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Abstract

This thesis considers the pricing of European path-dependent options in
a multi-dimensional Black-Scholes model. The thesis focuses mainly on
the three different classes of path-dependent options: barrier, Asian, and
lookback options.

Chapter 1 gives a brief introduction to the theory of option pricing and
describes some path-dependent options. Chapter 2 derives pricing formulas
for continuous double barrier options and studies the numerical properties
of the formulas obtained. Chapter 3 extends a work by Broadie et al.! and
determines approximation formulas for the price of some discrete barrier
options. Chapter 4 estimates the price of discrete barrier options using lat-
tice random walks. Chapter 4 will also discuss the rate of convergence of
lattice methods and Besov spaces. Chapter 5 gives a probabilistic interpre-
tation of the #-method. The #-method is a class of finite difference methods
for the heat equation. Chapter 6 shows, using the isoperimetric inequal-
ity for Wiener measure, that the relative error in the Monte Carlo pricing
of some path-dependent options is independent of the dimension. Chap-
ter 7 studies a certain class of sublinear functionals of geometric Brownian
motion. The chapter discusses convexity properties for the distribution
function, tail probabilities, stochastic ordering, moment inequalities, and
Stieltjes moment problem. Chapter 8, which is a joint work together with
Jenny Dennemark and Hakan Norekrans, describes the Heath-Jarrow model
for dividend paying assets and studies how discrete dividends influence the
price of some path-dependent options.

Keywords. option pricing, path-dependent options, Brownian motion, ge-
ometric Brownian motion, Wiener functionals, hitting times, random walks,
finite difference methods, heat equation, rate of convergence, Monte Carlo
method, error estimates, geometric inequalities, stochastic ordering, mo-
ment inequalities, moment problem
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Introduction

In the beginning of the seventies Fischer Black and Myron Scholes pub-
lished their now very famous article “The Pricing of Options and Corporate
Liabilities”. Based on the principle that, on a rational market, there are
no possibilities to make sure profits, Black and Scholes derived a theoret-
ical price for the European call option. Since then the popularity as well
as the number of options have increased considerably. In particular, path-
dependent options have received a notable amount of attention in academic
as well as trade literature.

The purpose of this thesis is to discuss the pricing of European path-
dependent options within a Black-Scholes framework. Although the goal is
to develop the theory from its foundations, this thesis is mainly intended for
readers who are familiar with the basics of Brownian motion and stochastic
calculus.

In Chapter 1, we give a brief introduction to the theory of option pric-
ing. The chapter describes a mathematical model of a financial market
based on Brownian motion and stochastic calculus. In particular, the chap-
ter will show that the pricing of path-dependent options amounts to com-
puting Wiener integrals. Chapter 1 will also describe some common path-
dependent options.

Chapter 2 considers the valuation of continuous double barrier options.
Continuous barrier options constitute one of those few examples of path-
dependent options where it is possible to compute the option price ana-
lytically. By using the reflection principle for Brownian motion and the
Cameron-Martin theorem, Chapter 2 expresses the price of a continuous
double barrier option in terms of series of normal distribution functions.
The numerical properties of the formulas obtained will also be studied.

The pricing of discrete barrier options is studied in Chapter 3 and 4.
Previous research by Broadie, Glasserman, and Kou in [28] has shown that
the Siegmund heavy traffic approximation can be useful in the valuation
of some discrete barrier options. The objective in Chapter 3 is to extend
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the methods by Broadie, Glasserman, and Kou to a larger class of discrete
barrier options. Chapter 3 has appeared in Finance and Stochastic vol. 7,
nr. 2.

Chapter 4 makes use of lattice random walks to design a numerical
procedure useful to estimate the price of a discrete barrier option. The
main idea is to replace the driving Brownian motion in the underlying asset
price with a lattice random walk. This is a well known and frequently
applied method in option pricing. In Chapter 4, we improve this approach
for discrete barrier options using results from the theory of Besov spaces.
Chapter 4 will be published in Mathematical Finance vol. 13, no. 4.

Chapter 5 will also consider lattice random walks. The chapter shows
that the 8-method, which is an important class of finite difference methods
for the heat equation, may in some cases be seen as a lattice random walk.
Chapter 5 has appeared in Statistics and Probability Letters vol. 62, no. 2.

Another very useful tool in option pricing is the Monte Carlo method.
Chapter 6 will discuss the error in the Monte Carlo pricing of some path-
dependent options, and then in particular, Asian and lookback options. One
of the advantages with the Monte Carlo method is that the convergence rate
is independent of the dimension. Chapter 6 will show that this property also
holds for the error constant in the convergence rate in the Monte Carlo pric-
ing of some path-dependent options. The results in Chapter 6 will mainly
be based on the isoperimetric inequality for Wiener measure and the Rosen-
thal inequality. The results in Chapter 6 have previously been presented at
the 2nd Bachelier conference.

Chapter 7 studies a class of sublinear functionals of geometric Brownian
motion. The class includes, for instance, the integral as well as the maxi-
mum of a positive linear combination of geometric Brownian motions. By
applying various geometric inequalities in Wiener space, Chapter 7 estab-
lishes convexity properties for the distribution functions, tail probabilities,
and moment inequalities. The chapter will also discuss stochastic ordering,
the Stieltjes moment problem, and present financial applications of these
results. Some of the results in Chapter 7 will appear in Journal of Applied
Probability, vol. 40, no. 4.

The final chapter, Chapter 8, is a joint work together with Jenny Den-
nemark and Hakan Norekrans. The chapter discusses how the Black-Scholes
model can be extended to cover assets that pay discrete dividends and
how discrete dividends influence the price of some path-dependent options.
Chapter 8 has appeared in Futures and Options World / Equity Derivatives,
November 2001.
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Chapter 1

An Introduction to the
Theory of Option Pricing
and Path-Dependent Options

This chapter gives a brief introduction to the theory of option pricing. The
chapter describes a mathematical model of a financial market based on
Brownian motion and stochastic calculus. The material in this chapter
is only meant as an introduction, for a more comprehensive treatment on
option pricing the reader may consult Bjork [16], Harrison and Pliska [56],
or Musiela and Rutkowski [95]. The chapter is concluded with a detailed
description of some common path-dependent options.

1.1 The Market

Take as given a probability space (Q,F,P) carrying a standard m-
dimensional Brownian motion {W;};>o. The i:th coordinate process of
{Wi}i>0 is denoted {Wf}tzo. Suppose that the filtration {F;};>¢ is the
augmentation under P of the filtration generated by the Brownian motion
w.

Now, to define the market, suppose r and T are positive numbers and
let for each ¢ = 1,... ,m the constants 7; € R and o; > 0 be fixed. Suppose
moreover that ¢;, ¢ = 1,...,m, are linearly independent vectors in R™
with |¢;l2 = 1, where | - |2 denotes the Euclidean norm in R™. A vector
in R™ shall be understood as a column vector. On the market there are
m + 1 securities. The price processes for these securities are governed by



the following (stochastic) differential equations, viz.

dBt = Bt’f‘dt, 0 S t S T,

dSi = Si(mdt+ o;ckdWy), 0<t<T,i=1,...,m,
where ¢, denotes the transpose of ¢;. Suppose By = 1 and that S(i],
1 = 1,...,m, are positive constants. The stochastic differentials shall be

understood in the It sense.

The quantity B; shall be interpreted as the price (in some currency) at
time t of a risk free bond, with r being the associated risk free interest rate.
Moreover, S is the price (in the same currency as for the bond) at time ¢ of
a risky security that pays no dividends. The security can for instance be a
stock, a commodity, or an asset linked to a foreign currency. The constant
o; is often referred to as the volatility. If the market only consists of one
risky security, that is m = 1, then the market is called the Black-Scholes
market. If m > 1, the market is known as the multi-asset Black-Scholes
market.

The solutions to the above (stochastic) differential equations are given
by

B, =€ and Sz = Sée(m*”?ﬂ) t+a¢c;Wt’

for allt € [0,T] and all i = 1,... ,m. Thus, the price of the risky security
follows a so called geometric Brownian motion (with drift).

In the sequel it will be assumed that the market is frictionless, meaning
that the investors on the market are allowed to trade continuously, that
there are no transaction costs, and that there are no restrictions against
selling short. Selling short means selling borrowed assets.

Now suppose that we expand the market by adding a so called contin-
gent T-claim, also known as a financial derivative or an option. These are
assets which are defined in terms of the risky asset and the bond, which in
this connection are referred to as the underlying assets or the underlying
securities. We make the following mathematical formalisation.

Definition 1.1. Suppose T is a positive constant. A contingent T-claim
is an Fr-measurable and positive random variable X.

The interpretation of this definition is that the contingent T-claim is
a contract which specifies that the stochastic amount X of money is to be
paid out to the holder of the contract at time 7. The time T" will be referred
to as maturity date or expiration date of the option.



One of the most important contingent claims is the European call option.
Fix an integer + = 1,... ,m and assume that K is positive constant. A
European call option with underlying asset S?, strike price K, and maturity
date T is a contract which gives the holder the possibility but not the
obligation to buy one share of the asset S’ at time T at the price K. If
Srfp < K, the contract is worthless at the maturity date. If S&. > K, the
holder can buy one share of the risky security at the price K giving the
net profit Srfp — K. Thus, the European call option with underlying S* is
equivalent to a contract giving the holder the amount

X = max(S% — K, 0)

at time 7.

How much would an investor be willing to pay for a given contingent 7'-
claim X7 Remarkably enough, Black and Scholes [17] asserted that there is
a unique rational value for the option, independent of the investor’s attitude
to risk. The next three sections will give an argument leading to this unique
price.

1.2 Portfolios

First some definitions that will be frequently used in the sequel.
Below we let B(A), where A € R, denote the smallest o-algebra contain-
ing all open subsets of A.

Definition 1.2. The stochastic process h : [0,T] x & — R is said to be
progressively measurable with respect to the filtration {F;}o<i<T if, for
each t € [0,T] and B € B(R), the set

{(s,w) : 0<s<t,we, hs(w) € B}
belongs to B([0,t]) @ F;.

Definition 1.3. Suppose P and P are equivalent probability measures. The
class LP([0,T],P) denotes the set of all {F;}o<i<t progressively measurable
processes h such that

Eﬁ[/0T|ht|pdt] < o0,

where EP stands for expectation with respect to P.



The class [,foc([O,T],IE’) contains all {F}o<i<T progressively measur-

able processes h such that
T ~
/ |he|Pdt <00 P — a.s. (1.1)
0

Thus, for all h € £2 _([0,T],P) and each i = 1,... ,m the It6 integral

loc
t .

1@:/ hedWi, 0<t<T,
0

is well defined. Moreover, if h € L£2([0,T],P) then {Y;}o<i<r is a
(P, {Fi}o<i<r)-martingale (see Karatzas et al. [71]).
Referring to the previous section we will next define portfolios.

Definition 1.4. A portfolio (or a trading strategy) ¢ is a stochastic
process ¢y = (¢, d5,..., "), 0 < t < T, where ¢, i = 0,1,... ,m are
progressively measurable with respect to the filtration {F;}o<i<T. The value
process {Vi(¢)}o<i<T corresponding to the portfolio ¢ is defined by

Vi(¢) = 0B + Y _ 415},

i=1
for allt € [0,T7.

The random variable ¢{ is interpreted as the number of shares of bonds
held in the portfolio at time . Moreover, the random variables ¢i, i =
1,... ,m shall be understood as the number of shares of the i:th risky asset
held in the portfolio at time ¢.

Next we will define portfolios where all the changes in the portfolio values
are due to capital gains.

Definition 1.5. Let ¢ = (¢°,¢',... ,¢) be a portfolio such that ¢° €
L}, ([0,T),P) and ¢'S" € L2, ([0,T),P), i =1,... ,m. The portfolio ¢ is

loc
said to be self-financing if

t m t . .
Vi(d) — Vo(d) = /0 QdB, +Y /0 $idst (1.2)
=1

for all t € [0,T].



To motivate equation (1.2), suppose that all trading occur at discrete
times t = tg, k= 0,1,... ,n. The gain G, = V4, (¢) — Vi, (¢) at time ¢, is
thus given by the equation

k—1 m k—1
Gtk = Z¢7(5); (Btj+1 - Btj ) + Z Zd)i] (S;j+1 - Szj )’
j=0 i=1 7=0

provided all changes in the portfolios value are due to capital gains. By
letting maxy(tx+1 — tx) go to zero we are lead to equation (1.2).

It is often convenient to work with discounted prices, meaning that the
prices are expressed in terms of the bond instead of in terms of the mon-
etary unit. For this reason, introduce discounted price processes Z* and a
discounted value process VZ(¢) by setting

Zi=8i/B;, 0<t<T,i=1,..,m,
and
m . .
VZ(¢) =Va(d)/Be =2+ > $iZi, 0<t<T.
i=1

If ¢ is a trading strategy such that ¢° € L} ([0,7],P) and ¢'S' €

loc

£2 ([0,T),P) for each i = 1,... ,m, then ¢ is self-financing if and only

loc
if the discounted value process satisfies

V@) -V = [ 4z, (1.3
i=1
for all ¢ € [0, T, see for instance Musiela et al. [95].

1.3 Arbitrage

A fundamental concept underlying the option pricing theory is that of ar-
bitrage.

Definition 1.6. An arbitrage opportunity or an arbitrage portfolio
is a self-financing portfolio ¢ such that the corresponding value process has
the following properties,

Vo(p) =0, Vp(¢) >0, and P(Vp(é)>0)>0.



As can be seen from the definition, an arbitrage portfolio is a risk free
way to make money, or in the terminology of Bjork, “a deterministic money
making machine”, see Bjork [16]. Of course, a rational market will be free
of arbitrage opportunities.

Actually, on our market it is possible to construct arbitrage portfolios,
see e.g. Harrison et al. [56]. To get a reliable model of a security market
we must therefore exclude such examples. One way to achieve this is to put
constraints on the trading with the risky assets. Before we present such a
constraint, we will introduce the so called martingale measure.

Suppose b € R™ has coordinates

r—n;
bZ — lr”L
a;

, t=1...,m,

and C is a m by m matrix with rows ¢;, ¢ = 1,... ,m. Let X be the solution
to CA = b. Furthermore, define a measure () on Fr by

1
dQ =exp (— E|A|§T + X'Wr)dP,

where )\ denotes the transpose of . Note in particular that Q and P are
equivalent. If

WE=W,— X, 0<t<T,

then the Cameron-Martin theorem (see Karatzas et al. [71] p. 191) yields
that {WtQ}ogth is a standard m-dimensional Brownian motion with respect
to (@, {Fi}o<i<T). Moreover, since

dz} = Z} ((n; — r)dt + oicidW, ) = Z} oicidW 2, (1.4)

the discounted price processes Z¢,i = 1, ... ,m, are martingales with respect
to (Q, {Ft}o<i<r). The measure @ is often called the risk-neutral martingale
measure of the market or just the martingale measure of the market.

We are now in the position to define a class of trading strategies without
any arbitrage portfolio.

Definition 1.7. A portfolio ¢ = (¢°,¢',...,¢™) is called admissi-
ble if the corresponding discounted value process {ViZ($)}o<i<T is a
(@, {Fi}o<i<T)-martingale.

For instance, equation (1.4) gives that if ¢' Z* € £2([0,7T],Q) for each
1 =1,...,m, then ¢ is admissible.



Theorem 1.1. There exists no admissible arbitrage portfolio.

Proof. Suppose that ¢ is a self-financing and admissible portfolio. The
process {V,Z(¢)}o<i<r is a Q-martingale and hence,

Vo(¢) = V& (¢) = EX[VE(9)].

Thus, if Vo(¢) = 0 then E?[Vr(4)] = 0. Since P and @Q are equivalent we
can conclude that ¢ cannot be an arbitrage opportunity. U

1.4 Theoretical Price

Consider a contingent T-claim X. Suppose that there is an admissible and
self-financing portfolio ¢ such that Vp(¢) = X. If the claim is not priced
according to the value of the portfolio at any time ¢ < T', then there is a
risk free profit on the extended market consisting of the contingent claim,
the risky securities, and the bond. This leads us to the following important
definition.

Definition 1.8. Let X be a contingent T-claim. Suppose there is a self-
financing and admissible portfolio ¢ such that

Vr(4) = X.

The theoretical price v(t) at time t < T corresponding to the claim X is
defined by v(t) = Vi(¢). The portfolio ¢ is called a hedging or replicating
portfolio for the claim X.

It can be shown, using the It0 representation theorem, that for every
X € L'(Q) there is a replicating portfolio ¢, see e.g. Musiela et al. [95].
Moreover, since a replicating portfolio is admissible, we have

v(t) = BV (¢) = B.ER[X/Br | F] = e "TDEQ[X | F,].
We can summarise this as follows:

Theorem 1.2. The theoretical price v(t) at time t of a contingent T-claim
X € LY(Q) is given by

o(t) = e "TIEQ[X | F],
where @ is defined by

1
dQ = exp (— §|)\\%T + N'Wr)dP.

7



The vector A is the solution to CA = b where b; = *21, i =1,... ,m.

Moreover, the Q-dynamics for the price process S is given by
dSi = Si (rdt + oid,dW?2), 0<t<T,

where {WtQ}ogth is a (Q, {F: }o<t<T)-Brownian motion.

1.5 Dividends

So far we have assumed that the the risky securities pay no dividends. The
same assumption was made in the paper by Black and Scholes, but it is not
difficult to extend the theory to cover dividend paying securities as well.

There are several different ways to model dividends, see for instance
Samuelson [109], Heath and Jarrow [57], Musiela and Rutkowski [95], or
Bakstein and Wilmott [8]. This section will discuss a model proposed by
Samuelson in [109]. In Samuelson’s model the dividends are paid out con-
tinuously at a rate which is proportional to the asset price. To be more
specific, if the random variable D% denotes the total dividend amount paid
by the i:th asset during the time interval [0, ], then

. t .
Diz/ giS,du, 0<t<T,
0

where ¢; is a constant. The constant ¢; is known as the dividend rate or the
dividend yield.

The model is applicable to options on foreign currencies (see Garman
and Kohlhagen [50]) and commodities (see Hull [65]) but not to stocks.
The dividends to a stock are most often paid out at discrete times and
consequently, the dividends process {D;}o<¢<7 corresponding to a stock is
not continuous. We will come back to discrete dividends in Chapter 8.

In Samuelson’s model the previous definition of a self-financing portfo-
lio will no longer be relevant, since an investor in the market now receive
dividends. A more appropriate definition would be to say that a trading
strategy ¢ is self-financing if the corresponding value process V(¢), which
is defined as before, satisfies

t m t ) . m t . )
W) - Vi) = [ ap.+ Y [ diasi+ Y [ dapi
=1 =1

for all 0 < ¢ < T. Thus, in a self-financing portfolio the only external funds
invested in the portfolio come from the dividend payments, which are, on
the other hand, used in full.



From this definition one can proceed as in the previous sections. The
modified definitions and computations are straightforward and we obtain
the following generalisation of Theorem 1.2.

Theorem 1.3. Suppose that the i:th asset pays dividends at a constant rate
g;. The theoretical price v(t) at time t of a contingent T-claim X € L*(Q)
is given by

o(t) = e "TVEQ[X | F ],
where Q is defined by

1
dQ = exp ( — §|/\\§T + NWr)dP,

The vector X is the solution to C\ = b with b; = %'i_m, i=1,...,m.

Moreover, the Q-dynamics for the price process S* is given by
dsi = Si ((r — gi)dt + oycidW2), 0<t<T,

where {WtQ}Ogth is a (Q, {Ft }o<i<t)-Brownian motion.

1.6 The Black-Scholes Formula

This section will compute the price of two important examples of contingent
claims, namely the European call option and the European put option. For
simplicity, from now on in this section the market only consists of one risky
asset. The price process of the risky asset will be denoted {S;}+>¢ and the
associated volatility and dividend yield will be written o and ¢, respectively.
The call option is already defined in Section 1.1. A European put option
with strike price K and maturity date 7', where K is a positive constant,
entitles the holder to sell one share of the risky security S at the expiration
date T" at the prespecified price K. Thus, at maturity the value of the put
option equals

max(K — St,0).

Theorem 1.4 below establishes the theoretical values of European call
and put options. In what follows, let ® denote the standard normal distri-
bution function, that is

T 2 dy
P(x) = e T , —oo<z< 0.

The pricing formula for call options in Theorem 1.4 is, in the special case
g = 0, known as the Black-Scholes formula.



Theorem 1.4. Assume that the underlying asset pays dividends at a con-
stnat rate q. The theoretical value v.(t) at time t < T of a European call
option with strike price K and time to expiration T is given by

ve(t) = ST 0D(dy) — Ke " T d(dy),

where
i = In(S;/K) + (r —q+0?/2)(T — 1)
oVT —t
and

do =di —ovT —t.

The theoretical value vy(t) at time t < T of a European put option with
strike price K and time to expiration T is given by

up(t) = Ke "TD®(—dy) — Sie 1T Do (—d,).

Proof. Put 7 = T — t. By Theorem 1.3, the Markov property, and the
scaling property for Brownian motion,

ve(t) = e "TE“? [maX(ST — K,0) \.7-}]

o0 (72 x2
= e_”/ maJX(,S’te(’"_q_T)H""\ﬁm —K,0)e” 7 dz
—00

5

[¥]

—e T /oo (Ste(rquﬁ)TJrcfﬁw _ K)ef% dz
—d2 \Y4 27['

d .
= SteqT/ 2 ez_QT“ﬁx%—d; — Ke ""®(dy).
. V2m

Moreover,

oo Vor oo V2
= q)(dl)a

which establishes the price of a European call option.
Next, the relation max(K — St,0) = K — St + max(St — K, 0) implies

vp(t) = e "TE9[(K — St + max(Sr — K,0)) | F |
=Ke " — 5171 4 v.(t)
— Keir’r@(—dg) — Steiq’rq)(—dl),

ds P da
/ o r—oyra-s AT _/ o batoyn)? 42

since ®(—z) =1 — ®(z), and the proof is complete. O
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1.7 Path-Dependent Options

This thesis will mainly consider the pricing of three different classes of path-
dependent options, namely barrier options, Asian options, and lookback
options. This section will define and discuss the purpose of these contracts.
With the exception of rebate options associated with knock-out options
(cf. Subsection 1.7.1 below), this thesis will only consider European styled
options and not any American styled options. An American option can be
exercised at any time before the maturity date of the option, in contrast
to an European styled option which only can be exercised at the maturity
date. For a further discussion about American options, see e.g. Karatzas
and Shreve [72].

From now on in this chapter the underlying price process will be de-
noted {Si}¢>0. The underlying asset can either be one of the assets St
1 = 1,... ,m, defined in Section 1.1, or a positive linear combination of
these securities, a so called basket or index. Let moreover the maturity
date T and the strike price K be fixed positive constants.

1.7.1 Barrier Options

The term barrier option refers to an option with a payoff depending on
whether or not the underlying asset price is above or below a prespecified
barrier (or barriers) during a certain period of time. Barrier options is a
large class of options and they can be divided into two different kinds of
contracts, knock-out and knock-in options. The special feature of a knock-
out option is that it will be extinguished (’knocked-out’) if the underlying
asset price breaches some barrier (or barriers) prior to the expiration date.
In contrast to knock-out options, knock-in options will instead come alive
as soon as the barrier (or barriers) is crossed.

Suppose M is a closed subset of [0,7] and H : M — (0,00) is a con-
tinuous function. The set M will be called the monitoring dates or the
monitoring time and H will be referred to as the barrier. If M = [0, 7] then
the barrier is called continuous and if M is a finite set then the barrier is
said to be discrete. We may add that in practice most barriers are constant
over time, that is H(t) = H for all t € M. Next, let k be a constant equal
to -1 or 1 and introduce the random variable

T =inf{t e M : kS < kH(t)}.
We use the convention inf ) = cc.

11



To begin with we will define knock-out options. Let x = 1 or —1 and
consider

X = max (x(S7 — K),0)1{ 7557}

If Kk = —1, then X is the payoff at time T of a down-and-out call or put
(x =1 or —1, respectively). If kK = 1, then X is the payoff at time 7" of an
up-and-out call or put (x =1 or —1, respectively).

A knock-out option may also have two barriers, in this case the contract
is called a double barrier knock-out option. To define these claims, set

THy,Hy = inf{t eEM : S5 < Hl(t) or S; > Hz(t)}

where Hi and Hs are two continuous functions on M such that H; < Hs.
The holder of double barrier knock-out call/put (x = 1/ — 1) will recieve, at
time 7', the amount

X = max (x(ST - K)ao)l{THl,H2>T}'

Knock-out options may in some cases be combined with so called rebate
options. The purpose with these contracts is to compensate for the loss that
occurs when the knock-out option is ’knocked out’. A rebate option will pay
to its owner a fixed amount R at the same time the barrier (or barriers) is
(are) breached, provided that this event appears before the maturity date
T of the knock-out option. For instance, the rebate option associated with

(=1)

a down-and-out call or put option pays at time 7 the amount

X = Rl{r},_l)ST}'
Rebate options are also known as American binary options, see Hull [65] for
a further discussion about binary options. Note that since the payoff date
depends on the underlying asset, this contract does not fit into the theory
developed in this chapter. In Section 2.3 we will discuss a solution to this
problem.

Next we will define knock-in options. As already mentioned, these con-
tracts will come alive as soon as the underlying asset has passed the barrier
or barriers. The payoff at time T' of a down-and-in call or put option (x =1
or —1, respectively) is given by

X = ImaX (X(ST — K)’O)l{TI({_I)ST}'

By replacing 7Y with T}}) in the expression for X we obtain the payoff
of an up-and-in call or put option. The payoff of a double barrier knock-in

12



call or put option is now obvious. Knock-in option may also be combined
with a rebate option. For instance, the rebate option associated with a
down-and-in call or put option pays at time 7" the amount

X =Rl v 5.

So far we have described the most traded barrier options. There are
other examples of barrier options, for instance the Parisian barrier option.
This contract is based on the age of the excursion of the underlying price
process beyond a given barrier. The Parisian down-and-out call for instance,
will expire without value if the underlying price process goes below the bar-
rier and stays continuously below the barrier for a time interval longer than
a specified delay. Parisian contracts were introduced in Chesney, Jeanblanc-
Picque, and Yor [33]. Parisian barrier options are one example of so called
soft barrier options, for a further discsussion about other options in this
category, see Linetsky [87].

Barrier options have a relatively long history. Already in 1973, Merton
derived the theoretical price of a down-and-out call option, see Merton [94].
Nowadays barrier options are frequently occuring on the market. Its pop-
ularity depends mainly on the fact that knock-out and knock-in call/put
options are cheaper than the corresponding contracts without any barriers.
If an investor finds it unlikely that the underlying asset will fall below a
certain price level, it is natural to buy a knock-out option with the barrier
at that same level. The difference in price between the knock-out option
and the ordinary option can be substantial. Thus, using barrier options,
investors can avoid paying for the scenarios they feel are unlikely.

However, these benefits may imply a risk. Barrier options can be very
sensitive to price changes of the underlying asset. For instance, consider an
up-and-out call option and suppose that the underlying price is just beneath
the barrier and that the option is close to maturity. If a small short term
price spike occurs, the option will expire without value. On the other hand,
if the asset price remains constant until maturity the contract can become
very valuable. Thus, investing in barrier options is sometimes combined
with a large risk. For a more comprehensive treatment about this topic we
refer to Linetsky [87] and the references therein.

1.7.2 Asian Options

Asian options are contracts with payoffs that depend on the average of the
underlying instrument over some prespecified time. Asian options are also
known as average options.

13



If i is a positive and bounded Borel measure on [0,7] then the payoff
at time T" of an Asian call/put option with a fized strike price (x =1/ —1)
is given by

T
X = max (x( /0 Su(dt) — K),0).

For most traded Asian options the measure 4 is a positive linear combination
of Dirac measures, the claim is then called a discrete Asian option.
If @ >0 and

X = max (X(/O Syu(dt) — aSr),0),

then X is the payoff at time 7" of an Asian call/put option with a floating
strike price (x =1/ —1). Moreover, if u € (0,T") then

X = max (X( Stu(dt) — Stu(dt)),O)
(u,T] [0,u]
is the payoff at time T of a forward start Asian call/put option (x = 1/ —1).
The option may also be referred to as an Asian in call/put option.

Asian options have become increasingly popular and then, in particular,
on the commodity market and the foreign exchange market. According to
Yor [122] p. 2 over 95 % of options on oil and oil spreads are Asian. The
Asian option has a number of attractive features. Asian options provide for
the buyer a cost-efficient way of hedging cash and asset flows over extended
periods. Moreover, Asian options are in comparison with ordinary options
not so sensitive to price manipulations near the maturity date. Asian-styled
contracts are thus of special interest for thinly traded assets. For a further
discussion on Asian options the reader is recommended Yor [122].

1.7.3 Lookback Options

A lookback option depends on the maximum of the underlying asset over
some prespecified time. Let M be a closed subset of [0,T]. The buyer of a
standard lookback call/put (x =1/ — 1) will recieve at time 7' the amount

X = max (Itré%/)l(x(st - S7), 0)

The call on the mazimum or put on the minimum (x = 1 or x = —1,
respectively) will give to its holder at time 7' the amount

X = —K
max(max x(5; — K),0),

14



where K is a fixed positive constant.

To the best of our knowledge, lookback options was first studied in
Goldman, Sosin, and Gatto [54] and Goldman, Sosin, and Shepp [55]. The
idea behind lookback options is to solve the investors dilemma of market
entrance and/or market exit. Loosely speaking, they are meant to realize
the investors dream of “buying at the lowest” and “selling at the highest”.
However, lookback options are quite expensive and they have therefore never
become especially popular on the market.
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Chapter 2

Pricing Double Barrier
Options with Error Control

To the best of our knowledge, pricing formulas for continuous Furopean
double barrier options was first established in Kunitomo and Ikeda [78].
By using the Levy formula (cf. Kunitomo et al. [78]), Kunitomo et al.
expressed the price of a double barrier option as series of normal distribution
functions. Subsequently several authors have obtained other formulas and
methods to value continuous double barrier options. Hui [62], [63] solved
the pricing problem using separation of variables and Pelsser [98] derived
the value with the aid of contour integration. Both obtained formulas which
describe the price of a double barrier option as Fourier sine series. Geman
and Yor [51] computed the Laplace transform of the price as a function of
time to maturity. They invert the Laplace transform numerically to obtain
the option prices.

The numerical characteristics for the two different series solutions have
been compared in Hui, Lo, and Yuen [64]. They recommend that one should
use the Kunitomo-Ikeda pricing formulas since cancellation errors can ap-
pear in the Fourier series which may lead to substantial errors in the result-
ing theoretical values.

The purpose of this chapter is to derive the Kunitomo-Ikeda pricing
formulas and investigate the numerical properties of these formulas. In
particular, this chapter will derive error estimates for the truncation er-
ror that appears when the infinite series are approximated with a partial
sum. A similar investigation of the numerical properties of Kunitomo and
Tkeda’s pricing formulas have independently been carried out by Lou [91]
and Schroeder [110].
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The remainder of this chapter is structured as follows. Section 2.1 com-
putes analytical expressions for certain distributions which involve stopping
times associated with a Brownian motion. The section will also discuss
numerical characteristics of the formulas obtained. Section 3 considers the
pricing of double barrier options with zero rebate and Section 4 deals with
the valuation of rebate options.

2.1 Distributions Involving First Hitting Times

Take as given a filtered probability space (€2, F, P, {F; }+>0) carrying a stan-
dard one-dimensional Brownian motion {W;};>¢. If b € R, the first hitting
time of b, hereafter denoted py, is defined by

pp=1inf{t >0 : W, =0b}.

Introduce moreover a collection of probability measures {Pa }oer on Fi ac-
cording to

dP? = ¢~ 29 +Wigp,

The Cameron-Martin theorem yields that the stochastic process W, given
by

W) =W,—6t, 0<t<1,

is a Brownian motion with respect to (P?, {Fi}o<i<1)-
The objective of the first part of this section is to determine an analytical
expression of the distribution function

G_|_((J,, b13b2;9) = Pg(Wl <a, Pby < Pbys Pby < 1)7

where by < 0 < by, a < bo, and 8 € R. The key result is next lemma, the
proof of which is based on an idea described in Andersson [4].

Lemma 2.1. Suppose by < 0 < by, a < by, and 8 € R. Set p(o) =0,
09 =0, and define recursively, for n > 1,

p™ =inf{t > 0"V : W, = by}
and

o™ = inf{t > p™V . W, = by}
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Then, for anyn > 1,
G +(a,b1, b2; 0)

=Z (Pa(Wl <a, p(%_l) <1) —Pa(Wl < a, p(%) < 1))
i=1

+ P (W <a, p@r) <1, p1) < o)),

Proof. Suppose that A = {p(!) < oM} and B, = {p{™ < 1}. Note that for
all w € A°¢ we have p(V)(w) = p@ (w), which implies 0(® (w) = 0® (w), which
in turn gives p(® (w) = p® (w) and so forth. Hence, by induction on n it
can be shown that for all w € A® we have p(®"~D(w) = p(")(w) for every
n > 1, and, accordingly from this

g, ,lac =1p, lae (2.1)

for every n > 1. By a similar argument it follows that for all w € A and
each n > 1 it holds p®™ (w) = p®**1)(w) and thus,

1By, 14 =1B,,,,14 (2:2)
for every n > 1. Next observe that for any given sets C'; and Cy we have
loy1lo, = 1oy — 1oy leg. (2.3)
Successive applications of equations (2.1), (2.2), and (2.3) yield

1,14 = 1p, — 1p,1 e
= 1B1 — 1321Ac
=1p, — 1B, +1B,14
=1p, — 1B, +1B514a

— 1B1 —132 -|—lB3 —_ .. = ]-an +1B2n+11A

for any n > 1. By integrating both sides over the set {WW; < a} with respect
to the measure P? we get the desired result. O

Next step is to determine analytical expressions of the terms in the sum
in the expression of G;. To this end, let & denote the standard normal
distribution function and {U;};>¢ be the Brownian semi-group, i.e.

(Uf)(z) = E[f(z +W)], z€R,
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where f : R — R is bounded and Borel measurable. Recall that if p is a
stopping time with respect to {F;};>0 such that p < ¢, where ¢ is a fixed
positive number, then the strong Markov property for Brownian motion
tells us

E[f (W) | Fol(w) = (Ui—p(w) F) Wp(w) (@))-

The proof of the next lemma, follows that in Karatzas et al. [71], p. 95 and
p- 98.

Lemma 2.2. Let p\ be defined as in Lemma 2.1 and suppose a < by. For
any ¢ > 1 it holds

P(Wi <a, p# ) <1) =d(a—2q) (2.4)
and

P(W1 <a, p®) <1) = 3(a—28), (2.5)
where a; = i(by — b1) + b1 and B; = i(be — by).

Proof. Firstly, fix a positive number ¢ < 1 and note that the symmetry of
Brownian motion implies

(U111 (—o0,a)) () = P(b+ Wi < a)
— P(b+ Wi >2b—a) (2.6)
= (U1—t1[2b—a,oo))(b)

for any real numbers a and b.
The stopping time p = p2~1 A 1 is obviously bounded for any i > 1.
The strong Markov property in combination with equation (2.6) now implies

for w e {p < 1},

= E[L{w,>2,-a} | F5l (w)-
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By integrating over {p < 1} = {p(*~1) < 1} it follows

P(W, <a, p% D <1) = P(Wy > 2by —a, p%~1) < 1).
It is evident that P(p(*1) =1) = 0 and hence,

P(W; <a, p ) <1)=P(W;, >2by—a, p¥ ) <1).
Since by < 2by — a we find

{W1 >2by —a, pP D <1} ={W; >2by —a, 0¥ <1}

so that

P(Wy <a, p® 1) <1)=P(Wy >2by—a, 8* 2 <1). (2.7)

The relation 2by —a > by, the symmetry of Brownian motion, and equa-
tion (2.7) give
P(W1 > 2by —a, 0% < 1)
. (2.8)
= P( Wy, < 2(b1 — b2) + a, p(2z—3) < 1)

for i > 2. Equation (2.4) now follows by induction on 1.
By replacing p(=1 by p(?) and p%=2) by =1 in equations (2.7) and
(2.8) we get equation (2.5). O

Next we will extend Lemma 2.1 to the case 6 # 0.

Lemma 2.3. Let p*) be defined as in Lemma 2.1 and suppose a < by. For
any t > 1 and any 8 € R it holds

PY(Wy <a, pP1) <1) = e?%®(a — 205 — 0)
and

PY Wy <a, p®) <1) = ®Pid(a— 26— 0),
where «; and B; are defined as in Lemma 2.2.

Proof. Fix an integer j > 1. Observe that

. 1
P (W1 < a, p < 1) =E[exp(— 6° + 0W1) Ly, <o, o<1

a 1 .
:/ exp(—i 02 + 0z)P(W; € dz, p¥) < 1).

—00
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Define

| i, i=(j+1)/2, ifjis an odd number,
7= Gi, i =13/2, if j is an even number.

Lemma, 2.2 yields

d . 1 2 1
ZP(W, < () <1) = e 227
dz (Wisz p?isl)=em Vor
so that
j ¢ 1 1 dz
P9W<a, (])<1 :/ ex __92+0$__ -9 2
(W1 <a,p? <1) N p(-3 5(z—27) )—_27T
“ 1 dz
= e 20y — —(z — 2y —0)?)——=
/_OO xp (207 = 5(@ = 27— 6)°) 7=
=2 ®(a — 2y — 0),
which proves Lemma 2.3. O

Next we will focus on the remainder term
PY(Wh < a, p@ D) <1, o) < o)
in the expression of G,. Observe that
PY(Wy <a, p® ) <1, pM) < o) < PY(W; <a, p® < 1)
= ¢ ®(a — 26, - 0),

according to Lemma 2.3. The well known inequality
1
O(z) < —Ze 2 g <,
x

implies that the remainder term is bounded by

POY(Wy < a,p ™) < 1, p) < o)

a— 20, —0)?
(e — 26 ))

exp (29ﬂn — 2

1
~—a—20,—0
provided a < 28, + 0, and hence, given § < 2,

P'(Wy < a, p <1, o0 < o) = o(e™)

as n tends to infinity. This result in combination with Lemmas 2.1 and 2.3
imply Proposition 2.1 below.
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Proposition 2.1. Suppose by <0 < bo, a < by and let a; = i(by — b1) + by
and B; = i(ba — b1). If § < 2 then

G (a,b1,b2;0) = (e*°®(a — 204 — 0) — e*°D(a — 26; — 0))
i—1
+ Ry,

where Ryt = o(e*"‘S), n — 00, or more precisely
|Rnt1] < €®P®(a — 28, — 0).

Proposition 2.1 shows how one can control the truncation error, that is,
the error appearing as the infinite series in the expression of G is approx-
imated with a partial sum. Indeed, set

pi = 62(”0 (I)((J, — 2(11' — 9), q; = 62ﬁi9 é(a - 2/82 - 0)7
and define

G (a,b1,b5;0) = > (pi—a) (2.9)

{i:q;>€}

for any € > 0. Proposition 2.1 now yields
‘ G+(a, b1, bo; 0) — égf)(a, b1, bo; 0) ‘ < e

Of course, in practice there is one additional error source besides the
truncation error. The standard normal distribution function must be eval-
uated numerically. However, there are efficient methods with very high
accuracy to compute the normal distribution function, see e.g. Cody [35]
and thus, the approximation error of the normal distribution function is
negligible compared to the truncation error.

The intention with the remaining part of this section is to introduce and
determine certain distribution functions that will be useful in the sequel.
First recall that for any 6 € R,

G (a,b1,by; 0) = PP(W1 < a, py, < po,,pp, < 1)
provided b; < 0 < by and a < by. Now, let for any 8 € R,

G—(aablabZ;e) = Pe(Wl 2> @, Pb; < Poyy Pby < 1) (210)
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where b; < 0 < by and a > b;. Furthermore, given b; < 0 < b, set
I+(b13b2;0) = Pe(pb2 < Pbyy Py < 1)7

(2.11)
I_(b1,b2;60) = P?(py, < poys poy < 1),
and, if moreover b1 < a1 < ag < be,
J(a1,a2,b1,b;0) = P°(a1 < Wi < ag, pp, A pp, > 1). (2.12)

The next result shows that the above functions can be expressed in terms
Of G_|_.

Proposition 2.2. Let the functions G_, 1., I_, and J be defined as in
equations (2.10)-(2.12). Then

G_(a,b1,b9;0) =G (—a,—b1,—by;—0),
I(b1,b9;0) =D(0 — bo)
+ G4(b2,b1,b2;0) — G_ (b2, b1,b2;6)
I_(b1,b9;0) =1,(—b1,—bo;—0),
and
J(a1,a2,b1,b2;0) =P(az — 0) — ®(ay — )
— G4 (ag,b1,b2;0) + G (a1,b1,b9;0)
— G_(ag,b1,b9;0) + G_(a1, b1, by;0).
Proof. The expression for G_ follows at once from the symmetry of Brow-
nian motion.

Below, let p1 = py, and p2 = pp,. To prove the second equation in
Proposition 2.2, note that

I (b1, bo;0) =PP (W1 < by, p2 < p1, p2 < 1)
+P9(W1 > by, po < p1, p2 < 1)
=G4 (ba, b1, be; 6)
+ PP (W1 > b, po < p1),

since {W; > by} C {po < 1}. Tt is obvious that PY(W; > by, p1 = p2) =0
and, accordingly from this,

PO(W1 > by, po < p1) =P° (W1 > by)
— PY(W1 > ba, p1 < p2)
=PY(W; > by)
—PG(W1 > b, p1 < p2, p1 <1)
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since {p1 < p2} N{W7 > b} C {p1 < 1}, and the statement about I, in
Proposition 2.2 is established. The expression for I_ follows from symmetry.
It remains to determine J. Observe that

J(a1,a2,b1,b0:0) =P%(a1 < W) < ag)

—P(a1 < Wi <as, pr Apy<1)

=P’(W) <ap) —P°(W) < a1)

—~PY (W1 <ag, pt Ap2 < 1)

+PY(Wy <a1, prApe <1).

The expression for J is now a consequence of the relation
PY(Wy <a,piApa<1)=P'(Wy <a, ps <p1, p2 < 1)
+ P (Wi <a, pr < p2, 1 < 1),

valid for any number a. O

Next we will introduce the “truncated” counterparts to G_, Iy, I_, and
J. Let C;’Sf) be defined as in equation (2.9) and set for by < 0 < by and
a> bla

G9(a,b1,b1;0) = G (—a, —b1, —b1; —0). (2.13)
Furthermore, given b; < 0 < bo, put
7961, b2;0) = (0 — by)
+ GO (ba, b, b2;0) — G (b, b1, bo; 0), (2.14)
1 (b1, b3 0) =119 (~ b1, —ba; —0),
and, if in addition b; < a1 < as < by,
J (a1, ag,b1,bo;0) =B (az — 0) — B(a; — 0)
— C:‘Sf)(ag,bl,bg;ﬁ) +(~;$)(a1,b1,b2;0) (2.15)
- é(e)(ag, bl, bz; 0) + é(f) (al, bl, b2; 9)
Since \égf) — G4| < ¢, Proposition 2.2 now gives the error estimates

9 b ) — L 1,8 0) | < 2
] (2.16)
| 79(b1,b2;0) — I_(b1,b2;6) | < 2e,
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and
| 719 (a1, as, br, b2;0) — J(a1,as, b1, b2; 0) | < 4e. (2.17)

In the remaining sections it will be shown that the value of a double
barrier options with rebate can be expressed as a linear combination of the
functions I, I_, and J.

2.2 Pricing Double Barrier Options with Zero Re-
bate

The objective of this section is to calculate the theoretical value of a double
barrier option with zero rebate. Rebate options will be treated in the next
section.

Assume from now on that the price of the underlying asset {S;}i>0
evolves under the risk-neutral martingale measure ) according to

dSy = Si((r — q)dt + adWy), >0,

where the risk free rate r, the dividend yield ¢, and the volatility o are
fixed positive constants and W is a standard one-dimensional Q-Brownian
motion. Moreover, let the constants K, T', Hq, and Hy denote strike price,
maturity date, lower barrier, and upper barrier, respectively. Finally, set

T=inf{t >0 : Sy = Hy or Sy = Ha}

and recall that the payoff at time T of a continuous double-barrier knock-out
call/put option is given by

max (X(ST — K)70)1{7>T}

with x = 1/—1. The payoff of a continuous double-barrier knock-in call/put
is obtained by replacing the event { 7 > T'} by its complement.

Firstly, note that it is sufficient to price knock-out options. The value of
the corresponding knock-in options then follow by the fact that the sum of
two otherwise identical knock-out and knock-in call (put) options is a plain
call (put) option. Moreover, it suffices to value the options at time ¢ = 0.
The price of the contract at time 0 < ¢t < T then follows by replacing T
by T —t and Sy by S, provided that the barriers have not been reached
during the time-interval [0, ¢]. In this case the knock-out option is evidently
worthless.
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Theorem 2.1 below establishes the value of a knock-out double barrier
option at time ¢ = 0. The proof of Theorem 2.1 is based on a technique
sometimes referred to as change of numeraire, see Musiela et al. [95].

Theorem 2.1. Set

_ ln(.’L‘/S()) .
¢(x) - U\/T ) > Oa

and define ¢ = P(K), dy = y(Hy), and dy = (Hs). Suppose moreover

—q—d%/2)VT
90:(T 4 ;/)‘F and 0, = 0y + oV'T.

If K < Hs, the theoretical value vgo. at time t = 0 of a double-barrier
knock-out call option is given by

koo =Soe™ 1 J(max(c,dy), d2, dy, d2; 01)
— KG_TTJ(HI&X(C, dl), dz, dl, dg; 90) ;

where J is defined as in equation (2.12). If K > Hy, vgee = 0.
If K > H,, the theoretical value vgy, at time t = 0 of a double barrier
knock-out put option equals

Vkop =Ke " J(dy, min(c,dy), dy, d2; 6p)
— Soe T J(dy, min(c, dy), d1, d2; 61) -
If K < Hy, vgop = 0.
Proof. The theoretical value v at time ¢ = 0 of a double barrier knock-out
call/put (x =1/ —1) is given by
v = "TE?[max (x(Sr — K),0) 1(r>11)
—xSoe™ T EQ [ ATHWEL gk e
—xKe TTE? [Lixsroxi,r>1}]-

Define

d0 = o—(0%/2) T+UW$dQ’
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so that

v szoe_qTQ(XST >xK, 7>T)
(2.18)
—xKe"TQ(xSt > xK, 7 > T).

Set k = In(K/Sp), hy = In(Hy/Sp), and hy = In(Hy/Sp). Moreover,
suppose v € R and put
g VT

g

The scaling property for Brownian motion and the Cameron-Martin theorem
give

Q : Q Q
Q(x(WT + oWg) > xk, OggT(ut +oW,*) > hy, 01;1%)%(1/75 +oW,°) < hs)
= P(X(0 + W1) > xe, Orélgl(ﬁt + W) > dy Orgfgl(et + W) < dg)
= Pe(XWI > XCy Pdy /\pd2 > 1)3
(2.19)

where ¢, d1, and dy are defined as in Theorem 2.1.

If x =1 (x = —1), assume, as we may, that K < Hs (K > Hy). Let 6
and 6; be defined as in Theorem 2.1. By substituting v by r — g — 0?/2 in
equation (2.19) it follows

Q(xSr > xK, 7> T) =P (xWr > xc, pa, A pa, > 1)
J(max(c,dy),do,di,d2; 6p), if x =1,
J(d1,min(c,ds),dy,da; 0p), if x =—1.

The Cameron-Martin theorem gives that {WtQ — ot } o<¢<T is a Brownian
motion with respect to (Q, {F;}o<i<r). Thus, by setting v =r — g + 0?2
in equation (2.19),

Q(xSr > xK, 7> T) = P""(xWr > xc, pa, A pa, > 1)
J(max(c,dl),dg,dl,dg;91), ifX = 1,
J(dl,min(c,dz),dl,dz;91), ifX =—1.

Theorem 2.1 now follows by equation (2.18). O
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~(€)

Define the “truncated” price v, , of a double barrier knock-out call as

59— Soe=T 7O (max(c, dy ), dy, v, da; 01)

koc
— Ke™™ J© (max(c, dy), da, di , da; 6p),

where ¢, di, ds, 0y, and 61 are defined as in Theorem 2.1 and where the
(e)

function j2 is defined as in equation (2.15). Then, according to equation
(2.17),

Vkoe — 791 <4 Soe T + Ke ™).
koc

The same error estimate can also be obtained for the truncated price of an
double barrier put option, defined in analogy with the truncated price of
the corresponding call option.

2.3 Pricing Rebate Options

The final section of this chapter computes the theoretical value of the rebate
options associated with a double barrier option. Firstly, recall that

T=inf{t20:St=HlorSt=H2}.

The payoff at the maturity date 1" of the rebate option to a double barrier
knock-in option is given by

R1{7'>T}a

where R is a strictly positive constant. The theoretical value vy at time
t = 0 of this option equals therefore

Vkir = eiTTEQ [R1{7>T}]
=ReTQ(7>T).

Let 6y, di, and dy be defined as in Theorem 2.1. The scaling property
for Brownian motion and the Cameron-Martin theorem imply for any ¢ > 0

Q(7>1t) =P%(pg, Apg, >t/T) (2.20)
(cf. the proof of Theorem 2.1). Thus,
Vkir = Re_rTPGO(pdl N pdy > 1)

= Re " J(dy,dy, d1,dy; 0p).
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We now turn our attention to the rebate option associated with a double
barrier knock-out option. The payoff of this rebate option equal

Rlgr<ry.

The payment will occur at the time the barrier is hit, provided then, of
course, that this event occurs before time 7T'. Since the payoff date is random,
this contract does not fit in the theory described in the previous chapter.
However, from a economical point of view the rebate option is equivalent
with a claim that pays at time 7' the amount

GT(T_T)R].{TST}.

That is, if any the barriers are breached before time T then the money
paid out by the rebate option is invested in bonds. Thus, the theoretical
value vy, at time ¢t = 0 of a rebate option associated with a double barrier
knock-out option equals

Vkor = € "LE? [eT(T*T)R 1{r§T}] = E9 [e*”R 1{T§T}]'
To compute this value, set p1 = pg,, p2 = pa,, and
p12=p1 Ap2 AL
In view of equation (2.20) and since P(1r =T') = 0 we find
Vkor = E% [Re_’”T’jl’2 1{ﬁ1,2<1}].
It is obvious that
E%[Re P2 15 1y =E® [Re ™72 10, o ity
+E% [Re™r P12 L pa<pr, pa<1}]-
Suppose A = {p1 < p2, p1 < 1}. By the definition of P%,
E%[exp(—rTp1p) 1a] = E[exp(—%eg +0oW1 —rThia)1a ],
where E = E°.
Recall that if {Z;};>¢ is a (P, {F};>0)-martingale, p is a stopping time

such that p <1, and X is a bounded F,-measurable random variable, then
the optional sampling theorem implies

E|XZ]| = E[XZ,). (2.21)
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Since the random variable exp(—rT'p12) 14 is F,-measurable and bounded
and p1 2 < 1, equation (2.21) yields

1
E[exp(—§93 +0W1 —rTpi2) 1A]
1., _
= E[exp(— 500[)1,2 + 00Wﬁ1’2 — TTPI,Q) 1A]
1
= E[exp ((90 - HQ)Wﬁl,Q - 56351,2 + 62Wﬁ1,2) La ]’

where 6y = /03 + 2rT. Note that if w € A then W, ) (w) = di and,
accordingly from this,

1
E[exp (0 — 02)Wp, , — §0§ﬁ1,2 +6:W5,,) 14 ]

1
= €Xp ((90 - 02)d1 ) E[exp(—§9§ﬁ1,2 + 92Wﬁ1’2) 1a ]

Moreover, according to equation (2.21),

E[exp(—%egﬁm +0:W,,,) 14 ] = P"(A)
= 1_(d1,ds;62).

To sum up,

E% [ exp(—1Tp12) 1 <ps, p1<13] = €xp (00 — 02)d1) I_(dy, da; 02).

In a similar way it can be shown that

E% [ exp(—1Tp12) 1py<p1, ps<1}] = €xp (00 — 02)d2) I (dy, da; 02).
We have arrived at the following theorem.
Theorem 2.2. Letd;, da, and 8y be defined as in Theorem 2.1 and suppose
that J is defined as in equation (2.12). The theoretical value vg; at time
t =0 of a rebate option to a double barrier knock-in option is given by

Vgir = Re™"" J(dy,da, dy, da; 0p).

31



Let I, and I_ be defined as in equation (2.11). The theoretical value
Vkor ot time t = 0 of a rebate option to a double-barrier knock-out option
equals

Okor = ReW0=02)U T (dy, dy; 05)
+ Relfo=02)d21, (4, dy: 6s),

where 0y = \/98 + 2rT.

The price of the contracts at time 0 < ¢t < T follows by replacing T
by T —t and Sy by S, provided that the barriers have not been reached
during the time-interval [0,¢]. In this case, the values of the rebate options
are obvious.

Now, put

17,(;3, = Re™™T J9(dy, dy, dy, do; o)
and
'f),(;)T — Relfo—02) f(f)(dla dy; 02)
+ Rel%=02) %2 194, dy; 65),

)

where di, do, 8y, and 0, are defined as in Theorem 2.2 and where f(f ,

f(_e), and J(© are given by the equations (2.14) and (2.15). We now have,
according to the equations (2.16) and (2.17),

|Vkir — ﬁ,(c?rl < 4Re "Te
and
|Vkor — 17](9(2r| < 2R (6(00_‘92) di 4 6(90—92)(12) €,

which give the promised error estimates.
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Chapter 3

Extension of the Corrected
Barrier Approximation by

Broadie, Glasserman, and
Kou

In contrast to continuous barrier options the price of a discrete barrier
option does not in general possess a closed form price formula. The price
can be expressed in terms of the multivariate normal distribution. Here the
dimension of the relevant multivariate normal distribution is equal to the
number of price fixing dates, which, in most cases, is too large for numerical
evaluation.

Other methods to price discrete barrier options have been discussed in
the literature. Procedures based on so called lattice methods have been in-
vestigated by, among many others, Ahn, Figlewski, and Gao [1] and Broadie,
Glasserman, and Kou [29]. These methods will be considered in greater de-
tail in Chapters 4 and 5. In Boyle, Broadie, and Glasserman [25] Monte
Carlo methods were employed to price discrete barrier options. Another
technique which has given remarkably good results was first proposed by
Chuang, [34], and, independently, by Broadie, Glasserman, and Kou [28].
They suggested that one should use a result from sequential analysis and
queue theory, namely “Siegmund’s corrected heavy traffic approximation”.

Chuang only suggested the possibility of using Siegmund’s result to price
discrete barrier options. However, Chuang never pursued the idea. Broadie
et al. derived pricing formulas for some discrete (single) barrier options,
but not all.
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The purpose of this chapter is to continue the work initiated by Broadie
et al. and, by using the Siegmund heavy traffic approximation, estimate
the price of some discrete barrier options omitted in Broadie et al.. The
work presented in this chapter has similarities with an independent paper
by Kou, see [75]. His results will be discussed in the next section.

This chapter is structured as follows. Section 3.1 presents the results
by Broadie et al. as well as our main result about single barrier options.
The latter result will be proved in Sections 3.2 and 3.3. Moreover, Section
3.3 discusses Siegmund’s corrected heavy traffic approximation. Section 3.4
presents some numerical examples. Finally, Section 3.5 treats the valuation
of discrete double barrier options.

3.1 Barrier Corrections for Single Barrier Options

We assume throughout this chapter that the price of the underlying asset
{St}+>0 evolves under the risk-neutral martingale measure @) according to

dS; = Sy ((r — q)dt + adW?), >0,

where {WtQ}tzo is a standard one-dimensional Brownian motion with re-
spect to Q and where the risk free rate r, the dividend yield g, the volatility
o, and the initial price Sy are positive constants. Moreover, let the constants
K and T denote the strike price and maturity date, respectively. Suppose
that the monitoring dates M are equally spaced in time, i.e.

M = {At, 2At,..., mAt}, At =T/m,

where m is the number of monitoring times. For single barrier options the
barrier level will be denoted H, where H is a positive number, and for
double barrier options the barrier levels will be written Hy and Hy, where
Hq, Hy are positive numbers with H; < Ho.

The most naive approach to approximate the value of a discrete barrier
option would be to ignore the fact that the barrier is discrete and price the
option as a continuous barrier option with the same barrier. For continuous
barrier options there are known formulas, see e.g. Rich [102] and Chapter
2 in this thesis. However, numerical examples show that this method can
lead to substantial mispricings, see e.g. Broadie et al. [28], even in the case
of daily monitoring. In a paper by Broadie et al. [28] it was shown that
the simple approximation discussed above can be improved for some single
barrier options just by shifting the barrier. Theorem 3.1 below is taken from
[28]. For the definitions of the various barrier options, see Section 1.7.1.
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Theorem 3.1. Let v(™) (H) be the price of a discretely monitored up-and-
out/in put or down-and-out/in call at time t = 0 with barrier H and mon-
itoring dates M. Let v(H) be the price at time t = 0 of the corresponding
continuously monitored barrier option. Then, as m — oo,

o (H) = v(HeEPVTIm) 4 o(—)

Jm

where + applies if H > Sy,— applies if H < Sy, and = —((1/2)/V27 =
0.5826, with ¢ the Riemann zeta function.

Numerical results in the same paper indicate that the shift of the barrier
gives surprisingly good approximations for moderate to large values of m if
the initial asset price is not too close to the barrier.

The proof by Broadie et al. of Theorem 3.1 is based on certain results
by Siegmund and, to some extend, Yuh, see [111] and [113]. This chapter
will apply the same results to find estimates of the price of discrete down-
and-out/in put, up-and-out/in call, and double barrier options. Note that
none of these contracts are included in Theorem 3.1. This section will
consider single barrier options. We will come back to double barrier options
in Section 3.5.

Before stating the main result in this section we will introduce some def-
initions. Suppose that ® denotes the standard normal distribution function
and let the function F be defined by

Fy(a,b;0) = ®(a — 0) — 2®(a — 20— 0)
where a < b, b > 0, and # € R. Moreover, if a > b, b < 0, and 8 € R then
F_(a,b;0) = F1(—a,—b;—0).
Theorem 3.2. Suppose that

_ ln(l‘/S()) T
¢(x) - O'\/T ) > Oa

and let ¢ = Y(K) and d = Y(H). Set moreover

—q— /2T
90:(7" ¢ ’/OVT 0, = 0y + oV/T.

g
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Let v&iﬁ? denote the theoretical value at time t = 0 of a discrete up-and-out
call with monitoring dates M. If K < H then, as m — 00,

o) =Soe” 1 (Fy (d,d + B/v/m; 61) — Fy(c,d + B/v/m; 61))

. Ke_TT(F_F(d,d‘i‘ﬂ/\/E; 90) — F+(C,d+ﬁ/\/ﬁ; 00))

where B is defined as in Theorem 3.1. If K > H, u&’;‘c) =0.
(m)

The theoretical value Vgop Gt time t = 0 of a discrete down-and-out put
with monitoring dates M equals

o) =Ke ™" (F_(d,d — B/v/m; 60) — F_(c,d — B/v/m; 6o))
~ Soe T (F_(d,d — B/v/m;01) — F-(c,d — B/v/m;01))

+ 0(%), m — 00,
provided K > H. If K < H, 'U((z:lp) = 0.

Remarkably enough, one will not get the above approximations by sim-
ply shifting the barrier as in Theorem 3.1. The pricing formulas for the
corresponding continuous barrier options are, of course, obtained by send-
ing m — oo in Theorem 3.2.

The value of the corresponding knock-in options now follow by the fact
that the sum of two otherwise identical knock-in and knock-out call (put)
options is a plain call (put) option.

Before we proceed and prove Theorem 3.2 we will make some comments
about the results in Kou [75]. In that paper it is shown that Theorem 3.1
actually can be extended to cover down-and-out/in puts and up-and-out/in
calls as well. However, numerical examples that will be presented in Section
3.4 indicate that the approximation formulas in Theorem 3.2 in most cases
yield better results.

3.2 An Exact Expression of the Price

Suppose P is a probability measure, {W;};>¢ is a standard one-dimensional
Brownian motion with respect to P, and

dP’ = ¢ 30" +Wigp,
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where 8 € R. Moreover, put for each b # 0,

pl()m) =inf{t € A, : kW > Kb},
where A, = LN, and « = sign(b). Finally, set

Pt = Po Ay b1 <0 <by.

Note that if pp = lim,, 0 pl()m), then Lemma 2.3 implies that the func-

tions F; and F_, defined as in the previous section, may be identified as
Fy(a,b;0) = Pa(Wl <a,pp>1), b>0, a<b,

and
F_(a,b;0) = Pa(Wl >a,pp>1), b<0, a>0b.

The next lemma will be useful to price both discrete single and double
barrier options.

Lemma 3.1. Let the function 1 and the constants c, 01, and 05 be defined
as in Theorem 3.2. Suppose that Hy and Hy are real numbers such that
0 < H; < Sy < Hy and set di = (Hy), d2 = (Ha), and

r=inf{t e M : S; < Hy or S; > Ha}.
If x € {—1,1} then
e_TTEQ[max (x(St — K),0)1{,>71]
— 4
=xSoe™ P (x W1 > xe, ply, > 1)

— XKefrTPOO(XWl > Xxe, p((;:ljb > 1).
Proof. Note that

e "TE? [ max(x(Sr — K),0)1{;>7}]
=xSoe ITER [e_("2/2) T+oWyp Lixsp>xi,r>T }]

— xKe TEY [Lixsroxr,r>T3]-
Let
d0 = o= (0/2) T+UW$dQ’
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so that
e "TEQ [ max(x(Sr — K),0) 1{T>T}]
szoe_qTQ(XST >xK, 7>T)

—xKe ™'Q(xSt > xK, T >T).

Set Ay, = LN, k = In(K/Sp), h1 = In(H1/S,), and hy = In(Hs/Sp).
Moreover, suppose v € R and put
VT

0= .
o

The scaling property for Brownian motion and the Cameron-Martin theorem
give

Q(x(vT + O'WI(?) > xk, ?el}\irl(yt + oW > hy, gréz}v)[((yt +oWP) < ha)

= P(X(H—i- Wy) > xe, tgjg(ﬁt—i— W) > dy ggjﬁ(Ot—i— W) < d2)

= Pa(le > xc, pgﬁziz >1),
(3.1)

where ¢, di, and dy are defined as in Lemma 3.1.
Suppose 6y and 6; are defined as in Lemma 3.1. Substitute v by r — g —
02 /2 in equation (3.1) and conclude

Q(xSr > XK, > T) = P%(xWr > xc, pi'y, > 1)
The Cameron-Martin theorem gives that {WtQ — ot }o<¢<T is a Brownian
motion with respect to (Q, {F:}o<i<r). Thus, by setting v =r — g + 02 /2
in equation (3.1),
Q(xSr > xK, 7> T) = P (xWr > xc, py), > 1)
and the proof is complete. O
Assume b >0, a < b, 8§ € R and consider

F{™ (a,b;0) = P(W1 < a, pi" > 1).
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The next objective is to show that the price of a discrete up-and-out call

and a discrete down-and-out put may be expressed in terms of the function
™,
Let us to begin with consider discrete up-and-out call options. Suppose

that K < H and let ¢, d, 6y, and 61 be defined as in Theorem 3.2. By letting
H; — 0 and setting H, = H and y = 1 in Lemma 3.1 we get

vim) =Gy~ pir (W1 > c, p&m) >1)

— Ke™ ' pho (W1 > p&m) >1 )
The definition of Fj_m) implies
pP? (W1 >, pgm) > 1) = Fj_m) (d,d;0) — Fim) (c,d;0),
for any 8 € R, which gives the desired representation;
o™ =Spe~ " (F™ (d, d;0:) — F™ (¢, d; 61))

— Ke~ T (F™(d,d: 00) — F™ (¢, d; 05)).

A similar argument in combination with the symmetry for Brownian
motion give that the value of a discrete down-and-out put equals

Ufﬂf =Ke ™" (FJ(rm)(—da —d; —6p) — FJ(rm)(—c, —d; —69))

— Soe™ T (F™ (~d, ~d; —6,) — F{™ (¢, ~d; 1)),

provided K > H.
The next section discusses an approximation of the function Fim).

3.3 Siegmund’s Corrected Heavy Traffic Approx-
imation

The next result is often referred to as Siegmund’s corrected heavy traffic
approzimation.

Theorem 3.3. Suppose b >0, a < b, 0 € R, and assume that (B is defined
as in Theorem 3.1. If

. on
g,()m):mf{nGN : ﬁ+Wn>b\/r_n},
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then, as m — oo,
P(H\/ﬁ—FWm < ay/m, gl()m) < m)

= HOHBIVMG (0 — 2(b + B/v/m) — 6) + o(ﬁ).

For a proof of Theorem 3.3, see Siegmund [112] pp. 220-224.
First some comments about the constant 3. If, for simplicity, o™ =
Q,Sm) and W™ = On//m + Wy, n € N, then it can be shown that

B = li_1)n E[W;’ZL) — by/m; o™ < oo],

see e.g. Siegmund [112], p. 215. Thus, the constant S may be viewed as
an approximation to the average of the amount by which the random walk
{6n/v/m + Wy }nen exceeds the boundary by/m the first time the random
walk is above the boundary. For further details on so called overshoot
random variables the reader may consult Lotov [90] or Siegmund [112].

Now, note that the Cameron-Martin theorem and the scaling property
yield

P(0v/m + Wy, < aym, g,()m) <m)= Po(Wl < a, pl()m) < 1).
Therefore, according to Theorem 3.3,
Fj_m) (a,b;0) =P (W1 < a)

—Pe(Wl <a, pgm) < 1)
=®(a — 0)

1
- IO~ 2(b + V)~ 6) + ol )

as m — oo. By comparing this expression of F;"” with F!{ in Section 3.1
we find that

FJ(rm)(a,b;Q) :F+(a,b+ﬁ/\/ﬁ;0)+o(%), as m — oo. (3.2)

Thus, to calculate the probability with respect to P? of the event
{W1 <a, ﬂz(,m) >1}
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using the formula for a continuous barrier, one should first lift the barrier
B/+/m units upwards. This compensates for the fact that when the ran-
dom walk {6t + Wy, t = 1/m,2/m, ...} breaches the barrier, it exceeds it
approximately with 8//m units.

Equation (3.2) in conjunction with the results in the previous section
complete the proof of Theorem 3.2.

3.4 Numerical Examples

Let us first consider discrete up-and-out call options. Table 3.1 compares
the option values obtained by different methods. The first column in the
table displays the level of the barrier. The values of the other option pa-
rameters are in the caption. The second column contains the value of the
corresponding continuous barrier option. In the third column we have used
the formula in Theorem 3.2, with o(1/+/m) set to zero.

The values in the fourth column are established by a method proposed
in Broadie et al. [28] and Kou [75], that is, lifting the barrier upwards by a
factor exp(fo+/T/m) and then use the formula for the value of a continuous
up-and-out call.

The prices in the fifth column are determined by a so called trinomial
method presented in Broadie et al. [29] (the errors of the trinomial prices
are according to the same article approximately +0.001). Finally, in the
last three columns we have the relative error measured in percentage for the
different approximations.

Note the surprisingly great differences in price between the discrete and
the corresponding continuous barrier option. So it is worth to emphasise
that one should not neglect the fact that some barrier options are discretely
and not continuously monitored. The table also shows that the approxima-
tion derived in this chapter yields good results, and that the accuracy of
the result is dependent of how close the barrier is to the initial price of the
underlying asset. One may as well note that our approximation performs
better than the approximation in Broadie et al. [28] and Kou [75].

In Table 3.2 we have varied the number of price fixing dates as well.
As is to be expected, the estimate developed in this chapter degrade as the
number of monitoring times decreases. In the extreme case with the barrier
very close to the initial asset price, the method even performs worse than
the approximation in Broadie et al. [28] and Kou [75]. However, one may
remark that in the extreme case none of the methods work especially well.

In the final example, presented in Table 3.3, we have examined how the
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Table 3.1: Price results for up-and-out call options, varying H. The option pa-
rameters are Sy = 110, K = 100, ¢ = 0.3, r = 0.10, ¢ = 0.0, T = 0.2, and
m = 50. If one assumes that there are 250 trading days per year, then m = 50
corresponds to daily monitoring.

Continuous BGK Trinomial Relative error
Barrier H6 and K Method (in percent)
H (1) (2) (3) 1 @ 6

155 12.775 12.891 12.905 12.894 09 00 01
150 12.240 12.426 12.448 12.431 1.5 0.0 0.1
145 11.395 11.676 11.707 11.684 25 01 0.2
140 10.144 10.541 10.581 10.551 39 01 03
135 8.433 8.947  8.994 8.959 59 01 04
130 6.314 6.909  6.959 6.922 88 02 0.5
125 4.012 4.605  4.649 4.616 13.0 0.2 0.7
120 1.938 2410  2.442 2.418 19.8 03 1.0
115 0.545 0.803  0.819 0.807 325 05 1.5
112 0.127 0.257  0.264 0.260 51.1 1.2 1.6

other parameters influence the accuracy of the approximation.

It is of course not possible to draw any certain conclusions from just
numerical examples. But the results presented here indicate that the ap-
proximation gives good results for small values of T'/m and if the barrier is
not too close to the initial price of the underlying asset.

3.5 Barrier Corrections for Double Barrier Op-
tions

The purpose of this section is to determine approximations for the value of
discrete double barrier options. Firstly, recall that

A" = inf{t € A s W, > byor Wy <bi}, by <0< by,
where A, = LN, . Now, define
0 (a1, a2,b1,b230) = P’ (a1 < Wi < an, 93, > 1)

for b1 < 0 < bg and b; < a1 < ag < by. Lemma 3.1 gives that if K < Hy
(m)

oo ab time ¢ = 0 of a discrete double-barrier

then the theoretical value v
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Table 3.2: Price results for up-and-out call options, varying H and m. The option
parameters are So = 110, K =100, 0 = 0.3, »r =0.10, ¢ = 0.0, and T' = 0.2.

Continuous BGK Trinomial Relative error
Barrier H6 and K  Method (in percent)
m H (1) (2) (3) 1 2 3

130 6.314 7.124  7.221 7.148 11.7 03 1.0
125 4.012 4.829 4.918 4.851 173 05 14
25 120 1.938 2.600 2.669 2.616 259 06 1.9
115 0.545 0.916 0.950 0.925 41.1 09 28
112 0.127 0.320 0.336 0.329 614 3.0 20
130 6.314 7.837  8.286 7.934 204 12 44
125 4.012 5.622  6.062 5.721 29.9 1.7 5.9
5 120 1.938 3.326  3.683 3.409 43.1 2.5 8.0
115 0.545 1.404 1.624 1.481 63.2 52 9.6
112 0.127 0.622 0.751 0.708 82.1 123 6.0

Table 3.3: Price results for up-and-out call options, varying K, o, and T. The
option parameters are So = 110, r = 0.1, and ¢ = 0.0 for all panels. Panel A has
K =100, 0 =0.3, T =1, and m = 250 (daily monitoring). Panel B has K = 100,
o =0.6,T = 0.2, and m = 50 (daily monitoring). Panel C has K = 90, o = 0.6,
T = 0.2, and m = 50 (daily monitoring)

Continuous BGK Trinomial Relative error
Barrier H6 and K Method (in percent)
Panel H (1) (2) (3) 1 2 G

155 6.798 7.270  7.290 7.274 6.6 0.1 0.2
A 140 2.916 3.251  3.265 3.254 104 0.1 0.3
125 0.566 0.693  0.699 0.695 18.6 0.2 0.6
140 3.766 4.516  4.578 4.531 169 0.3 1.0
B 130 1.576 2.086 2.130 2.097 249 05 1.6
120 0.331 0.541 0.561 0.546 39.4 0.9 28
140 7.171 8.277 8.354 8.296 13.6 0.2 0.7
C 130 3.653 4.550 4.608 4.565 20.0 0.3 0.9
120 1.110 1.629 1.659 1.637 322 05 14
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knock-out call with monitoring dates M equals
IUI(cTOnC =Soe™ 1" J™) (max(c, d1), d2, d1, do; 61)
— Ke_TTJ(m) (max(c, dl), dQ, d1, dg; 90),

where the constants ¢, di, do, 6y, and 8, are defined as in Theorem 3.2 and
Lemma 3.1. Similary, if K > H; then the theoretical value vy, of a discrete
double barrier knock-out put at time ¢ = 0 is given by

Vkop =K e™T ™ (dy, min(c, dy), d1, da; 6)
- S()e_qTJ(m) (dl, min(c, d2), dl, dg; 91) .

The price of a double barrier knock-in option can be obtained using a similar
argument as in Section 3.1. Thus, to estimate the price of a discrete double
barrier option it suffices to find an approximation of the function J™.

Let J be the continuous analogue to J("™), that is, for given b; < 0 < by
and bl S ai S a9 S b2 set

J(al,ag,bl,bg;e) = Pa(al < Wi < aqg, Po1,by > 1)
with
(m)

= lim .
Pb1,bs m-300 pbl,b2

The function J can be computed with aid of Propositions 2.1 and 2.2.
Siegmund suggests, see [111] p. 716, that one approximate the function J(™
by computing the function J with the lower barrier replaced £/+/m units
downwards and the upper barrier moved 3/1/m units upwards (cf. equation
(3.2)). In other words, Siegmund suggests the following approximation

J™ (a1, ag,b1,bo;0) = J(a1,az, by — B/v/m, by + B/v/m;6).

However, in this case there are no estimates of the approximation error but
numerical examples presented in Siegmund [111] indicate that the estima-
tion yields good results.

To see how the approximation performs, we will now present some nu-
merical examples. Tables 3.4 and 3.5 show the price of a discrete double
barrier knock-out call. The prices in the column called “Trinomial method”
are determined by a trinomial method that will be discussed in the next
chapter. The error for the prices in “Trinomial method” are approximately
+0.001.
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Table 3.4: Price results for double barrier knock-out calls, varying H; and Hs. The
option parameters are Sy = 100, K = 100, ¢ = 0.3, »r = 0.10, ¢ = 0.0, T = 0.2,
and m = 50 (daily monitoring).

Continuous Trinomial Relative error
Barrier Ho6 Method (in percent)
H, H, (1) (2) (3) (1) (2)

70 130 4.5651 4.7784 4.7842 4.6 0.1
75 125 3.5614 3.8375 3.8446 7.3 0.2
80 120 2.3499 2.6524 2.6601 11.7 0.3
85 115 1.1408 1.4055 1.4120 19.2 0.5
90 110 0.2284 0.3791 0.3826 40.3 0.9
75 110 0.3423 0.4799 0.4841 29.3 0.8
90 125 3.2292 3.6074 3.6143 10.7 0.2

Table 3.5: Price results for double barrier knock-out calls, varying Hy, Hs, and
m. The option parameters are Sy = 100, K = 100, ¢ = 0.3, r = 0.10, ¢ = 0.0,
and T = 0.2.

Continuous Trinomial Relative error
Barrier Ho6 Method (in percent)
m _Hy H, (1) (2) (3) (1) (2)

80 120 2.3499 2.7606 2.7752 15.3 0.5
85 115 1.1408 1.5052 1.5180 24.9 0.9
25 90 110 0.2284 0.4441 0.4514 49.3 1.6
75 110 0.3423 0.5445 0.5362 37.1 1.5
90 125 3.2292 3.7363 3.7491 13.9 0.3
80 120 2.3499 3.1157 3.1726 25.9 1.8
85 115 1.1408 1.8563 1.9115 40.3 2.9
5 90 110 0.2284 0.7035 0.7401 69.1 4.9
75 110 0.3423 0.7570 0.7962 57.0 4.9
90 125 3.2292 4.1294 4.1724 22.6 1.0
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The prices in Tables 3.4 and 3.5 indicate that the accuracy in the pricing
formulas for double barrier options is slightly worse than in the single barrier
case. However, still the approximation gives good results if the value of
T /m is small and if the barriers are not too close to the initial price of the
underlying asset.
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Chapter 4

Pricing Discrete Barrier
Options Using Lattice
Random Walks

A widely used numerical procedure in option pricing is the so called binomial
method. This method estimates the price of an option by replacing the
driving Brownian motion in the underlying price by a simple random walk.
The binomial method was introduced by Cox, Ross, and Rubinstein and,
independently, by Rendleman and Bartter, see [37] and [101], respectively.
Since their seminal work the binomial method has been extended in various
directions by, among many others, Boyle [23], Kamrad and Ritchken [70],
and Rogers and Stapleton [106]. In particular, the binomial method and
some of its generalisations have shown to be very useful in the pricing of
discrete barrier options, see for instance Ahn, Figlewski, and Gao [1] and
Broadie, Glasserman, and Kou [29]

This chapter has two objectives. The first is to design an efficient nu-
merical procedure to price discrete European barrier options using lattice
methods, i.e. the driving Brownian motion in the underlying asset price is
replaced by a lattice random walk. The method discussed in this chapter
will be able to value all forms of discrete barrier options. We may add
that our method can also be applied on other problems that involves the
evaluation of Wiener integrals. The method can for instance be useful to
determine the Wiener measure of cylinder sets. However, for ease of expo-
sition this chapter will mainly study the pricing of discrete barrier options.
For a further discussion about methods to evaluate Wiener integrals, see
Steinbauer [115].
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The second aim of this chapter is to continue the research by, among
many others, Leisen and Reimer [84], Heston and Zhou [58], Diener and
Diener [40], and Walsh [121] to characterise the rate of convergence of lattice
methods for initial value problems. To this end we will present certain
results from the theory of Besov spaces (see Bergh and Lofstrom [14]). These
results will also be useful to construct an efficient procedure to price discrete
barrier options.

The chapter is structured as follows. Section 4.1 gives a brief introduc-
tion to the lattice method and presents a naive approach to price discrete
barrier options. Section 4.2 discusses Besov spaces and the rate of conver-
gence for lattice methods. Section 4.3 returns to the problem of pricing
discrete barrier options. Based on the results in Section 4.2 we enhance
the method discussed in Section 4.1. Section 4.4 presents some numerical
examples. Finally, Section 4.5 concludes this chapter with suggestions for
future research.

4.1 Preliminaries

Suppose {S;}¢>0 is a geometric Brownian motion with drift, that is
dSt:St(’I]dt‘f‘O'th), tZO,

where {W;};>¢ is a standard one-dimensional Brownian motion and 7 € R,
o > 0, and Sy > 0 are fixed constants. Assume M = {t1,t2,... ,tpm—1,tm}
where 0 < t1 < t9... < t,, = T and suppose that the functions Hy : M —
[0,00) and Hy : M — (0, 00| satisfies H; < Hy. This chapter will design a
numerical procedure to estimate the expectation

v= E[‘I’(ST) 1{ H1(t)<S¢<H2(t),tEM}]a (4.1)

where U : (0,00) — R. By choosing ¥(z) = e " max(z — K,0) or ¥(z) =
e "' max(K —z,0) and n = r — g we find that v equals the theoretical price
at time ¢t = 0 of a discrete barrier option with strike price K.
Next, put v = — 02?/2 and set for each i = 1,2,... ,m,
. In (Hl(tz)/SO) - Vtz' . In (Hz(tz)/S()) - I/ti

a; and bi
(o} g

The functions x; : R — {0,1}, i« = 1,2,... ,m, will denote the indicator
functions of the intervals I; = (a4, b;), that is

( ) 1, ifzxel;,
(1) =
Xi 0, otherwise.
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Moreover, suppose that
Ti=ti—ti—1, 1=1,...,m,

with t() = 0.
Now, let the class of operators {U;};>o denote the Brownian semi-group,
that is

Uf)(z) = E[f(z +W)], z€R,

where f : R — R satisfies some appropriate integrability conditions, and
introduce a function v,,—1 by setting

vm1(@) = Ur,y (9 (S0 O)xm()) (@), 5 €R
If we define recursively

vi—1(z) = (Ur(vixi))(z), z€R,

for 1 <4 < m — 1, then the Markov property for Brownian motion tells us
that the quantity v in equation (4.1) equals v = v (0).
We are thereby led to the problem to compute the function

z = (Urf)(z)

for a given function f and fixed 7 > 0. This problem is closely related to
solving the initial value problem for the heat equation, an observation that
goes back to Bachelier [6]. Namely, the function u(z,t) = (U;f)(z), = €
R, t € [0, 7], is the solution to the initial value problem

192 :
%—?25% in R x (0, 7],
=f

uli=0 on R.

See Karatzas et al. [71] for further details. Thus, the function z — (U, f)(z)
equals the solution of the initial value problem for the heat equation at a
fixed time 7.

One well-known approach to estimate the function z — (U, f)(z) is
given by a so called lattice method. That is, the Brownian motion in the
definition of the Brownian semi-group is replaced by a lattice random walk.
To be more specific, let  be a lattice random variable with span 1, i.e.
P(¢ € Z) = 1, such that

E[¢]=0 and 0< X=Var(() < occ.
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Furthermore, suppose (1, ..., (, are stochastic independent copies of ¢ and
define

U@ = Blf@+h3 6], withn =55
k=1

for all h > 0, t € R, = Ah?N,, and each z € R. According to the central
limit theorem the sequence of random variables

n
{hnkz_lgk}f_l, with by = [,

will converge in distribution to W... This gives us reason to believe that
UT(C’h") f might be a good approximation of U, f for sufficiently large values
of n. However, as we will show in Section 4.3, this approach can be improved
considerably.

Before we go on and consider the rate of convergence for a lattice method,

let us just mention that the operator UT(C’h") can also been seen as a stable
finite difference operator. Chapter 5 in this thesis will give a more detailed
discussion about the relation between stable finite difference operators and
lattice methods.

4.2 Rate of Convergence

The continuous mapping theorem (see Durrett [44], p. 87) gives that if f
is a bounded function such that the set of all discontinuity points of f has
Lebesgue measure 0, then, for each fixed z € R,

‘(UT(C’h”)f)(m) — (U:f)(@)| = 0 asn — oo,

where h,, is defined as above, that is

The objective of this section is to state necessary and sufficient conditions
on f and ( such that, given x € R and 7 > 0,

(U f) (@) = (U f)(@)| = O(1/n%), asn = oo,

for some a > 0.

50



In the literature there are lots of contributions to the solution of this
problem. For instance, Berry [13] and Esseen [46] consider the special case
when f is piecewise constant and von Bahr [7] when the initial value is a
polynomial. Among many others, Diener and Diener [40] and Leimar and
Reimer [84] analyse the binomial tree for initial values that corresponds to
the payoff function of a call option. Kreiss, Thomée, and Widlund [77],
Heston and Zhou [58], Walsh [121], Butzer, Hahn, and Westphal [30], and
Lofstrom [93] examine, among other things, the dependence between the
smoothness of f and the rate of convergence for lattice methods.

Before we comment on these papers any further we will introduce some
definitions. A lattice random variable ¢ with span 1 and 0 < A = Var(¢) <
o0 is said to be consistent of order u, where y is an integer, if

E[e’fc] = E[e’fw*} +O0(E*2), as € =0,

where 7 is the imaginary unit and £ € R. Furthermore, we will say that ( is
ezactly consistent of order y if ¢ is consistent of order y but not consistent
of order p + 1.

It is well known that there is a close connection between the consistency
number and the moments of a random variable. On one hand, if { has an
absolute moment of order u + 1, i.e. E[|¢|*t!] < oo, and ( is consistent
of order y then E[¢F] = E[WF] for all positive integers k < p+ 1 (see
Durrett [44], p. 101). On the other hand, if ¢ has a moment of order y + 2
and E[(F] = E[W}] for all positive integers k < y+ 1 then ( is consistent
of order p (see Lukacs [92], p. 23).

In connection with a trinomial tree, each fixed increment of the underly-
ing random walk equals 0 or £1. Suppose the symmetrical random variable
¢ has (at the most) three possible outcomes. Thus,

1
P@=0)=1-X and P(#=1)=P@=-1)=X

with 0 < A = Var({) < 1. The random variable ¥ can be exactly consistent
of order 2 or 4. To see this, note that Taylor’s formula imply as & — 0,

E[eiw] —E[e®™"x] =1 — X+ Acos(€) —e*)‘g

Al 4, A 1y 8
=—|z- — (- = O(&°).
8(3 )\)f +48(>\ 15)€+ (&)
Hence, the random variable 1 is exactly consistent of order 4 if

A=1/3.

51



For any other choice of A in (0, 1] the random variable ¥ is exactly consistent
of order 2. In particular, a Rademacher random variable, that is, a sym-
metrical random variable only taking the values 41, is exactly consistent of
order 2.

Next we will introduce certain Banach spaces known as Besov spaces
and below denoted by Bf , s > 0. The Besov spaces are subspaces of the
Banach space Cj, where Cy denotes the class of all continuous functions
f :R — R such that

o /7 =0
equipped with the norm || f||c, = maxzer |f(z)|.
The norm in the Besov space B, henceforth denoted || - || s_, is given
as follows: Set s = k + v, where k is a nonnegative integer and 0 < v < 1.
If 0 < v < 1 then the norm will be defined in terms of a so called Holder
condition with exponent +;

1
1l gsr = [Ifllco +sup = IF B+ = 1Pl
t>0

where f(¥) denotes the k:th derivative of f. If v = 1, the norm is defined in
terms of a so called Zygmund condition:

171l gr =l flleo +sup %Ilf(k)(- +1) =2/ () + FE = 1) -

In the literature there exist many other equivalent definitions of the norm
in the Besov space BS,. The definition here is taken from Brenner et al.
[26].

If s1 < sg then Bl D B3 (see Bergh et al. [14], p. 142). Thus,
functions in BZ2 are generally smoother than functions in BS!. Much more
can of course be said about Besov spaces and the interested reader is referred
to Bergh et al. [14], Chapters 6 and 7, and the references therein.

In the sequel we will sometimes use the term local Zygmund condition.
A function f satisfies a local Zygmund condition if for all ¢ > 0 and each
z € R it holds

sup 1|f(al:+t) —2f(z) +f(:1:—t)‘ < 00.
o<t<e t

Note that if f(*) € Cy and f*) satisfies a local Zygmund condition then
f € Bk
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We shall introduce yet another Banach space, below denoted A , s > 0.
The space A, is a subspace to Cy with norm

1 h
1£llag, = 1flleo + sup sup 5 [0S f = Uef e,
0<h<1 tERy,

where, as previous, R, = Ah? N, .
The following striking result is due to Lofstrom [93].

Theorem 4.1. Suppose that ( is exactly consistent of order u. Then
A, =B, 0<c¢<uy,
with equivalent norms. Moreover, if f € Cy and

sup | USSP f —Uf oy = o(h*), as h — 0,
tERy,

then f =0.

Thus, the convergence rate is closely related to the smoothness of the
initial value f and the moments of ¢. In particular, if f € B and ( is
consistent of order p, Theorem 4.1 yields that there is for each ¢ < min(u, s)
a constant C', independent of f and n, such that

C T
P
|| U7(_C )f - U’Tf ||C’0 S 'nﬁ/z ||f||Bg°, n > X

Here we recall that

Consequently, if f € B, ( is consistent of order u, and
o = 5 min(s, 5),
then
| (U ) () = (U f)(2) | = O(1/n®), as n— . (4.2)

By applying this result to the trinomial tree it follows that if f has a
derivative f’ belonging to Cy and satisfying a local Zygmund condition, then

(Ut ) (@) = (Urf)(z) | = O(1/n), asn— oo,
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for any z € R. If, in addition, the derivative of order three f® is in Cj
and satisfies a local Zygmund condition and, furthermore, ¥ is consistent of
order 4 then

| (UPh) f) (@) = (U- f)(@) | = O(1/n?), asn — oo.

Butzer et al. [30] and Heston et al. [58] have results related to equation
(4.2). However, the results by Butzer et al. and Heston et al. require more
local regularity of the initial value compared to equation (4.2).

One can note as well that Theorem 4.1 states that if the uniform error
on the whole lattice equals O(h), 0 < ¢ < p, then f € BS,. The next
proposition, settled in Thomée and Wahlbin [119], shows a similar result
for a fixed time.

Proposition 4.1. Suppose that ¢ is consistent of order p and 1 < ¢ < p.
Assume that for a fized f € Cy holds

|USHA) f — U, fllc, = O(RS), asn — oo.
Then f € B!

Next we will focus on the important special case with initial value
fr(z) = max(e® — K,0), K > 0, and the lattice variable ( = ¢, where
¢ denotes a symmetrical random variable with only two outcomes +1. It is
known, see for instance Diener et al. [40], Leisen et al. [84], or Walsh [121],
that

(UE") fie)(x) = (Ur fx)(2)] = O(1/n),  as n — oo,

for any fixed £ € R. Thus, for the payoff function of a call option the
binomial method converges point-wise as O(1/n). In Walsh [121] it is shown
that this result is the best possible in the sense that there exists a constant
C, independent of n, such that

(UM fi)(2) — (Ur fi)(z) ~ C/n,

where a,, ~ b, means a,/b, — 1 as n tends to infinity.

Finally, we consider the convergence rate for discontinuous initial values.
For this problem the next famous theorem by Berry and Esseen is of great
value (see [13] or [46]).

Theorem 4.2. Let {X}}32, be a sequence of i.i.d. random variables with
mean 0, variance 1, and finite absolute third moment. There is a constant
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C only depending on the third absolute moment such that the distribution
function F,(z) = P(ﬁ Y i1 Xk < z) satisfies

|Fr(z) — @(z)| < C/Vn
for any x, where ® is the standard normal distribution function.

Let x4 denote the indicator function for the set A C R and put f, =
X(—c0,a]- Theorem 4.2 gives us

| (U fo) (@) — (Ur fo)(z) | = O(1/v/n), as n — oo,

for any z and any ¢ such that E[|¢|?] < oo. Tt is possible to show that the
convergence rate cannot be better than 1/y/n in the special case { = € and
z = a. More precisely, we have

1
~ 2/mn’

| (UT(E’th)fa)(a) — (Urfa)(a) |

see e.g. Esseen [46] or Durrett [44] p. 126.
We are now in position to deal with the main problem in this chapter.

4.3 Pricing Discrete European Barrier Options
Using Lattice Random Walks

This section returns to the problem of estimating the price v of a discrete
barrier option. Recall that Section 4.1 showed that v = v(0), where the
function vy was given by the recursion scheme

{vm_1 U, (q,K( SOeVT+a(->)Xm(.)),

Ui—leTi(UiXi)’ t=1,...,m—1,

with Uk (z) = e max(z — K,0) or Ug(z) = e max(K — 1,0) and
v=r—q—o0a?/2

Firstly, the function v,,_1(z) can easily be expressed in terms of the
standard normal distribution function. So in what follows we consider the
function v,,_1 as known.

As already described in Section 4.1, for each ¢ = 1,2,... ,m — 1 it is
natural to estimate the function v; 1 by UT(f’h) (vi xi)- There is, however, one
disadvantage with this approach. Depending on the barriers, the function
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v; Xx; is, for any ¢ = 1,... ,m — 1, discontinuous at the boundary points
of the interval I;. According to the discussion in the preceding section, a
discontinuous initial value f may cause a slow convergence of the sequence

{UT(C’h) f} as h tends to 0. But suppose for a moment that the initial value
f can be written as

f=¢-9 (4.3)

where g is a function such that U, g can easily be evaluated analytically and
¢ is in some sense a smooth function. Then the discussion in Section 4.2
gives us strong reasons to believe that the function

UfMg —Urg

will be a better estimate of U,f than UT(C’h) f- Our next aim is to show

how the functions v;x;, ¢ = 1,... ,m —1, can be decomposed as in equation
(4.3).
For the sake of simplicity, assume that I;, ¢« = 1,2,... ,m — 1, are

bounded intervals, that is a; > —oo and b; < co. We will return to the
special case when some of the intervals are unbounded later on in this sec-
tion.

Fixi=1,2,... ,m — 1 and consider the functions

d;
s () = i) 37 ZHh (2 — a)F (4.4)

k=0

and
d

7y (z) = €M (@—bi) Z 131::’!]6 (x — bi)k, (4.5)

k=0

where d; is a nonnegative integer. The constants vy,, and 7, can be thought
of as a positive and a negative number, respectively. However, for the
moment we will not put any restrictions on 7, or 7,,. The coefficients
{ai,k}zgo and {ﬂi,k}ii:() above are chosen such that 1,, and 1, equal the
(infinitely differentiable) function v; and its first d; derivatives at the points
a; and b;, respectively. Thus,

dkv; dkap,, d*v; dbay,
H;(ai): dx,fl(ai) and dl,kz(i)z Tk (00

foreach k = 0,1,... ,d;. In practice, however, we will not (or rather cannot)
differentiate the function v; to estimate the coefficients «; ;, or §; ;. Instead
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we will use numerical differentiation. This step is described in greater details
in Appendix A at the end of this chapter.

Let as previous x4 denote the indicator function of the interval A and
set

9i = Ya; X(=o0,a;] T ¥b; X[bi,00) (4.6)
and
¢i = viXi + gi-
Hence,
Q/)ai (IE), if z S ag,
di(z) = vi(z), ifa;<z<by
’lﬁbi(.’li), if z > bz

The function ¢; is obviously d; times continuously differentiable on R and,
furthermore, since ¢§d") is infinitely differentiable on the set R\ {a;, b;}, the
function (;Sgdi) satisfies a local Zygmund condition. If, in addition, v, > 0

and 7, < 0 then qﬁz(-di) € Cy and thus ¢; € Bd4t!. Since U,,g; can be evalu-
ated using the normal distribution and elementary functions (see Appendix
B at the end of this chapter), we have obtained the desired decomposition

ViXi = Qi — Gi

as in equation (4.3). Moreover, if the lattice random variable ¢() is consis-
tent of order u; and d; = p; — 1, then equation (4.2) yields that

| (UT(f(i),hn)(pi)(x) — (U, ¢:)(z) | — O(1/n%#i)

as n — 00.
We have arrived at the following algorithm.

Algorithm 4.1. Suppose that {C(i) ;’;_11 15 a sequence of lattice random
variables with Var(¢C®W) = \;, where \; satisfy

7 € \h2N,,

for each i = 1,... ,m — 1 and some fized h > 0. The theoretical price v
of a discrete barrier option is then approzimately equal to ¥o(0), where the
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function 9y is determined by the recursion scheme

G = U (\I;K(SoeuT-l-J(-))Xm(.))’

" (4.7)
Vi1 = UT(C ) (ﬁlxz + gz) - U‘rigia t=1,...,m—1

Here Uk (z) = e " max(z — K,0) or Ui (z) = e " max(K — z,0) and
v =r—q—0?/2. The functions g;, i = 1,... ,m — 1, are defined as in
equation (4.6) and U, g; can be computed using the receipt in Appendiz B.
For each i = 1,... ,m — 1, the coefficients {aiyk}zizo and {ﬁi,k}zizo in the
definition of 1, and ¢y, cf. equations (4.4)-(4.5), are chosen such that

d*4p,, drv; d*+py, d*v;

dw’? (a5) = d:vkz (a5) and dzk (b:) = dxkz( i)

for k =0,1,...d;, see Appendix A for further details concerning the esti-
mation of the coefficients {ai,k}zi:o and {ﬂi,k}zizo-

Let us make some comments about Algorithm 4.1. So far we have as-
sumed that a; > —oo and b; < co. If a; = —o0 or b; = oo for some 4, then
we simply let gi(z) = i, () X[y, 00) OF Gi(Z) = Pa (T)X( _oo,ar]» TesPECtively,
in equation (4.6).

Note that the parameter h, i.e. the step size in the vertical direction,
in Algorithm 4.1 is constant, that is, independent of i. This restriction
is imposed so that the lattice recombines between the monitoring dates.
Needless to say, the functions 9;, ¢ = 1,2,... ,m — 1, in equation (4.7) shall
only be calculated at the lattice points.

This section is concluded with some comments about the computional
complexity of Algorithm 4.1. Suppose that we have a lattice with step size
h in the vertical direction. The number of computations to evaluate Uy, g;
at the lattice points between a; and b; is of order O(1/h) as h — 0. On the
other hand, the number of computations to evaluate the functions

@) b)) @) p)
U M (@ixi+ gi) or TSN (5ix:)

at the lattice points between a; and b; is of order O(1/h*), b — 0. In fact, if
the step size is b then the lattice has n = 7;/(\;h?) number of time steps. To
evaluate any of the functions above at each lattice points between a; and b; it
requires O(n?), n — oo, number of computations, that is, O(1/h*), h — 0,
number of computations. In particular, the correction term U, g; added
to the lattice method in Algorithm 4.1 will not change the computational
complexity.
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We may add that since the proposed algorithm requires several evalua-
tions of polynomials it is possible to improve the performance of the algo-
rithm by using Horner’s scheme, see Dahlquist and Bjork [38], pp. 14-15.
We may also note that if { is a bounded symmetrical random variable with
P(( =j)=pj,j=—k,... ,k, then E[f(()] should be computed according
to the scheme

E[f({)] = pof(0 +Zpg (—4))

and not

E[f(¢) Z pif

j=—k

The first mentioned procedure requires less multiplications.

4.4 Numerical Examples; Choice of Parameters
and Random Variables

This section presents numerical examples and studies the performance of
the algorithm for different choices of random variables ¢(? and parame-
ters d;, 7q;, and 7y, 1 = 1,...,m — 1. The section is divided into two
subsections. Subsection 4.4.1 focuses on trinomial trees and equidistant
monitoring times, that is, () =4 (cf. Section (4.2)) and 7; = T'/m for each
1 = 1,...,m. Subsection 4.4.2 discusses other choices of lattice random
variables and arbitrary monitoring times.

4.4.1 The Trinomial Tree and Equidistant Monitoring Times

Thus, assume that () = 9 (cf. Section 4.2) and 7, = T//m for each i =
1,...,m. Furthermore, let for simplicity the parameters d;, v,,, and 7,
be independent of ¢ and put d = d;, 75 = ,, and 7, = 74, for each
i=1,...,m—1.

Figure 4.1 presents the value of 7y(0), given by Algorithm 4.1, as a func-
tion of n, the number of terms in the random walk between the monitoring
dates. In the first example we have picked A = 2/3 (i.e. ¥ exactly consistent
of order 2) and -y, = v, = 0. The option price is approximately 1.2624 (cf.
the straight line in Figure 4.1). Consider first the convergence for the basic
trinomial tree (i.e. ¢ = 0 in Algorithm 4.1). The corresponding price is
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Figure 4.1: Convergence rate for the proposed method with ¢ = 9 (trinomial tree),
A =2/3, and 7, = v, = 0. The option parameters are So = 100, K = 90, H; = 80,
Hy; =120,0 =0.3,7 = 0.1, T =1 year, and m = 50 (number of monitoring times,
corresponds to weekly monitoring). The monitoring times are equally spaced in
time.
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denoted d = —1 in Figure 4.1. We see that the convergence is slow and
oscillating. If the proposed algorithm is used with d = 0 the convergence is
more regular but the rate of convergence seems to be more or less the same.
In contrast to these examples, when d is equal to 1, which corresponds to
differentiable initial values, the convergence is faster and smoother. When
d = 2 or 3 the convergence rate does not increase. In fact, it becomes slower.

Before we proceed, let us just mention that this so called ’zigzag con-
vergence’ that can be observed in the cases d = —1 and d = 0 have been
analysed more carefully in Diener et al. [40] and Gobet [53].

Figure 4.1 reflects very well the convergence behaviour for the proposed
method for all choices of A € (0,1] ezxcept A = 1/3, that is, when ¥ is
consistent of order 4.

The next two figures, Figures 4.2 and 4.3, present the convergence rate
for A = 1 (the binomial tree) and A = 1/3, respectively, with d = 1,2,3 in
both cases. The option parameters are the same as in the previous example.
In the special case A = 1, Figure 4.2 displays that the convergence pattern
is roughly the same as in the case A = 2/3. On the other hand, if A =1/3
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Figure 4.2: Convergence rate for the proposed method with A = 1 (The binomial
method). The other parameters are as in Figure 4.1.
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Figure 4.3: Convergence rate for the proposed method with A = 1/3. The other
parameters are as in Figure 4.1.
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Table 4.1: Convergence rate for the proposed method for different values on A and
d. The other parameters are as in Figure 4.1.

n d=1,A=2/3 d=1,A=1 d=3,A=1/3
3 1.2539 1.2578 1.2605
4 1.2559 1.2555 1.2623
5 1.2566 1.2586 1.2619
6 1.2572 1.2581 1.2623
7 1.2581 1.2581 1.2624
8 1.2591 1.2576 1.2623
9 1.2589 1.2576 1.2624
10 1.2595 1.2588 1.2624
11 1.2594 1.2590 1.2624

Figure 4.3 shows that the method obtains the best convergence rate with
d = 3. Table 4.1 collects the prices obtained for different values of A and d.
The table clearly illustrates that the fastest convergence occurs for d = 3
and A = 1/3. Finally, Figure 4.4 shows how the smoothing of the initial
value improves the convergence rate.

The next example, Table 4.2, investigates how the values of v, and -y,
influence the error, or rather, if there is a difference in the convergence rate
in the two cases 7, = 7, = 0 and 7y, > 0, 75 < 0. From a theoretical point of
view there is a distinct difference between these cases. If v, > 0 and 7, < 0,
then the function g (cf. Section 4.3) is bounded, whereas if v, = 7, = 0
then g(x) = O(z?) as = tends to infinity.

Recall that the density function for the standard normal distribution
decreases as O(e‘”z/ 2) as = tends to infinity. Thus we believe that the
growth in ¢ has hardly any greater impact on the convergence rate, as
the example in Table 4.2 indicates. Unfortunately, we have not been able to
prove this (see Section 4.5 for a further discussion). But still, we suggest that
Algorithm 4.1 should be used with the parameter values d = 3, A = 1/3,
and v, = v, = 0. Setting v, = 7, = 0 has one practical advantage, the
algorithm is easier to implement.

The next example compares our method with an algorithm developed
by Broadie, Glasserman, and Kou in [28]. Their algorithm is designed to
estimate the value of a discrete and constant single barrier option. For
simplicity, the algorithm by Broadie et al. will henceforth be called the
BGK method. The idea behind the BGK method is as follows. A dis-
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Figure 4.4: Convergence rate for the proposed method when A = 1/3. The other
parameters are as in Figure 4.1.
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Table 4.2: Convergence rate for the proposed method for different values on ~,,
and 7. The value on d, A\, and 7 are 3, 1/3, and —v,, respectively. The other
parameters are as in Figure 4.1.

n Y =00 =01 vy,=1 =10
3 1.2605 1.2605 1.2606  1.2608
4 1.2623 1.2623  1.2623  1.2625
5 1.2619 1.2619  1.2619  1.2620
6 1.2623 1.2623  1.2624 1.2624
7 1.2624 1.2624  1.2624 1.2624
8 1.2623 1.2623  1.2623  1.2623
9 1.2624 1.2624  1.2624 1.2624
10 1.2624 1.2624  1.2624 1.2624
11 1.2624 1.2624  1.2624 1.2624
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Table 4.3: The value of a discrete down-and-out call, the option parameters are
So = K =100, Hy =95, Hy = 00, T = 0.2 year, 0 = 0.6, and » = 0.1. There are
4 monitoring dates which are equally spaced in time, i.e. the monitoring dates are
given by {r,27,37,47} where 7 = T'/4. The quantity N denotes the total number
of iterations, i.e. N = 4n. BGK denotes the method by Broadie, Glasserman,
and Kou and H6 stands for the method developed in this chapter. The random
variables/parameters in H6 are ¢ = 9 (trinomial tree), v, = v = 0, d = 3, and
A=1/3.

BGK BGK Ho
N (2-pt Extrapol.) | N
256 9.4969 40  9.4895
504  9.4935 9.4899 60 9.4907
1240 9.4919 9.4907 80  9.4907
2308 9.4912 9.4905 100 9.4906
4524 9.4909 9.4905 120 9.4905
8632 9.4907 9.4905 140  9.4905

crete and constant barrier at place H is replaced by a discrete barrier at
place H exp(+0.5hy), with + for an upper barrier, — for a lower barrier
and where h, is the step size for the log price. The factor 0.5h, is the
expected overshoot of a trinomial random walk. Subsequently the theo-
retical value is computed using the trinomial method on a mesh with the
property that certain nodes on the mesh coincide with the new barrier at
place H exp(£0.5h,). Numerical experiments in that paper indicate that
the convergence rate for the method is O(1/n). In order to increase the
convergence rate a Richardson interpolation is used. For further details, see
Broadie et al. [28].

Table 4.3 shows results from the different methods. The values in the
second and third column are taken from a numerical example in Broadie et
al. [28]. The BGK method has been used with as well as without Richardson
extrapolation. In the final column we have the values from the method
presented in this work. As we can see, the example indicates that the
method presented in this paper outperforms the BGK method.

The final example in this subsection computes the value of a discrete
moving barrier option. The results are presented in Table 4.4. The price of
a moving barrier option with continuous barriers can be estimated using a
numerical procedure described in Rogers and Zane [107].
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Table 4.4: The value of a discrete moving double barrier knock-out call for different
number of monitoring dates (monthly, weekly and daily). The monitoring times
are equally spaced in time. The option parameters are So = 95, K = 100, Hy(t) =
90 + 61t, H2(t) = 160 + 65t, T = 1 year, 0 = 0.25, and 7 = 0.1. The random
variables and parameters are ( = 9 (trinomial tree), v, = 7 = 0, d = 3, and
A = 1/3. The corresponding continuous prices are, according to Rogers et al.
[107], approximately 4.34 and 2.54, respectively.

m n 91:—92:—5 91:—92:5

10 6.9918 5.0999
12 20 6.9918 5.1001
30 6.9918 5.1001
10 5.7039 3.8642
50 15 5.7040 3.8641
20 5.7040 3.8641
6 4.9418 3.1920
250 8 4.9420 3.1921
10 4.9421 3.1920

4.4.2 Arbitrary Monitoring Dates and Other Lattice Ran-
dom Variables

The previous subsection assumed that the monitoring dates were equally
spaced in time. To begin with in this subsection we will investigate how
the algorithm works if we drop this assumption. Recall from Algorithm 4.1
that the time between the monitoring times 7; and the variances \; must
satisfy the relation

T; € )\ih2N_|_

forall = 1,... ,m — 1. Thus, if the monitoring times are arbitrary then
the variances \; must in certain cases vary with %.

Of course, it is not necessary to assume that the monitoring times are
equidistant, as in the previous subsection, to be able to find a A that satisfies
the condition 7; € Ah?N, for each 4 = 1,... ,m — 1. For instance, if there
is a number A > 0 such that

T; € AN+,

foralli=1,...,m — 1, and if h = VA/vn, for some n € N, and A > 0,
then it is evident that 7; € Ah?N, foreach i =1,... ,m — 1.
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Table 4.5: The value of a discrete double barrier knock-out call with ran-
domly chosen monitoring dates. The quantity N denotes the total number
of iterations, cf. Table 4.3. In the examples above the monitoring dates
are given by M; = {0.06,0.08,0.15,0.35,0.38,0.44,0.45,0.63,0.67,0.69,0.71,1.00}
M, = {0.12,0.25,0.27,0.45,0.48,0.55,0.69,0.72,0.73,0.87,0.89,1.00}, and M3 =
{0.19,0.37,0.57.0.62,0.63,0.73,0.75,0,79,0.84,0.90,0.92,1.00}. The other option
parameters are as in Figure 4.1. The proposed algorithm has been used with
¢ =4, 4, =, =0,and d; =3 foreach i =1,... ,m — 1.

N M N Mo N M;3

21  2.6504 | 26 2.1340 | 28 2.0236
42 23586 | 52 2.2739 | 56  2.0219
63 23591 | 78 2.0549 | 84 2.0216
84 23591 | 104 2.0548 | 112 2.0216
105 2.3591 | 130 2.0548 | 140 2.0216

Now, suppose that we must pick A; differently depending on i. How
should we choose the lattice random walk? Of course, we may apply the
trinomial tree for all A € (0, 1] but this approach has the disadvantage that
the random variable 9 is, unless A = 1/3, only consistent of order 2. As we
have seen in the previous sections, the proposed algorithm is more efficient
if the lattice random variable is consistent of order 4 than of order 2 and
hence, it would be of interest to find a class of lattice random variables where
the members of this class have different variance but still are consistent of
order 4. Next we will construct such a class.

Consider a symmetrical lattice random variable ¢ that have (at the most)
five possible outcomes with

Pu=0)=py and P(=j)=Pu=—j)=p;, j=12

where pg+2p1 +2p2 = 1. A Taylor expansion gives that the random variable
¢ is exactly consistent of order 4 if

po=1-2(5-3Y), p=2@-3)), and pr=2(3A-1),
for any A such that 1 < 3A < 4.
Table 4.5 presents a numerical example which shows the convergence
rate of Algorithm 4.1 applied with ¢ = «.
Next we will draw attention to certain other random variables that are
consistent of order 6. Recall that according to the discussion that precedes
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Table 4.6: The value of a discrete double barrier knock-out call. The option
parameters are as in Figure 4.1. The proposed algorithm has been used with
CD =k, 70, =7, =0, \i =\, and d; =5 for each i = 1,... ,m — 1.

n A=:i5-v10) A=1

1 1.2525 1.2613
2 1.2615 1.2624
3 1.2617 1.2624
4 1.2623 1.2624
5 1.2624 1.2624

Algorithm 4.1, we may expect that the convergence rate improves for greater
values of consistency number u;, provided that d; > u; — 1.
For instance, consider the random variable k, defined by

with

and

P(k =0) = po,

and P(ﬁ:J):P(H:_J):pﬁ j:172a37

A
po=1— ——(49 — 42X + 15)?),

36
P = i(12 — 13X + 5)?)
16 ’
>‘ 2
= —(— 10\ —
P2 40( 3+ 10X 5\ ),
A
= (4-1 15)2
P3 720( 5>\+ 5)\ ),

(5 —V10) < 5X < (5 + V10).

A Taylor expansion yields that x is exactly consistent of order 6.
Algorithm 4.1 applied with the random variable k gives a very fast con-

vergence. For instance, for the option presented in Figure 4.1 the algorithm

converges to the price 1.2624 already for n > 2 if A = 1 and d; = 5, see

Table 4.6.

For a further discussion on other lattice random variables that can be
useful in lattice methods we refer the reader to Alford and Webber [2] and
the next chapter in this thesis.

67



4.5 Conclusions and Suggestions for Future Re-
search

This chapter has designed a numerical procedure to price discrete European
barrier options and showed that the convergence rate of lattice methods
depends on two factors, namely the smoothness of the initial function and
the moments of the terms in the random walk. The pricing of discrete
barrier options is equivalent to solving series of initial value problem for the
heat equation. The main idea has been to decompose each initial value f;
as a difference

[i = éi — gi,

where ¢; is smooth and the expectation of g; with respect to canonical Gauss
measure can be computed explicit. By applying the lattice method to the
smooth part ¢; we have obtained a numerical procedure that yields fast and
accurate results.

However, the research presented in this chapter leaves certain questions
unanswered. We will now conclude this section by raising some questions
that might be of interest for future research.

e It would be of great value to prove certain modifications of Theorem
4.1. In our application we are perhaps more interested in point-wise
estimates of the error rather than estimates in the supremum norm.
It seems plausible that the convergence rate for

(UM f) (@) — (Urf) ()|

for some fixed x mainly depends on the values of f around some
neighbourhood of z. Therefore, it may be possible to derive sharp
point-wise bounds for the error in the lattice method without having
to assume that the initial value f is in Cp (for instance).

e It would be of interest to investigate how the derivatives 1")516) best
should be estimated. This problem is also relevant in the estimation
of delta and gamma (the first and second derivative of the option price

with respect to the underlying asset price).

e Given a positive integer yu, is there a lattice random variable ¢ such
that ¢ is consistent of order u?
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Appendix A

The intention with this appendix is to show how the coefficients {ak}%zo in

can be estimated so that

d¥ep k5
dwka(a)zw(a), k)ZO,]_, ,d,

where ¥ is a function only known at discrete points, say at z € hZ with
h > 0.
Firstly, the Leibnitz rule implies

k

d*ep, k\
Tk (a)zZ(j)’y Jaj, k=0,1,...,d

J=0

Thus, oy is defined recursively by

A5, (K ke
ak:ﬁ(a)—z<.>’)’k_J()&j, k=0,1,...,d.
=0 M

It remains to estimate the derivatives of o(z) at the point x = a. A natural
approach to this problem is to differentiate an appropriate interpolations
polynomial. Suppose that [r] stands for the smallest integer > r and j* =
[a/h]. In addition, assume d < 6 € N and let 6 = [§/2]. If p denotes the
(interpolation) polynomial of degree § which satisfies

then the first d derivatives at the point a can be estimated by
Y(a ~—(), k=0,1,...,d.

In the numerical examples presented in Section 4.4 the above procedure
have been used with § = 3, with exception of Table 4.6 where § = 5.
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Appendix B

Using the following lemma, the functions U,g;, 1 = 1,2,... ,m — 1, can be
evaluated in an efficient way.

Lemma 4.1. Suppose p(z) = %@(m) If

9 = YaX(=o0,a] T ¥bX[b,00)
where 1, and Yy are defined by

d
Yolo) =Y T (@ —a)t

k=0
and
Ny
y(z) = e? @D N LR (5 p)k
k=0
then
d *
—alz—a)+92 7/2 X a—-T
(Urg)(z) =e kzzo( M ("= V) )
fenein/e 3 (B Capm(E2 4 )
prrd k! VT ’
where
-k \ '
ap = rk/2 ZZT (x —a+,7)",
i=0
= /6Z+k

(CC —b+ ’YbT)i’

,8;; — Tk/Z Z

=0

7!
and where the functions My, are defined recursively by

®(y) if k=0,
Mi(y) = { —¢(y) ifk=1, (4.8)
v UM (y) + (k— 1) My_s(y) ifk=2,3,...,d.

70



Proof. Fix z € R. Let o} be defined as above and set 7} = v,/7. If
¥3(€) = ta(z + /7€) then

d_x
* z—a)+7, @
'lpa(f) = e’ya( )+7a§2 k_l'c(f —
k=0

since, for each £k =0,1,... ,d,

d d—k

= T2y (a4 /oy — )

Let ¢, = (a — z)/+/7. The scaling property for Brownian motion and the
definition of 9} give

(UT (%o X(—00,a] ))(:C) =FE ["pa(CC + W) X(—00,d] (z+ W) ]
=E[5(W1) X(—o0,ca) (W1) ]

Note moreover that

/ e (e — oy rp(e)de = [ (€ —E)k 2 p(e — ) de

—00 —0o0
Thus, if

for each integer k£ > 0, then

d
—a T o

(U (ta X(—oo,a]))(ﬂC) _ gla(z—a)+12T/2 Z k_l'ch(ca V7).
k=0

By using a similar argument we get

UT [e’s} = ’Yb = b+’yb7—/2 ﬁk d )
(Us (%6 Xip0)) ) (2) = € Z / RAGL
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where ¢, = (b—z)/y/7 and G} is defined as in Lemma 4.1. The symmetry
of the normal density yields

d %
(Ur (4 Xppo0) ) ) (@) = el OF%7/2 % %(—1)'“ My, (/T — cp).-
k=0 "

It remains to show that the functions My, k = 0,1,... ,d, satisfy equa-
tion (4.8). It is evident that My(y) = ®(y). Since d%(p(g) = () if
follows Mi(y) = —¢(y). Integration by parts now yields for k£ > 2

M) = € 0(6)]  +(—1) / T2 p(e)de

&=y —

=y Mi(y) + (k — 1) My_s(y) -
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Chapter 5

Probabilistic Interpretation
of the 6-Method

It is well-known that the explicit finite difference method for the heat equa-
tion is equivalent to a trinomial tree, see e.g. Heston and Zhou [58]. This
chapter studies the §-method, which is a class of finite difference methods in-
cluding, for instance, the Crank-Nicolson method, and shows that for some
parameter values the #-method also has a probabilistic interpretation. In
particular, the #-method can for certain parameter values be interpreted as
a binomial tree with a independent random time.

5.1 The 6-Method and Its Probabilistic Counter-
part

To begin with, consider the initial value problem for the heat equation,

8; on R (5.1)

{ du 1% i (0,T) x R,
where f : R — R is a given continuous and bounded function (abbr. f € Cj)
and T is a strictly positive constant. There are many various approaches
to solve the initial value problem for the heat equation and this section will
discuss a finite difference method known as the #-method.

Let h and X\ be positive numbers and set & = Ah2. Think of h and
k as small increments of the variables z and ¢, respectively. Moreover,
suppose v, (z) = u(nk,z), £ € R, n € N. The idea behind the #-method
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is to approximate the function v, by v,, where ¥, is the solution of the
difference equation

17n+1(:02;6n(w) _ %(9 A2, 41(x) n (1 _ 0) Aiﬁn(w))’ z€R neN,

2 2
" " (5.2)
’l~)0(.’ﬂ) :f(a:)a z€R
Here 0 < 0 <1 and
ARg(z) = gz + h) — 29(z) + g(z — h),
for any g € C}.
Now, introduce for each t € kN, a finite difference operator V;()"h) :
Cy — Cy, defined for ¢ = k by the operator equation
1
VA 1= 2 A2 (VM 41— 6) (5.3)

2
and for ¢t = nk, n > 2, by the semi-group property

Vi = ()"

By equation (5.2) it is readily seen that the solution of the §-method may
be written as

Ta(z) = (VM 1) ()

for each n € N .

If @ = 0, the operators VM) are called explicit. Each equation of
an explicit operator gives the unknown ¥,41(z) directly in terms (finitely
many) of the known quantities o, (z + jh). If 0 < § < 1, one must solve a
set of linear equations to obtain ¥,,1(x), and the operator V*") is called
implicit. The important special case § = 1/2 is often referred to as the
Crank-Nicolson method.

The f-method is not stable for all values of A > 0 and 0 < 0 < 1.
Stability means that the collection of operators

(VO 0 < h < ho, t € AR2N,, £ < T,

where hg, T, and X are fixed positive numbers, is uniformly bounded with
respect to the (operator) norm in Cp, i.e. there is a constant C such that

VMg, < ©
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uniformly for all 0 < A < hy and all ¢t € )\h2N+ such that ¢t < T. Here

|l fllc, = supger |f(z)|. Stability is a necessary and sufficient condition for

uniform convergence in connection with the §-method. It can be shown that

the #-method is stable if and only if
1

As 1-26’

no restriction, if1/2<6<1.

if0<0<1/2

For a further discussion about the 8-method and other finite difference meth-
ods, see Atkinson and Weimin [5] or Richtmyer and Morton [103].

In certain cases it is possible to give a probabilistic interpretation of the
0-method. To see this, assume that Ut(c’h) is defined as in Chapter 4. That
is, let ( be a lattice random variable with span 1, expectation zero, and
variance A. Furthermore, suppose (i, ..., (, are independent stochastic
copies of ¢ and set

UM ) (@) = E[fz+hY¢)),
j=1

with t € kN, and n = t/k. We recall that k = Ah2. The operator U™ is
called a lattice method or a lattice tree. In particular, if ¢ is a Rademacher
random variable, i.e. P(e = —1) = P(e = 1) = 1/2, then Ut(s’h) is known as
a binomial tree. The aim in this section is to prove that for some values of
0 and A there is a ¢ such that

R (5.4)

for all f € Cy, h >0, and all t € kN, (abbr. U¢) = V(A),
To prove that U&) = V&) note that it is sufficient to assume that
t = k since

Ui = @)

Moreover, if § = 0 and A < 1 then it is obvious that equation (5.4) follows
by defining ( as

P¢=0)=1-X and P((=-1)=P(=1)=2.

Alternatively, { = Z;V:1 €j where the random variable N is independent of
€1 with

P(N=0)=1-X and P(N:l):%.
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We adopt the convention that 22:1 =0.

Next we will consider the case 0 < # < 1. An approximation argument
gives that it is only necessary to show that equation (5.4) holds for all f € C},
such that f is integrable with respect to the Lebesgue measure. Let © be
the Fourier transform of the function z +— (Vk(’\’h) f)(x), that is

e = [ T VO ) )e € dn, € e R

—0oQ

Moreover, if g is an integrable function then g will denote the Fourier trans-
form of g. The function AZg possesses the Fourier transform 2( cos(h¢) —
1)9(¢) and thus, according to equation (5.3),

(&) — (&) = A(cos(hé) — 1) (69(€) + (1 — 0) f(£)).
This may equivalently be written as
(14 20(1 — cos(h€))) 5(€) = (1 — A(1 — 6)(1 — cos(hE))) f(€)

and therefore

/ T (VP ) (@) d = $(he) (),

—00

where

1= X1-06)(1—cosf)
HE) = 1+ M(1 —cos&)

The function ¢ is often referred to as the symbol or the characteristic poly-
nomial of the #-method.
The Fourier transform of = — (Ulgc’h) f)(z) equals

| WP nwe i = Bl fe)

—0o0

Hence, U¢) = V&) if and only if ¢ is a characteristic function of a lat-
tice random variable with span 1 and variance A. To examine under what
condition this is true, put @ = A\0/(1 + A\@) and note that

_1-X1-0)(1—cos¢)
H) = (1+X0)(1 —acosé) *
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A Taylor expansion now yields for each £ € R,

$(&) = 1= I+ )\la—cosf Zoﬂcos]

where
by = .
(1-p)g(l—q)7t, ifj>1
with
A 1
=1- d = .
p 1120 M 1T 1

If A and 0 is chosen such that p > 0, then b; > 0 for all j. Moreover, since
#(0) = 1 we have Z?io b; = 1. Recall that { — cos& is the characteristic
function of a Rademacher random variable €. Consequently, if p > 0 then

$(&) = B¢ Tm ],

where {¢; };";1 is a sequence of independent stochastic copies of € and N is
a random variable independent of {;}72; with P(N = j) = bj, j > 0. In
particular, ¢ is a characteristic function of a lattice random variable with
span 1. In addition, since ¢'(0) = 0 and ¢”(0) = —\ the random variable
Z;-V:l €j has expectation zero and variance A.

Theorem 5.1. Suppose 0 < 0 < 1. There exists a random variable N,
independent of {€;}52,, such that the random variable

N
C=> ¢ (5.6)
7j=1

satisfies
U(Ca) — V()‘ﬁ')
if and only if A > 0 is chosen such that
1
< — f 0 <
)\_1_0, if0<6<1,
no restriction, if 0 =1.
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Proof. We have already proven that the conditions on A are sufficient but it
remains one additional argument to prove that the conditions are necessary.
To be more precise, we need to show that the only choice of parameters 3;,
j € N, satisfying

$() =Y Bjcos’¢, forall{ €R,

§=0

are 8; = bj, j € N. By substituting x = cos £ this follows immediately from
the theory of analytic functions. O

Binomial trees with independent random times have been studied pre-
viously in the financial literature, see Rogers and Stapleton [106].

This chapter is concluded by stating necessary and sufficient conditions
for the existence of a lattice random variable ¢ such that V*) = U(), We
have already shown that if 8 = 0, then A < 1 is equivalent to U =y
for some (.

In what follows, suppose 0 < § < 1. A Fourier expansion of ¢ yields

1 1
P& = 2.0 + - Z ¢ cosné,
n=1
where
2
Cp = d(&) cosnE dE. (5.7)
0

Recall that ¢(0) = 1, and thus, the function ¢ is a characteristic function of
a lattice random variable ¢ if and only if ¢, > 0 for all n > 0 and, in that
case, ( is symmetric with P({ =n) = ¢, /27, n > 0.

We claim that ¢, > 0 for allm > 1 and each A > 0, 0 < 8 < 1. In fact,
equation (5.5) yields

2w
0

Cn = Z bm/ cos™ & cos né d€.
m=0

In addition,

cos™ ¢ = E[e'* 2% =]
m
= Z aym cos l&,
=0
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where ag, = P(Z;-nzo g; =0) and a;, = 2P(Z§":0 gj=1)for1 <l<m.
Thus, by orthogonality follows for all n > 1

oo m p
cp = Z Z bmal,m/ cos l& cosné dé

2
m=0 1=0 0

o
=7 E bman,m-
m=n

Recall that b, > 0 for all m > 1 and hence, it is enough to find conditions
on A and € such that ¢y > 0.
By substituting z = tan¢/2 in equation (5.7) follows

. _/°° 1+ (1 —2X+2)0)2® 2da
7 e 1+(1+2M)22 14422

which, after some elementary calculus, turns out to be

2w 1
00_7(9_1+\/1+29,\>'

To sum up, we have shown

Theorem 5.2. Suppose 0 < 0 < 1. There exists a lattice random variable
¢ such that

&) = yAs)

if and only if A > 0 is chosen such that

1 2—0
< ———Fr— if 0 < 1
AT g2 -6) #0=6<1,
no restriction, if0=1.

It is obvious that the collection {Ut(g’h) : 0 <h<hgte®N,,t<T}
is stable, to be more precise, for any ¢, h > 0, and ¢ € Ah2N, we have

h
1M g, < 1.

Thus, the #-method provide us with an example showing that the class of all
stable finite difference methods is strictly larger than the class of all lattice
methods. In addition, it shows that the class of all lattice methods with
symmetrical lattice random variables is strictly larger than the class of all
binomial trees with independent random times.
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Chapter 6

On the Error in the Monte
Carlo Pricing of Some
Familiar Path-Dependent
Options

The application of the Monte Carlo method to option pricing was first pre-
sented in Boyle [23] and it has proved to be an extremely useful tool for the
valuation of contingent claims. The popularity of the Monte Carlo method
in finance depends mainly on the fact that it provides a robust and sim-
ple method for performing integration. For example, the convergence rate
of the Monte Carlo method is of order O(n~1/2), where n is the number
of simulations, independently of the dimension of the integral. The Monte
Carlo method is therefore in some cases the only viable method for a large
number of high-dimensional problems in finance.

Previous work on the Monte Carlo pricing primarily focuses on different
so called variance reduction techniques and on methods to price American
contracts. Kemna and Vorst [73] consider the technique of control variates in
the pricing of Asian options. Barraquand [10] exploits the idea of quadratic
sampling. Glasserman, Heidelberger, and Shahabuddin [52] study impor-
tance sampling and stratification for the pricing of path-dependent options.
Monte Carlo techniques to price American options is discussed in Rogers
[104]. Fournié et al. [48], [49] make use of Malliavin calculus to improve
the performance of the Monte Carlo pricing. These articles are just a small
part of the research about the Monte Carlo method in option pricing, for a
more complete discussion about the Monte Carlo method in option pricing,
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see Boyle, Broadie, and Glasserman [25] or Lai and Spanier [79].

The main purpose of this chapter is to derive error estimates for the
crude Monte Carlo pricing of European options, with particular emphasis
on path-dependent options. We must underline that we will only consider
the crude Monte Carlo technique. A discussion about the error in the so
called quasi Monte Carlo method can be found in e.g. Caflish [31].

This chapter presents generalisations of some previous results by Borell
in [21], where, among other things, he investigates the relative error in the
Monte Carlo pricing of simple European options in a multi-asset Black-
Scholes market. A simple option is an option that only depends on the
underlying asset prices at the maturity date of the option. In particular,
Borell has shown that for some simple options not only the convergence
rate but also the constant in O(n~'/2) is independent of the dimension. To
be more specific, the constant is only dependent on the highest volatility
amongst the underlying assets, time to maturity, and degree of confidence
interval. This chapter will show various extensions of Borell’s result for a
large number of European styled path-dependent contracts.

The structure of this chapter is as follows. Section 6.1 gives some general
results about the error in the Monte Carlo method. The main tool in this
section is the Rosenthal and the Hoeffding inequalities. Section 6.2 compares
the moments between path-dependent call (put) options and plain vanilla
call (put) options in the Black-Scholes multi-asset market. The results in
this section are based on some geometric inequalities in Wiener space, and
then, in particular, the isoperimetric inequality for Wiener measure. The
final section, Section 6.3, combines the results in the preceding sections
and gives an upper bound for the error in the Monte Carlo method for an
important class of path-dependent options.

6.1 Error Estimates for the Monte Carlo Method

From now in this section, assume that (2, F, P) is a given probability space
and X is a random variable in LP(Q2, F, P) with p > 2. In addition, let
X1,...,X, be stochastically independent observations on X and set

_ 1 <&
X, = E;Xi.
1=

Here X, is called the Monte Carlo estimator of a = E[X]. In what follows
we abbreviate

- llp =1+ ey,
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if 2 <p< oo, and
[(X) = esssup X — essinf X.
Finally, if « # 0 put

_ | X — a”p
|af

DP(X) ’ 2§p<oo,

and

If R,, denotes the relative error after n simulations, i.e.
Xn —«

«

Rn:‘ ) a#Oa

the Chebychev inequality gives, for any 0 < e < 1,

P(Rn < %) >1—¢, (6.1)

where

Dy (X)
C(X)= N (6.2)
Thus, equation (6.1) yields that the convergence rate of the relative error
in the Monte Carlo estimation is, with probability 1 — €, of order O(n~"/2)
with a error constant that is bounded by C,(X).
By applying the central limit theorem it is easily seen that the conver-
gence rate O(n~'/2) is the best possible in the sense that if 6, — 0% as
n — oo then

P(Rn§%> — 0, asn — oo.
However, in certain cases it may be possible to improve the constant C.(X)
in equation (6.2). The purpose of the remaining part of this section is to
find better estimates of the error constant in the Monte Carlo method.

First we recall a heuristic and well known argument which shows that it
is plausible to improve the constant C.(X), provided n is sufficiently large
as will be the case in most Monte Carlo simulations. In fact, if

Xi—a

=, t=1,2,... 6.3
62 ||Xz_a||27 ? < ? ( )
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the central limit theorem gives that the random variable
1 n
% ; fz

is approximately distributed as a normal random variable with mean 0 and

variance 1. Thus, for any A > 0,
< AN
Dy (X)

P(Rn < A) :P(‘%i&

<0 VA
o 2)

where ® denote the standard normal distribution function.
Suppose ®~! is the inverse of ®. By setting

Dy(X) . 4 €
=— 1— - 1
A n 3 ) 0<e<l,

in equation (6.4), it follows

~1—ck¢,

ée(X))

P(r < &2

where

C0) = ver (1 £)aun)
with C¢(X) defined as in equation (6.2). If € is close to zero then it is evident
that the constant C,(X) will be considerably much smaller than C,(X).
In order to make the above argument more precise we will recall some
classical inequalities for random walks. The next theorem is known as the
Rosenthal inequality.

Theorem 6.1. Let ¢ and ' denote independent Poisson random variables
with parameter 1/2 and let T be the gamma function. Suppose X € LP(P),
2 < p < o0, is a symmetric random variable. Then

n
IS Xilly < N, max (x/ﬁllelm nl/pnxnp),

=1
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where

1+4/2 r(i); 2<p<4
Np: + 2 ) b ;

1€ = ¢ llps p>4

A proof of Theorem 6.1 with N, = 2 can be found in Rosenthal [108].
The value of the constant N, given in Theorem 6.1 is the best possible. For
p > 4 the optimal constant was found by Utev [120] and for 2 < p < 4 it was
derived independently by Figiel et al. [47] and Ibragimov and Sharakhmetov
[66]. Table 6.1 below shows an upper bound for the value of the constant
N, for various values on p. The table will be useful in the sequel.

Table 6.1: An upper bound for the value of the constant N, in the Rosenthal
inequality.
P 3 4 5 6 7 8 9 10
N, () 137 142 1.60 1.78 1.95 211 226 241

By a standard result in probability theory, if X and X' are i.i.d. random
variables in LP(P) with E[X] = 0 then || X, < [|X — X'||, (cf. p. 263 in
Loeve [89]). Since the random variable X — X' is symmetric the Rosenthal
inequality implies

Corollary 6.1. If X € LP(P), 2 <p < 0, and a = E[X] then

|IZ .~ &), < 2N, max (f 1X = alla, n'/?] X —a||p)

where N, is defined as in Theorem 6.1.
The next theorem is often referred to as the Hoeffding inequality.

Theorem 6.2. If X is bounded and o = E[X] then

(‘Z ‘>n>\>§2exp(—%>

for every A > 0.
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For a proof of Theorem 6.2, see Hoeffding [60]. The bound in Theorem
6.2 is not the best possible, see Talagrand [118] for a further discussion.

More results on tail probabilities and moment estimations for sums of
independent random variables can be found in Petrov [99].

We can now formulate the main result in this section.

Theorem 6.3. Suppose X € LP(P), 2 < p < o0, and a = E[X] # 0.

Moreover, assume that the constant N, is defined as in Theorem 6.1. If R,

denotes the relative error after n simulations, i.e.

X, —a
a

bl

o= |

then
C*(X
P(Rng%)21—e, 0<e<l,

n

if C¥(X) is any of the numbers

1
Ce(X) = %Dz(X),
(r) 2Ny 1t
CONX) = max(Dg(X), nv 2D,,(X)), 2 < p< oo,
€

or

Proof. The special case C}(X) = C¢(X) has already been shown. To prove
the remaining part of Theorem 6.3, let &; be defined as in equation (6.3)
and observe that

R, = Dy(X)

1 n
— Z &i
n -

=1
First we will prove the case

CH(X) = CM(X).

€

Suppose A > 0, the Chebychev inequality yields

1, 135 &llp
P(‘;;& zA) <

APnp
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which in combination with Corollary 6.1 imply
(5
n 4 7
=1
Note that ||&;||, = Dp(X)/D2(X). Set

2N, 11D, (X
A:\/_f/pmax(l,n; ? p( )>
ne

and we are done.
Next we will consider the case

CH(X) = CW(X).

€

P(relz2) =20 (-i55)

for any A > 0. In particular, if we choose

In(2/€)
A= m, (éz)

Theorem 6.2 gives

the proof is complete.

2N, )P 1_1
> A) < %max(l, n»~2[1&|,)".

O

Observe that Ce(r)(X ) is dependent on the number of simulations n.

However, if n is sufficiently large then

1 1

max (D2(X), n? 2 Dp(X)) = Da(X)

and thus, if n is sufficiently large then the constant CE(T) (X) is independent

of n.

Section 6.3 will compare the values of the constants Cc(X) and cn (X)

in some special cases.

6.2 Comparison of Moments

This section will compare the moments between some familiar path-

dependent contracts and plain call or put options.
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From now on the sample space 2 = Cy([0,T]; R™) consists of all func-
tions w = (w1,ws,-.. ,wn) such that, for each ¢ = 1,... ,m, the function
wj : [0,T] = R is continuous and w;(0) = 0. The space Q is equipped with
the norm || - ||¢,, defined by

lwllcy = pax max |wi(t)]-

The probability measure will henceforth be denoted @, where @ is the
Wiener measure on (). Defining

WR(w) =w(t), 0<t<T, we,

the process {WtQ}Ogth is a standard m-dimensional Brownian motion with
respect to . A vector in R™ is interpreted as a column vector.

If z € R™ then z; will denote the i:th coordinate of . Furthermore, we
adopt the conventions that

e’ = (e"t,e",...,e"), zeR™",
Ty = (m1y1,$2y2,... ,a:mym)a T,y € Rm,

(zw)(t) = zw(t), z€R™, we, 0<t<T,
and
)t =e*), weQ, 0<t<T.

Next we will define a certain class £ of functionals ¥ on the space
C([0,T7; (0,00)™). We will say that ¥ € £ if ¥ > 0 and for any fixed
z € (0,00)™ the map

w = InU(ze?)
is Q-Lipschitz with constant 1, i.e.
| In W (2e*?) — In W (oe?)] < (1],
for all w,® € Q. Clearly, this definition equivalently means that ¥ > 0 and

\IJ(:ve“"i":’)
U (zev)
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for all w,w € Q.
In addition, suppose K is a positive constant and set

Ck = max(L — K, 0),

that is, Vg € Cg if and only if there exists a ¥ € L such that Vi =
max(¥ — K,0). In particular, Cy = £ and if K < L then Cx C Cr, since the
class L is closed under addition of a positive constant.

We next give some examples of functionals in the classes Cx. Assume
that p is a positive and bounded Borel measure on [0,7]. It is evident that
the functional

belongs to the class £. Thus, for any fixed K > 0, if
Uh(ze”) = max( ¥¥(ze¥) — K, 0)

then Ui € Cgk. It should be emphasised that the measure y must be
positive, otherwise U* will not be a member of the class L.
If M C [0,T] then the functional

m
TV (ae?) = sup 3 a0
teM =,

is included in L. Hence, for fixed K > 0,
M (ze?) = max( UM (ze¥) — K, 0)

is a member of Ck.

Other examples of functionals in the class Cx can be constructed by
taking the maximum or minimum of members of Cx. To see this, if U, T € L
then it is evident that

max(¥,YT) € L and min(¥,T) € L.
Thus, ifK<Land Yk € CK, Y € Cy, then
max(Vg,Yr) € C, and min(Vg,Yr) € Cr,

since Cx C Cy,.
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Assume in the remaining part of this chapter that the dynamics of the
underlying asset price vector S is given by

dSy = 8 (ndt + cCAWR), 0<t<T,

where C is a non-singular m by m matrix such that each row ¢; in C
satisfies |¢;|o = 1, where | - |2 is the Euclidean norm in R™, and where o =
(01,09,... ,0m) € (0,00)™. Moreover, n € R™ has coordinates 7, = r — ¢;,
1 =1,...,m, where r and g; denote the interest rate and the dividend yield
of the i:th asset, respectively. Finally, assume that the initial asset prices are
positive constants, that is, So = (S§,...,S5) € (0,00)™. Finally, suppose
that

~mMax o; = Oy,
1=1,...,m

Note in particular that ¢ — Si(w) is a member of C([0,7]; (0,00)™)
and that w — Vg (S(w)), Yk € Cg, is Borel measurable since Vg is con-
tinuous. Furthermore, U% (S) and U¥(S), where ¥% and U are defined
as previous, represent the payoff of an Asian basket call option and a call
on the maximum of a basket, respectively.

Our main result about path-dependent call options is

Theorem 6.4. If Vg € Cx, K > 0, and k is a constant such that
k()1 = || max(kS7" — K, 0)][]1,

then
1Tk (S)lp < || max(xS7" — K, 0}l

for each 1 <p < o0.

In the special case that the functional ® g is merely dependent on the
value of Sp(w), the result in Theorem 6.4 has already been shown in Borell
[21].

The proof of Theorem 6.4 is based on the isoperimetric inequality for
Wiener measure. To present this inequality, let H denote the Cameron-
Martin space. Here # consists of all functions h = (hqy,ho,... ,hy) such
that, for each i = 1,...,m, the function h; : [0,7] — R is absolutely
continuous with a square integrable derivative and h;(0) = 0. The space H
is equipped with the norm || - |3, defined by

T T e A
Il = (3 [ (o) ae)*, wen
i=1 "0
We can now formulate the isoperimetric inequality for Wiener measure.
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Theorem 6.5. Let O be the set of all h € H such that ||h||ly < 1. If A is
a Borel set in Q and

then
QA+ X0) > ®(a+A)

for each real number X\ > 0.

Theorem 6.5 is a special case of the celebrated isoperimetric inequal-
ity for Gaussian measures, which is due independently to Borell [20] and
Sudakov and Tsirelson [116]. In both papers the proof was based on the
isoperimetric inequality on the sphere. Ledoux [82] has developed a short
and self contained proof based on the Ornstein-Uhlenbeck semigroup. The
Gaussian isoperimetric inequality can also be established using stochastic
calculus, see Barthe and Maurey [11]. It should be mentioned that the re-
sults in Ledoux [82] and Barthe et al. [11] is restricted to finite-dimensional
version of Theorem 6.5, that is, the Wiener measure in Theorem 6.5 is re-
placed by standard Gauss measure in R”, A by a Borel set in R”, and O by
the Euclidean unit ball in R”. However, the finite-dimensional version can
quite easily be generalised to Theorem 6.5, see Borell [20] or Ledoux [81],
pp- 205-209, for details.

By Theorem 6.5 follows

Corollary 6.2. Assume that ¥ € L. If, for a,b > 0,
Q((S) > b) = Q(SF > a),
then
Q(T(S) >0b) <Q(SF > 0a)
for each real number 6 > 1.

Proof. Fix > 1 and let A > 0 be given by the equation 8 = exp(c,, VT).
We first prove that

Q(T(S) <6p) > Q( \|h|i|171.¢f§1 T (S(-+ Ah)) <b). (6.5)

Firstly, note that the random variable inf), <1 T (S(- + Ah)) is Borel
measurable since W(S(-)) is continuous and O is a compact subset of 2, and
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thus, the infimum can be taken over a dense denumerable subset of O. Now,
suppose that h = (h1,... ,hp) € H and let (, ) denote the inner product in
R™. Since

t
h(t):/ W(wdu, 0<t<T,
0

the Cauchy-Schwarz inequality gives for all 0 <t <T and allj=1,... ,m,

m

o) < (2 ( t|h;<u)\du)2)%

=1

< vi( ﬁ_nj / () du)

= Villh|l
and thus ||cChl||¢, < omVT||h|l%. Next, observe that if w € Q then
B(5(0)) = (S(o+ Rye ")
< elloChlles @ (S(w + 1))
< VTN g (§(w + 1))

and, consequently,

inf U(S(w+ Ah)) >

Ihll<1 v(S),

=

which proves equation (6.5).
Suppose that a and b are picked as in Corollary 6.2. Since

In(s/55") — (r — qm — Ufn/?)T)
O'm\/T

QST < 5) =
for any s > 0, Theorem 6.5 implies

Q(,inf_ ¥(S(+ ) <b) > Q7 VIST < a)

Moreover,
Qe VTASE < a) = Q( ST < ba)
and therefore, according to equation (6.5),
Q(¥(S) <0b) > Q(SF < ba),
which gives Corollary 6.2. O
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Before proving Theorem 6.4 we will introduce some additional defini-
tions. Suppose X,Y € L}(Q). We will write X < Y if, for all convex
functions 9 : R — R,

E°[y(X)] < E°[y(Y)], (6.6)

where the expectations are finite or +00. The relation < is known as a
stochastic ordering or convex dominance.

Suppose 1 (s) = max(s — k,0), k,s € R. If X,Y € L'(Q) have equal
mean and

E°py(X)] < B9 (Y)]

for all £ € R, then it follows that X < Y. In fact, if the relation (6.6) holds
for all functions 15, k € R, then it is also valid for all functions v (s) =
max(k—s,0), k, s € R, since wk(s)—@zk(s) = s—kand E?[X] = EQ[Y]. An
approximation argument now gives that equation (6.6) holds for all convex
functions 1), see Szekli [117] pp. 10-11 for further details.

Corollary 6.3. Suppose ¥ € L and ¢ : (0,00) — R is a monotonic func-
tion such that o(¥(S)) € L*(Q). In addition, suppose there is a k > 0 such
that p(kSM) € L'(Q) and

E?[p(¥(9))] = E9[p(xST)]-
Then

P (U(9)) < p(kST).

Proof. Firstly, we may without loss of generality assume that ¢ is non-
decreasing since 1 : R — R is a convex function if and only if s — (—s) is
convex.

Suppose 1, is defined as above. For any random variable X € L'(Q)
one has

ER[yy(X)] = /koo Q(X > s)ds.
Thus, if

£(s) = Q(w(kST) > s) — Q(p(T(S)) > s)
then

(e}

E9[yy 0 p(kST)] — E[yhr 0 p(T(S))] = : f(s)ds. (6.7)
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Firstly, if ¢, is defined as above then

| [ 7661 ds| < B2dio wlssE)] + B Lk 0 o(w(S))],

and therefore, by bounded convergence,

lim /]C f(s)ds=0. (6.8)

k——o0
Next, let
sy = 1nf{s > ¢(0+) : f(s)>0}.

If s, = oo then equation (6.8) implies f = 0 and the integral in equation
(6.7) is zero. If p(0+4) < s, < oo then f(s,) > 0, since f is right continuous,
and Corollary 6.2 gives that f(s) > 0 for all s > s,. In combination with
equation (6.8) this implies that the integral in equation (6.7) is non-negative.
Moreover, the same argument shows that s, # ¢(0+). Thus, the integral in
equation (6.7) is non-negative and the proof is complete. 0

Now, to prove Theorem 6.4, put ¢(s) = max(s—K,0), ¥(s) = sP, p > 1,
and let k be chosen as in Theorem 6.4. Corollary 6.3 yields

E[pop(¥(S))] < B[y o p(rSF)],

which proves Theorem 6.4.
Next we will state a result similar to Theorem 6.6 for path-dependent
put options. Let £ be defined as previous and set

Pk = max(K — L£,0), K >0.
Theorem 6.6. If Vi € Pr, K >0, and « is a constant such that
Wk (S)l1 = [lmax(K — &S7",0)]|1,
then
@k (S)llp < || max(K — £S7',0)],
for each 1 <p < o0.

Proof. Follows directly by setting ¢(s) = max(K —s,0) in Corollary 6.3. O
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This section is concluded with an example of a payoff function which
satisfies the converse inequality compared to Theorem 6.4 and Theorem
6.6. The example we have chosen is a down-and-out call option. Set

r=inf{t e M : S]* < H(t)},

where M is a closed subset of [0,7] and H : M — (0, 00) is continuous. In
particular, the random variable 7 is Borel measurable. The payoff function
of a down-and-out call option written on the m:th asset is defined as

max(S7 — K,0)1(;>1
with K > 0.
Proposition 6.1. If K > 0 and x is a constant such that
| max(S7 — K, 0)1 751y [l = [| max(kS7" — K, 0) |1,
then
| max(S7 — K, 0)1¢7>1yllp > || max(kS7 — K, 0)]|p
for each 1 <p < o0.

There is a similar result as in Proposition 6.1 for certain other barrier
options such as up-and-out put options. The details are omitted here.

To prove Proposition 6.1, the following so called shift inequality will be
useful.

Theorem 6.7. Assume that A is a Borel set in Q. If ||h||% = 1 and

then
Dla—A) < QA+ ) <B(a+))
for each A > 0.
A proof of Theorem 6.7 can be found in Kuelbs and Li [76].

Proof of Proposition 6.1. We will prove that if, for a,b > 0,

Q(S1 > a,7>T) = Q(S7 > b), (6.9)
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then
QST > ba, >T) > Q(ST > 0b) (6.10)

for each real number # > 1. Proposition 6.1 then follows in the same way
as Theorem 6.4 follows from Corollary 6.2.

Suppose a and b are as in equation (6.9) and fix § > 1. In addition,
assume that

t
VT’

so that (¢, h(T)) = VT and |||z = 1. If X > 0 satisfies exp (Ao, VT) =
0, then

h(t) = ¢ 0<t<T,

Q(Sjm > fOa, T > T) = Q(e_)‘“m“m’h(T))ng‘ >a, T > T)
(SF(—Ah)>a, 7>T)
(SF(-—Ah) >a, (- — A\h) > T)

O O

>
since 7(w) > 7(w — Ah) for each w € Q. Thus, if A = {S7" > a, 7 > T} then
Q(ST >0a, 7 >T) > Q(A+ Ah).

Theorem 6.7 and equation (6.9) imply

QA+ Ah) > <1>( _ In(b/53") —((77" ?/qu —o2/9)T /\)

= Q(ST > 0b),

which gives equation (6.10) and the proof is complete. O

6.3 The Error in the Monte Carlo Pricing of Some
Familiar Path-Dependent Options

This section shows, using Theorems 6.4 and 6.6, how to obtain an ex-

plicit upper bound of D,(X) for different choices of payoff functions X

and thereby establish error bounds for the Monte Carlo estimation of the
quantity E?[X]. To begin with we will consider call options.
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6.3.1 Call Options

First we state two lemmas that will be used below.
Lemma 6.1. Suppose K > 0. The function

| max (kST — K, 0)]|2
| max (kST — K, 0|1’

k>0,

1§ non-increasing.
For a proof of Lemma 6.1, see Borell [21].
Lemma 6.2. Suppose p > 2. Then
Dy (max(SF — K,0)) = oo as K — .
Proof. 1t suffices to prove that

L | max(Sp — K.0)[3
im =
K—oo || max(ST — K, O)||%

o0,

since

for any p > 2 and any non-negative random variable X € LP(Q) with
EQ[X] > 0.
By differentiating under the integral it follows
0

a—KEQ [ max(ST — K,0)?] = —2E°[max(SF — K,0)].

The relation E9 [max(SF — K,0)] = [z Q(SE > s)ds gives

%EQ [max(S§* — K,0)]” = —2E? [ max (5§ — K,0)] Q(SF* > K).

The I’Hépital rule now yields

L max(Sp-KOB 1
1m = —_— = .
K—oo || max(SP — K,0)||2 Koo Q(ST > K)

97



To begin with, consider a call on the maximum written on the m:th
asset. That is, a contract with payoff function

Ui (S) = max(rtléa}\zr( St — K, 0),

where '€ M C [0,7] and K > 0. Clearly, if K < 1 then
[Wx(S)1 = [l max(xS7 — K, 0)][1-
Thus, according to Theorem 6.4 and Lemma 6.1,

V()2 [ max(SF — K;0)]|2
[Wr(S)llr — [|max(57" — K, 0)]|x

and therefore
Dy (¥ k(S)) < Dy (max(SF — K,0)) (6.11)

because

1
X2\
Dy(X) = <||X||% -

for any non-negative random variable X € L%(Q) with EQ[X] > 0.

Since the right hand side in equation (6.11) can be evaluated analytically
we may easily obtain an upper bound for Dy (U k(S)) in the special case that
U (S) is the payoff of a call on the maximum.

However, there are some disadvantages with this approach. According
to Lemma 6.2 the right hand side in equation (6.11) may be very large if
K is large. Moreover, for an arbitrary payoff ¥ (S), i € Ck, it may be
very difficult to find an upper bound for x other than zero such that

Wk (S)]lr = [| max(SF — K, 0)]1.-

In any case, Lemma 6.2 shows there is no uniform bound of D, (¥k(S5)) for
all Ui € Cx and all K > 0.

Fortunately, there is a way to get around these problems. If Vg € Cx
then

Uy =max(¥ — K,0) = max(¥,K) — K

for some ¥ € L. Thus, to price the option with payoff X = Ug(S) it is
enough to estimate the expectation of the random variable

Y = max(¥(9), K).
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It is easy to find an upper bound for D,(Y'). In fact, since max(¥, K) € Cy
it follows

Yl _ ISPl _ 3601027
¥l = 1571,

which yields, in combination with the Minkowski inequality in the case
2<p< oo,

1
(eonT —1)2, ifp=2,
Dy(Y) <9 | , (6.12)
ex®P Dol L1 if2 < p< 0.

Remarkably enough, the estimate is only dependent of p, the greatest volatil-
ity, and time to maturity.

Next we will consider the relative error for the Monte Carlo simulation of
EQ[Y] and give two numerical examples, see Figures 6.1 and 6.2. The first
example will compare the value of the error constants Cc(Y") and CC(T)(Y),
given in Theorem 6.3, for different values of €. Recall here that Theorem
6.3, among other things, stated that the upper endpoint of a 100(1 — €) %
confidence interval for the relative error in the Monte Carlo estimation of
ER[Y] is bounded by

min (C(Y),C" (v))
\/ﬁ b

where n is the number of simulations,
2N, 11

:Dig), and cy)(Y):mmax(DQ(Y),ni 2 D,(Y)).

If the option parameters are 0, = 0.3 and 7' = 1 and if n > 10*, then the
estimate in equation (6.12) and some calculations give

Ce(Y)

max (Dy(Y), n#~* Dy(V)) < (7T —1)7,
for at least all p such that 4 < p < 10. Thus, if n > 10* then

CON(Y) < 22 (en? —1)7, 4<p<10.

?

Since the estimate in equation (6.12) also yields that
1 2 1
Ce(Y) < 7(etfmT _ 1) 2

€
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Figure 6.1: The graph of € = . and € — ~, for 0.05% < e < 5%.

it would be of interest to compare the numbers

2N,
min —_,
p=4,5,...,10 ¢€l/p

1
ﬁezﬁ and -y, =

for € > 0. The reason that the minimum in the definition of 7, is taken over
the set {4,5,...,10} is simply that we have computed the value of N, for
these numbers, see Table 6.1 in Section 6.1. Of course, one could take the
minimum over a set larger than {4,5,...,10} and thereby obtain a smaller
value of 7. This will however not radically change the value of 7., at least
not for interesting values of ¢, say between 0.05% and 5%.

Figure 6.1 shows the values of 3. and 7, for 0.05% < € < 5%. As the
figure shows, if € is greater than 2.5% then (. < 7., but if € is smaller than
2% then (3. > 7.. Moreover, if € is close to 0 then ~, is considerably much
smaller than .

The next example, presented in Figure 6.2, describes the number of
simulations that is required to obtain a certain accuracy of the Monte Carlo
estimation of the quantity E?[Y]. According to the previous discussion, we
may bound the upper endpoint of the confidence interval of degree 100(1 —
€)% for the relative error by
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Figure 6.2: An upper bound for the relative error in the Monte Carlo estimation
of the quantity E?[Y] as a function of the number of simulations n. The option
parameters are o,, = 0.3 and T = 1. The value of n varies between 10* and 10°.

4.5

a4l 4

w
o
-

upper bound for the relative error (%)

In the example in Figure 6.2 the option parameters are 6, = 0.3 and T =1,
the same as in the previous example. Figure 6.2 shows that the relative error
is smaller than 1% if n > 2 * 10° for any € > 0.1%.

6.3.2 Put Options

Much of the discussion in Subsection 6.3.1 is also of interest for put options.
In particular, every U € Pk can be written

U =K —min(¥,K), TelLl

Thus, to price a derivative with the payoff ¥ (.S) it suffices to estimate the
expectation of

Y = min(¥(S5), K).

Since min(¥, K) € £ we obtain the same estimate of D), (Y) as in equation
(6.12). Thus, the example given in section 6.3.1 is relevant for put options
as well.

6.3.3 Options with a Floating Strike Price

There is a large class of options that are not included in neither Cx nor Py,
namely options with a floating strike price. That is, the fixed strike price
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K is replaced by ¥#(S), where y is a positive and bounded Borel measure
on [0,7] and

T m
UH(ze?) :/ ine“’i(t)u(dt).
0 =1

This subsection discusses a method to estimate the relative error in the
Monte Carlo pricing of these options.
Firstly, consider the payoff functions

X = max (¥(S) — ¥¥(S),0) or X =max (T(S)— ¥(S5),0),

where ¥ € L. For instance, if the measure y is a positive linear combination
of Dirac measures or the Lebesgue measure, then EQ[T#(S)] can easily be
evaluated analytically and therefore it suffices to estimate the expectation
of

Y = max (¥(S),T#*(S)) or Y =min (¥(S),TH(S)).

As previously, the value of D,(Y') can be bounded as in equation (6.12).

6.3.4 A Remark on Barrier Options

Another large class of options which is not included in Cx or Pg are con-
tracts which have a discontinuous payoff, that is, the payoff X = ¥(S) where
U ¢ C([0,T7;]0,00)™). Most barrier options are examples of such contracts.
This subsection describes a method which gives an estimate of the relative
error for some barrier options, namely those barrier options which have a
bounded payoff.

Consider for instance an up-and-out call option that pays at time T the
amount

X = max(S7" — K, 0)1{T>T}’
where K > 0 and
r=inf{t e M : ST" > H(t)},

with M C [0,7] closed and H : M — (0, 00) continuous. Moreover, suppose
infyeps H(t) > S§* and T € M. It is evident that

I(X)=H(T)-K.
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One can easily find a lower bound @, for o = E?[X]. In fact,
a > E° [max(sg}z - K, 0)1{ maxo<i<T S§*<Hmin }] = Qmin,

where H,ip, = infycps H(t). Note that aun, can be evaluated analytically by
using well known formulas, see e.g. Rich [102]. Thus, Theorem 6.3 implies
that the relative error of the Monte Carlo pricing is, with probability 1 — e,
bounded by

1 [In(2/e) H(T) - K
% 2 Umin .
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Chapter 7

Geometric Bounds on
Certain Sublinear
Functionals of Geometric
Brownian Motion

Suppose {S;}o<i<r is an m-dimensional geometric Brownian motion with
drift, 4 is a bounded positive Borel measure in [0,7], and ¢ : R™ +— [0, c0)
is a weighted [9(R™)-norm, 1 < g < oco. The purpose of this chapter is to
study the distribution and the moments of the random variable X! given
by the LP(u)-norm, 1 < p < oo, of the function ¢t + ¢(S;), 0 <t < T.

There are various sources of interest of the random variable XY, In
particular, in mathematical finance it is relevant in the pricing of Asian
basket options (p = ¢ = 1), options on the maximum of a basket (p =
00, ¢ = 1), and options on the maximum of several assets (u equal to
the Dirac measure at T and ¢ = oo). If y is the Lebesgue measure on
[0,7] and the dimension m equals 1, the random variable X% is also of
interest in the study of disorded systems as well as in the study of hyperbolic
Brownian motion, see Yor [122]. The sum of lognormal random variables,
which corresponds to the special case u equal to the Dirac measure at 1" and
g = 1, is of interest in geology, see Barouch et al. [9], and in radar theory,
see Janos [67], to name a few areas. Note also that if y is the Dirac measure
at T and g = oo then the (generalised) moments of X1'? corresponds to the
Laplace transform of the maximum of a discrete Gaussian process.

With the exception of the maximum of a Gaussian process, previous
studies of the random variable X}"? have been concentrated on the one-
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dimensional case (i.e. m = 1) with u equal to the Lebesgue measure and
p =1, that is, on the random variable

T
/ Stdt, (7.1)
0

where {S}}o<t<T is an one-dimensional geometric Brownian motion. Yor,
and co-authors, have written a large number of articles focusing on this
random variable, articles which have been collected in the monograph Yor
[122]. Here Yor, among other things, describes the density of the random
variable in equation (7.1) in terms of series of one-dimensional integrals,
see Yor [122] p. 43. Other results in the same direction can be found in
Alili [3], Comtet and Monthus [36], and Dufresne [42],[43]. Moreover, Bhat-
tacharya, Thomann, and Waymire [15] derives a partial differential equation
for the density function. Explicit expressions for some of the generalised mo-
ments of the random variable in equation (7.1) are given in Yor [122] p. 31,
Dufresne [42],[43], and Donati-Martin, Matsumoto, and Yor [41]. Recently,
Nikeghbali [96] has proven that the law of the random variable in equation
(7.1) is indetermined by its moments.

It should be mentioned that there is a large number of articles dealing
with the problem of computing the expectation

T
E[max(/o Siu(dt) — K,0)], K >0.

This problem is, as we can see, closely related to the problem of finding the
law of X ;’1 in the one-dimensional case. For a further discussion about the
pricing of Asian options the reader may consult Linetsky [88], Rogers and
Shi [105], and the references therein.

For some results about the distribution and the moments of sums of
lognormal random variables, see Barouch, Kaufman, and Glasser [9], Ben
Slimane [12], Bondesson [18] p. 66, Janos [67], and Leipnik [83].

This chapter will prove that the distribution function of X5'? is log-
concave and discuss conditions on p and u that ensures that the distribution
function is absolutely continuous. Moreover, the chapter will derive upper
and lower bounds for the distribution function. The chapter will also present
the asymptotic behaviour of the distribution function, discuss stochastic
ordering, and give sharp inequalities for the moments. Moreover, it will
proven that the distribution of X5'? is indetermined by its moment. We
conclude this chapter by showing some financial applications of the results
obtained.
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7.1 Notation

This section will introduce some notation that will be used throughout this
chapter. The sample space €2 is defined as in the previous chapter, i.e.
Q = Cy([0,T]; R™) consists of all functions w = (w1, ws, ... ,wn) such that,
for each 7 = 1,...,m, the function w; : [0,7] — R is continuous and
w;i(0) = 0. The space Q is equipped with the norm || - ||¢,, defined by
lwlle, = max Orsr;angwi(s)L w € €.

The measure P will henceforth denote Wiener measure on . Setting
Wi(w) = w(t), 0 <t < T, we Q, the process {W;}o<i<7 is a standard
m-dimensional Brownian motion on [0, 7] with respect to P.

From now on the class M denotes all bounded positive measures y on
the Borel o-algebra of [0, 7], where 0 < T' < co. The class M(0,T) consists
of all g € M such that sup{t < T : p((¢t,T]) >0} =T and if 0 <7< T
then M(7,T) consists of all 4 € M(0,T) such that x([0,7)) = 0. The norm
in LP([0,T], p) will be denoted | - || zs(,)-

If z € R™ then z; will denote the i:th coordinate of . The scalar product
in R™ will be written (-,*) and |- |2 = /(:,) is the Euclidean norm in R™.
Vectors in R™ are regarded as m by 1 matrices. Moreover, multiplication of
two vectors in R™ should be understood as coordinate-wise multiplication.

The function ¢, 4 is defined, for each z € (0, 00)™, as

1

(Z;ilpixg)q if 1 <qg< oo,

maxr;. p; >0} Lis if ¢ = oo,

¢p,q($) =

where p € [0,00)™ ! x (0,00). Henceforth we put A = [0,00)™ ! x (0, 00).
Let {Si}o<i<T be an m-dimensional geometric Brownian motion with
drift, that is

dS; :St(ndt-l-UCth), 0<t<LT, (72)
where n € R™, S is a constant in (0,00)™, o € (0,00)™, and C is non-
singular m by m matrix with rows ci,... ¢, satisfying |¢;lo = 1, i =
1,...,m. Finally, suppose

Om = max o;.
i=1,...,m

In what follows, the functional ¥%;% will be defined as

UEA(S) = lp,a(Se)) o) (7.3)
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where yp € M(0,T), p€ A, and 1 < p,q < o0, that is

(I dpa(SPPuldn)”, i£1<p< oo,

mMaXtesupp w ¢p,q(st), ifp = 00,

TP (S) =

PP

where supp u denotes the topological support of u. Note in particular that
Uh% € L, where L is defined as in Chapter 6. For simplicity, the functional
)% will mostly be abbreviated ¥, ,.

The distribution function of ¥%%(S) will be denoted F}’Z, that is

FP4(s) = P(U59(5) <s), s>0.

Similarly, Ff’d will mostly be written F}, ,. The distribution F), , will often
be compared to the lognormal distribution G, defined by

Ins

GC(S):Q(?>, 820,§>0,

where @ is the standard normal distribution function. Thus, G is the
distribution function of the random variable Y, where InY is a normal
distributed random variable with mean 0 and variance ¢2.

7.2 Convexity Properties and Absolute Continu-
ity

This section will prove that the distribution function F, , is log-concave and
discuss conditions that imply that F), , is absolutely continuous with respect
to Lebesgue measure. The results will be based on the celebrated Ehrhard
inequality, see Theorem 7.1 below. In what follows, let the function &'
denote the inverse of ®.

Theorem 7.1. Suppose A and B are closed convex sets in Q. Then
® (P(AMA+(1-X)B)) >3 (P(A) + (1 -1 ' (P(B))
for every 0 < A < 1.

A finite dimensional version of Theorem 7.1, that is, the Wiener measure
is replaced by the standard Gaussian measure in R” and A and B are convex
sets in R™, was first shown by Ehrhard [45]. Latala [80] has in the finite
dimensional setting proved that the conclusion in Theorem 7.1 holds when
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only one of the two sets is convex. However, it is still an open question if
the Ehrhard inequality remains true for arbitrary Borel sets A and B. A
proof of the infinite dimensional version of the Ehrhard inequality, e.g. the
version given in Theorem 7.1, can be found in Lifshits [86] p. 133.

Recall that a function f : A — [0,00), where A is an open and convex
set, is log-convex (log-concave) if

FOz+ 1 =Ny) <(>) f@) fly)' A

forall0 < A < landall z,y € A. In particular, if f > 0 then f is log-convex
(log-concave) if and only if In f is convex (concave). The proof of Corollary
7.1 below uses that ® is log-concave. This statement will be proven in the
discussion that follows after the proof of Corollary 7.1.

Corollary 7.1. Suppose p € M(0,T) and p € A. The function
R3s+ & 'oF,,oexp(s)
is concave. In particular, Fy, , is log-concave.

Proof. If T : Q — R is continuous and convex then the set {T < s} is
closed, convex, and

{T<As+(1=Nu} D MY <st+ (1= N{Y <u}
for all s,u € R and all 0 < X\ < 1. Thus, by the Ehrhard inequality,
H(P(T <As+ (1 —MNu))
> A0 H(P(T < 5)) + (1— N (P(T <u)) (74

for all s,u € Rand all 0 < A < 1.
Thus, to prove that ®~! o F, , o exp is concave it suffices to show that
w— U, ,(S(w)) is log-convex. To prove this, suppose 0 < A < 1 and note

Se(Aw + (1= N@) = Si(w)* Se(@)"

for each w,0 € Q, 0 <t < T, and any i = 1,... ,m. Here 2%, z € (0,00)™,
6 > 0, means (zf,... ,z%). Hence

bpa (S0 + (1= N)@)) < $a (S@))* b (S1(3)" ™,

according to the Holder inequality in the case ¢ < oo. If ¢ = oo the inequal-
ity is obvious. By applying the Hoélder inequality once more we obtain

Vo (SO + (1= N)@)) < Ty (S@))* T (S(@))'

109



Thus, w — ¥, ,(S(w)) is log-convex.
It remains to show that F), , is log-concave. Since o lo F, ,0exp is
concave it follows

Fu,p(e)\s-l-(l—)\)u) > (I)<)\(I)_1(Fu,p(es)) + (1 _ )\)(I)_l (Fu,p(eu)))

for every s,u € R and each 0 < A < 1. Hence, F), , is log-concave because
® is log-concave and the exponential function is convex. O

A positive Borel measure v in a subinterval of R is log-concave if
v(AM + (1= \)B) > v(4)*v(B)',

for all 0 < A < 1 and all Borel sets A and B. Thus, if the measure v
is log-concave then the corresponding distribution function is log-concave.
The reverse statement is not necessarily true. For instance, the measure
with distribution function F, , is not log-concave for all choices of 1 and p.
Indeed, an absolutely continuous, bounded, and positive Borel measure in
some open subinterval of R is log-concave if and only if the density function is
log-concave. The if part is the same as the Prékopa inequality, see Prékopa
[100], and the only if part is shown in Borell [19]. Now, the lognormal
distribution function G has a density g given by

() = 55—
S) = e 2¢ N
I sV 2T

It is readily seen that the function g. is not log-concave and thus, the mea-
sure with distribution function G¢ is not log-concave. Note also that the
Prékopa inequality implies that ® is log-concave.
For a discussion about log-concavity in option pricing, see Borell [22]
The proof of Corollary 7.2 below exploits an idea in Hoffman-Jgrgensen,
Shepp, and Dudley [61].

s> 0.

Corollary 7.2. Suppose p € M(0,T), 1 <p,q < o0, p € A, and put
s, = inf{s > 0 : F'I(s) > 0}.

The distribution F}’} is absolutely continuous on (s, 00). Moreover, if u €
M(7,T), 7> 0, or if p< oo then Fi'l is absolutely continuous on [0, 00).

Proof. Corollary 7.1 gives a concave function 1 : (s, 00) — R such that
Fli(s) = exp(e(s)) for all s > s,. A concave function is absolutely con-
tinuous and hence, F}’} is absolutely continuous on (s,00). It remains
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to establish that F}’%(s) is continuous at s, if p € M(7,T), 7 > 0, or if
p < oo. Since a distribution function is right continuous this amounts to
proving that P(¥9%(S) = s.) =0 if p € M(7,T), 7> 0, or p < cc.

To begin with we will study the two special cases

peM(T,T), >0, or p<ooandu({0})=0. (7.5)

It is obvious that there is a sequence of functions w™ € Q, n =1,2,...,
such that ¢, ,(Si(w™)) — 0, n — oo, point-wise for any ¢ € (0,7] or
uniformly for all ¢ € [7,T]. Thus, under any of the assumptions in equation
(7.5), O (S(w("))) — 0 as n — oo. In particular, there is, for every € > 0,
an @ € Q such that U0%(S(@)) < e. Define Y(w) = U5%(S(w)) for each
w € Q. The map Y is continuous which yields that the set YT *((—o0,¢))
is an open non-empty subset of 2. The topological support of P equals 2
and hence

P(T7}((~0,6)) >0
and therefore s, = 0. But T(w) > 0 for all w € Q, which yields
P(W24(S) = 5,) = P(T = 0) = 0.
Next, assume that

p < oo and p({0}) > 0.

It is readily seen that

S [

Sy 2> k= ¢p,q(50) H({O}) -

Define v(A) = u(AN(0,T]) for every Borel set A of [0,T]. For all s > k it
holds

Since v({0}) = 0, the previous results implies that P(¥5:4(S) = s) = 0 for
all s > 0, and therefore P(¥5%(S) = s) = 0 for each s > k. In particular,
P(¥%(S) = s.) = 0 and the proof is done. O

=

P(W55(8) = s) = P WLA(S) = (s — K?)

If 4 € M(0,T) then Fj;;? is not necessarily continuous at s., where s,
is defined as in Corollary 7.2. For instance, if u = §y + ér, where §; is the
Dirac measure at s, then it is readily seen that Fj; ;7 is discontinuous at s,.
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7.3 Bounds on the Distribution Function and Tail
Probabilities

The first theorem in this section gives bounds on the distribution function.

Theorem 7.2. Suppose 0 < 17 < T, i € M(1,T), p €A, and < = o;uV/T.
Assume @ > 1 and choose a,b > 0 such that

Flupla) = G¢(b),
then
F,.,(0a) > G.(6b). (7.6)
If, in addition, T > 0 then
F, p(0a) < G.(67D), (7.7)

where

T
v = am\/_ with o = max min o;(c;,z) > 0.
/T |z|2=1 {i:p;>0}

Moreover, if 0 < 6 < 1 then the inequalities in equations (7.6) and (7.7) are
reversed.

Proof. Equation (7.6) follows at once from Corollary 6.2 in the previous
chapter. To prove equation (7.7) we will use Theorem 6.7. Let the Cameron-
Martin space H be defined as in Section 6.2. Now, suppose w € Q, h € H,
A > 0, and note that

Sy(w + Ah) = P 5y (W)

for each 0 < ¢t < T. Here e = (e™,...,e"), x € R™. Thus, if y €
M(7,T), 7>0,and I ={i : p; > 0} then

U, (S(w+ Ah)) < (Tgl%)’(l“r?glx eMi(C“h(t))) U, (S(w)). (7.8)

Let x[o,) be the characteristic function of the interval [0, 7] and fix h € H
such that

T
h,(t) = 77—_X[0,7'] (t), 0<t<T,



where z € R™ satisfies |z|], = 1 and

Iglealx oi(ci,z) = |;n\21£1 I?EBJIX oi{ci, y)-

Observe that ||h||% = 1 and max;es 04(c;, ) = —, where « is defined as in
Proposition 7.2. Since h(t) = y/7z for all ¢ € [, T] it follows

max max e %Mt — max eATiVT(eiT) — p=AaV/T
7<t<T i€l el

Consequently,
U, ,(S(w+Ah)) < e Vg, L (S(w)).

Recall that ||h[|% = 1 and
P(0,,(8) <a) = @(?).

Theorem 6.7 implies

P(W,,(S(-+Ah)) <a) < @(? +2),

for each A > 0, and therefore
Inb
Aay/T
P(Qu,p(S) <e a) < <I>( . + )\). (7.9)

The constant « is strictly greater than 0. In fact, if A denotes the convex
hull of the vectors {c;}iecr then, since 0 ¢ A, (cj,z) > 0foralli e Iifx
denotes the point in A closest to the origin. Hence, equation (7.7) follows
by setting A = 61:\1/"% in equation (7.9).

The last part of Theorem 7.2 is obvious. ]

Next we will consider the tail probabilities for the law of ¥, ,(S). To
begin with we will study the upper tail probability.
In what follows we write f(s) ~5 g(s) if f(s)/g(s) — 1 as s — oo. The
lognormal distribution satisfies
11n2s
In (1 — G¢(As)) ~s —5 (7.10)
for any A > 0 and any ¢ > 0. This follows at once from the well-known
estimates

N
N

S s 1 1 s

1
\/T_wl-l-s?ei? <1-9(s) < \/2_71_;67?, s> 0,
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and the definition of G.. The next result, Theorem 7.3 below, generalises
this observation as well as a previous result by Janos in [67]. Janos obtains
by other methods the same result in the special case p,q < oo, and p equal
to a positive linear combination of Dirac measures.

Theorem 7.3. If u € M(0,T) and p € A then

11n%s

In (1= Fup(s)) ~s =5 -
m

Proof. Suppose ¢ = 0,,V/T and fix a,b > 0 so that

Fupla) = G¢(b).
By equation (7.6) with 8 = s/a it follows

b
Fupls) 2 Go(Z9), s>,

which gives In (1 — F, ,(s)) <In (1 — Gg(%s)) and therefore

[1n (1= Fyy(s))] > [1n (1= Ge(9))]

for each s > a. Hence, if

then

according to equation (7.10).

The next aim is to find an upper bound. Fix e such that 0 < e < T and
define v(A4) = p(AN (T — ¢,T)) for each Borel set A of [0,7]. Note that
v € M(T —¢,T). Moreover, set p = (0,0,...,0,py). It is evident that
FH,P(S) S Fy,ﬁ(s) (7]‘]‘)

for each s > 0.
Next, because v([0,7]) > 0 there are a,b > 0 such that

Fu,ﬁ(a) = G€(b)
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Equation (7.7) with § = s/a implies

F,5(s) < Gg(a%s7), 5> a,

where

In view of equation (7.11) we find

‘ In (1 - Fu’p(s))‘ < ‘ In (1 — Gg(a—787)

for each s > a. Thus, if

=1 £
l?lsogp n (1 —G(s))
then
In{1—-G(=5387
IT < limsup ( c(m )) 2

5—00 In (]. _GC(S)) -7

according to equation (7.10).
To sum up, for every ¢ > 0,

and the proof is done.

O

Some further details about the upper tail probability of F(?T’C:;, with o7

the Dirac measure at 7', can be found in Lifshits [85].

It is far more difficult to state any general results about the lower tail
probability. For instance, if x({0}) > 0 or if p = oo and p € M(0,T) \
Usso M(¢,T) then inf{s; F’(s) > 0} > 0. However, the next proposition

shows that it is possible to find upper bounds for F), ,(s) as s — 0.

Proposition 7.1. Suppose p € M(0,T) and p € A. There exist k > 0 and

€ > 0 such that
F/.t,p(s) < e—nlnzs

for all s <e.
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Proof. Theorem 7.2 implies that F), ,(s) < G¢(As) for some A > 0 and all
sufficiently small s > 0. In particular, since G¢(As) = 1—G¢(1/\s) equation
(7.10) gives that there is a k > 0 such that

Fu,p(s) < e—K,lIl2 s

for all sufficiently small s > 0. O

7.4 Stochastic Ordering

The first theorem in this section is a slight modification of Corollary 6.3 in
Chapter 6. The proof is identical and will be omitted.

Theorem 7.4. Suppose u € M(0,T), p € A, and let A be an open subin-
terval of R. Assume that the random wvariable Y has distribution G with
¢ = opmVT. Moreover, suppose @ : (0,00) = A is a monotonic function
such that (¥, ,(S)) € L' (P) and 1 : A — R is a convez function. Finally,
assume there is a k > 0 such that p(kY) € LY(P) and

Elp(0(89))] = E[p(xY)].

Then
E[pop(¥u,(5))] < E[¢pop(kY)],

where the expectations are finite or +00.
The next theorem considers the special cases p =g =1 and p = g = .

Theorem 7.5. Let p € M(0,T) and p € A. Suppose C and D are two m
by m matrices with rows cy,... ,¢y and dy,... ,d,,, respectively, such that
(ciscj) < (di,dj) and [cilo = |di|l2 = 1 for all 1 < 4,5 < m. Moreover,
assume {Stc}ogth and {StD}ogth are defined by

dSFP = S (ndt + cCdW;) and dSP = SP(ndt + cDAW;),

where S§ = SP = (s1,%2,--- ,8m) € (0,00)™ and 7 and o are defined as
Previous.
(1): If ¢ : (0,00) — R is a convex function then

E[(2,:,(5)) ] < B[%(T,(5™)) ], (7.12)

where the expectations are finite or +00.
(7): If ¢ : (0,00) = R is a non-decreasing and continuous function then

E[o(p52(59)) ] = E[o(Tro(S")) ], (7.13)

provided both integrands are in L'(P).
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The proof of Theorem 7.5 will be based on the so called comparison
principle for Gaussian random variables. This principle can be formulated
in different ways. Theorem 7.6 below gives two versions of the comparison
principle.

Theorem 7.6. Assume that X = (X1,...,Xy) and X' = (X1,...,X])
are centred Gaussian random variables with values in R* and B[ X;X;] <
B[X!X!),1<4,j<n.

(i): If f : R — R is two times continuously differentiable with

2 2
o’f >0, and ot

— k|z|2
a.’L‘ZBIEJ = 3:13,8:10] ((E) 0(6 )’ as |$|2 — 00,

for all 1 <4,5 <n and some constant k > 0, then
E[f(X)] < B[f(x").
(ii): If Var(X;) = Var(X]), i=1,... ,n, then
P(XZ- <at=1,... ,n) SP(X{Sai,izl,... ,n)
foralla; eR, i=1,... n.

Theorem 7.6 (i) is stated in Lifshits [86], p. 188, for a function f that,
in addition, has bounded second derivatives. However, the proof in Lifshits
[86] of Theorem 7.6 (i) also works given the assumptions in Theorem 7.6
(7). Statement (i7) is due to Slepian, see [114]. A geometrical proof of an
important special case of the Slepian inequality can be found in Chartres
[32].

We are now in the position to prove Theorem 7.5.

Proof of Theorem 7.5. First we prove (i). Suppose i = 1,...,n, n > 1,
and 0 <ty <ty < ... < t, <T. Set N = nm and let z € RY. Define
uj : RN - R™ as

u;(z) = (316(771—U%/Z)ti+0'1$(i—1)m+1’ o ,sme("lm_Uazn/Q)ti‘i'Umw(i—nerm)
and g: RV — R by
n
9(@) = Pitpa (ui(x))
i=1
with p € (0, 00)™.
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Since
B[, (59)] = E[¥,;,(57)]

it is, according to the discussion preceding Corollary 6.3, enough to prove
equation (7.12) for all non-decreasing convex functions. In addition, an
approximation argument yields that it is sufficient to prove the relation
(7.12) for all 1 that are two times differentiable and ¥(s) = s — k for all
sufficiently large s > 0 and some k > 0. If f(z) =9 o g(z) then

o f o dg , | Og , &g

for all 1 <4,j < N. It is readily seen that the first two derivatives of g are
non-negative and thus

52
Bwjgxi 2 0.
Let X¢ and XP be two centred Gaussian random variables in RY with
B[ Xfy i Xfmy | =min(ti, t) (¢, q), 0<ik<n—1,1<j1<m,
and
B[ Xy i X | = min(ts, t) (dj, di), 0<ik<n—1,1<j1<m.
Theorem 7.6 (i) gives E[ f(X“)] < E[ f(XP?)] and hence,
E[(955,(59) ] < B[4(95: (7)) (7.14)

for all measures y,, € M(0,T) such that p, is a positive linear combination
of Dirac measures. There is a sequence of such measures p, so that u,
converges weakly to y for any u € M(0,T) and thus, bounded convergence
yields that equation (7.14) is valid for all yu € M(0,T).

To prove the second statement (ii), suppose X¢, X and u; are defined
as before and put

9(z) = max pidpeo(ui()), @ eRY, pe(0,00)".

The set {z : pog(z) <t}, t € R is of the form {z : z; <a;, 1 <i < N}
and thus, by the Slepian inequality, E[p o g(X®)] > E[pog(XP)]. Hence,

E[p(T3(59) ] > Blo(T55(57))]

for all measures y, € M(0,T) such that p, is a positive linear combination
of Dirac measures. The general case with y € M(0,7) now follows by
bounded convergence and the fact that ¢ is continuous. O
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7.5 Moment Inequalities

The purpose of this section is to derive inequalities for the moments of ¥9%.

Define, for all » € R\ {0},
1
X1 = E[|X]"] ",

where X is a random variable in (2, P). By Theorem 7.3 and Proposition
7.1 we can draw the conclusion that 0 < [|[¥, ,(S)||, < oo for all r # 0.
If —oo < 7rg < 7r1 < oo and rgry; # 0 then it is well-known that

1,0 (S)llrg < 11 ¥p,p(S)lrs -

The main result in this section, Theorem 7.7 below, is a sharp reversed
inequality.
Theorem 7.7. Suppose yp € M(0,T) and p € A. If —o00 < 1y <11 < 0
and ror1 # 0 then
1,2 _
19,0(S)llry < 27770 [T, L (S) I (7.15)
Moreover, there is equality in equation (7.15) if u = kér, k>0, and p; =0
fori=1,... , m—1.
Proof. Suppose ¢ = 0,,v/T and assume that Y is a random variable with
distribution function G. Set f(s) = s™, 1(s) = sign(r1) s"/", and
_ %5 (S)llrg
K= .
[y |

The function % : (0,00) — R is convex, so Theorem 7.5 shows

E[to f(Tun(S))] < E[yo f(kY)].
Thus,

1Yl
1Y lro

10 (S)llrs < 1 11,0 (S) [l -

Since ||Y ||, = e2°’T we have established the desired inequality. The last
part of the theorem is obvious. O

By Theorem 7.7 one can derive an estimate for the Laplace transform of

the maximum of a Gaussian process. Indeed, assume X = (X1,...,X,,) isa
Gaussian random variable with values in R™ and o2, = max;—1,.., m var(X;).
By setting u = 07, ¢ = 00, and 71 = —rg = r in Theorem 7.7 we obtain

E[ermaX¢:1,...,m Xi]E[e—"'maXi:I,...,m z] < evfnTQ’ reR

with equality if m = 1.
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7.6 The Stieltjes Moment Problem

A distribution function F' with support on the positive real axis is said to
be indetermined (or Stieltjes-indetermined) by its moments if there exist
a distribution function F' with support on the positive real axis such that
F # F and

o0 o -
/ skF(ds) = / s*F(ds) forallk=1,2,....
0 0

It is well-known that the lognormal distribution is indetermined by its
moments. This result goes back to Heyde [59] who also construct a class of
distribution functions with the same moments as the lognormal distribution.

Suppose p = (0,...,0,p,) with p,, > 0. Nikeghbali [96] has recently
proved that for any p € M(0,T) and any p,q < oo the distribution Fﬁ”g is
indetermined by its moments. Nikeghbali proved this result using a criterion
by Pakes in [97]. Namely, Theorem 5 in Pakes [97] states that if F' is a
distribution function with support on the positive real axis such that

/00 —In (1 - F(s))

$3/2

ds < o0,

for some u > 0, then F' is indetermined by its moment. This result is a
modification of the so called Krein criterion, see [97] for further details.

The result by Pakes shows that F), , is indetermined by its moment.
Indeed, by Theorem 7.3 it follows

/°° —In (1 - F,(s))

$3/2

ds < oo, u>0,

and thus, we have

Theorem 7.8. Suppose p € M(0,T) and p € A. The distribution F), , is
indetermined by its moments.

7.7 Applications in Option Pricing

This section discusses some applications of the results in the previous sec-
tions. The first example considers an upper bound for the price of an Asian
call option. Assume for simplicity that the dimension m = 1. Suppose that
{S} }o<i<T denotes an one-dimensional geometric Brownian motion and the
measure ( is defined as in Theorem 1.2. It is well known that if 4 € M(0,T)

120



with x([0,7]) = 1 then the price (at time ¢ = 0) of a European call option
does not fall below the price of the corresponding Asian call option, that is

T
e_TTEQ[ma.x(/ Siu(dt) — K,0)] < e~ E9[ max(St — K, 0)].
0
This follows at once from the Jensen inequality and the fact that the price

of an European call option is an increasing function of 7. By Theorem 7.4
we can establish a better bound for the price an Asian option, namely

T
e "TE? [max(/ Siu(dt) — K,0)] < e " E?[max(sSt — K, 0)]
0

with

o E2[ fy Stu(dt)] _ ST ertu(dt) -
EQ[S7] et =

For a further discussion about other upper bounds on the price of an Asian
option, see Rogers et al. [105].

Next we will discuss the so-called moment-matching method for the
pricing of Asian basket options. To value these contracts one must determine
the expectation

E?[max(TLL(S) — K,0)],

where p € M(0,T), p € A, and K is a constant. Note that for many choices
of 11 the quantities EQ[(¥,2,)*], k € N, , can be computed analytically. A
common approach to estimate the price is the so-called moment-matching
method, which means that one determines a random variable X such that

E9[X*] = EQ[(¥;0)F], k=1,...,n,

and then make the approximation
E9[max(T;,(S) — K,0)] ~ E?[max(X — K,0)]. (7.16)

If K > 0, Theorem 7.8 shows that even with n = oo it is not guaranteed
that there is equality in equation (7.16). To be more specific, there is a
random variable X such that EQ[X*] = EQ[(\I!};,},)’“] for all k € N} and
a constant K > 0 such that the left hand side is not equal to the right
hand side in equation (7.16). Recall that if X and X’ are two non-negative
random variables with finite expectation such that E®[max(X — K,0)] =
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E9[max(X' — K,0)] for all K > 0, then X and X’ are equal in law. For
other aspects on the moment-matching method, see Brigo et al. [27].

We conclude this chapter by discussing how the price of an Asian call or
put option on a basket or a call or put option on the maximum of several
assets depends on the correlation matrix. Let, for some m by m matrix C
and x € {—1,1},

vi’q(C) =e "TEQ [max (X ( \Ilﬂ’,%(sc) - K), 0) ],
where SC is defined as in Theorem 7.5 and K > 0. If C and D are two m
by m matrices with rows c1,... ,¢y, and dy, ... ,d,,, respectively, such that
(ciycj) < (d;,dj) and |¢j|a = |di|2 = 1 for all 1 < i, j < m, then, if v}/(D) is
defined in analogy with v§?(C) but with S¢ replaced by SP, Theorem 7.5
shows that

U;(’l(C) < ’U>1<’1(D) and  xv)*(C) > x v (D),
for x € {—1,1}. For a further discussion about monotonicity in option
prices, see Kijima [74], Janson and Tysk [68], and the references therein.
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Chapter 8

Dividends and the Pricing of
Path-Dependent Options

Although traders in most equity option markets regard the Black-Scholes
model as the premier option valuation model, the Black-Scholes model has
certain limitations. The model assumes, for instance, that the underlying
asset does not pay dividends. Of course, in practice, this is not usually the
case. In addition, dividends are known to have a significant influence on the
price of American call options, see for instance Jarrow and Rudd [69].

The purpose of this chapter is to describe how the Black-Scholes model
can be extended to also handle stocks that pay dividends and show how
path-dependent options can be priced in this model. The chapter will more-
over present numerical examples illustrating the influence dividends have on
the price of some path-dependent options.

8.1 The Heath-Jarrow Model

The price of a dividend paying stock will drop just after the dividend date.
The size of the drop is dependent on many factors. The size of the dividend
amount will of course affect the price change, but other factors as taxes and
transaction costs may also influence the price change at the ex-dividend
date. In most cases, the stock price will go down by somewhat less than
the amount of the dividend, see for instance Heath and Jarrow [57] for a
further discussion.

In the Black-Scholes model the underlying asset price follows a geometric
Brownian motion. In particular, the price process is continuous. Since
the price change at the ex-dividend date is discontinuous, it is no longer
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realistic to assume that the underlying price process of a dividend paying
stock equals a geometric Brownian motion. Heath and Jarrow [57] suggest
a more realistic model for the price of a dividend paying stock during a
bounded time interval, say [0,7] where T can be thought of as the maturity
date of some option. The purpose of the remaining part of this section is to
discuss the model by Heath et al..

Assume that dividends are to be paid at the dates t1,to,... ,t,, where
0<t; <T,i=1,...,n, and that the stock price will drop by the amount
di,do, ... ,d, at the corresponding dividends dates. Heath et al. make the
assumption that the dividend dates are known in advance while the price
changes can be random variables. For simplicity, we will assume that both
the dividend dates t1, to, . .. ,t, and the price changes di,ds, ... ,d, are fixed
constants.

Next, let D;, 0 <t < T, be defined by

Dy = Z dz'e_r(t"_t)X[o,ti] ),
i—1

where x 4 is the indicator function of the interval A and r is the continuously
compounded risk-free interest rate. Now, Heath et al. suggest that under
the risk-neutral measure (), the price process {S;}o<;<1 of a dividend paying
stock evolves according to

S,=Y,+Dy, 0<t<T, (8.1)

where Y} is a geometric Brownian motion with drift starting at Yy = So— Dy,
to be more specific, Y; solves

dY; = Yy(rdt + cdW?), 0<t<T,

Yo = So — Do,
where {WtQ}tZO is a standard one-dimensional Brownian motion with re-
spect to ) and o is a positive constant.

In this model, the stock price will fall by the amount d; at the dividend
date ¢;, while between the dividend dates the price process will evolve almost
(note that Dy is not constant between the dividend dates) as in the Black-
Scholes model. It can be observed that if n = 0 then the Heath-Jarrow
model will coincide with the Black-Scholes model.

We conclude this section by making some comments about the parameter
T. In practice, when some option shall be priced, T is sat to the maturity
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date of the option. By setting T' equal to the maturity date implies that the
model will be dependent of the option, which is unfortunate. For instance,
the value of an American call option will not necessary be an increasing
function of the maturity date.

8.2 Pricing Path-Dependent Options in the
Heath-Jarrow Model

This section describes how the theoretical value of a European barrier option
and a European styled Asian option can be determined in the Heath-Jarrow
model. To begin with we will focus on barrier options.

Consider, for instance, a continuous down-and-out call option with ma-
turity date T, constant barrier H, and strike price K. Recall that the payoff
function of this contract is given by

max(St — K, 0)1{ S¢>H, for all t€[0,T] }-

Assume that the underlying asset price is described as in equation (8.1).
The theoretical price of the barrier option can be written

e ""E?[max( Sy — K,0 )1{ 8,>H, for all te[0,7]})
=e ""E?[max (Y7 — (K — Dr),0)1{y;>H-D,, for all te[0,T]}) -

The right hand side can be recognised as the theoretical price in the Black-
Scholes model of a continuous down-and-out call with strike price K —
Dr, initial asset price Sy — Dy, and a (moving) barrier at the level H —
D; at time t. Thus, the problem of pricing down-and-out call options in
the Heath-Jarrow model is equivalent to valuing down-and-out call options
with a moving barrier in the Black-Scholes model. This problem has been
addressed earlier in the literature, see for instance Derman et al. [39].

Next we will consider Asian contracts. Recall that the payoff function
of a discrete Asian call option with strike price K and maturity date T is
given by

m
max(ijSTj —K,0),
j=1

where 7, 0 < 7; < T, j = 1,... ,m, represent the time points when the
stock price is sampled and the weights p;, j = 1,... ,m, are strictly positive
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numbers. The theoretical value of an Asian call option in the Heath-Jarrow
model equals

m
e ™" E?[ max( Z piSz; — K, 0)]
j=1

m m
= "B max ()_p;¥s, — (K =3 piDry), 0)].
=1 =t

In other words, the options value equals the price in the Black-Scholes model
of an Asian call with strike price K — Z;nzl pjDr; and initial price So — Do.

8.3 Numerical Examples and Conclusions

This section presents numerical examples that show how the price of path-
dependent options varies with the dividend amount as well as with the
dividend date. Figure 8.1 displays the price of a European down-and-out
call option and a European styled Asian call option as a function of the
size on the price change of the underlying asset price at the dividend date.
Figure 8.2 shows the price of the same options as a function of the dividend
date. The theoretical prices of the barrier option has been calculated using a
numerical procedure described in Derman et al. [39] and the Asian contract
has been valued with a moment matching method (cf. Section 7.6).

Observe that the option prices differs substantially in both cases. In
particular, the price of the barrier and the Asian option is considerably
more sensitive to the dividend date than the price of a similar American
call option, see the caption in Figure 8.2.

The conclusion is that dividends may have a great influence on the price
of a path-dependent option. Not only does the amount of the dividend
influence the price of a path-dependent option, but also the dividend day
may affect the price.

Thus, to properly price a path-dependent option dividends must be in-
cluded in the pricing model. For this reason it would be of great interest
to investigate what the consequences would be if the price changes at the
ex-dividend dates are random variables instead of constants as in our ex-
ample. This would make the model more realistic if the option has a long
lifetime, which is the case for many barrier and Asian options. Hopefully
future research will investigate this question.
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Figure 8.1: The price at time ¢t = 0 of a down-and-out call and an Asian call as a
function of d;, the amount by which the stock will fall at the dividend date. The
stock will only pay one dividend and the dividend date is t; = 1/2. The option
parameters are in both cases So = 110, K =110, 0 = 0.3, r = 0.047,and T = 1
year. The barrier is H = 100 and the Asian option has weekly sampling with
weights p; = 1/52, j = 1,...,52. The price of a similar American call option will
vary between 18.77 and 15.13 as d; varies between 0 and 6 unit of currency.
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95F

Down-and-out call ~

— — — Asian call <.
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[ 1 2 3 4 5 6
Dividend amountd,, n=1.

Figure 8.2: The price at time ¢ = 0 of a down-and-out call and an Asian call
as a function of the dividend date t;. We assume that the stock will drop by the
amount d; = 4 at the dividend date. The option parameters are as in Figure 8.2.
The price of a similar American call option will vary between 16.35 and 16.44 as
the dividend date ¢; varies between 2 weeks and 11 months.
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Dividend date t,, n=1.
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Notation and Conventions

This section explains some notation and conventions employed in this text.

Sets

N; natural numbers, 1,2, ...

N  non-negative integers, 0,1,2, ...
Z integers

R real numbers

If A and B are subsets of a real vector space V then
M={dz :z€ A}, XeR
A+B={z+y:z€ A, y€ B},
and
A+z={y+z:yc A}, zeV.

Moreover, we assume that inf ) = co.

Functions
T Ay minimum of z and y, z,y € R
sign(z) the sign of z, z € R\ {0}
d(x) standard normal distribution function, i.e.

x 2dy
@w:/ e_%—, —oo < z < o0.
D=] e TS

If X and Y are two real valued random variables defined on the same prob-

ability space, then X =Y (X > Y) means that X are equal to (larger than)
Y almost surely.
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