oD.

Such equations are common in applications. Many mathematics models
in physics, chemistry, biology, population dynamics, neurophysiology, etc.,
are described by stochastic partial differential equations, see, Da Prato and
Zabczyk [14], Walsh [48], etc. The existence, uniqueness, and properties of
the solutions of such equations have been well studied, see Curtain and Falb
[11], Da Prato [12], Da Prato and Lunardi [13], Da Prato and Zabczyk [14],
Dawson [15], Gozzi [25], Peszat and Zabczyk [43], Walsh [48], etc. However,
numerical approximation of such equations has not been studied thoroughly.

The equation (1.22) can be written formally as

aw
(1.23) us + Au = vy for0 <t <T, withu(0) = uy,

where the derivative dd—vf (the noise) does not exist as a function of ¢ in the

usual sense. Thus the equation (1.23) is understood in the integral form.
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Let E(t) = e %4, ¢t > 0. Then (1.23) admits a unique mild solution, see
Da Prato and Zabczyk [14, Theorem 5.2, which is given by 5.4],

(1.24) u(t) = E(t)ug + /Ot E(t—s)dW(s) for0<t<T,

where the integral is understood in the Itd sense. In the following two
subsections we review the construction of such a stochastic integral with
respect to an H-valued Wiener process or a cylindrical Wiener process. For
further information on Wiener processes, stochastic integrals and measures
on Hilbert spaces, see Curtain and Falb [11], Da Prato and Zabczyk [14],
Dawson [15], Gozzi [25], Kuo [31], Peszat [42], Zabczyk [50], etc.

1.4.1. The stochastic integral with respect to an H-valued Wiener process. A
family W (t),t > 0, of H-valued random variables is called a Wiener process
on H, if and only if, see [14] and [50],

(1) W(0) =0,
(74) for almost all w € Q, t — W(t,w) is a continuous function,
(747) W (t) has independent increments,

(tv) LW (t) —W(s)) =LW(t—s)),0<s<t.
Here £(X) denotes the law, or the distribution, of the H-valued random
variable X, i.e., the probability measure on H defined by

L(X)(A) =P{w: X(w) € A}, for any A € B(H),

where B(H) is the Borel o-algebra of H, i.e., the smallest o-algebra contain-
ing all closed (or open) sets of H.

It turns out that if W (¢) is a Wiener process, then, for arbitrary ¢, L(W (t))
is a Gaussian probability measure on H with the mean 0 and the covariance
operator tQ), i.e.,

LW(2)) = N(0,1Q),
where @ is a linear, self-adjoint, positive definite, bounded operator with

finite trace, i.e., Tr(Q) < oo. In other words, if W (t) is a Wiener process,
then, for arbitrary ¢, W(t) is an H-valued Gaussian random variable with

E(W(t)) = 0,
and
Cov(W (t)) = 1Q,
where for any H-valued random variable X, Cov(X) € L(H) is defined by
Cov(X) =E((X — EX) ® (X — EX)).
Here, for a,b € H, a ® b is the bounded linear operator on H defined by
(a ®b)(h) = (b,h)a, Vh e H.
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Moreover,
(1.25) E((h,W(t))?) = t(Qh,h), Vhe€ H.

We then call the above W (t) an H-valued Wiener process with covariance
operator @, Tr(Q) < oo. Here we emphasize Tr(Q) < oo since, otherwise,
W (t) will not be H-valued, see below.

Since () is in trace class which implies that () is a compact operator on
H, there exists an orthonormal basis {e;};°; and a bounded sequence of
positive real numbers {7;}72,, such that

(1.26) Qel = Y€, l= 1,2,--- .

Then, W (t) has the form

(1.27) W) = %' Abe,
=1

which is convergent in Ly(€; H), where
(1.28) Bt = e W), 1=12-,

are real-valued, independent, Brownian motions on (2, F,P).

We now recall the definition of the stochastic integral for an operator-
valued process. There is a natural class of operator-valued processes, which
can be stochastically integrated with respect to an H-valued Wiener process
W (t). Denote by Q'/2(H) the image of the operator Q'/2 on H. Since Q
is a linear, self-adjoint, positive definite, and bounded operator with finite
trace, we may define Q'/2 and its inverse Q /2 by the eigenvalues {7;} and
eigenfunctions {e;} of Q. More precisely, for arbitrary o € R, we define the
operator Q% : D(Q*) — H by

Q% = Z'yla(v,el)el, where D(Q%) = {’U €EH: nyfa(v,el)Q < OO}-

=1 =1
It is obvious that D(Q®) = H for a > 0, since {;}{°, is a bounded sequence

of positive real numbers. It is easy to show that Q'/ 2(H) is a separable
Hilbert space with inner product

(an)Q1/2(H) = (Q_l/%a Q_I/QUJ)

and the induced norm (v gi/2(g) = Q" /2v|| for any v € QY/?(H).

For any Hilbert space Hi, we denote by L%([0,T]; H1) the separable
Hilbert space of all F;-progressively measurable processes x, with values
in Hi, such that

T 1/2
el = (B [ oo, dt) " < o
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Denote by L(H) the space of bounded linear operators on H, and by
LY(Q'/?(H), H) the space of all Hilbert-Schmidt operators from Q'/?(H)
into H, i.e.,

LY(Q'(H), H) = {y € L(Q"/(#) gym%n<m}

where {g;}52, is an arbitrary orthonormal basis of Q'/2(H). Its norm is
denoted by

ad /
il = (3 lsl1?)
j=1

1/2

In particular, we can choose g; = Ql/er =7;'"ej, s0 that

> 1/2
lllzg = (3 wlwes1?)
Jj=1

For simplicity, we denote LY = L9 (Ql/ 2(H),H ) below. It is easy to see that
L(H) C LS.

Let us review the construction of the stochastic integral fOTw(t) dW (t)
for a process (-) € L%([0,T); LY). Suppose first that v(t),t € [0,T], is a
simple process, i.e., there exist a sequence 0 =ty <t; <:--<t, =T and a
sequence &g, &1, -+ ,&p—1 of L(H)-valued random variables such that

'(/J(t) :fia fort e (tiati—f-l]a [ :Oa]-a"' ;T — ]-7 with ¢(0) =

where ¢; are F;;-measurable and v(-) € L%([0,7]; L3). We then define the
stochastic integral by the formula

/ ¢ dW Zgz z—|—1 (tz))

For a general L(H)-valued stochastic process € L%([0,T];L3), there is a
sequence of simple processes {1, (t)} such that 1, — 1 almost everywhere
on [0,7] x  and

T
lim [ Elgn(t) -9 (t)|* dt =

n—oo 0

Moreover, { fOT Pn(t) ( )} has a unique limit in Ly(Q; H). We define the

stochastic integral fo t) dW (t) to be this limit.
We have the followmg isometry property, see [14, Proposition 4.5].
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Lemma 1.1. Let W(t) be an H-valued Wiener process with covariance
operator Q,Tr(Q) < oo. Let (t) be an L(H)-valued process and (-) €
LZ([0,T); LY). Then we have

(1.29) 5 [ o] = [ Blsoiga

1.4.2. The stochastic integral with respect to a cylindrical Wiener process.
The construction of the stochastic integral for an H-valued Wiener process
W (t) above requires that W (t) is H-valued, which implies that @ is a trace
class operator. In this subsection we extend the definition of the stochastic
integral to the case of a cylindrical Wiener process. Let () be a linear,
self-adjoint, positive definite, bounded operator on H, not necessarily in
trace class, but with a bounded sequence of positive eigenvalues {y;};°, and
a corresponding orthonormal basis of eigenvectors {e;};2, in H. Thus Q
is not necessarily compact, for example, () = I. By a cylindrical Wiener
process with covariance operator @, Tr(Q) < oo, we mean the series, see Da
Prato and Zabczyk [14], Peszat [42], Peszat and Zabczyk [43],

(1.30) W) =3 1 epi(t), t20
=1

where {§;(t)} is a family of real-valued, independent, Brownian motions. In
the special case Q@ = I, W(t) is defined by

o0

(1.31) W(t)=> ef(t), t>0.

=1

We observe that (1.30) is divergent in Lo(€2; H) if @ is not in trace class,
in which case W (t) is not an H-valued process. In fact, for arbitrary ¢ > 0,

EHZ% et H Z%Eﬂl —tZW—tTr

However, let Hr, be an arbitrary Hilbert space such that the embedding
of QY/?(H) into Hy, is Hilbert-Schmidt. Then we have the following lemma,
see [14, Proposition 4.11].

Lemma 1.2. The cylindrical Wiener process (1.30) defines a Hrp,-valued
Wiener process with some covariance operator Qp,.
For arbitrary h € H, the process

(1.32) Z7l (h,e)Bi(2)
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18 a real-valued Brownian motion and
(1.33) E((hl,W(t))<h2,W(s))) = min(t, 8)(Qh1,h2), fO’I‘ hl,hQ € H.

For any 1(-) € L%([0,7]; LY), we can define the stochastic integral as
follows:

T o T
(1.34) | veawe =3 [ v dawe.
=1

where {g;}{°, is an arbitrarily orthonormal basis in Q'/?(H), and the inte-
gral on the right is the standard It integral.

Let us consider three special cases.

(1) If @ = I, then we can choose g; = ¢;, and hence (g;, W (t)) = Si(t) by
(1.32), therefore the stochastic integral is

! tth—oo ! t)e; dB;(t
/Ow() ()—lg_;/o P(t)er dBi(2),

which is consistent with the definition in Peszat [42];

(i3) If W (t) is a Wiener process with Tr(Q) < oo, then Q'/? is Hilbert-
Schmidt and Hy, = H, in this case, the stochastic integral defined by (1.34)
is consistent with the stochastic integral defined in the subsection 1.4.1. In
fact, for simplicity, let 4 (t) = % € L(H) C LY, be independent of t. Then

we have, with g; = ’yll/Qel,
00 T 00 0
3 /0 SO dlg, WE) =S vabi®) = 9> abi(t) = W),
=1 =1 =1

which is indeed the stochastic integral fOT P (t) dW (t) defined in subsection
1.4.1.

(#32) In our work we assume that ||A(ﬂ*1)/2||L<2) < oo for some g € [0, 1],
ie.,

oo
||A(ﬁ_1)/2||%g = " pllAPTI e < oo
1=0

In this case we have Hy, = HP~'. In particular, this guarantees that W (¢)
is H!-valued, which is important for the finite element method.

The isometry property (1.29) also holds in the present case, see Da Prato
and Zabczyk [14, Corollary 4.14]. Thus, even if the cylindrical Wiener pro-
cess W (t) is not H-valued, we can still construct the H-valued stochastic

integral [ 4(t) dW (t).
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1.4.3. Numerical methods for stochastic parabolic equation. In this subsec-
tion we will review some numerical methods for (1.22).

The difficulty of the numerical approximation for such equation is how to
approximate the noise. Shardlow [45] considers the finite difference approx—
imation of (1.22) in the one-dimensional case with H = L9(0,1), A = 6 -z
with Dirichlet boundary condition. Let 0 = ¢y < ¢;--- < ity = T be a
partition of [0,77, t, = nk, n =0,1,2,--- , N, where k is the time step. Let
0=1xp <z <---<zx5=1 be a space partition of [0,1], zj = jh, j =
0,1,2,---,J. Denote by e; = V2sinjrz, j =1,2,--- , the eigenvectors of
A= 3‘92 with Dirichlet boundary condition, which forms an orthonormal
basis of L(0,1). Let Py denote the operator taking f to its first J Fourier
modes

J
Prf =Y (f,e)e

j=1

Then, Shardlow [45] approximates the noise dgf over the time step (t,—1,%,)

by

dw 1 [t
— - Py dw
a ~ %), Frave)
which is a Ly(0, 1) function, since, for example, in the case Q = I,
I I
Bz [ Praws) = —/ IPs[120 ds = [| P2 = J = b~} < oo,
k tn—1 k tp—1 2 2

Then he defines a simple discretization based on the #-method in time and
the standard three point approximation to the Laplacian to obtain the dis-
crete solution Uf,j = 0,1,2,---,J, on the time ¢ = t,, and show the

following error estimates, if k/h? = C,
1U™ = u(tn) |y 0smy < CREO2, forVe > 0,

where U™ = U"™(z) is some continuous function which satisfies U™ (z;) =
U]”, j=0,1,2,--- . J. The result shows that, in the one-dimensional case
and in the cylindrical Wiener process case with () = I, the convergence
order is almost O(h!/?) in the Ly(€; H) norm.

Allen, Novosel, and Zhang [3] consider both finite element and finite dif-
ference methods for the same problem studied in [45]. They approximate
the space-time white noise atgv by using piecewise constant functions on a
partition [tp—1,tn] X [zj—1,2], 1 <n <N, 1<j<Jof[0,T]x]0,1]. More
precisely, with k =t, —t,_1 and h = mj - Tj_1,

W _PW
8t0r  0tdr  kh Z Z”’U VEhxn (t (t)x;(z),
n=1 j=1
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(t) 1 tnfl StStna ( ) ]- xjfl ng‘T]?
= N ) =
xn 0 otherwise, X3 0 otherwise,

and

= 1
Njn = kh t_ 1/w N(Oa )a

where N (0,1) is the standard real-valued Gaussian random variable and
nNjn are independent and identically distributed (iid). It is obvious that

gigg € Ly(0,1) for fixed ¢t € [0,T], w € Q. Applying the standard finite
element and finite difference methods for the new “simpler” problems, they
obtain the approximate solution U™ =~ wu(t,) and the corresponding error
estimates. For example, using the backward Euler method, the finite element

approximate solution U™ satisfies, with £ = 1 + log(T'/k),

U™ = w(tn) | Loy < Cle(kH* + h112).

Du and Zhang [20] also consider the numerical approximation for the
equation (1.22) but with some special additive noise. More precisely, the
noise takes the form

PW &

oor > a0 (t)e;(@),

i=1

where ¢;(t) is a continuous function. ;(t) is the derivative of the stan-
dard real-valued Wiener process, and e;(z) = v/2sinjrz as above. They
approximate the noise by

EW W& ul
810z 9tz Z (2_:7 jnXn (¢ ) i(@);

where x,, is defined as above, and

1 [t
Bin il dp;(t) = N(0,1),
are independent and identically distributed (iid). Replacing o;(t) by 6;(t) we
get discretization in the z-direction, and replacing Bj (t) by 2711\]21 ﬁ BinXxn(t)
we get the discretization in the t¢-direction. The standard finite element
method now can apply to the “simpler” problem and obtain the approxi-
mate solution U™ and the corresponding error estimates. For example, in
the cylindrical Wiener process case, i.e, 0;(t) = 1, using 6;(t) =1 for j < J
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and 6(t) = 0 for j > J to approximate o0;(t), they show the following error
estimate for the backward Euler method, with ¢, = 1 + log(T'/k),

U™ = u(tn) | no0smy < Cle(k* + h1/2).

In the case where ,Bj (t) are more regular in time, higher order error estimates
may be obtained by using the similar technique in the higher order finite
element space.

1.4.4. Finite element method for stochastic parabolic equation. Let S C
H}(D) be a family of finite element spaces as defined in section 3. The
semidiscrete problem of (1.22) is then to find the process up(t) = up(-,t) €
S, such that

(1.35) dup, + Apup dt = PpdW, for0 <t <T, with uh(O) = Pyuy,

where P, denotes the Ls-projection onto Sy, and A : S, — Sy is the
discrete analogue of A, defined by

(136) (Ah,(/)aX) = A('(an)’ VQ/]aX € Sh

Here A(-,-) is the bilinear form on H{ (D) obtained from the operator A in
(1.22).

Let Ey(t) = e ', t > 0 be the semigroup generated by —Aj. Then
(1.35) admits a unique mild solution

’U,h(t) = Eh(t)U()h + /Ot Eh(t — S)Ph dW(s)

Let k be a time step and ¢, = nk with n > 1. We define the following
backward Euler method

U" — Unfl 1 tn
(137) T + AhUn = E/ Ph dW(t), n > 1, UO = Phuo,
t

daw 1 [ 1
N w2 [ PaW () = Py (W (t) — Wty 1))

We make the assumption that ||A(ﬁ*1)/2||Lg|| < oo for some S € [0,1],

which guarantees that W (t) is H !-valued . Hence P,W (t) is well defined
because P, can be extended to a bounded linear operator from H~! to H~'.

In paper [V], we obtain error estimates for a linear stochastic parabolic
partial differential equation in both semidiscrete and fully discrete cases
with respect to strong and weak norms in space. In paper [VI] we extend the
results in [V] to a nonlinear stochastic parabolic partial differential equation.
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Under certain Lipschitz and growth conditions for nonlinear term, we obtain
the similar error estimates as in the linear case.

2. SUMMARY OF THE APPENDED PAPERS

2.1. Paper I. Smoothing properties and approximation of time
derivatives for parabolic equations: constant time steps

In this paper we study smoothing properties and approximation of time
derivatives for time discretization schemes with constant time steps for a ho-
mogeneous parabolic problem formulated as an abstract initial value prob-
lem in a Banach space. The time stepping schemes are based on using ratio-
nal functions r(z) =~ e~* which are A(#)-stable for suitable 6 € [0, 7/2] and
satisfy |r(oco)| < 1, and the approximations of time derivatives are based
on using difference quotients in time. Both smooth and nonsmooth data
error estimates of optimal order for the approximation of time derivatives
are proved. Further, we apply the results to obtain error estimates of time
derivatives in the supremum norm for fully discrete methods based on dis-
cretizing the spatial variable by a finite element method.

For fixed 7 > 1, we introduce the finite difference quotient

. 1 2

(2.1) chU" =17 Z c, U forn > myq,

vV=—ma
where m1, mo are nonnegative integers, and ¢, are real numbers, and where

the operator @), is an approximation of order p > 1 to D/, that is, for any
P k 1YY t

smooth real-valued function u,
Diu(t,) = fcu" +O(kP), ask — 0, withu" =u(t,).

For example, let j =1, m; = 1, mg = 0, we have

1
Dyu(t,) = E(—un_1 +u")+ O(k), ask —0,

and let 7 =2, my =1, mo = 1, we have
1 - n n
D?u(t,) = ﬁ(u” L2y +u™™) + O(K?), ask — 0.
We show that, if A satisfies (1.2) and (1.3), and r(z) is A(f)-stable with
0 € (6,7/2], and |r(o0)| < 1, then the following smoothing property holds:
(2.2) 1QIU™|| < Cty||v|l, forn >ma, tn >0, ve B,

We also obtain the following smooth data error estimates for time deriv-
ative approximation: if A satisfies (1.2) and (1.3), and 7(z) is A(6)-stable
with 6 € (6,7/2], then

(2.3)  ||QLU™ — Dju(ty)| < CkP||APHy|, forn > my, v € D(APH).
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To obtain an optimal order error estimate for nonsmooth data, A(6)-
stability is not sufficient. We find that, if A satisfies (1.2) and (1.3), and
r(z) is A(0)-stable with 6 € (6, 7/2], and |r(oc0)| < 1, then

(2.4) | QLU™ — DJu(t,)|| < CkPt; P+ ||v||, forn >my, t, >0, v € B.

2.2. Paper II. Smoothing properties and approximation of time
derivatives for parabolic equations: variable time steps

In this paper we study smoothing properties and approximation of time
derivatives for time discretization schemes with variable time steps for a ho-
mogeneous parabolic problem formulated as an abstract initial value prob-
lem in a Banach space. The time stepping methods are based on using
rational functions r(z) &~ e~* which are A(6)-stable for suitable § € (0, 7/2]
and satisfy |r(oo)| < 1. First and second order approximations of time
derivatives based on using difference quotients are considered. Smoothing
properties are derived and error estimates are established under the so called
increasing quasi-quasiuniform assumption on the time steps.

Let 0 =ty <t <--- <ty <--- be a partition of the time axis and let
kn = tn —th_1, n > 1, be the variable time steps. An approximate solution

" = u(ty) = E(tn)v of (1.1) may be defined by

(2.5) U™ =r(k, AU, forn>1, withU’=uo,

where 7(z) is defined in (1.6).

Stability results in variable time steps have been considered by some au-
thors. For example, Palencia [38] shows that, if A satisfies (1.2) and (1.3),
and r is A(0)-stable with 6 € (6, /2], if the time steps {k;}32; satisfy, with
some constant p,

k.
(2.6) 0<;f1§k—lgu<oo, fori,j > 1,
j

then there exists a constant C(u) such that the following stability result
holds

(2.7) H ﬁ B,
j=1

We observe that the stability bound will depend on the maximum ratio
1 between the steps, but not on the steps themselves. In this way, the
stability bound does not blow up when the maximum time step goes to
zero, as long as p remains bounded. In particular, a family of quasi-
uniform grids with ke < pkmin satisfies the assumption (2.6), where
kmaz = maxi<j<p kj, kmin = mini<;<p k;. More precisely, Bakaev [4] shows

< C(p), where Ey; =r(k;A).
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that if A satisfies (1.2) and (1.3), and r is A(#)-stable with 6 € (4, 7/2], then
n
(2.8) H H Ey, H < Clog(l+ ), where p = knaz/kmin-
j=1

Palencia [39] further finds that if |r(cc0)| < 1, then the stability bound holds
without any restriction on the time steps.

In the present paper, we first consider error estimates for (2.5) in both
smooth and nonsmooth data cases. We show that if A satisfies (1.2) and
(1.3) and r is A(f)-stable with 6 € (4, 7/2] and accurate of order p > 1, then
the following smooth data error estimate holds:

U™ — u(ty)|| < CKP .. ||APv||, for t, >0, v € D(AP).

To obtain error estimates in the nonsmooth data case, we introduce the
notion of increasing quasi-quasiuniform grids T in time. Let {7 } be a family
of partitions of the time axis, T ={t,: 0=t <t;1 <---<tp, <---}. {T}
is called a family of quasi-quasiuniform grids if there exist positive constants
¢, C, such that

(2.9) ckn+1 < kp < Cty/n, forn > 1.

Further, if k1 < kg < --- <k, < ---, then we call {T} a family of increas-
g quasi-quasiuniform grids. We note that increasing quasi-quasiuniform
implies that k,, ~ k,1 and nk, ~ t,, where a,, ~ b, means that a, /b, is
bounded above and below.

For example, if we choose the variable time steps k, = n°k for some
fixed s > 1, with & > 0, then ¢, = k(zg-lzljs), and the corresponding
family of partitions {7} is a family of increasing quasi-quasiuniform grids.
In fact, it is obvious that k,/kn+1 = n®/(n + 1)° > 1/2%. Further, since
tn/k = Z?:l §* > Cn**! for some positive constant C, we have k,, < Ct,,/n.

Under these assumptions, we have the following nonsmooth data error
estimate: If A satisfies (1.2) and (1.3), and r is A(#)-stable with 6 € (6, 7/2]
and accurate of order p > 1, if further |r(co)| < 1 and {7} is a family of
increasing quasi-quasiuniform grids, then we have

U™ — u(ty)|| < CkEE P||v||, fort, >0, veEB.
As for the smoothing property, we show that, if r(cc) = 0, and {7}
satisfies (2.6), then

n
HAHE’“J"“H < Ct Y|, fort, >0, veB.
j=1

As in the constant time step case, see paper [I], the above smoothing prop-
erty is not true in the case of r(occ0) # 0. However, if |r(c0)| < 1, then we
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introduce similar difference quotients as (2.1) but with variable time steps.
For simplicity we only consider the following first and second order approx-
imations of time derivative u;(t,)

ou™ = (U™ —U" Y /k,, forn>1,
and
U™ = andU"™ 4+ b,0U" " = an(U" = U Y) /by + b (U™ = U"?) [kp_1, forn>2,
where
an = (2kn + kn_1)/(kn + En_1), bn = —kn/(kn + kn_1).

In both cases, under the assumption of increasing quasi-quasiuniform grids,
we obtain a smoothing property and error estimates for time derivative in the
nonsmooth data case. We also show a smooth data error estimate without
any restrictions on the time steps.

2.3. Paper II1I. Smoothing properties and approximation of time
derivatives in multistep backward difference methods for parabolic
equations

In this paper we consider the smoothing properties and time derivative ap-
proximation in multistep backward difference methods for nonhomogeneous
parabolic equations. Smoothing properties and time derivative approxima-
tion in single step method for homogeneous parabolic equation have been
studied in Hansbo [27], [28], and in papers [I, II]. We extend some of the
results in paper [I] to the multistep backward difference method.

We obtain the following smoothing property, i.e., if U" is the solution of
(1.11), then we have, with f =0 and p < 6,

p—1
18, U™ < C," > [Tl for m > 2p.
=0
It is natural to approximate the time derivative w(t,) by 9,U" (n > 2p),
where U™, n > p is computed by the multistep backward difference method

(1.11). Denoting |v|, = ||A%/?v|| for s € R, we obtained the following error
estimates, with p < 6,

p—1
15,0 — wi(ta)[| < C Y AU — )|
7=0

tn
+ O / |Au®+D (s)|[ ds, forn > 2p,
0
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and, with G(s) = [u® ()25, _y + 5?7 2ul ) (5) [ + % |ue(s)F,

2p—1
EPP0U™ — wi(tn)|” < C Y ([U7 = w24, + KPP AU — o))
J=p
tn )
+ Ok ([ Gls) ds + Bylutay)I}),
0
When we choose some suitable discrete starting values U°, U, ... [ UP~L,

we obtain the following nonsmooth data error estimates, with f = 0 and
p <6,

U™ — uy(ty)|| < CKkPt, P, forn > 2p.
p n

2.4. Paper IV. Postprocessing the finite element method for semi-
linear parabolic problems

In this paper we consider postprocessing of the finite element method
for semilinear parabolic problems. The postprocessing amounts to solving
a linear elliptic problem on a finer grid (or higher-order space) once the
time integration on the coarser mesh is completed. The convergence rate is
increased at almost no additional computational cost. This procedure was
introduced and analyzed in Garcia-Archilla and Titi [24]. We extend the
analysis to the fully discrete case and prove error estimates for both space
and time discretization. The analysis is based on error estimates for the
approximation of time derivatives by difference quotients.

Let @, and u be the solutions of (1.20) and (1.14), respectively. Under
some assumptions for the smoothness of ' and u, we prove that, with £, =
1+ log(T/h?),

(2.10) iin (T) — u(T)|| < Clph™™2,  forr > 4.

A similar result holds for r > 3. The proof is based on superconvergence
for elliptic finite element methods in norms of negative order, which is the
reason for the restriction r» > 3.

In the fully discrete case, we define the following backward Euler method
to compute the approximate solution U™ € Sy, with U™ = (U™ — U™ 1) /k,

(2.11) OU™ + A U™ = P,F(U™), n>1, withU®=u.

It is natural to approximate uy (7)), T = t, in (1.18) by U™. We there-
fore define the following postprocessing step in the fully discrete case: find
u(T) € D(A), such that

(2.12) Aua(T) = —oU™ + F(U™).
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The finite element solution of the elliptic problem (2.12) with respect to Sh
is to find ap(T) € Sy, such that,

(2.13) Ay, (T) = By (—0U™ + F(U™)).
Let U™ be the solution of
U™ + ApU™ = P,F(u"), m>1, with U° = uy,.

Our main result in this paper is the following: let i; and u be the solutions
of (2.13) and (1.14), respectively, then we have, with £, = 1 + log(T/k),

1% (T) = w(T)| < C(10U" = ue(t1)l| + 00" — uy(t1)|—2)
+CA+4) (W12 +k), forr>4,n>2.

2.5. Paper V. The finite element method for a linear stochastic
parabolic partial differential equation driven by additive noise

In this paper we consider the finite element method for a stochastic para-
bolic partial differential equation forced by additive space-time noise in the
multi-dimensional case. Optimal strong convergence estimates in the Lo
and H~! norms with respect to spatial variable are obtained. The proof is
based on appropriate nonsmooth data error estimates for the corresponding
deterministic parabolic problem.

Let up(t) and u(t) be the solutions of (1.35) and (1.22), respectively.
Under the condition ||A(ﬂ_1)/2||L(2) < oo for some B € [0,1], we obtain the
following error estimates in the semidiscrete case,

lun(®) = @l o(osm1y < OB (I1toll sy + 1AP~DP2] ),
and, with £, = log(t/h?),
lun(®) = w1, gpir-1) < CHPF (Iluolly gyizsy + Eall AP2] ).

We also consider the error estimates in the fully discrete case. Let U™
and u(t,) be the solutions of (1.35) and (1.22), respectively. Under the
condition ||A(ﬂ_1)/2||Lg < oo for some B € [0,1], we obtain the following
error estimates in the fully discrete case,

|07 = i)l agoity < OU2 4 07) (ol oy + 142 1sg).
and, with £, = log(t,/k),

||Un—u(tn)||L2(Q;H—l) < C(k(ﬁ+1)/2+hﬂ+l)(”“0HLZ(Q;Hﬂ)+£k”A(ﬂ_1)/2||Lg)-
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2.6. Paper VI. A finite element method for a nonlinear stochastic
parabolic equation

In this paper we consider finite element approximation for nonlinear sto-
chastic parabolic partial differential equations. This paper is the continu-
ation of paper [IV], where the linear case is treated. Under certain global
Lipschitz and growth conditions for the nonlinear term, we obtain the opti-
mal error estimates in both semidiscrete and fully discrete cases with respect
to strong and weak norms in spatial variable. The proof is based on the non-
smooth data error estimates for deterministic linear homogeneous parabolic
problem.

Counsider the following nonlinear stochastic parabolic partial differential
equation

(2.14) du+ Audt = o(u)dW, for0<t<T, withu(0)= uyp,

in the Hilbert space H = Ly(D), where A = —A and W are as in paper [V].
Assume that o : H — LY satisfies the following global Lipschitz and
growth conditions,

() llo(z) —o()llry < Cllz—yll, Vz,y € H,
(@) No(@)llrg < Clizll, V= e H.

Then (2.14) admits a unique mild solution which has the form, see Da Prato
and Zabczyk [14, Chapter 7],

t
u(t) = E(t)up + /0 E(t — s)o(u(s)) dW(s),

and we have
sup_ Bju(t)|[> < C(1+ Bljuo ).
te€[0,T]

Note that if Tr(Q) < oo, then the identity mapping o(u) = I does not sat-
isfies the condition (4¢). In order to cover this important case, we introduce
a modified version of (i7), i.e.,

(@) [|AP=D 20 (z)|,9 < Cllz|l, for B €[0,1], Vze€ H.

We see that (i) is the special case § =1 of (i4').
The semidiscrete problem of (1.22) is to find the process up(t) = up(-,t) €
S}, such that

(2.15) dup, + Apup dt = PhO'(uh)dVV, for0 <t <T, with uh(O) = Puy,

where P, and Ay, : S, — S, are defined as before.
Let Ej(t) = e7*4%, t > 0. Then (2.15) admits a unique mild solution

wn®) = Eu(thuon + | " En(t — ) Pao(un) dW (s).
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Under the assumptions (i) and (i7'), we obtain the following error esti-

mates in the semidiscrete case for ¢ € [0, 7], with C = C(T),

10.

11.

12.

13.

14.

15.
16.

17.

18.

lun(®) = w8l o) < O (ol yosszsy + 590 Bllu(s)lliaco,m )-
0<s<T
A similar result holds in the fully discrete case.
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Abstract.

We study smoothing properties and approximation of time derivatives for time dis-
cretization schemes with constant time steps for a homogeneous parabolic problem
formulated as an abstract initial value problem in a Banach space. The time stepping
schemes are based on using rational functions r(z) = e™* which are A(6)-stable for
suitable 6 € [0, 7/2] and satisfy |r(c0)| < 1, and the approximations of time derivatives
are based on using difference quotients in time. Both smooth and nonsmooth data
error estimates of optimal order for the approximation of time derivatives are proved.
Further, we apply the results to obtain error estimates of time derivatives in the supre-
mum norm for fully discrete methods based on discretizing the spatial variable by a
finite element method.

AMS subject classification: 66M12, 66M15, 65M60, 65J10.

Key words: Banach space, parabolic, smoothing, time derivative, single step time
stepping methods, fully discrete schemes, error estimates, finite element methods.

1 Introduction

In this paper, we consider single step time stepping methods for the following
homogeneous linear parabolic problem

(1.1) ug+Au=0 fort >0, withu(0)=wv,

in a Banach space B. We first study the smoothing properties of the time
stepping methods, then we consider approximations of time derivatives based
on difference quotients of the approximate solutions of (1.1). Both smooth and
nonsmooth data error estimates of the approximations of time derivatives are
obtained. As an application we show error estimates in the supremum norm
for fully discrete methods based on finite element methods in a spatial domain
QCRN,N>2.

We assume that A is a closed, densely defined linear operator defined in
D(A) C B, that the resolvent set p(A) of A is such that, for some § € (0,7/2),

(1.2) p(A)DEs={2€C:d<|argz| <mz#0}U{0},
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and that its resolvent, R(z; A) = (2I — A)™!, satisfies
(1.3) IR(z; A)|| < M|z|™', forze€ s, z#0, with M > 1.

Throughout this paper ||-|| denotes both the norm in B and the norm of bounded
linear operators on B.

We assume that 0 € p(A) for simplicity, but this is not essential. In the case
of 0 ¢ p(A) we can add a multiple é'u of u to (1.1), thus replacing the operator
A by A+ 46'I for some positive number &' > 0.

Let —A is the infinitesimal generator of a uniformly bounded analytic semi-
group E(t) = e *4, t > 0, which is the solution operator of (1.1), so that
u(t) = E(t)v. It may be represented as

E@t) = L/e‘”R(z;A) dz,
r

T 2mi

where' = {z: |argz| = ¢} with ¢ € (4,7/2) and Imz decreasing. In particular
the smoothing properties of analytic semigroups are valid, see, e.g., Pazy [13].
More precisely, let j > 0 be fixed, if v € B, we have, with D, = 9/0t,

(1.4) ID{E@)oll = |4 E(t)o]| < Cjt~|loll, fort >0,

which shows that the solution is regular for positive time even if the initial data
are not.

Let U™ be an approximation of the solution u(t,) = E(t,)v of (1.1) at time
t, = nk, where k is the time step, defined by a single step method,

(1.5) U™ =EyU™! forn>1, withU%=u,

where Ej, = r(kA), and where the rational function r(z) has no poles on o(kA).
We may thus write U™ = E}v.

We say that the time discretization scheme is accurate of order p, with p > 1,
if

(1.6) r(z) —e * = 0(zP™'), asz—0.

For example, the backward Euler method given by r(z) = 1/(1 + 2) is first order
accurate and the Crank-Nicolson method, defined by r(z) = (1 — 12)/(1 + %2),
is second order. As another example, the method defined by the (g,q + 1)
subdiagonal Padé approximation r(z) = p;(z)/p2(z), where p; and p, are certain
polynomials of degrees ¢ and ¢q + 1, respectively, is accurate of order 2q + 1.

Stability and error estimates for single step methods have been studied by
many authors, see, e.g., Bakaev [2] [3], Palencia [11] [12], Thomée [16] and
references therein. For instance, if A satisfies (1.2) and (1.3), and r(z) is A(9)-
stable with 6 € (§,7/2], i.e., [r(z)| <1 for |argz| < 6, and (1.6) holds, then we
have

(1.7) U™ = u(tn)ll = [|Efv — E(tn)v]] < CkP[|AP0]|,  for v € D(AP),
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see, e.g., Larsson, Thomée, and Wahlbin [9] and Crouzeix, Larsson, Piskarev,
and Thomée [7]. Due to the assumption v € D(AP), we refer to this as a smooth
data error estimate.

To obtain optimal order error estimates for nonsmooth initial data, A(6)-
stability of the scheme is not sufficient. However, if we require in addition that
|r(o0)| < 1, then the following nonsmooth data result is valid:

(1.8) U™ = u(ta)ll = [| Efv — E(tn)o|l < CEPEP[oll,  for tn >0, v € B,

see, e.g., Larsson, Thomée, and Wahlbin [9] and Crouzeix, Larsson, Piskarev,
and Thomée [7]. The condition |r(c0)| < 1 ensures that oscillating components
of the error are efficiently damped.

Let us recall some results about the smoothing properties of the time dis-
cretization schemes (1.5). When B is a Hilbert space H and A a linear, selfad-
joint, positive definite, unbounded operator, the following smoothing property
holds for A(0)-stable time discretization schemes with 7(c0) = 0: for each j > 0
there is C' such that

(1.9) |ATU™|| = [|APERo|| < Ot |||, fort, >t;, vEH,

see, e.g., Thomée [16, Lemma 7.3]. Hansbo [8] extends this result to Banach
space, and shows that, if A satisfies (1.2) and (1.3), and r(z) is A(f)-stable
with § € (6,47] and r(co) = 0, then (1.9) holds. Hansbo [8] also shows an
optimal order error estimate in the nonsmooth data case for the approximation
(—A)U™ ~ (—A)u(ty) = ut(tyn) of the first order time derivative of the solution
of (1.1). More precisely, if r(z) is A(6)-stable with 6 € (6, 7] and r(c0) = 0,
then

(1.10) [(=A)U™ — uy(tn)|| < CkPt; P~ |||, fort, >0, veB.

However, we observe in Section 3 that the smoothing property (1.9) is not
valid when r(c0) # 0. Therefore it is natural to investigate the smoothing
properties of (1.5) when r(oo) # 0. If |r(co)| = 1, the discrete method (1.5) is
not smoothing. However, if such a method of order p > 2 is combined with a
few steps of a smoothing method of order p — 1, then we have nonsmooth data
error estimate of order p. For instance, if one uses the Crank-Nicolson method
combined with two steps of the backward Euler method, then a second order
nonsmooth data error estimate holds. This analysis is carried out in Hilbert
space by Luskin and Rannacher [10] and Rannacher [14]. Hansbo [8] extends
the results to Banach space.

In the present paper we shall consider the case |r(00)| < 1. For fixed j > 1 we
introduce the finite difference quotient,

) 1 &2
(1.11) Q;U":y Z e, U™, forn > my,

v=—m1

where m;, my are nonnegative integers, and ¢, are real numbers, and where the
operator @7, is an approximation of order p > 1 to D7, that is, for any smooth
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real-valued function u,
(1.12) Diu(t,) = Qiu™ + O(kP), ask—0, withu™ = u(ty).

For example, Let j = 1,m; = 1,ms = 0, we have
1
Dyu(t,) = E(—u"*1 +u™)+0(k), ask—0.

Let j = 2,m; = 1,ms = 1, we have

1
D?u(ty,) = ﬁ(u”_1 —2u™ +u™) + O(K®), ask —0.
In Theorem 2.5, we show that, if A satisfies (1.2) and (1.3), and r(z) is A(6)-
stable with 6 € (6, 7/2], and |r(c0)| < 1, then the following smoothing property
holds:

(1.13) 1QIU™|| < Ct;7||v]|, forn>my, t, >0, veEB.

Now let us turn to error estimates for approximations of time derivatives of
the form (1.11). We show, in Theorem 2.1, the following smooth data error
estimate for an A(6)-stable discretization scheme, i.e., we have

(1.14)  ||QiU™ — Diu(t,)|| < CkP||AP+iv||, for n > my, v € D(APY).

To obtain an optimal order error estimate for nonsmooth data, A(6)-stability
is not sufficient. Baker, Bramble and Thomée [5] show the following nonsmooth
data error estimate in Hilbert space H by using a spectral method: if |r(A)| <1
for A > 0, and |r(c0)| < 1, then

(1.15)  [|QLU™ — Diu(ty)|| < CkPt;®¥D|jv||, forn >m, t, >0, v € H.

We extend in Theorem 2.6 this result to Banach space, that is, (1.15) also holds
under the assumptions of Theorem 2.5.

The above results are proceeded under the assumption that the time step is
constant. Some results for variable steps are proceeded in Yan [18].

Let us now discuss some properties of the coefficients ¢, in (1.11). With
u(t) = e in (1.12) we have at t, =0

(1.16) k' = P(e*) + O(kP*7), ask — 0, where P(z)= Z ez’

v=—mi

Using Taylor expansion of e”* at k = 0, we therefore easily find that (1.12) is
equivalent to

(1.17) P(e®) — 27 = 0(2P9), asz— 0,

where z is allowed to be complex-valued. For later use we note that (1.11) has
the form

(1.18) QiU™ = k™I P(E})E}v.
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The paper is organized as follows. In Section 2, we show the smoothing prop-
erties of the abstract time stepping method, and give the optimal order error
estimates of the approximation of the time derivatives for both smooth and non-
smooth data. In Section 3, we apply the results obtained in Section 2 to a fully
discrete scheme. In Section 4, we give some numerical examples to illustrate our
theoretical results.

By C and ¢ we denote positive constants independent of the functions and
parameters concerned, but not necessarily the same at different occurrences.
When necessary for clarity we distinguish constants by subscripts.

2 Smoothing Properties and Error Estimates in Banach Space

In this section, we discuss smoothing properties of time stepping methods in
the general Banach space situation and show smooth and nonsmooth data error
estimates in the approximation QU™ of Dju(t,) in the case of constant time
steps, where U™ is defined by (1.5) and u(t,,) is the exact solution of (1.1).

We first show that (1.9) is not valid for a scheme with r(c0) # 0. In fact, if
B is a separable Hilbert space H and A is a linear, selfadjoint, positive definite,
unbounded operator, we have, by spectral representation,

tol|AER|| = tol|Ar(KA)?|| = sup |nAr(N)"| = o0, for fixedn > 1,
A€o (kA)

which implies that (1.9) does not hold for j = 1. Similar arguments work for
any j > 1.
As an example of a scheme with r(o0) # 0, we consider the §-method:

2.1) r(\) = l_l(iigfn

Here we have |[r(\)| < 1 for A > 0, and r(o0) = (6 —1)/6 # 0. It is easy to check
that r()) is accurate of order p = 1.
Another example is the so called Calahan scheme defined by

1

1
, with b= -

14+ 2=
2 +

A VB X 2
() 3

3
1+bX 6 ( 3)'

One can show that |r(X)| < 1 for A > 0, since r(\) is a decreasing function on

(0,00) and
1 V31
(o) =1-3 - =5 =1 V3> 1.
A simple calculation shows that this scheme is accurate of order p = 3.

Before we study the smoothing properties of the discrete method (1.5), we
will show an error estimate for the approximation (1.11) of the time derivative
D}u(ty) in the case that the initial data, and hence the solution of (1.1), are
smooth. Recall the error estimate (1.7), which shows that for v € D(AP), the
error U™ — u(t,) has the optimal order of accuracy. Similarly we find in the
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following theorem that if v € D(AP+7), then the error estimate for the approxi-
mation of Dju(t,) has the optimal order of accuracy.

THEOREM 2.1. Let u(t,) and U™ be the solutions of (1.1) and (1.5). Assume
that A satisfies (1.2) and (1.3), and that 7(2) is accurate of order p > 1 and
A(6)-stable with 6 € (6,7/2]. Letj > 1 and assume that Q,, defined in (1.11), is
an approximation of D,{, which is accurate of order p. Then there is a constant
C such that

QU™ — Diu(ty)l| < CKP||APHol|,  forn >my, v € D(APY).

To prove this theorem we need the following lemmas, which we quote from
Thomée [16, Lemmas 8.1, 8.3].

LEMMA 2.2. Assume that (1.2) and (1.3) hold and let r(z) be a rational
function which is bounded for |argz| <, |z| > € > 0, where ¢ € (§,7/2), and
for |z| > R with some positive number R. If € > 0 is so small that {z : |z| <
€} C p(A), then we have

r(A) =r(oco)l + L/ r(z)R(z; A) dz,
YeULBU~R

211

where v, = {2 : |z| = ¢,|argz| <}, TE = {2 : |argz| = ¢,e < |2| < R}, and
vB = {z:|2] = R,¢ < |argz| < 7}, and with the closed path of integration
oriented in the negative (clock-wise) sense.

LEMMA 2.3. Assume that (1.2) and (1.3) hold, let ¢ € (§,7/2), and j be any
integer. Then we have for € > 0 sufficiently small

, 1 ,
AE(t) = —/ . e *2 R(z; A) dz,
YeUl'e

- 2mi

where ve = {z : |z| = ¢,]argz| < ¢} and T = {z : |argz| = ¥, |z| > €}, and
where Imz is decreasing along v UT.. When j > 0, we may take e = 0.

PROOF OF THEOREM 2.1. We have

QU™ — Diu(ty) = k™ (P(r(kA))r(kA)" — (~kA)Y e ™),
where P(z) is defined by (1.16). With
(2.3) Gn(2) = P(r(2))r(2)" = (=2)fe ™,
our result will follow from
G (kA (kA) =] < C.

Note that with A also kA satisfies (1.2) and (1.3) since, for z € X,

IR kA = Ik (zk T = A) M| <k Mlzk |t = Mz
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Therefore it suffices to show
(2.4) |Gn(A)A=PH)| < C,

which we will prove now. Let 7#(z) = P(r(z))r(z)"z~®t9). Since n > my and
r(z) is A(f)-stable, we find that 7(z) is bounded for |argz| < ¢, |z| > € > 0,
with some 9 € (8,0). Further 7(z) is also bounded for |z| > R with R sufficiently
large since 7(o0) = 0. Thus, applying Lemma 2.2 to the rational function 7(z) =
P(r(2))r(z)"z~@®t9) | we have

P(r(A)r(A) A=) =

. / P(r(2))r(2)"z~ "D R(z; A) dz.
27 Jy urruyR

Since the integrand is of order O(|z|7P=7~1!) for large 2, we may let R tend to
oo. Using also Lemma 2.3 we conclude

(2.5) G(A) A=) = L / Gn(2)2~ P+ R(z; A) da.
21 yeUT,
We shall show that
(2.6) Gn(2) = O(zP*9), asz— 0, with |argz| <.

Assuming this and combining this with the fact that 0 € p(A), we have that the
integrand in (2.5) is bounded on the small domain with boundary v, U T§, so
that we may let € — 0. It follows that

Gn(A)A*(T’H) = 1 / Gn(z)z*(”“)R(z;A) dz,
r

21

where I' = {z : |argz| = ¢¥}. We now estimate the above integral. Again using
(2.6) and the fact that 0 € p(A), we find, for 5 small enough,

IGn(2)R(z, A)l| < C|2P*,  for 2| <n, |argz|= 1.

Further, noting that P(r(z))r(z)™ is bounded on T, since n > m; and r(z) is
A(0)-stable, we have, using (1.3) and (2.3) as well as the boundedness of e ™*
onT,

IGn(2)R(z, A)|| < M(C + |217)]2| 7", for |2| > 1, |arg 2| = 1.

Thus

. 77 . . R . .
”Gn(A)A—(P-H) | < C/ pp+1p—(p+a) dp + M/ (C + p])p—(P-i-J-‘rl) dp < C.
0 7

It remains to prove (2.6). Since r(z) = e=* + O(2?) as z — 0, we have that,
for 77 > 0 small enough,

(2.7) Ir(2)| < e %, for|z| <7, |argz| <, with0<e< 1.
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Thus, using also (1.6),

n—1

(28) Ir(2)" —e ™| = |(r(z) —e %) Y _r(z)" e

J=0
< Cn|z[Ptle=c=DIzl < O|z|P,  for |2| < 7, |arg 2| < ¢.

Further, with 7 possibly further restricted,
(2.9) |P(r(2)) = (=2)’| < Cl2|P*7,  for |2| < 7.

In fact, by Taylor’s formula, we have

2L p) (=
Pe() - Pe) = 3 T (o) - )
=1
+ (r(z) — e’z)j/0 %Pm (r(2z) + s(r(z) —e %)) ds.

Since P(e~?) is an analytic function of z and P(e™%) = O(2/) as z — 0 by
(1.17), we have P (e?) = O(z/~1), 0 <1 < j as z — 0. Moreover, since
r(z) - 1, e# —» 1 as z — 0, it is easy to see that there exist constants
c1 > 0, co > 0 and small 7 such that ¢; < |r(z) + s(r(z) — e ?)| < ¢ for
|z| <7, 0 < s < 1, which implies that |PY)(r(z) + s(r(z) — e?))| < C for
|z <7, 0 < s <1, since P(x) has the form P(x) = .7 c¢,«”. Thus, using
also (1.6) we get

|P(r(2)) — P(e™%)| = ]i:O(zj_l)O(zl(p“)) +0(ZPHD) = O(2P17), asz— 0.
=1

Combining this with (1.17) shows (2.9).
Thus, by (2.8) and (2.9),

Gn(2)] = ‘(P(T(z)) = (=2))r()" + (=) (r(2)" — ™)

< ClzPt, for|z| <7, |argz| <,

which is (2.6). O

We next prove a smoothing property of an A(6)-stable discretization scheme
with |r(o0)| < 1. Before doing this, we show that Q7 U™ defined by (1.11) can be
expressed as a linear combination of the backward difference quotients §7U™+*
for some integers p. _

LEMMA 2.4. Let j > 1 and QU™ be defined by (1.11). Then there exist
constants oy, —my + j < p < mo, such that

QU™ = DU where U™ = (U™ — U™ ) /k.
k |7

p=—mi+j
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ProoF. With P(z) =372 | c,x", we have

m2
HQU"= Y ¢ E{U" =P(E)U", whereE =r(kA),
V:*”nl

i.e., the difference operator is associated with the rational function P(x). Simi-
larly the operator k737 U™*# corresponds to the rational function P(z) = z#(1—
x~1)7 since

Koiumtt = (1 - E;YYE M = (I - E;YY ERU™ = P(E,)U™.

Thus we only need to show that there exist c,, such that

mo m2
(2.10) P(z) = Z a,P(z)=(1—z71) Z auzh.
pu=—m1+j p=-mi+j

But by (1.17) we find P (1) = 0 for 0 < < j — 1, which implies that P(z), and
hence "™ P(z) contains the factor (z — 1)7, that is, there exists a polynomial
P(zx) of degree my + my — j such that 2™ P(z) = (z — 1)’ P(z). Denoting
P(z) = 7 ™277 grok for some constants S, we get that there exist constants
oy, such that

mi+mo—j mao
™ P(z) = (x — 1) Z Brat = (z — 1) Z auxu+m17j’
k=0 u=—mi+j

which shows (2.10). O

THEOREM 2.5. Let U™ be the solution of (1.5). Assume that (1.2) and (1.3)
hold, and r(z) is accurate of order p > 1 and A(6)-stable with € (§,7/2], and
[r(00)] < 1. Let j > 1 and assume that Q,, defined in (1.11), is an approxi-
mation of D{, which is accurate of order p. Then there is a constant C such

that
1QLU™| < Ctzilloll, forn > ma, ta >0, v € B.
PrOOF. By Lemma 2.4, it suffices to show
(2.11) 13U < Ot ], forn > j.

In fact, this implies, for n > mq, t, > 0,

ma2 mz
lGurl=| > advrt| <o Y el
p=—mi+j p=—mi+j
< Oty g 01l < O ol

We know show (2.11). Noting that 87U = k=i P(Ey)Egpv for P(z) = (1 —
z 1) =z I(z —1)?, we need to show

IP(r(A4))r(A)" ] = lIr(4)" 7 (r(4) = 1)|| < Cn™,  forn > j.
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As in the proof of Theorem 2.1 this then also holds with A replaced by kA, and
thus shows (2.11).

Since n > j and r(z) is A(6)-stable with 6 € (§,7/2] and |r(c0)| < 1, which
implies that r(z)"~7(r(z) — 1)? is bounded for |argz| < 9, |z| > € with some
1 € (8,0) and arbitrary € > 0, and also bounded for |z| > R with R sufficiently
large, we therefore have, by Lemma 2.2,

r(4)" 7 (r(4) = 1) =r(c0)" 7 (r(c0) = 1)1
1

- n—j —_ 1\ .
+ 9 /yéurguw r(z)" 7 (r(z) — 1) R(z; A) dz.

By |r(o0)| < 1, we have, for fixed R > 1 large enough,
(2.12) [r(2)| <e”¢, for|z| > R.
Clearly then |r(c0)| < e™¢, so that
r(00)™ ™ (r(c0) — 1)7| < Ce™™ < Cn™7, forn > 1.

To bound the integrals over the three components of the path of integration, we
have, by (2.12),

1 n—j 1 —cn |dz| —J
H— r(2)" 7 (r(z) — 1) R(z; A) dzH < Ce — < Cn77, forn>1.
21 R

~E |2:|

For the other two components of the path of integration, since r(z) is A(#)-stable
and 0 € p(A) and accurate of order p > 1, which imply that the integrand is
bounded on the small domain with boundary . UT§, we may let € tend to 0.
Thus it suffices to bound the integral over T'§¥. But by A(6)-stability and the
maximum-principle we have |r(z)| < 1 for |argz| < 0, z # 0. In particular,
|r(2)] < 1 on the compact set {z: 7 < |2| < R, |argz| < ¢}, which means that
the inequality (2.7) also holds for |z| < R, |argz| < ¢ with ¢ sufficiently small.
Thus, we have, noting that r(z) —1 = O(z) as z — 0,

H QLM /Fg r(2)" 7 (r(z) — 1) R(z; A) dZH <C /OR e ptdp < Cn.

Together these estimates complete the proof. 0O

We remark that if |r(o0)| = 1 with r(o0) # 1, then the conclusion of Theorem
2.5 is not valid. For example, let us consider the Crank-Nicolson scheme, with
r(00) = —1. Assume that A is a linear selfadjoint, positive definite, unbounded
operator with compact inverse in Hilbert space 7, and A has eigenvalues {\;}32,
and a corresponding basis of orthonormal eigenvectors {¢;}32,. Then, with
v = ¢;, we have, noting that r(o0) = —1,

tallOU™(| = nlr (kA)" " (r(kA) — 1)o]|
=nlr(kX)" "t (r(kX;) = 1)| = 2n, asj — oo,
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which implies that there does not exist a constant C' such that
tollOU| < Oflv]l, forn>1, wveH.

However, if r(00) = 1, then the conclusion of Theorem 2.5 holds in special
cases: Let us consider the (2,2) Padé scheme,

1 1
_ 1— A+ 5N
143X+ 5A%7

(2.13) r(\)

where r(00) = 1.

We show that in this case t,[|0U™|| < C||v||. In fact, for this it suffices to show
(2.14) [nrN)™ L (r(\) =1)| < C, for A > 0.

For small ) this follows directly from the fact that [r(A)| < e~} |r(A)=1] < CA
for 0 < A < Ag and it remains to consider large A. Noting that |r(A)| < e’
with some constant ¢ and |[r(A) — 1| < CA~! for A > ), see, e.g., Thomée [16,
Lemma 8.2], we have

(0" L (r(A) = 1) < C(nA Ve < DA < ¢

which shows (2.14).

Our next result is an error estimate in the nonsmooth data case. The estimate
has optimal order of accuracy for ¢, bounded away from zero, but contains a
negative power of ¢,. Comparing with the error estimate (1.8), we find that ¢, ?
is replaced by t,?~7 in our theorem. The proof in the Hilbert space case can be
found in Baker, Bramble, and Thomée [5]. Here we extend the result to Banach
space.

THEOREM 2.6. Let u(t,) and U™ be the solutions of (1.1) and (1.5). Assume
that (1.2) and (1.3) hold, and r(z) is accurate of order p > 1 and A(6)-stable
with 8 € (6,7/2], and |r(c0)| < 1. Let j > 1 and assume that QJ,, defined in
(1.11), is an approzimation of D{, which is accurate of order p. Then there is a
constant C such that

1QLU™ — Diu(tn)|| < CEPt; P[], forn >ma, t, >0, v € B.

To prove this theorem, we need the following lemma, which we quote from
Thomée [16, Lemma 8.5].

LEMMA 2.7. Assume that the rational function r(z) is A(0)-stable with 8 <
/2, and that |r(co)| < 1. Then for any ¢ € (0,0) and R > 0 there are positive
C and ¢ such that, with k = r(c0),

[r(2)" — k™| < Clz| ‘e ™, for|z| > R, |argz| < ¢, n > 1.

PRrROOF OF THEOREM 2.6. We need to show, with G,(2) given by (2.3),

IGn(A)|| < Cn= P+,
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We set k = r(o0) and

Gn(z) = Gp(z) — P(k)K"z/(1 + 2).

Obviously G, (c0) = 0. Since |&| < 1, we have |k| < e ¢ for some ¢ > 0. Noting
that [|A(I + A)~!|| < 2M, we have, since n > mq, n > 1,

|P(k)s™A(I + A)~Y|| < 2M|P(k)k"| < 2 M‘ 3 e cln)

< Ce " < Cn~—(P+3)

It remains to show the same bound for the operator norm of G, (A). We may
now use Lemmas 2.2 and 2.3 to see that, with ¢ € (4,6),

Gn(d) = —— /  Gu(aR(s 4 d

T 27

Since n > my and r(z) is A(f)-stable and 0 € p(A4), the integrand is bounded
on the small domain with boundary v, UT§, so that we may let € tend to 0. We
therefore have, with I' = {z: |arg 2| =9 },

_ 1 _
Gu(4) = 5 /F Go(2)R(z; A) dz.
We write

Gn(2) = (P(r(2)) = (=2)7)r(2)" + (=2) (r(2)" — e7™)) = P(k)K"2/(1 + 2).

Using the estimates (2.7), (2.8), (2.9) and [1/(1 + 2)| < 1 for Rez > 0 and the
boundedness of R(z; A), we have, for z € T, |2| <1, n>1,

1Gn(2)R(z, A)|| < (0|z|1’+fe—m|2‘ + ]2} (cn|z|p+1e—c"‘Z‘)) + CK" < Cn~P.
Further, we rewrite

Gal2) = (PO(2)r(2)" = P(5)K™) + P(0)s"/(1+ 2) = (=2) e,

By Lemma 2.7 we have, for z € T, |z| > 1 and n > m;,

m2

|P(r(2))r(z)" — P(r)K"| = ‘ 3 e (r(z)n+v _ Km)
< C|z|71 % |C,,|€7c(n+”)

< C|z|—le—c(n—m1) < C|Z|_1€_Cn.
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Thus, since |1 + z| > |z| for Rez > 0, we get, for z € T, |2| > 1, n > my and
n>1,
GV Rz, AN < (Clel e 4 w72] ™) 2™ 4 Cle] 7772 2P Hemen
< On P (|2|72 4 |27 < On P[22

We therefore obtain
~ 1 . S . .
[|Gn(A)|| < / Cn~P77 dp+/ Cn P p~2dp < Cn~P77.
0 1
Together these estimates complete the proof. 0O

3  Fully Discrete Schemes

In this section we study fully discrete schemes of the initial boundary value
problem

(3.1) { ug = Au inQ, fort >0,

u=0 ondQ, fort>0, u(,0)=v inQ,

where € is a bounded domain in RV, N > 2 with smooth boundary 99.
Let L,(€) denote the usual real Lebesgue spaces with norms

(3.2) ol = (fg |o(z)[? dw) ", 1<p< oo,
esssup{|v(z)| : x € Q}, p= o0,

and let k be a nonnegative integer and let W}(€2) be the standard real Sobolev

spaces with norms || - ||W:(Q) defined by
1
ollwey = (D2 1001 o))"
la|<k

for 1 < p < 0o with the usual modification in the case p = 0co. In the case p = 2,
we set H®(Q) = W§(Q), which is a Hilbert space with the inner product

(v, w)gr (@) = Z /DavDawda:.
Q

lo| <k

Moreover we denote H¥ () = {v: v € H¥(Q), v|sq = 0} and W (Q) = WINH}
for1 <r < oo.

In (3.1), we consider A = —A with D(A) = W2(Q) = W2 n H}. It is known
that A generates a strongly continuous and analytic semigroup E(t) = e*® in L,
for 1 < p < oo, but for p = oo the strong continuity at ¢ = 0 is lost. Nevertheless,



14 Y. Yan

the corresponding stability and smoothing estimates are valid in L,, 2 < p < o0,
ie.,

(33) IE@)ollz, + 1E' Oz, < Ct 7 ollz,, forve Ly 2<p< oo,

see, e.g., Thomée [16, Chapter 5] for more details.

We assume that (2 is approximated by a quasi-uniform family of finite element
meshes 7, such that the union of the elements determines a domain Q) with
boundary nodes on 9). For simplicity we assume that 2 is convex and let Sj
be the space of continuous functions that are linear on each element and vanish
outside Qy, so that Sy, C H}. We define the discrete Laplacian Ay, by

(34) (Ah¢7X) = _(V¢7 VX)J V¢;X € Sh.
The spatially semidiscrete problem is then to find uy : [0,00) — Sp, such that
(3.5) Upt = Apup, fort >0, withup(0)=vp,

where vy, € Sp is some approximation of v. Let P, denote the orthogonal
projection of v onto S;, with respect to the inner product to the Ly norm, i.e.,

(3.6) (Pru,x) = (v,x), Vx € Sp, forv € Ly(Q).

We also need the so called elliptic or Ritz projection R; onto Sj as the or-
thogonal projection with respect to the inner product (Vv, Vw) so that

(3.7 (VRyv,Vx) = (Vu,Vx), Vx €S, forv e H&(Q)
Note that
(3.8) AnRp = PuA,

which we need in the proof of our theorems.

We now apply our above time stepping procedure (1.5) to this semidiscrete
equation (3.5). This defines the fully discrete approximation U™ € Sy, of u(t,)
recursively by

(3.9) U™ =E U™, forn>1, where Ey, =r(—kAp), with U° =uy.

We shall derive L, error estimates for the approximations Qf; U™ of the time
derivatives Diu(t,) of the solution of (3.1), where U™ is defined by (3.9). We
first show some L, error estimates in the spatially semidiscrete case. We begin
with an error estimate in the nonsmooth data case.

THEOREM 3.1. Let u(t) and un(t) be the solutions of (3.1) and (3.5) and
7 >0. If v € Lo and vy, = Py, then we have

||D{uh(t) — D{u(t)HLm < Ch2€%t_j_1||v||l,m, where £, = In(1/h).

The proof of the result depends on the following lemmas. The first lemma
concerns error bounds for the Lo and Ritz projections in maximum-norm.
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LEMMA 3.2. Let u(t) be the solution of (3.1) and j > 0. Then, we have, for
p=(Bn—Du andn= (P, —Iu,

(3.10) (11D Ol + aln® Dlz.. ) < CH*E ol

Proor. With I : C(2) — S, the standard Lagrange interpolation operator,
we have, see, e.g., Brenner and Scott [6],

1 Iht — wllL., < Ch*7?/%|lully2, for2 < s < oo, ueW;=W.NH,.
Since p'¥) = (Ry—I)Diu = (R —I)(I—I;)Diu, using the logarithmic maximum-
norm stability of Ry, i.e., ||Rpu|lr. < Clp||ullL.., see, e.g., Schatz and Wahlbin
[15], we have,

1P|z, < CeAlI(I = In)Diullz., < C,H*=>/*(|Dfullw;-
By the Agmon-Douglis-Nirenberg [1] regularity estimate
lullwz < CsllAullz,, for2<s < oo, ue W,

we hence obtain, using also the smoothing property (3.3),

169 ()]0, < CH*~*/*tys||AD{u(t)||1,
< Ch2 2305t ||, < Ch* /%0y st |v||p. -

With s = £, this shows the bound in (3.10) for p()(t). The proof of the bound
for %) (t) is analogous, with one less factor £, because P is bounded in L,
see Thomée [16, Lemma 5.7]. O

We also need the following lemma which shows that the discrete solution
operator Ej(t) = e'®*» is stable in the Lo, norm and has a smoothing property,
see, e.g., Thomée and Wahlbin [17].

LEMMA 3.3. Let Ey(t) be the solution operator of (3.5). Then

(3.11) 1En()vnllea + tIEL(vnllLe < CllvnllL., fort >0.

PROOF OF THEOREM 3.1. We write up —u = (up — Pru) + (Pru—u) = (+1.
Here n is bounded as desired by Lemma 3.2 and it remains to bound ¢ =
Di¢ = D} (up — Pyu). We will show that for each j > 0 there is C, which maybe
depend on 7, such that

(3.12) sup (sH11¢Y)(s)l|z..) < CRGollr. -
0<s<t

The case j = 0 can be found in Thomée [16, Theorem 5.4]. Assuming now that
the result is already shown with j replaced by j — 1. Since

Gt — Ap¢ = —ApPyp,
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we find
(3.13)
D), — AR ¢D) = (G + DD + 71 (¢ — AR¢D)
= (j + DI (ARCU™ — ApPupb™) — 6711 A, Py
Thus, by Duhamel’s principle, we have, noting that Ej,(t — s)A, = E} (t — s),

t
100 = [ Byt =) (G + 010 o)
0
—(j+ 1) Pypli=V(s) — 1P, p») (s))ds =T+ II+1II
For II, we write
t/2 gt , ,
1= —(/ +/ )Eg(t —8)(j + 1)s? Pop¥=Y (s) ds = IT, + L.
0 t/2
Here, using Lemmas 3.2 and 3.3,
t/2 o
L L., < C/ (t =)' 1097 (5)ll1.0 ds < CH*E5 ||| ..
0

Further, after integration by parts,
, , t
ITy =[En(t = 5)(j + 1) Papt =) (s)]

t

- En(t—5)(j+1)Py (jsj_lp(j_l) (s) + 87 pD (s)) ds,
t/2

t/2

and thus by Lemmas 3.2 and 3.3, we get
1Lz, < Ch*GlvlL..-

Therefore [|II]|;., < Ch%62||v||r... Following the estimate of II, we can also
show ||I11||r,, < Ch2E2||v]|L.. .
Now we turn to I, and write, with a > 1,

I= (/Ot/a+/tta)E;z(t — )+ 180D (s)ds = I + I,

Here, using Lemma 3.3 and the induction assumption, we have

a

L ol

t/a ) )
Millew <€ [ (=8I0 6) . ds < Cln
0
Further, after integration by parts,
i1 t
I == [Ea(t = $)(j + 1)s/¢0~D(s)]
t

+ [ En(t—s)(j+1)s7(js? ¢V (s) + 719 (s5)) ds,
t/a

t/a



Approximation of time derivatives: constant time steps 17

and thus by Lemma 3.3 and the induction assumption, we have
|En(t = 5)( + 1)s7CY ™ (5)[|po, < CH L |0]|1, for s =t,t/a,

and

| [ Bt =)+ 057 G5 oy as|, < @B lol..
t/a oo

Thus

1Bz < (C+ Cln@)h*4vllz... + Cla(a) sup [|s¢9 ..
0<s<t

Therefore, with C, = C' + Cln(a) + C'ln(3%),

e < Cab®Gill0lli. + Cln(a) sup [|s771¢9) (s)]|.-
0<s<t

By (3.13), we get
sup |77 (9 (s)||1,, < Cab®G|l0llL., + Clna) sup [|s7T¢9) (s)]|1..
0<s<t 0<s<t
Choosing a such that C'In(a) < 1/2, we obtain (3.12). The proof is complete. O
We now turn to an error estimate in the smooth data case.

THEOREM 3.4. Let u(t) and un(t) be the solutions of (3.1) and (3.5) and
j>0. Ifve W2+2 then we have

(3.14)  [|ID}un(t) — Diu(t)||p., < Ch* G|l yas+e + CllALvp — RyA||,.

The proof will depend on the following;:
LEMMA 3.5. Let u(t) be the solution of (3.1) and j > 0. Then we have, for
p = Rpu—u,

PP Ollpe + o D)z < CH2Gll0lly2i42,  forv e W2
ProOF. The case j = 0 can be found in Thomée [16, Lemma 5.6]. Hence
1pD Ollzw + NPT @)l < CHEGIDIu(0)llwz, < CHElollyy 2542,

which completes the proof. 0O '
PROOF OF THEOREM 3.4. First we assume vy, = T/ 1! (= A)/ 1y, where T}, =
(—Ap)~!, which implies that AJv, = R,A’v. In this case, we want to show

ID]un(t) — Diu(t)l|r., < CR*[ollyzs+s,

which we will do now.
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We write, with 8 = up, — Rpu and p = Rpu — u,
Diun(t) = Diu(t) =69 () + o9 (1),
Here p¥)(t) is bounded as desired by Lemma 3.5. To estimate 8 (t) we write,
since 09 (0) = Al v, — RpAlv =0,
, t/2 .
09 (1) = — / + [ VBt - 9)Pp () ds =T+ 11

/2

Here by Lemmas 3.3 and 3.5, noting that pgj)(s) = pltl(s),

17|z, < C / 16 (5) |1, ds < CR2E[v]lyy 252

For I we integrate by parts to obtain

) t/2 t/2 )
I=—[Bu(t=)PapP(s)] " = [ Bhlt—s)Pupt)(s) ds.
0

Using Lemmas 3.3 and 3.5 we have
IEL(t = )Pup”) (8|2 < Clip (8) Lo < CH2E||0]ly2i42, for s =0,1/2,

and

t/2 t/2
Byt - )P (s)ds|, < / (t = )7 1p9 (s)1.. ds

which shows (3.14) for present choice of vp,.
It remains to consider the contribution to the semidiscrete solution of the
initial data vy, — T) " (—A)7*1v. We have by the above proof

< CR2B|Jol 242,

DY En())(T] (=A) ) = Diu(t)||z., < Ch*Gh|[v]|y2i+>-
On the other hand, by the stability of Ej,(¢),
D] Ep(t) (v — T (=AY 0)|| 1. < Cl|ALvn — RaAv|| 1,

Together these estimates complete the proof of (3.14). O

Now we consider the error estimates for the fully discrete scheme (3.9). In
order to apply the results in Section 2, we have to consider the appropriate
bound for the resolvent R(z, —Ap). To do this, we quote the following lemma
from Bakaev, Thomée, and Wahlbin [4, Theorem 1.1]

LEMMA 3.6. For any 6 € (0,7/2) there exists a constant C such that

IR(z, = An) fllLe < Cl2| I fllL, forz € Zs.
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By using this lemma, we see that A = —A}, satisfies (1.2) and (1.3), hence we
can apply the results in Section 2 for the case A = —Aj, B = S, with respect
to Lo, norm.

We first combine Theorem 3.1, for the error estimate in the semidiscrete case,
with Theorem 2.6, applied to the semidiscrete equation (3.5), to obtain the
following error estimate in the nonsmooth data case.

THEOREM 3.7. Let u(t,) and U™ be the solutions of (3.1) and (3.9). As-
sume that r(z) is accurate of order p > 1 and A(6)-stable with 6 € (0,7/2] and
|r(c0)| < 1. Let j > 1 and assume that Q},, defined in (1.11), is an approzima-
tion of D{, which is accurate of order p. Then, there is a constant C such that,
if v € Lo and vy, = Ppv, we have, for n > mq, t, > 0,

QU™ — Diu(tn)llre < C(W* 617" + kPEP~9)| oz

We now show an error estimate in the smooth data case.

THEOREM 3.8. Let u(t,) and U™ be the solutions of (3.1) and (3.9). Assume
that r(z) is accurate of order p > 1 and A(0)-stable with 6§ € (0,7/2]. Let
j > 1 and assume that QJ,, defined in (1.11), is an approzimation of D], which
is accurate of order p. Then, there is a constant C such that, if v € Ly and
vp, = Py, we have, for n > my,

1QLU™ = Diu(tn) ||, < C(W* 6, |Ivllyyaras + KP||vlly2r+es) + Cll AL v, — Adv|| L, .

In order to prove the theorem, we need the following lemma.

LEMMA 3.9. Assume that r(z) is A(6)-stable with 6 € (0,7/2] and accurate
of order p> 1. Let j > 1 and let C:‘n,s = Gn(—kAp)T}, where Gy, is defined by
(2.3) and Ty, = (—Ap) L. Then we have

Gt jwllr., < CEH|w|r.., for0<I<p, n>my.

Proor. Using Lemma 3.6, we obtain by Theorem 2.1, for n > m,
(3.15) '
G110l pe = Gn(=kAW T 0l < CEH w1, for0<I<p.

Note that if r(z) is accurate of p it is also accurate of order [ with 1 <[ < p,
which shows (3.15) for 1 <[ < p. The case | = 0 follows by the direct proof as
in the case [ =p. 0O

PRrOOF OF THEOREM 3.8. By Theorem 3.4, Lemma 3.5 and the estimate

1AL v — RyAv||p < [|[ALop — Adv||p, + ||(Ry — A1,

we only need to show
(3.16) ' . .
1QU™ = Diun(tn)llr.. < OB |Iollyyzrei + kP |[vllyy2p+2i) + Cll A0 — Ao, -
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Assuming first that vy, = TJ (—=A)7v, we have
QLU™ — Diup(tn) = k=G j(—A) 0.

Following Thomée [16, Theorem 8.6], we choose ¥, such that, with C' indepen-
dent of s,

(3.17) (=AY (v = T)llp.. < CRPIAP 0|z, < CKP|[vllyyzpsas,
(3.18) (=2 5|, < ClIAPHv]p,, < Cllollyze+as,

(3.19)  KI(—=A) " oi|lw2 < Csl|Adv|lwz, for0<I<p-1,2<s< .
Applying now the identity
p—1
v=Y THT = Th)(=A)F v+ TP (=A)Pv,
=0
to (—A)I %y, we have
(3.20)
Grj (=AY T = Gu(—kAR)TL(—A) Ty,

p
=Y Gnugi (T = Tn) (=AY G + Gy pyj (—A)PH .

[
—

N
Il
<

By Lemma 3.9, we have, since (T' — T3)(—=A) = I — Ry,
1G4 (T = Tn) (=)0 [l p., < CKHINNT = R)(=A)H 0.

Using the following bound for the Ritz projection in maximum-norm, see, e.g.,
Thomée [16, Lemma 5.6],

1B = Dvllz., < OB/ tyllvllwz, for2< s <oo,
and (3.19), choosing s = £}, we therefore obtain

1G5 (T = T) (=) ||, < CEHIRP 220, | A5y |2
< CkIsh?=2/ 50, | AT v||yy2
< ijh%%”vllwg:% for0<I<p-1

For the case I = p we have by (3.18),

1G4 (=) k|1, < CRPHI|APH G|, < CRPH o]l gyzpsas .
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Together these estimates imply
[1Gi (=2 Tkl < CK (W2 Ga][vlyyar2i + KP||0]lyy2p42)-
By Lemma 3.9 and (3.17), we have

G i (=AY (v = )| Loy = |G (=kAR)T (=AY (v = Tg)|| o
< CE(=AY (v = 0|10 < CEPH ||0]lyyzpsai.
We conclude that
1QLU™ — Diun(tn)l|L. = k79 Gn (=AY 0|1,
< O lvllyases + KP[o]lyyarsas),

which shows (3.16) for present choice of vy,.
It remains to consider the contribution to the fully discrete solution of v, —
T} (—A)7v. Since

(3.21) QLER, (vn — TL(—=A))v = P(r(=kAp))r(—kAp)"(—=kAp) v,

it suffices to show

(3.22) |1P(r(=kAR))r(—kAR)"(—kAR) |, < C,
where || - ||, denotes the operator norm. In fact,
. 1 .
P(r(=An)r(=An)"(=An) 7 = 5— | P(r(2)r(z)"z77 R(z, —An) dz.
r

Since 0 € p(—=Ay), P(r(z)) = O(27) as z — 0, there exists small n > 0, such
that |R(z,—Ap)||lr., < C and |P(r(z))z 7| < C for |z| < 5. Thus, we have,
noting r(z) is bounded on T" and n > my,

o0

. n dp
Pr(z)r(z)"2?R(z,—A dzH S/ d+/ — <,
| [ Peerereine s, <[ d+ [k
which shows (3.22). The proof is now complete. O

4 Numerical Illustrations

In this section, we show some numerical results illustrating our theoretical
analysis. We consider a one-dimensional problem with nonsmooth data,

@1) Up — Uze =0, 1in[0,1], with«(0,t) =u(1,t) =0, fort>0,
' w(z,0) = v(z), in[0,1],

where

1, ifi<z<?d
(4.2) pv={ 2 TASTSD
0, otherwise.
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We have that v € Lo, but v ¢ W2 for any s > 0.
The exact solution of (4.1) is

u(z,t) = 4 i(_l)n sin M(Q -1t —(2n-1)m)*t 1. (9 1
1) = 1 n e sin(2n — 1)wz,
n=1

and the derivative of u(z,t) is

- 2n—1 A
ug(z,t) = 4w z:(—l)”Jrl sin %(Zn — 1)e (@™ gin(2pn — 1)7a.
n=1

We define S}, to be the set of continuous piecewise linear functions on a uniform
mesh of size h, which vanish at x = 0 and £ = 1. As explained in Section 3, the
semidiscrete problem may be written

(4.3) upt = Apup, fort >0, withup(0) = Py,

where A}, is the discrete analogue of A = —d?/dxz?, defined by

1
(Anth, X) = / Wx'ds, ¥, x € Sh.
0

We first compute the approximate solution U™ of (4.1) by applying the time
stepping method U™ = r(kA,)U™"! to the semidiscrete problem (4.3), where
r(A) will be specified in our examples below. As mentioned in the introduction, if
r(00) = 0, then up, 4(¢,,) can be approximated by —A, U™ and the error estimates
(1.10) holds. In the case of r(oc) # 0, we then use U™ = (U™ — U™~ 1) /k, which
is the special case of (1.11), to approximate u¢(t,). Theorem 3.7 shows an error
estimate for the fully discrete method with nonsmooth data in Ly, norm. More
precisely, if |r(oc0)| < 1, we have

(4.4) 10U™ — ()|l < Ot (k + B 63) 0]l L -

For the approximation —A,U™ of u¢(t,) when r(oco) = 0, combining (1.10)
and Theorem 3.1, we have the same error bound as in (4.4).

In our experiment, we consider the #-method defined by (2.1) with § = 2/3,
in this case |r(oc0)| = 1/2. Since we are mostly interested in the time stepping,
we choose h very small and a sequence of moderate k. We thus use h = 1/200
fixed, and the time step k is chosen as 1/20,1/40 and 1/80.

Denote (k) = e(k,tn) = |[U™ — u(tn)||r.,, and let p(ki, k2) = e(k1)/e(k2).
Table 1 shows the L., norm of the error of the approximation U™ of u(t,) at
time ¢,,. From Thomeée [16], we know that [|[U™ —u(t,)|| < Ct,; (k+h*63)||v| ... -
Table 1 show the expected O(k) order of convergence. We also see that the error
becomes large when ¢ tends to 0.

In Table 2, we show the results of the approximation QU™ of u(t,). Here
e(k) = e(k,tn) = ||JOU™ — ui(tn)||L.., and again p(k1,k2) = e(k1)/e(k2). The
results confirm the expected O(k) order of convergence and the singular behavior
of the error as t — 0.
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t | e(1/20) | e(1/40) | £(1/80) | p(1/20,1/40) | p(1/40,1/80)
0.1 | 1.669E-01 | 4.343E-02 | 6.465E-03 3.84 6.71
0.2 | 4.794E-02 | 8.957E-03 | 4.764E-03 5.35 1.87
0.3 | 1.537E-02 | 5.082E-03 | 2.688E-03 3.02 1.89
0.4 | 5.498E-03 | 2.570E-03 | 1.348E-03 2.13 1.90
0.5 | 2.214E-03 | 1.218E-03 | 6.342E-04 1.81 1.92
0.6 | 1.020E-03 | 5.548E-04 | 2.863E-04 1.83 1.93
0.7 | 4.572E-04 | 2.456E-04 | 1.257E-04 1.86 1.95
0.8 | 2.009E-04 | 1.065E-04 | 5.405E-05 1.88 1.97
0.9 | 8.693E-05 | 4.548E-05 | 2.288E-05 1.91 1.98
1.0 | 3.717E-05 | 1.918E-05 | 9.568E-06 1.93 2.00

Table 1. #-method, with the approximation U™ of u(t,) in L norm.

t | e(1/20) £(1/40) =(1/80) | p(1/20,1/40) | p(1/40,1/80)
0.1 | 9.664E+00 | 4.558E+00 | 6.097E-01 2.11 747
0.2 | 2.460E+00 | 3.964E-01 | 1.020E-01 6.20 3.88
0.3 | 6.737E-01 | 9.585E-02 | 4.741E-02 7.02 2.02
04 | 1.939E-01 | 4.30E-02 | 2.123E-02 4.50 2.02
0.5 | 5.960E-02 | 1.883E-02 | 9.270E-03 3.16 2.03
0.6 | 1.970E-02 | 8.102E-03 | 3.969E-03 2.43 2.04
0.7 | 7.118E-03 | 3.437E-03 | 1.674E-03 2.07 2.05
0.8 | 3.018E-03 | 1.442E-03 | 6.983E-04 2.09 2.06
0.9 | 1.268E-03 | 5.996E-04 | 2.884E-04 2.11 2.07
1.0 | 5.203E-04 | 2.474E-04 | 1.182E-04 2.13 2.09

Table 2. #-method, with the approximation QU™ of u(t,) in L norm.
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Abstract.

We study smoothing properties and approximation of time derivatives for time dis-
cretization schemes with variable time steps for a homogeneous parabolic problem
formulated as an abstract initial value problem in a Banach space. The time stepping
methods are based on using rational functions r(z) = e¢~™* which are A(6)-stable for
suitable 6 € (0,7/2] and satisfy |r(co)| < 1. First and second order approximations of
time derivatives based on using difference quotients are considered. Smoothing prop-
erties are derived and error estimates are established under the so called increasing
quasi-quasiuniform assumption on the time steps.
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1 Introduction

Let us consider the following homogeneous linear parabolic problem
(1.1) ug+Au=0 fort >0, withu(0)=w,

where A is a closed, linear operator, with dense domain D(A) C B, where B is
a Banach space with norm || - || and v € B. We shall study time discretization
schemes with variable time steps and show error estimates for the approximations
of u and uy.

We assume that —A is the infinitesimal generator of a bounded analytic semi-
group E(t) = e 4 and that 0 € p(A), where p(A) denotes the resolvent set of
A. This is equivalent to saying that there is an angle § € (0,7/2) such that

(1.2) p(A)DYs={z€C:§< |argz| < m, 2z #0}U{0},
and that the resolvent, R(z; A) = (21 — A)~!, satisfies
(1.3) IR(z; A)|| < M|z|™t, forz € X5, with M > 1,

where || - || denotes the standard norm of bounded linear operators on B.
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Under these assumptions E(t) may be represented as

E(t) L/Fe_”R(z;A) dz,

- 21

where I' = {2z : |argz| = ¢} with ¢ € (4,7/2) and Imz is decreasing along I'.
Furthermore, the smoothing properties of analytic semigroups are valid. More
precisely, see Pazy [11], we have

(1.4) ID{E@)ol| = |4 E(t)o]| < Ct7|jv]l, fort>0, ve B,

which shows that the solution is regular for positive time even if the initial data
are not.
Let 0 =ty < t1 < --- < t, < --- be a partition of the time axis and let
kn = tn — th_1, n > 1, be the variable time steps. An approximate solution
"~ u(ty) = E(tn)v of (1.1) may be defined by

(1.5) U" = B, U™, forn>1, withU%=u,
where Ej,, = r(k,A) and r is a rational function that satisfies certain conditions.
For example, r(z) = 1/(1 — z) and r(z) = (14 2/2)/(1 — z/2) correspond to the
backward Euler and Crank-Nicolson methods, respectively.

We say that r is A(6)-stable with 0 € [0,7/2] if
(1.6) Ir(z)] <1, for|argz| <8,
and accurate of order p > 1, if

(1.7) r(z) —e * = 0(zP™'), asz—0.

Let us recall some results for the time stepping method (1.5) with constant
time step k. If A satisfies (1.2) and (1.3), and r is A(f)-stable with 6 € (§,7/2],
then we have the stability estimate, with Ej, = r(kA),

(1.8) U™ = | Egvll < Cllvf], fortn, >0, v € B,

see, e.g., Crouzeix, Larsson, Piskarev, and Thomée [3] and Palencia [9], [10]. If
A satisfies (1.2) and (1.3), and r is A(6)-stable with 8 € (§,7/2] and accurate of
order p > 1, then the following smooth data error estimate holds:

(1.9) U™ —u(ty)|| < CKP||APv||, fort, >0, v e D(AP).
Moreover, if |r(c0)| < 1, then the following nonsmooth data error estimate holds:
(1.10) U™ —u(ty)|| < CEPE,P||v||, fort, >0, veEB.

The condition |r(co)| < 1 ensures that oscillating components of the error are
efficiently damped, see, e.g., Le Roux [8], Larsson, Thomée, and Wahlbin [7],
Fujita and Suzuki [5].
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Smoothing properties and approximation of time derivatives for (1.5) with
constant time step have also been studied by some authors. Let j > 1 be fixed.
If A satisfies (1.2) and (1.3), and r is A(#)-stable with § € (4,7/2], and with
r(00) = 0, then the following smoothing property holds:

(1.11) 147U = |47 Boll < Ct7[vll,  for tn > t5, v € B,

see, e.g., Thomée [12] for the Hilbert space case and Hansbo [6] for the Banach
space case. However (1.11) is not true in general when r(oc0) # 0.
Let us introduce the finite difference quotients,

) 1 22
(1.12) QU" =5 > U™, forn>my,
v=—m1
where my,m» are nonnegative integers, and c, are real numbers such that the

operator @}, is an approximation of order p > 1 to Dg, that is, for any smooth
real-valued function u,

Diu(t,) = Qiu™ + O(kP), ask—0, withu™ = u(ty).

We then have the following smoothing property and nonsmooth data error esti-
mates: If A satisfies (1.2) and (1.3), and r is A(f)-stable with € (6,7/2], and
|r(o0)| < 1, then we have

(1.13) 1QLU™| < Ct;7||v|l, forn >my, t, >0, veEDB,
and, if further r(z) is accurate of order p > 1,
(1.14) ||chU" — Diu(ty)|| < CkPt; @], forn >my, t, >0, v € B,

see Yan [13]
For the smooth data error estimate, the condition |r(c0)| < 1 is not necessary.
In fact, we have, for any A(6)-stable discretization scheme with 6 € (6, 7/2],

(1.15)  [|QLU™ — Diu(t,)|| < CkP||APHiv]|, forn > my, v € D(APHT),

see, e.g., Baker, Bramble, and Thomée [2] for the Hilbert space case and Yan
[13] for the Banach space case.

Now let us mention some results for the variable time steps which are related
to the present paper. Stability results have been considered by some authors.
For example, Palencia [9] shows that, if A satisfies (1.2) and (1.3), and r is A(6)-
stable with 6 € (,7/2], if the time steps {k;}32, satisfy, with some constant
1y

k.
(1.16) O<pt<

L<p<oo, forij>1,

=

then there exists a constant C'(u

(1.17) H ﬁEk

~—

such that the following stability result holds

< C(p), where Ey; =r(k;A).
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We observe that the stability bound will depend on the maximum ratio u between
the steps, but not on the steps themselves. In this way, the stability bound
does not blow up when the maximum time step goes to zero, as long as u
remains bounded. In particular, a family of quasi-uniform grids with k.., <
pkmin satisfies the assumption (1.17), where knop = maxi<j<n kj, kmin =
min; <j<n k;. More precisely, Bakaev [1] shows that if A satisfies (1.2) and (1.3),
and r is A(f)-stable with 6 € (4, 7/2], then

n
(1.18) H H Ey, H < ClIn(l1+p), where = kmaz/kmin-
j=1

Palencia [10] further finds that if |r(co)| < 1, then the stability bound holds
without any restriction on the time steps.

In the present paper, we first consider error estimates for (1.5) in both smooth
and nonsmooth data cases. We show, in Theorem 2.1, that if A satisfies (1.2)
and (1.3) and r is A(#)-stable with 8 € (§,7/2] and accurate of order p > 1, then
the following smooth data error estimate holds:

U™ —u(tn)ll < CkRpellAP0ll,  for tn, >0, v € D(AP).

To obtain error estimates in the nonsmooth data case, we introduce the no-
tion of increasing quasi-quasiuniform grids T in time. Let {7} be a family of
partitions of the time axis, T = {t, : 0=t <t;1 < --- <tp, <---}. {T}is
called a family of quasi-quasiuniform grids if there exist positive constants ¢, C,
such that

(1.19) ckny1 < kn < Cty/n, forn >1.

Further, if k4 < kg < --- < k,, < ---, then we call {T} a family of increasing
quasi-quasiuniform grids. We note that increasing quasi-quasiuniform implies
that k, ~ kny1 and nk, ~ t,, where a,, ~ b, means that a,/b, is bounded
above and below.

For example, if we choose the variable time steps k, = n®k for some fixed s > 1,
with k > 0, then t, = k(37_, j*), and the corresponding family of partitions
{T} is a family of increasing quasi-quasiuniform grids. In fact, it is obvious that
kn/kny1 = n°/(n +1)° > 1/2°. Further, since t,,/k = Y7_, j* > Cn**" for
some positive constant C, we have k, < Ct,/n.

Under these assumptions we have the following nonsmooth data error estimate:
If A satisfies (1.2) and (1.3), and r is A(f)-stable with 6 € (4, 7/2] and accurate
of order p > 1, if further |r(o0)| < 1 and {7} is a family of increasing quasi-
quasiuniform grids, then we have

(U™ = u(ty)|| < CkEEPlv||, fort, >0, veEDB.

We note that these two error estimates correspond to (1.9) and (1.10) for con-
stant time step, respectively.
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As for the smoothing property, we show that, if r(co0) = 0, and {7} satisfies
(1.17), then

n
HAH Ekij < Ct M|, fort, >0, veB.

Jj=1

As in the constant time step case, see Yan [13], the above smoothing property
is not true in the case of 7(00) # 0. However, if |r(c0)| < 1, then we introduce
similar difference quotients as (1.12) with variable time steps. For simplicity
we only consider the following first and second order approximations of time
derivative u(t,,)

(1.20) ou™ = (U™ -U"Y/k,, forn>1,
and

(121) 9*U™ = a,0U™ + b,0U™*
=a,(U" —=U" Y /kp + b, (U —U" ) /kp_1, forn>2,

where
an = (an + kn—l)/(kn + kn—l); by, = _kn/(kn + kn—l)-

In both cases, under the assumption of increasing quasi-quasiuniform grids, we
obtain a smoothing property and error estimates for time derivative in the non-
smooth data case which are similar to (1.14) and (1.15), respectively. We also
show a smooth data error estimate without any restrictions on the time steps.
The paper is organized as follows. In Section 2 we show error estimates for the
approximation U™ of 4™ in both smooth and nonsmooth data cases. In Section 3
we consider the first order approximation (1.21) of u(t,) and show a smoothing
property and error estimates for time derivative. In Section 4 we consider the
second order approximation (1.22) and obtain similar results as in Section 3.
By C and ¢ we denote large and small positive constants independent of the
functions and parameters concerned, but not necessarily the same at different
occurrences. When necessary for clarity we distinguish constants by subscripts.

2 Error Estimates

In this section we will consider error estimates for the approximation U™ de-
fined by (1.5) of the solution u(t,) of (1.1). Our first result is an error estimate
in the smooth data case in which there is no restriction on the time steps k.

THEOREM 2.1. Let U™ and u(ty,) be the solutions of (1.5) and (1.1), respec-
tively. Assume that A satisfies (1.2) and (1.3), and that r(2) is accurate of order
p > 1, and A(0)-stable with 6 € (6,7/2]. Let kj,1 < j < n, be time steps. Then
we have

U™ = u(tn)ll < Ckfgel| AP0l fortn >0, v e D(AP),

where ko = maxi<j<n kj.
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In order to prove Theorem 2.1, we need the following lemmas which are simple
consequences of (1.6) and (1.7). The first lemma is quoted from Thomée [12,
Lemma 8.2].

LEMMA 2.2. Assume that 7(z) is A(0)-stable with § € (0,7/2], and accurate
of order p > 1. Then for arbitrary R > 0 and ¢ € (0,0) there is ¢ > 0 such that

Ir(2)] < e_c‘z‘, for|z| <R, |argz| <.

LEMMA 2.3. Assume that r(z) is A(6)-stable with § € (0,7/2], and accurate of
orderp > 1. Let kj, 1 < j < m, be any positive numbers. Then for arbitrary R >
0 and 1 € (0,0) there are ¢,C > 0 such that, with F,(z) = [[;_, r(k;z) — e t"%,

j=1
(2.1) |F(2)] < Onlkmarz|PTre™2 0 for |kmasz| < R, |arg z| < 1,
and
(2.2) |F(2)| < Clkmasz|Ptn)zle™ 1, for |kmasz| < R, |argz| < 1,
where ke = maxi<j<n kj.
PROOF. Since r(z) is accurate of order p > 1, there exists a small > 0 such

that
[r(z) — e %] < Clz|PT, for |z| <.

Further, by (1.6), we have, for arbitrary R > 0 and ¢ € (0,6),
(2.3) |r(z) —e ?| < Clz|PT, for |z| <R, |argz| < 4.
We next observe that, if ¢ < cos,
(2.4) le | = e ez <eclZl for |argz| < 4.
It is easy to show that
n

(2.5) |Fn(2)| < C’Z(kj|z|)p+lefc(t"*kf)|zl, for |kmazz| < R, |argz| < 1.

j=1
In fact, using Lemma 2.2, (2.4) and (2.5), we have, for |knez2| < R, |argz| < 1,

IFi(2)] = Ir(k12) — 12| < Oy 2P ectti=kls],
and
[Fo(2)] = |(r(k12) — ™" %)r(kaz) + e 5% (r(kez) — %))

< C|k1z|P+1e—C(t2—k1)|Z| + 06—0(t2—k2)|zl|k2z|P+1

2
— CZ(kj|z|)p+1e—c(tn—kj)\z\_

j=1
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In general, for n > 3,

n

|Fo(2)] = ‘(r(klz) —e k%) H r(kj2) + € "% (r(kaz) — e772%) ﬁ r(k;z)

j=2 Jj=3
n—1
+- 4+ ( H e‘kiz) (r(knz) — e~ k%)
7j=1
< CZ (e—ctj_ﬂz\(kj|z|)p+le—c(tn—tj)|z|)
7j=1
= CZ(k‘j|z|)p+1e_c(tﬂ_kj)‘z|‘

I
-

J

Thus, by (2.6), we get, using k;|z| < |kmaxz| < R, 1 < j <,
| (2)| < CnlkmaszPT e 21 for |kmarz| < R, |argz| < ¢,

and

|[Fu(2)] < Cem® 1Y 7 (k2P H

i=1
< C|kmuzz|ptn|z|e*d“|z|, for |kmazz| < R, |argz| < .

Together these estimates complete the proof. O

The following lemma gives the Dunford-Taylor spectral representation of a
rational function of the operator A when the rational function is bounded in a
sector in the right halfplane, see Thomée [12, Lemma 8.1].

LEMMA 2.4. Assume that (1.2) and (1.3) hold and let r(z) be a rational
function which is bounded for |argz| < 1, |z| > € > 0, where ¢ € (6,7/2), and
for |z] > R. If € > 0 is so small that {z : |z| < €} C p(A), then we have

1
r(A) = r(oo) + —— / r(2)R(z; A) dz,
2mi J y.UrRUR
where ye = {2 : |2| = ¢, |argz| < ¥}, TF = {z : |argz| = 9,e < |2| < R}, and
vB ={z:|2| = R,% < |argz| < 7}, and with the closed path of integration
oriented in the negative sense.
For our error estimates we shall apply the following spectral representation of
the semigroup, see Thomée [12, Lemma 8.3].
LEMMA 2.5. Assume that (1.2) and (1.3) hold, let ¢ € (§,7/2), and j be any
integer. Then we have for € > 0 sufficiently small
. 1 .
AE(t) = —/ e *'2 R(z; A) dz,
271 ~eUl',
where ve = {z : |z| = €,]argz| < ¢} and T. = {z : |argz| = ¥, |z| > €}, and
where Imz is decreasing along v UL .. When j > 0, we may take € = 0.



8 Y. Yan

PROOF OF THEOREM 2.1. Since U™ — u(t,) = [[}_, r(kjA)v — e7tn4v =
FE,(A)v, we need to show ||F,(A)v|| < CkE,,.||APv||, or in operator norm,

[1F7(A) (kmaz 4) "Il < C,

which we will do now. Let 7(z) = H;‘Zl r(kj2)(kmaz2)P. Since r(z) is A(6)-
stable with 8 € (4, 7/2], we find that 7(z) is bounded for |argz| < 9, |z| > €
with some ¢ € (§,0) and any € > 0. Further 7(z) is also bounded for |z| > R
with R sufficiently large, since 7(cc) = 0. Thus, applying Lemma 2.4 to the
rational function 7(z), we have

- 1
TT ks 4) i A) 7 = —— / r(k;2) (kmasz) P R(z; A) dz.
=i T 2mi UFRU,YR

By (1.3) and (1.6), we know that the integrand is of order O(2~P~1!) for large
z which implies that the integrand has no poles when |z| > R, so that we may
let R tend to oco. Using also Lemma 2.5 we conclude

Fy(4) (kyan A) P = —— /  Fu)(bas) PR 4) d

2mg
Now by (2.1) we see that F,(z) = O(2P*!) as 2 — 0. Combining this with
(1.3) we have that the integrand is bounded on the small domain with boundary
Y. UT§, so that we may let € — 0. It follows that, using also (1.3),

IE () imaz ) 71 < C [ (Fpe)| + [Fn(pe ) imasr) .

By (2.2), we have, for arbitrary R > 0,

R/kmaa . dp R/kmaz
| et Nty L <0 [ e, dp <
0 P 0
Since 7(z) and e~%* are bounded on T', where I’ = {2 : | arg z| = ¢}, we find

> . o0 d
/ |Fn(peil¢)|(kmazp)_p @ <C (kmazp)™? i <C.
Ffkmas P R/kma p

Together these estimates complete the proof. 0O

We now show a nonsmooth data error estimate.

THEOREM 2.6. Let U™ and u(t,)be the solutions of (1.5) and (1.1), respec-
tively. Assume that A satisfies (1.2) and (1.3), and that r(2) is accurate of order
p > 1 and A(9)-stable with 6 € (0,7/2] and |r(co0)| < 1. Assume further that
{T} is a family of increasing quasi-quasiuniform grids. Then there is a constant
C such that

U™ = u(tn)ll < CREE ol for tn > 0.

To prove Theorem 2.6 we need the following lemma.
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LEMMA 2.7. If the rational function r(z) is A()-stable with 8 € (0,7/2] and
|r(o0)| < 1, then for any ¢ € (0,6) and R > 0 there are positive ¢ and C such
that, for any sequences ky < ko < --- < ky,, with k = 1(00),

< Clkiz|™re™ ™,  for |kiz| > R, |argz| < 9.

(2.6) ‘ ﬁ r(kjz) — k"

PROOF. Since r(z) — k vanishes at infinity and r(z) is A(6)-stable with § €
(0,7/2], we have, see Thomée [12, Lemma 8.5],

[r(2) — K| < Clz|™t, for|z| > R, |argz| < 9.
Further,
(2.7) [r(z)| <e~¢ for|z| >R, |argz| <.

In fact, |k| < 1 implies that (2.8) holds for |z| < R with R sufficiently large. By
(1.6) and the maximum-principle we have |r(z)| < 1 for |arg z| < 8, z # 0. In
particular, |r(z)| < 1 on the compact set {z: R < |z|] < R, |argz| < ¢}, which
shows (2.8).

(2.7) is obvious for n = 1. When n > 2, we have, for |kiz| > R, noting that
k<e “and k1 <ks <---<ky,

n

‘ H r(kjz) — k"

i=1

= ‘(r(klz) —K) ﬁ r(kjz) + -+ " 1 (r(kn2) — k)

n
< C’e‘cnz |kjz|™! < Olk1z| " ne™™ < Clki2| e,

Jj=1

which completes the proof of Lemma 2.7. 0O

PrROOF OF THEOREM 2.6. The case n = 1 follows from the constant time
step case, see Thomée [12]. We now consider n > 2. With F,(z) as in Lemma
2.3, we need to show ||F,,(A)|| < CkPt,P. Since t, < nky, it suffices to show

IFn (A < Cn7.

Set F(2) = Fn(2) — 6"knz/(1 + knz), where k = r(co). Since || < 1, and by
the obvious fact that ||k, A(I + knA) || < C, we have

|6 kn AT 4+ k, A) 7| < Cls|™ < Cn7P,

and it remains to show the same bound for the operator norm of F,(A). Since
H?:1 r(k;z) — K"knz/(1 + kpz) vanishes at z = oo, we may use Lemmas 2.4 and

2.5 to see that 1
P = 5 [ B@IRGs A) e,
r

- 2mi
where I' = {z : | arg 2| = ¢} for some ¢ € (§,6). By (1.3), we get

N oo . d
n&mmgcﬁ Fu(pe) 2.
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Let R be arbitrary. We will bound the above integral over the intervals [0, R/k,]U
[R/kn,R/k1] U [R/k1,0). We rewrite F,(z) = (HJT.”:1 r(kjz) — &™) +£"/(1 +
knz) —e~t?. Using (2.5) and Lemma 2.7 and |1 + k,2| > |knz| for Rez > 0, we
get

[e'e} B . d o d
/ |Fn(pe=)| L < © (€= (k1p) ™ + |[" (knp)* + e~ctn0) L.
R/k1 P R/k1 P

Obviously,
* —cn -1 dp * —cn,,—2 -
e Mkip) T — < e "x “dx <Cn P,
R/k1 p R

and, using k < ky,,
* n _1dp *m —1\—1,,-2 —p
|&]" (knp) < |k|"(knky ) "2 “de < Cn™?,
p R
and, using nk; <t,,

> d o d
[7 et g [7 et
R/k1 p R/k1 P

< C/ (toky )Pz P ldr < Cn7P.
R
Thus

(o] - . dp
(2.8) [ 1Bt L <onr, torn 2
R/k1 p

Using (2.1) and |1/(1 + kp2)| < 1 for Rez > 0, we have, since nk,, ~ t,,

R/kn . d R/kn . d R/kn
| B L [ et L [T e dp
0 p 0 p 0
R/kn dp
< C/ (knp)Ptte=ctnPpn — 4+ C|k|™
0 p
R
< C/ gPe=cUtn/kn)2p 4o 4 Clg|" < Cn7P, forn > 2.
0

It remains to consider the integral over the interval [R/k,, R/k:1] for n > 2. By
Lemma 2.2 and (2.8) there exist constants ¢; and ¢y such that |r(z)] < et/
for |z] < R,|argz| < 4, and |r(z)| < e~ for |z| > R,|argz| < 1, where c2 can

be chosen arbitrarily small. Therefore, assuming that z € Fg;ﬁ:ﬂ with some

m:1<m <n—1so that k;|z| < R for j <m, we have

n
‘ H r(ka)‘ < e~Ctmlzlgmea(n—m) < e‘”"(eczme_clt’"lz‘), forn > 2.
i=1



Approximation of time derivatives: variable time steps 11

Further, by (1.20),
(2.9) citm|z| = 1 (Em/km) (km [ km+1) (Bmt1|2]) > clcoco_lRm = c3m.

Thus if we choose ¢2 < c3 and let ¢4 = c3 — ¢2, we get

n

(2.10) ‘ II r(ka)‘ <e~CMeTeam  if 5 rﬁjﬁ:ﬂ, 1<m<n-—1.

i=1

We rewrite F, (z) = H;.lzl r(kjz) —e "% — k"kpz /(1 + kyz). Using (2.12) and
noting that In(kmy1/km) <InC < C, we get

R/ki, M ) d n=1 .R/kn,
[ e 2< 3
R/kn, '; P 1

11 T(kjpeiw)‘ %

j=1 R/km 41 j=1
n—1 R/km dp n—1
(2.11) < / e 2MeT UM — L e 2" (e~ In(kpt1/km))
m=1 Y B/km+1 P m=1
n—1
< 06_62"( Z e_c‘*m) <Ce @™ <(Cn7P?, forn>2.
m=1

Further, using (2.5) and noting that (1.20) implies t,p > c(nk,)p > cn for
p € [R/kn, R/k1], we have, since In(k, /k1) = 337" In(kmy1/km) < Cn,

R/k1 ; R/k1
(2.12) / <|e—tnl)ei wl n knp Hn) @ < / (e—cn + /-gn) @
R/kn 1+ knp p R/kn p

< (e + k") In(k,/k1) <Cn(e” " + k") <Cn™ P, forn>2.

R/k1
Jun.

Together these estimates complete the proof. 0O

Hence

- N
Fn(pei“/’)‘ Fp <Cn7?, forn>2.

3  Approximation of Time Derivative — First Order

In this section, we shall consider a smoothing property of the time discretiza-
tion scheme (1.5) and error estimates for the first order approximation of time
derivative u(t,,)

(3.1) oU™ = (U™ -~ U™ " /kn, forn>1.

We begin with a smooth data error estimate for the approximation (3.1).
THEOREM 3.1. Let U™ and u(t,)be the solutions of (1.5) and (1.1), respec-
tively. Assume that A satisfies (1.2) and (1.3), and that r(2) is accurate of order
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p > 1, and A()-stable with 0 € (6,7/2]. Let k;j,1 < j < n, be increasing. Then
we have

(3.2) 1IOU™ — ug(ty)|| < Chnl|A2v||, fort, > 0.

PRroOF. The case n = 1 follows from the result in constant time step case, see
Yan [13]. Now we consider the case when n > 2. Setting

n—1

Gn(2) = [[ r(k;2)(r(knz) — 1) = (—kn2)e "%,

j=1
our result will follow from
1Gn(A)(knA)72| < O, forn >2.
Let 7(2) = (H?:_II r(kjz)(r(knz) — 1)) (knz)~2. Asin the proof of Theorem 2.1,

applying Lemma 2.4 to the rational function 7(z) and using also Lemma 2.5 we
conclude

G (A)( A)~2 = -

=5 o, Gn(2)(knz) 2R(2; A) dz.
Since 0 € p(A), we have, by (1.3),

(3.3) IR(z A)| < C, ford < |arge| <.

We will show that

(3.4) Gn(2) =0(2%) asz—0.

Combining this with (3.3) shows that the integrand is bounded on the small
domain with boundary v, U T, so that we may let € — 0. It follows that, with
I' ={z:|argz| = ¢} for some ¢ € (4,0),
1
(3.5) Gn(A) (kn ) > = = / Gn(2)(kn2) >R(z; A) dz.
r
In order to show (3.4), we write

Gn(2) = GL(2) + G2(2) + G3(2), forn > 2,

where .
G;(Z) = H r(k;j2)(r(knz) — 1+ kn2),
j=1
and, with F,(2) = [[j_, r(k;z) — ™%,

(=) = —knz [] rhs2)(1 = rkn2),  G(2) = ~hnzFa().
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By (1.7), there exists a small n > 0 such that
(3.6) [r(2)| < C, |r(z) =1 < Clz], |r(z) =1 =2 < C|z[>, for |z| <.

Combining this with (2.2) shows |G, (z)| < C|knz|? for |k,z| < n, which is (3.4).

It remains to consider (3.5). Let us first consider the integral over I‘g/ o By
(1.2) and (1.3), R(z; A) is analytic in the domain {2z : § < |argz| < 7}, and hence
Gn(2)(knz)"2R(z; A) is analytic in the domain bounded by T7/*" U y"/kn (see
Lemmas 2.4 and 2.5 for the definition of the curve). We then can replace the path
of integration in (3.5) by T’ = 4/*» U Ly/k, - We find, using |Gy (2)| < Clknz|?
for |knz| <,

d
(3.7) | [ @R < [ g
’y"l/kn ’y"l/kn |Z|
and, by the boundedness of r(z) and e == over T,
(3.8)
H / G (2)(knz) R(z; A) dzH <C / (C + Clhknp))(kup) 2 2 < C.
To/kn n/kn p

Together these estimates complete the proof. O

We now turn to smoothing properties of (1.5). Recall from the introduc-
tion that the smoothing property (1.11) is not valid if r(c0) # 0. However, if
r(00) = 0, the analogue of (1.11) holds also for some special schemes 7(z) with
no restriction on the time steps, see Eriksson, Johnson, and Larsson [4]. For a
general scheme r(2) we have the following smoothing property:

THEOREM 3.2. Assume that (1.2) and (1.3) hold, and r(z) is accurate of order
p > 1 and A()-stable with 0 € (§,7/2], and that r(co) = 0. Let {k;} satisfy
ckj < kjy1 < Ckj. Then there is a constant C such that

(3.9) HA f[ r(ij)UH < Ct=ll, forta > 0.
j=1

PROOF. The case n = 1 follows the result in the constant time step case, see
Hansbo [6]. Here we consider the case when n > 2. We shall show that, with

gn(2) = tnz [} r(k;2),
llgn(A)|| < C, forn > 2.

Since r(o0) = 0, we have, see Thomée [12, Lemma 7.3],

1

(3.10) @) < Trer

for |arg z| < 9,
which implies that g,(z) is bounded for |arg z| < 4 and g,(c0) = 0. Thus there
exists R > 0 such that g,(z) is bounded for |z| > R. Lemma 2.4 shows that

1

n(A) = —— n(2)R(z; A) dz.
m =gz L ;mERGAE
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Noting that g,(z) is analytic for |z| > R, ¢ < |arg z| < 7, and g,(2) = O(z) as
z =0, |argz| < 1, we may let R — oo and € — 0, so that

1
27

n(A) = / gn(2)R(z; A) dz,

where I' = {2 : | arg z| = 9} for some ¢ € (4,6). We split the path of integration
as I = I‘(If/t” UTR/s,- By (2.8), we have

R/t
H/ zAdzH<C/ eCt"p@SC.
FR/i" pP

We now consider the integral over I'g/y,, . If ko <ty /2, then we have

Zk, + D kiky < kmaztn + Y kik; <t5/24 Y kikj,

=1 I#j I#j l#7

so that 3=, ,; kik; > t7,/2 and hence

f[(1+ck,-p) = 1+c(z":k,-)p+cp2(2klkj) +oee > et p?,

=1 j=1 1#]

which implies that, by (3.10),

H/FR” ZAdZH<CR(Z m%

< d
_C/R/t sztz PG

If kmmaw > tn/2, then, assuming that kp,qp = ki, for some m with 1 <m < n,
and since n > 2, we have

t i t
zAdz‘<C/ — " —dp<C — " —dp<C.
H /FR/t R/t (1 + ckmp)? R/tn (1 + ctpp)?

Together these estimates complete the proof. O

As in Yan [13] for the constant time step case, if |r(00)| < 1, using difference
quotients in time rather than the elliptic operator A in (3.9), we have a following
smoothing property:

THEOREM 3.3. Let U™ be the solution of (1.5), respectively. Assume that (1.2)
and (1.3) hold and that the discretization scheme is accurate of order p > 1, and
A(0)-stable with 0 € (6,7/2], and |r(o0)| < 1. Assume that {T} is a family of
increasing quasi-quasiuniform grids. Then there is a constant C such that

(3.11) 18U™| < Ct5 ol for t > 0.
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PrOOF. The case n = 1 follows from the constant time step case, see Yan
[13]. We now consider the case when n > 2. We want to show that, with

Gn(2) = [1;=) r(k;2)(r(kn2) — 1),
1gn(A)|| < Cn~t,  forn > 2.
Since t,, < nk, this implies ||g,(A)|| < Cknt;*. .
Since |r(o0)| < 1 we find that §,(oco) exists, which implies that there is R > 0,

such that for fixed n, §,(z) is bounded for |z| > R. Further, by (1.6), gn(z) is
bounded for |z| > €, |argz| < ¢ with ¢ € (6,6). Applying Lemma 2.4, we get
1

Gn(A) =)+ 5= [ Ga(2)R(z A)d.
T Jy UTRUyR

Since the integrand is bounded for |z| > R, we may let R tend to 0o. Moreover,
by (3.6), we have g,(z) = O(2) as z — 0, so that we may let ¢ — 0. Thus

in(4) = (T + 5= [ Ga(RE A

where I' = {z : | arg z| = ¢} for some ¢ € (4,0).
Clearly,

[1Gn(00)I|] < [r(00)* *(r(c0) = 1)] < Ce " < Cn™ 1.
Since |r(c0)| < 1, there exist R > 0 and ¢ > 0 such that
(3.12) r@) < e, forls > R,

which shows that the integrand has no poles when |z| > R/k;, 0 < |argz| < 7.
In fact, using also (3.3), we have

(3.13)

lGn(2)R(z; A)|| < Ce™ ¢V (e=°+1) < Ce™", for |z| > R/k1, 6 < |argz| < 7.
Thus we can replace the path of the integration by T' = FR/ kn FR/ k1 - U Rk

We have, since |gn(z)| < Ce " for |z| > R/k1,

H/ R(z; A) dz‘ < C/ e " |dz| <Cn~.
R/kl R/kq |Z|

By (1.6) and (3.6), we know that, for arbitrary R,
(3.14)  |r(2) = 1| £ Clz|, |r(z) =1 — 2| < C|z|?, for |z| <R, |argz| < ¢.

Using this, Lemma 2.2 and tn—l/kn = (tn—l/kn—l)(kn—l/kn) > C(tn_l/kn_l) >
C(n — 1), we have

JRTE RS
.

< C/ e Ctn=1/kn)e 4o < C/ e~ dy < Cn~L.
0 0
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Finally, we write

/Fa/kl gn(2)R(z; A)dz = (~/F§§:n_1 +/Fg§’°1 )gn(z)R(z;A) dz=1T+1I.

R/kn kn_1

If n = 2, we have, by Lemma 2.2 and In(ky/k;) < C,

R/k1 dp
H/ R(z; A) dzH < / e~hr L <o<cont
R/’“l R/ks P

If n > 3, using Lemma 2.2 and (1.6) and (2.11) with m = n — 1, we obtain, for

R/km
ZEFR/ka’ 1<m<n-—2,

n—1
1gn(2)] < C‘ H T‘(k‘jz)| < Cectn-1l2l < Ce=es(n=1)

j=1

which implies that, since k, 1 ~ kj,
R/kn_1 d
1 <c / e 22 < o= In(kyy [kn_1) < Ce™"
R/kn, p

Further, by (1.6) and (2.12),

n—1
[gn(2)] < ‘ H r(ka)‘ < CenDe—cam  for 2 € ng:w 1<m<n-2,
=1

which shows that, following the proof of (2.13),

d
1| < C Z / ec2(n—Dg—eam TP < crg—en.
R/km+1 p

We therefore obtain

(3.15) H/R/k dn(2)R(z; A) dz“ <Ce "< Cnt, forn>3.

Together these estimates complete the proof. O

Our next result is a nonsmooth data error estimate.

THEOREM 3.4. Let U™ and u(ty)be the solutions of (1.5) and (1.1), respec-
tively. Assume that A satisfies (1.2) and (1.3), and that r(2) is accurate of order
p > 1 and A(0)-stable with 8 € (0,7/2] and |r(co)| < 1. Assume further that
{T} is a family of increasing quasi-quasiuniform grids. Then there is a constant
C such that

||6Un - Dtu(tn)” S Cknt;ZH’U“: fOT‘ tn > 0.

ProOOF. The case n = 1 follows from the constant time step case, see Yan [13].
Here we consider the case when n > 2.
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With the notation of Theorem 3.1 and since t,, < nk, we need to show
|GR(A)|| < Cn~2, forn > 2.
We set, with k = r(00),
(3.16) Gn(2) = Gp(2) = K" Yk — Dknz/(1 + kn2).
For the same reason as in the proof of Theorem 2.6, we have
16" () = Dkn AL + kn A) 7| < Cls|" ™ < Cn 72,
and i ) )
Gn(4) = 2_7ri/FG"(z)R(Z;A) dz,

where I' = {z : |arg z| = ¢} for some ¥ € (4,0).

We write

(3.17) Gn(2) =( 1:[ r(k;z)(r(knz) — 1) — 6" (K — 1))
j=1

+ k" Nk —1)/(1 4+ kp2) — (—kn2)e "=
By Lemma 2.7 and |1 + k, 2| > |kpz| for Re z > 0, we have

® ; d * —cn - n - —¢ d
/ 1Gulpe™) 2 <0 [T (o (hap)™ + |8 (bap) ™ + (knp)e=tn?) P
R/k1 p R/k1 p

< Cn~2.

Using |1/(1 + k,2)| < 1 for Re z > 0, we have, by (3.17), with G,(2),l = 1,2,3,
as in the proof of Theorem 3.1,

R/kn ) d R/kn . d R/kn
/ 1Gn(pe*i) % < / IGn(pe)| % 4 © / " endp
0 p 0 p 0

3 R/kn d
<Y [ 16 L + Cler
1= Y0 p
Obviously, we have, by Lemma 2.2 and (3.14) and ¢, _1/k, > C(n — 1),

R/kx R/kn A
ey [erG Lo [ e P
0 P 0 P

R R
< / e elinma/ln)o g gy < / e~ D7y 4y < On~?,
0 0

and, by (2.1) with p =1 and nk, ~ t,,

R/kn, R/kn R
e se [T ppre o L = [T ate il ao
0 p 0 p 0

R
< C’/ z?e " nde < Cn~2.
0
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Thus, combining this with |k|* < Cn=2, we get

R/kn '
/ |Gn(pei“1’)| % <Cn72% forn>2.
0

It remains to consider the integral on interval [R/k,, R/k1]. We rewrite

n—1
Gn(z) = FHI r(ki2) (r(knz — 1) — (—kpz)e™t* — %(nn — g,
We have, since tp,p = (tn/kn)knp > Cn for p € [R/k,, R/k1],
(3.19)
/R/kl eftnpei""’ (knp) @ < /R/k1 e—ctnpkndp <e /R/kl e’gt"ptndp
R/kn P R/kn R/kn

o
< e_c"/ e 2%dx < Ce " < Cn™2,
0

and, since In(k,/k1) < Cn,

R/k1 k d
npP -1y 0P -2
3.20 / K" — k") — < Ck"In(k,/k1) < Cn~".
(3.20) . 1+knp( )p_ (kn/k1)

Combining this with (3.15) shows

R/k1 . dp
/ Gn(pet)| % < Cn=2, forn > 2.
R/kn p

The proof is complete. O

4 Approximation of Time Derivative — Second Order

In this section we shall consider the following second order approximation of
ut(tn)a

(4.1) U™ = a,0U™ + b,0U™ !
=a,(U" =U" Y /ky+ b, (U —U" ) )k, 1,
where
an = (2kn + kn—l)/(kn + kn—l): bn = _kn/(kn + kn—l)a

and U™ is the discrete solution of (1.1) defined by (1.5). Combining (4.1) and
Theorem 3.3, we obtain the following smoothing property.

THEOREM 4.1. Let U™ be the solution of (1.5). Assume that (1.2) and
(1.3) hold and that the discretization scheme is accurate of order p > 1, and
A(0)-stable with 0 € (6,7/2], and |r(o0)| < 1. Assume that {T} is a family of
increasing quasi-quasiuniform grids. Then there is a constant C such that

18U < Ctt wll,  form > 2.
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Note that (4.1) can also be written in the form
(4.2) U™ =k (coU™ + UM 4+ uU™?), forn > 2,

where ¢1 = 1+ yn,ca = v2/(14+n), co = ¢1 + c2 and 7y, = k,, /Ky, 1.

We shall now consider error estimates for the approximation (4.1). We begin
with a smooth data error estimate.

THEOREM 4.2. Let U™ and u(t,)be the solutions of (1.5) and (1.1), respec-
tively. Assume that A satisfies (1.2) and (1.3), and that r(2) is accurate of order
p > 2, and A(0)-stable with 8 € (6,7/2]. Let k;,1 < j < n, be increasing. Then
we have

(4.3) |02U™ — Dyu(t,)|| < Ckfb||A3v||, forn > 2.

PRrOOF. With P(z,y) = co + 1y~ + coz~ty~! and
Ga(2) = L 7(ks2) Plr(kn12),7(kn2)) — (~hnz)e™%, form >2,
j=1

we want to prove
1Gn(A) (k)2 < C, forn > 2.

Let 7(2) = ([1j=; r(kjz) P(r(kn-12),7(knz2))) (kn2)~3. As in the proof of Theo-
rem 2.1, applying Lemma 2.4 to the rational function 7(z) and using also Lemma
2.5 we conclude

G (A) (ko A)2 = / G (2) (b 2) R (2 A) dz.
27 ~eUT.
We now show that
(4.4) Gn(2) =0(2%), asz—0.
In fact, we write
(4.5) Gn(2) = GL(2) + G2 (2) + G3(2), forn > 2,

where

G (2) = [] r(k;2) (P(T(kn_lz),r(knz)) _ p(e—kn_lzje_knz))’

=1

and, with Fy,(2) = [}, r(k;jz) — e ',

G2(2) = r(kjz)P(e *n=1% e k%) — (—kp2), G2 = kp2Fy(2).
n J n

=1
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It is easy to see that there exists a small 1 > 0 such that

(4.6) |r(k;2)| < C, forl<j<n, |kpz| <,

and

(A7) |P(etmE, e R = (<ko2)| < Clhazl,  for [kuz| <1,
and

(4.8)  |P(r(kn_12),7(kn2)) = P(e *n=1% e7Fn2)| < Clkp2|?, for |knz| < 1.
Combining this with (2.2) shows
(4.9) |Gn(2)| < C|knz|3, for |kynz| <m,

which is (4.5). We remark that we can not extend (4.8) and (4.9) to |knz| <
R, |argz| < ¢ for arbitrary R and ¢ € (6, 8), since P(z,y) is not a polynomial for
variables z,y. Combining (3.3) with (4.10) shows that the integrand is bounded
on the small domain with boundary v, UT'§, so that we may let ¢ — 0. It follows
that, with T’ = {z : |arg 2| = ¢} for some ¢ € (4,6),

G (A) (o A) =2 = 2% /F Gn(2)(kn2) "3 R(z; A) dz.

The remainder of the proof is similar to the proof of Theorem 3.1. The proof is
complete. O

We close this section with an error estimate in the nonsmooth data case.

THEOREM 4.3. Let U™ and u(t,)be the solutions of (1.5) and (1.1), respec-
tively. Assume that A satisfies (1.2) and (1.3), and that r(2) is accurate of order
p > 2 and A(f)-stable with 6 € (0,7/2] and |r(c0)| < 1. Assume further that
{T} is a family of increasing quasi-quasiuniform grids. Then there is a constant
C such that

(4.10) 10:U" — Dyu(t,)|| < Ckat,lloll,  for n>2.
ProOOF. With the notation of Theorem 4.2 we need to show
IGR(A)|| < Cn~3, forn > 2.
Following the argument in the proof of Theorem 3.4, we set, with x = r(0),
(4.11) Gn(2) = Gn(2) — K"P(k, K)knz/(1 + kn2),
and we have
|6"P(k, £)kn A(I + kn A) Y| < Cle|™ < Cn73,

and
G(A) = 2% /F G(2)R(z A) dz.
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We write
(4.12) Gn(2) =( [T r(ks2) P (knos2). 7(kn2)) — 6" P(s, n))

+ k"P(k, k) /(1 + knz) — (—kn2)e” %, forn > 2.

By Lemma 2.7 and |1 + kpz| > |knz| for Rez > 0, we have, with 7 as in the
proof of Theorem 4.2,

(o ] - . d oo d
| (Gt L <c [ (emen ) I ) (e )
n/k1 P n/k1 P

< Cn~3.
Using |1/(1 + k,2)| < 1 for Re z > 0, we have, by (4.13), with G,(2),1 =1,2,3,
as in the proof of Theorem 4.2,

n/kn o d 3. [n/kn d
P 1 P n
Gn(pet™¥)| + < / G| — + Cl&|™.
[ Gt T <3 [T 161+ o
Obviously, using Lemma 2.2, (4.7), (4.8) and (4.9), we have
n/k'n d
| ek 162 % < on,
0 p
and, by (2.1) with p = 2 and nk,, ~ t,,
W/kn d n/kn d
el e [T G tappe o < on
0 p 0 p
Thus, combining this with |k|* < Cn=3, we get
n/kn odp
/ (Cnlpet®)| L < On ™, forn > 2
0

It remains to consider the integral on the interval [n/ky,,n/ki] for n > 2. If
n = 2, we write, by (4.3),

G2 (2) :(cor(klz)r(kgz) +cir(kiz) + 02) — (—ko2)e 27
_ kQZ
1+ koz

where the integrals related to II and III can be bounded by (3.20) and (3.21),
respectively. For I, we have

(cok? +c1k+co) =T+ IT+ 111,

H /F:’];:; (coT‘(k1Z)7’(k22) +ar(kiz) + CZ)R(z; A) dzH

n/k1 dp
<C — < Cln(k2/k) £ C < Cn3.
n/k2
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If n > 3, we write, by (4.3),

Gn(2) :(co l_nI r(kjz) + ﬁ r(k;z) + ¢o Tﬁ r(ka)) — (=kp2)e 2
j=1 j=1 j=1

knz

“ 1k z(cm“ + k" k™) =T+ IT+ 111
n

We can consider the case for n = 3 as for n = 2. If n > 4, the integrals related
to IT and III can be bounded by (3.20) and (3.21), respectively. Following the
argument in the proof of (3.15), we have

n/k1 n—2 )
/ H r(kjpei“l’)‘ dp < Ce ™ < Cn™3.
n/kn j=1 P

Using this and the boundedness of r(k;z) on I we obtain the desired bound for
the integral related to I.
Together these estimates complete the proof. O
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Abstract.

In this paper we consider smoothing properties and time derivative approximation
in multistep backward difference methods for nonhomogeneous parabolic equations.
Smoothing properties and time derivative approximations in single step methods for
homogeneous parabolic equations have been studied in Hansbo [5], Yan [12], [13]. We
extend the similar results in Yan [12] to the multistep backward difference methods.

AMS subject classification: 656M15, 65N30, 65F10.
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1 Introduction

In this paper we shall consider the smoothing properties and the approximation
of time derivatives in multistep backward difference methods for the following
nonhomogeneous linear parabolic equation

(1.1) ug+Au=f, fort >0, withu(0)=uv,

in a Hilbert space H with norm || - ||, where u; = du/dt and A is a linear,
selfadjoint, positive definite, not necessarily bounded operator with a compact
inverse, densely defined in D(A) C H, where v € H and f is a function of ¢ with
values in H.

The theory of stability and error estimates for the approximation of the so-
lution of (1.1) by a multistep method have been well developed, see Becker [1],
Bramble, Pasciak, Sammon, and Thomée [2], Crouzeix [3], Hansbo [6], LeR-
oux [7], [8], Palencia and Garcia-Archilla [9], Savaré [10], Thomée [11], and the
references there in. The smoothing properties and the approximation of time
derivatives in single step methods for homogeneous parabolic problems have been
studied by Hansbo [5], [6], Yan [12], [13].

This paper is related to Yan [12]. Let us first recall the main results in Yan
[12]. Consider (1.1) with f =0, i.e.,

(1.2) ug+Au=0 fort >0, withu(0)=w.
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Let U™, n > 1, be an approximation of the solution u(t,) of (1.2) at time
t, = nk, where k is the time step, defined by a single step method,

(1.3) U" =r(kA)U™, forn>1, withU° =,
where the rational function r()) is accurate of order p > 1, i.e.,
(1.4) r(A) —e * =0T, asA—=0.

Let j > 1. Define the following finite difference quotient, with some nonnegative
integers mj, my and real numbers ¢,,

m2

; 1
(1.5) QU™ = o Z U™, forn > my.

v=—mi

Assume that Qi is an approximation of order p > 1 to the time derivative D{ ,
that is, for any smooth real-valued function u,

(1.6) Diu(t,) = Qiu™ + O(kP), ask—0, withu™ = u(ty).

We then have the following smooth data error estimates

(1.7) QU™ — Dju(t,)|| < CkP||APHiy||, for n > my, v € D(APTY).
Further, if |r(oc0)| < 1, then we have the following smoothing properties
(1.8) ||Q§cU"|| < Ct 0 ||vll, forn>my, t, >0, veE H,

and nonsmooth data error estimates

(1.9)  [|QLU™ — Diu(t,)|| < CkPt, P+ ||v||, forn >my, t, >0, ve H.

The purpose of this paper is to extend the above results for homogeneous
parabolic equation, which is approximated by a single step method, to the non-
homogeneous parabolic equation, which will be approximated by a multistep
backward difference method.

We introduce the backward difference operator 8,, p > 1, by

p i—1
_ ki—1l _ _
(1.10) U™ =" ; dU", where JU™ = (U™ — U™ Y)/k.
)
With U9, ... ,UP~! given, we define our approximate solution U™ by
(1.11) OU™ + AU™ = f™, forn >p, where f" = f(t,).

It is well known from the theory for numerical solution of ordinary differential
equations, see, e.g., Hairer and Wanner [4], that this method is A(6)-stable for
some § = 6, > 0 when p < 6. The error estimates for such method has been
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studied in Bramble, Pasciak, Sammon, and Thomée [2]. It is easy to see that,
for any smooth real-valued function u, see Thomée [11, Chapter 10],

(1.12) ug(tn) = Opu"™ + O(kP), ask — 0, withu" =u(t,).

In Theorem 2.1 below, we obtain the following smoothing property: if U™ is
the solution of (1.11) with f = 0, then we have, with p < 6,

p—1
18,07 < 0t;* ST, forn > 2p.
7=0

It is natural to approximate the time derivative u;(t,) of the solution of (1.1)
by 8,U™ (n > 2p), where U™, n > p, is computed by the multistep backward
difference method (1.11). In Theorems 3.1 and 3.4, we obtain the following error
estimates

p—1 tn
18,07 —ws(ta)ll < €Y IIAU? = )| +Ch? / 14u®+)(s)[[ s, for n > 2p,
=0 0

and, with G(s) = |u(p+1)($)|2_2p_1 + P2 (5)]F + s2|uy(s) |3,

2p—1

22U — )| < O Y (107 = w2, + K7 IAUY - o))
Jj=p

tn

+Ck2p( G(s)ds +t§p|ut(t2p)|%)7

0
respectively.

When we choose some suitable discrete starting values U%, U?,--- ,UP™!, we
get the following nonsmooth data error estimates, with f = 0 and p <6,

3 — Ut\ln = Pt ) el .
10,U™ — uy(tn)|| < CkPt, P Hv||, forn > 2p

By C and ¢ we denote large and small positive constants independent of the
functions and parameters concerned, but not necessarily the same at different
occurrences. When necessary for clarity we distinguish constants by subscripts.

2 Smoothing properties

In this section we will show the smoothing properties for the multistep back-
ward difference method. Before showing this, we first discuss some properties of
the backward difference operator 0, defined by (1.10). We first note that (1.10)
can be written in another form, see, e.g., Yan [12],

p
(2.1) U™ =k e, U™,
v=0
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where the coefficients ¢, are independent of k. Introducing P(z) = >-0_, ¢, 2",
it is easy to check that (1.12) is equivalent to

(2.2) Ple™) = A=0(\P*), asA—0.
In fact, with u(t) = e’ in (1.12), we have
Pe ™) —k=0(kP"), ask—0,

replacing k by A, we show (2.2). On the other hand, if (2.2) holds, (1.12) follows
from Taylor expansion of d,u™ at t,,.
For p =1, (1.11) reduces to the backward Euler method

(U™ —U"Y/k+ AU™ = f, forn > 1,

and the starting value is U® = v.
For p = 2, we have

Gur—2u"' + LU ?) b+ AU™ = f*, forn > 2,

and both U® and U! are needed to start the procedure.
Bramble, Pasciak, Sammon, and Thomée [2] obtain the following stability
result, i.e., with U™ the solution of (1.11),

p—1 n
(2.3) U™ <D NUN+CkY NN, forn > p.
j=0 j=p

In this paper we first show the following smoothing property for the multistep
backward difference method.

THEOREM 2.1. Let p < 6. Then there is a constant C, independent of the
positive definite operator A, such that for the solution U™ of (1.11) with f =0,

p—1
(2.4) 18,U™ | < Ct" D NU9l, forn > 2p.

i=0

To prove this theorem, we need the following lemma from Thomée [11, Lemma
10.3].
LEMMA 2.2. The solution of (1.11) may be written, with ¢ = kf? = kf(t;),

n p—1
(2.5) U™ =3 Bnj(kA)g’ + D Brs(kAU®,  forn >p,
Jj=p s=0

where the 3;(X) and Bns(X) are defined by, with X >0, P(¢) = > _ (",

oo

26) D BN =@PQ+NT BeN) = D Bamsi(Nee

Jj=0 7 s
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If p < 6, there are positive constants ¢,C' and Xy such that

Ce™¢A, for 0 < X <y,

(2.7) 185 (NI < {crle—cj, for X > Jo.

PRrROOF OF THEOREM 2.1. By (2.5) and (2.1), we find that

p p—1 p—1
U=k "> Binw)s(RAU* =D B, (kA)U?,
s=0

v=0 s=0

where obviously we require that n — v > p (0 < v < p) which implies n > 2p,
and where /() are some functions of . Since 9,U™ is linearly dependent on
U® (0 < s <p-1), it suffices to consider separately the cases when all terms
but one on the right of (2.4) vanish.

We consider the case when U! # 0, 0 < I <p—-1andU® =0, 0 < 5 <
p—1, s#I.

In the case 0 <1 < p—1, we need to show

(2.8) 18,07l < Ot MUY

By Lemma 2.2, we have

/4

p p
U™ =k~ v (BrowyU') = k7 ZC"( 5"‘”_l_j(kA)cj)Ul

=0 v=0  j=p-I

p p
=k! Z (Zc,,ﬂn_,,_l_j(kA))chl, for0<I<p-1.
j=p—-1l v=0

We also note that
p
(2.9) chﬂn_,,_s(/\) =—ABn—s(A), forp<s<n,n—v—s>0.
v=0

In fact, if n — s < p, (2.9) follows from comparing the coefficients of (% of (2.6)
for 0 < 5 < p. If n—s > p, by comparing the coefficients of (¥ of (2.6) for 5 > p,
we get
(co+N)Bs+ -+ cpfs—p = 0.
Replacing 3 by n — s (n > 2p, n — s > p), we get (2.9).
Thus (2.8) follows from

p
‘n)\ 3y ﬂn,,,j(A)‘ <0, for0<i<p—1,
Jj=p—1

which follows from, for fixed [, 0 <l <p—1,

P
‘n)\ Zp: ,Bn_l_j()\)‘ <C Z nie =D < O for 0 < A < A,

Jj=p—l Jj=p—l1
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and ) )
‘nA > ﬂan(A)‘ <C Y ne D <0, for A > Ao
j=p—1 j=p—1
We now consider the case I = 0, we have, by Lemma 2.2,

4 p
BU™ =k 'S ey (Bin-1yolU®) =k ( 3 c,ﬁn,y,p(kA))chO.
v=0

v=0

We will show

(2.10) g

P
Zc,,ﬂn_,,_s()\)‘ <C, forA€eo(kA), n>2p.
=0

Assuming this in the moment, by spectral representation, the desired estimate
16,U™|| < Ct,,1]|U?|| follows.
It remains to prove (2.10). In fact, since (2.9), it suffices to show,

(2.11) Zlkﬂn—s(k)l <C, forAeo(kd), n>2p, p<s<n,
which we will now prove. For small A < )\, we have, by (2.7),
g|)\5n_s()\)| < (nAe ™) (s 1e®) < (nhe ™) max{p e} n e} < C.
For A\ > Ag, using again (2.7), we have,
2 Aas ()] < Clne™") (57 e*) < C,

which completes the proof of (2.11). Together these estimates complete the
proof of Theorem 2.1. 0O

3 Error estimates

In this section, we will show the error estimates for the approximation 5,,U n
of the time derivative u(t,) in both smooth and nonsmooth data cases. Recall
that the error estimate for the approximation U™ of u(t,) in the smooth data
case reads, see Thomée [11, Theorem 10.1],

p—1 tn
B U=l <C 307w+ ok [T ) ds, forn>p.
0

=0

Applying (3.1), we can easily prove the following smooth data error estimate
for the time derivative approximation.

THEOREM 3.1. Let p < 6. Then there is a constant C, independent of the
positive definite operator A, such that
(3.2)

p—1 tn
18,0" ~ w(tn)l| < O Y A~ |+ Ch [ 4w+ (o) ds,  forn > 2p.
i=0 0
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Proor. By (1.11) and (1.1), we have
185U = ue(tn) | = [AT™ = u(ta))ll-

Applying (3.1) with norm [|A - ||, we obtain (3.2). The proof is complete. O
We now turn to nonsmooth data error estimate. Below we will use the norm
[v|s = (A%v,v)Y/?, s € R, defined by

ol = Zﬂf(v,w)z < oo, forseR,
=1

where {p, p1}72, is the eigensystem of the operator A.
We first recall the following stability result, see Thomée [11, Theorem 10.4].
LEMMA 3.2. Let p <6 and s > 0, and let U™ be the solution of (1.11). Then
we have, with C' independent of the positive definite operator A,

t8||U"||2+th8|Uf|1 < CZ (U712, + k5 U7 (%)

Jj=p

+Ck Z(lfflis_l + 5 f7%), forn>p.
Jj=p

We need the following generalization of Lemma 3.2.

LEMMA 3.3. Let p < 6 and s > 0, and let U™ be the solution of (1.11).
Assume that m > p and U™ P,--. . U™ ! are given. Then we have, with C
independent of the positive definite operator A,

ok S g <c S
j=m j=m—p
>

(U712, + k2 (lU7]%)

(F 2y +81F20),  forn>m.

Proor. We modify the proof of Lemma 3.2. By eigenfunction expansion, it
suffices to show

(3.3)

m—1

n (U, @)” + (k) Y i°(U7, @) <C Y (km S+1)(Uj,901)2

j=m J P

+cYy ((ku,)—s—l +js(kul)‘1)(kfj,cpl)2, for 1< 1 < oo.

j=m
By (1.11), we find that, with 1 <1 < oo,

(co+ k) (U™, 1) + a1 (U 01) + -+ + (U™ P, 01) = (kf", 1)
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We now instead consider the equation, with A € a(kA), W™ = W"(]}),
(3.4) (co+ W™ + e, Wt 4o+, WP = F" forn>m,

where W™m~P ... W™ ! € R are given and F' € R, (m <1 < n) are arbitrary.
We shall show
n m—1
(3.5) nf(Wr? + X)W <c > (AT + )W)
Jj=m j=m-—p
+C Z()\—s—l +js/\_1)(Fj)2.

j=m

Assuming this and applying this to W™ = (U™, ¢;), A = kw; and F™ = (kf™, @),
for fixed 1,1 <1 < 00, we complete the proof of (3.3).

We now turn to prove (3.5). By linearity it suffices to consider separately the
case when W™t = 0,1 <1 < p, and then the case when F! =0 for I > m.

By Lemma 2.2, we find that

(3.6) n®1Bnl + A 518l < C(1+A7*), forn >0.

7=0
In fact, by (2.7), we have, for 0 < X\ < Ag,
ns|5n| S C,nse—cn)\ S C/\—s’
and

oo o oo
AD 1B S CAD D jTem N = O Y TN < ONT.
=0 =0 i=0
and for A > X, the left-hand side of (3.6), is less than Cn®e™"+C Y 72 jfe,
which is bounded.
We also note that the solutions W™ (n > m) of (3.4) satisfy, by (2.5),

p—1
W™ = Bo(A)F™ + > Bps(N)W TP,

s=0
p—1
W = Boy(AF™ + B (NF™ + 3 B AW,
s=0
n p—1
wn = Z Bn—j (M) F7 + Z/B(p+n—m)s(/\)Ws+m_pa n>m,
j=m s=0
or, in general form,
p—1

BT W= BaiFI Y Bipin-m)s WP, forn >m.

j=m s=0
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After the above preparations, we now consider the proof of (3.5) in the case
when Wm=P =... = W™~1 = (. We have, by (3.7),

n n—m
=D BuyFl =Y HF, forn>m,
j=m =0
so that, using the Schwarz inequality,

n*(W")” = nS(gnﬂlF"—l)z <n (l:Zm 141]) l:Zm 181l (Fr-t?.

Hence, by (3.6), and noting that n®* < C(I* + (n —1)%) and 1 < (n —1)?, we find

n—m

(38)  wvn SOt (PIAIET? + (- D1AIE )
<OY 0 (D)
=0

which is the desired estimate for the first term of the left hand side in (3.5). For
the second term in (3.5), we have, by (3.8),

N N —
A R <A S (Y FIBIEI + 18l - ) (E)R))
n=m n=m 7=0
N N-—m
<33 (501851 + 7181 ) (P2
n=m j=0
’ N N
< C)\71 Z (1 +)\7s)(Fn)2 +)\71 Z ns(Fn)Q

SCONTY (AT ) (P,

n=m

which completes the proof in the present case.

We next consider the case when F/ =0, m <j<nand W™ ! #0,1<1<
p, Wt =0,1<1<p, [ #1. We begin with the special case | = p. By (3.7)
with s = 0, we have

w" = 5(p+n—m)0(’\)Wm7p = ﬂn—m(’\)cpwmipa
so that, using (2.7) and n® < C((n —m)* +m?),

nS(W")2 < Cnsﬂn_m()\)(W"‘*”)2 < C(l +(n— m)s)ﬂn_m()\)(Wm*p)2
< C(L+ A7) (WP,
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From this we also obtain

N
A3 Wy <O Z (1+m—m)") 82 )Wy
< O+ A=) Wmry.

For the general case | # p, we have, by (3.7) with s =p—1
w" = ﬂ(p+n—m)(p l) Wm ! Z /Bn m+4-l— ] C] Wm_l;
so that, using (2.7) and n® < C((n —m +1—j)* + (m — 1+ j)*),

p
n*(W")? <Cn® Y Bnomri— (A (W™)?

J=l

<CY (1+m-=m+1-5)°)Brompi—jN)(W™H)?

M=

<.
I
-~

<CY 14+ 1FHWmhH.

M=

.
I
-~

From this we also obtain

AZ (Wm™)? <C)\ZZ (1+(n—m+1—35)°) B2y ;N3

n=m j=I

SCA+ A W™

Together these estimates complete the proof. O

Now we are the position to state our error estimate.

THEOREM 3.4. Letp < 6 and let U™ and u be the solutions of (1.11) and (1.1),
respectively. Then, with G(s) = [uPt1) (s)[2,, | + *PF2[uP+D (5)[2 + 5% |uy(s) 3,

2p—1

tip+2”5pU" - Ut(tn)|l2 <C Z (lUJ - uj|%2p + k2p+2|lA(Uj - uj)||2)
Jj=p

tn

vor( [ ats)ds + By lultanl),

0

PROOF. The error e” = 9,U™ — uy(t,) (n > p) satisfies

Ope™ + Ae™ = —1™,  where 7" = A(Jpu(ts) — w(tn)), forn > 2p.
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Applying Lemma 3.3 with s = 2p + 2, m = 2p, we have, for n > 2p,

2p—1
222 < 0 3 (1675, o + EPF2|ET?)
Jj=p
n
+ Ck Z (lT']lz_gp_3 + t§p+2|7"7|2_1).
j=2p

We now estimate the term kY7, |77|2,, 5. We will show that, with any
norm || - || in H,

t;
(39 IGulty) - ulty)l < Ok / [+ (s)| ds, for j > 2p.
ti-p
Assuming this we have

: tj
|T]|2—2p—3 < Ck2p_1/ |u(p+1)(s)|2_2p_1 ds, forj > 2p.

ti—p

Thus

n n t;
Y IRy <O Y [ )R, ds

Jj=2p j=2p ti—p

tn
<o [T @)L, ds.
0

It remains to estimate kY 7, t?p 2732 . If j # 2p, we have, by (3.9) with
norm [|AY/? .||,

n N n t;
B g <or 3 g [T e g
j=2p+1 J=2p+1 ti-»

Here we have t; < ¢s for s € [tj—p,t;], 7 > 2p + 1 which follows from

. e
t;i < s—— §s£

<ecs, forj>2p+1.
ti—p tpt+1

Hence
n n ¢
242 12 2 242, (p+1) ()2
EY ER, <ok Y / 272D ()2 ds,
j=2p+1 j=2p+1 Y ti-»
For j = 2p, we write, since > .>_, ¢, =0,

72 — k—lA( zp: cot(top—v) — Ut(t2p))

v=0

p top—v
= k‘lA(ch/ ug(s) ds —Ut(t2p)),
v=0 tp
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and we obtain
tap ‘ ‘
HrrRy < C [ )l ds + Kt
tp
which follows from

P top—v 2
|T?P12, < C(k‘2l;) ‘ /tp ug(s) ds‘1 + |Ut(t2p)|%)

p top—v
< CK2 S (pk) / e ()2 ds -+ g (£2,)
t

vr=0 P

tgp
<CK / fug(5)[2 ds + ur(tap)|:-

P

Thus, we get

tap
kt§§+2|72p|2_1 < Ck2p+2(/t lug (s) |3 ds + k|ut(t2p)|%)
P

top
< Ck2p(/ 52|ut(s)|‘;’ds+t§p|ut(t2p)|%).
tP

It remains to estimate (3.9). We write, by Taylor expansion around ¢;_,,

Loy ’
u(t) = Z M(t —tip) + l'/ (t — s)PuPTV(s) ds

I Sy,

By (1.12) and since Q(t) is a polynomial of degree p, we have 9,Q(t) — Q(t) = 0.
Thus, by (2.1),

p
pults) — ui(ty) = OpR(t;) — Re(t;) = k™'Y _ ey R(t; ) — Rult).
v=0
Noting that
tj
IR <O [ W™D )lds, fr0<v<p j>2,

ti—p

and
1Rl = | [ - s a

tj
<R / a0 (s))| ds,

ti-p
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we complete the proof of (3.9).

Together these estimates complete the proof. O

In the homogeneous case, i.e., f = 0, we have the following nonsmooth data
error estimates.

THEOREM 3.5. Let p < 6 and let U™ and u be the solutions of (1.11) and
(1.1), respectively. Assume that f =0 and the discrete initial values satisfy

(3.10) U7 —w!|_ap + KPTHA(U? — /)| < CKP|lvfl, forp<j<2p—1
Then, with C independent of the positive definite operator A,
10U = ue(tn)ll < CRPEPHJoll,  forn > 2p.

PRrROOF. For the solution u of homogeneous parabolic equation, it is easy to
show that

tn tn
/ Pt (s)[2,,_1ds < Clo||?, / s 2P (5)3ds < Cjv?,
0 0

and t3 |u¢(tap|; < C||v||*. Applying for Theorem 3.4, we complete the proof. O

4 Error estimates for the starting values

In Theorems 3.4 and 3.5, we see that it is necessary to define starting approx-
imations {U’ };’;é such that

U7 —u?|_2p + KPFA(U? — /)|l = O(KP), forp<j<2p—1.

In this section we will investigate two simplest cases p = 1,2. The approach can
be extended to the general case for p > 2, but the proof is more complicated.

In the case of p = 1, the approximate solution is defined by the backward
Euler method

(4.1) U™+ AU™ = f*, forn>1, withU° =,
or, with 7(A) =1/(1 4 \),
U" = r(kA) U™ + kr(kA)f", forn>1, withU° =wv.

We then have the following lemma.
LEMMA 4.1. Let U! and u be the solutions of (4.1) and (1.1), respectively.
Then we have

(4.2) U' — w2 + B*JAU" —uh)

k k
< CHllo — A7 F(0)|[ + Ck / 1A=L f(7) | dr + K / 17" (x)l| dr.
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In particular, if f =0, then
(4.3) [U' =5 + K |AU —uh)|| < CklJo]|.

PrOOF. Noting that u!' = e %4y + fok e~ (k=94 f(s)ds and using Taylor’s
formula, we have

k
Ut —ut = (r(kA) — )0 + kr(kA) ! / e~ (k=004 f(s) ds
= (r(k4) —e” )v + kr( kA / f'(r dT

—k/ -(- SW‘ f(0) + i f'(T) dT) ds
—“)v + kbo(kA) £(0) + kR(f),

where

1
bo(\) :r(/\)—/ e~ (=9 gs,

0
and

k 1 ks
44)  R(f) = r(kA) /0 Fi(r)dr — /0 e—(1=5)kA /0 () dr ds.

Thus we have, noting that Abg(A) = —(r(A) —e™?),
(4.5) AU —u') = (r(kA) — e ") (4v — £(0)) + kAR(f)
—(r(kA) — e *)uy (0) + kAR(f).
We first show that
k
(4.6) AU = uh)|| < CkIA™ us (0)]] + C’f2/ I (7)ll dr-
0
In fact, by (4.4) and (4.5),
FIAU —uh)|| < kllkA(r(kA) — e *) A7 uy (0)]
k
+ k2HkAr(kA)/ () dTH
0
1 ks
82 [ ke [ i aras|
0 0
=I+I1I+1II.
For I, we have, since |[A(r(\) —e )| < C for 0 < X < oo,

I < CEIA™ uy(0)]].
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For II, we have, since |[Ar(A)| < C for 0 < A < o0,
k
1< Ck2/ ()] dr.
0
For IT1, we have, since ‘ [F ae (=9 ds‘ <Cfor0<e<l,

kol
111 = k2H/ / kAe~(1=)kA f1 (1) dsdTH
0 Jr/k

<cr( /0 el dT)| / /k kAe—(1-9)kA ds”

k
< CK? / 17 ()]l dr.

Thus we obtain (4.6).
We next show that

k
(4.7) [A(U —u')|—4 < CKl|A™ 0y (0)]] + Ck/o [ A= f'(7)]| dr

In fact, by (4.4) and (4.5),
JA(U" = u")| 4 < KII(RA) T (r(kA) — ") A1y (0))

+ Kr(ka) /Ok A7) e

+| /1 e (1A /ks AT f(r) dr ds|
= I+IIO+ II1. ’
For I, we have, since [A " 1(r(A\) —e *)| < C for 0 < A < o0,
I < CK|[A™ uy(0)]] < Ckllv — AT F(O)]I.
For I1, we have, since |r(\)| < C for 0 < A < oo,

k
IIng/ AL (7)|| dr-
0

For III, we have, since ‘ f: e’(l’s)’\ds‘ <Cfor0<e<l,

k 1
=k [ [ ke 0-okatp o) dsar]
0 Jr/k

1
/ e—(l—s)kA dsH
T/k

< Ck( / Al ar)|

k
< Ck / 1AL f/ ()| dr.

15
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Thus we obtain (4.7). O

We now turn to the case p = 2. In this case we need two starting values U°, U?.
We will use the backward Euler method to compute U?, i.e., the approximation
U™ of the solution u(t,) of (1.1) is defined by

(4.8) U™+ AU™ = f* forn > 2, U + AU = ', with U° = v.

We have the following lemma.
LEMMA 4.2. Let U’,j = 2,3 and u be the solutions of (4.8) and (1.1),
respectively. Then we have

(4.9) .

U7 = |_g+ B A@ = )| < CF ([loll+ 1£O)]] + / I @dr), =23
In particular, if f =0, then

(4.10) |U7 —wd|_g + B3| A(U? —u?)|| < CE*|jv]|, j=2,3.

PrOOF. Here we only prove the case j = 2, i.e., we will show that

(4.11) |U? —u?| 4 + E3||A(U? — u?)|| = O(K?).

The proof for the case j = 3 is similar.
Since 8,U? = k1 (3U?% — 2U' + 1U°), we may write

U? = (kAU 4+ ¢2(kA)U® + kP(EA) f2,

where

_ 2 _=1/2 _ 1
a0 =3px eV =gpy o PN =gRTs

Thus, noting that u? = e~ 2F4y 4 f02k e~ (2k=9)A f(5) ds, we have

U? —u? = (kAU — u') + g2(EA)(U° — u®) + E;.
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Here
By = q1(kA)u' + g2(kA)u’ + kP(kA) f? —u?
kA k (k—s)A
=q(kA)(e” —k—s d
a1 ( )(e U+/O e f(s) s)
+ g2 (kA)v + kP (kA) f*
—2kA + /2k 7(2kfs)Af(S) dS)
— e
(e v ;
(4.12) = (ql(kA)e*kA + qo(kA) — e*%)v
1 (1-s)kA ks
+ kau (kA) /0 ’ (F© + o dr) ds
2k
+ kP(kA) ( FOV+ [ () dT)
0
2ks
_ 9%k —2(1— s)kA 0 ! d d
/' O+ [ rear)as
=Q(kA)v + kbo(kA)f( ) + kR(f),
where
QN =aNe ™ +¢(\) —e
and ) .
bo(A) = g1 (N) /0 e~ (=92 ds + P(N\) — 2/0 e 2(1=9)A g,
and

R(f) = q1(kA) /0 1 e—“—”’“‘( /0 ; f'(7) dT) ds

2k
P(kA) fl(r)dr
0
1 2ks
- 2/ 6_2(1_8)’“‘4</ f'(m) dT) ds
0 0
Thus we have

(4.13) A(U? —u?) = Aqi (KA)(U' —u') + AB,.
Let us show that

2k
(4.14) kWAaﬂ—u%nscW(mn+mumm+kA 17l dr).

In fact, by (4.12) and (4.13),
FIAU? —a?)|| < K[| Aqu (kA) (U — ul)|| + K[| AQ(kA)v||
+ & ||k Abo(kA) £ ()| + K°(|kAR(S)
=I+II+1IT+1V.

17
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We first estimate the terms II,III, and IV, then we turn to the term I.
For II, we have, since |AQ(N\)| < C for 0 < A < o0,

IT = k?||[kAQ(k A)v]| < CK?[|v]|.
For I11, we have, since |Abg(A\)| < C for 0 < A < o0,
I11 = k?| |k Abo(kA) F(0)|| < CE?[| £ (O)]I-
For IV, we have

v < CkSHkAql(kA) / F I pae @oona F(r) dsdTH
0

T/k

2k
+C’k3HkAP(kA) 0 f'(T)dTH

+Ck3HkA/2k /1 e 0= MAf1 (1) ds |
o Jrj2k

2k
<ck [ Ir e
0
Now we turn to I.

+ 19 g () (R (k) — & /0 oo 45)10)|

k 1 ks
+ 840 6) (ke k) [ poydr =k [ 0k [T ey aras)|
0 0 0
=hL+ 0L+ 1.
It is easy to show that

k
L<CRul, L<CKIfO), and I <2 / 1£')| dr.
0
Thus we get

k
r <Ok (Jull+ kIS + & [ 17dr).

Combining this with the estimates for 11, III and IV, we obtain (4.14)
We next show that

2k
(4.15) AT? =)o < OB (Ioll+ [ 17/l dr).

In fact, by (4.12) and (4.13),

[A(U? —u®)|—6 < [Aq (kA (U — u')|—6 + |AQ(kA)v]|—¢
+ [kAbo(kA) f(0)[ -6 + [FAR(f)| -6
(4.16) =I'+II'+III'+ IV'.
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We first estimate the terms II', II1I', and IV', then we turn to the term I'.
For II', we have, since |A\"2Q(\)| < C for 0 < \ < o0,

= |kAQ(kA)v|—¢ = k?||(kA) > Q(kA)v]| < Ck?|Ju]l.
For III', we have, since |[A~1bo()\)| < C for 0 < A < o0,
IIT' = |kAbo(kA) f(0)| -6 = k*[|(kA) ™ bo(kA)AT"(| < CK?(| F(O)]I-

For IV, we have
k 1
' < CHkA—qu(kA) / / kAe~(=9kA f1(7) g dTH
0

2k
+ chA—2P(kA) £(7) dTH

0

. 2k 1
+0ffa / / e 20 WA S (7) dis |
0 T/2k
2k
<CR / 17 ()| dr.
0
Now we turn to I'.
— | Agr (RAYU" — )| < | Agy (A)(r(kA) — e™*40] g

A () —k [ 04 a) 50

+‘Aq1(kA kA/f dT—k/ - SW‘/ fi(r des|
6
=L +1L+1I.

It is easy to show that
2
I <CE|wll, I <CR(IfO)ll, and I5< CkQ/ I1f'll dr.
0
Thus we get

k
1< 8 (ol + 1711+ [ 171ar).

Combining this with the estimates for II',TII' and IV’ we obtain (4.15).
Together these estimates we show (4.11). The proof is complete. O
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Postprocessing the finite element method for semilinear
parabolic problems
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Department of Mathematics, Chalmers University of Technology and Géteborg University
SE—412 96 Gdteborg, Sweden. email: yubin@math.chalmers.se

Abstract.

In this paper we consider postprocessing of the finite element method for semilinear
parabolic problems. The postprocessing amounts to solving a linear elliptic problem
on a finer grid (or higher-order space) once the time integration on the coarser mesh is
completed. The convergence rate is increased at almost no additional computational
cost. This procedure was introduced and analyzed in Garcia-Archilla and Titi [13]. We
extend the analysis to the fully discrete case and prove error estimates for both space
and time discretization. The analysis is based on error estimates for the approximation
of time derivatives by difference quotients.

AMS subject classification: 65M60, 656M15, 656M20.

Key words: time derivative, postprocessing, finite element method, backward Euler
method, error estimates, semilinear parabolic problem.

1 Introduction

In this paper we shall consider postprocessing of the finite element method for
the semilinear parabolic problem

(1.1) ug—Au=F(u) inQ, forte (0,T],

u=0 ondQ, forte (0,T], withu(0)=ov,

where (2 is a bounded domain in R?%, d = 1,2,3, with a sufficiently smooth
boundary 09, uy = Ou/0t, A is the Laplacian, and F : R — R is a smooth
function.

Let H = Ly(Q2). We define the unbounded operator A = —A on H with
domain of definition D(A) = H? N H}, where, for integer m > 1, H™ = H™(Q)
denotes the standard Sobolev space W.*(Q), and Hy = Hg(Q) = {v € H' :
v|sa = 0}. Then A is a closed, densely defined, and self-adjoint positive definite
operator in H with compact inverse. The initial-boundary value problem (1.1)
may then be formulated as the following initial value problem

(1.2) u+Au=F(u), for0<t<T, withu(0)=uv,

in the Hilbert space H.
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Recently, a postprocessing technique has been introduced to increase the effi-
ciency of Galerkin method of spectral type, see Canuto, Hussaini, Quarteroni,
and Zang [4], De Frutos, Garcia-Archilla, and Novo [6], De Frutos and Novo
[7], [9]- Postprocessed methods yield greater accuracy than standard Galerkin
schemes at nearly the same computational cost. In Garcia-Archilla and Titi [13],
the postprocessing technique has been extended to the h-version of the finite el-
ement method for dissipative partial differential equations. There, the authors
prove that the postprocessed method has a higher rate of convergence than the
standard finite element method when higher order finite elements, rather than
linear finite elements, are used. FError estimates in L, and H' norms in the
spatially semidiscrete case are obtained. More recently, in De Frutos and Novo
[8], the authors show that the postprocessing technique can also be applied to
linear finite elements and the convergence rate can be improved in H'! norm,
but not in Ly norm. The analysis is restricted to the spatially semidiscrete case.

The purpose of the present paper is to derive the error estimates in the fully
discrete case for the postprocessed finite element method applied to (1.2). To
do this, we introduce the time-stepping method to compute the discrete solu-
tion of (1.2) and define a difference quotient approximation to time derivative.
We then define the postprocessing step in the fully discrete case and show the
error estimates for postprocessing method by using the error estimates for time
derivatives. For simplicity we only consider the error estimates in L, norm.
Our technique of proof is related to, but different from, the one employed in
Garcia-Archilla and Titi [13].

The paper is organized as follows. In Section 2, we introduce some basic nota-
tions and lemmas. In Section 3 we consider error estimates for the postprocessed
finite element method in the semidiscrete case. In Section 4, we consider error
estimates in the fully discrete case. In Section 5, we consider the starting ap-
proximation of time derivatives. Finally, in Section 6, we consider higher order
time-stepping in the context of the linear homogeneous problem.

By Cy we denote positive constant independent of the functions and parame-
ters concerned, but not necessarily the same at different occurrences.

2 Preliminaries

Let 7 denote a partition of  into disjoint triangles 7 such that no vertex
of any triangle lies on the interior of a side of another triangle and such that
the union of the triangles determine a polygonal domain Q, C Q with boundary
vertices on ). Let h denote the maximal length of the sides of the triangulation
Tn. We assume that the triangulations are quasiuniform in the sense that the
triangles of Ty are of essentially the same size.

Let 7 be any nonnegative integer. We denote by || - || the norm in H”. Let
{Sn} = {Shr} C H} be a family of finite element spaces with the accuracy of
order r > 2, i.e., S;, consists of continuous functions on the closure Q of  which
are polynomials of degree at most r — 1 in each triangle of 7, and which vanish
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outside Qy, such that, for small h,

inf {[lv—xll + AV =0} < CRlvlls, for1<s<m,
XEOh

when v € H* N H}.
The semidiscrete problem of (1.2) is to find the approximate solution wup(t) =
up(-,t) € Sy, for each ¢, such that,

(2.1) Up,t + Apup = PhF(uh), with uh(O) = Up,

where v, € Sy, P : Lo — S}, is the Ly projection onto Sy, and Ay : Sy — S
is the discrete analogue of A, defined by

(22) (Ah¢JX) = AW;X); v wax € Sh-

Here A(-,-) = (V-,V-) is the bilinear form on H{ obtained from A.

Error estimates for finite element methods for semilinear parabolic problems
with various conditions on the nonlinearity have been considered in many pa-
pers, see, e.g., Akrivis, Crouzeix, and Makridakis [1], [2], Crouzeix, Thomée,
and Wahlbin [5], Elliott and Larsson [10], [11], Helfrich [14], Johnson, Larsson,
Thomée, and Wahlbin [15], Thomée [21], Thomée and Wahlbin [22], Wheeler
[23]. The long time behavior of finite element solutions was studied by Elliott
and Stuart [12], Larsson [16], [17], Larsson and Sanz-Serna [18], [19].

Let us now describe the idea of the postprocessed finite element method pro-
posed by Garcia-Archilla and Titi [13]. Suppose that we want to obtain high
order approximation, for instance O(h"*2). Then we can use, in every time step,
either a family of high order finite element spaces Sy, = Sh,r+2 with the order
r 4 2 of accuracy, or a family of finite element space Sy, := Sp,.» With accuracy

of order r, but with finer partition 7;, of the domain €, such that, h"+* = hr.
In [13], another technique, called the postprocessed finite element method, is pre-
sented, which improves the convergence rate without using a high order finite
element space S, in every time step. Suppose that we are interested in the
solution of (1.2) at a given time 7. At time T, rewriting (1.2), we have

(2.3) Au(T) = —uy(T) + F(u(T)).

Thus, u(T') can be seen as the solution of an elliptic problem whose right hand
side is not known but can be approximated. Garcia-Archilla and Titi first com-
pute up(T') by (2.1) in the finite element space S, then replace u¢(T) by wp,(T)
and solve (or, in practice, approximate) the following linear elliptic problem: find
u(T) € D(A), such that,

(24) AU(T) = —upy(T) + F(un(T)),

which is the postprocessing step.
They obtained the following error estimate, with £, = 1 + log(T/h?),

(2.5) |a(T) — u(T)|| < C(u)lph™2, forr >4,
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where C'(u) is some constant depending on w. A similar result holds for r > 3.
The proof is based on superconvergence for elliptic finite element methods in
norms of negative order, which is the reason for the restriction r > 3.

We note that the bound (2.5) is an improvement over the error estimates
for the standard Galerkin method, which is O(h™). In practice @ can not be
computed exactly, since in general it does not belong to a finite element space.
However, one can approximate the solution 4 of (2.4) by some 4y belonging to
a finite element space Sy, of approximation order r + 2 as described above. More
precisely, we pose the following semidiscrete problem corresponding to (2.4):
find @y, € Sp, such that,

(2.6) Apan(T) = Po(— unye(T) + F(un(T))),

where Py : Ly = S, is the Ly projection onto Sy, and Ay, is the discrete analogue
of A with respect to Sy. The standard error estimate reads, see, e.g., Brenner
and Scott [3],

(2.7) lan(T) — &(T) || < Cw)h™*2,
Combining (2.5) and (2.7), we have
llan(T) = w(D)Il < llan(T) = a(T)|| + 1a(T) — u(T)|| < Cu)enh™?, forr >4.

Let us now introduce norms of negative order. Consider the stationary prob-
lem,

(2.8) Au = f.

The variational form of this problem is to find u € H) = H} (), such that
Alu,9) = (f,9), Vo€ Hy.

The standard Galerkin finite element problem is to find u, € Sy, such that,

(2.9) Alun, x) = (£,x); VX € S

Let G : Ly — Hj be the exact solution operator of (2.8) and define the
approximate solution operator G : Ly — Sp by Gpf = up so that up =
Grf € Sy, is the solution of (2.9). We recall that G, is the selfadjoint, positive
semidefinite on Ly and positive definite on S,. Further we have, see Thomée
[21, Chapter 6],

(2.10) I(Gr—G)fI| < CH"||fll;—2, for fe H ™% r>2,
and

(2.11) 1(Gh = G)fll-2 < CW*2| flly—2, for fe H™™?, r>4.
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Here r is the order of the accuracy of the family {Sp}, and the negative order
norm is defined by
(v,9)

112 = sup T

We note that G : Ly — Hi N H? is the inverse operator of A : Ht N H? — Lo,
i.e., G = A7!, and similarly G}, = A;l on Sy, where Ay, is the discrete Laplacian
of A defined by (2.2). Moreover, we will use the following properties, see, Thomée
[21, Chapter 2],

:¢€H2}.

(2.12) GhPh = Gh and Gh = RhG,
where Ry, : HY — S}, is the elliptic projection, or Ritz projection, defined by
(2.13) A(Rpu,x) = A(u,x), VYV x € Sh.

For our analysis it will be convenient to use instead of the negative order norm
introduced above, such a norm defined by

o]y = [IG*/2]| = (G*v,0)/2, for s >0,

we think of this as a norm in Ls.
We introduce also a discrete negative order seminorm on Lo by

0]—sn = G/ 0]| = (Gjv,0) /2, fors >0

it corresponds to the discrete semi-inner product (v,w) 5, = (Gjv,w), Vv, w €

L. Since G}, is positive definite on Sy, |v|_s , and (v,w)_, , define a norm and

an inner product there. We also find that the discrete negative order seminorm

is equivalent to the corresponding continuous norm, modulo a small error. More

precisely, we have the following bounds, see, e.g., Thomée [21, Lemma 6.3].
LEMMA 2.1. We have, for 0 <s <r,

ol s < Col[o] s + B[], and [o]_, < Collv] o + R [l0]).

We also need Gronwall’s lemma.
LEMMA 2.2. If a,b are nonnegative constants and

t
0§u(t)§a+b/ u(s)ds, for0<t<T,
0

then we have
u(t) < ae®, for0<t<T.

For the nonlinear operator F', we have the following bounds, see Garcia-
Archilla and Titi [13, Lemma 3]. For the sake of completeness, we include
the proof, written in our slightly simpler form.
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LEMMA 2.3. Letu € H"(Q)NH(Q), r > 4, and x € H} (Q)NL®(Q). Assume
that F is a smooth function. Further assume thatd < 3 and ||u— x||L.. < K for
some positive number K. Then there is a constant C = C(||ul|., K) such that

(2.14) |IF(w) = FO)I < Cllu = xl,
and
(2.15) |F(u) — F(x)|-2 < C(lu— x|-2 + [Ju — xII?)-

PrOOF. By Taylor’s formula, we have, with £ =u+0(x —u), 0< 6 <1,
1F(u) = FOOIl = IF' () (v — )l < N1F' ()l pee llu — xI-

Since F'(x) is bounded in {z : |z| < ||u||L., + ||x — u||L.. }, we have, noting that
l|lullL.. < Collu||- for r >4, d <3,

(2.16) IF' Ol <Clullza,K) < C(ull, K),
which shows (2.14).
To prove (2.15), we have, by Taylor’s formula,
1
[F(w) = FOOl-2 < [F'()(w = x)] -2 + 51" () (w = x)*| 2.

We first show
(2.17) [F"(€)(u = x)*|-2 = [ATF" (&) (u = x)*|| < Cllu — x|I*.
In fact, by duality, for V ¢ € L2(Q),

|(A_1F”(£)(u - X)27 ¢) | = |(F”(€)(’U4 - X)27 A_1¢) |

<NF"@Ollpoll(w = x)? M2 1A e -

Following (2.16), we have ||[F"(¢)||.. < C(l|lull-, K). Further, by Sobolev’s

inequality and elliptic regularity, we have
A7 gllc.. < CollA ¢lluz < Collgll, ford < 3.

Thus,
(AT F"(€)(u=x)%9)| < Cllu=xIPllgll, V¢ € L(),

which implies that (2.17) holds.
Now we show

(2.18) [F'(u)(u — x)|-2 = [[A7 F'(u) (u — x)|| < Clu — x]|-2.
In fact, by duality, for V ¢ € Ly(Q), noting that F'(u)A~1¢ € D(A),

(A7'F'(u)(u = x), ) = (F'(u)(u — x),A7'¢)
= (A7 (u—x), A(F' (w)A™" 9)).
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With A = —A, we have

[ AF (W) AT )| = [|F" (u)$ + 2VF' (u) - V(AT ¢) + (AF' (u)) A7 ||
<IF' @l Igl + 20V E @)l AT ¢l + IAF (w)l|z.. A7l
< CIIF" (W)llwe 1A ¢z < C(llull)Ill-

Thus we get

[(A7HF" () (u = x), 9)| < C(llull) 1A (w = ) 14,

which implies (2.18).

Together these estimates complete the proof. 0O

REMARK 2.1. In our application of Lemma 2.3, we will choose u to be the
solution of (1.2) and x to be the corresponding finite element approzimation
solution up. It is obvious that up and u satisfy the assumptions of the Lemma
2.3. For instance ||up —ul|o < K can be achieved by using the inverse inequality
provided we know that the Lo error estimates for up, — u is O(h"™), see Thomée
[21, Chapter 14].

3 Semidiscrete approximation

In this section we will consider the error estimates for the postprocessed finite
element method for the semilinear parabolic problem (1.2) in the semidiscrete
case. The main theorem in this section is the following:

THEOREM 3.1. Letr > 4 and Sy, and Sy, be the finite element spaces of order r
and r+2, respectively, as described in Section 1. Let @i, and u be the solutions of
(2.6) and (1.2), respectively. Assume that F satisfies |[F(u)||» < Co in addition
to the assumptions in Lemma 2.3. Let uy, be the solution of (2.1). Assume that
v, = Rpv and

sup [lun(s) — u(s)|r., < K,
s€[0,T]
and
sup ([lu(s)llr + llue(s)llr + lluse(s)ll;) < M,
s€o,
for some positive numbers K, M,T. Then there is a constant C = C(K,M,T)
such that, with £y, = 1+ log(T/h?),

(3.1) llan(T) — w(T)|| < Clph™2.

As we mentioned in Section 2, Garcia-Archilla and Titi [13] has proved the
similar results: if @(7) and u are the solutions of (2.4) and (1.2), then
(3.2) Ia(T) - u(T)]| < C@)h™?, forr > 4,

where C(u) is some constant depending on w.
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For the comparison, let us recall the idea of their proof. By (2.4) and (1.2), it
follows that

18(T) = w(T)|l = |A™ (~une(T) + F(un(T))) = A7 (~ue(T) + F(u(T)))ll
< Jun,e(T) = ue(T)| 2 + [F(un(T)) = F(u(T))| -2

Lemma 2.3 with u = u(T) and x = uy(T) implies that
|F(un(T)) = F(u(T)|-2 < C|[ullr, K) (Jun(T) = w(T)|-2 + [[un(T) = u(T)|]%).
Introducing elliptic projection Ry, defined by (2.13), it follows that

1(T) — w(T)|| < [pe(T)| -2 + |0:(T)| -2
(3-3) + C(llulle, K) (Io(T) |2 + 10(T) -2 + lo(D)|I* + [10(T)]1%),

where p = Rpu —u, 8 = up, — Rpu, pr = Rpur — ug, and 0y = up, — Rpuge.

The desired bounds of |p|_;,I = 0,2, and [|p¢]|—2 are well known, see, e.g.,
Thomée [21, Chapter 6]. The task is to estimate |6|_; for I = 0,2, and |6|_».
To do this, consider the following equation

(3.4) 0; + Apb = Pr(—pt + F(up) — F(u)), with (0) = v, — Rpv =0.

By Duhamel’s principle, it follows, with Ej(t) = e~t4»,

T
(35  6(T) = / Eu(T = )Py (= po(T) + F(un(T)) — F(u(T))) ds.

The desired bounds of ||#||_; for I = 0,2 can be easily proved by using Lemma
2.2 and the stability of Ep(t). To estimate |6;|_2, they note that, by the second
part of Lemma, 2.1 with s = 2,

|0¢] 2 = Co(h?[|0:]] + |6¢]-2,n)-
By (3.4), we have
|0¢|—2,n < 101l + | Pr(=pt + F(un) — F(u))|-2,n,
and, noting that || 40| < Ch=2||0||,

10:1l < |48l + |1 Pn(=pe + F(un) — F(u))]]
< Ch2 |01l + |Ph(=pe + F(un) = F(u)]l-

Hence

(3.6) 10¢] 2 < Col|6l| + Coh®||Pu(—pe + F(un) — F(u))||
+ Co| Pr(—pt + F(up) — F(u))| 2,1



Postprocessing the finite element method 9

The desired bounds for the last two terms in the right hand side of (3.6) follow
from Lemmas 2.1 and 2.3, and the estimates for |p¢|; and |up, — u|_;, 1 = 0,2.
Further they show that § has the superconvergence property, i.e,

18] < C(u)lph™2, forr > 4.

Together these estimates completes the proof of (3.2).

We note that the logarithmic factor £;, appears in the superconvergent estimate
of 4.

We now return to Theorem 3.1 and state the idea of the proof in present
paper. In Theorem 3.1, we consider the error bounds for ||@p — ul|, not only for
|| — u||. To prove Theorem 3.1, it suffices to show the bounds of |up — u|_; and
|un,t — ue|—; for I = 0,2. We first split

(3.7) up —u = (up — 4p) + (ap —u) =n+e,
where 4, satisfies

(3.8) Up,t + Aptp = PpF(u), n(0) = vp.
Since u satisfies

(3.9) u + Au=F(u), u(0)=w,

the desired bounds of e = 4 — u and e; follow from the error estimates for the
linear parabolic problem because the right hand side of (3.8) is independent of
. In other words we only need to consider the nonlinear term F' when we show
the bounds of = up, — 4 and 7. Note that 7 satisfies

(3.10) e+ Ann = Po(F(un) — F(u)), n(0) =0.

By Duhamel’s principle, we have

T
(3.11) 0(T) = / EW(T — )P (Flun(s)) — F(u(s))) ds.

We obtain the desired bounds for |n|_;,! = 0,2, by using Lemmas 2.2 and 2.3
as above for showing the bounds of |8| ;,1 = 0,2, in [13]. For |n]_;,1 = 0,2, we
have two ways to consider the bounds. One way is to use the superconvergence
property of 7, which can be proved as we mentioned above for proving the
superconvergence property of  in [13]. Another way is to work with the following
equality

(312)  u(T) =Pa(F(un(T)) — F(u(T)))
T
- / AREy (T — 8) Py (F(un(s)) — F(u(s))) ds,

which follows from (3.10) and (3.11).
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Below we will use the second way to estimate |n;|—; for { = 0,2. This is the
main difference between our proof and the proof in Garcia-Archilla and Titi [13].
We will extend this idea to the fully discrete case in Section 4.

We remark that since 5(0) = 0, we don’t need to consider the term Ej(T)n(0)
in (3.11). This observation is very useful in the fully discrete case.

LEMMA 3.2. Let up and u be the solutions of (2.1) and (1.2), respectively.
Assume that F satisfies the assumptions in Lemma 2.3. Further assume that
vp, = Rpv and

(3.13) sup |lun(s) —u(s)llL. < K,
0<s<T

and

(3.14) sup ([lu(s)llr + llue(s)ll-) < M,
<s<T

for some positive numbers K, My, T. Then there is a constant C = C(K, M,;,T)
such that

(3.15) sup |[lup(t) —u(t)[| < Ch"  forr > 2,
0<t<T
and
(3.16) sup |up(t) —u(t)|—2 < CA™2,  forr > 4.
0<t<T

PROOF. The error estimate (3.15) is well known, see Wheeler [23] and Thomée
[21], where it is proved by splitting up — u = 0 + p, where 8 = up — Rpu,p =
Rpu — u. Here we will show (3.15) by splitting up, — u = n + e, where 7, e are
defined by (3.7). We will use this idea in subsequent lemmas for the proof of the
error estimate for time derivative approximation and later in the proof of the
error estimates in fully discrete case.

For e = 4, — u, we have, by the standard error estimates for linear parabolic
problem in semidiscrete case, see, e.g., Thomée [21, Lemma 1.3],

¢
311 e < ln(©) = w© + Cot (oll + [ lfual-ds), forr > 2.
0
Note that 4p(0) = v, = Rpv = Rpu(0), we therefore have
(3.18) lle(®)|| < C(M1,T)h", forr>2, 0<t<T.
For n = up, — 1ip, we have, by (3.11) and the stability of Ej(t),

@)l < / 1F (un(s)) — F(u(s))|] ds.

By Lemma 2.3, we have

t t t
Il < €U M0) [ = ullds < M) ( [ s+ [ felas).
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Further, by Lemma 2.2 and (3.18),
¢
(3.19) [In(®)[l < C(K, Ml)/ llell ds < C(K, My, T)h", forr>2,0<t<T,
0

which shows (3.15).
Now we turn to (3.16). By Thomée [21, Theorem 6.2], we have, since vy, = Rpv,

t
(3.20) e@)]-2 < Cot™ ([l + [l ds), forr > 4.
0

To estimate |n|_2, we first note that, by Lemma 2.1,
(3.21) Inl—2 < Co(W?|Inl| + [n-2,1) = Co(h?|Inl| + |Grnl|)-
Here G} n satisfies, by (3.10),
G + AwGrn = GuPu(F(up) — F(u)),  Grn(0) =0,

which implies, by Duhamel’s principle,

Gan(t) = /0 "Bt — $)GnPa (Flun) — F(u)) ds.

Note that, by Lemmas 2.1 and 2.3, and (3.15), (3.20),
IGhPr(F(un) = F)ll = |F(un) — F(u)|-2,n
< Co(R?||F(un) = F ()|l + [F(up) = F(u)| =)
< Cllullr, K) (h*[lun — ull + llun = wll* + |un — ul-2)
< C(K, My, T) (™2 + [n]2).

Hence, by stability of Ej(t),

t
IGan(®l < €. 20, ) (42 + [ pnl-ads).
0

Combining this with (3.21), (3.19), and using Lemma 2.2, we get
(3.22) In(t)|—2 < C(K, M, T)h"*?, for0<t<T.

Together these estimates complete the proof. O
Next lemma is the error estimates for time derivative of the solution of (1.2).
LEMMA 3.3. Let up and u be the solutions of (2.1) and (1.2), respectively.
Assume that F satisfies the assumptions in Lemma 2.3. Further assume that
vp, = Rpv and

(3:23) sup_|lun(s) —u(s)llL.. < K,
0<s<T
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and

(3.24) 2up (lu()llr + llue ()l + lluze()llr) < Mo,

for some positive numbers K, Mo, T. Then there is a constant C = C(K, My, T)
such that, with £y, = 1+ log(T/h?),

(3.25) sup ||up(t) — ue(t)|| < ClLAT,
0<t<T
and
(3.26) sup |up,¢(t) — ug(t)|—o < CLLR"T2.
0<t<T

Proor. We write
U, — g = (Up,g — Upyg) + (Up,e — ug) = Mg + €.

Following the proofs of Theorems 1.3 and 6.2 in Thomée [21] for the error esti-
mate |e|—;, I = 0,2, we can show the following error estimates for |e;|_;, | = 0,2,
that is,

lee(t)I| < [l (0) = e (0)| + Coh™ (|lue(O)]] + / el ds)

and
. t
u(®l-2 < fin.(0) = w(0)] -2 + Cab™** (Jus@)l- + [l ds).
0

We observe that, by (3.8), and noting that 45(0) = Ryu(0),

ﬁh,t(O) = —Ahﬁh(()) + PhF(u(O)) = —AthU(O) + PhF(u(O))
= Py (Au(0) + F(u(0))) = Phu(0).

We therefore have, by the error bounds for the L, projection,

llun,¢(0) = ue(0)]| = [[(Pn — Du(0)|| < Coh”||ue(0)]]r,

and
|t (0) = ue(0)] -2 < Coh™*2||ug (0)]|-
Thus, we get
t
G20 el < Col (JuOll + [ luallds) < I,
0

and, similarly,

(328) |€t(t)|_2 S C(MQ,T)hr-i_z.
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We now turn to |n|—;, I = 0,2. Using the fact ||Ay Ex(t)|| < Co(t+ h?)~1, see
Schatz, Thomée, and Wahlbin [20], we have

t
(3.20) / 1AnEn(t — )| ds < Co(1 +log(T/h?)) < Col.

Thus, by (3.12), (3.15), and Lemma 2.3,
(3.30)

e (O < [1Pn(F (un(t)) — F(u®))|
+ /0 ||AhEh(t — 8) P (F(un(s)) — F(u(s))) || ds
< C(K,M,,T)(1 +Eh)oquT”uh(s) —u(s)|| < C(K, My, T)¢Lh",

For |n:(t)|—2, we have, by (3.12),
|7 ()| -2 < |Pu(F(un(t)) = F(u(t)))| -2

+ /0 | AREn(t — )Py (F(un()) — Fu(t)))| , ds.

Here, by Lemmas 2.1 and 2.3, and (3.15), (3.16),
|Pa(F(up) — F(u))|-2 < Co(W?[|Pu(F(un) — F(w))|| + |GnPr(F (un) — F(u))]])
< C(llullr, K) (B |lun = wll + llun = ull® + |un —ul-2),
< C(K, My, T)h™ 2.
Thus, by (3.29),
|7’]t(t)|_2 S C(K, MQ,T)KhhT_Fz.

Together these estimates complete the proof. O ~
_PROOF OF THEOREM 3.1. Combining (2.3) and (2.4), we have, with G}, =
At

in(T) — w(T) = GhPr(—unys + F(un)) — G(—us + F(u))
= (éhph — G)( — Upt + F(uh) + up — F(u))
- (thh - G)(uw — F(u))
+ G(—unyt + F(up) + ut — F(u))

Thus, by Lemmas 2.3, 3.2 and 3.3, we get, noting that |[(GrP, — G)f| <
Ch?[|flls—2 for 0 <s <7 +2,

lan(T) = w(T)|| < Coh®(|luns = well + | F(un) = F(u)]])
+ Coh™ (JJuell + [|F (w)]l)
+ [un,t — ut—2 + [F(un) — F(u)|-2
< C(K,M,T)t,h™+2.
The proof is complete. O
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4 Completely discrete approximation

In this section we will consider the postprocessed finite element method for
(1.2) in the fully discrete case.

We use the similar technique developed in Section 3 to derive the error esti-
mates in fully discrete case. Let t, = nk, k time step. We define the following
backward Euler method, with 0U™ = (U™ — U™1) /k,

(4.1) U™ + ApU™ = P,F(U™), n>1, withU°%=uy,

It is natural to approximate uy (T), T =ty in (2.4) by OU™ for fixed n. The
postprocessing step in the fully discrete case is to find @(7T") € D(A), such that

(4.2) Au(T) = -0U™ + F(U™).
The semidiscrete problem of (4.2) is to find iy (T) € Sp, such that,
(4.3) Apiin(T) = Py (=0U™ + F(U™)).
Let U™ be the solution of
(4.4) U™ + AyU™ = PoF(u™), n>1, withU°=uy.

We have the following theorem.

THEOREM 4.1. Letr > 4 and Sy, and Sy, be the finite element spaces of order r
and r+2, respectively, as described in Section 1. Let @y, and u be the solutions of
(4.3) and (1.2), respectively. Assume that F' satisfies ||F(u™)||» < Cy in addition
to the assumptions in Lemma 2.3. Let T = t,, be a fized time. Let U™ be the
solution of (4.1). Assume that vy, = Rpv and

sup [|U™ = u(tn)llz.. <K,
0<t,<T

and

(4.5) S (llu(s)llr + [lue()llr + lluee ()] + lue(s) -2 + [|Aun(s)]]) < M,

for some positive numbers K, M,T. Then there is a constant C = C(K,M,T)
such that, with £, =1+ log(T/k),

lin(T) — w(T)|| < Co(|0U" — ue(ts)|| + [OU" — ug(t1)|—2) + Cli(A"F2 + k).

We now state a lemma for the error estimate of the approximation U™ of u(t,,)
in the Ly norm.

LEMMA 4.2. Let U™ and u be the solutions of (4.1) and (1.2), respectively.
Assume that F satisfies the assumptions in Lemma 2.3. Further assume that
vp, = Rpv, and

(4.6) sup [|U™ —u(tn)llz.. <K,
0<t,<T
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and

(4.7) sup ([lu(s)llr + lue(s)llr + lluge(s)l| + use(s)|-2) < M,
0<s<T

for some positive numbers K, M3, T. Then there is a constant C = C(K, Ms5,T)
such that

(4.8) sup [|U™ —u(ty)l| < C(R" + k),
0<t, <T
and
(4.9) sup U™ —u(ty)|—2 < C(h"? + k).
0<t, <T

Proor. We split
U™ —ulty) = (U™ =U™) = (U™ = ults) = 0" + ",

where U™ is defined by (4.4).
For e® = U™ — u(t,), we have, by the standard error estimates for linear
parabolic problems, see, e.g., Thomée [21, Theorem 1.5],

(4.10)
tn tn
") < Coll o — ol + ot (loll + [ el ds) + Cak [ fusa(s) s
0 0
< O(My, T)(W + ).

For 7 = U™ — U™, noting that, by (4.4) and (4.1),

(4.11) { ‘9(7)7 *;)Ahn = Pp(F(U") = F(u")), forn>1,
n° =0,

we have, by Lemma 2.3, with r(A) =1/(1+ \),

7] < &Y llr(kAR)™ I [ |P(F(UY) — F ()]

j=1
< Cok 3 IF(U7) — P < 00, M) (k3 191+ £ 3 1),
j=1 j=1 j=1

Further, by the discrete Gronwall’s lemma, and (4.10), we have
In™l < C(K, M3, T)(h" + k),

which shows (4.8).
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Now we turn to (4.9). Following the proof of (4.10), we can show that,
t
@12) e 2 < CalRwo — vla + Col™ ([l + [l ds)
0

tn
+ Cgk/ |ue(s)| =2 ds
0
< C(Ms, T)(h™*? + ).

To estimate |™|_2, we first note that, by Lemma 2.1,
(4.13) " |—2 < Co(R?|ln™(| + |G ™ |I)-
Here Gpn™ satisfies, by (4.11),
(4.14) AGrn™) + An(Grn™) = GuPo(F(U™) — F(u™)), forn>1,

' n® =0,
which implies

Ghnn =k

J

(kAR G Py (F(U) — F(u?)).

n
=1

Note that, by Lemmas 2.1 and 2.3,
|GrPu(F(U?) = F(u!)|| = [F(U?) = F(&)|-2,n
< C(lfullr, K) (R*(IU7 = || + |07 = o || + [U7 = u?| ).
Hence, by the stability of r()\),

IGn™ |l < C(K, M) (kY P |5+ 12k U7 =

j=1 7j=1
+ kY (U7 =P + ]| ).
j=1

Combining this with (4.13) and using the discrete Gronwall’s lemma, we get, by
(4.8) and (4.12),

(4.15) "] s < C(K, My, T)(h™2 + ).

Together these estimates complete the proof. O

We also need the following lemma for the error estimate of the approximation
OU™ of uy(ty).

LEMMA 4.3. Let U™ and u be the solutions of (4.1) and (1.2), respectively.
Assume that F satisfies the assumptions in Lemma 2.3. Further assume that
vp, = Rpv and

(4.16) sup [|U™ —u(tn)llz.. <K,
0<t,<T
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and

4.17)  sup ([lu(®)llr + llue(s)llr + [lus ()]l + luse ()] + | Auee(s)]]) < Ma,
0<s<T

for some positive numbers K, My, T. Then there is a constant C = C(K, M4, T)
such that, with £ = 1+ log(T/k),

(4.18) sup  [|0U™ — uy(ty)|| < ColldU" — ug(ty)]| + Cli(h” + k),
k<t <T
and
(419) sup |5Un — Ut(tn)|_2 S Co|5[jl - Ut(t1)|_2 + ka(hT+2 + k)
k<t,<T

PRrROOF. We use the same notation as in Lemma 4.2 and write
U™ — wy(ty,) = (BU™ — dU™) + (AU™ — wy(ty,))
=" + (OU™ — uy(tn)).

We first show
tn

(4:20) 107 = w(ta)l| < Coll90" = ua(tr) |+ Cob (sl + [ sl ds)
0

4 cok/ot" | Ause(s)]] ds
< ColldU" — wy(t)|| + C(My, T)(B" + k).
To show (4.20), we write
U™ — uy(tn) = (BU™ — Rpuy(tn)) + (Ruu(tn) — ue(tn)) = 6 + p™.

In the standard way p™ is bounded as desired, and it remains to consider ™ € Sj.
We have -
00" + A" = Pw™, forn > 2,

where ~ ~
w" = (R — I)Ou(ty,) + A(Ou™ —up) = o™ + 7™

By stability estimate, see, e.g., Thomée [21, Theorem 10.2],

(4.21) 16711 < Coll6* | + Cok Y _ llo? || + Cok Y [|I77]], forn > 2.

j=2 j=2
‘We have .
kWWS%M/ el ds,

tn—1
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and .
EllT™ | < Cokl|A(du™ — ui)|| < Cok/ | Auge(s)|| ds.
th—1

Together with ||0%|| < ||OU! —u}|| +||p*||, with the obvious bounds for ||p*||, this
completes the proof of (4.20).
For ||0n™||, we have, by (4.11),

(4.23) O™ = Po(F(U™) — F(u")) — k i Apr(kAR)" T Py(F(U™) — F(u™)).
j=1
Using the following smoothing property
(4.24) k znj |Anr (KAL) 7| < Coly,
j=1
which follows from
kzn: | Anr (kAR5 < Cok Z":tgijﬂ =Co(1+ "i tlii)
Jj=1 j=1 j=1

tn 1
<1+ / — ds) < Co(1+ log(tn/k)) < Coli,

t1

we have, by Lemma 2.3, and (4.8),
19971} < CO M (I ="l + € ma 107 = w])
(4.25) < C(K, My, T (A" + k).

Together these estimates complete the proof of (4.18).
Now we turn to estimate (4.19). Following the proof of (4.20), we can show

(4.26)
tn
WW—W@MJSaww—wmﬂa+%m“@m®m+/ el ds)
0

tn
+Cok/ | (8)]| ds,
0
< CO|5[]'1 —u(tr)|—2 + C(My, T)(R™2 + k).
For |On™|—2, we have, using (4.22), and by Lemmas 2.1 and 2.3,

B2 < O, My, T) mmae (W07 — | + |07 — w2 + U7 = | ).
SN

Thus, by (4.8) and (4.9),

(4.27) |On"|_o < O(K, My, T)lp (A2 + k).
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Together these estimates complete the proof. O ~
ROOF OF THEOREM 4.1. Combining (2.3) and (4.3), we have, with G} =
1

h o

A

ip(T) = w(T) = G Py(=0U™ + F(U™)) — G(=uy(tn) + F(u™))
= (GhPy — G)(=0U™ + F(U™) + uy(tn) — F(u™))
— (GrPy = G) (us(tn) — F(u™))
+G(=0U"™ + F(U™) + ui(tn) — F(u™)).
Thus, we get, noting that ||(Gy P, — G)f|| < Ch®||f|ls—2 for 0< s <7 +2,
lan(T) = w(T)|| < Coh®([I0U™ — uy(tn)l| + |1F(U™) — F(u™)]])
+ Coh"?|lue(tn) — F(u")llr
+ |5Un - ut(tn)|_2 + ‘F(U") - F(’U,n)|_2

Combining this with Lemmas 2.3, 4.2, and 4.3, we complete the proof. 0

5 Error estimate for the starting approximation

In this section we will consider the error estimate for the starting approxima-
tion of the time derivative |OU b —u(t1)|—s, s = 0,2, which appears in Theorem
4.1, where u and U! satisfy

(5.1) ug + Au= F(u), with u(0) = v,

and

(5.2) AU + A,U' = P, F(u'), with U° = v, = Ry,
respectively.

The semidiscrete problem of (5.1) is to find 4y € Sp, such that,
(5.3) Up, + Apip = PoF(u), with 4,(0) = Rpv.

We observe that we use F(u!) in (5.2), thus |8U" — uy(t1)|—s, s = 0,2, can
be bounded by the standard technique for nonhomogeneous linear parabolic
problems. We have the following theorem:

THEOREM 5.1. Let U and u be the solutions of (5.2) and (5.1), respectively.
Assume that F is continuously differentiable and

[ Au ()] + lfue (0}l + max, (1F" () ue( DI + lluw(7)llr) < Mo,

for some positive number My. Then there is a constant C = C(My) such that

(5.4) 180" — uy(t1)|| < C(h" + k),
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and

(5.5) |00 — ug(t1)|_2 < C(A™F2 + k).
PrOOF. We first show (5.4). We write

UL — uy(tr) = (DU — Gpy(tr)) + (Gns(t) — wg(te)).
By (3.27), we have

t1
(5:6)  lline(tr) = ue(t)| < Co” (|[us(0) - + / e ()11 ds).

For U — i, 4(t1), we have, by (5.2) and (5.3),
AU —ipo(tr) = Ap(U" — ay,).
Here, by Taylor’s formula, with r(\) = 1/(1 + X), E,(t) = e~ t4»,

Ut — a3 =(r(kAs) — Exn(t1)) Rov + kr(kAp) Py F(ub)
t1
-/ Ey(t1 — 8) Py F(u(s)) ds
Z(’f'(kAh) — Eh(tl))RhU

+k’[‘(kAh PhF / PhF’ )dT)
ks
—k/ e~ U=9)kAn (P, F(u / Py F'(u(1))ut (1) dr) ds
=(r(kAn) — Eh(tl))th+kbo(kAh)Ph (u(0)) + kR(F),
where )
bo(N) :r()\)—/ e~ (1=9)A gs,
0

and

k
R(F) = r(kAy) / P (u(r))uy () dr

0
1 ks
= [Pt [T R () u(r) dr s
0 0
Thus, we have

501 - ah,t(tl) Z(T(kAh) - Eh(tl))AthU
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Noting that Ay R = PpA and Abg(A) = —(r(X) —e™?), we get

(5.7)  OU —dipy(t1) = (r(kAn) — En(t1)) Py (Av — F(u(0))) + kAyR(F)
= (r(kAn) — Ep(t1)) Phue(0) + kA, R(F)
=I+1I.

For I, we have, by the error estimate for homogeneous parabolic problems,

|| < ||(r(kAR) — En(t1))(Pn — Rp)u(0)|| + || (r(kAR) — En(t1) Raus(0) |
< ||(Pr — Rp)ue(0)|| + Cokl| Ap R (0)|
< Coh™[lug(0) || + Cok|| Aug (0)]].

For I1, we write
k
II = kApr(kAp) / Py F' (u(7))uy (1) dr
0

1 ks
— kA / e~ (1=s)kAn / Py F'(u(7))ue(7) dr ds
0 0
=11 + II>.

We have, noting that |A\r(A\)| <1, ||Py|| £ 1,

k
4L < ”kAhT(kAh)“/O | P F" (u(7))uy (1) || dr

<k max, | (u(r)ue(7)],

and, by exchanging the integral order and noting that f: de~(1=9)X ds < 1, for
0<e<1,

k 1
1L = HkAh / Py F' (u(r))ug (7) / e~ (1=9)kAn dsdTH
0 T/k
1

< k max [|F"(u(r))u(7)]| HkAh/T

e—(l—s)kAh dSH
0<r<k

Jk
!
< kogl:]%(k | E" (w(T))uwe(7)]]-

Together these estimates show

(5.8) 100" —aino(t)]| < CO(hT”ut(O)||r+k||Aut(0)”+korsn7?%(k||FI(U(T))Ut(T)”)-

Combining this with (5.6) shows (5.4).
We now turn to (5.5). We again write

AU —wy(tr) = (OU" = dn(tr)) + (iin,e(tr) — wi(tr))-
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The desired bound for |Gy, ¢(t1) — we(t1)|—2 follows from (3.28).
For dU" — dip, (1), we have, by Lemma 2.1,

100" — iy 4 (t1)]—2 < Co(B2)|OU" — dip g (t1)|| + 0T — dupe(t1)]-2,1)-
Thus, by (5.7),
00" — dip o (t1)|—2,p < |T|=2,0 + [TT| -2 p-

For |I|_2,5, we have, by the error estimate for homogeneous parabolic problems,
see [24],

[T|—2,n = (r(kAR) = En(t1)) Prur(0)|—2,0 < Co(R™[lue(0)]: + kIl Aue (0)]])-

For |II|_5,p, we have, noting that |r(\)] <1, f: e (=92 ds <1for0<e<1,
k
112 < [ br(bAD] IPLF (u(r)us() dr
0

+ Hk/k Py F' (u(7))ug (T) /1 e~k ds dTH
o /k

2 '
<k Orsn‘?%(k [|F* (w(T))ue(T)]]-

Hence we get

80"~ a(01) 2 < Co (™l )l +H] Aug(0) | +K2 max [|F"(u(r))ue (1)])-

Combining this with (5.8) shows (5.5).
Together these estimates complete the proof of the theorem. 0O
6 High order time-stepping

The postprocessing requires very accurate time-stepping in order to match
the high order spatial approximation. It would be natural then to use a time-
stepping method of higher order than the backward Euler method of Section 4.
However, we have not been able to analyze such methods except in the case of
linear homogeneous problems, where we can apply the analysis of time derivative
approximation from [24].

In this section we consider the linear homogeneous parabolic problem

(6.1) ug+Au =0, fort>0, withu(0)=nv.

We define the following time-stepping method

(6.2) U™ = r(kA)U™, U° =y,

where r()\) is a rational function and accurate of order p > 1, i.e.,

r(\) —e =0T, X0
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For example, if 7(A) = 1/(1 + )), we have (1 + kA,)U™ = U™1, which is the
backward Euler method. If 7(A) = (1—A/2)/(1+A/2), we have (14 3kA,)U™ =
(1 — 1kA,)U™! which is the Crank-Nicolson method.

Further we define the quotient QU™ to approximate the time derivative
up,t(tn), with positive integers mq,ms, and real numbers ¢,,

m2
(6.3) QU™ = k7! Z ¢, U™, forn > my,
v=—m1
We assume that the operator @)y, satisfies, for any smooth function u,
(6.4) Qru™ —ug(ty) = O(kP), k—0.

For example, ~
Qru" = Ou™ = (u" —u"" ") /k, forn>1,

and 3 1
Qru™ = (iu" —2u" ! 4 iunfl)/k, forn > 2,
satisfy
ou™ —u(t,) = O(k), k—0,
and
Gu™ — 20" + 2u" ) [k —w(tn) = O(K?), k—0,
respectively.

The postprocessing step in fully discrete case is to find 4(T") € Sy, T = tp,,
such that

(6.5) AW(T) = —Q U™

The finite element solution of the elliptic problem (6.5) with respect to S, is
to find @y (T) € S, such that,

(6.6) Apan(T) = Po(—QxU™).

Our main theorem in this section is the following:

THEOREM 6.1. Let r > 4 and Sy, and Sy, be the finite element spaces of order
r and v+ 2, respectively, as described in Section 1. Let iy, and u be the solutions
of (6.6) and (6.1), respectively. Let T = t,, be a fized time. Then we have, if
Vp = Rh’U,

llan(T) —w(T)|| < Co (W *2[vlrr2 + kP [vlaprr) + B2 lue(D;),  forr > 4.
Recalling the proof of Theorem 4.1, we note that Theorem 6.1 follows once we

have proved appropriate estimates of ||QrU™ — us(tn)]| and |QrU™ — uy(tn)|—2
which are given in the following two lemmas.
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LEMMA 6.2. Let U™ and u be the solutions of (6.2) and (6.1), respectively.
Assume that |r(A)| <1 for A > 0. Then, we have, if vy, = Rpv,

1QRU™ = us(tn)ll < Co(B"[vlr12 + kP [0]2(p41))-

Lemma 6.2 was proved in [24].
LEMMA 6.3. Let U™ and u be the solutions of (6.2) and (6.1), respectively.
Assume that [r(A)| <1 for A > 0. Then, we have, if v, = Rpv,

|QrU™ — u(tn)|—2 < Co(R" T2 [vrg2 + KP||a(pt1))-

Let us first prove the following error estimate for the approximation U™ of
u(t,) in negative order norm. We do not need it here but it serves as a guide
for the proof of Lemma 6.3. We remark that we choose v, = Ppv, not Rpv.

LEMMA 6.4. Let U™ and u be the solutions of (6.2) and (6.1), respectively.
Assume that |r(A)| <1 for A > 0. Then, we have, if v, = Pyu,

U™ — u(ta) 2 < C(R™ ol + K [ulay).

PRrOOF. By Thomée [21, Theorem 6.2], we have
|un (t) = u(t)|-2 < Coh™2[v].
Therefore it suffices to show
(6.7 U™ = un(ta)|—2 = Co(W™+[ol, + k[olay).

which we will prove now.
By Lemma 2.1, we have

U™ = un(tn)|-2 < Co(R[|U™ = up(ta)l| + U™ = un(tn)|-2,n)-
We first estimate |U™ — up (tn)|—2,n = |GR(U™ — up(tn)]|. We write
U™ —up(t,) = (r(kAp)" — e ¥"4%) Pyo = F,(kAp) Pyo,
where F,(\) = r(A)" — e~™*. We need to show
|GhFn(kAR) Pyol| < C (A" F?|vly + kP |v]ap).

To do this we set

Vg = Z (Ua(pl)(pla

kX <1

where ¢; and ); are the eigenfunctions and eigenvalues of the operator A. Then
v € H® for each s > 0. Further, by the definition of the norm in H?, we find
easily

(6.8) llv — vkl < kP[vl2p,
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(6.9) [vk|2p < [v]2p,
and
(6.10) Vklr42j < K fvlp, for0<j<p-1.

Applying now the identity
p—1
(6.11) v=>Y Gi(G—GpA™v+Gh AP, forve H”, whereG) =1,
=0
to vg, we have, with F,, = F,(kAp) Py,
p—1 ]
(6.12) GrFoor =Y GhF,G(G — Gp) AT oy + Gy F, Gl APy,
j=0
It is easy to show that, see, e.g., Thomée [21, Lemma 7.2],
(6.13) | Fn(kAR)PLGY || < Cok? for 0 < j < p,m>0.
Thus, by (6.9) and noting the boundedness of G,
G EAGY APvR | < || FuGh AP | < Cok?[[APv|
S C()kp|’Uk|2p S C()kp|1}|2p.

Further, by (6.10), (6.13), and using (2.11), and noting that P,G% = G4, with
0 S .7 S b—- 17

|GhFaGY (G — Gr) AT g || < Cok?||G(G — Gr) AT |
< Cok?h*||(G = Ga) (A7 wp) || + Cok? |(G = Gr) (A7 k)|,
< Cok? W2 || AT g ||p—2 < Cok? A2 ug|rga; < Coh™ vl

Together these estimates imply
IGhFnvil < Co(h+Jel, + K?[ulay).
Since obviously, by (6.8), the boundedness of G}, and stability, we get
IGhEn(v —vp)ll < [|Fn(v — vkl < 2[|(v — vp)ll < CokPlvl2p,
so that
|G (U™ = un(ta))|| = IGRFRIl < Co (™[0 + KP[v]2yp).
By Thomée [21, Theorem 7.8], we have

”Un - uh(tn)” S CO(hT|U|T + kp|v|2p)a tn Z 0.
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Thus,
|U" — uh(tn)|_2 < H(G —Gp) (U™ — uh(tn))H + ||Gh(Un — uh(tn))H
< Cy (hr+2|’l)|r + k/‘p|'l)|2p).

Together these estimates complete the proof. 0O

Now we turn to the proof of Lemma 6.3. The idea of the proof is similar to
the one used in Lemma 6.4

PROOF OF THEOREM 6.3. By Thomée [21, Theorem 6.4], we have

|Uh’t(t) - Ut(t)|_2 S ChT+2|U|7-+2.
Therefore it suffices to show
(6.14) QU™ — uns(tn)|_, < C(R"|vlrpa + kP |0l2p41)),

which we will prove now.
We first estimate |QkU"—uh,t(tn)|_2 ,- Noting that, with v, = Rpv = GprAv,

m2
QrU™ — uny(tn) = k—l( Y Ut - (—Ah)e—"kAh)GhAv

v=—m1i

= k_lgn(kAh)GhAv,
where g, (A) = Y72 (A" — (=X)e™ ", we need to show

|Gr (k" gn(kAR)GrAD) || < Co (R [0r12 + K2 |0]2(p11)) -

As in the proof of Lemma 6.4, we introduce vy which satisfies:

(6.15) lA(w = vi)[| < kP[v]2p+2,

(6.16) [vkl2p+1) < [0l2(p1)s

and

(617) |Uk|7-+21+2 S k_l|1)|7-+2, for 0 S l S p— 1.

Applying now the identity (6.11) to v = Avg, we get

p—1

Ghgn(kAR)GrAve =) gn(kAR)GLH (Gh(G — Gr) A o)
=0
+ thn(kAh)Gz—i_lAp"'lvk'

Tt is easy to show that, see, e.g., [24, Lemma 3.9],

(6.18) lgn(EAR)GHTH| < Cok!t!, for0<1<p,n>0.
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Thus, by (6.16) and noting the boundedness of Gy,
|G hgn(kAR)GEF AP Lo || < [|gn(kAR)GET AP oy |
< CokP || AP g || < CokP g |apr1) < CokP T |v]2(pt1)-
Further, by (6.17), (6.18), and using (2.11), we have, with 0 <1 <p—1,
9 (kARG (GR(G — Gr) AT 2up) || < Cok'TH|IGR(G — Gr) A 2wy |
< Cok"™' W?||(G — Gi) (A2 up) || + Cok' T A2 A 20 |,y
< Cok TR (| A |l —a < Cok ™ R 2 0k |rqtga < Cokh" 2 |vlppa.
Together these estimates imply
IGhgn (kAR)GrAvE|| < Cok(R™?|v]rg2 + KP|02(p11))-
Since obviously, by (6.15), the boundedness of G}, and stability, we get
IGhgn(kAR)Gr A — vi)|| < [lgn(kAR)GrA(v — vg)|
< CokllAw - )| < Cok™* [olagpia),
we conclude that
IGh(QrU™ — un t(tn)ll = k™ |Ghgn(kAR)GrAv||
< Co(W™ 2 [v]ry2 + KP [v]a(ps1))-
By [24, Theorem 3.8], we have
QkU™ — uni(tn)ll < Co(h"[v]rr2 + EP|v]2p).
Thus
|QeU™ — une(tn)|-2 < (G = Gr)(QrU™ — un(tn))ll
+IGr(QrU™ = un(tn))ll
< Co(W?|lrs2 + KP|02(pt1))-

Together these estimates complete the proof. O
After the preparations above we now come to the proof of Theorem 6.1.
PROOF OF THEOREM 6.1. Combining (6.6) and (6.1), we get, with G, = 4, *,

in(T) — w(T) = GuPh(—QrU™) — G(—uy)
= (GnPr = G)(—QrU™ + uy(tn))
— (GLPy — G)uy(tn) + G(QrU™ — uy).
Thus, by Lemmas 6.2 and 6.3, and noting that ||(Gx P, — G)fll < Ch*||flls=2,
for 0 < s <r+ 2, we have
lan(T) = u(T)|| < Coh*[|QrU™ — uq(ta)|
+ Coh™ 2 |[us(ta) |- + [(QeU™ — us(tn))] -2
< Co (A2 [0)ria + KP|olagprr) + B2 Jug () I1)-

Together these estimates complete the proof. 0O
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parabolic partial differential equation driven
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Abstract.

In this paper we consider the finite element method for a stochastic parabolic partial
differential equation forced by additive space-time noise in the multi-dimensional case.
Optimal strong convergence error estimates in the Lp and H~! norms with respect
to spatial variable have been obtained. The proof is based on appropriate nonsmooth
data error estimates for the corresponding deterministic parabolic problem.
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1 Introduction

In this paper we will study the finite element approximation of the linear
stochastic parabolic partial differential equation

(1.1) du+ Audt =dW, for0<t<T, withu(0)=uo,

in a Hilbert space H with inner product (-,-) and norm || - ||, where u(t) is an H-
valued random process, A is a linear, selfadjoint, positive definite, not necessarily
bounded operator with a compact inverse, densely defined in D(A) C H, where
W (t) is a Wiener process defined on a probability space (2, F,P) and uo € H.

For the sake of simplicity, we shall concentrate on the case A = —A, where A
stands for the Laplacian operator subject to homogeneous Dirichlet boundary
conditions, and H = Ly(D), where D is a bounded domain in R%,d = 1,2, 3,
with a sufficiently smooth boundary dD.

Such equations are common in applications. Many mathematics models in
physics, chemistry, biology, population dynamics, neurophysiology, etc., are de-
scribed by stochastic partial differential equations, see, Da Prato and Zabczyk
[5], Walsh [18], etc. The existence, uniqueness, and properties of the solutions
of such equations have been well studied, see Curtain and Falb [2], Da Prato
[3], Da Prato and Lunardi [4], Da Prato and Zabczyk [5], Dawson [7], Gozzi [9),
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Peszat and Zabczyk [14], Walsh [18], etc. However, numerical approximation of
such equations has not been studied thoroughly.
The equation (1.1) can be written formly as

(1.2) ut + Au = dd_V:/ for0 <t <T, withu(0)= uo,

where the derivative 2 (noise) does not exist as a function of ¢ in the usual
sense. Thus the equation (1.2) is understood in the integral form.
Let E(t) = e7*4, ¢t > 0. Then (1.2) admits a unique mild solution, see Da

Prato and Zabczyk [5, Theorem 5.2, 5.4],
t

(1.3) u(t) = E(t)ug +/ E(t—s)dW(s) forO<t<T,
0

where the integral is understood in It6 sense.

We assume that W(t) is a Wiener process with covariance operator ). This
process may be considered in terms of its Fourier series. Suppose that () has
eigenvalues ; > 0 and corresponding eigenfunctions e;. Then

W) =% asi(t),
=1

where 8;, I = 1,2,---, is a sequence of real-valued independent identically dis-
tributed Brownian motions.

If @ is in trace class, then W (¢) is an H-valued process. If () is not in trace
class, for example ) = I, then W(t) does not belong to H, which is called a
cylindrical Wiener process, but stochastic integral can be defined with respect
to W, when the integral smoothes the noise process sufficiently.

Let LY = HS(Q'?(H), H) denote the space of Hilbert-Schmidt operators
from Q'/2(H) to H, i.e.,

19 ={v e L) : Y Q" %al|* < oo},

=1

1/2
with norm ||¢]| s = (E?; ||¢Q1/2el||2) , where L(H) is the space of bounded

operator from H to H.
Let E denote the expectation. The It6 isometry for a Wiener process of co-
variance operator () states that, for an integrand ¢ € L9,

B [ v awe)| = [ e

Let Sy be a family of finite element spaces, where S; consists of continuous
piecewise polynomials of degree < 1 with respect to the triangulation 7 of €.
For simplicity, we always assume that {S,} C H} = H§(D) = {v € L2(D),Vv €
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L2(D),v|lsp = 0}. The semidiscrete problem of (1.1) is to find the process
up(t) = up(-,t) € Sp, such that

(1.4) dup, + Apup dt = PpdW, for0 <t <T, withu,(0) = Pruo,

where P, denotes the Lo-projection onto Sy, and Ay : S — Sy is the discrete
analogue of A, defined by

(15) (Ah,(pJX) = A(¢7X)7 V¢,X € Sh.

Here A(-,-) is the bilinear form on Hg (D) obtained from the operator A4 in (1.1).
With Ej,(t) = e ‘4, t > 0, then (1.4) admits a unique mild solution

t
up(t) = Ep(t)Prug +/0 Ey(t — s)Pr dW (s).

Let H® = H*(D) = D(A*/?) for any s € R and denote the norm by |- |, =
||A%/2 - ||. For any Hilbert space H;, we denote Ly(Q; H;) by

Lol ) = {0 Blolfy, = [ o)l dP) < oo},

with the norm ||’U||L2(Q;H1) = (E||v||%{1)1/2-

Under the condition [|A¥=1/2| ¢ < oo for some 3 € [0, 1], we show in Lemma

2.5 that W(t) € HP~' ¢ H™!, so that P,W (t) is well defined, and we obtain,
in Theorems 3.2, 3.4, the error estimates in semidiscrete case,

W6)  lhun®) — u®llzaaisny < CF (lluollygoyizs) + 147 lg),

and, with ¢, = log(T/h?),

(1.7) ||un(t) — u(t)”Lg(Q;H—l) < ChPt (||u0||L2(Q;Hﬁ) + €h||A(5*1)/2”Lg) )

We also consider the error estimates in the fully discrete case . Let k be a time
step and t,, = nk with n > 1. We use the backward Euler scheme to approximate
u(tn),

Un — Unfl 1 tn

(18) AU = PndW(s), n>1, U°= Pyuo.

tn—1

With 7(A) = (1 + A)~!, we can rewrite (1.8) in the form
tn

(1.9) U™ =r(kAy)U™ ! +/ r(kAR) P, dW (s), n>1, U°= Pyuo.
tn—1

Under the condition [|A#=1/2|| 4 < oo for some 8 € [0,1], we obtain, in
Theorems 4.2, 4.4, the error estimates in the fully discrete case,

(110) (U™ = u(ta)llza(eym < O + 1) (luoll . oursy + 4P~ 1)
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and, with £, = log(t,/k),
(1.11)

10" = wltn)ll sy < CHEH2 4 1) (fluoll gy + Cell AL )

We briefly recall some previous works on the numerical approximation for
(1.1). Allen, Novosel, and Zhang [1] consider both finite element and finite
difference methods of (1.1) in the one-dimensional case and in the cylindrical
Wiener process case with Q = I and H = L»(0,1), A = _a% with Dirichlet
boundary condition. Shardlow [16] also considers the finite difference approxi-
mation of (1.1) in the one-dimensional case. Du and Zhang [8] consider the nu-
merical approximation for (1.1) but with some special additive noises. Printems
[15] considers the time discretization in more general case in abstract framework
based on the §-method. For the numerical approximation of nonlinear evolution
partial differential equation, we mention Davie and Gaines [6], Gydngy [10], [11],
Hausenblas [12], etc.

This paper is organized as follows. In Section 2, we consider the regularity of
the solution of (1.1). In Section 3, we consider the error estimates in semidiscrete
case. In Section 4, we consider the error estimates in the fully discrete case.
Finally in Section 5, we consider how to compute the approximate solution U™
numerically.

By C and ¢ we denote large and small positive constants independent of the
functions and parameters concerned, but not necessarily the same at different
occurrences. When necessary for clarity we distinguish constants by subscripts.

2 Regularity of the mild solution

In this section we will consider the regularity of the mild solution of (1.1). We
have

THEOREM 2.1. Let u(t) be the mild solution (1.3) of (1.1). If||A(B_1)/2||Lg <
oo for some B € [0,1]. Then we have, for fized t € [0,T],
(2.1)

w1058y < C(”UO”LQ(Q;IJ,@‘) + ||A('6_1)/2||Lg), forug € Ly(Q; HP).

In particular, if W (t) is an H-valued Wiener process with covariance operator
Q,Tr(Q) < oo, then we have

(22) Nl g,y < C(luollpyguiy + T(@)'?),  foruo € Lo(Q; H').
( ) ( )

To prove this theorem, we need some regularity results which are related to
the fact that E(t) = e'4 is an analytic semigroup on H. For later use, we
collect some results in the next two lemmas, see Thomée [17] or Pazy [13].

LEMMA 2.2. Let o, € R and let I > 0 be any integer. We have

(2.3) IDiE(t)v|s < Ct= P oy, fort>0, 20+8>a,
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and

t
(2.4) / s*|DiE(s)v[f ds < Clofyp_g-1, fort>0, a>0.
0

LEMMA 2.3. For arbitrary a > 0, 0 < 8 <1, we have

(2.5) [|[ACE@)|| < Ct™¢, fort >0,
and
(2.6) |A=P(I — E@t))|| < CtP,  fort > 0.

PRrROOF OF THEOREM 2.1. Since the mild solution has the form
u(t) = E(t)ug + /Ot E(t — s)dW (s).
Thus, for arbitrary 8 > 0, using stability property of E(t) and isometry property,
@7 B(lu®)?) < 2B(E@)uol?) + 2EH /Ot AP E(t — s) dW(s)H2
= 2E(|uo|3) + 2E /Ot |AP2E(t — 5)||2Lg ds.

With {e;}$°, an arbitrary orthonormal basis on H, we have, using Lemma 2.2,

t Ot
[ 142 = o)y ds = 3 [ 147280 ~ )@l ds
0 : j=1"0

o0 t o0
=y /0 |B(s)Q'eil3ds < CY_ |Q ez, = CIABD2|3,.
j=1

i=1

Together with (2.7) this shows (2.1).
In particular, if W (¢) is an H-valued Wiener process with Tr(Q) < oo, then
we can choose 8 = 1 because

o0 oo
1112y = 3 1Q"2¢; P = 3 = TH(@).
j=1 j=1

a

COROLLARY 2.4. Let u(t) be the solution of (1.1) and A = —g—; with D(A) =
H}(0,1) N H?(0,1). Assume that W(t) is a cylindrical Wiener process with
Q = 1. Then we have, for every § € [0,1/2),

||u(t)||L2(Q;Hﬂ) <CQ+ ”uOHLZ(Q;Hﬁ))a forug € Ly(Q); HP).
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PROOF. By (2.1), it suffices to check that in what case [|A®=1/2|| o < co. Tt
is well known that A has eigenvalues \; = j?72,j = 1,2,---, and corresponding

eigenfunctions ¢; = V2sinjrz,j = 1,2,---, which form an orthonormal basis
in H = L»(0,1). Thus, we have

A=V, = 3 4G/t = ZA’“

7j=1

which is convergent if 5 € [0,1/2). The proof is complete. O

We note that in Theorem 2.1, we require the condition ||A®~1/2|| ;0 < oo for
B € [0,1]. The following lemma shows that this condition is equlvalent to saying
tht W (t) is H?'-valued. In particular, W (¢t) € H~', which is important when
applying the finite element method.

LEMMA 2.5. Assume that W (t) is a Wiener process with covariance opera-
tor Q. Assume that A and @) have the same eigenvectors. Then the following
statements hold.

(@) If ||A(ﬁ_1)/2||Lg < oo for some § € [0,1], then

o

W(t) =Y Q'api(t), t>0,

=1

defines an HP~'-valued Wiener process with covariance operator Q, Tr(Q) < 00.
In particular, Q = Q if Tr(Q) < oo;

(@) If W) = 32 1Q1/2el,6’l( ), t >0, is an HP'-valued Wiener process
with the covariance operator Q, Tr(Q) < oo, then

||A('3*1)/2||Lg < oo, for some B €0,1].

ProOF. We first prove (i). With {v;,e;};2, the eigensystem of Q in H, it is
easy to show that g; = Q'/%¢; = v, !/2¢, is an orthonormal basis of Q'/2(H). In
fact,

(91, 9k) Q1/2 (1) = (Q29,Q"?gr) = (er, €x) = -
Note that

D lgljor =Y NJABD2Qe P = JAP D) g < oo,
= =1

which means that the embedding of Q'/2(H) into H°~ is Hilbert-Schmidt. By
Lemma 4.11 in Da Prato and Zabczyk [5], W (t) defines an H A-1_valued Wiener
process with covariance operator Q, Tr(Q) < oo. It is obvious that Q=qif
Tr(Q) < oo.

We now turn to (ii). Since W (t) = Y50, Q'/2ei(t), t > 0, is an HP~'-valued
Wiener process with the covariance operator Q, Tr(Q) < o0, we have

E[W ()[4, < oo.
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With {)\l, el}l°°_1 the eigensystem of A in H, we have
> / 2
E|W(t)[3 =E‘EQ12/3t‘
| ()|B—1 o €l l( ) 51

=EY N (1?2 = t) APV 1,
=1

which implies that ||A(ﬂ71)/2||Lg < oo for B8 € [0,1]. The proof is complete. [

3 Error estimates in the semidiscrete case

In this section we will consider the error estimates for stochastic partial dif-
ferential equation in semidiscrete case.

3.1 FError estimates for deterministic problem

In order to prove our error estimates for stochastic partial differential equation,
we need some nonsmooth data error estimates for homogeneous deterministic
parabolic problem.

Let us first consider the stationary problem

(3.1) —Au = finD, withu=0o0ndD,
where f € H 1.

The variational form of (3.1) is to find u € H} such that
(32) (Vu, Vo) = (f,4), V¢ € Hy,

where (-, -) denotes the duality pairing between H~! and H}.
Let S, C H} be the finite element space. The semidiscrete problem of (3.2)
is to find up € Sy such that

(33) (VUIMVX) = <f7 X)J VX € Sh.

By Lax-Milgram lemma, there exist unique solutions u € H} and uj, € Sp, such
that (3.2) and (3.3) hold. Moreover the following stability result holds:

(3-4) luly <C|f|l-1, VfeH.
The standard error estimates read:
(3.5) [|lup, — ul] < Ch®|uls, s=1,2.

Let G: H ' - H} denote the exact solution operator of (3.1), i.e., u = Gf.
We define the linear operator G}, : H 158, by Grf = up, sothat up, =GR f €
Sh is the approximate solution of (3.2). It is easy to see that G}, is selfadjoint,
positive semidefinite on H, and positive definite on Sj. Introducing the elliptic
projection Ry, : Hi — S}, by

(VRyv,Vx) = (Vv, V), Yve H;.
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We see that G, = R,G, and Rpv is the finite element approximation of the
solution of the corresponding elliptic problem with exact solution v. By (3.5),
we get

1Rhv —ol| < Ch*Jol,, s =1,2.

Hence, using (3.4) and the elliptic regularity estimate, we have
(36) H(Gh - G)f” = ||(Rh - I)Gf” < Ch‘slels = Chs|f|8—27 for s = 1,2,

which we need below.
Let En(t) = et with A, = G;*, and let E(t) = e~ !4 with A = G~1. We
then have the following error estimates for deterministic parabolic problem.
LEMMA 3.1. Let Fy(t) = En(t)Pr, — E(t). Then

(3.7) ||Fhv||Loo([0,T];H) < Ch6|1)|3, forv e Hﬂ, 0<pB<1,
and
(3-8) 1wl s o,ry;0ry < ChP[vlg—r, forve HP=Y, 0< B < 1.

Further, in the weak norm,

(3.9) ||Fhv||Lm([0,T];I-{_1) < ChPllg_1, forve HP ', 1< <2,

and, with £y, = log(T/h?),

(310)  [1Fwoll o7y ii-1y < CHPlafvls—2,  forve A2, 1< <2
Proor. We denote u(t) = E(t)v, up(t) = En(t)Ppv, and e(t) = up(t) —u(t) =

Fy(t)v. We first show (3.7). By the stability properties of the L, projection

operator P, and the solution operators Ej(t) and E(t), we have

(3.11) lle@)l = |1 Ex(t) Prv — E()v]| < 2[jol, fort >0, ve H.

We will show that

(3.12) lle(t)|| < Chlv|;, fort >0, ve H.

Combining this with interpolation theory, we get (3.7).
To show (3.12), let us consider the error equation

(3.13) Gres + e = p,
where p = (G}, — G)us. We note that Gre(0) =0 for
(3.14) (Gre(0),w) = (Ppv —v,Grw) =0, forw € H,

since Gpw € Sj,.



Stochastic parabolic partial differential equation 9

By the energy method, we can show, see Thomée [17, Lemma 3.3],
el < Csup (slloe @l + ). t>0.
s_

Obviously, by (3.6) and Lemma 2.2,
o)l = (G — G)uel| < Chlug| -1 < Chlvly,

and
sllpe(8)|l < Chslui(s)]1 < Chlols.

Hence (3.12) follows and therefore we get (3.7).
We next show (3.8). By interpolation theory, it suffices to show that

(315) ||e||L2([0,T];H) < C|’U|*17
and
(3.16) llell Lo (o, 1:1) < Chlfvll-

Taking the inner product of (3.13) with e, we get

(Ghetae) + (6,6) = (pa 6)-

Integrating with respect to ¢, we get, noting that Gpe(0) = 0 and using the
inequality (p,e) < 5([lplI” + [le[*),

T T
(3.17) (Ghe(T),e(T))+/0 ||6||2d7fS/0 llpll* dt.

Obviously, by (3.6) and Lemma 2.2,

T T T
(3.18) / Lol dt < / 1(Gh — Gudl? dt < CR2 / 2 dt < R[],
0 0 0

which implies that (3.16) holds.
To show (3.15), we note that, by Lemma 2.2 and its discrete counterpart,

(3.19) / Celiar <2 / ' (lanll? + ull?) dt < 2fof2,  + 200l
where |v|_1,; is a discrete seminorm defined by
ol = (Gro,0)Y? = |G}/ 0.
Since |v|_1 = sup{(v,w)/|w|1 : w € H'}, see Thomée [17, Chapter 6], we thus
have, with w = Gpv, v € H L,

(v,Gpv) _ (v,Gpv)
|Gholy (v, Gpv)1/2

s sup (20
weH?! |'lU|1

2 = |U|—1,h7
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since
|Ghv|f = (AGhU,GhU) = A(GhU,GhU) = (AhGhU,GhU) = (U,Ghv),
where A, = G;'. Hence by (3.19), we get fOT llel|?dt < 4|v|?;, which implies

that (3.15) holds.
We now turn to (3.9). It suffices to show that

(3:21) le(t)]-1 < Chlloll
and
(3.22) le(t)|—1 < Ch?|v|s.
By (3.17) and (3.18), we have
(3.23) (Gre,e) = e, < CR?||v]|*.
Using
(3.24) lel-1 < lel-1n + Chllel,

which follows from, by (3.6),
le21 = (Gre,e) + (G = Gr)e,e) < |e[*y , + CB?|le]|”.
We obtain, by (3.11)
le|-1 < le|-1,n + Chlle|| < ChlJv]],
which is (3.21).
By (3.17) and (3.6), we obtain

1 t t
1 = Grelt)e(®) < 5 [ Nl ds < OB [ Juf? ds < Chjof.
0 0

Combining this with (3.12) and (3.24), we get (3.22).
It remains to show (3.10). Integrating (3.13) with respect to ¢, we have, with

é(t) = [y e(s)ds, p(t) = [y pls)ds,

(3.25) Gre+é=p, &0)=0.
Taking the inner product of (3.25) with e, we get, since e = &,
1d, o . _d, . ~
(Gre,) + 5 2lell = (5.0) = 5 (5,8) — (p,2).

After integration, we have, noting that €(0) = 0,

[ e+ S = [ G.oas=[G.0]] - [ .2

0

T
<l e + ( / lpllds) sup llé(s)

T
<2( [ lplids) sup s
0 0<s<T
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By a kick-back argument, we obtain

T T 9
[tk inassc( [ olas)”
0 0

Noting that

T R? T
| otds= [ lplids+ [ ol ds
0 0 h?

h2 T
< c/ s 20|y ds + c/ hluly ds < Chealv| 1,
0 h2

and, similarly,

T h2 T
/nw@=/|w@+/umw
0 0 h2

T
< Ch2|o| +oh2/ lufo ds
h2

< CR®|lol| + Ch? log(T/h?)|[v]| < Ch*En|lv]],
we therefore get
T
[ 1ePunds < crlof,
0
and
T
| e ds < o'yl

By (3.18), (3.19) and (3.24), we obtain

T T T
|l ias<c [ lep s on [ el as
 <ORBIE, +CRE, < CREIE,,
and .
| 1oy ds < CHUGIRIP + Ol < ChtG ol
Now (3.10) follows from the interpolation theory. The proof is complete. O

3.2 Strong norm convergence

In this subsection, we will consider the error estimate for (1.1) in semidiscrete
case with respect to strong norm. We have
THEOREM 3.2. Letuy and u be the solutions of (1.4) and (1.1). If[|AP=1/2|| 4 <

oo for some 8 € [0,1], then we have, for t > 0 and ug € Lo(£; HP),

(3.26) llun(t) = w(®)||osmy < CRP (||u0||L2(Q;H3) + ||A(ﬁ_1)/2||Lg)-
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In particular, if W (t) is an H-valued Wiener process with Tr(Q) < oo, then we
have, for t > 0 and ug € L2(Q; HY),

(327 llun(®) — u@llaim < Ch(luoll ;) + TH@)?).

PROOF. By definition of the mild solution, we have, with E(t) = e~t4,
u(t) = E(t)ug + /Ot E(t —s)dW(s),

and, with Ej () = e~ t4»,

¢
Uh(t) = Eh (t)Phuo +/0 Eh(t — S) Pde(S)
Denoting e(t) = up(t) — u(t) and Fy(t) = Ex(t)Pr, — E(t), we write

¢

e(t) = Ep(t)Pruo — E(t)ug + / (Eh(t —s)P, — E(t— s)) dW (s)
0

= Fh(t)uo + / Fh(t — 8) dW(S) =I+1I.
0

Thus
le(t) oy < 21T Loy + 1T Lzageien )-
For I, we have, by (3.7) with v = uy,
1]l = |1Fn(t)uoll < CHPuls, for0 < B <1,
which implies that [|1||z, ;) < Ch5||u0||L2(Q;Hﬁ), for0 < g <1.
For I1, we have, by the isometry property,
t 2 i )
1T m = [E [ =y aw @) = [ 1me= sy as
o0t
=Y [ IRt =)@ el s
=170

where {e;} is any orthonormal basis in H.
Using (3.8) with v = Q'/2e;, we obtain

113,y < C D WPNQ a3y = C Y WP AB—D2Q 2
=1 =1
= Ch*P||AB-D/2)12

which completes the proof of (3.26).
In particular, if W (t) is a Wiener process with Tr(Q)) < oo, then we can choose
B =11in (3.26) and obtain (3.27), since ||I||ig =Tr(Q). O
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COROLLARY 3.3. Letuy and u be the solutions of (1.4) and (1.1), respectively.
Assume that A = —% with D(A) C H(0,1)NH?(0,1). If W (t) is a cylindrical
Wiener process with Q = I, then we have, for t > 0 and ug € Ly(Q; HP),

lun(t) = u@®llro(@smy < CHP (1 + lluollpyaiis)),  for0 < B <1/2.

PRrROOF. The proof is similar to the proof of Corollary 2.4. 0O

3.3 Weak norm convergence

In this subsection we state our weak norm convergence error estimate.
THEOREM 3.4. Letuy, andu be the solutions of (1.4) and (1.1). If||A(B’1)/2||Lg <

oo for some § € [0,1], then we have, for 0 <t < T and ug € Ly(Q; HP), with
Eh = log(T/hz),

(38:28)  llun(t) = u(®)ll oz < CH (1ol i) + Enl AP V72 15g)

In particular, if W (t) is an H-valued Wiener process with Tr(Q) < oo, then we
have, for 0 <t < T and ug € L2(Q; HY),

(329)  lun(®) = u(®l o) < O (luoll i, + 0 THQ)'?).
PRroOOF. Using the same notation as in Theorem 3.2, we have, by (3.9),
||I||L2(Q;H—1) < ChﬂH”uO”LQ(Q;Eﬁ): for 0 < <1

For II, we have, by the isometry property, and (3.10) with v = Q'/?¢;,
) t 2 t 2
M2 0.1y = | / Fi(t—s)aw(s)| =E| / AT2Fy(t - 5) AW (s)|
t
= [147 2R - o)l ds
0

< Ch?e Z [|AB-D2Q1/2¢)12 < ChQ(ﬂ“)Ei||A(6*1)/2||ig,
=1

which completes the proof of (3.28).

In particular, if W (t) is a Wiener process on H with Tr(Q) < oo, then we can
choose 8 =1 in (3.28) and obtain (3.29). O

COROLLARY 3.5. Letup, and u be the solutions of (1.4) and (1.1), respectively.
Assume that A = —36—:2 and D(A) = H}(0,1)NH?(0,1). If W(t) is a cylindrical
Wiener process with Q = I, then we have, for 0 <t < T and ug € LQ(Q;Hﬂ),
with £y, = log(T/h?),

llun(t) — U(t)||L2(Q;H—1) < ChB—H(l +€h|lu0||L2(Q;Hﬁ))7 for0< g <1/2.
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4 Error estimates in the fully discrete case

In this section we will consider the error estimates for (1.1) in the fully discrete
case.

4.1 Error estimates for deterministic problem

As in the semidiscrete case, in order to prove error estimates for the stochas-
tic partial differential equation in the fully discrete case, we need some error
estimates for deterministic parabolic problem.

Let Egy = r(kAp) and E(t,) = e~t»4, where r(\) = 1/(1 + )) is introduced
n (1.9). We have

LEMMA 4.1. Let F, = E}}, P, — E(t,). Then

(4.1) | Fovll < C(KP7 + 1P)|vlg, forve HP, 0< B <1,
and
(4.2) (kz a2 ) C(KP? + WP)|vlg_1, forve HP', 0<pB<1.

Further, in the weak norm,
43) [Pl 1 SCH? + 1) olg 1, forve HPTH, 1<B<2,

and, with £, = log(T/k) where T = t,
(4.4) (kZ|Fv| 1) < C(KP2 + 1WP)ty|vlp_s, forve HP 2 1<B<2.

Proor. We denote u(t,) = u™ = E(tp)v, U" = E}}, Pyv, and e = Fv. We
first show (4.1). By the stability properties of the Lo projection operator Py
and the solution operators Ejy(t) and E(t), we have

(4.5) [le™|] = || B Prv — E(tyn)v|] < 2||v|, fort >0, veH.
We will show that
(4.6) le™|| < C (kY% + h)|v|y, forve H'.

Combining this with interpolation theory, we get (4.1).
To show (4.6), let us consider the error equation, with d;e™ = (e — e™ 1) /k,

(4.7) Gpoe™ + e =p" + Gp",
where p" = (G, — G)ug(t,) and 7 = u(t,) — Jpu™.
By the energy method, we have

n
talle™ | < tallo™|I? + & Y (116712 + £ 10617 + 1Gard |2 + 82, |177]2).
2
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Here, by (3.6) and Lemma 2.2, we have
12711 = (Gh = G)us(t7)]] < Chlug(t;)|-1 < Chluls,

and

yalonl =5 [ tantsas| <[z [ spu(s) ds

< sup [lspi(s)| < Ch sup |sus(s)s < Chlol.
0<s<tn 0<s<tn

Further, we write ' ' '
G|l = [[(Gr — G)T’[| + IGT ],

where, using (3.6) and Lemma 2.2,

(G — G)7?|| < Ch|ri|_1 < Ch sup |u(s)|—1 < Chlv];.

0<s<tn
Hence we obtain
n
len|I? < Cr2Jof} + Cht;* Y- (16T |12 + £, 1177]12).
7j=1
By Taylor’s formula, we have
) 1 [t 2 1 [t 2
||GTJ||2=HG—/ (s = tj-1)uu(s) ds| :H—/ (s = tj-1)ur(s) ds|
k tij—1 k ti—1
1[4 1/21.1/2 2 i 2
<z [ e-t e u@as| < [T 6=yl ds
i—1

ti—1

tj
<t / lue(s)|I? ds,

tj—1

and

. 1 [ti 2 tj
ol =6y [ wds| <6 [T -t )P ds
tj_1 tj—l
tj 2 2
<t / & luge ()| ds.

tj—1

Applying Lemma 2.2, we have

n . n t;
B 8Ll < kY [ )P ds
j=1 j=17ti-1

tn
—k / lus(s)[12 ds < Cklols,
0
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and
n ) n tj
Y PP < kY / lluse(s)| ds
j=1 j=1"7ti-1

tn
= k/ 2llus(s)|2 ds < CHlols.
0

Hence (4.6) follows and therefore we get (4.1).
We next show (4.2). By interpolation theory, it suffices to show that

(18) (k3 1E0l?) " < cpl,
j=1

and

(4.9) (kz 1E50l?) " < 2 + ol

Taking the inner product of (4.7) with e™, we get
(Groe™, e™) + (e, e™) = (p",e") + (Gp7™, e™).

By summation on n, using the inequality (p",e") < £(||p"||*+[|e"(|?), and noting
that Gpe® = 0, we have
(4.10)

(Ghenen)+E Y llejl> < Ck Y llpilP+CkY_IGT |2 +Ck Y I(Gh—G)r|I*.

j=1 j=1 j=1 j=1
Here, using Lemma 2.2, we have, since p/ = p(s) + f pi(T) dT,

(4.11)

n n t;
ES IR =Ko+ Y [ 1P ds
j=1 j=27ti—1
noort tj
<ol +23 / (@I +1 [~ oty arl?) s
t;
szc||p||2+2/ le(s ||2ds+22/ (=9 [ IR ar)

ti_1

t]
< Kllol? +2 / lo(s ||2ds+2k§j / / lloe (P dr
tj—1 Jtj—1

n tn
<Ml +2 [ o)l as + 2% / wln(r) P dr
t1

t1

tn tn
< CHllul® + CR2 / lu(s)|2 ds + Ck / lluc(PIP dr < Ok + B)]lol2,
0 0
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and, by Taylor’s formula,

an (Gr — G772 < Ckh?|7 %, +Ckh22|71|2

j=2
—C’kh2 ut k/ (T dT +0kh2z|k/ tj,l)utt(s)ds‘zl
tj—1 -
< On* (klue (k) / e (1) 2 1d7)+0h22| (5 — t;1) (s )ds‘
tj—1

<Ch2||v||2+chzz/ k(s — tj_1)|us(s)|%, ds

ti_1

< Ch?||v||* + Ch? Z 8% |uge(8)|? ; ds < CR?||v||?,
ti_1
and

ONCIED YA

t]1

<kZ/ (s = tillu(s)|?

ti—1

ti—1)ue(s dsH

tn
< Ck / slur(s)2 ds < kllo].
0
We therefore obtain

(4.12) (Ghe",e™)V/2 + (anefu) CUHE + o,

which implies that (4.9) holds.
To show (4.8), we note that,

(4.13) kz 169]2 < Ckz U912 + Ckz lut)]2.

Here, we have, following (4.11) with p replaced by w,

(4.14)
tn tn

kz ()| < Klu(t)|? +2 / lu(s)|? ds +2 / llur(s) P ds < Clof2s,
t1 tl

and, by (3.20),
EY_NUI|? < Clof?y < Clof?y,

=1
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which imply that (4.8) holds and the proof of (4.2) is complete.
We now turn to (4.3). It suffices to show that

(4.15) le"| 1 < C(KY? + h)|Jo]l,
and
(4.16) le”|—1 < C(k + h*)|v)s.

Obviously (4.15) follows by (3.11), (3.24), and (4.12). Note that, by Lemma 2.2,
n L tj 2
el <> [0 (@IE+] [ putrae] ) s
j=1 j=1"ti—1 s
tn no et
<c / ()2 ds + 3 / Kllpe(r)| dr
j=17ti=1

tn tn
< / lo(s)|I? + Ok / loe()|? dr

tn tn
< Ch4/ luf2 ds + cz&/ lugll? ds < C(H* + K)o,
0 0

and
kY IGh = G)r/|” < CkR* D |I77)1?
Jj=1 j=1
Okt "1 [t 2
= Ckh j;HE/,:J._I(S_tj_l)utt(s)dsH
n t;
<on'S / (5 — tj-1)% luse(s)] ds
j=1"7ti—1
tn
<on / & lun(s)|]? ds < ChJol?,
0
and

tj 2
(s —tj—1)ue(s) dsH

SNED Y
j=1 Jj=1

tj—1
n t; tj
<Y ([ mtds) [ P as
= tio1 tj—1

tn
< o;ﬁ/ﬂ ue(s)|? ds < CR2[o[2.

Combining these estimates with (4.10), we get (4.16)
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It remains to show (4.4). As in the proof of (3.10), it suffices to show

(417) (k2|e,|2 )" <o+ mel,
and
(4.18) (kz|e,|2 ) C(K? + h)ylv] 1.

Let " = k)7 ¢ , & =0, and g;¢" = (€" —é&" ") /k = " forn > 1. We
have the error equatlon

(4.19) Gpoe" +é" = pn + Gp7, forn > 1,

where 7" = k)% 77, and §"* = k327, p/, where 77 and p? are defined as
before.
Taking the inner product of (4.19) with 0;é™, we get, since 0;é™ = €™,
1 1 . -
(Growe", 0:8™) + iat(é",é") + %(Gté",c')té") = (p",00€") + (GO 7", 0¢€™)
= 0,(p",€") — (85", & 1) + By(GhT",E") — (By(GaT™), " ).

By summation on n, noting that é® = 0, we have

n

; ; 1
kY _(Ghoe, 0i&) + (" e")

Jj=1
< [IA" e+ & 3= 1o &) + G [l1e”] + kS [(Gar™, &)
j=1 j=1
n n '
< m;‘XHé’ll(llﬁ" + B 11+ B Y IGH |+ 1Ga7" )
j=1 J=1

By a kick-back argument, we obtain

n

1/2
(kz (G, 8, ) < CkZHp | +CkZ|| Gr, — G)7'|| + CK||GT|.
Here, with £;, = log(T'/k) where T = t,,, we have

kY P I= Kol + kD 1171l < Chlloll + Ck Yt ol

j=1 j=2 j=2

< Ckloll + Cklylv]| < Ckli|lv]],



20 Y. Yan

and
kY I(Gh — G)rl|| < CkR* Y |I77]| = CkR?||7| + CkR* ) |I7 |
Jj=1 7j=1 j=2
n t;
_ Ckthut(k) - BtuIH +or’y H / (5 — t;)use(s) dsH
j=2 “ti-1
n t]-
< CR*(||kue(k)|| + [lu(R)|| + [l0]l) + Ch? Z/t [|suse(s)|| ds
j=2/ti-1
tn
< CR|lol| + CR2 / suee(s)]] ds < CR2 ol
t1
and

kY NG| = ket + & Y IIGT || < ChegJoll,

=1 i=2

which imply that (4.17) holds. Similarly we can show (4.18). Hence (4.4) follows.
Together these estimates complete the proof. O

4.2 Strong morm convergence

We have the following strong norm convergence result in the fully discrete
case.

THEOREM 4.2. Let U™ and u(t,) be the solutions of (1.9) and (1.1), re-
spectively. If ||A(5_1)/2||Lg < oo for some B € [0,1], then we have, for uy €

LZ(Q: Hﬂ):
(4.20) (U™ = u(tn)l|zagosm < OO+ 1%) (1ol youims) + 1A 2]g)

In particular, if W (t) is an H-valued Wiener process with Tr(Q) < oo, then we
have, for ug € Ly(92; HY),

(421) U = ut)llza@im < CKY2 + 1) (|[uoll iy + TH(@)Y2).

PRrOOF. We have, by (1.9), with E}Y, = r(kAp)",

n
U™ = B Poug + /
j=1

tj
tji—1

E5T P dw (s),

and, by the definition of the mild solution of (1.1), with E(t) = e 4,

wltn) = Eltnyuo+ [ Eltn — 5)dW ().
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Denoting e = U™ — u(t,) and F,, = E}}, P, — E(t,), we write

ti-1

n t;
e" = Fyuo + 2/ Fr_jy1dW(s)
j=1"ti

tj—1

—
+3 / ; (Etn = tj1) = Bltn — 5)) dW(s)
e /.,
=1 -J}- IT+ 111
Thus
le® ooz < C(Mllpaesm + TN zacim) + T2y )
For I, we have, by (4.1) with v = uy,
|| = (| Fruoll < C(R7? + hP)ug|s,

which implies that [|I||z,;m) < C(kP/? + hﬂ)||u0||L2(Q;H5).
For I1, we have, by the isometry property,

n tj 2 noort
W am = B[ Y. [ Fesnaw @) =3 [ 1Fsualigds
j=1"% j=17%

tj_l t]—l
oo n
=3 (B 1Faminn @ eall?),
=1 j=1

where {e;} is any orthonormal basis in H. Using (4.2) with v = Q'/%e;, we
obtain

o0
TG umy < C Y (K + h2P)Q' e},
=1

= C Y (K + B)||ACD2Q e
=1
=C(k° + hQﬁ)||A(5*1)/2||ig.

For I11, we have, by the isometry property,

n t;
I om = Y [

j=1"ti-1

n t;
-3

j—1

1=1 j=1

(E(tn —tj_1) — Bty — s)) Hi ds

8 |

A—BI? (E(s —tj_1) — I)Aﬁ/zE(tn - 8)Q1/261H2 ds.
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Using (2.6), and (2.4) with v = AB—1/2Q1/2¢;, we obtain
[ee) tn
(422) M o) < Ck'BZ/O A2 E(tn — 5)APD2Q2¢)|* ds
=1

o0
< CR S ACD2QU 2 |2 = CR A2,
=1
which completes the proof of (4.20).
In particular, if W (t) is a Wiener process with Tr(Q)) < oo, then we can choose
B = 1in the proof of (3.26) and obtain (3.27) since [|I||zg = Tr(Q). O
COROLLARY 4.3. Let U™ and u(ty,) be the solutions of (1.9) and (1.1), re-
spectively. Assume that A = —6‘9—; with D(A) C H§(0,1) N H?(0,1). If W(¢t) is
a cylindrical Wiener process with Q = I, then we have, for ug € L2(Q; Hﬁ),

U™ = wlta) ooy < O + 1)1+ lluoll gy qupray)s for0 < B < 1/2.

4.8  Weak norm convergence

In this subsection we show the weak norm convergence error estimate.
THEOREM 4.4. Let U™ and u(t,) be the solutions of (1.9) and (1.1), re-
spectively. If ||A('871)/2||Lg < oo for some B € [0,1], then we have, for ug €

Lo (Q; HP), with £, = log(T/k) where T = t,,,
(4.23)

U™ = wltn)ll Ly sm-1) < C(KPHI/2 4 hﬁ+1)(||u0”L2(Q;Hﬁ) + €k||A(5_1)/2||Lg)-

In particular, if W (t) is an H-valued Wiener process with Tr(Q) < oo, then we
have, for ug € Ly(92; HY),

(4.24) U = ulta) | yapi-r) < O+ h?) (ol g,y + b6 TH(Q)?).
ProoOF. Using the same notation as in Theorem 4.2, we have, by (4.3),

I Loysir1y < ChBH”UO”LZ(Q;Hﬁ), for 0 < <1
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For II, we have, by the isometry property, and (3.10) with v = Q'/?¢;,

n 1

12111

2 —
Lo(QH-1) — EH
J

ji=1 Y ti-1

ATV2E, o dW (s) H2

tj
[ 1A E i ds

1/t

(kX147 2F, 11 Q )
j=1

Il

J

M

~
Il

1

< Ok + PO S | AC=DRQ 2e |
=1
< O(RPH 4+ 2D AP=D2| .

For I11, we have, by the isometry property,

n t;
I gy = Y [

j=1"7ti-1

oo n t;
-y /

=1 j=1"ti-1

2

A1/ (E(tn —tj—1) — E(tn — s)) )

ds
0

L

2
A-(B+1)/2 (E(s —t; 1) — 1) AV?E(®{, — s)A(ﬁ—1)/2Q1/2e,H ds.

Following the proof of (4.22), we get

|| < ORO A2,

2 .
Lo(H-1

which completes the proof of (4.23).

In particular, if W(t) is a Wiener process, then we can choose f =1 in (4.23)
and obtain (4.24). O

COROLLARY 4.5. Let U™ and u(ty,) be the solutions of (1.9) and (1.1), re-
spectively. Assume that A = —6‘9—; and D(A) = H}(0,1)NH2(0,1). If W(t) is a
cylindrical Wiener process with Q = I, then we have, for ug € L2(€; H ), with
L, = log(T/k) where T = t,,

||Un_u(tn)||L2(Q;H—1) < C(k(ﬁ+1)/2+h(ﬁ+1))(1+€k||u0||L2(Q;f{B))7 for0< B <1/2.

5 Computational analysis

In this section we consider how to compute the approximate solution U™ of
the solution u of (1.1). Recall that the Wiener process W (t) with covariance
operator @ has the form, see Da Prato and Zabczyk [5, Chapter 4],

o0

W(t) =3 v e; (),

i=1



24 Y. Yan

where {7;,e;}52, is eigensystem of @, and {;(t)}52, are independently and
identically distributed (iid) real-valued Brownian motions. If Tr(Q)) < oo, then
W (t) is an H-valued process. In fact

E(|W@®)|? = Ezwﬂ] 2= (BB (H)?) =tTr(Q) < 0.
j=1

If Tr(Q) = o0, for example Q = I, then W(t) is not H-valued.

Let U™ be the approximation in Sy of u(t) at ¢ = t,, = nk. The backward
Euler method is to find U™ € S, s.t., with 9U™ = (U™ — U™ 1)/k, n > 1,
UO = Phu07

tn

_ 1
(51) (8U”7X) + (AhUnJX) = (E Ph dW(S),X), VX € Sha

tn—1

where Ay, Py, are defined in the introduction.
If W(t) is H-valued, then P,W(t) is well-defined. We therefore can write

tn

Py dW (s) = Py (W (tn) — th 72 (Bj(tn) = Bi(tn-1))-

tn—1

Here

1
7 (Bt0) = B3(tn1)) = N O, ),
where N(0,1) is the real-valued Gaussian random variable.

Thus the right hand side of (5.1) can be computed by truncating the following
series to J terms, i.e.,

(5.2) (% ’ Py dW (s )= (%i = Bj(tn-1)), x)

tn—1

J
%Z ﬂ] n) — Bj(tn— 1))(6,77X)

"

2.7

2(B5(tn) = Bi(tn1)) (€5, X)-

If W(t) is not H-valued, then we see that, from Lemma 2.5, W (t) is HB-1.
valued with 8 € [0,1]. In this case we may introduce the H ~L_projection Py, :
H~! — 8}, defined by

(th7X)=<v7X)7 VUGH_I,XGShCHI,
where (-, ) is the pairing between H~' and H'.

Below we will show that it is sufficient to choose J = N, in order to achieve
the required convergence order. To see this, let us consider the semidiscrete
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approximation solution up of u of (1.1). Recall that the semidiscrete solution
up, satisfies

¢
(5.3) up(t) = Ex(t)Prug +/ Ey(t — s)Pp dW (s)
0
0o ¢
= En(t)Pruo + Z / E,(t— s)Phej'le-/z dg;(s).
j=1"0
Truncating the series in the right side of (5.3), we have
J t
(5.4) uj (t) = Ep(t)Phuo + / En(t — 5)Prejv;”* dB;(s).
j=1"90

We then have the following lemma, with respect to Ly norm in space.

LEMMA 5.1. Let uj and uj be defined by (5.3) and (5.4), respectively. If
||A(ﬁ_1)/2||Lg < oo for some 8 € [0,1]. Assume that {Sp} is defined on a quasi-
uniform family of triangulations and let Ny, be the dimension of Sy. If J > Ny,
then we have, for t > 0,

(5.5) iy (8) = wn ()| oo, < CHPJAPD|| g

Proor. Using the same notation as in the proof of Theorem 3.2, we have, by
isometry property,

Elluf () - un ) = E|| 3 / Bult = 9 Pres) gy o)

j=J+1
s t
= > % [ 1Bt~ )Py ds
j=J+1 70
0 t
<2 Y % [ 1B s)elds
j=J+1 70
) t
423 a5 [ e - el ds
j=J+1 Y0
=I+1I.

For I, we have

o] t (o]
1=2 3 et s 3 !
j=J+1 0 j=J+1

= 3 AN <G AT,
=J+1
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For II, we have, by (3.8),

o o
II < Ch?8 Z ’Yj|ej|%—1 < Ch* Z |Q1/26j|/23—1
j=J+1 j=1

= ChP||ABIP|3,,
Thus we get
Ellu](t) —un@I” < C(As 5, + W) AP/ 3,.

Hence (5.5) follows from the following obvious facts: with some constant C' which
may be different in different inequalities,

AL <cI Ml < oNT < on?,

where d is the dimension of the spatial domain D.

0

Under the same assumptions as in Lemma 5.1, we can also show the following
results with respect to weak norm in space,

[ (t) — un(t)l Ly ,-1y) < Chﬁﬂfh“A(B_l)/z”Lg-
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Abstract.

In this paper we consider the finite element method for a stochastic parabolic partial
differential equation forced by additive space-time noise in the multi-dimensional case.
Optimal strong convergence error estimates in the Ly and H~' norms with respect to
the spatial variable are obtained. The proof is based on appropriate nonsmooth data
error estimates for the corresponding deterministic linear parabolic problem.
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1 Introduction

In this paper we study the finite element approximation of the nonlinear
stochastic parabolic partial differential equation

(1.1) du + Audt = o(u)dW, for0<t<T, withu(0)=u,

in a Hilbert space H, with inner product (-,-) and norm || - ||, where u(t) is
an H-valued random process, A is a linear, selfadjoint, positive definite, not
necessarily bounded operator with a compact inverse, densely defined in D(A) C
H, o is a nonlinear operator-valued function defined on H which we will specify
later. Here W(t) is a Wiener process defined on a filtered probability space
(Q, F,P, {ft}tzo) and ug € H.

For the sake of simplicity, we shall concentrate on the case A = —A, where A
stands for the Laplacian operator subject to homogeneous Dirichlet boundary
conditions, and H = L2(D), where D is a bounded domain in R%,d = 1,2,3,
with a sufficiently smooth boundary 0D.

Such equations are common in applications. Many mathematics models in
physics, chemistry, biology, population dynamics, neurophysiology, etc., are de-
scribed by stochastic partial differential equations, see, Da Prato and Zabczyk
[5], Walsh [17], etc. The existence, uniqueness, and properties of the solutions
of such equations have been well studied, see Curtain and Falb [1], [2], Da Prato
[3], Da Prato and Lunardi [4], Da Prato and Zabczyk [5], Dawson [7], Gozzi [§],
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Peszat and Zabczyk [13], Walsh [17], etc. However, numerical approximation of
such equations has not been studied thoroughly.

This paper is closely related to [18], where we consider the finite element
method for a linear stochastic parabolic partial differential equation. As in [18],
we assume that W(t) is a Wiener process with covariance operator (). This
process may be considered in terms of its Fourier series. Suppose that @ is
a bounded, linear, selfadjoint, positive definite operator on H, with eigenvalues
~; > 0 and corresponding eigenfunctions e;. Let 5;, 1 =1,2,--- , be a sequence of
real-valued independently and identically distributed Brownian motions. Then

W) = 7 *apit),
=1

is a Wiener process with covariance operator Q.

If @ is in trace class, then W (t) is an H-valued process. If () is not in trace
class, for example, Q = I, then W (t) does not belong to H, in which case W ()
is called a cylindrical Wiener process.

Let LY = HS(QY?(H), H) denote the space of Hilbert-Schmidt operators
from Q'/2(H) to H, i.e.,

1§ ={ve L) [wQ" el < oo},
=1

1/2
with norm [[¢)]| .3 = (Efil ||¢Q1/2el||2) , where L(H) is the space of bounded

linear operators from H to H.
Let E denote the expectation. Let 1) € L3. Then fot 1 (s) dW (s) can be defined
and have the isometry

(12) B [ v aw )| = [ e

Following Da Prato and Zabczyk [5, Chapter 7], we assume that o : H — L3
satisfies the following global Lipschitz and growth conditions,

(@) o) —o@llzg < Clle —yll, Vz,y € H,

(i) llo@lzg < Clall, Vo e H.

Then (1.1) admits a unique mild solution which has the form,

¢
(1.3) u(t) = E(t)ug + /0 E(t — s)o(u(s))dW (s),

where E(t) = e t4 is the analytic semigroup generated by —A. Moreover

sup Eflu(t)[]* < C(1 + Elluo|]*).
te[o,T)
Note that if Tr(Q)) < oc, then the identity mapping o(u) = I does not satisfy
the condition (i¢). In order to cover this important case, we introduce a modified
version of (ii), i.e.,
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(ii") [|AP=V26(z)||g < Cllzll, for some B € [0,1], Vz € H.
We see that (i7) is the special case 8 =1 of (ii'). If o(-) = I, the condition (7i)

reduces to [|A®=1/2|| Lo < C which is the condition used in [18] for the numerical
approximation for linear stochastic parabolic partial differential equation.

Numerical methods for equations of the form (1.1), with various assumptions
on the nonlinearity o and the Wiener process W(t), have been studied, for
example, by Davie and Gaines [6], Gyongy [9], [10], Hausenblas [11], Shardlow
[15], etc. Our approach is similar to Printems [14], who considers the time
discretization in an abstract framework.

In this paper we will consider error estimates for approximations of (1.1) based
on the finite element method in space and the backward Euler method in time.

Let Sy be a family of finite element spaces, where Sp consists of continuous
piecewise polynomials of degree < 1 with respect to the triangulation 7; of €.
For simplicity, we always assume that {S,} C H} = Hj(D) = {v € L2(D),Vv €
L>(D),v|lsp = 0}. The semidiscrete problem of (1.1) is to find the process
up(t) = up(-,t) € Sp, such that

(1.4)  dup + Apup dt = Pro(up)dW, for0<t<T, withuy(0)= Pruo,

where P, denotes the Lo-projection onto Sy, and Ay : S, — Sy is the discrete
analogue of A, defined by

(15) (Ah,(pJX) = A(¢7X)7 V¢,X € Sh.

Here A(,-) = (V-, V) is the bilinear form on Hg (D) obtained from the operator
A.
Let Ep(t) = e **, t > 0. Then (1.4) admits a unique mild solution

t
up(t) = Ep(t) Pruo + /0 Ey(t — s)Pro(up(s)) dW (s).

Let H* = H*(D) = D(A*/?) with norm |v|, = ||A*/2v]| for any s € R. For
any Hilbert space H, we denote

La(: 1) = {o: Blblly = [ o)y dP () < o},

with norm [[v]|z,0:m) = (ElJoll3,)"/*.
Under the assumptions (i) and (#i'), we show, in Theorem 3.2, the following
error estimates for ¢ € [0, T,

lun(t) = w®)ll a5y < CO (luoll ygonosy + 5up_Ellu(s)llz osm) )-
0<s<T

We also consider error estimates in the fully discrete case. Let k be a time
step and t, = nk with n > 1. We define the backward Euler method U",

Un — Un—l n 1 tn . o
A7)+ AU" = ¢ Ppo(U™)dW(s), n>1, U” = Pyuo.

tn—1
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With 7(\) = (1 + A) 7!, we can rewrite (1.7) in the form

tn
1y V" r(kAp) U™ +/ r(kA)Pac(U™) dW (s), n> 1,
. tn—1

(]0 zzfﬁuo.

Under the assumptions () and (4i'), in Theorem 4.2, we have, for 0 < v <
ﬂ S latn E[Oajqa
(1.9)

U™ = wltn)llza(@smny < CT)E + 1) (Iolly yszsy + 5D u(3)a(oim))-
0<s<T

This paper is organized as follows. In Section 2, we consider the regularity of
the solution of (1.1). In Section 3, we consider error estimate in semidiscrete
case. In Section 4, we consider error estimate in the fully discrete case.

2 Regularity of the mild solution

In this section we will consider the regularity of the mild solution of (1.1). We
have the following theorem.

THEOREM 2.1. Assume that o satisfies (i) and (i1'). Let u(t) be the mild
solution (1.3) of (1.1). Then we have, for ug € Ly(Q; HP),

@1 el < C(luollgaaam + sp u()lzam)-
0<s<t
In particular, if o satisfies (i) and (i), then we have, for ug € Lo(Q; HY),

22) )l iy < C(loll s + 59 [lu() o )-
0<s<t

To prove this theorem, we need some regularity results which are related to
the fact that E(t) = e~*4 is an analytic semigroup on H. For later use, we
collect some results in the next two lemmas, see Thomée [16] or Pazy [12].

LEMMA 2.2. For any p,v € R andl > 0, there is C > 0 such that

(2.3) |DLE(t)v|, < Ct*("*”)/2*l|v|u, fort>0, 20+4+v >y,
and
¢
(2.4) / s*|DLE(s)v|? ds < C|U|§l+,,_u_1, fort >0, p>0.
0

LEMMA 2.3. For any p >0, 0 <v <1, there is C > 0 such that
(2.5) [|[AFE@®)|| < Ct™*, fort >0,
and

(2.6) 1A™7(I - E@®))|| < Ct”, fort>0.
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ProOF OF THEOREM 2.1. Recall that the mild solution has the form
u(t) = B(t)uo + /0 "Bt — 8)o(u(s) AW ()
Thus, for any 8 > 0, using the stability of E(t) and the isometry (1.2),
Efu(t)[} < 2EIE(uol} + 28 /0 4Bl E(G - ) a(u(s))dw<s)|12
= 2Bjuo +28 [ 4772t~ o uls)}y ds
= 2E|uo|} + 2E /Ot |42 E(t — 5)AP=D 20 (u(s))17, ds.
By (4i') and Lemma 2.2, we have

t
E / IAY2B(t - 5) AP~ 20 (u(s)) |2 ds
0

t
< ([ 142B - o) ds) sup Elus)lf
0 0<s<t

< C sup Efu(s)|*.
0<s<t

Thus we get
Elu(t)[3 < C(Eluo|j + sup Ellu(s)[*),
0<s<t
which implies (2.1) by noting that

1/2 1/2
( sup Blu)?) < sup (Ellu(s)?) " = sup Bllu(s)lnaom:
0<s<t 0<s<t 0<s<t

In particular, if (i¢) holds, then 8 = 1 and we get (2.2). O

REMARK 2.1. In Theorem 2.1, if o(-) = I, the condition (ii') reduces to
||A(5_1)/2||Lg < C which is the condition used in [18] for the numerical approx-

imation for linear stochastic parabolic partial differential equation.

3 Error estimates in the semidiscrete case

In this section we consider error estimates for stochastic partial differential
equation in the semidiscrete case. In order to prove our error estimates, we
need some nonsmooth data error estimates for the homogeneous deterministic

parabolic problem.

Let Ep(t) = e7*» and E(t) = e~*4. We then have the following error esti-

mates for deterministic parabolic problem, see [18].
LEMMA 3.1. Let Fy(t) = E(t)Py, — E(t). Then

(3.1) | Fnvllz(o,rym) < ChPlols, forve HP, 0< B <1,
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and

(32) ||FhU||L2([O,T];H) < Chﬂ'”'ﬁ*h fO?"U € Hﬁ_l: 0< ﬂ <1

Our main result in this section is the following.
THEOREM 3.2. Assume that o satisfies (i) and (ii'). Let up and u be the
solutions of (1.4) and (1.1), respectively. Then there is C = C(T) such that, for

t € [0,T] and uo € L2(Q; HP),
(33) llun(®) ~ u®)lacaan < OV (ol @urrs) + 510 Blhu(s)llagaim )
0<s<T
In particular, if o satisfies (i) and (i), then we have
(34)  llun(®) = u(®)lzaumn < Ch (Il pyiaimy + 590 Bllu(s)lacoyn)-
0<s<T
PROOF. We have, with E(t) = e 4,
t
u(t) = E(t)ug + / E(t — s)o(u(s)) dW (s),
0
and, with Ej () = e~t4»,
t
un(t) = En()Pho + | Bu(t ) Puo(un(s) A (s)
0
Denoting e(t) = up(t) — u(t) and Fy(t) = Ex(t)Pn, — E(t), we write
t
e(t) = Fultuo + [ Fult = )o(u(2) W (o)
0

+ /Ot En(t — 5)Py (a(uh(s) . a(u(s))) dW (s)
=I+II+1I1I.
Thus
lle(®)] L, o;m) < C(”I“Lz(Q;H) + 1| £o05m) + ||III||L2(Q;H))-
For I, we have, by (3.1) with v = uy,
11l = | Fu(t)uoll < ChPluolg,

which implies that [|I||z,;m) < C’h5||u0||L2(Q;I-{,@).
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For II, we have, by the isometry (1.2),

t 2
T y0) = E / Fi(t = 8)ou(s)) dW (s)
i
B / E||Fu(t - 5)AC=A/2 461125 (u(s))||2 ds
0

t
<( / 1B (t — $)A0=72|2 ds) sup B[4 20 (u(s))]2.
0 0<5<t 2

We will show that
t
(3.5) / || Fr (t — s)A_(*B_l)/Z||2 ds < Ch?P.
0

Assuming this for the moment, we have, by the growth condition (i3'),

11117 50y < CR*? sup E[JAP~D25(u(s))||7g < Ch* sup Ellu(s)]*.
’ 0<s5<t 2 0<s<t

For III, we have, by the isometry property and the Lipschitz condition (7),

2

ds

1111 o) = B | (Bt — 5124 (otunts) — otute) p

t
<E / 1Bn(t = ) Pall? lun(s) — u(s) 12 ds
0
t
< / Elle(s)|? ds.
0
Hence
t
€@ amy < OF (juol3 + sup Bl +C / le(s)I o ds-

Then (3.3) follows from Gronwall’s lemma.
It remains to show (3.5). In fact, by the definition of the operator norm and
the monotone convergence theorem, we have

! ¢ — §)A—(B=1)/24)|2
/ ||Fh(t—s),4—<6—1)/2||zd3:/ sup 17— 9) ol
0 0

vet [[ol]2
SN Fn(t — 5)A=B=1/2y|12 ds
= S -
oot [[ol]2

Combining this with (3.2), we show (3.5) and therefore (3.3) holds.
In particular, if (¢7) holds then 8 = 1 and we obtain (3.4). O
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4 Error estimates in the fully discrete case

In this section we will consider the error estimates in the fully discrete case.
As in the semidiscrete case, we need some error estimates for the deterministic
parabolic problem.

Let Eyp = r(kAp) and E(t) = e 4, where r()\) = 1/(1+ )) is introduced in
(1.8). We have, see [18],

LEMMA 4.1. Let F,, = E}}} P, — E(t,). Then

(4.1) [Favll < C(R* 4+ 1P)|olg, forve HP, 0< B <1,
and
(4.2) (kz I Eo| ) Ok + WP)ols_1, forve HP 1, 0<p<1.

Our main result in this section is the following.

THEOREM 4.2. Assume that o satisfies (i) and (ii'). Let U™ and u(ty) be
the solutions of (1.8) and (1.1), respectively. Let 0 < v < 3. Then there is
C = C(T) such that, for t, € [0,T] and ug € L2(Q2; HP),

(43) 10" =ultn)l|zaoun < O® P +17) (llwoll .y qpirmy + sp_[[u(s) o)
0<s<T

In particular, if o satisfies (i) and (ii), then we have, for ug € Lo(Q; H'), and
0<~y<1,

(4.4) 10" =u(ta) oy < CO2 4 1) (ol gy + 50D [1u(3)l|acorm )-
0<s<T

To prove this theorem we need the following regularity result for the solution

of (1.1).
LEMMA 4.3. Assume that (ii') holds. Let u be the mild solution of (1.1).
Then we have, for 0 <y < <1,

(4.5) Ellu(tz) — u(t1)|* < C(ta — t1)"Eluo|2
+C(ty —t1)? sup Elu(s)|?
0<s<T

PROOF. The weak solution of (1.1) has the form, with E(t) = e~ %4,

u(t) uo+/ E(t — s)o(u(s)) dW (s).
Thus we have

u(ts) — u(ty) = (E(tg)uo - E(tl)uo)

+ ( i E(t2 — s)o(u(s)) dW(s) —
=I+1II.

Bt — s)o(u(s)) dW (s)),
0
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and therefore
E|ju(ty) — u(t1)|* < 2E||I||> + 2E||11|>.

For I, we have, by Lemma 2.3, for 0 < v < 2, with ¢; # 0,
(4.6) 1]l = 1Bt A" (E(t2) — E(t1) A uo|
< C(ta — t1)"?|ugly,

which implies that E||7]|* < C(t2 — t1)"Eluq|?3-
For II, we have

1= /0 N (Bt — ) — Bty — 5) o (u(s)) dW (s)

+ N E(ty — s)a(u(s)) dW (s)
t1

=11 + 1.

Using (i4'), isometry, and Lemma 2.3, we have, for 0 <y < <1,
i1 2
BITLIE =B [ (Bl -9 - Bt - 5))o(u(s) v ()|
0

= /Otl EH (E(tz —s)— E(t, — S))A(l_ﬁ)/zA(ﬁ_l)ﬁU(u(s))) 2 ds

L3

</ | (B - ) - B - 0) [ s _sup Bl
0 0<s<t;

t1 2
_ / |‘A<1—ﬂ>/2+v/2E(t1—S)A—v/z(I_E(tg_tl))H ds sup Ellu(s)|?
0 0<s<t;

t1
<C(ts— ) /0 (=) D7 ds) sup Elfu(s)|

< C(ta —t1)” sup Ellu(s)]]?
0<5<ts

and
to
E||[L|? =/ E[| AU D2 E(ty — 5) AP D0 (u(s)) |7 ds
i1

2]
<C [ AUDPE(®Rs - 8)|I? - BIAPTD 20 (u(s)) |17, ds

t1
ta
gc(/ (tg—s)ﬁ_lds) sup  El[u(s)]]?
t t1<s<to
< C(ty —t1)? sup Elu(s)|?, forg > 0.

t1<s<to
Hence we get, for 0 <v< <1,

E(I1|]* < 2E|IL|]* + 2E|IL||* < C(ts — t1)” sup Ellu(s)|*.
t1<s<to
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Together these estimates complete the proof. 0O

Proor or THEOREM 4.2. We have, by (1.8), with E}}, = r(kAp)™,

un EthhqurZ / ELIT Pua(U7) dW (s),

tj—1

and, by the definition of the mild solution of (1.1), with E(t) = e4,

tn
u(tyn) = E(tn)uo + /0 E(t, — s)o(u(s)) dW (s).

Denoting e” = U™ — u(t,) and F,, = E}}, P, — E(t,), we write

n_g u0+Z/J (kAp)™ ]+1Ph( U9) - o(u (t]))) dW (s)

tj—1

+Z/ r(kAn)" TP (o (u(t;) — o(u(s)) ) AW (s)

tj—1

+ i /tJ (r(kAh)n—j-‘rlPh — E(t, — tj_l))g(u(s)) AW (s)

j=17ti-1

Thus

5
le™ | ac@izry < C Y il Laqin)-
j=1

For I, we have, by (4.1) with v = uo,
111 = | Fauoll < C(R*/% + 1) uols,

which implies that ||I1 ||z, (q;m < C(K5/% + hﬁ)||u0||L2(Q;H5).
For I, we have, by isometry and the stability of (\) and the Lipschitz con-
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1B =B S [ reny 1 (0@ — otutty) aw o)
j=1"7ti-1

- ki EHr(kAh)"—Hlph (a(UJ') - a(u(tj))) | ’

=1

L3

<k lr(kAn)™ 7 Pol P Ello(U7) - o (u(t)) |7

j=1
n n t; .
<CEY BV - ) =€ [ Bl s
j=1 j=1"ti-1
For I3, we have, by Lemma 4.3, for 0 <y < g <1,

n tj ) 2
1l = 3 [ ka5 Py (ofut) = o(ute) |, as

j=1v%ti-1 2

n t;
<0y [7 Bluty) - u(e)|P ds

tj—1

n t;
<C t: — ’Yd E 2 E 2
< (;/ (= 9" ds) (Bluaf, +_sup, Ellu(o))

tj—1

< CK" (Eluol? + OEuETEIIU(S)llz)-
_8_

For I, we have

i1

Mall3, 0y = B 2_; / ¥ Fusnotu) aw )|

n t;
=S / E||F, 41 A2 460126 (u(s))|2, ds
j=1"%

ti_1

< O(EYNFACD22) sup Bju(s)]*
e 0<s<T
We will show that
(4.7) kY |FACEAR|2 < (kP + B2P).

j=1

Assuming this for the moment, we get

1Lall% 0.y < C(k° +h?P) sup Elju(s)|]*.
0<s<T
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For I5, we have

||15||L2(QH>—E|1Z / Bltn ~ tj-1) ~ Bltn — )0 (u()) dW (s)]

tj—1

= Z " BBt~ t;1) - Bt — 8)) A2 AGTD 26 (u(s)) | 7g ds

tj—1
<o Z/ Bty — t-1) — Bt — ) AC=9P | ds) sup_ Blu(s)

Noting that, by Lemmas 2.2 and 2.3,

t;

Z E(tn —tj_1) — E(tn — 5))A1=A)/2)12 45
tj—1
-y / |AY2E(t, — 5) A4 P/2(T - B(s — t;_1))|[*ds
j=1 tj—1
Ckﬁz ||A1/2Et —s)|]*ds
tij—1

= Ckﬂ/ |AY2E(s)||>ds < CkP,
0

we have
5117, ;rr) < CKP sup Ellu(s)]|*.
0<s<T

It remains to show (4.7). In fact, by (4.2),
|| F; A= B)/2U||)

EY |FACA2|2 = k sup
215 > (s 45
— sup kY5, 1 FAC—A 2|2
v 0 [lv]?
C(kP + h25)|A(1—5)/2v|%_1
< sup

00 [[o]?

< C(KP + h?P).
Together these estimates show, for 0 <y < 8 <1,
n
(4.8) Elle"||* < C(K" + h*")Eluo|j + Ck ) E|l¢/||?
j=1

+ C(k” + h?P) sup E|lu(s)|?
0<s<T

By the discrete Gronwall lemma, we get

(4.9) Elle"||* < C(k" + 1**) (Eluol} + sup Ellu(s)|]*),
0<s<T
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which implies that,

(4.10)  [le™|Lo(sry < C(R? + BP) (Bluol L, (. ns) + sup lu(s)l|Lacosmy) -
_S_ n

The proof is now complete. O
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