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Abstract

We present six articles:

In the first and second article we give the first few results on generalized pattern
avoidance, focusing on patterns of type (1, 2) or (2, 1). There are twelve such
patterns, and they fall into three classes with respect to being equidistributed. We
use 1 23, 1 32, and 2 13 as representatives for these classes. We prove that

|Sn(1 23)| = |Sn(1 32)| = Bn and |Sn(2 13)| = Cn,

where Bn is the nth Bell number and Cn is the nth Catalan number. A complete
solution for the number of permutations avoiding any pair of patterns of type (1, 2)
or (2, 1) is also given.

In the third article we present an ordinary generating function for the number
of permutations containing one occurrence of 1 23 (or 1 32). We also give the
distribution of 2 13 in the form of a continued fraction, and explicit formulas for
the number of permutations containing r occurrences of 2 13 when r = 1, 2, or 3.

In the fourth article the notion of a σ-segmented permutation is introduced: A
permutation π is σ-segmented if every occurrence of σ in π is a contiguous subword
in π. A bicoloured Dyck path is a Dyck path in which each up-step is assigned one
of two colours, say, red and green. We show that 132-segmented permutations of
length n with k occurrences of 132 are in one-to-one correspondence with bicoloured
Dyck paths of length 2n − 4k with k red up-steps. Similarly, we show that 123-
segmented permutations of length n with k occurrences of 123 are in one-to-one
correspondence with bicoloured Dyck paths of length 2n − 4k with k red up-steps,
each of height less than 2. We enumerate the permutations above by enumerating
the corresponding bicoloured Dyck paths.

Continued fractions and patterns are the two main topics of the fifth article. Let
ek(π) be the number of increasing subsequences of length k+1 in π. We prove that
any Stieltjes continued fractions with monic monomial numerators is the generating
function of a family of statistics on the 132-avoiding permutations, each consisting
of a (possibly infinite) linear combination of the eks. Moreover, there is an invertible
linear transformation that translates between linear combinations of eks and the
corresponding continued fractions.

In the sixth article we study a permutation group determined by an ordered set.
Let P be a finite ordered set, and let J(P ) be the distributive lattice of order ideals
of P . The covering relations of J(P ) are naturally associated with elements of P ; in
this way, each element of P defines an involution on the set J(P ). Let Γ(P ) be the
permutation group generated by these involutions. We show that if P is connected
then Γ(P ) is either the alternating or the symmetric group.

Keywords: permutation pattern, generalized pattern, pattern avoidance, occur-
rence of a pattern, segmented permutation, continued fraction, ordered set, permu-
tation group

AMS 2000 Subject classification: 05A05, 05A10, 05A15, 05A18, 06A07, 06A11,
20B99.
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PERMUTATION PATTERNS, CONTINUED FRACTIONS, AND

A GROUP DETERMINED BY AN ORDERED SET

ANDERS CLAESSON

Introduction

Let V = {v1, v2, . . . , vn} with v1 < v2 < · · · < vn be any finite subset of N. A
permutation π of V is a bijective map from V onto itself. We shall often view a
permutation as a word over V . That is, if π(vi) = ai, we write

π = a1a2 · · · an.

Since π is injective, this word has no repeated letters. Conversely, any word with
no repeated letters may be viewed as a permutation of its letters. As an example,
the word 273 defines the permutation

{ 2 7→ 2, 3 7→ 7, 7 7→ 3 }.
The set of all permutations of V is denoted SV ; this is a group under composition

of maps and is called the symmetric group on V . A commonly used n element set
is [n] = {1, 2, . . . , n} and for the set of permutations of [n] we use the abbreviated
notation Sn; in addition, we define S as the disjoint union of the Sn for n ≥ 0.

The reduction of a permutation π of V is the permutation red(π) of [n] ob-
tained from π by replacing the letter vi with the letter i, for each i. As an ex-
ample, red(19452) = 15342. From a functional perspective, if ω is the unique
order-preserving bijection vi 7→ i from V to [n], the following diagram commutes:

V
π

//

ω
²²

V

ω
²²

[n]
red(π)

// [n]

Let k be a nonnegative integer not larger than n. Given π in Sn and σ in Sk, an
occurrence of σ in π is a subword

o = π(i1)π(i2) · · ·π(ik)

of π such that red(o) = σ; in this context σ is called a pattern. If there is no
occurrence of σ in π then we say that π avoids σ, or that π is σ-avoiding. The set
of all σ-avoiding permutations of V is denoted SV (σ).

An interesting and much studied problem is to enumerate the permutations of
[n] that avoid a fixed pattern σ; that is, to determine the sequence

n 7→ |Sn(σ)|.
The starting-point of this research seems to be Knuth’s [20] enumeration of Sn(213)
in 1969. The next step was the enumeration of Sn(123) by Hammersley [18] in 1972;
this result was rediscovered by Knuth [21] in 1973, by Rotem [32] in 1975, and by
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Rogers [31] in 1978. Somewhat surprisingly, the cardinality of Sn(213) and the
cardinality of Sn(123) turned out to be the same:

|Sn(123)| = |Sn(213)| =
1

n + 1

(
2n

n

)

. (1)

This number is called the nth Catalan number and is usually denoted Cn. By a
symmetry argument, explained below, this settles the problem for single patterns
of length 3.

Let π be a permutation of [n]. Define the reverse of π, denoted πr, by

πr(i) = π(n + 1 − i), i ∈ [n],

and define the complement of π, denoted πc, by

πc(i) = n + 1 − π(i), i ∈ [n].

As a rule, we define operations on permutations as operations on Sn. This will,
however, not prevent us from using these operations on permutations of an arbitrary
finite subset V of N. What is then understood is that the definition of the operation,
say, f , has been extended by requiring that the diagram

SV
f

//

red

²²

SV

red

²²

Sn
f

// Sn

commute. For example, (24918)c = 84192 and (24918)r = 81942 (simply read the
word backwards).

The operations reverse and complement together with ( · )−1, the group theo-
retical inverse in SV , are all involutions on Sn. These three operations generate
the dihedral group D4, the symmetry group of a square, acting on permutations;
the orbits under this action are called symmetry classes. It is easy to see that if
Φ is a member of D4 then there are as many occurrences of σ in π as there are
occurrences of Φ(σ) in Φ(π). In particular, |Sn(σ1)| = |Sn(σ2)| whenever σ1 and σ2

are members of the same symmetry class. In general, if |Sn(σ1)| = |Sn(σ2)| for all
n ≥ 0 then σ1 and σ2 are said to be Wilf equivalent ; the equivalence classes under
this relation are called Wilf classes. As we have seen, permutations belonging to
the same symmetry class are Wilf equivalent. The converse is false in general. As
an example, S3 is divided into two symmetry classes, namely

{123, 321} and {132, 213, 231, 312}.

But, by (1), they are subsets of the same Wilf class, S3. One basic question in the
theory of pattern avoiding permutations is to classify all permutations up to Wilf
equivalence. In the year 2002, Stankova and West [37] succeeded in this classifi-
cation for all permutations of length up to 7; their results are shown in the table
below.

n 1 2 3 4 5 6 7
symmetry classes in Sn 1 1 2 7 23 115 694

Wilf classes in Sn 1 1 1 3 17 91 595
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As representatives for the three Wilf classes in S4 we take 1234, 1342, and 1324.
Using the theory of symmetric functions Gessel [17] proved that

∑

n≥0

|Sn(1 2 · · · k)| t2n

(n!)2
= det

(

I|i−j|(2t)
)

1≤i,j≤k
,

where

Ii(2t) =
∑

n≥0

t2n+i

n!(n + i)!

is a modified Bessel function. Using that as a starting point he derived that

|Sn(1234)| = 2

n∑

k=0

(
2k

k

)(
n

k

)2
3k2 + 2k + 1 − n − 2kn

(k + 1)2(k + 2)(n − k + 1)
.

Bóna [5] showed that the generating function for 1342-avoiding permutations is
given by

∑

n≥0

|Sn(1342)|tn =
32t

1 + 12t − 8t2 − (1 − 8t)3/2
.

Enumerating the permutations avoiding 1324 is an open problem.
The Stanley-Wilf conjecture states that, for any pattern σ ∈ Sk, the limit

lim
n→∞

|Sn(σ)|1/n

exists and is finite. This conjecture appears to have been formulated around 1990 by
Richard Stanley and Herbert Wilf, but we are unable to provide an exact reference.
Adam Marcus and Gábor Tardos [26] have very recently announced that they have
a proof of the Stanley-Wilf conjecture. Their proof is not yet published. However,
a manuscript is available on Tardos’s homepage.

A function f : N → C is P-recursive (short for polynomially recursive) if it
satisfies a homogeneous linear recurrence of finite degree with coefficients in C[n].
We say that a power series F in C[[x]] is D-finite (short for differentialbly finite) if
the vectorspace over C(x) spanned by F and all its derivatives F ′, F ′′, . . . is finite-
dimensional. It can be shown that f is P-recursive if and only if its (ordinary or
exponential) generating function is D-finite.

The Noonan-Zeilberger conjecture states that, for any patterns σ1, σ2, . . . , σk

and any nonnegative integers r1, r2, . . . , rk, the seqence

n 7→ card
{

π ∈ Sn : π has exactly mi occurences of σi, for i = 1, 2, . . . , k.
}

is P-recursive. To resolve this conjecture is an open problem.
We also wish to consider permutations which avoid several patterns simultane-

ously. To this end, we define that, for any set of patterns Σ,

Sn(Σ) =
⋂

σ∈Σ

Sn(σ).

Already in 1935 Erdös and Szekeres [27] showed that

|Sn(1 2 · · · k, ` · · · 2 1)| = 0,

for all n ≥ (k − 1)(` − 1) + 1. In 1981 Rotem [33] showed that

|Sn(231, 312)| = 2n−1.
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The first systematic study of pattern avoiding permutations was undertaken by
Simion and Schmidt; in a celebrated paper [35], published in 1985, they gave a
complete solution for permutations avoiding any set of patterns of length 3.

The initial motivation for studying pattern avoiding permutations came from its
connections with container data types in computer science. Knuth [20] pioneered
this work by showing that the stack sortable permutations are exactly the 231-
avoiding permutations. Here are some more results related to sorting: The set of
permutations sortable by a restricted input deque is S(4231, 3241); see [20, 28].
The set of permutations sortable by an unlimited number of pop-stacks in series
is S(2413, 3142); see [3, 2]. The set of permutations sortable by two pop-stacks in
parallel is

S(3214, 2143, 24135, 41352, 14352, 13542, 13524);

see [2]. The set of permutations expressible as the interleaving of two increasing
subsequences is S(321) (see [20]). The set of permutations expressible as the inter-
leaving of an increasing subsequence and a decreasing subsequence is S(3412, 2143);
see [36, 19]. The set of permutations obtainable by a riffle shuffle of a deck of cards
is S(321, 2143, 2413); see [1].

Problems involving pattern avoiding permutations have also appeared in other
areas of mathematics. The permutations whose Stanley symmetric function is a
Schur function are called vexillary ; it is known that these are exactly the 2143-
avoiding permutations (see [24] for an exposition). In [34] the permutations avoiding
both 3142 and 2413 are considered in the context of bootstrap percolation.

By a statistic on Sn we simply mean a function f : Sn → N. Two statistics f
and g are said to equidistributed over a set of permutations A ⊆ Sn if

∑

π∈A

xf(π) =
∑

π∈A

xg(π).

With MacMahon’s extensive study [25], in 1915, permutation statistics became an
established field of mathematics. MacMahon considered four different statistics for
a permutation π: the number of descents, desπ; the number of excedances, exc π;
the number of inversions, invπ; and the major index, majπ. With π = a1a2 · · · an

these statistics are defined as follows: A descent is an i such that ai > ai+1, an
excedance is an i such that ai > i, an inversion is a pair (i, j) such that i < j and
ai > aj , and the major index of π is the sum of descents in π.

MacMahon showed, algebraically, that exc is equidistributed with des and that
inv is equidistributed with maj over Sn, for any n ≥ 0. The polynomials {An(x)}
defined by

An(x) =
∑

π∈Sn

x1+des π

are called Eulerian polynomials, and they satisfy the identity

∑

k≥0

knxk =
An(x)

(1 − x)n+1
.

These polynomials appear in Euler’s work [13]. Any statistic that is equidistributed
with des is called Eulerian. On the other hand, any statistic that is equidistributed
with inv is called Mahonian. Some 160 years ago, Rodriguez [30] showed that

∑

π∈Sn

qinv π = (1 + q)(1 + q + q2) · · · (1 + q + · · · + qn−1).
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Babson and Steingŕımsson [4] showed that all “descent based” Mahonian per-
mutation statistics in the literature can be written as finite linear combinations
of generalized patterns; there where 8 such statistics prior to their paper. They
also found 6 new Mahonian statistics; for 3 of them they gave proofs, and for the
remaining 3 Foata and Zeilberger [16] gave proofs. What are these generalized pat-
terns? The essential property they possess is that they allow the requirement that
two adjacent letters in the pattern must be adjacent in the permutation. We shall
now define what a generalized pattern is.

Denote by [a, b] the interval { i ∈ Z : a ≤ i ≤ b } between a and b in Z. A
generalized pattern, or a Babson-Steingŕımsson pattern, or (briefly) a pattern, is a
pair (σ, S) where σ ∈ Sk and S ⊆ [0, k]. Given π in Sn, an occurrence of (σ, S) in
π is a subword

o = π(i1)π(i2) · · ·π(ik)

of π such that red(o) = σ, and ir+1 = ir + 1 if r ∈ [0, k] \ S, where i0 = 0 and
ik+1 = n + 1. The “classical” patterns defined in the beginning of this introduction
thus correspond to generalized patterns of the form (σ, [0, k]) where σ ∈ Sk. To
each pattern (σ, S) we also associate a function from S to N which, by abuse of
notation, we also denote by (σ, S). To be precise, we let (σ, S)(π) be the number of
occurrences of (σ, S) in π. For instance, the permutation statistic des is identical
to (12, {0, 2}), as a function, and inv is identical to (12, {0, 1, 2}). We say that π
avoids (σ, S) if (σ, S)(π) = 0.

In practice our notation for generalized patterns can be a bit awkward. Therefore
we opt for a different notation, which also is the notation used by Babson and
Steingŕımsson. The pattern (σ, S) is denoted by the word obtained from σ =
σ(1)σ(2) · · ·σ(k) by inserting a dash “ ” between σ(i) and σ(i + 1) whenever i ∈ S,
and subsequently bracket this word according to the following rules: The opening
bracket is “(” if 0 ∈ S and “[” otherwise. The closing bracket is “)” if k ∈ S and “]”
otherwise. Here are some examples:

– The pattern (123, {0, 1, 2, 3}) is denoted (1 2 3), and

(1 2 3)π = card{ aiajak : i < j < k and ai < aj < ak },
in which π = a1a2 · · · an, as usual. In other words, (1 2 3)π counts the number
of increasing subsequence of length 3 in π; this is a classical pattern. For
instance, we have (1 2 3) 15234 = card{123, 124, 134, 234} = 4.

– The pattern (123, {0, 1, 3}) is denoted (1 23), and

(1 23)π = card{ aiajaj+1 : i < j and ai < aj < aj+1 }.
Thus (1 23) 15234 = card{123, 134, 234} = 3.

– The pattern (123, {0, 3}) is denoted (123), and

(123)π = card{ aiai+1ai+2 : ai < ai+1 < ai+2 }.
Thus (123)π counts the number of increasing segments of length 3 in π, and
(123) 15234 = card{234} = 1.

– The pattern (123, ∅) is denoted [123], and

[123]π =

{

1 if π = 123,

0 if π 6= 123.
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Returning to the paper [4] by Babson and Steingŕımsson, we find a slightly more
complex example:

maj = (1 32) + (2 31) + (3 21) + (21).

This identity is easy to see. Recall that maj sums the positions of descents. The
position of a descent is the number of letters preceding the descent, and that is
exactly what the right hand side counts. For instance, (2 31) counts the letters ai

preceding the descent ajaj+1 such that aj < ai < aj+1.
The definition of reverse and the definition of complement easily extend to gen-

eralized patterns: if p = (σ, S) with |σ| = k then

pr = (σr, k − S) and pc = (σc, S),

where k − S = {k − i : i ∈ S}. For instance, (1 32)c = 3 12 and (1 32)r = 23 1.
The definition of inverse does not seem to extend to generalized patterns. Reverse
and complement alone generate the dihedral group D2, the symmetry group of a
rectangle, acting on generalized patterns. The orbits under this action are, again,
called symmetry classes. It is plain that if Φ is a member of D2 then there are as
many occurrences of σ in π as there are occurrences of Φ(σ) in Φ(π). The definition
of Wilf class extends trivially to generalized patterns.

A pattern σ = (σ1 σ2 · · · σk) containing exactly k−1 dashes is said to be of type
(|σ1|, |σ2|, . . . , |σk|). As it stands, this definition only applies to patterns enclosed
in parentheses; this is merely to simplify the presentation. The corresponding
definitions for the variations involving square brackets are almost identical. For
example, the pattern [142 5 367) is of type [3, 1, 3), the pattern [1 2] is of type
[1, 1], and any classical pattern of length k is of type (1, 1, . . . , 1

︸ ︷︷ ︸

k

).

In what follows, every generalized pattern that we consider will be of the kind
that is enclosed in parentheses. Therefore we take the liberty of omitting the
parentheses when it is convenient. So we may write 1 23 instead of (1 23).

Before we proceed with a discussion of the articles in this thesis we would like
to say a few words about continued fractions and generating functions. Recall that
the formal power series

a0 + a1x + a2x
2 + · · ·

is said to be the (ordinary) generating function for the sequence {an}n≥0. We have
already met generating functions in this introduction, and throughout the thesis
we will meet many more. Sometimes a generating function will be presented in the
form of a continued fraction, and this might call for some explanation. Let us look
at an example:

∑

n≥0

1

n + 1

(
2n

n

)

xn =
1

1 − x

1 − x

1 − x

. . .

(2)

Here the right hand side should be understood as the limit of the approximants
of the continued fraction, that is, the limit of the following sequence of rational
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functions:

1 ,
1

1 − x
,

1

1 − x

1 − x

,
1

1 − x

1 − x

1 − x

, . . .

The limit is taken with respect to the norm ‖F‖ = 2−λ(F ), where λ(F ) is the the
degree of the first non-zero term of the power series F . With this norm the ring of
formal power series C[[x]] is complete. For the validity of (2) we may then reason as
follows: The left hand side, let us call it C(x), is known to be the generating function
that counts Dyck paths by semilength. (A Dyck path of length 2n (semilength n)
is a lattice path in N

2 with steps (1, 1) and (1,−1) starting at (0, 0) and ending at
(2n, 0).) On the other hand, the hth approximant of the right hand side, let us call
it C [h](x), is the generating function that counts Dyck paths, by semilength, which
stay below the line y = h. To reach the line y = h we need h steps of the (1, 1)
kind. Therefore λ(C − C [h]) = h, and hence ‖C − C [h]‖ → 0 as h → ∞.

For a general and thorough introduction to continued fractions we refer the reader
to [23]. All the continued fractions that appear in this thesis belong to a class of
continued fractions studied by Flajolet [14].

Let us now discuss the content of each of the articles comprising this thesis.

C1. We give the first few results on generalized pattern avoidance, focusing on
patterns of type (1, 2) or (2, 1). With respect to being equidistributed, these twelve
patterns fall into the three classes:

{ 1 23, 3 21, 12 3, 32 1 },
{ 1 32, 3 12, 21 3, 23 1 },
{ 2 13, 2 31, 13 2, 31 2 }.

Let us agree on using 1 23, 1 32, and 2 13 as representatives for these classes.
Using two very similar bijections we prove that

|Sn(1 23)| = |Sn(1 32)| = Bn,

where Bn is the nth Bell number (the number of partitions of [n]). For the third
class we find that Sn(2 13) = Sn(2 1 3), and thus

|Sn(2 13)| = Cn =
1

n + 1

(
2n

n

)

.

In particular, this shows that even though there are three symmetry classes, there
are only two Wilf classes.

We refine these results by looking at the distribution of left-to-right minima
and the distribution of descents. A left-to-right minimum of π = a1a2 · · · an is an
element ai such that ai < aj for every j < i. Let L(π) denote the number of
left-to-right minima in π. We show that

∑

π∈Sn(1 23)

xL(π) =
∑

π∈Sn(1 32)

xL(π) =
∑

π∈Sn(1 32)

x1+des π =
∑

k≥0

S(n, k)xk.
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where S(n, k) is the number of partitions of [n] into k blocks; these numbers are
called the Stirling numbers of the second kind. We also show that

∑

π∈Sn(2 13)

xL(π) =
∑

k≥0

k

2n − k

(
2n − k

n

)

xk.

The numbers appearing as coefficients in this polynomial are the well known Ballot

numbers.
Some results on avoiding several patterns are also presented:

|Sn(1 23, 12 3)| = B∗
n;

|Sn(1 23, 1 32)| = In;

|Sn(1 23, 13 2)| = Mn.

where B∗
n is the nth Bessel number (the number of non-overlapping partitions of

[n] (see [15])), In is the number of involutions in Sn, and Mn is the nth Motzkin
number (the number of ways of drawing any number of non-intersecting chords
among n points on a circle).

In the course of proving that |Sn(1 23, 12 3)| = B∗
n, we first define a new class

of set partitions—the monotone partitions. A partition is monotone if its non-
singleton blocks can be written in increasing order of their least element and in-
creasing order of their greatest element, simultaneously. We prove that there is a
one-to-one correspondence between {1 23, 12 3}-avoiding permutations and mono-
tone partitions and these are subsequently shown to be in one-to-one correspondence
with non-overlapping partitions.

CM1. In this paper we follow up on the work in Article C1. A complete solution
for the number of permutations avoiding a pair of patterns of type (1, 2) or (2, 1) is
given. We also conjecture the number of permutations avoiding the patterns in any
set of three or more such patterns. For the 66 pairs of patterns we find that there
are 21 symmetry classes and 10 Wilf-classes. More details are given in Table 1.

CM2. In Article C1 and CM1 we were concerned with permutations avoiding one
or more patterns. In this paper we address the more general problem of enumerating
permutations with a prescribed number of occurrences of a given pattern.

As we have seen in Article C1 there are three different classes of patterns of type
(1, 2) or (2, 1) with respect to being equidistributed. Let ur(n), vr(n), and wr(n)
be the number of permutations of [n] containing exactly r occurrences of patterns
1 23, 1 32, and 2 13, respectively. Moreover, let Ur(x), Vr(x), and Wr(x) be the
ordinary generating functions for the numbers ur(n), vr(n), and wr(n), respectively.
We show that

u1(n + 2) = 2u1(n + 1) +
n−1∑

k=0

(
n

k

)
[
u1(k + 1) + Bk+1

]
, u1(0) = 0,

and

v1(n + 1) = v1(n) +

n−1∑

k=1

[(
n

k

)

v1(k) +

(
n − 1

k − 1

)

Bk

]

, v1(0) = 0,
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{p, q} |Sn(p, q)|

1
1 23, 32 1
3 21, 12 3

0

2
1 23, 3 21
32 1, 12 3

2(n − 1)

3

1 23, 2 31
3 21, 2 13
12 3, 31 2
32 1, 13 2

(
n
2

)
+ 1

4a

1 23, 2 13
3 21, 2 31
12 3, 13 2
32 1, 31 2

2n−1

4b

1 23, 23 1
3 21, 21 3
12 3, 3 12
32 1, 1 32

2n−1

4c

1 23, 31 2
3 21, 13 2
12 3, 2 31
32 1, 2 13

2n−1

4d

1 32, 2 13
3 12, 2 31
13 2, 21 3
23 1, 31 2

2n−1

4e

1 32, 2 31
3 12, 2 13
31 2, 21 3
23 1, 13 2

2n−1

4f
1 32, 3 12
23 1, 21 3

2n−1

4g
1 32, 23 1
3 12, 21 3

2n−1

{p, q} |Sn(p, q)|

4h

1 32, 31 2
3 12, 13 2
21 3, 2 31
23 1, 2 13

2n−1

4i
2 13, 2 31
31 2, 13 2

2n−1

4j
2 13, 13 2
2 31, 31 2

2n−1

4k
2 13, 31 2
2 31, 13 2

2n−1

5a

1 23, 13 2
3 21, 31 2
12 3, 2 13
32 1, 2 31

Mn

(Motzkin no.)

5b

1 23, 21 3
3 21, 23 1
12 3, 1 32
32 1, 3 12

Mn

(Motzkin no.)

6
1 32, 21 3
3 12, 23 1

an

7

1 23, 3 12
3 21, 1 32
23 1, 12 3
32 1, 21 3

bn

8

1 23, 1 32
3 21, 3 12
21 3, 12 3
32 1, 23 1

In

(# involutions)

9

1 32, 13 2
3 12, 31 2
21 3, 2 13
23 1, 2 31

Cn

(Catalan no.)

10
1 23, 12 3
3 21, 32 1

B∗
n (Bessel no.)

Table 1. The enumeration of pairs of patterns of type (1, 2) or (2, 1)

where Bn is the nth Bell number. On a slightly higher level of abstraction—the level
on which the generating functions reside—these recursions amount to functional
equations. From these equations we derive that

U1(x) =
∑

n≥1

x

1 − nx

∑

k≥0

kxk+n

(1 − x)(1 − 2x) · · · (1 − (k + n)x)
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and

V1(x) =
∑

n≥1

x

1 − (n − 1)x

∑

k≥0

kxk+n

(1 − x)(1 − 2x) · · · (1 − (k + n)x)
.

Using a result due to Clarke et al. [11] we obtain a continued fraction expansion
of the generating function for the distribution of occurrences the pattern 2 13. To
be precise, we find that

∑

π∈S

p(2 13)πt|π| =
1

1 − [ 1 ]pt

1 − [ 1 ]pt

1 − [ 2 ]pt

1 − [ 2 ]pt

. . .

,

where [n ]p = 1 + p + · · · + pn−1. From this continued fraction we are then able to
derive three closed formulas:

w1(n) =

(
2n

n − 3

)

; w2(n) =
n(n − 3)

2(n + 4)

(
2n

n − 3

)

; w3(n) =
1

3

(
n + 2

2

)(
2n

n − 5

)

.

C2. Elizalde and Noy [12] presented exponential generating functions for the dis-
tribution of the number of segment-occurrences of any pattern of type (3): Let

h(x) =
√

(x − 1)(x + 3). Then

∑

π∈S

x(123)π t|π|

|π|! =
2h(x)e

1

2
(h(x)−x+1)t

h(x) + x + 1 + (h(x) − x − 1)eh(x)t
,

∑

π∈S

x(213)π t|π|

|π|! =
1

1 −
∫ t

0
e(x−1)z2/2dz

.

We say that a permutation π is 132-segmented if (1 3 2)π = (132)π. In other
words, π is 132-segmented if every occurrence of (1 3 2) in π also is an occurrence
(132) in π. For instance, 4365172 contains 3 occurrences of (1 3 2), namely 465,
365, and 172. Of these occurrences, only 365 and 172 are occurrence of (132). Thus
4365172 is not 132-segmented.

In general, π is σ-segmented if (σ, [0, k])(π) = (σ, {0, k})(π), where k = |σ|. Note
that if π is σ-avoiding the π is also σ-segmented. In this article we try to enumerate
the σ-segmented permutations by length and by the the number of occurrences of
σ.

A bicoloured Dyck path is a Dyck path in which each up-step is assigned one
of two colours, say, red and green. In [22] Krattenthaler gave two bijections: one
between 132-avoiding permutations and Dyck paths, and one between 123-avoiding
permutations and Dyck paths. We obtain two new results by extending these
bijections:

– The 132-segmented permutations of length n with exactly k occurrences of 132
are in one-to-one correspondence with bicoloured Dyck paths of length 2n−4k
with exactly k red up-steps.
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– The 123-segmented permutations of length n with exactly k occurrences of 123
are in one-to-one correspondence with bicoloured Dyck paths of length 2n−4k
with exactly k red up-steps, each of height less than 2.

We enumerate the permutations above by enumerating the corresponding bi-
coloured Dyck paths. To be more precise, let Bn,k be the set of bicoloured Dyck
path of length 2n with k red up-steps, and let B[h]

n,k be the subset of Bn,k consisting
of those paths where the height of each red up-step is less than h. It is plain that
|Bn,k| =

(
n
k

)
Cn. We show that

∑

n,k≥0

|B[h]
n,k|qktn =

C(t) − 2xqUh(x)Uh−1(x)

1 + q − qU2
h(x)

, x =
1

2
√

(1 + q)t
,

where C(t) = (1−
√

1 − 4t)/2t is the generating function for the Catalan numbers,
and Un is the nth Chebyshev polynomial of the second kind. We also find formulas

for |B[1]
n,k| and |B[2]

n,k|:

|B[1]
n,k| =

2k + 1

n + k + 1

(
2n

n − k

)

; (ballot number)

|B[2]
n,k| =

∑

i≥0

2k + i + 1

n + k + i + 1

(
k − 1

k − i

)(
2n + i

n − k

)

.

BCS. In this paper we only study classical patterns and the notation for generalized
patterns is not used.

For k ≥ 1, we denote by ek−1 the pattern/statistic 1 2 · · · k. Thus e0(π) is the
length |π| of π, and e1(π) counts non-inversions in π. We also define e−1(π) = 1
for all permutations π.

A theorem of Robertson et al. [29] gives a simple continued fraction that records
the joint distribution of the patterns e1 = 12 and e2 = 123 on permutations avoiding
the pattern 132. We give the following generalization their result:

∑

π∈S(132)

∏

k≥0

x
ek(π)
k =

1

1 − x
(0

0)
0

1 − x
(1

0)
0 x

(1

1)
1

1 − x
(2

0)
0 x

(2

1)
1 x

(2

2)
2

1 − x
(3

0)
0 x

(3

1)
1 x

(3

2)
2 x

(3

3)
3

. . .

in which the (n + 1)st numerator is

n∏

k=0

x
(n

k)
k .

To state the main theorem of this article we need some definitions: A Stieltjes

continued fraction is a continued fraction of the form

C =
1

1 − m1

1 − m2

. . .

,
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where each mi is a monomial in some set of variables. We define a Catalan continued

fraction to be a Stieltjes continued fraction with monic monomial numerators.
Let A be the ring of all infinite matrices with a finite number of non zero entries

in each row, with multiplication defined by (AB)nk =
∑∞

i=0 AniBik. With each A
in A we now associate a family of statistics {〈e, Ak〉}k≥0, defined on S(132), where
e = (e0, e1, . . .), Ak is the kth column of A, and

〈e, Ak〉 =
∑

i

Aikei.

Let q = (q0, q1, . . .) and, for each A in A, let

FA(q) =
∑

π∈S(132)

∏

k≥0

q
〈e,Ak〉(π)
k

and

CA(q) =
1

1 −
∏

qA0k

k

1 −
∏

qA1k

k

. . .

.

Our main theorem states that if A ∈ A then

FA(q) = CBA(q),

where B = [
(

i
j

)
], and conversely

CA(q) = FB−1A(q).

In particular, all Catalan continued fractions are generating functions of statistics
on S(132) consisting of (possibly infinite) linear combinations of eks.

We give several applications of this theorem. As an example, the Catalan con-
tinued fraction

R(q, t) =
1

1 − qt

1 − q3t

1 − q5t

. . .

was studied by Ramanujan. Applying our main theorem we find that R(q, t) is the
generating function for the distribution of the statistic e0 + 2e1 on 132-avoiding
permutations.

CGW. This last article is not at all concerned with patterns in permutations and
is in that respect the odd one out in this thesis.

Let P be a finite ordered set, and let J(P ) be the distributive lattice of order
ideals (also called down–sets) of P . For each p ∈ P , define a permutation σp on
J(P ) as follows: for every S ∈ J(P ),

σp(S) :=







S ∪ {p} if p is minimal in P \ S,
S \ {p} if p is maximal in S,
S otherwise.
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Each of these permutations is an involution. We let Γ(P ) denote the subgroup of
the symmetric group Sym(J(P )) generated by all these involutions. The purpose
of this paper is to determine Γ(P ).

As an example, for

P =

c d

a b

?????

we may number the down–sets {∅, a, b, ab, bd, abc, abd, abcd} of P by 1 through 8,
and then

J(P ) =

8

6

d ÄÄÄÄÄ
7

c
?????

4
c

?????
d

ÄÄÄÄÄ
5

a
?????

2

b ÄÄÄÄÄ
3

a

?????
d

ÄÄÄÄÄ

1
a

?????
b

ÄÄÄÄÄ

and







σa = (1 2)(3 4)(5 7)
σb = (1 3)(2 4)
σc = (4 6)(7 8)
σd = (3 5)(4 7)(6 8)

in which we have labeled the edges of the Hasse diagram of J(P ) to indicate the
action of each σp on J(P ).

Let P and Q be disjoint finite ordered sets. Then it is plain that Γ(P ∪ Q) =
Γ(P ) × Γ(Q). The problem is thus reduced to determining Γ(P ) for connected
ordered sets P . Our main theorem is the following result: If P is a finite connected

ordered set then Γ(P ) is either the alternating group Alt(J(P )) or the symmetric

group Sym(J(P )). We also address the computational complexity of determining
which case occurs. In the example above, Γ(P ) is the symmetric group Sym(J(P )).
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[6] P. Brändén, A. Claesson, and E. Steingŕımsson. Catalan continued fractions and increasing
subsequences in permutations. Discrete Math., 258(1-3):275–287, 2002.

[7] A. Claesson. Generalized pattern avoidance. European J. Combin., 22(7):961–971, 2001.

[8] A. Claesson, C. D. Godsil, and D. G. Wagner. A permutation group determined by an ordered

set. Discrete Math., 269(1-3):273–279, 2003.
[9] A. Claesson and T. Mansour. Enumerating permutations avoiding a pair of Babson-
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GENERALIZED PATTERN AVOIDANCE

ANDERS CLAESSON

Abstract. Recently, Babson and Steingŕımsson have introduced generalized

permutation patterns that allow the requirement that two adjacent letters in

a pattern must be adjacent in the permutation. We will consider pattern

avoidance for such patterns, and give a complete solution for the number of

permutations avoiding any single pattern of length three with exactly one

adjacent pair of letters. For eight of these twelve patterns the answer is given

by the Bell numbers. For the remaining four the answer is given by the Catalan
numbers. We also give some results for the number of permutations avoiding

two different patterns. These results relate the permutations in question to

Motzkin paths, involutions and non-overlapping partitions. Furthermore, we

define a new class of set partitions, called monotone partitions, and show

that these partitions are in one-to-one correspondence with non-overlapping
partitions.

1. Introduction

In the last decade a wealth of articles has been written on the subject of pattern
avoidance, also known as the study of “restricted permutations” and “permutations
with forbidden subsequences”. Classically, a pattern is a permutation σ ∈ Sk, and
a permutation π ∈ Sn avoids σ if there is no subsequence in π whose letters are in
the same relative order as the letters of σ. For example, π ∈ Sn avoids 132 if there
is no 1 ≤ i < j < k ≤ n such that π(i) < π(k) < π(j). In [4] Knuth established that
for all σ ∈ S3, the number of permutations in Sn avoiding σ equals the nth Catalan
number, Cn = 1

1+n

(
2n
n

)
. One may also consider permutations that are required

to avoid several patterns. In [5] Simion and Schmidt gave a complete solution
for permutations avoiding any set of patterns of length three. Even patterns of
length greater than three have been considered. For instance, West showed in [8]
that permutations avoiding both 3142 and 2413 are enumerated by the Schröder
numbers, Sn =

∑n

i=0

(
2n−i

i

)
Cn−i.

In [1] Babson and Steingŕımsson introduced generalized permutation patterns
that allow the requirement that two adjacent letters in a pattern must be adjacent
in the permutation. The motivation for Babson and Steingŕımsson in introducing
these patterns was the study of Mahonian statistics, and they showed that essen-
tially all Mahonian permutation statistics in the literature can be written as linear
combinations of such patterns. An example of a generalized pattern is (1 32).
An occurrence of (1 32) in a permutation π = a1a2 · · · an is a subword aiajaj+1,
(i < j), such that ai < aj+1 < aj . More generally, a pattern p is a word over the
alphabet {1, 2, 3, . . .} where two adjacent letters may or may not be separated by a
dash. The absence of a dash between two adjacent letters in a p indicates that the
corresponding letters in an occurrence of p must be adjacent. Also, the ordering

Date: January 21, 2004.
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of the letters in the occurrence of p must match the ordering of the letters in the
pattern. This definition, as well as any other definition in the introduction, will be
stated rigorously in Section 2. All classical patterns are generalized patterns where
each pair of adjacent letters is separated by a dash. For example, the generalized
pattern equivalent to 132 is (1 3 2).

We extend the notion of pattern avoidance by defining that a permutation avoids
a (generalized) pattern p if it does not contain any occurrences of p. We show
that this is a fruitful extension, by establishing connections to other well known
combinatorial structures, not previously shown to be related to pattern avoidance.
The main results are given below.

P |Sn(P )| Description

1 23 Bn Partitions of [n]
1 32 Bn Partitions of [n]
2 13 Cn Dyck paths of length 2n
1 23, 12 3 B∗

n Non-overlapping partitions of [n]
1 23, 1 32 In Involutions in Sn

1 23, 13 2 Mn Motzkin paths of length n

Here Sn(P ) = {π ∈ Sn : π avoids p for all p ∈ P}, and [n] = {1, 2, . . . , n}. When
proving that |Sn(1 23, 12 3)| = B∗

n (the nth Bessel number), we first prove that
there is a one-to-one correspondence between {1 23, 12 3}-avoiding permutations
and monotone partitions. A partition is monotone if its non-singleton blocks can
be written in increasing order of their least element and increasing order of their
greatest element, simultaneously. This new class of partitions is then shown to be
in one-to-one correspondence with non-overlapping partitions.

2. Preliminaries

By an alphabet X we mean a non-empty set. An element of X is called a letter.
A word over X is a finite sequence of letters from X. We consider also the empty

word, that is, the word with no letters; it is denoted by ε. Let x = x1x2 · · ·xn

be a word over X. We call |x| := n the length of x. A subword of x is a word
v = xi1xi2 · · ·xik

, where 1 ≤ i1 < i2 < · · · < ik ≤ n. A segment of x is a word
v = xixi+1 · · ·xi+k. If X and Y are two linearly ordered alphabets, then two words
x = x1x2 · · ·xn and y = y1y2 · · · yn over X and Y , respectively, are said to be order

equivalent if xi < xj precisely when yi < yj .
Let [n] := {1, 2, . . . , n} (so [0] = ∅). A permutation of [n] is bijection from

[n] to [n]. Let Sn be the set of permutations of [n]. We shall usually think of a
permutation π as the word π(1)π(2) · · · π(n) over the alphabet [n]. In particular,
S0 = {ε}, since there is only one bijection from ∅ to ∅, the empty map.

Let X = [k] ∪ { }. For each word x in X let x̄ be the word obtained from x by
deleting all dashes in x. A word p over X is called a pattern if it contains no two
consecutive dashes and p̄ is a permutation of [k]. By slight abuse of terminology
we refer to the length of a pattern p as the length of p̄.

We say that a subword o of π is a p-subword if by replacing (possibly empty)
segments of π with dashes we can obtain a word q such that q̄ = o, and the ith
letter in q is a dash precisely when the ith letter in p is a dash.

All patterns that we consider will have a dash at the beginning and one at the
end. For convenience, we therefore leave them out. For example, (1 23) is a pattern,
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and the permutation 491273865 contains three occurrences of (1 23), namely 127,
138, and 238. A permutation is said to be p-avoiding if it does not contain any
occurrences of p. Define Sn(p) to be the set of p-avoiding permutations in Sn and,
more generally, Sn(A) =

⋂
p∈A Sn(p).

We may think of a pattern p as a permutation statistic, that is, define p π as
the number of occurrences of p in π, thus regarding p as a function from Sn to N.
For example, (1 23) 491273865 = 3. In particular, π is p-avoiding if and only if
p π = 0. We say that two permutation statistics stat and stat′ are equidistributed

over A ⊆ Sn, if ∑

π∈A

xstat π =
∑

π∈A

xstat′ π.

In particular, this definition applies to patterns.
Let π = a1a2 · · · an ∈ Sn. An i such that ai > ai+1 is called a descent in π.

We denote by desπ the number of descents in π. Observe that des can be defined
as the pattern (ba), that is, desπ = (ba)π. A left-to-right minimum of π is an
element ai such that ai < aj for every j < i. The number of left-to-right minima
is a permutation statistic. Analogously we also define left-to-right maximum, right-

to-left minimum, and right-to-left maximum.
In this paper we will relate permutations avoiding a given set of patterns to

other better known combinatorial structures. Here follows a brief description of
these structures. Two excellent references on combinatorial structures are [7] and
[6].

Set partitions. A partition of a set S is a family, π = {A1, A2, . . . , Ak}, of pairwise
disjoint non-empty subsets of S such that S = ∪iAi. We call Ai a block of π. The
total number of partitions of [n] is called a Bell number and is denoted Bn. For
reference, the first few Bell numbers are

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597.

Let S(n, k) be the number of partitions of [n] into k blocks; these numbers are
called the Stirling numbers of the second kind.

Non-overlapping partitions. Two blocks A and B of a partition π overlap if

min A < min B < max A < max B.

A partition is non-overlapping if no pairs of blocks overlap. Thus

π = {{1, 2, 5, 13}, {3, 8}, {4, 6, 7}, {9}, {10, 11, 12}}

is non-overlapping. A pictorial representation of π is

π =
◦−−−−−◦−−◦

◦−−−−−−−−−−−−−−◦ ◦ ◦−−◦−−◦
◦−−◦−−−−−−−−◦−−−−−−−−−−−−−−−−−−−−−−−◦
1 2 3 4 5 6 7 8 9 10 11 12 13

.

Let B∗
n be the number of non-overlapping partitions of [n]; this number is called

the nth Bessel number [3, p. 423]. The first few Bessel numbers are

1, 1, 2, 5, 14, 43, 143, 509, 1922, 7651, 31965, 139685, 636712.

We denote by S∗(n, k) the number of non-overlapping partitions of [n] into k blocks.
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Involutions. An involution is a permutation which is its own inverse. We denote
by In the number of involutions in Sn. The sequence {In}

∞
0 starts with

1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140152.

Dyck paths. A Dyck path of length 2n is a lattice path from (0, 0) to (2n, 0) with
steps (1, 1) and (1,−1) that never goes below the x-axis. Letting u and d represent
the steps (1, 1) and (1,−1) respectively, we code such a path with a word over
{u, d}. For example, the path

is coded by uuduuddd. A return step in a Dyck path δ is a d such that δ = αuβdγ,
for some Dyck paths α, β, and γ. A useful observation is that every non-empty
Dyck path δ can be uniquely decomposed as δ = uαdβ, where α and β are Dyck
paths. This is the so-called first return decomposition of δ.

The nth Catalan number Cn = 1
n+1

(
2n
n

)
counts the number of Dyck paths of

length 2n. The sequence of Catalan numbers starts with

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012.

Motzkin paths. A Motzkin path of length n is a lattice path from (0, 0) to (n, 0)
with steps (1, 0), (1, 1), and (1,−1) that never goes below the x-axis. Letting `,
u, and d represent the steps (1, 0), (1, 1), and (1,−1) respectively, we code such a
path with a word over {`, u, d}. For example, the path

is coded by u``ud`d`. If δ is a non-empty Motzkin path, then δ can be decomposed
as δ = `γ or δ = uαdβ, where α, β and γ are Motzkin paths.

The nth Motzkin number Mn is the number of Motzkin paths of length n. The
first few of the Motzkin numbers are

1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511.

3. Three classes of patterns

Let π = a1a2 · · · an ∈ Sn. Define the reverse of π as πr := an · · · a2a1, and define
the complement of π by πc(i) = n + 1 − π(i), where i ∈ [n].

Proposition 1. With respect to being equidistributed, the twelve pattern statistics

of length three with one dash fall into the following three classes.

(i) 1 23, 3 21, 12 3, 32 1.
(ii) 1 32, 3 12, 21 3, 23 1.
(iii) 2 13, 2 31, 13 2, 31 2.

Proof. The bijections π 7→ πr, π 7→ πc, and π 7→ (πr)c give the equidistribution
part of the result. Calculations show that these three distributions differ pairwise
on S4. ¤
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4. Permutations avoiding a pattern of class one or two

Proposition 2. Partitions of [n] are in one-to-one correspondence with (1 23)-
avoiding permutations in Sn. Hence |Sn(1 23)| = Bn.

First proof. Recall that the Bell numbers satisfy B0 = 1, and

Bn+1 =

n∑

k=0

(
n

k

)
Bk.

We show that |Sn(1 23)| satisfy the same recursion. Clearly, S0(1 23) = {ε}. For
n > 0, let M = {2, 3, . . . , n + 1}, and let S be a k element subset of M . For
each (1 23)-avoiding permutation σ of S we construct a unique (1 23)-avoiding
permutation π of [n + 1]. Let τ be the word obtained by writing the elements of
M \ S in decreasing order. Define π := σ1τ .

Conversely, if π = σ1τ is a given (1 23)-avoiding permutation of [n + 1], where
|σ| = k, then the letters of τ are in decreasing order, and σ is an (1 23)-avoiding
permutation of the k element set {2, 3, . . . , n + 1} \ {i : i is a letter in τ}. ¤

Second proof. Given a partition π of [n], we introduce a standard representation of
π by requiring that:

(a) Each block is written with its least element first, and the rest of the elements
of that block are written in decreasing order.

(b) The blocks are written in decreasing order of their least element, and with
dashes separating the blocks.

Define π̂ to be the permutation we obtain from π by writing it in standard form
and erasing the dashes. We now argue that π̂ := a1a2 · · · an avoids (1 23). If
ai < ai+1, then ai and ai+1 are the first and the second element of some block. By
the construction of π̂, ai is a left-to-right minimum, hence there is no j ∈ [i − 1]
such that aj < ai.

Conversely, π can be recovered uniquely from π̂ by inserting a dash in π̂ preceding
each left-to-right minimum, apart from the first letter in π̂. Indeed, it easy to see
that the partition, π, in this way obtained is written in standard form. Thus π 7→ π̂

gives the desired bijection. ¤

Example. As an illustration of the map defined in the above proof, let

π = {{1, 3, 5}, {2, 6, 9}, {4, 7}, {8}}.

Its standard form is 8 47 296 153. Thus π̂ = 847296153.

Proposition 3. Let L(π) be the number of left-to-right minima of π. Then
∑

π∈Sn(1 23)

xL(π) =
∑

k≥0

S(n, k)xk.

Proof. This result follows readily from the second proof of Proposition 2. We here
give a different proof, which is based on the fact that the Stirling numbers of the
second kind satisfy

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k).

Let T (n, k) be the number of permutations in Sn(1 23) with k left-to-right min-
ima. We show that the T (n, k) satisfy the same recursion as the S(n, k).
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Let π be an (1 23)-avoiding permutation of [n− 1]. To insert n in π, preserving
(1 23)-avoidance, we can put n in front of π or we can insert n immediately after
each left-to-right minimum. Putting n in front of π creates a new left-to-right
minimum, while inserting n immediately after a left-to-right minimum does not. ¤

Proposition 4. Partitions of [n] are in one-to-one correspondence with (1 32)-
avoiding permutations in Sn. Hence |Sn(1 32)| = Bn.

Proof. Let π be a partition of [n]. We introduce a standard representation of π by
requiring that:

(a) The elements of a block are written in increasing order.
(b) The blocks are written in decreasing order of their least element, and with

dashes separating the blocks.

(Note that this standard representation is different from the one given in the second
proof of Proposition 2.) Define π̂ to be the permutation we obtain from π by writing
it in standard form and erasing the dashes. It easy to see that π̂ avoids (1 32).
Conversely, π can be recovered uniquely from π̂ by inserting a dash in between each
descent in π̂. ¤

Example. As an illustration of the map defined in the above proof, let

π = {{1, 3, 5}, {2, 6, 9}, {4, 7}, {8}}.

Its standard form is 8 47 269 135. Thus π̂ = 847269135.

Proposition 5.
∑

π∈Sn(1 32)

xL(π) =
∑

π∈Sn(1 32)

x1+des π =
∑

k≥0

S(n, k)xk.

Proof. From the proof of Proposition 4 we see that a left-to-right minimum in π

corresponds to a least element in a block of π̂. Moreover, π has k+1 blocks precisely
when π̂ has k descents. ¤

Proposition 6. Involutions in Sn are in one-to-one correspondence with permu-

tations in Sn that avoid (1 23) and (1 32). Hence

|Sn(1 23, 1 32)| = In.

Proof. We give a combinatorial proof using a bijection that is essentially identical
to the one given in the second proof of Proposition 2.

Let π ∈ Sn be an involution. Recall that π is an involution if and only if each
cycle of π is of length one or two. We now introduce a standard form for writing π

in cycle notation by requiring that:

(a) Each cycle is written with its least element first.
(b) The cycles are written in decreasing order of their least element.

Define π̂ to be the permutation obtained from π by writing it in standard form and
erasing the parentheses separating the cycles.

Observe that π̂ avoids (1 23): Assume that ai < ai+1, that is (ai ai+1) is a cycle
in π, then ai is a left-to-right minimum in π. This is guaranteed by the construction
of π̂. Thus there is no j < i such that aj < ai.

The permutation π̂ also avoids (1 32): Assume that ai > ai+1, then ai+1 must
be the smallest element of some cycle. Whence ai+1 is a left-to-right minimum in
π̂.
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Conversely, if π̂ := a1 . . . an is an {1 23, 1 32}-avoiding permutation then the
involution π is given by: (ai ai+1) is a cycle in π if and only if ai < ai+1. ¤

Example. The involution π = 826543719 written in standard form is

(9)(7)(4 5)(3 6)(2)(1 8),

and hence π̂ = 974536218.

Proposition 7. The number of permutations in Sn(1 23, 1 32) with n − k − 1
descents equals the number of involutions in Sn with n − 2k fixed points.

Proof. Under the bijection π 7→ π̂ in the proof of Proposition 6, a cycle of length
two in π corresponds to an occurrence of (12) in π̂. Hence, if π has n − 2k fixed
points, then π̂ has n − k − 1 descents. ¤

Corollary 8.

∑

π∈Sn(1 23,1 32)

x1+des π =

n∑

k=0

(
n

k

)(
n − k

k

)
k!

2k
xn−k.

Proof. Let Ik
n denote the number of involutions in Sn with k fixed points. Then

Proposition 7 is equivalently stated as
∑

π∈Sn(1 23,1 32)

x1+des π =
∑

k≥0

In−2k
n xn−k. (1)

The result now follows from the well-known and easily to derived formula

Ik
n =

(
n

k

)(
n − k

r

)
r!

2r
, where r =

n − k

2
,

for n − k even, with Ik
n = 0 for n − k odd. ¤

Definition 9. Let π be an arbitrary partition whose non-singleton blocks A1, A2,
. . . , Ak are ordered so that for all i ∈ [k − 1], min Ai > min Ai+1. If max Ai >

max Ai+1 for all i ∈ [k − 1], then we call π a monotone partition. The set of
monotone partitions of [n] is denoted by Mn.

Example. The partition

π =

◦ ◦−−◦−−−−−◦
◦−−−−−◦−−−−−−−−−−−−−−−−−◦

◦−−−−−−−−−−−−−−◦
◦−−◦−−−−−−−−◦−−−−−◦
1 2 3 4 5 6 7 8 9 10 11 12 13

is monotone.

Proposition 10. Monotone partitions of [n] are in one-to-one correspondence with

permutations in Sn that avoid (1 23) and (12 3). Hence

|Sn(1 23, 12 3)| = |Mn|.

Proof. Given π in Mn, let A1 A2 · · · Ak be the result of writing π in the standard
form given in the second proof of Proposition 2, and let π̂ = A1A2 · · ·Ak. By the
construction of π̂ the first letter in each Ai is a left-to-right minimum. Furthermore,
since π is monotone the second letter in each non-singleton Ai is a right-to-left
maximum. Therefore, if xy is an occurrence of (ab) in π̂, then x is left-to-right
minimum and y is a right-to-left maximum. Thus π̂ avoids both (1 23) and (12 3).
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Conversely, given π̂ in Sn(1 23, 12 3), let A1 A2 · · · Ak be the result of insert-
ing a dash in π̂ preceding each left-to-right minimum, apart from the first letter
in π̂. Since π̂ is (12 3)-avoiding, the second letter in each non-singleton Ai is a
right-to-left maximum. The second letter in Ai is the maximal element of Ai when
Ai is viewed as a set. Thus π = {A1, A2, . . . , Ak} is monotone. ¤

We now show that there is a one-to-one correspondence between monotone par-
titions and non-overlapping partitions. The proof we give is strongly influenced
by the paper [3], in which Flajolet and Schot showed that the ordinary generating
function of the Bessel numbers admits a nice continued fraction expansion

∑

n≥0

B∗
nxn =

1

1 − 1 · x −
x2

1 − 2 · x −
x2

1 − 3 · x −
x2

. . .

,

and using that as a starting point they derived the asymptotic formula

B∗
n ∼

∑

k≥0

kn+2

(k!)2
.

Proposition 11. Monotone partitions of [n] are in one-to-one correspondence with

non-overlapping partitions of [n]. Hence |Mn| = B∗
n.

Proof. Let π be a non-overlapping partition of [n]. From π we will create a new
partition by successively inserting 1, 2, . . . , n, in this order, into this new partition.
During this process a block is labelled as either open or closed. More formally, in
each step k = 1, 2, . . . , n in this process we will have a partition σ of [k] together
with a function from σ to the set of labels {open, closed}. Before we start we also
need a labelling of the blocks of π. Actually we need n such labellings, one for
each k ∈ [n]: At step k a block B of π is labelled open if max B > k and closed
otherwise. For ease of language, we say that a block is open if it is labelled open,
and closed if it is labelled closed.

(a) If k is the minimal element of a non-singleton block of π, then create a new
block {k} and label it open.

(b) If k is the maximal element of a non-singleton block of π, then insert k into
the open block with the smallest minimal element, and label it closed.

(c) If k belongs to a non-singleton block B of π and is not the minimal or the
maximal element of B, and B has the ith largest minimal element of the
open blocks of π, then insert k into the open block with the ith largest
minimal element.

(d) If {k} is a block of π then create a new block {k} and label it closed.

Define Φ(π) as the partition obtained from π by applying the above process.
Observe that Φ(π) is monotone. Indeed, the two crucial observations are (i) in (b)
we label the open block with the smallest minimum closed, and (ii) a block labelled
closed has received all its elements.

Conversely, we give a map Ψ that to each monotone partition π of [n] gives
a unique non-overlapping partition Ψ(π) of [n]. Define Ψ the same way as Φ is
defined, except for case (c), where we instead of inserting k into the block labelled
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open with the smallest minimal element, insert k into the block labelled open with
the largest minimal element. It is easy to see that Φ and Ψ are each others inverses
and hence they are bijections. ¤

Corollary 12. The non-overlapping partitions of [n] are in one-to-one correspon-

dence with permutations in Sn that avoid (1 23) and (12 3). Hence

|Sn(1 23, 12 3)| = B∗
n.

Proof. Follows immediately from Proposition 10 together with Proposition 11. ¤

Example. By the proof of Proposition 11, the non-overlapping partition

π =
◦−−−−−◦−−◦

◦−−−−−−−−−−−−−−◦ ◦ ◦−−◦−−◦
◦−−◦−−−−−−−−◦−−−−−−−−−−−−−−−−−−−−−−−◦
1 2 3 4 5 6 7 8 9 10 11 12 13

corresponds to the monotone partition

Φ(π) =

◦ ◦−−◦−−−−−◦
◦−−−−−◦−−−−−−−−−−−−−−−−−◦

◦−−−−−−−−−−−−−−◦
◦−−◦−−−−−−−−◦−−−−−◦
1 2 3 4 5 6 7 8 9 10 11 12 13

that according to the proof of Proposition 10 corresponds to the {1 23, 12 3}-
avoiding permutation

Φ̂(π) = 10 13 11 9 4 12 6 3 8 1 7 5 2.

Proposition 13. Let L(π) be the number of left-to-right minima of π. Then
∑

π∈Sn(1 23,12 3)

xL(π) =
∑

k≥0

S∗(n, k)xk.

Proof. Under the bijection π 7→ π̂ in the proof of Proposition 10, the number of
blocks in π determines the number of left-to-right minima of π̂, and vice versa. The
number of blocks is not changed by the bijection Ψ in the proof of Proposition 11.

¤

5. Permutations avoiding a pattern of class three

In [4] Knuth observed that there is a one-to-one correspondence between (2 1 3)-
avoiding permutations and Dyck paths. For completeness and future reference we
give this result as a lemma, and prove it using a bijection which rests on the first
return decomposition of Dyck paths. First we need a definition. For each word
x = x1x2 · · ·xn without repeated letters, we define red(x)—the reduction of x—as
the permutation in Sn which is order equivalent to x. For example, red(265) = 132.

Lemma 1. |Sn(2 1 3)| = Cn.

Proof. Let π = a1a2 · · · an be a permutation of [n] such that ak = 1. Then π is
(2 1 3)-avoiding if and only if π = σ1τ , where σ := a1 · · · ak−1 is a (2 1 3)-avoiding
permutation of {n, n− 1, . . . , n− k + 1}, and τ := ak+1 · · · an is a (2 1 3)-avoiding
permutation of {2, 3, . . . , k}.

We define recursively a mapping Φ from Sn(2 1 3) onto the set of Dyck paths of
length 2n. If π is the empty word, then so is the Dyck path determined by π, that
is, Φ(ε) = ε. If π 6= ε, then we can use the factorisation π = σ1τ from above, and
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define Φ(π) = u (Φ◦ red)(σ) d (Φ◦ red)(τ). It is easy to see that Φ may be inverted,
and hence is a bijection. ¤

Lemma 2. A permutation avoids (2 13) if and only if it avoids (2 1 3).

Proof. The sufficiency part of the proposition is trivial. The necessity part is not
difficult either. Assume that π contains an occurrence of (2 1 3). Then there is a
segment bm1 · · ·mr of π, where, for some j < r, mj < b and mr > b. Now choose
the largest i such that mi < b, then mi+1 > b. ¤

Proposition 14. Dyck paths of length 2n are in one-to-one correspondence with

(2 13)-avoiding permutations in Sn. Hence

|Sn(2 13)| =
1

n + 1

(
2n

n

)
.

Proof. Follows immediately from Lemmas 1 and 2. ¤

Proposition 15. Let L(π) be the number of left-to-right minima of π. Then

∑

π∈Sn(2 13)

xL(π) =
∑

k≥0

k

2n − k

(
2n − k

n

)
xk.

Proof. Let R(δ) denote the number of return steps in the Dyck path δ. It is well
known (see [2]) that the distribution of R over all Dyck paths of length 2n is the
distribution we claim that L has over Sn(2 13). .

Let γ be a Dyck path of length 2n, and let γ = uαdβ be its first return de-
composition. Then R(γ) = 1 + R(β). Let π ∈ Sn(2 13), and let π = σ1τ be the
decomposition given in the proof of Lemma 1. Then L(π) = 1 + L(σ). The result
now follows by induction. ¤

In addition, it is easy to deduce that left-to-right minima, left-to-right maxima,
right-to-left minima, and right-to-left maxima all share the same distribution over
Sn(2 13).

Proposition 16. Motzkin paths of length n are in one-to-one correspondence with

permutations in Sn that avoid (1 23) and (13 2). Hence

|Sn(1 23, 13 2)| = Mn.

Proof. We mimic the proof of Lemma 1. Let π ∈ Sn(1 23, 13 2). Since π avoids
(13 2) it also avoids (1 3 2) by Lemma 2 via π 7→ (πc)r. Thus we may write
π = σnτ , where π(k) = n, σ is an {1 23, 13 2}-avoiding permutation of {n− 1, n−
2, . . . , n− k +1}, and τ is an {1 23, 13 2}-avoiding permutation of [n− k]. If σ 6= ε

then σ = σ′r where r = n− k + 1, or else an occurrence of (1 23) would be formed
with n as the ‘3’ in (1 23). Define a map Φ from Sn(1 23, 13 2) to the set of
Motzkin paths by Φ(ε) = ε and

Φ(π) =

{
` (Φ ◦ red)(σ) if π = nσ,

u (Φ ◦ red)(σ) dΦ(τ) if π = σrnτ and r = n − k + 1.

It is routine to find the inverse of Φ. ¤
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Example. Let us find the Motzkin path associated with the {1 23, 13 2}-avoiding
permutation 76453281.

Φ(76453281) = uΦ(54231)dΦ(1)

= u`Φ(4231)d`

= u``Φ(231)d`

= u``udΦ(1)d`

= u``ud`d`
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ENUMERATING PERMUTATIONS AVOIDING A PAIR OF

BABSON-STEINGRı́MSSON PATTERNS

ANDERS CLAESSON AND TOUFIK MANSOUR

Abstract. Babson and Steingŕımsson introduced generalized permutation

patterns that allow the requirement that two adjacent letters in a pattern

must be adjacent in the permutation. Subsequently, Claesson presented a

complete solution for the number of permutations avoiding any single pattern

of type (1, 2) or (2, 1). For eight of these twelve patterns the answer is given by

the Bell numbers. For the remaining four the answer is given by the Catalan

numbers.

In the present paper we give a complete solution for the number of permu-

tations avoiding a pair of patterns of type (1, 2) or (2, 1). We also conjecture

the number of permutations avoiding the patterns in any set of three or more

such patterns.

1. Introduction

Classically, a pattern is a permutation σ ∈ Sk, and a permutation π ∈ Sn avoids
σ if there is no subword of π that is order equivalent to σ. For example, π ∈ Sn

avoids 132 if there is no 1 ≤ i < j < k ≤ n such that π(i) < π(k) < π(j). We
denote by Sn(σ) the set permutations in Sn that avoids σ.

In [6, Ch. 2.2.1] and [7, Ch. 5.1.4] Knuth shows that for any σ ∈ S3, we have
|Sn(σ)| = Cn = 1

n+1

(
2n
n

)
, the nth Catalan number. Later Simion and Schmidt [8]

found the cardinality of Sn(P ) for all P ⊆ S3.
In [1] Babson and Steingŕımsson introduced generalized permutation patterns

that allow the requirement that two adjacent letters in a pattern must be adjacent
in the permutation. The motivation for Babson and Steingŕımsson in introducing
these patterns was the study of Mahonian statistics. Two examples of such patterns
are 1 32 and 13 2 (1 32 and 13 2 are of type (1, 2) and (2, 1) respectively). A
permutation π = a1a2 · · · an avoids 1 32 if there are no subwords aiajaj+1 of π such
that ai < aj+1 < aj . Similarly π avoids 13 2 if there are no subwords aiai+1aj of
π such that ai < aj < ai+1.

Claesson [2] presented a complete solution for the number of permutations avoid-
ing any single pattern of type (1, 2) or (2, 1) as follows.

Proposition 1 (Claesson [2]). Let n ∈ N. We have

|Sn(p)| =

{

Bn if p ∈ {1 23, 3 21, 12 3, 32 1, 1 32, 3 12, 21 3, 23 1},

Cn if p ∈ {2 13, 2 31, 13 2, 31 2},

where Bn and Cn are the nth Bell (# ways of placing n labelled balls into n indis-
tinguishable boxes, see [9, A000110]) and Catalan numbers, respectively.

Date: January 21, 2004.

Key words and phrases. permutation, pattern avoidance.
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In addition, Claesson gave some results for the number of permutations avoiding
a pair of patterns.

Proposition 2 (Claesson [2]). Let n ∈ N. We have

|Sn(1 23, 12 3)| = B∗
n, |Sn(1 23, 1 32)| = In, and |Sn(1 23, 13 2)| = Mn,

where B∗
n is the nth Bessel number (# non-overlapping partitions of [n] (see [4])),

In is the number of involutions in Sn, and Mn is the nth Motzkin number (# ways
of drawing any number of nonintersecting chords among n points on a circle, see [9,
A001006]).

This paper is organized as follows. In Section 2 we define the notion of a pattern
and some other useful concepts. For a proof of Proposition 1 we could refer the
reader to [2]. We will however prove Proposition 1 in Section 3 in the context
of binary trees. The idea being that this will be a useful aid to understanding
of the proofs of Section 4. In Section 4 we give a solution for the number of
permutations avoiding any given pair of patterns of type (1, 2) or (2, 1). These
results are summarized in the following table.

# pairs 2 2 4 34 8 2 4 4 4 2

|Sn(p, q)| 0 2(n − 1)
(
n
2

)
+ 1 2n−1 Mn an bn In Cn B∗

n

Here

∑

n≥0

anxn =
1

1 − x − x2
∑

n≥0

B∗
nxn

and

bn+2 = bn+1 +

n∑

k=0

(
n

k

)

bk.

Finally, in Section 5 we conjecture the sequences {#Sn(P )}n for sets P of three
or more patterns of type (1, 2) or (2, 1).

2. Preliminaries

By an alphabet X we mean a non-empty set. An element of X is called a letter.
A word over X is a finite sequence of letters from X. We consider also the empty
word, that is, the word with no letters; it is denoted by ε. Let w = x1x2 · · ·xn

be a word over X. We call |w| := n the length of w. A subword of w is a word
v = xi1xi2 · · ·xik

, where 1 ≤ i1 < i2 < · · · < ik ≤ n.
Let [n] := {1, 2, . . . , n} (so [0] = ∅). A permutation of [n] is bijection from [n] to

[n]. Let Sn be the set of permutations of [n], and S = ∪n≥0Sn. We shall usually
think of a permutation π as the word π(1)π(2) · · · π(n) over the alphabet [n].

Define the reverse of π by πr(i) = π(n + 1− i), and define the complement of π

by πc(i) = n + 1 − π(i), where i ∈ [n].
For each word w = x1x2 · · ·xn over the alphabet {1, 2, 3, 4, . . .} without repeated

letters, we define the reduction of w, which we denote red(w), by

red(w) = a1a2 · · · an , where ai = |{j ∈ [n] : xj ≤ xi}|.
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Equivalently, red(w) is the permutation in Sn which is order equivalent to w. For
example, red(2659) = 1324.

We may regard a pattern as a function from Sn to the set N of natural numbers.
The patterns of main interest to us are defined as follows. Let xyz ∈ S3 and
π = a1a2 · · · an ∈ Sn, then

(x yz)π = |{aiajaj+1 : red(aiajaj+1) = xyz, 1 ≤ i < j < n}|

and similarly (xy z)π = (z yx)πr. For instance

(1 23) 491273865 = |{127, 138, 238}| = 3.

A pattern p = p1 p2 · · · pk containing exactly k − 1 dashes is said to be of type
(|p1|, |p2|, . . . , |pk|). For example, the pattern 142 5 367 is of type (3, 1, 3), and any
classical pattern of length k is of type (1, 1, . . . , 1

︸ ︷︷ ︸

k

).

We say that a permutation π avoids a pattern p if p π = 0. The set of all
permutations in Sn that avoids p is denoted Sn(p) and, more generally, Sn(P ) =
⋂

p∈P Sn(p) and S(P ) =
⋃

n≥0 Sn(P ).
We extend the definition of reverse and complement to patterns the following

way. Let us call π the underlying permutation of the pattern p if π is obtained from
p by deleting all the dashes in p. If p is a pattern with underlying permutation π,
then pc is the pattern with underlying permutation πc and with dashes at precisely
the same positions as there are dashes in p. We define pr as the pattern we get
from regarding p as a word and reading it backwards. For example, (1 23)c = 3 21
and (1 23)r = 32 1. Observe that

σ ∈ Sn(p) ⇐⇒ σr ∈ Sn(pr)

σ ∈ Sn(p) ⇐⇒ σc ∈ Sn(pc).

These observations of course generalize to Sn(P ) for any set of patterns P .
The operations reverse and complement generates the dihedral group D2 (the

symmetry group of a rectangle). The orbits of D2 in the set of patterns of type
(1, 2) or (2, 1) will be called symmetry classes. For instance, the symmetry class of
1 23 is

{1 23, 3 21, 12 3, 32 1}.

We also talk about symmetry classes of sets of patterns (defined in the obvious
way). For example, the symmetry class of {1 23, 3 21} is

{{1 23, 3 21}, {32 1, 12 3}}.

A set of patterns P such that if p, p′ ∈ P then, for each n, |Sn(p)| = |Sn(p′)| is
called a Wilf-class. For instance, by Proposition 1, the Wilf-class of 1 23 is

{1 23, 3 21, 12 3, 32 1, 1 32, 3 12, 21 3, 23 1}.

We also talk about Wilf-classes of sets of patterns (defined in the obvious way). It
is clear that symmetry classes are Wilf-classes, but as we have seen the converse
does not hold in general.

In what follows we will frequently use the well known bijection between increasing
binary trees and permutations (e.g. see [10, p. 24]). Let π be any word on the
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alphabet {1, 2, 3, 4, . . .} with no repeated letters. If π 6= ε then we can factor π as

π = σ 0̂ τ , where 0̂ is the minimal element of π. Define T (ε) = • (a leaf) and

T (π) =
0̂

ss
ss KK

KK

T (σ) T (τ)

In addition, we define U(t) as the unlabelled counterpart of the labelled tree t. For
instance

T (316452) =

1
££ <<

3 2
££

4
££ <<

6 5

U ◦ T (316452) =

©

|| BB

© ©

||
©

|| BB

© ©

Note that, for sake of simplicity, the leafs are not displayed.

3. Single patterns

There are 3 symmetry classes and 2 Wilf-classes of single patterns. The details
are as follows.

Proposition 3 (Claesson [2]). Let n ∈ N. We have

|S(p)| =







Bn if p ∈ {1 23, 3 21, 12 3, 32 1},

Bn if p ∈ {1 32, 3 12, 21 3, 23 1},

Cn if p ∈ {2 13, 2 31, 13 2, 31 2},

where Bn and Cn are the nth Bell and Catalan numbers, respectively.

Proof of the first case. Note that

σ1τ ∈ S(1 23) ⇐⇒







red(σ) ∈ S(1 23)

red(τ) ∈ S(12)

σ1τ ∈ S

where of course S(12) = {ε, 1, 21, 321, 4321, . . .}. This enables us to give a bijection
Φ between Sn(1 23) and the set of partitions of [n], by induction. Let Φ(ε) be the
empty partition. Let the first block of Φ(σ1τ) be the set of letters of 1τ , and let
the rest of the blocks of Φ(σ1τ) be as in Φ(σ). ¤

The most transparent way to see the above correspondence is perhaps to view
the permutation as an increasing binary tree. For instance, the tree

T (649752183) =

1
££ <<

2
££

3
££

4
££ << 8

6 5
££

7
££

9

corresponds to the partition {{1, 3, 8}, {2}, {4, 5, 7, 9}, {6}}.
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Proof of the second case. This case is analogous to the previous one. We have

σ1τ ∈ S(1 32) ⇐⇒







red(σ) ∈ S(1 32)

red(τ) ∈ S(21)

σ1τ ∈ S

We give a bijection Φ between Sn(1 23) and the set of partitions of [n], by induction.
Let Φ(ε) be the empty partition. Let the first block of Φ(σ1τ) be the set of letters
of 1τ , and let the rest of the blocks of Φ(σ1τ) be as in Φ(σ). ¤

As an example, the tree

T (645792138) =

1
££ <<

2
££

3 <<

4
££ << 8

6 5 <<

7 <<

9

corresponds to the partition {{1, 3, 8}, {2}, {4, 5, 7, 9}, {6}}.
Now that we have seen the structure of S(1 23) and S(1 32), it is trivial to give

a bijection between the two sets. Indeed, if Θ : S(1 23) → S(1 32) is given by
Θ(ε) = ε and Θ(σ1τ) = Θ(σ) 1 τ r then Θ is such a bijection. Actually Θ is its own
inverse.

Proof of the third case. It is plain that a permutation avoids 2 13 if and only if it
avoids 2 1 3 (see [2]). Note that

σ1τ ∈ S(2 1 3) ⇐⇒







red(σ), red(τ) ∈ S(2 1 3)

τ > σ

σ1τ ∈ S

where τ > σ means that any letter of τ is greater than any letter of σ. Hence we get a
unique labelling of the binary tree corresponding to σ1τ , that is, if π1, π2 ∈ S(2 1 3)
and U ◦T (π1) = U ◦T (π2) then π1 = π2. It is well known that there are exactly Cn

(unlabelled) binary trees with n (internal) nodes. The validity of the last statement
can be easily deduced from the following simple bijection between Dyck words and
binary trees. Fixing notation, we let the set of Dyck words be the smallest set of
words over {u, d} that contains the empty word and is closed under (α, β) 7→ uαdβ.
Now the promised bijection is given by Ψ(•) = ε and

Ψ

(
©

}} AA

L R

)

= uΨ(L)dΨ(R).

¤

4. Pairs of patterns

There are
(
12
2

)
= 66 pairs of patterns altogether. It turns out that there are 21

symmetry classes and 10 Wilf-classes. The details are given in Table 1, and the
numbering of the symmetry classes in the titles of the subsections below is taken
from that table.
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{p, q} |Sn(p, q)|

1
1 23, 32 1
3 21, 12 3

0

2
1 23, 3 21
32 1, 12 3

2(n − 1)

3

1 23, 2 31
3 21, 2 13
12 3, 31 2
32 1, 13 2

(
n
2

)
+ 1

4a

1 23, 2 13
3 21, 2 31
12 3, 13 2
32 1, 31 2

2n−1

4b

1 23, 23 1
3 21, 21 3
12 3, 3 12
32 1, 1 32

2n−1

4c

1 23, 31 2
3 21, 13 2
12 3, 2 31
32 1, 2 13

2n−1

4d

1 32, 2 13
3 12, 2 31
13 2, 21 3
23 1, 31 2

2n−1

4e

1 32, 2 31
3 12, 2 13
31 2, 21 3
23 1, 13 2

2n−1

4f
1 32, 3 12
23 1, 21 3

2n−1

4g
1 32, 23 1
3 12, 21 3

2n−1

{p, q} |Sn(p, q)|

4h

1 32, 31 2
3 12, 13 2
21 3, 2 31
23 1, 2 13

2n−1

4i
2 13, 2 31
31 2, 13 2

2n−1

4j
2 13, 13 2
2 31, 31 2

2n−1

4k
2 13, 31 2
2 31, 13 2

2n−1

5a

1 23, 13 2
3 21, 31 2
12 3, 2 13
32 1, 2 31

Mn

(Motzkin no.)

5b

1 23, 21 3
3 21, 23 1
12 3, 1 32
32 1, 3 12

Mn

(Motzkin no.)

6
1 32, 21 3
3 12, 23 1

an

7

1 23, 3 12
3 21, 1 32
23 1, 12 3
32 1, 21 3

bn

8

1 23, 1 32
3 21, 3 12
21 3, 12 3
32 1, 23 1

In

(# involutions)

9

1 32, 13 2
3 12, 31 2
21 3, 2 13
23 1, 2 31

Cn

(Catalan no.)

10
1 23, 12 3
3 21, 32 1

B∗
n (Bessel no.)

Table 1. The cardinality of Sn(P ) for |P | = 2.

Symmetry class 1. We have

σ1τ ∈ S(1 23, 32 1) ⇐⇒







red(σ) ∈ S(21, 1 23)

red(τ) ∈ S(12, 32 1)

σ1τ ∈ S

The result now follows from S(21, 1 23) = {ε, 1, 12} and S(12, 32 1) = {ε, 1, 21}.
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Symmetry class 2. Since 3 21 is the complement of 1 23, the cardinality of
Sn(1 23, 3 21) is twice the number of permutations in Sn(1 23, 3 21) in which
1 precedes n. In addition, 1 and n must be adjacent letters in a permutation
avoiding 1 23 and 3 21. Let σ1nτ be such a permutation. Note that τ must be
both increasing and decreasing, that is, τ ∈ {ε, 2, 3, 4, . . . , n− 1}, so there are n− 1
choices for τ . Furthermore, there is exactly one permutation in Sn(1 23, 3 21)
of the form σ1n, namely (dn+1

2 e, . . . , n − 2, 3, n − 1, 2, n, 1), and similarly there is
exactly one of the form σ1nk for each k ∈ {2, 3, . . . , n − 1}. This completes our
argument.

Symmetry class 3. Note that

σ1τ ∈ S(1 23, 2 31) ⇐⇒

{

red(σ), red(τ) ∈ S(12)

σ1τ ∈ S(2 31)

It is now rather easy to see that π ∈ Sn(1 23, 2 31) if and only if π = n · · · 21 or
π is constructed in the following way. Choose i and j such that 1 ≤ j < i ≤ n.
Let π(i − 1) = 1, π(i) = n + 1 − j and arrange the rest of the elements so that
π(1) > π(2) > · · · > π(i− 1) and π(i) > π(i + 1) > · · · > π(n) (this arrangement is
unique). Since there are

(
n
2

)
ways of choosing i and j we get the desired result.

Symmetry class 4a. We have

σ1τ ∈ S(1 23, 2 13) ⇐⇒







red(σ) ∈ S(1 23, 2 13)

red(τ) ∈ S(12)

σ > τ

σ1τ ∈ S,

where σ > τ means that any letter of τ is greater than any letter of σ. This
enables us to give a bijection between Sn(1 23, 2 13) and the set of compositions
(ordered formal sums) of n. Indeed, such a bijection Ψ is given by Ψ(ε) = ε and
Ψ(σ1τ) = Ψ(σ) + |1τ |.

As an example, the tree

U ◦ T (958764132) =

◦
}} AA

◦
}}

◦
}}◦

}} AA ◦
◦ ◦

}}◦
}}◦

corresponds to the composition 1 + 4 + 1 + 3 of 9.

Symmetry class 4b. We have

σ1τ ∈ S(1 23, 23 1) ⇐⇒

{

red(σ), red(τ) ∈ S(12)

σ1τ ∈ S

Hence a permutation in S(1 23, 23 1) is given by the following procedure. Choose
a subset S ⊆ {2, 3, 4, . . . , n}, let σ be the word obtained by writing the elements of
S in decreasing order, and let τ be the word obtained by writing the elements of
{2, 3, 4, . . . , n} \ S in decreasing order.
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For instance, the tree

T (421653) =

1
££ <<

2
££

3
££

4 5
££

6

corresponds to the subset {2, 4} of {2, 3, 4, 5, 6}.

Symmetry class 4c. This case is essentially identical to the case dealt with in
(4a).

Symmetry class 4d. The bijection Θ between S(1 23) and S(1 32) (see page
[CM1]-5) provides a bijection between Sn(1 32, 2 13) and Sn(1 23, 2 13). Conse-
quently the result follows from (4a).

Symmetry class 4e. We have

σ1τ ∈ S(3 12, 2 13) ⇐⇒







red(σ), red(τ) ∈ S(3 12, 2 13)

σ = ε or τ = ε

σ1τ ∈ S

Thus a bijection between Sn(3 12, 2 13) and {0, 1}n−1 is given by Ψ(ε) = ε and

Ψ(σ1τ) = xΨ(στ) where x =







1 if σ 6= ε,

0 if τ 6= ε,

ε otherwise.

As an example, the tree

U ◦ T (136542) =

◦ AA

◦
}}◦ AA

◦
}}◦

}}◦

corresponds to 01011 ∈ {0, 1}5.

Symmetry class 4f. Since 3 12 is the complement of 1 32, the cardinality of
Sn(1 32, 3 12) is twice the number of permutations in Sn(1 32, 3 12) in which 1
precedes n. In addition, n must be the last letter in such a permutation or else a
hit of 1 32 would be formed. We have

σ1τn ∈ S(1 32, 3 12) ⇐⇒







red(σ1τ) ∈ S(1 32, 3 12)

red(τ) ∈ S(21)

σ1τ ∈ S

⇐⇒







red(σ) ∈ S(1 32, 3 12)

red(τ) ∈ S(21)

σ < τ

σ1τ ∈ S

The rest of the proof follows the same lines as the proof of (4a).
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Symmetry class 4g. We can copy almost verbatim the proof of (4e); indeed, it
is easy to see that Sn(1 32, 23 1) = Sn(1 32, 2 31).

Symmetry class 4h. We can copy almost verbatim the proof of (4f); indeed, it
is easy to see that Sn(1 32, 31 2) = Sn(1 32, 3 12).

Symmetry class 4i. |Sn(2 13, 2 31)| = |Sn(2 1 3, 2 3 1)| = 2n−1 by [8, Lemma
5(d)].

Symmetry class 4j. |Sn(2 13, 13 2)| = |Sn(1 3 2, 2 1 3)| = 2n−1 by [8, Lemma
5(b)].

Symmetry class 4k. |Sn(2 13, 31 2)| = |Sn(2 1 3, 3 1 2)| = 2n−1 by [8, Lemma
5(c)].

Symmetry class 5a. See Proposition 2.

Symmetry class 5b. We give a bijection

Λ : Sn(1 23, 21 3) → Sn(1 23, 13 2)

by means of induction. Let π ∈ Sn(1 23, 21 3). Define Λ(π) = π for n ≤ 1. Assume
n ≥ 2 and π = a1a2 · · · an. It is plain that either a1 = n or a2 = n, so we can define
Λ(π) by







(a′
1 + 1, . . . , a′

n−1 + 1, a′
n−2 + 1, 1) if

{

a1 = n and

a′
1 · · · a

′
n−1 = Λ(a2a3a4 · · · an),

(a′
1 + 1, . . . , a′

n−1 + 1, 1, a′
n−2 + 1) if

{

a2 = n and

a′
1 · · · a

′
n−1 = Λ(a1a3a4 · · · an).

Observing that if σ ∈ Sn(1 23, 13 2) then σ(n− 1) = 1 or σ(n) = 1, it easy to find
the inverse of Λ.

Symmetry class 6. In [2] Claesson introduced the notion of a monotone partition.
A partition is monotone if its non-singleton blocks can be written in increasing order
of their least element and increasing order of their greatest element, simultaneously.
He then proved that monotone partitions and non-overlapping partitions are in one-
to-one correspondence. Non-overlapping partitions were first studied by Flajolet
and Schot in [4]. A partition π is non-overlapping if for no two blocks A and
B of π we have min A < min B < max A < max B. Let B∗

n be the number of
non-overlapping partitions of [n]; this number is called the nth Bessel number.
Proposition 2 tells us that there is a bijection between non-overlapping partitions
and permutations avoiding 1 23 and 12 3. Below we define a new class of partitions
called strongly monotone partitions and then show that there is a bijection between
strongly monotone partitions and permutations avoiding 1 32 and 21 3.

Definition 4. Let π be an arbitrary partition whose blocks {A1, . . . , Ak} are or-
dered so that for all i ∈ [k − 1], min Ai > min Ai+1. If max Ai > max Ai+1 for all
i ∈ [k − 1], then we call π a strongly monotone partition.
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In other words a partition is strongly monotone if its blocks can be written in
increasing order of their least element and increasing order of their greatest element,
simultaneously. Let us denote by an the number of strongly monotone partitions
of [n]. The sequence {an}

∞
0 starts with

1, 1, 2, 4, 9, 22, 58, 164, 496, 1601, 5502, 20075, 77531, 315947, 1354279.

It is routine to derive the continued fraction expansion

∑

n≥0

anxn =
1

1 − 1 · x −
x2

1 − 1 · x −
x2

1 − 2 · x −
x2

1 − 3 · x −
x2

1 − 4 · x −
x2

. . .

using the standard machinery of Flajolet [3] and Françon and Viennot [5]. One
can also note that there is a one-to-one correspondence between strongly monotone
partitions and non-overlapping partition, π, such that if {x} and B are blocks of π

then either x < min B or max B < x. In addition, we observe that
∑

n≥0

anxn =
1

1 − x − x2B∗(x)
,

where B∗(x) =
∑

n≥0 B∗
nxn is the ordinary generating function for the Bessel num-

bers.
Suppose π ∈ Sn has k + 1 left-to-right minima 1, 1′, 1′′, . . . , 1(k) such that

1 < 1′ < 1′′ < · · · < 1(k), and π = 1(k)τ (k) · · · 1′τ ′1τ.

Then π avoids 1 32 if and only if, for each i, τ (i) ∈ S(21). If π avoids 1 32 and
xi = max 1(i)τ (i) then π avoids 21 3 precisely when x0 < x1 < · · · < xk. This
follows from observing that the only potential (21 3)-subwords of π are xi+11

(k)xj

with j ≤ i.
Mapping π to the partition {1σ, 1′σ′, . . . , 1(k)τ (k)} we thus get a one-to-one cor-

respondence between permutations in Sn(1 32, 21 3) and strongly monotone par-
titions of [n].

Symmetry class 7. Let the sequence {bn} be defined by b0 = 1 and, for n ≥ −2,

bn+2 = bn+1 +
n∑

k=0

(
n

k

)

bk.

The first few of the numbers bn are

1, 1, 2, 4, 9, 23, 65, 199, 654, 2296, . . .

Suppose π ∈ Sn has k + 1 left-to-right minima 1, 1′, 1′′, . . . , 1(k) such that

1 < 1′ < 1′′ < · · · < 1(k), and π = 1(k)τ (k) · · · 1′τ ′1τ.

Then π avoids 1 23 if and only if, for each i, τ (i) ∈ S(12). If π avoids 1 23 and
xi = max 1(i)τ (i) then π avoids 3 12 precisely when

j > i and xi 6= 1(i) =⇒ xj < xi.
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This follows from observing that the only potential (3 12)-subwords of π are xj1
(k)xi

with j ≤ i. Thus we have established

σ1τ ∈ Sn(1 23, 3 12) ⇐⇒







red(σ) ∈ S(1 23, 3 12)

τ 6= ε ⇒ τ = τ ′n and red(τ ′) ∈ S(12)

σ1τ ∈ Sn

If we know that σ1τ ′n ∈ Sn(1 23, 3 12) and red(τ ′) ∈ Sk(12) then there are
(
n−2

k

)

candidates for τ ′. In this way the recursion follows.

Symmetry class 8. See Proposition 2.

Symmetry class 9. Sn(1 32, 13 2) = Sn(1 3 2).

Symmetry class 10. See Proposition 2.

5. More than two patterns

Let P be a set of patterns of type (1, 2) or (2, 1). With the aid of a computer we
have calculated the cardinality of Sn(P ) for sets P of three or more patterns. From
these results we arrived at the plausible conjectures of table 2 (some of which are
trivially true). We use the notation m × n to express that there are m symmetric
classes each of which contains n sets. Moreover, we denote by Fn the nth Fibonacci
number (F0 = F1 = 1, Fn+1 = Fn + Fn−1).
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For |P | = 3 there are 220 sets, 55
symmetry classes and 9 Wilf-classes.

cardinality # sets
0 7 × 4
3 1 × 4
n 24 × 4

1 +
(
n
2

)
2 × 4

Fn 7 × 4
(

n
[n/2]

)
1 × 4

2n−2 + 1 1 × 4
2n−1 10 × 4
Mn 2 × 4

For |P | = 4 there are 495 sets, 135
symmetry classes, and 9 Wilf-classes.

cardinality # sets
0 1 × 1 + 6 × 2 + 30 × 4
2 2 × 1 + 5 × 2 + 35 × 4
3 1 × 4
n 37 × 4 + 1 × 2

1 +
(
n
2

)
1 × 4

Fn 9 × 4 + 1 × 2
(

n
[n/2]

)
1 × 2

2n−2 + 1 1 × 2
2n−1 1 × 4 + 3 × 2

For |P | = 5 there are 792 sets, 198
symmetry classes, and 5 Wilf-classes.

cardinality # sets
0 84 × 4
1 16 × 4
2 74 × 4
n 20 × 4

Fn 4 × 4

For |P | = 6 there are 924 sets, 246
symmetry classes, and 4 Wilf-classes.

cardinality # sets
0 17 × 2 + 124 × 4
1 4 × 2 + 38 × 4
2 7 × 2 + 51 × 4
n 1 × 2 + 3 × 4

Fn 1 × 2

For |P | = 7 there are 792 sets, 198
symmetry classes, and 3 Wilf-classes.

cardinality # sets
0 140 × 4
1 40 × 4
2 18 × 4

For |P | = 8 there are 495 sets, 135
symmetry classes, and 3 Wilf-classes.

cardinality # sets
0 2 × 1 + 14 × 2 + 94 × 4
1 4 × 2 + 18 × 4
2 1 × 1 + 2 × 4

For |P | = 9 there are 220 sets, 55
symmetry classes, and 2 Wilf-classes.

cardinality # sets
0 50 × 4
1 5 × 4

For |P | = 10 there are 66 sets, 21
symmetry classes, and 2 Wilf-classes.

cardinality # sets
0 8 × 2 + 12 × 4
1 1 × 2

For |P | = 11 there are 12 sets, 3
symmetry classes, and 1 Wilf-class.

cardinality # sets
0 3 × 4

For |P | = 12 there is 1 set, 1
symmetry class, and 1 Wilf-class.

cardinality # sets
0 1 × 1

Table 2. The cardinality of Sn(P ) for |P | > 2.
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borg, Sweden

E-mail address: claesson@math.chalmers.se

Department of Mathematics, Chalmers University of Technology, S-412 96 Göte-
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COUNTING OCCURRENCES OF A PATTERN OF TYPE

(1, 2) OR (2, 1) IN PERMUTATIONS

ANDERS CLAESSON AND TOUFIK MANSOUR

Abstract. Babson and Steingŕımsson introduced generalized permutation

patterns that allow the requirement that two adjacent letters in a pattern

must be adjacent in the permutation. Claesson presented a complete solu-

tion for the number of permutations avoiding any single pattern of type (1, 2)

or (2, 1). For eight of these twelve patterns the answer is given by the Bell

numbers. For the remaining four the answer is given by the Catalan numbers.

With respect to being equidistributed there are three different classes of

patterns of type (1, 2) or (2, 1). We present a recursion for the number of

permutations containing exactly one occurrence of a pattern of the first or the

second of the aforementioned classes, and we also find an ordinary generating

function for these numbers. We prove these results both combinatorially and
analytically. Finally, we give the distribution of any pattern of the third class
in the form of a continued fraction, and we also give explicit formulas for the
number of permutations containing exactly r occurrences of a pattern of the
third class when r ∈ {1, 2, 3}.

1. Introduction and preliminaries

Let [n] = {1, 2, . . . , n} and denote by Sn the set of permutations of [n]. We shall
view permutations in Sn as words with n distinct letters in [n].

Classically, a pattern is a permutation σ ∈ Sk, and an occurrence of σ in a
permutation π = a1a2 · · · an ∈ Sn is a subword of π that is order equivalent to σ.
For example, an occurrence of 132 is a subword aiajak (1 ≤ i < j < k ≤ n) of π

such that ai < ak < aj . We denote by sr
σ(n) the number of permutations in Sn

that contain exactly r occurrences of the pattern σ.
In the last decade much attention has been paid to the problem of finding the

numbers sr
σ(n) for a fixed r ≥ 0 and a given pattern σ (see [1, 2, 4, 6, 7, 8, 11,

13, 14, 16, 17, 18, 19, 20, 21] ). Most of the authors consider only the case r = 0,
thus studying permutations avoiding a given pattern. Only a few papers consider
the case r > 0, usually restricting themselves to patterns of length 3. Using two
simple involutions (reverse and complement) on Sn it is immediate that with respect
to being equidistributed, the six patterns of length three fall into the two classes
{123, 321} and {132, 213, 231, 312}. Noonan [15] proved that s1

123(n) = 3
n

(
2n

n−3

)
. A

general approach to the problem was suggested by Noonan and Zeilberger [16]; they
gave another proof of Noonan’s result, and conjectured that

s2
123(n) =

59n2 + 117n + 100

2n(2n − 1)(n + 5)

(
2n

n − 4

)

Date: January 21, 2004.
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and s1
132(n) =

(
2n−3
n−3

)
. The latter conjecture was proved by Bóna in [7]. A conjecture

of Noonan and Zeilberger states that sr
σ(n) is P -recursive in n for any r and σ. It

was proved by Bóna [5] for σ = 132.
Mansour and Vainshtein [14] suggested a new approach to this problem in the

case σ = 132, which allows one to get an explicit expression for sr
132(n) for any

given r. More precisely, they presented an algorithm that computes the generating
function

∑

n≥0 sr
132(n)xn for any r ≥ 0. To get the result for a given r, the algorithm

performs certain routine checks for each element of the symmetric group S2r. The
algorithm has been implemented in C, and yields explicit results for 1 ≤ r ≤ 6.

In [3] Babson and Steingŕımsson introduced generalized permutation patterns
that allow the requirement that two adjacent letters in a pattern must be adjacent
in the permutation. The motivation for Babson and Steingŕımsson in introducing
these patterns was the study of Mahonian permutation statistics. Two examples of
(generalized) patterns are 1 32 and 13 2. An occurrence of 1 32 in a permutation
π = a1a2 · · · an is a subword aiajaj+1 of π such that ai < aj+1 < aj . Similarly, an
occurrence of 13 2 is a subword aiai+1aj of π such that ai < aj < ai+1.

For each word w = x1x2 · · ·xn over the alphabet {1, 2, 3, 4, . . .} without repeated
letters, we define the reduction of w, which we denote red(w), by

red(w) = a1a2 · · · an , where ai = |{j ∈ [n] : xj ≤ xi}|.

Equivalently, red(w) is the permutation in Sn which is order equivalent to w. For
example, red(2659) = 1324. For xyz ∈ S3 and π = a1a2 · · · an ∈ Sn we define

(x yz)π = card{ aiajaj+1 : red(aiajaj+1) = xyz, 1 ≤ i < j < n }

and, similarly,

(xy z)π = card{ aiai+1aj : red(aiai+1aj) = xyz, 2 < i + 1 < j ≤ n }.

For any word (finite sequence of letters), w, we denote by |w| the length of
w, that is, the number of letters in w. A pattern σ = σ1 σ2 · · · σk containing
exactly k − 1 dashes is said to be of type (|σ1|, |σ2|, . . . , |σk|). For example, the
pattern 142 5 367 is of type (3, 1, 3), and any classical pattern of length k is of
type (1, 1, . . . , 1

︸ ︷︷ ︸

k

).

In [11] Elizalde and Noy presented the following theorem regarding the distribu-
tion of the number of occurrences of any pattern of type (3).

Theorem 1 (Elizalde and Noy [11]). Let h(x) =
√

(x − 1)(x + 3). Then

∑

π∈S

x(123)π t|π|

|π|!
=

2h(x)e
1

2
(h(x)−x+1)t

h(x) + x + 1 + (h(x) − x − 1)eh(x)t
,

∑

π∈S

x(213)π t|π|

|π|!
=

1

1 −
∫ t

0
e(x−1)z2/2dz

.

The easy proof of the following proposition can be found in [9].

Proposition 2 (Claesson [9]). With respect to being equidistributed, the twelve

patterns of type (1, 2) or (2, 1) fall into the three classes

{ 1 23, 3 21, 12 3, 32 1 },
{ 1 32, 3 12, 21 3, 23 1 },
{ 2 13, 2 31, 13 2, 31 2 }.
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In the subsequent discussion we refer to the classes of the proposition above (in
the order that they appear) as Class 1, 2 and 3 respectively.

Claesson [9] also gave a solution for the number of permutations avoiding any
pattern of the type (1, 2) or (2, 1) as follows.

Proposition 3 (Claesson [9]). Let n ∈ N. We have

|Sn(σ)| =

{

Bn if σ ∈ {1 23, 3 21, 12 3, 32 1, 1 32, 3 12, 21 3, 23 1},

Cn if σ ∈ {2 13, 2 31, 13 2, 31 2},

where Bn and Cn are the nth Bell and Catalan numbers, respectively.

In particular, since Bn is not P -recursive in n, this result implies that for gener-
alized patterns the conjecture that sr

σ(n) is P -recursive in n is false for r = 0 and,
for example, σ = 1 23.

This paper is organized as follows. In Section 2 we find a recursion for the
number of permutations containing exactly one occurrence of a pattern of Class 1,
and we also find an ordinary generating function for these numbers. We prove these
results both combinatorially and analytically. Similar results are also obtained for
patterns of Class 2. In Section 3 we give the distribution of any pattern of Class 3
in the form of a continued fraction, and we also give explicit formulas for the
number of permutations containing exactly r occurrences of a pattern of Class 3
when r ∈ {1, 2, 3}.

2. Counting occurrences of a pattern of Class 1 or 2

Theorem 4. Let u1(n) be the number of permutations of length n containing exactly

one occurrence of the pattern 1 23 and let Bn be the nth Bell number. The numbers

u1(n) satisfy the recurrence

u1(n + 2) = 2u1(n + 1) +

n−1∑

k=0

(
n

k

)
[
u1(k + 1) + Bk+1

]
,

whenever n ≥ −1, with the initial condition u1(0) = 0.

Proof. Each permutation π ∈ S1
n+2(1 23) contains a unique subword abc such that

a < b < c and bc is a segment of π. Let x be the last letter of π and define the sets
T , T ′, and T ′′ by

π ∈







T if x = 2,

T ′ if x 6= 2 and a = 1,

T ′′ if x 6= 2 and a 6= 1.

Then S1
n+2(1 23) is the disjoint union of T , T ′, and T ′′, so

u1(n + 2) = |T | + |T ′| + |T ′′|.

Since removing/adding a trailing 2 from/to a permutation does not affect the
number of hits of 1 23, we immediately get

|T | = u1(n + 1).

For the cardinality of T ′ we observe that if x 6= 2 and a = 1 then b = 2: If
the letter 2 precedes the letter 1 then every hit of 1 23 with a = 1 would cause an
additional hit of 1 23 with a = 2 contradicting the uniqueness of the hit of 1 23;
if 1 precedes 2 then a = 1 and b = 2. Thus we can factor any permutation π ∈ T ′
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uniquely in the form π = σ2τ , where σ is (1 23)-avoiding, the letter 1 is included in
σ, and τ is nonempty and (12)-avoiding. Owing to Proposition 3 we have showed

|T ′| =

n−1∑

k=0

(
n

k

)

Bk+1.

Suppose π ∈ T ′′. Since x 6= 2 and a 6= 1 we can factor π uniquely in the form
π = σ1τ , where σ contains exactly one occurrence of 1 23, the letter 2 is included
in σ, and τ is nonempty and (12)-avoiding. Consequently,

|T ′′| =

n∑

k=0

(
n

k

)

u1(k + 1),

which completes the proof. ¤

Example 5. Let us consider all permutations of length 5 that contain exactly one
occurrence of 1 23, and give a small illustration of the proof of Theorem 4. If T ,
T ′ and T ′′ are defined as above then

T = 1354|2 1435|2 1453|2 1534|2 4135|2 5134|2 3451|2

T ′ =

1|2543 13|254 14|253 143|25 15|243 153|24

154|23 31|254 314|25 315|24 341|25 351|24

41|253 413|25 415|23 431|25 451|23 51|243

513|24 514|23 531|24 541|23

T ′′ =
234|15 235|14 2354|1 2435|1 245|13

2453|1 2534|1 3452|1 4235|1 5234|1

where the underlined subword is the unique hit of 1 23, and the bar indicates how
the permutation is factored in the proof of Theorem 4.

Theorem 6. Let v1(n) be the number of permutations of length n containing exactly

one occurrence of the pattern 1 32 and let Bn be the nth Bell number. The numbers

v1(n) satisfy the recurrence

v1(n + 1) = v1(n) +

n−1∑

k=1

[(
n

k

)

v1(k) +

(
n − 1

k − 1

)

Bk

]

,

whenever n ≥ 0, with the initial condition v1(0) = 0.

Proof. Each permutation π ∈ S1
n+2(1 32) contains a unique subword acb such that

a < b < c and cb is a segment of π. Define the sets T and T ′ by

π ∈

{

T if a = 1,

T ′ if a 6= 1.

Then S1
n+2(1 32) is the disjoint union of T and T ′, so

v1(n + 2) = |T | + |T ′|.

For the cardinality of T we observe that if a = 1 then b = 2: If the letter
2 precedes the letter 1 or 12 is a segment of π then every hit of 1 23 with a = 1
would cause an additional hit of 1 32 with a = 2 contradicting the uniqueness of the
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hit of 1 23; if 1 precedes 2 then a = 1 and b = 2. Thus we can factor π uniquely in
the form π = σx2τ , where σx is (1 32)-avoiding, the letter 1 is included in σ, and τ

is nonempty and (12)-avoiding. Let Rn be the set of (1 32)-avoiding permutations
of [n] that do not end with the letter 1. Since the letter 1 cannot be the last
letter of a hit of 1 32, we have, by Proposition 3, that |Sn(1 32) \ Rn| = Bn−1.
Consequently, |Rn| = Bn − Bn−1 and

|T | =

n∑

k=1

(
n − 1

k − 1

)

|Rk|

=

n∑

k=1

(
n − 1

k − 1

)

(Bk − Bk−1)

=

n−1∑

k=1

(
n − 1

k − 1

)

Bk.

For the last identity we have used the familiar recurrence Bn+1 =
∑n

k=0

(
n
k

)
Bk.

Suppose π ∈ T ′. Since a 6= 1 we can factor π uniquely in the form π = σ1τ , where
σ contains exactly one occurrence of 1 32, and τ is nonempty and (12)-avoiding.
Accordingly,

|T ′′| =
n∑

k=0

(
n

k

)

v1(k),

which completes the proof. ¤

Let σ be a pattern of Class 1 or 2. Using combinatorial reasoning we have found
a recursion for the number of permutations containing exactly one occurrence of
the pattern σ (Theorem 4 and 6). More generally, given r ≥ 0, we would like to find
a recursion for the number of permutations containing exactly r occurrence of the
pattern σ. Using a more general and analytic approach we will now demonstrate
how this (at least in principle) can be achieved.

Let Sr
σ(x) be the generating function Sr

σ(x) =
∑

n sr
σ(n)xn. To find functional

relations for Sr
σ(x) the following lemma will turn out to be useful.

Lemma 1. If {an} is a sequence of numbers and A(x) =
∑

n≥0 anxn is its ordinary

generating function, then, for any d ≥ 0,

∑

n≥0





n∑

j=0

(
n

j

)

aj+d



xn =
(1 − x)d−1

xd



A
( x

1 − x

)

−
d−1∑

j=0

aj

( x

1 − x

)j



 .

Proof. It is plain that

∑

n≥0

[ n∑

j=0

(
n

j

)

aj

]

xn =
1

1 − x
A
( x

1 − x

)

.

See for example [12, p 192]. On the other hand,

∑

n≥0

an+dx
n =

1

xd

[

A(x) −

d−1∑

j=0

ajx
j
]

.

Combining these two identities we get the desired result. ¤
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Define Sr
n(σ) to be the set of permutations π ∈ Sn such that (σ)π = r. Let

sr
σ(n) = |Sr

n(σ)| for r ≥ 0 and sr
σ(n) = 0 for r < 0. Given b1, b2, . . . , bk ∈ N, we also

define

sr
σ(n; b1, b2, . . . , bk) = #{a1a2 · · · an ∈ Sr

n(σ) | a1a2 · · · ak = b1b2 · · · bk}.

As a direct consequence of the above definitions, we have

sr
σ(n) =

n∑

j=1

sr
σ(n; j). (1)

We start by considering patterns that belong to Class 1 and we use 12 3 as a
representative of this class. Let us define

ur(n; b1, . . . , bk) = sr
12 3(n; b1, . . . , bk),

ur(n) = sr
12 3(n),

Ur(x) = Sr
12 3(x).

Lemma 2. Let n ≥ 1. We have ur(n;n − 1) = ur(n;n) = ur(n − 1) and

ur(n; i) =

i−1∑

j=1

ur(n − 1; j) +

n−i−1∑

j=0

ur−j(n − 1;n − 1 − j),

whenever 1 ≤ i ≤ n − 2.

Proof. If a1a2 · · · an is any permutation of [n] then

(12 3)a1a2 · · · an = (12 3)a2a3 · · · an +

{

n − a2 if a1 < a2,

0 if a1 > a2.

Hence,

ur(n; i) =

i−1∑

j=1

ur(n; i, j) +

n∑

j=i+1

ur(n; i, j)

=

i−1∑

j=1

ur(n − 1; j) +

n∑

j=i+1

ur−n+j(n − 1; j − 1)

=
i−1∑

j=1

ur(n − 1; j) +
n−i−1∑

j=0

ur−j(n − 1;n − 1 − j).

For i = n − 1 or i = n it is easy to see that ur(n; i) = ur(n − 1). ¤

Using Lemma 2 we quickly generate the numbers ur(n); the first few of these
numbers are given in Table 1. Given r ∈ N we can also use Lemma 2 to find a
functional relation determining Ur(x). Here we present such functional relations
for r = 0, 1, 2 and also explicit formulas for r = 0, 1.

Equation 1 tells us how to compute ur(n) if we are given the numbers ur(n; i).
For the case r = 0 Lemma 3, below, tells us how to do the converse.

Lemma 3. If 1 ≤ i ≤ n − 2 then

u0(n; i) =
i−1∑

j=0

(
i − 1

j

)

u0(n − 2 − j).
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n\r 0 1 2 3 4 5 6
0 1
1 1
2 2
3 5 1
4 15 7 1 1
5 52 39 13 12 2 1 1
6 203 211 112 103 41 24 17
7 877 1168 843 811 492 337 238
8 4140 6728 6089 6273 4851 3798 2956
9 21147 40561 43887 48806 44291 38795 33343

10 115975 256297 321357 386041 394154 379611 355182

Table 1. The number of permutations of length n containing ex-
actly r occurrences of the pattern 12-3.

Proof. For n = 1 the identity is trivially true. Assume the identity is true for
n = m. We have

u0(m + 1; i) =

i−1∑

j=1

u0(m; j) + u0(m − 1) by Lemma 2

=

i−1∑

j=1

j−1
∑

k=0

(
j − 1

k

)

u0(m − 2 − k) + u0(m − 1) by the induction
hypothesis

=

i−1∑

j=1

i−2∑

k=j−1

(
k

j − 1

)

u0(m − 1 − j).

Using the familiar equality
(
1
k

)
+
(
2
k

)
+ · · · +

(
n
k

)
=

(
n+1
k+1

)
we then get

u0(m + 1; i) =

i−1∑

j=1

(
i − 1

j

)

u0(m − 1 − j).

Thus the identity is true for n = m+1 and by the principle of induction the desired
identity is true for all n ≥ 1. ¤

The following proposition is a direct consequence of Proposition 3. However, we
give a different proof. The proof is intended to illustrate the general approach. It
is advisable to read this proof before reading the proof of Theorem 4′ below.

Proposition 7. The generating function, U0(x), for the number of (12 3)-avoiding

permutations of length n is

U0(x) =
∑

k≥0

xk

(1 − x)(1 − 2x) · · · (1 − kx)
.
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Proof. We have

u0(n) =

n∑

k=1

u0(n; k) by Equation 1

= 2u0(n − 1) +
n−2∑

i=1

i−1∑

j=0

(
i − 1

j

)

u0(n − 2 − j) by Lemma 2 and 3

= u0(n − 1) +

n−2∑

i=0

(
n − 2

i

)

u0(n − 1 − i) by
n
X

i=k

“i

k

”

=
“n + 1

k + 1

”

= u0(n − 1) +
n−2∑

i=0

(
n − 2

i

)

u0(i + 1).

Therefore, by Lemma 1, we have

U0(x) = xU0(x) + 1 − x + xU0

(
x

1 − x

)

,

which is equivalent to

U0(x) = 1 +
x

1 − x
U0

(
x

1 − x

)

.

An infinite number of applications of this identity concludes the proof. ¤

We now derive a formula for U1(x) that is somewhat similar to the one for U0(x).
The following lemma is a first step in this direction.

Lemma 4. If 1 ≤ i ≤ n − 2 then

u1(n; i) =

i−1∑

j=0

(
i − 1

j

)

u1(n − 2 − j) + u0(n; i).

Proof. For n = 1 the identity is trivially true. Assume the identity is true for
n = m. Lemma 2 and the induction hypothesis imply

u1(m + 1; i) =
i−1∑

j=1

u1(m; j) + u1(m − 1) + u0(m − 1)

=

i−1∑

j=0

(
j − 1

k

)

u1(m − 1 − j) +

i−1∑

j=1

u0(m; j) + u0(m − 1).

In addition, Lemma 3 implies

u0(m + 1; i) =

i−1∑

j=1

j−1
∑

k=0

(
j − 1

k

)

u0(n − 2 − k) + u0(n − 1)

=

i−1∑

j=0

(
i − 1

j

)

u0(n − 1 − j)

=
i−1∑

j=1

u0(m; j) + u0(m − 1).
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Thus the identity is true for n = m+1 and by the principle of induction the desired
identity is true for all n ≥ 1. ¤

Next, we rediscover Theorem 4.

Theorem 4′. Let u1(n) be the number of permutations of length n containing exactly
one occurrence of the pattern 12 3 and let Bn be the nth Bell number. The numbers
u1(n) satisfy the recurrence

u1(n + 2) = 2u1(n + 1) +
n−1∑

k=0

(
n

k

)
[
u1(k + 1) + Bk+1

]
,

whenever n ≥ −1, with the initial condition u1(0) = 0.

Proof. Similarly to the proof of Proposition 7, we use Equation 1, Lemma 2, 3, and
4 to get

u1(n) = 2u1(n − 1) +

n−2∑

i=1





i−1∑

j=0

(
i − 1

j

)

u1(n − 2 − j) + u0(n; i)





= 2u1(n − 1) +
n−2∑

i=1

i−1∑

j=0

(
i − 1

j

)
(
u1(n − 2 − j) + u0(n − 2 − j)

)

= u1(n − 1) − u0(n − 1) +
n−2∑

i=0

(
n − 2

i

)
(
u1(i + 1) + u0(i + 1)

)

= 2u1(n − 1) +

n−3∑

i=0

(
n − 2

i

)
(
u1(i + 1) + u0(i + 1)

)
.

¤

Corollary 8. The ordinary generating function, U1(x), for the number of permu-

tations of length n containing exactly one occurrence of the pattern 12 3 satisfies

the functional equation

U1(x) =
x

1 − x

(

U1

( x

1 − x

)

+ U0

( x

1 − x

)

− U0(x)

)

.

Proof. The result follows from Theorem 4 together with Lemma 1. ¤

Corollary 9. The ordinary generating function for the number of permutations of

length n containing exactly one occurrence of the pattern 12 3 is

U1(x) =
∑

n≥1

x

1 − nx

∑

k≥0

kxk+n

(1 − x)(1 − 2x) · · · (1 − (k + n)x)
.

Proof. We simply apply Corollary 8 an infinite number of times and in each step
we perform some rather tedious algebraic manipulations. ¤

Theorem 10. The ordinary generating function, U2(x), for the number of permu-

tations of length n containing exactly two occurrences of the pattern 12 3 satisfies
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the functional equation

U2(x) =
x

(1 − x)2(1 − 2x)

(

U2

( x

1 − x

)

− (1 − x)U2(x)+

U1

( x

1 − x

)

− (1 − x)2U1(x)+

U0

( x

1 − x

)

− (1 − x)2U0(x)

)

.

Proof. The proof is similar to the proofs of Lemma 4, Theorem 4’ and Corollary 8,
and we only sketch it here.

Lemma 2 yields

u2(n;n) = u2(n − 1)

u2(n;n − 1) = u2(n − 1)

u2(n;n − 2) = u2(n − 1) − u2(n − 2) + u1(n − 2)

and, by means of induction,

u2(n; i) = u1(n; i) + u0(n; i) − u0(n − 1; i) +

i−1∑

j=0

(
i − 1

j

)

u2(n − 2 − j),

whenever 1 ≤ i ≤ n − 3. Therefore, u2(0) = u2(1) = u2(2) = 0 and

u2(n) = 3u2(n − 1) − u2(n − 2) + u1(n − 2)+

n−3∑

i=1

(
n − 3

i

)

(u2(n − 1 − i) + u1(n − 1 − i) + u0(n − 1 − i) − u0(n − 2 − i)).

whenever n ≥ 3. Thus, the result follows from Lemma 1. ¤

We now turn our attention to patterns that belong to Class 2 and we use 23 1 as
a representative of this class. The results found below regarding the 23 1 pattern
are very similar to the ones previously found for the 12 3 pattern, and so are the
proofs; therefore we choose to omit most of the proofs. However, we give the
necessary lemmas from which the reader may construct her/his own proofs.

Define

vr(n; b1, . . . , bk) = sr
23 1(n; b1, . . . , bk),

vr(n) = sr
23 1(n),

Vr(x) = Sr
23 1(x).

If a1a2 · · · an is any permutation of [n] then

(23 1)a1a2 · · · an = (23 1)a2a3 · · · an +

{

a1 − 1 if a1 < a2,

0 if a1 > a2.

Lemma 5. Let n ≥ 1. We have vr(n; 1) = vr(n;n) = vr(n − 1) and

vr(n; i) =
i−1∑

j=1

vr(n − 1; j) +
n−1∑

j=i

vr−i+1(n − 1; j),

whenever 2 ≤ i ≤ n − 1.
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Using Lemma 5 we quickly generate the numbers vr(n); the first few of these
numbers are given in Table 2.

n\r 0 1 2 3 4 5 6
0 1
1 1
2 2
3 5 1
4 15 6 3
5 52 32 23 10 3
6 203 171 152 98 62 22 11
7 877 944 984 791 624 392 240
8 4140 5444 6460 6082 5513 4302 3328
9 21147 32919 43626 46508 46880 41979 36774

10 115975 208816 304939 360376 396545 393476 377610

Table 2. The number of permutations of length n containing ex-
actly r occurrences of the pattern 23-1.

Lemma 6. If 2 ≤ i ≤ n − 1 then

v0(n; i) =

i−2∑

j=0

(
i − 2

j

)

v0(n − 2 − j).

Proposition 11. The generating function, V0(x), for the number of (23 1)-avoiding

permutations of length n is

V0(x) =
∑

k≥0

xk

(1 − x)(1 − 2x) · · · (1 − kx)
.

Lemma 7. If 2 ≤ i ≤ n − 1 then

v1(n; i) =
i−2∑

j=0

(
i − 2

j

)

v1(n − 2 − j) + v0(n; i − 1) − v0(n − 1, i − 1).

Theorem 6′. Let v1(n) be the number of permutations of length n containing exactly
one occurrence of the pattern 23 1 and let Bn be the nth Bell number. The numbers
v1(n) satisfy the recurrence

v1(n + 1) = v1(n) +

n−1∑

k=1

[(
n

k

)

v1(k) +

(
n − 1

k − 1

)

Bk

]

,

whenever n ≥ 0, with the initial condition v1(0) = 0.

Corollary 12. The ordinary generating function for the number of permutations

of length n containing exactly one occurrence of the pattern 23 1 satisfies the func-

tional equation

V1(x) =
x

1 − x
V1

( x

1 − x

)

+ x

(

V0

( x

1 − x

)

− V0(x)

)

.
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Corollary 13. The ordinary generating function for the number of permutations

of length n containing exactly one occurrence of the pattern 23 1 is

V1(x) =
∑

n≥1

x

1 − (n − 1)x

∑

k≥0

kxk+n

(1 − x)(1 − 2x) · · · (1 − (k + n)x)
.

Theorem 14. The ordinary generating function, V2(x), for the number of permu-

tations of length n containing exactly two occurrences of the pattern 23 1 satisfies

the functional equation

V2(x) =
x

1 − x

(

V2

( x

1 − x

)

+(1−2x)V1

( x

1 − x

)

+(1−3x+x2)V0

( x

1 − x

))

−x+x2

Proof. By Lemma 5

v2(n;n) = v2(n − 1)

v2(n; 1) = v2(n − 1)

v2(n; 2) = v2(n − 2) + v1(n − 1) − v1(n − 2)

v2(n; 3) = v2(n − 2) + v2(n − 3) + v1(n − 2) − v1(n − 3)+

+ v0(n − 1) − v0(n − 2) − v0(n − 3)

and, by means of induction,

v2(n; i) =

i−2∑

j=0

(
i − 2

j

)

v2(n− 2− j) + v1(n; i− 1) + v1(n− 1; i− 1)− v0(n− 1; i− 2)

for n − 1 ≥ i ≥ 4. Thus v2(0) = v2(1) = v2(2) = 0 and for all n ≥ 3

v2(n) = v2(n − 1)+
n−2∑

j=0

(
n − 2

j

)

v2(n − 1 − j)+

+
n−3∑

j=0

(
n − 3

j

)
(
v1(n − 1 − j) − v1(n − 2 − j)

)
+

+
n−4∑

j=0

(
n − 4

j

)
(
v0(n − 1 − j) − v0(n − 2 − j) − v0(n − 3 − j)

)
.

The result now follows from Lemma 1. ¤

3. Counting occurrences of a pattern of Class 3

We choose 2 13 as our representative for Class 3 and we define wr(n) as the
number of permutations of length n containing exactly r occurrences of the pattern
2 13. We could apply the analytic approach from the previous section to the prob-
lem of determining wr(n). However, a result by Clarke, Steingŕımsson and Zeng
[10, Corollary 11] provides us with a better option.
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Theorem 15. The following Stieltjes continued fraction expansion holds

∑

π∈S

x1+(12)πy(21)πp(2 31)πq(31 2)πt|π| =
1

1 −
x[ 1 ]p,qt

1 −
y[ 1 ]p,qt

1 −
x[ 2 ]p,qt

1 −
y[ 2 ]p,qt

. . .

where [n ]p,q = qn−1 + pqn−2 + · · · + pn−2q + pn−1.

Proof. In [10, Corollary 11] Clarke, Steingŕımsson and Zeng derived the following
continued fraction expansion

∑

π∈S

ydes πpRes πqDdif πt|π| =
1

1 −
[ 1 ]pt

1 −
yq[ 1 ]pt

1 −
q[ 2 ]pt

1 −
yq2[ 2 ]pt

. . .

where [n ]p = 1+p+· · ·+pn−1. We refer the reader to [10] for the definitions of Ddif
and Res. However, given these definitions, it is easy to see that Res = (2 31) and
Ddif = (21) + (2 31) + (31 2). Moreover, des = (21) and |π| = 1 + (12)π + (21)π.
Thus, substituting y(xq)−1 for y, pq−1 for p, and xt for t, we get the desired
result. ¤

The following corollary is an immediate consequence of Theorem 15.

Corollary 16. The bivariate ordinary generating function for the distribution of

occurrences of the pattern 2 13 admits the Stieltjes continued fraction expansion

∑

π∈S

p(2 13)πt|π| =
1

1 −
[ 1 ]pt

1 −
[ 1 ]pt

1 −
[ 2 ]pt

1 −
[ 2 ]pt

. . .

where [n ]p = 1 + p + · · · + pn−1

Using Corollary 16 we quickly generate the numbers wr(n); the first few of these
numbers are given in Table 3.

Corollary 17. The number of (2 13)-avoiding permutations of length n is

w0(n) =
1

n + 1

(
2n

n

)

.

Proof. This result is explicitly stated in Proposition 3, but it also follows from
Corollary 16 by putting p = 0. ¤
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n\r 0 1 2 3 4 5 6
0 1
1 1
2 2
3 5 1
4 14 8 2
5 42 45 25 7 1
6 132 220 198 112 44 12 2
7 429 1001 1274 1092 700 352 140
8 1430 4368 7280 8400 7460 5392 3262
9 4862 18564 38556 56100 63648 59670 47802

10 16796 77520 193800 341088 470934 541044 535990

Table 3. The number of permutations of length n containing ex-
actly r occurrences of the pattern 2-13.

Corollary 18. The number of permutations of length n containing exactly one

occurrence of the pattern 2 13 is

w1(n) =

(
2n

n − 3

)

.

Proof. For m > 0 let

W (p, t;m) =
1

1 −
[m ]pt

1 −
[m ]pt

1 −
[m + 1 ]pt

1 −
[m + 1 ]pt

. . .

Note that

W (p, t;m) =
1

1 −
[m ]pt

1 − [m ]ptW (p, t;m + 1).

Assume m > 1. Differentiating W (p, t;m) with respect to p and evaluating the
result at p = 0 we get

DpW (p, t;m)
∣
∣
p=0

= tC(t)3 + t2C(t)5 + t2C(t)4DpW (p, t;m + 1)
∣
∣
p=0

where C(t) = W (0, t, 1) is the generating function for the Catalan numbers. Ap-
plying this identity an infinite number of times we get

DpW (p, t,m)
∣
∣
p=0

= tC(t)3 + t2C(t)5 + t3C(t)7 + · · · =
tC(t)3

1 − tC(t)2
.

On the other hand, DpW (p, t; 1)
∣
∣
p=0

= t2C(t)4DpW (p, t; 2)
∣
∣
p=0

. Combining these

two identities we get

DpW (p, t; 1)
∣
∣
p=0

=
t3C(t)7

1 − tC(t)2
.
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Since
∑

n≥0 w1(n)tn = DpW (p, t; 1)
∣
∣
p=0

the proof is completed on extracting coef-

ficients in the last identity. ¤

The proofs of the following two corollaries are similar to the proof of Corollary 18
and are omitted.

Corollary 19. The number of permutations of length n containing exactly two

occurrences of the pattern 2 13 is

w2(n) =
n(n − 3)

2(n + 4)

(
2n

n − 3

)

.

Corollary 20. The number of permutations of length n containing exactly three

occurrences of the pattern 2 13 is

w3(n) =
1

3

(
n + 2

2

)(
2n

n − 5

)

.

As a concluding remark we note that there are many questions left to answer.
What is, for example, the formula for wk(n) in general? What are the combinatorial
explanations of ns1

1 2 3(n) = 3s1
2 13(n) and

(n + 3)(n + 2)(n + 1)s1
2 13(n) = 2n(2n − 1)(2n − 2)s1

2 1 3(n)?

In addition, Corollary 18 obviously is in need of a combinatorial proof.
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[10] R.J. Clarke, E. Steingŕımsson, and J. Zeng. New Euler-Mahonian statistics on permutations
and words. Adv. in Appl. Math., 18(3):237–270, 1997.

[11] S. Elizalde and M. Noy. Enumeration of subwords in permutations. In Formal power series

and algebraic combinatorics (Tempe, 2001), pages 179–189. Arizona State University, 2001.

[12] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete mathematics. Addison-Wesley

Publishing Company, Reading, MA, second edition, 1994.
[13] T. Mansour. Permutations containing and avoiding certain patterns. In Formal power series

and algebraic combinatorics (Moscow, 2000), pages 704–708. Springer, Berlin, 2000.
[14] T. Mansour and A. Vainshtein. Counting occurrences of 132 in a permutation. To appear in:

Adv. Appl. Math., 2001.

[15] J. Noonan. The number of permutations containing exactly one increasing subsequence of

length three. Discrete Math., 152(1-3):307–313, 1996.

[16] J. Noonan and D. Zeilberger. The enumeration of permutations with a prescribed number of

“forbidden” patterns. Adv. in Appl. Math., 17(4):381–407, 1996.



[CM2]-16 ANDERS CLAESSON AND TOUFIK MANSOUR

[17] A. Robertson. Permutations containing and avoiding 123 and 132 patterns. Discrete Math.

Theor. Comput. Sci., 3(4):151–154 (electronic), 1999.

[18] R. Simion and F. W. Schmidt. Restricted permutations. European J. Combin., 6(4):383–406,

1985.

[19] Z. Stankova. Forbidden subsequences. Discrete Math., 132(1-3):291–316, 1994.

[20] Z. Stankova. Classification of forbidden subsequences of length 4. European J. Combin.,

17(5):501–517, 1996.

[21] J. West. Generating trees and the Catalan and Schröder numbers. Discrete Math., 146(1-
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BICOLOURED DYCK PATHS, SEGMENTED PERMUTATIONS,

AND CHEBYSHEV POLYNOMIALS

ANDERS CLAESSON

Abstract. A bicoloured Dyck path is a Dyck path in which each up-step is

assigned one of two colours, say, red and green. We say that a permutation π

is σ-segmented if every occurrence o of σ in π is a segment-occurrence (i.e., o

is a contiguous subword in π).

We show combinatorially the following results: The 132-segmented permu-

tations of length n with k occurrences of 132 are in one-to-one correspondence

with bicoloured Dyck paths of length 2n − 4k with k red up-steps. Similarly,

the 123-segmented permutations of length n with k occurrences of 123 are in

one-to-one correspondence with bicoloured Dyck paths of length 2n− 4k with

k red up-steps, each of height less than 2.

We enumerate the permutations above by enumerating the corresponding
bicoloured Dyck paths. More generally, we present a bivariate generating
function for the number of bicoloured Dyck path of length 2n with k red up-
steps, each of height less than h. This generating function is expressed in terms
of Chebyshev polynomials of the second kind.

1. Introduction

It is relatively straightforward to show that number of permutations of [n] =
{1, 2, . . . , n} avoiding a pattern of length 3 is the Catalan number, Cn =

(
2n
n

)
/(n+1)

(e.g., see [8] or [5]). In contrast, to count the permutations containing r occurrences
of a fixed pattern of length 3, for a general r, is a very hard problem. The best
result on this latter problem has been achieved by Mansour and Vainshtein [6]. They
presented an algorithm that computes the generating function for the number of
permutations with r occurrences of 132 for any r ≥ 0. The algorithm has been
implemented in C. It yields explicit results for 1 ≤ r ≤ 6.

We say that an occurrence o of σ in π is a segment-occurrence if o is a segment of
π, in other words, if o is a contiguous subword in π. Elizalde and Noy [2] presented
exponential generating functions for the distribution of the number of segment-
occurrences of any pattern of length 3. Related problems have also been studied
by Kitaev [3] and by Kitaev and Mansour [4].

We say that π is σ-segmented if every occurrence of σ in π is a segment-
occurrence. For instance, 4365172 contains 3 occurrences of 132, namely 465,
365, and 172. Of these occurrences, only 365 and 172 are segment-occurrence.
Thus 4365172 is not 132-segmented. Note that if π is σ-avoiding then π is also
σ-segmented. In this article we try to enumerate the σ-segmented permutations
by length and by the the number of occurrences of σ. In [5] Krattenthaler gave
two bijections: one between 132-avoiding permutations and Dyck paths, and one

Date: January 21, 2004.
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between 123-avoiding permutations and Dyck paths. We obtain two new results by
extending these bijections:

– The 132-segmented permutations of length n with k occurrences of 132 are in
one-to-one correspondence with bicoloured Dyck paths of length 2n− 4k with
k red up-steps.

– The 123-segmented permutations of length n with k occurrences of 123 are in
one-to-one correspondence with bicoloured Dyck paths of length 2n− 4k with
k red up-steps, each of height less than 2.

Here a bicoloured Dyck path is a Dyck path in which each up-step is assigned
one of two colours, say, red and green. We enumerate the permutations above by
enumerating the corresponding bicoloured Dyck paths. To be more precise, let Bn,k

be the set of bicoloured Dyck path of length 2n with k red up-steps. Let B[h]
n,k be

the subset of Bn,k consisting of those paths where the height of each red up-step is
less than h. It is plain that |Bn,k| =

(
n
k

)
Cn. We show that

∑

n,k≥0

|B[h]
n,k|qktn =

C(t) − 2xqUh(x)Uh−1(x)

1 + q − qU2
h(x)

, x =
1

2
√

(1 + q)t
,

where C(t) = (1−
√

1 − 4t)/2t is the generating function for the Catalan numbers,
and Un is the nth Chebyshev polynomial of the second kind. We also find formulas

for |B[1]
n,k| and |B[2]

n,k|.

2. Bicoloured Dyck paths

By a lattice path we shall mean a path in Z
2 with steps (1, 1) and (1,−1); the

steps (1, 1) and (1,−1) will be called up- and down-steps, respectively. Furthermore,
a lattice path that never falls below the x-axis will be called nonnegative.

Recall that a Dyck path of length 2n is a nonnegative lattice path from (0, 0) to
(2n, 0). As an example, these are the 5 Dyck paths of length 6:

• ??? • ??? • ???•
ÄÄÄ •

ÄÄÄ •
ÄÄÄ •

• ???• ??? •
ÄÄÄ • ???•

ÄÄÄ •
ÄÄÄ •

• ???•
ÄÄÄ • ??? • ???•

ÄÄÄ •
ÄÄÄ •

• ??? • ???•
ÄÄÄ •

ÄÄÄ • ???•
ÄÄÄ •

• ???•
ÄÄÄ • ???•

ÄÄÄ • ???•
ÄÄÄ •

Letting u and d represent the steps (1, 1) and (1,−1), we code a Dyck path with a
word over {u, d}. For example, the paths above are coded by

ududud uduudd uuddud uududd uuuddd

Let Dn be the language over {u, d} obtained from Dyck paths of length 2n via this
coding, and let D = ∪n≥0Dn. In general, if A is a language over some alphabet X,
then the characteristic series of A, also (by slight abuse of notation) denoted A, is
the element of C〈〈X 〉〉 defined by

A =
∑

w∈A
w.

A nonempty Dyck path β can be written uniquely as uβ1dβ2 where β1 and β2

are Dyck paths. This decomposition is called the first return decomposition of β,
because the d in uβ1dβ2 corresponds to the first place, after (0, 0), where the path
touches the x-axis. By this decomposition, the characteristic series of D is uniquely
determined by the functional equation

D = 1 + uDdD, (1)
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where 1 denotes the empty word.
In a similar vein, we now consider the language B over {u, ū, d} whose charac-

teristic series is uniquely determined by the functional equation

B = 1 + (u + ū)BdB. (2)

Let Bn be the set of words in B that are of length 2n, and let Bn,k be the set of
words in Bn with k occurrences of ū. As an example, when n = 3 and k = 1 there
are 15 such words, namely

ūdudud ūduudd ūuddud ūududd ūuuddd

udūdud udūudd uūddud uūdudd uūuddd

ududūd uduūdd uuddūd uudūdd uuūddd

We may view the elements of B as bicoloured Dyck paths. The words from the
previous example are depicted below.

• ??? • ??? • ???•
ÄÄÄÄÄÄ •

ÄÄÄ •
ÄÄÄ •

• ???• ??? •
ÄÄÄ • ???•

ÄÄÄÄÄÄ •
ÄÄÄ •

• ???•
ÄÄÄ • ??? • ???•

ÄÄÄÄÄÄ •
ÄÄÄ •

• ??? • ???•
ÄÄÄ •

ÄÄÄ • ???•
ÄÄÄÄÄÄ •

• ???•
ÄÄÄ • ???•

ÄÄÄ • ???•
ÄÄÄÄÄÄ •

• ??? • ??? • ???•
ÄÄÄ •

ÄÄÄÄÄÄ •
ÄÄÄ •

• ???• ??? •
ÄÄÄ • ???•

ÄÄÄ •
ÄÄÄÄÄÄ •

• ???•
ÄÄÄÄÄÄ • ??? • ???•

ÄÄÄ •
ÄÄÄ •

• ??? • ???•
ÄÄÄÄÄÄ •

ÄÄÄ • ???•
ÄÄÄ •

• ???•
ÄÄÄ • ???•

ÄÄÄÄÄÄ • ???•
ÄÄÄ •

• ??? • ??? • ???•
ÄÄÄ •

ÄÄÄ •
ÄÄÄÄÄÄ •

• ???• ??? •
ÄÄÄÄÄÄ • ???•

ÄÄÄ •
ÄÄÄ •

• ???•
ÄÄÄ • ??? • ???•

ÄÄÄ •
ÄÄÄÄÄÄ •

• ??? • ???•
ÄÄÄ •

ÄÄÄÄÄÄ • ???•
ÄÄÄ •

• ???•
ÄÄÄÄÄÄ • ???•

ÄÄÄ • ???•
ÄÄÄ •

Here steps represented by double edges are, say, red, and steps represented by
simple edges are, say, green.

Proposition 1. With Cn = cardDn, we have

cardBn,k =

(
n

k

)
Cn and cardBn = 2nCn.

Proof. A bicoloured Dyck paths β of length 2n naturally breaks up into two parts:
(a) The Dyck path obtained from β by replacing each red up-step with a green
ditto. (b) The subset of [n] = {1, 2, . . . , n} consisting of those integers i for which
the ith up-step is red. ¤

For h ≥ 1, let B[h] be the subset of B whose characteristic series is the solution
to

B[h] = 1 + (u + ū)B[h−1]dB[h], (3)

with the initial condition B[0] = D, where D is defined as above. Let

B[h]
n be the set of words in B[h] that are of length 2n, and let

B[h]
n,k be the set of words in B[h]

n with k occurrences of ū.

To translate these definitions in terms of lattice paths we define the height of a
step in a (bicoloured) lattice path as the height above the x-axis of its left point.
Then B[h] is the set of bicoloured Dyck paths whose red up-steps all are of height
less than h. As an example, there is exactly one element in B3,1 that is not in B[2],
namely

• ???•
ÄÄÄÄÄÄ • ???•

ÄÄÄ • ???•
ÄÄÄ •
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To count words of given length in D, B and B[h], we will study the commutative
counterparts of the functional equations (1), (2) and (3). Formally, we define the
substitution µ : C〈〈u, ū, d 〉〉 → C[[q, t]] by

µ = {u 7→ t, ū 7→ qt, d 7→ 1 }.

Let C = µ(D), B = µ(B), and B[h] = µ(B[h]). We then get

C = 1 + tC2; (4)

B = 1 + (1 + q)tB2; (5)

B[h] = 1 + (1 + q)tB[h−1]B[h]; B[0] = C. (6)

By an easy application of the Lagrange inversion formula it follows from (4) that

[tn]C(t)i =
i

i + n

(
2n + i − 1

n

)
. (7)

In particular, we obtain that C is the familiar generating function of the Catalan
numbers, Cn = 1

n+1

(
2n
n

)
. Thus we have derived the well known fact that the

number of Dyck paths of length 2n is the nth Catalan number. Furthermore, it
follows from (5) that

B(q, t) = C((1 + q)t), (8)

and it follows from (6) that

B[h](q, t) =
1

1 − (1 + q)tB[h−1]C(t)
; B[0] = C. (9)

From these series we generate the first few values of |Bn,k|, |B[1]
n,k| and |B[2]

n,k|; tables
with these values are given in Section 4.

Recall that the Chebyshev polynomials of the second kind, denoted Un(x), are
defined by

Un(x) =
sin(n + 1)θ

sin θ
,

where n is an integer, x = cos θ, and 0 ≤ θ ≤ π. Equivalently, these polynomials
can be defined as the solution to the difference equation

Un+1(x) = 2xUn(x) − Un−1(x),

with U−1(x) = 0 and U0(x) = 1.
Via a bijection between Dyck paths and 132-avoiding permutations due to Krat-

tenthaler [5, Lemma Φ and Theorem 2] it follows by a result of Chow and West [1,
Theorem 3.1] that

C [h](t) =
Uh−1

(
1

2
√

t

)

√
t · Uh

(
1

2
√

t

) (10)

is the generating function for Dyck paths which stay below height h. Note that,
since C [0] = 1 and C [h] = (1 − tC [h−1])−1, this result is also easy to prove by
induction on h.
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Theorem 2. With B[h] being the generating function for the number of Dyck paths

whose red up-steps all are of height less than h, and Un being the nth Chebyshev

polynomial of the second kind we have

B[h](q, t) =
4x2Uh−1(x) − 2xUh−2(x)C(t)

2xUh(x) − Uh−1(x)C(t)
=

C(t) − 2xqUh(x)Uh−1(x)

1 + q − qU2
h(x)

,

where x = 1/2
√

(1 + q)t, and C(t) = (1 −
√

1 − 4t)/2t is the generating function

for the Catalan numbers.

Proof. We shall prove the first equality by induction. To this end, we let

F [h](q, t) =
4x2Uh−1(x) − 2xUh−2(x)C(t)

2xUh(x) − Uh−1(x)C(t)
.

From U−2(x) = −1, U−1(x) = 0, and U0(x) = 1 it readily follows that F [0](q, t) =
C(t) = B[0](q, t). If B[h] = F [h], for some fixed h ≥ 0, then

B[h+1] =
1

1 − (1 + q)tB[h]

=
1

1 − (1 + q)tF [h]

=
2xUh − Uh−1C

2xUh − Uh−1C − (1 + q)t
(
4x2Uh−1 − 2xUh−2C

)

=
2xUh − Uh−1C

2xUh − (1 + q)t4x2Uh−1 −
(
Uh−1 − (1 + q)t2xUh−2

)
C

=
4x2Uh − 2xUh−1C

2x
(
2xUh − (1 + q)t4x2Uh−1

)
−
(
2xUh−1 − (1 + q)t4x2Uh−2

)
C

=
4x2Uh − 2xUh−1C

2x
(
2xUh − Uh−1

)
−
(
2xUh−1 − Uh−2

)
C

=
4x2Uh − 2xUh−1C

2xUh+1 − UhC

= F [h+1].

This completes the induction step, and thus the first equality holds for all h ≥ 0.
The second equality is plain algebra/trigonometry. ¤

Proposition 3. Let |β|hū denote the number of occurrences of ū in β at height h.

Then

∑

β∈B
q|β|

h

ūt|β| =
8x2Uh(x) − 2x(1 + q)Uh−1(x)C(2t)

4xUh+1(x) − (1 + q)Uh(x)C(2t)
, x =

1

2
√

2t
.

Proof. Let G = G(q, t) denote the left hand side of the above identity. It is plain
that G[1] = (1 − qtC)−1 and G[h] = (1 − tG[h−1])−1. Similarly to the proof of
Theorem 2, the result now follows by induction on h. ¤
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Proposition 4. For n, k ≥ 0 we have

cardB[1]
n,k = b(n + k, n − k) =

2k + 1

n + k + 1

(
2n

n − k

)
;

cardB[1]
n =

(
2n

n

)
,

where b(n, k) = n−k+1
n+1

(
n+k

n

)
is a ballot number.

Proof. The ballot number b(n, k) is the number of nonnegative lattice paths from

(0, 0) to (n + k, n − k). Thus, the first claim of the lemma is that |B[1]
n,k| equals

the number of nonnegative lattice paths from (0, 0) to (2n, 2k); let An,k denote the
language over {u, d} obtained from these paths via the usual coding. In addition,
let An = ∪k≥0An,k and A = ∪n≥0An. The characteristic series of A satisfies

A = 1 + uD(u + d)A.

From (3) we also know that

B[1] = 1 + (u + ū)DdB[1].

We exploit the obvious similarity between these two functional equations to define,
by recursion, a length preserving bijection f from B[1] onto A such that β ∈ B[1]

has exactly k occurrences of ū precisely when f(β) ∈ A ends at height 2k:

f(β) =





1 if β = 1,

uβ1df(β2) if β = uβ1dβ2, β1 ∈ D, β2 ∈ B[1],

uβ1uf(β2) if β = ūβ1dβ2, β1 ∈ D, β2 ∈ B[1].

For β ∈ B, let |β|ū denote the number of occurrences of ū in β, and for α ∈ A
let h(α) denote the height at which α ends. To prove that f is length preserving,
bijective, and that 2| · |ū = h ◦ f , we use induction on path-length: f trivially has

these properties as a function from B[1]
0 to A0. Let n be a positive integer and

assume that f has the desired properties as a function from ∪n−1
k=0B

[1]
k to ∪n−1

k=0Ak.
Any β in B[1]

n can be written as β = xβ1dβ2 for some x ∈ {u, ū}, β1 ∈ D and
β2 ∈ B[1]. Therefore,

|f(β)| = 2 + |β1| + |f(β2)| = 2 + |β1| + |β2| = |β|
and

(h ◦ f)(β) = 2|x|ū + (h ◦ f)(β2) = 2|x|ū + 2|β2|ū = 2|β|ū
To prove that f is injective, assume that f(β) = f(β ′), where β′ = x′β′

1dβ′
2 for

some x′ ∈ {u, ū}, β′
1 ∈ D, and β′

2 ∈ B[1]. Then

f(β) = uβ1yf(β2) = uβ′
1y

′f(β′
2) = f(β′),

in which y, y′ ∈ {u, d}. Thus β1 = β′
1, y = y′, and f(β2) = f(β′

2). By the induction
hypothesis, f(β2) = f(β′

2) implies that β2 = β′
2, and hence β = β′.

To prove hat f is surjective, take any α = uα′yα′′ in An, where y ∈ {u, d},
α′ ∈ D, and α′′ ∈ A. By the induction hypothesis, there exists β ′′ in B[1] such that
f(α′′) = β′′; so f(uα′yβ′′) = α. This concludes the proof of the first part of the
lemma.
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Given the first result, the second result may be formulated as saying that the
central binomial coefficient

(
2n
n

)
is the sum of the ballot numbers b(n+k, n−k) for

k = 0, 1, . . . , n. This is a known fact (see [7, p. 79]); indeed

2k + 1

n + k + 1

(
2n

n − k

)
=

(
2n

n − k

)
−
(

2n

n − k − 1

)
,

and hence the sum these numbers is alternating.
For a bijective proof of the second part we consider the set of all lattice paths

from (0, 0) to (2n, 0); let Pn be the language over {u, d} obtained from these
(
2n
n

)

paths via the usual coding, and let P = ∪n≥0Pn. The characteristic series of P
satisfies

P = 1 + uDdP + dD̂uP,

where D̂ is the image of D under the involution on C〈〈u, d 〉〉 defined by u 7→ d and
d 7→ u; this involution has the effect of reflecting a Dyck path in the x-axis. A
length preserving bijection g from B[1] onto P is then recursively defined by

g(β) =





1 if β = 1,

uβ1dg(β2) if β = uβ1dβ2, β1 ∈ D, β2 ∈ B[1],

dβ̂1ug(β2) if β = ūβ1dβ2, β1 ∈ D, β2 ∈ B[1].

Again, by induction on path-length it follows that g is a bijection. ¤

Example. As an illustration of the bijections in the proof of Proposition 4, we
have

• ??? • ??? • ???•
ÄÄÄ •

ÄÄÄ • ??? •
ÄÄÄ • ??? • ???•

ÄÄÄÄÄÄ •
ÄÄÄ •

ÄÄÄÄÄÄ •
f7−→

• ??? •
•
ÄÄÄ • ??? •

ÄÄÄ

• ??? • ??? •
ÄÄÄ •

ÄÄÄ

•
ÄÄÄ •

ÄÄÄ •
ÄÄÄ

•
ÄÄÄ

and
• ??? • ??? • ???•
ÄÄÄ •

ÄÄÄ • ??? •
ÄÄÄ • ??? • ???•

ÄÄÄÄÄÄ •
ÄÄÄ •

ÄÄÄÄÄÄ •
g7−→

• ???•
ÄÄÄ • ???• ??? •

ÄÄÄ • ??? •
• ??? • ??? •

ÄÄÄ •
ÄÄÄ

•
ÄÄÄ •

ÄÄÄ

Proposition 5. For n, k ≥ 0 we have

cardB[2]
n,k =

∑

i≥0

2k + i + 1

n + k + i + 1

(
k − 1

k − i

)(
2n + i

n − k

)
.

Proof. From (9) it follows that

B[2](q, t) =
1 − t(1 + q)C(t)

1 − t(1 + q)(1 + C(t))
.

Using (4) we rewrite this as

B[2](q, t) =
(1 − qtC(t)2)C(t)

1 − (1 + C(t))qtC(t)2
, (11)

and on expanding the right hand side as a geometric series we get

[qk]B[2](q, t) = tkC(t)2k+1(1 + C(t))k−1(δk,0 + C(t)), (12)

where δk,0 is 1 if k = 0, and 0 otherwise. The result is easy to check for k = 0, so
let us assume that k ≥ 1. Then

[qk]B[2](q, t) = tk
∑

i≥0

(
k − 1

i

)
C(t)3k−i+1 = tk

∑

i≥0

(
k − 1

3k − i

)
C(t)i+1.
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From (7) we get

[tnqk]B[2](q, t) =
∑

i≥0

i + 1

n − k + i + 1

(
k − 1

3k − i

)(
2n − 2k + i

n − k

)

=
∑

i≥0

i + 1

n + k + i + 1

(
k − 1

i − 1

)(
2n − i

n − k

)
,

which concludes the proof. ¤

3. Segmented permutations

Let v = v1v2 · · · vn be a word over N without repeated letters. We define the
reduction of v, denoted red(v), by

red(v)(i) = card{ j : vj ≤ vi }.
In other words, red(v) is the permutation of [n] obtained from v by replacing
the smallest letter in v with 1, the second smallest with 2, etc. For instance,
red(19453) = 15342. We will also need a map that is a kind of inverse to red.
For a finite subset V of N, with n = |V |, and a permutation π of [n], we denote
by red−1

V (π) the word over V obtained from π by replacing i in π with the ith
smallest element in V , for all i. Here is an example: If V = {1, 3, 4, 5, 9} then
red−1

V (15342) = 19453.
Given π in Sn and σ in Sk, an occurrence of σ in π is a subword

o = π(i1)π(i2) · · ·π(ik)

of π such that red(o) = σ. If, in addition, ir +1 = ir+1 for each r = 1, 2, . . . , k− 1,
then o is a segment-occurrence of σ in π. We say that π is (σ)k-segmented if there
are exactly k occurrences of σ in π, each of which is a segment-occurrence of σ
in π. A (σ)0-segmented permutation is usually called σ-avoiding, and the set of
σ-avoiding permutations of [n] is denoted Sn(σ).

If π is (σ)k-segmented for some k, then we say that π is σ-segmented. We also
define

Rk
n(σ) = {π ∈ Sn : π is (σ)k-segmented }

and Rn(σ) = ∪k≥0Rk
n(σ). In other words, Rn(σ) is the set of σ-segmented permu-

tations of length n. Let

R(σ; q, t) =
∑

k,n≥0

cardRk
n(σ) qktn.

The first nontrivial case is σ = 12. A permutation is 12-segmented if all its
non-inversions are rises. For instance, the permutation 7653412 is 12-segmented
while 7643512 is not (45 is a non-inversion, but not a rise).

Let π ∈ Rn(12) with n ≥ 1. If the letter 1 precedes the letter b in π, then 1b
is an occurrence of 12 in π. Thus, either 1 is the last letter in π, or 1 is the next
last letter in π and 2 is the last letter in π. In terms of the generating function
R = R(12; q, t) this amounts to

R = 1 + tR + qt2R.

So R is a rational function in t and q. Extracting coefficients we get

cardRk
n(12) =

(
n−k

k

)
and cardRn(12) = Fn,

where Fn is the nth Fibonacci number (i.e., Fn+1 = Fn + Fn−1 with F0 = F1 = 1).
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For the cases σ = 123 and σ = 132, we have the following result.

Theorem 6. Let k ≥ 0 and n ≥ 3k.

The 132-segmented permutations of length n with k occurrences of 132 are in

one-to-one correspondence with bicoloured Dyck paths of length 2n − 4k with k red

up-steps. Thus

cardRk
n(132) = cardBn−2k,k =

(
n − 2k

k

)
Cn−2k,

where the last equality is a consequence of Proposition 1.

The 123-segmented permutations of length n with k occurrences of 123 are in

one-to-one correspondence with bicoloured Dyck paths of length 2n − 4k with k red

up-steps, each of height less than 2. Thus

cardRk
n(123) = cardB[2]

n−2k,k =
∑

i≥0

2k + i + 1

n − k + i + 1

(
k − 1

k − i

)(
2n − 4k + i

n − 3k

)
,

where the last equality is a consequence of Proposition 5.

First proof. Let n be a positive integer, and let π be a 132-segmented permutation
of length n. If the letter n is not part of any occurrence of 132, then we can factor
π as π = π1nπ2, where π1 and π2 are 132-segmented permutations, and π2 < π1

(i.e., every letter in π2 is smaller than every letter in π1). On the other hand, if n
is part of an occurrence of 132, then we can factor π as

π = π1anb π2, where π2 < a < b < π1,

and π1 and π2 are 132-segmented permutations. In particular, a = |π2| + 1 and
b = a + 1. Thus the generating function R = R(132; q, t) satisfies the functional
equation

R = 1 + (t + qt3)R2.

It follows that R = C(t+qt3), where C(t) is the generating function for the Catalan
numbers, and hence [tnqk]R = cardBn−2k,k, as claimed.

Let π ∈ Rk
n(123) with n ≥ 1. Then, either k = 0 and π is 123-avoiding, or k ≥ 1

and π contains at least one occurrence of 123. Let us focus on the latter case, and
let

π = π1abc π2,

where abc is the leftmost occurrence of 123 in π. Then aπ2 is (123)k−1-segmented
and π1c is 123-avoiding, with the additional restriction that aπ2 may not begin with
an occurrence of 123. Moreover,

aπ2 < b < π1c,

or else a non segment-occurrence of 123 would be present. With regard to the gener-
ating function R = R(123; q, t) this decomposition of 123-segmented permutations
amounts to the functional equation

R = C + qt(R̃ − 1)(C − 1), (13)

where C = C(t) is the generating function of the Catalan numbers, and the coef-

ficient of qktn in R̃ = R̃(q, t) is the number of (123)k-segmented permutations of
length n that do not begin with an occurrence of 123. Considering the decomposi-
tion above in the special case when π1 is the empty word, we see that t2q(R̃− 1) is
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the generating function of the number of 123-segmented permutations that begin
with an occurrence of 123; so

R = R̃ + qt2(R̃ − 1). (14)

Solving equations (13) and (14) for R, eliminating R̃, we get

R =
(1 − qt3C2)C

1 − (1 + C)qt3C2
. (15)

It follows from (11) that R = B[2](qt2, t), as claimed. ¤

Second proof. We shall define a bijection

f : R(132) → B[2],

such that |f(π)| = 2(n−2k) and |f(π)|ū = k whenever π ∈ Rk
n(132). Our definition

of f will be recursive and we start by defining that f(ε) = ε, where ε denotes the
empty word. Now, assume that n is a positive integer, and let π be a 132-segmented
permutation of length n. As in the first proof, if the letter n is not part of any
occurrence of 132, then we can factor π as π = π1nπ2, where π1 and π2 are 132-
segmented permutations, and π2 < π1; in this case we define

f(π) = u(f ◦ red)(π1)d(f ◦ red)(π2).

If n is part of an occurrence of 132, then we can factor π as π = π1anb π2 where
π2 < a < b < π1 and π1 and π2 are 132-segmented permutations; in this case we
define

f(π) = ū(f ◦ red)(π1)d(f ◦ red)(π2).

For any β in B, let

λ(β) = 1
2 |β| + 2|β|ū = |β|u + 3|β|ū.

Using induction, it is plain to show that the inverse of f is given by

f−1(ε) = ε;

f−1(uβ1dβ2) = (red−1
V1

◦f−1)(β1)n (red−1
V2

◦f−1)(β2),

where n = λ(β1) + λ(β2) + 1, V1 = [λ(β2) + 1, n − 1], and V2 = [1, λ(β2)];

f−1(ūβ1dβ2) = (red−1
V1

◦f−1)(β1) anb (red−1
V2

◦f−1)(β2),

where a = λ(β2) + 1, b = a + 1, n = λ(β1) + b + 1, V1 = [b + 1, n − 1], and
V2 = [1, a − 1].

To find a bijective proof of the second part of Theorem 6 we will first discuss a
decomposition of paths in B[2] which is similar to the decomposition of permutations
in R(123) underlying (13). Let β ∈ B[2]. If there is a leftmost occurrence of ū in β
then the height of that ū must be either 0 or 1. Thus we have

B[2] = D + DūB[1]dB[2] + DuDūDdB[1]dB[2] (16)

whose commutative counterpart is

B[2] = C + qtCB[1]B[2] + qt2C3B[1]B[2]

= C + qt−1(tC + t2C3)tB[1]B[2]. (17)
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Since C = 1 + tC2, the factor tC + t2C3 simplifies to C − 1. Moreover, if we let
B̃[2] denote the set of paths in B[2] whose first step is u (i.e., not ū), then

B̃[2] = 1 + uB[1]dB[2],

and, as a consequence, tB[1]B[2] = B̃[2] − 1. Thus (17) can be rewritten as

B[2] = C + qt−1(C − 1)(B̃[2] − 1),

which should be compared to (13). This suggests that we should be able to uniquely

decompose any path β in B[2] \ D into two nonempty paths β′ ∈ D and β′′ ∈ B̃[2]

such that |β| = |β′| + |β′′| − 1 and |β|ū = |β′′|ū + 1. Indeed, using (16), such a
decomposition is defined by the map

β1ūβ2dβ3 7→ 〈β1ud, uβ2dβ3 〉,
β1uβ′

1ūβ′′
2 dβ2dβ3 7→ 〈β1uβ′

1uβ′′
1 dd, uβ2dβ3 〉,

where β1, β
′
1, β

′′
1 ∈ D, β2 ∈ B[1], and β3 ∈ B[2]. We denote by Φ the inverse of this

map; it is obtained by simply reversing the arrows.
Let h be any bijection from Sn(123) to Dn. For definiteness, we can take h to

be the bijection Ψ given by Krattenthaler in [5, p. 522]. (A description of Ψ can
be found in the example following this proof.) We shall define a bijection

g : R(123) → B[2]

such that |g(π)| = 2(n − 2k) and |g(π)|ū = k, whenever π ∈ Rk
n(123). If π avoids

123 then let g(π) = h(π). If π does not avoid 123 then, as in the first proof, we can
write π = π1abc π2, where abc is the leftmost occurrence of 123 in π; in this case,
we let

g(π) = Φ
〈
(g ◦ red)(π1c), (g ◦ red)(aπ2)

〉
.

Proving that g is invertible is similar to proving that f is invertible. ¤

We remark that the bijection f from the first part of the preceding proof maps
132-avoiding permutations onto Dyck paths. In fact, the restriction of f to S(132)
is a bijection due to Krattenthaler [5, p. 512].

Example 7. The permutation 846572931 is 132-segmented. It has two occurrences
of 132, namely 465 and 293. We illustrate the bijection f , from the first part of the
preceding proof, by finding the image of 846572931 under f :

f(846572931) = ūf(84657)df(1) = ūudf(4657)dud =

= ūuduf(465)ddud = ūuduūdddud.

For convenience we have not reduced the permutations in the intermediate steps.
To give an example of how g, from the second part of the preceding proof,

is applied, we first need to describe Krattenthaler’s [5, p. 522] bijection Ψ from
Sn(123) to Dn. Let π = a1a2 · · · an be a 123-avoiding permutation. Determine all
the right-to-left maxima in π. A right-to-left maximum is an element ai such that
ai > aj for all j > i. Let the right-to-left maxima in π be m1, m2, . . . , ms, from
right to left, so that

π = πsms · · ·π2m2π1m1,

where πi is the subword of π between mi+1 and mi. If there is an occurrence ab of
12 in π then abmi is an occurrence of 123 in π. Therefore, the elements in πi are
in decreasing order. Moreover, we have πi < πi+1.
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The Dyck path Ψ(π) is generated from right to left: Read π from right to left.
Any right-to-left maximum mi is translated into mi − mi−1 up-steps (with the
convention m0 = 0). Any subword πi is translated into |π| + 1 down-steps.

We are now ready for an illustration of g. The permutation 957841362 is 123-
segmented. It has two occurrences of 123, namely 578 and 136. To find the image
of 957841362 under g we proceed as follows:

g(957841362) = Φ〈(g ◦ red)(98), (g ◦ red)(541362)〉;
(g ◦ red)(98) = Ψ(21) = udud;

(g ◦ red)(541362) = Φ〈(g ◦ red)(546), (g ◦ red)(12)〉;
(g ◦ red)(546) = Ψ(213) = uuuddd;

(g ◦ red)(12) = Ψ(12) = uudd;

Φ〈uuuddd, uudd〉 = uūuddudd;

Φ〈udud, uūuddudd〉 = udūūuddudd.

Thus g(957841362) = udūūuddudd.

Corollary 8. For k ≥ 0 and n ≥ 0 we have

card Rk
n(123) ≤ cardRk

n(132).

Proof. The result follows immediately from B[2]
n,k ⊆ Bn,k and Theorem 6. ¤

Corollary 9. The generating functions R(132; q, t) and R(123; q, t) admit the fol-

lowing continued fraction expansions:

R(132; q, t) =
1

1 − t + qt3

1 − t + qt3

1 − t + qt3

. . .

; R(123; q, t) =
1

1 − t + qt3

1 − t + qt3

1 − t

1 − t

1 − t

. . .

.

Proof. Using (9) and Theorem 6 the result follows from iterating the identity C(t) =
1/(1 − tC(t)). ¤

Proposition 10. The generating function

R(123, 132; p, q, t) =
∑

π∈R(123)∩R(132)

p(123) πq(132) πt|π|

counting {123, 132}-segmented permutations by occurrences of 123 and 132 is the

following rational function:

R(123, 132; p, q, t) =
1 − t

1 − 2t − (p + q)t3
=

1

1 − t + (p + q)t3

1 − t

.

Proof. Let n be a positive integer, and let π be a {123, 132}-segmented permutation
of length n. We distinguish between three cases:
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(a) If the letter n is not part of any occurrence of 123 or 132, then we can factor
π as π = π1nπ2, where π1 is 12-avoiding, π2 is {123, 132}-segmented, and
π2 < π1.

(b) If the letter n is part of an occurrence of 123, then we can factor π as
π = π1abnπ2, where π1 is 12-avoiding, π2 is {123, 132}-segmented, and
π2 < a < b < π1.

(c) If the letter n is part of an occurrence of 132, then we can factor π as
π = π1anbπ2, where π1 is 12-avoiding, π2 is {123, 132}-segmented, and
π2 < a < b < π1.

It is clear that an occurrence of 123 can not overlap with an occurrence of 132 with-
out creating a non-segment occurrence of 123 or 132. Therefore, the cases (a) and
(b) are mutually exclusive. Thus the generating function R = R(123, 132; p, q, t)
satisfies

R = 1 + R(12; 0, t)(t + pt3 + qt3)R, (18)

where R(12; 0, t) = 1/(1−t) is the generating function for 12-avoiding permutations.
Solving (18) for R we obtain the desired result. ¤

4. Tables

card Bn,k :

n\k 0 1 2 3 4 5 6 7
0 1
1 1 1
2 2 4 2
3 5 15 15 5
4 14 56 84 56 14
5 42 210 420 420 210 42
6 132 792 1980 2640 1980 792 132
7 429 3003 9009 15015 15015 9009 3003 429

card B
[1]
n,k :

n\k 0 1 2 3 4 5 6 7
0 1
1 1 1
2 2 3 1
3 5 9 5 1
4 14 28 20 7 1
5 42 90 75 35 9 1
6 132 297 275 154 54 11 1
7 429 1001 1001 637 273 77 13 1
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card B
[2]
n,k :

n\k 0 1 2 3 4 5 6 7
0 1
1 1 1
2 2 4 2
3 5 14 13 4
4 14 48 62 36 8
5 42 165 264 217 92 16
6 132 572 1066 1104 670 224 32
7 429 2002 4186 5130 3965 1912 528 64
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CATALAN CONTINUED FRACTIONS AND INCREASING

SUBSEQUENCES IN PERMUTATIONS

PETTER BRÄNDÉN, ANDERS CLAESSON, AND EINAR STEINGRÍMSSON

Abstract. We call a Stieltjes continued fraction with monic monomial nu-

merators a Catalan continued fraction. Let ek(π) be the number of increasing

subsequences of length k + 1 in the permutation π. We prove that any Cata-

lan continued fraction is the multivariate generating function of a family of

statistics on the 132-avoiding permutations, each consisting of a (possibly in-

finite) linear combination of the eks. Moreover, there is an invertible linear

transformation that translates between linear combinations of eks and the cor-

responding continued fractions.

Some applications are given, one of which relates fountains of coins to

132-avoiding permutations according to number of inversions. Another re-

lates ballot numbers to such permutations according to number of right-to-left
maxima.

1. Introduction and main results

We denote by Sn the set of permutation on {1, 2, . . . , n}. Given π = a1a2 · · · an in
Sn and τ = b1b2 · · · bk in Sk, we say that π has j occurrences of the pattern τ if there
are exactly j different sequences 1 ≤ i1 < i2 < · · · < ik ≤ n such that the numbers
ai1ai2 · · · aik

are in the same relative order as b1b2 · · · bk. We use the symbol τ also
for the permutation statistics defined by τ(π) = j if π has j occurrences of the
pattern τ . If τ(π) = 0 we say that π is τ -avoiding.

Everywhere in this paper a permutation on S ⊂ N, with |S| = n, will be identified
with the permutation in Sn whose letters are in the same relative order as the
letters of the given permutation on S. As an example, the permutation 17358 on
{1, 3, 5, 7, 8} is identified with 14235 in S5.

Let Sn(132) be the set of 132-avoiding permutations of length n, and let S(132) =
⋃

n≥0 Sn(132). Suppose π = π1nπ2 ∈ Sn(132). Then each letter in π1 must be
greater than any letter in π2, where both π1 and π2 must necessarily be 132-avoiding.
Conversely, every permutation of this form is clearly 132-avoiding. This observation
immediately yields a functional relation for the generating function, C(x), for the
number of 132-avoiding permutations according to length, namely

C(x) = 1 + xC(x)2. (1)

Readers unfamiliar with the symbolic method implicitly used in this derivation may
consult, for example, [3]. Solving for C(x) in (1) we obtain

C(x) =
1 −

√
1 − 4x

2x
,

Date: January 21, 2004.
Key words and phrases. Catalan, continued fraction, 132-avoiding, increasing subsequence,

permutation.
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which is the familiar generating function of the Catalan numbers, Cn = 1
n+1

(

2n
n

)

.

Thus we have derived the well known fact [5, p. 239] that the cardinality of Sn(132)
is the nth Catalan number. Rewriting (1) in the form

C(x) =
1

1 − xC(x)

and iterating this identity we arrive at the formal continued fraction expansion

C(x) =
1

1 − x

1 −
x

. . .

,

which is the simplest instance of the continued fractions studied in this paper.
A Stieltjes continued fraction is a continued fraction of the form

C =
1

1 − m1

1 −
m2

. . .

,

where each mi is a monomial in some set of variables. We define a Catalan continued
fraction to be a Stieltjes continued fraction with monic monomial numerators.

For k ≥ 1, we denote by ek−1 the pattern/statistic 1 2 · · · k. Thus e0(π) is the
length |π| of π, and e1(π) counts the number of non-inversions in π. We also define
e−1(π) = 1 for all permutations π (that is, we declare all permutations to have
exactly one increasing subsequence of length 0).

The main purpose of this paper is to show that any Catalan continued fraction
is the multivariate generating function of a family of statistics, consisting of linear
combinations of the eks. Moreover, there is an invertible linear transformation
that translates between linear combinations of eks and the corresponding continued
fractions.

A theorem of Robertson, Wilf and Zeilberger [12] gives a simple continued frac-
tion that records the joint distribution of the patterns 12 and 123 on permutations
avoiding the pattern 132.

Generalizations of this theorem have already been given, by Krattenthaler [6],
by Mansour and Vainshtein [8] and by Jani and Rieper [4]. However, in none of
these papers is there explicit mention of the joint distribution of the statistics under
consideration. We now state this theorem; it is a generalization of [12, Theorem 1].
Moreover, this theorem is implicit in [8, Proposition 2.3] and it also follows, with
minor changes, from the corresponding proofs in [4, Corollary 7] and [6, Theorem 1].
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Theorem 1. The following continued fraction expansion holds:

∑

π∈S(132)

∏

k≥0

x
ek(π)
k =

1

1 − x
(0

0)
0

1 − x
(1

0)
0 x

(1

1)
1

1 − x
(2

0)
0 x

(2

1)
1 x

(2

2)
2

1 − x
(3

0)
0 x

(3

1)
1 x

(3

2)
2 x

(3

3)
3

. . .

in which the (n + 1)st numerator is

n
∏

k=0

x
(n

k)
k .

Proof. Let π = π1nπ2 ∈ Sn(132). Since every increasing subsequence of length
k + 1 is contained either in π1, or in π2, or may consist of a subsequence of length
k in π1 ending with the n in π1nπ2, we have

ek(π) = ek(π1) + ek−1(π1) + ek(π2), k ≥ 0.

Let x = (x0, x1, . . .), where the xis are indeterminates, and let

w(π;x) =
∏

k≥0

x
ek(π)
k .

Then w(π;x) = x0w(π1;x
∗)w(π2;x), where x∗ = (x0x1, x1x2, . . .). Consequently,

the generating function

C(x) =
∑

π∈S(132)

w(π,x)

satisfies
C(x) = 1 + x0C(x∗)C(x),

or, equivalently,

C(x) =
1

1 − x0C(x∗)
,

and the theorem follows by induction. ¤

To state and prove our main theorem we need some definitions: Let

A = {A : N × N → Z | ∀n (Ank = 0 for all but finitely many k)},
be the ring of all infinite matrices with a finite number of non zero entries in each
row, with multiplication defined by (AB)nk =

∑∞
i=0 AniBik.

With each A ∈ A we now associate a family of statistics {〈e, Ak〉}k≥0, defined
on S(132), where e = (e0, e1, . . .), Ak is the kth column of A, and

〈e, Ak〉 =
∑

i

Aikei.

Let q = (q0, q1, . . .), where the qis are indeterminates. For each A ∈ A and
π ∈ S(132) we define:

(1) the weight µ(π,A;q) of π with respect to A, by

µ(π,A;q) =
∏

k≥0

q
〈e,Ak〉(π)
k ,
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(2) the multivariate generating function, associated with A, of the statistics
{〈e, Ak〉}k≥0, by

FA(q) =
∑

π∈S(132)

µ(π,A;q),

(3) the Catalan continued fraction associated with A, by

CA(q) =
1

1 −
∏

qA0k

k

1 −
∏

qA1k

k

1 −
∏

qA2k

k

1 −
∏

qA3k

k

. . .

.

Note that the product in part 1 above is finite by the definition of A together
with the fact that ei(π) = 0 whenever i > |π|.

In what follows we will use the convention that
(

n
k

)

= 0 whenever n < k or k < 0.

Theorem 2. Let A ∈ A. Then

FA(q) = CBA(q),

where B = [
(

i
j

)

], and conversely

CA(q) = FB−1A(q).

In particular, all Catalan continued fractions are generating functions of statistics
on S(132) consisting of (possibly infinite) linear combinations of eks.

Proof. We have

µ(π,A;q) =
∏

k≥0

q
〈e,Ak〉(π)
k

=
∏

k≥0

∏

j≥0

q
Ajkej(π)
k

=
∏

j≥0

(

∏

k≥0

q
Ajk

k

)ej(π)

.

Let xj =
∏

k≥0 q
Ajk

k . Applying Theorem 1 we get a continued fraction in which the

(n + 1)st numerator is

∏

j≥0

x
(n

j)
j =

∏

j≥0





∏

k≥0

q
Ajk

k





(n

j)

=
∏

k≥0

q
〈((n

0),(n

1),(n

2),...),Ak〉

k ,

which is the (n + 1)st numerator in CBA(q). Hence

FA(q) = CBA(q).

Observing that B−1 = [(−1)i−j
(

i
j

)

] ∈ A we also get

CA(q) = FB−1A(q).

¤
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Corollary 3. If f =
∑

k≥0 λkek with λk ∈ Z, then the generating function for the

statistic f over S(132) admits the Catalan continued fraction expansion

∑

π∈S(132)

xf(π)t|π| =
1

1 − xf(e0)t

1 − xf(e1)−f(e0)t

1 − xf(e2)−f(e1)t

. . .

.

where in the continued fraction ek−1 is the permutation 12 · · · k.

Proof. The result follows from Theorem 2 and the observation

f(en) − f(en−1) =
∑

k

λk

(

ek(en) − ek(en−1)
)

=
∑

k

λk

((

n + 1

k + 1

)

−
(

n

k + 1

))

=
∑

k

λk

(

n

k

)

.

¤

2. Dyck paths

Before giving applications of Theorem 2 we review some theory on Dyck paths
and their relation to 132-avoiding permutations.

A Dyck path of length 2n is a path in the integral plane from (0, 0) to (2n, 0),
consisting of steps of type u = (1, 1) and d = (1,−1) and never going below the
x-axis. We call the steps of type u up-steps and those of type d we call down-steps.
The height of a step in a Dyck path is the height above the x-axis of its left point.

A nonempty Dyck path w can be written uniquely as uw1dw2 where w1 and w2

are Dyck paths. This decomposition is called the first return decomposition of w,
because the d in uw1dw2 corresponds to the first place, after (0, 0), where the path
touches the x-axis.

In [6] a bijection Φ between Sn(132) and the set of Dyck paths of length 2n
is studied. This bijection, as a function defined on S(132), can also be defined
recursively by

Φ(ε) = ε and Φ(π) = uΦ(π1)dΦ(π2),

where π = π1nπ2 ∈ Sn(132) and ε is the empty permutation/Dyck path. For
example, letting Φ operate on the permutation 453612 we successively obtain

453612 → u453d12 → uu4d3du1d → uuuddudduudd.

In what follows, when we talk about a correspondence between a Dyck path and a
132-avoiding permutation, we will always mean the correspondence defined by Φ.

Using Φ we can express ek(π) in terms of the Dyck path corresponding to π.
Namely (see [6]),

ek(π) =
∑

d in Φ(π)

(

h(d) − 1

k

)

, (2)
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where the sum is over all down-steps d in Φ(π) and h(d) is the height of the left
point of d. This can also be shown by induction over the length of π. Indeed, for a
nonempty 132-avoiding permutation π = π1nπ2, we have

ek(π) = ek(π1) + ek−1(π1) + ek(π2).

On the other hand, defining fk(w) =
∑

d in w

(

h(d)−1
k

)

for w = uw1dw2 we have

fk(w) =
∑

d in w

(

h(d) − 1

k

)

=
∑

d in w1

(

h(d)

k

)

+
∑

d in w2

(

h(d) − 1

k

)

=
∑

d in w1

(

h(d) − 1

k

)

+
∑

d in w1

(

h(d) − 1

k − 1

)

+ fk(w2)

= fk(w1) + fk−1(w1) + fk(w2).

Since ek(ε) = fk(ε), it follows by induction over the length of π that fk(Φ(π)) =
ek(π), which is the same as (2).

3. Applications

We now give some applications of Theorem 2. Some of these relate known con-
tinued fractions to the statistics ek, whereas others relate these statistics to various
other combinatorial structures.

3.1. A continued fraction of Ramanujan. The continued fraction

R(q, t) =
1

1 −
qt

1 − q3t

1 − q5t

1 − q7t

. . .

was studied by Ramanujan (see [10, p. 126]). It was shown in [2] that the coefficient
to tnqk in the expansion of R(q, t) is the number of Dyck paths of length 2n and
area k. Using the converse part of Theorem 2, we would like to find the linear
combinations of the statistics eks that have as bivariate generating function the
continued fraction R(q, t). Comparing R(q, t) with the CA(q) defined just before
Theorem 2, we have

A =















1 1 0 0 · · ·
3 1 0 0 · · ·
5 1 0 0 · · ·
7 1 0 0 · · ·
...

...
...

...
. . .















.

Since
∑

k≥0

(2k + 1)(−1)n−k

(

n

k

)

= δn0 + 2δn1,
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where δij is the Kronecker delta, we get

B−1A =











1 1 0 · · ·
2 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .











,

and hence, recalling that the coefficient of the linear combinations of the statistics
ek are the columns of this matrix, we have

R(q, t) =
∑

π∈S(132)

qe0(π)+2e1(π)t|π|,

where we prefer to use two different notations e0(π) and |π| for the length of π.
Thus R(q, t) records the statistic e0 + 2e1 on 132-avoiding permutations. In fact,
the bijection Φ translates the statistic e0 + 2e1 into the sum of the heights of the
steps in the corresponding Dyck path, which in turn is easily seen to equal area.

3.2. Fountains of coins. A fountain of coins is an arrangement of coins in rows
such that the bottom row is full (that is, there are no “holes”), and such that
each coin in a higher row rests on two coins in the row below (see Figure 1). Let
F (x, t) =

∑

n,k f(n, k)xktn, where f(n, k) counts the number of fountains with n

coins in the bottom row and k coins in total. In [9] it is shown that

F (x, t) =
1

1 −
xt

1 − x2t

1 − x3t

1 − x4t

. . .

A straightforward application of Theorem 2 gives the following result.

Proposition 4. The number f(n, k) equals the number of permutations π ∈ Sn(132)
with (e0 + e1)π = k. Equivalently, f(n, k) equals the number of permutations in
Sn(132) with k − n non-inversions.

If we reverse each permutation in Sn(132) we see that f(n, k) also equals the
number of 231-avoiding permutations in Sn with exactly k − n inversions.

We also give a combinatorial proof of Proposition 4, by constructing a bijection
between the set of Dyck paths of length 2n and the set of fountains with n coins
in the bottom row. Let Ψ be the bijection that maps a Dyck path to the fountain
obtained by placing coins at the centre of all lattice squares inside the path, in the
way that Figure 1 suggests.

The ith slant line in a fountain is the sequence of coins starting with the ith
coin from the left in the bottom row and continuing in the northeast direction.
The height of a down-step thus corresponds to the number of coins in the slant
line ending at the left point of the down-step d. Now, e0 counts the number of

coins in the bottom row and
(

h(d)−1
1

)

is one less than the number of coins in the
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Figure 1. A fountain of coins and the corresponding Dyck path.

corresponding slant line (see the end of Section 2). Thus e0 + e1 counts the total
number of coins in the fountain.

3.3. Increasing subsequences. The total number of increasing subsequences in
a permutation is counted by e0 + e1 + · · · . An application of Theorem 2 gives the
following continued fraction for the distribution of e0 + e1 + · · · :

∑

π∈S(132)

xe0π+e1π+···t|π| =
1

1 − xt

1 − x2t

1 − x4t

1 −
x8t

. . .

3.4. Right-to-left maxima and ballot numbers. We say that an increasing
subsequence π(i1)π(i2) · · ·π(ik) of π ∈ Sn is right maximal if π(ik) < π(j) implies
j < ik (so that the sequence can not be extended to the right).

Proposition 5. Let π ∈ Sn(132) and let mk(π) be the number of right maximal
increasing subsequences of π of length k + 1. Then

mk(π) = ek(π) − ek+1(π) + ek+2(π) − · · · .

In particular, the number of right-to-left maxima in π equals

e0(π) − e1(π) + e2(π) − e3(π) + · · · .

Proof. It suffices to prove that for all π ∈ S(132) and k ≥ 0 we have mk(π) +
mk+1(π) = ek(π). The statistic ek counts all increasing sequences of length k+1 in
π. If such a sequence is right maximal, it is counted by mk+1. It therefore suffices
to show that every increasing subsequence of length k that is not right maximal can
be associated to a unique right maximal subsequence of length k+1, and conversely.

If an increasing subsequence of length k is not right maximal, it can be extended
to a right maximal one of length k + 1 and we show that this can only be done in
one way. Suppose x is the last letter of the original sequence and that the sequence
can be extended to a right maximal one by adjoining either y or z, where y comes
before z in π. Then y must be greater than z, so x, y, z form a 132-sequence which
is contrary to the assumption that π is 132-avoiding.

Conversely, deleting the last letter in a right maximal sequence of length k + 1
clearly gives a non-right maximal sequence of length k. ¤
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Define

Mk(x, t) =
∑

π∈S(132)

xmk(π)t|π|.

To apply Corollary 3 we note that

mk(en) − mk(en−1) =

(

n

k

)

−
(

n

k + 1

)

+

(

n

k + 2

)

− · · · =

(

n − 1

k − 1

)

,

so the (n + 1)st numerator in the Catalan continued fraction expansion of Mk(x, t)

is tx(n−1

k−1). Define

Ek(x, t) =
∑

π∈S(132)

xek(π)t|π|.

Since
(

n−1
−1

)

is naturally defined to be δn0, Theorem 2 yields, for all k ≥ −1, that

Ek(x, t) is the continued fraction with (n + 1)st numerator tx(n

k). This leads to the
following observation.

Proposition 6. For all k ≥ 0 we have

Mk(x, t) =
1

1 − tEk−1(x, t)
.

The ballot number b(n, k) is the number of paths from (0, 0) to (n + k, n − k)
that do not go below the x-axis. It is well known that the ballot number b(n, k) is

equal to n+1−k
n+1

(

n+k
n

)

. Define B(x, t) =
∑

n,k b(n, k)xktn. Then (see [11, p 152])

B(x, t) =
C(xt)

1 − tC(xt)
,

where C(x) is the generating function for the Catalan numbers.

Proposition 7. The number of permutations in Sn(132) with k right-to-left max-
ima equals the ballot number

b(n − 1, n − k) =
k

2n − k

(

2n − k

n

)

,

and

b(n − 1, k) =
n − k

n + k

(

n + k

k

)

counts the number of permutations of length n with k right maximal increasing
subsequences of length two.

Proof. By Proposition 6,

M0(x, t) =
1

1 − xtC(t)

records the distribution of right-to-left maxima. Since

B(x−1, xt) =
C(t)

1 − xtC(t)

we have

M0(x, t) = 1 + xtB(x−1, xt) = 1 +
∑

n,k

b(n − 1, n − k)xktn,
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and the first assertion follows. For the second assertion, observe that by Proposi-
tion 6,

M1(x, t) =
1

1 − tC(xt)
.

Furthermore,
M1(x, t) = M0(x

−1, xt) = 1 + tB(x, t),

which concludes the proof. ¤

The first assertion of Proposition 7 can be proved bijectively using the map Φ in
Section 2. In fact, the number of right-to-left maxima of π is equal to the number
of returns in Φ(π), that is, the number of times the path Φ(π) intersects the x-axis.
This number is known to have a distribution given by b(n − 1, n − k) (see [1]).

3.5. Narayana numbers. The generating function N(x, t) =
∑

n,k N(n, k)xktn

for the Narayana numbers N(n, k) = 1
n

(

n
k

)(

n
k+1

)

satisfies the functional equation

(see for example [13])

N(x, t) = 1 + xtN2(x, t) − xtN(x, t) + tN(x, t).

Equivalently,

N(x, t) =
1

1 − t

1 − xtN(x, t)

.

This allows us to express N(x, t) as a continued fraction:

N(x, t) =
1

1 −
t

1 − tx

1 − t

1 − tx

. . .

.

Proposition 8. The statistic s = e1−2e2+4e3−· · · has the Narayana distribution
over S(132), that is,

∑

π∈S(132)

xs(π)t|π| =
∑

n,k

N(n, k)xktn.

Proof. This follows immediately from Theorem 2 and the identity

∑

k odd

(−1)n−k

(

n

k

)

= (−2)n−1, for n > 0.

¤

Now
∑

k≥1

(−2)k−1fk(w) =
∑

k≥1

∑

d in w

(−2)k−1

(

h(d) − 1

k

)

=
∑

d in w

1 + (−1)h(d)

2

so the interpretation of e1 − 2e2 + 4e3 − · · · in terms of Dyck paths is the number
of down-steps starting at even height, whose distribution is known [7] to be given
by the Narayana numbers.
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A PERMUTATION GROUP DETERMINED BY

AN ORDERED SET

ANDERS CLAESSON, CHRIS D. GODSIL, AND DAVID G. WAGNER

Abstract. Let P be a finite ordered set, and let J(P ) be the distributive

lattice of order ideals of P . The covering relations of J(P ) are naturally asso-

ciated with elements of P ; in this way, each element of P defines an involution

on the set J(P ). Let Γ(P ) be the permutation group generated by these in-

volutions. We show that if P is connected then Γ(P ) is either the alternating

or the symmetric group. We also address the computational complexity of

determining which case occurs.

Let P be a finite ordered set, and let J(P ) be the distributive lattice of order
ideals (also called down–sets) of P . For each p ∈ P , define a permutation σp on
J(P ) as follows: for every S ∈ J(P ),

σp(S) :=







S ∪ {p} if p is minimal in P r S,

S r {p} if p is maximal in S,

S otherwise.

Each of these permutations is an involution. We let Γ(P ) denote the subgroup of
the symmetric group Sym(J(P )) generated by all these involutions. Plain curiosity
led us to wonder about the structure of these permutation groups. As we shall see,
this can be determined quite precisely.

As an example, for

P =

c d

a b

?????

we may number the down–sets {∅, a, b, ab, bd, abc, abd, abcd} of P by 1 through 8,
and then

J(P ) =

8

6

d ÄÄÄÄÄ
7

c
?????

4
c

?????
d

ÄÄÄÄÄ
5

a
?????

2

b ÄÄÄÄÄ
3

a

?????
d

ÄÄÄÄÄ

1
a

?????
b

ÄÄÄÄÄ

and















σa = (1 2)(3 4)(5 7)
σb = (1 3)(2 4)
σc = (4 6)(7 8)
σd = (3 5)(4 7)(6 8)

Date: January 21, 2004.

Key words and phrases. ordered set, distributive lattice, permutation group.
Research supported by operating grants from the Natural Sciences and Engineering Research

Council of Canada.
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in which we have labeled the edges of the Hasse diagram of J(P ) to indicate the
action of each σp on J(P ). By using GAP [1] (or otherwise) one finds that Γ(P ) is
the symmetric group Sym(J(P )) in this case.

We use the following notation for ordered sets. The set of minimal elements of
P is Pmin and the set of maximal elements of P is Pmax. A covering relation in P

is denoted by a <· b. For S ⊆ P we let ↓S = {p ∈ P : p ≤ b for some b ∈ S}
denote the down–set (order ideal) generated by S, we let ↑S = {p ∈ P : b ≤
p for some b ∈ S} denote the up–set (dual order ideal) generated by S, and we let
l S = ↓S ∪ ↑S be the set of elements comparable with S. The set P with the
opposite order is denoted by P op. For more background on finite ordered sets and
distributive lattices, see Chapter 3 of Stanley [3], for instance.

The first observation is completely elementary.

Lemma 1. Let P and Q be disjoint finite ordered sets. Then

Γ(P ∪ Q) = Γ(P ) × Γ(Q).

Proof. Since P ∪ Q is the disjoint union of P and Q we may regard J(P ∪ Q) as
J(P )× J(Q) via the bijection S ↔ (S ∩P, S ∩Q). For such a down–set S of P ∪Q

we have σp(S) = (σp(S ∩ P ), S ∩ Q) for all p ∈ P , and σq(S) = (S ∩ P, σq(S ∩ Q))
for all q ∈ Q. This proves the result. ¤

The problem is thus reduced to determining Γ(P ) for connected ordered sets P .

Theorem 1. Let P be a finite connected ordered set. Then Γ(P ) is either the
alternating group Alt(J(P )) or the symmetric group Sym(J(P )).

This is, of course, something of a disappointment – we had hoped that some
ordered sets would exhibit groups with more interesting structure. Our proof of
Theorem 2 is by induction on |J(P )|. We begin with a few simple observations.

Lemma 2. For any finite ordered set P , the permutation group Γ(P ) acts transi-
tively on J(P ).

Proof. This follows immediately from connectedness of the Hasse diagram of J(P ).
¤

Lemma 3. For any finite ordered set P , Γ(P op) ' Γ(P ).

Proof. One checks that the bijection S 7→ P r S from J(P ) to J(P op) commutes
with the actions of Γ(P ) on J(P ) and Γ(P op) on J(P op). ¤

An element of an ordered set is extremal if it is either minimal or maximal.

Lemma 4. Every finite connected ordered set P with at least two elements has an
extremal element p ∈ P such that P r {p} is also connected.

Proof. Form the bipartite graph G with bipartition (Pmin, Pmax) and with edges
a ∼ b whenever a < b in P . Then G has at least two elements, and P is connected
if and only if G is connected. Let T be a spanning tree of G, and let p be a leaf of
T . Then G r {p} is connected, so that P r {p} is connected. ¤

Lemma 5. Let P be a finite ordered set, and let p ∈ Pmax. Then

1

2
|J(P )| ≤ |J(P r {p})| < |J(P )|.

Further, if P is connected and |P | ≥ 2 then the first inequality is strict.
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Proof. The second inequality is trivial. Let L be the set of down–sets of P which
contain p, so that J(P ) = J(P r{p})∪L. The function from L to J(P r{p}) given
by S 7→ Sr{p} is injective, so that |L| ≤ |J(Pr{p})| and the first inequality follows.
If equality holds then the above function is a bijection, so that p ∈ Pmin ∩ Pmax.
When |P | ≥ 2 this implies that P is not connected. ¤

Lemma 6. Let P be a finite ordered set, and let p ∈ Pmax. Then Γ(P r {p}) is a
quotient of a subgroup of Γ(P ).

Proof. The subgroup H = 〈σa : a ∈ P r {p}〉 of Γ(P ) has two orbits on J(P )
– namely J(P r {p}) and L, with the notation of the proof of Lemma 6. The
homomorphism γ 7→ γ|J(Pr{p}) from H to Γ(P r {p}) is surjective, and the result
follows. ¤

Proposition 2. Let P be a finite connected ordered set. Then Γ(P ) is 2–transitive
(and hence primitive).

Proof. Since Γ(P ) is transitive, by Lemma 3, it suffices to show that the stabilizer
Γ(P )∅ of ∅ in Γ(P ) is transitive on J(P ) r {∅}. We prove this by induction on |P |,
the basis |P | = 1 being trivial.

For the induction step |P | ≥ 2, so that by Lemma 5 there is an extremal element
p ∈ P such that P r {p} is connected. By Lemma 4, (replacing P by P op if
necessary) we may assume that p is maximal in P .

For each A ⊆ Pmin, let JA(P ) be the set of down–sets S ∈ J(P ) such that
S ∩ Pmin = A. Each of these is a distributive lattice – in fact JA(P ) ' J(PA) in
which PA is obtained by deleting the up–set ↑(Pmin r A) from P , then deleting the
set A of minimal elements of the result; see Figure 1 for an example. The covering
relations of J(PA) correspond to elements of PA ⊆ P r Pmin. By Lemma 3, Γ(PA)
acts transitively on J(PA). Therefore, the subgroup D = 〈σv : v ∈ P r Pmin〉 of
Γ(P ) acts transitively on each of the sets JA(P ) separately, for all A ⊆ Pmin. In
fact, these are the orbits of D acting on J(P ). The subgroup D is contained in the
stabilizer Γ(P )∅.

Now, P r {p} is connected, so that Γ(P r {p}) is 2–transitive on J(P r {p}), by
induction. Since Γ(Pr{p}) is a quotient of a subgroup of Γ(P ), it follows that Γ(P )∅
is transitive on J(P r {p}) r {∅} as well. Since J(Pmin) r {∅} ⊆ J(P r {p}) r {∅},
it follows that J(Pmin)r{∅} is contained in a single orbit of Γ(P )∅ acting on J(P ).
Since J(P ) r {∅} is the union of the JA(P ) for all ∅ 6= A ⊆ Pmin, it follows that
Γ(P )∅ acts transitively on J(P ) r {∅}. This completes the induction step, and the
proof. ¤

A well–known lemma ([4] Theorem 13.3) states that if a primitive permutation
group of degree n contains a 3–cycle then it contains Alt(n). We can apply this in
the following circumstance. A covering relation a <· b in P is dominant provided
that every element of P is comparable with either a or b.

Proposition 3. If a finite ordered set P has a dominant covering relation, then
Alt(J(P )) ≤ Γ(P ).

Proof. Notice that since P has a dominant covering relation a <· b, it follows that
P is connected. Proposition 8 thus implies that Γ(P ) is primitive. We claim that
the element γ = σbσaσbσa of Γ(P ) is a 3–cycle, which suffices to prove the result.
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•

•

ÄÄÄÄÄÄÄÄÄ • •

?????????

•

ÄÄÄÄÄÄÄÄÄ •

?????????

ÄÄÄÄÄÄÄÄÄ •

Jab(P )

?????????

• •

↓{d}?????????

ÄÄÄÄÄÄÄÄÄ •

•

↓{c}

Ja(P )

?????????
•

↓{e}

Jb(P )

ÄÄÄÄÄÄÄÄÄ

•

↓{a} ↓{b}

J∅(P )

Figure 1. The partition of J(P ) for P =
c d e

a

33 ®®
b

33 ®®

Consider any down–set S of P on which both σa and σb act nontrivially. Then
we have either a ∈ Smax or a ∈ (P r S)min, and either b ∈ Smax or b ∈ (P r S)min.
Since a < b and S is a down–set, the only consistent possibility is that a ∈ Smax

and b ∈ (P r S)min. If c ∈ Smax and c 6= a, then a and c are incomparable –
since a <· b is dominant it follows that c < b. Therefore, S ⊆ ↓{b} r {b}. Since
b ∈ (P r S)min, it follows that S = ↓{b} r {b}. That is, this down–set ↓{b} r {b}
is the only element of J(P ) on which both σa and σb act nontrivially. From this
and the fact that σa and σb are involutions, it follows that σbσa consists of one
3–cycle and some 2–cycles and fixed points. Therefore γ = (σbσa)2 is a 3–cycle, as
claimed. ¤

The induction step for the proof of Theorem 2 is a consequence of the following
lemma.

Lemma 7. Let Γ be a primitive group of permutations on a set X with |X| ≥ 9.
Assume that Γ has a subgroup H which has exactly two orbits Y and Y on X, such
that |Y | > |Y | and Alt(Y ) ≤ H|Y . Then Alt(X) ≤ Γ.

Proof. Let K be the preimage of Alt(Y ) under the quotient map H → H|Y . If the
pointwise stabilizer KY is trivial then K acts faithfully on Y , and therefore Alt(Y )

acts faithfully on Y . Since |Y | < |Y | this is not possible, so that KY is not trivial.

Therefore, H contains a nontrivial element h fixing Y pointwise. The conjugates
of h under H generate a normal subgroup G of H which has a nontrivial image
in H|Y . Since Alt(Y ) is simple it follows that Alt(Y ) ≤ G|Y , and since G fixes
Y pointwise this implies that G (and hence Γ) contains a three–cycle. Since Γ is
primitive, it follows that Alt(X) ≤ Γ. ¤

Proof of Theorem 2. We prove Theorem 2 by induction on |J(P )|. If P is a con-
nected ordered set of width at most two then P contains a dominant covering
relation, so that Alt(J(P )) ≤ Γ(P ) by Proposition 9. If P is a connected or-
dered set of width at least three, then |J(P )| ≥ 9. Thus, the basis of induction
|J(P )| ≤ 8 is established. For the induction step, let P be a connected ordered set
with |J(P )| ≥ 9. Replacing P by P op, if necessary (by Lemma 4) we may assume
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that p ∈ Pmax is such that P r{p} is connected (by Lemma 5). Now Lemmas 6 and
7, Proposition 8, and the induction hypothesis imply that Γ = Γ(P ), X = J(P ),
H = 〈σa : a ∈ P r {p}〉, and Y = J(P r {p}) satisfy the hypotheses of Lemma 10.
It follows that Alt(J(P )) ≤ Γ(P ), completing the induction step and the proof. ¤

The only remaining issue is to determine, for each finite connected ordered set,
which case of the conclusion of Theorem 2 holds. This seems to be difficult, but it
is equivalent to a problem which appears superficially to be easier.

Proposition 4. Let P be a finite connected ordered set. Then Γ(P ) = Alt(J(P ))
if and only if for every p ∈ P , the cardinality of J(Pr l{p}) is even.

Proof. The statement follows by observing that for each p ∈ P , the two–cycles of
the involution σp correspond bijectively with the elements of J(Pr l {p}). Thus,
the condition is equivalent to requiring that Γ(P ) is contained in Alt(J(P )). ¤

Proposition 11 suggests the following two decision problems.

The Group Problem:

Instance: A finite connected ordered set P .
Problem: Determine whether Γ(P ) equals Alt(J(P )) or Sym(J(P )).

The Parity Problem:

Instance: A finite ordered set P .
Problem: Determine whether |J(P )| is even or odd.

A decision problem A is polynomially reducible to a decision problem B when
the following holds: from any instance A of A of size n one can compute several
instances B1, . . . , Bm of B such that:
• the number of operations required to compute {Bi} is bounded by a polynomial
function of n; and
• given a solution to B for each Bi, a solution to A for A can be computed using
a number of operations which is bounded by a polynomial function of n.
Two decision problems each of which is polynomially reducible to the other are
said to be polynomially equivalent. [We are being rather informal with these issues
of computational complexity. To be more precise, the size of an instance is the
number of bits required to represent it, and the operations discussed above are bit
operations. For more details, see Shmoys and Tardos [2].]

Theorem 5. The Group Problem and the Parity Problem are polynomially equiv-
alent.

Proof. First, we reduce the Parity Problem to the Group Problem. Given a finite
ordered set P as an instance of the Parity Problem, let x, y, z be distinct new
elements, and construct the ordered set Q with elements P ∪ {x, y, z} and order
relations given by those of P together with {x, y} × (P ∪ {z}). Then Q is a finite
connected ordered set. Assume that we have a solution to the Group Problem
for Q. By Proposition 11, we know whether or not all of the |J(Qr l {b})| for
b ∈ Q are even. Now, if b ∈ P then Qr l {b} = (Pr l {b}) ∪ {z}, so that
J(Qr l{b}) = J(Pr l{b})×J({z}) has even cardinality since |J({z})| = 2. Also, if
b ∈ {x, y} then |Qr l{b}| = 1 so that |J(Qr l{b})| = 2. Thus, Γ(Q) = Alt(J(Q))
if and only if |J(Qr l {z})| is even. Since Qr l {z} = P , this reduces the Parity
Problem to the Group Problem. One checks easily that the computations can be
made with only polynomially many operations.
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Conversely, we reduce the Group Problem to the Parity Problem. Given a con-
nected finite ordered set P as an instance of the Group Problem, consider the set
{Pr l {p} : p ∈ P} of instances of the Parity Problem. This set can be com-
puted from P using only polynomially many operations. Given a solution to the
Parity Problem for each instance in this set, we check whether all these parities
are even – Proposition 11 implies that if so, then Γ(P ) = Alt(J(P )); otherwise
Γ(P ) = Sym(J(P )). This reduces the Group Problem to the Parity Problem, and
completes the proof. ¤
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[2] D.B. Shmoys and É. Tardos, “Computational complexity” in Handbook of Combinatorics, vol.

II (Graham, Grötschel, Lovász, eds.), Elsevier, Amsterdam, 1995.

[3] R.P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge U.P., Cambridge, 1997.

[4] H. Wielandt, Finite permutation groups (translated by R. Bercov) Academic Press, New

York/London, 1964.

Department of Mathematics, Chalmers University of Technology, S-412 96 Göte-
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