INFORMATION RETRIEVAL USING KRYLOV
SUBSPACE METHODS

KATARINA BLOM, APRIL 14, 2004

Submitted to Mathematical Sciences, department of Mathematics,

Chalmers University of Technology and University of Géteborg. In partial
fulfillment of the degree of Doctor of Philosophy.

SCHOOL OF MATHEMATICAL SCIENCES
CHALMERS UNIVERSITY OF TECHNOLOGY
GOTEBORG, SWEDEN

INFORMATION RETRIEVAL USING KRYLOV SUBSPACE METHODS.
KATARINA BLOM.
ISBN: 91-7291-453-X

Doktorsavhandlingar vid Chalmers tekniska hogskola
Ny serie nr 2135
ISSN 0346-718X

MATHEMATICAL SCIENCES, DEPARTMENT OF MATHEMATICS
CHALMERS UNIVERSITY OF TECHNOLOGY, SE-412 96
GOTEBORG, SWEDEN.

TELEPHONE: +46 (0)31 772 10 00

TELEFAX: +46 (0)31 16 19 73

COVER: REIDAR PETERSEN

THOSE WHO SEEK SHALL FIND

INFORMATION RETRIEVAL USING KRYLOV SUBSPACE
METHODS

KATARINA BLOM

Abstract

In this dissertation we discuss how simple Krylov subspace me-
thods can be used for information retrieval (IR). The dissertation
consists of two parts. The first part gives a background of IR and
introduces the vector space model for IR and the Krylov subspace
methods that we use. The second part consists of four articles.

The first article introduces the concept of subspace methods and
in particular introduces how simple Krylov subspace methods can be
used for IR.

In the second article we show how simple modifications of the
original Krylov subspace method for IR can help to steer the process
of what documents to bring in and to avoid, and there by increase
retrieval performance.

Retrieval performance for IR-systems improves significantly if proper
term weighting is used. Terms with high search values are weighted
up and terms with low search values are weighted down. Several term
weighting schemes appear in the IR community. In the third article
we experiment with different term weighting schemes.

In the fourth article we discuss how the Krylov subspace method
is able to indicate even weak connections between groups of relevant
documents. We also show how simple modifications of the method
can be used to decrease the scoring for irrelevant documents. All
experiments in the fourth article are made on sets from the TREC
(Text REtrieval Conference) collection.

Keywords Information retrieval, Relevance feedback, Bidiagonalization,
Lanczos algorithm, band Lanczos algorithm, Latent Semantic Indexing,
LSI, Vector space model, Krylov subspace, SVD, Singular value
decomposition, Numerical linear algebra.

ACKNOWLEDGEMENTS

I would like to thank my supervisor Prof. Axel Ruhe for his encouragement,
source of inspiration and for guiding me through this work. I am greatful to
Thomas Ericsson for all the good advice, all the help, all the comments and
all support.

I would like to thank Prof. Viggo Kann and Bernt Wennerg for reading
and commenting on part of the material.

Special thanks to my mother and to Agneta Steffen for constant support.

Thanks to Fredrik for putting up with his mother so frequently working
late.

Part of this work has been supported by the Swedish Research Council,
Vetenskapsradet, contract 2002-4152.

Contents

1 Introduction

2 Krylov methods

2.1 Krylov subspace methods and IR
3 Relevance feedback

Conclusions

2.0.1 The Lanczos method . . .
2.0.2 The Golub-Kahan bidiagonalization procedure
2.0.3 The band Lanczos procedure

1.1 Evaluation of information retrieval systems
1.2 Vector space models
1.3 Extended Vector space models . .

15
18
21
23

26
26
27
29
30

38

List of figures

Figures 2 — 5 were made using the Medline collection®.

Recall-precision graph. 21
Recall-precision graph for the Medline collection. 32
Ranking of relevant documents for one query from the Medline

collection. 34
Mean average precisions for the Medline collection. 37
Recall-precision graph for the Medline collection. 38

The term document matrix was constructed using all nonzero length strings

found in the set of documents as terms. A stop-list consisting of all terms appearing

in more than 10% of all documents was constructed and the stop-words were

removed. The weighting scheme tnc-txx [6] was used (i.e. the raw termfrequency

was used for all nonzero elements in the term document matrix and the query

vectors, one row normalization followd by one column normalization of the term

document matrix using euclidean norm were then performed).

!E.A. Fox at the Virginia Polytechnic Institute and State University has assembled
nine small test collections on a CD-ROM. These test collections have been used heavily
throughout the years for evaluation of information retrieval systems. Among these sets are
the Medline collection, a small collection with a small number of queries. The documents

are abstracts in biomedicine received from the National Library of Medicine.

11

This thesis consists of an introduction and the following papers:

Paper 1

K. BLoMm AND A. RUHE, Information Retrieval using a Krylov
subspace method, submitted for publication, (2003)

Paper 11

K.BrowMm, Modified Krylov subspace methods for Information Retrieval,
tech. rep., Dept. of Mathematics, Chalmers University of Technology, 2003

Paper 111
K. Brom, Ezperimenting with different weighting schemes for the Krylov

subspace method used for IR, tech. rep., Dept. of Mathematics, Chalmers
University of Technology, 2003

Paper IV

K. Browm, A Krylov subspace method meets TREC, tech. rep., Dept. of
Mathematics, Chalmers University of Technology, 2003

Information Retrieval using Krylov subspace
methods

Katarina Blom

April 14, 2004

1 Introduction

An information retrieval (IR) system matches user queries (formal statements
of information needs) to documents stored in a database. Documents are
often textual but may also contain other types of data such as images and
graphs.

Many universities and public libraries use IR-systems to provide access to
books, journals and other documents. Dictionary and encyclopedia databases
are widely available. On the World Wide Web (WWW) there is an enormous
amount of electronic information available. All this information is useless
unless it can be searched efficiently.

Todays huge amount of electronic information turns IR into a large scale
computer system problem. The Google search engine for example needs to
efficiently (and rapidly) search more than 3 billion webpages! for more than
3000 search queries per second at peak traffic time [38]. Moreover the amount
of information to search through steadily increases. A WWW search engine
today needs to manage and process hundreds of terrabytes of information
reliably and efficiently.

Also in retrieval performance we expect a lot from our search engines.
We ask them questions about topics we are unfamiliar with ourselves and
expect an organized response.

In numerical linear algebra Krylov subspace methods are one of the most
important classes of methods available for computing eigenvalues and eigen-
vectors of large matrices and for solving linear systems. The techniques are

in 2001.

based on projection methods onto Krylov subspaces. The methods have been
used for large eigenvalue problems for a long time.

In this dissertation we explore Krylov subspace methods for TIR. In ex-
periments retrieval performance is in general better for the Krylov subspace
methods we explore than for other vector space models, but performance is
for the user to judge.

The methods we focus on work on textual documents but are likely to
work well in a hyper linked environment such as the WWW as well.

We are not the first to use eigenvalues and eigenvectors in IR algorithms.
Latent Semantic Indezing (LSI) Berry et al [4], Dumais et al [15], use the
singular value decomposition (SVD) to separate the global and general struc-
ture, corresponding to the large singular vectors?, from local or noisy informa-
tion, which hides among the small singular vectors®. J. Kleinberg [24] studies
the information inherent in the link structure of a hyperlinked environment
(such as the WWW). He uses the leading singular vectors to determine what
documents (webpages) are relevant to a search query.

Notation The notation used in this thesis is rather standard in the nu-
merical linear algebra community. We use uppercase letters for matrices and
lowercase letters for vectors. Lower case Greek letters usually denote scalars.
Component indices are denoted by subscript. For example, a vector ¢ and a
matrix M might have entries ¢; and m;; respectively. On the occasions when
both an iteration index and a component index are needed, the iteration is
indicated by a parenthesized superscript, as in cgr) to indicate the jth com-
ponent of the rth vector in a sequence. Otherwise ¢; may denote either the
jth component of a vector ¢ or the jth column of a matrix C. The particular
meaning will be clear from its context.

Mathematical background The euclidean norm of a vector v = [vy, vg, . ..

is equal to /v? + vZ + - -+ v2 and will be denoted ||v|.

The subspace spanned by the column vectors y,...,y, of the m x n
matrix Y is the range of Y and is denoted R(Y) C R™

2by large singular vectors we mean the singular vectors corresponding the large singular
values
3i.e. the singular vectors corresponding to the small singular values

16

Let M be an n X n matrix. Let A\ be a scalar and x a nonzero vector such
that
Mz = Az,

then A is called an eigenvalue and z is a corresponding eigenvector. All the
eigenvalues of M is called the spectrum of M.

The Krylov subspace K,(M, x) of the square matrix M and starting vector
z is spanned by the r vectors

z, Mz, M?z,..., Mz

where z is any nonzero starting vector. The block Krylov subspace K.(M,X)
is spanned by the pr vectors in the block Krylov sequence

X, MX,M?X,...,M"'X

where the columns in the starting block X = [#1 7 ... g,] are linearly
independent.

A short introduction to the Singular value decomposition (SVD) of a ma-
trix is given here. For more details see for example Golub and van Loan [19].

Theorem IfY € R™*™ then there exists matrices
U=[u s ... up] € R™Pand V =[v1 vz ... v, € R™? with
orthogonal columns such that

01
02

Utyv=x= and Y = USV7? 1)

Ip

where p = min(m,n) and 01 > 09 > -+ > 0, > 0. For a proof see Golub
and van Loan [19].

The o; are the singular values of the matrix Y and the vectors u; and v;
are the i:th left and right singular vector respectively.

The singular values of Y are the non-negative square roots of the eigen-
values of Y?Y and the columns of U and V are orthonormal eigenvectors of
YYT and YTY respectively.

The SVD reveals information about the global structure of the matrix.
It can also be used to compute a reduced rank approximation Yy of Y. Let

17

the SVD of Y = ULV be given and let

k
Yk = ZO’,"ILZ"UiT. (2)
i=1

If k < r = rank(Y) < min(m,n) then Y, which is constructed from the &
largest singular triplets of Y, is the closest (in 2-norm) rank-k matrix to Y,
ie.

in Y —Bllz =Y — Yill = ox1-
ranr]gl)g:k ” ”2 ” k||2 Ok+1

1.1 Evaluation of information retrieval systems

An IR-system has to support certain basic operations. There must be a way
to enter documents into the database and to delete them. There must be
a way to search for documents and to rank them in relevance order with
respect to a user query. There must also be a way to present them to the
user.

A complete presentation of IR and IR-systems can be found in textbooks
Frakes and Baeza-Yates [17], Baeza-Yates and Riberio-Neto [1] and Kowal-
ski [27], for example.

The performance of an IR-system can be evaluated in many ways. We
will consider retrieval efficiency, execution efficiency and storage efficiency.

Retrieval efficiency When a user issues a search for information on a
topic, the system will start to give back documents that are relevant from
the systems point of view. From the user’s perspective the total database
will be divided logically into four parts. There will be relevant and irrelevant
documents retrieved. And among the documents not retrieved there will be
both relevant and irrelevant documents.

The retrieval efficiency depends on two main factors. The first is the
ability of the system to retrieve relevant information and the second is the
ability to dismiss irrelevant information. The ability to retrieve relevant
information is measured by recall, the ratio of relevant documents retrieved
over the total number of relevant documents for that query. A systems
ability to reject irrelevant documents is measured by precision, the ratio of
the number of relevant documents retrieved for a given query over the total
number of documents retrieved. Precision and recall are usually inversely
related (when precision goes up, recall goes down and vice versa).

18

One measure commonly used by the TR community to measure retrieval
performance is average precision. Assume t documents are relevant to a
search query q. When we evaluate ¢, all the documents are ranked in rele-
vance order (with the most relevant from the systems perspective first) and
we obtain an ordered list £ of documents. Let ¢;, i =1,...,t be the position
for the 7th document relevant to ¢ in L.

The average precision for a single query is defined as

2

i=1

The mean average precision for multiple queries is defined as the mean
of the average precisions for all queries.
Precision can be computed at any actual recall level

(where t is the number of relevant documents to the query).

The number of relevant documents differ between queries. To compensate
for this interpolated precision is computed at standard recall levels (usually
recall values 0,0.1,0.2,...,1).

Let r; be the jth recall level from the 11 standard recall levels 0,0.1,0.2, ...
The interpolated precision for a query at standard recall level r; is the maxi-
mum precision obtained for any actual recall level greater that or equal to
Ty

The Recall level precision averages for multiple queries are the means of
the interpolated average precision values at each (standard) recall level for
the queries.

The most commonly used method for comparing the performance of IR
systems is to use recall-precision graphs. Recall level precision averages are
used as input for plotting the recall-precision graphs.

The measures are illustrated by an example: Assume a document collec-
tion has 20 documents, four (= t) of which are relevant to a search query g.
Further assume a retrieval system ranks the relevant documents first, second,
fourth and fifteenth (thus the relevant documents appear at position 1, 2, 4
and 15 in the ordered list of ranked documents £).

Precision and recall In order to compute precision and recall we need to de-
termine the number of documents shown to the user. If assuming 10

19

documents were retrieved 3 relevant documents are among the retrieved

ones making the precision 13—0 = 0.3 and the recall % =0.75.

Average precision The average precision is a single valued measure. In the
ordered list of documents £ the four relevant documents were sorted
first second fourth and fifteenth, the average precision is

¢

Ig~i 11 2 3 4
?;Z_Z<I+§+Z+E)’“O'75'

Since we have only one search query the mean average precision is 0.75.

Interpolated precision There are four relevant documents to g, thus there are
four actual recall levels §:

i = 0.25,% = 0.5,% = 0.75 and % =1.
The interpolated precision for all standard recall levels up to 0.5 is 1,
the interpolated precision for standard recall levels 0.6 and 0.7 is 0.75,
and the interpolated precision for standard recall levels 0.8, 0.9 and 1 is
0.25. Since we have only one query the recall level precision averages are
the interpolated precisions values. The recall level precision averages
are used as input for plotting the recall-precision graphs. A recall-
precision graph for this search query is in figure 1. Typically these
graphs slope downward from left to right (the more relevant documents
are retrieved (recall increases) the more nonrelevant documents are
retrieved (precision decreases)).

For further details on measures, see Harman [21].

Execution efficiency Execution efficiency is measured by the time it takes
for an TR-system to perform a computation. This is the time needed for the
system to perform a search, or for database maintenance operations (adding
and deleting documents). Execution efficiency will be measured in worst case
running time and the ordinary big-O notation will be used.

Storage efficiency Storage efficiency is measured by the number of bytes
needed to store the data.

Precision
= o
[e2) o]

©
IS

o
)

0.2 0.4 0.6 0.8
Recall

Figure 1: Recall-precision graph.

1.2 Vector space models

The vector space model was proposed over 30 years ago and SMART [37]
(System for the Mechanical Analysis and Retrieval of Text) was one of the
first implementations of a vector space IR model. In vector space models
both queries and documents are encoded as vectors in m-dimensional space,
where m is the number of unique terms in the collection. The n documents
are stored as columns in a m X n term document matriz A and the queries
q are stored as m x 1 vectors. The nonzero elements in A correspond to the
occurrences of each term in a particular document, i.e.

A= [a,‘j] (3)

where a;; is nonzero if term ¢ occurs in document j, zero otherwise. Similarly
we let the ith element in the query vector be nonzero if term i appear in the
query, zero otherwise. Global, local weightings and normalization factors
are applied to increase/decrease the importance of terms within and among
documents (and queries). Often a;; = g;l;;d; where l;; is the local weighting
for term 7 in document 7, g; is the global weighting for term ¢ and d; is the
document normalization factor for document j. There are several ways to

21

compute these weights. For summaries see for example Frakes and Baeza-
Yates [17], Salton and McGill [37] or Kolda [25].

In [6] we explore the effect of 107 different combinations of term weighting
schemes for the term document matrix together with 27 different weighting
schemes for the query vectors. Retrieval performance for the Krylov method
and the vector model (the vector model (4) is described below) are measured.
Similar experiments have been carried out for vector space models and ex-
tended vector space models (extended vector space models are discussed in
section 1.3). See for example Harman [20], Dumais [13], Salton et al [36]
and Kolda et al [26, 25]. There is a large difference in retrieval performance
between the best performing weighting scheme and the worst performing
weighting scheme, so the weights for the nonzero elements in A need to be
chosen with care.

Since every term does not normally appear in each document, the term
document matrix is (very) sparse. A few terms, however, appear in all (or
almost all) documents. These terms have no discrimination value during
a search and are called stop words. A stop list consists of terms whose
frequency and/or semantic use make them of no value as searchable words.
Eliminating the terms appearing on the stop list usually decreases the total
amount of terms used in the database dramatically. Since a sparse storage
scheme can be used to store the term document matrix the number of bytes
needed to store the matrix also decreases significantly, thus storage efficiency
increases.

To further increase retrieval performance and to decrease the number of
unique terms (the number of rows m in the term document matrix) stemming
is sometimes used. Instead of using the original term, the suffixes and some-
times the prefixes are removed, and the stem of the term is used. Several
algorithms for finding the stems of terms exist (for a summary see for example
Baeza-Yates [17]). An often used stemmer is the Porter stemmer [33]. The
retrieval effect of stemming is dependent on the nature of the vocabulary
used. Used in small document collections stemming could improve recall.
The effect of stemming also depends on what language the terms are in.
For example in a stemming experiment using 54,000 Swedish news articles
a clear raise in precision was indicated [10]. But stemming might also cause
non related terms to be mapped to the same stem (overstemming), which
then will decrease precision.

In vector space models query matching can be viewed as a search in the
column space of the term document matrix A. One of the most common

22

similarity measures used for query matching is to use the angle between the
query vector ¢ and the document vectors in A. The smaller the angle is, the
more relevant the document is. In the vector model the cosines of the angles
between the query vector ¢ and the document vectors a; are used to sort the
documents in relevance order,

a1

Documents d; corresponding to large values in c are ranked highly.

The vector model has some major drawbacks. The terms used in the query
vectors are often not the same as those by which the information searched has
been indexed in the term document matrix. In the vector model all document
vectors having no terms in common with the query vector will be orthogonal
to the query vector and there by be ranked irrelevant. Many terms have more
than one distinct meaning. In different contexts or when used by different
people the same term takes on varying significance. Thus the use of a specific
term in a query does not necessarily mean that all documents with this term
are relevant to this query.

Cj j=1,...,n. (4)

1.3 Extended Vector space models

Many extensions of the vector model have been proposed:

Latent Semantic Indezing (LST) Berry et al [4], Dumais et al [15] see
also Berry and Browne [3] uses the singular value decomposition (SVD) of
the term document matrix A to separate the global and general structure,
corresponding to the large singular vectors*, from local or noisy information,
which hides among the small singular vectors®. Instead of using the original
term document matrix A when scoring documents for relevancy, a reduced
rank representation Ay is used. Let A = ULV be the SVD (1) of the term
document matrix and let the reduced-rank representation (2)

Ay = UZuVy (5)

where Uy and V; are formed by the first £ columns of U and V' and Xy is
the first £ rows and columns of X.

4by large singular vectors we mean the singular vectors corresponding the the large
singular values

5by small singular vectors we mean the singular vectors corresponding the the small
singular values

23

The documents are scored for relevancy, measuring the angles between the
query vector ¢ and each document vector in the reduced-rank representation
Ag. The smaller angle, the more relevant the document is.

LSI has been reported to perform quite well on both rather large and
small document collections, see for example Dumais [14], Dumais et al [15],
Letche et al [29], Lochbaum et al [30]. It can handle synonymy (when two
words mean the same) and polysemy (when one word has several distinct
meanings depending on context) quite well. There are also text collections
for which LSI is not significantly better than the original vector model.

In [23] Jessup and Martin analyse the behavior of LSI. They conclude that
LSI gives improved performance for some document collections, provided a
good matrix-rank decision was taken, compared to the vector model. The
retrieval performance was found to be good for surprisingly low matrix-ranks
and high matrix approximation errors®.

LSI needs a substantial computational work to get the SVD, and there
is no simple way to determine a good matrix-rank. The term document
matrices are in general well conditioned. In general they have no gap in the
singular value spectrum. Work on finding good reduced rank approximations
for the term document matrices have been done by Berry [4] and Zha et
al [40].

Since the singular vector matrices Uy and Vj are often dense, storage
requirements for the reduced-rank representation Ay is often significantly
larger than for the original term document matrix A. Kolda and O’Leary
[26] propose to replace the SVD with a semi-discrete decomposition (SDD),
where the matrix A is approximated with

A~ X,D,YT.

The elements in X, and Y; take on values from {-1, 0, 1} (represented by two
bits each) and D; is diagonal. The rank s in the SDD will be larger than the
rank of the singular value decomposition used in LSI, but since the X and
Y matrices consist only of values from {-1, 0, 1} the SDD will require much
less storage than the SVD used in LSI.

Cluster based rank reductions. Document clustering has been used to en-
hance information retrieval. This is based on the hypothesis that documents

8The error in matrix approximation e measure how well the reduced-rank representation
Ay, approximates the original matrix A. It is defined by the difference between A and Ay
in Frobenius norm, e = ||A — Ag||r. The matrix approximation error decreases as the rank
k increases.

24

having similar contents are also relevant to the same query. A fixed collection
of text is clustered into groups or clusters that have similar contents. The
similarity between documents is commonly measured using the cosine of the
angle between the document vectors but other similarity measures appear.

Clustering approaches, where vectors are grouped around a carefully se-
lected set of centroid or concept vectors, have a clear intuitive appeal, see
Dhillon and Modha [11]. Park et al [32] compare the use of singular and
centroid vectors in a general formulation of low rank approximations of the
term document matrix A.

J Kleinberg [24] studies the information inherent in the link structure of
a hyperlinked environment (such as the WWW). Here each column of the
matrix A is still a document (web page) but now an element a;; is nonzero if
there is a link from the i-th page to the j-th. We borrow terminology from
bibliometry of scientific publication, see Garfield [18], and call these term
rows cocitations. Kleinberg calls the cited documents (columns) authorities
and the citing (rows) hubs. The leading singular vectors u = u; and v =
v (1) of A determine the hub weight u; and authority weight v; of the j:th
document (web page). Kleinberg seeks documents of high authority weight
in a subset determined by the query. One problem with that approach is that
the leading singular vectors stand for a general weight factor and the same
high authority weight documents will be returned irrespective of the query,
Kleinberg calls this diffusion. See Ding et al [12, 22] for further studies of
these link structures. They let textual similarity give weights to the links,
bridging the gap between term document and link similarity.

2 Krylov methods

Let M be a square matrix. One of the oldest techniques for solving eigen-
value problems is the power method. The method consists of generating the
sequence of vectors

My, kE=0,1,2,... (6)

where v is some nonzero initial vector. This sequence of vectors, normalized
appropriately, converges to the dominant eigenvector (i.e. an eigenvector
associated with the eigenvalue of largest modulus)”.

A Krylov subspace of a (square) matrix M, starting at the vector v, is a
subspace of the form

K. (M,v) = span{v, Mv, M?v,... M" 'v},

i.e. a subspace spanned by the iterates of the power method.

Krylov subspace methods are based on projections methods, either or-
thogonal or oblique, onto Krylov subspaces. Krylov methods are one of the
most important classes of methods available for computing eigenvalues and
eigenvectors of large matrices and for solving linear equation systems. Well
known Krylov subspace methods are the Hermitian Lanczos algorithm, the
non-Hermitian Lanczos algorithm and the Arnoldi algorithm. For a full de-
scription of Krylov subspace methods see Bai et al [2]. A very nice description
of Krylov subspace methods can also be found in Saad [35].

2.0.1 The Lanczos method

Given a symmetric n X n matrix M and a starting vector b, the Lanczos
method generates a sequence of vectors v, and scalars o and Sy such that
M is reduced to tridiagonal form

"provided that there is only one eigenvalue \; of largest modulus and that); is non-
defective, and that the initial vector v has components in the invariant subspace associated
with A;.

26

ALGORITHM LANCZOS(M ,b,r):
Start with fyvy = b, vp =0
for k=1,2,...,7 do
w = Muvy, — Brvg—1
ar = viw
Br+1Vk+1 = W — gy
end.

where each 8, > 0 is chosen so that |lvg|| = 1.
ay B
Ba a2 B3
LetV,z[vl vy ... vr] and T, = By . T . After r steps

in the Lanczos procedure we have
MV, =V, T, + ﬂr+lvr+lez17

where e, is the rth identity vector. In exact arithmetic we have VI'V, = I, in
reality, good orthogonality of the vg-vectors is only observed at the beginning
of the process.

The procedure terminates with 5,7 = 0 for some r < n. Lanczos itera-
tions quickly produce approximate eigenvalues near the ends of the spectrum
of M, so if the procedure is stopped before £, = 0 some of the eigenvalues
of T, approximates some extreme eigenvalues of M.

Lanczos original work can be found in [28].

For the IR algorithms we will use the Golub-Kahan bidiagonalization pro-
cedure and the band Lanczos procedure. The procedures are described shortly
in sections 2.0.2 and 2.0.3. For a more complete description please see for
example Bai et. al. [2].

2.0.2 The Golub-Kahan bidiagonalization procedure

The Golub-Kahan algorithm applied to the rectangular matrix Y gives the
Lanczos tridiagonalization of the symmetric matrices Y7V and YY7T by
transforming Y to a lower bidiagonal matrix B.

27

The algorithm starts with a normalized starting vector and computes two
orthonormal matrices P and @, adding one column for each step k, see [19]
section 9.3.3. When using the method for TR, we start the algorithm with
the normalized query vector g1 = ¢/||¢|| and use the term document matrix
A (3) to compute the bases.

ALGORITHM BIDIAG(A,q,7):
Start with ¢ = q/|q|l, B =0
for k=1,2,...,r do
QrPr = Aqu — Bpr1
Br+1Gk+1 = Apr — oy
end.

The scalars o and S are chosen to normalize the corresponding vectors.
Define

Qr1 = [lh 92 - q’l‘+1]7
Pr [pl p2 ... pr]a

(&3]
B2

Br+1 = /83

After r steps we have the basic recursions
ATQ, = P.BT

AP, = Qrp1Br. (10)
The columns of @), will be an orthonormal basis of the Krylov subspace
K,+1(AAT q) and the columns of P, forms an orthonormal basis for the
Krylov subspace K,(A" 4, A"q). The lower bidiagonal matrix B, = Q7 AP,
is the projection of A onto these Krylov subspaces and some of the singular
values of B, will be approximations to some of the singular values in A.

With r large enough the bidiagonalization procedure BipIAG(A,g,r) can
be used to compute a solution x, for the least squares problem

min | 4z — gi|.

28

Let 0 < k < r, then z® = PkB;r_Hel is an approximation to z received
after k iterations in the BIDIAG procedure.
In most cases the first basis vectors in @),,; will be dominated by compo-
nents from the singular vectors corresponding to the largest singular values®.
It is also possible to reduce the matrix A to upper bidiagonal form
by computing orthonormal bases for the Krylov subspaces K,(AT A, p) and
K,+1(AAT, Ap), using the bidiagonalization procedure

prur = Apr — Opup 1
Oki1Pern = ATug — prpy

with £ = 1,2,...,7r, pp = p/||p|| and 6 = 0. If we start the iteration with
p = ATq this bidiagonalizing procedure can be derived from the BIDIAG
procedure discussed previously. The relationships between the bidiagonal-
izations are discussed by Paige and Saunders [31] and also by Golub and van
Loan [19].

2.0.3 The band Lanczos procedure

The band Lanczos algorithm Ruhe [34] (see also Bai et al [2]) is based on
block Krylov subspaces induced by a matrix M and a block of s linearly
independent starting vectors

Y1, Y2, - -5 Ys-

The band Lanczos algorithm constructs orthonormal vectors that form a
basis for the subspace spanned by the first linearly independent vectors of
the block Krylov sequence

yhyZﬂ"'1y57My17My27'"7Myva2y17M2y2---

When we use the Band Lanczos method for TR we use the m X n term
document matrix A (3). The procedure is defined below:

8However if the query vector ¢ has large components along some singular vectors that
do not correspond to the largest singular values of the term document matrix A then
the first few basis vectors in Q1 (7) will contain large components along these singular
vectors. If the components in ¢ are not large enough or if the components correspond
to the largest singular values then the first basis vectors in @,y; will be dominated by
components from the singular vectors corresponding to the largest singular values [16].

29

Let hj; =0 when ¢ < 1.

ALGORITHM BANDL(A4, Q;, 1)
Start with s orthonormal vectors forming Qs = [ql g
for j=1tor do
hip;=ATqj—hsp; +—i=j—5,...,5—1
hij = (Ap;)"q; —i=j+1,...,5+s—1
hii+8)i%i+s = AP — i i=j,...,j+s5—1
end

The scalars hj; and hj.s); are chosen so that ||p;|| = [lgj4s]| =1 . With
H,ys; = [hi], the matrix H,.,, is of size r+s x and lower (s+1)-diagonal.
Define Q,4s = [q1 Q@ ... q,H] and P, = [p1 P2 ... pr]. In exact
arithmetic we will have Q7 ,Q,+s = I and PP, = I. After r + s iterations
the basic relations

A"Q, = PHT
AP’I‘ = Qr+er+s,r

will hold. The columns of Q,,s will be an orthonormal basis of the block
Krylov subspace K, ,1(AA”, Q;) in the document space, spanned by the start-
ing block @, and the columns of A.

The columns of P, similarly span a basis of the block Krylov subspace
K-(ATA, ATQ;) in the term space spanned by the rows of A. The singular
values of H,,, will be an approximation of some of the singular values in
A.

2.1 Krylov subspace methods and IR

Let A be an m xn term document matrix and ¢ the query vector and consider
the Krylov subspace

K, (ATA, ATq) = {A"q, (ATA)ATq, ..., (ATA) A" q}. (11)

If the columns of the term document matrix and the query vector are nor-
malized, the first iterate A”q is simply the cosines of the angles between the
query vector ¢ and each document vector in A. Thus sorting the documents

30

for relevance according to this vector will rank the documents according to
the vector model (4).

The vector model only measure closeness between the query vector ¢ and
each vector in the set. However there are usually many ways to express
a given concept, so the actual terms in the query may not match those of
relevant documents. If instead sorting the documents in relevance order ac-
cording to the second iterate (AT A)A%q also the document vectors closeness
in A will be taken into account when ranking documents. Relevant document
vectors orthogonal to the query vector could (at least in theory) be ranked
high.

Under reasonable mild conditions the iterates (11) converge to the domi-
nant eigenvector of AT A, the right singular vector

v (12)

corresponding to the first singular value o; of A. Thus sorting the documents
for relevance according to one of the later iterates in the sequence (11) will
rank documents that share many terms with other documents high. The
influence from the query vector will be gone (i.e. we get the same ranking of
documents for all queries)®.

In the recall-precision graph (figure 2) we compare the performances when
the documents from the Medline collection are sorted in relevance order ac-
cording to the four first iterates from the Krylov sequence (11) respectively.
Performances are measured using interpolated mean average precision. For
this particular set using the second iterate (A7 A)ATq to score the docu-
ments is best in average. Using this iterate improve the scoring for 90% of
the queries'’ compared to the vector model scoring A”q. Note that there are
queries for which the third and fourth vectors from the Krylov sequence give
best performance.

Consider the Krylov subspace

Kr1(AA", q) = {q,AA"q, ..., (AA")"q}. (13)

9Kleinberg [24] let each document vector in A correspond to a webpage, in a subset
determined by the query, and each element a;; in A is nonzero if there is a link from page
i to page j. He let the leading right singular vector v; of A determine the authority weight
of the page [24], pages with high authority weight correspond to large elements in the
singular vector v;.

1027 out of 30 queries.

o
o

(ATA)ATq

o ©o
o N

Precision
o
(63}

(ATA?ATq

N
IS

o
w

(ATA)®ATq

I
[N

0.4 0.6
Recall

Figure 2: Recall-precision graph for the Medline collection.

The ith element in the first vector, ¢, in the sequence (13) is nonzero if term
1 appears in the query vector ¢ indicating only presence or absence of terms
in the query. The element in row ¢ and column 5 in AA” will be nonzero if
document i and document j have at least one term in common, thus the ith
element in AA”q is nonzero if any of the nonzero term elements appearing
on row i in AAT also appear in the query vector. AATq can be seen as an
extended query vector. The iterates further on in the sequence can also be
viewed as extended query vectors.

Under reasonable mild conditions (6) the iterates (13) converge to the the
left singular vector u; corresponding to the largest singular value o, of A.

If we score the documents in A measuring the cosine of the angle be-
tween each document vector and any of the extended query vectors from the
sequence (13) respectively we get the same scorings as in figure 2.

Instead of using only one vector from the subspaces (11,13) when scoring
the documents we may use the information inherited in several. In the sub-
space projection measure the documents in A are sorted according to their
closeness measured in angles to the Krylov subspace C,y1(AAT,q). The
closer the document is the more relevant it is.

In figure 3 we follow the document ranking for one query from the Medline
collection using the subspace projection measure for r = 0,1,...,4 (r =0
corresponds to the vector model). Only two relevant documents are ranked
worse for 7 > 0 compared to the vector model (4) the other ten relevant
documents improve their ranking for some r > 0. The improvement in
ranking is significant for four of the documents (right plot). The best ranking
for all the relevant documents does not appear at the same value of r (which
makes it hard to find an optimal value on r). Eleven of the 12 relevant
documents are ranked 15 or better when r = 4, which is much better than
the vector model.

The bidiagonalization procedure in BIDIAG (from section 2.0.2) computes
orthonormal bases @,.1 (7) and P. (8). The columns of @, have the
dimension of a kind of query, while the columns of P, can be interpreted
as choices among the documents in the collection A. The first column p;
contains those documents that contain terms in the query, say its brothers
and sisters, and the next p, can similarly be interpreted as cousins and so
on. The number of documents reached will grow in a chain letter fashion, so
we can hope that rather few steps £ will be sufficient to reach all documents
that have any connection with the original query vector g.

Each step k& can be interpreted as first applying the current query g,

33

cosines
cosines

5 10 1 5 10

ranking ranking

Figure 3: Ranking of relevant documents for one query from the Medline
collection using the subspace projection measure. The dotted lines (...) are
(from bottom to top) the cosines of the angles between each document vector
and the Krylov subspace K,.1(AAT,q) for r = 0,1,...,4. The circles (—o)
marks the ranks for each relevant document and the solid lines follow each
document’s ranking when r grows. The left plot show the documents that
were ranked bellow 15 when 7 = 0 (r = 0 corresponds to the vector model
(4)). The right plot show the documents that were ranked 15 or worse when
r=0.

(in matrix language computing A7qy), giving a new choice, that is strongly
different from previous choices (in matrix language it is orthogonal). Then
all terms from the chosen documents are combined in the multiplication Apy,
to give a new query g1 orthogonal to all previous queries qi, ..., qx. After
k steps we have made k queries to the data base, all of them orthogonal to
each other. Some readers may remember the children’s game ” master mind”.

Using the bases matrices @Q,41 (7) and P, (8) (and the lower bidiagonal
matrix B, (9)) several options to rank the documents for relevancy appear.
The subspace projection measure was already mentioned. A few measures
will be mentioned here, for a more detailed description please see Blom,
Ruhe [9, 8.

e In the subspace projection measure the documents are sorted in decreas-
ing order according to the cosines of the angles between the Krylov
subspace K,;1(AAT,q) and the document vectors in A

& =1Q asll, G=1,....n. (14)

The matrix A, = Q,41B,41PT from the basic recursions (10) can be
interpreted as an approximation to the reduced rank approximation
A, = U,%, V" (2) from the SVD of A. For the LSI-like measure the
documents are scored measuring the angles between the query vector
and each document vector in /i,. The documents are sorted in de-
creasing order according to the cosines of the angles between the query
vector ¢ and the document vectors in the reduced rank matrix A,

o _ A

G =T j:17"'7n7 (15)
T lallllArvesl

where e; is the jth identity vector.

For the ezpanded query measure we let the reached subspace W form
an orthonormal basis for the column vectors in AP,. A projected query
vector

qg=WWw'q (16)

is constructed using the reached subspace and the query vector g. The
documents are sorted for relevancy measuring the angle between § and
each document vector in the term document matrix A. The documents

35

are sorted in decreasing order according to the cosines of the angles
between the projected query vector § and the document vectors in the
term document matrix A = [a;]

w _ §"aq

c Ly (17)

= j=1,..
7 lalllagll

The expanded query measure ¢ can be interpreted as a correction of
the vector model scoring (for a derivation see [9]), that is

" = ATq+ ypria (18)

where
Y= ar+1hr+1,r+1h1,r+1-

The vector p,1 is the (r+1)th basis vector from the BIDIAG procedure
in section 2.0.2. The scalar 11 comes from the BIDIAG procedure and
hri1,41 and hy,q1 are elements in H = [hy;] the orthogonal factor in
the QR factorization B,,1, = HR. Tt is easy to verify [9] that v tend
to zero when r grows.

In figure 4 mean average precisions for the three similarity measures sub-
space projection measure (14), LSI-like measure (15) and expanded query
measure (17) are compared for number of iterations r in the BIDIAG proce-
dure ranging from 0 to 10.

For r = 0 all three similarity measures are equal to the vector model (4).
The expanded query measure converges rapidly to the vector model again
and for r > 4 the similarity measures are roughly equal.

Both the LSI-like measure and the subspace projection measure give best
mean average precision when r = 1, the LSI-like measure never score better
than the expanded query measure. For a more general result please see [6].

The best choice of r varies between different queries, so if computing
average precisions always for the best choice of r mean average precision
increase for all three measures.

It is important to notice that there are several reasons for keeping r, the
number of iterations in the BIDIAG procedure, low. Since a new bidiago-
nalization is performed for each new query vector ¢ the execution efficiency
would be to low if we allow r to be large. Moreover if iterating too long in
the procedure the influence of the query vector ¢ in the bases @,.1 (7) and
P, (8) will be lost. In a real case we will have one or maybe two singular
values converged in B,.1 (9) when the BIDIAG procedure is interrupted.

36

Mean average precision
© © o o o o o o
N w £ (4] (2] ~ oo [(e) [l

©
=

__expanded query measure
S vector model

~

N
N

N
LSI-like measure =~ - _ - -~

subspace projection measure

2 4 6 8
Number of iterations in the bidiagonalization procedure (r)

Figure 4: Mean average precisions for the Medline collection.

Precision

0.4 0.6
Recall

Figure 5: Recall-precision graph for the Medline collection. The vector
model (lower curve) is compared with the relevance feedback algorithm (up-
per curve) using the second bidiagonalization procedure presented in sec-
tion 2.0.2.

3 Relevance feedback

In a relevance feedback cycle, the user is presented a list of retrieved docu-
ments, and after examining them, marks those that are relevant. The main
idea of using relevance feedback is to use the information provided by the
user to make a new improved search!!.

In figure 5 we used the vector model (4) and let the user judge the 10
best ranked documents for relevancy. Based on the users’s judgement we

H"Relevance feedback can also be performed without a involving a user. In pseudo
relevance feedback new queries are constructed using the top retrieved documents, see for
example Xu and Croft [39].

constructed a starting vector p for the second bidiagonalizing procedure pre-
sented in section 2.0.2. We let the ith element in p be nonzero if the ith
document was retrieved and relevant to the query. We sorted the documents
for relevancy according to the vector WWTp where W is a basis for the
column vectors in A” P, from the second bidiagonalization procedure. The
relevant documents that were ranked high in the vector model will be ranked
high also in the relevance feedback algorithm, but in the relevance feedback
algorithm also relevant documents that were ranked low in the vector model
significantly increase in ranking.

Naturally the retrieval performance for the Krylov subspace methods in-
crease if relevance feedback is used. In Blom [7] other modified Krylov sub-
space methods are discussed. Common numerical linear algebra methods,
such as explicit restart are used to improve retrieval efficiency. The band
Lanczos method (section 2.0.3) gives an opportunity to start the bidiago-
nalization with several (relevant) document vectors and is further discussed
in [7].

4 Conclusions

In this dissertation we introduce the Krylov subspace methods for informa-
tion retrieval. Krylov subspace methods together with IR is an interesting
technique. It opens many possibilities. The process is query based and a
new approximation is made for every new query, which makes it possible
to adapt the bidiagonalization to each query entered. Connecting relevance
feedback to the process is simple and a natural continuation (for an example
of steering the process please see [5]). Since the process is query based it
becomes more flexible than LSI.

We do believe that using linear algebra methods for IR opens a lot of pos-
sibilities to improve performance for IR algorithms. The linear algebra meth-
ods we use are well known and were built to handle large sets of data, thus the
computations in the BIDIAG and BANDL procedures have low computational
complexity. The behaviour of the methods have been well examined.

With this thesis we want to give some insight to how linear algebra tech-
niques can be used to improve IR. Rather than presenting optimal algorithms
we want to point to several possible IR linear algebra techniques. We also
hope that this dissertation can stimulate further development of using linear
algebra techniques for IR.

References

[1] R. BAEZA-YATES AND B. RIBEIRO-NETO, Modern Information Re-
trieval, Addison Wesley, 1999.

[2] Z. BA1, J. DEMMEL, J. DONGARRA, A. RUHE, AND H. VAN DER
VORST, Templates for the Solution of Algebraic Eigenvalue Problems:
A Practical Guide, STAM, Philadelphia, 2000.

[3] M. W. BERRY AND M. BROWNE, Understanding Search Engines.
Mathematical Modeling and Text Retrieval, STAM, 1999.

[4] M. W. BERRY, S. T. DuMaIls, AND G. W. O’BRIEN, Using linear
algebra for intelligent information retrieval, STAM Review, 37 (1995),
pp. 573-595.

[5] K. BLom, A Krylov subspace method meets TREC, tech. rep., Dept. of
Mathematics, Chalmers university of Technology, 2003.

[6] ——, Experimenting with different weighting schemes for the Krylov
Subspace method used for IR, tech. rep., Dept. of Mathematics, Chalmers
university of Technology, 2003.

[7] ——, Modified Krylov subspace methods for information retrieval, tech.
rep., Dept. of Mathematics, Chalmers university of Technology, 2003.

[8] K. BLoM AND A. RUHE, Information Retrieval using very short Krylov
sequences, in Computational Information Retrieval, M. W. Berry, ed.,
SIAM, 2000, pp. 39-52.

[9] ——, Information Retrieval using a Krylov Subspace method, submitted
for publication, (2003).

[10] J. CARLBERGER, H. DALIANIS, M. HASSEL, AND O. KNUTSSON, Im-
proving Precision in Information Retrieval for Swedish using Stemming,
in NODALIDAO1 - 13th Nordic Conference on Computational Linguis-
tics, Uppsala, 2001.

[11] I. S. DHILLON AND D. S. MoDHA, Concept decompositions for large
sparse text data using clustering, Machine Learning, 42 (2001), pp. 143
175.

[12] C. DiNgG, H. ZHA, X. HE, P. HusBANDS, AND H. SIMON, Analysis of
hubs and authorities on the web, Tech. Rep. CSE-01-013, Department
of Computer Science and Engineering, Pennsylvania State University,
2001.

[13] S. T. DumaAls, Improving the retrieval of information from external
sources, Behavior Research Methods, Instruments, & Computers, 23
(1991), pp. 229-236.

[14] S. T. Dumals, Using LSI for information filtering: TREC-3 experi-
ments, in Overview of TREC-3 Conference, D. K. Harman, ed., 1995.

[15] S. T. DuMmals, G. W. FurNas, T. K. LANDAUER, S. DEERWESTER,
AND R. HARSMAN, Indezing by latent semantic analysis, Journal of the
American Society for Information Science, 41 (1990), pp. 391-407.

[16] L. ELDEN, Partial Least Squares vs. Lanczos Bidiagonalization I: Anal-
ysis of a Projection Method for Multiple Regression, Tech. Rep. LiTH-
MAT-R-~2002-24, University of Linképing, Dept. of Mathematics, 2002.

[17] W. B. FRAKES AND R. BAEZA-YATES, Information Retrieval, Data
Structures and Algorithms, Prentice Hall, 1992.

[18] E. GARFIELD, Citation indezing — its theory and application in science,
technology, and humanities, Wiely, New York, (1979). reprinted 1983
by ISI Press, Philadelphia.

[19] G. GoruB AND C. F. VAN LOAN, Matriz Computations, Johns Hop-
kins, 3 ed., 1996.

[20] D. HARMAN, Ranking algorithms, in Information Retrieval, Data Struc-
tures and Algorithms, W. B. Frakes and R. Baeza-Yates, eds., Prentice
Hall, 1992, pp. 363-392.

[21] ——, The Eighth Text REtrieval Conference (TREC-8), NIST Special
Publication 500-246. http://trec.nist.gov/pubs/trec8/t8_proceedings,
(2000), p. A1 (Appendix).

[22] X. HE, H. ZHA, C. DING, AND H. SIMON, Web document clustering
using hyperlink structures, Tech. Rep. CSE-01-006, Department of Com-
puter Science and Engineering, Pennsylvania State University, 2001.

42

[23] E. R. JeEssup AND J. H. MARTIN, Taking a new look at the latent
semantic analysis approach to information retrieval, in Computational
Information Retrieval, M. W. Berry, ed., STAM, 2000, pp. 121 144.

[24] M. KLEINBERG, Authoritative sources in a hyperlinked environment,
Journal of the ACM, 46 (1999), pp. 604-632.

[25] T. G. KOLDA, Limited-memory matriz methods with applications, PhD
thesis, Applied Mathematics, University of Maryland, 1997.

[26] T. G. KOLDA, A semi-discrete decomposition for latent semantic in-
dezing in information retrieval, ACM-Trans Information Systems, 16(4)
(1998), pp. 322-346.

[27] G. KOWALSKI, Information Retrieval Systems, Theory and Implemen-
tation, Kluwer Academic Publishers, 1997.

[28] C. LaNczos, An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators, Journal of Research,
Nat. Bur. of Standards, 45 (1950), pp. 255 282.

[29] T. A. LETCHE AND M. W. BERRY, Large-scale information retrieval
with Latent Semantic Indexing, Information Sciences - Applications, 100
(1997), pp. 105 137.

[30] K. E. LocHBAUM AND L. STEETER, Comparing and combining the
effectiveness of latent semantic indexing and the ordinary vector space
model for information retreival, Information Processing and Manage-
ment, 25(6) (1989), pp. 665-676.

C. C. PAIGE AND M. A. SAUNDERS, LSQR: An algorithm for sparse
linear equations and sparse least squares, ACM Trans. Math. Soft, 8
(1982), pp. 43-71.

H. PArk, M. JEON, AND J. B. ROSEN, Lower dimensional represen-
tation of text data in vector space based information retrieval, in Com-
putational Information Retrieval, M. Berry, ed., Proceedings in Applied
Mathematics, STAM, Philadelphia, 2001, pp. 7-27.

M. PORTER, An algorithm for suffiz stripping, Program, 14(3) (1980),
pp. 130 137.

[34] A. RUHE, Implementation aspects of band Lanczos algorithms for com-
putation of eigenvalues of large sparse symmetric matrices, Mathematics
of Computation, 33 (1979), pp. 680-687.

[35] Y. SAAD, Numerical Methods for Large Eigenvalue Problems, Manch-
ester University Press, 1992.

[36] G. SALTON AND C. BUCKLEY, Term-weighting approaches in auto-
matic text retrieval, Information Processing & Management, 24 (1988),
pp. 513-523.

[37] G. SALTON AND M. J. McGILL, Introduction to Modern Information
Retrieval, McGraw-Hill, 1983.

[38] http://www.google.com.

[39] J. Xu aAND W. B. CROFT, Query expansion using local and global
document analysis, Proc. ACM SIGIR, (1996), pp. 4 11.

[40] H. ZHA, A subspace-based model for information retrieval with applica-
tions in latent semantic indezing, Lecture Notes in Computer Science,
1475 (1998), pp. 29-42. Springer Verlag.

A Krylov subspace method for Information
Retrieval.

Katarina Blom* Axel Ruhet
April 14, 2004

Abstract

An new algorithm for information retrieval is described. It is a
vector space method with automatic query expansion. The original
user query is projected onto a Krylov subspace generated by the query
and the term-document matrix. Each dimension of the Krylov space
is generated by a simple vector space search, first using the user query
and then new queries generated by the algorithm and orthognal to the
previous query vectors.

The new algorithm is closely related to latent semantic indexing,
LSI, but it is a local algorithm that works on a new subspace of very
low dimension for each query. This makes it faster and more flexi-
ble than LSI. No preliminary computation of the singular value de-
composition, SVD, is needed and changes in the data base cause no
complication.

Numerical tests on both small (Cranfield) and larger (Financial
Times data from the TREC collection) data sets are reported. The
new algorithm gives better precision at given recall levels than simple
vector space and LSI in those cases that have been compared.

keywords Information Retrieval, Vector space model, Query expansion,
Latent Semantic indexing, Singular value decomposition, Lanczos algorithm,
Krylov subspace.

*Department of Computing Science, Chalmers Institute of Technology and the Univer-
sity of Goteborg, SE-41296 Goteborg, Sweden blom@cs. chalmers. se. Financial support
has been given by The Swedish Research Council, Vetenskapsradet, contract 2002-4152

tDepartment of Numerical Analysis and Computer Science, NADA, Royal Institute of
Technology, SE-10044 Stockholm, Sweden ruhe@kth.se

1 Introduction

The purpose of an information retrieval (IR) system is to seek through a large
collection of information items, or documents, to retrieve those relevant to
information requests, or queries, stated by a user. In the present contribution,
we will show how computational tools from Numerical Linear Algebra can be
helpful. We will use IR criteria to decide success or failure of the algorithms
developed. How large part of the relevant documents are found, and how
many of the retrieved documents are relevant to the user?

The documents may be books in a library, documents in a data base of
news telegrams, scientific papers in journals or web pages on the world wide
web (WWW). Each document contains terms, words that are significant in
some way. The query is also formulated in terms of the same kind. We will
look at the document collection as a huge matrix, where there is one row for
each term that occurs anywhere in the collection and each column represents
one document. This term-document matrix is denoted A throughout this
paper. We let the element a;; in row ¢ and column j of A be nonzero if
the i-th term is present in document number j, zero otherwise. The term
document matrix will typically be very large and very sparse. The query will
be expressed by the same terms as the documents, i.e. as a column vector g,
where the i-th element g; is nonzero if the i-th term is a part of the query,
zero otherwise.

A very simple IR algorithm is to choose those documents that contain
any of the terms in the query. This Boolean search can be expressed as a row
vector p’ = g7 A, where each element p; is the scalar product between the
query vector ¢ and a document column vector a; of A, and choosing those
documents for which p; is nonzero. (We use the common linear algebra
convention of letting a Latin letter stand for a column vector and T stand
for transposing a column into a row. The matrix A has the columns A =
[aly ag, ..., a‘"]')

The wvector space model is a refinement of Boolean search. The numerical
values of the scalar products p; are used to get angles between the query
vector ¢ and the document vectors a;. The documents are scored, starting
with those that make the smallest angle to the query vector.

In the present contribution we will study refinements of the vector space
model. The main emphasis is on subspace metods, where we project the query
and document vectors on a carefully chosen subspace, and use the angles
between these projected vectors to determine closeness. We show that in

many cases subspace methods behave in a similar way to methods based on
query ezrpansion, another common class of refined vector space methods.

One subspace method is Latent Semantic Indexing [7], where the domi-
nant principal component subspace computed by the singular value decom-
position, SVD, is used. It is supposed to filter away noisy and particular
information from the general and relevant information that we need to dis-
tinguish between documents on different subjects. Another subspace method
is based on a known classification and uses concept vectors [5, 11]. Our main
interest is a new subspace method based on Krylov sequences of subspaces
reachable from the query vector. The first steps of the Krylov sequence cor-
respond to a query expansion that is closely related to query expansion based
on co-occurrences as introduced by Sparck Jones [12] and studied by Xu and
Croft [13].

The advantage of our approach, compared to LSI, is that it works on
the original term document matrix A, no SVD computation is needed in
the outset, and it is trivial to add and delete terms and documents between
queries. The main computational work is the same as a few applications of
a naive vector space search, the rest is manipulation of small matrices.

1.1 Summary of contents

After some preliminary explanations of numerical linear algebra and infor-
mation retrieval notations in this section, we describe subspace methods in
section 2. We explain their common characteristics and show that some well
known algorithms can be characterized as subspace methods, using different
subspaces. We also discuss the relation between subspace methods and query
expansion. In section 3 we describe the Krylov subspace algorithm we have
used. It is simply the well known Golub Kahan bidiagonalization [8], applied
to the term document matrix A, starting at the query ¢. It is used to find an
expanded query ¢, which is used to compute angles to score the document
vectors a;. We also give quantities that can be used to determine conver-
gence. In our context the algorithm is stopped at a much earlier stage than
for instance when solving least squares problems. Finally, in section 4, we
show results of some numerical experiments, using both the small and well
known Cranfield data and a larger test matrix coming from the Financial
Times collection in the TREC material [10].

We have formulated our algorithm and got some preliminary results in
the licentiate thesis of the first author [2]. Experiments on the small matrices

are reported in more detail in the conference contribution [4]. Details on term
weighting, experiments on more data sets and the inclusion of relevance feed
back is discussed in the thesis [3].

1.2 Notations

Matrices: Throughout this paper, A will denote the m X n term document
matrix. The j:th column vector of the matrix A will be denoted a; and the
Jj:th column vector of the identity matrix I will be denoted e;.

Singular Value Decomposition: Let
A=UxvT (1)

be the SVD of A, see [9]. The best rank s approximation to A in the Frobenius
or sum of squares norm is

A® =y,z, VT (2)

where U; and V; are formed by the first s columns of U and V' and the s x s
diagonal matrix ¥, has the s largest singular values oy > 09 > -+ > 05 in
its diagonal.

Seen as a mapping, the m x n matrix A maps the n dimensional space
R™ into its range space R(A), the subspace of R™ which is spanned by the
columns of A. Its dimension is r the rank of A.

Krylov spaces: A Krylov subspace of a square matrix C, starting at the
vector v, is a subspace of the form

K. (C,v) = span{v, Cv, C*v,...C" v} (3)

Increasing the dimension r we finally get the entire reachable subspace of the
pair (C,v). Its dimension is 7 < n, the dimension of v.

Measures: Two standard measures used by the information retrieval com-
munity are Precision and Recall. Precision is the ratio of the number of
relevant documents retrieved for a given query over the total number of doc-
uments retrieved. Recall is the ratio of relevant documents retrieved over
the total number of relevant documents for that query. Precision and recall

4

are usually inversely related (when precision goes up, recall goes down and
vice versa). A recall level for a particular query can be arbitrarily chosen
from %, % ... 1 where ¢ is the number of relevant documents to this particular
query.

In order to show precision at various recall levels graphically, interpolation
may be used. The interpolated precision at a recall cutoff R for one query
is defined to be the maximum precision at all recall levels greater than and
equal to R.

The average precision, is a single valued measure that reflects performance
over all relevant documents. Average precision is the average of the precision
value obtained after each relevant document is retrieved. Average precision
will reward systems that rank all relevant documents high, the last relevant
document found is equally important as the first.

When reporting results for test sets with multiple queries, we will consider
the mean interpolated average precision over all queries at a fixed sequence
of recall cutoff values.

A way to compare performance when finding the first relevant documents
is document level average, DLA(7), the precision when a certain number, i,
of documents are retrieved. It mimics the use of a search engine where 10
documents are presented to the user each time. Then DLA(10) is the fraction
of those that are relevant. For further details, see Harman [10].

Relevance is always judged by comparing the results of an algorithm to
relevance judgments provided with the test sets. These have been compiled
by a panel of human experts who have considered at least all those documents
marked as relevant.

2 Subspace methods

In a general sense, the vector space method works in a space D of all docu-
ments that can be expressible as texts. This space of all possible documents
has a countably infinite number of dimensions, and it is not simple to de-
termine closeness between two documents. We therefore choose to see each
document as a bag of terms, and represent it as a vector a; € R™ in the
m dimensional space of document vectors. This is already a rather severe
restriction, we have reduced the dimension from infinity to m. We have also
made a choice of which words we regard as significant, and used these words
as terms.

When terms are chosen, we represent the query as a vector ¢ € R™.
We use angles between the query vector ¢ and the document vectors a; to
determine which documents to retrieve in the naive vector space method.

In our information retrieval task, we have a finite collection of n docu-
ments to choose from, they build up a document collection space A = R(A),
the range space of the term document matrix A, which is of dimension at
most n. Most often the number of terms m is larger than the number of
documents, m > n, and the documents are linearly independent, making .4
into an n dimensional subspace A C R™. The query vector ¢ is not in this
subspace A, but we may use the projected query vector P4q, and retrieve
those documents a; that are closest to that vector. If we use angles in the Eu-
clidean space to decide closeness, this will yield the same ranking as when we
use the angles between the document vectors and the original query vector.

A wide class of IR algorithms can now be classified as subspace algorithms
where we restrict our view to a subspace & C A and use angles between a
projected query ¢ = Psq and projected documents a; = Psa,.

Let us look at some natural choices of subspaces S :

2.1 Dominant subspace: Latent semantic indexing

Latent Semantic Indexing, LSI, [7] uses the singular value decomposition,
SVD (1) of the term document matrix

A=UzvV"
and choose the space of the leading s singular vectors (2)
S = span [Us]

It separates the global and general structure, corresponding to the large
singular vectors, from local or noisy information, which hides among the
small. LSI has been reported to perform quite well on both rather large
and small document collections. See for example Dumais [6]. It can handle
synonymy (when two words mean the same) and polysemy (when one word
has several distinct meanings depending on context) quite well. However
LSI needs a substantial computational work to get the SVD, and there is
no simple way to determine how many singular vectors s that are needed to
span the leading subspace. Work on this has been done by M Berry [1] and
H Zha et al [14].

2.2 Classification: Centroid vectors

The singular vectors make up a basis of the best rank s approximation to
the given term document matrix A, and this can be considered as the best
subspace if nothing else is known. On the other hand, if we know that
the documents are taken from a set of subclasses, we may use a carefully
selected set of centroid or concept vectors, as a basis of another subspace S,
see Dhillon and Modha [5]. Park et al [11] compare the use of singular and
centroid vectors in a general formulation of low rank approximations of the
term document matrix A.

2.3 Reachable subspaces: Krylov sequences

In the present contribution, we will try a third sequence of subspaces. We
will let the subspaces be determined by the query vector g. We take it as the
Krylov sequence of subspaces of vectors reached from ¢ via a small number
k of naive vector space searches.

In matrix language, this means that we take the query vector g, multiply
it with the transposed term document matrix A to get a ranking or scoring
vector p = ATq. Each element p; of p is a scalar product between the
query vector g and the corresponding document vector a;, so the elements
of p give a ranking from the naive vector space method (if the columns of
A are normalized). In this first step of the Krylov sequence, we find those
documents that are directly related to the query, let us say its sisters.

In the second step, we multiply this scoring vector p with the term doc-
ument matrix A to get a new vector go = Ap, a new query that contains
all the terms that were contained in the documents that p pointed to. If we
apply this new query, we get py = A”q, which points to all documents that
contain any of all the terms in g, i. e. those two links away from the query,
let us say its cousins.

In later steps this continues in a chain letter fashion, and soon we will
reach all documents in the collection that are reachable from the query, to
borrow a term from Control Theory. In matrix language,

S = Ki(AAT, q) 4)

after k steps, see (3).
In our computation we do not just follow the Krylov sequence, we also
make the vectors q1, qo, . ..,q, and p1,po, . ..,p, into orthogonal bases. Intu-

7

itively this means that we remember what we asked for in the first query ¢,
and make a totally different query next time, ¢,. This is standard practice
in numerical linear algebra.

2.4 Relevant subspaces

There is a fourth subspace that is of theoretical interest, and can be used
for comparison purposes. That is the relevant subspace Z spanned by those
documents that are relevant to the query ¢. This subspace is not possible to
use in any practical algorithm, it supposes that all the relevant documents
are already known. However, it is interesting to see if the query g is closer
to the relevant subspace Z, than to any other subspace spanned by a similar
number of document vectors. Are there many irrelevant documents that are
closer to the relevant subspace Z than the query ¢7

In a way, the properties of the relevant subspace determine if there is any
hope for any algorithm, built up by tools from numerical linear algebra, to
find the relevant documents to a given query.

2.5 Subspaces and query expansion

Subspace algorithms are closely related to another class of refined vector
space IR methods built up around query ezpansion. Say that the subspace
algorithm takes a subspace S in any of the manners described in the previous
subsections, and uses the angles between the projected query § = Psq and
the projected documents d; = Psaj;, to determine which documents a; that
are relevant to the query g. The cosine of this angle is

PR

T lldllzllag

The scalar product in the numerator is

§"a; = (Psq)" Psaj = ¢" P} Psa; = ¢" Psa; = (Psq)"a; = §"a;,

provided that the projection is orthogonal, PT = P. We see the scalar prod-
uct between the projected query vector ¢ and the projected document vector
G; is the same as that between the projected query ¢ and the original docu-
ment vector a;. Using scalar products to determine closeness, the subspace
method based on & gives the same result as a straightforward vector space

8

method using the expanded query §. The angles are not invariant however,
since the norms in the denominator differ. We know that ||@;||2 < ||a;|| giving
a larger cosine or smaller angle in the subspace than in the query expansion
case.

Still, the result of a subspace method based on S is closely related to
using the expanded query § = Psq in the original vector space method.

When we choose § as a Krylov subspace (4), our choice of query expansion
is related to the technique of Sparck Jones [12]. The second vector in the
the Krylov sequence (4), § = AATq, weighs in components of all terms
that are co-occurring with the terms in the original query. The weights give
an emphasis to the co-occurrence in the documents that are ranked highest
in the vector space search, p = A”q, giving an effect similar to the local
expansions of Xu and Croft [13].

3 The Krylov subspace algorithm

We use the Golub Kahan bidiagonalization algorithm [8] to compute the
Krylov sequence of subspaces (4). It is a variant of the Lanczos tridiagonal-
ization algorithm and is widely used in the numerical linear algebra commu-
nity .

The Golub Kahan algorithm starts with the normalized query vector ¢; =
q/l|lqll; and computes two orthonormal bases P and @, adding one column
for each step k, see [9] section 9.3.3.

ALGORITHM BIDIAG
Start with q. = Q/||Q||2 ,60=0
Fork=1,2,....r do

1. axpr = ATqr — Brpe—
2. Bry1Gr+1 = APr — 0y

End

The scalars oy and S are chosen to normalize the corresponding vectors.

Br+1,r
a’l‘

/8T+1

After r steps we have the basic recursion,

ATQ, = PBT
AP, = QT+1BT+1,T

The columns of @, will be an orthonormal basis of the Krylov subspace (4),
span [Qr] = K. (AA", q) CR([Aq]) (6)

in the document space, spanned by the query ¢ and the columns of A. The
columns of P, similarly span a basis of the Krylov subspace

span [P,] = K, (AT A, A"q) C R(AT),)

in the term space spanned by the rows of A.

We see that B,y1, = QZHAPT is the projection of A into these Krylov
subspaces and the singular values of B,;, will be approximations to those
of A.

If B = 0 for some k < r we have exhausted the Krylov space (6), reach-
able from the query ¢. Then QB P is the restriction of A to this reachable
subspace, and the singular values of By are a subset of those of A.

The columns of AP, span the reached subspace after r steps starting from
g. Tt is the intersection between the Krylov subspace (6) and the column
space of A,

R(APT) = Span [QT+IBT+1,T] - R(A) (8)

The basic recursion (6) implies that it has the orthonormal basis W,, where
W, = Qr+1Hr+1,ra (9)

10

with H,,1,41 the orthogonal factor in the QR factorization,
Br+1,1‘ = T+1,T+1R - (10)

Note that since B,,, is bidiagonal, H,,1,41 will be both orthogonal and
Hessenberg and can be computed as a product of 7 elementary rotations.

The projected query vector It is now easy to use the basis W, (9) to
project the query and the documents into the reached subspace (8). The
projected query q is

hi
hio

4= Priapryq=W.W,)q=W,H[,, e, =W, (11)

hl,r
and we see that the first row of H gives the coordinates of the query in the
basis W. When we run several steps r of our algorithm, new columns are
added to H, but when one column 7 + 1 is added in step r, it is only the last
r-th column that is modified.

We get the projected document a; similarly as,

dj = WTWTTGJ' . (12)

3.1 Scoring documents

We may regard our algorithm as a subspace method and choose the angles
between the query and each of the document vectors, projected onto the
reached subspace (8),

AT ~
q a;

CssW = 14
lldll2lld;]l

(13)
Alternatively we may regard our algorithm as a query expansion method and
use the angles between the projected query and the original documents,
T
q aj .
Cqel = 1 j=1...n. (14)
7 Nldllzllagll

We compute these quantities using the basis W (9) and the small orthog-
onal Hessenberg H, 11,41 (10). Apply an elementary orthogonal transforma-
tion S, to make all elements but the first in the first row of H,,1,S, zero.
Then W,.S, forms a new basis of the reached subspace (8). The first element
(y](-r))l in the vector

y = SfWa

will give the component of a; along § and the rest of the projected d; (12) as

the norm of the remaining elements in y](-). Thus the subspace cosine (13) is

(r) _ (yj(-))1
SS]- =))
lly57)l2

while the query expansion cosine (14) is slightly smaller at

(r)
Cae?) = (y; .
T laglle

Our experiments have shown that using the query expansion cosines
Cqe; (14) of the angles between projected query and original documents for
scoring, often gives better performance than the subspace cosines Css; (13),
so we use query expansion, Cqe;,as our standard. It gives a preference for
documents whose vectors a; are closer in angle to the reached subspace.

3.2 Following progress

In the Krylov method, a new bidiagonalization is performed for every query
vector g. Thus the number of iterations must be small. The optimal num-
ber of iterations r is different for various queries. Choosing the optimal
number 7 of iterations is an interesting and important problem. Figure 1
show performance for the Cranfield set using different numbers of iterations
r. Performance is measured by average precision. It is clear from this figure
that best average performance for all queries is reached when three iterations
are performed. When more than three iterations are used, the performance
rapidly converges towards the performance of the vector model. Note that
some queries show optimal performance after two iterations and very few
after one iteration. For one iteration, performance is worse than the perfor-
mance for the vector model for most queries. This pattern of performance

12

(initial worse than the vector model, increasing performance and then a rapid
convergence towards the vector model) was observed for most of the queries
in all data sets we tested.

The convergence towards the vector model performance can easily be ex-
plained and estimated using quantities from the bidiagonalization algorithm
presented.

Consider the least squares problem

min|| Az ~ gl (15)

where A is the term document matrix and g is the query vector. It can be
solved using the BIDIAG algorithm (see for example the textbook [9]). In
step k the distance between the query vector and the projected query vector
¢®) is the residual

d®) =g — Az®) = g — G,

Here 2 is the solution to problem (15) in step k. The distance decreases
as we let k grow, but will not tend to zero unless the query is a linear
combination of the documents in A .

The normal equation residual ATd®)AT(g — ¢®) to the problem (15)
will tend to zero as k grows. If the normal equation residual converges
monotonously to zero ? then it is not surprising that the average precision
for the Krylov method, using the query expansion scoring qugk) (14), tends

to the scoring of the vector model. This is precisely what we see in figure 1.
Note that, even if the convergence of A7d*) is monotonuous, the convergence
for the average precisions does not have to be monotonuous. Looking closely
into figure 1, a few such examples are visible.

Finally d®, the distance between the query and its projection and the
normal equation residual A7d®), can easily be computed for each step k in
the bidiagonalization procedure.

In step k the distance between the query ¢ and the projected query ¢*)

Tn our tests no query vector is completely in the range of A

2The convergence of the normal equation residual is not in general monotonuous. For
all tests we made however, the convergence was monotonuous for at least the first 10
iterations.

d®) = q- ,j(k)
= Qrr161 — Q1 Hypr o Hi 1 g1
= Qur1(I — HeyrkHiy 1)en
= Quiihf h] ex

k) 1 (k
= Qk+1h§c421hg,l)c+1

and its norm is just
k
¥ = |n{,,

The normal equation residual is

k) o (k
ATd® = ATQ,thSClehg),ZH

k
= Pk+1BkT+1,k+1h;(c+)1h§,2+1

Bk)y 0
=Pppy (0 ;k’ﬂ Py By ey

0 ®)
=P h .
. (ak+1h5ck+)1,k+1> Lkt

Its norm is

k k
14749) = Jogsahfs L

3.3 Complexity of the algorithm

In the BIDIAG algorithm, the matrix vector multiplications are performed
between a sparse matrix and a dense vector. The number of operations
needed is proportional to the number of nonzero elements in A. The rest of
the algorithm consists of subtracting and normalizing vectors of length m. In
exact arithmetic we will have Q7,,Q,1 = I and PYP, =1 (5). In standard
floating point arithmetic, fully accurate orthogonality of these vectors is only
observed at the beginning of the process. In order to recover the orthogonality
some type of reorthogonalization would be necessary. This would of course
add operations to the complexity of the algorithm. Since we keep the number
of iterations r very small, we believe that no reorthogonalization is needed.
The main computational work for the document scoring (13) (14) again is in
the size of multiplying a sparse matrix with a dense vector.

14

Figure 1: Average precision, for all 225 queries using the Cranfield set for
r =1,2...6 in the BIDIAG algorithm. The dark lines are the vector model
and the light grey lines are the Krylov subspace model. Queries are sorted
after increasing vector model apr.

4 Numerical experiments

Data sets: FEach one of the test collections we have used consists of a
document data base and a set of queries for which relevance judgments are
available.

For illustration and comparison purposes, we have used the small and
widely circulated data sets Medline, Cranfield, ADI and CICI.

We have also used larger test collections received from the Text Retrieval
Conference (TREC) [10]. The TREC 4 disc contains three data collections,
the Financial Times, 1991-1994 (FT), the Federal Register, 1994 (FR94) and
the Congressional Record, 1993 (CR). The FT collection, FR94 collection
and the CR collection consists of 210,158, 55,630 and 27,922 documents re-
spectively.

Tests on data from the Cranfield collection and from the Financial Times
collection will be reported here. Similar tests have been made for the Medline,
ADI, CICI and Congressional Record collections.

Parsing the data sets: For both collections, any non-zero length string
of characters, delimited by white space or return, was regarded as a term.
All terms that occurred in more than 10% of the documents were removed.
They were considered to be common words of no interest for the retrieval.
Each element a;; in the term document matrix was set to the number of
occurrences of term number 7 in document j .

The size of the Cranfield matrix is 7, 776 termsx 1,400 documents. Before
starting the bidiagonalization process, first the rows and then the columns
of the term document matrix were normalized. This tends to deemphasize
common terms and long documents.

The Financial Times term document matrix is of size m = 343, 578 terms
by n = 210,158 documents with 26, 790, 949 nonzero elements. The columns
were normalized before the bidiagonalization algorithm BIDIAG was started.

Results for the Cranfield collection: There are 225 queries supplied
with the test matrix, together with indices j of relevant documents for each
each query. This gives between 2 and 40 relevant documents for each query,
476 documents were not relevant to any of the queries, 417 documents were
relevant to just one, while the remaining 507 documents were relevant to
more than one and at most 8 of the 225 queries. We compare our results to
these correct answers.

16

0 0
0 0 0.2 0.4

Figure 2: Precision as a function of recall for the Cranfield collection. Left:
Interpolated and averaged over all queries (recall level precision average).
Dashed (- -) is vector model, line with circle (-o) is LSI for rank s = 296, line
(-) is our Krylov algorithm for r=3 steps. Right: Our Krylov algorithm to
r=3 for 3 different queries, precision at actual recall levels.

Cranfield, Question=1 Singular values and residuals
T T T

Q basis orthog
Sing val conv
residual

proj res

2 12

Figure 3: Cranfield matrix, follow convergence of bidiagonalization procedure
starting at query g.

We first summarize the performance in an averaged precision-recall graph.
In figure 2 the vector model is compared to LSI and our algorithm, as de-
scribed in section 3, run for r = 3 steps. For the LSI method the optimal
rank s = 296 in the low rank approximation of A (2) was obtained by com-
puting the sum of the average precisions for each query and simply picking
the s with the largest sum. It is clear that our Krylov algorithm gives the
best averaged precision at all recall levels for these Cranfield data.

Let us look into the details and follow the Golub Kahan algorithm on one
query. Take query 1, it has 29 relevant documents which is rather many for a
Cranfield query. Our algorithm scores this query reasonably well. In figure 3
we follow the progress in linear algebra terms, as we execute the algorithm for
steps k = 1,...,12. Circles are the residual norms ||[r®)||, (17), they decrease

18

unnoticeably slowly from 1 to 0.879. This means that the query g is at a
rather large angle to the reached subspace (8), it has a projection of length
0.477. We plot the normal equation residuals ||AT(*)||, (19), as pluses, and
note that they decrease fast enough at a linear rate. After 12 steps we have
found the projection of the query into the document space spanned by A to
nearly 3 decimals.

We were curious to see how the singular values converged and plotted
estimates of their accuracies as points. Note that the leading singular value
converged very fast, after 12 steps its vector is accurate to 9 decimals and
the singular value to full machine precision. It is well known that the basis
vectors @k keep orthogonal until one of the singular values converges. We
plotted the orthogonality of each basis vector g to its predecessors Q1
as crosses and, true to theory, the crosses and points intersect at half the
machine accuracy level 10~8 during step 10.

Let us now turn to a view of all the documents, and see how well we
find the relevant documents for query 1. We plot them in a two dimensional
coordinate system in figure 4. The x axis is along the projected query § (11).
The y axis is used to plot the component of each a; in the reached subspace
(12) orthogonal to . This makes up two of the three components of each a;
vector. We can infer the length of the third component, which is orthogonal
to the reached subspace, by remembering that all vectors a; were normalized
to unit length, so the distances of the points plotted to the origin indicate
how close the vectors are to the reached subspace. Those shown close to the
origin are far from the reached subspace. If we continue the bidiagonalization
to full length » = n, most of the vectors will get unit length, because then
the reached subspace is the whole span of A, except in the rare case when
the query is totally unrelated to a part of the document collection.

If we use our standard query expansion based scoring method (14), taking
angles between the original documents and the projected query, we would
choose documents from right to left as plotted in figure 4, and we can check
how well we find the relevant documents. We show this by giving the ranking
beside each of the 10 highest scored relevant documents. Look at the lower
part of figure 4 which shows the situation after » = 2 steps. First comes
documents 1, 2, and 3 they are all relevant. Then the next relevant document
is retrieved as number 6, we see two non relevant documents as points above
and closely below the circle with number 6. Then the next relevant document
is retrieved as number 9. Now our algorithm has given us 10 suggestions, of
which we find that 5 are relevant. We say that DLA(10), the document level

19

0.5

Figure 4: Cranfield matrix, Query 1, upper half step 7 = 12, lower half step
r = 2. Numbers are rankings given by the algorithm to relevant documents.
Circles mark relevant documents while points mark those not relevant. As-

terix marks the projected query.
20

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 0.102030405060.70809 1

Figure 5: Interpolated precisions for recall levels 0,0.1,...1 for the Financial
Times collection from the TREC data base. The vector model (-) is com-
pared to our algorithm for 7 = 3 (- -) . The average of the 25 documents
that are best ranked by the vector space method are included.

average precision after 10 documents is 0.5. The average precision over all
relevant documents [10], is lower, 0.297, since the last relevant documents are
found much later, we see that the 10:th relevant document scores as number
30 while the 29:th and last one does not appear until 1029.

Look at the upper half of figure 4, the final one after r = 12 steps. There
are many points along the y axis, they denote documents that are orthogonal
to the projected query, and will be the last ones scored. Actually 933 of the
1400 documents are orthogonal to the original query.

When scoring documents by angles in the reached plane (13), these can
be seen as angles to the x axis in figure 4. It did not differ much from
the standard query expansion scoring (14), for some queries it was better
for others it was worse. For this Query 1, it gave about the same average
precision at 0.296 and retrieved relevant documents ranked as 1,2,3,4,5,9,
giving a DLA(10) = 0.6. The third scoring choice (angles to Krylov subspace)
amounts to choosing those documents plotted far from the origin in figure
4, and gives about the same choices but with lower average precision, 0.180,
and DLA(10) = 0.4.

Results for the Financial Times collection: There are several queries
provided with the TREC collection. We have used query number 251 to 350.
Nine of the queries do not have any relevant answers among the Financial
Times documents, and for the rest of the queries there are between 1 and 280
relevant documents. Altogether 3,044 of the 210,158 documents are relevant
to some query, 116 documents are relevant to two queries and 7 documents
are relevant to three queries.

In figure 5 the vector model is compared to our algorithm run to 7 = 3.
The experiments were made in the same way as for figure 2, but we did not
have results for LSI for this large matrix. Documents were scored using the
standard query expansion scores (14). We did choose 7 = 3 as dimension
of the Krylov subspace, here the results were better for larger subspaces for
some of the queries.

We choose such a query, number 344, to report in figure 6. As for figure 4,
the x axis is along the projected query ¢ (11) and the y axis is used to plot the
component of each document vector in the reached subspace. The labels show
the ranking of the relevant documents, there are only 3 relevant documents
among all the 210,158, quite like seeking a needle in a haystack. Note that
the relevant documents get better ranking for the larger subspace r = 6 than
for r = 3. This question is not one of the 25 best questions included in
figure 5.

Discussion: The experiments have shown good performance for the small
data set (Cranield), but not that good performance for the larger Financial
times (FT) set. Although we cannot notice any major differences in the
structure of the term document matrices or the distribution of singular values,
there are differences between the two sets. The FT set consists of news
telegrams and Cranfield of scientific papers. For the Cranfield collection,
most users will probably agree on the relevance judgements given for this set,
while for the FT documents more subjectivity is involved in the relevance
judgements. We believe the larger sets do reflect a more realistic case.

The construction of the FT matrix also plays a role in the performance
of our algorithm. Perhaps more care has to be taken when deciding what
terms to use for the matrix. It might not be enough to remove all terms
occurring in more than 10% of the documents, maybe that figure should be
5% or something else.

Some type of row and column normalization is useful. In our Cranfield ex-

22

¥

0.6 0.8

Figure 6: The TREC Financial Times matrix. Query no. 344, upper half
step r = 3 and lower half step r = 6, numbers rankings of relevant documents.
For the upper half 97 % of the documents are in the interval < 0.1 and for
the lower half 99 % of the documentggare in that interval, only a sample of
those are shown. Asterix marks projected query

periments, we first normalized the row vectors, and then the column vectors.
Even if the normalization of the column vectors destroys the row normaliza-
tion, a smoothing effect remains. This had some effect for the performance for
the Cranfield matrix. For the FT matrix only the columns were normalized.

The starting vector (the query) in our algorithm plays an important role,
and it might also benefit our algorithm to pay more attention to how to
construct the query vector. We have only tried our algorithm for at most
r = 12 steps, since generating a larger subspace is too time consuming to
be interesting in a realistic case. Moreover the starting vector looses its
importance the longer we iterate. For our future work we will concentrate on
improving the starting vector and we will investigate how to add relevance
feedback to the algorithm.

References

[1] M. W. BERRY, S. DuMAIs, AND G. W. O’BRIEN, Using linear algebra
for intelligent information retrieval, SIAM Review, 37 (1995), pp. 573—
595.

K. BLowm, Information retrieval using the singular value decomposition
and Krylov subspaces, Tech. Rep. 1999-5, Dept. Mathematics, Chalmers
University of Technology, Géteborg, 1999. ISSN 0347-2809.

K. Browm,Information Retrieval using Krylov subspace methods, PhD
Thesis, Chalmers Universtiy of Technology, Goteborg, 2004 ISBN 91-
7291-453-X.

K. BLom AND A. RUHE, Information retrieval using very short Krylov
sequences, in Computational Information Retrieval, M. Berry, ed.,
vol. 106 of Proceedings in Applied Mathematics, SIAM, Philadelphia,
2001, pp. 41-56.

I. S. DHILLON AND D. S. MODHA, Concept decompositions for large
sparse text data using clustering, Machine Learning, 42 (2001), pp. 143—
175.

S. T. DuMAIS, Latent semantic indezxing (LSI): TREC-3 report., in D K
Harman Editor, The third Text REtrieval Conference (TREC-3), NIST
Special Publication 500-225, 1995, pp. 219-230.

24

[7]

(8]

(9]

[10]

(1]

[12]

(13]

[14]

S. T. DumaAls, G. W. FurNAs, T. K. LANDAUER, S. DEERWESTER,
AND R. HARSHMAN, Indering by latent semantic analysis, Journal of
the American Society for Information Science, 41 (1990), pp. 391-407.

G. H. GorLuB AND W. KAHAN, Calculating the singular values and
pseudo-inverse of a matriz, SIAM Journal on Numerical Analysis, 2
(1965), pp. 205-224.

G. H. GorLuB AND C. F. VAN LOAN, Matriz Computations, Johns
Hopkins University Press, Baltimore, Maryland, 3 ed., 1996.

D. HARMAN, The Eighth Text REtrieval Conference (TREC-8), NIST
Special Publication 500-246. http://trec.nist.gov/pubs/trec8, (2000),
p. Al (Appendix).

H. PARK, M. JEON, AND J. B. ROSEN, Lower dimensional represen-
tation of text data in vector space based information retrieval, in Com-
putational Information Retrieval, M. Berry, ed., vol. 106 of Proceedings
in Applied Mathematics, STAM, Philadelphia, 2001, pp. 7-27.

K. SPARCK JONES, Automatic Keyword Classification for Information
Retrieval, Butterworths, London, 1971.

J. Xu AND W. B. CROFT, Query expansion using local and global doc-
ument analysis, in Proceedings of the Nineteenth Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 1996, pp. 4-11.

H. Zua, O. MARQUEs, AND H. D. SiMON, Large-scale SVD and
subspace-based methods for information retrieval, in Solving Irregularly
Structured Problems in Parallel, A. Ferreira, J. Rolim, H.Simon, and
S. Teng, eds., Springer LNCS 1457, 1998, pp. 29-42.

Modified Krylov subspace methods for
information retrieval.

Katarina Blom

April 12, 2004

Abstract

This paper describes how simple modifications of the Krylov sub-
space method for IR can be used to steer what documents to retrieve
and thus improve retrieval performance.

In our experiments retrieval performance, measured in average pre-
cision, is in general better for those queries that are at a smaller angle
to their subspaces of relevant documents.

Improved query vectors are used directly in the vector model to
rank documents for relevancy, and also for explicit restart of the bidi-
agonalization procedure in the Krylov subspace method.

The bidiagonalization process used in the Krylov subspace method
is rewritten so that only directions orthogonal to subspaces spanned
by irrelevant documents will be taken into account.

Starting the bidagonalization procedure with subspaces spanned
by the terms in the queries, or a block of relevant retrieved documents
will further improve the ranking of relevant documents. We replace
the Golub-Kahan bidiagonalization procedure in the Krylov subspace
method for IR with a band Lanczos procedure.

The modifications we make are based on relevance feedback and
quite naturally our experiments show a significant increase in retrieval
performance for the modified methods compared to the original Krylov
subspace method used for IR.

Keywords
Information retrieval, Relevance feedback, Lanczos algorithm, band Lanc-
zos algorithm, Vector space model, Krylov subspace, SVD, Singular value
decomposition, query expansion, numerical linear algebra.

Contents

1 Introduction 7
1.1 Measures v v v it 9
1.2 Notation e 10
1.3 Mathematical background, 11

2 Krylov subspace methods for information retrieval 12

3 The subspace spanned by relevant document vectors 14
3.1 Query vector and the relevant subspace 15
3.2 Projected query vectors L. 15
33 Optimalscoring 16

4 Using relevance feedback 17
4.1 Formulating improved query vectors 17

4.1.1 Ranking documents 20

4.2 Explicit restart oo 21
4.2.1 Simple explicit restart L. 21

4.2.2 Modifying the bidiagonalization procedure 22

4.3 Query subspaces and the union of Krylov subspaces 23
4.3.1 Querysubspace L. 23

4.3.2 The band Lanczos algorithm 24

4.3.3 The band Lanczos procedure for IR 25

4.4 Starting at scoring vector 27

5 Numerical experiments 27
A The Golub-Kahan bidiagonalization procedure 39

B The-Golub Kahan bidiagonalization procedure modified

1 Introduction

An information retrieval (IR) system matches user queries (formal statements
of information needs) to documents stored in a database. For each query en-
tered the IR system will rank all the documents in relevance order. In vector
space models queries and documents are encoded as vectors in m-dimensional
space, where m is the number of unique terms in the collection. Documents
are sorted for relevancy measuring the angles between each document vector
and the query vector. The vector model has some major drawbacks. The
terms used in the query vectors are often not the same as those by which
the information searched has been indexed in the document vectors. In the
vector model all document vectors that have no term in common with the
query vector will be orthogonal to the query vector (and there by be ranked
as irrelevant).

In Blom and Ruhe [7, 6] we discussed how a few iterations in the Golub-
Kahan bidiagonalizing procedure could (at least in theory) overcome this
problem and further improve the document ranking. In this paper we de-
scribe how simple modifications of the methods used in [6] can be used to
steer what documents to retrieve and thus improve retrieval performance.

In IR query expansion is used to change the terms in the query vector
in order to formulate a new improved query vector Harman [13], Ide [15],
Rochio [17], Xu and Croft [20]. The original query is replaced with the
expanded query and the documents are ranked again. The expected effect is
that the new query is moved towards the relevant documents and away from
irrelevant documents and there by improve the ranking.

In our experiments there is a relationship between the query vectors close-
ness in angles to their relevant subspaces (the subspaces spanned by column
vectors corresponding to relevant documents) and retrieval performance in
vector models. For query vectors close in angles to to their relevant sub-
spaces, often retrieval performance (measured in average precision) is better
than for queries further away from their relevant subspaces.

We discuss how simple projections of the original query vector g can be
used to formulate improved query vectors. We use the retrieved relevant doc-
uments from the vector model to create new query vectors that (hopefully)
are closer in angles to the relevant subspace.

For Krylov subspace methods ezplicit restart means replacing the starting
vector ¢ with an improved starting vector ¢+ and restart the bidiagonalization
procedure with this new vector. (In eigenvalue computations explicit restart

is often used to limit the sizes of the basis set). We use the retrieved rele-
vant documents from the Krylov subspace method to construct new starting
vectors for the explicit restart.

The two alternating steps of matrix-vector multiplications, ATq and Ap,
in the bidiagonalization procedure in the Krylov method can be roughly
interpreted as finding all documents containing the terms in the query ¢ and
finding all the terms contained in the documents represented by p. It is easy
to see that after several iterations this process will bring in some relevant
documents as well as many irrelevant ones. Controlling this growth process
will improve retrieval efficiency for the Krylov subspace method.

Technically it is easy to rewrite the bidiagonalizing procedure to exclude
unwanted (irrelevant) search directions. We use the retrieved irrelevant docu-
ments to construct subspaces spanned by unwanted directions to avoid in the
bidiagonalizing procedure.

Starting the bidiagonalizing procedure with a block of relevant documents
(relevant directions) instead of only one vector will improve performance
significantly. This is done by replacing the Golub-Kahan bidiagonalizing
procedure used in the Krylov subspace method for IR with a band Lanczos
algorithm.

This article is organized as follows:

In section 1.1 we present measures for retrieval efficiency used in this
article. The measures are standard in the IR community. The notation and
some symbols frequently used throughout the article are listed in section 1.2.
In section 1.3 we give a short mathematical background for some concepts
further used.

Section 2 gives a short presentation of the Krylov method used for IR [6].
(The Golub-Kahan bidagonalization procedure used in the Krylov method is
shortly presented in appendix A).

In section 3 we introduce the relevant subspace (the subspace spanned by
relevant document vectors) and it’s complement. We discuss how the query
vectors may be projected onto the relevant subspace or orthogonal to the
complement. We also introduce an optimal scoring.

In section 4 we introduce techniques for how to approximate the projected
query vectors from section 3 and how to approximate the optimal scoring.

In section 4.2 improved query vectors are used for explicit restart of the
bidiagonalization procedure. We also discuss how the bidiagonalization pro-
cedure can be modified to search only in directions orthogonal to unwanted
directions.

Section 4.3 introduce guery subspaces (subspaces spanned by the terms
in the queries). A short description of the band Lanczos procedure and how
it can be used for IR is given.

In section 5 some numerical experiments are presented.

1.1 Measures

The retrieval efficiency of an information retrieval system depends on two
main factors. The ability of the system to retrieve relevant information and
the ability to dismiss irrelevant information. The ability to retrieve relevant
information is measured by recall, the ratio of relevant documents retrieved
over the total number of relevant documents for that query. A systems
ability to reject irrelevant documents is measured by precision, the ratio of
the number of relevant documents retrieved for a given query over the total
number of documents retrieved. Precision and recall are usually inversely
related (when precision goes up, recall goes down and vice versa).

When we evaluate a query ¢, all the documents are ranked and we receive
an ordered list £ of documents. Assume ¢ documents are relevant to the query
and let ¢;, i@ = 1...t be the position for the ith relevant document in L.
The average precision (non interpolated) for a single query is defined as

> i

i=1 "

The mean average precision for multiple queries is defined as the mean
of the average precisions for all queries.
Precision can be computed at any actual recall level

(where t is the number of relevant documents to the query).

Let r; be the jth recall level from the 11 standard recall levels 0,0.1,0.2....1.

The interpolated average precision for a query at standard recall level r; is
the maximum precision obtained for any actual recall level greater that or
equal to r;.

The Recall level precision averages for multiple queries are the means of
the interpolated average precision values at each (standard) recall level for

the queries. Recall level precision averages are used as input for plotting the
recall-precision graphs.
For further details, see Harman [14].

1.2 Notation

The notation used in this article is rather standard in the numerical linear
algebra community. We use uppercase letters for matrices and lowercase let-
ters for vectors. Lowercase Greek letters usually denotes scalars. Component
indices are denoted by subscript. For example, a vector ¢ and a matrix M
might have entries ¢; and m;; respectively. On the occasions when both an
iteration index and a component index are needed, the iteration is indicated
by a parenthesised superscript, as in cy) to indicate the jth component of the
rth vector in a sequence. Otherwise c; may denote either the jth component
of a vector ¢ or the jth column of a matrix C. The particular meaning will
be clear from its context.

The range of a matrix M is the subspace spanned by the columns of M
and is denoted R(M).

Some symbols are frequently used throughout the article. They are listed
below. For a detailed description please see each reference.

A: Term document matrix (section 2).
g: Query vector (section 2).
Q: The query subspace (section 4.3.1).

A: We use A for R(A), the range of A. It is spanned by the columns of A
and has the dimension r, the rank of A.

R, C: The relevant subspace and the complementary subspace (section 3).

7~2, C: The subspace spanned by the relevant retrieved documents and its
complement in the residual collection (section 4.1).

Some of the notations not listed here that are used throughout the article
are introduced in section 1.3.

1.3 Mathematical background

Orthogonal projections Let M be any m x n matrix. The orthogonal
projection of the column vectors in M onto the space S is denoted PsM.
The column vectors in M may also be projected orthogonal to S, M —PsM.

Principal angles The relative orientation of two subspaces can be de-
scribed by principal angles, the angles formed by principal vectors in the
spaces. Let F,G € R™ be two subspaces whos dimensions satisfy p =
dim(F) > dim(G) = s > 1. The first principal angle 6; between F and
G is the smallest angle that can be formed by a vector f; € F and a vec-
tor g1 € G. Since the angle is minimized when the cosine is maximized the
smallest angle satisfies
cosf) = maxmax fa=fla
subject to I/l =llgll = 1.

The vectors f; and g, are called principal vectors. The second principal angle
0, is defined to be the smallest angle that can be formed between a vector in
F that is orthogonal to f; and a vector in G that is orthogonal to g;. The
principal angles 61, ...,0; between F and G are defined recursively by
T T
cosfy = I?Ea}znglgf 9= fi %
subject to

LA = llgl =1,
rf 0, i=1...k—1,
g7gi = 0, i=1...k—1.

For further reading on principal angles see Watkins [19].

Let F be an m X p matrix and let G be an m x s matrix. Assume that
both F' and G have linearly independent columns and let F = QrRpr and
G = QgR¢g be the QR-decompositions of F' and G respectively. Using the
SVD the principal angles and vectors for the ranges R(F') and R(G) can be
computed [4]. Let

USV' = Q1Qc (1)

be the singular value decomposition of @EQ¢. The cosines of the principal
angles are the singular values in S and the principal vectors for F' and G are
QrU and QgV respectively.

Krylov subspaces The Krylov subspace K,.(B, z) of the square matrix B
and starting vector z is spanned by the r vectors

z,Bx,B%*z,...,B" 'z

where z is any nonzero starting vector. The block Krylov subspace K, (B, X)
is spanned by the pr vectors in the block Krylov sequence

X,BX,B*X,...,B"'X
where the columns in X = [z % ... @, are linearly independent.
Theorem Let vectors x1, s, . .. %, be orthonormal and starting vectors for
the p sequences spanning the Krylov subspaces K,(B,z1), K.(B,z2), ...,

K, (B, zp) respectively.
Then the block Krylov subspace is the union of the p Krylov subspaces,

P
’C’I‘(B7X) = UIC’I‘(BVTj)
j=1
proof The proof follows from a simple permutation of the vectors that
span the block Krylov subspace, we have
K.(B,X) = span{z1,2,...,%p, Bx1,Bxs,...,Bx,,...,B 21, B '3y, ...

r—1 r—1
span{z,, Bzy,...,B" 1,29, Bxs,...,B" %a,...,2p, Bxp, ...

O ICT(B, :vj).

=1

2 Krylov subspace methods for information
retrieval

In vector space models both queries and documents are encoded as vectors
in m-dimensional space, where m is the number of unique terms in the col-
lection. The document vectors are stored as columns in an m X n term
document matrix A. The query vectors are stored as m X 1 vectors g and
query matching can be viewed as a search in the column space of the term
document matrix A.

In the vector model the documents are scored measuring the cosine of the
angles between the query vector ¢ and each document vector a; in A,

lal2lla, 2

¢ i=1,2,...,n. (2)
The smaller the angle (i.e. the larger cosine value) the higher relevance score.

For the Krylov subspace methods we will use the Golub Kahan bidiago-
nalization procedure [12] applied to the term document matrix A starting at
the query vector g to compute the two basis matrices Q1 and P, and the
(r + 1) x r lower bidiagonal matrix B,.1, satisfying

By, = Qf+1APT 3)

The column vectors in the basis matrices Q.1 and P, span bases for the
two Krylov subspaces K,11(AAT,q), in the document space (spanned by
the query g and the columns of A) and K,(ATA, ATq), in the term space
(spanned by the rows of A) respectively. The Golub-Kahan bidiagonalization
procedure is further described in appendix A.

We let W form an orthonormal basis for the column vectors in the reached
subspace span(AP,).

The reached subspace W, the basis matrices Q,41, Pr and the B, i,
matrix are used to score the documents in relevance order to the query (see
Blom Ruhe [6]). The similarity measures we use for this article are:

e In the subspace projection measure the documents in A are sorted ac-
cording to their closeness measured in angles to the Krylov subspace
Kr11(AAT q). The relevance is measured using

¢ =107l 5=12,...,n (4)
e A projected query vector
g=Ww'q ()

is constructed using the reached subspace. In the ezpanded query mea-
sure the documents are scored using the angles between the expanded
query vector § and each document vector in A,

~T
q a;

Ci =
7 Ndllzllaglle”

i=1,2,...,n. (6)

13

Note that if the starting vector g € A, the range of A, then the pro-
jected query ¢ = ¢ and the cosines (6) are simply the vector model
scoring (2).

The subspace spanned by relevant docu-
ment vectors

When a user issues a search for information on a topic, the information
retrieval system will start to return documents that are relevant from the
system’s point of view. From the user’s perspective the total database will
be divided logically into four parts. There will be relevant and irrelevant
documents retrieved. And among the documents not retrieved there will be
both relevant and irrelevant documents.

Let A be the subspace spanned by the column vectors in the term doc-
ument matrix A and assume r documents are relevant to query g. The
subspace

RCA (7)

spanned by the document vectors in A that correspond to the r relevant doc-
uments we call the relevant subspace. We define the complementary subspace
by the set difference between the range of A and the relevant subspace,

C=A-R. (8)

It is important to note that with this definition of the relevant subspace
the relevant document vectors are completely in R. The irrelevant document
vectors are spanned by vectors both in the relevant subspace and in the
complementary subspace.

The relevant subspace R for a query q is discernible if no irrelevant docu-
ment vectors are completely in R. For all sets we have studied! the relevant
subspaces for all queries are discernible?.

1The Adi, Cici, Cranfield and Medline data sets [9] (see also [2]) and the Financial
Times and Congressional Records from the TREC data sets [1].

2How the document vectors in the term document matrices were set up is described in
section 5.

3.1 Query vector and the relevant subspace

The query vector g can be divided into three orthogonal parts ¢i, g2 and g3
where ¢; is in the relevant subspace (7) of g, gz is in A, the range of A but
not in the relevant subspace and ¢ is orthogonal to A.

a=q+q+g €

and ||g||2 = ||lg1l|2 + |lg2l|? + llg3]|3- In our experiments | gs||2 is in general
larger than ||g1]|2 and ||gz||2, and ||gz]|2 is in general larger than ||g; |-

It is not always the case that the query vector is closer to the subspace of
relevant documents than the irrelevant document vectors are. Quite often we
will find irrelevant document vectors making a smaller angle to the relevant
subspace than the query vector itself.

This is clearly seen in figure 1 where cosines of the angles between the
relevant subspace R and each document vector and the query vector are
plotted. 15 irrelevant document vectors make slightly smaller angles to the
relevant subspace than the query vector.

We have also found several query vectors being orthogonal to their rele-
vant subspaces.

There is a tendency that average precision (using any of the ranking
algorithms presented in this article) is better for queries (or expanded que-
ries) close to their relevant subspaces (7) than for queries further away from
their relevant subspaces.

When sorting the retrieval performance (measured in average precision for
the vector model (2)) for each query vector ¢ within a data set according to
|lg1 |2 there is a relationship (see figure 2 (right plot))®. Average precisions for
query vectors orthogonal to or with a small part in their relevant subspaces
is very moderate. Average precisions for query vectors closer in angles to
their relevant subspaces tend to be higher.

3.2 Projected query vectors

We can move the query vector g away from irrelevant documents (measured
in angles) by projecting it orthogonal to the complementary subspace C (8)

¢—Peg=aq +g (10)

3Similar relationships seems to occur when sorting the retrieval performance for each

i llgll2
query ¢ according to izl

15

where ¢; and g3 are the parts of ¢ that are in the relevant subspace for ¢ and
orthogonal to the range of A respectively as defined in (9). We can move the
query vector towards the relevant subspace by projecting it onto the relevant
subspace R (7)

Prg = q. (11)

Clearly both the projected queries (10) (11) are orthogonal to the comple-
mentary subspace C. Unless g is completely in the range of A the projected
query vectors (10) (11) are not equal®.

3.3 Optimal scoring

An optimal scoring will rank all relevant documents better than irrelevant
documents.

Assume the relevant documents for a query span a discernible subspace.
Since Pra; = a; for all relevant document vectors a;, then optimality is
obtained if all documents are sorted in descending order according to their
angles to the relevant subspace

Pralla _ lla; = Peajlle - _ 5 (12)
lla;ll2 lla;ll2

The angles between the projected query vector Prq and each document
vector a; in the term document matrix

(Pra)"a; _ (Pra;)Tq :(aj_PCaj)Tq
IPralzlla;ll: — 1Prall2llajll: — [1Prallzllaglle’

=12,...,n (13)

does not necessarily give an optimal scoring.

This is easily verified. For relevant document vectors a;, the angle be-
tween the projected document Pra; and the query vector g is the same as
the angle between the document vector itself and the query vector, ®

(Praj)Tq _ ajq

= i=12,...7.
lagllz - llajl>” o

For the data sets we have studied, (the Adi, Cici, Cranfield and Medline data sets [9],
the FT and the CR sets from TREC [1]), ¢ is never completely in A.

5Since ||Prg||2 in the denominator is constant for all j = 1,2,...,n it will not affect
the scoring and can be omitted.

. .. (Praj)Tq .
We cannot gurantee that this quantity, —————/ is smaller than the angles
@

between the projected irrelevant document] vectors and the query vector.
Some of the irrelevant documents may be ranked higher than relevant docu-
ments.

Clearly the scoring (13) is not optimal. In experiments this scoring (not
surprisingly) performs very well measured in average precision.

However, the documents forming the relevant subspace for a query are
not known in advance (in fact we are trying to find them). In reality we can
only compute approximations to the projected query vectors (10), (11) and
rankings (12), (13).

4 Using relevance feedback

Both the vector model and the Krylov subspace method have a limited recall.
Usually some relevant documents are retrieved to a query, but almost never
all the relevant documents. In this section we will discuss some techniques
that may be used together with the Krylov method to further increase the
recall (mostly the techniques will also increase precision).

To steer the process of what documents to retrieve, we will use relevance
feedback. In a relevance feedback cycle, the user is presented a list of retrieved
documents, and after examining them, marks those that are relevant. The
main idea is to use the information provided by the user to make a new
(hopefully) improved search®.

4.1 Formulating improved query vectors

Assuming that relevant documents resemble each other it is natural to for-
mulate an initial query and to incrementally compute vectors of the relevant
and/or the complementary subspaces.

Assume that ¢ retrieved documents have been returned back to the user at
some point. Assume that s of these were identified as relevant and ¢t — s were
irrelevant. Let the columns of A, correspond to the ¢ retrieved documents.

SRelevance feedback can also be performed without involving a user. In pseudo rel-
evance feedback new queries are constructed using the top retrieved documents, see for
example Xu and Croft [20].

Let
R C R(A,) (14)

be the subspace spanning the s retrieved relevant document vectors and let
C=R(A)-R (15)

be it’s complement in the range of A,.

Clearly the subspace spanned by the relevant retrieved document vectors
is in the relevant subspace (7), R € R. The complement € to R in R(A,)
may not be completely in the complementary subspace C (8)

We will mimic the two projected query vectors (10) and (11) with the
two expanded query vectors

¢ =q—"Ps and ¢"="Pgzq (16)

respectively. Note that ¢ is in A, the range of A, while ¢~ might not be
completely in A. It is possible to add tuning constants to the expanded query
vector ¢~. Letting

g =aq+ P (17)
and with appropriate choices of o and f retrieval performance for the ex-
panded query vector ¢~ may improve.

If no relevant documents were found among the ¢ best scored documents
then it is not possible to form the expanded query vector g*. One option
could then be to look further down the ranked list of retrieved documents in
order to find some relevant documents. Often this is wasted effort, the vector
model will pull in too many irrelevant documents and there is an upper limit
to how many documents we can expect a human user to judge for relevance.
Forming the other expanded query vector ¢~ is also likely to fail since the
query vector g will be projected orthogonal to the subspace €. The number
of retrieved documents ¢ is then much less than the number of document
vectors n in A and the subspace C will be a very poor approximation of the
complementary subspace C (8).

There are three classic (and rather similar) ways to calculate an improved
query vector for vector models [10].

In standard Rochio [17] the new query vector is computed using the orig-
inal query vector ¢ and the retrieved relevant document vectors in A, and
the retrieved irrelevant document vectors in A;_;

B Y
Qrocuio = @ + ;Ases - ?At—set—s

18

where e; and e, are the vectors of ones and «, 3 and « are used as tuning
constants. Sometimes +y is set to 0. For the two other methods, Ide Regular
and Ide dec hi [15] other tuning constants are used and for the Ide dec hi
method the highest ranked irrelevant document vector is subtracted instead
of the sum of the irrelevant document vectors.

The last vector A; ,e; , in the standard Rochio expansion can be di-
vided in two parts, one part that is in the subspace spanned by the relevant
retrieved documents R (14) and one part that is in the complement € (15).

The standard Rochio expansion can be formulated

Qrocuio = ¢ + Pﬁ(gAses - %At—set—s) - %PéAt—set—s- (18)

Let the residual collection
Anft (19)

be the columns of A with the ¢ document vectors that correspond to the
retrieved documents removed.

We cannot formally prove that any of the three expanded query vectors
(16) — (18) are closer in angles to their relevant subspaces in the residual
collection than the query vectors q. In our experiments’ some trends are
clear though. In general g% and grocmo are moved towards their relevant
subspaces in the residual collection. For @« = f = 1 the expanded query
vectors ¢~ are moved away from the irrelevant document vectors but rarely
towards their relevant subspaces in the residual collection. If an expanded
query vector is moved towards its relevant subspace in the residual collection
retrieval performance, using any of the ranking algorithms presented in this
article, is in general better than performance for the original query vector g.

In figure 1 we used the ten best scored documents from the vector model
(2) and constructed the expanded query vector g™ (16). The expanded query
vector ¢* is not completely in the subspace spanned by the relevant docu-
ments in the residual collection, however the expanded query vector is closest
in angle to the relevant subspace in the residual collection compared to all
document vectors in the residual collection.

“with the Adi, Cici, Cranfield and Medline data sets [9] (see also [2]) and the Financial
Times and Congressional Records from the TREC data sets [1].

4.1.1 Ranking documents

When using relevance feedback only the document vectors in the residual
collection A,_; (19), where the ¢ removed document vectors correspond to
the ¢ documents used for the feedback cycle, will be scored for relevance.

In order to mimic the optimal scoring (12) we have sorted the documents
in relevance order using any of the measures

IPaaslle o0
llall2
lla; — Peajll2
llall2
respectively, where a; is in the residual collection A,_;.

In the vector model (2) documents are scored measuring angles between
the query vector ¢ and each document vector in A. It is natural to score
documents measuring angles between the expanded query vectors and each
document vector in the residual collection.

(@)a;
lasllz *

j=1,2...,n—t (21)

3 Pt

ji=1,2,...,n—t (22)

()"
llajll

% i=1,2,....n—t

(qROCHIO)Taj
llajll2
respectively. The vectors (22) — (24) are sorted in descending order.

Note that the three scorings (22) (24) in general are not equal.

In average, performance is better for all three rankings (22) — (24) using
the expanded query vectors compared to the vector model (2).

In figure 1 forming the expanded query vector g* we are able to capture all
four remaining relevant documents only by considering in total 30 irrelevant
documents (compared to the vector model where we had to consider in total
107 irrelevant documents).

The scorings (22) — (24) does not improve average precision for all queries
compared to the vector model. Sometimes it is better to use the original

. j=1,2,...,n—t (24)

20

query vector when scoring documents for relevance. In figure 4 the scor-
ings (22) — (24) are compared with the vector model for documents in the
residual collection. A few relationships can be noticed. Queries loosing in
performance for ¢ also looses in grocuio- Queries where performance im-
provement is large for g7 is also large for grocmio-

Retrieval performances for the scorings (20) — (24) and the vector model (2)
are compared in figure 5. In average, performance is better for all three ex-
panded query vectors compared to the vector model. Precision is much better
but also a small improvement in recall can be seen. The expanded query g+
gives largest improvement while the ¢~ score documents rather similar to the
original vector model. With other tuning constants for the Rochio queries or
the expanded query vector ¢~ performance might improve. The approximate
optimal scoring (20) using the relevant retrieved subspace (14) is also good,
while the approximated scoring (21) using the complement (15) is not very
effective.

4.2 Explicit restart

Explicit restart means replacing the starting vector ¢ with an improved start-
ing vector and restart the bidiagonalization procedure with this new vector®.
In eigenvalue computations explicit restart is often used to limit the sizes
of the basis set. In the context of IR we want to restart the bidiagonaliza-
tion procedure with a vector that better captures the connections between
the groups of relevant documents. The basic idea is to start the bidiagonal-
ization procedure with the original query vector ¢ and rank the documents
using any of the rankings in section 2. Based on relevance feedback informa-
tion from the user, new improved starting vectors for the bidiagonalization
procedure are constructed.

4.2.1 Simple explicit restart

Figure 6 is a recall-precision graph. We constructed expanded query vec-
tors ¢*, ¢~ and grocmo from section 4.1 using relevance feedback. For each
query the user judged the 10 top ranked documents from the expanded query
measure (6) (using the original query vector g as starting vector in the bidi-
agonalizing procedure). The bidiagonalization procedures were restarted and

8The bidiagonalization procedure is further described in [6]. A summary can be found
in appendix A

the documents in the residual collections were ranked using the subspace pro-
jection measure (4). Retrieval performances for the different starting vectors
are compared in the figure. In general performance is improved by explicit
restart.

Even though we measure performance only for the documents in the resid-
ual collection, it is important to keep the relevant retrieved documents in the
term document matrix when bidiagonalizing. Otherwise performance will de-
crease’. Quite often retrieval performance is further increased by removing
the irrelevant retrieved documents from the term document matrix before
bidiagonalizing.

4.2.2 Modifying the bidiagonalization procedure

The retrieval performance can be further increased by using the feedback in-
formation also when bidiagonalizing. Assume the subspace £ span directions
we want to avoid. Starting the bidiagonalizing procedure with any vector or-
thogonal to £ will start a search orthogonal to the unwanted directions, but
it is not enough to guarantee the orthogonality between the basis vectors in
Qr+1 (3) and €. Technically it is easy to rewrite the BIDIAG procedure to in-
crementally compute vectors ¢; € @, orthogonal to £, and thus completely
avoid all directions in the subspace while bidagonalizing (further details are
in appendix B).

Start with g1 = %, Bi=0
for k=1,2,...7r do

QxPr = ATllk — BrPr-1

y = Apr — oG

Br+1Gk+1 =Y — Pey
end.

The vectors spanning € need to be chosen with some care. In order not to
increment the computational load too much the number of vectors spanning
€ needs to be rather moderate. There must be document vectors in A that
are not completely in £ otherwise the procedure will vanish.

9Tn order to keep the effect of relevant documents resembling each other in the bidiag-
onalization procedure it seems to be important that all the relevant document vectors are
kept otherwise the resembling effect will be to weak.

22

€ could for example be chosen to span irrelevant retrieved directions,
& =€ (15). Another option is to let £ be spanned by one vector containing all
terms that are in the irrelevant retrieved documents but not in the retrieved
relevant. This procedure could also be useful for boolean queries.

4.3 Query subspaces and the union of Krylov sub-
spaces

In this section we will consider query subspaces instead of query vectors.
Instead of using the Golub Kahan bidiagonalizing procedure (3) we will
use the band Lanczos procedure starting with the query subspace (or sub-
spaces spanned by document vectors corresponding to relevant retrieved doc-
uments).

4.3.1 Query subspace

One way to broaden the query is to use query expansion, where more terms
are added to the query vector to make it broader. Another way to broaden
the query is to let the terms in the query span a subspace Q.

Assume the query vector g consist of s terms, then we let the query
subspace Q be spanned by s m x 1 vectors, each vector with one nonzero
element corresponding to a term in the query.

Any vector that can be expressed as a linear combination of terms in the
query belongs to the query subspace Q, in particular the query vector ¢ € Q.

As for the query vector (9), the query subspace can be divided into
three orthogonal subspaces, Q;, Qo and Q3 where Q; is in the relevant
subspace (7), Qs is in the range of A, A but not in the relevant subspace and
Qs is orthogonal to A.

The query subspace can be projected onto the subspace spanned by rele-
vant retrieved document vectors (14) QT = P Q or orthogonal to the com-
plement (15) @~ = Q — PsQ

We may score the documents for relevancy measuring the angles between
the query subspace and each vector in the term document matrix. The
cosines of the angle between the query subspace and each document vector
in A

1Poajl2
are sorted in decreasing order, and the documents corresponding to the larger
cosines are ranked high.

23

We may also mimic the scorings (22) (23) from section 4.1.1 and score the
documents according to the closeness in angles to the projected subspaces
respectively

IPo+a;l2

and
1Po-ajlla-

4.3.2 The band Lanczos algorithm

The band Lanczos algorithm [18] (see also [3]) is based on block Krylov
subspaces induced by a square matrix B and a block of s linearly independent
starting vectors

Y1, Y2, -5 Yse (25)

The band Lanczos algorithm constructs orthonormal vectors that form a
basis for the subspace spanned by the first linearly independent vectors of
the block Krylov sequence

Y1, Y2, - Ys, By, Bya, ..., By, By1, B?ys . ..

If we apply the band Lanczos algorithm to the matrix

0 A
o=l

where A is the m x n term document matrix, with the starting block
_ |11 G2 ... Qs
@ = [0 0 ... 0]
with orthonormal columns that is a basis of the subspace spanned by
Y1,Y2, - --,Ys, it reduces to the BANDL procedure below.
Define hj; = 0 when ¢ < 1. The following procedure compute the basis
matrices @15 and P, and the (r+s) X r lower (s+ 1) lower diagonal matrix

H,,,, satisfying
Hr+s,r = QZ;.;APp (27)

ALGORITHM BANDL(4, Q;,7)
Start with s orthonormal vectors forming Qs = [1 Go ... qs].
for j=1tor do
hijpj = ATqj = pj—shijj—s — Pj—st1hij—sr1 — -+ = Pi—shjjs
w = Ap; — gih;
fori=j4+1toj+s—1do
hij = gfw;w=w - gihi;
end
hj+s,jqj+s =w
end

With H,,, = [hi;], the matrix H,,,, is of size 7 + s x r and lower (s+1)-
diagonal. In the first part, where computing p;, previously computed subdi-
agonal elements or H are used while h;; is computed to give p; unit norm.
In the second part, where computing g;.,, the subdiagonal elements of H are
computed as Gram Schmidt orthogonalization coefficients.

Define Q45 = [q1 Q@ .. qH_s] and P, = [pl P2 ... pr]. In exact
arithmetic we will have QY, ,Q,+, = I and PTP, = I. After r + s iterations
the basic relations

ATQ, = P.HY
AP’I‘ = QT+er+s,r

will hold. The columns of Q,,s will be an orthonormal basis of the block
Krylov subspace K,11(AAT, Q,) in the document space, spanned by the start-
ing block @; and the columns of A.

The columns of P, similarly span a basis of the block Krylov subspace
K, (AT A, ATQ;) in the term space spanned by the rows of A. The singular
values of H,,, will be approximations to those of A.

As for the original bidiagonalizing procedure from section 2 it is easy to
rewrite the BANDL procedure to incrementally compute vectors ¢; € Qs
orthogonal to a subspace £ (section 4.2.2)

4.3.3 The band Lanczos procedure for IR

The BANDL applied to the term document matrix A gives us an opportunity
to start with a block of (orthonormal) vectors spanning relevant information.

25

Let columns in the m x s matrix @5 be orthonormal forming a starting block.
We apply the BANDL algorithm to the term document matrix A starting at
Qs to receive the two basis matrices Q;s and P, and the r + s x r lower
(s+1)-diagonal matrix H,,,. We let W form an orthonormal basis for the
reached subspace spanned by the column vectors in AP,.

As for the bidiagonalization procedure (3) the reached subspace W, the
basis matrices Q,4s, P, and the H,,, matrix are used to score documents
in relevance order to the query. A few examples were presented in section 2.

e In the block subspace projection measure the documents are sorted ac-
cording to their closeness measured in angles to the block Krylov sub-
space KC,11(AAT, Q,). The closer the document is, the more relevant.

&= Q% all, 5=1...n. (28)

Sorting the documents according to @, in general give a better scoring
than sorting the documents according to @,41 in the subspace projec-
tion measure (4) from section 2.

For the block expanded query measure a projected query vector § =
WW7Tq is constructed using the reached subspace. The documents are
sorted using the cosine scoring between ¢ and each document vector in
A. o
q aj .
c;=+—r, j=1...n. (29)
T

The larger the cosine value the more relevant document.

A few relations should be observed:

If we let the s vectors in the starting block ()5 span be the relevant re-
trieved subspace R (14) and stop the iterations in the BANDL procedure when
r = s, then the block subspace projection measure (28) is the approximate
optimal scoring (20) and the block cosine scoring (29) is the cosine of the
angle between the expanded query ¢+ from section 4.1 and each document
vector (22).

If the starting block only consists of the query vector g then the BANDL
procedure reduces to the BIDIAG procedure in section 2, otherwise letting
Qs=[a1 @ ... gs] and using theorem in section 1.3 column vectors in
Qr+s and P, from the BANDL procedure form the union of the s Krylov
subspaces K, (AAT,q;) and K, (AT A, ATq;), j = 1...s respectively.

26

Let the column vectors in @, span the relevant retrieved subspace R (14)
The Krylov subspace K, (AAT, ¢*) received when using the bidiagonalization
procedure from section 2 with A and the expanded starting vector ¢+ (16) is
a subspace of the block Krylov sequence K, ,(AAT, Q,) received when using
the BANDL process with A and the relevant retrieved directions spanned by
Qs, thus we will have Q.1 C @5, where Q1 is the basis matrix (3) from
the BIDIAG procedure and the @, is the basis matrix (27) from the BANDL
procedure.

Used properly the BANDL procedure performs very well. Figure 7 is a
recall-precision graph for the block expanded query measure.

4.4 Starting at scoring vector

Sometimes we start the bidiagonalization procedure with a scoring vector p, a
weighted combination of documents. Then it is natural to reduce the matrix
A to upper bidiagonal form by computing orthonormal bases for the Krylov
subspaces K,(AT A, p) and K,.1(AAT, Ap), using the bidiagonalization pro-
cedure

prue = App — Opup 1
Ok1Per1 = ATug — prpy

with k = 1,2...7, p1 = p/||p||]2 and 6; = 0. If we start the iteration with
p = ATq this bidiagonalizing procedure can be derived from the BIDIAG
procedure discussed in section 2. The relationships between the bidiagonal-
izations are discussed by Paige and Saunders [16] and also by Golub [11].

5 Numerical experiments

We present our experiments using the Cranfield collection, however the re-
sults are general and valid for other sets as well'®. The overall retrieval per-
formance varies between the sets. For the Medline set retrieval performance
is very good while performance for the F'T set is more moderate.

10Gimilar experiments were performed using the Adi, Cici, Cranfield and Medline data
sets [9] (see also [2]) and the Financial Times and Congressional Records from the TREC
data sets [1].

Cranfield is a small collection (1400 documents) with a large number of
queries (225 queries). The data set consist of document abstracts in aerody-
mancis originally used for tests at the Cranfield Institute of Technology in
Bedford, England.

We choose to report our experiments with a sequence of figures with
appropriate captions.

Preparing the term document matrix We have used a simple term
frequency weighting to construct the term document matrix

0 if term ¢ not present in document j

A= [a,]] { t;; if term ¢ is present in document j. (30)

where t;; is the number of times term ¢ appears in document j. We use
one row normalization followed by one column normalization in order to
deemphasize common terms and long documents!!. All rows corresponding
to terms appearing in more than 10% of the documents were removed. For a
further discussion about weightings for the Krylov subspace method please
see [5].

In experiments where relevance feedback is used one initial run is made
and the user is shown the top 10 documents. These documents are then used
for relevance feedback purposes. Queries where no relevant documents were
found among the top 10 or all relevant documents were among the top 10
were removed.

For evaluation measures the residual collection method is used. The eval-
uation of the results compares only to the residual collection A,_1q, that is
all documents except the ten previously shown to the user are ranked and
evaluated. The residual collection method provides an unbiased and realistic
evaluation of feedback. However, because highly ranked relevant documents
have been removed from the residual collection, there is a risk that the recall-
precision figures will be lower than those for standard evaluation methods,
and cannot directly be compared.

Relevance is always judged by comparing the results of an algorithm to
relevance judgments provided with the test sets. These have been compiled
by a panel of human experts who have considered at least all those documents
marked as relevant.

1The column normalization will destroy the previous row normalization but not com-
pletely. Some deemphasizing effect of common terms still remain.

28

T T T T
cos(query vector, Relevant subspace).
O cos(not retrieved document,Relevant subspace).
cos(retrieved document, Relevant subspace).
In total 107 irrelevant documents are retrieved.

cosine

25
document

T T T T T T T T
m cos(expanded query vector, Relevant subspace (residual collection)).
> cos(not retrieved document, Relevant subspace (residual collection)).
® cos(retreived document, Relevant subspace (residual collection)).
In total 30 irrelevant documents are retrieved.

cosine

10 15 30
document

Figure 1: Upper plot. Cosines of the angles between the relevant subspace (7)
and each document vector and the query vector for query no. 5 from the Cranfield
set (only the 50 largest cosines are shown). In order to retrieve all five relevant
documents using the vector model(2) 107 irrelevant documents were returned.
Lower plot. Cosines of the angles between the relevant subspaces in the residual
collection (19) and each document vector and the expanded query vector g* (16) for
query no. 5 from the Cranfield set. (Only the 50 largest are shown). The expanded
query vector ¢t was formed using the ten best scored documents from the vector
model (2). In order to retrieve all four relevant documents in the residual collection
measuring the angles between the expanded query and each document vector in the
residual collection 30 irrelevant documents were returned. In each plot the cosine
for the query vector is marked with a black square. The cosines corresponding to
the documents are marked with circles and the documents retrieved in order to
capture all the relevant documents are marked with filled circles. Query no. 5 has
five relevant documents. Using the vector model one relevant document is scored
among the top 10. The query is typical in the sense that in order to retrieve
all the relevant documents using the vector model many irrelevant documents are
retrieved (making precision rather moderate)

29

%
L—_ T

T
* average precision
—— cosines

mean average precision

100 150 200
document document

Figure 2: Left. Mean average precision for the Cranfield queries when the
vector model (2) is used. Each bar is mean average precision when 0,1,2...
irrelevant documents has smaller angles to its relevant subspace (7) than
the query vector. The breadth of each bar is proportional to the number
of queries used to compute the mean average precisions. Right. Average
precision for the 225 Cranfield queries (the stars) when the vector model
scoring (2) is used. The queries are sorted according to their closeness to
the relevant subspace (7) (the black line). In each plot In general average
precisions for query vectors orthogonal or with a small part in their relevant
subspaces are very moderate. Average precisions for queries closer in angles
to their relevant subspaces tend to be better.

Average precision
T T T T

T T
* average precision
—— cosines

difference

| TH\HHmuuwwm

I I I I I
20 100 120 140 160

| IM ool

I I
20 180

difference

difference

I I I I I I I I
20 40 80 100 120 140 160 180

Figure 3: Mean average precisions for the Cranfield queries when the block query
subspace projection measure (28) is used to score the documents. The queries
are sorted according to first principal angle between the subspace R spanned Figure 4: Differences between average precisions for the ranking algorithms
by relevant retrieved document vectors (14) and the subspace spanned by (22) (23) (24) using the expanded query vectors from section 4.1 and the

relevant not retrieved document vectors for each query. Some correlation vector model (2). Plots from top to bottom are ¢*, ¢~ and grocmio- In all
seems to appear. plots the queries are sorted according to the differences in the top plot. Only

documents from the residual collection are used when computing average
precisions.

120

documents

T T
—B- q (vector model)
R q+
q

= %ochio
— approx optimal ||

Precision
o) o o
S ol =2 ~

o
w

01 02 03 04 0.5
Recall

Figure 5: Recall-precision graph for the Cranfield collection comparing the
rankings presented in section 4.1.1. The approximate optimal scoring using
the relevant retrieved subspace (20) correspond to the upper solid and the
approximate optimal scoring using the complement (21) correspond to the
lower solid. For all test collections we have tried the gt ranking (22) and the
approximate optimal scoring (20) are the best. Performance of the ¢~ (23)
and grocmio (24) scorings depend on what tuning constants are used, but
performance is rarely above the approximate optimal and the ¢ ranking. All
rankings except the approximate optimal scoring (21) give better retrieval
performance than the vector model (2).

T T T
— - explicit restart with "
~4- norestart

explicit restart with g~
_explicit restart with GrocHO

Precision

1 1 1 1
0.1 0.2 0.3 04 0.5 0.6
Recall

Figure 6: Recall-precision graph for the Cranfield collection. The bidiagonal-
izing procedure was restarted with the expanded vectors ¢, ¢~ and grocuio
from section 4.1 respectively and the subspace projection measure (4) was
used for ranking the documents in the residual collection. For all test col-
lections we have tried explicit restart improves the retrieval performance
compared to no explicit restart.

~B- vector model
— block expanded query me:

Precision
o o) o
B~ o (=2} ~

o
w

1 1 1
01 02 03 04 0.5
Recall

Figure 7: Recall-precision graph for the Cranfield collection. The block ex-
panded query measure (29) is compared with the vector model (2). For all
test collections we have tried any of the block measures, block expanded
query measure (29) and block subspace projection measure (28), are the best
rankings compared to all the other rankings presented in this article.

Average precision

ol

difference

I I I I I I
80 100 120 140 160 180

0

5 7
\H‘m\m‘\ |]

difference

I I I I I I I I I
20 40 60 80 100 120 140 160 180

Figure 8: Upper plot. Differences in average precisions for block expanded
query measure (29) and the vector model (2). Lower plot Differences in
average precisions for block cosine measure (29) and the ¢ ranking (22)
from section 4.1.1. The queries are sorted as in figure (4).

References

[1] Text REtrieval Conference (TREC). http://trec.nist.gov/.

[2] R. BAEZA-YATES AND B. RIBEIRO-NETO, Modern Information Re-
trieval, Addison Wesley, 1999.

[3] Z. Ba1, J. DEMMEL, J. DONGARRA, A. RUHE, AND H. VAN DER
VoORsT, Templates for the Solution of Algebraic Eigenvalue Problems:
A Practical Guide, STAM, Philadelphia, 2000.

A. BJORck AND G. H. GoLUB, Numerical methods for computing
angles between linear subspaces, Math Comp, 27 (1973), pp. 579-594.

K. Browm, Ezperimenting with different weighting schemes for the
Krylov Subspace method used for IR, tech. rep., Dept. of Mathematics,
Chalmers university of Technology, 2003.

K. BLoM AND A. RUHE, Information Retrieval using a Krylov Subspace
method, Submitted for publication 2003.

— Information Retrieval using very short Krylov sequences, in Com-
putational Information Retrieval, M. W. Berry, ed., STAM, 2000, pp. 39—
52.

L. ELDEN, Partial Least Squares vs. Lanczos Bidiagonalization I: Anal-
ysis of a Projection Method for Multiple Regression, Tech. Rep. LiTH-
MAT-R-~2002-24, University of Linképing, Dept. of Mathematics, 2002.

[9] E. A. Fox, Characterization of two new ezperimental collections in
computer and information science containing textual and bibliographical
concepts, Tech. Rep. 83-561, http://www.ncstrl.org, 1983.

[10] W. B. FRAKES AND R. BAEZA-YATES, Information Retrieval, Data
Structures and Algorithms, Prentice Hall, 1992.

[11] G. GoruB AND C. F. vaN LoAN, Matriz Computations 3 ed., Johns
Hopkins, 1996.

[12] H. GoLuB AND W. KAHAN, Calculating the singular values and
pseudo-inverse of a matriz, SIAM Journal on Numerical Analysis, 2
(1965), pp. 205-221.

37

[13] D. HARMAN, Relevance feedback and other query modifcation tech-
niques, in Information Retrieval, Data Structures and Algorithms, W. B.
Frakes and R. Baeza-Yates, eds., Prentice Hall, 1992, pp. 241-263.

[14] ——, A1 (appendiz), in The Eighth Text REtrieval Conference (TREC-
8), D. Harman, ed., NIST Special Publication, 2000, pp. 500 546.

[15] E. IDE, New ezperiments in relevance feedback, in The SMART Retrieval
System, G. Salton, ed., Prentice Hall, 1971, pp. 337-354.

[16] C. C. PAIGE AND M. A. SAUNDERS, LSQR: An algorithm for sparse
linear equations and sparse least squares, ACM Trans. Math. Soft, 8
(1982), pp. 43-T71.

[17] J. J. RocHIO, Relevance feedback in information retrieval, in The
SMART Retrieval System — Experiments in Automatic Document Pro-
cessing, G. Salton, ed., Prentice Hall, 1971.

[18] A. RUHE, Implementation aspects of band Lanczos algorithms for com-
putation of eigenvalues of large sparse symmetric matrices, Mathematics
of Computation, 33(146) (1979), pp. 680-687.

[19] D. S. WATKINS, Fundamentals of Matriz Computations, John Wiley &
Sons, 1991.

[20] J. Xu AND W. B. CROFT, Query ezpansion using local and global
document analysis, Proc. ACM SIGIR, (1996), pp. 4-11.

A The Golub-Kahan bidiagonalization pro- is the projection of A into these Krylov subspaces and the singular values of
cedure Br+1,r. will be approximatior.ls of those of A.

It is well known [8] that if the query vector ¢ has large components along
some singular vectors that do not correspond to the largest singular values of
the term document matrix A then the first few basis vectors in @41 (31) will
contain large components along these singular vectors. If the components in
g are not large enough or if the components correspond to the largest singular
values then the first basis vectors in @,,; will be dominated by components
from the singular vectors corresponding to the largest singular values.

The Golub-Kahan bidiagonalization procedure is a variant of the Lanczos
tridiagonalization algorithm and it is widely used in the numerical linear
algebra community.

We start the Golub Kahan algorithm with the normalized query vector
@1 = q/||q|| and use the term document matrix A, and computes two or-
thonormal bases P and @, adding one column for each step k, see [11] in
section 9.3.3.

ALOGRITHM BIDIAG(A,q,r):
Start with ¢ = q/||q||, 1 =0
for k=1,2,...r do
QkPr = ATQk — BkPr-1
Brt1Gr+1 = Apr — i
end.

The scalars o and i are chosen to normalize the corresponding vectors.
Define

Qit = (@ @ - @], (31)
Po=1[p p - b,

[&51
B2 s
B’I‘+1,’I‘ .
Qr

BT+1
After r steps k we have the basic recursion
ATQ, = P.BT

AP’I‘ = QT+1BT+1,T-

The columns of @, will be an orthonormal basis of the Krylov subspace
Kr+1(AAT ¢) and the columns of P, forms an orthonormal basis for the
Krylov subspace K, (AT A, ATq). The lower bidiagonal matrix By,1, = Q% AP,

39

B The-Golub Kahan bidiagonalization pro-
cedure modified

Assume the subspace £ span directions we want to avoid and let the columns
of E span the subspace £.

Using the matrix (I — EET)A instead of A in the BIDIAG procedure
together with a query vector orthogonal to C' we get

) I1-EET
Start with q¢; = m, B=0
for k=1,2,...r do
agpe = AT(I — EE")qx — Brpr1
Ber1akr1 = (I — EE") Apy — gy
end.

Noting that ETq, = 0 for all k, the first row in the loop becomes
QP = AT(Ik — BrPr-1-

Since we have EET Apy, = EET(Apy — axqi) the seco nd row in the loop is
equal to the two rows

y = Apy— apgk
Brr1@er = y— EE" Y.

Thus it is enough to keep the g, vectors orthogonal to £. The BIDIAG
algorithm can be rewritten to

. — T
Start with ¢; = %, Bi=0

for k=1,2,...7 do
oupr = ATqr — Brpr—
y = Apr — ok
Berigrir =y — EE"y

end.

keywords Krylov subspace, Information Retrieval, weighting experiment,
LSIL

Experimenting with different weighting
schemes for the Krylov subspace method used
for Information Retrieval

Katarina Blom

April 12, 2004

Abstract

In a previous report we have described how simple Krylov subspace
methods can be used for information retrieval. We used the Golub
Kahan bidiagonalization procedure to generate an approximation to
a low rank representation of the documents. The process is query
based and a new approximation is made for every new query. The
Krylov method often shows better retrieval performance than the raw
vector model (where documents are scored measuring angles between
the query and the original documents).

In this report we explore the effects of 107 different combinations
of term weighting schemes for the term document matrix together
with 27 different weighting schemes for the queries in each of four
test collections. Also, for each weighting performance of three simi-
larity measures for the Krylov method are compared to performance
of the vector model, and for the best and worst performing weighting
combination for each set also with the LSL.

Our results are rather consistent with results from similar experi-
ments carried out previously.

There is a large difference in performance between the best per-
forming weighting scheme and the worst performing weighting scheme.

There is no overall best weighting, but in general using a term
weighting based on the distribution of a term within the whole collec-
tion improved performance.

A weighting that is bad for the Krylov subspace method is also
bad for the vector model and the LSI.

1 Introduction and Summary

In a previous report [5] we have described how simple Krylov subspace meth-
ods can be used for information retrieval. We used the Golub Kahan bidiago-
nalization procedure to generate an approximation to a low rank representa-
tion of the documents. The process is query based and a new approximation
is made for every new query. The Krylov method often shows better re-
trieval performance than the raw vector model (where documents are scored
measuring angles between the query and the original documents).

This report investigates the effect on retrieval performance when different
term weightings are used. Simple weighting schemes are constructed using
the one-norm, euclidean norm and max-norm. These simple weightings are
compared to more sophisticated weighting schemes such as inverse document
frequency and the entropy weighting. The weighting schemes used for this
report are presented in section 2.

For the Krylov subspace method three similarity measures for scoring
documents, the LSI-like measure (c()), the expanded query measure (c()
and the subspace projection measure(c(®)) are compared to the vector model
(c). For the best and worst performing weighting combination for each set
(performance is measured in average precision) we compare the LSI [4],[9]
with the expanded query measure and the vector model. A short summary
of the similarity measures and of the Krylov subspace method is given in
section 3.

In order to make our experiments comparable to several other similar
weighting experiments in the past, we use the four data sets Adi, Cisi, Cran
and Med. These sets are old and rather small. The data sets are presented
in Appendix B.

In section 4 the numerical results are presented. We explore the effects
of 2889 different weighting combinations for the term document matrix and
the query vectors in each of four test collections.

Our results are in general consistent with similar experiments carried out
previously by Dumais [8], Salton et al [18], Kolda et al. [16],[15], see also
Harman [13]. A few trends can be observed.

1. There is a large difference in performance between the best performing
weighting scheme and the worst performing weighting scheme. Perfor-
mance is measured in average precision.

. There is no overall best weighting for all similarity measures and all four

test sets, but in general using a term weighting based on the distribution
of a term within the whole collection improves performance.

. It seems important which query weighting is chosen (or at least the
combination of term weighting and query weighting seems to be im-
portant).

. In general the more sophisticated weighting schemes give better per-
formance compared to the simpler vector norm weightings. But the
euclidean norm is not far behind. The one-norm weighting in general
decreases performance and should not be used.

. A weighting that is bad for any of the Krylov subspace similarity mea-
sures (the LSI-like measure, the expanded query measure and the sub-
space projection measure) is also bad for the vector model and the
LSI.

Notations The notations used in this report are rather standard in the
Numerical Linear Algebra community. We use upper case letters for matrices
and lower case letters for vectors. Lower case Greek letters usually denotes
scalars. Component indices are denoted by subscript. For example, a vector ¢
and a matrix M might have entries c; and m;; respectively. On the occasions
when both an iteration index and a component index are needed, the iteration
is indicated by a parenthesised superscript, as in CY) to indicate the jth
component of the rth vector in a sequence. Otherwise ¢; may denote either
the jth component of a vector ¢ or the jth column of a matrix C. The
particular meaning will be clear from its context.

The pseudo inverse of a matrix B is denoted B*.

All of the vector norms we will use are instances of p-norms, which for a
real p > 1 and a vector z of dimension n are defined by

n

lzlly = (3 laal”) .

i=1

The special cases we use are
one-norm:

n
[ETE Y
i=1

euclidean norm:

n
Izl =) |z:[?)'?
i=1

and maz-norm
loloo = ma fz].

All norms on R" are equivalent, i.e. if || - ||, and || - || are p-norms on
R™, then there exist positive constants ¢; and ¢y such that

allzlla < llzlls < el 1)

A Krylov subspace of a square matrix M, starting at the vector v, is a
subspace of the form

K. (M,v) = span{v, Mv, M?v, ... M""'v}.

Measures The retrieval efficiency of an information retrieval system de-
pends on two main factors. The ability of the system to retrieve relevant
information and the ability to dismiss irrelevant information. The ability
to retrieve relevant information is measured by recall, the ratio of relevant
documents retrieved over the total number of relevant documents for that
query. A systems ability to reject irrelevant documents is measured by pre-
cision, the ratio of the number of relevant documents retrieved for a given
query over the total number of documents retrieved. Precision and recall are
usually inversely related (when precision goes up, recall goes down and vice
versa).

When we evaluate a query g all documents in the set are ranked and we
receive an ordered list £ of documents. Assume ¢ documents are relevant to
the query and let 4;, ¢=1...t be the position for the ith relevant document
in £. The average precision (non interpolated) for a single query is defined

as
13 .
i=1 !
The mean average precision for multiple queries is defined as the mean
of the average precisions for all queries.)
1 .
Precision can be computed at any actual recall level P = 1...t (where

t is the number of relevant documents to the query). Let r; be the jth

5

recall level from the 11 standard recall levels 0,0.1,0.2...1. The interpolated
average precision for a query at standard recall level r; is the maximum
precision obtained for any actual recall level greater that or equal to r;.

The Recall level precision averages for multiple queries are the means of
the interpolated average precision values at each (standard) recall level for
the queries. Recall level precision averages are used as input for plotting the
recall-precision graphs.

For further details, see Harman [14].

2 The term document matrix

In vector space models both queries and documents are encoded as vectors
in m-dimensional space. The choice m is the number of unique terms in the
collection. The documents are stored as columns in a m x n term document
matriz A. The elements in A are the occurrences of each word in a particular
document, i.e.

A = [a;;]
where a;; is nonzero if term 7 occurs in document j, zero otherwise.

A term weight has three components; local, global and normalization [18].
Local weights are used to transform the term’s frequency within the docu-
ment. Each term in the collection is assigned a global weight to indicate its
importance as an indexing term. A normalization factor is used to normalize
the documents. We let

aij = gilijd;
where /;; is the local weight for term 4 in document 3, g; is the global weight
for term ¢ and d; is the document normalization factor.

Specifically we can write

jay] = A= GLD 2

where the elements in L = [l;;] are the local weights. G and D are diagonal
matrices and g;; in G is the global weight for term 4 and d;; in D is the
normalization factor for document j. The global weighting correspond to a
row scaling of the term document matrix and the normalization corresponds
to a column scaling.

There are several local and global weightings that can be used. For
nice summaries see for example Frakes and Baeza-Yates [11], Salton and
McGill [19] or Kolda [15].

The queries are stored the same way as the document vectors, that is
7= [qil

where ¢; is nonzero if term; appears in the query. As for the elements in
the term document matrix local and global weightings are used. The local
weights are computed using the term frequency within the query vector and
the global weights are computed from the frequency counts in the documents.
Normalizing the query makes no difference when ranking the documents and
is not used 1.

For convenience [16], let

(@) = 1 ifz>0
XE=Y0 irz=0

Various combinations of weights are used for the documents in the term
document matrix and for the queries. Each term weight combination is
described using two three letter strings, representing the weightings for the
term document matrix (first triple) and the query terms (second triple). The
letters in each string represent the local, global and normalization component
respectively.

Formulas and symbols for the weightings used for this report are shown
in tables 1 - 3.

For example the classical idf weight [18] is described by the string

bfx - bfx,

which implies the local, global and normalization components

lij = xl(tfy)

n
g = lOgZ(E)
4 = 1

for the elements in the term document matrix. The term frequency tf;; is
the the number of times term i appears in document j, and the document

!In the Krylov subspace method used in this report (section 3 gives a short summary)
the query vector is always normalized using euclidean norm before the bidiagonalization
procedure is started.

frequency df; is the number of documents to which term i is assigned. The
local global and normalization components for the query vector elements are

x(tf)
n
Ing(E)
= 1.

Here tf; is the term frequency for the terms in the query (i.e. the number
of times term ¢ appears in the query) and df; is the document frequency for
term ¢ in the collection.

The binary local weighting (b) and the local frequency weighting (t) listed
in table 1 are simple but with some major drawbacks. The binary weighting
gives every word that appear in a document equal relevance. (This might be
useful when the number of times a word appears is not considered important.)

The local frequency weighting give more credit to words that appear more
frequently which might serve the recall function. For example a term such
as melon appearing with reasonable frequency in some documents indicates
that they deal with melons. The assignment of the term melon with high
weight will then help to retrieve these documents in response to appropriate
queries.

On the other hand, high precision implies high ability to distinguish indi-
vidual documents from each other (to be able to prevent unwanted retrievals),
therefore when common terms are not concentrated in a few documents but
instead are spread out in the whole collection, precision is likely to drop.

More concretely, if the whole document collection deals with melons, al-
most all documents will contain the term melon many times, giving high
credit to melon, will not help to identify the wanted subset of documents.

For a more detailed discussion see for example Salton [17] (or Salton and
Buckley [18]).

The (local) augumented normalized term frequency (n) will give basic
credit (0.5) to any word that appears and then give additional credit to
words that appear more frequently.

The logarithmic weight (1) will deemphasize the effect of high frequency.

The choice for local weightings depends on the vocabulary used for the
collection. Some general recommendations can be made [3]. Local binary
term weighting schemes are recommended for sets where the term list (the
number of rows in the term document matrix) is short. The local frequency

Frequency (t)

Logarithme (1)

ﬁugunenﬁed norr[al i zed gn)

12 14 16 18 20

Figure 1: Comparison of local term weighting schemes. The term frequency
range from 0 to 20 (x-axis) and the weights (y-axis) range from 0 to 10 in
the figure.

weighting is recommended for varied vocabularies, eg. popular magazines,
and the augumented normalized term frequency is recommended for technical
or scientific vocabularies.

The four local weightings are compared in figure 1. The term frequency
range from 0 to 20. The raw frequency grows very quickly compared to the
other local weightings grow more slowly.

As mentioned above, precision might be better served by using very spe-
cific terms that will match the most relevant documents in the collection,
because such terms are able to distinguish the few documents in which they
appear from the many from which they are absent. All of the global weighting
schemes in table 2 (except x) give less weight to frequent terms. So in order
to fulfill both the requirements of high recall and of high precision, i.e. to
credit those terms that occur frequently in individual documents but rarely
in the remainder of the collection, the combination of local term frequency
weighting and any of the global weightings may be used.

The global weightings n, n; and n,, are based on simple vector norms
and will normalize the length of each row in the term document matrix in
some norm. This has the effect of giving high weight to infrequent terms. If
a few rare terms appear frequently in only a few documents the max-norm
is giving the most credit to these terms, followed by the euclidean norm and
then the one-norm.

The entropy global weighting (e) uses concepts from information theory.
In information theory the least predictable terms in a running text, those ex-
hibiting the smallest probabilities, carry the greatest information value. The
weighting assign weights between zero and one. Zero for a term appearing
with the same frequency in every document and one for a term that appears
only once.

The weights given by the different global schemes to two different terms in
a collection are compared in figure 2. For both terms the local term frequency
(t) was used. The term in the upper plot appears once in one document
and three times in another. The term is rare in the set and all of the global
weighting schemes give high credit to the term in the two documents where it
appears. In the lower plot a term appears in all but one document. This term
is common in the set. The global schemes will not emphasize the appearance
of the term as they did for the rare term. All the weighting schemes give
slightly more credit to the term in the document where it appears three
times.

The normalizing factors will normalize the length of each column in the
term document matrix. This has the effect of giving higher weights to all
terms in short documents and giving lower weights to all terms in long doc-
uments. If using the angles between the query and the document vectors in
the therm document matrix when ranking documents for relevancy there is
a tendency that shorter documents will be ranked more relevant than longer
documents. In order to retrieve documents of a certain length with the same
probabilities the pivoted cosine normalization scheme has been proposed for
indexing the TREC collection [6], [20].

In this report we always apply first the local weighting, then the global
weighting and at last the normalization factor. For example, the matrix
weighting tnc corresponds to first normalizing the rows in the term document
matrix using euclidean norm, then normalizing the columns (using euclidean
norm). Note that the column normalization might destroy the previous row
normalization, but not completely. Some deemphasizing effect on common
terms still remain.

10

Figure 2: Comparison of global term weighting schemes when the local term
frequency weighting (t) is used. The bars are the term frequencies. The
global weighting schemes are: no weighting x (the bars), inverse document
frequency £ (o), GfIdf g (o), entropy e (), normal n (+), one-norm n; (>)
and max-norm ny, (<).

LocCAL WEIGHTING DESCRIPTION

b x(tfi;) Binary weight [18] equal 1 for terms present in vector,
zero otherwise. The term frequency tf;; is the number
of times term ¢ appears in document j.

tf;; Raw frequency weight [18] is number of times a term
appears in a document or a query.

logy(1 + tf;;) Logarithmic weight [8][13] takes the log of the term
frequency, thus dampening effects of large differences in

frequencies.

i (X(tf,-j) + ?’t‘f(‘tm) Augumented normalized term frequency [18][13]. The

term frequency tf;; is normalized by maximum
appearance of term in document j and further norma-
lized to lie between 0.5 and 1.02.

Table 1:

2 A more general formula was proposed by Croft [7]. The formula was parameterized by

a value K (a sliding importance factor), ¢;; = x(tfi;)K + (1 — K)

that K be low for large documents and high for short documents.
3In [8] lij = tfij
4n [18] l,‘j = tf,‘j.

m’?x(tfkj)

thy; . It is suggested

GLOBAL WEIGHTING DESCRIPTION

x 1 No change in weight [18].

£ IOgZ(de,-) Inverse document frequency (Idf) [18] where n is number

of documents in collection and df; is the document
frequency (the number of documents to which term i is
assigned).

GfIdf [8]. gf; is the global frequency (the total number

of times term; appears in the whole collection). df; is the

document frequency.

Entropy [8][13]. n is number of documents in collection

and p;j = tg_f# where tf;; is the raw term frequency and

gf; is the global frequency.

Normal [8], where l;; is received after applying any

of the local weightings presented in table 1 3.

where [;; is received after applying any of the local

weightings presented in table 1.

where [;; is received after applying any of the local

weightings presented in table 1.

Table 2: .

NORMALIZATION FACTOR DESCRIPTION
X No normalization factor is used [18].

Cosine normalization [18] *.

Table 3: The local weightings /;; and global weightings g; are received after
applying any of the local and global weightings respectively presented in
tables 1 and 2

3 The Krylov subspace method for Informa-
tion retrieval

Query matching can be viewed as a search in the column space of the term
document matrix A. One of the most common similarity measures used
for query matching is to measure the angle between the query vector and
the document vectors in A. The smaller the angle is the more relevant the
document is. In the vector model the cosines between the query vector ¢ and
document vectors a; are used to score the documents in relevance order,

lallzllasTl

For the Krylov subspace methods we will use the Golub Kahan bidiag-
onalization procedure [12] applied to the term document matrix A starting
with the query vector ¢ to receive the two basis matrices Q.41 and P, and
the 7 + 1 x r lower bidiagonal matrix B,;:

[Qr+1, Bry1, P,] = BIDIAG(4, ¢, 7) (4)

¢ j=1,...,n. (3)

The column vectors in the basis matrices @1 and P, span bases for the
two Krylov subspaces K,,1(AA7T,q), in the document space (spanned by
the query g and the columns of A) and K,(ATA, ATq), in the term space
(spanned by the rows of A) respectively. We let the reached subspace W
form an orthonormal basis for the column vectors in AP,.

The BIDIAG procedure is further described in section 3.1.

The reached subspace W, the basis matrices Q;+1, P, and the B,;; matrix
are used to score the documents in relevance order to the query (see Blom
Ruhe [5]). A few examples of similarity measures are:

e For the subspace projection measure the documents in A are sorted
according to their closeness measured in angles to the Krylov subspace
Kr11(AAT q). The closer the document is the more relevant the docu-
ment is. The cosine of the angle between the basis matrix @,; for the
Krylov subspace K,.1(AA”,q) and each document vector in A

3 .
& = 1QFasll, G =1,...,n, (5)

is used to sort the documents. Note that for » = 0 in the Bipiag
procedure the subspace projection measure is simply the vector model
scoring (3).

e A projected query vector
q=ww'q (6)

is constructed using the reached subspace. In the ezpanded query mea-
sure the documents are sorted measuring the angle between § and each
document vector in A,

AT
@ _ 499G .

c’'="— 43=1,...,n. (7)
T lagll

In the LSI-like measure we mimic the LSI ® and the documents are
scored measuring the angle between ¢ and each projected document
vector in A

AT
W __99 C_
¢’ =2t j=1,...,n. (8)
T W]

The smaller the angle the more relevant the document is. Note that if

the starting vector ¢ € R(A) then the projected query § = q and the

cosines (7) is simply the vector model scoring (3).

3.1 The Golub Kahan bidiagonalization procedure

The Golub Kahan bidiagonalization procedure is a variant of the Lanczos
tridiagonalization algorithm and it is widely used in the numerical linear
algebra community.

The Golub Kahan algorithm starts with the normalized query vector g; =
q/|lqll; and computes two orthonormal bases P and @, adding one column
for each step k, see [12] in section 9.3.3.

ALGORITHM BIDIAG(A,q,7):
Start with ¢ = q/||q||, B =0
for k=1,2,...r do
QkPr = Aqu — Brbr—1
Br+1Gr+1 = Apr — gy
end.

5In LSI, Berry et al [4], Dumais et al [9], see also Berry and Brown [3], the m x n term
document matrix is represented using a rank-k approximation, ¥ < min(m,n), from the
singular value decomposition of A. Documents are scored measuring the angles between
the query and the column vectors in the approximation.

15

The scalars o and Sy are chosen to normalize the corresponding vectors.
Define

Qry1 = [(h Q2 ... QT+1]5
P, 1 P2 - >,

ay

B2
Br+1

r

/8r+1
After r steps k we have the basic recursions

ATQ, = P,BY
AP, = QT+IBT+1-

The columns of @, will be an orthonormal basis of the Krylov subspace
Kr11(AAT q) and the columns of P, forms an orthonormal basis for the
Krylov subspace
K.(ATA,ATq). The lower bidiagonal matrix B,.1 = Q7,;AP, is the pro-
jection of A onto these Krylov subspaces and some of the singular values of
B, will be approximations of those of A.

With r large enough the bidiagonalization procedure BIDIAG(A,q,r) can
be used to compute a solution z; = P,B;r "1e1 for the least squares problem

min || Az — ¢||».
x

Let k < r. The projected query vector (6) § = Az where z*) = P.B", e,
is an approximation to zy, received after k iterations in the BIDIAG procedure.

3.2 Numerical aspects of using weighting schemes

Let A = GLD be the term document matrix defined in (2). If no global
weighting or normalization factor is used (i.e. global weighting and normal-
ization factor x respectively is used) then A = L. Consider the least squares
problem

min [[Lz — g]» ©)

16

A solution zy, to this problem can be obtained by using the BIDIAG procedure
with L and starting at ¢ (see for example [12] or [2]).

If no global weighting (i.e. global weighting x from table 2) is used for
the term document matrix then A = LD where D is the n x n diagonal
matrix defined in (2). Assume D is nonsingular (i.e. assume all documents
has at least one term) and consider the least squares problem

min||LDy — g]l.. (10)

Multiplying L by a diagonal matrix from the right corresponds to a column
scaling of L and the solution zz, to problem (9) can be obtained by finding the
minimum 2-norm solution yz, to problem (10). If rank(L)= n then z; = Dy,
otherwise Dy, is the minimum D-norm solution ¢ to (9).

However it is well known that column scaling affects singular values and
that the number of iterations needed in the BIDIAG procedure before the
solution is reached heavily depend on the distribution of singular values in
the matrix that is used. When we use the BIDIAG procedure for IR purposes
we stop iterating after r < 10 steps, that is long before a solution to any
of the least squares problems (9) and (10) is reached. This means that we
cannot use the relations between z7, and yy, directly when computing scorings
cWMand c?,

Assume only global weighting is used (i.e. normalization factor x) and
consider the weighted least squares problem

min [|G(Ls — g}l (11)

where G is the m x m diagonal matrix with global weights defined in (2).
(In equation (11) we have assumed that the terms in the query vector are
weighted using the same global weighting as for the term document matrix 7).
Multiplying L by a diagonal matrix G from the left correspond to a row
scaling of the matrix L (and query vector ¢). It is well known that row
scaling affects the solution to a least squares problem and there is no simple
relation between the solutions to (9) and (11).

8D-norm is defined by ||z||p = ||D~'2||2-

In the experiments performed (see section 4) we have also tried combinations when L
and ¢ have different global weights.

8An exception occurs when ¢ € R(L). In this case the solution to (9) and (11) are
equal. In all test sets we tried the query vector ¢ is never completely in R(A).

17

4 Experiments

For our experiments four test sets were used, Adi, Cisi, Cran and Med. The
sets are further described in appendix B .

We have tried all possible combinations of local, global and normalization
factors from tables 1, 2 and 3 for the term document matrix. In tables 5 and
6 all weighting combinations we used are listed. For each weighting on the
term document matrix the queries were weighted using all combinations of
local and global weightings listed in table 6. (The document frequencies and
the global frequencies are taken from the term document matrix.). In total
we explored the effect of 105 % 27 = 2889 different weighting combinations.

Using these data sets and weighting schemes makes our experiments com-
parable for example with the LSI experiments made by Dumais in [8], some
of the experiments made by Salton et al [18] and with the LSI and LDD
experiments made by Kolda et al [16].

For each weighting combination four similarity measures were used to
score the documents, the vector model ¢ (3), the LSI-like measure c(*)(8), the
expanded query measure c¢® (7) and the subspace projection measure c¢®
(5). For the Krylov subspace methods the iterations in the BIDIAG procedure
were stopped when maximum average precision before the number of steps
r = 10 for each query was reached.

For the best and worst weighting combination for the expanded query
measure we computed recall level average precisions for the LSI [4],[9]. For
the LSI we need to chose a rank k (the number of singular vectors to use) for
the low rank approximation of the term document matrix. We chose k& < 100
(for Adi we let k£ < 60) to be the rank where where maximum mean average
precision was found.

Computational Results For each weighting the number of times each
of the four similarity measures gave best mean average precision is shown
in figure 3. The expanded query measure c®) generally give best average
precision in Cran and Med. In Adi and Cisi the LSI-like measure (V) gave
best average precision in a little more than half of the weighting combinations.
The vector model ¢ is never the best one. Observe that since BIDIAG is
stopped when best average precision before the number of steps r = 10
is reached the subspace projection measure ¢!® never score worse than the
vector model.

3

cl
Sl]

Figure 4: Comparison of mean average precisions for the vector model ¢ (3).
The weighting scheme nxx was used for the term document matrix. Mean
average precision for each query weighting from table 6 is marked (the black
lines). The grey lines are maximum and minimum mean average precision
respectively for the vector model scoring in each set.

Figure 3: For each weighting the number of times each of the four similarity
measures ¢(3) ¢V (8), ¢ (7), and ¢ (5) gave best mean average precision.

c 1) 2 c®
ngx-1l1x bge-tix bgc-tix 1fc-lnx 0.48
1xx-11x telnix bgne-11x tec-tix (.48
lex-1nx bge-11x ngne-tix tfc-tix 0.48
lgx-11x bgc-tnx leny-nnx lec-lnx (.48
nxx-nix txx-tfx bgnetix nfc-nix (0.47
1fx-1nx tel-blx bgx-tix nec-1ix (.47
nxx-11x nxx-nlx nfn,-bnx nfc-11x 047
lgx-tix XN -nlx txl-tix 1fc-1ix 0.47
tex-tix bgneo-1nx bgl-tix lec-11x 0.47
isi

¢ o) 2 c®
ngx-tfx lex-tex . tgx-1lix nfx-tgx 0.20
ngx-1fx lex-lex . tgx-nix nfx-1gx 0.20
ngx-tex lfx-tex . tgx-bix nex-tgx (.20
1gx-tfx lex-tfx . lex-tfx nex-1gx 0.20
ngx-nfx lex-nex . lex-tex nfx-ngx 0.20
lgx-1fx 1fx-lex . lex-1fx nnx-tgx (.19
ngx-lex lex-1fx . 1fx-tex nex-ngx 0.19
lgx-nfx 1fx-tfx . lex-lex nnx-1gx 0.19
ngx-nex 1fx-nex . lex-nfx lgx-1fx 0.19
Cran
¢) @ c®
1fc-bgx
1fcngx
1fc-1gx
lec-bgx
lecngx
1fc-tgx
lec-tex

ngx-1fx
ngx-bex
ngx-nfx
ngx-lex

.44 | ngx-1nx
.44 | ngx-nnx
.44 | ngn,,-nnx
.44 | ngny-1nx
.44 | ngc-nnx
.44 | 1gx-1nx
.44 | ngc-1nx
lgx-nfx lec-1gx .44 | 1gc-1nx
ngx-tex lec-lex .44 | ngc-bnx
set. Med

c) c? c®)
.57 | lec-bgx .68 | 1fc-bgx
.57 | 1fc-bgx .68 | ngc-bnx
.57 | lecngx .68 | lec-bgx
.57 | 1fc-ngx .68 | ngc-bfx
.56 | lec-1gx .68 | 1fc-ngx
.56 | 1fc-1gx .68 | 1fc-bfx
.56 | tfc-bfx .68 | 1fc-bex
.56 | tfc-bex .68 | lec'ngx
.56 | tfc-nfx .68 | lec-bfx

ngc-1fx
ngc-bex
ngc-lex
ngc-nfx
ngc-bfx
ngc-nex
ngc-tex
ngc-tfx
lgc-nfx

Figure 5: Comparision of mean average precisions for the LSI-like measure
¢ (8). In the left plot of each pair mean average precisions for weight-
ing schemes where global entropy weighting (e) are used for both the term
document matrix and the queries are marked (the black lines). In the right ngx-bfx
plot of each pair mean average precisions for weighting schemes where global ngx-nex
one-norm weighting (n;) is used for both the term document matrix and the 1gx-bfx
queries are marked (the black lines). The grey lines are maximum and min-
imum mean average precision respectively for the LSI-like measure in each

coooooooo
O O O O O O O OO
coooooooo
coooooooo0

.62
.61
.61
.61
.61
.61
.61
.61
.61

ngx-bex
ngx-bfx
ngx-nex
ngx-nfx
lgx-bex
lgx-bfx
ngx-1fx
ngx-lex
nex-bgx

.65 | ngn.-bnx
.65 | ngc-bnx
.65 | ngx-bfx
.65 | 1gne-bnx
2ngx-1nx
.64 | 1gc-nnx
.64 | ngc-nnx
.64 | ngx-bnx
.64 | ngx-nnx

O OO OO OO OO0
O OO OO OO OO0
(oo e N NoNe NN =]

Table 4: The nine best performing weighting schemes for each set and each
similarity measure. Performance is measured in mean average precision.
Since the vector norms used as normalization factors are equivalent (1) they
have no effect for the vector model (3) and are not listed in the table.

Tables 4 show numerical results for the Adi, Cisi, Cran and Med data
sets. For each test we report the mean average precision for all queries in the
set.

As we can see there is no overall best weighting for all similarity measures,
however a few trends can be seen. We observe that for the vector model ¢
(3) the matrix weightings ngx and 1gx give the best results for all test sets.

The binary matrix weighting bxx and the raw term frequency weighting
txx combined with no global weighting for the query vector tend to be ranked
towards the bottom.

For the LSI-like measure ¢(!) (8) the global entropy weighting (e) is good.
The matrix weightings ten; and lex are good for Adi and Cisi respectively
and the weighting lec is good for Cran and Med. But also the global inverse
frequency weighting (£) and the GfIdf weighting (g) are good. The weightings
bgc and bgn,, are good for Adi. Weighting 1fc is good for Med and Cran
and weighting 1£x is good for Cisi.

Also for the expanded query measure ¢® (7) the global inverse frequency
weighting (£) and the GfIdf weighting (g) work well. Matrix weightings bgc
and bgn,, are good for Adi and weighting tgx is good for Cisi. For Cran and
Med weightings ngx and ngc are good. But also the global entropy weighting
(e) seems to work well.

Among the poor performing weighting combinations the global one-norm
weighting (n;) is frequent. And for Adi also the global max-norm weighting
(neo) is bad.

For the subspace projection measure ¢ (5) the global inverse frequency
weighting (f) and the GfIdf weighting (g), but also the entropy global weight-
ing (e) works well.

One trend found in weighting experiments is that the use of global weights
improves performance (or at least does not hurt performance) [13]. In our
experiments in general the use of global weights improves performance ex-
cept when the global one-norm weighting (n;) is used. The global one-norm
weighting is bad for all sets but the Adi. In figure 5 the mean average pre-
cision for the global entropy weightings and the global one-norm weightings
are compared.

For the local weightings in general the binary weighting (b) appear among
the poor performers, however the weighting works well for the Adi. This
might be due to the small size of the term document matrix

It seemed to be important which query weighting was chosen. In figure
4 we plotted mean average precision for the matrix weighting nxx and all

23

27 different query weightings listed in table 6 for all test sets. As we can
see the differences in mean average precisions are large. In general using
a global weight for the query vector, preferably any of entropy (e), inverse
document frequency (£), GfIdf (g) or normal (n), seems to improve retrieval
performance.

Our results for the vector space model are quite consistent with those
reported by Kolda [15]. Somewhat surprisingly she found that it makes little
difference which query weighting is chosen.

In [8] Dumais report good performance for the lec matrix weighting on
the matrix and Salton’s best weighting reported in [18] was tfc-tfx. In
general these weightings also work well in our experiments.

The weighting tnc-txx used by Blom Ruhe in [5] is among the average
(sometimes above average) performing weighting schemes.

Figure 6 are recall-precision graphs for the best and worst performing
weighting combinations for the expanded query measure ¢ (7) in each set.
For each set interpolated average precision for the vector model ¢ (3), the
expanded query measure ¢ and the LSI are compared. We observe that a
weighting combination that is bad for the expanded query measure ¢ also
performs poorly for the ¢ and the LSI.

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Figure 6: Recall-precision graphs for the best and worst performing weighting
combinations for the expanded query measure c(? (7) in each set. In each plot
interpolated average precision for the vector model ¢ (3) (...), the expanded
query measure (x-) and the LSI [4],[9] (-) are shown.

A Weighting combinations

Local and global weigthing combinations

bxx bfx bgx bex bnx bn;x
txx tfx tgx tex tnx tnx
1xx 1fx lgx lex 1nx In;x
nxx nfx ngx nex nnx nn;x

Local and normalization factor combinations
bxc bxn; (bxny) txc txn; tXNoo
1xc 1xn; 1xn,, nxc nxn,; NXN

Local, global and normalization factor combinations
bfc bfn; bfn, bgc bgn; bgns,
bec ben; ben, bnc bnn, bnn,,
bn;c bmyn; bnjn, (bngc) (bnyn;) (bnyng)
tfc tfn; tfn,, tge tgn; tgne
tec ten; teny, tnc tnn; tnng,
tn;c tnjn; tning tn,.C tngn; thooNeo
1fc 1fnmy 1fng lgc lgn; lgn,,
lec len; leny, Inc 1nn; 1nn,,
In;c 1nn; 1njng Inyc In,,n; In,ny
nfc nfn, nfn,, ngc ngn; ngn,,
nec nen; neny, nnc nnn; nnn,,
nn;C nngn; 0NNy nn,,C NN Ny NN

Table 5: Weighting combinations used for the term document matrices. The
weightings surronded by parentheses have no effect and are not used.

Local and global weighting combinations
bxx bfx bgx bex bnx bmx (bngx)
txx tfx tgx tex tnx tmx tnex
Ixx 1fx 1gx lex 1nx Imx Ingx
nxx nfx ngx nex nnx nmX NNLX

Table 6: Weighting combinations used for the queriy vectors. The weighting
surrounded by parentheses has no effect and is not used.

B Data sets

E.A. Fox at the Virginia Polytechnic Institute and State University has as-
sembled nine small test collections in a CD-ROM. These test collections
have been used heavily throughout the years for evaluation of information
retrieval systems and they provide a good setting for preliminary testing.
Among these nine sets we used four for our evaluation.

Adi Adiis a very small test collection of document abstracts from library
science and related areas.

Cisi The data set consist of document abstracts in library science and re-
lated areas extracted from Social Science Citation Index by the Institute for
Scientific Information.

Cran The Cranfield collection is a small collection with a large number
of queries. The data set consist of document abstracts in aerodynamics
originally used for tests at the Cranfield Institute of Technology in Bedford,
England.

Med The Medline set is a small collection with a small number of queries.
It has been extensively used in the past. The documents are abstracts in
biomedicine received from the National Library of Medicine.

For a further summary on test sets see [1]. See also Fox [10].

Documents and queries are represented as vectors. Before the representa-
tion can be constructed a list of index terms must be compiled for each set. A
list of all words (non-zero length strings of characters(A-Z,a-z) delimited by
white space) found in the documents was constructed. Each word occurring
on the SMART [19] stop list was removed. The remaining words form the
set of index terms.

Table 7 summarizes some characteristics of the data sets and queries. All
of these sets are rather small in size. For all the sets a large portion of the
documents are relevant to some query. For all but the Medline set there are
documents that are relevant to more than one query. All sets have more
terms than documents and in general there are more terms per document
than documents per term. All document vectors are longer than the query
vectors.

Cisi Cran Med

no of docs 82 1460 1400 1033

no of indexing terms 10325 7776 12194

no of queries 35 35 225 30

no of relevant documents 72 467 924 696

no of <query,relevant doc> pairs 170 1742 1838 696
max/min/avr no of terms in docs | 101/14/35 | 299/9/65 | 358/0/95 | 292/12/80
max/min/avr no of docs per term 44/1/2 644/1/7 | 703/0/11 | 262/1/5
max/min/avr no of terms in queries | 13/3/7 18/3/8 21/4/9 23/2/11
nonzero elements in matrix (%) 2.1 0.48 0.79 0.46

01 : Table 7: Some characteristics of the data sets Adi, Cisi, Cran and Med.

0.08

References
0.06 0.06

0.04 0.04 [1] R. BAEZA-YATES AND B. RIBEIRO-NETO, Modern Information Re-
trieval, Addison Wesley, 1999.
0.02 0.02

0 Mm o M [2] Z. BA1, J. DEMMEL, J. DONGARRA, A. RUHE, AND H. VAN DER

0 100 200 300 0 100 200 300 VORST, Templates for the Solution of Algebraic Eigenvalue Problems:
A Practical Guide, SIAM, Philadelphia, 2000.

Figure 7: Portion of documents (y-axis) versus length of documents (x-axis)
for the data sets. [3] M. W. BERRY AND M. BROWNE, Understanding Search Engines,
Mathematical modeling and text retrieval, STAM, 1999.

In Cisi, Cran and Med the length of the documents (length is measured 4]
by number of terms) are more spread out than for the Adi set (see figure 7).
This is probably due to the small size of the set. A few zero length documents 505.
appear in the Cranfield set.

M. W. BERRY, S. DuMAIs, AND G. W. O’BRIEN, Using linear algebra
for intelligent information retrieval, SIAM Review, 37 (1995), pp. 573—

K. BLoMm AND A. RUHE, Information Retrieval using a Krylov Subspace
method, submitted for publication, (2003).

C. BUckLEY, A. SINGHAL, M. MITRA, AND G. SALTON, New re-
trieval approaches using SMART: TREC 4, in Proceedings of the Fourth
Text Retrieval Conference (TREC-4), D. Harman, ed., Department of
Commerce, National Institute of Standard and Technology. NIST special
Publication, 1996, pp. 500-236.

[7] W. B. CROFT, Ezperiments with representation in a document re-
trieval system, Information Technology: Research and Development,
2(1) (1983), pp. 1-21.

[8] S. T. DuMAIs, Improving the retrieval of information from external
sources, Behavior Research Methods, Instruments, & Computers, 23
(1991), pp. 229-236.

[9] S. T. DumAIs, G. W. FurNAS, T. K. LANDAUER, S. DEERWESTER,
AND R. HARSHMAN, Indezxing by latent semantic analysis, Journal of
the American Society for Information Science, 41 (1990), pp. 391-407.

[10] E. A. Fox, Characterization of two new experimental collections in
computer and information science containing textual and bibliographical
concepts, Tech. Rep. 83-561, http://www.ncstrl.org, 1983.

[11] W. B. FRAKEs AND R. BAEZA-YATES, Information Retrieval, Data
Structures and Algorithms, Prentice Hall, 1992.

[12] G. GoLuB AND C. F. VAN LOAN, Matriz Computations 3rd edition,
Johns Hopkins, 1996.

[13] D. HARMAN, Ranking algorithms, in Information Retrieval, data struc-
tures and algorithms, W. B. Frakes and R. Baeza-Yates, eds., Prentice
Hall, 1992, pp. 363-392.

[14] ——, Appendiz, in The Eighth Text REtrieval Conference (TREC-8),
D. Harman, ed., Department of Commerce, National Institute of Stan-
dard and Technology. NIST special Publication, 2000, p. Al.

[15] T. G. KOLDA, Limited-memory matriz methods with applications, PhD
thesis, Applied Mathematics University of Maryland, 1997.

[16] T. G. KoLpA AND D. P. O’LEARY, A semi-discrete matriz decomposi-
tion for latent semantic indezing in information retrieval, ACM Trans-
actions on Information Systems, 16 (1998), pp. 322-348.

[17] G. SALTON, Automatic Text Processing, The Transformation, Analysis
and Retrieval of Information by Computer, Addison-Wesley publishing
company, 1989.

[18] G. SALTON AND C. BUCKLEY, Term-weighting approaches in auto-
matic text retrieval, Information Processing & Management, 24 (1988),
pp. 513-523.

[19] G. SALTON AND M. J. MCGILL, Introduction to Modern Information
Retrieval, McGraw-Hill, 1983.

[20] A. SINGHAL, G. SALTON, M. MITRA, AND C. BUCKLEY, Document
length normalization, Tech. Rep. TR95-1529, Department of Computer
Science, Cornell University, Ithaca, NY, 1995.

a Krylov Subspace method meets TREC

Katarina Blom

April 12, 2004

Abstract

We expect a lot from our search engines. We ask them vague
questions about topics that we are unfamiliar with ourselves and we
anticipate an organized response. In this report we will follow one
topic from the TREC collection. The topic is interesting in this way.
The user asks for documents relevant to three terms with high search
value, and expects the search engine to give back documents from two
groups of relevant documents, some documents where these terms ap-
pear and some where they do not appear. We show how the Krylov
method used for IR is able to indicate a (weak) connection between
the groups of relevant documents. We also show how simple modifica-
tions of the method can be used to decrease the scoring for irrelevant
documents.

keywords TREC, Krylov subspace, Information Retrieval

1 Introduction and Contence

An information retrieval (IR) system matches user queries (formal statements
of information needs) to documents stored in a database.

We look at the document collection as a huge term document matrix A,
where there is one row for each term that occurs anywhere in the collection
and each column represents one document. The value stored in each matrix
element defines a nonzero weight if a term occurs in a document. If a term
is not present in the document the corresponding value is zero. The queries
will be expressed by the same terms as the documents, i.e. as a column
vector ¢ with a nonzero value for each term appearing in the query. There

are of course several ways to set up the term document matrix (choice of
stop words?, choice of weights for the nonzero elements in the matrix etc.).

Using a term document matrix A, query matching can be viewed as a
search in the column space of A, and one of the most common similarity
measures for scoring the documents is to measure the angles between the
query vector and each document vector in A. In section 2.1 we discuss how
we choose to set up the term document matrix for the TREC FT ([6]) set
used in this report. We also discuss some properties of this matrix.

The Krylov method we use for IR is a subspace method based on Krylov
sequences of subspaces reachable from the query vector [3]. The Krylov
method is briefly presented in section 3 and some more details about the
method can be found in appendix A.

In section 4 we follow one query (topic) from the TREC collection. The
topic asks for documents relevant to polygamy, polygyny and polyandry, three
terms with high search value. The documents that are relevant to the topic
fall into two groups, those where any of the terms appear, and those where
none of the terms appear. Clearly scoring the documents only by measur-
ing the angles between the document vectors and the query vector will not
capture all relevant documents.

Moreover the document vectors from one group are almost orthogonal
to document vectors from the other group, but there is a weak connection
between three documents in one of the two groups and one document in the
other group. In experiments we show that the Krylov method is able to spot
this relation. With the help of relevance feedback we are able to retrieve the
relevant documents from a group where all vectors were orthogonal to the
query vector.

The topic we follow not only describes what documents are relevant to
the topic, it also describes what documents are irrelevant. In section 4.1.2
we show how a modified Krylov method [2] can be used in order to decrease
the scoring for such (irrelevant) documents.

1.1 Notation

The notation used in this report is rather standard in numerical linear algebra
We use uppercase letters for matrices and lowercase letters for vectors. Low-

1A stop word is a term whose frequency and/or semantic use makes it of no value as a
searchable word.

ercase Greek letters usually denotes scalars. Component indices are denoted
by subscript. For example, a vector ¢ and a matrix M might have entries
¢; and m;; respectively. On the occasions when both an iteration index and
a component index are needed, the iteration is indicated by a parenthesised
superscript, as in cy) to indicate the jth component of the rth vector in a
sequence. Otherwise c; may denote either the jth component of a vector ¢
or the jth column of a matrix C. The particular meaning will be clear from
its context.

1.2 Measures

The retrieval efficiency of an IR system depends on two main factors. The
ability of the system to retrieve relevant information and the ability to dis-
miss irrelevant information. The ability to retrieve relevant information is
measured by recall, the ratio of relevant documents retrieved over the total
number of relevant documents for that query. A systems ability to reject
irrelevant documents is measured by precision, the ratio of the number of
relevant documents retrieved for a given query over the total number of doc-
uments retrieved. Precision and recall are usually inversely related (when
precision goes up, recall goes down and vice versa).

When we evaluate a query g all documents are ranked and we recieve an
ordered list £ of documents. Assume ¢ documents are relevant to the query
and let ;72 = 1...¢ be the position for the ith relevant document in £. The
average precision (non interpolated) for a single query is defined as

i=1

The mean average precision for multiple queries is defined as the mean
of the average precisions for all queries.
For further details, see Harman [6].

2 Data sets

The Text Retrieval Conferences (TREC) were created by the Defence Ad-
vance Research Projects Agency (DARPA) and the National Institute of
Standards and Technology (NIST). The goal was to overcome the problems

of not having a common base for experimentation and also to provide test
sets of a reasonable large size. TREC provides large, diverse test data sets
available to anyone interested in using it as a basis for their testing. Since
1992 they also provide a yearly conference to share results between different
researchers.

The TREC 4 disc, which we have been using, contains three data col-
lections, the Financial Times, 1991-1994 (FT), the Federal Register, 1994
(FR94) and the Congressional Record, 1993 (CR). The FT collection, FR94
collection and the CR collection consist of 210,158, 55,630 and 27,922 docu-
ments respectively. For our experiments we have used the FT collection with
the 150 (ad hoc) queries no 301-450 making our experiments comparable
with TREC conferences 7&8 [6].

TREC relevance judgments are made through a process known as pool-
ing. The top 100 documents from runs submitted to TREC each year are
combined into a single “pool”. The group who created the topic then judges
each document in the pool for relevance.

2.1 Term document matrix

The elements of a term document matriz A are the occurrences of each word
in a particular document, i.e.

A = [ay]

where a;; is nonzero if term 4 occurs in document j, zero otherwise. Global,
local weightings and normalization factors are applied to increase/decrease
the importance of terms within and among documents. Often a;; = g;l;;d;
where [;; is the local weighting for term ¢ in document j, g; is the global
weighting for term ¢ and d; is the document normalization factor for docu-
ment j.

Since every term does not normally appear in each document, the term
document matrix is (very) sparse. A few terms, however, appear in all (or
almost all) documents. These words have no discrimination value during
a search and are called stop words. A stop list consists of terms whose
frequency and/or semantic use make them of no value as searchable words.
Eliminating the words appearing on the stop list usually decreases the total
amount of words used in the database dramatically.

Preparing the matrix Minimal preprocessing on the raw text of the FT
documents were done. All control sequences were removed (i.e. any text
within < > delimiters). Upper case characters were replaced by lower case
and white space were used to delimit terms. All non-zero length character
sequences from (a-zA-z) were used as terms?. Defined in this way we found
230,173 unique terms in the document collection.

A stop list consisting of all terms that appear in more than 10% of all
documents from the FT set will have 299 terms and seems to be a good
choice. The stop list will in general consist of common terms with no search
value such as the and and. Removing the stop words will not decrease the
size of the matrix much, but the number of nonzero elements will decrease
significantly by 37%3. Clearly eliminating 37% of the nonzero elements will
improve storage efficiency.

The most expensive operations in the Krylov subspace methods that we
use for IR are the matrix vector multiplications involving the term document
matrix performed in the BIDIAG procedure. Since the time required for a
matrix vector multiplication between a sparse matrix and a vector heavily
depends on the number of nonzero elements in the matrix, we will also gain
execution efficiency by eliminating the stop words from the term document
matrix.

There is little debate on eliminating common words, but there is some
discussion on what to do about singletons (words that only appear once or
very infrequently in a document or a collection). For the FT collection almost
42%> of all terms in the database occur in only one document, thus elimi-
nating these will decrease the size of the term document matrix significantly.
For the BIDIAG procedure eliminating the singletons will decrease the length
of the basis vectors, thus reducing both storage and time complexity for the
procedure.

In this group of terms a lot of misspellings are found, but also a large
amount of foregin words and rare names. The misspellings of course have no
value as searchable words — but foregin words and names on the other hand

2Since we chose to remove digits as well as special characters queries addressing for
example telephone numbers, years, dates, decades etc will have no meaning.

3from 40,687,915 to 25,535, 648.

4A short description of the methods used are given in section 3. For a more detailed
description please see [3].

596, 549 out of 230,173 terms

might have high search values® even if it is unlikely that such a query is ever
made.

Let A(t,p) be an m x n term document matrix where the rows of A(t, p)
correspond to all terms found in a data set and the columns corresponds to
the documents. We will partition A(¢, p) such that

S()
At,p) = | A A, (1)
0 D(p)

where the rows of S(t) correspond to the ¢ terms in the stop list. The rows in
D(p) correspond to the terms in A(¢,p) that appear in at most p documents
(and the columns are the document vectors corresponding to the documents
where these terms appear). The rows of A; and A, correspond to the terms
in A(t,p) that appear in more than p documents but are not on the stop list.
The columns of A; correspond to the document vectors from A(¢,p) that are
not in D(p) and the columns of A, correspond to those that are. The 0 is
the zero matrix.

In figure 1 the partitions (1) of A(299,1) for the FT set are plotted. The
matrix D(1) is large in size (left figure) but the portion of nonzero elements
is low (right figure). The S(299) matrix on the other hand is small in size
but a large amount of elements are found here.

In the term document matrix used for experiments in this report all 299
stop words are removed and all singletons (in D(1) (1)) are kept. We let the
entries /;; in the term document matrix be 1 if term ¢ is present in document j,
0 otherwise. In order to deemphasize common words and long documents first
the rows and then the columns of the term document matrix are normalized
using the Euclidean norm’. The row normalization g; is a global weighting.
Elements in the term document matrix corresponding to rare terms in the
data set are given higher values than elements corresponding to common
terms. The column normalization d; will give high weights to rare terms in a
particular document. Terms that are common in a particular document will
get low weight.

Our way of constructing the term document matrix has several draw

6 A term has high search value if it is rare among the documents and if a query asking
for documents with this term appearing is likely to address this term.

"The column normalization will destroy the previous row normalization but not com-
pletely. Some deemphazising effect of common terms still remains.

Ay

Figure 1: Partitioning of A(299,1) for the FT set. Left figure shows sizes
of the zero matrix (white), D(1) (light grey), [A142] (dark grey) and on top
S5(299) (black). The black field is small compared to the other fields so it is
not visible. Right figure shows how the nonzero elements are distributed
between S(299) (black), [A;A] (dark grey) and D(1) (light grey).

backs. We do not use language specific techniques such as stemming®, phrases,
syntactic or semantic parsing, spell checking or correction, proper noun iden-
tification, a controlled vocabulary, a thesaurus® or any manual indexing. Our

term weighting algorithm!? is simply a row- followed by one column normal-
ization of the 0/1 term document matrix.

We are aware of that retrieval efficiency for the methods used in this report
might increase if the term document matrix is constructed with greater care.
For a further discussion on weightings used with the Krylov method please
see [1].

81n stemming the terms are represented by their stems. For example the stem comput
could associate computable, computability, computation, computational, computed, comput-
ing, computer etc.

9A thesaurus is typically a one level or two level expansion of a term to other terms
that are similar in meaning. For example the word computer may be linked to computer
hardware and computer software.

10A nice summary of different term weighting methods can be found in the book by
Frakes and Baeza-Yates [4]

2.2 The Queries

The queries for the TREC collections are called topics and have three parts.
The title, a description that summarizes the topic and a narrative that further
describes the query.

The titles and the description fields for the topics are often short. For
example topic no. 316 used for this report has the title

Polygamy Polyandry Polygyny
and the description field
A look at the roots and prevalence of polygamy in the world today.

Titles and descriptions typically give information about which documents
are relevant. We refer to such information as positive information. A query,
consisting of terms from these fields, has a chance of bringing in terms that
also would be found in relevant documents.

The narrative part of the queries often specifies what documents will be
considered relevant and what documents are irrelevant. For example the
narrative field from the same topic

Polygamy is a form of marriage which permits a person to have more
than one husband or wife. Polyandry refers to one woman sharing
two or more husbands at the same time. Polygyny refers to one man
sharing two or more wives at the same time. Primary focus of the
search will be the prevalence of these practices in the world today
and societal attitudes towards these practices. Also relevant would
be discussions of the roots and practical sources of these customs. A
modern development in this area is serial polygamy, a phrase coined
to label the practice of men who take a series of wives in sequence as
a solution to practical welfare, considerations of child care, housing,
etc. Documents discussing serial polygamy will not be considered
relevant.

Of course constructing a query vector by taking into account the terms in all
three fields would bring in terms such as documents and relevant which are not
relevant search terms for this query, it will also bring in terms matching ir-
relevant documents such as serial polygamy. Information on what documents
are irrelevant we will refer to as negative information.

For this report we have constructed query vectors in two ways. The first
approach is to assume that all information is positive and form positive query
vectors. The positive query vectors were constructed using all the terms from
the title only, using all terms from the title and the description, and using all
terms from both the title, description and the narrative respectively. We will
refer to these three query vectors as short, middle and long query vectors
respectively. The query vectors are constructed as 0/1 vectors, the same
way as the documents in the term document matrix, i.e. by letting a 1 in
position 7 denote the presence of term 5 and 0 in position j denote absence
of term j. The query vectors are normalized using euclidean norm (no global
weighting is used). We let the terms represented in the term document matrix
determine the terms in the collection.

The second approach is to construct negative query vectors that take into
account the negative information i.e. which documents to leave out. The
terms for the query vector with the negative information are picked by hand
using information from the narrative field. Again a 1 in position 7 indicates
presence of term ¢ and a 0 absence. In the BiDIAG procedure we will avoid
irrelevant documents by orthogonalizing against negative query vectors.

2.3 FT Term document matrix and query vectors

In table 1 the maximum, minimum and mean number of terms in document
vectors and query vectors are listed. Although the topics are in general
much shorter than the documents there exist topics that are longer than a
few documents. However a large majority of the documents are longer than
the topics. Common terms tend to appear more frequently in topics than in
documents. When removing all terms appearing in more than 10% of the
documents'! the mean number of terms for the documents shrinks by roughly
37%'2. The mean number of terms in the query vectors will shrink by 56%
/ 50% / 50% 2 for long/middle/short query vectors.

Rare terms are more common in the documents than in the topics. 22%*
of the documents have at least one term that appears in only one doc-
ument. At least one of these terms appears in 7% / 3% / 3% '° of the

11299 terms appears in more than 10% of the documents
2Fyom 40,687,916 to 25,535, 649.

13From 44/16/4 to 25/8/2 terms.

446,560 out of 210,158 documents.

1510/5/4 (out of 150/150/150).

max/min/mean number of terms
10% most common terms removed | no stop list
document vector 3227/3/122 3266/8/194
long query vector 61/8/25 98/18/44
middle query vector 27/1/8 48/6/16
short query vector 19/1/2 34/2/4

Table 1: Maximum, minimum and mean number of terms in document vec-
tors and long, middle and short query vectors.

short/middle/long queries.

Due to the row and column normalizations of the term document matrix
these terms are weighted high, and thus the presence of such term in the
query vector will rank the corresponding document high. This is exactly
what we want if the document is relevant to the topic and exactly what we
would like to avoid if the document is irrelevant.

3 The Krylov subspace method for Informa-
tion retrieval

Query matching can be viewed as a search in the column space of the term
document matrix A. One of the most common similarity measures used
for query matching is to measure the angle between the query vector and
the document vectors in A. The smaller the angle is the more relevant the
document is. In the vector model the cosines between the query vector ¢ and
document vectors a; are used to score the documents in relevance order,

qTaj
llallzllasll2’

Cj = j:l,...,n. (2)

For the Krylov subspace methods we will use the Golub Kahan bidiag-
onalization procedure [5] applied to the term document matrix A starting
with the query vector g to receive the two basis matrices Q.41 and P, and
the (r + 1) x r lower bidiagonal matrix B4, satisfying B,41 = Q% AP;:

[@r+1, Bry1, Pr] = BIDIAG(4, ¢, 7) 3)

The column vectors in the basis matrices ;.1 and P, span bases for the
two Krylov subspaces K. 1(AAT,q), in the document space (spanned by

10

the query g and the columns of A) and K,(ATA, ATg), in the term space
(spanned by the rows of A) respectively. The reached subspace W forms an
orthonormal basis for the column vectors in AP,. The BIDIAG procedure is
further described in appendix A.

Sometimes we want to avoid irrelevant information by making all docu-
ment vectors in @Q,; orthogonal to some vector ¢¢~). Technically it is simple
to rewrite the BIDIAG procedure to incrementally compute vectors ¢; in Q41
orthogonal to ¢(-). The procedure

[Q;'Jrh 1I'+17 P;] = BIDIAGO(Aa q, q(_)z T) (4)

will compute two basis matrices @, and P, and an r+1 x r lower bidiagonal
matrix B, 1. Both the procedures BIDIAG and BIDIAG, are further described
in appendix A.

3.1 The expanded query measure for document rank-
ing

The reached subspace W, the basis matrices Q,11, P, and the B,;; matrix

from the BIDIAG are used to score the documents in relevance order to the

query (see Blom Ruhe [3]). In this report the ezpanded query measure is
used for ranking the documents. An expanded query is

i=WWw'q ®)

the projection onto the reached subspace. In the erpanded query measure
the documents are sorted measuring the cosine of the angle between the
projected query ¢ and each document vector in A,

FOB i

_Aiaj:]-a"'an' (6)
T ldlallagll

With the expanded query measure we are able to find document vectors
that are orthogonal to the query vector.

Let the m x n term document matrix A = [M X] where the columns of
M = [m;] correspond to d relevant documents and the columns of X = [x;]
correspond to the rest of the document vectors in A. Assume q is the query
vector and that ¢ is orthogonal to all document vectors in M, thus ¢" M = 0.
(This is precisely the situation we have with the topic we follow in section 4).

11

Let § = WW7q be the projected query vector (5). With r = 1 in the
Bip1AG procedure (appendix A) the reached subspace

XXTq

W = span(AP;) = span{AATq} = ——,
P (1) P { q} “)(Tq”2

where the last equality follows from the orthogonality between ¢ and the

1

columns in M. Let ¢ = XTqand vy = W, the expanded query measure (6)
Cll2

then becomes

ORI i

lldll2lla;ll2 X"z
o=l

In order to score the relevant document vectors in M high we want the first

d elements in ¢® to be large (and the last n —d elements in ¢ to be small).

This is true if there are document vectors in X that are close both to the

query vector and to the relevant document vectors in M. So at least in theory

document vectors from M could be scored high.

If the relevant document vectors in M are orthogonal to both the query
vector and the rest of the document vectors in X (i.e. MTqg=0and MTX =
0) the two basis matrices Q,4+1 and P, (3) from the BIDIAG procedure will
span bases for the two Krylov subspaces

’CT+1(AAT: Q) = {q: XXTQ: LR (XXT)rq}

0 0

T T,y

ICT(A AzA Q) - { |:XTq:| 1y [(XTX)T—IXTq] }

respectively. No directions from the misses documents in M will be in these

subspaces, thus we will not find the misses using the bidiagonalization pro-
cedure in this case.

4 Experiments

Topic number 316 deals with polygamy, polyandry and polygyny and was
presented in section 2.2. According to the relevance judgements 19 docu-

12

q doc,* docy docs docs* docs* doce™ docy* docg
polygamy 0.58 0 0 0 022 022 020 0.17 0.16
polyandry 0.58 0.77 0 0 0 0 0 0 0
polygyny 0.58 0 0.62 0.46 0 0 0 0 0

Table 2: Weights for the terms in the short query vector and for the 8
top scored documents using the vector model (2). The documents marked
with a star are relevant to the topic docy, docy, docs, docg and doc; corre-
spond to document FT932-4228, FT934-6885, FT943-10242, FT943-5141
and FT942-4193 respectively.

ments from the FT set are relevant to this topic’. Two of the relevant
documents are identical’.

The three terms polygamy, polyandry and polygyny appear in the short
query vector. These are rare terms of high search value. polygamy appears
in 14 documents and 11 of these are relevant. polyandry is in 1 (relevant)
document and polygyny is in 2 (irrelevant) documents. (Clearly removing
singletons will soon make the short query vector empty and terms with high
search value will be removed from the document vectors.).

If using the vector model (2) the short query vector addresses 17 document
vectors (corresponding to columns of A, (1)) and is orthogonal to the rest of
the documents in the set. 12 of the documents addressed by the query vector
are relevant to the topic and average precision for the vector model becomes
0.45.

The weights for the terms polygamy, polyandry and polygyny, appearing in
the short query vector, for the 8 top scored documents are listed in table 2.
The effect of the row normalization of the term document matrix is clearly
seen. The highest weight (0.77) corresponds to the most rare of the three
terms (polyandry). The weights for the second most rare term (polygyny) are
0.62 and 0.46 respectively. For the least rare term (polygamy) weights are
smaller. The effect of the column normalization is not that clear. The weight
for the term polygyny in docs is lower because more rare terms appear in docs
than in docy. docs is shorter than docs.

16Documents FT922-11381, FT922-12843, FT931-5366, FT931-6791, FT932-1167,
FT932-3422, FT932-3656, FT932-4228, FT932-5625, FT933-7689, FT934-6885, FT942—
4193, FT943-10242, FT943-2362, FT943-5141, FT944-1831, FT944-2037, FT944-2863
and FT944-8467 are relevant to topic 316.

17FT944-1831 and FT944-2037 are identical.

13

Since only one of the three terms in the short query vector appear in each
document, the scoring follows the weights of the terms directly.

The relevant documents can be divided into two distinct groups, retrieved
relevant and misses'®. In the former group (retrieved relevant) one of the
terms polygamy or polyandry appear. All the documents in the later group
(misses) are orthogonal to the short query.

The 12 retrieved relevant documents are scored

[1,4,5,6,7,9,10,11,12,14,15,16]. (7
and the 7 misses were scored!®
[mﬂ m’ m’ m7 m’ m’ m]

The challenge is to see whether we can locate the 7 misses®® using the Krylov
subspace method (3).

4.1 Using the Krylov subspace method

Using the short query vector The short query vector is orthogonal to
the misses, and using it as a starting vector for the BIDIAG procedure (3)
will start a search orthogonal to the documents we want to locate. Unless the
document vectors from the two groups of relevant documents are close in an-
gles, iterating in the BIDIAG procedure will not bring in relevant documents
from the misses group.

In table 3 terms and weights for the 10 top weighted terms in the projected
query vector (5) are listed?'. The weights for terms in the 8 top scored
documents are also shown in the table.

18The retrieved relevant documents are the documents that are scored well enough for
a human user to judge and the misses are the relevant documents scored so low that they
will not be shown to the user (i.e. one cannot expect a user to read through all previous
scored documents). In [] two kinds of retrieval failures were used, false alarms and misses.
False alarms are highly scored irrelevant documents.

19We mark the orthogonality by using the scoring oc.

20All relevant documents carry one of the terms polygamy, polygamist, polygamists and
polyandry respectively. A search vector addressing all these four terms will score all relevant
documents below 23. Thus if stemming had been used for the term document matrix or
if the query vector had been expanded with polygamist and polygamists all the relevant
documents had been captured using the vector model.

2'We used the short query vector and constructed projected query vectors § (5) for
r =1,...,6 in BIDIAG. The top 10 weighted terms in the projected query vector that
were brought in by the procedure dominated all 6 query vectors computed.

14

The terms polyandry, polygyny and polygamy still show high weights. Nat-
urally all three terms have lower weights in ¢ than in ¢q. Also note that the
most rare of the three terms (polyandry) has higher weight than polygyny, the
second most rare term. The most common of the three terms polygamy has
least weight.

The new terms that were brought in by the bidiagonalization scheme
(gamy, supergrass, annemarie, telltale, bigamists, spinsters and matings) do not
lead us to the wanted documents. doc; (relevant) lists different TV-shows
and the words supergrass, annemarie and telltale comes from listed TV-shows
that have nothing to do with polyandry. None of these terms appear in any
other relevant documents. The words gamy, spinsters and matings appear in
the non relevant documents docy and docs. These terms do not appear in
any relevant document.

Relevant documents from the two groups retrieved relevant and misses
were scored (sorted as in 7)

[2,7,4,5,6,9,10,21,27, 31,20, 33

and
[579, 2981, 2965, 5113, 15071, 24559, 24560] (8)

respectively. Even though average precision decreased from 0.45 to 0.33
all documents in the first group are scored below 33. The misses are not
orthogonal to the projected query vector — so it is possible to score them.
However they still do not belong to the group of retrieved relevant documents.
The two document from the misses group that were scored 24559 and 24560
are identical.

Document vectors from the two groups retrieved relevant and misses are
almost orthogonal. Let the first 12 columns of A, be the retrieved relevant
document vectors from the term document matrix and let the last columns
be the document vectors corresponding to the 7 misses. The orthogonality is
clearly seen in figure 2 where all scalar products?? in AT A, greater than 0.01
are plotted. Three documents from the retrieved relevant group share some
terms with one of the misses. Although the three scalar products are small
(between 0.01 and 0.05) the connection between the two groups can be seen
in the scoring (8) where this document is scored 579.

22Gince all document vectors are normalized AT A, is the cosines of the angles between
the relevant document vectors.

il doc;* docy docs* docg* docy* docs®
polygyny 0.44 0. 0 0.46 0 0 0 0
polyandry 0.44 0.77 0 0 0 0
monogamy (.22 0 0 0 0.25 0
polygamy 0.20 0 0.22 020 017 0.22
supergrass 0.18 0 0 0 0
annemarie 0.17 0
telltale 0.16 0
skews 0.15 0 0
bigamists 0.13 0 0.82
matings 0.13 0 8 0

wo oo ocoocoo

o

Table 3: The 10 top weighted terms in the projected query vector ¢ (5) and
their corresponding weights in ¢ and in the 8 top scored documents. The
documents were scored using the cosine of the angle between the projected
query ¢ and each document vector in the term document matrix (6), with
the short query vector and r = 3 in BIDIAG (3). The documents marked
with a star are relevant to the topic. The document numbers refer to the
numbers in table 2

Also note (see figure 2) that the group of retrieved relevant documents can
be divided into two groups having the first document orthogonal to the rest
of the documents in the group. In this document the term polyandry appears.
Since polyandry appears only once in the whole set the corresponding element
is weighted high, and since the term also appears in the query vector the
document is scored high (both in the vector model and using the Krylov
method). Removing all rows corresponding to terms only appearing once
in the set from the term document matrix will make this document vector
orthogonal to both the query vector and the rest of the relevant documents.
Thus the document will not be captured by the vector model nor by the
Krylov subspace method.

False alarms are highly scored irrelevant documents?®. In some of the
false alarms some interesting relations appear.

- A modern phrase serial polygyny labels the practice of women who take

23The false alarms are scored 1, 3, 8, 11 — 19, 22 — 26, 28 — 30 and 32.

16

a series of husbands in sequence as a solution to practical welfare®*.
The two terms serial and polygyny appears in this context in the two
irrelevant documents scored 1 and 3. Using the technique discussed
in section 4.1.2 (by orthogonalizing against negative query vectors in
the BIDIAG procedure) these two irrelevant documents may be moved
further down in the ranking list. Let for example the elements in the
negative query vector address the terms serial and polygyny.

- The irrelevant document scored 8 lists the today’s television. One of the
programs listed examines polygamy versus monogamy. The document
were brought in because of polygamy appearing in it.

- In the two relevant documents scored 4 and 9 the term polygamy ap-
pears. The documents describes a Malaysian sect that uses polygamy.
The false alarms scored 11, 12, 13 and 17 are short news telegrams
about the Malaysian sect, clearly brought in because of its closeness to
the relevant documents scored 4 and 9. In the false alarm scored 29 the
sect is mentioned. (None of the terms in the short query vector appear
in the irrelevant documents scored 11, 12, 13, 17 and 29.)

- The false alarms scored 14, 15 and 18 are about a Malaysian politician,
brought in because of it closeness to the relevant documents scored 4
and 9 and the irrelevant documents scored 11, 12, 13 and 17 above.

- The false alarm scored 26 is about a family running an illegal bomb o o o
factory and among the TV shows listed in the (relevant) document o o e
scored 2 there is one program about this family. « o

- The terms skews and polygypy appear in the false alarm scored no. L Figure 2: Nonzero elements greater than 0.01 in AT A, where the 12 first
The document were scored high because of the term polygyny appearing columns of A, are the retrieved relevant document vectors and the 7 last

in it and it brings in the rare and high weighted term skews® to the columns correspond to the misses. Columns in A, are sorted as (7) and (8).
projected query vector. skews also appears in the false alarms scored

19 and 30.

24In the narrative field of the topic it is stated that documents discussing the male
equivalence serial polygamy will not be considered relevant.
25skews appears in 7 documents.

Using the middle and long query vectors None of the middle or long
query vectors are orthogonal to all the misses (but the angles are large). The
query vectors are still rather close to at least a few document vectors in the
relevant retrieved group. Since the queries are longer the terms polygamy,
polyandry and polygyny get lower weights, thus relevant documents from the
relevant retrieved group above are scored worse compared to the scoring when
the short query vector was used.

Relevant documents from the group retrieved relevant for the middle
query vector using the vector model were scored (sorted as in 7)

[1,14,12, 16,24, 28, 51,90, 98, 113, 157, 205]

and for the long query vector

(3,385, 169,416, 430, 887, 728, 3143, 3199, 3989, 5139, 11607

respectively. Iterating a few steps in the BIDIAG procedure will not improve
the scoring for the relevant documents. In table 4 the top 10 weighted terms
that are brought in after three iterations with the BIDIAG to the projected
middle and long query vectors are listed. These differ from the terms that
were brought in by the short query vector (listed in table 3). The important
search term polygamy is no longer among the top 10 weighted terms. Due to
the naive way of constructing the long query vector terms such as discussing
and discussions are brought in.

Terms in the intersection In table 5 all terms that appear at least in 6 of
the relevant documents and at least once in both groups, retrieved relevant
and misses, of relevant documents. The terms appearing in the intersection
are weighted low in the relevant documents and thus will not be useful as
search terms in the query vector. Also note that the terms appearing in both
groups differ completely from the terms appearing in the projected queries.

Summary All three query vectors, short, middle and long, are either or-
thogonal or almost orthogonal to all documents in the misses group and close
in angles to the documents in the relevant retrieved group. The documents
from the misses group are almost orthogonal to the documents in the relevant
retrieved group. Using the BIDIAG procedure we are able to spot the weak
relationship between the two groups but in order to capture documents from

19

G(middle) d(long)

look 0.51 | housing 0.14
prevalence (.29 | discussions (.13
roots 0.25 | customs 0.11
polygyny 0.11 | sources 0.10
polyandry 0.11 | practices 0.09
column 0.09 | series 0.09
lex 0.07 | practice 0.09
elixir 0.07 | discussing 0.09
grass 0.06 | considered 0.09
monogamy 0.06 | welfare 0.09

Table 4: Terms and weights for the 10 top weighted projected query vectors
for the middle and long query vectors.

party french old home called clear senior once role family man opposition society
century men history children books

Table 5: Terms that appear in at least 6 of the relevant documents and at
least once in both groups retrieved relevant and misses.

the misses group we need either the starting vector (the query) to address
document vectors from both groups or the document vectors from the two
groups need to be closer in angles. Clearly in order to find the 7 misses we
need to choose the starting vector and use the BIDIAG procedure with greater
care.

4.1.1 Relevance feedback

In a relevance feedback cycle, the user is presented a list of retrieved docu-
ments, and after examining them, marks those that are relevant. The main
idea is to use the information provided by the user to make a new (hopefully)
improved search.

Assume a user has given judgements on the documents in the retrieved
relevant group (7) from the vector model. Using the term weights from the
relevant document vectors we constructed a new (improved) starting vector
for the BIDIAG. We let the new query vector be the vector sum of the relevant

20

q
polygamy 0.58
bigamists 0.33
polyandry 0.31
taso 0.30
rakai 0.30
magesi 0.25
deviationist 0.24
neziha 0.23
mezhoud 0.23
ashaari 0.21

Table 6: Using the term weights from the relevant document vectors a new
query vector was constructed. We let the new query vector be the sum of the
row vectors in the document vectors corresponding to the relevant retrieved
documents. Terms and weights for the 10 top weighted terms are shown.

retrieved documents.

The terms and the weights (after normalizing) for the top 10 weighted
terms in the improved query vector are listed in table 6. These words are
rare in the term document matrix and a few differ from the terms for the
projected query vector listed in table 3. The five terms taso, magesi, neziha,
mezhoud and ashaari comes from the three names Mrs Marble Magesi of Taso,
Mrs Neziha Meshoud and Ashaari Muhammad appearing in some of the relevant
documents. The names are rare and thus high weighted. Rakai is a southern
district in Uganda.

The important search terms polygamy and polyandry appear in the query
vector. polygyny appeared in the two irrelevant documents scored 2 and 3
in (7) and is not present. Due to the orthogonality between the two groups
misses and retrieved relevant none of the 10 top weighted terms in the im-
proved query vector appear in any of the misses. Also there is no match
between the terms in the intersection between the two groups relevant re-
trieved and misses, listed in table 5, and the most common terms in the
improved query vector.

The scorings for the vector model and the Krylov method are listed below

Retrived relevant documents (sorted as in 7)

vector model [8,2,4,7,1,3,5,16,18, 20,21, 22]
Krylov method [16,9,4,5,7,12, 10, 31, 33, 36, 24, 37]

and misses (sorted as in 8)

vector model [00, 00, 00, 00, 00, 00, 0]
Krylov method [57,43346, 116025, 90478, 28075, 46251, 46252]

The improved query vector manages to capture the document vector in the
missing group that is closest to the intersection between the two groups of
relevant documents (see figure 2 and scoring (8)) and it is scored 57. If
we consider this document to be retrieved we may repeat the process and
construct yet an improved query vector by summing the row vectors in the
relevant retrieved group and the retrieved document vector from the misses.
This will bring in the term polygamist to the query vector.

A query vector with the three terms polygamy, polyandry and polygamist
highly weighted will retrieve all but two relevant documents using the vector
model. Since the two not retrieved documents are connected to some of
the retrieved relevant documents iterating a few steps in the BIDIAG with
this query vector will capture at least one of the remaining two relevant
documents.

Summary Using the expanded query measure (6) to rank the documents
for relevancy and with a carefully picked starting vector for the BIDIAG pro-
cedure we are able to retrieve relevant document vectors that are orthogonal
to the query vector. In the relevance feedback cycle (section 4.1.1) we used
judgements from the user to create a new starting vector. The new starting
vector again was orthogonal to the misses, but closer in angles to some non
relevant documents that in their turn were close to one of the misses. In this
way we were able to steer the Krylov method to further resemble relevant
documents.

4.1.2 Using negative information

Documents discussing serial polygamy are not relevant to this topic (see the
narrative field for this topic in section 2.2). There is at least one document

22

dealing with serial polygamy in the FT set. This (irrelevant) document is
scored 17 using the vector model with the short query vector (7). Clearly
removing the term polygamy will decrease retrieval performance since all of
the retrived relevant documents were found merely through this term. By
using the BIDIAG, procedure (4) we are able to orthogonalize against non
wanted information. We let the negative query vector ¢(~) have the terms
serial and polygamy and g be the short query vector. Average precision will
be 0.33 and the document dealing with serial polygamy is scored 120. (The
two groups of retrieved relevant documents and misses still remains).

5 Conclusions

There are usually many ways to express a given concept so the terms in a
user’s query may not match those of a relevant document. The query vector
for topic no 316 used in section 4 is orthogonal to some of the relevant docu-
ment vectors and thus splits the set of relevant documents into those that are
retrieved (retrieved relevant) and those that are not retrieved (misses) when
using the vector model scoring (2). However some of the misses are connected
to some of the retrieved relevant documents through common terms. With
the BIDIAG procedure we are able to indicate this (rather weak) connection
between the two sets of document vectors. With some relevance feedback
from the user some of the misses were ranked well enough to be retrieved.

Many terms have multiple meanings, so terms in a user’s query will match
terms in documents that are not of interest to the user. Reformulating the
BipIAG procedure slightly it is possible to orthogonalize against unwanted
directions and thus avoid subspaces (or vectors) spanned by terms that is
of no interest. The projected query vector (5) used in the expanded query
measure (6) will be orthogonal to these subspaces (or vectors) and there by
the irrelevant retrieved documents is likely to be ranked further down the
list.

A The Golub Kahan bidiagonalization pro-
cedure

The Golub Kahan bidiagonalization procedure is a variant of the Lanczos
tridiagonalization algorithm and it is widely used in the numerical linear
algebra community.

The Golub Kahan algorithm starts with the normalized query vector ¢; =
q/|lql|; and computes two orthonormal bases P and @, adding one column
for each step k, see [5] in section 9.3.3.

ALGORITHM BIDIAG(A,q,r):
Start with g1 = q/||q||, B =0
for k=1,2,...r do
QrPr = ATlIk — Brpr—1
Br+1Gk+1 = Apr — gy
end.

The scalars o and S are chosen to normalize the corresponding vectors.
Define

Qry1 = [(11 Q2 ... ‘Ir+1]:

P, pr P2 - P,

&3}
B2
Br+1

Qp

ﬂr+1

After r steps k we have the basic recursions

ATQ, = P.BT
AP, = QT+1BT+1'
The columns of), will be an orthonormal basis of the Krylov subspace

Kr11(AAT q) and the columns of P, forms an orthonormal basis for the
Krylov subspace

K.(ATA, ATg). The lower bidiagonal matrix B,;; = QT,; AP, is the pro-
jection of A onto these Krylov subspaces and some of the singular values of
B, will be approximations of those of A.

Technically it is easy to rewrite the BIDIAG procedure to incrementally
compute vectors ¢; in (), orthogonal to a vector c.

ALGORITHM BIDIAG,(4,q,c,7):
Start with g1 = q/|qll, B =0
for k=1,2,...r do

ope = ATqe — Bepr—1

y = Apr — o

Bes1Grt1 =Y — CCT?/
end.

The two calls BIDIAG,(A4,q,¢,7) and BIDIAG((I — ccT)A,q,r) are equiva-
lent. The procedure BIDIAG, is further discussed in [2].

References

[1] K. BLoM, Ezperimenting with different weighting schemes for the Krylov
Subspace method used for IR, tech. rep., Dept. of Mathematics, Chalmers
university of Technology, 2003.

[2] ——, Modified Krylov subspace methods for information retrieval, tech.
rep., Dept. of Mathematics, Chalmers university of Technology, 2003.

[3] K. BLoM AND A. RUHE, Information Retrieval using a Krylov Subspace
method, submitted for publication, (2003).

[4] W. B. FRAKES AND R. BAEZA-YATES, Information Retrieval, Data
Structures and Algorithms, Prentice Hall, 1992.

[6] G. GoLuB AND C. F. VAN LoOAN, Matriz Computations, Johns Hopkins,
3 ed., 1996.

D. HARMAN, The Eighth Text RFEtrieval Confer-
ence (TREC-8), NIST Special Publication 500-246.
http:/ /trec.nist.gov/pubs/trec8/t8 proceedings, (2000), p. Al (Ap-
pendix).

