
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Automation of Computational

Mathematical Modeling

ANDERS LOGG

Department of Computational Mathematics

CHALMERS UNIVERSITY OF TECHNOLOGY

GÖTEBORG UNIVERSITY

Göteborg, Sweden 2004

Automation of Computational Mathematical Modeling
ANDERS LOGG
ISBN 91–7291–436–X

c© ANDERS LOGG, 2004.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 2118
ISSN 0346–718X

Department of Computational Mathematics
Chalmers University of Technology
Göteborg University
SE–412 96 Göteborg
Sweden
Telephone +46 (0)31 772 1000

Tryckeriet, Matematiskt centrum
Göteborg, Sweden 2004

Automation of Computational

Mathematical Modeling

ANDERS LOGG

Department of Computational Mathematics

Chalmers University of Technology

Göteborg University

ABSTRACT

This thesis concerns the Automation of Computational Mathematical
Modeling (CMM), involving the key steps of automation of (i) discretiza-
tion, (ii) discrete solution, (iii) error control, (iv) modeling, and (v) opti-
mization.

The automation of (i)–(ii) is realized through multi-adaptive Galerkin

methods on general discretizations of space–time with time steps variable
in space. The automation of (iii) is realized through a posteriori error
estimation based on residuals of computed solutions and stability factors
or stability weights obtained by the solution of associated dual problems.
The automation of (iv) is studied in a model case, while that of (v) is
reduced to an application of (i)–(iv).

An open-source software system for the Automation of Computational
Mathematical Modeling is developed and implemented, based on general
order multi-adaptive Galerkin methods, including automatic evaluation of
variational forms, automatic discrete solution, automatic generation and
solution of dual problems, and automatic model reduction.

Keywords: Computational mathematical modeling, automation, adaptivity, multi-

adaptivity, individual time steps, dual problem, a priori, a posteriori, model re-

duction.

i ii

THESIS

This thesis consists of an introduction, a sequence of papers as listed
below, and the source code included on the compact disc.

iii iv

APPENDED PAPERS

The following papers are included in this thesis:

PAPER I: Multi-Adaptive Galerkin Methods for ODEs I, SIAM J. Sci.
Comput., vol. 24 (2003), pp. 1879–1902.

PAPER II: Multi-Adaptive Galerkin Methods for ODEs II: Implemen-

tation and Applications, SIAM J. Sci. Comput., vol. 25 (2003), pp. 1119–
1141.

PAPER III: Multi-Adaptive Galerkin Methods for ODEs III: Existence

and Stability, submitted to SIAM J. Numer. Anal. (2004).

PAPER IV: Multi-Adaptive Galerkin Methods for ODEs IV: A Priori

Error Estimates, submitted to SIAM J. Numer. Anal. (2004).

PAPER V: Multi-Adaptive Galerkin Methods for ODEs V: Stiff Prob-

lems, submitted to BIT (2004), with J. Jansson.

PAPER VI: Explicit Time-Stepping for Stiff ODEs, SIAM J. Sci. Com-
put., vol. 25 (2003), pp. 1142–1157, with K. Eriksson and C. Johnson.

PAPER VII: Interpolation Estimates for Piecewise Smooth Functions

in One Dimension, Chalmers Finite Element Center Preprint Series, no.
2004–02 (2004).

PAPER VIII: Estimates of Derivatives and Jumps Across Element Bound-

aries for Multi-Adaptive Galerkin Solutions of ODEs, Chalmers Finite El-
ement Center Preprint Series, no. 2004–03 (2004).

PAPER IX: Algorithms for Multi-Adaptive Time-Stepping, submitted to
ACM Trans. Math. Softw. (2004), with J. Jansson.

PAPER X: Simulation of Mechanical Systems with Individual Time Steps,
submitted to SIAM J. Appl. Dyn. Syst. (2004), with J. Jansson.

PAPER XI: Computational Modeling of Dynamical Systems, to appear
in M3AS (2004), with J. Jansson and C. Johnson.

v

The following papers are related, but are not included in the thesis:

• Topics in Adaptive Computational Methods for Differential Equa-

tions, CEDYA 2001: Congreso de Ecuaciones Diferenciales y Apli-
caciones (2001), with J. Hoffman and C. Johnson.

• Multi-Adaptive Time-Integration, Applied Numerical Mathematics,
vol. 48, pp. 339–354 (2004).

• Adaptive Computational Methods for Parabolic Problems, to appear in
Encyclopedia of Computational Mechanics (2004), with K. Eriksson
and C. Johnson.

• DOLFIN: Dynamic Object oriented Library for FINite element com-

putation, Chalmers Finite Element Center Preprint Series, no. 2002–
06 (2002), with J. Hoffman.

• The FEniCS project, Chalmers Finite Element Center Preprint Series,
no. 2003–21 (2003), with T. Dupont, J. Hoffman, C. Johnson, R.C.
Kirby, M.G. Larson, and L.R. Scott.

vi

CONTENTS ON THE COMPACT DISC

The included compact disc contains the following material:

• The introduction;

• PAPER I–XI as listed above;

• Source code for DOLFIN version 0.4.11;

• Source code for Puffin version 0.1.6;

• Images and animations.

vii viii

PREFACE

To Prof. Kenneth Eriksson and Prof. Claes Johnson, my two advisors,
thanks for all your inspiration and support over the years. Special thanks
to Claes for the piano lessons, the tennis lessons, and the endless discussions
on music, philosophy, and life.

Thanks also to Prof. Endre Süli, Prof. Jan Verwer, and Prof. Ridg-
way Scott for giving me the opportunity to visit Oxford, Amsterdam, and
Chicago during my time as a graduate student. These visits have all been
invaluable experiences.

To all my friends and colleagues at the Department of Computational
Mathematics at Chalmers, thanks for the many enlightening discussions on
mathematics, programming, and football. In particular, I wish to acknowl-
edge my co-authors Johan Hoffman and Johan Jansson. Thanks also to
Göran Christiansson for valuable comments on the manuscript.

Special thanks to all the members of the DOLFIN team: Fredrik Beng-
zon, Niklas Ericsson, Georgios Foufas, David Heintz, Rasmus Hemph, Jo-
han Hoffman, Johan Jansson, Karin Kraft, Aleksandra Krusper, Andreas
Mark, Axel Målqvist, Andreas Nilsson, Erik Svensson, Jim Tilander, Tho-
mas Svedberg, Harald Svensson, and Walter Villanueva.

But most of all, I would like to thank my wife Anna, my parents and
grandparents, my little sister Katarina, and Lysekilarna, for all their love
and support.

Göteborg, April 2004
Anders Logg

ix x

And now that we may give final praise to the machine we may
say that it will be desirable to all who are engaged in compu-
tations which, it is well known, are the managers of financial
affairs, the administrators of others’ estates, merchants, survey-
ors, geographers, navigators, astronomers. . . For it is unworthy
of excellent men to lose hours like slaves in the labor of cal-
culations which could safely be relegated to anyone else if the
machine were used.

Gottfried Wilhelm Leibniz (1646–1716)

INTRODUCTION

Computational Mathematical Modeling (CMM) can be viewed as the
modern manifestation of the basic principle of the natural sciences: formu-
lating equations (modeling) and solving equations (computation).

Models of nature are often expressed as differential equations of the
canonical form

u̇ = f(u) (1)

on a given domain in space–time, stating that the rate of change u̇ of
the solution u is given by f(u) depending on u and space derivatives of
u. Famous models of nature of the form (1) include the Navier–Stokes
equations of fluid dynamics, Maxwell’s equations of electromagnetics, and
the Schrödinger equation of quantum mechanics.

Until recently, it has not been possible to solve differential equations
in any generality. In particular, using classical analytic methods, solutions
are only available in a few special cases. A prime example is the n-body
problem; the general solution of the n-body problem was given by Newton
for n = 2 [52], but no one has been able to find the general solution of the
n-body problem for n = 3.

The situation has changed with the arrival of the modern computer.
Using a computer, the solution of the three-body problem can be obtained
in fractions of a second. Computational simulation of real world phenom-
ena is becoming possible for the first time. Thus, the advancement of CMM
opens new possibilities for our understanding of nature, by making possi-
ble the detailed study of complex phenomena, such as turbulence in fluid
motion and the stability of our solar system.

The Principles of Automation

The modern industrial society is based on automated mass-production of
material goods, such as food, clothes, cars, and computers. The emerging
information society is based on automated mass-processing of information
by computers. An important part of this process concerns the Automation
of Computational Mathematical Modeling, which is the topic of this thesis.

An automatic system carries out a well-defined task without interven-
tion from the person or system actuating the automatic process. The task
of the automatic system may be formulated as follows: For given input
satisfying a fixed set of conditions (the input conditions), produce output
satisfying a given set of conditions (the output conditions).

1

An automatic process is defined by an algorithm, consisting of a se-
quential list of instructions (like a computer program). In automated man-
ufacturing, each step of the algorithm operates on and transforms physical
material. Correspondingly, an algorithm for the Automation of CMM op-
erates on digits and consists of the automated transformation of digital
information.

A key problem of automation is the design of a feed-back control, al-
lowing the given output conditions to be satisfied under variable input and
external conditions, ideally at a minimal cost. Feed-back control is real-
ized through measurement, evaluation, and action; a quantity relating to
the given set of conditions to be satisfied by the output is measured, the
measured quantity is evaluated to determine if the output conditions are
satisfied or if an adjustment is necessary, in which case some action is taken
to make the necessary adjustments. In the context of an algorithm for feed-
back control, we refer to the evaluation of the set of output conditions as
the stopping criterion, and to the action as the modification strategy.

A key step in the automation of a complex process is modularization,
i.e., the hierarchical organization of the complex process into components
or subprocesses. Each subprocess may then itself be automated, including
feed-back control. We may also express this as abstraction, i.e., the distinc-
tion between the properties of a component (its purpose) and the internal
workings of the component (its realization).

Modularization (or abstraction) is central in all engineering and makes
it possible to build complex systems by connecting together components or
subsystems without concern for the internal workings of each subsystem.

We thus identify the following basic principles of automation: algo-
rithms, feed-back control, and modularization.

The Automation of Computational Mathematical Modeling

In automated manufacturing, the task of the automatic system is to produce
a certain product (the output) from a given piece of material (the input),
with the product satisfying some measure of quality (the output conditions).
In the Automation of CMM, the input is a given model of the form (1) and
the output is a discrete solution U ≈ u satisfying some measure of quality.
Typically, the measure of quality is given in the form of a tolerance TOL > 0
for the size of the error e = U − u in a suitable norm:

‖e‖ ≤ TOL. (2)

The key problem for the Automation of CMM is thus the design of a
feed-back control for the automatic construction of a discrete solution U ,
satisfying the output condition (2) at minimal cost.

2

The design of this feed-back control is based on the solution of an asso-
ciated dual problem, connecting the size of the residual R(U) = U̇ − f(U)
of the computed discrete solution to the size of the error e, and thus to the
output condition (2). The solution of the dual problem is also the key to
the realization of an automatic system for the construction of the discrete
solution U at minimal cost. We return to this in detail below.

Following our previous discussion on modularization as a basic principle
of automation, we identify the key steps in the Automation of CMM. These
key steps concern the automation of

(i) discretization;

(ii) discrete solution;

(iii) error control;

(iv) modeling;

(v) optimization.

The automation of discretization means the automatic translation of a
continuous model of the form (1) to a discrete model, that can be solved
on a computer to obtain a discrete solution of (1).

The automation of discrete solution means the automatic choice of an
appropriate algorithm for the solution of the discrete system of equations
obtained from the automatic discretization of (1).

The automation of error control means that the resolution of the dis-
crete model is automatically chosen to produce a discrete solution satisfying
a given accuracy requirement with minimal work. This includes an aspect
of reliability (the error of the computed solution should be less than a given
tolerance), and an aspect of efficiency (the solution should be computed
with minimal work).

The automation of modeling concerns the process of automatically find-
ing the optimal parameters describing the model (1); either to find the
model from a given set of data or to construct from a given model a re-

duced model for the variation of the solution on resolvable scales.

The automation of optimization relies on the automation of (i)–(iv),
with the solution of the primal problem (1) and an associated dual prob-
lem being the key steps in the minimization of a given cost functional. In
particular, the automation of optimization relies on the automatic genera-
tion of the dual problem.

We return to (i)–(v) below. In all cases, feed-back control, or adaptivity,
plays a key role.

3

The Realization of the Automation of CMM

The Automation of CMM includes its own realization, i.e., a software sys-
tem implementing the automation of (i)–(v). This is the goal of the FEniCS

project, recently initiated in cooperation between Chalmers University of
Technology and the University of Chicago [12]. The necessary prerequisites
for this venture are now available, including the mathematical methodology,
the modern computer, and modern tools of computer science.

FEniCS is based on the open-source computational platform DOLFIN

[31, 33], developed at the Dept. of Computational Mathematics at Chalmers,
currently working as a prototype implementation of FEniCS. We discuss
the current status of DOLFIN below in Section 6.

FEniCS also includes a minimal and educational implementation of the
basic tools for the Automation of CMM, called Puffin. Puffin is used in
a number of courses at Chalmers, ranging from introductory undergradu-
ate courses to advanced undergraduate/beginning graduate courses, and is
discussed in more detail below in Section 7.

DOLFIN and Puffin constitute an essential part of this thesis.

Figure 1: Solution of the equation u̇ + b · ∇u − ∇ · (a∇u) = 0, modeling
convection–diffusion around a hot dolphin.

4

1 The Automation of Discretization

The automation of discretization is based on Galerkin’s method, providing
a general framework for the discretization of differential equations.

In its basic form, Galerkin’s method for (1) is given by specifying a
pair of finite-dimensional subspaces (V, V̂) and then formulating a discrete
version of (1) for functions in the trial space V by testing (1) against all
functions in the test space V̂ . The discrete version of (1) takes the form:
Find U ∈ V , such that

(U̇ , v) = (f, v) ∀v ∈ V̂ , (3)

where (·, ·) is an inner product for functions on a domain Ω × (0, T] in
space–time.

Galerkin’s method was originally formulated with global polynomial
subspaces (V, V̂) [4] and goes back to the variational principles of Leib-
niz, Euler, Lagrange, Dirichlet, Hamilton, Castigliano [6], Rayleigh, and
Ritz [56]. Galerkin’s method with piecewise polynomial subspaces (V, V̂)
is known as the finite element method. The finite element method was
introduced by engineers for structural analysis in the 1950s and was inde-
pendently proposed by Courant in 1943 [7]. The exploitation of the finite el-
ement method among engineers and mathematicians exploded in the 1960s.
General references include [61, 54, 58, 13, 14, 19, 20, 18, 21, 22, 23, 2].

The Galerkin finite element method thus provides the basic tool for
the automatic discretization of (1). The discrete model (3) represents a
discrete system of (possibly nonlinear) equations. An important step in
the Automation of CMM is thus the automated solution of these discrete
equations, as discussed below in Section 2.

To automate this process, a language must be specified in which models
of the general form (1) can be expressed and interpreted by a computer.
With automatic discretization based on the Galerkin finite element method,
it is convenient to specify models in the language of variational forms cor-
responding to (3). Both DOLFIN and Puffin implement this language, as
discussed below. This allows a model to be specified in a notation which
is close to the mathematical notation of (3). Furthermore, to complete the
automation of discretization, an additional translation is necessary from a
model given in the (strong) form (1) to a model given in the (weak) form
(3).

With the automation of discretization made possible through the au-
tomation of the Galerkin finite element method, a necessary ingredient is
the automatic generation of finite elements. Recent work [55] makes it
possible to automatically generate a finite element, as defined in [54, 58],
satisfying a given set of properties. New finite elements may thus be added

5

to a software system by just giving their definition. Another advantage is
that by automating the generation of finite elements, it becomes easier to
guarantee the correctness of the implementation, since the implementation
is common for all types of finite elements. In addition, the finite elements
may be chosen adaptively by feed-back from computation.

To give a concrete example of the automatic translation of (1) to a
discrete model of the form (3), we consider the cG(1) finite element method
in its basic form, and return below to the general multi-adaptive methods
mcG(q) and mdG(q). We shall further assume that the model (1) takes
the form of an initial value problem for a system of ordinary differential
equations,

u̇(t) = f(u(t), t), t ∈ (0, T],

u(0) = u0,
(4)

where u : [0, T] → R
N is the solution to be computed, u0 ∈ R

N a given
initial value, T > 0 a given final time, and f : R

N × (0, T] → R
N a given

function that is Lipschitz-continuous in u and bounded.
To obtain the discrete version of (4), we construct the trial space V

and the test space V̂ of (3) as follows. The time interval interval (0, T]
is partitioned into M subintervals, T = {Ij}

M
j=1, with the length of each

subinterval Ij = (tj−1, tj] given by the time step kj = tj−tj−1. As discussed
further below in Section 3, the partition T is automatically determined
by an adaptive algorithm with the goal of obtaining an optimal discrete
representation U of the exact solution u.

Based on the partition T , the trial and test spaces are now defined as
follows:

V = {v ∈ [C([0, T])]N : v|Ij
∈ [P1(Ij)]

N , j = 1, . . . ,M},

V̂ = {v : v|Ij
∈ [P0(Ij)]

N , j = 1, . . . ,M},
(5)

i.e., V represents the space of continuous and piecewise linear vector-valued
functions on the partition T and V̂ represents the space of (possibly dis-
continuous) piecewise constant vector-valued functions on the partition T .

Following the general formulation (3), the cG(1) method for (4) now
reads: Find U ∈ V with U(0) = u0, such that

∫ T

0
(U̇ , v) dt =

∫ T

0
(f(U, ·), v) dt ∀v ∈ V̂ , (6)

where (·, ·) denotes the inner product on R
N .

From (6), it follows that the cG(1) solution can alternatively be defined
in terms of its nodal values, given by

U(tj) = U(tj−1) +

∫ tj

tj−1

f(U(t), t) dt, j = 1, . . . ,M, (7)

6

with U(0) = u0 and where U(t) = U(tj−1) + (t− tj−1)(U(tj)−U(tj−1))/kj

on each interval Ij . Note that (7) represents a (possibly nonlinear) system
of equations for the degrees of freedom of the discrete solution U .

Multi-Adaptive Galerkin

It is desirable, in short, that in things which do not primarily concern
others, individuality should assert itself.

John Stuart Mill (1806–1873), On Liberty (1859)

Standard methods for the discretization of (1) require that the temporal
resolution is constant in space at each given time t. In particular, the
cG(1) method for (4) requires that the same time step k = k(t) is used
for all components Ui = Ui(t) of the solution U . This can be very costly
if the system exhibits multiple time scales of different magnitudes. If the
different time scales are localized in space, corresponding to a difference
in time scales between the different components of the solution U of (4),
efficient representation of the solution thus requires that this difference in
time scales is reflected in the choice of discrete representation (V, V̂). We
refer to the resulting methods, recently introduced in a series of papers [44,
45, 48, 49, 36], as multi-adaptive Galerkin methods. See also [40, 50, 35, 37].

Figure 2: A simple mechanical system consisting of n = 5 particles exhibit-
ing multiple time scales.

Surprisingly, individual time-stepping (multi-adaptivity) has previously
received little attention in the large literature on numerical methods for
ODEs, see e.g. [8, 29, 30, 5, 60, 1], but has been used to some extent
for specific applications, including specialized integrators for the n-body
problem [51, 9, 59], and low-order methods for conservation laws [53, 38, 10].
Early attempts at individual time-stepping include [62, 63]. Recently, a new
class of related methods, known as asynchronous variational integrators
(AVI) with individual time steps, has been introduced [42].

To extend the standard cG(q) and dG(q) methods for (4), we modify
the trial space V and the test space V̂ to allow individual time steps for
each component. For i = 1, . . . , N , the time interval (0, T] is partitioned

7

Figure 3: Local time steps in a multi-adaptive solution of the 2D heat
equation with a variable heat source localized to the center of the domain.

into Mi subintervals, Ti = {Iij}
Mi

j=1, with the length of each subinterval
Iij = (ti,j−1, tij] given by the local time step kij = tij − ti,j−1. The result-
ing individual elements {(Iij , Ui|Iij

)} are arranged in time slabs, collecting
elements between common synchronized time levels {Tn}

M
n=0, as shown in

Figure 4. As discussed in [35], the multi-adaptive algorithm consists of
two phases: the generation of time slabs and the solution of the discrete
equations on each time slab. We return to the iteration on time slabs below.

PSfrag replacements

0

i

kij

Kn

T

Iij

ti,j−1 tij

Tn−1 Tnt

Figure 4: A sequence of M = 4 time slabs for a system of size N = 6.

For the multi-adaptive version of the standard cG(q) method, referred

8

Figure 5: A multi-adaptive solution with individual time steps for the three
different components.

to as the mcG(q) method, we define the trial and test spaces by

V = {v ∈ [C([0, T])]N : vi|Iij
∈ Pqij (Iij), j = 1, . . . ,Mi, i = 1, . . . , N},

V̂ = {v : vi|Iij
∈ Pqij−1(Iij), j = 1, . . . ,Mi, i = 1, . . . , N}.

(8)

In other words, V denotes the space of continuous piecewise polynomials
of degree q = qi(t) = qij, t ∈ Iij , and V̂ denotes the space of (possibly
discontinuous) piecewise polynomials of degree q− 1. This is illustrated in
Figure 5, showing the mcG(1) solution of a system with three components
with individual partitions for the different components. The trial and test
spaces for the multi-adaptive version of the standard dG(q) method, re-
ferred to as the mdG(q) method, are defined similarly with discontinuous
trial and test functions, see [44] or [48].

The mcG(q) method for (4) can now be defined as follows: Find U ∈ V
with U(0) = u0, such that

∫ T

0
(U̇ , v) dt =

∫ T

0
(f(U, ·), v) dt ∀v ∈ V̂ . (9)

Rewriting (9) as a sequence of successive local problems for each component,

9

we obtain
∫

Iij

U̇iv dt =

∫

Iij

fi(U, ·)v dt ∀v ∈ Pqij−1(Iij), (10)

for each local interval Iij . For the solution of the discrete system given
by (9), it is convenient to rewrite (10) in explicit form for the degrees of
freedom {xijm}

qij

m=0 of the local polynomial Ui|Iij
, corresponding to (7).

This explicit form of (10) is given by

xijm = xij0 +

∫

Iij

w
[qij]
m (τij(t)) fi(U(t), t) dt, m = 1, . . . , qij , (11)

where {w
[qij]
m }

qij

m=1 ⊂ Pqij−1([0, 1]) is a set of polynomial weight functions
and τij maps Iij to (0, 1]: τij(t) = (t− ti,j−1)/(tij − ti,j−1).

An example of multi-adaptive time-stepping taken from [35] is presented
in Figure 6, showing the solution and multi-adaptive time steps for the
bistable equation (see [26, 57]),

u̇− ε∆u = u(1 − u2) in Ω × (0, T],

∂nu = 0 on ∂Ω,

u(·, 0) = u0 in Ω,

(12)

on the unit cube Ω = (0, 1) × (0, 1) × (0, 1) with T = 100 and ε = 0.0001.

2 The Automation of Discrete Solution

Depending on the model (1), the method used for the automatic discretiza-
tion of (1), and the choice of discrete representation (V, V̂), the solution of
the resulting discrete system of equations may require more or less work.

Traditionally, the solution of the discrete system is obtained by some
version of Newton’s method, with the linearized equations being solved
using direct methods based on Gaussian elimination, or iterative methods
such as the conjugate gradient method (CG) or GMRES in combination
with a suitable choice of problem-specific preconditioner.

Alternatively, direct fixed point iteration on the discrete equations (11)
may be used. The fixed point iteration takes the form

xn = g(xn−1) = xn−1 − (xn−1 − g(xn−1)) = xn−1 − F (xn−1), (13)

for n = 1, 2, . . ., converging to a unique solution of the equation F (x) ≡
x− g(x) = 0 if the Lipschitz constant Lg of g satisfies Lg < 1.

If the number of iterations remains small, fixed point iteration is a com-
petitive alternative to standard Newton iteration. It is also an attractive

10

Figure 6: Cross-section of solution (above) and multi-adaptive time steps
(below) at time t = 10 for the bistable equation (12).

11

alternative for the iterative solution of the discrete equations on time slabs
in multi-adaptive methods, since it avoids the formation of large Jacobians
on time slabs. However, if the problem being solved is stiff, which is char-
acterized by a large Lipschitz constant Lg > 1, simple fixed point iteration
may fail to converge.

In adaptive fixed point iteration, the simple fixed point iteration (13) is
modified according to

xn = (I − α)xn−1 + αg(xn−1) = xn−1 − αF (xn−1), (14)

with adaptively determined damping α : R
N → R

N . In [36], this idea is
explored for the iterative solution of the discrete equations on time slabs,
based on ideas for the adaptive stabilization of stiff systems presented in
[24], relying on the inherent property of the stiff problem itself: rapid
damping of high frequencies. The suitable damping α is automatically
determined in each iteration, which in particular means that α = I for a
non-stiff problem.

3 The Automation of Error Control

Ideally, an algorithm for the solution of (1) should have the following prop-
erties: Given a tolerance TOL > 0 and a functional L, the algorithm shall
produce a discrete solution U approximating the exact solution u of (1),
such that

(A) |L(e)| ≤ TOL, where e = U − u;

(B) the computational cost of obtaining the approximation U is minimal.

The functional L is typically chosen to represent the error e in some output
quantity of interest, for example the error in the drag coefficient of an object
such as a car or an airplane in a numerical flow simulation. Other natural
choices include L(e) = ‖e(T)‖ for a suitable choice of norm ‖·‖ for functions
on Ω. Conditions (A) and (B) are satisfied by an adaptive algorithm, with
the construction of the discrete representation (V, V̂) based on feed-back
from the computed solution.

As discussed above, an adaptive algorithm typically involves a stopping
criterion, indicating that the size of the error is less than the given tolerance,
and a modification strategy to be applied if the stopping criterion is not
satisfied. Often, the stopping criterion and the modification strategy are
based on an a posteriori error estimate E ≥ |L(e)|, estimating the error
e = U − u in terms of the residual R(U) = U̇ − f(U) and the solution φ of
a continuous dual problem connecting to the stability of (1).

12

Alternatively, the stopping criterion and the modification strategy can
be based on an a priori error estimate involving the exact solution u of (1)
and the solution Φ of a discrete dual problem.

To estimate the error, either a priori or a posteriori, knowledge of the
stability of the problem being solved is thus required. These stability prop-
erties are in general obtained by solving the dual problem of (1), which
takes the form

−φ̇ = (∂f/∂u)∗φ, (15)

on Ω × [0, T), where (∂f/∂u)∗ denotes the adjoint of the derivative of f .
By computing the solution of the dual problem (15), the required stability
properties can be obtained e.g. in the form of a stability factor S(T),
typically involving derivatives of the dual solution,

S(T) =

∫ T

0
‖φ(q)‖ dt. (16)

Error control thus requires some extra effort from the adaptive algorithm,
the solution of a dual problem in addition to the solution of the primal
problem (1), which in most cases is comparable to the effort of solving the
primal problem itself.

The Adaptive Algorithm

The basic adaptive algorithm for the solution of (1) can now be expressed
as follows:

1. Choose an initial discrete representation (V, V̂) for (1).

2. Solve the discrete problem (3) to obtain the discrete solution U ap-
proximating the exact solution u of (1).

3. Solve the dual problem (15) and compute the stability factor S(T).

4. Compute an error estimate E based on the residual R(U) and the
stability factor S(T).

5. If E ≤ TOL, then stop. If not, refine the discrete representation
(V, V̂) based on the residual R(U) and the stability factor S(T), and
go back to 2.

As a concrete example, we consider below the cG(1) method for the
basic model problem (4). We derive a priori and a posteriori error estimates
and indicate how these estimates fit into the basic adaptive algorithm,
following earlier work on adaptivity for the cG(q) and dG(q) methods [11,
39, 28, 27].

13

A Priori Error Estimates

To obtain an a priori error estimate for the discrete cG(1) solution U of
(4), the error e = U − u is represented in terms of a discrete dual solution
Φ and the residual of an interpolant πu of the exact solution u of (4). The
a priori error estimate then follows by subtracting the residual of the exact
solution u in the representation of the error, together with an interpolation
estimate.

Assuming that the functional L can be expressed as

L(e) = (e(T), ψ) +

∫ T

0
(e, g) dt, (17)

for given dual data (ψ, g), the discrete dual problem of (6) takes the follow-
ing form: Find Φ ∈ V̂ with Φ(T+) = ψ, such that

∫ T

0
(v̇,Φ) dt =

∫ T

0
(J(πu,U, ·)v,Φ) dt + L(v) (18)

for all v ∈ V with v(0) = 0, where J(πu,U, ·) =
∫ 1
0 ∂f/∂u(sπu + (1 −

s)U, ·) ds. Integrating by parts, we note that (18) represents a Galerkin
method for (15), see [48] for details.

Letting πu denote the piecewise linear nodal interpolant of u, i.e.,
πu(tj) = u(tj) for j = 0, 1, . . . ,M , we note that ē ≡ U − πu ∈ V and so

if follows from (18), that L(ē) =
∫ T
0 (˙̄e − J(πu,U, ·)ē,Φ) dt =

∫ T
0 (R(U, ·) −

R(πu, ·),Φ) dt and thus that

L(ē) = −

∫ T

0
(R(πu, ·),Φ) dt, (19)

where we have used the Galerkin orthogonality (6), expressing that the
residual R(U, ·) = U̇ − f(U, ·) is orthogonal to the test space V̂ .

Subtracting the residual R(u, ·) = u̇ − f(u, ·) = 0 of the exact solution
u of (4) in the error representation (19), it now follows that

L(ē) = −

∫ T

0
(R(πu, ·) −R(u, ·),Φ) dt

= −

∫ T

0
(π̇u− u̇,Φ) dt+

∫ T

0
(f(πu, ·) − f(u, ·),Φ) dt

=

∫ T

0
(f(πu, ·) − f(u, ·),Φ) dt =

∫ T

0
(πu− u, J∗(πu, u, ·)Φ) dt,

(20)

since πu interpolates u at each tj and Φ is constant on each interval Ij .
The a priori error estimate now follows by an interpolation estimate,

|L(ē)| ≤ CS(T)‖k2ü‖L∞([0,T],l2), (21)

14

where C is an interpolation constant and the stability factor S(T) is given
by

S(T) =

∫ T

0
‖J∗(πu, u, ·)Φ‖l2 dt. (22)

Noting now that e = ē at each node tj, it follows from the a priori error
estimate (21) that the cG(1) method is of second order in the time step
k. In general, the cG(q) method is of order 2q, see [49]. Similarly, an a
priori error estimate can be obtained for the dG(q) method, showing that
the mdG(q) method is of order 2q + 1.

Note that the a priori error estimate (21) does in fact take the form
of a quantitative estimate, i.e., it involves computable quantities (if the
exact solution u is approximated with the discrete solution U), including
the stability factor S(T) which may be obtained from a computed solution
of the discrete dual problem (18).

A Posteriori Error Estimates

To obtain an a posteriori error estimate for the discrete cG(1) solution U
of (4), the error is represented in terms of a continuous dual solution φ and
the residual of the discrete solution U . The a posteriori error estimate then
follows by subtracting an interpolant of the dual solution, together with an
interpolation estimate.

The continuous dual problem of (4) takes the form

−φ̇(t) = J∗(u,U, t)φ(t) + g(t), t ∈ [0, T),

φ(T) = ψ.
(23)

Noting that the dual solution φ of (23) satisfies (18) for all v such that
v(0) = 0 with J(πu,U, ·) replaced by J(u,U, ·), and thus in particular

for v = e, it follows that L(e) =
∫ T
0 (ė − J(u,U, ·)e, φ) dt =

∫ T
0 (R(U, ·) −

R(u, ·), φ) dt and thus that

L(e) =

∫ T

0
(R(U, ·), φ) dt. (24)

Using the Galerkin orthogonality (6) to subtract a piecewise constant inter-
polant πφ of the dual solution φ in the error representation (24), we obtain
the following a posteriori error estimate for the cG(1) method:

|L(e)| =

∣

∣

∣

∣

∫ T

0
(R(U, ·), φ − πφ) dt

∣

∣

∣

∣

≤ CS(T)‖kR(U, ·)‖L∞([0,T],l2), (25)

where C is an interpolation constant and the stability factor S(T) is given
by

S(T) =

∫ T

0
‖φ̇‖l2 dt. (26)

15

Note the similarities between the a priori error estimate (21) and the
a posteriori error estimate (25), and also the two stability factors S(T)
defined in (22) and (26), showing two sides of the same coin. In particular,
we note that by (6), the derivative U̇ of the computed solution U is an
interpolant (the projection onto piecewise constants) of the right-hand side
f(U, ·), and thus the residual R(U, ·) = U̇ − f(U, ·) satisfies an estimate of
the form ‖kR(U, ·)‖L∞([0,T],l2) ≤ C‖k2ḟ(U, ·)‖L∞([0,T],l2) ∼ ‖k2ü‖L∞([0,T],l2).

We may now give concrete meaning to the adaptive algorithm discussed
above, which may be based either on the a priori error estimate (21) or the
a posteriori error estimate (25). Basing the adaptive algorithm on (25), the
error estimate E is given by

E = CS(T)‖kR(U, ·)‖L∞([0,T],l2). (27)

This error estimate for the computed solution U is thus compared to the
given tolerance TOL and if E > TOL, a better approximation U needs to
be computed, this time with smaller time steps. The new time steps are
determined adaptively from the error estimate (27), i.e., we take k = k(t)
such that

‖kR(U, ·)‖L∞(Ij ,l2) = TOL/(CS(T)), (28)

for each interval Ij . This process is then repeated until E < TOL. Note
that several extensions to this simple strategy are possible. In particular, a
sharper error estimate E may be obtained directly from (24), as discussed
in [44], and stability weights may be used instead of stability factors.

The Stability Factor and the Dual Problem

The size of the stability factor S(T) varies with the model (1), the method
used for the automatic discretization of (1), and the chosen output quantity
of interest represented by the functional L. The presence of a large stability
factor indicates that the problem is sensitive to small perturbations, and
pertinent questions concern the predictability (influence of perturbations in
data and model) and the computability (influence of errors introduced by
the discretization) of a given model.

A common classification of partial differential equations uses the terms
elliptic, parabolic, and hyperbolic, with the prototype examples being Pois-
son’s equation, the heat equation, and the wave equation, respectively.
More generally, parabolic problems are often described in vague terms as
being dominated by diffusion, while hyperbolic problems are dominated by
convection in a setting of systems of convection-diffusion equations.

In the context of computational methods for a general class of models of
the form (1), the notion of parabolicity may be given a precise quantitative

16

definition. We define a model of the form (1) to be parabolic if computa-
tional solution is possible over long time without error accumulation, i.e.,
if the stability factor S(T) remains bounded and of moderate size as T
increases. A more detailed discussion on this subject can be found in [25].
For a typical hyperbolic problem, the corresponding stability factor S(T)
grows linearly in time, while for more general models the growth may be
polynomial or even exponential in time.

We consider two basic examples with very different stability properties;
the first one is a parabolic system of chemical reactions and the second one
is the Lorenz system which has an exponentially growing stability factor.

The first example is the following system of reaction–diffusion equations,
discussed in more detail in [57, 45]:

{

u̇1 − ε∆u1 = −u1u
2
2,

u̇2 − ε∆u2 = u1u
2
2,

(29)

on Ω × (0, 100] with Ω = (0, 1) × (0, 0.25), ε = 0.0001, and homogeneous
Neumann boundary conditions. With the initial conditions chosen to obtain
a reaction front moving through the domain Ω, the stability factor for the
computation of the solution at final time at a given point in Ω grows as
shown in Figure 7. We note that the stability factor peaks at the time
of active reaction, and that before and after the reaction front has swept
the region of observation, the stability factor S(T) is significantly smaller,
indicating parabolicity for large values of T .

Our second example is the Lorenz system, given by

ẋ = σ(y − x),
ẏ = rx− y − xz,
ż = xy − bz,

(30)

with σ = 10, b = 8/3, r = 28, and initial value (x(0), y(0), z(0)) = (1, 0, 0).
The solution u(t) = (x(t), y(t), z(t)), shown in Figure 8 for T = 40, is
very sensitive to perturbations and is often said to be chaotic. With our
perspective, this is reflected by the rapid growth of the stability factor S(T),
as shown in Figure 9. The stability factor grows on the average as 10T/3,
which limits the computability of the Lorenz system to time T = 50 with
standard double precision arithmetic.

Multi-Adaptivity

The a priori and a posteriori error analysis presented above extends natu-
rally to the general multi-adaptive methods mcG(q) and mdG(q), as shown
in [44, 45, 48, 49]. In particular, we obtain a priori error estimates showing

17

0 10 20 30 40 60 70 80 90 100
0

10

20

30

40

50

60

70

80

PSfrag replacements

T

S
(T

)

Figure 7: The growth of the stability factor S(T) for the reaction front
problem (29).

0 10 20 30 40
−30

−20

−10

0

10

20

30

40

50

−20 −10 0 10 20
0

5

10

15

20

25

30

35

40

45

50

PSfrag replacements

x

z

t

U
(t

)

Figure 8: The solution of the Lorenz system (30) on the time interval [0, 40].

18

0 5 10 15 20 30 35 40 45 50

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

PSfrag replacements

T

S
(T

)

Figure 9: The exponential growth of the stability factor S(T) connecting
to modeling/round-off errors for the Lorenz system (30).

that the mcG(q) and mdG(q) methods are of order 2q and 2q + 1 in the
local time step kij , respectively.

The main challenge in the error analysis of multi-adaptive methods lies
in the proof of the a priori error estimates. As for the cG(1) method, we
obtain an error representation of the form (20). For q > 1, the interpolant
πu is chosen to satisfy a set of q − 1 projection conditions in addition to
interpolating u at each nodal point. It follows that we may subtract an
interpolant πJ∗(πu, u, ·)Φ of J∗(πu, u, ·)Φ in (20) to obtain an additional
q − 1 powers of k in the error estimate. Together with the q + 1 powers
of k obtained from the interpolation estimate for the difference πu− u, we
thus obtain a total of 2q powers of k. However, since individual time steps
are used for the different components of the multi-adaptive discrete dual
solution Φ, the interpolation estimate for πJ ∗(πu, u, ·)Φ − J∗(πu, u, ·)Φ is
not straightforward. This interpolation estimate is proved in [46], based on
basic interpolation estimates for piecewise smooth functions proved in [47].

The individual multi-adaptive time steps are determined based on an a
posteriori error estimate of the form

|L(e)| ≤ C
N

∑

i=1

Si(T)‖kqi

i Ri(U, ·)‖L∞([0,T]), (31)

19

corresponding to (25). Note that each component has an individual stability
factor Si(T). The local time steps kij are determined automatically based
on this posteriori error estimate, as discussed in detail in [45, 35].

4 The Automation of Modeling

The automation of modeling concerns both the problem of finding the pa-
rameters describing the model (1) from a given set of data (inverse model-
ing), and the automatic construction of a reduced model for the variation of
the solution on resolvable scales (model reduction). We here discuss briefly
the automation of model reduction.

In situations where the solution u of (1) varies on time scales of different
magnitudes, and these time scales are not localized in space, computation
of the solution may be very expensive, even with a multi-adaptive method.

To make computation feasible, we instead seek to compute an average ū
of the solution u of (1) on resolvable scales. Typical examples include mete-
orological models for weather prediction, with fast time scales on the range
of seconds and slow time scales on the range of years, or protein folding
represented by a molecular dynamics model, with fast time scales on the
range of femtoseconds and slow time scales on the range of microseconds.

The automation of model reduction typically involves extrapolation
from resolvable scales, or the construction of a large-scale model from lo-
cal resolution of fine scales in time and space. In both cases, a large-scale
model for the average ū is constructed from the given model (1).

In the setting of the basic model problem (4), we thus seek to determine
a model (equation) for the average ū of u defined by

ū(t) =
1

τ

∫ τ/2

−τ/2
u(t+ s) ds, (32)

where τ is the size of the average (with a suitable construction near t = 0
and t = T). The model for the average ū is obtained by taking the average
of (4):

˙̄u(t) = ¯̇u(t) = f(u, ·)(t) = f(ū(t), t) + (f(u, ·)(t) − f(ū(t), t)), (33)

or
˙̄u(t) = f(ū(t), t) + ḡ(u, t), (34)

where the variance ḡ(u, t) = f(u, ·)(t) − f(ū(t), t) accounts for the effect of
small scales on resolvable scales.

The key step is now to model the variance ḡ in terms of the average
ū, i.e., to determine the subgrid model g̃ such that ḡ(u, t) ≈ g̃(ū(t), t) and

20

replace (4) with the reduced model

˙̄u(t) = f(ū(t), t) + g̃(ū(t), t), t ∈ (0, T],

ū(0) = ū0.
(35)

The validity of the subgrid model may be estimated by computing the
modeling residual g̃ − ḡ and stability factors obtained from the solution of
the dual problem.

In [34], we explore this idea for a simple model problem by determining
the solution u(t) of (4), including fast time scales, accurately over a short
time period and then matching a model of the form g̃(ū(t), t) based on the
computed solution.

5 The Automation of Optimization

With the automation of computation realized in the form of automated dis-
cretization, discrete solution, error control, and modeling, new possibilities
open for the automation of optimization.

In optimization, one seeks to determine the value of a control parameter
p which minimizes a given cost functional J (u, p), depending on the solution
u of the model (1), with the model depending on the control parameter p.
In the setting of the basic model problem (4), we thus seek to find the
control parameter p : [0, T] → R

M minimizing J (u, p), with u satisfying

u̇(t) = f(u(t), p(t), t), t ∈ (0, T],

u(0) = u0.
(36)

The optimization problem can be formulated as the problem of finding
a stationary point of the associated Lagrangian,

L(u, p, φ) = J (u, p) + (u̇− f(u, p, ·), φ), (37)

which takes the form of a system of differential equations, involving the
primal and the dual problem, as well as an equation expressing stationarity
with respect to variation of control variables:

u̇ = f(u, p, ·),

−φ̇(t) = (∂f/∂u)∗φ− ∂J /∂u,

∂J /∂p = (∂f/∂p)∗φ,

(38)

together with initial values u(0) = u0 and φ(T) = 0 for the primal and dual
problems, respectively. The optimization problem may thus be solved by
computational solution of a system of differential equations.

The automation of optimization thus relies on the automated solution
of both the primal problem (1) and the dual problem (15), including the
automatic generation of the dual problem.

21

6 DOLFIN

DOLFIN is a platform for research and teaching in adaptive Galerkin finite
element methods developed by Hoffman and Logg, with help from a team
of graduate and undergraduate students at the Dept. of Computational
Mathematics at Chalmers. DOLFIN functions as the current prototype
implementation of FEniCS, aiming ultimately at the Automation of CMM.

Currently implemented features of DOLFIN include the automatic eval-
uation of variational forms, automatic assembly of the discrete system
representing a given variational form (the automation of discretization),
adaptive mesh refinement in two and three space dimensions, a number
of algebraic solvers including preconditioners, multigrid, the ability to ex-
port a computed solution to a variety of visualization systems, a system for
easy integration of new solvers/modules for specific problems, and a multi-
adaptive ODE-solver with adaptive fixed point iteration for the solution
of the discrete equations on time slabs (the automation of discrete solu-
tion), automatic validation of solutions through automatically generated
dual problems (the automation of error control), and a basic implemen-
tation of the automatic generation of reduced models (the automation of
model reduction).

DOLFIN is implemented as a C++ library and can be used either as
a stand-alone solver, or as a tool for the development and implementation
of new methods. To simplify usage and emphasize structure, DOLFIN is
organized into three levels of abstraction, referred to as kernel level, mod-

ule level, and user level, as shown in Figure 10. Core features, such as
the automatic evaluation of variational forms and adaptive mesh refine-
ment, are implemented as basic tools at kernel level. At module level, new
solvers/modules can be assembled from these basic tools and integrated
into the system. At user level, a model of the form (1) is specified and
solved, either using one of the built-in solvers/modules or by direct usage
of the basic tools.

Automatic Evaluation of Variational Forms

Automatic evaluation of variational forms is implemented by operator over-
loading in C++, allowing simple specification of variational forms in a lan-
guage that is close to the mathematical notation. Performance is ensured
by automatic precomputation and tabulation of integrals, in combination
with special techniques to avoid object construction.

Consider as an example Poisson’s equation

−∆u(x) = f(x), (39)

22

Figure 10: Simplified component diagram showing the modularized struc-
ture of DOLFIN.

23

class Poisson : PDE

{

real lhs(ShapeFunction u, ShapeFunction v)

{

return (grad(u),grad(v)) * dx;

}

real rhs(ShapeFunction v)

{

return f*v * dx;

}

}

Table 1: Sketch of the specification of the variational formulation of Pois-
son’s equation in DOLFIN.

on some domain Ω. Assuming homogeneous Dirichlet boundary conditions,
the variational (weak) formulation of (39) takes the form: Find u ∈ H 1

0 (Ω),
such that

∫

Ω
(∇u,∇v) dx =

∫

Ω
fv dx ∀v ∈ H1

0 (Ω). (40)

The specification of (40) in DOLFIN is given in Table 1, and consist of
the specification of the two variational forms lhs and rhs, representing the
left- and right-hand sides of (40), respectively.

Automatic Assembly

DOLFIN automatically assembles the discrete system representing a given
variational formulation, based on the automatic evaluation of variational
forms. This automates a large part of the implementation of a solver. In
the case of Poisson’s equation, the algorithm becomes particularly simple:
assemble the discrete system consisting of a matrix (the stiffness matrix)
and a vector (the load vector), and solve the linear system.

Automation of all parts of DOLFIN makes the implementation short,
simple and clear at all levels. In fact, the algorithm for the automatic
assembly is just a couple of lines, as shown in Table 2.

Adaptive Mesh Refinement

The concept of a mesh is central in the implementation of adaptive Galerkin
finite element methods for partial differential equations. Other important
concepts include nodes, cells, edges, faces, boundaries, and mesh hierarchies.

24

for (CellIterator cell(mesh); !cell.end(); ++cell)

for (TestFunctionIterator v(element); !v.end(); ++v)

for (TrialFunctionIterator u(element); !u.end(); ++u)

A(v.dof(), u.dof()) += pde.lhs(u,v);

for (CellIterator cell(mesh); !cell.end(); ++cell)

for (TestFunctionIterator v(element); !v.end(); ++v)

b(v.dof) += pde.rhs(v);

Table 2: Sketch of the implementation of automatic assembly in DOLFIN.

for (CellIterator c(m); !c.end(); ++c)

for (NodeIterator n1(c); !n1.end(); ++n1)

for (NodeIterator n2(n1); !n2.end(); ++n2)

cout << *n2 << endl;

Table 3: Iteration over all node neighbors n2 of the nodes n1 within all cells
c of the mesh m.

These concepts are all implemented as C++ classes in DOLFIN, as shown
in Figure 11.

Algorithms operating on a mesh, including adaptive mesh refinement,
can often be expressed in terms of iterators, i.e., objects used for the traver-
sal of aggregate structures, such as the list of nodes contained in a mesh.
Iterators implemented in DOLFIN include a NodeIterator, CellIterator,
EdgeIterator, FaceIterator, and a MeshIterator. Table 3 provides an
example of a code that displays all node neighbors of all nodes of all cells
within a given mesh.

Adaptive mesh refinement is implemented in DOLFIN for triangular
meshes (in 2D) and tetrahedral meshes (in 3D), see Figure 12, based on
the algorithm given in [3]. To refine a mesh, the cells (triangles or tetrahe-
drons) are first marked according to some criterion for refinement, before
the mesh is refined. A hierarchy of meshes, that can be used for example
in a multigrid computation, is automatically created.

Linear Algebra

DOLFIN includes an efficient implementation of the basic concepts of lin-
ear algebra: matrices and vectors. Both sparse and dense matrices are
implemented, as well as generic matrices only defined through their action
(multiplication with a given vector).

25

Figure 11: Class diagram of the basic mesh classes in DOLFIN.

Figure 12: Adaptive mesh refinement of triangular and tetrahedral meshes
in DOLFIN.

26

Several algebraic solvers are implemented in DOLFIN. These include
preconditioned iterative methods such as CG, GMRES, and BiCGSTAB,
and direct methods such as LU factorization.

Multigrid

A multigrid solver has recently been implemented in DOLFIN as part of a
student project, showing the benefits of the open-source nature of DOLFIN;
it functions as a tool in both research and education, and at the same
time benefits from this usage by incorporating new methods and solvers
developed as a consequence of its usage.

Visualization

DOLFIN relies on interaction with external tools for visualization, such
as the open-source program OpenDX, based on IBM’s Visualization Data
Explorer. Post-processing (as well as pre-processing) is thus accomplished
by implementation of the file formats needed for exchange of data. Using a
modular approach, DOLFIN has been designed to allow easy extension by
addition of new file formats. In addition to OpenDX, DOLFIN currently
supports GNU Octave, MATLAB, and GiD.

Easy Integration of New Modules

New solvers/modules for specific models may easily be added to DOLFIN.
Current modules include solvers for Poisson’s equation, the heat equation,
convection–diffusion, the wave equation, linear elasticity, incompressible
Navier–Stokes (in preparation), and the general multi-adaptive ODE-solver.

Multi-Adaptive ODE-Solver

A general multi-adaptive ODE-solver, including automatic generation and
solution of dual problems, automatic error estimation, and automatic model
reduction, is currently being implemented in DOLFIN, as the result of a
merge with the existing multi-adaptive solver Tanganyika [43]. The new
solver is developed with specific focus on the ability to handle stiff problems
and large-scale applications, as discussed in [36, 35, 37].

Limitations and Future Directions

To reach a point where DOLFIN becomes attractive and useful to a wider
audience, and ultimately to realize the Automation of CMM, a number of
new features and improvements of existing features are necessary, including
all features listed above. Important areas of active development which will

27

Figure 13: Cross-sections of 3D turbulent flow around a surface mounted
cube computed with DOLFIN. (Courtesy of Johan Hoffman)

see improvements in the near future include the automatic evaluation of
variational forms, support for general finite elements, support for a range
of file formats, linear algebra and iterative solvers, specification of gen-
eral boundary conditions, and the automatic integration of time-dependent
partial differential equations using the multi-adaptive solver.

7 Puffin

With new tools available to science and engineering based on the Automa-
tion of CMM, a reform of education from basic to graduate level becomes
necessary. The Body&Soul-project, involving books [32, 15, 16, 17, 41] and
software (FEniCS), represents the first coordinated effort to meet these
demands. The potential impact of FEniCS as the computational tool in a
reformed education is thus very strong.

Puffin is a simple and minimal 2D implementation of FEniCS in GNU
Octave (or MATLAB) designed for education, including automatic assem-
bly and evaluation of variational forms. Puffin is currently used by students
in a number of courses at Chalmers. The students follow a sequence of com-
puter sessions and in each session implement a solver for a given model,
including Poisson’s equation, the heat equation, convection–diffusion, the

28

bistable equation, the Navier–Stokes equations, and general systems of
convection–diffusion–reaction equations (see Figure 14 and 15).

Figure 14: Solution of the bistable equation (12) in Puffin.

Figure 15: Solution of the driven cavity problem for the Navier–Stokes
equations in Puffin.

29

8 Summary of Appended Papers

PAPER I: Multi-Adaptive Galerkin Methods for ODEs I

This paper introduces the multi-adaptive Galerkin methods mcG(q) and
mdG(q) for initial value problems for ordinary differential equations and
contains the a posteriori error analysis of the methods.

PAPER II: Multi-Adaptive Galerkin Methods for ODEs II:

Implementation and Applications

Continuing from PAPER I, this paper discusses the implementation of the
mcG(q) and mdG(q) methods, in particular the adaptive algorithm based
on the a posteriori error estimates from PAPER I. This paper also discusses
a number of applications of the multi-adaptive methods, and includes an
evaluation of the performance of the multi-adaptive methods.

PAPER III: Multi-Adaptive Galerkin Methods for ODEs III:

Existence and Stability

This paper contains proofs of existence and stability for the discrete multi-
adaptive solutions, which is an important step in the proof of a priori error
estimates for the multi-adaptive methods.

PAPER IV: Multi-Adaptive Galerkin Methods for ODEs IV:

A Priori Error Estimates

Based on the stability estimates of PAPER III and a pair of special in-
terpolation estimates proved in PAPER VII and PAPER VIII, this paper
contains the proofs of the a priori error estimates for the multi-adaptive
methods mcG(q) and mdG(q).

PAPER V: Multi-Adaptive Galerkin Methods for ODEs V:

Stiff Problems

This paper extends the applicability of the multi-adaptive methods to stiff
problems. In particular, a new strategy for adaptive fixed point iteration
on time slabs is presented, based on ideas of adaptive stabilization of stiff
problems presented in PAPER VI.

PAPER VI: Explicit Time-Stepping for Stiff ODEs

This paper presents new ideas for adaptive stabilization of stiff problems,
making it possible to solve stiff problems with explicit methods.

30

PAPER VII: Interpolation Estimates for Piecewise Smooth

Functions in One Dimension

This paper contains basic interpolation estimates for piecewise smooth func-
tions. These estimates are used in the a priori error analysis of the multi-
adaptive methods, where interpolation estimates are needed for functions
with discontinuities.

PAPER VIII: Estimates of Derivatives and Jumps Across Ele-

ment Boundaries for Multi-Adaptive Galerkin Solutions of ODEs

The interpolation estimates proved in PAPER VII are expressed in terms of
the jumps in function values and derivatives at the points of discontinuity
for the interpolated function. This paper estimates the size of these jumps
for the discrete multi-adaptive solutions.

PAPER IX: Algorithms for Multi-Adaptive Time-Stepping

This paper presents the key algorithms for multi-adaptive time-stepping,
including the recursive construction of time slabs and adaptive fixed point
iteration on time slabs.

PAPER X: Simulation of Mechanical Systems with Individual

Time Steps

This paper discusses the application of the multi-adaptive methods to me-
chanical systems, in particular to large mass-spring systems modeling de-
formable solids. The performance of the multi-adaptive methods is exam-
ined, both for stiff and non-stiff problems.

PAPER XI: Computational Modeling of Dynamical Systems

This paper is a short note on the basic approach to automated computa-
tional modeling of dynamical systems.

31 32

References

[1] U. Ascher and L. Petzold, Computer Methods for Ordinary Differential Equa-

tions and Differential-Algebraic Equations, SIAM, 1998.

[2] R. Becker and R. Rannacher, An optimal control approach to a posteriori error

estimation in finite element methods, Acta Numerica, 10 (2001).

[3] J. Bey, Tetrahedral grid refinement, Computing, 55 (1995), pp. 355–378.

[4] B.G. Galerkin, Series solution of some problems in elastic equilibrium of rods and

plates, Vestnik inzhenerov i tekhnikov, 19 (1915), pp. 897–908.

[5] J. Butcher, The Numerical Analysis of Ordinary Differential Equations — Runge–

Kutta and General Linear Methods, Wiley, 1987.

[6] C.A.P. Castigliano, Théorie de l’équilibre des systèmes élastiques et ses applica-

tions, A.F. Negro ed., Torino, 1879.

[7] R. Courant, Variational methods for the solution of problems of equilibrium and

vibrations, Bull. Amer. Math. Soc., 49 (1943), pp. 1–23.

[8] G. Dahlquist, Stability and Error Bounds in the Numerical Integration of Ordinary

Differential Equations, PhD thesis, Stockholm University, 1958.

[9] R. Davé, J. Dubinski, and L. Hernquist, Parallel treeSPH, New Astronomy, 2
(1997), pp. 277–297.

[10] C. Dawson and R.C. Kirby, High resolution schemes for conservation laws with

locally varying time steps, SIAM J. Sci. Comput., 22, No. 6 (2001), pp. 2256–2281.

[11] M. Delfour, W. Hager, and F. Trochu, Discontinuous Galerkin methods for

ordinary differential equations, Math. Comp., 36 (1981), pp. 455–473.

[12] T. Dupont, J. Hoffman, C. Johnson, R.C. Kirby, M.G. Larson, A. Logg,

and L.R. Scott, The FEniCS project, Tech. Rep. 2003–21, Chalmers Finite Ele-
ment Center Preprint Series, 2003.

[13] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Introduction to adaptive

methods for differential equations, Acta Numerica, (1995), pp. 105–158.

[14] , Computational Differential Equations, Cambridge University Press, 1996.

[15] K. Eriksson, D. Estep, and C. Johnson, Applied Mathematics: Body and Soul,
vol. I, Springer-Verlag, 2003.

[16] , Applied Mathematics: Body and Soul, vol. II, Springer-Verlag, 2003.

[17] , Applied Mathematics: Body and Soul, vol. III, Springer-Verlag, 2003.

[18] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic prob-

lems III: Time steps variable in space, in preparation.

[19] , Adaptive finite element methods for parabolic problems I: A linear model

problem, SIAM J. Numer. Anal., 28, No. 1 (1991), pp. 43–77.

[20] , Adaptive finite element methods for parabolic problems II: Optimal order error

estimates in l∞l2 and l∞l∞, SIAM J. Numer. Anal., 32 (1995), pp. 706–740.

[21] , Adaptive finite element methods for parabolic problems IV: Nonlinear prob-

lems, SIAM J. Numer. Anal., 32 (1995), pp. 1729–1749.

[22] , Adaptive finite element methods for parabolic problems V: Long-time integra-

tion, SIAM J. Numer. Anal., 32 (1995), pp. 1750–1763.

33

[23] K. Eriksson, C. Johnson, and S. Larsson, Adaptive finite element methods

for parabolic problems VI: Analytic semigroups, SIAM J. Numer. Anal., 35 (1998),
pp. 1315–1325.

[24] K. Eriksson, C. Johnson, and A. Logg, Explicit time-stepping for stiff ODEs,
SIAM J. Sci. Comput., 25 (2003), pp. 1142–1157.

[25] , Adaptive computational methods for parabolic problems, to appear in Ency-
clopedia of Computational Mechanics, (2004).

[26] D. Estep, An analysis of numerical approximations of metastable solutions of the

bistable equation, Nonlinearity, 7 (1994), pp. 1445–1462.

[27] , A posteriori error bounds and global error control for approximations of or-

dinary differential equations, SIAM J. Numer. Anal., 32 (1995), pp. 1–48.

[28] D. Estep and D. French, Global error control for the continuous Galerkin finite

element method for ordinary differential equations, M2AN, 28 (1994), pp. 815–852.

[29] E. Hairer and G. Wanner, Solving Ordinary Differential Equations I — Nonstiff

Problems, Springer Series in Computational Mathematics, vol. 8, 1991.

[30] , Solving Ordinary Differential Equations II — Stiff and Differential-Algebraic

Problems, Springer Series in Computational Mathematics, vol. 14, 1991.

[31] J. Hoffman and A. Logg et al., DOLFIN, http://www.phi.chalmers.se/dolfin/.

[32] J. Hoffman, C. Johnson, and A. Logg, Dreams of Calculus — Perspectives on

Mathematics Education, Springer-Verlag, 2004.

[33] J. Hoffman and A. Logg, DOLFIN: Dynamic Object oriented Library for FINite

element computation, Tech. Rep. 2002–06, Chalmers Finite Element Center Preprint
Series, 2002.

[34] J. Jansson, C. Johnson, and A. Logg, Computational modeling of dynamical

systems, to appear in M
3
AS, (2004).

[35] J. Jansson and A. Logg, Algorithms for multi-adaptive time-stepping, submitted
to ACM Trans. Math. Softw., (2004).

[36] , Multi-adaptive Galerkin methods for ODEs V: Stiff problems, submitted to
BIT, (2004).

[37] , Simulation of mechanical systems with individual time steps, submitted to
SIAM J. Appl. Dyn. Syst., (2004).

[38] J.E. Flaherty, R.M. Loy, M.S. Shephard, B.K. Szymanski, J.D. Teresco,

and L.H. Ziantz, Adaptive local refinement with octree load balancing for the par-

allel solution of three-dimensional conservation laws, Journal of Parallel and Dis-
tributed Computing, 47 (1997), pp. 139–152.

[39] C. Johnson, Error estimates and adaptive time-step control for a class of one-step

methods for stiff ordinary differential equations, SIAM J. Numer. Anal., 25 (1988),
pp. 908–926.

[40] C. Johnson, J. Hoffman, and A. Logg, Topics in adaptive computational meth-

ods for differential equations, CEDYA 2001: Congreso de Ecuaciones Diferenciales
y Aplicaciones, (2001).

[41] C. Johnson and A. Logg, Dynamical Systems, Applied Mathematics: Body and

Soul vol. IV, Springer-Verlag, 2004.

[42] A. Lew, J.E. Marsden, M. Ortiz, and M. West, Asynchronous variational

integrators, Arch. Rational. Mech. Anal., 167 (2003), pp. 85–146.

34

[43] A. Logg, Tanganyika, http://www.phi.chalmers.se/tanganyika/.

[44] , Multi-adaptive Galerkin methods for ODEs I, SIAM J. Sci. Comput., 24
(2003), pp. 1879–1902.

[45] , Multi-adaptive Galerkin methods for ODEs II: Implementation and applica-

tions, SIAM J. Sci. Comput., 25 (2003), pp. 1119–1141.

[46] , Estimates of derivatives and jumps across element boundaries for multi-

adaptive Galerkin solutions of ODEs, Tech. Rep. 2004–03, Chalmers Finite Element
Center Preprint Series, 2004.

[47] , Interpolation estimates for piecewise smooth functions in one dimension,
Tech. Rep. 2004–02, Chalmers Finite Element Center Preprint Series, 2004.

[48] , Multi-adaptive Galerkin methods for ODEs III: Existence and stability, sub-
mitted to SIAM J. Numer. Anal., (2004).

[49] , Multi-adaptive Galerkin methods for ODEs IV: A priori error estimates,
submitted to SIAM J. Numer. Anal., (2004).

[50] , Multi-adaptive time-integration, Applied Numerical Mathematics, 48 (2004),
pp. 339–354.

[51] J. Makino and S. Aarseth, On a Hermite integrator with Ahmad-Cohen scheme

for gravitational many-body problems, Publ. Astron. Soc. Japan, 44 (1992), pp. 141–
151.

[52] I. Newton, Philosophiae Naturalis Principia Mathematica, vol. I–III, 1687.

[53] S. Osher and R. Sanders, Numerical approximations to nonlinear conservation

laws with locally varying time and space grids, Math. Comp., 41 (1983), pp. 321–336.

[54] P.G. Ciarlet, Numerical Analysis of the Finite Element Method, Les Presses de
l’Universite de Montreal, 1976.

[55] R.C. Kirby, A linear algebraic approach to representing and computing finite ele-

ments, submitted to Math. Comp., (2003).

[56] W. Ritz, Über eine neue Methode zur Lösung gewisser Variationsprobleme der

mathematischen Physik, J. reine angew. Math., 135 (1908), pp. 1–61.

[57] R. Sandboge, Adaptive Finite Element Methods for Reactive Flow Problems, PhD
thesis, Department of mathematics, Chalmers University of Technology, Göteborg,
1996.

[58] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Meth-

ods, Springer-Verlag, 1994.

[59] S.G. Alexander and C.B. Agnor, n-body simulations of late stage planetary

formation with a simple fragmentation model, ICARUS, 132 (1998), pp. 113–124.

[60] L. Shampine, Numerical Solution of Ordinary Differential Equations, Chapman &
Hall, 1994.

[61] G. Strang and G.J. Fix, An Analysis of the Finite Element Method, Prentice-Hall,
Englewood Cliffs, 1973.

[62] T.J.R Hughes, I. Levit, and J. Winget, Element-by-element implicit algorithms

for heat-conduction, J. Eng. Mech.-ASCE, 109 (1983), pp. 576–585.

[63] , An element-by-element solution algorithm for problems of structural and solid

mechanics, Computer Methods in Applied Mechanics and Engineering, 36 (1983),
pp. 241–254.

35

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES I∗

ANDERS LOGG†

SIAM J. SCI. COMPUT. c© 2003 Society for Industrial and Applied Mathematics
Vol. 24, No. 6, pp. 1879–1902

Abstract. We present multi-adaptive versions of the standard continuous and discontinuous
Galerkin methods for ODEs. Taking adaptivity one step further, we allow for individual time-
steps, order and quadrature, so that in particular each individual component has its own time-step
sequence. This paper contains a description of the methods, an analysis of their basic properties, and
a posteriori error analysis. In the accompanying paper [A. Logg, SIAM J. Sci. Comput., submitted],
we present adaptive algorithms for time-stepping and global error control based on the results of the
current paper.

Key words. multi-adaptivity, individual time-steps, local time-steps, ODE, continuous Galerkin,
discontinuous Galerkin, global error control, adaptivity, mcG(q), mdG(q)

AMS subject classifications. 65L05, 65L07, 65L20, 65L50, 65L60, 65L70

PII. S1064827501389722

1. Introduction. In this paper, we present multi-adaptive Galerkin methods
for initial value problems for systems of ODEs of the form

{

u̇(t) = f(u(t), t), t ∈ (0, T],
u(0) = u0,

(1.1)

where u : [0, T] → R
N , f : R

N × (0, T] → R
N is a given bounded function that is

Lipschitz-continuous in u, u0 ∈ R
N is a given initial condition, and T > 0 is a given

final time. We use the term multi-adaptivity to describe methods with individual
time-stepping for the different components ui(t) of the solution vector u(t) = (ui(t)),
including (i) time-step length, (ii) order, and (iii) quadrature, all chosen adaptively
in a computational feedback process. In the companion paper [29], we apply the
multi-adaptive methods to a variety of problems to illustrate the potential of multi-
adaptivity.

The ODE (1.1) models a very large class of problems, covering many areas of
applications. Often different solution components have different time-scales and thus
ask for individual time-steps. A prime example to be studied in detail below is our
own solar system, where the moon orbits around Earth once every month, whereas
the period of Pluto is 250 years. In numerical simulations of the solar system, the
time-steps needed to track the orbit of the moon accurately are thus much less than
those required for Pluto, the difference in time-scales being roughly a factor 3,000.

Surprisingly, individual time-stepping for ODEs has received little attention in the
large literature on numerical methods for ODEs; see, e.g., [4, 21, 22, 3, 34]. For specific
applications, such as the n-body problem, methods with individual time-stepping have
been used—see, e.g., [31, 1, 5] or [25]—but a general methodology has been lacking.
Our aim is to fill this gap. For time-dependent PDEs, in particular for conservation
laws of the type u̇+ f(u)x = 0, attempts have been made to construct methods with
individual (locally varying in space) time-steps. Flaherty et al. [20] have constructed
a method based on the discontinuous Galerkin method combined with local forward

∗Received by the editors May 23, 2001; accepted for publication (in revised form) November 13,
2002; published electronically May 2, 2003.

http://www.siam.org/journals/sisc/24-6/38972.html
†Department of Computational Mathematics, Chalmers University of Technology, SE–412 96

Göteborg, Sweden (logg@math.chalmers.se).

1879

1880 ANDERS LOGG

Euler time-stepping. A similar approach is taken in [6], where a method based on
the original work by Osher and Sanders [33] is presented for conservation laws in one
and two space dimensions. Typically the time-steps used are based on local CFL
conditions rather than error estimates for the global error and the methods are low
order in time (meaning ≤ 2). We believe that our work on multi-adaptive Galerkin
methods (including error estimation and arbitrary order methods) presents a general
methodology to individual time-stepping, which will result in efficient integrators also
for time-dependent PDEs.

The methods presented in this paper fall within the general framework of adap-
tive Galerkin methods based on piecewise polynomial approximation (finite element
methods) for differential equations, including the continuous Galerkin method cG(q)
of order 2q, and the discontinuous Galerkin method dG(q) of order 2q + 1; more
precisely, we extend the cG(q) and dG(q) methods to their multi-adaptive analogues
mcG(q) and mdG(q). Earlier work on adaptive error control for the cG(q) and dG(q)
methods include [7, 16, 24, 18, 17, 19]. The techniques for error analysis used in these
references, developed by Johnson and coworkers (see, e.g., [11, 12, 10, 13, 14, 15], and
[8] in particular) naturally carries over to the multi-adaptive methods.

The outline of the paper is as follows: In section 2 we summarize the key features
of the multi-adaptive methods, and in section 3 we discuss the benefits of the new
methods in comparison to standard ODE codes. We then motivate and present the
formulation of the multi-adaptive methods mcG(q) and mdG(q) in section 4. Basic
properties of these methods, such as order, energy conservation, and monotonicity, are
discussed in section 5. In the major part of this paper, section 6, we derive a posteriori
error estimates for the two methods based on duality arguments, including Galerkin
errors, numerical errors, and quadrature errors. We also prove an a posteriori error
estimate for stability factors computed from approximate dual solutions.

2. Key features. We summarize the key features of our work on the mcG(q)
and mdG(q) methods as follows.

2.1. Individual time-steps and order. To discretize (1.1), we introduce for
each component, i = 1, . . . , N , a partition of the time-interval (0, T] into Mi subin-
tervals, Iij = (ti,j−1, tij], j = 1, . . . ,Mi, and we seek an approximate solution
U(t) = (Ui(t)) such that Ui(t) is a polynomial of degree qij on every local inter-
val Iij . Each individual component Ui(t) thus has its own sequence of time-steps,

{kij}Mi

j=1. The entire collection of individual time-intervals {Iij} may be organized
into a sequence of time-slabs, collecting the time-intervals between certain synchro-
nised time-levels common to all components, as illustrated in Figure 2.1.

2.2. Global error control. Our goal is to compute an approximation U(T) of
the exact solution u(T) at final time T within a given tolerance TOL > 0, using a
minimal amount of computational work. This goal includes an aspect of reliability

(the error should be less than the tolerance) and an aspect of efficiency (minimal
computational work). To measure the error we choose a norm, such as the Euclidean
norm ‖ · ‖ on R

N , or more generally some other quantity of interest (see [32]).

The mathematical basis of global error control in ‖ · ‖ for mcG(q) is an error
representation of the form

‖U(T) − u(T)‖ =

∫ T

0

(R,ϕ) dt,(2.1)

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs I 1881

PSfrag replacements

Iij

i

kij
0 T

Fig. 2.1. Individual time-discretizations for different components.

where R = (Ri) = R(U, t) = U̇(t)−f(U(t), t) is the residual vector of the approximate
solution U(t), ϕ(t) is the solution of an associated linearized dual problem, and (·, ·)
is the R

N scalar product.
Using the Galerkin orthogonality, the error representation can be converted into

an error bound of the form

‖U(T) − u(T)‖ ≤
N
∑

i=1

Si(T) max
0≤t≤T

ki(t)
qi(t)|Ri(U, t)|,(2.2)

where {Si(T)}Ni=1 are stability factors for the different components, depending on the
dual solution ϕ(t), and where ki(t) = kij , qi(t) = qij for t ∈ Iij . The error bound may

take different forms depending on how
∫ T

0
(R,ϕ) dt is bounded in terms of R and ϕ.

By solving the dual problem numerically, the individual stability factors Si(T)
may be determined approximately, and thus the right-hand side of (2.2) may be
evaluated. The adaptive algorithm seeks to satisfy the stopping criterion

N
∑

i=1

Si(T) max
0≤t≤T

ki(t)
qi(t)|Ri(U, t)| ≤ TOL,(2.3)

with maximal time-steps k = (ki(t)).

2.3. Iterative methods. Both mcG(q) and mdG(q) give rise to systems of
nonlinear algebraic equations, coupling the values of U(t) over each time-slab. Solving
these systems with full Newton may be quite heavy, and we have instead successfully
used diagonal Newton methods of more explicit nature.

2.4. Implementation of higher-order methods. We have implemented
mcG(q) and mdG(q) in C++ for arbitrary q, which in practice means 2q ≤ 50. The
implementation, Tanganyika, is described in more detail in [29] and is publicly (GNU
GPL) available for Linux/Unix [30].

2.5. Applications. We have applied mcG(q) and mdG(q) to a variety of prob-
lems to illustrate their potential; see [29]. (See also [27] and [26].) In these applica-
tions, including the Lorenz system, the solar system, and a number of time-dependent
PDE problems, we demonstrate the use of individual time-steps, and for each system
we solve the dual problem to collect extensive information about the problems stability
features, which can be used for global error control.

1882 ANDERS LOGG

3. Comparison with standard ODE codes. Standard ODE codes use time-
steps which are variable in time but the same for all components, and the time-steps
are adaptively chosen by keeping the “local error” below a given local error tolerance
set by the user. The global error connects to the local error through an estimate,
corresponding to (2.2), of the form

{global error} ≤ S max{local error},(3.1)

where S is a stability factor. Standard codes do not compute S, which means that
the connection between the global error and the local error is left to be determined
by the clever user, typically by computing with a couple of different tolerances.

Comparing the adaptive error control of standard ODE codes with the error con-
trol presented in this paper and the accompanying paper [29], an essential difference
is thus the technique to estimate the global error: either by clever trial-and-error or,
as we prefer, by solving the dual problem and computing the stability factors. Both
approaches carry extra costs and what is best may be debated; see, e.g., [32] for a
comparison.

However, expanding the scope to multi-adaptivity with individual stability factors
for the different components, trial-and-error becomes very difficult or impossible, and
the methods for adaptive time-stepping and error control presented below based on
solving the dual problem seem to bring clear advantages in efficiency and reliability.

For a presentation of the traditional approach to error estimation in ODE codes,
we refer to [2], where the following rather pessimistic view is presented: Here we just

note that a precise error bound is often unknown and not really needed. We take the
opposite view: global error control is always needed and often possible to obtain at a

reasonable cost. We hope that multi-adaptivity will bring new life to the discussion
on efficient and reliable error control for ODEs.

4. Multi-adaptive Galerkin. In this section we present the multi-adaptive
Galerkin methods, mcG(q) and mdG(q), based on the discretization presented in
section 2.1.

4.1. The mcG(q) method. The mcG(q) method for (1.1) reads as follows:
Find U ∈ V with U(0) = u0, such that

∫ T

0

(U̇ , v) dt =

∫ T

0

(f(U, ·), v) dt ∀v ∈ W,(4.1)

where

V = {v ∈ [C([0, T])]N : vi|Iij ∈ Pqij (Iij), j = 1, . . . ,Mi, i = 1, . . . , N},
W = {v : vi|Iij ∈ Pqij−1(Iij), j = 1, . . . ,Mi, i = 1, . . . , N},(4.2)

and where Pq(I) denotes the linear space of polynomials of degree ≤ q on I. The
trial functions in V are thus continuous piecewise polynomials, locally of degree qij ,
and the test functions in W are discontinuous piecewise polynomials that are locally
of degree qij − 1.

Noting that the test functions are discontinuous, we can rewrite the global prob-
lem (4.1) as a number of successive local problems for each component: For i =
1, . . . , N , j = 1, . . . ,Mi, find Ui|Iij ∈ Pqij (Iij) with Ui(ti,j−1) given, such that

∫

Iij

U̇iv dt =

∫

Iij

fi(U, ·)v dt ∀v ∈ Pqij−1(Iij).(4.3)

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs I 1883

We notice the presence of the vector U(t) = (U1(t), . . . , UN (t)) in the local prob-
lem for Ui(t) on Iij . If thus component Ui1(t) couples to component Ui2(t) through f ,
this means that in order to solve the local problem for component Ui1(t) we need to
know the values of component Ui2(t) and vice versa. The solution is thus implicitly
defined by (4.3). Notice also that if we define the residual R of the approximate
solution U as Ri(U, t) = U̇i(t) − fi(U(t), t), we can rewrite (4.3) as

∫

Iij

Ri(U, ·)v dt = 0 ∀v ∈ Pqij−1(Iij),(4.4)

i.e., the residual is orthogonal to the test space on every local interval. We refer to
this as the Galerkin orthogonality for the mcG(q) method.

Making an ansatz for every component Ui(t) on every local interval Iij in terms
of a nodal basis for Pqij (Iij) (see the appendix), we can rewrite (4.3) as

ξijm = ξij0 +

∫

Iij

w[qij]
m (τij(t)) fi(U(t), t) dt, m = 1, . . . , qij ,(4.5)

where {ξijm}qijm=0 are the nodal degrees of freedom for Ui(t) on the interval Iij ,

{w[q]
m }qm=1 ⊂ Pq−1(0, 1) are corresponding polynomial weight functions, and τij maps

Iij to (0, 1]: τij(t) = (t − ti,j−1)/(tij − ti,j−1). Here we assume that the solution
is expressed in terms of a nodal basis with the end-points included, so that by the
continuity requirement ξij0 = ξi,j−1,qi,j−1

.
Finally, evaluating the integral in (4.5) using nodal quadrature, we obtain a fully

discrete scheme in the form of an implicit Runge–Kutta method: For i = 1, . . . , N ,
j = 1, . . . ,Mi, find {ξijm}qijm=0, with ξij0 given by the continuity requirement, such
that

ξijm = ξij0 + kij

qij
∑

n=0

w[qij]
mn fi(U(τ−1

ij (s[qij]
n)), τ−1

ij (s[qij]
n)), m = 1, . . . , qij ,(4.6)

for certain weights {w[q]
mn} and certain nodal points {s[q]

n } (see the appendix).

4.2. The mdG(q) method. The mdG(q) method in local form, corresponding
to (4.3), reads as follows: For i = 1, . . . , N , j = 1, . . . ,Mi, find Ui|Iij ∈ Pqij (Iij),
such that

[Ui]i,j−1v(t
+
i,j−1) +

∫

Iij

U̇iv dt =

∫

Iij

fi(U, ·)v dt ∀v ∈ Pqij (Iij),(4.7)

where [·] denotes the jump, i.e., [v]ij = v(t+ij) − v(t−ij), and the initial condition is

specified for i = 1, . . . , N , by Ui(0
−) = ui(0). On a global level, the trial and test

spaces are given by

V = W = {v : vi|Iij ∈ Pqij (Iij), j = 1, . . . ,Mi, i = 1, . . . , N}.(4.8)

In the same way as for the continuous method, we define the residual R of the ap-
proximate solution U as Ri(U, t) = U̇i(t) − fi(U(t), t), defined on the inner of every
local interval Iij , and we rewrite (4.7) in the form

[Ui]i,j−1v(t
+
i,j−1) +

∫

Iij

Ri(U, ·)v dt = 0 ∀v ∈ Pqij (Iij).(4.9)

1884 ANDERS LOGG

We refer to this as the Galerkin orthogonality for the mdG(q) method. Notice that
this is similar to (4.4) if we extend the integral in (4.4) to include the left end-point of
the interval Iij . (The derivative of the discontinuous solution is a Dirac delta function
at the end-point.)

Making an ansatz for the solution in terms of some nodal basis, we get, as for the
continuous method, the following explicit version of (4.7) on every local interval:

ξijm = ξ−ij0 +

∫

Iij

w[qij]
m (τij(t)) fi(U(t), t) dt, m = 0, . . . , qij ,(4.10)

or, applying nodal quadrature,

ξijm = ξ−ij0 + kij

qij
∑

n=0

w[qij]
mn fi(U(τ−1

ij (s[qij]
n)), τ−1

ij (s[qij]
n)), m = 0, . . . , qij ,(4.11)

where the weight functions, the nodal points, and the weights are not the same as for
the continuous method.

4.3. The multi-adaptive mcG(q)-mdG(q) method. The discussion above
for the two methods extends naturally to using different methods for different com-
ponents. Some of the components could therefore be solved for using the mcG(q)
method, while for others we use the mdG(q) method. We can even change methods
between different intervals.

Although the formulation thus includes adaptive orders and methods, as well as
adaptive time-steps, our focus will be mainly on adaptive time-steps.

4.4. Choosing basis functions and quadrature. What remains in order to
implement the two methods specified by (4.6) and (4.11) is to choose basis functions
and quadrature. For simplicity and efficiency reasons, it is desirable to let the nodal
points for the nodal basis coincide with the quadrature points. It turns out that for
both methods, the mcG(q) and the mdG(q) methods, this is possible to achieve in
a natural way. We thus choose the q + 1 Lobatto quadrature points for the mcG(q)
method, i.e., the zeros of xPq(x)−Pq−1(x), where Pq is the qth-order Legendre poly-
nomial on the interval; for the mdG(q) method, we choose the Radau quadrature

points, i.e., the zeros of Pq(x) + Pq+1(x) on the interval (with time reversed so as to
include the right end-point). See [28] for a detailed discussion on this subject. The
resulting discrete schemes are related to the implicit Runge–Kutta methods referred
to as Lobatto and Radau methods; see, e.g., [3].

5. Basic properties of the multi-adaptive Galerkin methods. In this sec-
tion we examine some basic properties of the multi-adaptive methods, including order,
energy conservation, and monotonicity.

5.1. Order. The standard cG(q) and dG(q) methods are of order 2q and 2q+1,
respectively. The corresponding properties hold for the multi-adaptive methods, i.e.,
mcG(q) is of order 2q and mdG(q) is of order 2q+1, assuming that the exact solution
u is smooth. We examine this in more detail in subsequent papers.

5.2. Energy conservation for mcG(q). The standard cG(q) method is
energy-conserving for Hamiltonian systems. We now prove that also the mcG(q)
method has this property, with the natural restriction that we should use the same
time-steps for every pair of positions and velocities. We consider a Hamiltonian sys-
tem,

ẍ = −∇xP (x),(5.1)

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs I 1885

on (0, T] with x(t) ∈ R
N , together with initial conditions for x and ẋ. Here ẍ is the

acceleration, which by Newton’s second law is balanced by the force F (x) = −∇xP (x)
for some potential field P . With u = x and v = ẋ we rewrite (5.1) as

[

u̇
v̇

]

=

[

v
F (u)

]

=

[

fu(v)
fv(u)

]

= f(u, v).(5.2)

The total energy E(t) is the sum of the kinetic energy K(t) and the potential energy
P (x(t)),

E(t) = K(t) + P (x(t)),(5.3)

with

K(t) =
1

2
‖ẋ(t)‖2 =

1

2
‖v(t)‖2.(5.4)

Multiplying (5.1) with ẋ it is easy to see that energy is conserved for the continuous
problem, i.e., E(t) = E(0) for all t ∈ [0, T]. We now prove the corresponding property
for the discrete mcG(q) solution of (5.2).

Theorem 5.1. The multi-adaptive continuous Galerkin method conserves energy

in the following sense: Let (U, V) be the mcG(q) solution to (5.2) defined by (4.3).
Assume that the same time-steps are used for every pair of positions and corresponding

velocities. Then at every synchronized time-level t̄, such as, e.g., T , we have

K(t̄) + P (t̄) = K(0) + P (0),(5.5)

with K(t) = 1
2‖V (t)‖2 and P (t) = P (U(t)).

Proof. If every pair of positions and velocities have the same time-step sequence,
then we may choose V̇ as a test function in the equations for U , to get

∫ t̄

0

(U̇ , V̇) dt =

∫ t̄

0

(V, V̇) dt =
1

2

∫ t̄

0

d

dt
‖V ‖2 dt = K(t̄) −K(0).

Similarly, U̇ may be chosen as a test function in the equations for V to get

∫ t̄

0

(V̇ , U̇) dt =

∫ t̄

0

−∇P (U)U̇ dt = −
∫ t̄

0

d

dt
P (U) dt = −(P (t̄) − P (0)),

and thus K(t̄) + P (t̄) = K(0) + P (0).
Remark 5.1. Energy conservation requires exact integration of the right-hand

side f (or at least that
∫ t

0
(U̇ , V̇) dt + (P (t) − P (0)) = 0) but can also be obtained in

the case of quadrature; see [23].

5.3. Monotonicity. We shall prove that the mdG(q) method is B-stable (see
[3]).

Theorem 5.2. Let U and V be the mdG(q) solutions of (1.1) with initial data

U(0−) and V (0−), respectively, defined by (4.7) on the same partition. If the right-

hand side f is monotone, i.e.,

(f(u, ·) − f(v, ·), u− v) ≤ 0 ∀u, v ∈ R
N ,(5.6)

then, at every synchronized time-level t̄, such as, e.g., T , we have

‖U(t̄−) − V (t̄−)‖ ≤ ‖U(0−) − V (0−)‖.(5.7)

1886 ANDERS LOGG

Proof. Choosing the test function as v = W = U − V in (4.7) for U and V ,
summing over the local intervals, and subtracting the two equations, we have

∑

ij

[

[Wi]i,j−1W
+
i,j−1 +

∫

Iij

ẆiWi dt

]

=

∫ T

0

(f(U, ·) − f(V, ·), U − V) dt ≤ 0.

Noting that

[Wi]i,j−1W
+
i,j−1 +

∫

Iij
ẆiWi dt = 1

2 (W+
i,j−1)

2 + 1
2 (W−

ij)2 −W−
i,j−1W

+
i,j−1

= 1
2 [Wi]

2
i,j−1 + 1

2

(

(W−
ij)2 − (W−

i,j−1)
2
)

,

we get

−1

2
‖W (0−)‖2 +

1

2
‖W (T−)‖2 ≤

∑

ij

[Wi]i,j−1W
+
i,j−1 +

∫

Iij

ẆiWi dt ≤ 0,

so that

‖W (T−)‖ ≤ ‖W (0−)‖.
The proof is completed noting that the same analysis applies with T replaced by any
other synchronized time-level t̄.

Remark 5.2. The proof extends to the fully discrete scheme, using the positivity
of the quadrature weights.

6. A posteriori error analysis. In this section we prove a posteriori error
estimates for the multi-adaptive Galerkin methods, including quadrature and discrete
solution errors. Following the procedure outlined in the introduction, we first define
the dual linearized problem and then derive a representation formula for the error in
terms of the dual and the residual.

6.1. The dual problem. The dual problem comes in two different forms: a
continuous and a discrete. For the a posteriori error analysis of this section, we will
make use of the continuous dual. The discrete dual problem is used to prove a priori
error estimates.

To set up the continuous dual problem, we define, for given functions v1(t) and
v2(t),

J∗(v1(t), v2(t), t) =

(
∫ 1

0

∂f

∂u
(sv1(t) + (1 − s)v2(t), t) ds

)∗

,(6.1)

where ∗ denotes the transpose, and we note that

J(v1, v2, ·)(v1 − v2) =
∫ 1

0
∂f
∂u (sv1 + (1 − s)v2, ·) ds (v1 − v2)

=
∫ 1

0
∂f
∂s (sv1 + (1 − s)v2, ·) ds = f(v1, ·) − f(v2, ·).

(6.2)

The continuous dual problem is then defined as the following system of ODEs:
{

−ϕ̇ = J∗(u, U, ·)ϕ + g on [0, T),
ϕ(T) = ϕT ,

(6.3)

with data ϕT and right-hand side g. Choosing the data and right-hand side appropri-
ately, we obtain error estimates for different quantities of the computed solution. We

shall assume below that the dual solution has q continuous derivatives (ϕ
(qij)
i ∈ C(Iij)

locally on interval Iij) for the continuous method and q + 1 continuous derivatives

(ϕ
(qij+1)
i ∈ C(Iij) locally on interval Iij) for the discontinuous method.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs I 1887

6.2. Error representation. The basis for the error analysis is the following
error representation, expressing the error of an approximate solution U(t) in terms of
the residual R(U, t) via the dual solution ϕ(t). We stress that the result of the theorem
is valid for any piecewise polynomial approximation of the solution to the initial value
problem (1.1) and thus in particular the mcG(q) and mdG(q) approximations.

Theorem 6.1. Let U be a piecewise polynomial approximation of the exact so-

lution u of (1.1), and let ϕ be the solution to (6.3) with right-hand side g(t) and

initial data ϕT , and define the residual of the approximate solution U as R(U, t) =
U̇(t) − f(U(t), t), defined on the open intervals of the partitions ∪jIij as

Ri(U, t) = U̇i(t) − fi(U(t), t), t ∈ (ki,j−1, kij),

j = 1, . . . ,Mi, i = 1, . . . , N . Assume also that U is right-continuous at T . Then the

error e = U − u satisfies

LϕT ,g(e) ≡ (e(T), ϕT) +

∫ T

0

(e, g) dt =
N
∑

i=1

Mi
∑

j=1

[

∫

Iij

Ri(U, ·)ϕi dt + [Ui]i,j−1ϕi(ti,j−1)

]

.

(6.4)

Proof. By the definition of the dual problem, we have using (6.2)

∫ T

0
(e, g) dt =

∫ T

0
(e,−ϕ̇− J∗(u, U, ·)ϕ) dt

=
∑

ij

∫

Iij
−eiϕ̇i dt +

∫ T

0
(−J(u, U, ·)e, ϕ) dt

=
∑

ij

∫

Iij
−eiϕ̇i dt +

∫ T

0
(f(u, ·) − f(U, ·), ϕ) dt

=
∑

ij

∫

Iij
−eiϕ̇i dt +

∑

ij

∫

Iij
(fi(u, ·) − fi(U, ·))ϕi dt.

Integrating by parts, we get
∫

Iij

−eiϕ̇i dt = ei(t
+
i,j−i)ϕ(ti,j−1) − ei(t

−
ij)ϕ(tij) +

∫

Iij

ėiϕi dt,

so that
∑

ij

∫

Iij
−eiϕ̇i dt =

∑

ij [ei]i,j−1ϕi(ti,j−1) − (e(T−), ϕT) +
∫ T

0
(ė, ϕ) dt

=
∑

ij [Ui]i,j−1ϕi(ti,j−1) − (e(T), ϕT) +
∫ T

0
(ė, ϕ) dt.

Thus, with LϕT ,g(e) = (e(T), ϕT) +
∫ T

0
(e, g) dt, we have

LϕT ,g(e) =
∑

ij

[

∫

Iij
(ėi + fi(u, ·) − fi(U, ·))ϕi dt + [Ui]i,j−1ϕi(ti,j−1)

]

=
∑

ij

[

∫

Iij
(U̇i − fi(U, ·))ϕi dt + [Ui]i,j−1ϕi(ti,j−1)

]

=
∑

ij

[

∫

Iij
Ri(U, ·)ϕi dt + [Ui]i,j−1ϕi(ti,j−1)

]

,

which completes the proof.
We now apply this theorem to represent the error in various norms. As before,

we let ‖ · ‖ denote the Euclidean norm on R
N and define ‖v‖L1([0,T],Rn) =

∫ T

0
‖v‖ dt.

Corollary 6.2. If ϕT = e(T)/‖e(T)‖ and g = 0, then

‖e(T)‖ =

N
∑

i=1

Mi
∑

j=1

[

∫

Iij

Ri(U, ·)ϕi dt + [Ui]i,j−1ϕi(ti,j−1)

]

.(6.5)

1888 ANDERS LOGG

Corollary 6.3. If ϕT = 0 and g(t) = e(t)/‖e(t)‖, then

‖e‖L1([0,T],RN) =
N
∑

i=1

Mi
∑

j=1

[

∫

Iij

Ri(U, ·)ϕi dt + [Ui]i,j−1ϕi(ti,j−1)

]

.(6.6)

6.3. Galerkin errors. To obtain expressions for the Galerkin errors, i.e., the
errors of the mcG(q) or mdG(q) approximations, assuming exact quadrature and exact
solution of the discrete equations, we use two ingredients: the error representation
of Theorem 6.1 and the Galerkin orthogonalities, (4.4) and (4.9). We first prove the
following interpolation estimate.

Lemma 6.4. If f ∈ Cq+1([a, b]), then there is a constant Cq, depending only on

q, such that

|f(x) − π[q]f(x)| ≤ Cqk
q+1 1

k

∫ b

a

|f (q+1)(y)| dy ∀x ∈ [a, b],(6.7)

where π[q]f(x) is the qth-order Taylor expansion of f around x0 = (a+b)/2, k = b−a,
and Cq = 1/(2qq!).

Proof. Using Taylor’s formula with the remainder in integral form, we have

|f(x) − π[q]f(x)| =

∣

∣

∣

∣

∣

1

q!

∫ x

x0

f (q+1)(y)(y − x0)
(q) dy

∣

∣

∣

∣

∣

≤ 1

2qq!
kq+1 1

k

∫ b

a

|f (q+1)(y)| dy.

Note that since we allow the polynomial degree to change between different com-
ponents and between different intervals, the interpolation constant will change in the
same way. We thus have Cqi = Cqi(t) = Cqij for t ∈ Iij .

We can now prove a posteriori error estimates for the mcG(q) and mdG(q) meth-
ods. The estimates come in a number of different versions. We typically use E2 or E3

to adaptively determine the time-steps and E0 or E1 to evaluate the error. The quan-
tities E4 and E5 may be used for qualitative estimates of error growth. We emphasize
that all of the estimates derived in Theorems 6.5 and 6.6 below may be of use in an
actual implementation, ranging from the very sharp estimate E0 containing only local
quantities to the more robust estimate E5 containing only global quantities.

Theorem 6.5. The mcG(q) method satisfies the following estimates:

|LϕT ,g(e)| = E0 ≤ E1 ≤ E2 ≤ E3 ≤ E4(6.8)

and

|LϕT ,g(e)| ≤ E2 ≤ E5,(6.9)

where

E0 =
∣

∣

∣

∑N
i=1

∑Mi

j=1

∫

Iij
Ri(U, ·)(ϕi − πkϕi) dt

∣

∣

∣
,

E1 =
∑N

i=1

∑Mi

j=1

∫

Iij
|Ri(U, ·)||ϕi − πkϕi| dt,

E2 =
∑N

i=1

∑Mi

j=1 Cqij−1k
qij+1
ij rijs

[qij]
ij ,

E3 =
∑N

i=1 S
[qi]
i max[0,T] {Cqi−1k

qi
i ri} ,

E4 = S[q],1
√
N maxi,[0,T] {Cqi−1k

qi
i ri} ,

E5 = S[q],2‖Cq−1k
qR(U, ·)‖L2(RN×[0,T]),

(6.10)

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs I 1889

with Cq as in Lemma 6.4, ki(t) = kij, ri(t) = rij, and s
[qi]
i (t) = s

[qij]
ij for t ∈ Iij,

rij = 1
kij

∫

Iij
|Ri(U, ·)| dt, s

[qij]
ij = 1

kij

∫

Iij
|ϕ(qij)| dt,

S
[qi]
i =

∫ T

0
|ϕ(qi)

i | dt, S[q],1 =
∫ T

0
‖ϕ(q)‖ dt,

S[q],2 =
(

∫ T

0
‖ϕ(q)‖2 dt

)1/2

,

(6.11)

and where πkϕ is any test space approximation of the dual solution ϕ. Expressions

such as Cq−1k
qR are defined componentwise, i.e., (Cq−1k

qR(U, ·))i = Cqij−1k
qij
ij Ri(U, ·)

for t ∈ Iij.
Proof. Using the error representation of Theorem 6.1 and the Galerkin orthogo-

nality (4.4), noting that the jump terms disappear since U is continuous, we have

|LϕT ,g(e)| =

∣

∣

∣

∣

∣

∣

N
∑

i=1

Mi
∑

j=1

∫

Iij

Ri(U, ·)(ϕi − πkϕi) dt

∣

∣

∣

∣

∣

∣

= E0,

where πkϕ is any test space approximation of ϕ. By the triangle inequality, we have

E0 ≤
N
∑

i=1

Mi
∑

j=1

∫

Iij

|Ri(U, ·)(ϕi − πkϕi)| dt = E1.

Choosing πkϕi as in Lemma 6.4 on every interval Iij , we have

E1 ≤
∑

ij

Cqij−1k
qij
ij

∫

Iij

|Ri(U, ·)| dt
1

kij

∫

Iij

|ϕ(qij)
i | dt

=
∑

ij

Cqij−1k
qij+1
ij rijs

[qij]
ij = E2.

Continuing, we have

E2 ≤ ∑N
i=1 max[0,T] {Cqi−1k

qi
i ri}

∑Mi

j=1 kijs
[qij]
ij

=
∑N

i=1 max[0,T] {Cqi−1k
qi
i ri}

∑Mi

j=1

∫

Iij
|ϕ(qij)

i | dt
=

∑N
i=1 max[0,T] {Cqi−1k

qi
i ri}

∫ T

0
|ϕ(qi)

i | dt
=

∑N
i=1 S

[qi]
i max[0,T] {Cqi−1k

qi
i ri} = E3,

and, finally,

E3 ≤ maxi,[0,T] {Cqi−1k
qi
i ri}

∑N
i=1

∫ T

0
|ϕ(qi)

i | dt
≤ maxi,[0,T] {Cqi−1k

qi
i ri}

√
N
∫ T

0
‖ϕ(q)‖ dt

= maxi,[0,T] {Cqi−1k
qi
i ri}

√
NS[q],1 = E4.

As an alternative we can use Cauchy’s inequality in a different way. Continuing from
E2, we have

E2 =
∑N

i=1

∑Mi

j=1 Cqij−1k
qij+1
ij rijs

[qij]
ij

=
∑N

i=1

∑Mi

j=1 Cqij−1k
qij
ij s

[qij]
ij

∫

Iij
|Ri(U, ·)| dt

=
∑N

i=1

∫ T

0
Cqi−1k

qi
i |Ri(U, ·)|s[qi]

i dt

=
∫ T

0
(Cq−1k

q|R(U, ·)|, s[q]) dt

≤
∫ T

0
‖Cq−1k

qR(U, ·)‖‖s[q]‖ dt

≤
(

∫ T

0
‖Cq−1k

qR(U, ·)‖2 dt
)1/2 (

∫ T

0
‖s[q]‖2 dt

)1/2

,

1890 ANDERS LOGG

where |R(U, ·)| denotes the vector-valued function with components |R|i = |Ri| =
|Ri(U, ·)|. Noting now that s is the L2-projection of |ϕ(q)| onto the piecewise constants
on the partition, we have

(

∫ T

0

‖s[q]‖2 dt

)1/2

≤
(

∫ T

0

‖ϕ(q)‖2 dt

)1/2

,

so that

|LϕT ,g(e)| ≤ ‖Cq−1k
qR(U, ·)‖L2(RN×[0,T])‖ϕ[q]‖L2(RN×[0,T]) = E5,

completing the proof.

The proof of the estimates for the mdG(q) method is obtained similarly. Since
in the discontinuous method the test functions are on every interval of one degree
higher order than the test functions in the continuous method, we can choose a better
interpolant. Thus, in view of Lemma 6.4, we obtain an extra factor kij in the error
estimates.

Theorem 6.6. The mdG(q) method satisfies the following estimates:

|LϕT ,g(e)| = E0 ≤ E1 ≤ E2 ≤ E3 ≤ E4(6.12)

and

|LϕT ,g(e)| ≤ E2 ≤ E5,(6.13)

where

E0 =
∣

∣

∣

∑

ij

∫

Iij
Ri(U, ·)(ϕi − πkϕi) dt + [Ui]i,j−1(ϕi(ti,j−1) − πkϕi(t

+
i,j−1))

∣

∣

∣
,

E1 =
∑

ij

∫

Iij
|Ri(U, ·)||ϕi − πkϕi| dt + |[Ui]i,j−1||ϕi(ti,j−1) − πkϕi(t

+
i,j−1)|,

E2 =
∑N

i=1

∑Mi

j=1 Cqijk
qij+2
ij r̄ijs

[qij+1]
ij ,

E3 =
∑N

i=1 S
[qi+1]
i max[0,T]

{

Cqik
qi+1
i r̄i

}

,

E4 = S[q+1],1
√
N maxi,[0,T]

{

Cqik
qi+1
i r̄i

}

,

E5 = S[q+1],2‖Cqk
q+1R̄(U, ·)‖L2(RN×[0,T]),

(6.14)

with

r̄ij =
1

kij

∫

Iij

|Ri(U, ·)| dt +
1

kij
|[Ui]i,j−1|, R̄i(U, ·) = |Ri(U, ·)| +

1

kij
|[Ui]i,j−1|,

(6.15)

and we otherwise use the notation of Theorem 6.5.

Proof. As in the proof for the continuous method, we use the error representation
of Theorem 6.1 and the Galerkin orthogonality (4.9) to get

|LϕT ,g(e)| =

∣

∣

∣

∣

∣

∣

∑

ij

∫

Iij

Ri(U, ·)(ϕi − πkϕi) dt + [Ui]i,j−1(ϕi(ti,j−1) − πkϕi(t
+
i,j−1))

∣

∣

∣

∣

∣

∣

= E0.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs I 1891

By Lemma 6.4 we obtain

E0 ≤
∑

ij

∫

Iij
|Ri(U, ·)||ϕi − πkϕi| dt + |[Ui]i,j−1||ϕi(ti,j−1) − πkϕi(t

+
i,j−1)| = E1

≤ ∑

ij Cqijk
qij+1
ij

(

∫

Iij
|Ri(U, ·)| dt + |[Ui]i,j−1|

)

1
kij

∫

Iij
|ϕ(qij+1)

i | dt
≤

∑

ij Cqijk
qij+2
ij r̄ijs

[qij+1]
ij = E2.

Continuing now in the same way as for the continuous method, we have E2 ≤ E3 ≤ E4

and E2 ≤ E5.
Remark 6.1. When evaluating the expressions E0 or E1, the interpolant πkϕ does

not have to be chosen as in Lemma 6.4. This is only a convenient way to obtain the
interpolation constant. In section 6.6 below we discuss a more convenient choice of
interpolant.

Remark 6.2. If we replace 1
kij

∫

Iij
|Ri| dt by maxIij |Ri|, we may replace Cq by a

smaller constant C ′
q. The value of the constant thus depends on the specific way the

residual is measured.

6.4. Computational errors. The error estimates of Theorems 6.5 and 6.6 are
based on the Galerkin orthogonalities (4.4) and (4.9). If the corresponding discrete
equations are not solved exactly, there will be an additional contribution to the total
error. Although Theorem 6.1 is still valid, the first steps in Theorems 6.5 and 6.6 are
not. Focusing on the continuous method, the first step in the proof of Theorem 6.5
is the subtraction of a test space interpolant. This is possible, since by the Galerkin
orthogonality we have

N
∑

i=1

Mi
∑

j=1

∫

Iij

Ri(U, ·)πkϕi dt = 0

for all test space interpolants πkϕ. If the residual is no longer orthogonal to the test
space, we add and subtract this term to get to the point where the implications of
Theorem 6.5 are valid for one of the terms. Assuming now that ϕ varies slowly on
each subinterval, we estimate the remaining extra term as follows:

EC =
∣

∣

∣

∑N
i=1

∑Mi

j=1

∫

Iij
Ri(U, ·)πkϕi dt

∣

∣

∣
≤∑N

i=1

∑Mi

j=1

∣

∣

∣

∫

Iij
Ri(U, ·)πkϕi dt

∣

∣

∣

≈ ∑N
i=1

∑Mi

j=1 kij |ϕ̄ij | 1
kij

∣

∣

∣

∫

Iij
Ri(U, ·) dt

∣

∣

∣
=
∑N

i=1

∑Mi

j=1 kij |ϕ̄ij ||RC
ij |

≤
∑N

i=1 S̄
[0]
i maxj |RC

ij |,

(6.16)

where ϕ̄ is a piecewise constant approximation of ϕ (using, say, the mean values on
the local intervals),

S̄
[0]
i =

Mi
∑

j=1

kij |ϕ̄ij | ≈
∫ T

0

|ϕi| dt = S
[0]
i(6.17)

is a stability factor, and we define the discrete or computational residual as

RC
ij =

1

kij

∫

Iij

Ri(U, ·) dt =
1

kij

(

(ξijq − ξij0) −
∫

Iij

fi(U, ·) dt

)

.(6.18)

More precise estimates may be used if needed.

1892 ANDERS LOGG

For the mdG(q) method, the situation is similar with the computational residual
now defined as

RC
ij =

1

kij

(

(ξijq − ξ−ij0) −
∫

Iij

fi(U, ·) dt

)

.(6.19)

Thus, to estimate the computational error, we evaluate the computational resid-
uals and multiply with the computed stability factors.

6.5. Quadrature errors. We now extend our analysis to take into account also

quadrature errors. We denote integrals evaluated by quadrature with ˜∫ . Starting
from the error representation as before, we have for the mcG(q) method

LϕT ,g(e) =
∫ T

0
(R,ϕ) dt

=
∫ T

0
(R,ϕ− πkϕ) dt +

∫ T

0
(R, πkϕ) dt

=
∫ T

0
(R,ϕ− πkϕ) dt + ˜∫ T

0
(R, πkϕ) dt +

[

∫ T

0
(R, πkϕ) dt− ˜∫ T

0
(R, πkϕ) dt

]

=
∫ T

0
(R,ϕ− πkϕ) dt + ˜∫ T

0
(R, πkϕ) dt +

(

˜∫ T

0
−
∫ T

0

)

(f(U, ·), πkϕ) dt

(6.20)

if the quadrature is exact for U̇v when v is a test function. The first term of this
expression was estimated in Theorem 6.5 and the second term is the computational

error discussed previously (where ˜∫ denotes that in a real implementation, (6.18) is
evaluated using quadrature). The third term is the quadrature error, which may be
nonzero even if f is linear, if the time-steps are different for different components. To
estimate the quadrature error, notice that

(

˜∫ T

0
−
∫ T

0

)

(f(U, ·), πkϕ) dt =
∑

ij

(

˜∫
Iij

−
∫

Iij

)

fi(U, ·)πkϕi dt

≈
∑

ij kijϕ̄ijRQ
ij ≤

∑N
i=1 S̄

[0]
i maxj |RQ

ij |,
(6.21)

where {S̄[0]
i }Ni=1 are the same stability factors as in the estimate for the computational

error and

RQ
ij =

1

kij

(

˜∫

Iij

fi(U, ·) dt−
∫

Iij

fi(U, ·) dt

)

(6.22)

is the quadrature residual. A similar estimate holds for the mdG(q) method.
We now make a few comments on how to estimate the quadrature residual. The

Lobatto quadrature of the mcG(q) method is exact for polynomials of degree less than

or equal to 2q − 1, and we have an order 2q estimate for ˜∫ −
∫

in terms of f (2q), and

so we make the assumption RQ
ij ∝ k

2qij
ij . If, instead of using the standard quadrature

rule over the interval with quadrature residual RQ0

ij , we divide the interval into 2m

parts and use the quadrature on every interval, summing up the result, we will get a
different quadrature residual, namely

RQm =
1

k
C2m(k/2m)2q+1 = 2m(−2q)Ck2q = 2−2qRQm−1 ,(6.23)

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs I 1893

where we have dropped the ij subindices. Thus, since |RQm | ≤ |RQm − RQm+1 | +
|RQm+1 | = |RQm −RQm+1 | + 2−2q|RQm |, we have the estimate

|RQm | ≤ 1

1 − 2−2q
|RQm −RQm+1 |.(6.24)

Thus, by computing the integrals at two or more dyadic levels, we may estimate
quadrature residuals and thus the quadrature error.

For the mdG(q) method the only difference is that the basic quadrature rule is
one order better, i.e., instead of 2q we have 2q + 1, so that

|RQm | ≤ 1

1 − 2−1−2q
|RQm −RQm+1 |.(6.25)

6.6. Evaluating EG. We now present an approach to estimating the quantity
∫ T

0
(R(U, ·), ϕ − πkϕ) dt by direct evaluation, with ϕ a computed dual solution and

πkϕ a suitably chosen interpolant. In this way we avoid introducing interpolation
constants and computing derivatives of the dual. Note, however, that although we do
not explicitly compute any derivatives of the dual, the regularity assumed in section
6.1 for the dual solution is still implicitly required for the computed quantities to
make sense. Starting now with

EG =

∣

∣

∣

∣

∣

∣

N
∑

i=1

Mi
∑

j=1

∫

Iij

Ri(U, ·)(ϕi − πkϕi) dt

∣

∣

∣

∣

∣

∣

(6.26)

for the continuous method, we realize that the best possible choice of interpolant, if
we want to prevent cancellation, is to choose πkϕ such that Ri(U, ·)(ϕi − πkϕi) ≥ 0
(or ≤ 0) on every local interval Iij . With such a choice of interpolant, we would have

EG =

∣

∣

∣

∣

∣

∣

N
∑

i=1

Mi
∑

j=1

∫

Iij

Ri(U, ·)(ϕi − πkϕi) dt

∣

∣

∣

∣

∣

∣

=
N
∑

i=1

Mi
∑

j=1

αij

∫

Iij

|Ri(U, ·)(ϕi − πkϕi)| dt

(6.27)

with αij = ±1. The following lemmas give us an idea of how to choose the interpolant.
Lemma 6.7. If, for i = 1, . . . , N , fi = fi(U(t), t) = fi(Ui(t), t) and fi is linear

or, alternatively, f = f(U(t), t) is linear and all components have the same time-

steps and order, then every component Ri(U, ·) of the mcG(q) residual is a Legendre

polynomial of order qij on Iij, for j = 1, . . . ,Mi.

Proof. On every interval Iij the residual component Ri(U, ·) is orthogonal to
Pqij−1(Iij). Since the conditions assumed in the statement of the lemma guarantee
that the residual is a polynomial of degree qij on every interval Iij , it is clear that
on every such interval it is the qijth-order Legendre polynomial (or a multiple
thereof).

Even if the rather strict conditions of this lemma do not hold, we can say some-
thing similar. The following lemma restates this property in terms of approximations
of the residual.

Lemma 6.8. Let R̃ be the local L2-projection of the mcG(q) residual R onto

the trial space, i.e., R̃i(U, ·)|Iij is the L2(Iij)-projection onto Pqij (Iij) of Ri(U, ·)|Iij ,
j = 1, . . . ,Mi, i = 1, . . . , N . Then every R̃i(U, ·)|Iij is a Legendre polynomial of

degree qij.

1894 ANDERS LOGG

Proof. Since R̃i(U, ·) is the L2-projection of Ri(U, ·) onto Pqij (Iij) on Iij , we have

∫

Iij

R̃i(U, ·)v dt =

∫

Iij

Ri(U, ·)v dt = 0

for all v ∈ Pqij−1(Iij), so that R̃i(U, ·) is the qijth-order Legendre polynomial on
Iij .

To prove the corresponding results for the discontinuous method, we first note
some basic properties of Radau polynomials.

Lemma 6.9. Let Pq be the qth-order Legendre polynomial on [−1, 1]. Then the

qth-order Radau polynomial, Qq(x) = (Pq(x) + Pq+1(x))/(x + 1), has the following

property:

I =

∫ 1

−1

Qq(x)(x + 1)p dx = 0(6.28)

for p = 1, . . . , q. Conversely, if f is a polynomial of degree q on [−1, 1] and has the

property (6.28), i.e.,
∫ 1

−1
f(x)(x + 1)p dx = 0 for p = 1, . . . , q, then f is a Radau

polynomial.

Proof. We can write the qth-order Legendre polynomial on [−1, 1] as Pq(x) =
1

q!2q D
q((x2 − 1)q). Thus, integrating by parts, we have

I =
∫ 1

−1
Pq(x)+Pq+1(x)

x+1 (x + 1)p dx

= 1
q!2q

∫ 1

−1
Dq((x2 − 1)q + x(x2 − 1)q)(x + 1)p−1 dx

= 1
q!2q

∫ 1

−1
Dq((x + 1)(x2 − 1)q)(x + 1)p−1 dx

= 1
q!2q (−1)p

∫ 1

−1
Dq−p((x + 1)(x2 − 1)q)Dp(x + 1)p−1 dx = 0,

since Dl((x + 1)(x2 − 1)q) is zero at −1 and 1 for l < q. Assume now that f is
a polynomial of degree q on [−1, 1] with the property (6.28). Since {(x + 1)p}qp=1

are linearly independent on [−1, 1] and orthogonal to the Radau polynomial Qq,
{Qq(x), (x + 1), (x + 1)2, . . . , (x + 1)q} form a basis for Pq([−1, 1]). If then f is
orthogonal to the subspace spanned by {(x+1)p}qp=1, we must have f = cQq for some
constant c, and the proof is complete.

Lemma 6.10. If, for i = 1, . . . , N , fi = fi(U(t), t) = fi(Ui(t), t) and fi is linear

or, alternatively, f = f(U(t), t) is linear and all components have the same time-

steps and order, then every component Ri(U, ·) of the mdG(q) residual is a Radau

polynomial of order qij on Iij for j = 1, . . . ,Mi.

Proof. Note first that by assumption the residual Ri(U, ·) is a polynomial of degree
qij on Iij . By the Galerkin orthogonality, we have

0 =

∫

Iij

Ri(U, ·)v dt + [Ui]i,j−1v(t
+
i,j−1) ∀v ∈ Pqij (Iij),

which holds especially for v(t) = (t − ti,j−1)
p with p = 1, . . . , q, for which the jump

terms disappear. Rescaling to [−1, 1], it follows from Lemma 6.9 that the residual
Ri(U, ·) must be a Radau polynomial on Iij .

Also for the discontinuous method there is a reformulation in terms of approxi-
mations of the residual.

Lemma 6.11. Let R̃ be the local L2-projection of the mdG(q) residual R onto

the trial space, i.e., R̃i(U, ·)|Iij is the L2(Iij)-projection onto Pqij (Iij) of Ri(U, ·)|Iij ,

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs I 1895

5 5.1 5.2 5.3 5.4 5.6 5.7 5.8 5.9 6

−3

−2

−1

0

1

2

3
x 10

−10

PSfrag replacements

t

R
i(
U
,·)

5 5.1 5.2 5.3 5.4 5.6 5.7 5.8 5.9 6
−10

−8

−6

−4

−2

0

2
x 10

−10

PSfrag replacements

t

R
i(
U
,·)

Fig. 6.1. The Legendre-polynomial residual of the mcG(q) method (left) and the Radau-
polynomial residual of the mdG(q) method (right), for polynomials of degree five, i.e., methods
of order 10 and 11, respectively.

j = 1, . . . ,Mi, i = 1, . . . , N . Then every R̃i(U, ·)|Iij is a Radau polynomial of degree

qij.

Proof. Since R̃i(U, ·) is the L2-projection of Ri(U, ·) onto Pqij (Iij) on Iij , it follows
from the Galerkin orthogonality that

∫

Iij

R̃i(U, ·)v dt =

∫

Iij

Ri(U, ·)v dt = 0

for any v(t) = (t − ti,j−1)
p with 1 ≤ p ≤ q. From Lemma 6.9 it then follows that

R̃i(U, ·) is a Radau polynomial on Iij .
We thus know that the mcG(q) residuals are (in the sense of Lemma 6.8) Legendre

polynomials on the local intervals and that the mdG(q) residuals are (in the sense of
Lemma 6.11) Radau polynomials. This is illustrated in Figure 6.1.

From this information about the residual, we now choose the interpolant. Assume
that the polynomial order of the method on some interval is q for the continuous
method. Then the dual should be interpolated by a polynomial of degree q−1, i.e., we
have freedom to interpolate at exactly q points. Since a qth-order Legendre polynomial
has q zeros on the interval, we may choose to interpolate the dual exactly at those

1896 ANDERS LOGG

points where the residual is zero. This means that if the dual can be approximated
well enough by a polynomial of degree q, the product Ri(U, ·)(ϕi − πkϕi) does not
change sign on the interval.

For the discontinuous method, we should interpolate the dual with a polynomial
of degree q, i.e., we have freedom to interpolate at exactly q + 1 points. To get rid
of the jump terms that are present in the error representation for the discontinuous
method, we want to interpolate the dual at the beginning of every interval. This
leaves q degrees of freedom. We then choose to interpolate the dual at the q points
within the interval where the Radau polynomial is zero.

As a result, we may choose the interpolant in such a way that we have

|LϕT ,g(e)| =

∣

∣

∣

∣

∣

∣

∑

ij

∫

Iij

Ri(U, ·)(ϕi − πkϕi) dt

∣

∣

∣

∣

∣

∣

=
∑

ij

αij

∫

Iij

|Ri(U, ·)(ϕi − πkϕi)| dt,

(6.29)

with αij = ±1, for both the mcG(q) method and the mdG(q) method (but the
interpolants are different). Notice that the jump terms for the discontinuous method
have disappeared.

There is now a simple way to compute the integrals
∫

Iij
Ri(U, ·)(ϕi − πkϕi) dt.

Since the integrands are, in principle, products of two polynomials for which we know
the positions of the zeros, the product is a polynomial with known properties. There
are then constants Cq (which can be computed numerically), depending on the order
and the method, such that

∫

Iij

|Ri(U, ·)(ϕi − πkϕi)| dt = Cqijkij |Ri(U, t
−
ij)||ϕi(tij) − πkϕi(t

−
ij)|.(6.30)

Finally, note that there are “computational” counterparts also for the estimates
of type E3 in Theorems 6.5 and 6.6, namely

|LϕT ,g(e)| ≤
∑

ij

∫

Iij
|Ri(U, ·)||ϕi − πkϕi| dt

=
∑

ij C
′
qijk

qij
ij |Ri(U, t

−
ij)|
∫

Iij
1

k
qij

ij

|ϕi − πkϕi| dt
≤ ∑N

i=1 S̃i maxj=1,... ,Mi
C ′

qijk
qij
ij |Ri(U, t

−
ij)|,

(6.31)

with S̃i =
∫ T

0
1

k
qi
i

|ϕi − πkϕi| dt for the continuous method and similarly for the

discontinuous method.

6.7. The total error. The total error is composed of three parts—the Galerkin
error, EG, the computational error, EC and the quadrature error, EQ:

|LϕT ,g(e)| ≤ EG + EC + EQ.(6.32)

As an example, choosing estimate E3 of Theorems 6.5 and 6.6 we have the following
(approximate) error estimate for the mcG(q) method:

|LϕT ,g(e)| ≤
N
∑

i=1

[

S
[qi]
i max

[0,T]
{Cqi−1k

qi
i ri} + S̄

[0]
i max

[0,T]
|RC

i | + S̄
[0]
i max

[0,T]
|RQ

i |
]

;(6.33)

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs I 1897

for the mdG(q) method we have

|LϕT ,g(e)| ≤
N
∑

i=1

[

S
[qi+1]
i max

[0,T]

{

Cqik
qi+1
i r̄i

}

+ S̄
[0]
i max

[0,T]
|RC

i | + S̄
[0]
i max

[0,T]
|RQ

i |
]

.

(6.34)

These estimates containing Galerkin errors, computational errors, and quadrature
errors also include numerical round-off errors (included in the computational error).
Modelling errors could also be similarly accounted for since these are closely related
to quadrature errors, in that both errors can be seen as arising from integrating the
wrong right-hand side.

The true global error may thus be estimated in terms of computable stability
factors and residuals. We expect the estimate for the Galerkin error, EG, to be quite
sharp, while EC and EQ may be less sharp. Even sharper estimates are obtained
using estimates E0, E1, or E2 of Theorems 6.5 and 6.6.

6.8. An a posteriori error estimate for the dual. We conclude this section
by proving a computable a posteriori error estimate for the dual problem. To compute
the stability factors used in the error estimates presented above, we solve the dual
problem numerically, and we thus face the problem of estimating the error in the
stability factors.

To demonstrate how relative errors of stability factors can be estimated using the
same technique as above, we compute the relative error for the stability factor Sϕ(T),
defined as

Sϕ(T) = sup
‖ϕ(T)‖=1

∫ T

0

‖ϕ‖ dt(6.35)

for a computed approximation Φ of the dual solution ϕ.

To estimate the relative error of the stability factor, we use the error representa-
tion of Theorem 6.1 to represent the L1([0, T],RN)-error of Φ in terms of the residual
of Φ and the dual of the dual, ω. In [28] we prove the following lemma, from which
the estimate follows.

Lemma 6.12. Let ϕ be the dual solution with stability factor Sϕ(t), i.e., with

data ‖ϕ(t)‖ = 1 specified at time t, and let ω be the dual of the dual. We then have

the following estimate:

‖ω(t)‖ ≤ Sϕ(T − t) ∀t ∈ [0, T].(6.36)

Theorem 6.13. Let Φ be a continuous approximation of the dual solution with

residual RΦ, and assume that Sϕ(t)/Sϕ(T) is bounded by C on [0, T]. Then the

following estimate holds for the relative error of the stability factor SΦ(T):

|SΦ(T) − Sϕ(T)|/Sϕ(T) ≤ C

∫ T

0

‖RΦ‖ dt,(6.37)

and for many problems we may take C = 1.

Proof. By Corollary 6.3, we have an expression for the L1([0, T],RN)-error of the

1898 ANDERS LOGG

dual, so that

|SΦ(T) − Sϕ(T)| =
∣

∣

∣

∫ T

0
‖Φ‖ dt−

∫ T

0
‖ϕ‖ dt

∣

∣

∣

=
∣

∣

∣

∫ T

0
(‖Φ‖ − ‖ϕ‖) dt

∣

∣

∣
≤
∫ T

0
‖Φ − ϕ‖ dt

= ‖Φ − ϕ‖L1([0,T],Rn) =
∫ T

0
(RΦ, ω(T − ·)) dt

≤
∫ T

0
‖RΦ‖‖ω(T − ·)‖ dt.

(6.38)

With C defined as above it now follows by Lemma 6.12 that

|SΦ(T) − Sϕ(T)| ≤ C

∫ T

0

‖RΦ‖ dt Sϕ(T),

and the proof is complete.
Remark 6.3. We also have to take into account quadrature errors when evaluating

(6.35). This can be done in many ways; see, e.g., [9].

Appendix A. Derivation of the methods.
This section contains some details left out of the discussion of section 4.

A.1. The mcG(q) method. To rewrite the local problem in a more explicit
form, let {sn}qn=0 be a set of nodal points on [0, 1], with s0 = 0 and sq = 1. A good
choice for the cG(q) method is the Lobatto points of [0, 1]. Now, let τij be the linear
mapping from the interval Iij to (0, 1], defined by

τij(t) =
t− ti,j−1

tij − ti,j−1
,(A.1)

and let {λ[q]
n }qn=0 be the {sn}qn=0 Lagrange basis functions for Pq([0, 1]) on [0, 1], i.e.,

λ[q]
n (s) =

(s− s0) · · · (s− sn−1)(s− sn+1) · · · (s− sq)

(sn − s0) · · · (sn − sn−1)(sn − sn+1) · · · (sn − sq)
.(A.2)

We can then express Ui on Iij in the form

Ui(t) =

q
∑

n=0

ξijnλ
[qij]
n (τij(t)),(A.3)

and choosing the λ
[q−1]
m as test functions we can formulate the local problem (4.3) as

follows: Find {ξijn}qijn=0, with ξij0 = ξi,j−1,qi,j−1
, such that for m = 0, . . . , qij − 1

∫

Iij

qij
∑

n=0

ξijn
d

dt

[

λ[qij]
n (τij(t))

]

λ[qij−1]
m (τij(t)) dt =

∫

Iij

fi(U(t), t)λ[qij−1]
m (τij(t)) dt.

(A.4)

To simplify the notation, we drop the ij subindices and assume that the time-interval
is [0, k], keeping in mind that, although not visible, all other components are present
in f . We thus seek to determine the coefficients {ξn}qn=1 with ξ0 given, such that for
m = 1, . . . , q we have

q
∑

n=0

ξn
1

k

∫ k

0

λ̇[q]
n (τ(t))λ

[q−1]
m−1 (τ(t)) dt =

∫ k

0

fλ
[q−1]
m−1 (τ(t)) dt,(A.5)

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs I 1899

or simply

q
∑

n=1

a[q]
mnξn = bm,(A.6)

where

a[q]
mn =

∫ 1

0

λ̇[q]
n (t)λ

[q−1]
m−1 (t) dt(A.7)

and

bm =

∫ k

0

fλ
[q−1]
m−1 (τ(t)) dt− am0ξ0.(A.8)

We explicitly compute the inverse Ā[q] = (ā
[q]
mn) of the matrix A[q] = (a

[q]
mn). Thus,

switching back to the full notation, we get

ξijm = −ξ0

q
∑

n=1

ā[q]
mnan0 +

∫

Iij

w[qij]
m (τij(t)) fi(U(t), t) dt, m = 1, . . . , qij ,(A.9)

where the weight functions {w[q]
m }qm=1 are given by

w[q]
m =

q
∑

n=1

ā[q]
mnλ

[q−1]
n−1 , m = 1, . . . , q.(A.10)

Following Lemma A.1 below, this relation may be somewhat simplified.
Lemma A.1. For the mcG(q) method, we have

q
∑

n=1

ā[q]
mnan0 = −1.

Proof. Assume the interval to be [0, 1]. The value is independent of f so we may
take f = 0. We thus want to prove that if f = 0, then ξn = ξ0 for n = 1, . . . , q,

i.e., U = U0 on [0, 1] since {λ[q]
n }qn=0 is a nodal basis for Pq([0, 1]). Going back to the

Galerkin orthogonality (4.4), this amounts to showing that if

∫ 1

0

U̇v dt = 0 ∀v ∈ Pq−1([0, 1]),

with U ∈ Pq([0, 1]), then U is constant on [0, 1]. This follows by taking v = U̇ .

Thus, ξn = ξ0 for n = 1, . . . , q, so that the value of
∑q

n=1 ā
[q]
mnan0 must be −1. This

completes the proof.
The mcG(q) method thus reads as follows: For every local interval Iij , find

{ξijn}qijn=0, with ξij0 = ξi,j−1,qi,j−1
, such that

ξijm = ξij0 +

∫

Iij

w[qij]
m (τij(t)) fi(U(t), t) dt, m = 1, . . . , qij ,(A.11)

for certain weight functions {w[q]
n }qm=1 ⊂ Pq−1(0, 1), and where the initial condition

is specified by ξi00 = ui(0) for i = 1, . . . , N .
The weight functions may be computed analytically for small q, and for general

q they are easy to compute numerically.

1900 ANDERS LOGG

A.2. The mdG(q) method. We now make the same ansatz as for the contin-
uous method,

Ui(t) =

q
∑

n=0

ξijnλ
[qij]
n (τij(t)),(A.12)

where the difference is that we now have q + 1 degrees of freedom on every interval,
since we no longer have the continuity requirement for the trial functions. We make
the assumption that the nodal points for the nodal basis functions are chosen so that

sq = 1,(A.13)

i.e., the end-point of every subinterval is a nodal point for the basis functions.
With this ansatz, we get the following set of equations for determining {ξijn}qijn=0:

(A.14)
(

qij
∑

n=0

ξijnλ
[qij]
n (0) − ξ−ij0

)

λ[qij]
m (0) +

∫

Iij

qij
∑

n=0

ξijn
d

dt

[

λ[qij]
n (τij(t))

]

λ[qij]
m (τij(t)) dt

=

∫

Iij

fi(U(t), t)λ[qij]
m (τij(t)) dt(A.15)

for m = 0, . . . , qij , where we use ξ−ij0 to denote ξi,j−1,qi,j−1
, i.e., the value at the right

end-point of the previous interval. To simplify the notation, we drop the subindices

ij again and rewrite to [0, k]. We thus seek to determine the coefficients {ξn}qn=0 such
that for m = 0, . . . , q we have

(A.16)
(

q
∑

n=0

ξnλ
[q]
n (0) − ξ−0

)

λ[q]
m (0) +

q
∑

n=0

ξn
1

k

∫ k

0

λ̇[q]
n (τ(t))λ[q]

m (τ(t)) dt =

∫ k

0

fλ[q]
m (τ(t)) dt,

or simply

q
∑

n=0

a[q]
mnξn = bm,(A.17)

where

a[q]
mn =

∫ 1

0

λ̇[q]
n (t)λ[q]

m (t) dt + λ[q]
n (0)λ[q]

m (0)(A.18)

and

b[q]m =

∫ k

0

fλ[q]
m (τ(t)) dt + ξ−0 λ[q]

m (0).(A.19)

Now, let A[q] be the (q+1)×(q+1) matrix A[q] = (a
[q]
mn) with inverse Ā[q] = (ā

[q]
mn).

Then, switching back to the full notation, we have

ξijm = ξ−ij0

q
∑

n=0

ā[q]
mnλ

[q]
n (0) +

∫

Iij

w[qij]
m (τij(t)) fi(U(t), t) dt, m = 0, . . . , qij ,

(A.20)

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs I 1901

where the weight functions {w[q]
n }qn=0 are given by

w[q]
m =

q
∑

n=0

ā[q]
mnλ

[q]
n , m = 0, . . . , q.(A.21)

As for the continuous method, this may be somewhat simplified.
Lemma A.2. For the mdG(q) method, we have

q
∑

n=0

ā[q]
mnλ

[q]
n (0) = 1.

Proof. As in the proof for the mcG(q) method, assume that the interval is [0, 1].
Since the value of the expression is independent of f we can take f = 0. We thus want
to prove that if f = 0, then the solution U is constant. By the Galerkin orthogonality,
we have

[U]0v(0) +

∫ 1

0

U̇v dt = 0 ∀v ∈ Pq(0, 1),

with U ∈ Pq(0, 1). Taking v = U − U(0−), we have

0 = ([U]0)
2 +

∫ 1

0
U̇(U − U(0−)) dt = ([U]0)

2 + 1
2

∫ 1

0
d
dt (U − U(0−))2 dt

= 1
2 (U(0+) − U(0−))2 + 1

2 (U(1) − U(0−))2,

so that [U]0 = 0. Now take v = U̇ . This gives
∫ 1

0
(U̇)2 dt = 0. Since then both

[U]0 = 0 and U̇ = 0 on [0, 1], U is constant and equal to U(0−), and the proof is
complete.

The mdG(q) method thus reads as follows: For every local interval Iij , find
{ξijn}qijn=0, such that for m = 0, . . . , qij we have

ξijm = ξ−ij0 +

∫

Iij

w[qij]
m (τij(t)) fi(U(t), t) dt(A.22)

for certain weight functions {w[q]
n }qn=0 ⊂ Pq(0, 1).

REFERENCES

[1] S. Alexander and C. Agnor, n-body simulations of late stage planetary formation with a
simple fragmentation model, ICARUS, 132 (1998), pp. 113–124.

[2] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations
and Differential-Algebraic Equations, SIAM, Philadelphia, 1998.

[3] J. Butcher, The Numerical Analysis of Ordinary Differential Equations. Runge-Kutta and
General Linear Methods, John Wiley, Chichester, UK, 1987.

[4] G. Dahlquist, Stability and Error Bounds in the Numerical Integration of Ordinary Differ-
ential Equations, Kungl. Tekn. Högsk Handl. Stockholm. No., 130 (1959).

[5] R. Davé, J. Dubinski, and L. Hernquist, Parallel treesph, New Astronomy, 2 (1997), pp. 277–
297.

[6] C. Dawson and R. Kirby, High resolution schemes for conservation laws with locally varying
time steps, SIAM J. Sci. Comput., 22 (2001), pp. 2256–2281.

[7] M. Delfour, W. Hager, and F. Trochu, Discontinuous Galerkin methods for ordinary dif-
ferential equations, Math. Comp., 36 (1981), pp. 455–473.

[8] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Introduction to adaptive methods for
differential equations, in Acta Numerica, 1995, Acta Numer., Cambridge University Press,
Cambridge, 1995, pp. 105–158.

1902 ANDERS LOGG

[9] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Computational Differential Equations,
Cambridge University Press, Cambridge, 1996.

[10] K. Eriksson and C. Johnson, Adaptive Finite Element Methods for Parabolic Problems III:
Time Steps Variable in Space, manuscript, Chalmers University of Technology, Göteborg,
Sweden.

[11] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems I: A
linear model problem, SIAM J. Numer. Anal., 28 (1991), pp. 43–77.

[12] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems II:
Optimal error estimates in L∞L2 and L∞L∞, SIAM J. Numer. Anal., 32 (1995), pp. 706–
740.

[13] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems IV:
Nonlinear problems, SIAM J. Numer. Anal., 32 (1995), pp. 1729–1749.

[14] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems V:
Long-time integration, SIAM J. Numer. Anal., 32 (1995), pp. 1750–1763.

[15] K. Eriksson, C. Johnson, and S. Larsson, Adaptive finite element methods for parabolic
problems VI: Analytic semigroups, SIAM J. Numer. Anal., 35 (1998), pp. 1315–1325.

[16] K. Eriksson, C. Johnson, and V. Thomée, Time discretization of parabolic problems by the
discontinuous Galerkin method, RAIRO Modél. Math. Anal. Numér., 19 (1985), pp. 611–
643.

[17] D. Estep, A posteriori error bounds and global error control for approximation of ordinary
differential equations, SIAM J. Numer. Anal., 32 (1995), pp. 1–48.

[18] D. Estep and D. French, Global error control for the continuous Galerkin finite element
method for ordinary differential equations, RAIRO Modél. Math. Anal. Numér., 28 (1994),
pp. 815–852.

[19] D. Estep and R. Williams, Accurate parallel integration of large sparse systems of differential
equations, Math. Models Methods Appl. Sci., 6 (1996), pp. 535–568.

[20] J. Flaherty, R. Loy, M. Shephard, B. Szymanski, J. Teresco, and L. Ziantz, Adaptive
local refinement with octree load balancing for the parallel solution of three-dimensional
conservation laws, J. Parallel Distrib. Comput., 47 (1997), pp. 139–152.

[21] E. Hairer and G. Wanner, Solving Ordinary Differential Equations. I. Nonstiff Problems,
Springer Ser. Comput. Math. 8, Springer-Verlag, Berlin, 1987.

[22] E. Hairer and G. Wanner, Solving Ordinary Differential Equations. II. Stiff and Differential-
Algebraic Problems, Springer Ser. Comput. Math. 14, Springer-Verlag, Berlin, 1991.

[23] P. Hansbo, A note on energy conservation for hamiltonian systems using continuous time
finite elements, Comm. Numer. Methods Engrg., 17 (2001), pp. 863–869.

[24] C. Johnson, Error estimates and adaptive time-step control for a class of one-step methods
for stiff ordinary differential equations, SIAM J. Numer. Anal., 25 (1988), pp. 908–926.

[25] O. Kessel-Deynet, Berücksichtigung ionisierender Strahlung im Smoothed-Particle-
Hydrodynamics-Verfahren und Anwendung auf die Dynamik von Wolkenkernen im
Strahlungsfeld massiver Sterne, Ph.D. thesis, Naturwissenschaftlich-Mathematischen
Gesamtfakultät, Ruprecht-Karls-Universität, Heidelberg, 1999.

[26] A. Logg, Multi-Adaptive Error Control for ODES, NA Group Report 98/20, Oxford Uni-
versity Computing Laboratory, Oxford, UK, 1998; also available online from http://
www.phi.chalmers.se/preprints/abstracts/preprint-2000-03.html.

[27] A. Logg, A Multi-Adaptive ODE-Solver, M.Sc. thesis, Department of Mathematics, Chalmers
University of Technology, Göteborg, Sweden, 1998; also available online from http://
www.phi.chalmers.se/preprints/abstracts/preprint-2000-02.html.

[28] A. Logg, Multi-Adaptive Galerkin Methods for ODES I: Theory & Algorithms, Chalmers
Finite Element Center Preprint 2001–09, http://www.phi.chalmers.se/preprints/abstracts/
preprint-2000-09.html (25 February 2001).

[29] A. Logg, Multi-adaptive Galerkin methods for ODES II: Implementation and applications,
SIAM J. Sci. Comput., submitted.

[30] A. Logg, Tanganyika, version 1.2.1, http://www.phi.chalmers.se/tanganyika/ (10 May 2001).
[31] J. Makino and S. Aarseth, On a hermite integrator with Ahmad–Cohen scheme for gravita-

tional many-body problems, Publ. Astron. Soc. Japan, 44 (1992), pp. 141–151.
[32] K.-S. Moon, A. Szepessy, R. Tempone, and G. Zourakis, Adaptive Approximation of Dif-

ferential Equations Based on Global and Local Errors, preprint. TRITA-NA-0006 NADA,
KTH, Stockholm, Sweden, 2000.

[33] S. Osher and R. Sanders, Numerical approximations to nonlinear conservation laws with
locally varying time and space grids, Math. Comp., 41 (1983), pp. 321–336.

[34] L. Shampine, Numerical Solution of Ordinary Differential Equations, Chapman and Hall,
London, 1994.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES II:

IMPLEMENTATION AND APPLICATIONS∗

ANDERS LOGG†

SIAM J. SCI. COMPUT. c© 2003 Society for Industrial and Applied Mathematics
Vol. 25, No. 4, pp. 1119–1141

Abstract. Continuing the discussion of the multi-adaptive Galerkin methods mcG(q) and
mdG(q) presented in [A. Logg, SIAM J. Sci. Comput., 24 (2003), pp. 1879–1902], we present
adaptive algorithms for global error control, iterative solution methods for the discrete equations,
features of the implementation Tanganyika, and computational results for a variety of ODEs. Ex-
amples include the Lorenz system, the solar system, and a number of time-dependent PDEs.

Key words. multi-adaptivity, individual time-steps, local time-steps, ODE, continuous Galerkin,
discontinuous Galerkin, global error control, adaptivity, mcG(q), mdG(q), applications, Lorenz, solar
system, Burger

AMS subject classifications. 65L05, 65L07, 65L20, 65L50, 65L60, 65L70, 65L80

DOI. 10.1137/S1064827501389734

1. Introduction. In this paper we apply the multi-adaptive Galerkin methods
mcG(q) and mdG(q), presented in [10], to a variety of problems chosen to illustrate
the potential of multi-adaptivity. Throughout this paper, we solve the ODE initial
value problem

{

u̇(t) = f(u(t), t), t ∈ (0, T],
u(0) = u0,

(1.1)

where u : [0, T] → R
N , f : R

N × (0, T] → R
N is a given bounded function that is

Lipschitz continuous in u, u0 ∈ R
N is a given initial condition, and T > 0 a given

final time.
We refer to [10] for a detailed description of the multi-adaptive methods. Here

we recall that each component Ui(t) of the approximate solution U(t) is a piecewise
polynomial of degree qi = qi(t) on a partition of (0, T] into Mi subintervals of lengths
kij = tij − ti,j−1, j = 1, . . . ,Mi. On the interval Iij = (ti,j−1, tij], component Ui(t) is
thus a polynomial of degree qij .

Before presenting the examples, we discuss adaptive algorithms for global error
control and iterative solution methods for the discrete equations. We also give a short
description of the implementation Tanganyika.

2. Adaptivity. In this section we describe how to use the a posteriori error
estimates presented in [10] in an adaptive algorithm.

2.1. A strategy for adaptive error control. The goal of the algorithm is to
produce an approximate solution U(t) to (1.1) within a given tolerance TOL for the
error e(t) = U(t)− u(t) in a given norm ‖ · ‖. The adaptive algorithm is based on the
a posteriori error estimates, presented in [10], of the form

‖e‖ ≤
N
∑

i=1

Mi
∑

j=1

k
pij+1
ij rijsij(2.1)

∗Received by the editors May 23, 2001; accepted for publication (in revised form) May 1, 2003;
published electronically December 5, 2003.

http://www.siam.org/journals/sisc/25-4/38973.html
†Department of Computational Mathematics, Chalmers University of Technology, SE–412 96

Göteborg, Sweden (logg@math.chalmers.se).

1119

1120 ANDERS LOGG

or

‖e‖ ≤
N
∑

i=1

Si max
j

k
pij

ij rij ,(2.2)

where {sij} are stability weights, {Si} are stability factors (including interpolation

constants), rij is a local measure of the residual Ri(U, ·) = U̇i − f(U, ·) of the approx-
imate solution U(t), and where we have pij = qij for mcG(q) and pij = qij + 1 for
mdG(q).

We use (2.2) to determine the individual time-steps, which should then be chosen
as

kij =

(

TOL/N

Si rij

)1/pij

.(2.3)

We use (2.1) to evaluate the resulting error at the end of the computation, noting
that (2.1) is sharper than (2.2).

The adaptive algorithm may then be expressed as follows: Given a tolerance
TOL > 0, make a preliminary guess for the stability factors and then

(i) solve the primal problem with time-steps based on (2.3).
(ii) solve the dual problem and compute stability factors and stability weights.
(iii) compute an error estimate E based on (2.1).
(iv) if E ≤ TOL, then stop, and if not, go back to (i).
Although this seems simple enough, there are some difficulties involved. For

one thing, choosing the time-steps based on (2.3) may be difficult, since the residual
depends implicitly on the time-step. Furthermore, we have to choose the proper data
for the dual problem to obtain a meaningful error estimate. We now discuss these
issues.

2.2. Regulating the time-step. To avoid the implicit dependence on kij for
rij in (2.3), we may try replacing (2.3) with

kij =

(

TOL/N

Si ri,j−1

)1/pij

.(2.4)

Following this strategy, if the time-step on an interval is small (and thus also is the
residual), the time-step for the next interval will be large, so that (2.4) introduces
unwanted oscillations in the size of the time-step. We therefore try to be a bit more
conservative when choosing the time-step to obtain a smoother time-step sequence.
For (2.4) to work, the time-steps on adjacent intervals need to be approximately
the same, and so we may think of choosing the new time-step as the (geometric)
mean value of the previous time-step and the time-step given by (2.4). This works
surprisingly well for many problems, meaning that the resulting time-step sequences
are comparable to what can be obtained with more advanced regulators.

We have also used standard PID (or just PI) regulators from control theory with
the goal of satisfying

Sik
pij

ij rij = TOL/N,(2.5)

or, taking the logarithm with Ci = log(TOL/(NSi)),

pij log kij + log rij = Ci,(2.6)

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs II 1121

with maximal time-steps {kij}, following work by Söderlind [15] and Gustafsson,
Lundh, and Söderlind [6]. This type of regulator performs a little better than the
simple approach described above, provided the parameters of the regulator are well
tuned.

2.3. Choosing data for the dual. Different choices of data ϕT and g for the
dual problem give different error estimates, as described in [10], where estimates for
the quantity

LϕT ,g(e) = (e(T), ϕT) +

∫ T

0

(e, g) dt

were derived. The simplest choices are g = 0 and (ϕT)i = δin for control of the final
time error of the nth component. For control of the l2-norm of the error at final
time, we take g = 0 and ϕT = ẽ(T)/‖ẽ(T)‖ with an approximation ẽ of the error e.
Another possibility is to take ϕT = 0 and gi(t) = δin for control of the average error
in component n.

If the data for the dual problem are incorrect, the error estimate may also be
incorrect: with ϕT (or g) orthogonal to the error, the error representation gives only
0 ≤ TOL. In practice, however, the dual—or at least the stability factors—seems
to be quite insensitive to the choice of data for many problems so that it is, in fact,
possible to guess the data for the dual.

2.4. Adaptive quadrature. In practice, integrals included in the formulation
of the two methods mcG(q) and mdG(q) have to be evaluated using numerical quadra-
ture. To control the resulting quadrature error, the quadrature rule can be chosen
adaptively, based on estimates of the quadrature error presented in [10].

2.5. Adaptive order, q-adaptivity. The formulations of the methods include
the possibility of individual and varying orders for the different components, as well
as different and varying time-steps. The method is thus q-adaptive (or p-adaptive) in
the sense that the order can be changed. At this stage, however, lacking a strategy
for when to increase the order and when to decrease the time-step, the polynomial
orders have to be chosen in an ad hoc fashion for every interval. One way to choose
time-steps and orders could be to solve over some short time-interval with different
time-steps and orders, and optimize the choice of time-steps and orders with respect
to the computational time required for achieving a certain accuracy. If we suspect
that the problem will change character, we will have to repeat this procedure at a
number of control points.

3. Solving the discrete equations. In this section we discuss how to solve the
discrete equations that we obtain when we discretize (1.1) with the multi-adaptive
Galerkin methods. We do this in two steps. First, we present a simple explicit
strategy, and then we extend this strategy to an iterative method.

3.1. A simple strategy. As discussed in [10], the nonlinear discrete algebraic
equations for the mcG(q) method (including numerical quadrature) to be solved on
every local interval Iij take the form

ξijm = ξij0 + kij

qij
∑

n=0

w[qij]
mn fi(U(τ−1

ij (s[qij]
n)), τ−1

ij (s[qij]
n)), m = 1, . . . , qij ,(3.1)

where {ξijm}qijm=1 are the degrees of freedom to be determined for component Ui(t)

on interval Iij , {w[qij]
mn }qijm=1,n=0 are weights, {s[qij]

n }qijn=0 are quadrature points, and τij

1122 ANDERS LOGG

maps Iij to (0, 1]: τij(t) = (t − ti,j−1)/(tij − ti,j−1). The discrete equations for the
mdG(q) method are similar in structure and so we focus on the mcG(q) method.

The equations are conveniently written in fixed point form, so we may apply
fixed point iteration directly to (3.1); i.e., we make an initial guess for the values of
{ξijm}qijm=1, e.g., ξijm = ξij0 for m = 1, . . . , qij , and then compute new values for these
coefficients from (3.1), repeating the procedure until convergence.

Note that component Ui(t) is coupled to all other components through the right-
hand side fi = fi(U, ·). This means that we have to know the solution for all other
components in order to compute Ui(t). Conversely, we have to know Ui(t) to compute
the solutions for all other components, and since all other components step with
different time-steps, it seems at first very difficult to solve the discrete equations
(3.1).

As an initial simple strategy we may try to solve the system of nonlinear equations
(3.1) by direct fixed point iteration. All unknown values, for the component itself and
all other needed components, are interpolated or extrapolated from their latest known
values. Thus, if for component i we need to know the value of component l at some
time ti, and we only know values for component l up to time tl < ti, the strategy is
to extrapolate Ul(t) from the interval containing tl to time ti, according to the order
of Ul(t) on that interval.

In what order should the components now make their steps? Clearly, to update a
certain component on a specific interval, we would like to use the best possible values
of the other components. This naturally leads to the following strategy:

The last component steps first.(3.2)

This means that we should always make a step with the component that is closest
to time t = 0. Eventually (or after one step), this component catches up with one
of the other components, which then in turn becomes the last component, and the
procedure continues according to the strategy (3.2), as described in Figure 3.1.

This gives an explicit time-stepping method in which each component is updated
individually once, following (3.2), and in which we never go back to correct mistakes.
This corresponds to fixed point iterating once on the discrete equations (3.1), which
implicitly define the solution. We now describe how to extend this explicit time-
stepping strategy to an iterative process, in which the discrete equations are solved
to within a prescribed tolerance.

3.2. An iterative method. To extend the explicit strategy described in the
previous section to an iterative method, we need to be able to go back and redo
iterations if necessary. We do this by arranging the elements—we think of an element
as a component Ui(t) on a local interval Iij—in a time-slab. This contains a number of
elements, a minimum of N elements, and moves forward in time. On every time-slab,
we have to solve a large system of equations, namely, the system composed of the
element equations (3.1) for every element within the time-slab. We solve this system
of equations iteratively, by direct fixed point iteration, or by some other method as
described below, starting from the last element in the time-slab, i.e., the one closest to
t = 0, and continuing forward to the first element in the time-slab, i.e., the one closest
to t = T . These iterations are then repeated from beginning to end until convergence,
which is reached when the computational residuals, as defined in [10], on all elements
are small enough.

3.3. The time-slab. The time-slab can be constructed in many ways. One is by
dyadic partitioning, in which we compute new time-steps for all components, based

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs II 1123

PSfrag replacements

0 T

Fig. 3.1. The last component steps first and all needed values are extrapolated or interpolated.

on residuals and stability properties, choose the largest time-step K as the length of
the new time-slab, and then, for every component, choose the time-step as a fraction
K/2n. The advantage of such a partition are that the time-slab has straight edges; i.e.,
for every time-slab there is a common point in time t′ (the end-point of the time-slab)
which is an end-point for the last element of every component in the time-slab, and
that the components have many common nodes. The disadvantage is that the choice
of time-steps is constrained.

Another possibility is a rational partition of the time-slab. We choose the largest
individual time-step K as the length of the time-slab, and time-steps for the remaining
components are chosen as fractions of this large time-step, K/2, K/3, K/4, and so on.
In this way we increase the set of possible time-step selections, as compared to dyadic
partitioning, but the number of common nodes shared between different components
is decreased.

A third option is to not impose any constraint at all on the selection of time-
steps—except that we match the final time end-point. The time-steps may vary
also within the time-slab for the individual components. The price we have to pay
is that we have in general no common nodes, and the edges of the time-slab are
no longer straight. We illustrate the three choices of partitioning schemes in Figure
3.2. Although dyadic or rational partitioning is clearly advantageous in terms of easier
bookkeeping and common nodes, we focus below on unconstrained time-step selection.
In this way we stay close to the original, general formulation of the multi-adaptive
methods. We refer to this as the time-crawling approach.

3.4. The time-crawling approach. The construction of the time-slab brings
with it a number of technical and algorithmic problems. We will not discuss here the
implementational and data structural aspects of the algorithm—there will be much
to keep track of and this has to be done in an efficient way—but we will give a brief

1124 ANDERS LOGG

PSfrag replacements

0 T

PSfrag replacements

0 T

PSfrag replacements

0 T

Fig. 3.2. Different choices of time-slabs. Top: a dyadic partition of the time-slab; middle: a
rational partition; bottom: a partition used in the time-crawling approach, where the only restriction
on the time-steps is that we match the final time end-point T .

account of how the time-slab is formed and updated.
Assume that in some way we have formed a time-slab, such as the one in Figure

3.3. We make iterations on the time-slab, starting with the last element and continuing
to the right. After iterating through the time-slab a few times, the computational
(discrete) residuals, corresponding to the solution of the discrete equations (3.1), on
all elements have decreased below a specified tolerance for the computational error,
indicating convergence.

For the elements at the front of the slab (those closest to time t = T), the
values have been computed using extrapolated values of many of the other elements.
The strategy now is to leave behind only those elements that are fully covered by all

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs II 1125

PSfrag replacements

0 T

Fig. 3.3. The time-slab used in the time-crawling approach to multi-adaptive time-stepping
(dark grey). Light grey indicates elements that have already been computed.

other elements. These are then cut off from the time-slab, which then decreases in
size. Before starting the iterations again, we have to form a new time-slab. This will
contain the elements of the old time-slab that were not removed, and a number of new
elements. We form the new time-slab by requiring that all elements of the previous
time-slab be totally covered within the new time-slab. In this way we know that every
new time-slab will produce at least N new elements. The time-slab is thus crawling
forward in time rather than marching.

An implementation of the method then contains the three consecutive steps de-
scribed above: iterating on an existing time-slab, decreasing the size of the time-slab
(cutting off elements at the end of the time-slab, i.e., those closest to time t = 0), and
incorporating new elements at the front of the time-slab.

Remark 3.1. Even if an element within the time-slab is totally covered by all
other elements, the values on this element still may not be completely determined, if
they are based on the values of some other element that is not totally covered, or if
this element is based on yet another element that is not totally covered, and so on. To
avoid this, one can impose the requirement that the time-slabs should have straight
edges.

3.5. Diagonal Newton. For stiff problems the time-step condition required for
convergence of direct fixed point iteration is too restrictive, and we need to use a more
implicit solution strategy.

Applying a full Newton’s method, we increase the range of allowed time-steps and
also the convergence rate, but this is costly in terms of memory and computational
time, which is especially important in our setting, since the size of the slab may often
be much larger than the number of components, N (see Figure 3.3). We thus look for
a simplified Newton’s method which does not increase the cost of solving the problem,
as compared to direct fixed point iteration, but still has some advantages of the full
Newton’s method.

Consider for simplicity the case of the multi-adaptive backward Euler method,

1126 ANDERS LOGG

i.e., the mdG(0) method with end-point quadrature. On every element we then want
to solve

Uij = Ui,j−1 + kijfi(U(tij), tij).(3.3)

In order to apply Newton’s method we write (3.3) as

F (V) = 0(3.4)

with Fi(V) = Uij −Ui,j−1 − kijfi(U(tij), tij) and Vi = Uij . Newton’s method is then

V n+1 = V n − (F ′(V n))−1F (V n).(3.5)

We now simply replace the Jacobian with its diagonal so that for component i we
have

Un+1
ij = Un

ij −
Un
ij − Ui,j−1 − kijfi

1 − kij
∂fi
∂ui

(3.6)

with the right-hand side evaluated at V n. We now note that we can rewrite this as

Un+1
ij = Un

ij − θ(Un
ij − Ui,j−1 − kijfi) = (1 − θ)Un

ij + θ(Ui,j−1 + kijfi)(3.7)

with

θ =
1

1 − kij
∂fi
∂ui

(3.8)

so that we may view the simplified Newton’s method as a damped version, with
damping θ, of the original fixed point iteration.

The individual damping parameters are cheap to compute. We do not need to
store the Jacobian and we do not need linear algebra. We still obtain some of the
good properties of the full Newton’s method.

For the general mcG(q) or mdG(q) method, the same analysis applies. In this
case, however, when we have more degrees of freedom to solve for on every local
element, 1 − kij

∂fi
∂ui

will be a small local matrix of size q × q for the mcG(q) method
and size (q + 1) × (q + 1) for the mdG(q) method.

3.6. Explicit or implicit. Both mcG(q) and mdG(q) are implicit methods since
they are implicitly defined by the set of equations (3.1) on each time-slab. However,
depending on the solution strategy for these equations, the resulting fully discrete
scheme may be of more or less explicit character. Using a diagonal Newton’s method
as in the current implementation of Tanganyika, we obtain a method of basically
explicit nature. This gives an efficient code for many applications, but we may expect
to meet difficulties for stiff problems.

3.7. The stiffness problem. In a stiff problem the solution varies quickly inside
transients and slowly outside transients. For accuracy the time-steps will be adap-
tively kept small inside transients and then will be within the stability limits of an
explicit method, while outside transients larger time-steps will be used. Outside the
transients the diagonal Newton’s method handles stiff problems of sufficiently diago-
nal nature. Otherwise the strategy is to decrease the time-steps whenever needed for
stability reasons. Typically this results in an oscillating sequence of time-steps where

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs II 1127

a small number of large time-steps are followed by a small number of stabilizing small
time-steps.

Our solver Tanganyika thus performs like a modern unstable jet fighter, which
needs small stabilizing wing flaps to follow a smooth trajectory. The pertinent ques-
tion is then the number of small stabilizing time-steps per large time-step. We ana-
lyze this question in [3] and show that for certain classes of stiff problems it is indeed
possible to successfully use a stabilized explicit method of the form implemented in
Tanganyika.

3.8. Preparations. There are many “magic numbers” that need to be computed
in order to implement the multi-adaptive methods, such as quadrature points and
weights, the polynomial weight functions evaluated at these quadrature points, etc.
In Tanganyika, these numbers are computed at the startup of the program and stored
for efficient access. Although somewhat messy to compute, these are all computable
by standard techniques in numerical analysis; see, e.g., [13].

3.9. Solving the dual problem. In addition to solving the primal problem
(1.1), we also have to solve the continuous dual problem to obtain error control. This
is an ODE in itself that we can solve using the same solver as for the primal problem.

In order to solve this ODE, we need to know the Jacobian of f evaluated at a
mean value of the true solution u(t) and the approximate solution U(t). If U(t) is
sufficiently close to u, which we will assume, we approximate the (unknown) mean
value by U(t). When solving the dual, the primal solution must be accessible, and the
Jacobian must be computed numerically by difference quotients if it is not explicitly
known. This makes the computation of the dual solution expensive. Error control
can, however, be obtained at a reasonable cost: for one thing, the dual problem does
not have to be solved with as high a precision as the primal problem; a relative error
of, say, 10% may be disastrous for the primal, whereas for the dual this only means
that the error estimate will be off by 10%, which is acceptable. Second, the dual
problem is linear, which may be taken into account when implementing a solver for
the dual. If we can afford the linear algebra, as we can for reasonably small systems,
we can solve the discrete equations directly without any iterations.

4. Tanganyika. We now give a short description of the implementation of the
multi-adaptive methods, Tanganyika, which has been used to obtain the numerical
results presented below.

4.1. Purpose. The purpose of Tanganyika [12] is to be a working implementa-
tion of the multi-adaptive methods. The code is open-source (GNU GPL [1]), which
means that anyone can freely review the code, which is available at http://www.phi.
chalmers.se/tanganyika/. Comments are welcome.

4.2. Structure and implementation. The solver is implemented as a C/C++
library. The C++ language makes abstraction easy, which allows the implementation
to follow closely the formulation of the two methods. Different objects and algorithms
are thus implemented as C++ classes, including Solution, Element, cGqElement,
dGqElement, TimeSlab, ErrorControl, Galerkin, Component, and so on.

5. Applications. In this section, we present numerical results for a variety of
applications. We discuss some of the problems in detail and give a brief overview of
the rest. A more extensive account can be found in [11].

1128 ANDERS LOGG

Fig. 5.1. A mechanical system consisting of N = 5 masses attached with springs.

5.1. A simple test problem. To demonstrate the potential of the multi-adaptive
methods, we consider a dynamical system in which a small part of the system oscil-
lates rapidly. The problem is to accurately compute the positions (and velocities) of
the N point-masses attached with springs of equal stiffness, as in Figure 5.1.

If we choose one of the masses to be much smaller than the others, m1 = 10−4

and m2 = m3 = · · · = mN = 1, then we expect the dynamics of the system to be
dominated by the smallest mass, in the sense that the resolution needed to compute
the solution will be completely determined by the fast oscillations of the smallest
mass.

To compare the multi-adaptive method with a standard method, we first compute
with constant time-steps k = k0 using the standard cG(1) method and measure the
error, the cpu time needed to obtain the solution, the total number of steps, i.e.,
M =

∑N
i=1 Mi, and the number of local function evaluations. We then compute the

solution with individual time-steps, using the mcG(1) method, choosing the time-steps
ki = k0 for the position and velocity components of the smallest mass, and choosing
ki = 100k0 for the other components (knowing that the frequency of the oscillations
scales like 1/

√
m). For demonstration purposes, we thus choose the time-steps a priori

to fit the dynamics of the system.
We repeat the experiment for increasing values of N (see Figure 5.2) and find

that the error is about the same and constant for both methods. As N increases, the
total number of time-steps, the number of local function evaluations (including also
residual evaluations), and the cpu time increase linearly for the standard method, as
we expect. For the multi-adaptive method, on the other hand, the total number of
time-steps and local function evaluations remains practically constant as we increase
N . The cpu time increases somewhat, since the increasing size of the time-slabs
introduces some overhead, although not nearly as much as for the standard method.
For this particular problem the gain of the multi-adaptive method is thus a factor N ,
where N is the size of the system, so that by considering a large-enough system, the
gain is arbitrarily large.

5.2. The Lorenz system. We consider now the famous Lorenz system,

ẋ = σ(y − x),
ẏ = rx− y − xz,
ż = xy − bz,

(5.1)

with the usual data (x(0), y(0), z(0)) = (1, 0, 0), σ = 10, b = 8/3, and r = 28; see
[5]. The solution u(t) = (x(t), y(t), z(t)) is very sensitive to perturbations and is often
described as “chaotic.” With our perspective this is reflected by stability factors with
rapid growth in time.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs II 1129

5 10 15 20
0

2

4

6

8

x 10
−5

5 10 15 20
0

5

10

15

20

5 10 15 20
0

1

2

3

4
x 10

4

5 10 15 20
0

2

4

6

8

10

x 10
6

PSfrag replacements

‖e
(T

)‖
∞

cp
u

ti
m

e
/

se
co

n
d
s

fu
n
ct

io
n

ev
al

u
at

io
n
s

st
ep

s

20 40 60 80 100
0

2

4

6

8

x 10
−5

20 40 60 80 100
0

10

20

30

40

50

60

70

20 40 60 80 100
0

0.5

1

1.5

2
x 10

5

20 40 60 80 100
0

1

2

3

4

5

x 10
7

PSfrag replacements

‖e
(T

)‖
∞

cp
u

ti
m

e
/

se
co

n
d
s

fu
n
ct

io
n

ev
al

u
at

io
n
s

st
ep

s

Fig. 5.2. Error, cpu time, total number of steps, and number of function evaluations as function
of the number of masses for the multi-adaptive cG(1) method (dashed lines) and the standard cG(1)
method (solid lines).

1130 ANDERS LOGG

0 10 20 30 40
−30

−20

−10

0

10

20

30

40

50

−20 −10 0 10 20
0

5

10

15

20

25

30

35

40

45

50

PSfrag replacements

x

zU

t

Fig. 5.3. On the right is the trajectory of the Lorenz system for final time T = 40, computed with
the multi-adaptive cG(5) method. On the left is a plot of the time variation of the three components.

The computational challenge is to solve the Lorenz system accurately on a time-
interval [0, T] with T as large as possible. In Figure 5.3 is shown a computed solution
which is accurate on the interval [0, 40]. We investigate the computability of the
Lorenz system by solving the dual problem and computing stability factors to find
the maximum value of T . The focus in this section is not on multi-adaptivity—we
will use the same time-steps for all components, and so mcG(q) becomes cG(q)—but
on higher-order methods and the precise information that can be obtained about the
computability of a system from solving the dual problem and computing stability
factors.

As an illustration, we present in Figure 5.4 solutions obtained with different meth-
ods and constant time-step k = 0.1 for all components. For the lower-order methods,
cG(5) to cG(11), it is clear that the error decreases as we increase the order. Starting
with the cG(12) method, however, the error does not decrease as we increase the
order. To explain this, we note that in every time-step a small round-off error of size
∼ 10−16 is introduced if the computation is carried out in double precision arithmetic.
These errors accumulate at a rate determined by the growth of the stability factor
for the computational error (see [10]). As we shall see below, this stability factor
grows exponentially for the Lorenz system and reaches a value of 1016 at final time
T = 50, and so at this point the accumulation of round-off errors results in a large
computational error.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs II 1131

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

PSfrag replacements

cG
(5

)
cG

(6
)

cG
(7

)
cG

(8
)

cG
(9

)
cG

(1
0)

cG(11)
cG(12)
cG(13)
cG(14)
cG(15)

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

PSfrag replacements

cG(5)
cG(6)
cG(7)
cG(8)
cG(9)

cG(10)

cG
(1

1)
cG

(1
2)

cG
(1

3)
cG

(1
4)

cG
(1

5)

Fig. 5.4. Solutions for the x-component of the Lorenz system with methods of different order,
using a constant time-step k = 0.1. Dotted lines indicate the point beyond which the solution is no
longer accurate.

1132 ANDERS LOGG

0 5 10 15 20 30 35 40 45 50

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

PSfrag replacements

T

S̄
[0

] (
T

)

Fig. 5.5. The stability factor for computational and quadrature errors, as function of time for
the Lorenz system.

5.2.1. Stability factors. We now investigate the computation of stability fac-
tors for the Lorenz system. For simplicity we focus on global stability factors, such
as

S[q](T) = max
‖v‖=1

∫ T

0

‖ϕ(q)(t)‖ dt,(5.2)

where ϕ(t) is the solution of the dual problem obtained with ϕ(T) = v (and g = 0).
Letting Φ(t) be the fundamental solution of the dual problem, we have

max
‖v‖=1

∫ T

0

‖Φ(q)(t)v‖ dt ≤
∫ T

0

max
‖v‖=1

‖Φ(q)(t)v‖ dt =

∫ T

0

‖Φ(q)(t)‖ dt= S̄[q](T).(5.3)

This gives a bound S̄[q](T) for S[q](T), which for the Lorenz system turns out to be
quite sharp and which is simpler to compute since we do not have to compute the
maximum in (5.2).

In Figure 5.5 we plot the growth of the stability factor for q = 0, corresponding to
computational and quadrature errors as described in [10]. The stability factor grows
exponentially with time, but not as fast as indicated by an a priori error estimate.
An a priori error estimate indicates that the stability factors grow as

S[q](T) ∼ AqeAT ,(5.4)

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs II 1133

where A is a bound for the Jacobian of the right-hand side for the Lorenz system. A
simple estimate is A = 50, which already at T = 1 gives S[0](T) ≈ 1022. In view of
this, we would not be able to compute even to T = 1, and certainly not to T = 50,
where we have S[0](T) ≈ 101000. The point is that although the stability factors grow
very rapidly on some occasions, such as near the first flip at T = 18, the growth is not
monotonic. The stability factors thus effectively grow at a moderate exponential rate.

5.2.2. Conclusions. To predict the computability of the Lorenz system, we
estimate the growth rate of the stability factors. A simple approximation of this
growth rate, obtained from numerically computed solutions of the dual problem, is

S̄[q](T) ≈ 4 · 10(q−3)+0.37T(5.5)

or just

S̄[q](T) ≈ 10q+T/3.(5.6)

From the a posteriori error estimates presented in [10], we find that the computational
error can be estimated as

EC ≈ S[0](T) max
[0,T]

‖RC‖,(5.7)

where the computational residual RC is defined as

RC
i (t) =

1

kij

(

U(tij) − U(ti,j−1) −
∫

Iij

fi(U, ·) dt

)

.(5.8)

With 16 digits of precision a simple estimate for the computational residual is 1
kij

10−16,

which gives the approximation

EC ≈ 10T/3 1

min kij
10−16 = 10T/3−16 1

min kij
.(5.9)

With time-steps kij = 0.1 as above we then have

EC ≈ 10T/3−15,(5.10)

and so already at time T = 45 we have EC ≈ 1 and the solution is no longer accurate.
We thus conclude by examination of the stability factors that it is difficult to reach
beyond time T = 50 in double precision arithmetic. (With quadruple precision we
would be able to reach time T = 100.)

5.3. The solar system. We now consider the solar system, including the Sun,
the Moon, and the nine planets, which is a particularly important n-body problem of
the form

miẍi =
∑

j 6=i

Gmimj

|xj − xi|3
(xj − xi),(5.11)

where xi(t) = (x1
i (t), x

2
i (t), x

3
i (t)) denotes the position of body i at time t, mi is the

mass of body i, and G is the gravitational constant.
As initial conditions we take the values at 00.00 Greenwich mean time on January

1, 2000, obtained from the United States Naval Observatory [2], with initial velocities

1134 ANDERS LOGG

0 1 2 3 4 5 6 7 8 9 10

−1000

−800

−600

−400

−200

0

200

400

600

800

1000

PSfrag replacements

ϕ

t

Fig. 5.6. Part of the dual of the solar system with data chosen for control of the error in the
position of the moon at final time.

obtained by fitting a high-degree polynomial to the values of December 1999. This
initial data should be correct to five or more digits, which is similar to the available
precision for the masses of the planets. We normalize length and time to have the space
coordinates per astronomical unit, AU, which is (approximately) the mean distance
between the Sun and Earth, the time coordinates per year, and the masses per solar
mass. With this normalization, the gravitational constant is 4π2.

5.3.1. Predictability. Investigating the predictability of the solar system, the
question is how far we can accurately compute the solution, given the precision in
initial data. In order to predict the accumulation rate of errors, we solve the dual
problem and compute stability factors. Assuming the initial data is correct to five or
more digits, we find that the solar system is computable on the order of 500 years.
Including also the Moon, we cannot compute more than a few years. The dual solution
grows linearly backward in time (see Figure 5.6), and so errors in initial data grow
linearly with time. This means that for every extra digit of increased precision, we
can reach 10 times further.

5.3.2. Computability. To touch briefly on the fundamental question of the
computability of the solar system, concerning how far the system is computable with
correct initial data and correct model, we compute the trajectories for Earth, the
Moon, and the Sun over a period of 50 years, comparing different methods. Since
errors in initial data grow linearly, we expect numerical errors as well as stability
factors to grow quadratically.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs II 1135

0 10 20 30 40 50
−0.5

0

0.5

0 10 20 30 40 50
−0.5

0

0.5

0 10 20 30 40 50
−5

0

5
x 10

−4

0 10 20 30 40 50
−5

0

5
x 10

−3

PSfrag replacements

cG(1)

cG(2)

dG(1)

dG(2)

e
e

tt

Fig. 5.7. The growth of the error over 50 years for the Earth–Moon–Sun system as described
in the text.

In Figure 5.7 we plot the errors for the 18 components of the solution, com-
puted for k = 0.001 with cG(1), cG(2), dG(1), and dG(2). This figure contains
much information. To begin with, we see that the error seems to grow linearly for
the cG methods. This is in accordance with earlier observations [4, 7] for periodic
Hamiltonian systems, recalling that the (m)cG(q) methods conserve energy [10]. The
stability factors, however, grow quadratically and thus overestimate the error growth
for this particular problem. In an attempt to give an intuitive explanation of the
linear growth, we may think of the error introduced at every time-step by an energy-
conserving method as a pure phase error, and so at every time-step the Moon is
pushed slightly forward along its trajectory (with the velocity adjusted accordingly).
Since a pure phase error does not accumulate but stays constant (for a circular orbit),
the many small phase errors give a total error that grows linearly with time.

Examining the solutions obtained with the dG(1) and dG(2) methods, we see
that the error grows quadratically, as we expect. For the dG(1) solution, the error
reaches a maximum level of ∼ 0.5 for the velocity components of the Moon. The error
in position for the Moon is much smaller. This means that the Moon is still in orbit
around Earth, the position of which is still very accurate, but the position relative
to Earth, and thus also the velocity, is incorrect. The error thus grows quadratically
until it reaches a limit. This effect is also visible for the error of the cG(1) solution;
the linear growth flattens out as the error reaches the limit. Notice also that even if

1136 ANDERS LOGG

0 1 2 3 4 5
−4

−2

0

2

4
x 10

−3

0 1 2 3 4 5
−4

−2

0

2

4
x 10

−5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
−3

10
−2

10
−1

PSfrag replacements

ee
k

t

tt

All components Position of the Moon

Fig. 5.8. The growth of the error over 5 years for the Earth–Moon–Sun system computed with
the mcG(2) method, together with the multi-adaptive time-steps.

the higher-order dG(2) method performs better than the cG(1) method on a short
time-interval, it will be outrun on a long enough interval by the cG(1) method, which
has linear accumulation of errors (for this particular problem).

5.3.3. Multi-adaptive time-steps. Solving with the multi-adaptive method
mcG(2) (see Figure 5.8), the error grows quadratically. We saw in [10] that in order
for the mcG(q) method to conserve energy, we require that corresponding position
and velocity components use the same time-steps. Computing with different time-
steps for all components, as here, we thus cannot expect to have linear error growth.
Keeping k2

i ri ≤ tol with tol = 10−10 as here, the error grows as 10−4T 2 and we are
able to reach T ∼ 100. Decreasing tol to, say, 10−18, we could instead reach T ∼ 106.

We investigated the passing of a large comet close to Earth and the Moon and
found that the stability factors increase dramatically at the time t′ when the comet
comes very close to the Moon. The conclusion is that if we want to compute accurately
to a point beyond t′, we have to be much more careful than if we want to compute
to a point just before t′. This is not evident from the size of residuals or local errors.
This is an example of a Hamiltonian system for which the error growth is neither
linear nor quadratic.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs II 1137

Fig. 5.9. A space-time plot of the solution (above) and time-steps (below) for the propagating
front problem, with time going to the right. The two parts of the plots represent the components for
the two species A1 (lower parts) and A2 (upper parts).

5.4. A propagating front problem. The system of PDEs

{

u̇1 − εu′′
1 = −u1u

2
2,

u̇2 − εu′′
2 = u1u

2
2

(5.12)

on (0, 1) × (0, T] with ε = 0.00001, T = 100, and homogeneous Neumann boundary
conditions at x = 0 and x = 1 models isothermal autocatalytic reactions (see [14])
A1 + 2A2 → A2 + 2A2. We choose the initial conditions as

u1(x, 0) =

{

0, x < x0,
1, x ≥ x0,

with x0 = 0.2 and u2(x, 0) = 1 − u1(x, 0). An initial reaction where substance A1 is
consumed and substance A2 is formed will then occur at x = x0, resulting in a decrease
in the concentration u1 and an increase in the concentration u2. The reaction then
propagates to the right until all of substance A1 is consumed and we have u1 = 0 and
u2 = 1 in the entire domain.

Solving with the mcG(2) method, we find that the time-steps are small only close
to the reaction front; see Figures 5.9 and 5.10. The reaction front propagates to the
right as does the domain of small time-steps.

It is clear that if the reaction front is localized in space and the domain is large,
there is a lot to gain by using small time-steps only in this area. To verify this, we

1138 ANDERS LOGG

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

PSfrag replacements

xx

xx

U
1

U
2

k
1

k
2

Fig. 5.10. The concentrations of the two species U1 and U2 at time t = 50 as function of space
(above) and the corresponding time-steps (below).

compute the solution to within an accuracy of 10−7 for the final time error with con-
stant time-steps ki(t) = k0 for all components and compare with the multi-adaptive
solution. Computing on a space grid consisting of 16 nodes on [0, 1] (resulting in a
system of ODEs with 32 components), the solution is computed in 2.1 seconds on a
regular workstation. Computing on the same grid with the multi-adaptive method
(to within the same accuracy), we find that the solution is computed in 3.0 seconds.
More work is thus required to compute the multi-adaptive solution, and the reason
is the overhead resulting from additional bookkeeping and interpolation in the multi-
adaptive computation. However, increasing the size of the domain to 32 nodes on
[0, 2] and keeping the same parameters otherwise, we find the solution is now more
localized in the domain and we expect the multi-adaptive method to perform better
compared to a standard method. Indeed, the computation using equal time-steps now
takes 5.7 seconds, whereas the multi-adaptive solution is computed in 3.4 seconds. In
the same way as previously shown in section 5.1, adding extra degrees of freedom
does not substantially increase the cost of solving the problem, since the main work
is done time-stepping the components, which use small time-steps.

5.5. Burger’s equation with moving nodes. As a final example, we present a
computation in which we combine multi-adaptivity with the possibility of moving the
nodes in a space discretization of a time-dependent PDE. Solving Burger’s equation,

u̇ + µuu′ − εu′′ = 0,(5.13)

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs II 1139

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

PSfrag replacements

x

U
(x

)
U

(x
)

U
(x

)

Fig. 5.11. The solution to Burger’s equation as function of space at t = 0, t = T/2, and t = T .

on (0, 1) × (0, T] with initial condition

u0(x) =

{

sin(πx/x0), 0 ≤ x ≤ x0,
0 elsewhere,

(5.14)

and with µ = 0.1, ε = 0.001, and x0 = 0.3, we find the solution is a shock forming near
x = x0. Allowing individual time-steps within the domain, and moving the nodes of
the space discretization in the direction of the convection, (1, µu), we make the ansatz

U(x, t) =

N
∑

i=1

ξi(t)ϕi(x, t),(5.15)

where the {ξi}Ni=1 are the individual components computed with the multi-adaptive
method, and the {ϕi(·, t)}Ni=1 are piecewise linear basis functions in space for any
fixed t.

Solving with the mdG(0) method, the nodes move into the shock, in the direction
of the convection, so what we are really solving is a heat equation with multi-adaptive
time-steps along the streamlines; see Figures 5.11 and 5.12.

6. Future work. Together with the companion paper [10] (see also [9, 8]), this
paper serves as a starting point for further investigation of the multi-adaptive Galerkin
methods and their properties.

1140 ANDERS LOGG

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

x

t

Fig. 5.12. Node paths for the multi-adaptive moving-nodes solution of Burger’s equation.

Future work will include a more thorough investigation of the application of
the multi-adaptive methods to stiff ODEs, as well as the construction of efficient
multi-adaptive solvers for time-dependent PDEs, for which memory usage becomes an
important issue.

REFERENCES

[1] GNU Project Web Server, http://www.gnu.org/.
[2] USNO Astronomical Applications Department, http://aa.usno.navy.mil/.
[3] K. Eriksson, C. Johnson, and A. Logg, Explicit time-stepping for stiff ODEs, SIAM J. Sci.

Comput., 25 (2003), pp. 1142–1157.
[4] D. Estep, The rate of error growth in Hamiltonian-conserving integrators, Z. Angew. Math.

Phys., 46 (1995), pp. 407–418.
[5] D. Estep and C. Johnson, The computability of the Lorenz system, Math. Models Methods

Appl. Sci., 8 (1998), pp. 1277–1305.
[6] K. Gustafsson, M. Lundh, and G. Söderlind, A pi stepsize control for the numerical solution

of ordinary differential equations, BIT, 28 (1988), pp. 270–287.
[7] M. G. Larson, Error growth and a posteriori error estimates for conservative Galerkin ap-

proximations of periodic orbits in Hamiltonian systems, Math. Models Methods Appl. Sci.,
10 (2000), pp. 31–46.

[8] A. Logg, Multi-Adaptive Error Control for ODEs, Preprint 2000-03, Chalmers Finite Element
Center, Chalmers University of Technology, Göteborg, Sweden, 2000. Also available online
from http://www.phi.chalmers.se/preprints/.

[9] A. Logg, A Multi-Adaptive ODE-Solver, Preprint 2000-02, Chalmers Finite Element Center,
Chalmers University of Technology, Göteborg, Sweden, 2000. Also available online from
http://www.phi.chalmers.se/preprints/.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs II 1141

[10] A. Logg, Multi-adaptive Galerkin methods for ODEs I, SIAM J. Sci. Comput., 24 (2003),
pp. 1879–1902.

[11] A. Logg, Multi-Adaptive Galerkin Methods for ODEs II: Applications, Preprint 2001-10,
Chalmers Finite Element Center, Chalmers University of Technology, Göteborg, Sweden,
2001. Also available online from http://www.phi.chalmers.se/preprints/.

[12] A. Logg, Tanganyika, Version 1.2, 2001. http://www.phi.chalmers.se/tanganyika/.
[13] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C. The

Art of Scientific Computing, 2nd ed., Cambridge University Press, Cambridge, UK, 1992.
Also available online from http://www.nr.com.

[14] R. Sandboge, Adaptive Finite Element Methods for Reactive Flow Problems, Ph.D. thesis,
Department of Mathematics, Chalmers University of Technology, Göteborg, Sweden, 1996.

[15] G. Söderlind, The automatic control of numerical integration. Solving differential equations
on parallel computers, CWI Quarterly, 11 (1998), pp. 55–74.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES III:

EXISTENCE AND STABILITY

ANDERS LOGG

Abstract. We prove existence and stability of solutions for the multi-
adaptive Galerkin methods mcG(q) and mdG(q), and their dual versions
mcG(q)∗ and mdG(q)∗, including strong stability estimates for parabolic
problems. This paper is the third in a series devoted to multi-adaptive
Galerkin methods. In the companion paper [7], we return to the a priori
error analysis of the multi-adaptive methods. The stability estimates
derived in this paper will then be essential.

1. Introduction

This is part III in a sequence of papers [4, 5] on multi-adaptive Galerkin
methods, mcG(q) and mdG(q), for approximate (numerical) solution of
ODEs of the form

u̇(t) = f(u(t), t), t ∈ (0, T],

u(0) = u0,
(1.1)

where u : [0, T] → R
N is the solution to be computed, u0 ∈ R

N a given
initial condition, T > 0 a given final time, and f : R

N × (0, T] → R
N a given

function that is Lipschitz-continuous in u and bounded.
The mcG(q) and mdG(q) methods are based on piecewise polynomial ap-

proximation of degree q on partitions in time with time steps which may vary
for different components Ui(t) of the approximate solution U(t) of (1.1). In
part I and II of our series on multi-adaptive Galerkin methods, we prove
a posteriori error estimates, through which the time steps are adaptively
determined from residual feed-back and stability information, obtained by
solving a dual linearized problem. In this paper, we prove existence and
stability of discrete solutions, which we later use together with special in-
terpolation estimates to prove a priori error estimates for the mcG(q) and
mdG(q) methods in part IV [7].

Date: March 15, 2004.
Key words and phrases. Multi-adaptivity, individual time steps, local time steps, ODE,

continuous Galerkin, discontinuous Galerkin, mcgq, mdgq, a priori error estimates, dual
methods, existence, strong stability, parabolic.

Anders Logg, Department of Computational Mathematics, Chalmers University of
Technology, SE–412 96 Göteborg, Sweden, email : logg@math.chalmers.se.

1

2 ANDERS LOGG

1.1. Notation. For a detailed presentation of the multi-adaptive methods,
we refer to [4, 5]. Here, we only give a quick overview of the notation: Each
component Ui(t), i = 1, . . . , N , of the approximate m(c/d)G(q) solution U(t)
of (1.1) is a piecewise polynomial on a partition of (0, T] into Mi subintervals.
Subinterval j for component i is denoted by Iij = (ti,j−1, tij], and the length
of the subinterval is given by the local time step kij = tij − ti,j−1. This is
illustrated in Figure 1. On each subinterval Iij , Ui|Iij is a polynomial of
degree qij and we refer to (Iij , Ui|Iij) as an element.

Furthermore, we shall assume that the interval (0, T] is partitioned into
blocks between certain synchronized time levels 0 = T0 < T1 < . . . < TM =
T . We refer to the set of intervals Tn between two synchronized time levels
Tn−1 and Tn as a time slab:

Tn = {Iij : Tn−1 ≤ ti,j−1 < tij ≤ Tn}.

We denote the length of a time slab by Kn = Tn − Tn−1. We also refer to
the entire collection of intervals Iij as the partition T .

PSfrag replacements

0

i

kij

Kn

T

Iij

ti,j−1 tij

Tn−1 Tn

t

Figure 1. Individual partitions of the interval (0, T] for dif-
ferent components. Elements between common synchronized
time levels are organized in time slabs. In this example, we
have N = 6 and M = 4.

1.2. Outline of the paper. The first part of this paper is devoted to
proving existence of solutions for the multi-adaptive methods mcG(q) and
mdG(q), including the dual methods mcG(q)∗ and mdG(q)∗ obtained by
interchanging trial and test spaces, by proving (relevant) fixed point itera-
tions assuming the time steps are sufficiently small. The proof is constructive
and mimics the actual implementation of the methods. The multi-adaptive
ODE-solver Tanganyika, presented in [5], thus repeats the proof of existence
each time it computes a new solution.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES III 3

In the second part of this paper, we prove stability estimates, including
general exponential estimates for mcG(q), mdG(q), mcG(q)∗, and mdG(q)∗,
and strong stability estimates for parabolic problems for the mdG(q) and
mdG(q)∗ methods.

2. Multi-adaptive Galerkin and multi-adaptive dual Galerkin

2.1. Multi-adaptive continuous Galerkin, mcG(q). To formulate the

mcG(q) method, we define the trial space V and the test space V̂ as

V = {v ∈ [C([0, T])]N : vi|Iij ∈ Pqij (Iij), j = 1, . . . ,Mi, i = 1, . . . , N},

V̂ = {v : vi|Iij ∈ Pqij−1(Iij), j = 1, . . . ,Mi, i = 1, . . . , N},

(2.1)

where Pq(I) denotes the linear space of polynomials of degree q on an inter-
val I. In other words, V is the space of continuous piecewise polynomials of
degree q = qi(t) = qij ≥ 1, t ∈ Iij , on the partition T , and V̂ is the space of
(possibly discontinuous) piecewise polynomials of degree q − 1 on the same
partition.

We now define the mcG(q) method for (1.1) in the following way: Find
U ∈ V with U(0) = u0, such that

(2.2)

∫ T

0
(U̇ , v) dt =

∫ T

0
(f(U, ·), v) dt ∀v ∈ V̂ ,

where (·, ·) denotes the R
N inner product. If now for each local interval Iij

we take vn ≡ 0 when n 6= i and vi(t) = 0 when t 6∈ Iij , we can rewrite
the global problem (2.2) as a sequence of successive local problems for each
component: For i = 1, . . . , N , j = 1, . . . ,Mi, find Ui|Iij ∈ Pqij (Iij) with
Ui(ti,j−1) given, such that

(2.3)

∫

Iij

U̇iv dt =

∫

Iij

fi(U, ·)v dt ∀v ∈ Pqij−1(Iij),

where the initial condition is specified for i = 1, . . . , N by Ui(0) = ui(0).
We define the residual R of the approximate solution U by Ri(U, t) =

U̇i(t) − fi(U(t), t). In terms of the residual, we can rewrite (2.3) as

(2.4)

∫

Iij

Ri(U, ·)v dt = 0 ∀v ∈ Pqij−1(Iij),

that is, the residual is orthogonal to the test space on each local interval.
We refer to (2.4) as the Galerkin orthogonality of the mcG(q) method.

2.2. Multi-adaptive discontinuous Galerkin, mdG(q). For the mdG(q)
method, we define the trial and test spaces by

(2.5) V = V̂ = {v : vi|Iij ∈ Pqij (Iij), j = 1, . . . ,Mi, i = 1, . . . , N},

4 ANDERS LOGG

that is, both trial and test functions are (possibly discontinuous) piecewise
polynomials of degree q = qi(t) = qij ≥ 0, t ∈ Iij , on the partition T . We
define the mdG(q) solution U ∈ V to be left-continuous.

We now define the mdG(q) method for (1.1) in the following way, similar
to the definition of the continuous method: Find U ∈ V with U(0−) = u0,
such that
(2.6)

N
∑

i=1

Mi
∑

j=1

[

[Ui]i,j−1vi(t
+
i,j−1) +

∫

Iij

U̇ivi dt

]

=

∫ T

0
(f(U, ·), v) dt ∀v ∈ V̂ ,

where [Ui]i,j−1 = Ui(t
+
i,j−1)−Ui(t

−

i,j−1) denotes the jump in Ui(t) across the
node t = ti,j−1.

The mdG(q) method in local form, corresponding to (2.3), reads: For
i = 1, . . . , N , j = 1, . . . ,Mi, find Ui|Iij ∈ Pqij (Iij), such that

(2.7) [Ui]i,j−1v(ti,j−1) +

∫

Iij

U̇iv dt =

∫

Iij

fi(U, ·)v dt ∀v ∈ Pqij (Iij),

where the initial condition is specified for i = 1, . . . , N by Ui(0
−) = ui(0).

In the same way as for the continuous method, we define the residual R
of the approximate solution U by Ri(U, t) = U̇i(t) − fi(U(t), t), defined on
the inner of each local interval Iij , and rewrite (2.7) in the form

(2.8) [Ui]i,j−1v(t
+
i,j−1) +

∫

Iij

Ri(U, ·)v dt = 0 ∀v ∈ Pqij (Iij).

We refer to (2.8) as the Galerkin orthogonality of the mdG(q) method. Note
that the residual has two parts: one interior part Ri and the jump term
[Ui]i,j−1.

2.3. The dual problem. The motivation for introducing the dual problem
is for the a priori or a posteriori error analysis of the multi-adaptive methods.
For the a posteriori analysis, we formulate a continuous dual problem [4].
For the a priori analysis [7], we formulate a discrete dual problem in terms
of the dual multi-adaptive methods mcG(q)∗ and mdG(q)∗.

The discrete dual solution Φ : [0, T] → R
N is a Galerkin approximation of

the exact solution φ : [0, T] → R
N of the continuous dual backward problem

−φ̇(t) = J>(πu,U, t)φ(t) + g(t), t ∈ [0, T),

φ(T) = ψ,
(2.9)

where πu is an interpolant or a projection of the exact solution u of (1.1),
g : [0, T] → R

N is a given function, ψ ∈ R
N is a given initial condition, and

(2.10) J>(πu,U, t) =

(∫ 1

0

∂f

∂u
(sπu(t) + (1 − s)U(t), t) ds

)>

,

that is, an appropriate mean value of the transpose of the Jacobian of the
right-hand side f(·, t) evaluated at πu(t) and U(t). Note that by the chain

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES III 5

rule, we have

(2.11) J(πu,U, ·)(U − πu) = f(U, ·) − f(πu, ·).

2.4. Multi-adaptive dual continuous Galerkin, mcG(q)∗. In the for-
mulation of the dual method of mcG(q), we interchange the trial and test

spaces of mcG(q). With the same definitions of V and V̂ as in (2.1), we thus

define the mcG(q)∗ method for (2.9) in the following way: Find Φ ∈ V̂ with
Φ(T+) = ψ, such that

(2.12)

∫ T

0
(v̇,Φ) dt =

∫ T

0
(J(πu,U, ·)v,Φ) + Lψ,g(v),

for all v ∈ V with v(0) = 0, where

(2.13) Lψ,g(v) ≡ (v(T), ψ) +

∫ T

0
(v, g) dt.

Notice the extra condition that the test functions should vanish at t = 0,
which is introduced to make the dimension of the test space equal to the
dimension of the trial space. Integrating by parts, (2.12) can alternatively
be expressed in the form

(2.14)
N
∑

i=1

Mi
∑

j=1

[

−[Φi]ijvi(tij) −

∫

Iij

Φ̇ivi dt

]

=

∫ T

0
(J>(πu,U, ·)Φ + g, v) dt.

2.5. Multi-adaptive dual discontinuous Galerkin, mdG(q)∗. For the
discontinuous method, we note that the trial and test spaces are identical.
With the same definitions of V and V̂ as in (2.5), we define the mdG(q)∗

method for (2.9) in the following way: Find Φ ∈ V̂ with Φ(T+) = ψ, such
that
(2.15)
N
∑

i=1

Mi
∑

j=1

[

[vi]i,j−1Φi(t
+
i,j−1) +

∫

Iij

v̇iΦi dt

]

=

∫ T

0
(J(πu,U, ·)v,Φ) dt+Lψ,g(v),

for all v ∈ V with v(0−) = 0. Integrating by parts, (2.15) can alternatively
be expressed in the form

(2.16)
N
∑

i=1

Mi
∑

j=1

[

−[Φi]ijvi(t
−

ij) −

∫

Iij

Φ̇ivi dt

]

=

∫ T

0
(J>(πu,U, ·)Φ + g, v) dt.

3. Existence of solutions

To prove existence of the discrete mcG(q), mdG(q), mcG(q)∗, and mdG(q)∗

solutions defined in the previous section, we formulate fixed point iterations
for the construction of solutions. Existence then follows from the Banach
fixed point theorem, if the time steps are sufficiently small. The proof is
thus constructive and gives a method for computing solutions (see [5]).

6 ANDERS LOGG

3.1. Multi-adaptive Galerkin in fixed point form. We start by proving
the following simple lemma.

Lemma 3.1. Let A be a d× d matrix with elements Amn = n
m+n−1 , and let

B be a d× d matrix with elements Bmn = n
m+n , for m,n = 1, . . . , d. Then,

detA 6= 0 and detB 6= 0.

Proof. To prove that A is nonsingular, we let p(t) =
∑d

n=1 xnnt
n−1 be a

polynomial of degree d− 1 on [0, 1]. If for m = 1, . . . , d,
∫ 1
0 p(t)t

m−1 dt = 0,

it follows that p ≡ 0. Thus,
∑d

n=1 xn
n

m+n−1 = 0 for m = 1, . . . , d implies
x = 0, which proves that detA 6= 0. To prove that B is nonsingular, let

again p(t) =
∑d

n=1 xnnt
n−1. If for m = 1, . . . , d we have

∫ 1
0 p(t)t

m dt = 0,

take q(t) =
∑d

m=1 ymt
m, such that p and q have the same zeros on [0, 1]

and pq ≥ 0. Then,
∫ 1
0 pq dt = 0 but pq ≥ 0 on [0, 1] and so p ≡ 0. Thus,

∑n
n=1 xn

n
m+n = 0 for m = 1, . . . , d implies x = 0, which proves that detB 6=

0. �

To rewrite the methods in explicit fixed point form, we introduce a simple
basis for the trial and test spaces and solve for the degrees of freedom on
each local interval.

Lemma 3.2. The mcG(q) method for (1.1) in fixed point form reads: For
i = 1, . . . , N , j = 1, . . . ,Mi, find {ξijn}

qij
n=1, such that

(3.1) ξijn = ξij0 +

∫

Iij

w
[qij]
n (τij(t))fi(U(t), t) dt,

with

ξij0 =

{

ξi,j−1,qi,j−1
, j > 1,

ui(0), j = 1,

where {w
[qij]
n }

qij
n=1 ⊂ Pqij−1([0, 1]), w

[qij]
qij ≡ 1, and τij(t) = (t− ti,j−1)/(tij −

ti,j−1). A component Ui(t) of the solution is given on Iij by

Ui(t) =

qij
∑

n=0

ξijnλ
[qij]
n (τij(t)),

where {λ
[qij]
n }

qij
n=0 ⊂ Pqij ([0, 1]) is the standard Lagrange basis on [0, 1] with

t = 0 and t = 1 as two of its qij + 1 ≥ 2 nodal points.

Proof. Our starting point is the local formulation (2.3). Dropping indices
for ease of notation and rescaling to the interval [0, 1], we have

∫ 1

0
U̇v dt =

∫ 1

0
fv dt ∀v ∈ Pq−1([0, 1]),

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES III 7

with U ∈ Pq([0, 1]). Let now {λ
[q]
n }qn=0 be a basis for Pq([0, 1]). In terms of

this basis, we have U(t) =
∑q

n=0 ξnλ
[q]
n (t), and so

q
∑

n=0

ξn

∫ 1

0
λ̇[q]
n λ

[q−1]
m dt =

∫ 1

0
fλ[q−1]

m dt, m = 0, . . . , q − 1.

Since the solution is continuous, the value at t = 0 is known from the
previous interval (or from the initial condition). This gives

U(0) =

q
∑

n=0

ξnλ
[q]
n (0) = ξ0,

if we assume that λ
[q]
n (0) = δ0n. The remaining q degrees of freedom are

then determined by
q
∑

n=1

ξn

∫ 1

0
λ̇[q]
n λ

[q−1]
m−1 dt =

∫ 1

0
fλ

[q−1]
m−1 − ξ0

∫ 1

0
λ̇

[q]
0 λ

[q−1]
m−1 dt, m = 1, . . . , q.

If det
(

∫ 1
0 λ̇

[q]
n λ

[q−1]
m−1 dt

)

6= 0, this system can be solved for the degrees of

freedom (ξ1, . . . , ξn). With λ
[q]
n (t) = tn, we have

det

(∫ 1

0
λ̇[q]
n λ

[q−1]
m−1 dt

)

= det

(∫ 1

0
ntn−1tm−1 dt

)

= det

(

n

m+ n− 1

)

6= 0,

by Lemma 3.1. Solving for (ξ1, . . . , ξn), we obtain

ξn = α[q]
n ξ0 +

∫ 1

0
w[q]
n f dt, n = 1, . . . , q,

for some constants {α
[q]
n }qn=1, where {w

[q]
n }qn=1 ⊂ Pq−1([0, 1]) and ξ0 is deter-

mined from the continuity requirement. For any other basis {λ
[q]
n }qn=0 with

λ
[q]
n (0) = δ0n, we obtain a similar expression for the degrees of freedom by

a linear transformation. In particular, let {λ
[q]
n }qn=0 be the Lagrange basis

functions for a partition of [0, 1] with t = 0 as a nodal point. For f ≡ 0 it
is easy to see that the mcG(q) solution is constant and equal to its initial

value. It follows that α
[q]
n = 1, n = 1, . . . , q, and so

ξn = ξ0 +

∫ 1

0
w[q]
n f dt, n = 1, . . . , q,

with U(1) = ξq if also t = 1 is a nodal point. To see that w
[q]
q ≡ 1, take

v ≡ 1 in (2.3). The result now follows by rescaling to Iij . �

Lemma 3.3. The mdG(q) method for (1.1) in fixed point form reads: For
i = 1, . . . , N , j = 1, . . . ,Mi, find {ξijn}

qij
n=0, such that

(3.2) ξijn = ξ−ij0 +

∫

Iij

w
[qij]
n (τij(t))fi(U(t), t) dt,

8 ANDERS LOGG

with

ξ−ij0 =

{

ξi,j−1,qi,j−1
, j > 1,

ui(0), j = 1,

where {w
[qij]
n }

qij
n=0 ⊂ Pqij ([0, 1]), w

[qij]
qij ≡ 1, and τij(t) = (t − ti,j−1)/(tij −

ti,j−1). A component Ui(t) of the solution is given on Iij by

Ui(t) =

qij
∑

n=0

ξijnλ
[qij]
n (τij(t)),

where {λ
[qij]
n }

qij
n=0 ⊂ Pqij ([0, 1]) is the standard Lagrange basis on [0, 1] with

t = 1 as one of its qij + 1 ≥ 1 nodal points.

Proof. In as similar way as in the proof of Lemma 3.2, we use (2.7) to obtain

(ξ0 − ξ−0)λ[q]
m (0) +

q
∑

n=0

ξn

∫ 1

0
λ̇[q]
n λ

[q]
m dt =

∫ 1

0
fλ[q]

m dt, m = 0, . . . , q.

With λ
[q]
n (t) = tn, these 1 + q equations can be written in the form

ξ0 +

q
∑

n=1

ξn

∫ 1

0
ntn−1 dt =

∫ 1

0
f dt+ ξ−0 ,

q
∑

n=1

ξn

∫ 1

0
ntn−1tm dt =

∫ 1

0
ftm dt, m = 1, . . . , q,

which by Lemma 3.1 has a solution, since

det

(∫ 1

0
ntn−1tm dt

)

= det

(

n

m+ n

)

6= 0.

We thus obtain

ξn = α[q]
n ξ

−

0 +

∫ 1

0
w[q]
n f dt, n = 0, . . . , q.

By the same argument as in the proof of Lemma 3.2, we conclude that when

{λ
[q]
n }qn=0 is the Lagrange basis for a partition of [0, 1], we have

ξn = ξ−0 +

∫ 1

0
w[q]
n f dt, n = 0, . . . , q,

with U(1) = ξq = ξ−0 +
∫ 1
0 f dt if t = 1 is a nodal point. The result now

follows by rescaling to Iij. �

Lemma 3.4. The mcG(q)∗ method for (2.9) in fixed point form reads: For

i = 1, . . . , N , j = Mi, . . . , 1, find {ξijn}
qij−1
n=0 , such that

(3.3) ξijn = ψi +

∫ T

tij

f∗i (Φ, ·) dt+

∫

Iij

w
[qij]
n (τij(t))f

∗

i (Φ(t), t) dt,

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES III 9

where f ∗(Φ, ·) = J>(πu,U, ·)Φ + g, {w
[qij]
n }

qij−1
n=0 ⊂ Pqij ([0, 1]), w

[qij]
n (0) = 0,

w
[qij]
n (1) = 1, n = 0, . . . , qij − 1, and τij(t) = (t − ti,j−1)/(tij − ti,j−1). A

component Φi(t) of the solution is given on Iij by

Φi(t) =

qij−1
∑

n=0

ξijnλ
[qij−1]
n (τij(t)),

where {λ
[qij−1]
n }

qij−1
n=0 ⊂ Pqij−1([0, 1]) is the standard Lagrange basis on [0, 1].

Proof. Our starting point is the definition (2.14). For any 1 ≤ i ≤ N ,
take vn ≡ 0 when n 6= i and let vi be a continuous piecewise polynomial
that vanishes on [0, ti,j−1] with vi ≡ 1 on [tij , T], see Figure 3.4. With

f∗(Φ, ·) = J>(πu,U, ·)Φ + g, we then have

Mi
∑

l=j

[

−[Φi]ilvi(til) −

∫

Iil

Φ̇ivi dt

]

=

∫ T

ti,j−1

f∗i (Φ, ·)vi dt.

We integrate by parts, moving the derivative onto the test function, to get

−[Φi]ilvi(til) −

∫

Iil

Φ̇ivi dt = −[Φi]ilvi(til) − [Φivi]
t−
il

t+
i,l−1

+

∫

Iil

Φiv̇i dt

= Φi(t
+
i,l−1)vi(ti,l−1) − Φi(t

+
il)vi(til) +

∫

Iil

Φiv̇i dt.

Summing up, noting that vi(ti,j−1) = 0, v̇i = 0 on [tij , T] and Φi(t
+
Mi

) = ψi,
we have

−ψi +

∫

Iij

Φiv̇i dt =

∫ T

ti,j−1

f∗i (Φ, ·)vi dt,

or
∫

Iij

Φiv̇i dt = Φ̃ij +

∫

Iij

f∗i (Φ, ·)vi dt,

with Φ̃ij = ψi+
∫ T
tij
f∗i (Φ, ·) dt. Dropping indices and rescaling to the interval

[0, 1], we obtain
∫ 1

0
Φv̇ dt = Φ̃(1) +

∫ 1

0
f∗v dt,

for all v ∈ Pq([0, 1]) with v(0) = 0 and v(1) = 1. Let now {λ
[q−1]
n }q−1

n=0 be a

basis of Pq−1([0, 1]) and write Φ(t) =
∑q

n=1 ξnλ
[q−1]
n−1 (t). For m = 1, . . . , q,

we then have

q
∑

n=1

ξn

∫ 1

0
λ

[q−1]
n−1 (t)mtm−1 dt = Φ̃(1) +

∫ 1

0
f∗ tm dt.

10 ANDERS LOGG

If now det
(

∫ 1
0 λ

[q−1]
n−1 (t)mtm−1 dt

)

6= 0, we can solve for (ξ1, . . . , ξn). With

λ
[q−1]
n−1 (t) = tn−1, we have

det

(∫ 1

0

λ
[q−1]
n−1 (t)mtm−1 dt

)

= det

(∫ 1

0

mtn−1tm−1 dt

)

= det

(

m

m+ n− 1

)

6= 0,

by Lemma 3.1. Solving for the degrees of freedom, we obtain

ξn = α[q]
n Φ̃(1) +

∫ 1

0
w[q]
n f

∗ dt, n = 1, . . . , q.

By a linear transformation, we obtain a similar expression for any other
basis of Pq([0, 1]). For f ∗ ≡ 0, it is easy to see that the mcG(q)∗ solution

is constant and equal to its initial value. Thus, when {λ
[q−1]
n }q−1

n=0 is the

standard Lagrange basis for a partition of [0, 1], it follows that α
[q]
n = 1,

n = 1, . . . , q, and so

ξn = Φ̃(1) +

∫ 1

0
w[q]
n f

∗ dt, n = 1, . . . , q.

We note that w
[q]
n (0) = 0, n = 1, . . . , q, since each w

[q]
n is a linear combination

of the functions {tm}qm=1. We also conclude that w
[q]
n (1) = 1, since w

[q]
n (1) =

α
[q]
n = 1, n = 1, . . . , q. The result now follows by rescaling to Iij . We also

relabel the degrees of freedom from (ξ1, . . . , ξq) to (ξ0, . . . , ξq−1). �

PSfrag replacements

0 Tti,j−1 ti,j

vi(t)

Figure 2. The special choice of test function used in the
proof of Lemma 3.4.

Lemma 3.5. The mdG(q)∗ method for (2.9) in fixed point form reads: For
i = 1, . . . , N , j = Mi, . . . , 1, find {ξijn}

qij
n=0, such that

(3.4) ξijn = ξ+ijqij +

∫

Iij

w
[qij]
n (τij(t))f

∗

i (Φ(t), t) dt,

with

ξ+ijqij =

{

ξi,j+1,0, j < Mi,
ψi, j = Mi,

where f ∗(Φ, ·) = J>(πu,U, ·)Φ + g, {w
[qij]
n }

qij
n=0 ⊂ Pqij ([0, 1]), and τij(t) =

(t− ti,j−1)/(tij − ti,j−1). A component Φi(t) of the solution is given on Iij

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES III 11

by

Φi(t) =

qij
∑

n=0

ξijnλ
[qij]
n (τij(t)),

where {λ
[qij]
n }

qij
n=0 ⊂ Pqij ([0, 1]) is the standard Lagrange basis on [0, 1] with

t = 0 as one of its qij + 1 ≥ 1 nodal points.

Proof. The mdG(q)∗ method is identical to the mdG(q) method with time
reversed. �

Corollary 3.1. Let Tn be a time slab with synchronized time levels Tn−1

and Tn. With time reversed for the dual methods (to simplify the notation),
the mcG(q), mdG(q), mcG(q)∗, and mdG(q)∗ methods can all be expressed
in the form: For all Iij ∈ Tn, find {ξijn}, such that

(3.5) ξijn = Ũi(T
−

n−1) +

∫ ti,j−1

Tn−1

fi(U, ·) dt+

∫

Iij

w
[qij]
n (τij(t))fi(U, ·) dt,

with a suitable definition of Ũi(T
−

n−1). As before, τij(t) = (t− ti,j−1)/(tij −

ti,j−1) and {w
[qij]
n } is a set of polynomial weight functions on [0, 1].

Proof. For mcG(q), mdG(q), and mdG(q)∗, the result follows if we take

Ũ(T−

n−1) = U(T−

n−1) and note that w
[q]
q ≡ 1. For mcG(q)∗, the result follows

if we define Ũ(T−

n−1) = ui(0) +
∫ Tn−1

0 fi(U, ·) dt. �

3.2. Fixed point iteration. We now prove that for each of the four meth-
ods, mcG(q), mdG(q), mcG(q)∗, and mdG(q)∗, the fixed point iterations of
Corollary 3.1 converge, proving existence of the discrete solutions.

Theorem 3.1. (Existence of solutions) Let K = maxKn be the maximum
time slab length and define the Lipschitz constant Lf > 0 by

(3.6) ‖f(x, t) − f(y, t)‖l∞ ≤ Lf‖x− y‖l∞ ∀t ∈ [0, T] ∀x, y ∈ R
N .

If now

(3.7) KCqLf < 1,

where Cq is a constant of moderate size, depending only on the order and
method, then each of the fixed point iterations, (3.1), (3.2), (3.3), and (3.4),
converge to the unique solution of (2.2), (2.6), (2.12), and (2.15), respec-
tively.

Proof. Let x = (. . . , ξijn, . . .) be the set of values for the degrees of freedom
of U(t) on the time slab Tn of length Kn = Tn − Tn−1 ≤ K. Then, by
Corollary 3.1, we can write the fixed point iteration on the time slab in the
form

ξijn = gijn(x) = Ũi(T
−

n−1) +

∫ ti,j−1

Tn−1

fi(U, ·) dt +

∫

Iij

w
[qij]
n (τij(t))fi(U, ·) dt.

12 ANDERS LOGG

Let V (t) be another trial space function on the time slab with degrees of
freedom y = (. . . , ηijn, . . .). Then,

gijn(x) − gijn(y) =

∫ ti,j−1

Tn−1

(fi(U, ·) − fi(V, ·)) dt

+

∫

Iij

w
[qij]
n (τij(t))(fi(U, ·) − fi(V, ·)) dt,

and so

‖g(x) − g(y)‖l∞ ≤ CLf

∫ Tn

Tn−1

‖U(t) − V (t)‖l∞ dt

≤ CLfK sup
(Tn−1 ,Tn]

‖U(t) − V (t)‖l∞ .

Noting now that

|Ui(t) − Vi(t)| ≤
∑

n

|ξijn − ηijn||λ
[qij]
n (t)| ≤ C ′‖x− y‖∞,

for t ∈ Iij, we thus obtain

‖g(x) − g(y)‖l∞ ≤ CC ′LfK‖x− y‖l∞ .

By Banach’s fixed point theorem, we conclude that the fixed point iteration
converges to a unique fixed point if CC ′LfK < 1. �

4. Stability estimates

In this section, we prove stability estimates for the multi-adaptive meth-
ods and the corresponding multi-adaptive dual methods. We consider the
linear model problem

u̇(t) +A(t)u(t) = 0, t ∈ (0, T],

u(0) = u0,
(4.1)

where A = A(t) is a piecewise smooth N × N matrix on (0, T]. The dual
backward problem of (4.1) for φ = φ(t) is then given by

−φ̇(t) +A>(t)φ(t) = 0, t ∈ [0, T),

φ(T) = ψ.
(4.2)

With w(t) = φ(T − t), we have ẇ(t) = −φ̇(T − t) = −A>(T − t)w(t), and
so (4.2) can be written as a forward problem for w in the form

ẇ(t) +B(t)w(t) = 0, t ∈ (0, T],

w(0) = w0,
(4.3)

where w0 = ψ and B(t) = A>(T − t). In the following discussion, w rep-
resents either u or φ(T − ·) and, correspondingly, W represents either the
discrete mc/dG(q) approximation U of u or the discrete mc/dG(q)∗ approx-
imation Φ of φ.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES III 13

4.1. Exponential stability estimates. The stability estimates are based
on the following version of the discrete Grönwall inequality.

Lemma 4.1. (A discrete Grönwall inequality) Assume that z, a : N → R

are non-negative, a(m) ≤ 1/2 for all m, and z(n) ≤ C +
∑n

m=1 a(m)z(m)
for all n. Then, for n = 1, 2, . . ., we have

(4.4) z(n) ≤ 2C exp

(

n−1
∑

m=1

2a(m)

)

.

Proof. By a standard discrete Grönwall inequality, it follows that z(n) ≤

C exp
(

∑n−1
m=0 a(m)

)

, if z(n) ≤ C +
∑n−1

m=0 a(m)z(m) for n ≥ 1 and z(0) ≤

C, see [8]. Here, (1 − a(n))z(n) ≤ C +
∑n−1

m=1 a(m)z(m), and so z(n) ≤

2C +
∑n−1

m=1 2a(m)z(m), since 1 − a(n) ≥ 1/2. The result now follows if we
take a(0) = z(0) = 0. �

Theorem 4.1. (Stability estimate) Let W be the mcG(q), mdG(q), mcG(q)∗,
or mdG(q)∗ solution of (4.3). Then, there is a constant Cq of moderate size,
depending only on the highest order max qij, such that if

(4.5) KnCq‖B‖L∞([Tn−1,Tn],lp) ≤ 1, n = 1, . . . ,M,

then
(4.6)

‖W‖L∞([Tn−1,Tn],lp) ≤ Cq‖w0‖lp exp

(

n−1
∑

m=1

KmCq‖B‖L∞([Tm−1,Tm],lp)

)

,

for n = 1, . . . ,M , 1 ≤ p ≤ ∞.

Proof. By Corollary 3.1, we can write the mcG(q), mdG(q), mcG(q)∗, and
mdG(q)∗ methods in the form

ξijn′ = wi(0) +

∫ ti,j−1

0
fi(W, ·) dt +

∫

Iij

w
[qij]
n′ (τij(t))fi(W, ·) dt.

Applied to the linear model problem (4.3), we have

ξijn′ = wi(0) −

∫ ti,j−1

0
(BW)i dt−

∫

Iij

w
[qij]
n′ (τij(t))(BW)i dt,

and so

|ξijn′ | ≤ |wi(0)| +

∣

∣

∣

∣

∫ ti,j−1

0
(BW)i dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

Iij

w
[qij]
n′ (τij(t))(BW)i dt

∣

∣

∣

∣

∣

≤ |wi(0)| + C

∫ tij

0
|(BW)i| dt ≤ |wi(0)| + C

∫ Tn

0
|(BW)i| dt,

where Tn is smallest synchronized time level for which tij ≤ Tn. It now fol-

lows that for all t ∈ [Tn−1, Tn], we have |Wi(t)| ≤ C|wi(0)|+C
∫ Tn

0 |(BW)i| dt,

14 ANDERS LOGG

and so ‖W (t)‖lp is bounded by

C‖w0‖lp + C

∫ Tn

0
‖BW‖lp dt = C‖w0‖lp +C

n
∑

m=1

∫ Tm

Tm−1

‖BW‖lp dt.

With W̄n = ‖W‖L∞([Tn−1,Tn],lp), this means that

W̄n ≤ C‖w0‖lp + C
n
∑

m=1

Km‖B‖L∞([Tm−1,Tm],lp)W̄m

≡ (Cq/2)‖w0‖lp +

n
∑

m=1

Km(Cq/2)‖B‖L∞([Tm−1,Tm],lp)W̄m.

By assumption, KmCq‖B‖L∞([Tm−1,Tm],lp) ≤ 1 for all m, and so the result
follows by Lemma 4.1. �

4.2. Stability estimates for parabolic problems. We consider now the
parabolic model problem u̇(t) + Au(t) = 0, with A a symmetric, positive
semidefinite, and constant N ×N matrix, and prove stability estimates for
the mdG(q) and mdG(q)∗ methods. As before, we write the problem in the
form (4.3), and note that B = A = A>. We thus consider the problem:
Find w : [0, T] → R

N , such that

ẇ(t) +Aw(t) = 0, t ∈ (0, T],

w(0) = w0.
(4.7)

For the continuous problem (4.7), we have the following standard strong
stability estimates, where “strong” indicates control of Aw (or ẇ) in terms
of (the l2-norm of) the initial data w0.

Theorem 4.2. (Strong stability for the continuous problem) The solution
w of (4.7) satisfies for T > 0 and 0 < ε < T with ‖ · ‖ = ‖ · ‖l2 ,

‖w(T)‖2 + 2

∫ T

0
(Aw,w) dt = ‖w0‖

2,(4.8)

∫ T

0
t ‖Aw‖2 dt ≤

1

4
‖w0‖

2,(4.9)

∫ T

ε
‖Aw‖ dt ≤

1

2
(log(T/ε))1/2 ‖w0‖.(4.10)

Proof. Multiply (4.7) with v = w, v = tAw, and v = t2A2w, respectively.
See [2] for a full proof. �

We now prove an extension to multi-adaptive time-stepping of the strong
stability estimate Lemma 6.1 in [1]. See also Lemma 1 in [3] for a similar es-
timate. In the proof, we use a special interpolant π, defined on the partition
T as follows. On each local interval, the component (πϕ)i of the interpolant
πϕ of a given function ϕ : [0, T] → R

N , is defined by the following condi-
tions: (πϕi)|Iij ∈ Pqij (Iij) interpolates ϕi at the left end-point t+i,j−1 of Iij

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES III 15

and πϕi − ϕi is orthogonal to Pqij−1(Iij). (This is the interpolant denoted

by π
[q]
dG∗ in [6].) We also introduce the left-continuous piecewise constant

function t̄ = t̄(t) defined by t̄(t) = minij{tij : t ≤ tij}. With {tm} the
ordered sequence of individual time levels {tij}, as illustrated in Figure 3,
t̄ = t̄(t) is thus the piecewise constant function that takes the value tm on
(tm−1, tm]. We make the following assumption on the partition T :

(4.11) Tn−1

∫ Tn

Tn−1

(Av,Av) dt ≤ γ

∫ Tn

Tn−1

(Av, π(t̄Av)) dt, n = 2, . . . ,M,

for all functions v in the trial (and test) space V of the mdG(q) and mdG(q)∗

methods, where γ ≥ 1 is a constant of moderate size if Av is not close to
being orthogonal to V . In the case of equal time steps for all components,
this estimate is trivially true, because then πAv = Av since Av ∈ V if v ∈ V .
Note that we may computationally test the validity of (4.11), see [7].

Theorem 4.3. (Strong stability for the discrete problem) Let W be the
mdG(q) or mdG(q)∗ solution of (4.7), computed with the same time step
and order for all components on the first time slab T1. Assume that (4.11)
holds and that σKn ≤ Tn−1, n = 2, . . . ,M , for some constant σ > 1. Then,
there is a constant C = C(q, γ, σ), such that

‖W (T)‖2 + 2

∫ T

0
(AW,W) dt +

N
∑

i=1

Mi
∑

j=1

[Wi]
2
i,j−1 = ‖w0‖

2,(4.12)

M
∑

n=1

Tn

∫ Tn

Tn−1

{

‖Ẇ‖2 + ‖AW‖2
}

dt+
M
∑

n=1

Tn
∑

ij

[Wi]
2
i,j−1/kij ≤ C ‖w0‖

2,

(4.13)

(4.14)

∫ T

0

{

‖Ẇ‖ + ‖AW‖
}

dt+

N
∑

n=1

∑

ij

|[Wi]i,j−1|
2

1/2

≤ C

(

log
T

K1
+ 1

)1/2

‖w0‖,

where ‖·‖ = ‖·‖l2 ,
∑

ij denotes the sum over all elements within the current
time slab Tn, and where in all integrals the domain of integration does not
include points where the integrand is discontinuous.

Proof. We follow the proof presented in [1] and make extensions where nec-
essary. With V the trial (and test) space for the mdG(q) method defined in
Section 2, the mdG(q) (or mdG(q)∗) approximation W of w on a time slab
Tn is defined as follows: Find W ∈ V , such that

(4.15)
∑

ij

(

[Wi]i,j−1vi(t
+
i,j−1) +

∫

Iij

Ẇivi dt

)

+

∫ Tn

Tn−1

(AW, v) dt = 0,

for all test functions v ∈ V , where the sum is taken over all intervals Iij
within the time slab Tn. To prove the basic stability estimate (4.12), we

16 ANDERS LOGG

take v = W in (4.15) to get

1

2

∑

ij

[Wi]
2
i,j−1 +

1

2
‖W (T−

n)‖2 −
1

2
‖W (T−

n−1)‖
2 +

∫ Tn

Tn−1

(AW,W) dt = 0.

The estimate now follows by summation over all time slabs Tn.

PSfrag replacements

t0 t1 t2 . . .

Tn−1 TnT0 = 0T1 TM = T

Figure 3. The sequence {tm} of individual time levels.

For the proof of (4.13), we would like to take v = tAW in (4.15), but
this is not a valid test function. In the proof of Lemma 6.1 in [1], the test
function is chosen as v = TnAW , which is not possible in the multi-adaptive
case, since A mixes the components of W and as a result, vi = Tn(AW)i
may not be a test function for component Wi. Instead, we take v = π(t̄AW),
with π and t̄ defined as above, to obtain

∑

ij

(

[Wi]i,j−1(t̄(AW)i)(t
+
i,j−1) +

∫

Iij

Ẇi t̄(AW)i dt

)

+

∫ Tn

Tn−1

(AW,π(t̄AW)) dt = 0,

where we have used the orthogonality condition of the interpolant for Ẇi ∈
Pqij−1(Iij). Noting that [Wi]m = Wi(t

+
m) −Wi(t

−
m) = 0 if component i has

no node at time t = tm, we rewrite the sum as a sum over all intervals
(tm−1, tm] within (Tn−1, Tn], in the form

∑

i

∑

m

[Wi]m−1tm(AW (t+m−1))i +

∫

Im

Ẇi tm(AW)i dt

=
∑

m

tm([W]m−1, AW (t+m−1)) +
tm
2

∫

Im

d

dt
(W,AW) dt

=
∑

m

tm
2

([W]m−1, A[W]m−1)

+
tm
2

[

(W (t−m), AW (t−m)) − (W (t−m−1), AW (t−m−1))
]

,

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES III 17

where, using the notation km = tm − tm−1, we note that
∑

m

tm
2

[

(W (t−m), AW (t−m)) − (W (t−m−1), AW (t−m−1))
]

=
∑

m

tm
2

(W (t−m), AW (t−m)) −
tm−1

2
(W (t−m−1), AW (t−m−1))

−
km
2

(W (t−m−1), AW (t−m−1))

=
Tn
2

(W (T−

n), AW (T−

n)) −
Tn−1

2
(W (T−

n−1), AW (T−

n−1))

−
∑

m

km
2

(W (t−m−1), AW (t−m−1)).

Collecting the terms, we thus have

∑

m

tm([W]m−1, A[W]m−1) + Tn(W (T−

n), AW (T−

n)) − Tn−1(W (T−

n−1), AW (T−

n−1))

+2

∫ Tn

Tn−1

(AW,π(t̄AW)) dt =
∑

m

km(W (t−m−1), AW (t−m−1)).

(4.16)

For n = 1, we have
∫ Tn

Tn−1

(AW,π(t̄AW)) dt = T1

∫ T1

0
(AW,π(AW)) dt = T1

∫ T1

0
‖AW‖2 dt,

since π(AW) = AW on [0, T1], where the same time steps and orders are
used for all components. We further estimate the right-hand side of (4.16)
as follows:

K1(w0, Aw0) = K1([W]0, A[W]0) −K1(W (0+), AW (0+)) + 2K1(w0, AW (0+))

≤ T1([W]0, A[W]0) + 2K1(w0, AW (0+))

≤ T1([W]0, A[W]0) +
1

ε
‖w0‖

2 + εK2
1‖AW (0+)‖2

≤ T1([W]0, A[W]0) +
1

ε
‖w0‖

2 + εCqT1

∫ T1

0

‖AW‖2 dt,

where we have used an inverse estimate for AW on [0, T1]. With ε = 1/Cq,
we thus obtain the estimate

(4.17) T1(W (T−

1), AW (T−

1)) + T1

∫ T1

0
‖AW‖2 ≤ Cq‖w0‖

2.

For n > 1, it follows by the assumption (4.11), that
∫ Tn

Tn−1

(AW,π(t̄AW)) dt ≥ γ−1Tn−1

∫ Tn

Tn−1

‖AW‖2 dt

and thus
∫ Tn

Tn−1

(AW,π(t̄AW)) dt ≥
γ−1σ

σ + 1
Tn

∫ Tn

Tn−1

‖AW‖2 dt,

18 ANDERS LOGG

where we have also used the assumption Tn−1 ≥ σKn. The terms on the
right-hand side of (4.16) are now estimated as follows:

km(W (t−m−1), AW (t−m−1)) = km(W (t+m−1) − [W]m−1, A(W (t+m−1) − [W]m−1))

= km

[

(W (t+m−1), AW (t+m−1)) + ([W]m−1, A[W]m−1) − 2(W (t+m−1), A[W]m−1)
]

≤ km

[

(1 + β)(W (t+m−1), AW (t+m−1)) + (1 + β−1)([W]m−1, A[W]m−1)
]

,

for any β > 0. Choosing β = 1/(σ − 1), we obtain the following bound for
km(W (t−m−1), AW (t−m−1)):

σkm
σ − 1

(W (t+m−1), AW (t+m−1)) + σkm([W]m−1, A[W]m−1)

≤
Cqσ

σ − 1

∫

Im

(W,AW) dt + σkm([W]m−1, A[W]m−1),

where we have again used an inverse estimate, for W on Im. From the
assumption that σKn ≤ Tn−1 for n > 1, it follows that σkm ≤ σKn ≤
Tn−1 ≤ tm, and so

Tn(W (T−

n), AW (T−

n)) − Tn−1(W (T−

n−1), AW (T−

n−1))

+
2γ−1σ

σ + 1
Tn

∫ Tn

Tn−1

‖AW‖2 dt ≤
Cqσ

σ − 1

∫ Tn

Tn−1

(W,AW) dt.

Summing over n > 1 and using the estimate (4.17) for n = 1, we obtain by
(4.12),

T (W (T−), AW (T−)) + T1

∫ T1

0
‖AW‖2 dt+

2γ−1σ

σ + 1

M
∑

n=2

Tn

∫ Tn

Tn−1

‖AW‖2 dt

≤ Cq‖w0‖
2 +

Cqσ

σ − 1

∫ T

T1

(W,AW) dt ≤ Cq

(

1 +
σ/2

σ − 1

)

‖w0‖
2,

which we write as

M
∑

n=1

Tn

∫ Tn

Tn−1

‖AW‖2 dt ≤ C ‖w0‖
2,

noting that T (W (T−), AW (T−)) ≥ 0. For the proof of (4.13), it now suffices
to prove that

(4.18)

∫ Tn

Tn−1

‖Ẇ‖ dt ≤ C

∫ Tn

Tn−1

‖AW‖2 dt,

and

(4.19)
∑

ij

[Wi]
2
i,j−1/kij ≤ C

∫ Tn

Tn−1

‖AW‖2 dt.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES III 19

To prove (4.18), we take vi = (t− ti,j−1)Ẇi/kij on each local interval Iij
in (4.15), which gives

∑

ij

∫

Iij

t− ti,j−1

kij
Ẇ 2
i dt = −

∑

ij

∫

Iij

(AW)i
t− ti,j−1

kij
Ẇi dt

≤
∑

ij

(

∫

Iij

t− ti,j−1

kij
(AW)2i dt

)1/2 (
∫

Iij

t− ti,j−1

kij
Ẇ 2
i dt

)1/2

≤

∑

ij

∫

Iij

t− ti,j−1

kij
(AW)2i dt

1/2

∑

ij

∫

Iij

t− ti,j−1

kij
Ẇ 2
i dt

1/2

,

where we have used Cauchy’s inequality twice; first on L2(Iij) and then on

l2. Using an inverse estimate for Ẇ 2
i , we obtain

∫ Tn

Tn−1

‖Ẇ‖2 dt =
∑

ij

∫

Iij

Ẇ 2
i dt ≤ Cq

∑

ij

∫

Iij

t− ti,j−1

kij
Ẇ 2
i dt

≤ Cq
∑

ij

∫

Iij

t− ti,j−1

kij
(AW)2i dt

≤ Cq
∑

ij

∫

Iij

(AW)2i dt = Cq

∫ Tn

Tn−1

‖AW‖ dt,

which proves (4.18).
To prove (4.19), we take vi = [Wi]i,j−1/kij on each local interval Iij in

(4.15), which gives

∑

ij

[Wi]
2
i,j−1/kij = −

∑

ij

∫

Iij

(Ẇi + (AW)i) [Wi]i,j−1/kij dt

≤

∑

ij

∫

Iij

(Ẇi + (AW)i)
2 dt

1/2

∑

ij

[Wi]
2
i,j−1/kij

1/2

,

where we have again used Cauchy’s inequality twice. We thus have

∑

ij

[Wi]
2
i,j−1/kij ≤ 2

∫ Tn

Tn−1

‖Ẇ‖2 dt+ 2

∫ Tn

Tn−1

‖AW‖2 dt,

and so (4.19) follows, using (4.18). This also proves (4.13).

20 ANDERS LOGG

Finally, to prove (4.14), we use Cauchy’s inequality with (4.13) to get

M
∑

n=1

∫ Tn

Tn−1

‖Ẇ‖ dt =

M
∑

n=1

√

Kn/Tn
√

Tn/Kn

∫ Tn

Tn−1

‖Ẇ‖ dt

≤

(

M
∑

n=1

Kn/Tn

)1/2 (M
∑

n=1

Tn

∫ Tn

Tn−1

‖Ẇ‖2 dt

)1/2

≤

(

1 +

∫ T

T1

1

t
dt

)1/2

C‖w0‖

≤ C (log(T/K1) + 1)1/2 ‖w0‖,

with a similar estimate for AW . The proof is now complete, noting that

M
∑

n=1

∑

ij

|[Wi]i,j−1|
2

1/2

≤

M
∑

n=1

Kn

Tn
Tn
∑

ij

|[Wi]i,j−1|
2/kij

1/2

≤

(

M
∑

n=1

Kn/Tn

)1/2

M
∑

n=1

Tn
∑

ij

|[Wi]i,j−1|
2/kij

1/2

≤ C(log(T/K1) + 1)1/2 ‖w0‖.

�

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES III 21

References

[1] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems

I: A linear model problem, SIAM J. Numer. Anal., 28, No. 1 (1991), pp. 43–77.
[2] K. Eriksson, C. Johnson, and A. Logg, Adaptive computational methods for par-

abolic problems, To appear in Encyclopedia of Computational Mechanics, (2004).
[3] C. Johnson, Error estimates and adaptive time-step control for a class of one-step

methods for stiff ordinary differential equations, SIAM J. Numer. Anal., 25 (1988),
pp. 908–926.

[4] A. Logg, Multi-adaptive Galerkin methods for ODEs I, SIAM J. Sci. Comput., 24
(2003), pp. 1879–1902.

[5] , Multi-adaptive Galerkin methods for ODEs II: Implementation and applications,
SIAM J. Sci. Comput., 25 (2003), pp. 1119–1141.

[6] , Interpolation estimates for piecewise smooth functions in one dimension, Tech.
Rep. 2004–02, Chalmers Finite Element Center Preprint Series, 2004.

[7] , Multi-adaptive Galerkin methods for ODEs IV: A priori error estimates, Sub-
mitted to SIAM J. Numer. Anal., (2004).

[8] P. Niamsup and V. N. Phat, Asymptotic stability of nonlinear control systems de-

scribed by difference equations with multiple delays, Electronic Journal of Differential
Equations, 11 (2000), pp. 1–17.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES IV:

A PRIORI ERROR ESTIMATES

ANDERS LOGG

Abstract. We prove general order a priori error estimates for the
multi-adaptive continuous and discontinuous Galerkin methods mcG(q)
and mdG(q). To prove the error estimates, we represent the error in
terms of the residual of an interpolant of the exact solution, and a dis-
crete dual solution. The estimates then follow from interpolation esti-
mates, together with stability estimates for the discrete dual solution.
For the general non-linear problem, we obtain exponential stability esti-
mates, using a Grönwall argument, and for a parabolic model problem,
we show that the stability factor is of unit size.

1. Introduction

This is part IV in a sequence of papers [4, 5, 8] on multi-adaptive Galerkin
methods, mcG(q) and mdG(q), for approximate (numerical) solution of
ODEs of the form

u̇(t) = f(u(t), t), t ∈ (0, T],

u(0) = u0,
(1.1)

where u : [0, T] → R
N is the solution to be computed, u0 ∈ R

N a given
initial condition, T > 0 a given final time, and f : R

N × (0, T] → R
N a given

function that is Lipschitz-continuous in u and bounded.
The mcG(q) and mdG(q) methods are based on piecewise polynomial ap-

proximation of degree q on partitions in time with time steps which may vary
for different components Ui(t) of the approximate solution U(t) of (1.1). In
part I and II of our series on multi-adaptive Galerkin methods, we prove
a posteriori error estimates, through which the time steps are adaptively
determined from residual feed-back and stability information, obtained by
solving a dual linearized problem. In part III, we prove existence and sta-
bility of discrete solutions. In the current paper, we prove a priori error
estimates for the mcG(q) and mdG(q) methods.

Date: March 15, 2004.
Key words and phrases. Multi-adaptivity, individual time steps, local time steps, ODE,

continuous Galerkin, discontinuous Galerkin, mcgq, mdgq, a priori error estimates.
Anders Logg, Department of Computational Mathematics, Chalmers University of

Technology, SE–412 96 Göteborg, Sweden, email : logg@math.chalmers.se.

1

2 ANDERS LOGG

1.1. Main results. The main results of this paper are a priori error esti-
mates for the mcG(q) and mdG(q) methods respectively, of the form

(1.2) ‖e(T)‖lp ≤ CS(T)‖k2qu(2q)‖L∞([0,T],l1),

and

(1.3) ‖e(T)‖lp ≤ CS(T)‖k2q+1u(2q+1)‖L∞([0,T],l1),

for p = 2 or p = ∞, where C is an interpolation constant, S(T) is a (com-

putable) stability factor, and k2qu(2q) (or k2q+1u(2q+1)) combines local time
steps k = (kij) with derivatives of the exact solution u. These estimates
state that the mcG(q) method is of order 2q and that the mdG(q) method
is of order 2q + 1 in the local time step. We refer to Section 5 for the exact
results. For the general non-linear problem, we obtain exponential estimates
for the stability factor S(T), and for a parabolic model problem we show
that the stability factor remains bounded and of unit size, independent of
T (up to a logarithmic factor).

1.2. Notation. For a detailed description of the multi-adaptive Galerkin
methods, we refer the reader to [4, 5, 8]. In particular, we refer to [4] or [8]
for the definition of the methods.

The following notation is used throughout this paper: Each component
Ui(t), i = 1, . . . , N , of the approximate m(c/d)G(q) solution U(t) of (1.1) is
a piecewise polynomial on a partition of (0, T] into Mi subintervals. Subin-
terval j for component i is denoted by Iij = (ti,j−1, tij], and the length of
the subinterval is given by the local time step kij = tij − ti,j−1. This is
illustrated in Figure 1. On each subinterval Iij , Ui|Iij is a polynomial of
degree qij and we refer to (Iij , Ui|Iij) as an element.

Furthermore, we shall assume that the interval (0, T] is partitioned into
blocks between certain synchronized time levels 0 = T0 < T1 < . . . < TM =
T . We refer to the set of intervals Tn between two synchronized time levels
Tn−1 and Tn as a time slab:

Tn = {Iij : Tn−1 ≤ ti,j−1 < tij ≤ Tn}.

We denote the length of a time slab by Kn = Tn − Tn−1.

1.3. Outline of the paper. The outline of the paper is as follows. In
Section 2, we first discuss the dual problem that forms the basic tool of
the a priori error analysis, and how this differs from the dual problem we
formulate in [4] for the a posteriori error analysis. We then, in Section 3,
derive a representation of the error in terms of the dual solution and the
residual of an interpolant of the exact solution.

In Section 4, we present interpolation results for piecewise smooth func-
tions proved in [7, 6]. We then prove the a priori error estimates in Section
5, starting from the error representation and using the interpolation esti-
mates together with the stability estimates from [8]. Finally, in Section
6, we present some numerical evidence for the a priori error estimates. In

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES IV 3

PSfrag replacements

0

i

kij

Kn

T

Iij

ti,j−1 tij

Tn−1 Tn

t

Figure 1. Individual partitions of the interval (0, T] for dif-
ferent components. Elements between common synchronized
time levels are organized in time slabs. In this example, we
have N = 6 and M = 4.

particular, we solve a simple model problem and show that we obtain the
predicted convergence rates.

2. The dual problem

In [4], we prove a posteriori error estimates for the multi-adaptive meth-
ods, by deriving a representation for the error e = U −u, where U : [0, T] →
R
N is the computed approximate solution of (1.1), in terms of the residual

R(U, ·) = U̇ − f(U, ·) and the solution φ : [0, T] → R
N of the continuous

linearized dual problem

−φ̇(t) = J>(u,U, t)φ(t) + g(t), t ∈ [0, T),

φ(T) = ψ,
(2.1)

with given data g : [0, T] → R
N and ψ ∈ R

N , where

(2.2) J>(u,U, t) =

(
∫ 1

0

∂f

∂u
(su(t) + (1 − s)U(t), t) ds

)>

.

To prove a priori error estimates, we derive an error representation in
terms of the residual R(πu, ·) of an interpolant πu of the exact solution u,
and a discrete dual solution Φ, following the same approach as in [3] and
[1]. The discrete dual solution Φ is defined as a Galerkin solution of the
continuous linearized dual problem

−φ̇(t) = J>(πu,U, t)φ(t) + g(t), t ∈ [0, T),

φ(T) = ψ,
(2.3)

4 ANDERS LOGG

where we note that J is now evaluated at a mean value of πu and U . We
will use the notation f ∗(φ, ·) = J>(πu,U, ·)φ+ g, to write the dual problem
(2.3) in the form

−φ̇(t) = f ∗(φ(t), t), t ∈ [0, T),

φ(T) = ψ.
(2.4)

We refer to [8] for the exact definition of the discrete dual solution Φ.
We will also derive a priori error estimates for linear problems of the form

u̇(t) +A(t)u(t) = 0, t ∈ (0, T],

u(0) = u0,
(2.5)

with A(t) a bounded N × N -matrix, in particular for a parabolic model
problem with A(t) a positive semidefinite and symmetric matrix . For the
linear problem (2.5), the discrete dual solution Φ is defined as a Galerkin
solution of the continuous dual problem

−φ̇(t) +A>(t)φ(t) = g, t ∈ [0, T),

φ(T) = ψ,
(2.6)

which takes the form (2.4) with the notation f ∗(φ, ·) = −A>φ+ g.

3. Error representation

In this section, we derive the error representations on which the a pri-
ori error estimates are based. For each of the two methods, mcG(q) and
mdG(q), we represent the error in terms of the discrete dual solution Φ and
an interpolant πu of the exact solution u of (1.1), using the special inter-

polants πu = π
[q]
cGu or πu = π

[q]
dGu defined in Section 5 of [7]. The error

representations are presented in the general non-linear case, and thus ap-
ply to the linear problem (2.5), with corresponding dual problem (2.6), in
particular.

We write the error e = U − u as

(3.1) e = ē+ (πu− u),

where ē ≡ U − πu is represented in terms of the discrete dual solution and
the residual of the interpolant. An estimate for the second part of the error,
πu − u, follows directly from an interpolation estimate. In Theorem 3.1
below, we derive the error representation for the mcG(q) method, and then
derive the corresponding representation for the mdG(q) method in Theorem
3.2.

Theorem 3.1. (Error representation for mcG(q)) Let U be the mcG(q)
solution of (1.1), let Φ be the corresponding mcG(q)∗ solution of the dual
problem (2.4), and let πu be any trial space approximation of the exact so-
lution u of (1.1) that interpolates u at the end-points of every local interval.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES IV 5

Then,

Lψ,g(ē) ≡ (ē(T), ψ) +

∫ T

0
(ē, g) dt = −

∫ T

0
(R(πu, ·),Φ) dt,

where ē ≡ U − πu.

Proof. Since ē(0) = 0, we can choose ē as a test function for the discrete
dual. By the definition of the mcG(q)∗ solution Φ (see [8]), we thus have

∫ T

0
(˙̄e,Φ) dt =

∫ T

0
(J(πu,U, ·)ē,Φ) dt+ Lψ,g(ē),

and so, by the definition of J , we have

Lψ,g(ē) =

∫ T

0
(˙̄e− J(πu,U, ·)ē,Φ) dt =

∫ T

0
(˙̄e− f(U, ·) + f(πu, ·),Φ) dt

=

∫ T

0
(R(U, ·) −R(πu, ·),Φ) dt = −

∫ T

0
(R(πu, ·),Φ) dt,

since Φ is a test function for U . �

Theorem 3.2. (Error representation for mdG(q)) Let U be the mdG(q)
solution of (1.1), let Φ be the corresponding mdG(q)∗ solution of the dual
problem (2.4), and let πu be any trial space approximation of the exact
solution u of (1.1) that interpolates u at the right end-point of every local
interval. Then,

Lψ,g(ē) ≡ (ē(T), ψ) +

∫ T

0
(ē, g) dt

= −

N
∑

i=1

Mi
∑

j=1

[

[πui]i,j−1Φi(t
+
i,j−1) +

∫

Iij

Ri(πu, ·)Φi dt

]

,

where ē ≡ U − πu.

Proof. Choosing ē as a test function for the discrete dual we obtain, by the
definition of the mdG(q)∗ method (see [8]),

N
∑

i=1

Mi
∑

j=1

[

[ēi]i,j−1Φi(t
+
i,j−1) +

∫

Iij

˙̄eiΦi dt

]

=

∫ T

0
(J(πu,U, ·)ē,Φ) dt+ Lψ,g(ē),

and so, by the definition of J , we have

Lψ,g(ē) =

N
∑

i=1

Mi
∑

j=1

[

[ēi]i,j−1Φi(t
+
i,j−1) +

∫

Iij

˙̄eiΦi dt

]

−

∫ T

0
(J(πu,U, ·)ē,Φ) dt

=
N
∑

i=1

Mi
∑

j=1

[

[Ui − πui]i,j−1Φi(t
+
i,j−1) +

∫

Iij

(Ri(U, ·) −Ri(πu, ·))Φi dt

]

= −

N
∑

i=1

Mi
∑

j=1

[

[πui]i,j−1Φi(t
+
i,j−1) +

∫

Iij

Ri(πu, ·)Φi dt

]

,

6 ANDERS LOGG

since Φ is a test function for U . �

With a special choice of interpolant, πu = π
[q]
cGu and πu = π

[q]
dGu respec-

tively, we obtain the following versions of the error representations.

Corollary 3.1. (Error representation for mcG(q)) Let U be the mcG(q)
solution of (1.1), let Φ be the corresponding mcG(q)∗ solution of the dual

problem (2.4), and let π
[q]
cGu be an interpolant, as defined in [7], of the exact

solution u of (1.1). Then,

Lψ,g(ē) =

∫ T

0
(f(π

[q]
cGu, ·) − f(u, ·),Φ) dt.

Proof. The residual of the exact solution is zero and so, by Theorem 3.1, we
have

Lψ,g(ē) =

∫ T

0
(R(u, ·) −R(π

[q]
cGu, ·),Φ) dt

=

∫ T

0
(f(π

[q]
cGu, ·) − f(u, ·),Φ) dt+

∫ T

0
(
d

dt
(u− π

[q]
cGu),Φ) dt,

where we note that
∫ T

0
(
d

dt
(u− π

[q]
cGu),Φ) dt = 0,

by the construction of the interpolant π
[q]
cGu (Lemma 5.2 in [7]). �

Corollary 3.2. (Error representation for mdG(q)) Let U be the mdG(q)
solution of (1.1), let Φ be the corresponding mdG(q)∗ solution of the dual

problem (2.4), and let π
[q]
dGu be an interpolant, as defined in [7], of the exact

solution u of (1.1). Then,

Lψ,g(ē) =

∫ T

0
(f(π

[q]
dGu, ·) − f(u, ·),Φ) dt.

Proof. The residual of the exact solution is zero, and the jump of the exact
solution is zero at every node. Thus, by Theorem 3.2,

Lψ,g(ē) =

N
∑

i=1

Mi
∑

j=1

[

[ui − π
[qij]
dG ui]i,j−1Φi(t

+
i,j−1) +

∫

Iij

(Ri(u, ·) −Ri(π
[q]
dGu, ·))Φi dt

]

=

∫ T

0

(f(π
[q]
dGu, ·) − f(u, ·),Φ) dt,

where we have used the fact that π
[q]
dGu interpolates u at the right end-point

of every local interval, and thus that

N
∑

i=1

Mi
∑

j=1

[

[ui(t
+
i,j−1) − π

[qij]
dG ui(t

+
i,j−1)]Φi(t

+
i,j−1) +

∫

Iij

(
d

dt
(ui − π

[qij]
dG ui))Φi dt

]

= 0,

by the construction of the interpolant π
[q]
dGu (Lemma 5.3 in [7]). �

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES IV 7

3.1. A note on quadrature errors. In the derivation of the error repre-
sentations, we have used the Galerkin orthogonalities for the mcG(q) and
mdG(q) solutions. For the mcG(q) method, we have assumed that

∫ T

0
(R(U, ·),Φ) dt = 0

in the proof of Theorem 3.1, and for the mdG(q)method, we have assumed
that

N
∑

i=1

Mi
∑

j=1

[

[Ui]i,j−1Φi(t
+
i,j−1) +

∫

Iij

Ri(U, ·)Φi dt

]

= 0

in the proof of Theorem 3.2. In the presence of quadrature errors, these
terms are nonzero. As a result, we obtain additional terms of the form

∫ T

0
(f̃(U, ·) − f(U, ·),Φ) dt,

where f̃ is the interpolant of f corresponding the quadrature rule that is
used. Typically, Lobatto quadrature (with q + 1 nodal points) is used for
the mcG(q) method, which means that the quadrature error is of order
2(q+1)− 2 = 2q and so (super-) convergence of order 2q is obtained also in
the presence of quadrature errors. Similarly for the mdG(q) method, we use
Radau quadrature with q+1 nodal points, which means that the quadrature
error is of order 2(q + 1) − 1 = 2q + 1, and so the 2q + 1 convergence order
of mdG(q) is also maintained under quadrature.

4. Interpolation estimates

To prove the a priori error estimates, starting from the error representa-
tions derived in the previous section, we need special interpolation estimates.
These estimates are proved in [6], based on the interpolation estimates of [7].
In this section, we present the interpolation estimates, first for the general
non-linear problem and then for linear problems, and refer to [7, 6] for the
proofs.

4.1. The general non-linear problem. In order to prove the interpo-
lation estimates for the general non-linear problem, we need to make the
following assumptions: Given a time slab T , assume that for each pair of
local intervals Iij and Imn within the time slab, we have

(A1) qij = qmn = q̄,

and

(A2) kij > α kmn,

for some q̄ ≥ 0 and some α ∈ (0, 1). We also assume that the problem (1.1)
is autonomous,

(A3)
∂fi
∂t

= 0, i = 1, . . . , N,

8 ANDERS LOGG

noting that the dual problem nevertheless is non-autonomous in general.
Furthermore, we assume that

(A4) ‖fi‖Dq̄+1(T) <∞, i = 1, . . . , N,

where ‖ · ‖Dp(T) is defined for v : R
N → R and p ≥ 0 by ‖v‖Dp(T) =

maxn=0,...,p ‖D
nv‖L∞(T ,l∞), with

(4.5) ‖Dnv w1 · · ·wn‖L∞(T) ≤ ‖Dnv‖L∞(T ,l∞)‖w
1‖l∞ · · · ‖wn‖l∞

for all w1, . . . , wn ∈ R
N and Dnv the nth-order tensor given by

Dnv w1 · · ·wn =

N
∑

i1=1

· · ·

N
∑

in=1

∂nv

∂xi1 · · · ∂xin
w1
i1 · · ·w

n
in .

Furthermore, we choose ‖f‖T ≥ maxi=1,...,N ‖fi‖Dq̄+1(T), such that

(4.6) ‖dp/dtp(∂f/∂u)>(x(t))‖l∞ ≤ ‖f‖T C
p
x,

for p = 0, . . . , q̄, and

(4.7) ‖[dp/dtp(∂f/∂u)>(x(t))]t‖l∞ ≤ ‖f‖T

p
∑

n=0

Cp−nx ‖[x(n)]t‖l∞ ,

for p = 0, . . . , q̄ − 1 and any given x : R → R
N , where Cx > 0 denotes

a constant, such that ‖x(n)‖L∞(T ,l∞) ≤ Cnx , for n = 1, . . . , p. Note that
assumption (A4) implies that each fi is bounded by ‖f‖T . We further
assume that there is a constant ck > 0, such that

(A5) kij‖f‖T ≤ ck,

for each local interval Iij. We summarize the list of assumptions as follows:

(A1) the local orders qij are equal within each time slab;
(A2) the local time steps kij are semi-uniform within each time slab;
(A3) f is autonomous;
(A4) f and its derivatives are bounded;
(A5) the local time steps kij are small.

To derive a priori error estimates for the non-linear problem (1.1), we need
to estimate the interpolation error πϕi −ϕi on a local interval Iij , where ϕi
is defined by

(4.9) ϕi = (J>(πu, u)Φ)i =

N
∑

l=1

Jli(πu, u)Φl, i = 1, . . . , N.

We note that ϕi may be discontinuous within Iij , if Iij contains a node for
some other component, which is generally the case with multi-adaptive time-
stepping. This is illustrated in Figure 2. Using assumptions (A1)–(A5), we
obtain the following interpolation estimates for the function ϕ.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES IV 9

PSfrag replacements

Iijti,j−1 tij

Φi(t)

Φl(t)

Figure 2. If some other component l 6= i has a node within
Iij , then Φl may be discontinuous within Iij , causing ϕi to
be discontinuous within Iij.

Lemma 4.1. (Interpolation estimates for ϕ) Let ϕ be defined as in (4.9). If
assumptions (A1)–(A5) hold, then there is a constant C = C(q̄, ck, α) > 0,
such that

(4.10) ‖π
[qij−2]
cG ϕi − ϕi‖L∞(Iij) ≤ Ck

qij−1
ij ‖f‖

qij
T ‖Φ‖L∞(T ,l∞), qij = q̄ ≥ 2,

and

(4.11) ‖π
[qij−1]
dG ϕi − ϕi‖L∞(Iij) ≤ Ck

qij
ij ‖f‖

qij+1
T ‖Φ‖L∞(T ,l∞), qij = q̄ ≥ 1,

for each local interval Iij within the time slab T .

Proof. See [6]. �

4.2. Linear problems. For the linear problem (2.5), we make the following
basic assumptions: Given a time slab T , assume that for each pair of local
intervals Iij and Imn within the time slab, we have

(B1) qij = qmn = q̄,

and

(B2) kij > α kmn,

for some q̄ ≥ 0 and some α ∈ (0, 1). Furthermore, assume that A has q̄ − 1
continuous derivatives and let CA > 0 be constant, such that

(B3) max
(

‖A(p)‖L∞(T ,l∞), ‖A
>(p)‖L∞(T ,l∞)

)

≤ Cp+1
A , p = 0, . . . , q̄,

10 ANDERS LOGG

for all time slabs T . We further assume that there is a constant ck > 0, such
that

(B4) kijCA ≤ ck.

We summarize the list of assumptions as follows:

(B1) the local orders qij are equal within each time slab;
(B2) the local time steps kij are semi-uniform within each time slab;
(B3) A and its derivatives are bounded;
(B4) the local time steps kij are small.

As for the general non-linear problem, we need to estimate the interpola-
tion error πϕi − ϕi on a local interval Iij , where ϕi is now defined by

(4.16) ϕi = (A>Φ)i =

N
∑

l=1

AliΦl, i = 1, . . . , N.

Using assumptions (B1)–(B4), we obtain the following interpolation esti-
mates for the function ϕ.

Lemma 4.2. (Interpolation estimates for ϕ) Let ϕ be defined as in (4.16).
If assumptions (B1)–(B4) hold, then there is a constant C = C(q̄, ck, α) > 0,
such that

(4.17) ‖π
[qij−2]
cG ϕi − ϕi‖L∞(Iij) ≤ Ck

qij−1
ij C

qij
A ‖Φ‖L∞(T ,l∞), qij = q̄ ≥ 2,

and

(4.18) ‖π
[qij−1]
dG ϕi − ϕi‖L∞(Iij) ≤ Ck

qij
ij C

qij+1
A ‖Φ‖L∞(T ,l∞), qij = q̄ ≥ 1,

for each local interval Iij within the time slab T .

Proof. See [6]. �

5. A priori error estimates

Using the error representations derived in Section 3, the interpolation
estimates of the previous section, and the stability estimates from [8], we now
derive our main results: a priori error estimates for general order mcG(q) and
mdG(q). The estimates are derived first for the general non-linear problem
(1.1), then for the general linear problem (2.5), and finally for a parabolic
model problem.

5.1. The general non-linear problem.

Theorem 5.1. (A priori error estimate for mcG(q)) Let U be the mcG(q)
solution of (1.1), and let Φ be the corresponding mcG(q)∗ solution of the
dual problem (2.4). Then, there is a constant C = C(q) > 0, such that

(5.1) |Lψ,g(ē)| ≤ CS(T)‖kq+1ūq+1‖L∞([0,T],l2),

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES IV 11

where (kq+1ū(q+1))i(t) = k
qij+1
ij ‖u

(qij+1)
i ‖L∞(Iij) for t ∈ Iij, and where the

stability factor S(T) is given by S(T) =
∫ T
0 ‖J>(π

[q]
cGu, u, ·)Φ‖l2 dt. Further-

more, if assumptions (A1)–(A5) hold and g = 0 in (2.4), then there is a
constant C = C(q, ck, α) > 0, such that

(5.2) |Lψ,g(ē)| ≤ CS̄(T)‖k2q ¯̄u(2q)‖L∞([0,T],l1),

where (k2q ¯̄u(2q))i(t) = k
2qij
ij ‖f‖

qij−1
T ‖u

(qij+1)
i ‖L∞(Iij) for t ∈ Iij, and where

the stability factor S̄(T) is given by

S̄(T) =

∫ T

0
‖f‖T ‖Φ‖L∞(T ,l∞) dt =

M
∑

n=1

Kn‖f‖Tn‖Φ‖L∞(Tn,l∞).

Proof. By Corollary 3.1, we obtain

Lψ,g(ē) =

∫ T

0
(f(π

[q]
cGu, ·) − f(u, ·),Φ) dt =

∫ T

0
(J(π

[q]
cGu, u, ·)(π

[q]
cGu− u),Φ) dt

=

∫ T

0
(π

[q]
cGu− u, J>(π

[q]
cGu, u, ·)Φ) dt.

By Theorem 5.1 in [7], it now follows that

|Lψ,g(ē)| ≤ C‖kq+1ūq+1‖L∞([0,T],l2)

∫ T

0
‖J>(π

[q]
cGu, u, ·)Φ‖l2 dt,

which proves (5.1). To prove (5.2), we note that by definition, π
[qij]
cG ui − ui

is orthogonal to Pqij−2(Iij) for each local interval Iij, and so, recalling that

ϕ = J>(π
[q]
cGu, u, ·)Φ,

Lψ,g(ē) =

N
∑

i=1

Mi
∑

j=1

∫

Iij

(π
[qij]
cG ui − ui)ϕi dt

=
N
∑

i=1

Mi
∑

j=1

∫

Iij

(π
[qij]
cG ui − ui)(ϕi − π

[qij−2]
cG ϕi) dt,

where we take π
[qij−2]
cG ϕi ≡ 0 for qij = 1. By Theorem 5.1 in [7] and Lemma

4.1, it now follows that

|Lψ,g(ē)| ≤

∫ T

0
|(π

[q]
cGu− u, ϕ − π

[q−2]
cG ϕ)| dt

=

∫ T

0
|(kq−1‖f‖q−1

T (π
[q]
cGu− u), k−(q−1)‖f‖

−(q−1)
T (ϕ− π

[q−2]
cG ϕ))| dt

≤ C‖k2q ¯̄u(2q)‖L∞([0,T],l1)

∫ T

0
‖f‖T ‖Φ‖L∞(T ,l∞) dt

= CS̄(T)‖k2q ¯̄u(2q)‖L∞([0,T],l1),

12 ANDERS LOGG

where the stability factor S̄(T) is given by

S̄(T) =

∫ T

0
‖f‖T ‖Φ‖L∞(T ,l∞) dt =

M
∑

n=1

Kn‖f‖Tn‖Φ‖L∞(Tn,l∞).

�

Theorem 5.2. (A priori error estimate for mdG(q)) Let U be the mdG(q)
solution of (1.1), and let Φ be the corresponding mdG(q)∗ solution of the
dual problem (2.4). Then, there is a constant C = C(q) > 0, such that

(5.3) |Lψ,g(ē)| ≤ CS(T)‖kq+1ūq+1‖L∞([0,T],l2),

where (kq+1ū(q+1))i(t) = k
qij+1
ij ‖u

(qij+1)
i ‖L∞(Iij) for t ∈ Iij, and where the

stability factor S(T) is given by S(T) =
∫ T
0 ‖J>(π

[q]
dGu, u, ·)Φ‖l2 dt. Further-

more, if assumptions (A1)–(A5) hold and g = 0 in (2.4), then there is a
constant C = C(q, ck, α) > 0, such that

(5.4) |Lψ,g(ē)| ≤ CS̄(T)‖k2q+1 ¯̄u(2q+1)‖L∞([0,T],l1),

where (k2q+1 ¯̄u(2q+1))i(t) = k
2qij+1
ij ‖f‖

qij
T ‖u

(qij+1)
i ‖L∞(Iij) for t ∈ Iij, and

where the stability factor S̄(T) is given by

S̄(T) =

∫ T

0
‖f‖T ‖Φ‖L∞(T ,l∞) dt =

M
∑

n=1

Kn‖f‖Tn‖Φ‖L∞(Tn,l∞).

Proof. The estimate (5.3) is obtained in the same way as we obtained the
estimate (5.1). To prove (5.4), we note that as in the proof of Theorem

5.1, we obtain Lψ,g(ē) =
∫ T
0 (π

[q]
dGu − u, ϕ) dt. By definition, π

[qij]
dG ui − ui is

orthogonal to Pqij−1(Iij) for each local interval Iij , and so

Lψ,g(ē) =

N
∑

i=1

Mi
∑

j=1

∫

Iij

(π
[qij]
dG ui − ui)ϕi dt

=

N
∑

i=1

Mi
∑

j=1

∫

Iij

(π
[qij]
dG ui − ui)(ϕi − π

[qij−1]
dG ϕi) dt,

where we take π
[qij−1]
dG ϕi = 0 for qij = 0. By Theorem 5.1 in [7] and Lemma

4.1, it now follows that

|Lψ,g(ē)| ≤

∫ T

0
|(π

[q]
dGu− u, ϕ − π

[q−1]
dG ϕ)| dt

=

∫ T

0
|(kq‖f‖qT (π

[q]
dGu− u), k−q‖f‖−qT (ϕ− π

[q−1]
dG ϕ))| dt

≤ C‖k2q+1 ¯̄u(2q+1)‖L∞([0,T],l1)

∫ T

0
‖f‖T ‖Φ‖L∞(T ,l∞) dt.

�

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES IV 13

Using the stability estimates proved in [8], we obtain the following bound
for the stability factor S̄(T).

Lemma 5.1. Assume that KnCq‖f‖Tn ≤ 1 for all time slabs Tn, with Cq =
Cq(q) > 0 the constant in Theorem 4.1 of [8], and take g = 0. Then,

(5.5) S̄(T) ≤ ‖ψ‖l∞e
Cq‖f‖[0,T]T ,

where ‖f‖[0,T] = maxn=1,...,M ‖f‖Tn .

Proof. By Theorem 4.1 in [8], we obtain

‖Φ‖L∞(Tn,l∞) ≤ Cq‖ψ‖l∞ exp

(

M
∑

m=n+1

KmCq‖f‖Tm

)

≤ Cq‖ψ‖l∞e
Cq‖f‖[0,T](T−Tn),

and so

S̄(T) =

M
∑

n=1

Kn‖f‖Tn‖Φ‖L∞(Tn,l∞) dt

≤ ‖ψ‖l∞

M
∑

n=1

KnCq‖f‖[0,T]e
Cq‖f‖[0,T](T−Tn)

≤ ‖ψ‖l∞

∫ T

0
Cq‖f‖[0,T]e

Cq‖f‖[0,T]t dt ≤ ‖ψ‖l∞e
Cq‖f‖[0,T]T .

�

Finally, we rewrite the estimates 5.1 and 5.2 for special choices of data ψ
and g. We first take ψ = 0. With gn = 0 for n 6= i, gi(t) = 0 for t 6∈ Iij , and

gi(t) = sgn(ēi(t))/kij , t ∈ Iij,

we obtain Lψ,g(ē) = 1
kij

∫

Iij
|ēi(t)| dt and so ‖ēi‖L∞(Iij) ≤ CLψ,g(ē) by

an inverse estimate. By the definition of ē, it follows that ‖ei‖L∞(Iij) ≤

CLψ,g(ē) + Ck
qij+1
ij ‖u

qij+1
i ‖L∞(Iij). Note that for this choice of g, we have

‖g‖L1([0,T],l2) = ‖g‖L1([0,T],l∞) = 1.
We also make the choice g = 0. Noting that ē(T) = e(T), since πu(T) =

u(T), we obtain

Lψ,g(ē) = (e(T), ψ) = |ei(T)|,

for ψi = sgn(ei(T)) and ψn = 0 for n 6= i, and

Lψ,g(ē) = (e(T), ψ) = ‖e(T)‖l2 ,

for ψ = e(T)/‖e(T)‖l2 . Note that for both choices of ψ, we have ‖ψ‖l∞ ≤ 1.
With these choices of data, we obtain the following versions of the a priori

error estimates.

14 ANDERS LOGG

Corollary 5.1. (A priori error estimate for mcG(q)) Let U be the mcG(q)
solution of (1.1). Then, there is a constant C = C(q) > 0, such that

(5.6) ‖e‖L∞([0,T],l∞) ≤ CS(T)‖kq+1ūq+1‖L∞([0,T],l2),

where the stability factor S(T) =
∫ T
0 ‖J>(π

[q]
cGu, u, ·)Φ‖l2 dt is taken as the

maximum over ψ = 0 and ‖g‖L1([0,T],l∞) = 1. Furthermore, if assumptions
(A1)–(A5) and the assumptions of Lemma 5.1 hold, then there is a constant
C = C(q, ck, α), such that

(5.7) ‖e(T)‖lp ≤ CS̄(T)‖k2q ¯̄u(2q)‖L∞([0,T],l1),

for p = 2,∞, where the stability factor S̄(T) is given by S̄(T) = eCq‖f‖[0,T]T .

Corollary 5.2. (A priori error estimate for mdG(q)) Let U be the mdG(q)
solution of (1.1). Then, there is a constant C = C(q) > 0, such that

(5.8) ‖e‖L∞([0,T],l∞) ≤ CS(T)‖kq+1ūq+1‖L∞([0,T],l2),

where the stability factor S(T) =
∫ T
0 ‖J>(π

[q]
dGu, u, ·)Φ‖l2 dt is taken as the

maximum over ψ = 0 and ‖g‖L1([0,T],l∞) = 1. Furthermore, if assumptions
(A1)–(A5) and the assumptions of Lemma 5.1 hold, then there is a constant
C = C(q, ck, α), such that

(5.9) ‖e(T)‖lp ≤ CS̄(T)‖k2q+1 ¯̄u(2q+1)‖L∞([0,T],l1),

for p = 2,∞, where the stability factor S̄(T) is given by S̄(T) = eCq‖f‖[0,T]T .

5.2. Linear problems.

Theorem 5.3. (A priori error estimate for mcG(q)) Let U be the mcG(q)
solution of (2.5), and let Φ be the corresponding mcG(q)∗ solution of the
dual problem (2.6). Then, there is a constant C = C(q) > 0, such that

(5.10) |Lψ,g(ē)| ≤ CS(T)‖kq+1ūq+1‖L∞([0,T],l2),

where (kq+1ū(q+1))i(t) = k
qij+1
ij ‖u

(qij+1)
i ‖L∞(Iij) for t ∈ Iij, and where the

stability factor S(T) is given by S(T) =
∫ T
0 ‖A>Φ‖l2 dt. Furthermore, if

assumptions (B1)–(B4) hold and g = 0 in (2.6), then there is a constant
C = C(q, ck, α) > 0, such that

(5.11) |Lψ,g(ē)| ≤ CS̄(T)‖k2q ¯̄u(2q)‖L∞([0,T],l1),

where (k2q ¯̄u(2q))i(t) = k
2qij
ij C

qij−1
A ‖u

(qij+1)
i ‖L∞(Iij) for t ∈ Iij, and where the

stability factor S̄(T) is given by

S̄(T) =

∫ T

0
CA‖Φ‖L∞(T ,l∞) dt =

M
∑

n=1

KnCA‖Φ‖L∞(Tn,l∞).

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES IV 15

Proof. By Corollary 3.1, we obtain

Lψ,g(ē) =

∫ T

0
(A(u− π

[q]
cGu),Φ) dt =

∫ T

0
(u− π

[q]
cG, A

>Φ) dt.

By Theorem 5.1 in [7], it now follows that

|Lψ,g(ē)| ≤ C‖kq+1ūq+1‖L∞([0,T],l2)

∫ T

0
‖A>Φ‖l2 dt,

which proves (5.10). To prove (5.11), we note that by definition, π
[qij]
cG ui−ui

is orthogonal to Pqij−2(Iij) for each local interval Iij, and so

Lψ,g(ē) =

N
∑

i=1

Mi
∑

j=1

∫

Iij

(ui − π
[qij]
cG ui)ϕi dt

=
N
∑

i=1

Mi
∑

j=1

∫

Iij

(ui − π
[qij]
cG ui)(ϕi − π

[qij−2]
cG ϕi) dt,

where ϕ = A>Φ. By Theorem 5.1 in [7] and Lemma 4.2, it now follows that

|Lψ,g(ē)| ≤

∫ T

0
|(π

[q]
cGu− u, ϕ− π

[q−2]
cG ϕ)| dt

=

∫ T

0
|(kq−1Cq−1

A (π
[q]
cGu− u), k−(q−1)C

−(q−1)
A (ϕ− π

[q−2]
cG ϕ))| dt

≤ C‖k2q ¯̄u(2q)‖L∞([0,T],l1)

∫ T

0
CA‖Φ‖L∞(T ,l∞) dt

= CS̄(T)‖k2q ¯̄u(2q)‖L∞([0,T],l1),

where the stability factor S̄(T) is given by

S̄(T) =

∫ T

0
CA‖Φ‖L∞(T ,l∞) dt =

M
∑

n=1

KnCA‖Φ‖L∞(Tn,l∞).

�

Theorem 5.4. (A priori error estimate for mdG(q)) Let U be the mdG(q)
solution of (2.5), and let Φ be the corresponding mdG(q)∗ solution of the
dual problem (2.6). Then, there is a constant C = C(q) > 0, such that

(5.12) |Lψ,g(ē)| ≤ CS(T)‖kq+1ūq+1‖L∞([0,T],l2),

where (kq+1ū(q+1))i(t) = k
qij+1
ij ‖u

(qij+1)
i ‖L∞(Iij) for t ∈ Iij, and where the

stability factor S(T) is given by S(T) =
∫ T
0 ‖A>Φ‖l2 dt. Furthermore, if

assumptions (B1)–(B4) hold and g = 0 in (2.6), then there is a constant
C = C(q, ck, α) > 0, such that

(5.13) |Lψ,g(ē)| ≤ CS̄(T)‖k2q+1 ¯̄u(2q+1)‖L∞([0,T],l1),

16 ANDERS LOGG

where (k2q+1 ¯̄u(2q+1))i(t) = k
2qij+1
ij C

qij
A ‖u

(qij+1)
i ‖L∞(Iij) for t ∈ Iij, and where

the stability factor S̄(T) is given by

S̄(T) =

∫ T

0
CA‖Φ‖L∞(T ,l∞) dt =

M
∑

n=1

KnCA‖Φ‖L∞(Tn,l∞).

Proof. The estimate (5.12) is obtained in the same way as we obtained the
estimate (5.10). To prove (5.13), we note that as in the proof of Theorem

5.1, we obtain Lψ,g(ē) =
∫ T
0 (u − π

[q]
dGu, ϕ) dt. By definition, π

[qij]
dG ui − ui is

orthogonal to Pqij−1(Iij) for each local interval Iij , and so

Lψ,g(ē) =

N
∑

i=1

Mi
∑

j=1

∫

Iij

(ui − π
[qij]
dG ui)ϕi dt

=
N
∑

i=1

Mi
∑

j=1

∫

Iij

(ui − π
[qij]
dG ui)(ϕi − π

[qij−1]
dG ϕi) dt.

By Theorem 5.1 in [7] and Lemma 4.2, it now follows that

|Lψ,g(ē)| ≤

∫ T

0
|(π

[q]
dGu− u, ϕ− π

[q−1]
dG ϕ)| dt

=

∫ T

0
|(kqCqA(π

[q]
dGu− u), k−qC−q

A (ϕ− π
[q−1]
dG ϕ))| dt

≤ C‖k2q+1 ¯̄u(2q+1)‖L∞([0,T],l1)

∫ T

0
CA‖Φ‖L∞(T ,l∞) dt.

�

We now use Lemma 5.1 to obtain a bound for the stability factor S̄(T).
As for the non-linear problem, we note that for special choices of data ψ
and g for the dual problem, we obtain error estimates in various norms, in
particular the l2-norm at final time.

Corollary 5.3. (A priori error estimate for mcG(q)) Let U be the mcG(q)
solution of (2.5). Then, there is a constant C = C(q) > 0, such that

(5.14) ‖e‖L∞([0,T],l∞) ≤ CS(T)‖kq+1ūq+1‖L∞([0,T],l2),

where the stability factor S(T) =
∫ T
0 ‖A>Φ‖l2 dt is taken as the maximum

over ψ = 0 and ‖g‖L1([0,T],l∞) = 1. Furthermore, if assumptions (B1)–
(B4) and the assumptions of Lemma 5.1 hold, then there is a constant C =
C(q, ck, α), such that

(5.15) ‖e(T)‖lp ≤ CS̄(T)‖k2q ¯̄u(2q)‖L∞([0,T],l1),

for p = 2,∞, where the stability factor S̄(T) is given by S̄(T) = eCqCAT .

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES IV 17

Corollary 5.4. (A priori error estimate for mdG(q)) Let U be the mdG(q)
solution of (2.5). Then, there is a constant C = C(q) > 0, such that

(5.16) ‖e‖L∞([0,T],l∞) ≤ CS(T)‖kq+1ūq+1‖L∞([0,T],l2),

where the stability factor S(T) =
∫ T
0 ‖A>Φ‖l2 dt is taken as the maximum

over ψ = 0 and ‖g‖L1([0,T],l∞) = 1. Furthermore, if assumptions (B1)–
(B4) and the assumptions of Lemma 5.1 hold, then there is a constant C =
C(q, ck, α), such that

(5.17) ‖e(T)‖lp ≤ CS̄(T)‖k2q+1 ¯̄u(2q+1)‖L∞([0,T],l1),

for p = 2,∞, where the stability factor S̄(T) is given by S̄(T) = eCqCAT .

5.3. Parabolic problems. We consider the linear parabolic model prob-
lem,

u̇(t) +A(t)u(t) = 0, t ∈ (0, T],

u(0) = u0,
(5.18)

with A a positive semidefinite and symmetric N×N matrix for all t ∈ (0, T],
and prove an a priori error estimate for the mdG(q) method. The estimate
is based on the error representation for the mdG(q) method presented in
Section 3 and the strong stability estimate derived in [8]. To prove the a
priori error estimate, we need to make the following assumptions. We first
assume that q is constant within each time slab, that is, for each pair of
intervals Iij and Imn within a given time slab, we have as before

(C1) qij = qmn = q̄.

Furthermore, we assume that A is invertible on (0, T) for q ≥ 2 and refer to
this as assumption (C2).

Additional assumptions, (C3)–(C6), are needed for the strong stability
estimate of [8]. We first assume that there is a constant γ ≥ 1, such that
(C3)

(T − Tn)

∫ Tn

Tn−1

(Av,Av) dt ≤ γ

∫ Tn

Tn−1

(Av, π(t̄Av)) dt, n = 1, . . . ,M − 1,

for all trial functions v, that is, all v discontinuous and piecewise polyno-
mial with vi|Iij ∈ Pqij (Iij), where t̄ = t̄(t) is the piecewise constant right-
continuous function defined by t̄(t) = minij{T − ti,j−1 : t ≥ ti,j−1}. If Av is
not close to being orthogonal to the trial space, then γ is of moderate size.
We also assume that there is a constant σ > 1, such that

(C4) σKn ≤ (T − Tn), n = 1, . . . ,M − 1.

This condition corresponds to the condition σKn ≤ Tn−1 used in the strong
stability estimate for the discrete dual problem in [8]. We further assume
that all components use the same time step on the last time slab TM ,

(C5) kij = KM ∀ Iij ∈ TM .

Finally, we assume that A is constant and refer to this as assumption (C6).

18 ANDERS LOGG

Theorem 5.5. (A priori error estimate for parabolic problems) Let U be
the mdG(q) solution of (5.18), and assume that (C1) and (C2) hold. Then,
there is a constant C = C(q), such that

(5.23) ‖e(T)‖l2 ≤ CS(T)max
[0,T]

‖k2q+1Aqū(q+1)‖l2 + E ,

where (k2q+1Aqū(q+1))i(t) = k
2qij+1
ij ‖(Aqiju)

(qij+1)
i ‖L∞(Iij) for t ∈ Iij, E = 0

for q = 0, and E =
∫ T
0 (π

[q]
dGA

qu−Aqπ
[q]
dGu,A

1−qΦ) dt for q > 0. The stability
factor S(T) is given by

(5.24) S(T) =

∫ T

0
‖k−q(A1−qΦ − π

[q−1]
dG A1−qΦ)‖l2 dt.

For q = 0, 1, we obtain the following analytical bound for S(T), using as-
sumptions (C3)–(C6),

(5.25) S(T) ≤ C

(

log
T

KM
+ 1

)1/2

,

where C = C(q, γ, σ) > 0.

Proof. With ψ = e(T)/‖e(T)‖l2 and g = 0, it follows by Corollary 3.2 that

‖e(T)‖l2 =

∫ T

0
(u− π

[q]
dGu,AΦ) dt =

∫ T

0
(Aq(u− π

[q]
dGu), A

1−qΦ) dt

=

∫ T

0
(Aqu− π

[q]
dGA

qu+ π
[q]
dGA

qu−Aqπ
[q]
dGu,A

1−qΦ) dt

=

∫ T

0
(Aqu− π

[q]
dGA

qu,A1−qΦ) dt

+

∫ T

0
(π

[q]
dGA

qu−Aqπ
[q]
dGu,A

1−qΦ) dt

=

∫ T

0
(Aqu− π

[q]
dGA

qu,A1−qΦ − π
[q−1]
dG A1−qΦ) dt+ E ,

where we have assumed that A is invertible for q ≥ 2. With S(T) =
∫ T
0 ‖k−q(A1−qΦ − π

[q−1]
dG A1−qΦ)‖l2 dt, we thus obtain

‖e(T)‖l2 ≤ S(T)max
[0,T]

‖kq(Aqu− π
[q]
dGA

qu)‖l2 + E

= S(T)max
[0,T]

(

N
∑

i=1

[kqii ((Aqu)i − π
[qi]
dG(Aqu)i)]

2

)1/2

+ E

≤ CS(T) max
t∈[0,T]

(

N
∑

i=1

[k
2qi(t)+1
i (t)‖(Aqu)

(qi(t)+1)
i ‖L∞(Iij(t))]

2

)1/2

+ E

= CS(T)max
[0,T]

‖k2q+1Aqū(q+1)‖l2 + E .

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES IV 19

Note that we use an interpolation estimate for Aqu which is straightforward
since the exact solution u is smooth. We conclude by estimating the stability
factor S(T) for q = 0, 1, using the strong stability estimate for the discrete
dual solution Φ. For q = 0, it follows directly by Theorem 4.3 in [8], that

S(T) =

∫ T

0
‖AΦ‖l2 dt ≤ C

(

log
T

KM
+ 1

)1/2

,

and for q = 1, we obtain

S(T) =

∫ T

0
‖k−1(Φ − π

[0]
dGΦ)‖l2 dt ≤ C

∫ T

0
‖Φ̇‖l2 dt,

using an interpolation estimate in combination with an inverse estimate, and

so the estimate S(T) ≤ C
(

log T
KM

+ 1
)1/2

follows again by Theorem 4.3 in

[8].
�

The stability factor S(T) that appears in the a priori error estimate is
obtained from the discrete solution Φ of the dual problem (2.6), and can
thus be computed exactly by solving the discrete dual problem. Allowing
numerical computation of the stability factor, the additional assumptions
(C3)–(C6) needed to obtain the analytical bound for S(T) are no longer
needed. Numerical computation of the stability factor also directly reveals
whether the problem is parabolic or not; if the stability factor is of unit size
and does not grow, then the problem is parabolic by definition, see [2].

6. Numerical examples

We conclude by demonstrating the convergence of the multi-adaptive
methods in the case of a simple test problem. We also present some re-
sults in support of assumption (C3).

6.1. Convergence. Consider the problem

u̇1 = u2,

u̇2 = −u1,

u̇3 = −u2 + 2u4,

u̇4 = u1 − 2u3,

u̇5 = −u2 − 2u4 + 4u6,

u̇6 = u1 + 2u3 − 4u5,

(6.1)

on [0, 1] with initial condition u(0) = (0, 1, 0, 2, 0, 3). The solution is given
by u(t) = (sin t, cos t, sin t+ sin 2t, cos t+ cos 2t, sin t+ sin 2t+ sin 4t, cos t+
cos 2t+cos 4t). For given k0 > 0, we take ki(t) = k0 for i = 1, 2, ki(t) = k0/2
for i = 3, 4, and ki(t) = k0/4 for i = 5, 6, and study the convergence of the
error ‖e(T)‖l2 with decreasing k0. From the results presented in Figure 3,

20 ANDERS LOGG

Table 1, and Table 2, it is clear that the predicted order of convergence is
obtained, both for mcG(q) and mdG(q).

10
−2

10
−1

10
0

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

PSfrag replacements

k0

‖
e(
T

)‖
l 2

cG(1)

cG(2)

cG(3)

cG(4)

cG(5)

dG(0)

dG(1)

dG(2)

dG(3)

dG(4)

dG(5)

Figure 3. Convergence of the error at final time for the
solution of the test problem (6.1) with mcG(q) and mdG(q),
q ≤ 5.

mcG(q) 1 2 3 4 5
p 1.99 3.96 5.92 7.82 9.67
2q 2 4 6 8 10

Table 1. Order of convergence p for mcG(q).

mdG(q) 0 1 2 3 4 5
p 0.92 2.96 4.94 6.87 9.10 –

2q + 1 1 3 5 7 9 11

Table 2. Order of convergence p for mdG(q).

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES IV 21

6.2. Numerical evidence for assumption (C3). The strong stability
estimate Theorem 4.3 in [8], which is used in the proof of Theorem 5.5,
relies on assumption (C3), which for the dual problem (with time reversed)
can be stated in the form

(6.2) Tn−1

∫ Tn

Tn−1

(Av,Av) dt ≤ γ

∫ Tn

Tn−1

(Av, π(t̄Av)) dt, n = 2, . . . ,M,

where t̄ = t̄(t) is the piecewise constant left-continuous function defined by
t̄(t) = minij{tij : t ≤ tij}. As mentioned, this may fail to hold if Av is
close to orthogonal to the trial space. On the other hand, if every pair of
components which are coupled through A use approximately the same step
size, then π(Av) ≈ Av and (6.2) holds. We illustrate this in the case of the
mdG(0) method, where interpolation is given by taking the right end-point
value within each local interval, for A given by

A =

2 −1 0 0 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0 0
0 0 0 −1 2 −1 0 0 0 0
0 0 0 0 −1 2 −1 0 0 0
0 0 0 0 0 −1 2 −1 0 0
0 0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 0 0 −1 2

.

We take ki(t) = 1/i for i = 1, . . . , 10 on [0, 1], and randomize the piecewise
constant function v on this partition. Examining the quotient

γ = max
v

C
∫ 1
0 (Av,Av) dt

∫ 1
0 (Av, π(t̄Av)) dt

,

with t̄(t) = minij{C + tij : t ≤ tij} for C large, we find γ / 1.5. Here, C
corresponds to Tn−1 in (6.2). In Figure 4, we present an example in which
C = 100 and γ = 1.05.

22 ANDERS LOGG

0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

PSfrag replacements

t

(A
v
) 7

,
π
(A
v
) 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2PSfrag replacements

t

(Av)7, π(Av)7

Figure 4. Left, we plot a component of the function Av
(solid) and its interpolant π(Av) (dashed) for the partition
discussed in the text. Above right, we plot C(Av,Av) (solid)
and (Av, π(t̄Av)) (dashed), and below right, we plot the cor-
responding quotient C(Av,Av)/(Av, π(t̄Av)).

References

[1] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Introduction to adaptive

methods for differential equations, Acta Numerica, (1995), pp. 105–158.
[2] K. Eriksson, C. Johnson, and A. Logg, Adaptive computational methods for par-

abolic problems, To appear in Encyclopedia of Computational Mechanics, (2004).
[3] C. Johnson, Error estimates and adaptive time-step control for a class of one-step

methods for stiff ordinary differential equations, SIAM J. Numer. Anal., 25 (1988),
pp. 908–926.

[4] A. Logg, Multi-adaptive Galerkin methods for ODEs I, SIAM J. Sci. Comput., 24
(2003), pp. 1879–1902.

[5] , Multi-adaptive Galerkin methods for ODEs II: Implementation and applications,
SIAM J. Sci. Comput., 25 (2003), pp. 1119–1141.

[6] , Estimates of derivatives and jumps across element boundaries for multi-adaptive

Galerkin solutions of ODEs, Tech. Rep. 2004–03, Chalmers Finite Element Center
Preprint Series, 2004.

[7] , Interpolation estimates for piecewise smooth functions in one dimension, Tech.
Rep. 2004–02, Chalmers Finite Element Center Preprint Series, 2004.

[8] , Multi-adaptive Galerkin methods for ODEs III: Existence and stability, Sub-
mitted to SIAM J. Numer. Anal., (2004).

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V:

STIFF PROBLEMS

JOHAN JANSSON AND ANDERS LOGG

Abstract. We develop the methodology of multi-adaptive time-stepping
for stiff problems. The new algorithm is based on adaptively stabilized
fixed point iteration on time slabs and a new method for the recursive
construction of time slabs. Numerical examples are given for a series of
well-known stiff and non-stiff test problems.

1. Introduction

This is part V in a sequence of papers [7, 8, 9, 10] on multi-adaptive
Galerkin methods, mcG(q) and mdG(q), for approximate (numerical) solu-
tion of ODEs of the form

u̇(t) = f(u(t), t), t ∈ (0, T],

u(0) = u0,
(1.1)

where u : [0, T] → R
N is the solution to be computed, u0 ∈ R

N a given
initial value, T > 0 a given final time, and f : R

N × (0, T] → R
N a given

function that is Lipschitz-continuous in u and bounded.
The mcG(q) and mdG(q) methods are based on piecewise polynomial ap-

proximation of degree q on partitions in time with time steps which may vary
for different components Ui(t) of the approximate solution U(t) of (1.1). In
part I and II of our series on multi-adaptive Galerkin methods, we prove a
posteriori error estimates, through which the time steps are adaptively deter-
mined from residual feed-back and stability information, obtained by solving
a dual linearized problem. In part III, we prove existence and stability of
discrete solutions, which are used in part IV to prove a priori error esti-
mates. In the current paper, we develop the methodology of multi-adaptive
time-stepping for stiff problems.

1.1. The stiffness problem. As noted already by Dahlquist [1] in the
1950s, there is a certain class of problems, so-called stiff problems, for which
standard explicit methods are not suitable. This is often referred to as the

Date: April 13, 2004.
Key words and phrases. Multi-adaptivity, individual time steps, local time steps, ODE,

continuous Galerkin, discontinuous Galerkin, mcgq, mdgq, explicit, stiff problems.
Johan Jansson, email : johanjan@math.chalmers.se. Anders Logg, email :

logg@math.chalmers.se. Department of Computational Mathematics, Chalmers Univer-
sity of Technology, SE–412 96 Göteborg, Sweden.

1

2 JOHAN JANSSON AND ANDERS LOGG

stiffness problem. As noted in [3], we run into the same difficulties when
we try to solve the system of equations given by an implicit method using
direct fixed point iteration. Within the setting of multi-adaptive Galerkin
methods, this becomes evident when the adaptively determined time steps
become too large for the fixed point iteration to converge, which typically
happens outside transients. We are thus forced to take (much) smaller time
steps than required to meet the given error tolerance.

In [3], we present a new methodology for the stabilization of explicit meth-
ods for stiff problems, based on the inherent property of the stiff problem
itself: rapid damping of high frequencies. Using sequences of stabilizing
time steps, consisting of alternating small and large time steps, an efficient
explicit method is obtained.

In the current paper, we extend the ideas presented in [3] for the mono-
adaptive cG(1) method to general multi-adaptive time stepping. In partic-
ular, we show that the technique of stabilizing time step sequences can be
extended to adaptively stabilized fixed point iteration on time slabs, where
the damping factor α plays the role of the small stabilizing time steps.

1.2. Implementation. The presented methodology has been implemented
in DOLFIN [5], the C++ implementation of the new open-source software

project FEniCS [2] for the automation of Computational Mathematical
Modeling (CMM). The multi-adaptive solver in DOLFIN is based on the
original implementation Tanganyika, presented in [8], but has been com-
pletely rewritten for DOLFIN. The new implementation is discussed in detail
in [6].

1.3. Notation. For a detailed description of the multi-adaptive Galerkin
methods, we refer the reader to [7, 8, 9, 10]. In particular, we refer to [7] or
[9] for the definition of the methods.

The following notation is used throughout this paper: Each component
Ui(t), i = 1, . . . , N , of the approximate m(c/d)G(q) solution U(t) of (1.1) is
a piecewise polynomial on a partition of (0, T] into Mi subintervals. Subin-
terval j for component i is denoted by Iij = (ti,j−1, tij], and the length of
the subinterval is given by the local time step kij = tij − ti,j−1. This is
illustrated in Figure 1. On each subinterval Iij , Ui|Iij

is a polynomial of
degree qij and we refer to (Iij , Ui|Iij

) as an element.
Furthermore, we shall assume that the interval (0, T] is partitioned into

blocks between certain synchronized time levels 0 = T0 < T1 < . . . < TM =
T . We refer to the set of intervals Tn between two synchronized time levels
Tn−1 and Tn as a time slab:

Tn = {Iij : Tn−1 ≤ ti,j−1 < tij ≤ Tn}.
We denote the length of a time slab by Kn = Tn − Tn−1.

1.4. Outline of the paper. We first discuss a few basic and well-known
properties of fixed point iteration in Section 2, and then present our new

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 3

PSfrag replacements

0

i

kij

Kn

T

Iij

ti,j−1 tij

Tn−1 Tn

t

Figure 1. Individual partitions of the interval (0, T] for dif-
ferent components. Elements between common synchronized
time levels are organized in time slabs. In this example, we
have N = 6 and M = 4.

methodology of adaptively stabilized fixed point iteration in Section 3. In
Section 4, we then discuss two important parts of the multi-adaptive al-
gorithm: the construction of multi-adaptive time slabs, and the adaptively
stabilized fixed point iteration on time slabs. Finally, in Section 5, we present
numerical results for a sequence of stiff test problems taken from [3].

2. Fixed point iteration

Let F : R
N → R

N be a given differentiable function of the form

(2.1) F (x) ≡ x− g(x)

and consider the problem of solving the equation

(2.2) F (x) = 0

or, alternatively, x = g(x) by fixed point iteration. Given an initial guess
x0, we iterate according to

(2.3) xn = g(xn−1) = xn−1 − (xn−1 − g(xn−1)) = xn−1 − F (xn−1),

for n = 1, 2, . . ., to obtain the fixed point x satisfying x = g(x). By the
Banach fixed point theorem, this iteration converges to the unique solution
x of (2.2), if the Lipschitz constant Lg of g satisfies

(2.4) Lg < 1,

or, since the Lipschitz constant is bounded by the derivative of g, if ‖g ′‖ ≤ C
with C < 1 for a suitable norm ‖ · ‖. To see this, we note that F (xn) =
xn − g(xn) = g(xn−1)− g(xn) = g′(ξ)(xn−1 − xn), and thus, by (2.3),

(2.5) F (xn) = g′(ξ)F (xn−1),

4 JOHAN JANSSON AND ANDERS LOGG

and so the residual F (xn) of (2.2) converges to zero if ‖g′‖ is bounded by
C < 1.

For the increment dn ≡ xn− xn−1, we similarly obtain dn = xn−xn−1 =
g(xn−1)− g(xn−2) = g′(ξ)(xn−1 − xn−2), and thus

(2.6) dn = g′(ξ)dn−1.

We finally note that for the error en ≡ xn − x, with x the solution of (2.2),
we obtain en = xn − x = g(xn−1)− g(x) = g′(ξ)(xn−1 − x), and thus

(2.7) en = g′(ξ)en−1.

By (2.5), (2.6), and (2.7), it now follows that we can measure either the
residual F (xn) or the increment dn to determine the convergence of the
error en. If the solution does not converge, the fixed point iteration needs
to be stabilized. In the next section, we present an algorithm for adaptively
stabilized fixed point iteration, based on measuring the convergence of the
residual F (xn) or the increment dn.

3. Adaptive fixed point iteration

To stabilize the fixed point iteration, we modify the basic iteration (2.3)
according to
(3.1)
xn = (I−α)xn−1+αg(xn−1) = xn−1−α(xn−1−g(xn−1) = xn−1−αF (xn−1),

where I is the N×N identity matrix and the damping factor α is an N ×N
matrix to be determined. We will mainly consider the case of a diagonal or
scalar α. Note that (2.3) is recovered for α = I.

To show the equivalent of (2.5), we write F (xn) = xn − g(xn) in the
form F (xn) = (xn − xn−1) + (xn−1 − g(xn−1)) + (g(xn−1)− g(xn)). It now
follows by (3.1) that F (xn) = −αF (xn−1) + F (xn−1) + g′(ξ)(xn−1 − xn) =
(I − α)F (xn−1) + g′(ξ)αF (xn−1), and thus

(3.2) F (xn) =
[

I − (I − g′(ξ))α
]

F (xn−1).

Similarly, we obtain dn = xn − xn−1 = (I − α)xn−1 + αg(xn−1) − (I −
α)xn−2 − αg(xn−2) = (I − α)dn−1 + αg′(ξ)(xn−1 − xn−2), and thus

(3.3) dn =
[

I − α(I − g′(ξ))
]

dn−1.

We also note that x = (I − α)x + αg(x) if x = g(x), and thus the error
en satisfies en = xn − x = (I − α)xn−1 + αg(xn−1) − (I − α)x − αg(x) =
(I − α)en−1 + αg′(ξ)(xn−1 − x), i.e.,

(3.4) en =
[

I − α(I − g′(ξ))
]

en−1.

The question is now how to choose the damping factor α. One obvious
choice is to take α such that I−α(I−g ′(xn−1)) = 0, where we have replaced
the unknown intermediate value ξ with the latest known value xn−1. This
gives α = (I − g′(xn−1))−1 = (F ′(xn−1))−1, and thus

(3.5) xn = xn−1 − (F ′(xn−1))−1F (xn−1),

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 5

which is Newton’s method for the solution of (2.2).
We now present an algorithm for stabilized fixed point iteration which

adaptively determines the damping factor α, and which avoids computing
the Jacobian F ′ and solving a linear system in each iteration as in Newton’s
method. We focus on the case where α is either diagonal or scalar.

3.1. Diagonal damping. Let α = diag(α1, . . . , αN) be a diagonal matrix,
and assume for simplicity that g′ is constant and equal to −B. With this
choice of α, the fixed point iteration is given by

(3.6) xn
i = (1− αi)x

n−1
i + αigi(x

n−1), i = 1, . . . , N,

or xn = Gαxn−1, with Gα = I − α(I + B). We assume that

(1) B is diagonally dominant, and
(2) Bii ≥ 0, i = 1, . . . , N .

By (3.4), it follows that the fixed point iteration converges for ‖Gα‖l∞ < 1,
where ‖Gα‖l∞ denotes the maximum absolute row sum, For i = 1, . . . , N ,
we have

N
∑

j=1

|(Gα)ij | = |1− αi − αiBii|+ αi

∑

j 6=i

|Bij | ≤ |1− α− αBii|+ αiBii,

since B is diagonally dominant and Bii ≥ 0. We now take

(3.7) αi = 1/(1 + Bii),

which gives
∑N

j=1 |(Gα)ij | = Bii/(1+Bii) < 1. We thus conclude that if B is
diagonally dominant and Bii ≥ 0 for each i, then we can choose α diagonal
such that the stabilized fixed point iteration (3.1) converges. We also note
that the convergence may be slow if some Bii � 1, since then Bii/(1 + Bii)
is close to unity.

3.2. Scalar damping. With α ∈ (0, 1] scalar, we assume as above that
g′ = −B is constant. We further assume that

(1) B is non-defective, i.e., B is diagonalizable:

∃V =
[

v1 · · · vN
]

non-singular : V −1BV = diag(λ1, . . . , λN),

with λ1, . . . , λN the eigenvalues of B;
(2) Re λi > −1 for all λi;
(3) |Imλi|/(1+Re λi) ≤ tan β, for some β ∈ (0, π/2), i.e., | arg(1+λi) | ≤

β for all λi, as illustrated in Figure 2.

Note that the first condition is not a major restriction. If B should be
defective, B will be made non-defective by a small perturbation, which will
always be introduced through round-off errors.

6 JOHAN JANSSON AND ANDERS LOGG

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

PSfrag replacements

Reλ

Imλ

−1

β

Figure 2. The eigenvalues λ of the matrix B are assumed
to lie within the shaded sector.

To determine the size of α, we write the error en−1 in the form en−1 =
∑N

i=1 en−1
i vi. By (3.4), it follows that

en = (I − α(I + B))

N
∑

i=1

en−1
i vi =

N
∑

i=1

en−1
i (1− α(1 + λi))v

i =

N
∑

i=1

σie
n−1
i vi,

where σi = 1− α(1 + λi). It follows that the stabilized fixed point iteration
converges if we take α such that |σi| < 1 for i = 1, . . . , N . With

(3.8) α =
cos β

1 + maxi |λi|
,

we obtain

|σi|2 = (Re σi)
2 + (Imσi)

2 = (1− α(1 + Re λi))
2 + α2(Imλi)

2

= 1 + α2r̃2
i − 2α(1 + Re λi),

where r̃i = |1+λi|. By assumption, | arg(1+λi) | ≤ β, and thus 1+Reλi ≥
r̃i cos β. It follows that

|σi|2 ≤ 1 + α2r̃2
i − 2αr̃i cos β = 1 +

r̃2

i
cos2 β

(1+maxi |λi|)2
− 2r̃i cos2 β

1+maxi |λi|

≤ 1 + r̃i cos2 β
1+maxi |λi|

− 2r̃i cos2 β
1+maxi |λi|

= 1− r̃i cos2 β
1+maxi |λi|

< 1,

and thus the fixed point iteration (3.1) converges.
We note that, since α is chosen based on the largest eigenvalue, the con-

vergence for eigenmodes corresponding to smaller eigenvalues may be slow,

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 7

if r̃i � 1 + maxi |λi|. To improve the convergence for these eigenmodes,
the algorithm determines a suitable number m of stabilizing iterations with
damping factor α given by (3.8), and then gradually increases α by a factor
two, towards α = 1,

(3.9) α← 2α/(1 + α).

This corresponds to the use of stabilizing time step sequences in [3] for the
stabilization of explicit methods for stiff problems.

To determine the number m of stabilizing iterations, we note that with
α = 1, the eigenmode corresponding to the largest eigenvalue will diverge
by a factor maxi |λi|. We further note that with damping factor α given by
(3.8), this eigenmode will converge by a factor ∼ 1− cos β. To compensate
for one iteration with α = 1, we thus need to choose m such that

(1− cos β)m max
i
|λi| < 1,

giving

(3.10) m >
log (maxi |λi|)

log 1/(1− cos β)
.

We note that the number of stabilizing iterations becomes large for β close
to π/2, and to limit the number of stabilizing iterations m, we assume in

practice that β = π/4, which gives cos β = 1/
√

2 and m ≈ log(maxi |λi|).
With α and m determined by (3.8) and (3.10), respectively, we need to

determine the value of ρ = maxi |λi|, which is obtained by cumulative power

iteration as follows. The residual F (xn), or the increment dn, is measured
for a sequence of iterations with α = 1. We let ρ1 = ‖F (x1)‖l2/‖F (x0)‖l2 ,
and for n = 2, 3, . . . determine ρn according to

(3.11) ρn = (ρn−1)
(n−1)/n(‖F (xn)‖l2/‖F (xn−1)‖l2)1/n,

until ρn has converged to within some tolerance, typically 10%. When ρ has
been computed, the damping factor α and the number of stabilizing steps
m are then determined for β = π/4 according to

(3.12) α =
1/
√

2

1 + ρ
,

and

(3.13) m = log ρ.

As an example, we consider the solution of the linear system

(3.14) x = g(x) = u0 −KAx =

[

1
1

]

−
[

0 −1
κ 200

]

x,

by stabilized fixed point iteration, corresponding to one time step of size K =
1 with the dG(0) method for a mass-spring-dashpot system with damping
b = 200 and spring constant κ. With κ = 104, the system is critically
damped and B = −KA is defective with two eigenvalues of size λ = 100.
Although ‖B‖l2 ≈ 104 and there is no α ∈ (0, 1] such that ‖Gα‖l2 < 1 with

8 JOHAN JANSSON AND ANDERS LOGG

0 20 40

10
−10

10
0

0 20 40
10

−3

10
−2

10
−1

10
0

0 50 100

10
−10

10
0

0 20 40
10

−3

10
−2

10
−1

10
0

0 100 200 300

10
−10

10
0

0 100 200 300
10

−3

10
−2

10
−1

10
0

PSfrag replacements

nnn

α
F

(x
n
)

κ = 104 κ = 2 · 104 κ = 103

Figure 3. Convergence of the stabilized fixed point iteration
for the solution of (3.14) with κ = 104, κ = 2 · 104, and
κ = 103.

Gα = I−α(I+B), the stabilized fixed point iteration converges, by targeting
the stabilization at the largest eigenvalue λ = 100. This is illustrated in
Figure 3, where we also plot the convergence for κ = 2 · 104 and κ = 103,
corresponding to an under-damped and over-damped harmonic oscillator,
respectively. All three results were obtained using same general iterative
algorithm available in version 0.4.7 of DOLFIN, which automatically detects
the appropriate size of α in each iteration.

Note the different behavior of the convergence for the three different sys-
tems. For κ = 104, there is only one eigenvalue and so α needs to be targeted
only at this eigenvalue. For κ = 2 · 104, the eigenvalues λ = 100± 100i of A
have a large imaginary part, which results in oscillations in the convergence.
For κ = 103, the matrix A has two eigenvalues λ1 ≈ 5 and λ2 ≈ 195 of
different magnitudes. For the stabilized fixed point iteration to converge,
it is then important that α is targeted not only at the large eigenvalue λ2,
but also at the smaller eigenvalue λ1, which is accomplished by gradually
increasing the damping factor α after each sequence of stabilizing iterations.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 9

4. Algorithm

The algorithm we propose is a modified version of the algorithm presented
earlier in [8]. Note that the method, mcG(q) or mdG(q), remains unchanged.

The original multi-adaptive iterative strategy of [8] is based on simple
fixed point iteration. For certain problems (stiff problems), this iteration
may fail to converge. We take this as the definition of stiffness: A problem
is stiff when simple fixed point iteration does not converge. With this
definition, the stiffness will depend on the size of the time steps (and thus
on the tolerance) and the exact construction of the time slab, as well as
properties of the differential equation (1.1) itself, such as the eigenvalues of
the Jacobian of the right-hand side f .

The modified algorithm differs from the original algorithm both in how
the time slabs are constructed, and in how the iteration is performed on each
time slab. The new algorithm is intelligent, in the sense that the iterative
strategy is automatically adapted to the detected level of stiffness. This
means in particular that for a non-stiff problem, simple fixed point iteration
is used, essentially corresponding to the original algorithm of [8].

4.1. Recursive construction of time slabs. In [8], time slabs are con-
structed in a way that allows each component to have its individual time
step sequence, independent of the time step sequences for other components.
No restrictions are made on the time step sequences, other than that the
first time step is the same for each component and also that the last time
step for each component may be adjusted to match the given end time T
for the simulation.

The algorithm presented in [8] gives the proper time step sequence for
each component, but has the disadvantage that there is little structure in
the organization of the time slabs. In particular, a time slab does not have
a well-defined left end-point Tn−1 and right end-point Tn.

The new algorithm recursively constructs a time slab between two syn-
chronized time levels Tn−1 and Tn, consisting of at least one element for
every component. Each element (Iij , U |Iij

) within the time slab satisfies the
relation Tn−1 ≤ ti,j−1 < tij ≤ Tn.

The time slab is organized recursively as follows. The root time slab
covering the interval (Tn−1, Tn] contains a non-empty list of elements, which
we refer to as an element group, and a possibly empty list of time slabs,
which in turn may contain nested groups of elements and time slabs. This
is illustrated in Figure 4.

For the construction of the time slab, we first examine each component
for its desired time step. This time step is adaptively determined by a
controller from the current component residual with the goal of satisfying a
given error tolerance, as discussed in [8]. In the current implementation, a
simple controller, based on the harmonic mean value with the previous time
step, has been used. For each component, an individual controller is used.

10 JOHAN JANSSON AND ANDERS LOGG

PSfrag replacements

Tn−1 Tn

Figure 4. The recursive organization of the time slab. Each
time slab contains an element group (shaded) and a list of
recursively nested time slabs. The root time slab in the figure
contains one element group of three elements and three time
slabs. The first of these sub slabs contains an element group
of two elements and two nested time slabs, and so on. The
root time slab recursively contains a total of nine element
groups and 35 elements.

We let k = (ki) denote the vector of desired time steps for the different
components, as determined by the controllers.

To construct the time slab, we let K be the largest time step contained
in the vector k,

(4.1) K = max
i

ki, i ∈ I0 = {1, 2, . . . , N}.

We next partition the components into two groups, one group I00 ⊂ I0

containing components with small time steps, and another group I01 ⊆ I0

containing components with large time steps. For the partition of the com-
ponents, we introduce a parameter θ ∈ [0, 1], referred to as the partitioning

threshold, which determines the granularity of the time slab. A large parti-
tioning threshold means that each component will have its own time step,
and a small partitioning threshold means that all components will use the
same time step. By varying θ, we may thus vary the multi-adaptive na-
ture of the algorithm. The value of θ determines (roughly speaking), the
maximum quotient between two different time steps within the time slab.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 11

All components for which ki < θK are assigned to the group I00 of com-
ponents with small time steps, and the remaining components for which
ki ≥ θK are assigned to the group I01 of components with large time steps.
Among the components with large time steps, we determine the minimum
time step

(4.2) K̄ = min
i

ki, i ∈ I01.

The size of the time slab is then adjusted according to

(4.3) Tn = min(Tn−1 + K̄, T),

i.e., we let K̄ be the size of the time slab and adjust the size if we should
reach the given final time T . We illustrate the partition of components in
Figure 5.

PSfrag replacements

θK K̄ K

Figure 5. The partition of components into groups of small
and large time steps for θ = 1/2.

The time slab is then recursively created by first constructing a list of sub
slabs for the components contained in the group I00, and then constructing
an element group containing one element for each of the components within
the group I01, as illustrated in Figure 4. Each of these elements covers the
full length of the time slab, ti,j−1 = Tn−1 and tij = Tn.

Note that we construct the list of sub slabs before we create the element
group. The tree of time slabs is thus constructed recursively depth first.

12 JOHAN JANSSON AND ANDERS LOGG

This means in particular that the first element that is constructed is for
the component with the smallest time step. The original multi-adaptive
algorithm presented in [8] is based on the principle

(4.4) The last component steps first.

This property is automatically obtained through the depth first nature of the
new recursive algorithm. In Figure 6, we illustrate the recursive construction
of elements by numbering the elements in the order in which they are created.

31

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

PSfrag replacements

Tn−1 Tn

Figure 6. Numbering of the elements in the order in which
they are created.

The list of sub slabs is constructed sequentially until the list of sub slabs
covers the interval [Tn−1, Tn] of the parent (root) time slab. For the con-
struction of each of these sub slabs, we again determine the maximum time
step,

(4.5) K = max
i

ki, i ∈ I00.

All components within I00 for which ki < θK are assigned to the group
I000 of components with small time steps within I00, and the remaining
components for which ki ≥ θK are assigned to the group I001 of components
with large time steps within I00. As before, we let

(4.6) K̄ = min
i

ki, i ∈ I001,

and let K̄ be the length of the sub slab. For the components in the group
I000, we continue recursively, until the group of components with small time
steps is empty. At that point, the second time slab in the list of time slabs
within the current parent time slab is constructed, until finally all time slabs
and element groups within the root time slab have been created.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 13

4.2. Adaptive fixed point iteration on time slabs. On each time slab,
the system of discrete equations given by the mcG(q) or mdG(q) method is
solved using adaptive fixed point iteration, as discussed in Section 3. Differ-
ent iterative strategies are used, depending on the stiffness of the problem.

As described in Section 4.1, a time slab contains a number of element
groups (counting also the element groups of the recursively contained time
slabs). Each element group contains a list of elements, and each element
represents a set of degrees of freedom for a component Ui(t) on a local
interval Iij .

We may thus view the time slab as a large system of discrete equations
of the form

(4.7) F (x) = 0

for the degrees of freedom x of all elements of all element groups contained
in the time slab.

Alternatively, we may view the time slab as a set of coupled sub systems
of the form (4.7), one for each element group, where each sub system consists
of the degrees freedom of each element within the element group.

Since each element can also be viewed as a sub system for the element
degrees of freedom, the time slab can be viewed as a set of sub systems, one
for each element group within the time slab, which each in turn consists of
a set of sub systems, one for each element within the element group.

We present below an iterative strategy that takes advantage of this nested
structure of sub systems, in combination with adaptive stabilization at the
different levels of iteration. We refer to iterations at the element level as
level 1 iterations, and to the iterations at the element group and time slab
level as level 2 and level 3 iterations, respectively.

4.2.1. Nested fixed point iteration. The basic principle of the nested fixed
point iteration is that each iteration on a given system consists of fixed
point iteration on each sub system. For fixed point iteration on a time slab,
the nested structure of sub systems consist of elements (level 1) contained in
element groups (level 2), which in turn are contained in the time slab (level
3).

The general algorithm for nested fixed point iteration is given in Table
1. On each level, fixed point iteration is performed as long as a certain
condition (1, 2, or 3) holds. This condition is typically of the form

(4.8) r > tol,

where r is the size of the residual for the current sub system and tol > 0 is a
tolerance for the residual. In each iteration, the current system is updated
and each update consists of successive fixed point iteration on all sub sys-
tems. By different choices of condition for the fixed point iteration and for
the type of adaptive damping on each level, different overall iterative meth-
ods are obtained. We present below four different versions of the iterative
algorithm, which we refer to as non-stiff iteration, adaptive level 1 iteration,

14 JOHAN JANSSON AND ANDERS LOGG

Iterate(time slab)

while condition 3 do
Update(time slab)

end while

Update(time slab)

for each element group do
Iterate(element group)

end for

Iterate(element group)

while condition 2 do
Update(element group)

end while

Update(element group)

for each element do
Iterate(element)

end for

Iterate(element)

while condition 1 do
Update(element)

end while

Update(element)

for each degree of freedom
do

Update(degree of free-
dom)
end for

Table 1. Nested fixed point iteration on the time slab.

adaptive level 2 iteration, and adaptive level 3 iteration. The solver auto-
matically detects which version of the algorithm to use, depending on the
stiffness of the problem.

4.2.2. Non-stiff iteration. Unless otherwise specified by the user, the prob-
lem (1.1) is assumed to be non-stiff. The non-stiff version of the iterative
algorithm is specified as follows. As discussed in [8], the system of equations
to be solved for the degrees of freedom {ξm} on each element is of the form

(4.9) ξm = ξ0 +

∫

Iij

w
[qij]
m (τij(t))fi(U(t), t) dt, m = 1, . . . , qij ,

for the mcG(q) method, where τij(t) = (t−tij)/(tij−ti,j−1) and {w[qij]
m }qij

m=1 ⊂
P [qij−1]([0, 1]) are polynomial weight functions. For the mdG(q) method, the
system of equations on each element has a similar form.

For each element (Iij , U |Iij
), we define the element residual Re

ij as

(4.10) Re
ij = ξqij

− ξ0 −
∫

Iij

fi(U(t), t) dt,

noting that w
[qij]
qij
≡ 1. For a given tolerance tol, we choose condition 1 for

the element iteration as

(4.11) |Re
ij | > tol.

For the iteration on element group level, condition 2 is given by ‖Re
ij‖l2 >

tol, with the l2 norm taken over all elements in the element group. Similarly,
condition 3 for the iteration on time slab level is given by ‖Re

ij‖l2 > tol,

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 15

with the l2 norm taken over all elements in the time slab. In each iteration
and for each element, the degrees of freedom are updated according to the
fixed point iteration (4.9). On the element level, the update is of Gauss–
Jacobi type, meaning that the degrees of freedom {ξm} are computed using
previously computed values, i.e., the new values ξ1, . . . , ξm−1 are not used
when computing the new value of ξm. On the element group level and
time slab level, the update is of Gauss–Seidel type, meaning that when
an element is updated, the latest known values are used for all previously
updated elements.

The nested fixed point iteration continues as long as condition 3 is ful-
filled. In each iteration at all levels, the convergence rate is measured, and
if the convergence rate is not acceptable (or if the residual diverges), the
system is stiff and a different iterative strategy is needed. The new choice
of strategy is given by the iteration level at which stabilization is needed:
If the iteration at element level needs stabilization, we change strategy to
adaptive level 1 iteration. If the iteration at element group level needs stabi-
lization, we change strategy to adaptive level 2 iteration, and if the iteration
at time slab level needs stabilization, we change strategy to adaptive level 3
iteration.

4.2.3. Adaptive level 1 iteration. If the fixed point iteration at element level
does not converge, the strategy is changed to adaptive level 1 iteration,
which is similar to non-stiff iteration except that the iterations at element
level are stabilized. For the mdG(0) method, we modify the fixed point
iteration (4.9) according to

(4.12) ξm ← (1− α)ξm + α

[

ξ0 +

∫

Iij

w
[qij]
m (τij(t))fi(U(t), t) dt

]

,

with damping factor α determined by

(4.13) α = 1/(1 − kij∂fi/∂ui(U(tij), tij)),

and appropriate modifications for higher-order methods, corresponding to
the diagonal damping discussed in Section 3.1. As noted in [8], this type of
iteration may be expected to perform well if the stiffness of the problem is
of sufficient diagonal nature, i.e., if the Jacobian of the right-hand side is
diagonally dominant, which is the case for many problems modeling chemical
reactions.

As before, we measure the rate of convergence. If necessary, the strategy
is changed to adaptive level 2 iteration, if the iterations at element group
level do not converge, and to adaptive level 3 iteration, if the iterations at
time slab level do not converge.

4.2.4. Adaptive level 2 iteration. If the fixed point iteration at element group
level does not converge, the strategy is changed to adaptive level 2 iteration.
The algorithm is similar to adaptive level 1 iteration, except that condition

1 is modified so that exactly one iteration is performed on each element,

16 JOHAN JANSSON AND ANDERS LOGG

and that the damping factor α is determined at the element group level.
We also perform the iteration at element group level using Gauss–Jacobi
type iteration, with the iteration at time slab level of Gauss–Seidel type. In
each iteration, the convergence rate is measured. Whenever stabilization is
necessary, the damping factor α is determined by cumulative power itera-
tion according to (3.12), the number of stabilizing iterations is determined
according to (3.13), and adaptive stabilization performed as discussed in
Section 3.2.

4.2.5. Adaptive level 3 iteration. If the fixed point iteration at time slab
level does not converge, the strategy is changed to adaptive level 3 iteration.
We now modify condition 1 and condition 2, so that exactly one iteration
is performed on each element and on each element group. The iteration
is now of Gauss–Jacobi type on the entire time slab, except that values
are propagated forward in time between elements representing the same
component. In each iteration, the convergence rate is measured and adaptive
stabilization is performed as discussed in Section 3.2.

4.2.6. Adaptive time step stabilization. If the adaptively stabilized fixed
point iteration fails to converge, we adjust the size of the time slab according
to

(4.14) Kn ← αKn,

and let Kn be the maximum allowed size of the time slab for a sequence
of m successive time slabs, with m determined by (3.13), corresponding to
the algorithm presented in [3] for the stabilization of explicit methods for
stiff problems. Note that the limitation on the time step size might force
different components to use the same time steps during the stabilization, in
particular if α is small. After the sequence of m stabilizing time slabs, the
maximum allowed size of the time slab is gradually increased by a factor two,
with the hope that the stiffness can be handled by the adaptively stabilized
fixed point iteration, as discussed above.

5. Examples

We illustrate the behavior of the multi-adaptive solver for a sequence of
well-known stiff test problems that appear in the ODE literature. To a large
extent, the problems are identical with those presented earlier in [3], where
a stabilized mono-adaptive method was used to solve the problems.

This rich set of test problems presents a challenge for the multi-adaptive
solver, since each of the test problems requires a slightly different strategy
as discussed in Section 4. As shown below, the solver automatically and
adaptively detects for each of the test problems which strategy to use and
when to change strategy.

The results were obtained using the standard implementation of the sta-
bilized multi-adaptive solver available in DOLFIN [5] version 0.4.7, which
includes the full set of test problems. In all examples, the multi-adaptive

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 17

dG(0) method was used, unless otherwise stated. For comparison, we present
the (wall clock) time of simulation for each of the test problems, obtained
on a standard desktop computer (Intel Pentium 4, 1.6 GHz) running Debian
GNU/Linux.

5.1. The test equation. The first test problem is the scalar problem

u̇(t) + λu(t) = 0, t ∈ (0, T],

u(0) = u0,
(5.1)

for T = 10, λ = 1000, and u0 = 1. The solution, which is shown in Figure
7, was computed in less than 0.01 seconds, using (diagonally) damped fixed
point iteration (adaptive level 1 iteration).

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

x 10
−3

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

10
−4

10
−2

10
0

0 2 4 6 8 10

x 10
−3

10
−4

10
−2

10
0

PSfrag replacements

tt

tt

U
(t

)

U
(t

)

k
(t

)

k
(t

)

Figure 7. Solution and adaptive time step sequence for (5.1).

5.2. The test system. The second test problem is the diagonal problem

u̇(t) + Au(t) = 0, t ∈ (0, T],

u(0) = u0,
(5.2)

for T = 10, A = diag(100, 1000), and u0 = (1, 1). The solution, which is
shown in Figure 8, was computed in 0.01 seconds, using diagonally damped

18 JOHAN JANSSON AND ANDERS LOGG

(individual for each component) fixed point iteration (adaptive level 1 iter-
ation).

Note that the second component, which decays faster, initially uses smaller
time steps than the first component. Later, when the second component is
out of the transient with the first component still in its transient, the situ-
ation is the opposite with smaller time steps for the first component.

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

10
−4

10
−2

10
0

0 0.05 0.1

10
−4

10
−2

10
0

PSfrag replacements

tt

tt

U
(t

)

U
(t

)

k
(t

)

k
(t

)

Figure 8. Solution and adaptive time step sequence for (5.2).

5.3. A non-normal test problem. The next problem is the mass-spring-
dashpot system (3.14) with κ = 104, corresponding to critical damping,
i.e.,

u̇(t) + Au(t) = 0, t ∈ (0, T],

u(0) = u0,
(5.3)

for T = 1, with

A =

[

0 −1
104 200

]

and u0 = (1, 1). The solution, which is shown in Figure 9, was computed
in 0.38 seconds, using a combination of adaptively stabilized fixed point
iteration on the time slab level (adaptive level 3 iteration), and stabilizing
time steps.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 19

0 0.2 0.4 0.6 0.8 1

−35

−30

−25

−20

−15

−10

−5

0

0 0.05 0.1

−35

−30

−25

−20

−15

−10

−5

0

0 0.2 0.4 0.6 0.8 1
10

−6

10
−4

10
−2

10
0

0 0.05 0.1
10

−6

10
−4

10
−2

10
0

PSfrag replacements

tt

tt

U
(t

)

U
(t

)

k
(t

)

k
(t

)

Figure 9. Solution and adaptive time step sequence for (5.3).

5.4. The HIRES problem. The HIRES problem (“High Irradiance RE-
Sponse”) originates from plant physiology and is taken from a test set of
initial value problems [11] for ODE solvers. The problem consists of the
following eight equations:

(5.4)

u̇1 = −1.71u1 + 0.43u2 + 8.32u3 + 0.0007,
u̇2 = 1.71u1 − 8.75u2,
u̇3 = −10.03u3 + 0.43u4 + 0.035u5,
u̇4 = 8.32u2 + 1.71u3 − 1.12u4,
u̇5 = −1.745u5 + 0.43u6 + 0.43u7,
u̇6 = −280.0u6u8 + 0.69u4 + 1.71u5 − 0.43u6 + 0.69u7,
u̇7 = 280.0u6u8 − 1.81u7,
u̇8 = −280.0u6u8 + 1.81u7,

on [0, 321.8122] with initial condition u0 = (1.0, 0, 0, 0, 0, 0, 0, 0.0057). The
solution, which is shown in Figure 10, was computed in 0.32 seconds, using
diagonally damped fixed point iteration (adaptive level 1 iteration).

20 JOHAN JANSSON AND ANDERS LOGG

0 100 200 300

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

0 100 200 300
10

−4

10
−2

10
0

0 1 2 3 4 5
10

−4

10
−2

10
0

PSfrag replacements

tt

tt

U
(t

)

U
(t

)

k
(t

)

k
(t

)

Figure 10. Solution and adaptive time step sequence for (5.4).

5.5. The Akzo-Nobel problem. We next solve the “Chemical Akzo-Nobel”
problem taken from the test set [11], consisting of the following six equations:

(5.5)

u̇1 = −2r1 + r2 − r3 − r4,
u̇2 = −0.5r1 − r4 − 0.5r5 + F,
u̇3 = r1 − r2 + r3,
u̇4 = −r2 + r3 − 2r4,
u̇5 = r2 − r3 + r5,
u̇6 = Ksu1u4 − u6,

on [0, 180], where F = 3.3 · (0.9/737 − u2) and the reaction rates are
given by r1 = 18.7 · u4

1
√

u2, r2 = 0.58 · u3u4, r3 = 0.58/34.4 · u1u5, r4 =
0.09 · u1u

2
4, and r5 = 0.42 · u2

6
√

u2. The initial condition is given by u0 =
(0.444, 0.00123, 0, 0.007, 0, 0.36). The solution, which is shown in Figure 11,
was computed in 0.14 seconds, using a combination of adaptively stabilized
fixed point iteration on the time slab level (adaptive level 3 iteration), and
stabilizing time steps. Note that for this particular problem, the partition-
ing threshold with a default value of θ = 0.5 forces all components to use
the same time steps.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 21

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5

0

2

4

6

8

10
x 10

−4

0 50 100 150

10
−2

10
−1

10
0

0 1 2 3 4 5

10
−2

10
−1

10
0

PSfrag replacements

tt

tt

U
(t

)

U
(t

)

k
(t

)

k
(t

)

Figure 11. Solution and adaptive time step sequence for (5.5).

5.6. Van der Pol’s equation. A stiff problem discussed in the book by
Hairer and Wanner [4] is Van der Pol’s equation,

ü + µ(u2 − 1)u̇ + u = 0,

which we write in the form

(5.6)

{

u̇1 = u2,
u̇2 = −µ(u2

1 − 1)u2 − u1.

We take µ = 10 and compute the solution on the interval [0, 100] with
initial condition u0 = (2, 0). The solution, which is shown in Figure 12,
was computed in 1.89 seconds, using a combination of adaptively stabilized
fixed point iteration on the time slab level (adaptive level 3 iteration) and
stabilizing time steps.

Note how the time steps are drastically reduced at the points where the
derivatives, and thus also the residuals, of the mdG(0) solution are large.

22 JOHAN JANSSON AND ANDERS LOGG

0 20 40 60 80 100
−15

−10

−5

0

5

10

15

38 40 42 44 46 48
−15

−10

−5

0

5

10

15

0 20 40 60 80 100
10

−10

10
−5

10
0

38 40 42 44 46 48

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

tt

tt

U
(t

)

U
(t

)

k
(t

)

k
(t

)

Figure 12. Solution and adaptive time step sequence for (5.6).

5.7. The heat equation. A special stiff problem is the one-dimensional
heat equation,

u̇(x, t)− u′′(x, t) = f(x, t), x ∈ (0, 1), t > 0,

u(0, t) = u(1, t) = 0, t > 0

u(x, 0) = 0, x ∈ [0, 1],

where we choose f(x, t) = f(x) as an approximation of the Dirac delta
function at x = 0.5. Discretizing in space, we obtain the ODE

u̇(t) + Au(t) = f,

u(0) = 0,
(5.7)

where A is the stiffness matrix (including lumping of the mass matrix).
With a spatial resolution of h = 0.01, the eigenvalues of A are distributed
in the interval [0, 4 · 104]. The solution, which is shown in Figure 13, was
computed with a partitioning threshold θ = 0.1 in 2.99 seconds, using a
combination of adaptively stabilized fixed point iteration on the time slab
level (adaptive level 3 iteration) and stabilizing time steps.

5.8. A chemical reaction test problem. The next problem originating
from 1966 (Robertson) is taken from Hairer and Wanner [4]. This problem

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
−4

10
−2

10
0

PSfrag replacements

t

t

U
(t

)
k
(t

)

Figure 13. Solution and adaptive time step sequence for (5.7).

models the following system of chemical reactions:

A 0.04

−→ B (slow)

B + B 3·107

−→ B + C (very fast)

B + C 104

−→ A + C (fast)

which gives an initial value problem of the form

(5.8)

u̇1 = −0.04u1 + 104u2u3,
u̇2 = 0.04u1 − 104u2u3 − 3 · 107u2

2,
u̇3 = 3 · 107u2

2.

We compute the solution on the interval [0, 0.3] with u0 = (1, 0, 0). The
solution, which is shown in Figure 14, was computed in 0.01 seconds, using
diagonally damped fixed point iteration (adaptive level 1 iteration).

5.9. A mixed stiff/non-stiff test problem. As a final test problem, we
solve the simple system

24 JOHAN JANSSON AND ANDERS LOGG

0 0.1 0.2 0.3

0.99

0.995

1

0 0.1 0.2 0.3
0

5

10

x 10
−3

0 0.1 0.2 0.3
0

1

2

3

4
x 10

−5

0 0.05 0.1 0.15 0.2 0.25 0.3
10

−3

10
−2

10
−1

10
0

PSfrag replacements

t

t
t

t

U
1
(t

)

U
2
(t

)

U
3
(t

)
k
(t

)

Figure 14. Solution and adaptive time step sequence for (5.8).

(5.9)

u̇1 = u2,
u̇2 = −(1− u3)u1,
u̇3 = −λ(u2

1 + u2
2)u3,

which, since u3 ≈ 0 and u2
1 + u2

2 ≈ 1, we recognize as the combination of a
harmonic oscillator (the first and second components) and the simple scalar
test problem (5.1). We take λ = 1000 and compute the solution on [0, 30]
with initial condition u0 = (0, 1, 1). As an illustration, we use the mcG(1)
method for the first two non-stiff components and the mdG(0) method for
the third stiff component.

The solution, which is shown in Figure 16, was computed in 0.06 seconds,
using diagonally damped fixed point iteration (adaptive level 1 iteration).
With a partitioning threshold of default size θ = 0.5, we notice that the
time steps for the stiff third component are sometimes decreased, whenever
ki > θk3 for i = 1 or i = 2. This is also evident in Figure 15, where we plot
the sequence of time slabs on the interval [10, 30].

MULTI-ADAPTIVE GALERKIN METHODS FOR ODES V 25

PSfrag replacements

t
i = 1
i = 2
i = 3

Figure 15. The structure of the time slabs on the interval
[10, 30] for the solution of (5.9).

0 10 20 30
−1

−0.5

0

0.5

1

0 0.1 0.2 0.3
−1

−0.5

0

0.5

1

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

t

tt

U
(t

)

U
(t

)
k
(t

)

Figure 16. Solution and adaptive time step sequence for (5.9).

26 JOHAN JANSSON AND ANDERS LOGG

References

[1] G. Dahlquist, Stability and Error Bounds in the Numerical Integration of Ordinary

Differential Equations, PhD thesis, Stockholm University, 1958.
[2] T. Dupont, J. Hoffman, C. Johnson, R.C. Kirby, M.G. Larson, A. Logg,

and L.R. Scott, The FEniCS project, Tech. Rep. 2003–21, Chalmers Finite Element
Center Preprint Series, 2003.

[3] K. Eriksson, C. Johnson, and A. Logg, Explicit time-stepping for stiff ODEs,
SIAM J. Sci. Comput., 25 (2003), pp. 1142–1157.

[4] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II — Stiff and

Differential-Algebraic Problems, Springer Series in Computational Mathematics, vol
14, 1991.

[5] J. Hoffman and A. Logg et al., DOLFIN, http://www.phi.chalmers.se/dolfin/.
[6] J. Jansson and A. Logg, Algorithms for multi-adaptive time-stepping, submitted

to ACM Trans. Math. Softw., (2004).
[7] A. Logg, Multi-adaptive Galerkin methods for ODEs I, SIAM J. Sci. Comput., 24

(2003), pp. 1879–1902.
[8] , Multi-adaptive Galerkin methods for ODEs II: Implementation and applica-

tions, SIAM J. Sci. Comput., 25 (2003), pp. 1119–1141.
[9] , Multi-adaptive Galerkin methods for ODEs III: Existence and stability, Sub-

mitted to SIAM J. Numer. Anal., (2004).
[10] , Multi-adaptive Galerkin methods for ODEs IV: A priori error estimates, Sub-

mitted to SIAM J. Numer. Anal., (2004).
[11] F. Mazzia and F. Iavernaro, Test set for initial value problem solvers, release 2.2,

Department of Mathematics, University of Bari, Report 40/2003, (2003).

EXPLICIT TIME-STEPPING FOR STIFF ODES∗

KENNETH ERIKSSON† , CLAES JOHNSON† , AND ANDERS LOGG†

SIAM J. SCI. COMPUT. c© 2003 Society for Industrial and Applied Mathematics
Vol. 25, No. 4, pp. 1142–1157

Abstract. We present a new strategy for solving stiff ODEs with explicit methods. By adap-
tively taking a small number of stabilizing small explicit time steps when necessary, a stiff ODE
system can be stabilized enough to allow for time steps much larger than what is indicated by classi-
cal stability analysis. For many stiff problems the cost of the stabilizing small time steps is small, so
the improvement is large. We illustrate the technique on a number of well-known stiff test problems.

Key words. stiff ODE, explicit methods, explicit Euler, Galerkin methods

AMS subject classifications. 65L05, 65L07, 65L20, 65L50, 65L60, 65L70, 65M12

DOI. 10.1137/S1064827502409626

1. Introduction. The classical wisdom developed in the 1950s regarding stiff
ODEs is that efficient integration requires implicit (A-stable) methods, at least outside
of transients, where the time steps may be chosen large from an accuracy point of
view. Using an explicit method (with a bounded stability region) the time steps have
to be small at all times for stability reasons, and thus the advantage of a low cost per
time step may be counterbalanced by the necessity of taking a large number of steps.
As a result, the overall efficiency of an explicit method for a stiff ODE may be small.

The question now is if it is possible to combine the low cost per time step of an
explicit method with the possibility of choosing large time steps outside of transients.
To reach this favorable combination, some kind of stabilization of the explicit method
seems to be needed, and the basic question is then if the stabilization can be realized
at a low cost.

The stabilization technique proposed in this note relies on the inherent property of
the stiff problem itself, which is the rapid damping of high frequencies. This is achieved
by stabilizing the system with a couple of small stabilizing (explicit Euler) steps. We
test this idea in adaptive form, where the size and number of the small time steps
are adaptively chosen according to the size of different residuals. In particular, we
compute rates of divergence to determine the current mode λ of largest amplification
and to determine a corresponding small time step k ≈ 1

λ with high damping. We
test the corresponding adaptive method in the setting of the cG(1) method with
fixed point iteration, effectively corresponding to an explicit method if the number of
iterations is kept small. We show in a sequence of test problems that the proposed
adaptive method yields a significant reduction in work in comparison to a standard
implementation of an explicit method, with a typical speedup factor of ∼ 100. We
conclude that, for many stiff problems, we may efficiently use an explicit method, if
only the explicit method is adaptively stabilized with a relatively small number of
small time steps, and so we reach the desired combination of a low cost per time step
and the possibility of taking large time steps outside transients. It remains to be seen
if the proposed method can also be efficient in comparison to implicit methods.

We have been led to this question in our work on multi-adaptive cG(q) or dG(q)

∗Received by the editors June 14, 2002; accepted for publication (in revised form) June 2, 2003;
published electronically December 5, 2003.

http://www.siam.org/journals/sisc/25-4/40962.html
†Department of Computational Mathematics, Chalmers University of Technology, SE–412 96

Göteborg, Sweden (kenneth@math.chalmers.se, claes@math.chalmers.se, logg@math.chalmers.se).

1142

EXPLICIT TIME-STEPPING FOR STIFF ODES 1143

ODE-solvers based on Galerkin’s method with continuous or discontinuous polyno-
mials of degree q, where individual time steps are used for different components (see
[8, 9]). These methods are implicit, and, to realize efficient implementations, we need
to use fixed point iteration with simple preconditioners. With a limited (small) num-
ber of iterations, these iterative solvers correspond to explicit time-stepping, and the
same question of the cost of stabilization arises.

The motivation for this work comes also from situations where for some reason
we are forced to using an explicit method, such as in simulations of very large systems
of chemical reactions or molecular dynamics, where the formation of Jacobians and
the solution of the linear system become very expensive.

Possibly, similar techniques may be used also to stabilize multigrid smoothers.

2. Basic strategy. We consider first the test equation: Find u : [0,∞) → R

such that

u̇(t) + λu(t) = 0 for t > 0,

u(0) = u0,
(2.1)

where λ > 0 and u0 is a given initial condition. The solution is given by u(t) =
exp(−λt)u0. We define the transient as {t > 0 : λt ≤ C} with C a moderate constant.
Outside the transient, u(t) = exp(−λt)u0 will be small.

The explicit Euler method for the test equation reads

Un = −knλU
n−1 + Un−1 = (1 − knλ)Un−1.

This method is conditionally stable and requires that knλ ≤ 2, which, outside of
transients, is too restrictive for large λ.

Now let K be a large time step satisfying Kλ > 2 and let k be a small time step
chosen so that kλ < 2. Consider the method

Un = (1 − kλ)m(1 −Kλ)Un−1,(2.2)

corresponding to one explicit Euler step with large time step K and m explicit Euler
steps with small time steps k, where m is a positive integer to be determined. Alto-
gether this corresponds to a time step of size kn = K +mk. Defining the polynomial
function P (x) = (1 − θx)m(1 − x), where θ = k

K , we can write method (2.2) in the
form

Un = P (Kλ)Un−1.

We now seek to choose m so that |P (Kλ)| ≤ 1, which is needed for stability. We thus
need to satisfy

|1 − kλ|m(Kλ− 1) ≤ 1,

that is,

m ≥ log(Kλ− 1)

− log |1 − kλ| ≈
log(Kλ)

c
,(2.3)

with c = kλ a moderate constant; for definiteness, let c = 1/2.

1144 KENNETH ERIKSSON, CLAES JOHNSSON, AND ANDERS LOGG

We conclude that m will be of moderate size, and consequently only a small
fraction of the total time interval will be spent on time-stepping with the small time
step k. To see this, define the cost as

α =
1 + m

K + km
∈ (1/K, 1/k),

that is, the number of time steps per unit time interval. Classical stability analysis
with m = 0 gives

α = 1/kn = λ/2,(2.4)

with a maximum time step kn = K = 2/λ. Using (2.3) we instead find

α ≈ 1 + log(Kλ)/c

K + log(Kλ)/λ
≈ λ

c
log(Kλ)/(Kλ) � λ/c(2.5)

for Kλ � 1. The cost is thus decreased by the cost reduction factor

2 log(Kλ)

cKλ
∼ log(Kλ)

Kλ
,

which can be quite significant for large values of Kλ.
A similar analysis applies to the system u̇ + Au = 0 if the eigenvalues {λi}Ni=1 of

A are separated with 0 ≤ λ1 ≤ · · · ≤ λi−1 ≤ 2/K and 2/K � λi ≤ · · · ≤ λN . In this
case, the cost is decreased by a factor of

2 log(Kλi)

cKλi
∼ log(Kλi)

Kλi
.(2.6)

In recent independent work by Gear and Kevrekidis [2], a similar idea of combining
small and large time steps for a class of stiff problems with a clear separation of slow
and fast time scales is developed. That work, however, is not focused on adaptivity
to the same extent as ours, which does not require any a priori information about the
nature of the stiffness (for example, the distribution of eigenvalues).

3. Parabolic problems. For a parabolic system,

u̇(t) + Au(t) = 0 for t > 0,

u(0) = u0,
(3.1)

with A a symmetric positive semidefinite N ×N matrix and u0 ∈ R
N a given initial

condition, the basic damping strategy outlined in the previous section may fail to
be efficient. This can be seen directly from (2.6); for efficiency we need Kλi � 2,
but with the eigenvalues of A distributed over the interval [0, λN], for example with
λi ∼ i2 as for a typical (one-dimensional) parabolic problem, one cannot have both
λi−1 ≤ 2/K and Kλi � 2!

We conclude that, for a parabolic problem, the sequence of time steps, or equiva-
lently the polynomial P (x), has to be chosen differently. We thus seek a more general
sequence k1, . . . , km of time steps such that |P (x)| ≤ 1 for x ∈ [0,KλN], with

P (x) =

(

1 − k1x

K

)

· · ·
(

1 − kmx

K

)

and K a given maximum step size.

EXPLICIT TIME-STEPPING FOR STIFF ODES 1145

3.1. Chebyshev damping. A good candidate for P is given by the shifted
Chebyshev polynomial of degree m,

Pc(x) = Tm

(

1 − 2x

KλN

)

.

This gives Pc(0) = 1 and |Pc(x)| ≤ 1 on [0,KλN] (see Figure 1). A similar approach
is taken in [11].

Analyzing the cost as before, we have α = m/(k1 + · · · + km), with

ki = 2/(λN (1 − sm+1−i)),

and si the ith zero of the Chebyshev polynomial Tm = Tm(s), given by si = cos((2i−
1)π/(2m)), i = 1, . . . ,m. It follows that

α =
mλN/2

1/(1 − s1) + · · · + 1/(1 − sm)
=

mλN/2

m2
= λN/2m.

The reduction in cost compared to λN/2 is thus a factor 1/m. A restriction on the
maximum value of m is given by km = 2/(λN (1 − s1)) ≤ K; that is,

K ≥ 2

λN (1 − cos(π/(2m)))
≈ 2

λNπ2/(8m2)
= 16m2/(λNπ2)

for m � 1. With m = (π/4)
√
KλN , the cost reduction factor for Chebyshev damping

is thus given by

1/m =
4

π
√
KλN

∼ (KλN)−1/2.

3.2. Dyadic damping. Another approach is a modified version of the simple
approach of small and large time steps discussed in the previous section. As discussed
above, the problem with this basic method is that the damping is inefficient for
intermediate eigenmodes. To solve this problem, we modify the simple method of
large and small time steps to include also time steps of intermediate size. A related
approach is taken in [3]. Starting with a couple of small time steps of size k, we thus
increase the time step gradually by (say) a factor of 2, until we reach the largest step
size K. Correspondingly, we decrease the number of time steps at each level by a
factor of 2. The polynomial P is now given by

Pd(x) =

p
∏

j=q+1

(

1 − 2jx

KλN

) q
∏

i=0

(

1 − 2ix

KλN

)2q−i

,

where p and q ≤ p are two integers to be determined. We thus obtain a sequence of
increasing time steps, starting with 2q time steps of size k = 1/λN , 2q−1 time steps of
size 2k, and so on, until we reach level q where we take one time step of size 2qk. We
then continue to increase the size of the time step, with only one time step at each
level, until we reach a time step of size 2pk = K.

With p given, we determine the minimal value of q for |Pd(x)| ≤ 1 on [0,KλN]
for p = 0, 1, . . . , and find q(p) ≈ 2

3 (p− 1); see Table 1. The cost is now given by

α =
(2q + · · · + 1) + (p− q)

1
λN

(2q(q + 1) + (2q+1 + · · · + 2p))
=

λN ((2q+1 − 1) + (p− q))

2q(q + 1) + (2p+1 − 2q+1)

≈ λN/2

2p−q−1
≈ λN

2
2−p+2(p−1)/3+1 =

λN

2
2−(p−1)/3.

1146 KENNETH ERIKSSON, CLAES JOHNSSON, AND ANDERS LOGG

Table 1

Number of required levels with multiple zeros, q, as a function of the total number of levels, p.

p 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
q 0 0 0 1 2 3 3 4 4 5 6 7 8 8 9 10 10

Since p = log(KλN)/ log(2), the reduction in cost for dyadic damping is then a factor

1

(KλN/2)1/3
∼ (KλN)−1/3,

which is competitive with the optimal cost reduction of Chebyshev damping.

4. Comparison of methods. We summarize our findings so far as follows. The
reduction in cost for the simple approach of large unstable time steps followed by small
stabilizing time steps (outlined in section 2) is a factor log(KλN)/(KλN), and thus
this simple approach can be much more efficient than both of the two approaches,
Chebyshev damping and dyadic damping, discussed in the previous section. This
however requires that the problem in question has a gap in its eigenvalue spectrum;
that is, we must have a clear separation into small (stable) eigenvalues and large
(unstable) eigenvalues.

In the case of a parabolic problem, without a gap in the eigenvalue spectrum,
the simple approach of section 2 will not work. In this case, Chebyshev damping and
dyadic damping give a reduction in cost which is a factor (KλN)−1/2 or (KλN)−1/3,
respectively. The efficiency for a parabolic problem is thus comparable for the two
methods. Since the dyadic damping method is a slightly modified version of the simple
approach of section 2, consisting of gradually and carefully increasing the time step
size after stabilization with the smallest time step, thus being simple and flexible, we
believe this method to be advantageous over the Chebyshev method.

As a comparison, we plot in Figure 1 the shifted Chebyshev polynomial Pc(x)
and the polynomial Pd(x) of dyadic damping for KλN = 64. With KλN = 64, we
obtain m = (π/4)

√
KλN ≈ 6 for the Chebyshev polynomial. For the dyadic damping

polynomial, we have p = log(KλN)/ log(2) = 6, and from Table 1, we obtain q = 3.
As another comparison, we plot in Figure 2 the stability regions for the two

polynomials Pc(z) and Pd(z) for z ∈ C. In this context, the two polynomials are
given by

Pc(z) =

m
∏

i=1

(

1 +
z/m2

1 − si

)

(4.1)

for si = cos((2i− 1)π/(2m)) and

Pd(z) =

p
∏

j=q+1

(1 + θjz)

q
∏

i=0

(1 + θiz)
2q−1

(4.2)

for θi = 2i/(2q(q + 1) + 2p+1 − 2q+1). Note that we take z = −K̄λ, where K̄ =
k1 + · · ·+km is the sum of all time steps in the sequence, rather than z = −Kλ, where
K ≤ K̄ is the maximum time step in the sequence. To make the comparison fair, we
take m = 5 for the Chebyshev polynomial and (p, q) = (3, 1) for the dyadic damping
polynomial, which gives the same number of time steps (m = 2q+1 − 1 + p − q = 5)
for the two methods.

EXPLICIT TIME-STEPPING FOR STIFF ODES 1147

0 10 20 30 40 50 60
-1

-0. 5

0

0.5

1

0 10 20 30 40 50 60
-1

-0. 5

0

0.5

1

PSfrag replacements

x

P
d
(x

)
P
c
(x

)

Fig. 1. A comparison of the two polynomials for KλN = 64: we take m = 6 for the shifted
Chebyshev polynomial Pc(x) and (p, q) = (6, 3) for the dyadic polynomial Pd(x). With K = 1, the
costs are 5.3 and 8, respectively.

PSfrag replacements

x
Pd(x)
Pc(x)

Fig. 2. A comparison of stability regions for the two polynomials, with m = 5 for the shifted
Chebyshev polynomial Pc(z) (left) and (p, q) = (3, 1) for the dyadic polynomial Pd(z) (right).

From Figures 1 and 2, we see that Chebyshev damping can be slightly more
efficient than dyadic damping; the cost is smaller for a given value of KλN (Figure 1)
and the stability interval on the negative real axis is larger (Figure 2). However,
with dyadic damping we don’t need to assume that the eigenvalues of A in (3.1) lie
in a narrow strip along the negative real axis in the complex plane, as is needed

1148 KENNETH ERIKSSON, CLAES JOHNSSON, AND ANDERS LOGG

with Chebyshev damping. (The stability region of the Chebyshev polynomial can be
slightly modified to include a narrow strip along the negative real axis; see [11].)

5. The general nonlinear problem. We consider now the general nonlinear
problem,

u̇(t) = f(u(t)) for t > 0,

u(0) = u0,
(5.1)

where f : R
N × (0, T] → R

N is a given bounded and differentiable function. The
explicit Euler method for (5.1) reads

Un = Un−1 + knf(Un−1),(5.2)

where the function U = U(t) is piecewise constant and right-continuous with Un =
U(t+n). The exact solution u satisfies a similar relation,

un = un−1 +

∫ tn

tn−1

f(u(t)) dt,(5.3)

with un = u(tn). Subtracting (5.2) and (5.3), we find that the error e(t) = U(t)−u(t)
satisfies

e(t+n) − e(t+n−1) =

∫ tn

tn−1

J(U(t) − u(t)) dt =

∫ tn

tn−1

Je dt,

where J is the Jacobian ∂f
∂u of the right-hand side evaluated at a mean value of U and

u. We conclude that the efficiency of the proposed method for the general nonlinear
problem will be determined by the distribution of the eigenvalues of the Jacobian.

6. Iterative methods. From another viewpoint, we may consider using an
explicit-type iterative method for solving the discrete equations arising from an im-
plicit method. The implicit cG(1) method with midpoint quadrature for the general
nonlinear problem (5.1) reads

Un = Un−1 + knf

(

Un−1 + Un

2

)

.(6.1)

We can solve this system of nonlinear equations for Un using Newton’s method, but
the simplest and cheapest method is to apply fixed point iteration directly to (6.1);
that is,

Unl = Un−1 + knf

(

Un−1 + Un,l−1

2

)

,

for l = 1, 2, . . . until convergence occurs with Un,0 = Un−1. The fixed point iteration
converges for a small enough time step kn, so the stability condition for a standard
explicit method appears also in explicit-type iterative methods as a condition for
convergence of the iterative solution of the implicit equations.

To determine a stop criterion for the fixed point iteration, we measure the size of
the discrete residual,

rnl =
1

kn
(Unl − Un−1) − f

(

Un−1 + Unl

2

)

,

EXPLICIT TIME-STEPPING FOR STIFF ODES 1149

which should be zero for the true cG(1) approximation. We continue the iterations
until the discrete residual is smaller than some tolerance tol > 0. Usually only a
couple of iterations are needed. Estimating the error e(T) = U(T) − u(T) at final
time T (see [8]), we have

‖e(T)‖ ≤ S(T) max
[0,T]

k‖R‖ + S0(T) max
[0,T]

‖r‖,

where R(t) = U̇(t) − f(U(t)) is the continuous residual and S(T) and S0(T) are
stability factors. For the test equation, we have S(T) ≤ 1 and S0(T) ≤ 1/λ, which
suggests that for a typical stiff problem we can take tol = TOL, where TOL is a
tolerance for the error e(T) at final time.

For the discrete residual, we have

rnl =
1

kn
(Unl − Un−1) − f

(

Un−1 + Unl

2

)

= f

(

Un−1 + Un,l−1

2

)

− f

(

Un−1 + Unl

2

)

= J
Un,l−1 − Unl

2

=
1

2
J

[

Un,l−1 − Un−1 − knf

(

Un−1 + Un,l−1

2

)]

,

which gives

rnl =
kn
2
Jrn,l−1.(6.2)

Thus, by measuring the size of the discrete residual, we obtain information about
the stiff nature of the problem, in particular the eigenvalue of the current unstable
eigenmode, which can be used in an adaptive algorithm targeted precisely at stabiliz-
ing the current unstable eigenmode. We discuss this in more detail below in section 8.

7. Multi-adaptive solvers. In a multi-adaptive solver, we use individual time
steps for different components. An important part of the algorithm described in
[8, 9] is the iterative fixed point solution of the discrete equations on time slabs. The
simple strategy to take small damping steps to stabilize the system applies also in
the multi-adaptive setting, where we may also target individual eigenmodes (if these
are represented by different components) using individual damping steps. This will
be explored further in another note.

8. An adaptive algorithm. The question is now whether we can choose the
time step sequence automatically in an adaptive algorithm. We approach this question
in the setting of an implicit method combined with an explicit-type iterative solver as
in section 6. We give the algorithm in the case of the simple damping strategy outlined
in section 2, with an extension to parabolic problems as described in section 3.

A simple adaptive algorithm for the standard cG(1) method with iterative solution
of the discrete equations reads as follows.

1. Determine a suitable initial time step k1, and solve the discrete equations for
the solution U(t) on (t0, t1).

2. Repeat on (tn−1, tn) for n = 2, 3, . . . until tn ≥ T :
(a) Evaluate the continuous residual Rn−1 from the previous time interval.
(b) Determine the new time step kn based on Rn−1.
(c) Solve the discrete equations on (tn−1, tn) using fixed point iteration.

1150 KENNETH ERIKSSON, CLAES JOHNSSON, AND ANDERS LOGG

In reality we want to control the global error, which means we also have to solve the
dual problem, compute stability factors (or weights), evaluate an a posteriori error
estimate, and possibly repeat the process until the error is below a given tolerance
TOL > 0. The full algorithm is thus slightly more elaborate, but the basic algorithm
presented here is the central part. See [1] for a discussion.

We comment also on step 2(b): For the cG(1) method we would like to take
kn = TOL/(S(T)‖Rn−1‖), but this introduces oscillations in the size of the time
step. A small residual gives a large time step which results in a large residual, and so
on. To avoid this, the simple step size selection has to be combined with a regulator
of some kind; see [4, 10] or [9]. It turns out that a simple strategy that works well in
many situations is to take kn as the geometric mean value

kn =
2k̃nkn−1

k̃n + kn−1

,(8.1)

where k̃n = TOL/(S(T)‖Rn−1‖).
Now, for a stiff problem, what may go wrong is step 2(c); if the time step kn is too

large, the fixed point iterations will not converge. To be able to handle stiff problems
using the technique discussed above, we propose the following simple modification of
the adaptive algorithm.

1. Determine a suitable initial time step k1, and solve the discrete equations for
the solution U(t) on (t0, t1).

2. Repeat on (tn−1, tn) for n = 2, 3, . . . until tn ≥ T :
(a) Evaluate the continuous residual Rn−1 from the previous time interval.
(b) Determine the new time step kn based on Rn−1.
(c) Solve the discrete equations on (tn−1, tn) using fixed point iteration.
(d) If 2(c) did not work, compute

L =
2

kn

‖rl‖
‖rl−1‖ ,

and take m = log(knL) explicit Euler steps with time step k = c/L and
c close to 1.

(e) Try again starting at 2(a) with n → n + m.

In the analysis of section 2, we had c = 1/2, but it is clear that the damping steps
will be more efficient if we have c close to 1. An implementation of this algorithm in
the form of a simple MATLAB code is available for inspection [7], including among
others the test problems presented in the next section.

We also note that, by (8.1), we have kn ≤ 2kn−1, so, following the sequence
of small stabilizing time steps, the size of the time step will be increased gradually,
doubling the time step until we reach kn ∼ K or the system becomes unstable again,
whichever comes first. This automatically gives a sequence of time steps similar to
that of dyadic damping described in section 3, with the difference being that most of
the damping is made with the smallest time step. For a parabolic problem, we modify
the algorithm to increase the time step more carefully, as determined by Table 1, with
p given by p = log(knL)/ log(2).

9. Examples. To illustrate the technique, we take a simple standard imple-
mentation of the cG(1)-method (with an explicit fixed point solution of the discrete
equations) and add a couple of lines to handle the stabilization of stiff problems. We

EXPLICIT TIME-STEPPING FOR STIFF ODES 1151

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

x 10
-3

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

10
 -2

10
0

PSfrag replacements

t

tt

U
(t

)

U
(t

)
k
(t

)

Fig. 3. Solution and time step sequence for (9.1), α/α0 ≈ 1/310.

try this code on a number of well-known stiff problems taken from the ODE literature
and conclude that we are able to handle stiff problems with this explicit code.

When referring to the cost α below, this also includes the number of fixed point
iterations needed to compute the cG(1) solution on intervals where the iterations
converge. This is compared to the cost α0 for the standard cG(1) method in which we
are forced to take small time steps all the time. (These small time steps are marked
by dashed lines.) For all example problems below, we report both the cost α and the
cost reduction factor α/α0.

9.1. The test equation. The first problem we try is the test equation,

u̇(t) + λu(t) = 0 for t > 0,

u(0) = u0,
(9.1)

on [0, 10], where we choose u0 = 1 and λ = 1000. As is evident from Figure 3, the
time step sequence is automatically chosen in agreement with the previous discussion.
The cost is only α ≈ 6 and the cost reduction factor is α/α0 ≈ 1/310.

Note how the time steps are drastically decreased (step 2(d) in the adaptive
algorithm) when the system needs to be stabilized and then gradually increased until
stabilization again is needed.

9.2. The test system. For the test system,

u̇(t) + Au(t) = 0 for t > 0,

u(0) = u0,
(9.2)

on [0, 10], we take A = diag(100, 1000) and u0 = (1, 1). There are now two eigenmodes
with large eigenvalues that need to be damped out. The dominant eigenvalue of A is

1152 KENNETH ERIKSSON, CLAES JOHNSSON, AND ANDERS LOGG

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

10
-2

10
0

PSfrag replacements

t

tt
U

(t
)

U
(t

)
k
(t

)

Fig. 4. Solution and time step sequence for (9.2), α/α0 ≈ 1/104.

λ2 = 1000, and most of the damping steps are chosen to damp out this eigenmode, but
some of the damping steps are chosen based on the second largest eigenvalue λ1 = 100
(see Figure 4). When to damp out which eigenmode is automatically decided by the
adaptive algorithm; the bad eigenmode that needs to be damped out becomes visible
in the iterative solution process. Since there is an additional eigenvalue, the cost is
somewhat larger than for the scalar test problem, α ≈ 18, which gives a cost reduction
factor of α/α0 ≈ 1/104.

9.3. A linear nonnormal problem. The method behaves similarly even if we
make the matrix A highly nonnormal. We now solve

u̇(t) + Au(t) = 0 for t > 0,

u(0) = u0,
(9.3)

on [0, 10], with

A =

[

1000 −10000
0 100

]

and u0 = (1, 1). The cost is about the same as for the previous problem, α ≈ 17, but
the cost reduction factor is better: α/α0 ≈ 1/180. The solution and the time step
sequence are given in Figure 5.

9.4. The HIRES problem. The so-called HIRES problem (High Irradiance
RESponse) originates from plant physiology and is taken from the test set of ODE
problems compiled by Lioen and de Swart [6]. The problem consists of the following

EXPLICIT TIME-STEPPING FOR STIFF ODES 1153

0 2 4 6 8 10

0

2

4

6

8

0 0.01 0.02 0.03 0.04 0.05

0

2

4

6

8

0 1 2 3 4 5 6 7 8 9 10

10
-4

10
-2

10
0

PSfrag replacements

t

tt

U
(t

)

U
(t

)
k
(t

)

Fig. 5. Solution and time step sequence for (9.3), α/α0 ≈ 1/180.

eight equations:

u̇1 = −1.71u1 + 0.43u2 + 8.32u3 + 0.0007,
u̇2 = 1.71u1 − 8.75u2,
u̇3 = −10.03u3 + 0.43u4 + 0.035u5,
u̇4 = 8.32u2 + 1.71u3 − 1.12u4,
u̇5 = −1.745u5 + 0.43u6 + 0.43u7,
u̇6 = −280.0u6u8 + 0.69u4 + 1.71u5 − 0.43u6 + 0.69u7,
u̇7 = 280.0u6u8 − 1.81u7,
u̇8 = −280.0u6u8 + 1.81u7,

(9.4)

together with the initial condition u0 = (1.0, 0, 0, 0, 0, 0, 0, 0.0057). We integrate over
[0, 321.8122] (as specified in [6]) and present the solution and the time step sequence
in Figure 6. The cost is now α ≈ 8, and the cost reduction factor is α/α0 ≈ 1/33.

9.5. The Akzo–Nobel problem. The next problem is a version of the “Chem-
ical Akzo–Nobel” problem taken from the ODE test set [6], consisting of the following
six equations:

u̇1 = −2r1 + r2 − r3 − r4,
u̇2 = −0.5r1 − r4 − 0.5r5 + F,
u̇3 = r1 − r2 + r3,
u̇4 = −r2 + r3 − 2r4,
u̇5 = r2 − r3 + r5,
u̇6 = −r5,

(9.5)

where F = 3.3·(0.9/737−u2) and the reaction rates are given by r1 = 18.7·u4
1

√
u2, r2 =

0.58 ·u3u4, r3 = 0.58/34.4 ·u1u5, r4 = 0.09 ·u1u
2
4, and r5 = 0.42 ·u2

6

√
u2. We integrate

1154 KENNETH ERIKSSON, CLAES JOHNSSON, AND ANDERS LOGG

0 100 200 300

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

0 100 200 300

10
-2

10
-1

10
0

130 132 134 136 138 140

10
-2

10
-1

10
0

PSfrag replacements

tt

tt

U
(t

)

U
(t

)

k
(t

)

k
(t

)

Fig. 6. Solution and time step sequence for (9.4), α/α0 ≈ 1/33.

0 50 100 150
0

0.2

0.4

0 1 2 3 4 5
0

2

4

6

8

10
x 10

-4

0 20 40 60 80 100 120 140 160 180

10
-1

10
0

PSfrag replacements

t

tt

U
(t

)

U
(t

)
k
(t

)

Fig. 7. Solution and time step sequence for (9.5), α/α0 ≈ 1/9.

over the interval [0, 180] with initial condition u0 = (0.437, 0.00123, 0, 0, 0, 0.367).
Allowing a maximum time step of kmax = 1 (chosen arbitrarily), the cost is only
α ≈ 2, and the cost reduction factor is α/α0 ≈ 1/9. The actual gain in a specific
situation is determined by the quotient of the large time steps and the small damping
time steps, as well as the number of small damping steps that are needed. In this

EXPLICIT TIME-STEPPING FOR STIFF ODES 1155

0 2 4 6 8 10

1.994

1.996

1.998

2

0 0.05 0.1
-8

-6

-4

-2

0

x 10
 -4

1.994 1.996 1.998 2

 -7

 -6

 -5

 -4

 -3

 -2

 -1

0
x 10

 -4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10
 -4

10
 -2

PSfrag replacements

t

t

t

U1(t)

U
1
(t

)

U
2
(t

)

U
2
(t

)

U3(t)

k
(t

)

Fig. 8. Solution and time step sequence for (9.6), α/α0 ≈ 1/75.

case, the number of small damping steps is small, but the large time steps are not
very large compared to the small damping steps. The gain is thus determined both by
the stiff nature of the problem and the tolerance (or the size of the maximum allowed
time step).

9.6. Van der Pol’s equation. A stiff problem discussed in the book by Hairer
and Wanner [5] is Van der Pol’s equation,

ü + µ(u2 − 1)u̇ + u = 0,

which we write as

{

u̇1 = u2,
u̇2 = −µ(u2

1 − 1)u2 − u1.
(9.6)

We take µ = 1000 and compute the solution on the interval [0, 10] with initial condition
u0 = (2, 0). The time step sequence behaves as desired with only a small portion of
the time interval spent on taking small damping steps (see Figure 8). The cost is now
α ≈ 140, and the cost reduction factor is α/α0 ≈ 1/75.

9.7. The heat equation. A special stiff problem is the one-dimensional heat
equation,

u̇(x, t) − u′′(x, t) = f(x, t), x ∈ (0, 1), t > 0,
u(0, t) = u(1, t) = 0, t > 0,

u(x, 0) = 0, x ∈ [0, 1],

1156 KENNETH ERIKSSON, CLAES JOHNSSON, AND ANDERS LOGG

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1
10

−5

0.43 0.44 0.45 0.46 0.47
10

−5

0 10 20 30 40 50 60 70 80 90 100
−4

−3

−2

−1

0
x 10

4

PSfrag replacements
tt

t

U
(t

)

k
(t

)

k
(t

)
−
λ
i

Fig. 9. Solution and time step sequence for (9.7), α/α0 ≈ 1/31. Note that the time step
sequence in this example is chosen slightly differently than in the previous examples, using the
technique of dyadic damping discussed in section 3. This is evident upon close inspection of the
time step sequence.

0 20 40 60 80 100

-2

-1

0

1

2

95 96 97 98 99 100

-2

-1

0

1

2

0 20 40 60 80 100
0.04

0.045

0.05

0.055

0.06

0.065

0.07

95 96 97 98 99 100
0.04

0.045

0.05

0.055

0.06

0.065

0.07

PSfrag replacements

tt

tt

U
(t

)

U
(t

)

k
(t

)

k
(t

)

Fig. 10. Solution and time step sequence for (9.8), α/α0 = 1.

where we choose f(x, t) = f(x) as an approximation of the Dirac delta function at
x = 0.5. Discretizing in space, we obtain the ODE

u̇(t) + Au(t) = f,

u(0) = 0,
(9.7)

where A is the stiffness matrix. With a spatial resolution of h = 0.01, the eigenvalues
of A are distributed in the interval [0, 4 · 104] (see Figure 9).

EXPLICIT TIME-STEPPING FOR STIFF ODES 1157

Using the dyadic damping technique described in section 3 for this parabolic
problem, the cost is α ≈ 2000, with a cost reduction factor of α/α0 ≈ 1/31.

9.8. A nonstiff problem. To show that the method works equally well for
nonstiff problems, we finally consider the following simple system:

{

u̇1 = 5u2,
u̇2 = −u1.

(9.8)

With the initial condition u0 = (0, 1), the solution is u(t) = (
√

5 sin(
√

5t), cos(
√

5)).
Since this problem is nonstiff (for reasonable tolerances), no stabilization is needed,
and so the solver works as a standard nonstiff cG(1) solver with no overhead. This
is also evident from the time step sequence (see Figure 10) which is chosen only to
match the size of the (continuous) residual.

REFERENCES

[1] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Introduction to adaptive methods for
differential equations, in Acta Numerica 1995, Acta. Numer., Cambridge University Press,
Cambridge, UK, 1995, pp. 105–158.

[2] C. W. Gear and I. G. Kevrekidis, Projective methods for stiff differential equations: Prob-
lems with gaps in their eigenvalue spectrum, SIAM J. Sci. Comput., 24 (2003), pp. 1091–
1106.

[3] C. W. Gear and I. G. Kevrekidis,Telescopic methods for parabolic differential equations, J.
Comput. Phys., 187 (2003), pp. 95–109.

[4] K. Gustafsson, M. Lundh, and G. Söderlind, A pi stepsize control for the numerical solution
of ordinary differential equations, BIT, 28 (1988), pp. 270–287.

[5] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II—Stiff and Differential-
Algebraic Problems, Springer Ser. Comput. Math. 14, Springer-Verlag, New York, 1991.

[6] W. M. Lioen and H. J. B. de Swart, Test Set for Initial Value Problem Solvers, Tech. report
MAS–R9832, CWI, Amsterdam, 1998.

[7] A. Logg, Chalmers Finite Element Center Software, Chalmers University of Technology,
Göteborg, Sweden, 2002. Available online at www.phi.chalmers.se/software/.

[8] A. Logg, Multi-adaptive Galerkin methods for ODES I, SIAM J. Sci. Comput., 24 (2003),
pp. 1879–1902.

[9] A. Logg, Multi-adaptive Galerkin methods for ODES II: Implementation and applications,
SIAM J. Sci. Comput., 25 (2003), pp. 1119–1141.

[10] G. Söderlind, The automatic control of numerical integration, CWI Quarterly, 11 (1998),
pp. 55–74.

[11] J. G. Verwer, Explicit Runge-Kutta methods for parabolic partial differential equations, Appl.
Numer. Math., 22 (1996), pp. 359–379.

INTERPOLATION ESTIMATES FOR PIECEWISE SMOOTH

FUNCTIONS IN ONE DIMENSION

ANDERS LOGG

Abstract. In preparation for a priori error analysis of the multi-adaptive
Galerkin methods mcG(q) and mdG(q) presented earlier in a series of
papers, we prove basic interpolation estimates for a pair of carefully
chosen non-standard interpolants. The main tool in the derivation of
these estimates is the Peano kernel theorem. A large part of the paper
is non-specific and applies to general interpolants on the real line.

1. Introduction

The motivation for this paper is to prepare for the a priori error analysis of
the multi-adaptive Galerkin methods mcG(q) and mdG(q), presented earlier
in [1, 2]. This requires a set of special interpolation estimates for piecewise
smooth functions, which we prove in this paper.

Throughout this paper, V denotes the space of piecewise smooth, real-
valued functions on [a, b], that is, the set of functions which, for some par-
tition a = x0 < x1 < . . . < xn < xn+1 = b of the interval [a, b] and
some q ≥ 0, are Cq+1 and bounded on each of the sub-intervals (xi−1, xi),
i = 1, . . . , n + 1. This is illustrated in Figure 1.

For v ∈ V , we denote by πv a polynomial approximation of v on [a, b],
such that πv ≈ v. We refer to πv as an interpolant of v.

We are concerned with estimating the size of the interpolation error πv−v
in the maximum norm, ‖·‖ = ‖·‖L∞([a,b]), in terms of the regularity of v and

the length of the interval, k = b − a. Specifically, when v ∈ Cq+1([a, b]) ⊂ V
for some q ≥ 0, we obtain estimates of the form

(1.1) ‖(πv)(p) − v(p)‖ ≤ Ckq+1−p‖v(q+1)‖, p = 0, . . . , q + 1.

In the general case, the interpolation estimates include also the size of the
jump [v(p)]x in function value and derivatives at the points of discontinuity
within (a, b).

Date: March 15, 2004.
Key words and phrases. Multi-adaptivity, individual time steps, local time steps, ODE,

continuous Galerkin, discontinuous Galerkin, mcgq, mdgq, a priori error estimates, Peano
kernel theorem, interpolation estimates, piecewise smooth.

Anders Logg, Department of Computational Mathematics, Chalmers University of
Technology, SE–412 96 Göteborg, Sweden, email : logg@math.chalmers.se.

1

2 ANDERS LOGG

PSfrag replacements

a bx1 x2

v

πv

Figure 1. A piecewise smooth function v and its interpolant πv.

1.1. Outline of the paper. We first assume that v ∈ Cq+1([a, b]) ⊂ V and
use the Peano kernel theorem to obtain a representation of the interpolation
error πv − v (Section 2). We then directly obtain interpolation estimates
(for v ∈ Cq+1([a, b])) in Section 3.

In Section 4, we generalize the interpolation estimates from Section 3
to v piecewise smooth by constructing a regularized version of v. Finally,
in Section 5, we apply the general results of Section 4 to a pair of special
interpolants that appear in the a priori error analysis of the mcG(q) and
mdG(q) methods.

2. The Peano kernel theorem

The basic tool in our derivation of interpolation estimates is the Peano
kernel theorem, which we discuss in this section. In its basic form, the Peano
kernel theorem can be stated as follows.

Theorem 2.1. (Peano kernel theorem) For Λ a bounded and linear func-

tional on V that vanishes on Pq([a, b]) ⊂ V , define

(2.1) K(t) =
1

q!
Λ((· − t)q

+),

where v+(t) = max(0, v(t)). In other words, K(t) = Λw/q!, with w(x) =
[max(0, x − t)]q. If K has bounded variation and v ∈ Cq+1([a, b]), then

(2.2) Λv =

∫ b

a
K(t)v(q+1)(t) dt.

Proof. See [3]. �

INTERPOLATION ESTIMATES FOR PIECEWISE SMOOTH FUNCTIONS 3

Let now v ∈ V and let

(2.3) π : V → Pq([a, b]) ⊂ V.

If we can show that

(1) π is linear on V ,
(2) π is exact on Pq([a, b]) ⊂ V , that is, πv = v for all v ∈ P q([a, b]),

and
(3) π is bounded on V , that is, ‖πv‖ ≤ C‖v‖ for all v ∈ V for some

constant C > 0,

then the Peano kernel theorem directly leads to a representation of the
interpolation error πv − v.

Theorem 2.2. (Peano kernel theorem II) If π is linear and bounded (with

constant C > 0) on V , and is exact on P q([a, b]) ⊂ V , then there is a bounded

function G : [a, b] × [a, b] → R, with |G(x, t)| ≤ 1 + C for all x, t ∈ [a, b],
such that for all v ∈ Cq+1([a, b]),

(2.4) πv(x) − v(x) =
kq+1

q!

1

k

∫ b

a
v(q+1)(t)G(x, t) dt,

where k = b − a. Furthermore, if g is an integrable, (essentially) bounded

function on [a, b], then there is a function Hg : [a, b] → R, with |Hg(x)| ≤
(1 + C)‖g‖ for all x ∈ [a, b], such that for all v ∈ Cq+1([a, b]),

(2.5)

∫ b

a
(πv(x) − v(x)) g(x) dx =

kq+1

q!

∫ b

a
v(q+1)(x)Hg(x) dx.

Proof. To prove (2.4), we define for any fixed x ∈ [a, b],

Λxv = πv(x) − v(x),

which is linear, since π is linear. Furthermore, if v ∈ P q([a, b]) then πv = v
so Λx vanishes on Pq([a, b]). From the estimate,

|Λxv| = |πv(x) − v(x)| ≤ |πv(x)| + |v(x)| ≤ (1 + C)‖v‖,

it follows that Λx is bounded. Now,

Kx(t) =
1

q!
Λx((· − t)q

+) =
1

q!

[

π((· − t)q
+)(x) − (x − t)q

+

]

=
kq

q!

[

π

((

· − t

k

)q

+

)

(x) −

(

x − t

k

)q

+

]

=
kq

q!
G(x, t),

where |G(x, t)| ≤ 1 + C for x, t ∈ [a, b]. Thus, by the Peano kernel theorem,

πv(x) − v(x) = Λxv =
kq+1

q!

1

k

∫ b

a
v(q+1)(t)G(x, t) dt.

To prove (2.5), define Λ by

Λv =

∫ b

a
(πv(x) − v(x))g(x) dx,

4 ANDERS LOGG

which is linear, bounded, and vanishes on P q([a, b]). Now,

K(t) =
1

q!

∫ b

a

[

π((· − t)q
+)(x) − (x − t)q

+

]

g(x) dx

=
kq+1

q!

1

k

∫ b

a

[

π

((

· − t

k

)q

+

)

(x) −

(

x − t

k

)q

+

]

g(x) dx

=
kq+1

q!
Hg(t),

where Hg(t) ≤ (1 + C)‖g‖ for t ∈ [a, b]. By the Peano kernel theorem, it
now follows that

∫ b

a
(πv(x) − v(x))g(x) dx =

kq+1

q!

∫ b

a
v(q+1)(t)Hg(t) dt.

�

In order to derive a representation for derivatives of the interpolation
error, we need to investigate the differentiability of the kernel G(x, t).

Lemma 2.1. (Differentiability of G) If π is linear on V , then the kernel G,

defined by

(2.6) G(x, t) = π

((

· − t

k

)q

+

)

(x) −

(

x − t

k

)q

+

,

has the following properties:

(i) For any fixed t ∈ [a, b], G(·, t) ∈ Cq−1([a, b]) and

(2.7)
∂p

∂xp
G(x, t) = k−pGx,p(x, t), p = 0, . . . , q,

where each Gx,p is bounded on [a, b] × [a, b] independent of k.

(ii) For any fixed x ∈ [a, b], G(x, ·) ∈ Cq−1([a, b]) and

(2.8)
∂p

∂tp
G(x, t) = k−pGt,p(x, t), p = 0, . . . , q,

where each Gt,p is bounded on [a, b] × [a, b] independent of k.

(iii) For x 6= t and p1, p2 ≥ 0, we have

(2.9)
∂p2

∂xp2

∂p1

∂tp1
G(x, t) = k−(p1+p2)Gt,x,p1,p2(x, t),

where each Gt,x,p1,p2 is bounded on [a, b] × [a, b]\{(x, t) : x = t} independent

of k.

Proof. Define

G(x, t) = π

((

· − t

k

)q

+

)

(x) −

(

x − t

k

)q

+

≡ g(x, t) − h(x, t).

We first note that for any fixed t ∈ [a, b], h(·, t) ∈ Cq−1([a, b]) with

∂p

∂xp
h(x, t) =

∂p

∂xp

(

x − t

k

)q

+

= k−p q!

(q − p)!

(

x − t

k

)q−p

+

= k−phx,p(x, t),

INTERPOLATION ESTIMATES FOR PIECEWISE SMOOTH FUNCTIONS 5

where hx,p is bounded on [a, b] × [a, b] independent of k. Similarly, we note
that for any fixed x ∈ [a, b], h(x, ·) ∈ Cq−1([a, b]) with

∂p

∂tp
h(x, t) =

∂p

∂tp

(

x − t

k

)q

+

= k−p q!(−1)p

(q − p)!

(

x − t

k

)q−p

+

= k−pht,p(x, t),

where ht,p is bounded on [a, b] × [a, b] independent of k.
If we now let π[0,1] denote the interpolant shifted to [0, 1], we can write

g(x, t) = π

((

· − t

k

)q

+

)

(x) = π

((

(· − a)

k
−

(t − a)

k

)q

+

)

(x)

= π[0,1]

((

· −
(t − a)

k

)q

+

)

((x − a)/k),

and so, for any fixed t ∈ [a, b], g(·, t) ∈ P q([a, b]) ⊂ Cq−1([a, b]), with

∂p

∂xp
g(x, t) = k−pπ

(p)
[0,1]

((

· −
(t − a)

k

)q

+

)

((x − a)/k)) = k−pgx,p(x, t),

where gx,p is bounded on [a, b] × [a, b] independent of k. Finally, let s =
(t − a)/k. Then,

g(x, t) = π[0,1]

(

(· − s)q+
)

((x − a)/k)).

The degrees of freedom of the interpolant π[0,1]

(

(· − s)q
+

)

are determined by
the solution of a linear system, and thus each of the degrees of freedom (point
values or integrals) will be a linear combination of the degrees of freedom
of the function (· − s)q

+, each of which in turn are Cq−1 in the s-variable.

Hence, g(x, ·) ∈ Cq−1([a, b]) for any fixed x ∈ [a, b], with

∂p

∂tp
g(x, t) =

∂p

∂tp
π[0,1]

(

(· − s)q
+

)

((x − a)/k))

= k−p ∂p

∂sp
π[0,1]

(

(· − s)q
+

)

((x − a)/k)) = k−pgt,p(x, t),

where gt,p is bounded on [a, b]× [a, b] independent of k. We now take Gx,p =
gx,p − hx,p and Gt,p = gt,p − ht,p, which proves (2.7) and (2.8).

To prove (2.9), we note that

∂p1

∂tp1
h(x, t) = k−p1

q!(−1)p1

(q − p1)!

(

x − t

k

)q−p1

+

,

and so, for x 6= t,

∂p2

∂xp2

∂p1

∂tp1
h(x, t) = k−(p1+p2) q!(−1)p1

(q − (p1 + p2))!

(

x − t

k

)q−(p1+p2)

+

,

when p1 + p2 ≤ q and ∂p2

∂xp2
∂p1

∂tp1
h(x, t) = 0 for p1 + p2 > q. Furthermore, for

any fixed x,

∂p1

∂tp1
g(x, t) = k−p1

∂p1

∂sp1
π[0,1]

(

(· − s)q
+

)

((x − a)/k)).

6 ANDERS LOGG

With y = (x − a)/k, we thus have

∂p2

∂xp2

∂p1

∂tp1
g(x, t) = k−(p1+p2) ∂p2

∂yp2

∂p1

∂sp1
π[0,1]

(

(· − s)q
+

)

(y).

We conclude that

∂p2

∂xp2

∂p1

∂tp1
G(x, t) = k−(p1+p2)Gt,x,p1,p2(x, t),

where Gt,x,p1,p2 is bounded on [a, b] × [a, b]\{(x, t) : x = t}. �

By differentiating (2.4), we now obtain the following representation for
derivatives of the interpolation error.

Theorem 2.3. (Peano kernel theorem III) If π is linear and bounded on V ,

and is exact on Pq([a, b]) ⊂ V , then there is a constant C > 0, depending

only on the definition of the interpolant (and not on k), and functions Gp :
[a, b] × [a, b] → R, p = 0, . . . , q, such that for all v ∈ Cq+1([a, b]),
(2.10)

(πv)(p)(x) − v(p)(x) =
kq+1−p

q!

1

k

∫ b

a
v(q+1)(t)Gp(x, t) dt, p = 0, . . . , q,

where for each p, |Gp(x, t)| ≤ C for all x, t ∈ [a, b] × [a, b].

Proof. For p = 0 the result follows from Theorem 2.2 with G0 = G. For
p = 1, . . . , q, we differentiate (2.4) with respect to x and use Lemma 2.1, to
obtain

(πv)(p)(x) − v(p)(x) =
kq

q!

∫ b

a
v(q+1)(t)

∂p

∂xp
G(x, t) dt

=
kq−p

q!

∫ b

a
v(q+1)(t)Gx,p(x, t) dt.

�

3. Interpolation estimates

Using the results of the previous section, we now obtain estimates for the
interpolation error πv − v. The following corollary is a simple consequence
of Theorem 2.3.

Corollary 3.1. If π is linear and bounded on V , and is exact on P q([a, b]) ⊂
V , then there is a constant C = C(q) > 0, such that for all v ∈ Cq+1([a, b]),

(3.1) ‖(πv)(p) − v(p)‖ ≤ Ckr+1−p‖v(r+1)‖,

for p = 0, . . . , r + 1, r = 0, . . . , q.

Proof. If π is exact on Pq([a, b]), it is exact on Pr([a, b]) ⊆ Pq([a, b]) for

r = 0, . . . , q. It follows by Theorem 2.3 that for all v ∈ C (r+1)([a, b]), we
have

‖(πv)(p) − v(p)‖ ≤ Ckr+1−p‖v(r+1)‖,

INTERPOLATION ESTIMATES FOR PIECEWISE SMOOTH FUNCTIONS 7

for p = 0, . . . , r. When r < q, this holds also for p = r + 1 ≤ q, and for
p = r + 1 = q, we note that ‖(πv)(p) − v(p)‖ = ‖v(p)‖ = ‖v(r+1)‖. �

This leads to the following estimate for the derivative of the interpolant.

Corollary 3.2. If π is linear and bounded on V , and is exact on P q([a, b]) ⊂
V , then there is a constant C = C(q) > 0, such that for all v ∈ Cq+1([a, b]),

(3.2) ‖(πv)(p)‖ ≤ C‖v(p)‖,

for p = 0, . . . , q.

Proof. It is clear that (3.2) holds when p = 0 since π is bounded. For

0 < p ≤ q, we add and subtract v(p), to obtain

‖(πv)(p)‖ ≤ ‖(πv)(p) − v(p)‖ + ‖v(p)‖.

Since π is exact on Pq([a, b]), it is exact on Pp−1([a, b]) ⊂ Pq([a, b]) for p ≤ q.
It follows by Corollary 3.1, that

‖(πv)(p)‖ ≤ Ck(p−1)+1−p‖v((p−1)+1)‖ + ‖v(p)‖ = (C + 1)‖v(p)‖ = C ′‖v(p)‖.

�

Finally, we show that it is often enough to show that π is linear on V and
exact on P(q)([a, b]), that is, we do not have to show that π is bounded.

Lemma 3.1. If π : V → Pq([a, b]) is linear on V , and is uniquely de-

termined by n1 interpolation conditions and n2 = q + 1 − n1 projection

conditions,

(3.3) πv(xi) = v(xi), i = 1, . . . , n1,

where each xi ∈ [a, b], and

(3.4)

∫ b

a
πv(x)wi(x) dx =

∫ b

a
v(x)wi(x) dx, i = 1, . . . , n2,

where each wi is bounded, then π is bounded on V , that is,

(3.5) ‖πv‖ ≤ C‖v‖ ∀v ∈ V,

for some constant C = C(q) > 0.

Proof. Define ‖ · ‖∗ on Pq([a, b]) by

‖v‖∗ =

n1
∑

i=1

|v(xi)| +

n2
∑

i=1

∣

∣

∣

∣

1

k

∫ b

a
v(x)wi(x) dx

∣

∣

∣

∣

.

Clearly, the triangle inequality holds and ‖αv‖∗ = |α|‖v‖∗ for all α ∈ R.
Furthermore, if v = 0 then ‖v‖∗ = 0. Conversely, if ‖v‖∗ = 0 then v ∈
Pq([a, b]) is the unique interpolant of 0, and so v = π0 = 0 by linearity.
Thus, ‖ · ‖∗ is a norm. Since all norms on a finite dimensional vector space
are equivalent, we obtain

‖πv‖ ≤ C‖πv‖∗ = C‖v‖∗ ≤ C(n1 + C ′n2)‖v‖ = C ′′‖v‖.

�

8 ANDERS LOGG

4. Interpolation of piecewise smooth functions

We now extend the interpolation results of the previous two sections to
piecewise smooth functions.

4.1. Extensions of the Peano kernel theorem. To extend the Peano
kernel theorem to piecewise smooth functions, we construct a smooth ver-
sion vε of the discontinuous function v, with vε → v as ε → 0. For the
construction of vε, we introduce the function

(4.1) w(x) = Cx

q+1
∑

m=0

(

q + 1

m

)

(−1)mx2(q+1)−2m

2(q + 1) − 2m + 1
,

where

(4.2) C =

(

q+1
∑

m=0

(

q + 1

m

)

(−1)m

2(q + 1) − 2m + 1

)−1

.

In Figure 2, we plot the function w(x) on [−1, 1] for q = 0, . . . , 4.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

x

w
(x

)

Figure 2. The function w(x) on [−1, 1] for q = 0, . . . , 4.

INTERPOLATION ESTIMATES FOR PIECEWISE SMOOTH FUNCTIONS 9

Let also Tyv denote the Taylor expansion of order q ≥ 0 around a given
point y ∈ (a, b). For ε > 0 sufficiently small, we then define
(4.3)

vε(x) =

(

1 − w((x−x1)/ε)+1
2

)

Tx1−εv(x) + w((x−x1)/ε)+1
2 Tx1+εv(x),

x ∈ [x1 − ε, x1 + ε],
. . .
(

1 − w((x−xn)/ε)+1
2

)

Txn−εv(x) + w((x−xn)/ε)+1
2 Txn+εv(x),

x ∈ [xn − ε, xn + ε],

with vε = v on [a, b]\([x1−ε, x1 +ε]∪ . . .∪ [xn−ε, xn+ε]). As a consequence
of the following Lemma, vε has q + 1 continuous derivatives on [a, b].

Lemma 4.1. The weight function w defined by (4.1) and (4.2) has the

following properties:

(4.4) −1 = w(−1) ≤ w(x) ≤ w(1) = 1, x ∈ [−1, 1],

and

(4.5) w(p)(−1) = w(p)(1) = 0, p = 1, . . . , q + 1.

Proof. It is clear from the definition that w(1) = 1 and w(−1) = −1. Taking
the derivative of w, we obtain

dw

dx
(x) = C

q+1
∑

m=0

(

q + 1

m

)

(−1)m d
dxx2(q+1)−2m+1

2(q + 1) − 2m + 1

= C

q+1
∑

m=0

(

q + 1

m

)

(−1)mx2(q+1)−2m

= C(x2 − 1)q+1 = C(x + 1)q+1(x − 1)q+1,

and so w(p) is zero at x = ±1 for p = 1, . . . , q + 1. Furthermore, since dw
dx

has no zeros within (−1, 1), w attains its maximum and minimum at x = 1
and x = −1 respectively. �

This leads to the following extension of Theorem 2.2.

Theorem 4.1. (Peano kernel theorem for piecewise smooth functions) If

π is linear and bounded (with constant C > 0) on V , and is exact on

Pq([a, b]) ⊂ V , then there is a bounded function G : [a, b] × [a, b] → R,

with |G(x, t)| ≤ 1 + C for all x, t ∈ [a, b], such that for v piecewise C q+1 on

[a, b] with discontinuities at a < x1 < x2 < . . . < xn < b, we have

(4.6)

πv(x) − v(x) =
kq+1

q!

1

k

∫ b

a
v(q+1)(t)G(x, t) dt +

n
∑

j=1

q
∑

m=0

Cqjm(x)km[v(m)]xj
,

where k = b − a and for each Cqjm we have |Cqjm(x)| ≤ C for all x ∈ [a, b].
Furthermore, if g is an integrable, (essentially) bounded function on [a, b],

10 ANDERS LOGG

then there is a function Hg : [a, b] → R, with |Hg(x)| ≤ (1 + C)‖g‖ for all

x ∈ [a, b], such that

∫ b

a
(πv(x) − v(x))g(x) dx =

kq+1

q!

∫ b

a
v(q+1)(x)Hg(x) dx

+

n
∑

j=1

q
∑

m=0

D′

qjm(x)km+1[v(m)]xj
,

(4.7)

where for each D′

qjm we have |D′

qjm(x)| ≤ C for all x ∈ [a, b].

Proof. Without loss of generality, we can assume that v is discontinuous
only at x1 ∈ (a, b). Fix x ∈ [a, b]\{x1}, take 0 < ε < |x − x1|, and define vε

as in (4.3). Then,

πv − v = (πv − πvε) + (πvε − vε) + (vε − v),

where |πv(x) − πvε(x)| → 0 and |vε(x) − v(x)| → 0 when ε → 0. Since
vε ∈ Cq+1([a, b]), we have by Theorem 2.2,

πvε(x) − vε(x) =
kq

q!

∫ b

a
v(q+1)
ε (t)G(x, t) dt = I1 + I2 + I3,

where

I1 =
kq

q!

∫ x1−ε

a
v(q+1)(t)G(x, t) dt,

I2 =
kq

q!

∫ x1+ε

x1−ε
v(q+1)
ε (t)G(x, t) dt,

I3 =
kq

q!

∫ b

x1+ε
v(q+1)(t)G(x, t) dt.

Since v|[a,x1) ∈ C[q+1]([a, x1)) and v|(x1,b] ∈ C[q+1]((x1, b]), it is clear that

I1 + I3 =
kq

q!

∫ b

a
v(q+1)(t)G(x, t) dt + O(ε).

We therefore focus on the remaining term I2. With wε(t) = w((t−x1)/ε)+1
2 ,

we have

I2 =
kq

q!

Z x1+ε

x1−ε

v
(q+1)
ε (t)G(x, t) dt

=
kq

q!

Z x1+ε

x1−ε

[(1 − wε)Tx1−εv + wεTx1+εv](q+1) (t)G(x, t) dt

=

q+1
X

m=0

kq

q!

q + 1

m

!

Z x1+ε

x1−ε

h

(1 − wε)
(m)

T
(q+1−m)
x1−ε v + w

(m)
ε T

(q+1−m)
x1+ε v

i

(t)G(x, t) dt

=

q+1
X

m=0

kq

q!

q + 1

m

!

I2m,

INTERPOLATION ESTIMATES FOR PIECEWISE SMOOTH FUNCTIONS 11

with obvious notation. Evaluating the integrals I2m, we have for m = 0,

I20 =

∫ x1+ε

x1−ε

[

(1 − wε)
(0)T

(q+1−0)
x1−ε v + w(0)

ε T
(q+1−0)
x1+ε v

]

(t)G(x, t) dt = O(ε),

while for m = 1, . . . , q + 1, we obtain

I2m =

∫ x1+ε

x1−ε

[

(1 − wε)
(m)T

(q+1−m)
x1−ε v + w(m)

ε T
(q+1−m)
x1+ε v

]

(t)G(x, t) dt

=

∫ x1+ε

x1−ε
w(m)

ε (t)(T
(q+1−m)
x1+ε v(t) − T

(q+1−m)
x1−ε v(t))G(x, t) dt.

Let now h = (T
(q+1−m)
x1+ε v − T

(q+1−m)
x1−ε v)G(x, ·) and note that by Lemma

2.1, h ∈ Cq−1([x1 − ε, x1 + ε]). Noting also that w
(m)
ε (x1 ± ε) = 0 for

m = 1, . . . , q + 1, we integrate by parts to obtain

I2m =

∫ x1+ε

x1−ε
w(m)

ε (t)h(t) dt

= (−1)m−1

∫ x1+ε

x1−ε
w′

ε(t)h
(m−1)(t) dt

=
(−1)m−1

2ε

∫ x1+ε

x1−ε
w′((t − x1)/ε)h

(m−1)(t) dt

=
C(−1)m−1

2ε

∫ x1+ε

x1−ε
(((t − x1)/ε)

2 − 1)q+1h(m−1)(t) dt,

=
C(−1)m−1

2

∫ 1

−1
(s2 − 1)q+1h(m−1)(x1 + εs) ds,

where C is the constant defined in (4.2). Evaluating the derivatives of h, we
obtain

h(m−1) =
dm−1

dtm−1
(T

(q+1−m)
x1+ε v − T

(q+1−m)
x1−ε v)G(x, ·)

=

m−1
∑

j=0

(

m − 1

j

)

(T
(q+1−m+j)
x1+ε v − T

(q+1−m+j)
x1−ε v)G

(m−1−j)
t (x, ·)

=

m−1
∑

j=0

(

m − 1

j

)

[

v(q−(m−1−j))
]

x1

G
(m−1−j)
t (x, ·) + O(ε),

12 ANDERS LOGG

where G
(p)
t (x, t) denotes ∂p

∂tp G(x, t). Consequently,

I2 =

q+1
X

m=1

m−1
X

j=0

cqmjk
q
h

v
(q−(m−1−j))

i

x1

Z 1

−1

(s2
− 1)q+1

G
(m−1−j)
t (x, x1 + εs) ds + O(ε)

=

q+1
X

m=1

m−1
X

j=0

cqmjk
q
h

v
(q−(m−1−j))

i

x1

G
(m−1−j)
t (x, x1)

Z 1

−1

(s2
− 1)q+1

ds + O(ε)

=

q
X

m=0

cqmk
q
G

(q−m)
t (x, x1)

h

v
(m)
i

x1

+ O(ε).

Letting ε → 0, we obtain

πv(x)−v(x) =
kq

q!

∫ b

a
v(q+1)(t)G(x, t) dt+

q
∑

m=0

cqmkqG
(q−m)
t (x, x1)

[

v(m)
]

x1

,

for x ∈ [a, b]\{x1}. By continuity this holds also when x = x1. From Lemma

2.1, we know that G
(q−m)
t (x, x1) = k−(q−m)Gt,q−m(x, x1) where Gt,q−m is

bounded. Hence,

πv(x) − v(x) =
kq

q!

∫ b

a
v(q+1)(t)G(x, t) dt

+

q
∑

m=0

cqmkq−(q−m)Gt,q−m(x, x1)
[

v(m)
]

x1

=
kq

q!

∫ b

a
v(q+1)(t)G(x, t) dt +

q
∑

m=0

Cqm(x, x1)k
m
[

v(m)
]

x1

,

where Cqm(x, x1) is bounded on [a, b] × [a, b] independent of k. The second
result, (4.7), is proved similarly. �

We now extend this to a representation of derivatives of the interpolation
error, corresponding to Theorem 2.3.

Theorem 4.2. (Peano kernel theorem for piecewise smooth functions II) If

π is linear and bounded on V , and is exact on P q([a, b]) ⊂ V , then there is

a constant C > 0, depending only on the definition of the interpolant (and

not on k), and functions Gp : [a, b]× [a, b] → R, p = 0, . . . , q, such that for v
piecewise Cq+1 on [a, b] with discontinuities at a < x1 < x2 < . . . < xn < b,
we have

(πv)(p)(x) − v(p)(x) =
kq+1−p

q!

1

k

∫ b

a
v(q+1)(t)Gp(x, t) dt

+
n
∑

j=1

q
∑

m=0

Cqjmp(x)km−p[v(m)]xj
,

(4.8)

for p = 0, . . . , q, with |Gp(x, t)| ≤ C for all x, t ∈ [a, b]×[a, b], and |Cqjmp(x)| ≤
C for all x ∈ [a, b] \ {x1, . . . , xn}.

INTERPOLATION ESTIMATES FOR PIECEWISE SMOOTH FUNCTIONS 13

Proof. For p = 0, the result follows from Theorem 4.1 with G0 = G and
Cqjm0 = Cqjm. For p = 1, . . . , q, we differentiate (4.6) with respect to x, to
obtain

(πv)(p)(x) − v(p)(x) =
kq

q!

∫ b

a

v(q+1)(t)
dp

dxp
G(x, t) dt +

n
∑

j=1

q
∑

m=0

C
(p)
qjm(x)km[v(m)]xj

.

From Lemma 2.1, we know that dp

dxp G(x, t) = k−pGx,p(x, t), where Gx,p is
bounded on [a, b] × [a, b]. Furthermore, from the proof of Theorem 4.1, we
know that

C
(p)
qjm(x) =

dp

dxp
Cqjm(x) =

dp

dxp
cqmGt,q−m(x, xj)

= cqmkq−m ∂p

∂xp

∂q−m

∂tq−m
G(x, xj),

and so, by Lemma 2.1,

C
(p)
qjm(x) = cqmkq−mk−(q−m+p)Gt,x,q−m,p(x, xj) = Cqjmp(x)k−p,

where each Cqjmp is bounded on [a, b]\{x1, . . . , xn}. �

4.2. Interpolation estimates. The following corollary, corresponding to
Corollary 3.1, is a simple consequence of Theorem 4.2.

Corollary 4.1. If π is linear and bounded on V , and is exact on P q([a, b]) ⊂
V , then there is a constant C = C(q) > 0, such that for all v piecewise C q+1

on [a, b] with discontinuities at a < x1 < . . . < xn < b,

(4.9) ‖(πv)(p) − v(p)‖ ≤ Ckr+1−p‖v(r+1)‖ + C

n
∑

j=1

r
∑

m=0

km−p

∣

∣

∣

∣

[

v(m)
]

xj

∣

∣

∣

∣

,

for p = 0, . . . , r + 1, r = 0, . . . , q.

Proof. See proof of Corollary 3.1. �

We also obtain the following estimate for derivatives of the interpolant,
corresponding to Corollary 3.2.

Corollary 4.2. If π is linear and bounded on V , and is exact on P q([a, b]) ⊂
V , then there is a constant C = C(q) > 0 and a constant C ′ = C ′(q, n) > 0,
such that for all v piecewise Cq+1 on [a, b] with discontinuities at a < x1 <
. . . < xn < b,

‖(πv)(p)‖ ≤ C‖v(p)‖ + C

n
∑

j=1

p−1
∑

m=0

km−p

∣

∣

∣

∣

[

v(m)
]

xj

∣

∣

∣

∣

≤ C ′

(

‖v(p)‖ +

p−1
∑

m=0

km−p‖v(m)‖

)

,

(4.10)

for p = 0, . . . , q.

14 ANDERS LOGG

Proof. It is clear that (4.10) holds when p = 0, since π is bounded. As in

the proof of Corollary 3.2, we add and subtract v(p) for 0 < p ≤ q, to obtain

‖(πv)(p)‖ ≤ ‖(πv)(p) − v(p)‖ + ‖v(p)‖.

Since π is exact on Pq([a, b]), it is exact on Pp−1([a, b]) ⊂ Pq([a, b]) for p ≤ q.
It follows by Corollary 4.1 that

‖(πv)(p)‖ ≤ Ck(p−1)+1−p‖v((p−1)+1)‖ + C

n
∑

j=1

p−1
∑

m=0

km−p

∣

∣

∣

∣

[

v(m)
]

xj

∣

∣

∣

∣

+ ‖v(p)‖

≤ C‖v(p)‖ + C

n
∑

j=1

p−1
∑

m=0

km−p

∣

∣

∣

∣

[

v(m)
]

xj

∣

∣

∣

∣

≤ C‖v(p)‖ + 2Cn

p−1
∑

m=0

km−p‖v(m)‖

≤ C ′

(

‖v(p)‖ +

p−1
∑

m=0

km−p‖v(m)‖

)

.

�

5. Two special interpolants

In this section, we use the results of Sections 2–4 to prove interpolation
estimates for two special interpolants.

For the mcG(q) method, we define the following interpolant:

π
[q]
cG : V → Pq([a, b]),

π
[q]
cGv(a) = v(a) and π

[q]
cGv(b) = v(b),

∫ b

a
(v − π

[q]
cGv)w dx = 0 ∀w ∈ Pq−2([a, b]),

(5.1)

where V denotes the set of functions that are piecewise Cq+1 and bounded

on [a, b]. In other words, π
[q]
cGv is the polynomial of degree q that interpolates

v at the end-points of the interval [a, b] and additionally satisfies q − 1
projection conditions. This is illustrated in Figure 3. We also define the

dual interpolant π
[q]
cG∗ as the standard L2-projection onto Pq−1([a, b]).

For the mdG(q) method, we define the following interpolant:

π
[q]
dG : V → Pq([a, b]),

π
[q]
dGv(b) = v(b),
∫ b

a
(v − π

[q]
dGv)w dx = 0 ∀w ∈ Pq−1([a, b]),

(5.2)

that is, π
[q]
dGv is the polynomial of degree q that interpolates v at the right

end-point of the interval [a, b] and additionally satisfies q projection condi-

tions. This is illustrated in Figure 4. The dual interpolant π
[q]
dG∗ is defined

INTERPOLATION ESTIMATES FOR PIECEWISE SMOOTH FUNCTIONS 15

similarly, with the only difference that we use the left end-point x = a for
interpolation.

0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

x

π
[q

]
c
G
v
,
v

0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

x

π
[q]
cGv, v

Figure 3. The interpolant π
[q]
cGv (dashed) of the function

v(x) = x sin(7x) (solid) on [0, 1] for q = 1 (left) and q = 3
(right).

0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

x

π
[q

]
d
G
v
,
v

0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

x

π
[q]
dGv, v

Figure 4. The interpolant π
[q]
dGv (dashed) of the function

v(x) = x sin(7x) (solid) on [0, 1] for q = 0 (left) and q = 3
(right).

It is clear that both π
[q]
cG and π

[q]
dG are linear and so, by Lemma 3.1, we

only have to show that π
[q]
cG and π

[q]
dG are exact on Pq([a, b]).

Lemma 5.1. The two interpolants π
[q]
cG and π

[q]
dG are exact on Pq([a, b]), that

is,

(5.3) π
[q]
cGv = v ∀v ∈ Pq([a, b]),

and

(5.4) π
[q]
dGv = v ∀v ∈ Pq([a, b]).

16 ANDERS LOGG

Proof. To prove (5.3), take v ∈ Pq([a, b]) and note that p = π
[q]
cGv − v ∈

Pq([a, b]). Since p(a) = p(b) = 0, p has at most q − 2 zeros within (a, b)
and so we can take w ∈ Pq−2([a, b]) with pw ≥ 0 on [a, b]. By definition,
∫ b
a pw dx = 0, and so we conclude that p = 0.

To prove (5.4), take p = π
[q]
dGv − v ∈ Pq([a, b]). Then, p(b) = 0 and so

p has at most q − 1 zeros within (a, b). Take now w ∈ P q−1([a, b]) with

pw ≥ 0 on [a, b]. By definition,
∫ b
a pw dt = 0, and so again we conclude that

p = 0. �

The desired interpolation estimates now follow Corollaries 3.1, 3.2, 4.1,
and 4.2.

Theorem 5.1. (Estimates for π
[q]
cG and π

[q]
dG) For any q ≥ 1, there is a

constant C = C(q) > 0, such that for all v ∈ Cr+1([a, b]),

(5.5) ‖(π
[q]
cGv)(p) − v(p)‖ ≤ Ckr+1−p‖v(r+1)‖,

for p = 0, . . . , r + 1, r = 0, . . . , q, and

(5.6) ‖(π
[q]
cGv)(p)‖ ≤ C‖v(p)‖,

for p = 0, . . . , q. Furthermore, for any q ≥ 0, there is a constant C =
C(q) > 0, such that for all v ∈ Cr+1([a, b]),

(5.7) ‖(π
[q]
dGv)(p) − v(p)‖ ≤ Ckr+1−p‖v(r+1)‖,

for p = 0, . . . , r + 1, r = 0, . . . , q, and

(5.8) ‖(π
[q]
dGv)(p)‖ ≤ C‖v(p)‖,

for p = 0, . . . , q.

Theorem 5.2. (Estimates for π
[q]
cG and π

[q]
dG II) For any q ≥ 1 and any

n ≥ 0, there is a constant C = C(q) > 0, such that for all v piecewise C r+1

on [a, b] with discontinuities at a < x1 < . . . < xn < b,

(5.9) ‖(π
[q]
cGv)(p) − v(p)‖ ≤ Ckr+1−p‖v(r+1)‖ + C

n
∑

j=1

r
∑

m=0

km−p

∣

∣

∣

∣

[

v(m)
]

xj

∣

∣

∣

∣

,

for p = 0, . . . , r + 1, r = 0, . . . , q, and

(5.10) ‖(π
[q]
cGv)(p)‖ ≤ C‖v(p)‖ + C

n
∑

j=1

p−1
∑

m=0

km−p

∣

∣

∣

∣

[

v(m)
]

xj

∣

∣

∣

∣

,

for p = 0, . . . , q. Furthermore, for any q ≥ 0 and any n ≥ 0, there is a

constant C = C(q) > 0, such that for all v piecewise Cr+1 on [a, b] with

discontinuities at a < x1 < . . . < xn < b,

(5.11) ‖(π
[q]
dGv)(p) − v(p)‖ ≤ Ckr+1−p‖v(r+1)‖ + C

n
∑

j=1

r
∑

m=0

km−p

∣

∣

∣

∣

[

v(m)
]

xj

∣

∣

∣

∣

,

INTERPOLATION ESTIMATES FOR PIECEWISE SMOOTH FUNCTIONS 17

for p = 0, . . . , r + 1, r = 0, . . . , q, and

(5.12) ‖(π
[q]
dGv)(p)‖ ≤ C‖v(p)‖ + C

n
∑

j=1

p−1
∑

m=0

km−p

∣

∣

∣

∣

[

v(m)
]

xj

∣

∣

∣

∣

,

for p = 0, . . . , q.

Note that the corresponding estimates hold for the dual versions of the

two interpolants, π
[q]
cG∗ and π

[q]
dG∗ , the only difference being that r ≤ q− 1 for

π
[q]
cG∗ .
Finally, we note the following properties of the two interpolants, which is

of importance for the a priori error analysis.

Lemma 5.2. For any v ∈ C([a, b]) and any q ≥ 1, we have

(5.13)

∫ b

a
(

d

dx
(v − π

[q]
cGv))w dx = 0 ∀w ∈ Pq−1([a, b]).

Proof. For any w ∈ Pq−1([a, b]), we integrate by parts to get
∫ b

a
(

d

dx
(v − π

[q]
cGv))w dx =

[

(v − π
[q]
cGv)w

]b

a
−

∫ b

a
(v − π

[q]
cGv)w′ dx = 0,

by the definition of π
[q]
cG. �

Lemma 5.3. For any v ∈ C([a, b]) and any q ≥ 0, we have

(5.14) [v(a)−π
[q]
dGv(a)]w(a)+

∫ b

a
(

d

dx
(v−π

[q]
dGv))w dx = 0 ∀w ∈ Pq([a, b]).

Proof. Integrate by parts as in the proof of Lemma 5.2 and use the definition

of π
[q]
dG. �

References

[1] A. Logg, Multi-adaptive Galerkin methods for ODEs I, SIAM J. Sci. Comput., 24
(2003), pp. 1879–1902.

[2] , Multi-adaptive Galerkin methods for ODEs II: Implementation and applications,
SIAM J. Sci. Comput., 25 (2003), pp. 1119–1141.

[3] M.J.D. Powell, Approximation Theory and Methods, Cambridge University Press,
Cambridge, 1988.

ESTIMATES OF DERIVATIVES AND JUMPS

ACROSS ELEMENT BOUNDARIES FOR

MULTI-ADAPTIVE GALERKIN SOLUTIONS OF ODES

ANDERS LOGG

Abstract. As an important step in the a priori error analysis of the
multi-adaptive Galerkin methods mcG(q) and mdG(q), we prove esti-
mates of derivatives and jumps across element boundaries for the multi-
adaptive discrete solutions. The proof is by induction and is based on a
new representation formula for the solutions.

1. Introduction

In [3], we proved special interpolation estimates as a preparation for the
derivation of a priori error estimates for the multi-adaptive Galerkin meth-
ods mcG(q) and mdG(q), presented earlier in [1, 2]. As further preparation,
we here derive estimates for derivatives, and jumps in function value and
derivatives for the multi-adaptive solutions.

We first derive estimates for the general non-linear problem,

u̇(t) = f(u(t), t), t ∈ (0, T],

u(0) = u0,
(1.1)

where u : [0, T] → R
N is the solution to be computed, u0 ∈ R

N a given
initial condition, T > 0 a given final time, and f : R

N × (0, T] → R
N a given

function that is Lipschitz-continuous in u and bounded. We also derive
estimates for the linear problem,

u̇(t) +A(t)u(t) = 0, t ∈ (0, T],

u(0) = u0,
(1.2)

with A(t) a bounded N ×N -matrix.
Furthermore, we prove the corresponding estimates for the discrete dual

solution Φ, corresponding to (1.1) or (1.2). For the non-linear problem
(1.1), the discrete dual solution Φ is defined as a Galerkin solution of the

Date: March 15, 2004.
Key words and phrases. Multi-adaptivity, individual time steps, local time steps, ODE,

continuous Galerkin, discontinuous Galerkin, mcgq, mdgq, a priori error estimates, linear,
parabolic.

Anders Logg, Department of Computational Mathematics, Chalmers University of
Technology, SE–412 96 Göteborg, Sweden, email : logg@math.chalmers.se.

1

2 ANDERS LOGG

continuous linearized dual problem

−φ̇(t) = J>(πu,U, t)φ(t) + g(t), t ∈ [0, T),

φ(T) = ψ,
(1.3)

with given data g : [0, T) → R
N and ψ ∈ R

N , where

(1.4) J>(πu,U, t) =

(
∫ 1

0

∂f

∂u
(sπu(t) + (1 − s)U(t), t) ds

)>

is the transpose of the Jacobian of the right-hand side f , evaluated at an
appropriate mean value of the approximate Galerkin solution U of (1.1) and
an interpolant πu of the exact solution u. We will use the notation

(1.5) f ∗(φ, ·) = J>(πu,U, ·)φ + g,

to write the dual problem (1.3) in the form

−φ̇(t) = f ∗(φ(t), t), t ∈ [0, T),

φ(T) = ψ.
(1.6)

We remind the reader that the discrete dual solution Φ is a Galerkin ap-
proximation, given by the mcG(q)∗ or mdG(q)∗ method defined in [4], of
the exact solution φ of (1.3), and refer to [4] for the exact definition.

For the linear problem (1.2), the discrete dual solution Φ is defined as a
Galerkin solution of the continuous dual problem

−φ̇(t) +A>(t)φ(t) = g, t ∈ [0, T),

φ(T) = ψ,
(1.7)

or −φ̇(t) = f ∗(φ(t), t), with the notation f ∗(φ, ·) = −A>φ+ g.

1.1. Notation. For a detailed description of the multi-adaptive Galerkin
methods, we refer the reader to [1, 2, 6, 4, 5]. In particular, we refer to [1]
or [4] for the exact definition of the methods.

The following notation is used throughout this paper: Each component
Ui(t), i = 1, . . . , N , of the approximate m(c/d)G(q) solution U(t) of (1.1) is
a piecewise polynomial on a partition of (0, T] into Mi subintervals. Subin-
terval j for component i is denoted by Iij = (ti,j−1, tij], and the length of
the subinterval is given by the local time step kij = tij − ti,j−1. This is
illustrated in Figure 1. On each subinterval Iij , Ui|Iij

is a polynomial of
degree qij and we refer to (Iij , Ui|Iij

) as an element.
Furthermore, we shall assume that the interval (0, T] is partitioned into

blocks between certain synchronized time levels 0 = T0 < T1 < . . . < TM =
T . We refer to the set of intervals Tn between two synchronized time levels
Tn−1 and Tn as a time slab:

Tn = {Iij : Tn−1 ≤ ti,j−1 < tij ≤ Tn}.
We denote the length of a time slab by Kn = Tn − Tn−1. For a given local
interval Iij , we denote the time slab T , for which Iij ∈ T , by T (i, j).

ESTIMATES OF DERIVATIVES AND JUMPS 3

Since different components use different time steps, a local interval Iij may
contain nodal points for other components, that is, some ti′j′ ∈ (ti,j−1, tij).
We denote the set of such internal nodes on each local interval Iij by Nij.

PSfrag replacements

0

i

kij

Kn

T

Iij

ti,j−1 tij

Tn−1 Tn

t

Figure 1. Individual partitions of the interval (0, T] for dif-
ferent components. Elements between common synchronized
time levels are organized in time slabs. In this example, we
have N = 6 and M = 4.

1.2. Outline of the paper. In Section 2, we show that the multi-adaptive
Galerkin solutions (including discrete dual solutions) can be expressed as
certain interpolants. It is known before [1] that the mcG(q) solution of (1.1)
satisfies the relation

(1.8) Ui(tij) = (u0)i +

∫ tij

0
fi(U(t), t) dt, j = 1, . . . ,Mi, i = 1, . . . , N,

with a similar relation for the mdG(q) solution, but this does not hold with
tij replaced by an arbitrary t ∈ [0, T]. However, we prove that

(1.9) U(t) = π
[q]
cG

[

u0 +

∫ ·

0
f(U(s), s) ds

]

(t),

for all t ∈ [0, T], with π
[q]
cG a special interpolant. This new way of express-

ing the multi-adaptive Galerkin solutions is a powerful tool and it is used
extensively throughout the remainder of the paper.

In Section 3, we prove a chain rule for higher-order derivatives, which we
use in Section 4, together with the representations of Section 2, to prove the
desired estimates for the non-linear problem (1.1) by induction. Finally, in
Section 5, we prove the corresponding estimates for linear problems.

2. A representation formula for the solutions

The proof of estimates for derivatives and jumps of the multi-adaptive
Galerkin solutions is based on expressing the solutions as certain inter-
polants. These representations are obtained as follows. Let U be the mcG(q)

4 ANDERS LOGG

or mdG(q) solution of (1.1) and define for i = 1, . . . , N ,

(2.1) Ũi(t) = ui(0) +

∫ t

0
fi(U(s), s) ds.

Similarly, for Φ the mcG(q)∗ or mdG(q)∗ solution of (1.6), we define for
i = 1, . . . , N ,

(2.2) Φ̃i(t) = ψi +

∫ T

t

f∗i (Φ(s), s) ds.

We note that ˙̃U = f(U, ·) and − ˙̃Φ = f∗(Φ, ·).
It now turns out that U can be expressed as an interpolant of Ũ . Similarly,

Φ can be expressed as an interpolant of Φ̃. We derive these representations in
Theorem 2.1 below for the mcG(q) and mcG(q)∗ methods, and in Theorem
2.2 for the mdG(q) and mdG(q)∗ methods. We remind the reader about the

special interpolants π
[q]
cG, π

[q]
cG∗ , π

[q]
dG, and π

[q]
dG∗ , defined in [3].

Theorem 2.1. The mcG(q) solution U of (1.1) can expressed in the form

(2.3) U = π
[q]
cGŨ .

Similarly, the mcG(q)∗ solution Φ of (1.6) can be expressed in the form

(2.4) Φ = π
[q]
cG∗Φ̃,

that is, Ui = π
[qij]
cG Ũi and Φi = π

[qij]
cG∗ Φ̃i on each local interval Iij.

Proof. To prove (2.3), we note that if U is the mcG(q) solution of (1.1), then
on each local interval Iij, we have

∫

Iij

U̇ivm dt =

∫

Iij

fi(U, ·)vm dt, m = 0, . . . , qij − 1,

with vm(t) = ((t− ti,j−1)/kij)
m. On the other hand, by the definition of Ũ ,

we have
∫

Iij

˙̃Uivm dt =

∫

Iij

fi(U, ·)vm dt, m = 0, . . . , qij − 1.

Integrating by parts and subtracting, we obtain

−
[

(Ui − Ũi)vm

]tij

ti,j−1

+

∫

Iij

(

Ui − Ũi

)

v̇m dt = 0,

and thus, since Ui(ti,j−1) − Ũi(ti,j−1) = Ui(tij) − Ũi(tij) = 0,
∫

Iij

(

Ui − Ũi

)

v̇m dt = 0.

By the definition of the mcG(q)-interpolant π
[q]
cG, it now follows that Ui =

π
[qij]
cG Ũi on Iij .

ESTIMATES OF DERIVATIVES AND JUMPS 5

To prove (2.4), we note that with Φ the mcG(q)∗ solution of (1.6), we
have

(2.5) −(ψ, v(T)) +

N
∑

i=1

Mi
∑

j=1

∫

Iij

Φiv̇i dt =

∫ T

0
(f∗(Φ, ·), v) dt,

for all continuous test functions v of order q = {qij} vanishing at t = 0. On

the other hand, by the definition of Φ̃, it follows that

−
∫

Iij

˙̃Φivi dt =

∫

Iij

f∗i (Φ, ·)vi dt.

Integrating by parts, we obtain

−
[

Φ̃ivi

]tij

ti,j−1

+

∫

Iij

Φ̃iv̇i dt =

∫

Iij

f∗i (Φ, ·)vi dt,

and thus

(2.6) −(ψ, v(T)) +

N
∑

i=1

Mi
∑

j=1

∫

Iij

Φ̃iv̇i dt =

∫ T

0
(f∗(Φ, ·), v) dt,

since v(0) = 0 and both Φ̃ and v are continuous. Subtracting (2.5) and
(2.6), it now follows that

N
∑

i=1

Mi
∑

j=1

∫

Iij

(Φi − Φ̃i)v̇i dt = 0,

for all test functions v. We now take v̇i = 0 except on Iij, and v̇n = 0 for
n 6= i, to obtain

∫

Iij

(Φi − Φ̃i)w dt = 0 ∀w ∈ Pqij−1(Iij),

and so Φi = P [qij−1]Φ̃i ≡ π
[qij]
cG∗ Φ̃i on Iij. �

Theorem 2.2. The mdG(q) solution U of (1.1) can expressed in the form

(2.7) U = π
[q]
dGŨ .

Similarly, the mdG(q)∗ solution Φ of (1.6) can be expressed in the form

(2.8) Φ = π
[q]
dG∗Φ̃,

that is, Ui = π
[qij]
dG Ũi and Φi = π

[qij]
dG∗Φ̃i on each local interval Iij.

Proof. To prove (2.7), we note that if U is the mdG(q) solution of (1.1),
then on each local interval Iij, we have

∫

Iij

U̇ivm dt =

∫

Iij

fi(U, ·)vm dt, m = 1, . . . , qij,

6 ANDERS LOGG

with vm(t) = ((t− ti,j−1)/kij)
m. On the other hand, by the definition of Ũ ,

we have
∫

Iij

˙̃Uivm dt =

∫

Iij

fi(U, ·)vm dt, m = 1, . . . , qij.

Integrating by parts and subtracting, we obtain
∫

Iij

(

Ui − Ũi

)

v̇m dt−
(

Ui(t
−
ij) − Ũ(tij)

)

= 0,

and thus, since Ui(t
−
ij) = Ũi(tij),

∫

Iij

(

Ui − Ũi

)

v̇m dt = 0.

By the definition of the mdG(q)-interpolant π
[q]
dG, it now follows that Ui =

π
[qij]
dG Ũi on Iij .
The representation (2.8) of the dual solution follows directly, since the

mdG(q)∗ method is identical to the mdG(q) method with time reversed. �

Remark 2.1. The representations of the multi-adaptive Galerkin solutions

as certain interpolants are presented here for the general non-linear problem

(1.1), but apply also to the linear problem (1.2).

3. A chain rule for higher-order derivatives

To estimate higher-order derivatives, we face the problem of taking higher-
order derivatives of f(U(t), t) with respect to t. In this section, we derive
a generalized version of the chain rule for higher-order derivatives. We also
prove a basic estimate for the jump in a composite function.

Lemma 3.1. (Chain rule) Let v : R
N → R be p > 0 times differentiable in

all its variables, and let x : R → R
N be p times differentiable, so that

(3.1) v ◦ x : R → R

is p times differentiable. Furthermore, let Dnv denote the nth order tensor

defined by

Dnv w1 · · ·wn =

N
∑

i1=1

· · ·
N
∑

in=1

∂nv

∂xi1 · · · ∂xin

w1
i1
· · ·wn

in ,

for w1, . . . , wn ∈ R
N . Then,

(3.2)
dp(v ◦ x)
dtp

=

p
∑

n=1

Dnv(x)
∑

n1 ,...,nn

Cp,n1,...,nnx
(n1) · · · x(nn),

where for each n the sum
∑

n1,...,nn
is taken over n1 + . . . + nn = p with

ni ≥ 1.

ESTIMATES OF DERIVATIVES AND JUMPS 7

Proof. Repeated use of the chain rule and Leibniz rule gives

dp(v ◦ x)
dtp

=
dp−1

dtp−1
Dv(x)x(1) =

dp−2

dtp−2

[

D2v(x)x(1)x(1) +Dv(x)x(2)
]

=
dp−3

dtp−3

[

D3v(x)x(1)x(1)x(1) +D2v(x)x(2)x(1) + . . .+Dv(x)x(3)
]

=

p
∑

n=1

Dnv(x)
∑

n1,...,nn

Cp,n1,...,nn
x(n1) · · ·x(nn),

where for each n the sum is taken over n1 + . . .+ nn = p with ni ≥ 1. �

To estimate the jump in function value and derivatives for the composite
function v ◦ x, we will need the following lemma.

Lemma 3.2. With [A] = A+ − A−, 〈A〉 = (A+ + A−)/2 and |A| =
max(|A+|, |A−|), we have

(3.3) [AB] = [A]〈B〉 + 〈A〉[B],

and

(3.4) |[A1A2 · · ·An]| ≤
n
∑

i=1

|[Ai]| Πj 6=i|Ai|.

Proof. The proof of (3.3) is straightforward:

[A]〈B〉 + 〈A〉[B] = (A+ −A−)(B+ +B−)/2 + (A+ +A−)(B+ −B−)/2

= A+B+ −A−B− = [AB].

It now follows that

|[A1A2 · · ·An]| = |[A1(A2 · · ·An)]| = | [A1]〈A2 · · ·An 〉 + 〈A1〉[A2 · · ·An] |
≤ |[A1]| · |A2| · · · |An| + |A1| · |[A2 · · ·An]|

≤
n
∑

i=1

|[Ai]| Πj 6=i|Ai|.

�

Using Lemma 3.1 and 3.2, we now prove basic estimates of derivatives and
jumps for the composite function v ◦ x. We will use the following notation:
For n ≥ 0, let ‖Dnv‖L∞(R,l∞) be defined by

(3.5) ‖Dnv w1 · · ·wn‖L∞(R) ≤ ‖Dnv‖L∞(R,l∞)‖w1‖l∞ · · · ‖wn‖l∞

for all w1, . . . , wn ∈ R
N , with ‖Dnv‖L∞(R,l∞) = ‖v‖L∞(R) for n = 0, and

define

(3.6) ‖v‖Dp(R) = max
n=0,...,p

‖Dnv‖L∞(R,l∞).

8 ANDERS LOGG

Lemma 3.3. Let v : R
N → R be p ≥ 0 times differentiable in all its

variables, let x : R → R
N be p times differentiable, and let Cx > 0 be a

constant, such that ‖x(n)‖L∞(R,l∞) ≤ Cn
x , for n = 1, . . . , p. Then, there is a

constant C = C(p) > 0, such that

(3.7)

∥

∥

∥

∥

dp(v ◦ x)
dtp

∥

∥

∥

∥

L∞(R)

≤ C‖v‖Dp(R)C
p
x.

Proof. We first note that for p = 0, (3.7) follows directly by the definition
of ‖v‖Dp(R). For p > 0, we obtain by Lemma 3.1,

∣

∣

∣

∣

dp(v ◦ x)
dtp

∣

∣

∣

∣

≤ C

p
∑

n=1

∑

n1,...,nn

∣

∣

∣
Dn v(x)x(n1) · · · x(nn)

∣

∣

∣
≤ C‖v‖Dp(R)C

p
x.

�

Lemma 3.4. Let v : R
N → R be p + 1 ≥ 1 times differentiable in all its

variables, let x : R → R
N be p times differentiable, except possibly at some

t ∈ R, and let Cx > 0 be a constant, such that ‖x(n)‖L∞(R,l∞) ≤ Cn
x for

n = 1, . . . , p. Then, there is a constant C = C(p) > 0, such that

(3.8)

∣

∣

∣

∣

[

dp(v ◦ x)
dtp

]

t

∣

∣

∣

∣

≤ C‖v‖Dp+1(R)

p
∑

n=0

Cp−n
x ‖[x(n)]t‖l∞ .

Proof. We first note that for p = 0, we have
∣

∣

∣

∣

[

dp(v ◦ x)
dtp

]

t

∣

∣

∣

∣

= |[(v ◦ x)]t| =
∣

∣v(x(t+)) − v(x(t−))
∣

∣

≤ ‖Dv‖L∞(R,l∞) ‖[x]t‖l∞ ,

and so (3.8) holds for p = 0. For p > 0, we obtain by Lemma 3.1 and Lemma
3.2,

∣

∣

∣

∣

[

dp(v ◦ x)
dtp

]

t

∣

∣

∣

∣

≤ C

p
∑

n=1

∑

n1,...,nn

∣

∣

∣

[

Dnv(x)x(n1) · · · x(nn)
]

t

∣

∣

∣

≤ C

p
∑

n=1

∑

n1,...,nn

‖Dn+1v‖L∞(R,l∞)‖[x]t‖l∞C
p
x+

+ ‖Dnv‖L∞(R,l∞)(‖[x(n1)]t‖l∞C
p−n1
x + . . . + ‖[x(nn)]t‖l∞C

p−nn
x)

≤ C‖v‖Dp+1(R)

p
∑

n=0

Cp−n
x ‖[x(n)]t‖l∞ .

�

4. Estimates of derivatives and jumps for the non-linear

problem

We now derive estimates of derivatives and jumps for the multi-adaptive
solutions of the general non-linear problem (1.1). To obtain the estimates

ESTIMATES OF DERIVATIVES AND JUMPS 9

for the multi-adaptive solutions U and Φ, we first derive estimates for the
functions Ũ and Φ̃ defined in Section 2. These estimates are then used to
derive estimates for U and Φ.

4.1. Assumptions. We make the following basic assumptions: Given a
time slab T , assume that for each pair of local intervals Iij and Imn within
the time slab, we have

(A1) qij = qmn = q̄,

and

(A2) kij > α kmn,

for some q̄ ≥ 0 and some α ∈ (0, 1). We also assume that the problem (1.1)
is autonomous,

(A3)
∂fi

∂t
= 0, i = 1, . . . , N.

Note that dual problem is in general non-autonomous. Furthermore, assume
that

(A4) ‖fi‖Dq̄+1(T) <∞, i = 1, . . . , N,

and take ‖f‖T ≥ maxi=1,...,N ‖fi‖Dq̄+1(T), such that

(4.5) ‖dp/dtp(∂f/∂u)>(x(t))‖l∞ ≤ ‖f‖T Cp
x,

for p = 0, . . . , q̄, and

(4.6) ‖[dp/dtp(∂f/∂u)>(x(t))]t‖l∞ ≤ ‖f‖T
p
∑

n=0

Cp−n
x ‖[x(n)]t‖l∞ ,

for p = 0, . . . , q̄ − 1, with the notation of Lemma 3.3 and Lemma 3.4. Note
that assumption (A4) implies that each fi is bounded by ‖f‖T . We further
assume that there is a constant ck > 0, such that

(A5) kij‖f‖T ≤ ck,

for each local interval Iij. We summarize the list of assumptions as follows:

(A1) the local orders qij are equal within each time slab;
(A2) the local time steps kij are semi-uniform within each time slab;
(A3) f is autonomous;
(A4) f and its derivatives are bounded;
(A5) the local time steps kij are small.

10 ANDERS LOGG

4.2. Estimates for U . To simplify the estimates, we introduce the follow-
ing notation: For given p > 0, let CU,p ≥ ‖f‖T be a constant, such that

(4.8) ‖U (n)‖L∞(T ,l∞) ≤ Cn
U,p, n = 1, . . . , p.

For p = 0, we define CU,0 = ‖f‖T . Temporarily, we will assume that there
is a constant c′k > 0, such that for each p,

(A5′) kijCU,p ≤ c′k.

This assumption will be removed below in Theorem 4.1. In the following
lemma, we use assumptions (A1), (A3), and (A4) to derive estimates for Ũ
in terms of CU,p and ‖f‖T .

Lemma 4.1. (Derivative and jump estimates for Ũ) Let U be the mcG(q)

or mdG(q) solution of (1.1) and define Ũ as in (2.1). If assumptions (A1),
(A3), and (A4) hold, then there is a constant C = C(q̄) > 0, such that

(4.10) ‖Ũ (p)‖L∞(T ,l∞) ≤ CCp
U,p−1, p = 1, . . . , q̄ + 1,

and

(4.11) ‖[Ũ (p)]ti,j−1‖l∞ ≤ C

p−1
∑

n=0

Cp−n
U,p−1‖[U (n)]ti,j−1‖l∞ , p = 1, . . . , q̄ + 1,

for each local interval Iij, where ti,j−1 is an internal node of the time slab

T .

Proof. By definition, Ũ
(p)
i = dp−1

dtp−1 fi(U), and so the results follow directly
by Lemma 3.3 and Lemma 3.4, noting that ‖f‖T ≤ CU,p−1. �

By Lemma 4.1, we now obtain the following estimate for the size of the
jump in function value and derivatives for U .

Lemma 4.2. (Jump estimates for U) Let U be the mcG(q) or mdG(q)
solution of (1.1). If assumptions (A1)–(A5) and (A5′) hold, then there is a

constant C = C(q̄, ck, c
′
k, α) > 0, such that

(4.12) ‖[U (p)]ti,j−1‖l∞ ≤ Ckr+1−p
ij Cr+1

U,r , p = 0, . . . , r + 1, r = 0, . . . , q̄,

for each local interval Iij, where ti,j−1 is an internal node of the time slab

T .

Proof. The proof is by induction. We first note that at t = ti,j−1, we have

[U
(p)
i]t =

“

U
(p)
i (t+) − Ũ

(p)
i (t+)

”

+
“

Ũ
(p)
i (t+) − Ũ

(p)
i (t−)

”

+
“

Ũ
(p)
i (t−) − U

(p)
i (t−)

”

≡ e+ + e0 + e−.

By Theorem 2.1 (or Theorem 2.2), U is an interpolant of Ũ and so, by
Theorem 5.2 in [3], we have

|e+| ≤ Ckr+1−p
ij ‖Ũ (r+1)

i ‖L∞(Iij) + C
∑

x∈Nij

r
∑

m=1

km−p
ij |[Ũ (m)

i]x|,

ESTIMATES OF DERIVATIVES AND JUMPS 11

for p = 0, . . . , r + 1 and r = 0, . . . , q̄. Note that the second sum starts at
m = 1 rather than at m = 0, since Ũ is continuous. Similarly, we have

|e−| ≤ Ckr+1−p
i,j−1 ‖Ũ (r+1)

i ‖L∞(Ii,j−1) + C
∑

x∈Ni,j−1

r
∑

m=1

km−p
i,j−1|[Ũ

(m)
i]x|.

To estimate e0, we note that e0 = 0 for p = 0, since Ũ is continuous. For
p = 1, . . . , q̄ + 1, Lemma 4.1 gives

|e0| = |[Ũ (p)
i]t| ≤ C

p−1
∑

n=0

Cp−n
U,p−1‖[U (n)]t‖l∞ .

Using assumption (A2), and the estimates for e+, e0, and e−, we obtain for
r = 0 and p = 0,

|[Ui]t| ≤ Ckij‖ ˙̃Ui‖L∞(Iij) + 0 + Cki,j−1‖ ˙̃Ui‖L∞(Ii,j−1)

≤ C(1 + α−1)kijCU,0 = CkijCU,0.

It now follows by assumption (A5), that for r = 0 and p = 1,

|[U̇i]t| ≤ C‖ ˙̃Ui‖L∞(Iij) + CCU,0‖[U]t‖l∞ + C‖ ˙̃Ui‖L∞(Ii,j−1)

≤ C(1 + kijCU,0)CU,0 ≤ CCU,0.

Thus, (4.12) holds for r = 0. Assume now that (4.12) holds for r = r̄−1 ≥ 0.
Then, by Lemma 4.1 and assumption (A5′), it follows that

|e+| ≤ Ckr̄+1−p
ij C r̄+1

U,r̄ + C
∑

x∈Nij

r̄
∑

m=1

km−p
ij

m−1
∑

n=0

Cm−n
U,m−1‖[Un]x‖l∞

≤ Ckr̄+1−p
ij C r̄+1

U,r̄ + C
∑

km−p
ij Cm−n

U,m−1k
(r̄−1)+1−n
ij C

(r̄−1)+1
U,r̄−1

≤ Ckr̄+1−p
ij C r̄+1

U,r̄

(

1 +
∑

(kijCU,r̄−1)
m−1−n

)

≤ Ckr̄+1−p
ij C r̄+1

U,r̄ .

Similarly, we obtain the estimate |e−| ≤ Ckr̄+1−p
ij C r̄+1

U,r̄ . Finally, we use

Lemma 4.1 and assumption (A5′), to obtain the estimate

|e0| ≤ C

p−1
∑

n=0

Cp−n
U,p−1‖[Un]t‖l∞ ≤ C

p−1
∑

n=0

Cp−n
U,p−1k

(r̄−1)+1−n
ij C

(r̄−1)+1
U,r̄−1

= Ckr̄+1−p
ij C r̄+1

U,r̄

p−1
∑

n=0

(kijCU,r̄)
p−1−n ≤ Ckr̄+1−p

ij C r̄+1
U,r̄ .

Summing up, we thus obtain |[U (p)
i]t| ≤ |e+| + |e0| + |e−| ≤ Ckr̄+1−p

ij C r̄+1
U,r̄ ,

and so (4.12) follows by induction. �

By Lemma 4.1 and Lemma 4.2, we now obtain the following estimate for
derivatives of the solution U .

12 ANDERS LOGG

Theorem 4.1. (Derivative estimates for U) Let U be the mcG(q) or mdG(q)
solution of (1.1). If assumptions (A1)–(A5) hold, then there is a constant

C = C(q̄, ck, α) > 0, such that

(4.13) ‖U (p)‖L∞(T ,l∞) ≤ C‖f‖p
T , p = 1, . . . , q̄.

Proof. By Theorem 2.1 (or Theorem 2.2), U is an interpolant of Ũ and so,
by Theorem 5.2 in [3], we have

‖U (p)
i ‖L∞(Iij) = ‖(πŨi)

(p)‖L∞(Iij)

≤ C ′‖Ũ (p)
i ‖L∞(Iij) + C ′

∑

x∈Nij

p−1
∑

m=1

km−p
ij |[Ũ (m)

i]x|,

for some constant C ′ = C ′(q̄). For p = 1, we thus obtain the estimate

‖U̇i‖L∞(Iij) ≤ C ′‖ ˙̃Ui‖L∞(Iij) = C ′‖fi(U)‖L∞(Iij) ≤ C ′‖f‖T ,
by assumption (A4), and so (4.13) holds for p = 1.

For p = 2, . . . , q̄, assuming that (A5′) holds for CU,p−1, we use Lemma
4.1, Lemma 4.2 (with r = p− 1), and assumption (A2), to obtain

‖U (p)
i ‖L∞(Iij) ≤ CCp

U,p−1 + C
∑

x∈Nij

p−1
∑

m=1

km−p
ij

m−1
∑

n=0

Cm−n
U,m−1‖[U (n)]x‖l∞

≤ CCp
U,p−1 + C

∑

km−p
ij Cm−n

U,m−1k
(p−1)+1−n
ij C

(p−1)+1
U,p−1

≤ CCp
U,p−1

(

1 +
∑

(kijCU,m−1)
m−n

)

≤ CCp
U,p−1,

where C = C(q̄, ck, c
′
k, α). This holds for all components i and all local

intervals Iij within the time slab T , and so

‖U (p)‖L∞(T ,l∞) ≤ CCp
U,p−1, p = 1, . . . , q̄,

where by definition CU,p−1 is a constant, such that ‖U (n)‖L∞(T ,l∞) ≤ Cn
U,p−1

for n = 1, . . . , p − 1. Starting at p = 1, we now define CU,1 = C1‖f‖T with
C1 = C ′ = C ′(q̄). It then follows that (A5′) holds for CU,1 with c′k = C ′ck,
and thus

‖U (2)‖L∞(T ,l∞) ≤ CC2
U,2−1 = CC2

U,1 ≡ C2‖f‖2
T ,

whereC2 = C2(q̄, ck, α). We may thus defineCU,2 = max(C1‖f‖T ,
√
C2‖f‖T).

Continuing, we note that (A5′) holds for CU,2, and thus

‖U (3)‖L∞(T ,l∞) ≤ CC3
U,3−1 = CC3

U,2 ≡ C3‖f‖3
T ,

where C3 = C3(q̄, ck, α). In this way, we obtain a sequence of constants
C1, . . . , Cq̄, depending only on q̄, ck, and α, such that ‖U (p)‖L∞(T ,l∞) ≤
Cp‖f‖p

T for p = 1, . . . , q̄, and so (4.13) follows if we take C = maxi=1,...,q̄ Ci.
�

ESTIMATES OF DERIVATIVES AND JUMPS 13

Having now removed the additional assumption (A5′), we obtain the fol-
lowing version of Lemma 4.2.

Theorem 4.2. (Jump estimates for U) Let U be the mcG(q) or mdG(q)
solution of (1.1). If assumptions (A1)–(A5) hold, then there is a constant

C = C(q̄, ck, α) > 0, such that

(4.14) ‖[U (p)]ti,j−1‖l∞ ≤ Ckq̄+1−p
ij ‖f‖q̄+1

T , p = 0, . . . , q̄,

for each local interval Iij, where ti,j−1 is an internal node of the time slab

T .

4.3. Estimates for Φ. To obtain estimates corresponding to those of The-
orem 4.1 and Theorem 4.2 for the discrete dual solution Φ, we need to
consider the fact that f ∗ = f∗(φ, ·) = J>φ is linear and non-autonomous.
To simplify the estimates, we introduce the following notation: For given
p ≥ 0, let CΦ,p ≥ ‖f‖T be a constant, such that

(4.15) ‖Φ(n)‖L∞(T ,l∞) ≤ Cn
Φ,p‖Φ‖L∞(T ,l∞), n = 0, . . . , p.

Temporarily, we will assume that for each p there is a constant c′′k > 0, such
that

(A5′′) kijCΦ,p ≤ c′′k.

This assumption will be removed below in Theorem 4.3. Now, to obtain
estimates for Φ, we first need to derive estimates of derivatives and jumps
for J .

Lemma 4.3. Let U be the mcG(q) or mdG(q) solution of (1.1), and let πu
be an interpolant, of order q̄, of the exact solution u of (1.1). If assumptions

(A1)–(A5) hold, then there is a constant C = C(q̄, ck, α) > 0, such that

(4.17)

∥

∥

∥

∥

dpJ>(πu,U)

dtp

∥

∥

∥

∥

L∞(T ,l∞)

≤ C‖f‖p+1
T , p = 0, . . . , q̄,

and

(4.18)

∥

∥

∥

∥

∥

[

dpJ>(πu,U)

dtp

]

ti,j−1

∥

∥

∥

∥

∥

l∞

≤ Ckq̄+1−p
ij ‖f‖q̄+2

T , p = 0, . . . , q̄ − 1,

for each local interval Iij, where ti,j−1 is an internal node of the time slab

T .

Proof. Since f is autonomous by assumption (A3), we have

J(πu(t), U(t)) =

∫ 1

0

∂f

∂u
(sπu(t) + (1 − s)U(t)) ds =

∫ 1

0

∂f

∂u
(xs(t)) ds,

with xs(t) = sπu(t)+(1−s)U(t). Noting that ‖u(n)(t)‖l∞ ≤ C‖f‖n
T by (1.1),

it follows by Theorem 4.1 and an interpolation estimate, that ‖x(n)
s (t)‖l∞ ≤

C‖f‖n
T , and so (4.17) follows by assumption (A4).

14 ANDERS LOGG

At t = ti,j−1, we obtain, by Theorem 4.2 and an interpolation estimate,

|[x
(n)
si]t| ≤ s |[(πui)

(n)]t| + (1 − s) |[U
(n)
i]t| ≤ |[(πui)

(n)]t| + |[U
(n)
i]t|

≤ |(πui)
(n)(t+) − u

(n)
i (t)| + |u

(n)
i (t) − (πui)

(n)(t−))| + Ck
q̄+1−n

ij ‖f‖q̄+1
T

≤ Ck
q̄+1−n
ij ‖u

(q̄+1)
i ‖L∞(Iij) + Ck

q̄+1−n
i,j−1 ‖u

(q̄+1)
i ‖L∞(Ii,j−1) + Ck

q̄+1−n
ij ‖f‖q̄+1

T

≤ Ck
q̄+1−n

ij ‖f‖q̄+1
T

,

where we have also used assumption (A2). With similar estimates for other
components which are discontinuous at t = ti,j−1, the estimate (4.18) now
follows by assumptions (A4) and (A5). �

Using these estimates for J>, we now derive estimates for Φ̃, correspond-
ing to the estimates for Ũ in Lemma 4.1.

Lemma 4.4. (Derivative and jump estimates for Φ̃) Let Φ be the mcG(q)∗ or

mdG(q)∗ solution of (1.3) with g = 0, and define Φ̃ as in (2.2). If assump-

tions (A1)–(A5) and (A5′′) hold, then there is a constant C = C(q̄, ck, c
′′
k, α) >

0, such that

(4.19) ‖Φ̃(p)‖L∞(T ,l∞) ≤ CCp
Φ,p−1‖Φ‖L∞(T ,l∞), p = 1, . . . , q̄ + 1,

and

(4.20)

‖[Φ̃(p)]tij‖l∞ ≤ Ckq̄+2−p
ij ‖f‖q̄+2

T ‖Φ‖L∞(T ,l∞) + C

p−1
∑

n=0

‖f‖p−n
T ‖[Φ(n)]tij‖l∞ ,

p = 1, . . . , q̄, for each local interval Iij, where tij is an internal node of the

time slab T .

Proof. By definition, ˙̃Φ = −f∗(Φ, ·) = −J(πu,U)>Φ. It follows that

Φ̃(p) = − dp−1

dtp−1
J>Φ = −

p−1
∑

n=0

(

p− 1

n

)(

dp−1−n

dtp−1−n
J>

)

Φ(n),

and so, by Lemma 4.3,

‖Φ̃(p)(t)‖l∞ ≤ C

p−1
∑

n=0

‖f‖p−n
T Cn

Φ,p−1‖Φ‖L∞(T ,l∞) ≤ CCp
Φ,p−1‖Φ‖L∞(T ,l∞),

ESTIMATES OF DERIVATIVES AND JUMPS 15

for 0 ≤ p − 1 ≤ q̄. To estimate the jump at t = tij, we use Lemma 3.2,
Lemma 4.3, and assumption (A5′′), to obtain

‖[Φ̃(p)]t‖l∞ ≤ C

p−1
X

n=0

‚

‚

‚

‚

»„

dp−1−n

dtp−1−n
J
>

«

Φ(n)

–

t

‚

‚

‚

‚

l∞

≤ C

p−1
X

n=0

“

k
q̄+1−(p−1−n)
ij ‖f‖q̄+2

T
C

n
Φ,p−1‖Φ‖L∞(T ,l∞) + ‖f‖p−n

T
‖[Φ(n)]t‖l∞

”

≤ Ck
q̄+2−p
ij ‖f‖q̄+2

T

p−1
X

n=0

k
n
ijC

n
Φ,p−1‖Φ‖L∞(T ,l∞) + C

p−1
X

n=0

‖f‖p−n

T
‖[Φ(n)]t‖l∞

≤ Ck
q̄+2−p
ij ‖f‖q̄+2

T
‖Φ‖L∞(T ,l∞) + C

p−1
X

n=0

‖f‖p−n

T
‖[Φ(n)]t‖l∞ ,

for 0 ≤ p− 1 ≤ q̄ − 1. �

Our next task is to estimate the jump in the discrete dual solution Φ
itself, corresponding to Lemma 4.2.

Lemma 4.5. (Jump estimates for Φ) Let Φ be the mcG(q)∗ or mdG(q)∗

solution of (1.3) with g = 0. If assumptions (A1)–(A5) and (A5′′) hold,

then there is a constant C = C(q̄, ck, c
′′
k, α) > 0, such that

(4.21) ‖[Φ(p)]tij‖l∞ ≤ Ckr+1−p
ij Cr+1

Φ,r ‖Φ‖L∞(T ,l∞), p = 0, . . . , r + 1,

with r = 0, . . . , q̄−1 for the mcG(q) method and r = 0, . . . , q̄ for the mdG(q)
method, for each local interval Iij, where tij is an internal node of the time

slab T .

Proof. The proof is by induction. We first note that at t = tij , we have

[Φ
(p)
i]t =

“

Φ
(p)
i (t+) − Φ̃

(p)
i (t+)

”

+
“

Φ̃
(p)
i (t+) − Φ̃

(p)
i (t−)

”

+
“

Φ̃
(p)
i (t−) − Φ

(p)
i (t−)

”

≡ e+ + e0 + e−.

By Theorem 2.1 (or Theorem 2.2), Φ is an interpolant of Φ̃; if Φ is the

mcG(q)∗ solution, then Φi is the π
[qij]
cG∗ -interpolant of Φ̃i on Iij, and if Φ is

the mdG(q)∗ solution, then Φi is the π
[qij]
dG∗-interpolant of Φ̃i. It follows that

|e−| ≤ Ckr+1−p
ij ‖Φ̃(r+1)

i ‖L∞(Iij)+C
∑

x∈Nij

r
∑

m=1

km−p
ij |[Φ̃(m)

i]x|, p = 0, . . . , r+1,

where r = 0, . . . , q̄ − 1 for the mcG(q)∗ solution and r = 0, . . . , q̄ for the
mdG(q)∗solution. Similarly, we have

|e+| ≤ Ckr+1−p
i,j+1 ‖Φ̃(r+1)

i ‖L∞(Ii,j+1) + C
∑

x∈Ni,j+1

r
∑

m=1

km−p
i,j+1|[Φ̃

(m)
i]x|,

16 ANDERS LOGG

for p = 0, . . . , r + 1. To estimate e0, we note that e0 = 0 for p = 0, since Φ̃
is continuous. For p = 1, . . . , q̄, Lemma 4.4 gives
(4.22)

|e0| = |[Φ̃(p)
i]t| ≤ Ckq̄+2−p

ij ‖f‖q̄+2
T ‖Φ‖L∞(T ,l∞) +C

p−1
∑

n=0

‖f‖p−n
T ‖|[Φ(n)]t|‖l∞ .

Using assumption (A2), and the estimates for e+, e0, and e−, we obtain for
r = 0 and p = 0,

|[Φi]t| ≤ Cki,j+1‖ ˙̃Φi‖L∞(Ii,j+1) + 0 + Ckij‖ ˙̃Φi‖L∞(Iij)

≤ C(α−1 + 1)kijCΦ,0‖Φ‖L∞(T ,l∞) = CkijCΦ,0‖Φ‖L∞(T ,l∞).

For r = 0 and p = 1, it follows by (4.22), noting that k q̄+2−1
ij ‖f‖q̄+2

T ≤
C‖f‖T = CCΦ,0, and assumption (A2), that |e0| ≤ CCΦ,0‖Φ‖L∞(T ,l∞) +
C‖f‖T ‖[Φ]t‖l∞ ≤ CCΦ,0‖Φ‖L∞(T ,l∞), and so,

|[Φ̇i]t| ≤ C‖ ˙̃Φi‖L∞(Ii,j+1) + CCΦ,0‖Φ‖L∞(T ,l∞) + C‖ ˙̃Φi‖L∞(Iij)

≤ CCΦ,0‖Φ‖L∞(T ,l∞).

Thus, (4.21) holds for r = 0. Assume now that (4.21) holds for r = r̄−1 ≥ 0.
Then, by Lemma 4.4 and assumption (A5), it follows that

|e−| ≤ Ckr̄+1−p
ij C r̄+1

Φ,r̄ ‖Φ‖L∞(T ,l∞)

+ C
∑

x∈Nij

r
∑

m=1

km−p
ij

(

kq̄+2−m
ij ‖f‖q̄+2

T
‖Φ‖L∞(T ,l∞) +

m−1
∑

n=0

‖f‖m−n
T

‖[Φ(n)]t‖l∞

)

≤ Ckr̄+1−p
ij C r̄+1

Φ,r̄ ‖Φ‖L∞(T ,l∞) + C
∑

(

kq̄+2−p
ij ‖f‖q̄+2

T ‖Φ‖L∞(T ,l∞)

+
∑

‖f‖m−n
T k

m−p+(r̄−1)+1−n

ij C
(r̄−1)+1
Φ,r̄−1 ‖Φ‖L∞(T ,l∞)

)

≤ Ckr̄+1−p
ij C r̄+1

Φ,r̄ ‖Φ‖L∞(T ,l∞) + C
∑

(

kq̄+2−p
ij ‖f‖q̄+2

T

+
∑

kr̄+1−p+m−1−n
ij ‖f‖m−1−n

T C r̄+1
Φ,r̄−1

)

‖Φ‖L∞(T ,l∞)

≤ Ckr̄+1−p
ij C r̄+1

Φ,r̄ ‖Φ‖L∞(T ,l∞).

Similarly, we obtain the estimate

|e+| ≤ Ckr̄+1−p
ij C r̄+1

Φ,r̄ ‖Φ‖L∞(T ,l∞).

ESTIMATES OF DERIVATIVES AND JUMPS 17

Again using the assumption that (4.21) holds for r = r̄ − 1, we obtain

|e0| ≤ Ckq̄+2−p
ij ‖f‖q̄+2

T ‖Φ‖L∞(T ,l∞)

+ C

p−1
∑

n=0

‖f‖p−n
T k

(r̄−1)+1−n
ij C

(r̄−1)+1
Φ,r̄−1 ‖Φ‖L∞(T ,l∞)

≤ Ckr̄+1−p
ij C r̄+1

Φ,r̄−1‖Φ‖L∞(T ,l∞)

(

1 +

p−1
∑

n=0

(kij‖f‖T)p−1−n

)

≤ Ckr̄+1−p
ij C r̄+1

Φ,r̄−1‖Φ‖L∞(T ,l∞) ≤ Ckr̄+1−p
ij C r̄+1

Φ,r̄ ‖Φ‖L∞(T ,l∞).

We thus have |[Φ(p)
i]t| ≤ |e+| + |e0| + |e−| ≤ Ckr̄+1−p

ij C r̄+1
Φ,r̄ ‖Φ‖L∞(T ,l∞), and

so (4.21) follows by induction. �

Next, we prove an estimate for the derivatives of the discrete dual solution
Φ, corresponding to Theorem 4.1.

Theorem 4.3. (Derivative estimates for Φ) Let Φ be the mcG(q)∗ or mdG(q)∗

solution of (1.3) with g = 0. If assumptions (A1)–(A5) hold, then there is

a constant C = C(q̄, ck, α) > 0, such that

(4.23) ‖Φ(p)‖L∞(T ,∞) ≤ C‖f‖p
T ‖Φ‖L∞(T ,l∞), p = 0, . . . , q̄.

Proof. By Theorem 2.1 (or Theorem 2.2), Φ is an interpolant of Φ̃, and so,
by Theorem 5.2 in [3], we have

‖Φ(p)
i ‖L∞(Iij) = ‖(πΦ̃i)

(p)‖L∞(Iij)

≤ C ′‖Φ̃(p)
i ‖L∞(Iij) + C ′

∑

x∈Nij

p−1
∑

m=1

km−p
ij |[Φ̃(m)

i]x|,

for some constant C ′ = C ′(q̄) > 0. For p = 1, we thus obtain the estimate

‖Φ̇i‖L∞(Iij) ≤ C ′‖ ˙̃Φi‖L∞(Iij) = C ′‖f∗i (Φ)‖L∞(Iij)

= C ′‖J>Φ‖L∞(Iij) ≤ C ′‖f‖T ‖Φ‖L∞(T ,l∞),

by assumption (A4), and so (4.23) holds for p = 1.
For p = 2, . . . , q̄, assuming that (A5′′) holds for CΦ,p−1, we use Lemma

4.4, Lemma 4.5 (with r = p− 1) and assumption (A2), to obtain

‖Φ(p)
i ‖L∞(Iij) ≤ CCp

Φ,p−1‖Φ‖L∞(T ,l∞)

+ C
∑

x∈Nij

p−1
∑

m=1

km−p
ij

(

kq̄+2−m
ij ‖f‖q̄+2

T ‖Φ‖L∞(T ,l∞) +

m−1
∑

n=0

‖f‖m−n
T ‖[Φ(n)]x‖l∞

)

≤ CCp
Φ,p−1‖Φ‖L∞(T ,l∞) + C

∑

km−p
ij ‖f‖m−n

T
k

(p−1)+1−n

ij C
(p−1)+1
Φ,p−1 ‖Φ‖L∞(T ,l∞)

≤ CCp
Φ,p−1‖Φ‖L∞(T ,l∞) + CCp

Φ,p−1‖Φ‖L∞(T ,l∞)

∑

(kij‖f‖T)m−n

≤ CCp
Φ,p−1‖Φ‖L∞(T ,l∞),

18 ANDERS LOGG

where we have used the fact that

km−p
ij kq̄+2−m

ij ‖f‖q̄+2
T = ‖f‖p

T (kij‖f‖T)q̄+2−p ≤ CCp
Φ,p−1,

and where C = C(q̄, ck, c
′′
k, α). Continuing now in the same way as in the

proof of Theorem 4.1, we obtain

‖Φ(p)‖L∞(T ,l∞) ≤ C‖f‖p
T ‖Φ‖L∞(T ,l∞), p = 1, . . . , q̄,

for C = C(q̄, ck, α), which (trivially) holds also when p = 0. �

Having now removed the additional assumption (A5′′), we obtain the
following version of Lemma 4.5.

Theorem 4.4. (Jump estimates for Φ) Let Φ be the mcG(q)∗ or mdG(q)∗

solution of (1.3) with g = 0. If assumptions (A1)–(A5) hold, then there is

a constant C = C(q̄, ck, α) > 0, such that

(4.24) ‖[Φ(p)]tij‖l∞ ≤ Ckq̄−p
ij ‖f‖q̄

T ‖Φ‖L∞(T ,l∞), p = 0, . . . , q̄ − 1,

for the mcG(q)∗ solution, and

(4.25) ‖[Φ(p)]tij‖l∞ ≤ Ckq̄+1−p
ij ‖f‖q̄+1

T ‖Φ‖L∞(T ,l∞), p = 0, . . . , q̄,

for the mdG(q)∗ solution. This holds for each local interval Iij, where tij is

an internal node of the time slab T .

4.4. A special interpolation estimate. In the derivation of a priori error
estimates, we face the problem of estimating the interpolation error πϕi−ϕi

on a local interval Iij, where ϕi is defined by

(4.26) ϕi = (J>(πu, u)Φ)i =
N
∑

l=1

Jli(πu, u)Φl, i = 1, . . . , N.

We note that ϕi may be discontinuous within Iij , if other components have
nodes within Iij, see Figure 2, since then some Φl (or some Jli) may be
discontinuous within Iij . To estimate the interpolation error, we thus need
to estimate derivatives and jumps of ϕi, which requires estimates for both
Jli and Φl.

In Lemma 4.3 we have already proved an estimate for J> when f is
linearized around πu and U , rather than around πu and u as in (4.26).
Replacing U by u, we obtain the following estimate for J>.

Lemma 4.6. Let πu be an interpolant, of order q̄, of the exact solution

u of (1.1). If assumptions (A1)–(A5) hold, then there is a constant C =
C(q̄, ck, α) > 0, such that

(4.27)

∥

∥

∥

∥

dpJ>(πu, u)

dtp

∥

∥

∥

∥

L∞(T ,l∞)

≤ C‖f‖p+1
T , p = 0, . . . , q̄,

and

(4.28)

∥

∥

∥

∥

∥

[

dpJ>(πu, u)

dtp

]

ti,j−1

∥

∥

∥

∥

∥

l∞

≤ Ckq̄+1−p
ij ‖f‖q̄+2

T , p = 0, . . . , q̄ − 1,

ESTIMATES OF DERIVATIVES AND JUMPS 19

PSfrag replacements

Iijti,j−1 tij

Φi(t)

Φl(t)

Figure 2. If some other component l 6= i has a node within
Iij , then Φl may be discontinuous within Iij , causing ϕi to
be discontinuous within Iij.

for each local interval Iij, where ti,j−1 is an internal node of the time slab

T .

Proof. See proof of Lemma 4.3. �

From Lemma 4.6 and the estimates for Φ derived in the previous section,
we now obtain the following estimates for ϕ.

Lemma 4.7. (Estimates for ϕ) Let ϕ be defined as in (4.26). If assumptions

(A1)–(A5) hold, then there is a constant C = C(q̄, ck, α) > 0, such that

(4.29) ‖ϕ(p)
i ‖L∞(Iij) ≤ C‖f‖p+1

T ‖Φ‖L∞(T ,l∞), p = 0, . . . , qij,

and

(4.30)

|[ϕ(p)
i]x| ≤ Ck

rij−p

ij ‖f‖rij+1
T ‖Φ‖L∞(T ,l∞) ∀x ∈ Nij, p = 0, . . . , qij − 1,

with rij = qij for the mcG(q) method and rij = qij + 1 for the mdG(q)
method. This holds for each local interval Iij within the time slab T .

20 ANDERS LOGG

Proof. Differentiating, we have ϕ
(p)
i =

∑p
n=0

(

p
n

)dp−nJ>(πu,u)
dtp−n Φ(n), and so, by

Theorem 4.3 and Lemma 4.6, we obtain

‖ϕ(p)
i ‖L∞(Iij) ≤ C

p
∑

n=0

‖f‖(p−n)+1
T ‖f‖n

T ‖Φ‖L∞(T ,l∞)

= C

p
∑

n=0

‖f‖p+1
T ‖Φ‖L∞(T ,l∞) = C‖f‖p+1

T ‖Φ‖L∞(T ,l∞).

To estimate the jump in ϕ
(p)
i , we use Lemma 3.2, Theorem 4.3, Theorem

4.4, and Lemma 4.6, to obtain

|[ϕ(p)
i]x| =

∣

∣

∣

∣

∣

[

p
∑

n=0

(

p

n

)

dp−nJ>

dtp−n
Φ(n)

]

x

∣

∣

∣

∣

∣

≤ C

p
∑

n=0

∣

∣

∣

∣

[

dp−nJ>

dtp−n
Φ(n)

]

x

∣

∣

∣

∣

≤ C

p
∑

n=0

(k
qij+1−(p−n)
ij ‖f‖qij+2

T ‖f‖n
T

+ ‖f‖(p−n)+1
T k

qij−n

ij ‖f‖qij

T)‖Φ‖L∞(T ,l∞)

≤ Ck
qij−p

ij ‖f‖qij+1
T ‖Φ‖L∞(T ,l∞)

p
∑

n=0

(kij‖f‖T)n+1 + (kij‖f‖T)p−n

≤ Ck
qij−p

ij ‖f‖qij+1
T ‖Φ‖L∞(T ,l∞),

for the mcG(q) method. For the mdG(q) method, we obtain one extra power
of kij‖f‖T . �

Using the interpolation estimates of [3], together with Lemma 4.7, we now
obtain the following important interpolation estimates for ϕ.

Lemma 4.8. (Interpolation estimates for ϕ) Let ϕ be defined as in (4.26).
If assumptions (A1)–(A5) hold, then there is a constant C = C(q̄, ck, α) > 0,
such that

(4.31) ‖π[qij−2]
cG ϕi − ϕi‖L∞(Iij) ≤ Ck

qij−1
ij ‖f‖qij

T ‖Φ‖L∞(T ,l∞), qij = q̄ ≥ 2,

and

(4.32) ‖π[qij−1]
dG ϕi − ϕi‖L∞(Iij) ≤ Ck

qij

ij ‖f‖qij+1
T ‖Φ‖L∞(T ,l∞), qij = q̄ ≥ 1,

for each local interval Iij within the time slab T .

Proof. To prove (4.31), we use Theorem 5.2 in [3], with r = qij−2 and p = 0,

together with Lemma 4.7, to obtain the following bound for ‖π [qij−2]
cG ϕi −

ESTIMATES OF DERIVATIVES AND JUMPS 21

ϕi‖L∞(Iij):

Ck
(qij−2)+1
ij ‖ϕ((qij−2)+1)

i ‖L∞(Iij) + C
∑

x∈Nij

qij−2
∑

m=0

km
ij |[ϕ(m)

i]x |

≤ Ck
qij−1
ij ‖f‖qij

T ‖Φ‖L∞(T ,l∞) + C
∑

x∈Nij

qij−2
∑

m=0

km
ij k

qij−m

ij ‖f‖qij+1
T ‖Φ‖L∞(T ,l∞)

= Ck
qij−1
ij ‖f‖qij

T ‖Φ‖L∞(T ,l∞) + Ck
qij

ij ‖f‖qij+1
T ‖Φ‖L∞(T ,l∞)

≤ Ck
qij−1
ij ‖f‖qij

T ‖Φ‖L∞(T ,l∞).

The estimate for π
[qij−1]
dG ϕi − ϕi is obtained similarly. �

5. Estimates of derivatives and jumps for linear problems

We now derive estimates for derivatives and jumps for the multi-adaptive
solutions of the linear problem (1.2). Assuming that the problem is linear,
but non-autonomous, the estimates are obtained in a slightly different way
compared to the estimates of the previous section.

5.1. Assumptions. We make the following basic assumptions: Given a
time slab T , assume that for each pair of local intervals Iij and Imn within
the time slab, we have

(B1) qij = qmn = q̄,

and

(B2) kij > α kmn,

for some q̄ ≥ 0 and some α ∈ (0, 1). Furthermore, assume that A has q̄ − 1
continuous derivatives and let CA > 0 be constant, such that

(B3) max
(

‖A(p)‖L∞(T ,l∞), ‖A>(p)‖L∞(T ,l∞)

)

≤ Cp+1
A , p = 0, . . . , q̄,

for all time slabs T . We further assume that there is a constant ck > 0, such
that

(B4) kijCA ≤ ck.

We summarize the list of assumptions as follows:

(B1) the local orders qij are equal within each time slab;
(B2) the local time steps kij are semi-uniform within each time slab;
(B3) A and its derivatives are bounded;
(B4) the local time steps kij are small.

22 ANDERS LOGG

5.2. Estimates for U and Φ. To simplify the estimates, we introduce the
following notation: For given p > 0, let CU,p ≥ CA be a constant, such that

(5.5) ‖U (n)‖L∞(T ,l∞) ≤ Cn
U,p‖U‖L∞(T ,l∞), n = 0, . . . , p,

For p = 0, we define CU,0 = CA. Temporarily, we will assume that there is
a constant c′k > 0, such that for each p,

(B4′) kijCU,p ≤ c′k.

This assumption will be removed below in Theorem 5.1. We similarly de-
fine the constant CΦ,p, with kijCΦ,p ≤ c′k. In the following lemma, we use

assumptions (B1) and (B3) to derive estimates for Ũ and Φ̃.

Lemma 5.1. (Estimates for Ũ and Φ̃) Let U be the mcG(q) or mdG(q)

solution of (1.2) and define Ũ as in (2.1). If assumptions (B1) and (B3)
hold, then there is a constant C = C(q̄) > 0, such that

(5.7) ‖Ũ (p)‖L∞(T ,l∞) ≤ CCp
U,p−1‖U‖L∞(T ,l∞), p = 1, . . . , q̄ + 1,

and

(5.8) ‖[Ũ (p)]ti,j−1‖l∞ ≤ C

p−1
∑

n=0

Cp−n
A ‖[U (n)]ti,j−1‖l∞ , p = 1, . . . , q̄.

Similarly, for Φ the mcG(q)∗ or mdG(q)∗ solution of (1.7) with g = 0, and

with Φ̃ defined as in (2.2), we obtain

(5.9) ‖Φ̃(p)‖L∞(T ,l∞) ≤ CCp
Φ,p−1‖Φ‖L∞(T ,l∞), p = 1, . . . , q̄ + 1,

and

(5.10) ‖[Φ̃(p)]tij‖l∞ ≤ C

p−1
∑

n=0

Cp−n
A ‖[Φ(n)]tij‖l∞ , p = 1, . . . , q̄.

Proof. By (2.1), it follows that ˙̃U = −AU , and so

Ũ (p) =

p−1
∑

n=0

(

p− 1

n

)

A(p−1−n)U (n).

It now follows by assumptions (B1) and (B3), that

‖Ũ (p)‖L∞(T ,l∞) ≤ C

p−1
∑

n=0

Cp−n
A Cn

U,p−1‖U‖L∞(T ,l∞) ≤ CCp
U,p−1‖U‖L∞(T ,l∞).

Similarly, we obtain ‖[Ũ (p)]ti,j−1‖l∞ ≤ C
∑p−1

n=0C
p−n
A ‖[U (n)]ti,j−1‖l∞ . The

corresponding estimates for Φ̃ follow similarly. �

By Lemma 5.1, we now obtain the following estimate for the size of the
jump in function value and derivatives for U and Φ.

ESTIMATES OF DERIVATIVES AND JUMPS 23

Lemma 5.2. (Jump estimates for U and Φ) Let U be the mcG(q) or mdG(q)
solution of (1.2), and let Φ be the corresponding mcG(q)∗ or mdG(q)∗ so-

lution of (1.7) with g = 0. If assumptions (B1)–(B4) and (B4′) hold, then

there is a constant C = C(q̄, ck, c
′
k, α) > 0, such that

(5.11) ‖[U (p)]ti,j−1‖l∞ ≤ Ckr+1−p
ij Cr+1

U,r ‖U‖L∞(T ,l∞), p = 0, . . . , r + 1,

r = 0, . . . , q̄, and

(5.12) ‖[Φ(p)]tij‖l∞ ≤ Ckr+1−p
ij Cr+1

Φ,r ‖Φ‖L∞(T ,l∞), p = 0, . . . , r + 1,

with r = 0, . . . , q̄ − 1 for the mcG(q)∗ solution and r = 0, . . . , q̄ for the

mdG(q)∗ solution, for each local interval Iij, where ti,j−1 and tij, respec-

tively, are internal nodes of the time slab T .

Proof. The proof is by induction and follows those of Lemma 4.2 and Lemma
4.5. We first note that at t = ti,j−1, we have

[U
(p)
i]t =

“

U
(p)
i (t+) − Ũ

(p)
i (t+)

”

+
“

Ũ
(p)
i (t+) − Ũ

(p)
i (t−)

”

+
“

Ũ
(p)
i (t−) − U

(p)
i (t−)

”

= e+ + e0 + e−.

Now, U is an interpolant of Ũ and so, by Theorem 5.2 in [3], it follows that

|e+| ≤ Ckr+1−p
ij ‖Ũ (r+1)

i ‖L∞(Iij) + C
∑

x∈Nij

r
∑

m=1

km−p
ij |[Ũ (m)

i]x|,

for p = 0, . . . , r + 1 and r = 0, . . . , q̄. Note that the second sum starts at
m = 1 rather than at m = 0, since Ũ is continuous. Similarly, we have

|e−| ≤ Ckr+1−p
i,j−1 ‖Ũ (r+1)

i ‖L∞(Ii,j−1) + C
∑

x∈Ni,j−1

r
∑

m=1

km−p
i,j−1|[Ũ

(m)
i]x|.

To estimate e0, we note that e0 = 0 for p = 0, since Ũ is continuous. For
p = 1, . . . , q̄, Lemma 5.1 gives

|e0| = |[Ũ (p)
i]t| ≤ C

p−1
∑

n=0

Cp−n
A ‖[U (n)]t‖l∞ .

Using assumption (B2), and the estimates for e+, e0, and e−, we obtain for
r = 0 and p = 0,

|[Ui]| ≤ Ckij‖ ˙̃Ui‖L∞(Iij) + 0 + Cki,j−1‖ ˙̃Ui‖L∞(Ii,j−1)

≤ C(1 + α−1)kijCU,0‖U‖L∞(T ,l∞) = CkijCU,0‖U‖L∞(T ,l∞).

It now follows by assumption (B4), that for r = 0 and p = 1,

|[U̇i]t| ≤ C‖ ˙̃Ui‖L∞(Iij) + CCA‖[U]t‖l∞ +C‖ ˙̃Ui‖L∞(Ii,j−1)

≤ C(1 + kijCU,0)CU,0‖U‖L∞(T ,l∞) ≤ CCU,0‖U‖L∞(T ,l∞).

24 ANDERS LOGG

Thus, (5.11) holds for r = 0. Assume now that (5.11) holds for r = r̄−1 ≥ 0.
Then, by Lemma 5.1 and assumption (B4′), it follows that

|e+| ≤ Ckr̄+1−p
ij C r̄+1

U,r̄ ‖U‖L∞(T ,l∞) + C
∑

x∈Nij

r̄
∑

m=1

km−p
ij

m−1
∑

n=0

Cm−n
A ‖[U (n)]t‖l∞

≤ Ckr̄+1−p
ij C r̄+1

U,r̄ ‖U‖L∞(T ,l∞)

+ C
∑

km−p
ij Cm−n

A k
(r̄−1)+1−n
ij C

(r̄−1)+1
U,r̄−1 ‖U‖L∞(T ,l∞)

≤ Ckr̄+1−p
ij C r̄+1

U,r̄

(

1 +
∑

(kijCU,r̄)
m−1−n

)

‖U‖L∞(T ,l∞)

≤ Ckr̄+1−p
ij C r̄+1

U,r̄ ‖U‖L∞(T ,l∞).

Similarly, we obtain the estimate |e−| ≤ Ckr̄+1−p
ij C r̄+1

U,r̄ ‖U‖L∞(T ,l∞). Finally,

we use Lemma 5.1 and (B4′), to obtain the estimate

|e0| = |[Ũ (p)
i]t| ≤ C

p−1
∑

n=0

Cp−n
A ‖[U (n)]t‖l∞

≤ C

p−1
∑

n=0

Cp−n
A k

(r̄−1)+1−n
ij C

(r̄−1)+1
U,r̄−1 ‖U‖L∞(T ,l∞)

≤ Ckr̄+1−p
ij C r̄+1

U,r̄

p−1
∑

n=0

(kijCU,r̄−1)
p−1−n‖U‖L∞(T ,l∞)

≤ Ckr̄+1−p
ij C r̄+1

U,r̄ ‖U‖L∞(T ,l∞).

Summing up, we thus obtain

|[U (p)
i]t| ≤ |e+| + |e0| + |e−| ≤ Ckr̄+1−p

ij C r̄+1
U,r̄ ‖U‖L∞(T ,l∞),

and so (5.11) follows by induction. The estimates for Φ follow similarly.
�

Theorem 5.1. (Derivative estimates for U and Φ) Let U be the mcG(q)
or mdG(q) solution of (1.2), and let Φ be the corresponding mcG(q)∗ or

mdG(q)∗ solution of (1.7) with g = 0. If assumptions (B1)–(B4) hold, then

there is a constant C = C(q̄, ck, α) > 0, such that

(5.13) ‖U (p)‖L∞(T ,l∞) ≤ CCp
A‖U‖L∞(T ,l∞), p = 0, . . . , q̄,

and

(5.14) ‖Φ(p)‖L∞(T ,l∞) ≤ CCp
A‖Φ‖L∞(T ,l∞), p = 0, . . . , q̄.

Proof. Since U is an interpolant of Ũ , it follows by Theorem 5.2 in [3], that

‖U (p)
i ‖L∞(Iij) = ‖(πŨi)

(p)‖L∞(Iij) is bounded by

C ′‖Ũ (p)
i ‖L∞(Iij) + C ′

∑

x∈Nij

p−1
∑

m=1

km−p
ij |[Ũ (m)

i]x|,

ESTIMATES OF DERIVATIVES AND JUMPS 25

for some constant C ′ = C ′(q̄). For p = 1, we thus obtain the estimate

‖U̇i‖L∞(Iij) ≤ C ′‖ ˙̃Ui‖L∞(Iij) = C ′‖(AU)i‖L∞(Iij) ≤ C ′CA‖U‖L∞(T ,l∞),

and so (5.13) holds for p = 1.
For p = 2, . . . , q̄, assuming that (B4′) holds for CU,p−1, we use Lemma

5.1, Lemma 5.2 (with r = p− 1) and assumption (B2), to obtain

‖U (p)
i ‖L∞(Iij) ≤ CCp

U,p−1‖U‖L∞(T ,l∞)

+C
∑

x∈Nij

p−1
∑

m=1

km−p
ij

m−1
∑

n=0

Cm−n
A ‖[U (n)]x‖l∞

≤ CCp
U,p−1‖U‖L∞(T ,l∞)

+C
∑

km−p
ij Cm−n

A k
(p−1)+1−n
ij C

(p−1)+1
U,p−1 ‖U‖L∞(T ,l∞)

≤ CCp
U,p−1‖U‖L∞(T ,l∞)

(

1 +
∑

(kijCA)m−n
)

≤ CCp
U,p−1‖U‖L∞(T ,l∞),

where C = C(q̄, ck, c
′
k, α). It now follows in the same way as in the proof of

Theorem 4.1, that

‖U (p)‖L∞(T ,l∞) ≤ CCp
A‖U‖L∞(T ,l∞), p = 1, . . . , q̄,

for C = C(q̄, ck, α), which (trivially) holds also when p = 0. The estimate
for Φ follows similarly. �

Having now removed the additional assumption (B4′), we obtain the fol-
lowing version of Lemma 5.2.

Theorem 5.2. (Jump estimates for U and Φ) Let U be the mcG(q) or

mdG(q) solution of (1.2), and let Φ be the corresponding mcG(q)∗ or mdG(q)∗

solution of (1.7) with g = 0. If assumptions (B1)–(B4) hold, then there is

a constant C = C(q̄, ck, α) > 0, such that

(5.15) ‖[U (p)]ti,j−1‖l∞ ≤ Ckq̄+1−p
ij C q̄+1

A ‖U‖L∞(T ,l∞), p = 0, . . . , q̄.

Furthermore, we have

(5.16) ‖[Φ(p)]tij‖l∞ ≤ Ckq̄−p
ij C q̄

A‖Φ‖L∞(T ,l∞), p = 0, . . . , q̄,

for the mcG(q)∗ solution and

(5.17) ‖[Φ(p)]tij‖l∞ ≤ Ckq̄+1−p
ij C q̄+1

A ‖Φ‖L∞(T ,l∞), p = 0, . . . , q̄,

for the mdG(q)∗ solution. This holds for each local interval Iij, where ti,j−1

and tij, respectively, are internal nodes of the time slab T .

26 ANDERS LOGG

5.3. A special interpolation estimate. As for the general non-linear
problem, we need to estimate the interpolation error πϕi − ϕi on a local
interval Iij , where ϕi is now defined by

(5.18) ϕi = (A>Φ)i =

N
∑

l=1

AliΦl, i = 1, . . . , N.

As noted above, ϕi may be discontinuous within Iij, if Iij contains nodes
for other components. We first prove the following estimates for ϕ.

Lemma 5.3. (Estimates for ϕ) Let ϕ be defined as in (5.18). If assumptions

(B1)–(B4) hold, then there is a constant C = C(q̄, ck, α) > 0, such that

(5.19) ‖ϕ(p)
i ‖L∞(Iij) ≤ CCp+1

A ‖Φ‖L∞(T ,l∞), p = 0, . . . , qij,

and

(5.20)

|[ϕ(p)
i]x| ≤ Ck

rij−p

ij C
rij+1
A ‖Φ‖L∞(T ,l∞) ∀x ∈ Nij, p = 0, . . . , qij − 1,

with rij = qij for the mcG(q) method and rij = qij + 1 for the mdG(q)
method. This holds for each local interval Iij within the time slab T .

Proof. Differentiating ϕi, we have

ϕ
(p)
i =

dp

dtp
(A>Φ)i =

p
∑

n=0

(

p

n

)

(A>(p−n)
Φ(n))i

and so, by Theorem 5.1, we obtain

‖ϕ(p)
i ‖L∞(Iij) ≤ C

p
∑

n=0

C
(p−n)+1
A Cn

A‖Φ‖L∞(T ,l∞) = CCp+1
A ‖Φ‖L∞(T ,l∞).

To estimate the jump in ϕ
(p)
i , we use Theorem 5.2, to obtain

|[ϕ(p)
i]x| ≤ C

p
∑

n=0

|(A>(p−n)
[Φ(n)]x)i| ≤ C

p
∑

n=0

C
(p−n)+1
A ‖[Φ(n)]x‖l∞

≤ C

p
∑

n=0

C
(p−n)+1
A kq̄−n

ij C q̄
A‖Φ‖L∞(T ,l∞)

≤ Ckq̄−p
ij C q̄+1

A

p
∑

n=0

(kijCA)p−n‖Φ‖L∞(T ,l∞)

≤ Ckq̄−p
ij C q̄+1

A ‖Φ‖L∞(T ,l∞),

for the mcG(q) method. For the mdG(q) method, we obtain one extra power
of kijCA. �

Using Lemma 5.3 and the interpolation estimates from [3], we now obtain
the following interpolation estimates for ϕ.

ESTIMATES OF DERIVATIVES AND JUMPS 27

Lemma 5.4. (Interpolation estimates for ϕ) Let ϕ be defined as in (5.18).
If assumptions (B1)–(B4) hold, then there is a constant C = C(q̄, ck, α) > 0,
such that

(5.21) ‖π[qij−2]
cG ϕi − ϕi‖L∞(Iij) ≤ Ck

qij−1
ij C

qij

A ‖Φ‖L∞(T ,l∞), qij = q̄ ≥ 2,

and

(5.22) ‖π[qij−1]
dG ϕi − ϕi‖L∞(Iij) ≤ Ck

qij

ij C
qij+1
A ‖Φ‖L∞(T ,l∞), qij = q̄ ≥ 1,

for each local interval Iij within the time slab T .

Proof. See proof of Lemma 4.8. �

References

[1] A. Logg, Multi-adaptive Galerkin methods for ODEs I, SIAM J. Sci. Comput., 24
(2003), pp. 1879–1902.

[2] , Multi-adaptive Galerkin methods for ODEs II: Implementation and applications,
SIAM J. Sci. Comput., 25 (2003), pp. 1119–1141.

[3] , Interpolation estimates for piecewise smooth functions in one dimension, Tech.
Rep. 2004–02, Chalmers Finite Element Center Preprint Series, 2004.

[4] , Multi-adaptive Galerkin methods for ODEs III: Existence and stability, Sub-
mitted to SIAM J. Numer. Anal., (2004).

[5] , Multi-adaptive Galerkin methods for ODEs IV: A priori error estimates, Sub-
mitted to SIAM J. Numer. Anal., (2004).

[6] , Multi-adaptive time-integration, Applied Numerical Mathematics, 48 (2004),
pp. 339–354.

ALGORITHMS FOR MULTI-ADAPTIVE TIME-STEPPING

JOHAN JANSSON AND ANDERS LOGG

Abstract. Multi-adaptive Galerkin methods are extensions of the stan-
dard continuous and discontinuous Galerkin methods for the numerical
solution of initial value problems for ordinary or partial differential equa-
tions. In particular, the multi-adaptive methods allow individual time
steps to be used for different components or in different regions of space.
We present algorithms for multi-adaptive time-stepping, including the
recursive construction of time slabs, regulation of the individual time
steps, adaptive fixed point iteration on time slabs, and the automatic
generation of dual problems. An example is given for the solution of a
nonlinear partial differential equation in three dimensions.

1. Introduction

We have earlier in a sequence of papers [14, 15, 16, 17, 13] introduced the
multi-adaptive Galerkin methods mcG(q) and mdG(q) for the approximate
(numerical) solution of ODEs of the form

u̇(t) = f(u(t), t), t ∈ (0, T],

u(0) = u0,
(1.1)

where u : [0, T] → R
N is the solution to be computed, u0 ∈ R

N a given
initial value, T > 0 a given final time, and f : R

N × (0, T] → R
N a given

function that is Lipschitz-continuous in u and bounded.
In the current paper, we discuss important aspects of the implementation

of multi-adaptive Galerkin methods. Some of these aspects are discussed
in [15] and [13], but with technical details left out. We now provide these
details.

1.1. Implementation. The algorithms presented in this paper are imple-
mented in the multi-adaptive ODE-solver of DOLFIN [11, 12], which is

the C++ implementation of the new open-source software project FEniCS

[3] for the automation of Computational Mathematical Modeling (CMM).

Date: April 15, 2004.
Key words and phrases. Multi-adaptivity, individual time steps, local time steps,

ODE, continuous Galerkin, discontinuous Galerkin, mcgq, mdgq, C++, implementation,
algorithms.

Johan Jansson, email : johanjan@math.chalmers.se. Anders Logg, email :
logg@math.chalmers.se. Department of Computational Mathematics, Chalmers Univer-
sity of Technology, SE–412 96 Göteborg, Sweden.

1

2 JOHAN JANSSON AND ANDERS LOGG

The multi-adaptive solver in DOLFIN is based on the original implementa-
tion Tanganyika, presented in [15], but has been completely rewritten for
DOLFIN.

The multi-adaptive solver is actively developed by the authors, with the
intention of providing the next standard for the solution of initial value
problems. This will be made possible through the combination of an efficient
forward integrator, automatic and reliable error control, and a simple and
intuitive user interface.

1.2. Obtaining the software. DOLFIN is licensed under the GNU Gen-
eral Public License [8], which means that anyone is free to use or modify the
software, provided these rights are preserved.

The source code of DOLFIN, including numerous example programs,
is available at the web page http://www.phi.chalmers.se/dolfin/, and
each new release is announced on freshmeat.net. Alternatively, the source
code can be obtained through anonymous CVS as explained on the web
page. Comments and contributions are welcome.

1.3. Notation. For a detailed description of the multi-adaptive Galerkin
methods, we refer the reader to [14, 15, 16, 17, 13]. In particular, we refer
to [14] or [16] for the definition of the methods.

The following notation is used throughout this paper: Each component
Ui(t), i = 1, . . . , N , of the approximate m(c/d)G(q) solution U(t) of (1.1) is
a piecewise polynomial on a partition of (0, T] into Mi subintervals. Subin-
terval j for component i is denoted by Iij = (ti,j−1, tij], and the length of
the subinterval is given by the local time step kij = tij − ti,j−1. This is
illustrated in Figure 1. On each subinterval Iij , Ui|Iij

is a polynomial of
degree qij and we refer to (Iij , Ui|Iij

) as an element.
Furthermore, we shall assume that the interval (0, T] is partitioned into

blocks between certain synchronized time levels 0 = T0 < T1 < . . . < TM =
T . We refer to the set of intervals Tn between two synchronized time levels
Tn−1 and Tn as a time slab:

Tn = {Iij : Tn−1 ≤ ti,j−1 < tij ≤ Tn}.
We denote the length of a time slab by Kn = Tn − Tn−1.

1.4. Outline of the paper. We first present the user interface of the
multi-adaptive solver in Section 2, before we discuss the algorithms of multi-
adaptive time-stepping in Section 3. In Section 4, we present numerical re-
sults for the bistable equation as an example of multi-adaptive time-stepping
for a partial differential equation.

2. User interface

Potential usage of the multi-adaptive solver ranges from a student or
teacher wanting to solve a fixed ODE in an educational setting, to a PDE
package using it as an internal solver module. The user interface of the

ALGORITHMS FOR MULTI-ADAPTIVE TIME-STEPPING 3

PSfrag replacements

0

i

kij

Kn

T

Iij

ti,j−1 tij

Tn−1 Tn

t

Figure 1. Individual partitions of the interval (0, T] for dif-
ferent components. Elements between common synchronized
time levels are organized in time slabs. In this example, we
have N = 6 and M = 4.

multi-adaptive solver is specified in terms of an ODE base class consisting
of a right hand side f , a time interval [0, T], and initial value u0, as shown
in Figure 2.

To solve an ODE, the user implements a subclass which inherits from the
ODE base class. As an example, we present in Figure 2 and Table 1 the
implementation of the harmonic oscillator

u̇1 = u2,

u̇2 = −u1,
(2.1)

on [0, 10] with initial value u(0) = (0, 1).

3. Multi-adaptive time-stepping

We present below a collection of the key algorithms for multi-adaptive
time-stepping. The algorithms are given in pseudo-code and where appro-
priate we give remarks on how the algorithms have been implemented using
C++ in DOLFIN. In most cases, we present simplified versions of the algo-
rithms with focus on the most essential steps.

3.1. General algorithm. The general multi-adaptive time-stepping algo-
rithm (Algorithm 1) is based on the algorithm CreateTimeSlab (Algorithm
3) and the algorithms for adaptive fixed point iteration on time slabs dis-
cussed below in Section 3.3. Starting at t = 0, the algorithm creates a
sequence of time slabs until the given end time T is reached. The end time
T is given as an argument to CreateTimeSlab, which creates a time slab
covering an interval [Tn−1, Tn] such that Tn ≤ T . CreateTimeSlab returns
the end time Tn of the created time slab and the integration continues until

4 JOHAN JANSSON AND ANDERS LOGG

Figure 2. UML class diagram showing the base class inter-
face of the multi-adaptive ODE-solver together with a sub-
class representing the ODE (2.1).

Tn = T . For each time slab, adaptive fixed point iteration is performed on
the time slab until the discrete equations given by the mcG(q) or mdG(q)
method have converged.

Algorithm 1 U = Integrate(ODE)

t← 0
while t < T do

{time slab, t} ← CreateTimeSlab({1, . . . , N}, t, T)
Iterate(time slab)

end while

In DOLFIN, Algorithm 1 is implemented by the class TimeStepper, which
can be used in two different ways (see Table 2). In the standard case, the
function TimeStepper::solve() is called to integrate the given ODE on the
interval [0, T]. The class TimeStepper also provides the alternative interface
TimeStepper::step(), that can be used to integrate the solution one time
slab at a time. This is useful in interactive applications, where the right-
hand side f of (1.1) needs to be modified in each step of the integration.

The basic forward integrator, Algorithm 1, can be used as the main com-
ponent of an adaptive algorithm with automated error control of the com-
puted solution (Algorithm 2). This algorithm first estimates the individual

ALGORITHMS FOR MULTI-ADAPTIVE TIME-STEPPING 5

Harmonic::Harmonic : ODE(2)

{

T = 10.0;

}

real Harmonic::u0(int i)

{

if (i == 0)

return 0;

if (i == 1)

return 1;

}

real Harmonic::f(Vector u, real t, int i)

{

if (i == 0)

return u(1);

if (i == 1)

return -u(0);

}

Table 1. Sketch of the C++ implementation of the har-
monic oscillator (2.1). Note that C++ indexing starts at
0.

class TimeStepper

{

TimeStepper(ODE ode, Function u);

static void solve(ODE ode, Function u);

real step();

}

Table 2. Sketch of the C++ interface of the multi-adaptive
time-stepper, Algorithm 1.

stability factors {Si(T)}Ni=1, which together with the local residuals deter-
mine the multi-adaptive time steps. (See [4, 5, 2] or [14] for a discussion
on duality-based a posteriori error estimation.) The preliminary estimates
for the stability factors can be based on previous experience, i.e., if we
have solved a similar problem before, but usually we take Si(T) = 1 for
i = 1, . . . , N .

In each iteration, the primal problem (1.1) is solved using Algorithm 1.
An ODE of the form (1.1) representing the dual problem is then created, as
discussed below in Section 3.7, and solved using Algorithm 1. It is important
to note that both the primal and the dual problems are solved using the same

6 JOHAN JANSSON AND ANDERS LOGG

algorithm, but with different time steps and, possibly, different tolerances,
methods, and orders. When the solution of the dual problem has been
computed, the stability factors {Si(T)}Ni=1 and the error estimate can be
computed.

Algorithm 2 U = Solve(ODE, TOL)

estimate stability factors

repeat

U = Integrate(ODE)
create dual problem ODE∗

Φ = Integrate(ODE∗)
compute stability factors

compute error estimate E
until E ≤ TOL

3.2. Recursive construction of time slabs. In each step of Algorithm
1, a new time slab is created between two synchronized time levels Tn−1 and
Tn. The time slab is organized recursively as follows. The root time slab
covering the interval [Tn−1, Tn] contains a non-empty list of elements, which
we refer to as an element group, and a possibly empty list of time slabs,
which in turn may contain nested groups of elements and time slabs. This
is illustrated in Figure 3.

To create a time slab, we first compute the desired time steps for all com-
ponents as discussed below in Section 3.5. A threshold θK is then computed
based on the maximum time step K and a fixed parameter θ controlling the
density of the time slab. The components are then partitioned into two sets
based on the threshold, see Figure 4. For each component in the group with
large time steps, an element is created and added to the element group of
the time slab. The remaining components with small time steps are pro-
cessed by a recursive application of this algorithm for the construction of
time slabs. For a more detailed discussion of the construction, see [13].

We organize the recursive construction of time slabs as described by Al-
gorithms 3, 4, 5, and 6. The recursive construction simplifies the implemen-
tation; each recursively nested time slab can be considered as a sub system
of the ODE. Note that the group of recursively nested time slabs for compo-
nents in group I0 is created before the element group containing elements for
components in group I1. The tree of time slabs is thus created recursively
depth-first, which means in particular that the element for the component
with the smallest time step is created first.

Algorithm 4 for the partition of components can be implemented effi-
ciently using the function std::partition(), which is part of the Standard
C++ Library.

ALGORITHMS FOR MULTI-ADAPTIVE TIME-STEPPING 7

Algorithm 3 {time slab, Tn} = CreateTimeSlab(components, Tn−1, T)

{I0, I1, K} ← Partition(components)
if Tn−1 +K < T then

Tn ← Tn−1 +K
else

Tn ← T
end if

time slabs ← CreateTimeSlabs(I0, Tn−1, Tn)
element group ← CreateElements(I1, Tn−1, Tn)
time slab ← {time slabs, element group}

Algorithm 4 {I0, I1, K} = Partition(components)

I0 ← ∅
I1 ← ∅
K ← maximum time step within components
for each component do

k ← time step of component
if k < θK then

I0 ← I0 ∪ {component}
else

I1 ← I1 ∪ {component}
end if

end for

K̄ ← minimum time step within I1
K ← K̄

Algorithm 5 time slabs = CreateTimeSlabs(components, Tn−1, Tn)

time slabs ← ∅
t← Tn−1

while t < T do

{time slab, t} ← CreateTimeSlab(components, t, Tn)
time slabs ← time slabs ∪ time slab

end while

Algorithm 6 elements = CreateElements(components, Tn−1, Tn)

elements ← ∅
for each component do

create element for component on [Tn−1, Tn]
elements ← elements ∪ element

end for

8 JOHAN JANSSON AND ANDERS LOGG

PSfrag replacements

Tn−1 Tn

Figure 3. The recursive organization of the time slab. Each
time slab contains an element group and a list of recursively
nested time slabs. The root time slab in the figure contains
one element group of three elements and three time slabs.
The first of these sub slabs contains an element group of two
elements and two nested time slabs, and so on. The root
time slab recursively contains a total of nine element groups
and 35 elements.

3.3. Adaptive fixed point iteration on time slabs. As discussed in
[13], the discrete equations given by the mcG(q) or mdG(q) method on each
time slab are solved using adaptive fixed point iteration. For the fixed point
iteration, each time slab is viewed as a discrete system of equations the form

(3.1) F (x) = 0

for the degrees of freedom x of the solution U on the time slab. This system is
partitioned into coupled sub systems which each take the form (3.1), one for
each element group. Similarly, each element group is naturally partitioned
into sub systems, one for each element within the element group.

The general algorithm for nested fixed point iteration on the sub systems
of a time slab is based on the principle that each iteration on a given system
consists of fixed point iteration on each sub system, as outlined in Table
3. By modifying the condition (1, 2, or 3) for fixed point iteration on each
level of iteration, different versions of the overall iterative algorithm are ob-
tained. In [13], four different strategies for the adaptive fixed point iteration
are discussed: non-stiff iteration, adaptive level 1 iteration, adaptive level 2

iteration, and adaptive level 3 iteration. By monitoring the convergence at

ALGORITHMS FOR MULTI-ADAPTIVE TIME-STEPPING 9

PSfrag replacements

θK K̄ K

Figure 4. The partition of components into groups of small
and large time steps for θ = 1/2.

the different levels of iteration, the appropriate version of the adaptive fixed
point iteration is chosen, depending on the stiffness of the problem.

Table 3 shows a simplified version of the fixed point iteration. The full al-
gorithm also needs to monitor the convergence rate, stabilize the iterations,
and (possibly) change strategy, as shown in Algorithm 7 (Iterate) and Algo-
rithm 8 (Update). Both algorithms return the increment d for the degrees
of freedom of the current (sub) system. In the case of Algorithm 7, the
increment is computed as the maximum increment over the iterations for
the system, and in Algorithm 8, the increment is computed as the l2-norm
of the increments for the set of sub systems.

Since we sometimes need to change the strategy for the fixed point it-
eration depending on the stiffness of the problem, the fixed point iteration
is naturally implemented as a state machine, where each state has different
versions of the algorithms Converged, Diverged, Stabilize, and Update.

In DOLFIN, the state machine is implemented as shown in Figure 5, fol-
lowing the design pattern for a state machine suggested in [9]. The class
FixedPointIteration implements Algorithm 7 and the class Iteration

serves as a base class (interface) for the subclasses NonStiffIteration,
AdaptiveIterationLevel1, AdaptiveIterationLevel2, and AdaptiveIte-
rationLevel3. Each of these subclasses implement the interface specified

10 JOHAN JANSSON AND ANDERS LOGG

Iterate(time slab)

while condition 3 do

Update(time slab)
end while

Update(time slab)

for each element group do

Iterate(element group)
end for

Iterate(element group)

while condition 2 do

Update(element group)
end while

Update(element group)

for each element do

Iterate(element)
end for

Iterate(element)

while condition 1 do

Update(element)
end while

Update(element)

for each degree of freedom
do

Update(degree of free-
dom)
end for

Table 3. Nested fixed point iteration on the time slab.

Algorithm 7 d = Iterate(system)

d← 0
loop

for n = 1, . . . , nmax do

if Converged(system) then

return

end if

if Diverged(system) then

ChangeState()
break

end if

Stabilize(system)
d← max(d, Update(system))

end for

end loop

Algorithm 8 d = Update(system)

d← 0
for each sub system do

di ← Iterate(sub system)
d← d+ d2

i
end for

d←
√
d

ALGORITHMS FOR MULTI-ADAPTIVE TIME-STEPPING 11

Figure 5. UML class diagram showing the implementation
of the state machine for adaptive fixed point iteration in
DOLFIN.

by the base class Iteration, in particular the functions Iteration::con-
verged(), Iteration::diverged(), Iteration::stabilize(), and Ite-

ration::update() for each level of iteration (element level, element group
level, and time slab level). To change the state, the object pointed to by the
pointer state is deleted and a new object is allocated to the pointer, with
the type of the new object determined by the new state. This simplifies the
implementation of the state machine and makes it possible to separate the
implementation of the different states.

3.4. Cumulative power iteration. In each iteration of Algorithm 7, the
amount of damping for the fixed point iteration is determined by the algo-
rithm Stabilize. If the convergence rate of the iterations is not satisfactory,
then the appropriate damping factor α and the number of stabilizing itera-
tions m are determined by cumulative power iteration, as discussed in [13];
the divergence rate ρ is first determined by Algorithm 9, and then α and m

12 JOHAN JANSSON AND ANDERS LOGG

are determined according to

(3.2) α =
1/
√

2

1 + ρ

and

(3.3) m = log ρ.

The iteration continues until the divergence rate ρ has converged to within
some tolerance tol, typically tol = 10%.

Algorithm 9 ρ = ComputeDivergence(system)

d1 ← Update(system)
d2 ← Update(system)
ρ2 ← d2/d1

n← 2
repeat

d1 ← d2

d2 ← Update(system)
ρ1 ← ρ2

ρ2 ← ρ
(n−1)/n
2 · (d2/d1)

1/n

n← n+ 1
until |ρ2 − ρ1| < tol · ρ1

ρ← ρ2

3.5. Controlling the individual time steps. The individual and adap-
tive time steps kij are determined during the recursive construction of time
slabs based on an a posteriori error estimate for the global error ‖e(T)‖l2

at final time, as described in [14, 15]. The a posteriori error estimate is
expressed in terms of the individual stability factors {Si(T)}Ni=1, the local

time steps {kij}Mi,N
j=1,i=1, and the local residuals {rij}Mi,N

j=1,i=1. The a posteriori
error estimate takes the form

(3.4) ‖e(T)‖l2 ≤
N

∑

i=1

Si(T) max
j=1,...,Mi

k
pij

ij rij ,

with pij = qij for the mcG(q) method and pij = qij + 1 for the mdG(q)
method.

Basing the time step for interval Iij on the residual of the previous interval
Ii,j−1, since the residual of interval Iij is unknown until the solution on that
interval has been computed, we should thus choose the local time step kij

according to

(3.5) kij =

(

TOL

N Si(T)ri,j−1

)1/pij

, j = 2, . . . ,Mi, i = 1, . . . , N,

where TOL is a given tolerance.

ALGORITHMS FOR MULTI-ADAPTIVE TIME-STEPPING 13

However, the time steps can not be based directly on (3.5), since that
leads to oscillations in the time steps. If ri,j−1 is small, then kij will be
large, and as a result rij will also be large. Consequently, ki,j+1 and ri,j+1

will be small, and so on. To avoid these oscillations, we adjust the time step
knew = kij according to Algorithm 10, which determines the new time step
as the harmonic mean value of the previous time step and the time step
determined by (3.5).

Alternatively, the time steps can be determined using control theory, as
suggested in [10, 18]. Typically, a standard PID controller is used to deter-
mine the time steps with the goal of satisfying k

pij

ij rij = TOL/(N Si(T)) on

[0, T] for i = 1, . . . , N . However, since multi-adaptive time-stepping requires
an individual controller for each component, the current implementation of
DOLFIN determines the time steps according to Algorithm 10.

Algorithm 10 k = Controller(knew , kold, kmax)

k ← 2koldknew/(kold + knew)
k ← min(k, kmax)

The initial time steps k11 = · · · = kN1 = K1 are chosen equal for all
components and are determined iteratively for the first time slab. The size
K1 of the first time slab is first initialized to some default value, possibly
based on the length T of the time interval, and then adjusted until the local
residuals are sufficiently small for all components.

3.6. Implementation of general elements. As described in [15], the sys-
tem of equations to be solved for the degrees of freedom {ξijm} on each
element takes the form

(3.6) ξijm = ξij0 +

∫

Iij

w
[qij]
m (τij(t))fi(U(t), t) dt, m = 1, . . . , qij ,

for the mcG(q) method, with τij(t) = (t − ti,j−1)/(tij − ti,j−1) and where

{w[qij]
m }qij

m=1 ⊂ P [qij−1]([0, 1]) are polynomial weight functions. For mdG(q),
the system of equations on each element has a similar form, with m =
0, . . . , qij.

The integral in (3.6) is computed using quadrature, and thus the weight

functions {w[qij]
m }qij

m=1 need to be evaluated at a set of quadrature points
{sn} ⊂ [0, 1]. In DOLFIN, these values are computed and tabulated each
time a new type of element is created. If the same method is used for all
components throughout the computation, then this computation is carried
out only once.

For the mcG(q) method, Lobatto quadrature with n = q + 1 quadrature
points is used. The n ≥ 2 Lobatto quadrature points are defined on [−1, 1]
as the two end-points together with the roots of the derivative P ′

n−1 of the
(n− 1)th-order Legendre polynomial. The quadrature points are computed

14 JOHAN JANSSON AND ANDERS LOGG

in DOLFIN using Newton’s method to find the roots of P ′
n−1 on [−1, 1], and

are then rescaled to the interval [0, 1].
Similarly, Radau quadrature with n = q+1 quadrature points is used for

the mdG(q) method. The n ≥ 1 Radau points are defined on [−1, 1] as the
roots of Qn = Pn−1 + Pn, where Pn−1 and Pn are Legendre polynomials.
Note that the left end-point is always a quadrature point. As for the mcG(q)
method, Newton’s method is used to find the roots of Qn on [−1, 1]. The
quadrature points are then rescaled to [0, 1], with time reversed to include
the right end-point.

Since Lobatto quadrature with n quadrature points is exact for polyno-
mials of degree p ≤ 2n− 3 and Radau quadrature with n quadrature points
is exact for polynomials of degree p ≤ 2n − 2, both quadrature rules are
exact for polynomials of degree n − 1 for n ≥ 2 and n ≥ 1, respectively.
With both quadrature rules, the integral of the Legendre polynomial Pp on
[−1, 1] should thus be zero for p = 0, . . . , n−1. This defines a linear system,
which is solved to obtain the quadrature weights.

After the quadrature points {sn}qij

n=0 have been determined, the polyno-

mial weight functions {w[qij]
m }qij

m=1 are computed as described in [14] (again
by solving a linear system) and then evaluated at the quadrature points.
Multiplying these values with the quadrature weights, we rewrite (3.6) in
the form
(3.7)

ξijm = ξij0+kij

qij
∑

n=0

w
[qij]
mn fi(U(ti,j−1+snkij), ti,j−1 +snkij), m = 1, . . . , qij.

General order mcG(q) and mdG(q) have been implemented in DOLFIN.
The two methods are implemented by the two classes cGqElement and
dGqElement, implementing the interface specified by the common base class
Element. Both classes take the order q as an argument to its constructor
and implement the appropriate version of (3.7).

3.7. Automatic generation of the dual problem. The dual problem
of (1.1) for φ = φ(t) that is solved to obtain stability factors and error
estimates is given by

−φ̇(t) = J(U, t)>φ(t), t ∈ [0, T),

φ(T) = ψ,
(3.8)

where J(U, t) denotes the Jacobian of the right-hand side f of (1.1) at time
t. Note that we need to linearize around the computed solution U , since the
exact solution u of (1.1) is not known. To solve this backward problem over
[0, T) using the forward integrator Algorithm 1, we rewrite (3.8) as a forward

problem. With w(t) = φ(T − t), we have ẇ = −φ̇(T − t) = J>(U, T − t)w(t),

ALGORITHMS FOR MULTI-ADAPTIVE TIME-STEPPING 15

Figure 6. The dual problem is implemented as a subclass
of the common base class for ODEs of the form (1.1).

and so (3.8) can be written as a forward problem for w in the form

ẇ(t) = f ∗(w(t), t) ≡ J(U, T − t)>w(t), t ∈ (0, T],

w(0) = ψ.
(3.9)

In DOLFIN, the initial value problem for w is implemented as a subclass of
the ODE base class, as shown in Figure 6, which makes it possible to solve
the dual problem using the same algorithm as the primal problem.

The constructor of the dual problem takes as arguments the primal prob-
lem (1.1) and the computed solution U of the primal problem. The right-
hand side f ∗ of the dual problem is automatically generated by numerical
differentiation of the right-hand side of the primal problem.

3.8. Interpolation of the solution. To update the degrees of freedom for
an element according to (3.7), the appropriate component fi of the right-
hand side of (1.1) needs to be evaluated at the set of quadrature points. In
order for fi to be evaluated, each component Uj of the computed solution U
on which fi depends has to be evaluated at the quadrature points. We let
Si ⊆ {1, . . . , N} denote the sparsity pattern of component Ui, i.e., the set of
components on which fi depend,

(3.10) Si = {j ∈ {1, . . . , N} : ∂fi/∂uj 6= 0}.
Thus, to evaluate fi at a given time t, only the components Uj for j ∈ Si need
to be evaluated at t, see Algorithm 11. This is of particular importance for

16 JOHAN JANSSON AND ANDERS LOGG

problems of sparse structure and makes it possible to use the multi-adaptive
solver for the integration of time-dependent PDEs, see Section 4. The spar-
sity pattern Si is automatically detected by the solver. Alternatively, the
sparsity pattern can be specified by a (sparse) matrix.

Algorithm 11 y = EvaluateRightHandSide(i,t)

for j ∈ Si do

x(j)← Uj(t)
end for

y ← fi(x, t)

The key part of Algorithm 11 is the evaluation of a given component Ui

at a given time t. To evaluate Ui(t), the solver first needs to find the element
(Iij, Ui|Iij

) satisfying t ∈ Iij . The local polynomial Ui|Iij
is then evaluated

(interpolated) at the given time t. During the construction of a time slab,
an element such that t ∈ Iij might not exists, in which case the last element
of component Ui is used and extrapolated to the given time t.

To find the element (Iij , Ui|Iij
) such that t ∈ Iij , the function std::upper-

bound() is used. This function is part of the Standard C++ Library and
uses binary search to find the appropriate element from the ordered se-
quence of elements for component Ui, which means that the complexity of
finding the element is logarithmic. In addition, the speed of the evaluation
is increased by caching the latest used element and each time checking this
element before the binary search is performed.

3.9. Storing the solution. Since the computed solution U of the primal
problem (1.1) is needed for the computation of the discrete solution Φ of
the dual problem (3.8), the solution needs to be stored to allow U to be
evaluated at any given t ∈ [0, T].

The solution is stored on disk in a temporary file created by the function
tmpfile(), which is part of the C standard I/O library. The solution is
written in blocks to the file in binary format. During the computation, a
cache of blocks is kept in main memory to allow efficient evaluation of the
solution. The number of blocks kept in memory depends on the amount of
memory available. For a sufficiently large problem, only one block will be
kept in memory. Each time a value is requested which is not in one of the
available blocks, one of these blocks is dropped and the appropriate block is
fetched from file.

ALGORITHMS FOR MULTI-ADAPTIVE TIME-STEPPING 17

4. Solving the bistable equation

As an example of multi-adaptive time-stepping, we solve the bistable
equation on the unit cube,

u̇− ε∆u = u(1− u2) in Ω× (0, T],

∂nu = 0 on ∂Ω× (0, T],

u(·, 0) = u0 in Ω,

(4.1)

with Ω = (0, 1) × (0, 1) × (0, 1), ε = 0.0001, final time T = 100, and with
random initial data u0 = u0(x) distributed uniformly on [−1, 1].

The bistable equation has been studied extensively before [7, 6] and has
interesting stability properties. In particular, it has two stable steady-state
solutions, u = 1 and u = −1, and one unstable steady-state solution, u =
0. From (4.1), it is clear that the solution increases in regions where it
is positive and decreases in regions where it is negative. Because of the
diffusion, neighboring regions will compete until finally the solution has
reached one of the two stable steady states. Since this action is local on the
interface between positive and negative regions, the bistable equation is an
ideal example for multi-adaptive time-stepping.

To solve the bistable equation (4.1) using multi-adaptive time-stepping,
we discretize in space using the standard cG(1) method [5]. Lumping the
mass matrix, we obtain an ODE initial value problem of the form (1.1),
which we solve using the multi-adaptive mcG(1) method. We refer to the
overall method thus obtained as the cG(1)mcG(1) method.

The solution was computed on a uniformly refined tetrahedral mesh with
mesh size h = 1/64. This mesh consists of 1, 572, 864 tetrahedrons and has
N = 274, 625 nodes. In Figure 7, we plot the initial value used for the
computation, and in Figure 8 the solution at final time T = 100. We also
plot the solution and the multi-adaptive time steps at time t = 10 in Figure
9 and Figure 10, and note that the time steps are small in regions where
there is strong competition between the two stable steady-state solutions,
in particular in regions with where the curvature of the interface is small.

The computation was carried out using DOLFIN version 0.4.9, which
includes the bistable equation as one of numerous multi-adaptive test prob-
lems. The visualization of the solution was made using OpenDX [1] version
4.3.2. Animations of the solution and the multi-adaptive time steps are
available in the gallery on the DOLFIN web page [11].

18 JOHAN JANSSON AND ANDERS LOGG

Figure 7. Initial data for the solution of the bistable equa-
tion (4.1).

Figure 8. Solution of the bistable equation (4.1) at final
time T = 100.

ALGORITHMS FOR MULTI-ADAPTIVE TIME-STEPPING 19

Figure 9. Solution of the bistable equation (4.1) at time t = 10.

Figure 10. Multi-adaptive time steps at time t = 10 for the
solution of the bistable equation (4.1).

20 JOHAN JANSSON AND ANDERS LOGG

References

[1] OpenDX, http://www.opendx.org/.
[2] R. Becker and R. Rannacher, An optimal control approach to a posteriori error

estimation in finite element methods, Acta Numerica, 10 (2001).
[3] T. Dupont, J. Hoffman, C. Johnson, R.C. Kirby, M.G. Larson, A. Logg,

and L.R. Scott, The FEniCS project, Tech. Rep. 2003–21, Chalmers Finite Element
Center Preprint Series, 2003.

[4] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Introduction to adaptive

methods for differential equations, Acta Numerica, (1995), pp. 105–158.
[5] , Computational Differential Equations, Cambridge University Press, 1996.
[6] D. Estep, An analysis of numerical approximations of metastable solutions of the

bistable equation, Nonlinearity, 7 (1994), pp. 1445–1462.
[7] D. Estep, M. Larson, and R. Williams, Estimating the error of numerical solu-

tions of systems of nonlinear reaction–diffusion equations, Memoirs of the American
Mathematical Society, 696 (2000), pp. 1–109.

[8] Free Software Foundation, GNU GPL, http://www.gnu.org/copyleft/gpl.html.
[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements

of Reusable Object-Oriented Software, Addison Wesley, 1995.
[10] K. Gustafsson, M. Lundh, and G. Söderlind, A PI stepsize control for the nu-

merical solution of ordinary differential equations, BIT, 28 (1988), pp. 270–287.
[11] J. Hoffman and A. Logg et al., DOLFIN, http://www.phi.chalmers.se/dolfin/.
[12] J. Hoffman and A. Logg, DOLFIN: Dynamic Object oriented Library for FINite

element computation, Tech. Rep. 2002–06, Chalmers Finite Element Center Preprint
Series, 2002.

[13] J. Jansson and A. Logg, Multi-adaptive Galerkin methods for ODEs V: Stiff prob-

lems, submitted to BIT, (2004).
[14] A. Logg, Multi-adaptive Galerkin methods for ODEs I, SIAM J. Sci. Comput., 24

(2003), pp. 1879–1902.
[15] , Multi-adaptive Galerkin methods for ODEs II: Implementation and applica-

tions, SIAM J. Sci. Comput., 25 (2003), pp. 1119–1141.
[16] , Multi-adaptive Galerkin methods for ODEs III: Existence and stability, Sub-

mitted to SIAM J. Numer. Anal., (2004).
[17] , Multi-adaptive Galerkin methods for ODEs IV: A priori error estimates, Sub-

mitted to SIAM J. Numer. Anal., (2004).
[18] G. Söderlind, Digital filters in adaptive time-stepping, ACM Trans. Math. Softw.,

29 (2003), pp. 1–26.

SIMULATION OF MECHANICAL SYSTEMS WITH

INDIVIDUAL TIME STEPS

JOHAN JANSSON AND ANDERS LOGG

Abstract. The simulation of a mechanical system involves the formu-
lation of a differential equation (modeling) and the solution of the differ-
ential equation (computing). The solution method needs to be efficient
as well as accurate and reliable. This paper discusses multi-adaptive
Galerkin methods in the context of mechanical systems. The primary
type of mechanical system studied is an extended mass–spring model.
A multi-adaptive method integrates the mechanical system using indi-
vidual time steps for the different components of the system, adapting
the time steps to the different time scales of the system, potentially
allowing enormous improvement in efficiency compared to traditional
mono-adaptive methods.

1. Introduction

Simulation of mechanical systems is an important component of many
technologies of modern society. It appears in industrial design, for the pre-
diction and verification of mechanical products. It appears in virtual reality,
both for entertainment in the form of computer games and movies, and in
the simulation of realistic environments such as surgical training on virtual
and infinitely resurrectable patients. Common to all these applications is
that the computation time is critical. Often, an application is real-time,
which means that the time inside the simulation must reasonably match the
time in the real world.

Simulating a mechanical system involves both modeling (formulating an
equation describing the system) and computation (solving the equation).
The model of a mechanical system often takes the form of an initial value
problem for a system of ordinary differential equations of the form

u̇(t) = f(u(t), t), t ∈ (0, T],

u(0) = u0,
(1.1)

Date: April 27, 2004.
Key words and phrases. Multi-adaptivity, individual time steps, local time steps, ODE,

continuous Galerkin, discontinuous Galerkin, mcgq, mdgq, mechanical system, mass–
spring model.

Johan Jansson, email : johanjan@math.chalmers.se. Anders Logg, email :
logg@math.chalmers.se. Department of Computational Mathematics, Chalmers Univer-
sity of Technology, SE–412 96 Göteborg, Sweden.

1

2 JOHAN JANSSON AND ANDERS LOGG

where u : [0, T] → R
N is the solution to be computed, u0 ∈ R

N a given
initial value, T > 0 a given final time, and f : R

N × (0, T] → R
N a given

function that is Lipschitz-continuous in u and bounded.
The simulation of a mechanical system thus involves the formulation of

a model of the form (1.1) and the solution of (1.1) using a time-stepping
method. We present below multi-adaptive Galerkin methods for the solution
of (1.1) with individual time steps for the different parts of the mechanical
system.

1.1. Mass–spring systems. A mass–spring system consists of a set of
point masses connected by springs, typically governed by Hooke’s law with
other laws optionally present, such as viscous damping and external forces.
Mass–spring systems appear to encompass most of the behaviors of elemen-
tary mechanical systems and thus represent a simple, intuitive, and powerful
model for the simulation of mechanical systems. This is the approach taken
in this paper.

However, to obtain a physically accurate model of a mechanical system,
we believe it is necessary to solve a system of partial differential equations
properly describing the mechanical system, in the simplest case given by the
equations of linear elasticity. Discretizing the system of PDEs in space, for
example using the Galerkin finite element method, an initial value problem
for a system of ODEs of the form (1.1) is obtained. The resulting system can
be interpreted as a mass–spring system and thus the finite element method
in combination with a PDE model represents a systematic methodology for
the generation of a mass–spring model of a given mechanical system.

1.2. Time-stepping methods. Numerical methods for the (approximate)
solution of (1.1) are almost exclusively based on time-stepping, i.e., the
step-wise integration of (1.1) to obtain an approximation U of the solution
u satisfying

(1.2) u(tj) = u(tj−1) +

∫ tj

tj−1

f(u(t), t) dt, j = 1, . . . ,M,

for a partition 0 = t0 < t1 < · · · < tM = T of [0, T]. The approximate
solution U ≈ u is obtained by an appropriate approximation of the integral∫ tj
tj−1

f(u(t), t) dt.

Selecting the appropriate size of the time steps {kj = tj − tj−1}
M
j=1 is

essential for efficiency and accuracy. We want to compute the solution U
using as little work as possible, which means using a small number of large
time steps. At the same time, we want to compute an accurate solution U
which is close to the exact solution u, which means using a large number of
small time steps. Often, the accuracy requirement is given in the form of a
tolerance TOL for the size of the error e = U − u in a suitable norm. The
competing goals of efficiency and accuracy can be met using an adaptive

SIMULATION OF MECHANICAL SYSTEMS WITH INDIVIDUAL TIME STEPS 3

algorithm, determining a sequence of time steps {kj}
M
j=1 which produces an

approximate solution U satisfying the given tolerance with minimal work.
Galerkin finite element methods present a general framework for the nu-

merical solution of (1.1), including adaptive algorithms for the automatic
construction of an optimal time step sequence, see [7, 8]. The Galerkin
finite element method for (1.1) reads: Find U ∈ V , such that

(1.3)

∫ T

0
(U̇ , v) dt =

∫ T

0
(f, v) dt ∀v ∈ V̂ ,

where (·, ·) denotes the R
N inner product and (V, V̂) denotes a suitable pair

of finite dimensional subspaces (the trial and test spaces).
Typical choices of approximating spaces include

V = {v ∈ [C([0, T])]N : v|Ij
∈ [Pq(Ij)]

N , j = 1, . . . ,M},

V̂ = {v : v|Ij
∈ [Pq−1(Ij)]

N , j = 1, . . . ,M},
(1.4)

i.e., V represents the space of continuous and piecewise polynomial vector-
valued functions of degree q ≥ 1 and V̂ represents the space of discontinuous
piecewise polynomial vector-valued functions of degree q − 1 on a partition
of [0, T]. We refer to this as the cG(q) method. With both V and V̂
representing discontinuous piecewise polynomials of degree q ≥ 0, we obtain
the dG(q) method. Early work on the cG(q) and dG(q) methods include
[6, 19, 10, 9].

By choosing a constant test function v in (1.3), it follows that both the
cG(q) and dG(q) solutions satisfy the relation

(1.5) U(tj) = U(tj−1) +

∫ tj

tj−1

f(U(t), t) dt, j = 1, . . . ,M,

corresponding to (1.2).

In the simplest case of the dG(0) method, we note that
∫ tj
tj−1

f(U(t), t) dt ≈

kjf(U(tj), tj), since U piecewise constant, with equality if f does not depend
explicitly on t. We thus obtain the method

(1.6) U(tj) = U(tj−1) + kjf(U(tj), tj), j = 1, . . . ,M,

which we recognize as the backward (or implicit) Euler method. In general,
a cG(q) or dG(q) method corresponds to an implicit Runge–Kutta method,
with details depending on the choice of quadrature for the approximation of
the integral of f(U, ·).

1.3. Multi-adaptive time-stepping. Standard methods for the discretiza-
tion of (1.1), including the cG(q) and dG(q) methods, require that the same
time steps {kj}

M
j=1 are used for all components Ui = Ui(t) of the approx-

imate solution U of (1.1). This can be very costly if the system exhibits
multiple time scales of different magnitudes. If the different time scales are
localized to different components, efficient representation and computation
of the solution thus requires that this difference in time scales is reflected

4 JOHAN JANSSON AND ANDERS LOGG

in the choice of approximating spaces (V, V̂). We refer to the resulting
methods, recently introduced in a series of papers [20, 21, 22, 23, 16], as
multi-adaptive Galerkin methods.

Surprisingly, individual time-stepping (multi-adaptivity) has previously
received little attention in the large literature on numerical methods for
ODEs, see e.g. [3, 12, 13, 2, 27, 1], but has been used to some extent
for specific applications, including specialized integrators for the n-body
problem [24, 4, 26], and low-order methods for conservation laws [25, 18, 5].

1.4. Obtaining the software. The examples presented below have been
obtained using DOLFIN version 0.4.11 [14]. DOLFIN is licensed under the
GNU General Public License [11], which means that anyone is free to use
or modify the software, provided these rights are preserved. The source
code of DOLFIN, including numerous example programs, is available at the
DOLFIN web page, http://www.phi.chalmers.se/dolfin/, and each new
release is announced on freshmeat.net. Alternatively, the source code can be
obtained through anonymous CVS as explained on the web page. Comments
and contributions are welcome.

The mechanical systems presented in the examples have been imple-
mented using Ko, which is a software system for the simulation of mass–
spring models, based on DOLFINs multi-adaptive ODE-solver. Ko will be
released shortly under the GNU General Public License and will be available
at http://www.phi.chalmers.se/ko/.

1.5. Outline of the paper. We first describe the basic mass–spring model
in Section 2 and then give a short introduction to multi-adaptive Galerkin
methods in Section 3. In Section 4, we discuss the interface of the multi-
adaptive solver and its application to mass–spring models. In Section 5, we
investigate and analyze the performance of the multi-adaptive methods for a
set of model problems. Finally, we present in Section 6 results for a number
of large mechanical systems to demonstrate the potential and applicability
of the proposed methods.

2. Mass–spring model

We have earlier in [17] described an extended mass–spring model for the
simulation of systems of deformable bodies.

The mass–spring model represents bodies as systems of discrete mass ele-

ments, with the forces between the mass elements transmitted using explicit
spring connections. (Note that “spring” is a historical term, and is not lim-
ited to pure Hookean interactions.) Given the forces acting on an element,
we can determine its motion from Newton’s second law,

(2.1) F = ma,

where F denotes the force acting on the element, m is the mass of the
element, and a = ẍ is the acceleration of the element with x = (x1, x2, x3)

SIMULATION OF MECHANICAL SYSTEMS WITH INDIVIDUAL TIME STEPS 5

A mass element e is a set of parameters {x, v, m, r, C}:
x : position
v : velocity
m : mass
r : radius
C : a set of spring connections

A spring connection c is a set of parameters {e1, e2, κ, b, l0, lf}:
e1 : the first mass element connected to the spring
e2 : the second mass element connected to the spring
κ : Hooke spring constant
b : damping constant
l0 : rest length
lf : fracture length

Table 1. Descriptions of the basic elements of the mass–
spring model: mass elements and spring connections.

the position of the element. The motion of the entire body is then implicitly
described by the motion of its individual mass elements.

The force given by a standard spring is assumed to be proportional to the
elongation of the spring from its rest length. We extend the standard model
with contact, collision and fracture, by adding a radius of interaction to each
mass element, and dynamically creating and destroying spring connections
based on contact and fracture conditions.

In Table 1 and Figure 1, we give the basic properties of the mass–spring
model consisting of mass elements and spring connections. With these def-
initions, a mass–spring model may thus be given by just listing the mass
elements and spring connections of the model.

3. Multi-adaptive Galerkin methods

The multi-adaptive methods mcG(q) and mdG(q) used for the simulation
are obtained as extensions of the standard cG(q) and dG(q) methods by

enriching the trial and test spaces (V, V̂) of (1.3) to allow each component
Ui of the approximate solution U to be piecewise polynomial on an individual
partition of [0, T].

3.1. Definition of the methods. To give the definition of the multi-
adaptive Galerkin methods, we introduce the following notation: Subin-
terval j for component i is denoted by Iij = (ti,j−1, tij], and the length
of the subinterval is given by the local time step kij = tij − ti,j−1 for
j = 1, . . . ,Mi. This is illustrated in Figure 2. We also assume that the
interval [0, T] is partitioned into blocks between certain synchronized time

6 JOHAN JANSSON AND ANDERS LOGG

Actual length of c

Rest length of c

Fracture length of c

Radius of e2

Radius of e1

v1

c
e2

v2

F Fe1

Figure 1. Schema of two mass elements e1 and e2, a spring
connection c, and important quantities.

levels 0 = T0 < T1 < · · · < TM = T . We refer to the set of intervals Tn

between two synchronized time levels Tn−1 and Tn as a time slab.
With this notation, we can write the mcG(q) method for (1.1) in the

following form: Find U ∈ V , such that

(3.1)

∫ T

0
(U̇ , v) dt =

∫ T

0
(f, v) dt ∀v ∈ V̂ ,

where the trial space V and test space V̂ are given by

V = {v ∈ [C([0, T])]N : vi|Iij
∈ Pqij (Iij), j = 1, . . . ,Mi, i = 1, . . . , N},

V̂ = {v : vi|Iij
∈ Pqij−1(Iij), j = 1, . . . ,Mi, i = 1, . . . , N}.

(3.2)

The mcG(q) method is thus obtained as a simple extension of the standard
cG(q) method by allowing each component to be piecewise polynomial on an
individual partition of [0, T]. Similarly, we obtain the mdG(q) method as a
simple extension of the standard dG(q) method. For a detailed description
of the multi-adaptive Galerkin methods, we refer the reader to [20, 21, 22,
23, 16]. In particular, we refer to [20] or [22] for the full definition of the
methods.

3.2. Adaptivity. The individual time steps {kij}
Mi,N
j=1,i=1 are chosen adap-

tively based on an a posteriori error estimate for the global error e = U − u

SIMULATION OF MECHANICAL SYSTEMS WITH INDIVIDUAL TIME STEPS 7

PSfrag replacements

0

i

kij

Kn

T

Iij

ti,j−1 tij

Tn−1 Tn

t

Figure 2. Individual partitions of the interval [0, T] for dif-
ferent components. Elements between common synchronized
time levels are organized in time slabs. In this example, we
have N = 6 and M = 4.

at final time t = T , as discussed in [20, 21]. The a posteriori error estimate
for the mcG(q) method takes the form

(3.3) ‖e(T)‖l2 ≤ Cq

N∑
i=1

S
[qi]
i (T)max

[0,T]
|kqi

i Ri(U, ·)|,

where Cq is an interpolation constant, S
[qi]
i (T) are the individual stability

factors, ki = ki(t) are the individual time steps, and Ri(U, ·) = U̇i − fi(U, ·)
are the individual residuals for i = 1, . . . , N . The individual stability factors

S
[qi]
i (T), measuring the effect of local errors introduced by a nonzero local

residual on the global error, are obtained from the solution φ of an associated
dual problem, see [7] or [20].

Thus, to determine the individual time steps, we measure the individual
residuals and take each individual time step kij such that

(3.4) k
qij

ij max
Iij

|Ri(U, ·)| = TOL/(NCqS
[qi]
i (T)),

where TOL is a tolerance for the error at final time. See [21] or [15] for
a detailed discussion of the algorithm for the automatic selection of the
individual time steps.

3.3. Iterative methods. The system of discrete nonlinear equations de-
fined by (3.1) is solved by fixed point iteration on time slabs, as described
in [16]. For a stiff problem, the fixed point iteration is automatically stabi-
lized by introducing a damping parameter which is adaptively determined
through feed-back from the computation. We refer to this as adaptive fixed

point iteration.

8 JOHAN JANSSON AND ANDERS LOGG

4. Multi-adaptive simulation of mass–spring systems

The simulation of a mechanical system involves the formulation of a dif-
ferential equation (modeling) and the solution of the differential equation
(computing). Having defined these two components in the form of the mass–
spring model presented in Section 2 and the multi-adaptive solver presented
in Section 3, we comment briefly on the user interface of the multi-adaptive
solver.

The user interface of the multi-adaptive solver is specified in terms of
an ODE base class consisting of a right hand side f , a time interval [0, T],
and an initial value u0, as shown in Table 2. To solve an ODE, the user
implements a subclass which inherits from the ODE base class.

class ODE

{

ODE(int N);

virtual real u0(int i);

virtual real f(Vector u, real t, int i);

}

Table 2. Sketch of the C++ interface of the multi-adaptive
ODE-solver.

The mass–spring model presented above has been implemented using Ko,
a software system for the simulation and visualization of mass–spring mod-
els. Ko automatically generates a mass–spring model from a geometric rep-
resentation of a given system, as shown in Figure 3. The mass–spring model
is then automatically translated into a system of ODEs of the form (1.1).
Ko specifies the ODE system as an ODE subclass and uses DOLFIN to
compute the solution.

Ko represents a mass–spring model internally as lists of mass elements
and spring connections. To evaluate the right-hand side f of the corre-
sponding ODE system, a translation or mapping is thus needed between a
given mass element and a component number in the system of ODEs. This
mapping may take a number different forms; Ko uses the mapping presented
in Algorithm 1.

5. Performance

We consider a simple model problem consisting of a long string of n point
masses connected with springs as shown in Figure 4. The first mass on the
left is connected to a fixed support through a hard spring with large spring
constant κ � 1. All other springs are connected together with soft springs
with spring constant κ = 1. As a result, the first mass oscillates at a high
frequency, with the rest of the masses oscillating slowly. In Figure 5, we plot
the coordinates for the first three masses on [0, 1].

SIMULATION OF MECHANICAL SYSTEMS WITH INDIVIDUAL TIME STEPS 9

Figure 3. A geometric representation of a cow is automat-
ically translated into a mass–spring model.

Algorithm 1 FromComponents(Vector u, Mass m)

i ← index(m)
N ← size(u)

m.x1 ← u(3(i − 1) + 1)
m.x2 ← u(3(i − 1) + 2)
m.x3 ← u(3(i − 1) + 3)

m.v1 ← u(N/2 + 3(i − 1) + 1)
m.v2 ← u(N/2 + 3(i − 1) + 2)
m.v3 ← u(N/2 + 3(i − 1) + 3)

10 JOHAN JANSSON AND ANDERS LOGG

Figure 4. The mechanical system used for the performance
test. The system consists of a string of masses, fixed at the
left end. Each mass has been slightly displaced to initialize
the oscillations.

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 0.2 0.4 0.6 0.8 1

PSfrag replacements

t

(u
1
,u

2
,u

3
)

u3
 0.1897

 0.18975

 0.1898

 0.18985

 0.1899

 0.18995

 0.19

 0.19005

 0 0.2 0.4 0.6 0.8 1

PSfrag replacements

t

(u1, u2, u3)

u
3

Figure 5. Coordinates for the first three masses of the sim-
ple model problem (left) and for the third mass (right).

To compare the performance of the multi-adaptive solver (in the case of
the mcG(1) method) with a mono-adaptive method (the cG(1) method), we
choose a fixed small time step k for the first mass and a fixed large time step
K > k for the rest of the masses in the multi-adaptive simulation, and use
the same small time step k for all masses in the mono-adaptive simulation.
We let M = K/k denote the number of small time steps per each large time
step.

We run the test for M = 100 and M = 200 with large spring constant
κ = 10M for the hard spring connecting the first mass to the fixed support.
We use a large time step of size K = 0.1 and, consequently, a small time
step of size k = 0.1/M . The computation time Tc is recorded as function of
the number of masses n.

As shown in Figure 6, the computation time for the multi-adaptive solver
grows slowly with the number of masses n, practically remaining constant;
small time steps are used only for the first rapidly oscillating mass and so the
work is dominated by frequently updating the first mass, independent of the
total number of masses. On the other hand, the work for the mono-adaptive
method grows linearly with the total number of masses, as expected.

More specifically, the complexity of the mono-adaptive method may be
expressed in terms of M and n as follows:

(5.1) Tc(M,n) = C1 + C2Mn,

SIMULATION OF MECHANICAL SYSTEMS WITH INDIVIDUAL TIME STEPS 11

0 100 200 300 400 600 700 800 900 1000
0

5

10

15

PSfrag replacements

n

T
c

0 100 200 300 400 600 700 800 900 1000
0

5

10

15

20

25

30

PSfrag replacements

n

T
c

Figure 6. Computation time Tc as function of the num-
ber of masses n for the multi-adaptive solver (dashed) and
a mono-adaptive method (solid), with M = 100 (left) and
M = 200 (right).

while for the multi-adaptive solver, we obtain

(5.2) Tc(M,n) = C3M + C4n.

Our general conclusion is that the multi-adaptive solver is more efficient
than a mono-adaptive method for the simulation of a mechanical system if
M is large, i.e., when small time steps are needed for a part of the system,
and if n is large, i.e, if large time steps may be used for a large part of the
system.

The same result is obtained if we add damping to the system in the form
of a damping constant of size b = 100 for the spring connections between the
slowly oscillating masses, resulting in gradual damping of the slow oscilla-
tions, while keeping the rapid oscillations of the first mass largely unaffected.
With b = 100, adaptive fixed point iteration is automatically activated for
the solution of the discrete equations, as discussed in Section 3.3.

6. Large problems and applications

To demonstrate the potential and applicability of the proposed mass–
spring model and the multi-adaptive solver, we present results for a number
of large mechanical systems.

6.1. Oscillating tail. For the first example, we take the mass–spring model
of Figure 3 representing a heavy cow and add a light mass representing its
tail, as shown in Figure 7. The cow is given a constant initial velocity and
the tail is given an initial push to make it oscillate. A sequence of frames
from an animation of the multi-adaptive solution is given in Figure 8.

We compare the performance of the multi-adaptive solver (in the case of
the mcG(1) method) with a mono-adaptive method (the cG(1) method) us-
ing the same time steps for all components. We also make a comparison with

12 JOHAN JANSSON AND ANDERS LOGG

a simple non-adaptive implementation of the cG(1) method, with minimal
overhead, using constant time steps equal to the smallest time step selected
by the mono-adaptive method.

As expected, the multi-adaptive solver automatically selects small time
steps for the oscillating tail and large time steps for the rest of the system. In
Figure 9, we plot the time steps as function of time for relevant components
of the system. We also plot the corresponding solutions in Figure 11. In
Figure 10, we plot the time steps used in the mono-adaptive simulation.

The computation times are given in Table 3. The speed-up of the multi-
adaptive method compared to the mono-adaptive method is a factor 70.
Compared to the simple non-adaptive implementation of the cG(1) method,
using a minimal amount of work, the speed-up is a factor 3. This shows
that the speed-up of a multi-adaptive method can be significant. It also
shows that the overhead is substantial for the current implementation of the
multi-adaptive solver, including the organization of the multi-adaptive time
slabs, interpolation of solution values within time slabs, and the evaluation of
residuals for multi-adaptive time-stepping. However, we believe it is possible
to remove a large part of this overhead.

Figure 7. A cow with an oscillating tail (left) with details
of the tail (right).

Figure 8. The tail oscillates rapidly while the rest of the
cow travels at a constant velocity to the right.

6.2. Local manipulation. For the next example, we fix a damped cow
shape at one end and repeatedly push the other end with a manipulator in
the form of a large sphere, as illustrated in Figure 12.

SIMULATION OF MECHANICAL SYSTEMS WITH INDIVIDUAL TIME STEPS 13

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 0.2 0.4 0.6 0.8 1

PSfrag replacements

t

k

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 0.2 0.4 0.6 0.8 1

PSfrag replacements

t

k

Figure 9. Multi-adaptive time steps used in the simulation
of the cow with oscillating tail. The plot on the left shows
the time steps for components 481–483 corresponding to the
velocity of the tail, and the plot on the right shows the time
steps for components 13–24 corresponding to the positions
for a set of masses in the interior of the cow.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0 0.2 0.4 0.6 0.8 1

PSfrag replacements

t

k

Figure 10. Mono-adaptive time steps for the cow with os-
cillating tail.

As shown in Figure 13, the multi-adaptive solver automatically selects
small time steps for the components directly affected by the manipulation.
This test problem also illustrates the basic use of adaptive time-stepping;
the time steps are drastically decreased at each impact to accurately track
the effect of the impact.

14 JOHAN JANSSON AND ANDERS LOGG

-15

-10

-5

 0

 5

 10

 15

 0 0.2 0.4 0.6 0.8 1

PSfrag replacements

t

u

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 0.2 0.4 0.6 0.8 1

PSfrag replacements

t

u

Figure 11. Solution for relevant components of the cow
with oscillating tail. The plot on the left shows the solu-
tion for components 481–483 corresponding to the velocity
of the tail, and the plot on the right shows the solution for
components 13–24 corresponding to the positions for a set of
masses in the interior of the cow.

Algorithm Time / s
Multi-adaptive 40
Mono-adaptive 2800
Non-adaptive 130

Table 3. Computation times for the simulation of the cow
with oscillating tail for three different algorithms: multi-
adaptive mcG(1), mono-adaptive cG(1), and a simple imple-
mentation of non-adaptive cG(1) with fixed time steps and
minimal overhead.

Figure 12. A cow shape is locally manipulated. Small time
steps are automatically selected for the components affected
by the local manipulation, with large time steps for the rest
of the system.

SIMULATION OF MECHANICAL SYSTEMS WITH INDIVIDUAL TIME STEPS 15

-6

-5.9

-5.8

-5.7

-5.6

-5.5

-5.4

-5.3

-5.2

 0 0.5 1.5 2

PSfrag replacements

t

k

u

 1e-05

 1e-04

 0.001

 0.01

 0 0.5 1.5 2

PSfrag replacements

t

k

u

-6

-5.9

-5.8

-5.7

-5.6

-5.5

-5.4

 0 0.5 1.5 2

PSfrag replacements

t

k

u

 1e-05

 1e-04

 0.001

 0.01

 0 0.5 1.5 2

PSfrag replacements

t

k

u

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 0.5 1.5 2

PSfrag replacements

t

k

u

 1e-05

 1e-04

 0.001

 0.01

 0 0.5 1.5 2

PSfrag replacements

t

k

u

-5

-4

-3

-2

-1

 0

 2

 0 0.5 1.5 2

PSfrag replacements

t

k

u

 1e-05

 1e-04

 0.001

 0.01

 0 0.5 1.5 2

PSfrag replacements

t

k

u

Figure 13. Solution (left) and multi-adaptive time steps
(right) for selected components of the manipulated cow. The
two top rows correspond to the positions of the left- and
right-most masses, respectively, and the two rows below cor-
respond to the velocities of the left- and right-most masses,
respectively.

16 JOHAN JANSSON AND ANDERS LOGG

6.3. A stiff beam. Our final example demonstrates the applicability of the
multi-adaptive solver to a stiff problem consisting of a block being dropped
onto a stiff beam, as shown in Figure 14. The material of both the block and
the beam is very hard and very damped, with spring constant κ = 107 and
damping constant b = 2 ·105 for each spring connection. The multi-adaptive
time steps for the simulation are shown in Figure 15. Note that the time
steps are drastically reduced at the time of impact, with large time steps
before and after the impact.

Figure 14. A block is dropped onto a beam. The mate-
rial of both the block and the beam is very hard and very
damped, with spring constant κ = 107 and damping constant
b = 2 · 105.

7. Conclusions

From the results presented above, we make the following conclusions re-
garding multi-adaptive time-stepping:

• A multi-adaptive method outperforms a mono-adaptive method for
systems containing different time scales if there is a significant sep-
aration of the time scales and if the fast time scales are localized to
a relatively small part of the system.
• Multi-adaptive time-stepping, and in particular the current imple-

mentation, works in practice for large and realistic problems.

References

[1] U. Ascher and L. Petzold, Computer Methods for Ordinary Differential Equations

and Differential-Algebraic Equations, SIAM, 1998.
[2] J. Butcher, The Numerical Analysis of Ordinary Differential Equations — Runge–

Kutta and General Linear Methods, Wiley, 1987.
[3] G. Dahlquist, Stability and Error Bounds in the Numerical Integration of Ordinary

Differential Equations, PhD thesis, Stockholm University, 1958.
[4] R. Davé, J. Dubinski, and L. Hernquist, Parallel treeSPH, New Astronomy, 2

(1997), pp. 277–297.
[5] C. Dawson and R.C. Kirby, High resolution schemes for conservation laws with

locally varying time steps, SIAM J. Sci. Comput., 22, No. 6 (2001), pp. 2256–2281.

SIMULATION OF MECHANICAL SYSTEMS WITH INDIVIDUAL TIME STEPS 17

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

 0 2 4 6 8 10

PSfrag replacements

t

k

Figure 15. Multi-adaptive time steps for the block and
beam. Note that the time steps are drastically reduced at
the time of impact. The maximum time step is set to 0.01
to track the contact between the block and the beam.

[6] M. Delfour, W. Hager, and F. Trochu, Discontinuous Galerkin methods for

ordinary differential equations, Math. Comp., 36 (1981), pp. 455–473.
[7] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Introduction to adaptive

methods for differential equations, Acta Numerica, (1995), pp. 105–158.
[8] , Computational Differential Equations, Cambridge University Press, 1996.
[9] D. Estep, A posteriori error bounds and global error control for approximations of

ordinary differential equations, SIAM J. Numer. Anal., 32 (1995), pp. 1–48.
[10] D. Estep and D. French, Global error control for the continuous Galerkin finite

element method for ordinary differential equations, M2AN, 28 (1994), pp. 815–852.
[11] Free Software Foundation, GNU GPL, http://www.gnu.org/copyleft/gpl.html.
[12] E. Hairer and G. Wanner, Solving Ordinary Differential Equations I — Nonstiff

Problems, Springer Series in Computational Mathematics, vol 8, 1991.
[13] , Solving Ordinary Differential Equations II — Stiff and Differential-Algebraic

Problems, Springer Series in Computational Mathematics, vol 14, 1991.
[14] J. Hoffman and A. Logg et al., DOLFIN, http://www.phi.chalmers.se/dolfin/.
[15] J. Jansson and A. Logg, Algorithms for multi-adaptive time-stepping, submitted

to ACM Trans. Math. Softw., (2004).
[16] , Multi-adaptive Galerkin methods for ODEs V: Stiff problems, submitted to

BIT, (2004).
[17] J. Jansson and J. Vergeest, A discrete mechanics model for deformable bodies,

Computer-Aided Design, 34 (2002).
[18] J.E. Flaherty, R.M. Loy, M.S. Shephard, B.K. Szymanski, J.D. Teresco,

and L.H. Ziantz, Adaptive local refinement with octree load balancing for the parallel

solution of three-dimensional conservation laws, Journal of Parallel and Distributed
Computing, 47 (1997), pp. 139–152.

18 JOHAN JANSSON AND ANDERS LOGG

[19] C. Johnson, Error estimates and adaptive time-step control for a class of one-step

methods for stiff ordinary differential equations, SIAM J. Numer. Anal., 25 (1988),
pp. 908–926.

[20] A. Logg, Multi-adaptive Galerkin methods for ODEs I, SIAM J. Sci. Comput., 24
(2003), pp. 1879–1902.

[21] , Multi-adaptive Galerkin methods for ODEs II: Implementation and applica-

tions, SIAM J. Sci. Comput., 25 (2003), pp. 1119–1141.
[22] , Multi-adaptive Galerkin methods for ODEs III: Existence and stability, Sub-

mitted to SIAM J. Numer. Anal., (2004).
[23] , Multi-adaptive Galerkin methods for ODEs IV: A priori error estimates, Sub-

mitted to SIAM J. Numer. Anal., (2004).
[24] J. Makino and S. Aarseth, On a Hermite integrator with Ahmad-Cohen scheme for

gravitational many-body problems, Publ. Astron. Soc. Japan, 44 (1992), pp. 141–151.
[25] S. Osher and R. Sanders, Numerical approximations to nonlinear conservation

laws with locally varying time and space grids, Math. Comp., 41 (1983), pp. 321–336.
[26] S.G. Alexander and C.B. Agnor, n-body simulations of late stage planetary for-

mation with a simple fragmentation model, ICARUS, 132 (1998), pp. 113–124.
[27] L. Shampine, Numerical Solution of Ordinary Differential Equations, Chapman &

Hall, 1994.

COMPUTATIONAL MODELING OF

DYNAMICAL SYSTEMS

JOHAN JANSSON, CLAES JOHNSON, AND ANDERS LOGG

Abstract. In this short note, we discuss the basic approach to compu-
tational modeling of dynamical systems. If a dynamical system contains
multiple time scales, ranging from very fast to slow, computational so-
lution of the dynamical system can be very costly. By resolving the fast
time scales in a short time simulation, a model for the effect of the small
time scale variation on large time scales can be determined, making so-
lution possible on a long time interval. This process of computational
modeling can be completely automated. Two examples are presented,
including a simple model problem oscillating at a time scale of 10−9

computed over the time interval [0, 100], and a lattice consisting of large
and small point masses.

1. Introduction

We consider a dynamical system of the form

u̇(t) = f(u(t), t), t ∈ (0, T],

u(0) = u0,
(1.1)

where u : [0, T] → R
N is the solution to be computed, u0 ∈ R

N a given initial
value, T > 0 a given final time, and f : R

N × (0, T] → R
N a given function

that is Lipschitz-continuous in u and bounded. We consider a situation
where the exact solution u varies on different time scales, ranging from very
fast to slow. Typical examples include meteorological models for weather
prediction, with fast time scales on the range of seconds and slow time scales
on the range of years, protein folding represented by a molecular dynamics
model of the form (1.1), with fast time scales on the range of femtoseconds
and slow time scales on the range of microseconds, or turbulent flow with a
wide range of time scales.

To make computation feasible in a situation where computational resolu-
tion of the fast time scales would be prohibitive because of the small time
steps required, the given model (1.1) containing the fast time scales needs to

Date: April 22, 2004.
Key words and phrases. Modeling, dynamical system, reduced model, automation.
Johan Jansson, email : johanjan@math.chalmers.se. Claes Johnson, email :

claes@math.chalmers.se. Anders Logg, email : logg@math.chalmers.se. Department of
Computational Mathematics, Chalmers University of Technology, SE–412 96 Göteborg,
Sweden.

1

2 JOHAN JANSSON, CLAES JOHNSON, AND ANDERS LOGG

be replaced with a reduced model for the variation of the solution u of (1.1)
on resolvable time scales. As discussed below, the key step is to correctly
model the effect of the variation at the fast time scales on the variation on
slow time scales.

The problem of model reduction is very general and various approaches
have been taken, see e.g. [8] and [6]. We present below a new approach
to model reduction, based on resolving the fast time scales in a short time
simulation and determining a model for the effect of the small time scale
variation on large time scales. This process of computational modeling can
be completely automated and the validity of the reduced model can be eval-
uated a posteriori.

2. A simple model problem

We consider a simple example illustrating the basic aspects: Find u =
(u1, u2) : [0, T] → R

2, such that

ü1 + u1 − u2
2/2 = 0 on (0, T],

ü2 + κu2 = 0 on (0, T],

u(0) = (0, 1) u̇(0) = (0, 0),

(2.1)

which models a moving unit point mass M1 connected through a soft spring
to another unit point mass M2, with M2 moving along a line perpendicular
to the line of motion of M1, see Figure 1. The second point mass M2 is
connected to a fixed support through a very stiff spring with spring constant
κ = 1018 and oscillates rapidly on a time scale of size 1/

√
κ = 10−9. The

oscillation of M2 creates a force ∼ u2
2 on M1 proportional to the elongation

of the spring connecting M2 to M1 (neglecting terms of order u4
2).

The short time scale of size 10−9 requires time steps of size ∼ 10−10 for
full resolution. With T = 100, this means a total of ∼ 1012 time steps for
solution of (2.1). However, by replacing (2.1) with a reduced model where
the fast time scale has been removed, it is possible to compute the (averaged)
solution of (2.1) with time steps of size ∼ 0.1 and consequently only a total
of 103 time steps.

3. Taking averages to obtain the reduced model

Having realized that point-wise resolution of the fast time scales of the
exact solution u of (1.1) may sometimes be computationally very expensive
or even impossible, we seek instead to compute a time average ū of u, defined
by

(3.1) ū(t) =
1

τ

∫ τ/2

−τ/2
u(t+ s) ds, t ∈ [τ/2, T − τ/2],

where τ > 0 is the size of the average. The average ū can be extended to
[0, T] in various ways. We consider here a constant extension, i.e., we let
ū(t) = ū(τ/2) for t ∈ [0, τ/2), and let ū(t) = ū(T − τ/2) for t ∈ (T − τ/2, T].

COMPUTATIONAL MODELING OF DYNAMICAL SYSTEMS 3

� � �� � �� � �
� � �� � �� � �

� � �� � �� � �
� � �� � �� � �

��
��

��
��

�
��

��
��

��� � �� � �� �
� � �� � �	 		 	

� �
� � �

� � �� �� � �� �
� � �� �

� � �� �
� � �� �

��
��

��
��

��
��

��
��

��
�

��
��

��
��

��
��

��
��

��
�

����� �� �� �� ����� !!""##$ $$ $% %% % &&''(((()) **++

PSfrag replacements

κ = 1

κ = 1

κ = 1

κ� 1

u1

u2

M1

M2

Figure 1. A simple mechanical system with large time scale
∼ 1 and small time scale ∼ 1/

√
κ.

We now seek a dynamical system satisfied by the average ū by taking the
average of (1.1). We obtain

˙̄u(t) = ¯̇u(t) = f(u, ·)(t) = f(ū(t), t) + (f(u, ·)(t) − f(ū(t), t)),

or

(3.2) ˙̄u(t) = f(ū(t), t) + ḡ(u, t),

where the variance ḡ(u, t) = f(u, ·)(t) − f(ū(t), t) accounts for the effect of
small scales on time scales larger than τ . (Note that we may extend (3.2)
to (0, T] by defining ḡ(u, t) = −f(ū(t), t) on (0, τ/2] ∪ (T − τ/2, T].)

We now seek to model the variance ḡ(u, t) in the form ḡ(u, t) ≈ g̃(ū(t), t)
and replace (3.2) and thus (1.1) by

˙̃u(t) = f(ũ(t), t) + g̃(ũ(t), t), t ∈ (0, T],

ũ(0) = ū0,
(3.3)

where ū0 = ū(0) = ū(τ/2). We refer to this system as the reduced model

with subgrid model g̃ corresponding to (1.1).
To summarize, if the solution u of the full dynamical system (1.1) is

computationally unresolvable, we aim at computing the average ū of u.
However, since the variance ḡ in the averaged dynamical system (3.2) is
unknown, we need to solve the reduced model (3.3) for ũ ≈ ū with an
approximate subgrid model g̃ ≈ ḡ. Solving the reduced model (3.3) using
e.g. a Galerkin finite element method, we obtain an approximate solution
U ≈ ũ ≈ ū. Note that we may not expect U to be close to u point-wise in
time, while we hope that U is close to ū point-wise.

4 JOHAN JANSSON, CLAES JOHNSON, AND ANDERS LOGG

4. Modeling the variance

There are two basic approaches to the modeling of the variance ḡ(u, t)
in the form g̃(ũ(t), t); (i) scale-extrapolation or (ii) local resolution. In (i),
a sequence of solutions is computed with increasingly fine resolution, but
without resolving the fastest time scales. A model for the effects of the fast
unresolvable scales is then determined by extrapolation from the sequence
of computed solutions, see e.g. [3]. In (ii), the approach followed below, the
solution u is computed accurately over a short time period, resolving the
fastest time scales. The reduced model is then obtained by computing the
variance

(4.1) ḡ(u, t) = f(u, ·)(t) − f(ū(t), t)

and then determining g̃ for the remainder of the time interval such that
g̃(ũ(t), t) ≈ ḡ(u, t).

For the simple model problem (2.1), which we can write in the form (1.1)
by introducing the two new variables u3 = u̇1 and u4 = u̇2 with

f(u, ·) = (u3, u4,−u1 + u2
2/2,−κu2),

we note that ū2 ≈ 0 (for
√
κτ large) while u2

2 ≈ 1/2. By the linearity of f1,
f2, and f4, the (approximate) reduced model takes the form

¨̃u1 + ũ1 − 1/4 = 0 on (0, T],

¨̃u2 + κũ2 = 0 on (0, T],

ũ(0) = (0, 0), ˙̃u(0) = (0, 0),

(4.2)

with solution ũ(t) = (1
4 (1 − cos t), 0).

In general, the reduced model is constructed with subgrid model g̃ varying
on resolvable time scales. In the simplest case, it is enough to model g̃ with
a constant and repeatedly checking the validity of the model by comparing
the reduced model (3.3) with the full model (1.1) in a short time simulation.
Another possibility is to use a piecewise polynomial representation for the
subgrid model g̃.

5. Solving the reduced system

Although the presence of small scales has been decreased in the reduced
system (3.3), the small scale variation may still be present. This is not
evident in the reduced system (4.2) for the simple model problem (2.1),
where we made the approximation ũ2(0) = 0. In practice, however, we
compute ũ2(0) = 1

τ

∫ τ
0 u2(t) dt = 1

τ

∫ τ
0 cos(

√
κt) dt ∼ 1/(

√
κτ) and so ũ2

oscillates at the fast time scale 1/
√
κ with amplitude 1/(

√
κτ).

To remove these oscillations, the reduced system needs to be stabilized
by introducing damping of high frequencies. Following the general approach
presented in [5], a least squares stabilization is added in the Galerkin formu-
lation of the reduced system (3.3) in the form of a modified test function.

COMPUTATIONAL MODELING OF DYNAMICAL SYSTEMS 5

As a result, damping is introduced for high frequencies without affecting low
frequencies.

Alternatively, components such as u2 in (4.2) may be inactivated, corre-
sponding to a subgrid model of the form g̃2(ũ, ·) = −f2(ũ, ·). We take this
simple approach for the example problems presented below.

6. Error analysis

The validity of a proposed subgrid model may be checked a posteriori.
To analyze the modeling error introduced by approximating the variance ḡ
with the subgrid model g̃, we introduce the dual problem

−φ̇(t) = J(ū, U, t)>φ(t), t ∈ [0, T),

φ(T) = ψ,
(6.1)

where J denotes the Jacobian of the right-hand side of the dynamical system
(1.1) evaluated at a mean value of the average ū and the computed numerical
(finite element) solution U ≈ ũ of the reduced system (3.3),

(6.2) J(ū, U, t) =

∫ 1

0

∂f

∂u
(sū(t) + (1 − s)U(t), t) ds,

and where ψ is initial data for the backward dual problem.
To estimate the error ē = U − ū at final time, we note that ē(0) = 0 and

φ̇+ J(ū, U, ·)>φ = 0, and write

(ē(T), ψ) = (ē(T), ψ) −
∫ T

0
(φ̇+ J(ū, U, ·)>φ, ē) dt

=

∫ T

0
(φ, ˙̄e − Jē) dt =

∫ T

0
(φ, U̇ − ˙̄u− f(U, ·) + f(ū, ·)) dt

=

∫ T

0
(φ, U̇ − f(U, ·) − g̃(U, ·)) dt +

∫ T

0
(φ, g̃(U, ·) − ḡ(u, ·)) dt

=

∫ T

0
(φ, R̃(U, ·)) dt +

∫ T

0
(φ, g̃(U, ·) − ḡ(u, ·)) dt.

The first term,
∫ T
0 (φ, R̃(U, ·)) dt, in this error representation corresponds

to the discretization error U − ũ for the numerical solution of (3.3). If a
Galerkin finite element method is used (see [1, 2]), the Galerkin orthogonality

expressing the orthogonality of the residual R̃(U, ·) = U̇ − f(U, ·) − g̃(U, ·)
to a space of test functions can be used to subtract a test space interpolant
πφ of the dual solution φ. In the simplest case of the cG(1) method for a
partition of the interval (0, T] into M subintervals Ij = (tj−1, tj], each of

6 JOHAN JANSSON, CLAES JOHNSON, AND ANDERS LOGG

length kj = tj − tj−1, we subtract a piecewise constant interpolant to obtain

∫ T

0
(φ, R̃(U, ·)) dt =

∫ T

0
(φ− πφ, R̃(U, ·)) dt

≤
M∑

j=1

kj max
Ij

‖R̃(U, ·)‖l2

∫
Ij

‖φ̇‖l2 dt

≤ S[1](T)max
[0,T]

‖kR̃(U, ·)‖l2 ,

where the stability factor S [1](T) =
∫ T
0 ‖φ̇‖l2 dt measures the sensitivity to

discretization errors for the given output quantity (ē(T), ψ).

The second term,
∫ T
0 (φ, g̃(U, ·) − ḡ(u, ·)) dt, in the error representation

corresponds to the modeling error ũ− ū. The sensitivity to modeling errors

is measured by the stability factor S [0](T) =
∫ T
0 ‖φ‖l2 dt. We notice in

particular that if the stability factor S [0](T) is of moderate size, a reduced
model of the form (3.3) for ũ ≈ ū may be constructed.

We thus obtain the error estimate
(6.3)

|(ē(T), ψ)| ≤ S [1](T)max
[0,T]

‖kR̃(U, ·)‖l2 + S[0](T)max
[0,T]

‖g̃(U, ·) − ḡ(u, ·)‖l2 ,

including both discretization and modeling errors. The initial data ψ for
the dual problem (6.1) is chosen to reflect the desired output quantity, e.g.
ψ = (1, 0, . . . , 0) to measure the error in the first component of U .

To estimate the modeling error, we need to estimate the quantity g̃ − ḡ.
This estimate is obtained by repeatedly solving the full dynamical system
(1.1) at a number of control points and comparing the subgrid model g̃ with
the computed variance ḡ. As initial data for the full system at a control
point, we take the computed solution U ≈ ū at the control point and add
a perturbation of appropriate size, with the size of the perturbation chosen
to reflect the initial oscillation at the fastest time scale.

7. Numerical results

We present numerical results for two model problems, including the simple
model problem (2.1), computed with DOLFIN version 0.4.10 [4]. With the
option automatic modeling set, DOLFIN automatically creates the reduced
model (3.3) for a given dynamical system of the form (1.1) by resolving
the full system in a short time simulation and then determining a constant
subgrid model ḡ. Components with constant average, such as u2 in (2.1),
are automatically marked as inactive and are kept constant throughout the
simulation. The automatic modeling implemented in DOLFIN is rudimen-
tary and many improvements are possible, but it represents a first attempt
at the automation of modeling, following the directions for the automation

of computational mathematical modeling presented in [7].

COMPUTATIONAL MODELING OF DYNAMICAL SYSTEMS 7

7.1. The simple model problem. The solution for the two components
of the simple model problem (2.1) is shown in Figure 2 for κ = 1018 and
τ = 10−7. The value of the subgrid model ḡ1 is automatically determined
to 0.2495 ≈ 1/4.

7.2. A lattice with internal vibrations. The second example is a lattice
consisting of a set of p2 large and (p− 1)2 small point masses connected by
springs of equal stiffness κ = 1, as shown in Figure 3 and Figure 4. Each
large point mass is of size M = 100 and each small point mass is of size
m = 10−12, giving a large time scale of size ∼ 10 and a small time scale of
size ∼ 10−6.

The fast oscillations of the small point masses make the initially stationary
structure of large point masses contract. Without resolving the fast time
scales and ignoring the subgrid model, the distance D between the lower
left large point mass at x = (0, 0) and the upper right large point mass at

x = (1, 1) remains constant, D =
√

2. In Figure 5, we show the computed
solution with τ = 10−4, which manages to correctly capture the oscillation
in the diameter D of the lattice as a consequence of the internal vibrations
at time scale 10−6.

With a constant subgrid model ḡ as in the example, the reduced model
stays accurate until the configuration of the lattice has changed sufficiently.
When the change becomes too large, the reduced model can no longer give
an accurate representation of the full system, as shown in Figure 6. At this
point, the reduced model needs to be reconstructed in a new short time
simulation.

References

[1] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Introduction to adaptive

methods for differential equations, Acta Numerica, (1995), pp. 105–158.
[2] , Computational Differential Equations, Cambridge University Press, 1996.
[3] J. Hoffman, Computational Modeling of Complex Flows, PhD thesis, Chalmers Uni-

versity of Technology, 2002.
[4] J. Hoffman and A. Logg et al., DOLFIN, http://www.phi.chalmers.se/dolfin/.
[5] J. Hoffman and C. Johnson, Computability and adaptivity in CFD, to appear in

Encyclopedia of Computational Mechanics, (2004).
[6] H.-O. Kreiss, Problems with different time scales, Acta Numerica, 1 (1991).
[7] A. Logg, Automation of Computational Mathematical Modeling, PhD thesis,

Chalmers University of Technology, 2004.
[8] A. Ruhe and D. Skoogh, Rational Krylov algorithms for eigenvalue computation and

model reduction, in Applied Parallel Computing — Large Scale Scientific and Industrial
Problems, B. K̊agström, J. Dongarra, E. Elmroth, and J. Waśniewski, eds., Lecture
Notes in Computer Science, No. 1541, 1998, pp. 491–502.

8 JOHAN JANSSON, CLAES JOHNSON, AND ANDERS LOGG

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

PSfrag replacements

t

u
1
(t

)
u

2
(t

)

0 1 2 3 4

x 10
−7

0

1

2
x 10

−14

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−7

−1

−0.5

0

0.5

1

PSfrag replacements

t

u
1
(t

)
u

2
(t

)

Figure 2. The solution of the simple model problem (2.1)
on [0, 100] (above) and on [0, 4·10−7] (below). The automatic
modeling is activated at time t = 2τ = 2 · 10−7.

COMPUTATIONAL MODELING OF DYNAMICAL SYSTEMS 9

� � �� � �� � �
� � �� � �� � �

� � �� � �� � �
� � �� � �� � �

� � �� � �� � �
� � �� � �� � �

� � �� � �� � �
� � �� � �� � �

� �� �
	 		 	

PSfrag replacements

m

M

MM

M

Figure 3. Detail of the lattice. The arrows indicate the
direction of vibration perpendicular to the springs connecting
the small mass to the large masses.

Figure 4. Lattice consisting of p2 large masses and (p− 1)2

small masses.

10 JOHAN JANSSON, CLAES JOHNSON, AND ANDERS LOGG

0 1 2 3 4 5 6 7 8 9 10
1.406

1.407

1.408

1.409

1.41

1.411

1.412

1.413

1.414

1.415

PSfrag replacements

t

d(t)

D
(t

)

0 1 2 3 4

x 10
−4

0.175

0.18

0.185

0.19

0.195

0.2

PSfrag replacements

t

d
(t

)

D(t)

Figure 5. Distance D between the lower left large mass
and the upper right large mass (above) and the distance d
between the lower left large mass and the lower left small
mass (below) as function of time on [0, 10] and on [0, 4 ·10−4],
respectively.

COMPUTATIONAL MODELING OF DYNAMICAL SYSTEMS 11

0 5 10 15 20
1.36

1.39

1.42

0 20 40 60 80 100
1.36

1.39

1.42

PSfrag replacements

tt

D
(t

)

Figure 6. The diameter D of the lattice as function of time
on [0, 20] (left) and on [0, 100] (right) for m = 10−4 and
τ = 1. The solid line represents the diameter for the solution
of the reduced system (3.3) and the dashed line represents
the solution of the full system (1.1).

