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On space-time means for solutions of
nonlinear Klein-Gordon equations

Hakan Blomgqvist
Department of Mathematics
Chalmers University of Technology and Go6teborg University

Abstract

The thesis consists of one paper about space-time means for solutions of the nonlinear
Klein-Gordon equation, which also was my licentiate thesis (1986), and one paper about the
rate of decay of long-time mean-values for solutions of the nonlinear Klein-Gordon equation.

In the first paper is studied if certain properties of finite energy solutions wug of the linear
Klein-Gordon equation will be inherited of finite energy solutions u of the corresponding,
(same data), nonlinear Klein-Gordon equation. An important step in our investigation is
to establish that [lul|xs, where X denotes L; or Bp?, satisfies a certain nonlinear Volterra
integral inequality with singular kernel. It is proven that if ug has any one of the properties

2 [t 1
lluollxs < w(t) as t > t*, |luollxs € Lq or (Z/g ||UO||qX;dT)‘1 <w(t) ast > t*,
2

then the same property is inherited by « under certain extra conditions. Results of this kind
are important tools in proving the existence of everywhere defined scattering operators and
uniqueness of weak solutions.

The second paper is devoted to the study of the rate of decay for space-time means of
finite energy solutions to the nonlinear Klein-Gordon equation. From the main theorem
follows that if certain long time mean-values of ug have an upper bound O(t~%) as t = oo,
then the same upper bound also holds for the corresponding long time mean-values of u. For
n = 3 the maximal rate of decay is obtained under certain extra conditions. Results of this
kind are of interest since the decay properties of u, (in suitable L,-spaces), can be related to
the decay and the rate of the decay of local energy.

Key words and phrases: Nonlinear Klein-Gordon equation, linear Klein-Gordon equation,
asymptotic properties, rate of decay, boundedness of space-time means, properties inherited
from the corresponding linear case, nonlinear Volterra integral inequality with singular kernel.



This thesis consists of an introduction and the following papers:

e Paper I:  On space-time means of solutions to nonlinear Klein-Gordon equations
and a nonlinear Volterra integral inequality with singular kernel.

e Paper II: On space-time means and rate of decay for solutions of nonlinear Klein-
Gordon equations.
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On space-time means for solutions of nonlinear
Klein-Gordon equations - Introduction

Hakan Blomqvist

june 2003

1 Basic concepts and applications

1.1 Relativistic wave equations

In classical physics the fundamental law of energy is

2
=L,y
2m
In quantum mechanics physical quantities are represented by operators. The
(Schrdédinger) substitutions

E—)ih%,p—) —ihV,V =V

lead to - B2

2 T gy

"ot 2m v+Vy
which is the Schrédinger equation. But the classical laws are not valid for very
fast motion where relativity becomes important. The corresponding relativistic
law for energy is

E2 — |p|262 + m2c4
The Schrodinger substitutions yield
0%¢
2 _ 322 2 4
— W——h0A¢+mc¢

which, if we for simplicity take A =1 and ¢ = 1, can be rewritten as
b — Ap+m’p=0

This is the Klein-Gordon equation which holds for bosons. Bosons are a class
of particles that have integer spin. Examples of bosons are fotons and mesons.



As the field ¢ is a scalar field there is no spin involved in the solutions but the
Klein-Gordon equation is pertinent e.g. for the description of 7° mesons and for
the scalar components of the Higgs fields. For fermions, that have half integer
spin, you have to use the “square-root version” of the Klein-Gordon equation

oy _Bmc?
ot +ca-Viy+i W

which is the Dirac equation.

b =0

1.2 The Klein-Gordon equation

In the following papers are studied the asymptotic behaviour of finite energy
solutions to the nonlinear Klein-Gordon equation

(NLKG) { ug — Au+m2u+ f(u) =0

u(a:,O) = <p(a:),ut(a:,(]) = ¢($)

where z € R*,t € Rt ,m > 0,A = A,. Equations of this type appear as
scalar versions of the field equations which describes weak nonlinear interaction
between elementary particles. A typical form of the nonlinear term is

Fw) = Mafu? 1 A > 0,021

For f(u) = 0 we obtain the corresponding free equation, the Klein-Gordon
equation (KG). (For f(u) = 0 and m = 0 we obtain the simpler wave equation.)
We have investigated if some, mathematically and physically, interesting types
of decay of the solution ug of the (KG) will be inherited by the solution u of
the (NLKQG). This research is presented in this introduction, and carried out in
detail in the two attached papers below referred to as Paper I (Blomqvist [1])
and Paper IT (Blomqvist [2]).

1.3 Energy

The Klein-Gordon lagrangian L = £(¢7 — |V,¢|? — m?¢*) gives rise to the
energy density g—dﬁ@ — L = 1(¢7 4 |V20|* + m?¢?) and the energy E,(t) =
1[92 + | V292 + m?|¢|?)dz. For the system (NLKG) we define the energy
E(t) by

1
B®) =5 [(ul + Voul + m?uf)do + [ Fu)do

where F'(u) = fou f(v)dv is the potential energy density.



If we multiply the nonlinear Klein-Gordon equation by u; and integrate over
space it follows that the energy is a conserved quantity. We will assume that
F(u) > 0 in order to ensure the existence of nonnegative energy, which is es-
sential for the existence of global solutions when no restrictions are assumed on
the size of the data. The space X, = H' x Ly with norm

lu@)lle = {lu®ln + llue@) 17, }2

is called the energy space. By a finite energy solution we mean a solution for
which (p,9) € X, = H! x L.

1.4 Strichartz estimates for solutions of the (KG)

Let [|gl|z,(z;) denote the L,(Rt)-norm in ¢ of lg(®)llz; wn). For a finite energy
solution ug of the (KG) we then have that (Strichartz [26] ,[27] and Segal [22])

[[uoll < Cilllellar + 14llz.) < C

1
Ly(Hy)

2(n+1)
n—1 7

i.e. (5,,:%—

_ 1

— 1__1
where p = = nyi

More complex estimates bound u, in L, (R, H,(R")) ( see Strichartz [26], Marshall-
Strauss-Wainger [17], Ginibre and Velo [11], and also Brenner [8]). For more
detailed statements, see also below and Paper II.

1.5 Scattering theory

A large amount of work has been devoted to the theory of Scattering for non-
linear wave equations. The main purpose of Scattering theory is to study the
asymptotic behaviour in time of solutions to the nonlinear equation by compar-
ing them to solutions of the (simpler) linear equation. For a background and
a definition of the scattering operator, see paper I. Under certain conditions,
there exists an everywhere defined scattering operator on X, for the nonlinear
Klein-Gordon equation. (Brenner [5], [6], [7].) In particular it follows that there
is a finite energy solution uy of (KG), such that for the corresponding soluton
u of the (NLKG)
lu(t) —ut(®)lle = 0, ast— oo

1.6 Energy decay

For Q C R™ we define local energy Eq(t) by

1
Fo(t) = §/Q(|ut|2+|Vmu|2+m2|u|2)d:c+/QF(u)da:



and the corresponding energy space by X.(Q) = H*(Q) x L2(Q) with norm

1
lu@®)le.e = {[lu@®Iz @) + lue@®) |70}

For locally classical solutions of the (NLKG) Morawetz [18] in 1968 proved the
following result of local energy decay on compact subsets of R3.

If u is locally a classical solution of the (NLKG) and Q is a compact subset of
R3, then Eq(t) € Ly and Eq(t) — 0 as t — oo.

In particular it follows that
lu(t)|| o) € L2 and [|u(t)||p,@) — 0 as t — oo

For finite energy solutions of the (NLKG) we can conclude, using the scattering
theorem and the fact that u is uniformly continuous in H1, that u is uniformly
continuous in Ly(Q) and by the integrability it follows that

lw(t)]| o) = 0 ast — oo

Some of these results can also be recaptured in other ways: By Hélder’s inequal-
ity one can also directly show that for p > 2

lu@)llza@) = ( /Q 1 Ju(z, 8)|2dz) F < (m(2)2 77 ||lu(®)l|z, )

If 1 <&, = 35— < 727 we have by the nonlinear counterpart of the Strichartz
estimates (see Brenner [3],[4] and [8]) that ||u(t)||z, € L2 and it follows again
that

lu(®)] o) € L2

This method is of interest in the context of this exposition, since it relates the
decay properties of u in suitable Ly-spaces and the decay, and rate of decay, of
local energy. A third way to get hold of the limiting behavior is due to Strichartz
[28] :

Let Yy = HY(R" \ {z : e(t)t < |z| < (1 —e(t)t}) where 0 < e(t) < 1,e(t) = 0 as
t — 00. Then, if ug is a finite energy solution of (KG),

[[wo(®)|]ly, — 0, as t — oo.

With the aid of the scattering theorem this result can be extended to finite
energy solutions u of (NLKG).



2 Some previous results on asymptotic behaviour
of solutions to the Klein-Gordon equation

2.1 Global solutions of the Cauchy problem for the Klein-
Gordon equation

A prerequisite to the study of asymptotic behaviour was earlier the existence
and uniqueness of global solutions of the Cauchy problem for a reasonable large
class of initial data. Jorgens [15] in 1961 proved that (NLKG) in the case
n = 3,f(u) = ulul’71,2 < p < 5 has a classical solution for all ¢ > 0 if
data p,¢ € C§°. Pecher [21] in 1976 proved that (NLKG) has classical global
solutions if

4
f(u):u|u|P*1,2<p<1+m,3§n§5_

All these results can be extended to more common f(u) such that fou f(v)dv > 0.
The result of Pecher was carried over by Brenner [3] in 1979 to more general
equations where A was replaced by a second order positive elliptic operator
and the growth conditions on the derivatives of f were somewhat relaxed. This
result was further improved by Brenner and von Wahl [9] in 1981. Here f is
supposed to satisfy the conditions

; f(O):O,fECQ,F(U):/vf(“)dUZOfoerO
0

and

2 7] =00+t p < 222

and data are assumed to belong to Hf for k large enough. The condition (2) is
a “natural” growth condition on f in the sense that it together with (1) implies
that the energy is equibounded for (KG) and (NLKG).

Uniqueness for finite energy solutions in all dimensions under the conditions
(1),(2) was proved by Ginibre and Velo [10]. A short proof of the uniqueness
was given by Brenner [8]

2.2 Asymptotic behaviour in time of solutions of the Klein-
Gordon equation

The asymptotic behaviour in time of solutions of the Klein-Gordon equation has
been more extensively studied during the last thirty years. A basic result was
given in [19] which covers the case of dimension n = 3 and sufficiently regular
solutions. This result was generalised in [20], [21] as regards the assumptions on



the nonlinear term and extended in [5] to higher dimensions. The next progress
was to relax the regularity assumptions on the solutions in order to cover the
case of arbitrary finite energy solutions. In [6] it was proved that arbitrary large
finite energy solutions of (NLKG) for space dimension n > 3 exhibit some of
the time decay properties of the solutions of (KG) under the growth condition
142 < p <1425, In [8] these results were obtained for 1+ 2 < p < 14 4.

3 Integral inequalities

An important tool in our investigations of the (NLKG) will be the nonlinear
Volterra integral equaiton with singular kernel derived below. The base for the
equation is the solution formula for (KG)

ug = Eo(t)p + E1(t)y

where Ey(t) = cos(tB) and E;(t) = B~ !sin(tB) are the solution operators of
(KG). The solution of (NLKG) then can be written

t
w = ug —/0 Bu(t — 1) f(u)dr

by which we obtain that

t
Il < loolly + [ 1Ex(e = D) Sl yr
P P 0 P

where here and in the following, X denotes H, or B;9. A result of Brenner
[5] now give us that

t
lull gy < lolly + | Kt =Dl @lxsar
where 0 < K € Ly N L4, for some € > 0. In Paper I is established that
If @llx; < Cllulll, 0< <o (small)

by which we obtain the nonlinear Volterra integral inequality

1
17
o < lltollycr +C / K(t— )l dr
P P 0 pl

which is an essential tool in our investigations. In Paper II the kernel K (t — 7)
is replaced by K(t — 7)h(r) where 0 < K € Ly, N Lyg4., for some € > 0, and

OShELqé,qLO-F%: .



4 Results of the following papers

4.1 Pointwise L,-convergence in time

Over the years there have been a number of results on pointwise decay in L,(R™)
for solutions of (NLKG). (Strauss 1968 [24], von Wahl 1970 [29], Morawetz and
Strauss 1972 [19], Pecher 1974 [20], Brenner 1981-1985 [5], [7], [8]). See e.g.
Brenner [5], where it is shown that if

o (®) s, < O(1 + 1)

the above property is inherited by u provided that data are sufficiently nice (i.e.
have sufficiently many derivatives in L1 ), y = L = 1% < min(—X p%l),p’ >2

2 n—1°
and that p satisfies certain conditions.

Results of this kind are important when showing existence and asymptotic com-
pleteness of the scattering operator associated with the (NLKG). What is the
maximal rate of decay? Investigations of classical solutions of the nonlinear
wave equation for critical exponents p = 1 + ﬁ shows that we may use
6y = 2 (p) = o0) for n = 3 (Grillakis [13], [14]). In general, how does the
rate of decay of the (NLKG) relate to that of the (KG)? A result from Paper I

is the following (See Theorem 5.1 in [1]):
Assume that

lluo ()|l x=r < w(t),t >0, where w(t) =0 ast— oo

If||u0||X;: is bounded fort > 0, then the above property is inherited by u provided

that K (t) and w(t) satisfies certain conditions (again, see [1]).

4.2 Strichartz-type estimates for solutions of (NLKG)

In Paper I is considered “L,-decay” in time. By Strichartz estimates we know
that, for finite energy data and certain combination of ¢,p’ and s,

o8l € Iy

It is shown that if K € Ly N Ly, for some € > 0, where K (t) is the kernel of the
nonlinear Volterra integral inequality derived above, then the above property is
inherited by u. (See Theorem 9.1) Results of this kind are of importance e.g.
to establish that the scattering operator of the (NLKG) is defined on all states
of finite energy.



4.3 Long range mean-values

If we, e.g. by some Strichartz estimate, know that
”uO(t)”XZ; €L,

it follows that .
/ luol|% . dT — 0 as t = oo
5 »

so that this property is also inherited by w under certain conditions. This leads
us to study the long range mean-value of wug

2 t 1
My xuo(t) = (;[ ||U0||3(d7') >0
2

What is known about the rate of decay of M, xuo(t) for nontrivial solutions
ug of (KG)? If data are sufficiently smooth,i.e. ¢ and v have sufficiently many
derivatives in Ly, it is known that [29], [20], [19], [16],

ert™™ < My g, uo(t) < cat™™% t— oo ,p' > 2

For finite energy data, not necessarily smooth, it is only known that ( Glassey

[12])

ct™™% < My, 1, uo(t)

The rate of decay is in general not known. In Paper I it is shown that if, for
finite energy data, the long range mean-value of ug

Mq,’X;; uo(t) < w(t)

then this property is inherited by u under certain conditions. In Paper II is
studied the rate of decay of solutions of the (NLKG). A bound for the rate of
decay is given by Brenner in [8]:

Ifu € Lfl"c(R, Lé“ (R™)) is a finite energy solution of (NLKG), then there is a
constant ¢ > 0 such that

. o b
MIxu®) > (7 [ Il dr) > et

where p,q > 2 and X, = L{X : |z| < t} C X = L,(R") provided that
1+2<p<l+25.

The question now arises: If the solutions of (KG) have maximal decay, is this
property inherited by the solutions of (NLKG) ? A recent result of Brenner [8]
is the following:



Ifug € Ll(le,') N Lq(Xg,') is o finite energy solution of (KG) and if |luo(t)||

has uniform decay in Ly, then

¢ ¢
/ |u]|? ., dr ~ / |wol|? . dT, ast — oo.
3 v % v

provided that 1+ % <p<l+ ﬁ and that K (t) fulfils the “standard” assump-
tions.

(We say that g : Rt — Rt has uniform decay in L, if, for some ¢,t* > 1,
t

independent of ¢, [? g(7)%dr < c [ ! g(7)4dr, for t > t*.) One corollary is that
4 2

if ug has mazimal decay in Lq((%,t),X;,), then also u has mazimal decay in

LQ((%at)a*X;’)'

The main result in Paper II is the following (for detailed conditions on w and
X we refer to that paper):

Main Theorem. Assume that
My, pout) =Ci(1+) "3 7, v >0
for some q1,7 > 2 and that
My xuo(t) < w(d)
where w(t) satisfies certain growth conditions ( given in Paper II ) . Then

My xu(t) < Cuw(t)

One corollary is the following that gives an example of a case when the maximal
rate of the long range mean-value is attained.

If u € Ly(LY) where 6y = =5 and M, xuo(t) has mazimal decay, then
M, xu(t) also has mazimal decay in the case n = 3 under certain conditions on
dq and p.
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On space-time means for solutions to nonlinear Klein-Gordon
equations and a nonlinear Volterra integral inequality with singular
kernel

Hakan Blomqvist

Abstract

The aim of this paper is to prove, that certain properties of space-time means for solutions u
to the nonlinear Klein-Gordon equation

(NLKG) u(z,0) = p(x), ut(z,0) = P(x)

are in fact inherited from the solutions ug to the corresponding linear (f(u) = 0) Klein-Gordon
equation.

An important first step in our investigation is to establish the nonlinear Volterra integral in-
equality

{ ug — Au+m2u+ f(u) =0

t
(NLVI) llullxs < lluollx; +/0 K (t = 7)llullx;"dr, [n| < no,

where X denotes L§ or B¢ and where K(t) < Ct~'~%,¢ > 1, for some a > 0.
It is then proved, that if ug satisfies any one of the following three conditions
A) ||uol|lx:s < w(t),w(t) = 0 ast — oo.

B) lluollx; € Ly, (In| < ag)
2

¢
C) (= / ||U0||?Xsd7)1/q < w(t),w(t) = 0ast— oo
t/2 P

t
then the same property is inherited by u under certain extra conditions.
Results of this kind are important tools in proving the existence of everywhere defined scattering
operators and uniqueness of weak solutions.



0 Introduction

This chapter will present, and give some background to, the problems studied later.

Let us start by recalling some results for the Klein-Gordon equation

vy —Av+mPv=0, z€R", t>0
v(z,0) = p(z); ve(x,0) = 9 (x); p, 9 € L x La.

where n > 3,m >0 and A = A,.

(KG) {

The energy norm, || - ||¢, is defined by

1

1 =
(0.1) lolle = {5 /(|V$'U|2 ol + m?of?)dr )

In the following, Ey(t) and E1(t) will denote the solution operators of vy — Av + m?v = 0, and the
solution of (KG) will be denoted by ug. We then have that

ug = Eo(t)p + E1(t)y.

The following theorem says that Lo-conditions on the data imply a weak decay estimate for the solution
of the (KG), and will later inspire our discussion of the corresponding nonlinear problem.

1 1 1 1
Theorem 0.1 (Brenner [6]). Let 2 < ¢ < 00,2 <7 < ¢q,8 > —5,0 <o < §+s,(5q =5 and
q
1 1
Op = = — —.
T2 r

Then @,v € L x Lo implies that
[uoll p/24e-0 € LY

provided that s = £(1 — (n + 1+ 6)8,), for some 0 € [0,1], and that (n — 1 + 6)5, + 26, > 1 >
> (n —1—0)q + 26, or more generally,

s> —-(1—=(n+2)dg) and 1 —2s — 254+ 26, > 1 > —1+ 25 + 2ndg + 26,

N =

where equality signs may be used in the last inequality if 6, # 0.

Remark 0.1. Let X, denote the set of solutions to (KG) having finite energy. By Theorem 0.1 it
follows that for any ug € Xe,
ol € Lo

The norm on L is defined by

Iollzy = l[ollp,s = 17~ @) +€1)2)l,

where Fv = ¥ denotes the Fourier transform of v.



Now consider the nonlinear Klein-Gordon equation

ug — Au+m?u+ f(u) =0, z€R", t>0
u(z,0) = ¢(z);u(z,0) = P(2); 0,9 € Ly x Ly
where n > 3,m > 0and A = A,.

(NLKG) {

The nonlinearity f(u) is supposed to satisfy the following conditions, which are motivated by the
physics involved.

(1) F(u) = /Ouf(v)dv >0 for all u € R, and f(R) C R.

Condition (i) implies the existence of nonnegative energy for the solutions of the (NLKG), which is
essential for the existence of global solutions when no restrictions are assumed on the size of the data.

(i1 F ()] < ClulP™,j=0,1and p> 1
[f"(w)] < Clul’™2,p > 2
|f'(w) = f'(v)| < Clu— 0", p < 2.
This condition gives growth restrictions at 0 and co. p merely provides a lower bound for the corre-
sponding p = pg valid for |u| < 1,|u —v| < 2, and an upper bound for the corresponding p = po valid
for |u| > 1, |u —v| > 2.
(iii) uf(u) — 2F (u) > aF(u) for some a > 0.
F(u) > Blul’™ (1 + |u|)™" for some 8,5, N
with 8> 0,p<p<ooand N > 0.

The condition uf(u) — 2F(u) > 0 ensures that no standing waves will appear as solutions. The
appearance of standing waves would make decay and a scattering result impossible. The condition
also implies the decay of local energy ([8]).

A consequence of (i) is that the energy norm of u is bounded. To realize this, we introduce the energy,
E(u), of the solution of the (NLKG) defined by

(0.2) B(w) = Jul? + / Fu)da.

If we multiply the nonlinear Klein-Gordon equation by u; and integrate over space, it follows that

(0.3) E(u) = constant, t > 0,
and by (i), (0.2) and (0.3), we obtain that
(0.4) ulle < C.

On an interval where u exists as a solution to the (NLKG), we have that

t
(0.5) "= g — /0 By(t — 1) (u)dr.

Inspired by Theorem 0.1 and the above equation we now want to investigate what kind of conditions
on ug will be inherited by u. The following L, — L,-estimate for the (KG), will be an essential tool
in our investigation. The proof is a consequence of the L, — L-estimates proved by Marshall, Strauss
and Wainger [7].



Lemma 0.1 (Brenner [5]).

()

Letl-l——:1(5 I- ,2§p’<ooandassumethat
(n+1+ 0) <1+s—s', for some 0 € (0,1] and s,s" > 0.

Then, if X, denotes L;, or Byt 1< q< oo,

(0.6) ||E1(t)g||X;; < K()|gllxz,t >0,
where

t—(n—1+9)6, t>1
(0.7 K@® =< C{ (=109 0 <t <1

Remark 0.2. By the condition §(n +1+6) <1+ s—s', for 0 < ¢ < 1, we may choose
K(t) < Ct1+s—s’—2n(5.

The norm on Byp'? is defined by

! —0 [o% th
lollage = lgllp + ( | (7 32 wplt, D%0))')

la|=S

SR

where w,(t,2) = sup ||zp, — 2|[p,2n(z) = z(x + h),s =0 + 5,0 < 0 <1, and S is an integer.
|h|<t

Now, if () is satisfied, by the equation (0.5) and (0.6), we obtain that

¢
(03) lullgy < llollyg + [ K= Dlf) g0
p p
Remark 0.3. If (x) is somewhat extended (see chapter 2), the nonlinearity f(u) satisfies

1f(w)llxg < CIIUIIXS' syl = -

In this paper we will consider three different conditions on uy. These conditions, denoted by A, B
and C below, are interesting from a purely mathematical point of view, but may also be justified by
physical considerations. That is done in chapter 1.

A. Pointwise convergence in time:

|luo(t )||Xs: < w(t),t >0, where w(t) — 0 as t — oc.

If [Jug(t)]| X/ is bounded for ¢ > 0, the above property is inherited by ||u(t)|| y« provided that
pl

w(t) satisfies certain conditions. (See Theorem 5.1).
B. “Lg4-decay” in time:
Juo(®)l s € Lo
If, in (0.8), K € Ly N Ly, for some € > 0, the above property is inherited by ||u(t)||Xs;.
(See Theorem 9.1.). ’



C. “Interpolation” between A and B:

9 t 1
(Z[ ||u0||§(sl,d7') ! <w(t),t >0, where w(t) — 0 as t — oo.
b P

If, in (0.8), K € L1N L1, for some e > 0, and f%t Ky (t—7)||u(7)|| yo dT decays to zero “roughly”

as w(t) for large t’s, the above property is inherited by ||u(t) provided that w(t) satisfies

H Xs: )
P
certain conditions. (See Theorem 10.1).

It is a question for future research, whether or not we actually have convergence in the linear case
with small data.

1 Applications on scattering theory

To better see the meaning of the physics involved, let us rewrite the (NLKG) as a system (NLKG)s
by setting ¢ = (;‘t)

(NLKG), 9 = itlog+ Py, 9(0) = do

where iHy = ( A—Om2 é) and P = ( _GO g ) with Gu = f(u).

If P = 0 we have the corresponding linear system (KG)s. The solutions of (NLKG); describe a one
parameter group U (t) acting on a Hilbert space X : ¢(t) = U(t)¢o, o € X.

In this type of problems it is natural to take as a Hilbert space, the space defined by the energy norm

1

9lx = (5 /(lvml2 + 12?4+ m?lgn )d) .

Since this norm is an invariant for the solutions of (KG);, the solution operator Uy(t) of (KG); is
unitary on X.

The following theorem says, that the unperturbed linear system “describes” the nonlinear system
asymptotically as ¢ — Fo00, if the nonlinearity satisfies a certain conditon.

Theorem 1.1 (Strauss[13]). Assume that ¢ € X is a solution of (NLKGQG)s such that

(1.1) /oo |Po|xdt < oc.

-0

Then there exist unique ¢_, ¥4+ € X such that

|p(t) — Up(t)p+|x — 0 as t — +oo.



Remark 1.1. The operator
S Up(t)p— — Up(t) 9+

is called the scattering operator.

Now, let us examine condition (1.1). As
0 0 U 0
Pélx = _ _
rax=|( g o) ()=o)l

- (3 [ 110ra)’ = sl

An alternative formulation of (1.1) is

(1.1)2 /OO I1f (w)||2dt < oc.

If the nonlinearity satisfies (1.1)2, the existence and asymptotic completeness of the scattering operator
associated with the (NLKG) follows. (See the excellent book [12, Ch X 1.13] by Reed and Simon.)

For certain restrictions on p, one can prove that (1.1)2 holds in the case of small data. The proof is
carried out via L,-decay estimates of the kind

(1.2) Ju()||lya < CA+1) ™, t>0,

1

where2§p’<ooand(5:%—p,<ﬁ.

Thus, the following question is crucial:
If ug satisfies and Lj-estimate of type (1.2), is this property inherited by u?

Remark 1.2. From L,-estimates of this kind one may also obtain maximum-norm decay results [1]
using the jacking-up process suggested by Pecher [10].

The next theorem will give us another important condition.
Theorem 1.2 (Pecher [11]). Let 1+ -2 < p < 142510 > 3,6, = %—q—l, = n+_1 and y+o > 2(n”—+1)
Then, if u_ € X, there ezists a solution u of the (NLKG) such that

lu —u_|le = 0 as t — oco.

If, in addition, ||u||;++o € Ly, then there also exists a solution uy € X, such that
ql

U—Uslle =0 ast — oo.
_|_

Now recall the result of Remark 0.1 that for any ug € X, we have that

||U0||L;,/2 € Ly

If we could prove that this property is inherited by w, then by Theorem 1.2 it follows that the scattering
operator for the (NLKG) is defined on all states of finite energy.



2 The integral inequality

In the present chapter we will derive an integral inequality, namely (2.7), which will be of crucial
importance for the rest of the paper.

To begin with, we must sharpen conditon (%) on page 4 to (*)s.

Let%—l—]%:l,é:%—]%ﬂ < p' < oo and assume that
(%)s for some 0 € (0,1]: (n—1+6)6 >1> (n—1-—0)4,
and that for some s,s' € [0,1]: (n+1+60)d=1+s—¢

Remark 2.1. Under assumption (*); Lemma 0.1 holds with K € Li(R") N L1y (R*) if e > 0 is
sufficiently small.

Remark 2.2. Let r = r(p',s') = nf'—;fs, (ie. 1= 1% — £ where p', s’ satisfy (). Then
2n

"R C20+s) +2(1106)8

and so, for each 7 sufficiently close to r, there exist p, s’ such that ¥ = r(p’, s') and (%), holds for p/, s'.

If (x)s holds, we are able to estimate the nonlinearity f(u) in the following way:
Let py =1+ 28(2 — ) and p, = “IT20127 (1 +s)

Lemma 2.1. Assume that (x)1 and (ii) holds, and that for some n € (0,1]:

. For s =1 we set pp, = pn.

_ 2(nd +s' — 1)
(2.1), PnSPSPn—W(nTa p=>2—1.
Then
1 1—
(2.1) 1f (W)llp1 < Cllully " lull,,

Corollary 2.1. Assume that (x)1 and (ii) holds, and that for some n > 0:

(2.2), P <P < pnp>2+1.
Then

—1- 1
(2.2) 1 (Wllp < Cllully ™" lull, -

For n > 6 similar Besov space inequalities are used. For fractional derivatives Lemma 2.1 is replaced
by

Lemma 2.2. Assume that (x)s and (ii) holds, and that for some n € (0,1]:

2(n+d+ ") s—g

(2.3), Pp<p<pn—1n A+ -n<p<2-n

n—2 1-
Then
—1 1—
23 1@ e < Cllallg "l



Corollary 2.2. Assume that (x)s and (ii) holds, and that for some n > 0:

!

(2.4) pn<p<pn 1+ 4n<p<24m.
14 n _ S’
Then
—1- 1+
(2.4) 1£ ()l g2 < Cllullgy"lull,’ -

For a proof of the above lemmas, see Brenner [3].

Remark 2.3. In the inequalities (2.1) to (2.4) above, ||u||, ¢ may be replaced by | ul|, with
1=1 _ 5 je r=r(p,s) which is defined in Remark 2.2.

T
Next we will estimate ||u||2,1 in terms of ||ull.. As

lellp.s ~ lullp + D 1D%ull,

lal=s

if s is an integer and 1 < p < oo, we obtain that

lullzx < C1 ) I1D%ull2 <

al<1

n
< Cu(llullz + Y IVoullz) <

=1
1
< G (- +n)v2ul.
m
and so, since |jull, < C, by the above estimate
(2.5) llull2q < Co
which together with the results of LemmaS 2.1-2.2 and the inclusions
, Squ/ ’ '
By? 2 Ly, 1 <p<2and B, CLy,2<p <o0
gives us
1—
(2.6) If(Wllxy < Cllull i,y =mnory=—n.
pl

Finally, by (0.8) and (2.6), we have that

t
1—
(2.7) Jull e < llwoll o +C / K(t — )|l dr.
P P o



3 Local weak decay
The two lemmas presented in this chapter, will later make it possible to derive a kind of local weak
decay of [|ul| ..

pl

The importance of Lemma 3.2 is better understood, if one recalls that, by Remark 2.3,

¢
@l < Nluo(®) s + C/O K(t = 7)|u(r)|l-dr
p
Lemma 3.1 (Morawetz and Strauss [9]). Assume that for the (NLKG)

(3.1) data @, have compact supports contained in {z : |z| < Ry < oo}

and let €y, T,a > 0.
Then there ezists a b depending boundedly on €y, T,a and the energy E(u) but not on Ry, and there
exists an interval I = [t* — 2T,t*] C [a, b] such that

(3.2) / /I Flu(z, ) dzdt < €.

Remark 3.1. The restriction (3.1) on the data for the (NLKG) can be removed in the applications
that we have in mind.

From Lemma 3.1, (iii) and Remark 2.1-2.2 follows:

Lemma 3.2. Assume that (x)s holds and that Ky € L1 N Ly4..
Then, fort € I* = [t* — T, t*] and v small,

t t v(l—
(3:3) / K (t = )llu(r)[}~7dr < Aoeg ™ ( / Kn(t =) u(r)lar)”" "
t—T =T

where 0 < v,k, Ag < 0o are independent of t,r = r(p',s') where (x)s holds for p',s' and ¥ = r(p, s') is
so close to r that (x)s holds for p',s'.

Proof: Let r = nf’—prfs,, where p', s’ satisfy (x)s, and let § > 0.
Then, for ¢t € I*, by (iii) and Lemma 3.1

t
| Bt = )t <
t—T
t

1—y

S/t_TKN(t—T)</(1+|u|)N‘5|u|’"_‘5\u|‘5(1+|u|)_N‘sd:1:) Tdr <

§(1—7)

t 1—y . L
< / Kn(t - / (4 u) Ml 1) - ( / P10 )N ) O dr <
t—=T




(1 5(1—7)

//3|U|P+1 T |u|) Nir )T(ﬁ+1) dr <

<Gy /):TKN(t—T)(/|U|fﬁl*”3)i

t ) ra—y) - T0=7) ‘i((l-ﬂ;
gcl/ Kn(t—7) Kt — 1) S ] /F w(z, 7))dz) " dr <

Lrq—=7(1—7) r(1-7)

scl(/OTKN(T)CdT)% g -(/ttTKN(t—T)llu||fdr) r

t 8(1—7)
(/ /F(u(x,T))da:dT) et <
t—T

rq—7(1—7v)

t r(l ) +* 6({7’1’)
< Cil|Knll, ™ (/t TKN(t—T)||u||de " / 2T/ w(z, 7)) dzdr ),(,,+) <

(1 t v(1—7)
<A™ V([ Ktt=lular)
t—T

rq—7(1-7v) B
by which (3.3) follows with 49 = Cy| KN, ™ &= r(ﬁil) and v = 7, as, by choosing 4 small
enough, it is possible to accomplish that
p+1
9= ~—F77 ¢
p+1—46

is close to 1, 7 is so close to r that 7 = r(p’, s') with p’, s', satisfying (),, as the conditions on r reads
Nég+ (r —é)g <7,(r —d)q > 2, and finally that
‘= pt1
o _ _dq(1—y)
ptl rq—7(1—7)

is so close to 1 that Kfv is integrable. ///

4 Recapitulation

For simplicity we now introduce the following notation
luo®)ll s = To(t) and fJu(®)ll s = U(2).
U (t) satisfies the nonlinear Volterra integral inequality
U(t) < Up(t -I-fo (t —7)U(T)!""dT,|n| < no (small),

where 0 < K € L1 N L1+6,f07“ some € > 0, and

tTlme >

(#)
()<C{ “lta g <t<1 , for some a > 0.

The above conditons on U and K will be referred to as (#). Functions that satisfy (#) will be studied
in this paper, mainly with respect to the following questions:

1. Up(t) < w(t),w(t) > 0ast— oo = U(t) < Cw(t)?

10



2. Weak decay properties.

3. Upe Ly=U € L7

t

i /: UO(T)'J(dT)é < w(t), w(t) — 0 as t - 00 = (%/ U(T)‘IdT)é < Cult)?

5 Pointwise convergence to zero

In this chapter we will investigate when the following property of Uy(t):
Uo(t) < w(t),w(t) — 0 as t — oo,

is inherited by U ().

Lemma 5.1. Assume that

t) < Up(t) /Kt—T (1)} "dr,0 < < 1,

where K € L.

Then Uy(t) < Cy,t > 0, implies that U(t) < C1,t > 0.

Proof: By the integral inequality

1
(5.1) U@ < U+ ((sup UG "/ K(r)dr <
<7<t
< Gt (swpUm) K]
7>0

It follows that supU(t) < oo. Let S = supU(t). Then, by (5.1),
>0 >0

(5.2) S < Co+ ||K|: 8"
Asume that S > (2||K||1)'/". Then, by (5.2),
1 1— 1
SSCO+§SWS ":CO+§S.

Thus S > (2||K]|1)"/" implies that S < 2C.
Since K € Ly, it follows that

S < max((2[|K|1)"/",2Co) < 0. ///

11



Lemma 5.2. Assume that U and K satisfy (#) and Uy(t) < Co,t > 0. Then, if also

Up(t) < i,t er,
it follows that

sup U(t) < e
tel*

Proof: By Lemma 5.1 we have that sup;g [lu(t)|l < C1,2 < r < 7. The integral inequality and
Lemma 3.2 gives us that, for ¢ € I'*,

t=T

U@ <o+ | K(t=7)U(r)"dr + / (- U <
0

1 v(1-m)
<4 (SupU n/ K(r dT—I—Aoe A1 n) / K(t—7)||u(r )||rd'r) ! <
4 \1>0

o v(1l— T v(l-
_€ o ”C/ T,lfadT+A063(17n)(sup||u(7)||f) ( n)</ K(T)dT) (= <
T >0 0

4
1-n
<&+ GGy a i iy ingiom <
. 407"\ 1L v .
if T >0 = (—5t—)= and ¢ < (75 )"‘v(l 7 (C1||K||1)"* and it follows that supU(t) <e. ///

tel*

Lemma 5.3. Assume that U and K satisfy (#) and Uy(t) < Co,t > 0. Let € < (4]|K|1)~"/" so that
|K||1e"t" < £ and T > max|f2, é] (e1 > 0 will be specified later.)

Then Up(t) < §,t > t* — T implies that U(t) < e,t >t* —T.

Proof: By Lemma 5.2 we know that U(t) < €,t* —T <t < t*. Let

t™ = sup {t:U(t) < e}
t>t—T

If t** = oo the proposition of Lemma 5.3 is obvious, so assume that ¢** < co in order to arrive

at a contradiction. By Lemma 5.1

supU(t) = C1 < 0.
>0

n
1 LX< €

Let £ € (**,4* + 1] where 0 < ¢ < (—%5)1/e

o _ €
acytn ST

12



U(t) < Up(t) + (/OtT+/ttZ+/ti )K(t — ) U(r) " dr <
t—t**

14y [T
< Up(t 1+n/ K(r)dr + sup U(T)> ! K(r)dr + ClH'T’ K(r)dr <

o €1
<qral [ K@ K o [ K <
T 0

1+n 1+n

C, C;
S e N ) o [ N S

R

for t** < t < t** + €; which contradicts the defintion of t**.  ///

Theorem 5.1. Assume that in (#)
) < Up(t / K(t ) dr, n| < no < 1,

where K € Ll,Uo(t) < Cy,t >0 and Uo(t) < %,t € [%,t*].

Assume also that w(t) is a function such that

ly. w(t) > 0ast— oo

24. sup w(t)"' < E
0<t<w

t/2
3w- K(t — 7)w(r)dr < Bw(t),t > w, B < (4C7)~!
0

4y. sup w(7) < Aw(t),t > w
t<r<t

where A, B and E are constants independent of ¢.

Then  Uy(t) < w(t),t > 0 implies that U(t) < Cw(t),t > 0.

Proof: Let S(t) = igg (w(T)_lU('r)) and R(t) = sup5 (’I.U(T)_lU(T))-

13



Then, for t > w, by 1,4, and Lemmas 5.2-5.3

t

9 t/2 K(t—7)U(r)" " dr = /t/: U (7)"w(r)w(r) " U (1)K (t — 7)dT <
< (;SUTI;:U(T))"( tiuztw(r)) ( tiulitw(,r)—lU(T)) Ot/2 K( )dT .
< (supUm)"-4 / K(r)dr <

< ALK 1w (t)S() <§ (1)

if ¢, < (4A||K||1)"Y/" and, by Lemma 5.1 and 3,,

t/2 t/2
(5.4) K(t—T)U(T)1+"dT:/ U(T)nK(t—T)’w(T)_lU(T)’w(T)d’TS
0 0
su T ! sup w(r)"'U(r e — 7)w(7)dT
< (sw U@)'( sw wn) V@) [ K-l <

t t
0<7<3 0<7<3

< CTR(t)Bw(t) = C{Bw(t)R(t) <
if B < (40])™!

By the integral inequality and 2, (5.3) and (5.4), for ¢t > w,

(5.5) w(t) () < w(t)Vo(t) + SR() + 150) <

< w(t) LU (t) + % sup (w(r)_lU(T)) + i Sl>1}Z (w(r)_lU(T)) <
2

<1+ gogrug)w (w(T)*lU(T)) + 1 31218 (w(T)’lU(T)) <

<1+ %( sup w(T)_1> ( sup U(T)) + % sup (w(T)_lU(T)) <

0<m<w 0<7<w T>wW

<1+ EC1+%Sup( (1)U ))-

T2>W

Let S = sup (w(t)—lU(t)). Then, by (5.5)
t>w

1 1
S<1+=-EC{+ =S
< +2 1+2

so that
S<EC|{+2

and, as sup (w(t)_lU(t)) < EC4, it follows that
0<t<w

U(t) < (EC +2)w(t),t >0. ///

14



Corollary 5.1. If K(t) < C(1+t)717¢¢t > 1,e > 0, it is possible to take
w(t) =C(1+1t) F,0<k<1+6<1+¢0<C < oo.

Proof: 1, and 2,, are trivially true. Since

~ - t ~ -
sup C(1+1t) " =C(1+5) "=2C2+t) " <2°C(1+t)™"
t<r<t 2

4,, is true for all k > 0.

The proof of 3,, will be split into three cases.

1. 0<k <1
t/2 . ¢ t/2
/ K(t—T) ()dT<CC(1+§) / (I+7)"dr <
0 0
C = by 1 er1 25C t
< v e+1—kK 1 Y01
<7 C+y) ST 1+ 5 CA+)
(4CY) w(?)
. 25F200TN ¢
1ft22( - ) -2
2. k=1
t/2 . ¢ t/2
K(t—T)’w(T)dT<CC(1+§)_1_€/ (1+7)"dr =
0 0
In(1+4) . ¢t In(1+4) - -
=C 201+ t<2c oA+t <
T U (T
< (4C7) "t (t)
L . In(1+3)
if ¢ is large enough, since ﬁ —0ast— o0

3.1<k<1+6
t/2 - t\—1—c¢ t/2
K(t—1)w(r)dr < CC(I + —) / (1+4+7)""dr <
0 2 0

1 olteC
k—1 k-1

(1480 CA+t)170 <

15



6 Local L,idecay

In this chapter we will prove that if Uy € L}I"C this property is inherited by U provided that
Kelin L1_|_6.

Let @ denote the convolution operator Kx*, defined by
t
QU(t) = / K(t - 7)U(r)dr
0

and let K be the kernel of QV = K * K ... x Kx, i.e.
N-times

t
QN U () = / Ky (t — 1)U (r)dr
0
Kn has the following useful properties.
Lemma 6.1. For N € ZT we have that

(6.1) | Knll < K|

1 1
+e ,0<e< —

(6.2) 1Kx e < K 0™, 7 (V) = 7= N

Proof: The proof is carried out by induction. Both propositions are trivially true for N = 1. Assume
they are true for N = p.

The last step of the proof is a consequence of Young’s inequality:

1
(6.1)' 1Eprille = 1K * Kplly < K[| Kpll < IKIIFT
(6.2)' 1K p+1llrpity = 1K * Kpllrpr1y < K |1l Epllrgy < (K [l14)P*
o 1 1 1 1 1 1 1
- Ll le 1. /]
rp+1) 1+e 1+4e 1+e 1+¢ r(p)

Next we will show that if NV is large enough and Uy € L, then Ky x U € Lo, and Ky * U € L.

Lemma 6.2. Assume that K € L1 N Li4¢, some € > 0.
Then Uy € Ly implies that Ky * Uy € Loo, N > Ny = [16—4;] + 1.

Proof: Let ¢’ = % where 0 < € =

1
Ng—-1°
Then € < e for N > Nj.

By Young’s inequality and (6.2)

1N + Uglloo < 1ENllg 1Tolly < 1K el Tollg < 00, N >No. ///
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Lemma 6.3. Assume that U(t) > 0 satisfies the nonlinear Volterra integral inequality
t) < Up(t /Kt—'r (7)!"dr,0 < <mo < 1,
where 0 < K € L1 N L.
Then Uy € Ly implies that Ky * U € Lo, N > Np.
Proof: Multiply the integral inequality by Ky (s — t) and integrate over (0, s).
(6.3) / " Kn(s — YU (0)dt <
/KNs—tUo dt+/ KNs—t/Kt—T ) drdt.
By Lemma 6.2 Ky *x Uy € Ly, N > Ny, and for the last term we obtain the estimate
(6.4) QNQUY T =QQNU T = / ’ K(s —t) / t Kn(t —7)U(T) "drdt =

/ K(s—1) / Kn(t — 71Ky (t — 1)U (r) ! —"drdt <

/Ks—t /KNt—TdT /KNt—T )dr) 777dt§
sup / Kn(t—-1)U )dT) "/ K(t) / KN('r)d'r)"dtS
O<t<s 0 0

1—
< K[ i‘iﬁ’/o Ex(t—n)U()dr) .

Altogether, as K € Ly, by (6.3) together with Lemma 6.2 and (6.4) we have that

s 1—

(6.5) sup/ Kn(s—t)U(t)dt < C + C' sup/ Ky(t—1) )dT) !
520 J0 >0

where C' < oo.

Let

sup/ Ky(t—71)U(r)dr = M.
t>0

Assume that M > (2C)/7. Then by (6.5)

1 M
M<C+C-M""< c+§M1*"-M":C+7.
Thus M > (2C)'/" implies that M < 2C and it follows that

M < max((2C)Y",20). ///
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Corollary 6.3. Ky *U'™ € Ly, N > Nj.
Proof:
t t 0, [t 1—n
/ Kn(t - U () dr < ( / Kn(r)dr)" / Kn(t-nU@dr) " <
0 0 0
¢ 1=n N1
< IEn I (sup [ Kt =nUn)ar) " < KM
+>0 Jo

by which [|[Ky * UY o < | K| MY < 00. /]

Remark 6.3. By Lemma 3.2 and Lemma 6.3 it follows that
t
/ Kn(t—1)U(T)dr < Coeg(l_n),t err=[r—-1,t.
t—T
where Cy < oo is independent of .

By the technique used in Lemma, 6.3 it is possible to prove the local version of result 4.3.

Theorem 6.1. Assume that U(t) > 0 satisfies
t
U(t) < Uy(t) +/ K(t—7)U(r)' dr,0 <n <1,
0
where 0 < K € L1 N L.

Then Uy € L}I"C implies that U € L}IOC.

Proof: In the same way as in the proof of Lemma 6.3, we obtain that Ky U € LL%C, and as LL%C C L}IOC,
it follows that Ky * U € L}IOC for N > Np.
Now assume that K, xU € L}IOC. By the integral inequality for 7 = 0 we have that

K, 1+xU<K, 1xUy+ K,*xU

and, since K,_1 x Up € L}IOC by Young’s inequality, it follows that K, _; * U € L}IOC.
By induction we obtain that K * U € L°¢, and as

q
U<Uy+K=*U
it follows that U € L. ///

7 Weak decay to zero

Let us first recall some properties of the kernel K. By Lemma 0.1 and (%) we can assume that

ctl=e, t>1
< ’ - .
K(t)—{0t1+a, 0<t<1 , for some o > 0

The above property is, in fact, inherited by K.

18



Lemma 7.1. Assume that, for some a > 0,

Cit7'17e, t>1
(71) K(t) S { Cltfl—ka’ O <t S 1

Then, for N € ZT,

Cyt 17, t>1
(72) kv <{ G 62

where Cn < 0o is independent of t.

Proof: By assumption, (7.2) is true for N = 1. Assume that (7.2) is true for N = p.

We will use that
Ky (t) = K # Ko /Kt—T (r)dr

and split the proof into three cases.

1. t>2
1 t—1
Kp+1(t) <Clop(2/ (t—1) l—o —l+o g, / (t—7) l—a,.—1 adT)
1
1 t—1
<Cle(2(t—1) 1—(1/ 1+ad7’+t 1 a/ ( _1+(t 7_) )1—|—ad7_)
0 1
) t—1
<CiG(SE-1)7 T 2T / (r7i 4 (b= 1)1 )dr) <
1
2 21+a L
SClc'( (=17t ) <
2C1Cy t o\lta 4 oo 9a Clcp e
< ((t——l) i) < ST
2.1<t<2

t—1 1
Ky11(t) < CiCp (2/ (t— T)_I_O‘T_1+O‘d7' + / (t— T)_1+°‘T_1+ad7') <
0 t—1

t-1
< Cle(Z/ Tl+ad7'+t1+2a/t (1 —:v)o‘flxafldx) <
0 1-1

l\.'J

1
-1+t 14'20‘/ (1- :c)a_lxa_ldw) <
0

G,

2 2
<0165+ ) <

2 B T(a)? N 20CiCy
< C,C (_ 1+at l-a _23at 1 a) _ POt 1 a
- P\a +F(2a) « @
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3. 0<t<1
t
Kpa(t) < O1C, [ (¢ = 7) erhedr
0

1
=010, -t ta/ (1—z)* 2% de <
0

D()?  2°CCp
I'2a)  «

CosCal- 1]/

< C10pt 1. ol 1t

Clcp

and the Lemma is proven with Cpyq = max|[6,

To proceed we will need the following result of weak decay of U.

Lemma 7.2. Assume that the conditions (#) are satisfied by K and U. By Remark 6.3 we can also
assume that

Kn(t—7)U(r)dr < C’oeg(l_n), teI"=[t"-T,t"].
t—T

Then Uy € Ly implies that for t* — % <t <t
t

(73) KN(t—T)U(T)dT <61,NZNO,TZQ(),75* > wp-
t*—T

(wo and Qg are specified in the proof.)
Proof: By the integral inequality for n > 0
U(r) <Up(r / K(t —s)U(s)'™"ds

and it follows that for ¢t* — % <t<t*

t Kyt —7)U(r)dr <

=T
t ¢
< Kn(t—1)Up(7)dT + Kn(t—7) / K(1 — 8)U(s)' "dsdr <
t—T tr— T
¢
< KN(t—T)Uo(T)dT+/ K(t—r) / Kn(1 —s)U(s) "dsdr+
=T 0
t 7T
+ [ K@E-r) / K (7 — 8)U(s)" "dsdr+
t—T 0
t T
+ [ k@-n / K (r — $)U(s)! "dsdr =
=T -

=1 + 1+ I3 + 1.

Now .

t
n<IKI( [ vatryar)”

20



and as Uy € L, there is a wp such that

t
/ Uo(r)tdr < 49 K[, N9, ¢ > wo,
t*—T

so that Iy < § for t* > wo.

By Corollary 6.3 for T' > 2

t
sup/ Kny(t—s)U(s )1_"ds)/ TK(T)dT <
t—t*+

7>0

nN 1-n
% « 2 4
4| K| M=oy
ifT22< LSl C) — Q.
[e7)
By Lemma 6.3 and Lemma 7.1
t 7T
Is = K(t— T)/ Kn(1 — 8)"Kn(T — 8)17MU (s) dsdr <
=T 0

t

Sup/ Kn(r — s)U(s )ds)l_"

>0 K(t_7)</T KN(S)dS) dr <

T
00 n [i—t"+T
< Ml_"(/ KN(s)ds> / K(r)dr <
T 0

<M ( D)k <

4| K|y M CY, )

alel

‘w7 > ( = Q.

By (6.1) and Remark 6.3

t T
I, = / K(t— ’T)(/ Kn(r — s)U(s)k"ds)dT <
tx—T 7T
. t—t*+T
< C’oeg( _")/ K(r)dr <
0

< IKlhCoeg" ™ <
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1
. €1 k(@=n)
it < (o ),
0= \4K|.C

Let Qo = max[2, Qf, Qf]. Altogether we obtain that

¢
Ky(t—7)U(m)dr <h+L+1I3+11<e
t—T

if N> Ny, T > Qg and t* > wy. ///
In the end of this chapter we will prove that U and €; in (7.3) for n > 0 can be replaced by U'*"
and Cel+" respectively, but to be able to do so, we must introduce a more complicated kernel K/ MN

which, for M > 1, N > 0 and 1 > 0, is defined by

Kjn(O)(t,7) = K(t = 7)(QY~H(QNU)H")(7).

K n—j has the following property. (In the rest of the chapter K and U are assumed to satisfy (#)
with |n| < no < 1. ny will be specified in Chapter 9.)

Lemma 7.3. Assume that I C [0,t] and that N > Ny, where Ny = [(1 + |7I|)1€—J;€] + 1.

Then, if Uy € Ly,

(7.4) sup/ in—j(U)NT)dT <o00,j=1,2,...,N.
>0

Proof: For |y < |nl,
(7.5) / K (U)(r)dr =
/K (t- 1@ / Kx—j(s = o)U(o)do) " (r)dr <
<o /1 Kt - /0 Ky—j(s — o)Up(0)do) " (r)dr +
om / K- / Ky — o) /0 " K(o— 2)U(2)! de) e =
=21 [ K(t= Q= QT () +
Y / K(t — 7)Q= QN U1y 1(r)dr =

—2"/ 7 (UO) )dr+2”/ T U (),

Asogﬁ Snifnszeareallowedtotake’y—mln (2.7) bywhichl—fy—m

follows if we can prove that the last two integrals are bounded.

Now (7.4)
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As & = quj1n—n <efor N > Ny,
1+n
(7.6) / N]UodT—/Kt—Tle /KNJS—U)UO( )da) dr <
o 1 1+n
< / Kt - / Kin—j(s — o) Hi Kn_j(s — o) Fili(o)de) dr <
/K QI 1 / Kn_j( da / Kn_j(s —o)Uy(o )1+nd0}d7<
<||Kn- ]||7’/Kt—7' / 1t —s / Kn—j(s — 0)Ug(0) T dodsdr <
< ||K||?(ij /IK(t—'r)/O Kn_1(1 — s)Up(s)"dsdr <
. T 1 T 149
< ||K||’17<N‘”/K(t—7)(/ KN_l(s)"ds)’(/ Uo(s)qu) T dr <
I 0 0
< IIKII?(N_”IIKN1||r||Uo||é+”/K T)dr <
<K | KN IT 3 < 00, N > Ny
By Lemma 6.3,
(7.7) / ],N ,]+1 TI)dT =
1+n
/K QI 1 / Ky_ J+1(3—a)1+nKN j+1(s—a)1+nU( )1+nd0) dr <

/K (t—7)Qi~ 1 / Kn_jii(o da / Kn_ji s—a)U(a)da>)drg
< IR [ K- 1@ ([ Knogials = a)U(o)do) dr =
— || &[NV / K(t— ) /0 " Kn(r — s)U(s)dsdr <
< ||K||§N7j+1)" SUIS/OT Kn(T— s)U(s)ds) /IK(t—T)dT <
< K| M < 00, N> N

Now, by (7.5) to (7.7), for N > N;

sup
t>0/ =i
1+n(N—
< [IK]y wN=3) (||K||ﬁuel||U0||1+n +|KIIM) < oc. ///

Remark 7.1. For I = [0,¢] and j = N it follows that

t
sup/ Kn(t—1)U(7)"dr < oc.
>0 Jo
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Remark 7.2.
1+e¢

€q
Lemma 7.4. Lett >0 > 09 >t*— %2 >T >2 and B > 1.

Ny = [+ )= 1> [+ 1= N,

€q

Then there are constants A, B < oo such that for N > Ny

(7.8) /t Uj Kt -7 /O Kol — s)U(s)ds)ﬂ dr < AT
and
(7.9) /i K(t— T)(/OT_% Kx(r - 8)U(s)ds) dr < BT 153,

Proof: By Lemma 6.3 and Remark 7.1 for N > N; we have that

sup/ Kn(t—s)U(s)ds <M < >
0

7>0
and that ,
sup/ Kn (1 —8)U(0) Tds < My < o0,
7>0J0
and so
T
o—5 T B
/ K(t—7)</ Ky (r — 8)U(s)ds) dr <
=T 0
T g [t—t"+T
< (sup/ Ky(t — 3)U(s)ds> / K(r)dr <
7>0J0 tfa—|—g
00 o0 20 |18
< Mﬁ/ K(r)dr = MBC’l/ 1% = 7611T7°‘
T T o
2 2
and

T

/:go K- T)(/OT " Kn(7 - )U(s)ds % ir —

:/U_UOK(t—T)(/OT_

L

B
Ky (7= s)Fi Ky(r — )10 (s)ds) dr <

IN

T ljﬁ B8 t—o+oo
< (sup KN(s)dS) M / K(r)dr <
>TJT/2 t—o
1
B apfn B o
< (RO

B e )
< M11+"||K||1(/T K (s)ds) -
2

2°‘Mﬁ01
(6%

1
20M."C
so that we can take A = £ M1 YN
@

and B = ( )lj*%nKnl. 11/
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Lt
Corollary 7.4. If T > {max[Ae; " ", (Beflfn)#]}é — ), both integrals are less than e .

Lemma 7.5. Assume that t* — % <t where

QO‘CNM" 5 —
ra (PO o,
Then, if
t
Ky({t—7)U(r)dT <€, N > Ny,
t—T
we have that
t
(7.10) /  Kn(t-U(r)dr <20, N2N,
=37

Proof:

=T '
< [, K- Kn- 0@+ [ K- U@ <
tr=3T t*—T

t—t*+3T o, =T L
< (/ KN(T)dT) o (/ Kn(t— T)U(T)1+Wd7-) e <
t—t*+T 3T

o0 1

g( Ky(T1) sup/ Kyt —1)U )1+’7d7>m+qg
T/2 >0

< {%<§)a}lianﬁ +e <2 ///

Lemma 7.6. Assume that t > t* — L where t* > wy, T > Q3 and that No = [(1+ |n|)? 1"'6] + 1.
(w1 and Q3 are specified later.)

Then Uy € Ly implies that for j =1,2,..., N
t

(7.11) K] y_i(Uo)(r)dr < ™", N > Ny.
t—T
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Proof:

K]y j(U0)(r)dr =

)

tx—T

t

= K(t—T)/OTKjl(T—s)-

=T

§ n 1 1+n
. (/ Kn_j(s —o) 1 Kn_j(s —o)T Uo(a)da> dsdr <
0
t T s
< ||KN_J-||;7/ K(t— T)/ Kji(r — 5)/ Kn-—j(s — 0)Us(0) Fdodsdr <
T 0 0
. t T
< ||K||?(N7]) / K(t— 7')/ Kn_1(1 — s)Up(s)dsdr <
=T 0

=T t
< C’/ Kn(t — s)Up(s) T"ds + C Kn(t — s)Up(s) Tds =
0 =T

=CI +Cl.

1+n
Next we intend to prove that both I; and I are less thatn 65—()

t*—T
I :/ Kv(t — 8) T Ky (£ — 8) 151 Ug () ds <
0

/.

: ( /tit +T KN(S)dS) o

t

e ([ e ([ ) ¥ <

_n_ 1 1/T\—-a
< O IENIF Ul (< () )T <

n_ N 1+n
T+ e _no €
)UK I, Tl T < S

<

«C
(=
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1 N a+m? _ a+n)?

. 1 N_j\ 14 (2°Cn\ o s a o
i > (20K ) () MK [Tl ™ e ™ = Qg and
t
I, = Kn(t — s)Up(s) Tds <
=T

VAN

(/Ot*_H—T KN(s)pdS) » (/tt_T U()(S)qu) a <

149

1 1+n 1+n
<1kl ([ voloras) < IKIEA ([ vaoras) <

since Uy € L4 implies that there is a wi > wp such that
t
__a
[ taoyds < ClKIN ), ¢ > an,
t—T
and 0 < €; < é& < efor N > Ns.

Altogether, we obtain that, for j =1,2,..., N

t
; TKﬁ,ij(Uo)(T)dT <t T > Q3,8 > wi,N >Ny, ///
Lemma 7.7. Let t* — % <t <t* witht* > wy, T > max ;.
i=

- 727

Then, if
t

Kn(t—7)U(7r)dT < €1, N > Na,
t—T

it follows that
t

Ky, (O)(r)dr < C~’16%“’, N > Ns.
-7

Proof: By (7.5) for vy =0,j = 1,I = [t* — T, ] and by Lemma 7.4 — Lemma 7.6 we obtain
that for n > 0

t
K?,N—I(U) (r)dr =

t*—T
¢ t
=27 K{ ny_1(Uo)(7)dr + 27 Ky n(U)(r)dr <
=T p_T
t — T Ln
<o [ Kl @@ [ Ka-n( [ Ka - auss) ars
-7 T 0
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T
2

+ 227 /;T K(t— T)(/()T_ Ky(t — s)U(s)ds) 1+nd7_+

+ 221 t K(t_T)(/TTTKN(T —s)U(s)ds)HndT <

T
=3

< Ml ety g2l

t T

2 _ B 1+n
+2 K(t—T) Kn(t —s)U(s)ds dr <
t-T t~—3T

T
< 27(2 + 2M)e; 71220 (2¢1) 1N / " K(r)dr <
0

<224+ 20y + 2% (26) Ky =
= 2K+ 1427 g =

=Cie™. ///
<

Lemma 7.8. Let t* — % t <t* with t* > w1 and T > max ;.

1=1,2,

If

t
Ky(t—71)U(r)dr <€, N > Ny,
T

U and €1 above can be replaced by U and Ce}+" respectively where n > 0 and C < oo.

Proof: The proof is carried out by induction.

By Lemma 7.7
t

; TK?,Nil(U)(T)dT < Cig™, N> Ny.

Assume that, for some j € ZT,

t
5 1
/t* TK;771,N7j+1(U)(T)dT <Cjre
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By (7.5) for y=0,7 >0 and I = [t* — T, ]

t
[ Koy @) <

*~T

t

t
<o /t*T Ky @)@y +2 [ Ky @) =

t
_2W/t* JN j UO)( )dT+2W . TKt—’T / J 1,N— J+1(U)(3,T)d8d7'

so, by Lemma, 7.6,
t

" TKT?,ij(U)dT <216+ 2705 e Ky =

=27(Cj K + e ™ =

_ C €1+77

and we obtain by induction that

¢
K;{,,O(U)dT < CNeH'n

=T
1.e.
t T
Cvets [ K- / Kn_1(r — )U(s) "+ dsdr =
tx—T 0
t*—T t—1 t
- / U(r)t+ / Ky 1(0)K(t —7 — 2)dzdr + | Ky(t - 7)U(r)Fdr
0 t*—T—1 —T

by which

t
Kn(t — 1)U (T)"*dr < Cne ™. ///
=T

8 Uniform convergence to zero

Lemma 8.1. Assume that 0 < K € L1 N Ly4..

Then, if Uy € Ly and N > Ny, we have that

t
(8.1) sup/ Kn(t—1)Up(1)dT — 0 as s = o0.
t>s
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Proof:

/tKN(t — ) Up(r)dr <

1

t 1 t
<&nly ([ Uatryrar)* < KINo( [ vatryrar) .

As Uy € Ly to each ¢g > 0 there is a w* such that

/UO da —— §> W,
2||K||1+e

and so

¢
sup/ Kn(t—1)Up(1)dT < €9,8 > w*. [//
t>s Js

The results achieved in chapter 7 enable us to show that the above property is inherited by U.

Theorem 8.1. Assume that K and U satisfy (#).

Then Uy € Ly implies that for t > s
t
(8.2) lim KN(t — T)U(T)dT = 0, N Z N2.

§—00 s

Proof: Define, for N > Ny, t** by
¢

t** = sup{t: Kny(t—T1)U(T)dT < €1}
=T

By assumption and Lemma 7.2 ¢** > t*. If t** = oo there is nothing to prove, so assume that t** < oo
in order to arrive at a contradiction.

Now, choose ¢ such that t** < t < t** 4 €9, where €5 > 0 is small (specified later).

As U(t) < Up(r) + [, K(r —s)U(s)' 7ds, we obtain that
t

Kyt —7)U(r)dr <
tx—T

t
< Kn(t —1)U(1)dT+
t*—T

N /Ot*_TK(t ) /0 K (r — 8)U(s)dsdr+
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*_T
=3

+/t_T K(t—’r)/0 Ky (1 —s)U(s)dsdr+

[ —T
+ [ K@-1 / * K (r — 8)U(s)dsdr+
0

T
* __ L
t 2

[ T
+ [ K@-r) / Kn(r - 5)U(s)*dsdr+
-3

T
* __ L
t 2

+ [ K7 /0 Kn(r — $)U(s)dsdr =

:I1+I2+13+I4+I5+I6.
Here, for N > Ny and 1 > 0,

1

t
n< K [ vy’
t*—T
and as Uy € L, there is a w* > wy such that
L<ag™ t>w.
By Lemma 7.4
I3+ 1, < 26}+n

By Lemma 6.3

T t
I, < (sup/ Ky(r — s)U(s)ds)/ K(r)dr <
>0 Jo t—tr 4T

M, 147
T %< ¢

?

By Lemma 7.8 for N > No

T t—t*+T
I; < ( sup Kn(r - s)U(s)1+”ds) / K(7)dr <
t*—gf"'ft** tx—T o px*

< Cne; K|
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By Lemma 6.3, for N > Ny,

Is < (sup/OT Ky(t — S)U(s)ds) /Ot_t** K(r)dr <

7>0

€ MC
< MCl/ 7 Hedr = Leg < e
0 a

1+ 1
Qe
fer < ( - )“
tes\uo
. 1 ae, T\ A
Altogether, for t* > w*, T > izg{l&)’cum =Q, €1 < (Cn||K||1 +6) 7 and € < (M01 ) ,
we obtain that
t

(8.3) Kn({t—71)U(T)dT < €,t™ <t <t + €, N >Ny,

t* =T

which contradicts the maximality of ¢**, and so t** = c0.  ///

Corollary 8.1. For t > t*, N > No, we have that
¢

(8.4) sup [ Kn(t —7)U(r)dr — 0 as t* — oo.
t>te Jpx
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9 L,decay

Theorem 9.1. Assume that U(7) > 0 satisfies
(9.1) ) < Up(t / K(t—T) Y "dr, 0| < ag,

where 0 < K € L1 N L4, some € > 0, and

cit7 1=, t>1
K(t)S{CltHO‘, 0<t<1 , some a > 0.

Then Uy € Ly implies that U € Ly.

Proof: (9.1) for n > 0 implies that

(9.2) Ky 1 %U< Ky 1%xUy+ Ky +U".

Here Ky_j x Uy € Lyg,j =1,2,...,N, as, by Young’s inequality and (6.1),
1Kn-—j % Uollg < 1En— 5l Tollg < K[ 1Tl < oo

and by Lemma 6.3, (6.1), Lemma 7.1 and Theorem 8.1, for N > Ny,

t/2
Ky« U™ = (/ + )KN(t—T)"KN(t—'r)l_”U(T)l_"dT <
/2

< (ZQCN)"t—na(/Ot Kn(t-nU@dr)  + ||K||’17N</; Kn(t-nU@dr) " =

(67

= Lo — function ¢ 4+ C;-0(1) ast— oo,
if N is large enough, and so, by (9.2), we obtain that

Kn_1%U € Lg+0(1) Lo as t — oo.

Now assume that K; * U € Ly + 0(1) Loo.
Then, since (9.1) with = 0 implies that
Kjfl*USKjfl*Uo—l—Kj*U

we obtain that
Kj—l *U € Lq + O(I)Loo

and by induction it follows that
U € Ly+ 0(1) L.
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Next, we shall prove that, in fact, U € Ly + o(1)Lg/y N Leo-
For ¢ > 2t*, (9.1) and Corollary 8.1 implies that

t
Ky U = / Knor(t — 1)U(r)dr <
0

1*

< /t Kn_1(t —1)Up(7)dT + Kn(t — 1)U (7)) dr + t Kn(t— 1) U(7)dr =

0 t*
=L+1+1I;
where I € L.
Now, since U € Lg + 0(1) L,
o
L= [ Kn(t-7)U(r)tdr <

0
t

< L, — function + Cy Ky(r)dr =
t—t*

< L, — function + C3(t — #*) @) (¢ — ¢*)™7
and it follows that, for 0 < v < a,0 < 1 < g,
Iy € Ly+o0(1)Lgjp N Leo.

Finally, in order to estimate I3, split U in two parts U; and Us such that U = U; 4 Us where Uy € L,
and Uz € 0o(1)Ly. Then,
t

I = ; Kyt —1)U(7)(Ur(1) + Ua(7))"dT <

< t*t Kn(t = 7)U(7)(UL(r)" + Ua(7)")dr =

= thN(t—T)Ul(T)Ul(T)"dT-i- t*zKN(t—T)Ul(T)U2(T)ndT+

t
+ [ Kn(t —7)Us(7)Us(7)"dT + Kn(t — 1)U (1)Us(7)"dT+
1 £

+ / Kn(t — 1)U (r)Us(r)dr =

=hi+hot I+ La+Is.
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Next we will prove that I ; € Ly and that Io; € 0(1)Lq/n N Ly for i =1,2.

1 1
(9.3) 1Tially < 1K = U llg < B34 o <

<K NellUnllg™ < oo

where € = #—n’ so I € L.
(9.4) Ly = Kn(t—1)Ur(1)Us(1)dT < C4 Kn(t—71)Ur(1)dT
t* t*
SO 11,2 € Lq.
t
(9.5) 12,1 = KN(t — T)nUl(T)nKN(t - T)l_nUQ(T)dT S

*

S ( t*t Kn(t— T)U1(T)d7')n( ?: Kn(t— T)U2(T)ﬁdr>lin

IA

< s ; Kn(t - n)Ui(r)ir)"( OH* KN(T)dT)I*" <

< 0( [ Knte = (ryr)’

s0 In1 € 0(1)Lg/y N Leo.

o

(9.6) L= [ Ky(t— 1)Us(r)Hdr < Crt— (@M
t*

80 Ip2 € 0(1)Lg/y N Lo if 0 <y < ¢, p < 7g.

Finally, since
t

Is < Cs | Kn(t—1)U(r)dr
t*

(9-3) to (9.6) and Corollary 8.1 gives us that

Kn_1xU € Lq‘l‘O(l)L ﬂLoo,

q/n

and by induction,
Ué€Lg+o0(1)LgmN Lo

Repetition of the above arguments, but now with U € o(1)L, /n N Lo, yields
Kn-1%U € Lg+0(1)Lg/2n) N Leo
and, by induction
U € Lg+0(1)Lgjom N Leo-
After a finite number of similar steps, we obtain that
Ue€Ly+o0(l)Ly = Ly = Ly([2t", 00))

by which U € L,(R"), as we have earlier proven that U € L,([0,2t*]). ///
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10 Decay of a long-range mean value

In this chapter we will study the decay of the long-range mean value

1

my (t) = (% /; U(r)idr) .t > 0.
>
Theorem 10.1. Assume that U(t) > 0 satisfies
(1°) t) < Upl(t /Kt—T ()1 dr,0 < < 1,
where Uy € Ly, K(1) < (:'1(1 +7) 1% for7>1and 0 < K € L1 N Ly, for some € > 0.
(2°) / Kn(r — 5)U(s)ds < Bu(r), N > Ny,
2

where w(t) is a function such that, for t > t*,

(Lw) /; tw(T)da < étw(t)q
(2w) wt)™' < B+ )t
(3w) /O w(r)ldr < C
() w(3) < Du)

and A, B, C, D and E are constants independent of t.
Then, if my,(t) < w(t), we also have that

my(t) < Cow(t), ¢>t*.
Proof: Repeated use of the integral inequality 1° for n = 0 yields

-
) < ZK «Up(r) + Ky U(7), L€ ZT Ko*Uy(r) = Up(r),
=0

and by convexity, for £ = N > Ny, it follows that

N—
(10.0) 1< Z 20D (K + Uy (r))? + 24 (K + U (7))
7=0
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Here, by Lemma, 6.1, for j € Z*

K, * Un(r /KT—SUO s)ds =

:/O Kj(7 — 8)7 K;(r — 8)iUp(s)ds <
/TKj(s)ds qi’ /TKj(T—s)UO(s)qu)‘ll <

<IK;|1¥ / Kj(r — s)Us(s )st)%_

< ( ([ K (7 — 5)Uo(s)7ds)

and, as a consequence of Fubini’s theorem, it follows that

N

(10.1) / (K;  Up(r))%dr <

<K / / K (r — 8)Up(s)"dsdr —
= ||K||{(q_l)/ UO(S)q/ Kj(t)drds <
0 0

s
<KW [ voo)1ds
0
Again by Lemma 6.1, for j € ZT, 7 > 2

/K T — 8)Uo(s ds+/K T—SL’ (T—S) Up(s)ds <
1

/TKj(s)q’ds q'</0 Uo(s)qu)a—l—
/ K;( ds / TKj(T—s)Uo(s)qu);S
0

<26t C(1+)5°‘

1

’ Uo(s )qd3> ’

/N v

% T 1
KN ([ Kot = s)0a(s)as)
2

and, as a consequence of Fubini’s theorem, it follows that

t
(10.2) ﬂ (K; * Ug(r))idr <

t
3 0

A t T
+207 Y| K[ / / K;(1 — s)Up(s)%dsdr <
2 Y72

t T
< 2(+e)age / (1+ 7)1 / " Uo(s)dsdr +
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(MBS

< 2(1+2a)qé]‘.1(1 + t)aq/ Uo(s)%ds +
0

t—s

t
K;(r)drds + / Uo()? [ Kj(r)drds) <
i 0

S

t

- i(g—1 2
v e ([ v [
1 278

t

< 9(+20)aG8(1 4 1)~aa / * Un(s)7ds +
0

N|ew

20| K |0 / Us(s)7ds +

4

t
120 K | / o(s)7ds

2

When estimating the convolution Ky * U(7), we will need that, for 7 > 2,

(10.3) / Kn(r — 8)U(s)ds <

1

2%+O‘C~'N(14—7’)_%_0‘</2 U(s)qu)a
0

Now, by (10.1), (10.2), (10.4) and 2°, 3,,, for ¢ > t* it follows that

1

(10.4) ’ U(r)ldr <

S~

2

t
S 2(j+2)(q—1)/2(K « Up(7))%dr +

9% 2/ / Ky (7 — $)U(s)ds ) "dr +
222 /0 /_ KN(T—S)U(s)ds)daS

N-1

<.
Il
[e=]

t
20Dk [ U(eyds +
—0 0

i
422042 / / Kn (s qu / Uls st dr +

+22q1+°‘ch'{,/ (1+7) " aq(/ U(s)"ds ) dr +

2 0

<.

t z
2% 1regd ﬁj (1+ T)_l_aq(/2 U(s)qu) dr+
e 0

2
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Nl

+22q2Eq/ w(r)ldr <
0

N—

[y

20| K1) Vol

1
2g—1 q q
e Lo(0,%) +2 “KN“q,/O U(s) ds +

<
ok

Cq ﬁ éq
9%~ 1Heqg-agZN / U(s)lds + 220~ 1200 ZN (1 4 4x)=0q / U(s)4ds +
aq aq 0

422420 R4

L1
For ¢* > 22(1+3) ]‘\",(aq)faiq — 1, it follows by (10.5) that

t
/ U(s)lds <
0

1
< Cul|Uollg + C2 UG J0,5) +C3 + 5/2 Ul(s)%ds
0

t

and, as Uy € L}IOC =U¢ L}IOC by Theorem 6.1, we have that
%
(10.5) / U(r)'dr < C,
0
Finally, for ¢ > t*, by (10.1)-(10.6), 1°,2° and 1,, - 4,, we obtain that

w(t) my ()7 = w(t)~1 - 2 / U(r)idr <

¢
N-1 t
(+2)(a=1) ()4 . 2 g
< 2 w(t) (K * Up(7))%dT+
=0
q
+ 20 ap(t)~ / / / KN (1 — 8)U(s )ds) dr <
< 22472 (¢) 79 %/ Up(7)%dT+
t
2
N-1 9 t
+ 3 2D 4. /(K ¥ Uo(r))9dr+
j=1

—|—22q2 / /KN T —3) ()ds)da—l-
20-2,, q
4 92— / /KNT—S ()d)dTS
t

N-1
< 22072 4 ) " oliv2)e) (2<1+2a>qégw(t)—q 2o / " Un(s)%ds+
=1 t 0

t
, 2 2
2 K05 [ Uo(s)rds

1
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. 2 rt
+ 2K ) 7 [ Uo(s)ds)+
2

ot 2 [ n e [*uts)asars
0

t
2

2 t
+ 2202 By (¢) 1 - E/ w(r)ddr <
+

N-1
<9224 7 U@ D) (U2 (1) (1 4 1) 19 |4 06T
q\Vs 2

J=1

)

F 2 DIK + 20 K )+

t
+ 22(1+a)qc~r;]\[w(t)*q(1 4 t)flfaq /2 U(S)qu + 924-2 g pa <
0

< 22724
N-1 . '

+ Y 2UtAa) (22 Ba| g |2 4 2971 (271 DY 4 1) K17+
j=1

+ 2204290 BIC, + 22072 A1
by which

tS;ltI;(w(t)*le(t)) <

<2¥ 04
— G+2)1-1) 51+2a+2 11, 1 ,
+2.2 @B\ Ul + 2 (27 e D + 1) K+
j=1
~ 1
+ 224220y BOY + 221 AVE =
=Co- ///
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Popular version

The wave equation is an equation that describes wave propagation. For relativistic wave prop-
agation (very high speed) you have to use more complicated equations e.g. the Klein-Gordon
equation. The Klein-Gordon equation was first considered by Schrodinger, but was abandoned
as it could not explain the fine structure of the hydrogen atom, and Schrédinger instead pub-
lished his famous nonrelativistic equation. The first one to publish the Klein-Gordon equation
(1926) was the Swedish theoretical physicist Oskar Klein (1894-1977) in a work where he at-
tempted to extend Schrodinger’s theory to an even more ambitious, unified theory framed in
five dimensions. The Klein-Gordon equation was independently discovered (also in 1926) by the
German physicist Walter Gordon (1893-1939). Equations of this type appears as scalar versions
of the field equations which describes weak nonlinear interaction between elementary particles.
The Klein-Gordon equation holds for bosons. Bosons are a class of particles that have integer
spin. Examples of bosons are fotons and mesons. There is no spin involved in the solutions
but the Klein-Gordon equation gives e.g. a good description of 7%-mesons and for the scalar
components of the Higgs fields.

In this thesis are studied the asymptotic behaviour (the behaviour after a long period of time)
of finite energy solutions to the nonlinear Klein-Gordon equation. The nonlinear Klein-Gordon
equation is a more complicated version of the linear Klein-Gordon equation. The assumptions
on the extra, more complicated, term that is added to the linear Klein-Gordon equation are
such that they ensure the existence of nonnegative energy, which is essential for the existence of
global solutions when no restrictions are assumed on the size of the data. It is shown that some,
mathematically and physically, interesting types of decay of the solution of the linear Klein-
Gordon equation will be inherited by the solutions of the corresponding (same data) linear
Klein-Gordon equation. This is of interest in the theory of scattering. Scattering is irregular
reflection or dispersal of waves or particles. That the sky is blue is, for instance, a scattering
phenomenon. These kind of results are also of interest since you can relate the decay properties
of the solutions (in suitable spaces) and the decay and the rate of the decay of local energy.
If data are sufficiently smooth both a lower and an upper bound is known for the decay. For
finite energy data, not necessarily smooth, only a lower bound is known. The rate of decay is in
general not known. In this thesis is also shown that if the solution of the linear Klein-Gordon
eqution in three space-dimensions has maximal rate of decay, so has the solution of the nonlinear
Klein-Gordon equation under certain conditions on the nonlinear term.



1 Introduction

1.1 The linear Klein-Gordon equation

The Klein-Gordon equation

v —Av+mPv=0, z€R" t>0,
’U(.’L‘,O) = (P(.’B),’l)t(I,O) = ¢($)

(KG)

wheren >3, m>0and A=A, =37, ;—;2, is the equation for relativistic wave-propagation.

1.1.1 Energy

The energy E(t) is defined by

1
Et) =35 /(IVgcvl2 + [ve]* + m?[v]*)dz = ||v]|?

where || - || denotes the energy norm. If we multiply the Klein-Gordon equation by v; and integrate
over space, it follows that E(t) is a conserved quantity

E(t) = constant = E(0),t > 0.

1.1.2 Sobolev and Besov spaces

We now introduce the Sobolev spaces H, (or L;). The norm on Hy is defined by

lgllzz = llgllp,s = IF " (wsFg)llp

where w,(€) = (1 + |€]%)2, Fg = § denotes the Fourier transform of g and || - |lp denotes the norm on
L,. For p = 2 we usually drop the reference to Ly and write H; = H®. Let Y* = H s+l x H*. For
s =0weset YO = H' x Ly = X, the energy space. A finite energy solution of the (KG), i.e. a
solution of the (KG) with data (¢, 1) € X, will in the following be denoted by wuy.

Let By? denote the L,-based Besov space of order s > 0. The norm on By? is defined by
L, adty ;
lollsze = lally+ ([ (57 3 watt.0%0))" %)
la|=S

where wy(t, 2) = sup|y < [|2n — 2|lp, 2n(z) = 2(z + h) and s =0 + 5,0 < o < 1, S an integer. Between
Besov spaces, By?, and Sobolev spaces, H;, we have the following inclusions:

B3P C HS C B;”Q, 1<p<2, B;:’2 C H;’I C B;:’p’, 2 <p' < oo.

For a proof, see e.g. Bergh and Lofstrom [1].



1.1.3 Solution formula
Define the operator B by
—1/ B A 1
Bg = F~(Bg), B(¢) = (I¢]* +m*)>
Then, if (¢, ) € X, and uy(t) = ug(-,t) for each ¢

and thus ug has the solution formula

un(t) = Bolt)p + Br(ihh = 50« o+ Ry
where, for each ¢ X
1 (sin(tB(¢))
m@w—al{jig—}

in the sense of distributions.

Ey(t) and E;(t) are called the solution operators of the (KG) and are often denoted by cos(¢B) and
B~!sin(tB). For E;(t) we will need the following result by Brenner [3], [4].

Lemma 1.1. Let

2<p' <o0,; 4+ 5 =1,1<¢< 0

dp(n+1+0) <14 s—s" where oy :%—%,0303 1 and s,s" > 0.
Then, if X; denotes Hy or By,

IE1(t)gll o < K (#)llgllxg.t >0
P

where

t—(n—1+9)(5p/, 1<t
K(it)<C o
(1200 <t <1

1.1.4 Strichartz estimates

Let [|gl|zs(L7) denote the L (R*)-norm in ¢ of ||g(t) |z (rn)- For a finite energy solution ug of the (KG)
we have that (Strichartz [13], [15], Segal [12])

U 1 <C + <C
Juoll, 3, < Cllglln + Ilzz) <
where p = %, ie. 0 =3—-1= ﬁ More complex estimates bound ug in L,(R, H;(R")).

p n
(Strichartz [15], Marshall-Strauss-Wainger [10], Brenner [5].) The following Strichartz estimate (Bren-
ner [5]) will later inspire our discussion of the corresponding nonlinear problem.



Theorem 1.1. Let2§r§,u<oo,s>—% and0§0§s+%. Then

wo € LI(LET77)

if data (@,v) € X, provided that
1
= 5(1 —(n+1+6)0,), some 0 € [0,1], and
(n—14+6)0,>1—26, > (n—1-6)d,
or, more generally,
1
s> 5(1 —(n+2)6,) and
du+s<é <1—nd, —s.

If 6, # 0 we may use equality signs in the last inequality.

The following special cases will be useful later.

Example 1: Let 2 < ¢ < p' < oo and s’ > 0. Then ug € L (L ) provided that

1 3
D! and6p1+s'—§§5q§§—n5p,—3’.

Example 2: Let 2 =g < p’ < oo and v > 0. Then ug € LQ(LZ,) provided that

2 .1 3
-t Oy <7< mln(i — Oy 2 — ndy).
1-—
Remark: Tt follows that % S <0y <55 Moy =——,0<e¢ < = we must have that
1 3 n+ 2 1 1 1
i < =
2 =1 " 2m—1) =" 2 a1t

Example 3: Let 2 <r < ¢’ = 2(T:Lj—11) (ie. 6y = n%_l), Q(nn——l—l) <o< % Then ugy € Lr(Lg,), provided
that 1 43
n— n
- <§ < ——0.
7o+ "2t ¢

1.1.5 Decay of solutions of the linear Klein-Gordon equation

Theorem 1.1 implies that for (¢, ) € X,
t
/ luo(rII2, dr — 0 as ¢ - o0
t /
b P

for certain combinations of ¢,p’ and s’. This leads us to introduce the “long range mean-value” M, x
defined by

Mot = (7 [ Ioo)ar)



By Theorem 1.1 My xuo(t) — 0 as t = oo for certain ¢ and X if (¢,9) € X,. What is known about
the rate of decay of M, xuo(t) for non-trivial solutions ug? If data are sufficiently smooth, i.e. ¢ and
1) have sufficiently many derivatives in Ly, it is known that (Strichartz [13], Kumlin [9])

it < ML, ug(t) < ot ™™t — 00,p’ > 2

For finite energy data, not necessarily smooth, it is only known that (Glassey [8])
ct ™" < My, uo(t)

The rate of decay is, in general, not known.

1.2 The nonlinear Klein-Gordon equation

The aim of this paper is to study the decay of solutions of the nonlinear Klein-Gordon equation

ug — Au+m?u+ f(u) =0,z € R*,t >0
U,(iL‘,O) = w(w)aut(l'ao) = 1/1(3)), ((;07"/1) € Xe

(NLKG)

where n > 3,m > 0and A = A, = >0 2% A solution of the (NLKG) will in the following be

denoted by w.

1.2.1 Conditions on the nonlinearity

The nonlinearity f(u) is supposed to satisfy the following conditions which are motivated by the
physics involved. We will assume that f € C!, f(0) = 0 with f(R) C R and that

(i) F(u)= [y f(v)dv >0 for all u € R
(ii) [f'(u)| < Clu[r~! where 1+ 2 =p, <p<p* =1+ 1.

(iii) uwf(u) — 2F(u) > aF (u) for some a > 0 and F is not flat at 0 or oc.
1.2.2  Energy
To better understand condition (i) we introduce the energy, F(t), of a solution to the (NLKG)

1
E(t) = 5/(|V$u|2 + |ug)? + m2|ul?)dz + /F(u)dac

Condition (i) implies the existence of nonnegative energy for the solutions of the (NLKG), which is
essential for the existence of global solutions when no restrictions are assumed on the size of the data.



Another consequence of (i) is that the energy norm of u is bounded. To realize this, we multiply the
nonlinear Klein-Gordon equation by u; and integrate over space. It follows that

E(t) = constant ,t >0

which together with (i) implies that
lulle < C.

Condition (ii) gives growth restrictions at 0 and oo. Typically f(u) ~ u|u|’~! at 0 and co with p > p,
for |u| <1 and p < p* for |u| > 1. The condition uf(u) — 2F (u) > aF(u) ensures that no standing
waves will appear as solutions. The appearance of standing waves would make decay impossible. The
condition also implies the decay of local energy (Morawetz [11]).

1.2.3 The rate of decay of solutions of the nonlinear Klein-Gordon equation

A bound for the rate of decay of solutions to the (NLKG) is given by the following therorem.

Theorem 1.2 (Brenner [7]). Let 1+ 2 < p <1+ 25, and X; = Ly({z : |z| < t}) C X = Ly(R").

n—27

Then, if u € L}IOC(R, L;,OC(R")), where p,q > 2, there is a constant ¢ > 0 such that

1 T 1
MTgu(t) > (7 / lu(m)l dr)® > et
q, T t+T T

for T >0 and t > max{1,T}.

The question now arises: If uy has maximal decay, is this property inherited by u? The following
theorem of Brenner is a recent result announced in [7], but before we state the theorem, we must
define the concept of uniform decay. We say that g : Ry — R, has uniform decay in L, if, for some
¢,t* > 1 independent of ,

t t
/ Cg(r)idr < c / g(r)dr,t > t*

t t

4 2

Theorem 1.3. Assume that u is a solution of the (NLKG) with finite energy data, and that ug is the
corresponding solution of the (KG) with the same data. Assume that (x), (x)' hold, 1+ 2 < p < 242

and that ug € Lq(X;,') N Ll(X;,’). Then, if HUOHX;f has uniform decay in L,

t t
[l ~ [ ua(ls dr, ast s o0
2 P 2 p

Corollary 1.1. If uy has mazimal rate of decay in Lq((%,t),X;,’), then also u has mazimal rate of
decay in Lq((%,t),Xg,’).

In an earlier work of the author [2] it is shown that if the “long range mean-value” of ug
2 [ ‘
M s! = (_ 4 ’ ) <
g olt) = (5 / ol )" < ()

5



where w(t) — 0 as ¢ — oo, then this property is inherited by u provided that K € Ly N Ly, some
t

€e>0, / Kn(t — 7)||u(7)|| yo dT decays to zero “roughly” as w(t) for large values of ¢ and that w(t)
t !
2

satisfies certain conditions. The main result in this paper is the following. (See Theorem 2.2.)

Let u be a finite energy solution of the (NLKG), and let u( be the corresponding solution of the (KG)
with the same data. Assume that

_1_
My, r,u(t) < Cr(1+1) @ T,y >0

for some ¢q,7 > 2, and that
My, xuo(t) < w(t)

where w(t) satisfies certain growth conditions. Then
M, xu(t) < Cw(t)

One corollary is the following.

Ifu e L, (LZ,) where 0y = n%—l and wug has maximal rate of decay, then u also has maximal rate of

decay in the case n = 3 for certain r, o and p.

1.2.4 A nonlinear Volterra integral inequality with singular kernel

On an interval where u exists as a solution of the (NLKG), we have that

t
U = Ug —/0 Ei(t —7)f(u)dr

where ug is the corresponding solution of the (KG) with the same data as u. If condition (%) in
Lemma 1.1 is satisfied, we obtain by the solution formula above, Minkowski’s inequality, Minkowski’s
inequality for integrals and Lemma 1.1 that

t
el e < loll o + / K(t - 7)1 ()l xydr
P P

Inspired by Theorem 1.1 and the above inequality, we have investigated if some (mathematically and
physically) interesting types of decay of ug will be inherited by u. In an earlier work of the author [2]
the integral inequality

t
[u(®)llx < lluo(®)llx + C/O K (t —7)llu(r)|x "dr, |n| <70 <1

where X = X ps,' denotes L;ﬁ or B;:’Q was an essential tool. The kernel K was supposed to satisfy the
conditions
0<KeLNLi4e somee>0,

and
tle 1<t
K@) <cC , some o > 0.
tteo<t<1



These conditions have their origin i Lemma 1.1 which stated that

1 1
121 (8)gll o < K(®)llgllxg,t>0,2<p' < 00, ~+ 5 =1
p

where
t—(n—1+(9)(5p/ 1<t
Kit)<cC N
t—(n—l—@)ﬁp/ 0<t<1
provided that
(%) (n+1+40)6y <1+s—5,0<60<1ands,s >0.

In paper 1 also the stronger assumption was used that p',s’ should be such that K € Li, i.e.
n+14+6)0y <1+s—¢
(n—l—@)épf <1l (n—1+0)5pr

In this paper the kernel K (¢t — 7) is replaced by K(¢t — 7)h(7) where K (t) and h(t) are supposed to
satisfy the conditions

some 0 € (0,1],s,s" € [0,1]

00), ot =1

0 < K € Lgy(1,00) N Lggte(1, 00) some € > 0,0 < h € Ly (0, 00), @
K € Lyy(0,1) N Lyy42(0,1) some € > 0,h € Ly (0,00), & + % =1
and
K(t) < Ct=8,t > 0,890 > 1> fry
(% [th(T)TsdTyl6 <C(1 +t)_%_7,t > 0,7 > 0,75 > qp
2
To motivate the above conditions, we will study the important special case §,y = n+_1 If we use

Lemma 1.1, for 6, = n%—l it follows that

1E1(8) f(W)llg o < K@Nf(w)llg0

where % + % =1 and o > 0. From Lemma 1.1 also follows in this case that # = 0 by which

K(t) < Ct™s,t> 0

so that 8 = Z—:& We also have that K € L;%C N L}%‘q_g, some ¢ > 0, if ry < Z—ﬂ and that K €

L ([1,00)) N Lggt¢([1,00)), some € > 0, if g > 245, From go > 2t also follows that gj < "L,

To derive the new integral inequality we must estimate ||f(u)|q». We have, by (ii), and Sobolev’s
embedding theorem that

—1+ 1—
£l < Cllullg 1 2ully 0 < Inl <o (smal)

provided that p > 1 — n and that

2(p—1+n)($—7—50)+(1—n)($—%)

SHN
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that is, for
26, + 12 4+ 2oty

PS”I_(;,_K?:H ot Dte) v
q n n

n—1-—

Notice that p, > 1+ =5 if y+0 > D) +1) n"T_ny The lower bound for p is obtained from

<

Q=
’Q|b

by which

L6, 4
2+q -1

> .
P=1T n—1

N[

We have now derived the new integral inequahty
t
1—
@)l < o (®)llg,0 +C /0 K(t = r)h(r)u(r) |5 dr

where h(7) = [Ju(7)||% 7. It remains to investigate for which g}, we have that h € L, . From Brenner

q,yto’
[6] we know that u € Ly (Lg,+ ) where ¢ = = AntD) e, dy = n——l—l and (

q

n—1 7
proof is based on interpolation between Ly, (L3) and LQ(LZ/) where 0,y = nT and v = 3 — —1<. That
u € Loo(L3) follows from

ull2,r < Cllulle

and that u € Lo (L;,) follows from the Remark of example 2, page 3 in this paper, and the following
Strichartz-type estimate.

n+4nd, 1 —2—2(s—s’)
n—2

THEOREM 1.4 (Brenner [6]): Let 1440y < p <
holds (see page 7 in this paper) with f:sl < p—1. Then

3’

,m > 3. Assume that (x),

ug € Lo(Ly) = u € Lo(L%)
Finally u € Ly (LZ,+U) implies that h € Ly where

S | =(p—1+n)(%—5q')

a0 q
1.2.5 Decay function

The conditions on the decay function w(t¢) in the main theorem are

t 1
(1) (%/ w(r)tdr)? < Au(t),t >0
(2u) % <w(t) < B wte 1> %
(3u) w(3) < Fut)



where A, B, F and F are positive constants.

Example: The function w(t) = C(1 +¢)~%,C > 0, satisfies the conditions 1,, — 3,, with A = F = 2%,

T4 )™ .
EZ(H%)"‘ andB:(+(tj) ,provldedthat0<a§ﬂ—qi0+é,as
2 [t 1 i\ —a
— q q _ a —a
(1) (t/% w(r)idr)* <C(1+ 2) < 2°C(1 + 1)
A+ @+ (1+2)e
2 < < o
( ’w) C < C < 5 t
(3w) C’(l + %) “ <20C(1+1)@

1.2.6 Rate of decay of solutions to the (NLKG)

Let 0 < 9, <4y = n%_l From example 3, page 3 in this paper, we have that
ug € Lp(Lg) provided that

n n—1 n+3
> " ando- - << T2 g
T+ ) M T 2+ ) S S 2 7
From Brenner [6] we also know that

ug € LT(LZI) = Uuc L»,-(LZ/)

1
provided that dy = ?,0 <o <1, and
n

1+ 4 <p<l+ 1
n-1-" n—2
By the main theorem, it follows that if
MT,L",UO(t) < C(l + t)_a
q

then also
M, 1o u(t) < C(1+1t)~"
q

fortlargeand0<a§ﬂ—q%+%where

1 1
B-——=B+-—-1=
90

9
v a) -
:(”_1+")2(T;111) _n—2l-1
by which
i = B~ o+ L= (o= T Mg g



1.2.7 Estimates of the rate of decay «

For non-vanishing finite energy data, one can prove that (Glassey [8])

My 10ug(t) > ct™ ™
q

1
where §y = 1 and 0 = 7" From the main theorem it follows that if this mean-value, for the
n
solution ug of the (KG), has an upper bound O(t %) as t — oo, then the same upper bound also holds
for the same mean-value of the solution v of the (NLKG). In the special case n = 3, §y = n+_1 = i,
we have found that

n—1 n—3 p—1+4+n
=(p-1 g, =TT

where

4 4
1+ —=3<p<l4+——>=5
n—1 n—2

and we obtain maximal rate of decay if

-1+ 3
amax:%_ér Zn(sq’ = 1
ie. if
p=>4+46 —n
For ¢, = i — %, o= 1—;§,O <&é<L i maximal rate of decay is obtained for 5 — 26 < p < 5. More
generally we have that
n—1 2n—4+6 1
<(p—1 — =a*
omar < (P =145+ 50Ty “ao1 - °
fora:ﬁ—% some 6 € (0,1]. pr:1+ﬁ and € = ¢ we have that

1 e+n(n—1)
f s,
I TR

and, if p=1+4 -2 —cand 0 =1,

. A 1 SN
(0% = No, — _ e =
max 77 3mn-2) 6(n+1) n-1 K 2(n+1)
1 n 4+ 2 n—1
=nd, — S P
(s S o Y i S Uy gy
by which we get the following table
1 1 +2
n | nlgy — =% noy — 7= + 2(n+n1)(n—2) ndg
3_1_1_2 3, 1_7 6
3 l1i-3=1=%§ 1T5=3 8
44 _1_1_14 |4_1_2 24
5 3715 — 30 5 30 _ 30 30
|3 _1_7 _21 5 _ 1 7 _ 28 30
6 4 12 — 36 6 18— 9 — 36 36
6 | &6 _1_—-2 6 2 _4_ 28 30
75 35 7 3 5 35 35
10| 0 _1_7_316 | 10 _ 17 _ 343 360
11 9~ 99 — 39 | 11 _ 396 _ 396 396




2 Decay of long time mean-values of solutions to the nonlinear
Klein-Gordon equation

2.1 Basic definitions

Assume that

0 < K € Lgy(1,00) N Lggte(1,00) some € > 0,h € Ly (0, 00) with qio + i =1

K € Ly (0,1) N Lyy1£(0,1) some & > 0,h € Ly (0,00) with -+ - =1

7o
and let K’ be the integral operators defined by
K%(t) = g(1)
Kalt) = Kott) = [ K(¢ - nh(rla(r)dr = K = ()0
Kig(t) = K(K"1g)(t),5 € Z2

From the definitions above follows by Fubini’s theorem that

Kig(t) = /0 K (t, 7)g(r)dr

where
Ki(t,7) = K(t —7)h(7)

and
t
K;(t,T) = / Ki(t,0)K;j_1(0,T)do,j € Z \ {1}

2.2 Some useful properties of the kernel

To make the proof of the main theorem more accessible, we will in the following give some of the
details as lemmas.

Lemma 2.1. Let | - ||, denote || - ||z, 0, Then

1-1
1Kgllg <27 2 UKL, 00 12l + 1Kl Ly (1.00) 12l g )19l

11



Proof. By Hoélder’s inequality and Fubini’s theorem, for ¢t > 1,

kgl =+ / gyt <
/ / Ky(r, 5)g(s)ds)dr) e + ( 1t/0 +/T PLEICE g(s)ds)tdr)

: (/0 ([ morash / K(r— )™ K(r — ) glsyods) o)+

2

=N qﬁsi T—S% 7 — )4 g(s)Pds)iodr
+2 (/1</0 h(s)du/o K(r— ) T K(r - )% g(s)0ds)iodr)i +

aro=rg 3 @
q T

+21—%(/t(/T h(s )rads)?qz?( ' K= T K ()
<||h||L/01)/ /K yrods) o /KT—S)’"O (s)%ds)dr) s+

+ 27l 0, / ([ Komas) / K (7 — s)®g(s)ds)dr)i+
+2hll 0( / / K(s)ds) ' / K(r — s)og(s)ds)dr)i <

1
< Al 0K / / K(r — s)odrds)’ +
1
Al 000 1K T g / o) [ K(r— syodrds)i+
') s+l
1__ s+1
e, @l K57, / K(r — s)drds+

/ / K(r — s)drds + / / K(r — s)"0drds)t <

< ||h||LT6(O,1)HKHLTO(O,I)||g||Lq(0,1)+
1—1
+2 elh|, 2, (0t-1 YK gy (1,6 191124 (0,6-1)+
1,,
“lbllz,, 0 1K 200 9l 0.0 <

1__
<279 QUK Ly 00 1hllry + 1K W Loy 10 [1Rlg gl /77
In the same way it follows that, for 0 <t <1,

oy 11/

IKglly < Nell, 0.1l
Corollary 2.1. Repeated use of lemma 2.1 yields

. l—l . .
I7glly < 2 @IK 1, 0,017l + 1K |y (1,00) 1l lglg <
2_1 . .
< 2 (K|, 0, I1Blls + 1K |y 1,00 1l gl

forjeZy.

12



Lemma 2.2. Let 0 < 7—-1<s<7. Then
Kn(1,8) = Gn_1(7,8)h(s) < ||h||N ! G'N_l(T — 8)h(s) where

sr)
Grn_1(z) = (K™« K™« ... % K”’)(x)a for2< N eZ".

-~

N

Proof.
Ko(r,s) = / K(r — 0)h(0)K (o — s)h(s)do =
5) / " K(r — 0)h(0)K (0 — $)do = G4 (7, 5)h(s)

so the first part of the proposition holds for N = 2. Now assume that the first part of the proposition
holds for N = p. Then

Kpti(T,8) / Ki(r,0)Ky(0,s)do =
/ K(1 — 0)h(0)Gp-1(0,5)do = Gp(T,5)h(s)

where Gp((7 f Ki(r,0)Gp—1(0, s)do and so the first part of the proposition holds by induction
form > s> O By Holder’s inequality it also follows that, for 0 <7 -1 < s < T,

5) = /TK(T — oYh()K (o — s)do <

1
< ([ Merian) ([ ke —orto —oynac) -

1

= Bl o ( [ K5 - )oK (@) = bl (o Crr — )
0 0 0

~ 1
where G1(7 — s) = (K" % K™)(7 — s)™ so the second part of the proposition holds for N = 2. Now
assume that the second part of the proposition holds for N = p. Then

Gp+1(T,8) / Ki(1,0)Gp(o,s)do <
/ Ka(r, )M, oy ol = 5)dor <
1 T _ 1
< I, (/ o)rhds) (/ K(r —0)°Gylo — 5)do) " =

1
||h||p+1 \( / K(r = s —a)°Gy(a)odr) " =

||h||p“ (KT 5 Gy)(r — )70 = IRIEE, .y Gt (7 = )

. 1
where Gpy1(z) = (K™« K™ % ...+« K™(z)7 and so the second part of the proposition also holds by

pt2
induction. ///

13



Remark. If we define Go(z) = K (z), Lemma 2.2 also holds for N = 1.
Lemma 2.3. Let 7 > 1. Then

N N
/ Kivtr s ™ds) ™ < 1KY ollWIE, o1
where € > 0, r(N) = 7]\,6 and € is so small that r(N) > 0, i.e. 0 <e < N—C%r—o for N > ry.
- ro(ro+e)

Proof. By Lemma 2.2, Holder’s and Young’s inequalities
T

( KN(T )"V )ds) ) <

_1_
/ I G - 9 s T <

1
< ||h||L " (r—1,7) /7_1 h(s)TOds) " ( -1

! 1
= M b1 / G (o)™ ) ™ =

1

T 1

(~}’N,1(T — s)W—lds) TN-1 =

1K™ « G <

2||L'YN 1 (0,1)
Tro

- ||h||L /(T 1,7)

1

< ||h||L (T 1,7) HKTOHLT +€ 01)||G71"\(f] 2||L’YN vz (0,1) ©

T0

IA

=l ¢ o (—17) ||K||LTO+5(0,1)HG’N—QHL’YNJ(OJ) <
= IRz, o (T-17) K173 o 1Goll. 0,1

Here, by repeated use of Young’s inequality
1 1 1 N—-1 N-1 1

r(N) 7 nv-1 rote 0 Yo

by which vy = r¢ + ¢, and the proposition follows. ///
Corollary 2.2. € = 0 gives that

;
/ Kn(r,5)ds < 1KY o0l o1
_ 0

Corollary 2.3. Let ¢g = . For N so large that ey < €,i.e N > Ny [ (TOJ“)] +1, we have that

1
(/ T S q ds)q g ||K||]LVT0+50(O’1)||h||gr6(7_157—)
—
<

Lemma 2.4. Let K(t) < Cit =%t > 0,8 > 0, and let gy and rq be such that Bgy > 1 and Bro < 1.

Then, for 7 > s >0,

Gr1(78) < COn(r = 8) (bl (5.r) + 1Pl (5,0)) VT N € 24

14



Proof. The proposition is trivially true for N =1, as
GO(T’S) = K(T - 3) < él(T - 3)7ﬁ’7— > s,

by assumption. Now assume that the proposition holds for N = p. Then

/ /%)Kl(ﬁ 0)Gp-1(0,8)do <

5 = (T—8\7F _
< GG (552) Ul imy + Il )

-(/S " (o) (o — s)—ﬂda+/ h(o)(r — o) Pdo)

>

T+s
2

If r—s>2, we have that s +1 < TT“ < 7 —1 and by Hélder’s inequality it follows that

(0 —s)Pdo + ( / / o)(t — o) Pdo <
, 1l 1 >
<( / h(o)bdo) b / B0 dg) 7 + / * h(o)bdo) / P dg) s +
s 0 s+1 1
T—1 , 1 o 1 T , 1 1 1
o / h(o)%do) ( / o B4 35 4 ( / h(o)Todo) ™ ( / o Brode) s <
T 1 T7—1 0

_1 _1
< 2(5Q0 - 1) & ”hHL A (s,7) + 2(1 - IBTO) "o HhHLré(s,'r) <

s+1

1
a0

1
< 2max((Bgo — 1), (1 — fro)” )Rz, sy + lIRllL,, 5.m)

Now consider the case 0 < 7—s < 2. We then have that 7—1 < TT“ < s+1 and by Holder’s inequality
it follows that

T+s

/ " h(o)(o — )~Pdo + /i h(o)(r — o) Pdo <

S
T—8

1

7—42—8 ) L] T;S 1 T . L > 1
< / h(o)hdo) b /0 o Broda) o+ ( /  hlo)hdo) T ( /0 o Froda)e <
s R

_1
< 2(1 - /87'0) "o “h’HLra(s,'r)

and the lemma follows by induction. ///

15



Corollary 2.4. By Lemma 2.4 and Holder’s inequality follows that, for T > 0,

1
al

(7 Ky(r,s)"ds)7 = ( / " () Gys (7, 5)7 ds)
0 0

<

-

L

< O ([ 1) (7 = ) Bl o) + Bl o) ) <

~ 3 ro [T B a—a
< OBl 0.0y + I,y 0.0 V[ ey bas) ([ 5™ a9 W <

2
Bag—=1_1

1 . —_
<2 @ TaOn(Iblzy @m + Ikl @) T 0 T
Corollary 2.5. By Lemma 2.4, Holder’s inequality and Corollary 2.2 follows that, for T > 1,

T T—1 T
/ Kn(7,8)ds = / h(s)Gn-1(T,8)ds —I—/ Ky(r,8)ds <
0 0 T—1

1

T—1 1 T
< OBl g o)+ 0.0 ¥ ([ Bybas) ([ s Pmasyio
NI oI, (o1 ) <
1
<((Bgo—1) ©wCn + ||K||1]'i0(0,1))(”hHLqé(O,r) + ||h||L,6(0,r))N

and, for 0 <71 <1, that
T T
/ K (7, s)ds = / h(s)Gy 1(r, 5)ds <
0 ) 0 i R 1
< OBy 0.+ 1,y 0.0 (| B bas) 5 ([ s7m0as)s <
< (1= Bro) 7 Cn (bl 0.0 + Il o)™

so that .
| Btrs)ds < MuUbly 0. + 181, 0.)"

where R N N
My = K[, o + Cnmaz((1 — Bro) 7o, (Bao — 1))

Lemma 2.5. If 7 > a + 1 where a > 0, then

a—q

T—1 , 1 _ 0
( Kn(1,8)7ds)7 < ( Bado _ 1) o CN(||h||Lq6(a,T) + ||h||LT6(a,T))N

16



Proof. By Lemma 2.4 and Holder’s inequality

1 -1 2 !
/ Kn(r,s st)':(/ h(s)T Gy (r, 5)7 ds) 7 <

< Cn (Il o)+ [l 0¥ Bl

a

7

~ N1 T—1 , 1 T—@ _ Bagg 4—4g

0<||h||L,m)+||h||L,<m) (/ h(s)%dsw/ 5 it ds) . <

a 1
_g9—qp

B ) "o C"fN(Hh”an(a’T)+||h||LT6(a,T))N

IN

as

Bago _ q q
q—qo /quq_qo > q—qo0 >1 ]/

Corollary 2.6. If we use Lemma 2.5 for a = 0 together with Corollary 2.3 it follows that, for T > 1,
and N > Ny

1

/Kq (7,8)ds) 1’§ / Kn(r,8)7ds)? / Ky(t,s)?ds)a
0

1
7

Bago -
g((m—l) " Oy + KN, .o00) (1Rl @) + Il 0m)Y <

< L ([Iblz,, (0,00) + 1Pllz,, (0.00))"

Corollary 2.7. If we use Lemma 2.5 for a = § together with Corollary 2.3, it follows that, for T > 2
and N > Ny,

T

(/ Kn(r,5)7 ds)s

\\.-.

(SR

_4=90

B4qqo a0 -
< ((q P 1) Cn + ||K||L,0+E0 0,1 )(Hh”L (5 T Hh“Lqé(%’T)) —

= Il G + Il )™

2.3 Local boundedness

In this section we will show that the property ||ug|lx € L}I"C is inherited by wu.

Lemma 2.6. Assume that Uy € L}IOC and that

(1) U(t) < Up(t) + KU'™")(2),0 < [n] < mo < L(no small),
Then
(2) sup KNU(t) < M < 0o, N > Np.

0<t<t*

17



Proof. By the inequality (1), for n > 0,
3) KNU(t) < KU (1) + KNFHUT) () = KNUo () + KK (UTM) (1)
where, by Holder’s inequality and Corollary 2.5, for 0 <t <t*,and 0 <np <1 < 1

(4) KN @ty / Ki(t,T / Ky (1,8)U(s) ""dsdr =
:/ Kl(t,T)/ Kn(7,8)"Kn(1,8) " "U () dsdr <
0 0
t T
< [ K[ Kntrs)ds (MU (@) i <

< Mg + )™ ( sup KU (7 / K (t, T)dr <
<T

1—n
< MM (bl + )7 ( sup KNU(t))

so that, by (3) and (4), for 0 < ¢ < ¢*

1—n
) swp KMUE) < sup KVTo(t) + MiM([blg, + ) 47 ( sup £VU()
0<t<t* 0<t<t* 0<t<tr
Assume that N > Ny. By Corollary 2.6 it follows that
(6) JSup KNUo(t) < L ([[Bllgy + [1Alleg) M 1 U0l 0,291
Let S = supg<;<4- KNU(t). As Ug € L}IOC we have by (5) and (6) that
(7) S < Cp+Cy8tT

Now assume that S > (202)%. Then, by (7), S < 2C1, and it follows that

1 1 1N
8) S < max(2Ly(llkllg + I1Bllrg) ¥ 1Toll 0,021 27 My M (|Bllgy + [1Blly) 7 ) = M < 00 ///
Corollary 2.8. As L%¢ C L{IOC, it follows that KNU € L,[0,t*], for N > Ny.
Theorem 2.1. Assume that ||uo||x € L4[0,t*] and that
(1) lu(®)llx < lluo(®)x + (Kllu@)llx ™)(®),0 < [n] <no < 1.
Then |lul|x € Lg[0,t*].

Proof. By Corollary 2.8 we have that K ||lu||x € L4[0,t*], for N > Ny. Now assume that KP|ju| x €
L,[0,t*], p € Z4,p < N. Using the inequality (1), for n = 0, we obtain that

(2) K~ lullx < KPHluollx + K7 lullx-

Here KP~!||lug|lx € L4[0,t*] by Corollary 2.1, and it follows that KP~!|lu||x € L4[0,t*]. By induction
it follows that K|lu||x € L4[0,t*], and as, by (1),

[ullx < fluollx + Kllullx

we have that ||u||x € Lg[0,t*]. ///
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2.4 The main theorem
2 t . 1
Let M, x g(t) = <Z / (1c1||g||X(T))da)‘1 for + > 0,j € N. We will show that the property
t
2

My xuo(t) = My xouo(t) < w(t) is inherited by u under certain assumptions on K and w.

Theorem 2.2. Assume that ||uo(t)||x € Lq and that
(A1) lu(®)lx < lluo(®)llx + (Kllully ™) (#),0 < |n| <1,

where Kf(t) = [i K(t —7)h(r)f(1)dT with

0 < K € Lgy(1,00) N Lggte(1,00) some e > 0,0 < h € Ly (0, 00), ql_o + % =1 and
K € Ly, (0,1) N Lyy4£(0,1) some € >0,k € Ly (0, 00), % + :—6 =1
Assume also that K and h have the properties
(Ag) K(t) < Cit Pt >0,Bro <1< Bqo
2 [* ;o\ -
(A3) (; \ h('r)rOdT) o < Co(l+t) o ,t>0,v>0,15>qp
Then if
(Mo) Mg xuo(t) = Mg,x,0uo(t) < w(t)

t 1
(L) (7 ] wtryar)” < awy
(20) % <w(t)t < Bt" i w fort> g
(3) w(}) < Ful)

where A, B, E and F are positive constants, and t* will be specified in the theorem, it follows that

M, xu(t) < Cw(t) fort > t".
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Proof. Repeated use of the integral inequality (A7) for n = 0 yields

N-1

(1) lu(r)llx < D K fluollx (1) + £V |lullx (1)
j=0

From (1) follows, for ¢ > 1, by convexity that

N-1
(2) la(r)l% < 37 2042@D (16 gl x (7)) + 297 (K [ul|x (7))
=0
by which, for I C RT,
1
(3) / lu(m)llfdr)* <
(G+2)(1-1) : @ o1t N :
< 3 ot b /I (ol x(r))7ar)  +24 ([ (el ()
§=0
Taking I = (%,¢) in (3) we obtain that, for ¢t > 0
_1 _1
(4) My x ou(t Z 202070 M, x juo(t) + 217 My x wu(t)

Our first goal will be to estimate Mq x,nvu(t). By convexity and Hélder’s inequality

(5) Mq,X NU(
e

I
N
\
—
\
\
el
z
\]
CIJ
E
By
<y
Vo)
~—
&

\]

Here, by Corollary 2.4,

l’ 1 1 . Bq _1_1
(©) / K(r,s)7ds)” <275 “30x ([l + By ¥ %
and, by Corollary 2.7 and A3 for 7 > 2 and N > Ny,
(7) / Kn(r,s)? ds

< LN(||h||Lq6(g,T) + ”hHLTG(l
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\\r—‘

P <

1 1
<(@2 %42 )NLyeNa+7) M
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1

Now, let mq x.;(t) = / (K gl (r))?dr )" for t > 0,5 € N. Then, by (5) - (7), L, and 2, for
t> t* >4,N > max(N0,$)

(8) w(t)™ Mx,vult) <

_lq1 ~ 1 2 [t _Bao-1, 1
< 27700 (lhllg, + [[hlly) VO sup (Tqmq,X,ou(T))w(t)l(zﬁ r o har)t 4
5<7<t 3

(2 Z 49 %)NLNCO ( sup w(T)_qu,X,OU( ))w(t)—l(g (1+T)1—N7qw(7-)qd7->; <

t<r<t t

”\
| 3 .

1
28— 2 11 q0 q 77+7
<94 (m) a (IRl + ||h||r0)NCN( sup T‘lquOU ) P it 4

t<r<t
@ ffwera) <

z, 3 . tyl-
72 % +2 To)NLNCéV(1+§)‘1 N”( sup (w(7)™ Mg,x0u(r
t<r<t

(IRl + Iblly)VEnB( sup (r3mq,xou(r))) +
t<r<t

A
N
N
=
\Q
(=}
+
=
/N
~~
=
Q
5
—
~—
N——
Q[

+2170 (27 + 2 )N LyCN A(L + %)é_w( sup (w(r)™! My xou(r))) =

= BCl( sup (T%mq’x,o’u(T))) + AC> (1 + E) ;N’y( sup (’UJ(T)_qu,X,()U(T)))

t t

o~""

_2 . 2 1
where C; = 2% (LyCN(HhH%—FHhH%)N and Co = 2174(2 % +2 "0)NLyCN. As we

(Bgo — 1)g
now want to estimate Temy x ou(r) for & <7 <t, we start by taking I = (0, ) in (3) and obtain for
t > 0 that

9) mg,x,0u(t N2212 =Y mg,x,juo(t) + 21ﬁmq,x,z\ru(t)
§=0
Here, by Corollary 2.1, for ¢ > 0
(10) maxt0(8) < 271K 1, 0.0 Il + 1K1 (1,000l g, x 0100 ()
so that, by (9) and (10),
(11) mg,x,0u(t) < Svmg x,o0uo(t) + 217%mq,X’Nu(t)
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where Sy = Z 2 3“>J+2——(||K||L,0(01 llog + 1K |2 (1,00) 1Rl gy )7~ Nexct step will be to estimate
7=0

mg,x,nu(T) for 8 < % < I <7<t By(6), (7), Lemma 2.6 and 2,, for N > Ny = maz(No — 1, [%])

12 rimgx ) <20( [ Y Julx () +

/ /% / / ) K (s,0)l[u(0)l1xdo) d3)3 <

<2¢ sup (KN fu(s)|x) +
0<s<2

i s 1
1 1 4 B(IO 1 2 -
12w (g + ) ([T (@)l ds) T+

_Bag-1

1 _1 - % —1 ‘
2P O (Il + )V ([ 57 s au(s)ds)
4

_1 —1 1
#2006 20 e ( [T [t +
2

Q=

_1 _1 3
_'_21—%(76\{(2 %N 42 TG)NLN(/ (1+s)I_Nww(s)qw(s)_qu,X,ou( )qu>
t*
T
2 L+ ot g A 90 L[S .
<2dM+2 a0 QCN(||h||q6 + ||h||,6)N(m)q (/0 ||U(U)||g(d0>q +
t*

R 1 § :
102 642 Ly ([ ||u(0)||§(da)q +
1

(Nyg—1)7
Bap-1
+2'%7 Ol + ) (-2 ) (5) E (;;g; ;<s%mq,x,ou<s>>) ¥
+21_%Cév(2_i + 2_%)NLNLI(K)S_N7( sup (w(s)_qu,Xpu(s)))
(Nyg—2)a *4 G <s<3
Thus, by (11) and (12), for 8 <L < i <7<tand N > Ny
(13) rimg,x,0u(7) < Tqquouo( ) +2' g x vu(r) <
2

1 1
<ot ( [ luo(o)gas)” +2'4har ¢
0

*
1 t

r2(2 0+ (o) o) ([ uolao)” +

* Bgp—1
1 t T 1 1
+21 401( ) “° ( sup (semg xou(s)) + sup (s¢ mq,X,ou(s))) +
t<s<t t<s<t
1 : t*\ 2—Nv
—|—2(7>q 02( ) ( sup (w(s)_quﬁx,Ou(s)))
Nvyq -2 <<t
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and if we take ¢t* > 2(22_%(}’1)&1%0*1 in (13), it follows that, for N > Ny,

(14) Timg x ou(r) <

z 1
<208y ([ luols)lgds)* + 20 +
0

*
1 t

+2(2—5+%01 n (#)@) (/0_ ||u(0)||§(da); +

£*

g [% A Y 7
28 (/0 lus)ds)* +27 sup (stmgx gu(s)) +

o <s<t
+2(#)%ECZ<E>§_N7( sup (w(s)™ M, XOU(S))>
Nvyq —2 4 <<t "
by which
(15) sup (T%mq,X,Ou(T))> <

B <<t

1

i 1
<255 ([ fuots)lfds) + 200 +
0

(a2 w0+ (#);@) +2i) (/O_ ||u(s)||§(ds); +

+4(ﬁ) ‘B, (%) %_M( sup (w(s) " My x0u(s)) )

st
so that, by (8) and (15), for ¢t > t* and N > N;

(16) w(t)™ My,x nu(t) <

1
< BCl( sup (Tamq,X,Ou(T))) +
E<r<t

t*y\ g N
+4Cy(1+5)" ' ( sup () Myxu(r) <
2 t<r<t

t 1

< 21+%BclsN(/2 ||u0(s)||§(ds)q + 22T YBOIM +
0

t*

#8042 o+ (o) o) 428 ) ([ lueitas)

1 : t* 2
+4(ﬁ)qBE01CQ(Z)q N7< sup (fw(s)_qu,X,ou(s)))—F
e b <s<t

t* 1 _
+ACy () M sup (w(r) " Myxou(r))) =
t<r<t
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*

N L 1 o 1
:22+qBClM+03(/ Juo(s) 1§ ds ) ° +C4(/ Ju(s)lI%ds ) +
0 0

t* 2 _
+C5()e N( sup (w(s)” My xou(s)) +
4 G <s<t

+Gu() (s (wl) )

T<r<t
We have now reached our first goal that was to estimate M, x nu(t) (see (4) page 20). It remains
to estimate M, x juo(t). For j = 1,2,...,N — 1, by convexity,Lemma 2.2, Lemma 2.4 and Holder’s
inequality for ¢ > % >4

(17) w(t)_qu, o (t)

— w(t) / /O +/ +/ K;(r,9)lluo ()] xds) ') * <
o 2

_1 t :
<2400 (3 [ (0= Ul o + I8l H (o) xdrar)” +
24 /2 [t 7.\
4274 Gy () 1(; L Ul o+ Wl P b)) xds) )+

t, pr ) ) o
é (/r_l(T —S) /B(||h||Lq6(s,7-) + ||h||Lr6(3=T))] 1h($)||U0(S)||Xd8> dT) <

-

T Cylhll g oy + Bl 00V 007 (5 / ( /0 - 7 h(s)luo(o)lLxds) "dr) * +

22_26' J ~1(2 ' i —Bgo ) w 7
#2715 Ikl (0 + Bl 2 Vo7 (5 (7 = 5) 7 luo(s) | 2ds) " dr )" +

2
t q 1

_2 ~ . /2 T —Br P P
+227 GBIy, (11 + Bl (21 w(®)7H (S (T — )77 lug(s) | ds ) dr ) *
T0(2 ) ro(z ) t t 1

Here, by Holder’s inequality and 2,, for ¢t > % >4

2

(18) w(t) (3 / ( /0% —5) P (s)lluo(s) 1 xds) d7)5 <
<w™ (3 / (/Jd)d ( / heybas) / " Juo(s) [ ds)ar) ¥ <
<2 5l ([ o) ) (2 / ) <

t
g1yl 2
<47 qB||h||Lq6<o,;></0 Juo(s)[%ds)’

Q=

=
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and again by Hoélder’s inequality,

(19) (2 /: (/T_I(T—s)—ﬂq0||u0(s)||ggds)q%d7)3 <

<C L[ e T pbsian e <

t T
2

(VIR

Q=

1

(L e ™ ([ - ormemmangac)an) <

_g-a0 /9 t T—1 i q %
<Ga-1 % (5[ [ -9l dsir)
2 Y2

IA

t T _ qr0—7‘2 _ 321 - ES
ﬂ / (r=5) PR (= 5) P fluo(s)lligds) dr) T <
7 JT—

(
/;(/01 3_5T0ds> ;0 (/TI(T )_ﬂTOHUO( )||q ds)dr)

< (1= pry) aro’ / / 7 — 8) 7P |ug (s )||§(dsd7'>

Q=

(20 CL ([ rarrouoteigeas) bar)* <
6
(3

<

Fubini’s theorem now gives that, for ¢ > 4

T— 1 1
(21) / / (1 — 5)7PP||ug(s )||§(dsd7>q <
2 51 s ¢ .
< (;(ﬁ [luo(s )IIX[ ﬁqodads+/ ||u0(3)||g(/ B0 dods 1+
4 5—3 ,_1 1

2

-1 t—s s 1
q 90 a
+/§ o)l [ o Prdods))" <

1

t 1
_1 _1s4 [2 q 7
< (-7 (278 (5 [ Tu@lkds)” / Juo(s) % ds)°)
1

(22) // = )9 fu(s) | dsdr ) * <
<=yt (@ [ Tuatolgas) + ( G/, o))

and, by (19) - (22) and 3,, follows that

(23 w(t)_1<g [ ([ st atmatoivas) ')’ <

1

»Q\'-‘

Ci((Bao — 1) + (1 = Bro) ) (IAllgy + lll; /(2 ¢ F + 1)
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so that, by (17), (18) and (23), for j =1,2,...,N —1
(24) w(t) " Mg,x juo(t) <
t
<278 ROyl + Wl ([ Juo(s) ) +
+2275Cy((Bao —1) "0 + (1 - ﬁ?‘o)_%)(Hthg + [[hllyy ) (270 F +1)
By (4), (16) and (24) now follows that, for ¢ > ¢t* and N > N;
(25) w(t) ' My xou(t) <

N-—1
_2 ; _1
< 2% w(t) " My xpuo(®) + Y 290 D ()T M, x juo(t) +
j=1
Tw(t) ™ My, x vu(t) <

N-1 : .

2-2 i+2)(1—1)+2+28— 2 L 2 =
<P (P g+ g VB ([ oo as)” +
Jj=1

o

N—-1
+ 320D (27 F 4 1)((Bao — 1) 0 + (1 — Bro) 7o) Cy (IRl + IAll,s)7 +
j=1

¥

t 1 o 1
+21303(/02 Juo(s) 1 §ds)” +21304(/04 lu(s) Il ds) * +

+21_%C5(§)%_N7( sup (w(s) ™ My xou(s)) + sup(w(s)_qu,X,ou(s))) +

%Ssgt* Szt*

+217306(g)%71v7( sup (w(T)iqu,X,OU(T))‘l' SuP(w(T)iqu’X’Ou(T)))

%STSt* TZt*
Now take
1 q 1 q _1 —q
(26) #* > max (16,2(227501)13‘100—1,4(23*qC’5)N7472,2(23 qcﬁ)wal)

By (25), for t > t*, we obtain that

(27) sup(w () ™! My, x,0u(t)) <
>

00 1
<G+ Gl [ lmlfds)" +
t* 1

_1 4 a _
12750 [ u)lds)* + sup (w(r) Myxoulr)
0 <<t
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Here, for & < ¢ < t* and N > Ny, by (4)-(7), (24) and 2,,
4

(28)  w(t )’1Mq,X0“(t) <
N—
L ~ IR
< Z 20+l w(t) IJVIrJ,X,juo(t)-F?1 w(t) ™ Myxnu(t) <
7=0

_2 - _ly 1 _1 S E ,
<9275 4 Z 9(i+4)(1 q)(2 1F+1)((Bgo — 1) % + (1 = Bro) 70)Ci([Ihllg + lAll) +

N-1 *

_2 . ' 2 3
( o1 +2)(1-5)+2+28 qoBC]-(||h||q6+||h||r6)”)</0 [[uo(s )||§(d5)q

J=0

L 1
28010/ qo \a ; 1
1227 (@giﬁy (MM+MM)(OMUﬂ@y
23N'y—|—2 ql ,LI N N . Bq071+lfNry * , %
+ 12 % +2 )NLyCYB(*) w ta  u(s)lds) <

16

¥

5 : v :
< o+ Cuo( [ 7 luo(o)ligds)” + ([ fute)leas)

where Cy; is independent of ¢* if N > 2 21210 ! + ~¢- Finally, by (27) and (28), it follows that

(29) f;lg(w(t)_qu,X,ou(t)) <

o] 1
g&ﬂﬂﬂ/|%@ﬂmy+&4/
0 0

Now recall from Theorem 2.1 that ||ug||x € L4[0,t*] = |lul|x € L4[0,t*] so that, as ||ug||x € Lg[0, 00),
it follows by (29) that

t* 1
Ju(s) % ds)*

sup(w(t) ' M, xou(t)) < C.
>t

/1]
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