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ABSTRACT
The present work is devoted to approximation techniques forsingular extremal problems
arising from optimal design problems in structural and fluidmechanics. The thesis con-
sists of an introductory part and four independent papers, which however are united by
the common idea of approximation and the related application areas.
In the first half of the thesis we are concerned with finding theoptimal topology of truss-
like structures. This class of optimal design problems arises when in order to find the op-
timal truss not only are we allowed to redistribute the material among the structural mem-
bers (bars), but also to completely remove some parts altering the connectivity (topology)
of the structure. The other half of the thesis addresses the question of the optimal topolog-
ical design of flow domains for Stokes and Navier–Stokes fluids. For flows, optimizing
topology means finding the optimal partition of the given design domain into disjoint
parts occupied by the fluid and the impenetrable walls, giventhe in-flow and the out-flow
boundaries. In particular, impenetrable walls change the shape and the connectivity of the
flow domain.
In the first paper we construct an example demonstrating the singular behaviour of truss
topology optimization problems including a linearized global buckling (linear elastic sta-
bility) constraint. This singularity phenomenon has not been known before and affects
the choice of numerical methods that can be applied to the optimization problem. We
propose a simple approximation strategy and establish the convergence of globally op-
timal solutions to perturbed problems towards globally optimal solutions to the original
singular problem.
In the second paper we are concerned with the construction offiner approximating prob-
lems that allow us to reconstruct the local behaviour of a general class of singular truss
topology optimization problems, namely to approximate stationary points to the limiting
problem with sequences of stationary points to the regular approximating problems. We
do so on the classic problem of weight minimization under stress constraints for trusses
in unilateral contact with rigid obstacles.
In the third paper we extend a design parametrization previously proposed for the topo-
logical design of flow domains for Stokes flows to also includethe limiting case of porous
materials—completely impenetrable walls. We demonstratethat, in general, the resulting
design-to-flow mapping is not closed, yet under mild assumptions it is possible to approx-
imate globally optimal minimal-power-dissipation domains using porous materials with
diminishing permeability.

In the fourth and last paper we consider the optimal design offlow domains for Navier–
Stokes flows. We illustrate the discontinuous behaviour of the design-to-flow mapping
caused by the topological changes in the design, and propose“minor” changes to the
design parametrization and the equations that allow us to rigorously establish the closed-
ness of the design-to-flow mapping. The existence of optimalsolutions as well as the
convergence of approximation schemes then easily follows from the closedness result.
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INTRODUCTION AND OVERVIEW

IN the present thesis we study approximation techniques for singular extremal problems
arising from optimal design problems in structural and fluidmechanics. The purpose

of this chapter is to provide an introduction to some of the models and methods coming
from bi-level programming, topology optimization, and sensitivity analysis for non-linear
programs, as well as to give a summary of the results established in the four appended
papers, placing them in a proper perspective.

Mathematical programming with equilibrium constraints

Hierarchical decision-making problems are encountered ina wide variety of domains in
the engineering and experimental natural sciences, and in regional planning, management,
and economics. These problems are all defined by the presenceof two or more objectives
with a prescribed order of priority or information. In many applications it is sufficient
to consider a sub-class of these problems having two levels,or objectives. We refer to
the upper-level as the objective having the highest priority and/or information level; it is
defined in terms of an optimization with respect to one set of variables. The lower-level
problem, which in the most general case is described by a variational inequality, is then
a supplementary problem parameterized by the upper-level variables. These models are
known as generalized bi-level programming problems, or mathematical programs with
equilibrium constraints (MPEC); see, for example, Luo et al. [LPR96].

Many extremal problems arising from applications in mechanics of solids, structures,
and fluids have an inherent bi-level form. The upper-level objective function measures
some performance of the system, such as its weight, stiffness, maximal contact force,
pressure drop, drag, or power dissipation. This objective function is optimized by select-
ing design parameters, which in our case will be related to the geometry of the system
and the amount of material being used. Further, the upper-level optimization is subject to
design constraints, such as limits on the amount of available material, and to behavioural
constraints, such as bounds on the displacements and stresses, or buckling/stability con-
straints. The lower-level problem describes the behaviourof the system given the choices
of the design variables, the external forces acting on it, and the boundary conditions.

For linear elastic structures the behaviour is governed by the equilibrium law of min-
imal potential energy, which determines the values of the state variables (displacements)
at the lower level. Equivalently, the equilibrium law can beexpressed as a (dual) principle
of the minimum of complementary energy, determining the stresses and contact forces.

Similarly, for slow (creep, Stokes) flows the flow velocity isdetermined by the princi-
ple of minimal potential power. In the case of faster flow, thenon-linear convection effects
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must be taken into account in the lower-level problem, leading to the Navier–Stokes equa-
tions that (in a weak form) can be formulated as a variationalinequality.

Mathematical programs with equilibrium constraints are known to be an especially
difficult subclass of non-smooth non-convex NP-hard mathematical problems, which
in addition violates standard non-linear programming constraint qualifications [LPR96,
Chapter 1]. Furthermore, MPEC problems coming from the topology optimization of
structures, solids and fluids typically violate even the novel qualifications, such as the
strict complementarity conditions, or strong regularity assumptions, constructed specifi-
cally for generalized bi-level programs. Therefore, the use of approximation techniques
for the numerical solution of such problems seems inevitable.

Letx∈X (respectively,y∈Y ) denote a vector of upper-level, or design (resp. lower-
level, or state), variables. Given the performance functional f : X ×Y → R∪{+∞}, the
mathematical program with equilibrium constraints can be stated as follows:





min
(x,y)

f (x,y),

s.t. (x,y) ∈ S,

y ∈ SOL(x),

(1)

whereS⊂ X ×Y is a set representing design, behavioural, and joint constraints, and
SOL :X ⇉ Y is a point-to-set mapping defined by the set of solutions to the lower-level
parametric optimization, or variational inequality, problem. For example, in the simplest
case SOL(x) may be given by the solution set of the following parametric optimization
problem: {

min
y

F(x,y),

s.t.y ∈C,
(2)

whereF : X ×Y → R∪{+∞} is a given lower-level objective function (usually convex
in the second variable), andC⊂ Y is a set of admissible state vectors (also usually con-
vex). In view of the special structure of the feasible set of (1), one of the central questions
in the study of MPEC is the verification of closedness and semi-continuity properties of
the point-to-set mapping SOL, which bears close relationships with the verification of
the existence of optimal solutions and applicability of optimization algorithms to a given
MPEC problem.

For MPEC problems arising in the topology optimization of structures, solids, and
fluids, the typical situation is as follows. For design vectorsx found in theinterior of the
design domain, the mappingx ⇉ SOL(x) is in fact single-valued and continuous; whereas
for designs on the boundary this mapping is at most closed, and may have unbounded,
or even empty, images. This behaviour prompts to be exploited algorithmically. Thus,
instead of the original MPEC (1) we solve a sequence of approximating problems





min
(x,y)

f (x,y),

s.t. (x,y) ∈ Sε ,

y ∈ SOL(x),

whereSε is a specially constructed approximation ofS, avoiding the “bad” points of
the design space, andε > 0 is an approximation parameter eventually tending to zero.
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The approximation problems are usually constructed so thatthe limit points of sequences
of globally optimal solutions to the approximating problems are globally optimal in the
original, singular problem, as the approximation parameter tends to zero.

Unfortunately, for non-convex, non-smooth, large-scale problems like instances of
MPEC problems arising from structural topology optimization one can hardly expect to
find globally optimal solutions, and therefore the convergence of globally optimal solu-
tions is a positive result of more theoretical than practical significance. However, the
approximation of stationary points for MPEC problems is a complicated task. Firstly,
even the practical concept of a stationary point is not so easy to define in this case, be-
cause the standard constraint qualifications are violated.Secondly, even more modern
MPEC-specific assumptions are violated by the optimal design problems we consider,
especially at the boundary of the design domain; since it is the local behaviour of the
mappingx ⇉ SOL(x) that is important in this case, we need to regularize or approximate
the latter point-to-set mapping. Thus, in order to approximate the stationary points of the
original, singular MPEC-problem (1) we introduce approximating problems of the form





min
(x,y)

f (x,y),

s.t. (x,y) ∈ Sε ,

y ∈ SOLε(x),

where, as before,ε > 0 is a small approximation parameter,Sε is an approximation ofS,
and SOLε is a “simple” approximation of SOL. For example, instead of consideringexact
optimal solutionsy in (2) we may require onlyε-optimal solutions; other choices are also
possible (see [LiM97, FJQ99]).

Truss topology optimization

Truss topology optimization problems play an important role of being model problems in
structural optimization owing to their simple and very welldeveloped structure; yet the
techniques developed for truss topology optimization problems are applicable to much
wider classes of structures than trusses, including framesand finite element discretized
models of solids. Systematic research on truss optimization began in the beginning of
the previous century with the work of Michell [Mic04], and nowadays this is probably
the most advanced area of topology optimization (cf. [BeS03]). However, some compu-
tational aspects of truss topology optimization problems still lack a theoretical basis; in
the appended papers 1 and 2 we try to resolve some of them. In this section, however, we
introduce the necessary truss-specific notation to put the truss topology optimization prob-
lems, and the discussion about the approximation techniques, into the general framework
of MPEC.

Using the de-facto standard in the field, theground structureapproach [DGG64], the
designof the truss is completely described by prescribing for eachbar i, i = 1, . . . ,m, the
amount of materialxi ≥ 0 allocated to this bar. For convenience we collect all the design
variables in a vectorx = (x1, . . . ,xm)t ∈ R

m
+. We introduce an index set of the present

(or, active) members in the structure:I (x) = { i = 1, . . . ,m | xi > 0}. Given a particular
designx ∈ R

m
+, the equilibrium status of a truss in the presence of rigid obstacles that may

come into unilateral frictionless contact with some nodes can be described by specifying
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◦ a pseudo-forcesi (also known as the normalized stress; it is in fact a stress inthe
bar times its volume) for each bari ∈ I (x) present in the structure. To simplify the
notation we collect all valuessi , i = 1, . . . ,m, into one vectors∈ R

m, assumingsi = 0
for i 6∈ I (x) (since inactive members cannot carry any load);

◦ a contact forceλ j for each of the potential contact nodesj = 1, . . . , r. These values are
collected in a vectorλλλ ∈ R

r
+; and

◦ a displacementuk for each of the structural degrees of freedomk = 1, . . . ,n. These
values are collected in a vectoru ∈ R

n.
The values of the state variables for a specific designx are determined using various

energy principles. Therefore, we define the complementary energy of the structure as

E (x,s,λλλ) :=
1
2 ∑

i∈I (x)

s2
i

Exi
+gtλλλ ,

as well as the linearized strain energy:

Π(x,u) :=
1
2

ut
K(x)u,

whereK(x) is thestiffness matrixof the structure. The latter matrix is defined as

K(x) := ∑
i∈I (x)

xiKi ,

whereKi = EBt
iBi is the local stiffness matrixfor the bari = 1, . . . ,m, Bi ∈ R

1×n is a
kinematic transformation matrix for the bari = 1, . . . ,m, andE is the Young modulus of
the structural material.

Throughout the thesis, we make the blanket assumption thatK(x) is positive definite
for everypositivedesignx; a necessary and sufficient condition for this property is that
K(1m) is positive definite. We do not loose any generality from thisassumption, because
the positive definiteness can be achieved by starting from an“enough rich” ground struc-
ture.

In this notation the equilibrium state of the structure under the external loadf ∈R
n can

be characterized using the following primal-dual pair of convex quadratic programming
problems:

(C )x(f)





min
(s,λλλ )

E (x,s,λλλ ),

s.t.Ctλλλ + ∑
i∈I (x)

B
t
i si = f,

λλλ ≥ 0,

(P)x(f)

{
min

u
Π(x,u)− ftu,

s.t.Cu ≤ g,

whereg ∈ R
r is a vector of initial gaps between the contact nodes and rigid obstacles,

andC ∈ R
r×n is a kinematic transformation matrix. We have implicitly assumed that the

matrixC is quasi-orthogonal, that is, thatCCt = I. The problem(C )x(f) is known as the
principle of minimum complementary energy, and the problem(P)x(f) is the principle
of minimum potential energy.

Equivalently, the equilibrium problem can be written as a KKT system for the pair
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(C )x(f) and(P)x(f). Define

Q(x) :=




Bt Ct 0

0 0 −C

I 0 −D(x)B


 , q(f) :=



−f
g
0


 ,

andY := R
m×R

r
+×R

n, whereB∈ R
m×n is the matrix with rowsB1, . . . ,Bm, andD(x) =

diag(x) ∈ R
m×m. Then, the pair(s,λλλ ) solves(C )x(f) andu solves(P)x(f) if and only if

the vectory∗ = (st ,λλλ t ,ut)t ∈Y solves the following affine variational inequality problem,
denoted AVI(q(f),Q(x),Y):

[Q(x)y∗ +q(f)]t(y−y∗) ≥ 0, for all y ∈Y.

Now, one can easily spot the difficulties arising at the boundary of the design domain
R

m
+, that is, when some bars are completely removed from the ground structure:

◦ the objective function of the problem(C )x(f) is only lower semi-continuous and may
assume infinite values on this subset of the design space;

◦ similarly, the objective function of the dual problem(P)x(f) is not strongly convex at
the boundary of the design domain;

◦ the affine variational inequality problem AVI(q(f),Q(x),Y) may have zero, or multiple,
solutions at the boundary.

All these difficulties have immediate implications on the properties of the corresponding
multi-mappingx ⇉ SOL(x); as a consequence the class of algorithms capable of solving
truss topology optimization problems is significantly restricted, for example when com-
pared to the corresponding sizing problems. Thus one is tempted to replace the design
domainR

m
+ with the natural approximation{x ∈ R

m
+ | x ≥ ε1m}, with ε ↓ 0, thus convert-

ing the topology optimization problem into a sequence ofsizingones.
For some relatively simple truss topology optimization problems (such as, e.g.,

compliance minimization problems, possibly with so-called “strong” stress con-
straints [Ach98]) the strategy we just outlined is sufficient. Such approximations have
been rigorously studied for trusses without (Achtziger [Ach98]) and with (Patriksson and
Petersson [PaP02]) unilateral constraints.

On the other hand, there are many other classes of topology optimization problems
including important mechanical constraints (e.g., stressconstraints [SvG68], local buck-
ling constraints [GCY01], and global buckling constraints[Paper 1, this thesis]) where
the simple strategy outlined above leads to erroneous results, owing to the complicated
singular structure of the feasible set near the points wherethe truss topology changes.
Historically, the study of singularity phenomena for trusstopology optimization prob-
lems started with problems including stress constraints only. Sved and Ginos [SvG68]
observed that such problems may have singular solutions, and the properties of the fea-
sible region were further investigated by Kirsch [Kir90], Cheng and Jiang [ChJ92], and
Rozvany and Birker [RoB94]. Cheng and Guo [ChG97] were the first to propose a more
sophisticated restriction-relaxation procedure, where not only the lower bounds but also
the stress constraints were perturbed. They established the convergence of the optimal
values of the perturbed problems to the optimal value of the original problem, while Pe-
tersson [Pet01] (using the continuity of certain design-to-state parameterized mappings)
has established the convergence of optimal solutions. Since then, theε-perturbation
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strategy has been extended by many researchers, in many ways: Duysinx and Bend-
søe [DuB98] and Duysinx and Sigmund [DuS98] considered continuum structures; Guo et
al. [GCY01] included local buckling constraints into the problem; Patriksson and Peters-
son [PaP02] generalized the result for trusses including unilateral constraints; Evgrafov et
al. [EPP03, EvP03, EvP03a] considered the possibility of introducing stochastic forces;
and Evgrafov [Paper 1, this thesis] studied the linearized elastic stability constraint.

Despite the clear advantage of approximating the nonsmooth, singular optimization
problem with a sequence of smooth and regular ones, all the sizing approximations con-
sidered above suffer from a similar difficulty: while the underlying theoretical results
are concerned with the approximation of thegloballyoptimal solutions, in computational
practice it is impossible to solve the nonconvex approximating problems to global opti-
mality. There are also negative results regarding this issue: theε-perturbation approach
may fail to find a globally optimal solution even for topologyoptimization problems with
only 2 design variables [StS01]!

The analysis of the convergenceof stationary points to the approximating problems to-
wards stationary points of the limiting (that is, original)problem is difficult; for example,
the dependence of the equilibrium state of the structure upon the design near the points
where the topology changes is nonsmooth, and even non-Lipschitz continuous. Therefore,
Evgrafov and Patriksson [Paper 2, this thesis] have designed an alternative approximation
scheme, capable of approximatingbothglobally optimal solutions and stationary points
through corresponding sequences of global or stationary solutions to approximating prob-
lems. To achieve this, we approximate both the design set andthe design-to-state mapping
x ⇉ SOL(x), as we outlined in the previous section. Namely, we considerthe following
approximating feasible sets:

F ε (f) := {(x,s,λλλ ,u) ∈ R
m
+×R

m×R
r
+×R

n | x ≥ o(ε)1m,

E (x,s,λλλ )+ Π(x,u)− ftu ≤ ε,

Bts+Ctλλλ = f,

Cu ≤ g},
whereo(ε) is a positive function ofε such that limε↓0o(ε)/ε = 0. Of course, the weak du-
ality theorem for convex problems implies thatF 0(f) corresponds to the original design-
to-state mapping; for positive values ofε the “state” variables(s,λλλ ,u) [which in this
formulation play a role equal to that of the design variablesx, and do not correspond to an
equilibrium state of the truss anymore] are required to be primal-dual feasible, but onlyε-
optimal. We also note that only strictly positive designs are allowed in the approximating
sets, so that we isolate the “problematic” points and end up with smooth and more regular
problems.

Topology optimization of flow domains

The optimal control of fluid flows has long been receiving considerable attention by en-
gineers and mathematicians, owing to its importance in manyapplications involving fluid
related technology; see, e.g., the recent monographs [Gun03, MoP01]. According to a
well-established classification in structural optimization (see [BeS03, page 1]), the ab-
solute majority of works dealing with the optimal design of flow domains fall into the
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category of shape optimization. (See the bibliographical notes (2) in [BeS03] for clas-
sic references in shape optimization.) In the framework ofshape optimization, the op-
timization problem formulation can be stated as follows: choose a flow domain out of
some family so as to maximize an associated performance functional. The family of
domains considered may be as rich as that of all open subsets of a given set satisfy-
ing some regularity criterion (see, e.g. [Fei03]), or as poor as the ones obtained from
a given domain by locally perturbing some part of the boundary in a Lipschitz manner
(cf. [Ton03b, GKM00, GuK98]). Unfortunately, it is typically only the problems in the
latter group that can be attacked numerically. On the other hand,topology optimization
(or, control in coefficients) techniques are known for theirflexibility in describing the
domains of arbitrary complexity (e.g., the number of connected components need not to
be bounded), and at the same time require relatively moderate computational efforts. In
particular, one may completely avoid remeshing the domain as the optimization algorithm
advances, which eases the integration with existing FEM codes, and simplifies and speeds
up sensitivity analysis.

While the field of topology optimization is nowadays very well established for the
optimal design of solids and structures, surprisingly little work has been done for the
optimal design of fluid domains. Borrvall and Petersson [BoP03] were the first to suc-
cessfully consider the optimal design of flow domains for minimizing the total power
of the incompressible Stokes flows, using inhomogeneous porous materials with a spa-
tially varying Darcy permeability tensor, under a constraint on the total volume of fluid
in the control region. Later, this approach has been generalized to include both limiting
cases of porous materials, i.e., pure solid and pure flow regions have been allowed to ap-
pear in the design domain as a result of the optimization procedure [Paper 3, this thesis].
(We also cite the work of Klarbring et al. [KPTK03], which however study the problem
of the optimal design of flow networks, where design and statevariables reside in finite-
dimensional spaces; in some sense this problem is an analogue of truss design problems if
one can carry over the terminology and ideas from the area of optimal design of structures
and solids.)

To put the topology optimization of Stokes flows into the framework of MPEC, we
need to introduce some fluid-specific notation. LetΩ be a connected bounded domain of
R

d, d ∈ {2,3} with a Lipschitz continuous boundaryΓ. Borrvall and Petersson [BoP03]
proposed to control the Stokes equations inΩ in the following manner: given the pre-
scribed flow velocitiesg on the boundary, and forcesf acting in the domain one adjusts
the inverse permeabilityα of the medium occupyingΩ, which depends on the control
functionρ :





−ν∆∆∆u+ α(ρ)u+ ∇∇∇p = f,

divu = 0

}
, in Ω,

u = g, on Γ.

(3)

In the system (3),u is the flow velocity,p is the pressure, andν is the kinematic viscosity.
The control domainH is defined as follows:

H = {ρ ∈ L∞(Ω) | 0≤ ρ ≤ 1,a.e. inΩ,
∫

Ω
ρ ≤ γ|Ω|},
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where 0< γ < 1 is the maximal volume fraction that can be occupied by the fluid. For-
mally, we relate the permeabilityα−1 to ρ using a convex, decreasing, and nonnegative
functionα : [0,1] → R+ ∪{+∞}, defined as

α(ρ) = ρ−1−1.

[Thus,ρ(x) = 0 corresponds to zero permeability, or solid regions, whichdo not permit
any flow, whileρ(x) = 1 corresponds to infinite permeability, or 100% flow regions.]
In order to introduce the weak formulation of the system (3),we consider the sets of
admissible flow velocities:

Udiv = {v ∈ H1(Ω) | v = g on Γ, divv = 0,weakly inΩ},

and introduce the potential power of the viscous flow throughthe porous medium:

J (ρ ,u) =
ν
2

∫

Ω
∇∇∇u ·∇∇∇u+

1
2

∫

Ω
α(ρ)u ·u−

∫

Ω
f ·u.

In this notation, we end up with the following lower-level problem corresponding to (2):

{
min

u
J (ρ ,u),

s.t.u ∈ Udiv.
(4)

Now we can see that, at least from the approximation viewpoint, the situation in flow
topology optimization is similar to the situation in the topology optimization of trusses.
Namely, for all designsρ almost everywhere inΩ satisfying the inequalityρ ≥ ε, for
someε > 0, the design-to-flow mapping SOL corresponding to the lower-level prob-
lem (4) parameterized byρ is continuous. However, if we allow solid regions to appear
in the domainΩ, the objective function of (4) suddenly becomes discontinuous, and thus
induces a non-closed design-to-flow mapping. Therefore, topology optimization prob-
lems for Stokes fluids are ill-posed in general; however, onecan establish the existence
of optimal solutions at least if we take the upper-level objective functional to be equal to
the lower-level objective functional, which has numerous applications for fluids [BoP03].
(Minimizing the potential power for Stokes fluids corresponds to minimizing the compli-
ance in linear elasticity.)

Now, if we are interested in modeling faster flows, the non-linear convection effects
must be taken into account. In our opinion, the most convenient way to do so is to consider
the following fixed-point problem:

u ∈ argmin
v∈Udiv

{
J (ρ ,v)+

∫

Ω
(u ·∇∇∇u) ·v

}
. (5)

This is the straightforward generalization of the parameterization proposed by Borrvall
and Petersson [BoP03] for the Navier–Stokes equations. As the reader may expect, the
design-to-flow mapping induced by the problem (5) demonstrates a behaviour that is very
similar to the design-to-flow mapping for Stokes flows, except that it may not be single-
valued even for positive designs, and that power dissipation is not a lower-semicontinuous



xvii

function of the design in this case. Thus, regularization ofthe topology optimization
problems for the Navier–Stokes equations is absolutely necessary.

It turns out that if we employ the idea offilter [Sig97, SiP98] (which has become
quite a standard technique in topology optimization, see [Bou01, BrT01] for the rigorous
mathematical treatment)in addition to relaxing the incompressibility constraint (which
is unique to the topology optimization of fluids) we can establish the continuity of the
resulting design-to-flow mapping, and therefore the existence of optimal designs for a
great variety of design functionals [Paper 4, this thesis].Our use of filters significantly
differs from the traditional one in the topology optimization of linearly elastic solids,
owing to the dissimilar design parameterizations in these two cases.

Summary of the appended papers

Paper 1: We consider a mechanically tractable technique forobtaining robust optimal
truss topologies alternatively to stochastic programming, namely, the introduc-
tion of global buckling (linear elastic stability) constraint into the optimiza-
tion problem. This technique has already been considered and interior point
algorithms have been proposed to solve this non-convex optimization prob-
lem [Koč02, BTJK+00]. We show that the global buckling constraint produces
singular feasible sets, which may prevent convergence of standard numerical
methods towards optimal solutions; we also propose a simpleresolution strategy
based on approximation. This manuscript is to appear inStructural and Multi-
disciplinary Optimization, 2004.

Paper 2: All regularization techniques proposed so far for truss topology optimization
address the convergence of globally optimal designs, whichmay not be realis-
tic for this class of large-scale non-convex optimization problems. In this paper
we propose an alternative regularization technique, whichguarantees the conver-
gence of stationary points to perturbed problems towards stationary points to the
original singular problems. Preliminary results have beenpresented at the 18th
International Symposium on Mathematical Programming, 18–22 August 2003,
Copenhagen, Denmark. The manuscript was submitted toInternational Journal
for Numerical Methods in Engineeringin April 2004.

Paper 3: We show that the minimal power dissipation problem for Stokes problems in
porous media proposed in [BoP03] can be extended to include solid impenetra-
ble walls. We demonstrate that, in general, the resulting design-to-flow mapping
is not closed, yet under mild assumptions it is possible to approximate globally
optimal minimal-power-dissipation domains using porous materials with dimin-
ishing permeability. The manuscript was submitted toApplied Mathematics and
Optimizationin August 2003.

Paper 4: We show that a straightforward generalization of the design parameteriza-
tion proposed in [BoP03] for Navier–Stokes flows results in an ill-posed con-
trol problem. We propose a regularization technique based on the relax-
ation of the flow incompressibility requirement and the introduction of a fil-
ter into the design parameterization (the latter now regarded as a standard
computational technique in topology optimization of linearly elastic continua,
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see [Sig97, SiP98, Bou01, BrT01]). The manuscript was submitted toZeitschrift
für Angewandte Mathematik und Mechanikin February 2004. A condensed ver-
sion of the paper is accepted for presentation at the 10th AIAA/ISSMO Multidis-
ciplinary Anlysis and Optimization Conference, August 30–September 1, 2004,
Albany, NY, USA, and will appear in its proceedings.
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Paper 1

ON GLOBALLY STABLE SINGULAR
TOPOLOGIES

Anton Evgrafov ∗

Abstract
We consider truss topology optimization problems including a global stability constraint, which
guarantees a sufficient elastic stability of the optimal structures. The resulting problem is a noncon-
vex semi-definite program, for which nonconvex interior point methods are known to show the best
performance.

We demonstrate that in the framework of topology optimization, the global stability constraint
may behave similarly to stress constraints, that is, that some globally optimal solutions are singular
and cannot be approximated from the interior of the design domain. This behaviour, which may be
called aglobal stability singularity phenomenon, prevents convergence of interior point methods
towards globally optimal solutions. We propose a simple perturbation strategy, which restores the
regularity of the design domain. Further, to each perturbedproblem interior point methods can be
applied.

Key words: Topology optimization – global stability – linear buckling – singularity – semi-
definite programming

1.1 Introduction

THE optimum design of trusses is concerned with the distribution of the available mate-
rial among structural members (bars) in order to carry a given set of loads as efficiently

as possible, subject to mechanical and technological constraints.
In the framework of topology optimization (as opposed tosizingoptimization), the

topology of a truss may change as a result of the optimizationprocess, that is, if a zero
amount of material is allocated to some parts; this possibility significantly enlarges the

∗Department of Mathematics, Chalmers University of Technology, SE-412 80 Göteborg, Sweden, email:
toxa@math.chalmers.se
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design space and, at the same time, increases the computational complexity of the prob-
lem. The former gives the possibility to obtain optimal designs that perform much better
than their “sizing” counterparts [Mic04]; the latter places significant requirements on the
topology optimization algorithms.

In most cases, “standard” nonlinear programming algorithms can be applied directly
to sizing optimization problems. Therefore, one natural approach to topology optimiza-
tion is to introduce a small but positive lower boundε on the bar volumes, converting the
problem into a sizing one [Ach98]. Solving the sequence of sizing problems forε con-
verging to zero produces a sequence of designs, whose limit points one hopes are optimal
in the original topology optimization problem.

Unfortunately, some important constraints produce designdomains that violate stan-
dard nonlinear programming constraint qualifications; in particular, some optimal solu-
tions cannot be reached by sequences of positive feasible designs. The stress singular-
ity phenomenon appearing in topology optimization problems including constraints on
the maximal effective stresses in the structural members isprobably the most studied in
the literature — we mention the works [SvG68, Kir90, ChJ92, RoB94, ChG97, DuB98,
DuS98, Pet01, StS01, PaP02, EPP02, EvP03] just to name a few.Recently, local (Eu-
ler) buckling constraints were shown to exhibit an even worse singular behaviour, in the
sense that singular optimal solutions become disconnectedfrom the rest of the design
region [GCY01].

Despite such an attention, the existing strategies for stress constrained problems may
fail to discover global optima even for very small problems [StS01]. On the other hand,
“real-world” structures may fail not on account of high stresses, but owing to an insuffi-
cient elastic stability [TiG61, Kǒc02]. Rozvany [Roz96] discusses the elastic instability of
the solutions to topology optimization problems with stress and local buckling constraints;
Cheng et al. [GCY01, Example 4] provide an example of such a globally unstable struc-
ture. (The latter reference concludes with a discussion on the inclusion of global stability
constraints.)

Unfortunately, to verify the global stability we need to analyse a static equilibrium
path, which is defined by the structure loaded from the rest state with a given load, for
possible bifurcation points. Being not an easy task even fora given mechanical structure,
it is much more difficult to include the global stability restriction into already complicated
structural optimization problems. Using a linear bucklingmodel and semi-definite pro-
gramming techniques, a mechanically viable yet practically solvable model of global sta-
bility has been introduced by Kočvara [Kǒc02] (see also [BTJK+00]). High-performance
interior point algorithms are proposed to solve the global stability side constrained topol-
ogy optimization problems, which makes it possible to solvehigh-dimensional practical
engineering truss design problems.

However, as we show in this paper, singular optima may also appear in optimization
problems with global stability constraints if we consider problems with several loading
scenarios, which seems very natural in real-life problems.Therefore, interior point meth-
ods, however powerful and modern that they are, applied to such problem instances will
produce erroneous results. Using the continuity of design-to-state mappings established
by Petersson [Pet01], we show that a simple strategy similarto ε-relaxation method for
stress constraints (cf. [ChG97]) can cure the ill-posedness of the feasible region. Further,
the interior point method can be applied to the perturbed problems.
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1.2 Optimal truss design with a global stability constraint

In this section, we introduce the necessary notation and mechanical principles, and dis-
cuss the assumptions on the mechanical structure (utilising a linear buckling model)
that naturally lead to the global stability constraint introduced by Kǒcvara [Kǒc02] (see
also [BTJK+00, SeT00] and references therein). Finally, we state the optimization prob-
lem we are going to analyse.

1.2.1 Mechanical equilibrium

Given positions of the nodes, thedesign(and topology in particular) of a truss can be
described by prescribing for each bari, i = 1, . . . ,m, the amount of materialxi ≥ 0
allocated to this bar. For convenience we collect all the design variables in a vector
x = (x1, . . . ,xm)t ∈ R

m
+. We introduce an index set of the present (or, active) members

in the structureI (x) = { i = 1, . . . ,m | xi > 0}, and denote byI c(x) the complement of
I (x) in {1, . . . ,m}.

For a vectorv ∈ R
n and an index setI = { i1, . . . , i|I | } ⊆ {1, . . . ,n}, we denote byvI

the subvector(vi1, . . . ,vi|I |)
t .

Given a particular designx, the equilibrium status of a truss (up to the rigid displace-
ments, which we do not consider) can be described by specifying for each bari ∈ I (x)
present in the structure a pseudo-force (also known as the normalised stress)si , which is
in fact a stress in the bar times its volume. To simplify the notation we collect all values
si , i = 1, . . . ,m, into one vectorsof dimensionm.

The values of the state variables at equilibrium are determined by the principle of
minimum complementary energy; in our case, it is the following quadratic programming
problem, parameterised byx:

(C )x(f)





min
s

E (x,s) :=
1
2 ∑

i∈I (x)

s2
i

Exi
,

s.t.





∑
i∈I (x)

Bt
i si = f,

sI c(x) = 0,

where the data in the problem has the following meaning:
- E is the Young modulus for the structure material;
- Bi ∈ R

n×1 is the kinematic transformation matrix for the bari;
- f ∈ R

n is the vector of external forces.
We further introduce the vector of nodal displacementsu ∈ R

n as a vector of La-
grange multipliers for the force equilibrium constraints in the problem above. Defining
thestiffness matrixof the structure as

K(x) := ∑
i∈I (x)

xiKi ,

whereKi = EBt
iBi is the bar stiffness matrixfor the bari, one can relate the equilib-

rium displacements directly to the applied force via a system of linear (inu, f) equations:
K(x)u = f. We, however, avoid this simple, and familiar, formulation, because the matrix
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K(x) is usually not positive definite, unlessx > 0 (i.e., when all bars are present in the
structure), leading to a non-uniqueness of the equilibriumdisplacements. On the con-
trary, the optimal solution to(C )x(f) is always unique whenever it exists (i.e., if a static
equilibrium is possible in the linear model); see [Pet01, Theorem 2.1].

For the rest of the paper, we make the blanket assumption thatK(x) is positive definite
for everypositivedesignx; a necessary and sufficient condition for this property is that
K(1) is positive definite. We do not loose any generality from thisassumption, because the
positive definiteness can be achieved by starting from an “enough rich” ground structure
(see, for example [Ach98, Assumption (A5)]).

1.2.2 Linear buckling model

For the reader’s convenience in this subsection we repeat the assumptions on the mechani-
cal structure that lead to the linear buckling model and its representation as a linear matrix
inequality; interested reader is referred to Kočvara [Kǒc02] for more details.

The analysis of the global stability of structural equilibria in its simplest form reduces
to the classification of the critical points of a given energyfunctional as being strict local
minimum points (that is, stable points) or not. We also denote by stable points those that
are limits of sequences of strict local minima [Koč02].

In the linear model the strain energy in the bari is related to displacements via

Wlin
i =

1
2

Exi(Biu)2, i = 1, . . . ,m.

The linear strain energy is convex, and, therefore, local maxima or saddle points are
impossible in this model, leading to the false conclusion that every equilibrium is stable,
if any exists. Therefore, in order to verify the stability ofan equilibrium point we must
employ a nonlinear model, in which the strain energy takes the form

Wnl
i =

1
2

Exi

[
Biu+

1
2
(Biu)2 +

1
2
(Ciu)2 +

1
2
(Diu)2

]2

,

i = 1, . . . ,m,

where the kinematic transformation matricesCi ∈ R
n×1 andDi ∈ R

n×1 account for dis-
placements that are orthogonal to the axial direction of thebar and to each other. (In the
two-dimensional model there is of course only one directionthat is orthogonal to the axial
direction of the bar, whence there will be only one “additional” matrix Ci .)

In order to make the model computationally tractable, yet applicable to a wide
class of structures, the followinglinear buckling assumptionsare supposed to hold
(see [Coo74, BTJK+00, Koč02]):
◦ the displacements depend linearly on the load applied for loads less than the critical
buckling load;
◦ the vector of these linear displacements is orthogonal to the vector of buckling dis-
placements; and
◦ the bar axial forcesExiBiu/ℓi, i = 1, . . . ,m (whereℓi is the length of the bari), remain
constant during the deformation caused by buckling.
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Under these assumptions, the strain energy can be simplifiedto the following expres-
sion [Koč02]:

Wnls
i =

1
2

ut [xiKi +si(C
t
iCi +D

t
iDi)]u, i = 1, . . . ,m,

where we used the fact thatsi = ExiBiu for all barsi. Defining, similarly to the stiffness
matrixK(x), thegeometry matrix

G(s) =
m

∑
i=1

siGi ,

whereGi = Ct
iCi +Dt

iDi is the bar geometry matrix, Kočvara proposes the following sta-
bility constraint to be added to the design problem:

K(x)+G(s) � 0.

(For two symmetric matricesM1,M2 ∈ R
n×n we writeM1 � M2 if and only if the ma-

trix M1−M2 is positive semi-definite.) The matrixK(x)+G(s) is a Hessian matrix for
the simplified nonlinear potential energy functionalΠnls(u) = ∑m

i=1Wnls
i (u)− ftu; it must

be positive semi-definite at every local minimum point. We, however, verify this condi-
tion at the linear equilibrium stateslin , motivating it by the fact that, under linear buckling
assumptions,slin ≈ snls for loads smaller than the buckling load. Arguments for sucha sta-
bility condition can be found in the papers [BTJK+00, Koč02]; we cite [Kǒc02, Lemma 1]
which asserts that if the stiffness matrixK(x) is positive definite, then the global stability
constraint implies that for any 0≤ τ < 1 the loadτf is not a classic buckling load for the
idealised structure (e.g., see [TiG61]).

1.2.3 Optimization problem

GivenN load cases,f1, . . . , fN, we look for a truss of minimal volume that is globally stable
as well as stiff w.r.t. each load case. To guarantee the stiffness we require that the inverse
quantity(fk)tuk = 2E (x,sk), known as the compliance, does not exceed a given amount
c > 0 for each load case. The problem, which differs from the problem considered by
Kočvara [Kǒc02] only by the fact that we consider several load scenarios, can be formally
stated as follows:

(P)





min
(x,s)

w(x) :=
n

∑
i=1

xi ,

s.t.





x ≥ 0,

E (x,sk) ≤ 0.5c,

K(x)+G(sk) � 0,

sk solves(C )x(fk)





k = 1, . . . ,N,

In this form, the problem is an instance of the class of mathematical programs with equi-
librium constraints, or bilevel programming problems [LPR96, OKZ98]. For the prob-
lems in this class, establishing the existence of solutionsis a non-trivial matter; see, for
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example, [LPR96, Example 1.1.2]. In our case, the equilibrium constraints(C )x(fk) do
not, in general, define closed feasible sets in the design space [Pet01, Example 3.1]. How-
ever, combined with the energy boundE (x,sk)≤ 0.5c, the design-to-state mappingx → s
is continuous [Pet01, Theorem 3.1], and the corresponding feasible set is closed. Fur-
thermore, the design vectorx = α1 is feasible (stiff and stable) forα > 0 large enough.
Therefore, the existence of optimal solutions to(P) follows from Weierstrass’ theorem.

We also note the presence of the matrix inequality in the formulation of (P); the
problem therefore is an instance of semi-definite programming as well. It is customary
to solve such problems using interior point techniques; in Section 1.4 we formulate the
approximating problems that can be attacked by nonlinear interior point methods. The
next section, however, explains why interior point algorithms applied to an equivalent
reformulation of the problem(P) as a non-linear semi-definite programming problem,
as it has been proposed in [Koč02, BTJK+00], may produce erroneous results.

1.3 A global stability “singularity phenomenon”

Consider the truss structure shown in Fig. 1.1 (a), which consists of 6 bars and has 2
nodes. We consider the two-dimensional case, and thus the structure hasn = 4 degrees
of freedom, which we collect in one vectoru = (ux(1),uy(1),ux(2),uy(2))t , whereuv( j)
is the displacement of the nodej along the coordinate axisv. The structure is subject
to N = 2 load cases:f1 = (0.0,−1.5,0.0,0.0)t andf2 = (0.0,0.0,0.0,−1.0)t. Owing to
the vertical symmetry of the ground structure and the load cases, we are interested in
symmetric designs only, which allows us to describe the design using onlym= 4 design
variables, collected in one vectorx = (x1,x2,x3,x4)

t (the correspondence between the
design variables and bars is found in Fig. 1.1 (a)). AssumingE = 1, the global stiffness
and geometry matrices of the structure are, respectively (and approximately)

K(x) ≈




7.574·10−3x4 0.0 0.0 0.0
0.0 x1 +x2 +0.485x4 0.0 −x2
0.0 0.0 0.1107x3 0.0
0.0 −x2 0.0 x2 +1.772x3


 ,

G(s) ≈




s1 +s2 +0.485s4 0.0 −s2 0.0
0.0 7.574·10−3s4 0.0 0.0
−s2 0.0 s2 +1.772s3 0.0
0.0 0.0 0.0 0.1107s3


 .

Looking at the buckling mode of this structure for the load case 1, which is shown in
Fig. 1.1 (b), one can immediately see that the buckling displacements are orthogonal to
the linear ones; thus the linear buckling assumptions are most probably verified to some
degree of accuracy. To further investigate the linear buckling hypothesis we consider
the one-parametric family of loadsτf1, 0≤ τ ≤ 1, and plot the graphs of the nodal dis-
placements as functions ofτ both for the fully nonlinear strain model and the simplified
nonlinear strain model, based on the linear buckling hypothesis. The graphs are shown in
Fig. 1.2; we use their similarity as a visual argument in the “proof” of the linear buckling
hypothesis. To give some numbers, we note that atτbuck≈ 0.475 the cosine of the angle
between the linear and the buckling displacements is approximately 1.3 · 10−3, and the
relative change in the axial forces is 0.85%.
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Fig. 1.1: (a) The unstable structure and (b) its buckling mode.

Limiting the compliance to be at mostc = 2, one can verify analytically that the
globally optimal solution to the problem(P) is x∗ = (1.125,0.9,0.0,0.0)t, with optimal
weightw(x∗) = 2.025. At the optimal point, not only are the compliance constraints active
for both load cases but also the matrix inequality for the first load case; namely, there are
three positive eigenvalues ofK(x∗)+G((s1)∗), where(s1)∗ is the solution to(C )x∗(f1),
and one zero eigenvalue. Solving the state problem(C )x(f1) to obtain a closed form
expression fors(x) and making a first-order Taylor expansion of the smallest eigenvalue
of K(x)+ G(s(x)) nearx = x∗ (which, luckily, exists for our example at this point) we
get the expressione(x) ≈ −4.4747x3+ “higher order terms”. Thus, for someε > 0, the
globally optimal solutionx∗ is separated from every feasible (in particular, stable) design
satisfyingx > 0, i.e.,‖x−x∗‖> ε. We see that in the framework of topology optimization
the global stability constraint may behave similarly to stress constraints (the singularity
phenomenon for the latter was first observed by Sved and Ginos[SvG68]); therefore, we
can call this behaviour of the solution to(P) a global stability singularity phenomenon.

In Table 1.1, we show the results of the naïve introduction ofthe positive lower bound
ε > 0 into the problem. [We used an SQP-algorithm to solve this non-smooth nonconvex
problem in 4 variables, which was first converted to a one-level form by explicitly solv-
ing the equilibrium constraint. This is of course unsuitable for realistic problems that will
include large semi-definite constraints and therefore require much more cautious algorith-
mic treatment; we propose one formulation that is suitable for numerical computations in
Section 1.4, see problem(P̂ε).] One can clearly see that the sequence of perturbed op-
timal designs converges to a limit, which is approximately fifteen times heavier than the
(unperturbed) optimum! The interior point method applied to an equivalent formulation
of this problem instance as a non-linear semi-definite program [that is, to the problem
(P̂ε) stated in Section 1.4 forε > 0, but with the perturbation parameterε set to zero]
would produce similar results, because, as we have shown, itis impossible to approximate
the globally optimal solution from the interior of the design domain.

We further note that the semi-definite approximation methodproposed by Ben-
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Fig. 1.2: Nodal displacements calculated (a) for fully nonlinear and(b) simplified non-
linear strain models [x = (1.125,0.9,1,1)t].

ε x∗ w(x∗)
1 (26.993,2.656,1.0,1.0)t 33.649

10−1 (30.08,0.326,0.1,0.1)t 30.810
10−3 (30.13,0.326,0.1,1 ·10−2)t 30.654
10−7 (30.126,0.326,0.1,1 ·10−7)t 30.652

0 (1.125,0.9,0.0,0.0)t 2.025

Tab. 1.1: Results for the naïveε-perturbation approach.

Tal et al. [BTJK+00] cannot reach the optimal solution either. Indeed, letY ⊂ R
m×R

k

be the set formed by the linear matrix inequalities, such that ProjRm(Y ) = {x ∈ R
m |

∃z∈R
k : (x,z)∈Y } ⊂X , whereX is the set of feasible designs for the problem(P).

Then, ProjRm(int(Y )) ⊂ int(X ), and an interior point method applied to the problem
havingY as a feasible set would not converge towards a pointy∗ = (x∗,z∗), for some
z∗ ∈ R

k, becausex∗ 6∈ cl(int(X )).
Finally, we note that the problems including free vibrationconstraints (see [Kǒc02,

Section 6]), which is sometimes substituted for the problems with the global stability
constraint, are convex and, therefore, do not exhibit any singularities. Thus, our example
further illustrates significant differences between the two problems.

1.4 ε-perturbation approach

The instance of the problem(P) given in the previous section clearly demonstrates the
need to relax the stability constraint in order to be able to use the interior point machin-
ery. We employ an idea similar to theε-relaxation of the stress constraints, proposed by
Cheng and Guo [ChG97] (see also [Pet01]). Leto : R++ → R++ be a function such that
limε→+0o(ε)/ε = 0. We introduce the positive lower boundo(ε) on the design variables,
thusrestrictingthe feasible set, while at the same timerelaxingthe stability constraint by
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adding a positive definite matrixεI:

(Pε)





min
(x,s)

w(x)

s.t.





x ≥ o(ε)1,

E (x,sk) ≤ 0.5c,

K(x)+G(sk)+ εI � 0,

sk solves(C )x(fk)





k = 1, . . . ,N.

Using the locally directionally Lipschitz dependence of the state variables on the de-
sign [Pet01, Theorem 3.3], we can easily prove the convergence of a sequence of globally
optimal solutions to{(Pε)} to globally optimal solutions to(P) asε → +0.

Theorem 1.1. Let {εi} be a positive sequence, converging to zero, and further let{xi}
be a sequence of designs that are globally optimal in{(Pεi )}. Then, every limit point̂x
of {xi} (and there exists at least one) is a design that is globally optimal in (P).

Proof. As we have already mentioned, for sufficiently largeα > 0 the designα1 is feasi-
ble in (P); thus it is also feasible in(Pεi ) for all i large enough. Therefore, eventually,
the subsequence{xi} lies in the compact set{x ∈ R

m
+ | w(x) ≤ w(α1)}, which implies

the existence of limit points for the original sequence.
Without any loss of generality, we assume that the original sequence{xi} converges

to x̂. Let {sk
i }, k = 1, . . . ,N, be the corresponding sequence of state vectors. Owing to

the uniform energy boundE (xi ,sk
i )≤ 0.5c, for eachk = 1, . . . ,N, we have that{sk

i }→ ŝk,
where ŝk moreover solves(C )x̂(fk) (cf. [Pet01, Theorem 3.1]). The lower semiconti-
nuity of E (cf. [Pet01, Lemma 2.1]) together with the continuity of theglobal stability
constraint, implies that̂x is feasible in(P). Thus, we have proved the inequality

val(P) ≤ w(x̂) ≤ lim inf
i→∞

val(Pεi ).

On the other hand, letx∗ be a design that is optimal in(P), and consider a sequence
of positive designs{x̂i} := {x∗ + o(εi)1}. Then, owing to [Pet01, Theorem 3.3], there
is a constantC > 0 such that for the distance between the corresponding statevectors
the following inequality holds:‖ŝk

i − (s∗)k‖ ≤ Co(εi), k = 1, . . . ,N. Given the additive
structure of the stiffness and geometry matrices this implies

K(x̂i)+G(ŝk
i )+ εiI � K(x∗)+G((s∗)k)

+K(o(εi)1)−G(Co(εi)1)+ εi I � 0,

k = 1, . . . ,N,

owing to the global stability ofx∗ and the properties ofo(·). Thus we have proved the
reverse inequality:

limsup
i→∞

val(Pεi ) ≥ lim
i→∞

w(x̂i) = val(P),

which concludes the proof. 2

Each problem(Pε) is a sizing optimization problem including matrix inequality con-
straints. In the following proposition, we show that the feasible design set of such prob-
lems is regular, as opposed to the singular feasible set of the original problem(P).
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ε x∗ w(x∗)
1 (1.0,1.0,1.0,1.0)t 6

10−1 (1.08,0.795,2.31·10−2,1.0 ·10−2)t 1.943
10−3 (1.121,0.890,2.24·10−3,1.0 ·10−4)t 2.015
10−4 (1.1246,0.899,2.235·10−4,1.0 ·10−6)t 2.024
10−5 (1.125,0.9,2.235·10−5,1.0 ·10−8)t 2.025

0 (1.125,0.9,0.0,0.0)t 2.025

Tab. 1.2: Results for theε-perturbation scheme.

Proposition 1.2. Every designx that is feasible in(Pε), can be approximated by a se-
quence ofstrictly feasible points, that is, for which the inequality constraints are strictly
satisfied.

Proof. The sequence of designs{αkx}, where{αk} ↓ 1, satisfies the requirements of the
claim. 2

Owing to the inequalityx ≥ o(ε)1 > 0, the stiffness matrixK(x) is positive definite.
Therefore, the equationK(x)uk = fk is uniquely solvable, and the constraint 2E (x,sk) =
(fk)tuk ≤ c can be equivalently written as the linear matrix inequalityconstraint after
an application of the Schur Complement Theorem (this is a standard technique in semi-
definite programming):

K̂k(x) :=

(
c (fk)t

fk K(x)

)
� 0.

Furthermore, denoting the unique equilibrium displacements byuk(x), one can write the
unique solution to(C )x(fk) as a function of the design by using the following expression:
sk
i (x) = ExiBiuk(x). We further define the matrix̂Gk(x) := G(sk(x)) to write thenested

formulation of the problem(Pε), which includes design variables only and is very similar
to the one introduced by Kočvara [Kǒc02]:

(P̂ε )





min
x

w(x)

s.t.





x ≥ o(ε)1,

K̂k(x) � 0,

K(x)+ Ĝ
k(x)+ εI � 0

}
k = 1, . . . ,N.

This formulation contains only simple design and matrix inequality constraints. Fur-
thermore, Proposition 1.2 guarantees that every feasible point can be approximated as a
sequence of strictly feasible points. Therefore, we can apply a nonlinear interior point
method (e.g., see [WSV00, Jar00]) to solve this problem.

One can of course argue that asε goes to zero, there might be “fewer and fewer” inte-
rior points around globally optimal solutions. Implementations of interior point methods,
however, take special precautions to the numerical ill-posedness appearing as the iterates
approach the boundary (cf. [FGW02] and references therein). Therefore, the numerical
problems appearing as “boundary approaches” the current point (i.e., as the perturbation
parameterε decreases) will not prevent convergence of the method.
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In Table 1.2, we summarise the results of theε-perturbation scheme applied to our
numerical example. We have choseno(ε) = ε2; an SQP algorithm has been used for the
numerical solution. [The comments made about the use of an SQP-solver for solving
the problem(P) of course apply to the present situation as well.] One can seethat
the sequence of perturbed optimal designs converges to the singular global optimum, as
Theorem 1.1 predicts.

1.5 Discussion

1.5.1 Stress constraints

In the same way that the stress (and local buckling) constraints alone do not guaran-
tee global stability, globally stable designs might include overstressed bars (cf. [SeT00])
which significantly reduce the life-time of the structure. Therefore, there might be an en-
gineering interest in including stress constraints into the structural problem formulation
(P).

Let σi > 0 be the maximal allowable stress in the bari, i = 1, . . . ,m. The stress
constraints in our notation then take the form|si | ≤ σixi , i = 1, . . . ,m. The easiest way to
add stress constraints in our problem is via a penalty function (see [EvP03]):

g(x,s) = ∑
i∈I (x)

[|si |−σixi ]
2
+

xi
.

In this way, we only need to change the objective function of the problem(P̂ε) to
w(x) + µ(ε)g(x,s(x)), whereµ : R++ → R++ is a penalty parameter. The speed at
which µ(ε) grows must be “synchronised” with the speed at whicho(ε) converges to
zero (see [EvP03] for details).

Stress constraints, however, significantly contribute to the nonconvexity of the result-
ing nested formulation of the problem. Therefore, instead of using the nested formula-
tion together with nonlinear interior point algorithms, one can exploit the convexity of
(x,s) → g(x,s) as well as the linearity of(x,s) → K(x)+G(x,s) by using a semi-definite
approximation approach, as proposed by Ben-Tal et al. [BTJK+00] for the original prob-
lem (P) without stress constraints. Theε-perturbation of the global stability constraint
as well as the treatment of the stress constraints via a penalty function will guarantee the
approximability of the globally optimal solutions from theinterior of the feasible domain.

1.5.2 Global vs. local optimality

Since each of the problems(Pε) is nonconvex, it is still possible to construct numeri-
cal examples demonstrating the non-convergence of theε-perturbation approach in prac-
tice. Such examples are based on the local nature of the nonlinear interior point methods
(see [StS01] for examples of non-convergence for stress-constrained problems solved us-
ing theε-relaxation approach of Cheng and Guo [ChG97]); they do not contradict Theo-
rem 1.1, which makes an assertion about the sequence ofglobalsolutions. Nevertheless,
we believe that the results of this paper contribute to the deeper understanding of the prob-
lems including a global stability constraint, as well as to the construction of more efficient
algorithms for this practically important class of problems.
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A convergence analysis of sequences of local minima and stationary points to vari-
ous sizing approximations of topology optimization problems is one of the topics of our
current research.
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Paper 2

ON THE CONVERGENCE OF STATIONARY
SEQUENCES IN TOPOLOGY
OPTIMIZATION

Anton Evgrafov ∗ and Michael Patriksson †

Abstract
We consider structural topology optimization problems including unilateral constraints arising from
non-penetration conditions in contact mechanics. The resulting non-convex non-smooth problems
are instances of mathematical programs with equilibrium constraints (MPEC), or bi-level programs.
Applying nested (implicit programming) algorithms to thisclass of problems is problematic owing
to the singularity of the feasible set. We propose a perturbation strategy combining the relaxation
of the equilibrium constraint with the restriction of the design domain to its regular part only. This
strategy allows us to attack the problem numerically using standard nonlinear programming algo-
rithms.

We rigorously study the optimality conditions for the original singular problem as well as the
convergence of stationary points and globally optimal solutions to approximating problems towards
respectively stationary points and globally optimal solutions to the original problem. A limited
numerical benchmarking of the algorithm is performed.

Keywords: topology optimization,ε-perturbation, local optimality, stress singularity, MPEC,
smoothing

2.1 Introduction

THE optimum design of trusses is concerned with the distribution of the available mate-
rial among structural members (bars) in order to carry a given set of loads as efficiently

∗Department of Mathematics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden, e-mail:
toxa@math.chalmers.se

†Department of Mathematics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden, e-mail:
mipat@math.chalmers.se
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as possible, subject to mechanical and technological constraints. The distinguishing fea-
ture of structural optimization problems is the presence ofthe complicatingequilibrium
constraint, relatingdesignvariables (i.e., those controlling the material distribution) with
statevariables (e.g., nodal displacements and stresses in the structural members). Ver-
bally, the relation between the two sets of variables can be formulated as follows: the
state variables solve a parametric optimization problem with design variables as parame-
ters. Therefore, the problem belongs to a class of difficult optimization problems known
as mathematical programs with equilibrium constraints (MPEC), or generalized bi-level
programming problems.

In the framework of topology optimization (as opposed tosizingoptimization), the
topology of a truss may change as a result of the optimizationprocess, that is, if a zero
amount of material is allocated to some parts; this possibility significantly enlarges the
design space and, at the same time, increases the computational complexity of the prob-
lem. The former implies the possibility to obtain optimal designs that perform much
better than their “sizing” counterparts [Mic04]; the latter places significant requirements
on algorithms for solving topology optimization problems.

In most cases, “standard” algorithms for differentiable nonlinear programming prob-
lems can be applied directly to sizing optimization problems. Therefore, one natural
approach to topology optimization is to introduce a small but positive lower boundε on
the bar volumes, thus converting the problem into a sizing one. Solving a sequence of
sizing problems forε converging to zero produces a sequence of designs, whose limit
points one hopes are optimal in the original topology optimization problem.

Unfortunately, some important constraints produce designdomains that violate stan-
dard nonlinear programming constraint qualifications; in particular, some optimal solu-
tions cannot be reached as limits of any sequence of strictlypositive feasible designs.
The stresssingularity phenomenon appearing in topology optimization problems with
constraints on the maximal effective stresses in the structural members is probably the
one most studied and the one that has attracted the most recent interest—we mention the
work in [SvG68, Kir90, ChJ92, RoB94, ChG97, DuB98, DuS98, Pet01, StS01, PaP02,
EPP03, EvP03], just to name a few references. Similarly, local (Euler) buckling con-
straints [GCY01], and global (system) stability constraints [Evg04] are known to exhibit
a singular behaviour.

Sizing approximations, studied in the cited papers, are allconcerned with approxima-
tions of theglobally optimal solutions. In computational practice, however, itis impos-
sible to solve the non-convex approximating problems to global optimality. Since most
numerical nonlinear optimization algorithms can only findstationary pointsof the ap-
proximating sizing problems, in this paper we study the limit points of such sequences.
We show that they are indeed stationary (in some sense) in thelimiting (that is, original)
topology optimization problem as well.

2.1.1 Equilibrium problem

We consider a truss withm bars andn degrees of freedom. There arer designated nodes
of the truss that may come into frictionless unilateral contact with rigid obstacles.

Given positions of the nodes, thedesign(and topology in particular) of a truss can
be described by prescribing for each bari, i = 1, . . . ,m, the amount of materialxi ≥ 0
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allocated to this bar. For convenience we collect all the design variables in a vectorx =
(x1, . . . ,xm)t ∈ R

m
+. We introduce an index set of the present (or, active) members in the

structureI (x) = { i = 1, . . . ,m | xi > 0}, and denote byI c(x) the complement ofI (x)
in {1, . . . ,m}.

Given a particular designx, the equilibrium status of a truss can be described by
specifying
◦ a pseudo-forcesi (also known as the normalized stress, which is in fact a stress in the

bar times its volume) for each bari ∈ I (x) present in the structure . To simplify the
notation we collect all valuessi , i = 1, . . . ,m, into one vectors∈ R

m, assumingsi = 0
for i 6∈ I (x);

◦ a contact forceλ j for each of the potential contact nodesj = 1, . . . , r. These values are
collected in a vectorλλλ ∈ R

r
+; and

◦ a displacementuk for each of the structural degrees of freedomk = 1, . . . ,n. These
values are collected in a vectoru ∈ R

n.
The triple(s,λλλ ,u) will be referred to asstatevariables.

For a vectorv ∈ R
q, and an index setI = { i1, . . . , i|I | } ⊆ {1, . . . ,q}, we denote byvI

the subvector(vi1, . . . ,vi|I |)
t .

The values of the state variables for a specific designx are determined using various
energy principles. Therefore, we define the complementary energy of the structure as

E (x,s,λλλ ) :=
1
2 ∑

i∈I (x)

s2
i

Exi
+gtλλλ ,

as well as the linearized strain energy:

Π(x,u) :=
1
2

utK(x)u,

whereK(x) is stiffness matrixof the structure. The latter matrix is defined as

K(x) := ∑
i∈I (x)

xiKi ,

whereKi = EBt
iBi is the local stiffness matrixfor the bari = 1, . . . ,m, Bi ∈ R

1×n is a
kinematic transformation matrix for the bari = 1, . . . ,m, andE is the Young modulus of
the structural material.

For the rest of the paper, we make the blanket assumption thatK(x) is positive defi-
nite for everypositivedesignx; a necessary and sufficient condition for this property is
thatK(1m) is positive definite. We do not loose any generality from thisassumption, be-
cause the positive definiteness can be achieved by starting from an “enough rich” ground
structure.

In these notations the equilibrium state of the structure under the external loadf ∈ R
n

can be characterized using a primal-dual pair of convex quadratic programming problems:

(C )x(f)





min
(s,λλλ )

E (x,s,λλλ ),

s.t.Ctλλλ + ∑
i∈I (x)

B
t
i si = f,

λλλ ≥ 0,

(P)x(f)

{
min

u
Π(x,u)− ftu,

s.t.Cu ≤ g,
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whereg ∈ R
r is a vector of gaps between the contact nodes and rigid obstacles, and

C ∈ R
r×n is a kinematic transformation matrix. We have implicitly assumed that the

matrixC is quasi-orthogonal, that is, thatCCt = I. The problem(C )x(f) is known as the
principle of minimum complementary energy, and the problem(P)x(f) is the principle
of minimum potential energy.

Equivalently, the equilibrium problem can be written as a KKT system for the pair
(C )x(f) and(P)x(f). Define

Q(x) :=




Bt Ct 0

0 0 −C

I 0 −D(x)B


 , q(f) :=



−f
g
0


 ,

and Y := R
m × R

r
+ × R

n, whereB ∈ R
m×n is the matrix with rowsB1, . . . ,Bm, and

D(x) = diag(x) ∈ R
m×m. Then, the pair(s,λλλ ) solves(C )x(f) andu solves(P)x(f) if

and only if the vectory∗ = (st ,λλλ t ,ut)t ∈ Y solves the affine variational inequality prob-
lem AVI(q(f),Q(x),Y) [see, e.g., [FaP03] for the definition]:

[Q(x)y∗ +q(f)]t(y−y∗) ≥ 0, for all y ∈Y.

Either of the equilibrium problem formulations(C )x(f), (P)x(f), or
AVI (q(f),Q(x),Y) has its advantages and disadvantages. For example, the prob-
lem (C )x(f) possesses at most one optimal solution for every designx ∈ R

m
+; at the same

time, the objective functionE is only lower semicontinuous (and may be infinite) for
somex ∈ ∂R

m
+. Both problems have been studied by Patriksson and Petersson [PaP02],

and we summarize some of their results below.

Proposition 2.1. (i) The multi-mappingx ⇉ argmin(C )x(f) is at most single-valued for
everyx ∈ R

m
+, and is single-valued for everyx > 0m. Moreover, this mapping is locally

directionally Lipschitz for everyx ∈ R
m
+.

Furthermore, the mappingx ⇉ argmin(C )x(f)∩{(s,λλλ )∈ R
m×R

r
+ | E (x,s,λλλ)≤C}

is continuous for every constant C> 0.
(ii) The multi-mappingx ⇉ argmin(P)x(f) is single-valued for everyx > 0m. Moreover,
this mapping is locally directionally(upper) Lipschitz for everyx ∈ R

m
+.

(iii ) The multi-mappingx ⇉ SOL(q(f),Q(x),Y) is closed and locally directionally(up-
per) Lipschitz for everyx ∈ R

m
+.

Our ultimate goal in this paper is to establish stationary conditions that must be ver-
ified by limit points of certain sequences of positive designs. We cannot use the equi-
librium formulation given by the problem(C )x(f) for this purpose, because its objec-
tive violates such a basic condition for sensitivity analysis as continuity. Neither the
problem(P)x(f) is suitable for us, because the design-to-state mapping it induces is not
closed. Therefore, we will use the primal-dual characterization of the equilibrium given
by AVI(q(f),Q(x),Y) in the sequel.

We close the subsection by defining the feasible set generated by the equilibrium
constraint:

F (f) := {(x,s,λλλ ,u) ⊂ R
m
+×R

m×R
r
+×R

n | (s,λλλ ,u) ∈ SOL(q(f),Q(x),Y)}. (2.1)
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2.1.2 Weight minimization problem

We use a stress constrained weight minimization problem of atruss subject to unilateral
frictionless contact with some rigid obstacles as a representative of the difficult structural
optimization problems. To skip one index and simplify the notation we consider a single
load case only; this does not affect the applicability of ourresults to multiple load cases
in any way.

The weight minimization problem can be written as follows:

(W )





min
(x,s,λλλ ,u)

w(x) :=
m

∑
i=1

xi ,

s.t.(x,s,λλλ ,u) ∈ F (f),

σ ixi ≤ si ≤ σ ixi , i = 1, . . . ,m,

whereσ i ≤ 0 andσ i ≥ 0 are the stress bounds in compression and tension for the bar
i = 1, . . . ,m, andF (f) is given by (2.1).

The results of the present paper are of course applicable to awider class of problems
than (W ). For example, more general objective functions can be considered as long
as they are reasonably regular [differentiable, or Lipschitz continuous w.r.t.(x,s,λλλ ,u)];
additional constraints may be considered [such as bounds onadmissible displacements,
local buckling constraints, or global stability constraints]. However, to keep the notation
simple we do not discuss such straightforward generalizations in detail.

2.2 Previous results

2.2.1 ε-perturbation of Cheng and Guo and variations

The so-calledε-perturbation of structural topology optimization problems, or approxima-
tion with a sequence ofsizingoptimization problems, has become a classic topic. Conver-
gence results of this type allow one, at least in principle, to compute optimal solutions to
structural topology optimization problems by solving a sequence of smooth non-convex
approximating problems. Such approximations do not sufferfrom many numerical diffi-
culties possessed by the original model problem(W ), so that efficient solvers are readily
available.

For some truss topology optimization problems (such as, e.g., compliance minimiza-
tion, possibly with so-called “strong” stress constraints[Ach98]) the naïve replacement
of the lower bound 0 on design variables with a small positivevalueε > 0 tending to
zero (whence the name—ε-perturbation) is sufficient. Such a strategy has been rigor-
ously studied for trusses, without (Achtziger [Ach98]) andwith (Patriksson and Peters-
son [PaP02]) unilateral constraints.

On the other hand, there are many other classes of topology optimization problems
including important mechanical constraints (e.g., stressconstraints [SvG68], local buck-
ling constraints [GCY01], and global buckling constraints[Evg04]) where the simple
strategy outlined above leads to erroneous results, owing to the complicated singular
structure of the design domain near the points where the truss topology changes. His-
torically, the study of singularity phenomena for truss topology optimization problems
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started with problems including stress constraints only. Sved and Ginos [SvG68] ob-
served that such problems may have singular solutions, and the properties of the feasible
region were further investigated by Kirsch [Kir90], Cheng and Jiang [ChJ92], and Roz-
vany and Birker [RoB94]. Cheng and Guo [ChG97] were the first to propose a more so-
phisticated restriction-relaxation procedure, where notonly lower bounds but also stress
constraints were perturbed. They established the convergence of the optimal values of the
perturbed problems to the optimal value of the original problem, while Petersson [Pet01]
(using the continuity of certain design–to–state parameterized mappings) has established
the convergence of optimal solutions. Since then, theε-perturbation has been extended
by many authors in many ways: Duysinx and Bendsøe [DuB98] andDuysinx and Sig-
mund [DuS98] considered continuum structures; Guo et al. [GCY01] included local buck-
ling constraints into the problem; Patriksson and Petersson [PaP02] generalized the result
for trusses including unilateral constraints; Evgrafov etal. [EPP03] considered the pos-
sibility of stochastic forces; and Evgrafov [Evg04] studied the linearized elastic stability
constraint.

Despite the clear advantage of approximating the nonsmooth, singular optimization
problem with a sequence of smooth and regular ones, all the sizing approximations con-
sidered above suffer from the same difficulty. While the underlying theoretical results
are concerned with the approximation of thegloballyoptimal solutions, in computational
practice it is impossible to solve the non-convex approximating problems to global opti-
mality. There are also negative results regarding this issue: theε-perturbation approach
may fail to find a globally optimal solution even for topologyoptimization problems with
only 2 design variables (see [StS01])!

The analysis of the convergence of stationary points to the approximating problems
towards stationary points of the limiting (that is, original) problem is difficult; for ex-
ample, the dependence of the equilibrium state of the structure upon the design near the
points where the topology changes is nonsmooth, and even non-Lipschitz continuous.

In constructing a newε-perturbation we try to address these above issues, concentrat-
ing on the convergence ofbothglobally optimal solutions and stationary points towards
the respective limits.

2.2.2 The extended formulation of Stolpe and Svanberg

Recently, Stolpe and Svanberg [StS03] proposed an alternative method for the solution of
the truss topology optimization problems including stressand local buckling constraints,
which is based on the Karush–Kuhn–Tucker (KKT) formulationof the equilibrium con-
straint. In this formulation the state variables are treated equally to the design variables,
and artificial lower bounds on the design are unnecessary. Inthe absence of unilateral
constraints, the formulation is suitable for any SQP algorithm, and for some numerical
examples Stolpe and Svanberg report that such an algorithm has a better performance than
an ε-perturbation based approach. Later, a branch-and-cut algorithm based on this for-
mulation has been developed [Sto03, Paper D]; furthermore,Achtziger [Ach03] has made
the conjecture that every globally optimal solution to a topology optimization problem in-
cluding stress and local buckling constraints (but not including unilateral constraints) is a
KKT point in the extended formulation.

Unfortunately, the KKT formulation of the lower level equilibrium problem for trusses
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with unilateral constraints includes complementarity conditions, which are known to vi-
olate standard nonlinear programming constraint qualifications. Therefore, the extended
formulation cannot be used directly to solve topology optimization problems for trusses
in contact with rigid obstacles, or including tensile-onlymembers (ropes or cables).

We therefore propose a new approximation scheme, which allows for the violation
of the lower-level equilibrium conditions, and thus does not include the complicating
complementarity constraints.

2.3 A smoothing method for a general MPEC problem

Among iterative algorithms for MPEC problems, ourε-perturbation method is special in
that it combines relaxation (of the equilibrium conditions) and restrification (of the design
space). Most iterative algorithms for general MPEC problems belong to the relaxation
category, wherein constraints are penalized or complementarity conditions are smoothed.
In the latter category, the method of Facchinei et al. [FJQ99] has relations to ours that are
interesting to explore, in order to analyze the strength of our convergence results. Due to
the stronger regularity properties of the problem considered in [FJQ99], their convergence
results are shown to be stronger; we then seek to explain why local, iterative methods for
our problem are unlikely to yield better convergence characteristics than those that we
reach in this paper.

2.3.1 The problem

Consider the problem to

(M )





min
(x,y)

f (x,y),

s.t.

{
x ∈ X,

ysolvesVI(F(x, ·),C(x)),

where f : R
n+m 7→ R is continuously differentiable,X ⊂ R

n is nonempty and compact,
and, for eachx ∈ X and for a continuously differentiable functionF : R

n+m 7→ R
m,

VI(F(x, ·),C(x)) denotes the variational inequality defined by the pair(F(x, ·),C(x)),

y ∈C(x); F(x,y)t(z−y) ≥ 0, z∈C(x),

where

C(x) = { y ∈ R
m| gi(x,y) ≥ 0, i = 1, . . . , ℓ} ,

g : R
n+m 7→ R

ℓ being twice continuously differentiable and concave in thesecond argu-
ment.

For the lower-level VI, we assume thatC(x) 6= /0 for all x in an open setA containingX,
thatC(x) is uniformly compact onA (with C(x)⊂ B for some open bounded setB⊂R

m),
that F(x, ·) is uniformly strongly monotone onB for all x ∈ A, and that for every pair
(x,y) for which x ∈ X and y solves VI(F(x, ·),C(x)), the partial gradients∇y gi(x,y),
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i ∈ I (x,y) := { i = 1, . . . , ℓ | gi(x,y) = 0}, are linearly independent (that is, the linear
independence CQ, LICQ).

By these assumptions, it is clear that VI(F(x, ·),C(x)) has a unique solution for each
x ∈ X. By the concavity ofg and the LICQ, each lower-level VI is equivalent to the
existence of a (unique) multiplier vectorλλλ ∈ R

ℓ such that

F(x,y)−∇y g(x,y)λλλ = 0m, (2.2a)

0ℓ ≤ g(x,y) ⊥ λλλ ≥ 0ℓ (2.2b)

holds. (That these KKT conditions are necessary follows by the LICQ; sufficiency fol-
lows from concavity.) We can therefore replace the lower-level problem VI(F(x, ·),C(x))
in the problem (M ) by (2.2). This non-smooth reformulation has been utilizedin the
development of iterative algorithms. Since it, however, does not satisfy any CQ, due to
the presence of the complementarity conditions, it is tempting to consider perturbations
of the KKT system. Let

H0(x,y,z,λλλ ) :=




F(x,y)−∇y g(x,y)
g(x,y)−z

−2min(z,λλλ)


 , (x,y,z,λλλ ) ∈ R

n+m+2ℓ.

The KKT system (2.2) is equivalent to the statement thatH0(x,y,z,λλλ )0m+2ℓ. We there-
fore write

(P)





min
(x,y)

f (x,y),

s.t.

{
x ∈ X,

H0(x,y,z,λλλ) = 0m+2ℓ,

which is an equivalent, non-smooth, restatement of (M ), in the sense that the two prob-
lems share global as well as local optimal solutions inx (cf. [FJQ99, Proposition 1]).

2.3.2 A smooth approximation

Facchinei et al. [FJQ99] consider a smooth reformulation ofthe problem (P), as follows.
We introduce the functionφ : R

2 7→ R by

φµ(a,b) :=
√

(a−b)2+4µ2− (a+b), (a,b) ∈ R
2.

For this function, we have that ([FJQ99, Proposition 2])

φµ(a,b) = 0 ⇐⇒ a≥ 0,b≥ 0,ab= µ2.

For µ = 0, φµ(a,b) = −2min(a,b); for µ 6= 0, φµ is in C∞; and for every pair(a,b),
limµ→0 φµ(a,b) = −2min(a,b). The functionφµ therefore serves as a smooth pertur-
bation of the min function. We consider replacing the operator H0 in the problem (P)
above with the smooth operatorHµ , defined by

Hµ(x,y,z,λλλ) :=




F(x,y)−∇y g(x,y)
g(x,y)−z
ΦΦΦµ(z,λλλ)


 , (x,y,z,λλλ ) ∈ R

n+m+2ℓ,
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where
ΦΦΦ(z,λλλ ) := (φ(z1,λ1), . . . ,φ(zℓ,λℓ)),

thus defining the smoothing problem

(Pµ)





min
(x,y)

f (x,y),

s.t.

{
x ∈ X,

Hµ(x,y,z,λλλ) = 0m+2ℓ.

While (P0) coincides with the non-smooth problem (M ), the problem (Pµ ) for
µ 6= 0 is a smooth optimization problem. We denote the feasible set to (Pµ ) by
Fµ ⊂ R

n+m+2ℓ. The functionHµ has favourable properties: it is not only locally Lip-
schitz continuous for everyµ but also regular (in the sense that the directional derivative
exists in all directions and equals the Clarke derivative; cf. [FJQ99, Lemma 1]), and its
generalized Jacobian with respect to(y,z,λλλ) is non-singular for everyµ and feasible
point of the problem (Pµ ), cf. [FJQ99, Proposition 3]. Further, for everȳx ∈ X and
µ ∈ R there exists a unique point inFµ such that itsx-part equals̄x, and this vector,

w̄µ := (x̄,yµ(x̄),yµ(x̄),λλλ µ(x̄)), (2.3)

is continuous inµ . Based on these properties, Facchinei et al. [FJQ99, Theorem 1] estab-
lish that the feasible setsFµ of the problem (Pµ ) are non-empty and uniformly compact;
this is crucial, because then by the continuity off , the problems (Pµ ) have optimal solu-
tions.

2.3.3 Optimality conditions

We develop the optimality conditions of the problem (Pµ ). The first-order optimality
conditions for the problem (Pµ ) can be written as follows: withL(x,y,λλλ) := F(x,y)−
∇y g(x,y)λλλ , if (x,y,z,λλλ ) is a locally optimal solution to (Pµ ), then there exist vectors
(θ ,ρ ,σ) ∈ R

m+2ℓ ands∈ NX(x)×R
m+2ℓ such that (cf. [FJQ99, Theorem 2])

0n+m∈ ∇ f (x,y)+∇L (x,y,λλλ )θ +∇(g(x,y)−z)ρ +
ℓ

∑
i=1

∂φµ(zi ,λi)σi +M‖(1,θ ,ρ ,σ)‖s,

(2.4)
whereM is a Lipschitz constant for( f ,Hµ) around(x,y,z,λλλ ). Since the multiplier for
∇ f (x,y) is non-zero (it then equals 1, without any loss of generality), this condition is
stronger than the Fritz–John conditions, and is in fact the KKT conditions for the problem.
While one may then refer to this condition forµ = 0 as the KKT conditions for the MPEC
problem (M ), Facchinei et al. [FJQ99] refer to it is asstrong C-stationarity(SCS).

2.3.4 Global convergence

A global version of the smoothing algorithm is immediate: with an arbitrary choice of
starting pointw0 := (x0,y0,z0,λλλ 0), and{µτ} being any sequence of non-zero numbers
with limτ→∞ µτ = 0, we define the sequence{wτ} to be given by globally optimal solu-
tionswτ := (xτ ,yτ ,zτ ,λλλ τ) to the problems (Pµτ ).
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For this algorithm, it is not difficult to establish (cf. [FJQ99, Theorem 3]) that the
sequence{wτ} is bounded and that every limit point is a globally optimal solution to
(P); it follows from the uniform compactness of the feasible setsFµτ and the continuity
of the trajectory defined bȳwµ in (2.3).

2.3.5 Convergence to stationary points

A more practical algorithm is obtained by replacing, in the algorithm above, global op-
timality in (Pµτ ) of the vectorwτ by stationarity in the sense of the KKT system (2.4).
For this algorithm, it is shown in [FJQ99, Theorem 4] that thesequence{wτ} of KKT
points in (Pµτ ) is bounded and every limit point is an SCS point in (P). A crucial part of
the proof is the continuity property of any sequence of KKT points in the problem (Pµ )
asµ tends to zero (cf. [FJQ99, Proposition 4]). The proof of the convergence result also
establishes the important result that the sequence{(θ τ ,ρτ ,σ τ)} of KKT multipliers is
bounded. This is a crucial part of any analysis of the stationarity property of a limit point.

A yet more practical algorithm is also devised, in which the sequence{wτ} of vectors
is allowed to be defined by near-feasible and approximate KKTpoints. In other words,
in each iterationτ, the distance from the vectorwτ to the feasible setFµ of the problem
(Pµτ ) is bounded byετ > 0, and the Euclidean length of the vector defining the right-hand
side of the inclusion (2.4) is also bounded above by this value. Theorem 5 in [FJQ99] then
states that if{ετ} ↓ 0 as{µτ} → 0, then the sequence{wτ} of approximate KKT points
is bounded and every limit point is, again, a SCS point in (P).

The latter algorithm was coded and tested in [FJQ99] on some small and medium-size
MPEC problems; each problem (Pµτ ) was then solved by utilizing an SQP algorithm.
They report that it compares favourably with, for example, the implicit programming
algorithms proposed in [Out94, OuZ95].

2.4 A new smoothing approach to topology optimization

2.4.1 Motivation

The smoothing algorithm described in Section 2.3 may unfortunately not be applied to
truss topology optimization problems, out of which(W ) is a typical example. The lat-
ter problem violates several assumptions that are vital forthe smoothing algorithm of
Facchinei et al. [FJQ99], the most important being the lack of the uniform strong mono-
tonicity by the lower-level problem AVI(q(f),Q(x),Y). In addition, some of the variables
(that is,u) may not be uniformly bounded, and upper-level joint constraints (such as stress
constraints) are essential in the problem(W ).

In order to overcome the difficulties outlined we introduce an alternative perturba-
tion scheme for solving stress constrained weight minimization problems for trusses in-
cluding unilateral constraints. It resembles theε-perturbation approach of Cheng and
Guo [ChG97] (cf. Section 2.2.1) by the fact that we introducepositive lower bounds on
the design variables, thus restricting the design domain. There are important differences,
however: instead of relaxing the technological constraints (e.g., stress constraints in the
original paper [ChG97]) we relax the equilibrium constraint; to accomplish this, we for-
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mulate the optimization problem usingboth the design and the state variables, similarly
to the extended formulation of Stolpe and Svanberg [StS03] (cf. Section 2.2.2).

2.4.2 Relaxed equilibrium problem

Formally, fix an arbitraryε ≥ 0 and consider the following perturbation of the feasible set
F (f) (cf. (2.1)):

F ε (f) := {(x,s,λλλ ,u) ∈ R
m
+×R

m×R
r
+×R

n | x ≥ o(ε)1m,

E (x,s,λλλ )+ Π(x,u)− ftu ≤ ε
Bts+Ctλλλ = f,

Cu ≤ g},
whereo(ε) is a positive function ofε such that limε↓0o(ε)/ε = 0. Of course, the weak
duality theorem for convex problems implies thatF 0(f) = F (f); for positive values of
ε the “state” variables(s,λλλ ,u) (which in the extended formulation play a role equal to
that of the design variablesx, and do not correspond to an equilibrium state of the truss
anymore) are required to be primal-dual feasible, but onlyε-optimal.

From the theoretical point of view, allowing forε-optimal solutions to the lower-level
equilibrium problem means that we “regularize” the bi-level programming problem(W ),
in the sense defined by [LiM97]; this will allow us to obtain the convergence of both
globally optimal solutions and stationary points (see below). At least of equal importance
is the practical interpretation of the method, where the relaxation parameterε comes from
the approximate numerical solution of the equilibrium problem (e.g., using the existing
finite element software).

Finally, for everyε > 0 we consider the followingperturbedversion of the stress
constrained weight minimization problem:

(W ε)





min
(x,s,λλλ ,u)

w(x),

s.t.(x,s,λλλ ,u) ∈ F ε(f),

σ ixi ≤ si ≤ σ ixi , i = 1, . . . ,m.

Remark 2.2. In the multiple-load case, the problem(W ε) will have several constraints of
the form(x,sk,λλλ k,uk) ∈ F ε(fk), wherefk is a vector of external forces corresponding to
the load casek, and the triple(sk,λλλ k,uk) ∈ R

m×R
r
+×R

n represents the “state” variables
for the load casek, k = 1, . . . , ℓ.

In the rest of the section, we study the theoretical properties of the point-to-set map-
ping ε ⇉ F ε (f) which will allow us to establish the convergence of globallyoptimal
solutions as well as stationary points asε ↓ 0.

2.4.3 Properties of ε ⇉ F ε(f)

In this section we show that the point-to-set mappingε ⇉ F ε (f) enjoys most of the nice
properties one can expect from a point-to-set mapping: under some mild conditions it has
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compact (although, unfortunately, non-convex) images, and is closed and lower semicon-
tinuous at zero [AuF90, Chapter 1]. Furthermore, in Proposition 2.7 we demonstrate a
continuity of the design-to-force “sub-mapping”x ⇉ (s,λλλ ) (see Proposition 2.7 for the
formal definition), the property originally established for the unperturbed feasible setF
by Petersson [Pet01] for trusses without unilateral constraints, and later generalized by
Patriksson and Petersson [PaP02].

We formulate the results as a sequence of short propositions.

Proposition 2.3 (Closed images).For eachε ≥ 0 the setF ε (f) is closed.

Proof. The claim follows easily from the lower semicontinuity ofE (·, ·, ·) (cf. [PaP02,
Lemma 3.2]) together with the continuity of the other functions definingF ε(f), ε ≥ 0.2

Proposition 2.4 (Lower semicontinuity). The multi-functionε ⇉ F ε (f) is lower semi-
continuous at zero.

Proof. Let (x,s,λλλ ,u)∈F (f). Then,{(x+o(ε)1m,s,λλλ ,u)}∈F ε (f) for all enough small
ε > 0, where1m = (1, . . . ,1)t ∈ R

m
+. 2

Remark 2.5. The same construction establishes the lower semicontinuity of the multi-
functionsε → (F ε ∩K), where (independent ofε) the closed setK may represent stress,
stiffness, or global stability constraints, or any combination thereof.

We stress that the classicε-perturbation of Cheng and Guo [ChG97] results in a l.s.c.
mapping including design variablesonly; i.e., there might be some displacement vectors
corresponding to the limiting design that cannot be approximated with the displacements
corresponding to positive designs.

Proposition 2.6 (Closedness).The multi-functionε ⇉ F ε(f) is closed at zero.

Proof. The claim follows from the lower semicontinuity ofE (·, ·, ·) (cf. [PaP02,
Lemma 3.2]) together with the continuity of the other functions, defining the setsF ε(f),
ε ≥ 0. 2

Proposition 2.7 (Continuity of the design–to–force mapping). Let {εk} be a positive
sequence, converging to zero. Assume that(xk,sk,λλλ k,uk) ∈ F εk(f), and that{xk} → x.
Suppose further that for each k= 1,2, . . . , i = 1, . . . ,m, the stress constraintsσ ix

k
i ≤ sk

i ≤
σ ixk

i constraints are satisfied. Then,{(sk,λλλ k)}→ (s,λλλ), this limit vector solves(C )x(f),
and there is a vectoru solving(P)x(f). [In particular, (x,s,λλλ ,u) ∈ F .]

Proof. The additional stress constraints imply the uniform boundedness of the sequence
of complementary energies{E (xk,sk,λλλ k)}, as has been established in [PaP02]. There-
fore, the sequence{(sk,λλλ k)} is bounded, owing to the coercivity ofE , which is locally
uniform with respect to the design. Let(s,λλλ ) be an arbitrary limit point of this sequence.
The lower semicontinuity ofE and the uniform boundedness of energies yield that

E (x,s,λλλ ) ≤ lim inf
k→∞

E (xk,sk,λλλ k) < ∞.
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Therefore, the problem(C )x(f) is feasible and thus possesses a unique optimal solution
(cf. [PaP02, Theorem 2.1]).

Let now(s̃, λ̃λλ ) be an arbitrary force distribution that is feasible in(C )x(f). Then, from
theεk-optimality of (sk,λλλ k) and feasibility of(s̃, λ̃λλ ) in (C )xk(f) it follows that

E (x,s,λλλ) ≤ lim inf
k→∞

E (xk,sk,λλλ k) ≤ lim
k→∞

E (xk, s̃, λ̃λλ)+ εk = E (x, s̃, λ̃λλ),

where the equality follows from the continuity ofE (·, s̃, λ̃λλ) (cf. [PaP02, Lemma 3.2]).
Therefore,(s,λλλ) is optimal in(C )x(f). It follows that(s,λλλ) must be the only limit point
of the sequence{(sk,λλλ k)}.

The existence of at least one dual optimal solutionu to (P)x(f) follows. 2

Proposition 2.8 (Compact images).For everyε > 0 and every constant M> 0 the set
{(x,s,λλλ ,u) ∈ F ε | ‖x‖ ≤ M } is compact.

Proof. The functionE (x,s,λλλ ) + Π(x,u) − ftu is continuous as well as coercive in
(s,λλλ ,u), uniformly in x for all x ≥ o(ε)1m, with ‖x‖ ≤ M. 2

In the subsections that follow we apply the continuity results we have just established
to show that theε-perturbed problems can indeed be used as approximating problems for
smallε, both if we are interested in globally optimal solutions andstationary points.

2.4.4 Regularity of (W ε)

To be of practical use, every approximating problem(W ε) should be easier to solve than
the original problem(W ). Clearly, the functions defining the constraints of(W ε ) are con-
tinuously differentiable on some neighbourhood of the feasible setF ε for everyε > 0;
therefore, the smooth Fritz–John conditions must hold at optimal points. The follow-
ing (purely academic) example shows that the feasible sets of the optimization problems
(W ε) do not in general verify MFCQ, and therefore we cannot expectthe KKT conditions
to be satisfied at every point of local minimum. On the other hand, in Proposition 2.10
we show that under rather mild additional conditions MFCQ isverified, so that standard
nonlinear programming algorithms can be used to find locallyoptimal solutions of(W ε).

Example 2.9. Consider a simple 1-bar structure shown in Figure 2.1 that ismade of (aca-
demic) material with the Young modulusE = 1. Let f = 3, g = 2, ε = 1, σ = (2−

√
2),

and consider the point of global minimum(x,s,λ ,u) = (1,2−
√

2,1+
√

2,2). At this
feasible in(W ε) point the active constraints are:





s+ λ = f ,

−x≤−ε2,

u≤ g,

s≤ σx,

s2

2x
+gλ +

1
2

u2x− f u≤ ε

⇔





s+ λ = 3,

−x≤−1,

u≤ 2,

s≤ (2−
√

2)x,

s2

2x
+2λ +

1
2

u2x−3u≤ 1.
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It is easy to verify that there is no directiond ∈ R
4 such that





(
0 1 1 0

)
d = 0,



−1 0 0 0
0 0 0 1
−σ 1 0 0


d ≤ 03,

(
− s2

2x2 + u2

2
s
x g xu− f

)
d < 0,

so that MFCQ is violated at(x,s,λ ,u).
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Fig. 2.1: 1-bar truss structure.

While MFCQ is violated at the point of global minimum in the Example 2.9, this does
not prevent the KKT conditions to hold at this point, becausethe more basic Abadie’s CQ
is still verified. While for realistic trusses the latter CQ is close to impossible to verify,
the following result resolves the problem of verifying a CQ in most practical situations.

Proposition 2.10. Let (x,s,λλλ ,u) be a point of local minimum for(W ε), ε > 0. Suppose
that any of the following conditions are verified:
(i) E (x,s,λλλ )+ Π(x,u)− ftu < ε;
(ii) r = 0, that is, no rigid obstacles are present;
(iii ) u is not the equilibrium displacement corresponding tox.
Then, Abadie’s CQ hold at(x,s,λλλ ,u). In particular, the KKT-conditions for(W ε) hold
at this point.

Proof. Suppose that(i) holds. Then the relaxed equilibrium constraint is passive,and the
feasible set of the problem(W ε) is locally around(x,s,λλλ ,u) defined by affine constraints
only, which guarantees Abadie’s CQ.

Alternatively, assume that there are no rigid obstacles, i.e., (ii) holds. Consider the
directiond = (αx,0m,0r ,−βu), whereα > 0, β ≥ 0 are parameters to be determined.
This direction isfeasiblewith respect to all linear constraints of(W ε). Furthermore, an
easy calculation shows that

∇[E (x,s,λλλ)−Π(x,u)− ftu]td = −α[E (x,s,λλλ)−Π(x,u)]−β [2Π(x,u)− ftu] < 0,
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for someα > 0, β ≥ 0, owing to the inequality

0 < ε = [E (x,s,λλλ )−Π(x,u)]+ [2Π(x,u)− ftu].

Thus, the MFCQ is verified, implying Abadie’s CQ.
At last, assume that(iii ) is verified. Similarly to the case(ii) we can show that the

directiond = (αx,0m,0r ,β [u(x)−u]) satisfies the requirements of MFCQ for someα >
0, β ≥ 0, whereu(x) is the equilibrium displacement, corresponding tox. 2

Naturally, all three assumptions of Proposition 2.10 are violated by Example 2.9.
It is interesting to note that topology optimization problems for trusses without unilat-

eral constraints are always qualified in the sense of Mangasarian–Fromowitz; it is proba-
bly even more interesting to see that the violation of MFCQ may happen even for “nice”
feasible points that verify a strict complementarity assumption for MPEC problems (like
the point considered in Example 2.9).

2.4.5 Optimality conditions for (W )

Motivated by the description of the feasible sets of the approximating problems(W ε),
ε > 0, in terms of differentiable inequalities which lead to at least Fritz–John necessary
optimality conditions (see Example 2.9 and Proposition 2.10), we may use the same de-
scription withε = 0 in order to develop non-smooth necessary optimality conditions for
(W ). The biggest difficulty we encounter is the loss of continuity (not to mention differ-
entiability) of the complementary energy functionE . Indeed, if we look at the constraint
involving E :

E (x,s,λλλ )+ Π(x,u)− ftu ≤ 0, (2.5)

we note that the function on the left-hand side of the inequality is neither Lipschitz con-
tinuous nor convex, and therefore the classic subdifferentials of such functions are not
defined. On the other hand, we may use the structure of this function: it is continuously
differentiable everywhere except whenx ∈ ∂R

m
+, and it is a sum of convex and Lipschitz

continuous functions. Therefore, the notion oflimiting subdifferential∂a is well defined
for such functions (see [Mor76]). In particular, it holds that

∂a[E (x,s,λλλ )+ Π(x,u)− ftu] = ∂aE (x,s,λλλ )+ ∇[Π(x,u)− ftu].

As a result, we obtain the following non-smooth Fritz–John type optimality conditions.

Proposition 2.11. Let (x,s,λλλ ,u) be a point of local minimum for(W ). To simplify nota-
tion we write all inequality and equality constraints of(W ), except the relaxed equilib-
rium, constraint in the form:

Ai(xt ,st ,λλλ t ,ut)t ≤ bi ,

Ae(xt ,st ,λλλ t ,ut)t = be,

whereAi ∈ R
Ni×(m+m+r+n), Ae ∈ R

Ne×(m+m+r+n), bi ∈ R
Ni , andbe ∈ R

Ne are matrices
and vectors of appropriate sizes. Then, the non-smooth Fritz–John optimality conditions
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hold at(x,s,λλλ ,u), that is, there are vectorsµ i ∈ R
Ni
+ , µe ∈ R

Ne, and numbersµ0,µ ∈ R+

not all equal to zero such that:

0m+m+r+n ∈ µ0∇w(x)+At
i µ i +At

eµe+ µ [∂aE (x,s,λλλ)+ ∇(Π(x,u)− ftu))], and

0 = µ t
i [Ai(xt ,st ,λλλ t ,ut)t −bi ].

(2.6)

In general, we cannot expect the KKT conditions to be satisfied at every point of local
minimum, because the problem(W ) is usually much less regular than its approximation
(W ε ), ε > 0, and even the latter problem may violate the standard nonlinear programming
constraint qualifications (see Example 2.9). In fact, in Problem 2, Subsection 2.5.2, we
obtained a locally optimal solution that satisfies the system (2.6) only withµ0 = 0. It is
sad to note that this example does not contain any contact conditions, and the optimal
solution we obtained is non-singular (in particular, no bars were removed), yet it is only a
FJ point in our formulation. On the positive side, at least ifunilateral condition are absent,
the conditions (2.6) imply the fulfillment of the KKT conditions for a related optimization
problem that has a clear engineering interpretation. Namely, the stationary point obtained
is a KKT point for a “semi-fixed topology” optimization problem, in which the given
subset of the bars is removed from the ground structure; formally, the following result
holds.

Proposition 2.12. Assume that the unilateral constraints are absent and that the point
(x̂, ŝ, û) ∈ R

m
+ ×R

m×R
n satisfies the FJ optimality conditions(2.6). Let Î = { i =

1, . . . ,m | x̂i = 0}. Then, the point(x̂, ŝ, û) is a KKT-point for the following problem:

(Ŵ )





min
(x,s,u)

w(x)

s.t.Bts= f,

E (x,s,λλλ )+ Π(x,u)− ftu = 0,

σ ixi ≤ si ≤ σ ixi , i ∈ {1, . . . ,m} \ Î ,

xi = si = 0, i ∈ Î .

Proof. Clearly the point(x̂, ŝ, û) is feasible in the problem(Ŵ ). Furthermore, it is easy
to check that the feasible set of the problem(Ŵ ) verifies a Mangasarian–Fromowitz
type constraint qualification at(x̂, ŝ, û) [one can, for example, take the directiond =
(x̂,0,−u) ∈ R

m
+ ×R

m×R
n to verify that], and thus the FJ conditions (2.6) [that can be

viewed as FJ conditions for(Ŵ )] also imply the KKT conditions. 2

There are of course other approaches to optimality conditions for MPEC. For example,
[OKZ98, Theorem 7.2] establishes non-smooth KKT-type conditions for a problem rather
similar to (W ). However, the strong regularity condition on the lower-level problem
assumed in [OKZ98, Theorem 7.2] is violated by our problem, because the displacements
u are in general not uniquely determined for designsx ∈ ∂R

m
+.
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2.4.6 Global convergence

Convergence of globally optimal solutions to relaxed weight minimization problems with
stress constraints(W ε) towards globally optimal solutions to the limiting problem(W )
asε ↓ 0 follows easily, given the results of the previous subsections.

Proposition 2.13. Consider a positive sequence{εk} converging to zero. Let
{(xεk ,sεk,λλλ εk,uεk)} be a corresponding sequence of globally optimal solutions to
{(W εk)}. Then, an arbitrary limit point of this sequence is a globally optimal solution to
the limiting problem(W ).

Proof. That globally optimal solutions to the sequence of problems{(W εk)} exist fol-
lows by the coercivity of the objective w.r.t. the design variables, Proposition 2.8, and
Weierstrass’ Theorem).

Without any loss of generality, assume that limk→+∞(xεk,sεk,λλλ εk,uεk) = (x̃, s̃, λ̃λλ , ũ).

Then, owing to Proposition 2.6, the point(x̃, s̃, λ̃λλ , ũ) is feasible in(W ). Together with
Remark 2.5 and the continuity of the objective functional this proves the claim. 2

In general, the displacement component{uk} of the sequence of global optimal solu-
tions we study in Proposition 2.13 need not to have any limit points. However, we may
use the fact that our objective function is independent of the displacements and utilize
Proposition 2.7 to establish the following result.

Proposition 2.14. Consider a positive sequence{εk} converging to zero. Let
{(xεk ,sεk,λλλ εk,uεk)} be a corresponding sequence of globally optimal solutions to
{(W εk)}. Then, an arbitrary limit point(x0,s0,λλλ0) of the sequence{(xεk ,sεk,λλλ εk)} (and
there is at least one) corresponds to some globally optimal solution(x0,s0,λλλ 0,u0) to the
limiting problem(W ).

Proof. Similar to the proof of Proposition 2.13, but uses Proposition 2.7 instead of Propo-
sition 2.6. 2

2.4.7 Convergence of stationary points

The main result of this paper, Theorem 2.15, uses the fact that stress constraints are im-
posed. Furthermore, we need to make an assumption that the sequence of displacements
{uε} produced by the smoothing procedure is bounded asε ↓ 0. We cannot guarantee the
latter property without imposing explicit bounds on the displacements; however, our com-
putational experience with the smoothing approach we introduce in this paper confirms
that convergence of displacements takes place in practice.In any case, Proposition 2.4 as-
serts that it is at least possible to approximate every equilibrium state using the relaxation
approach we propose; this is contrary to traditionalε-relaxation, where some equilibrium
displacements cannot be approximated.

Theorem 2.15. Consider a positive sequence{εk} converging to zero. Let
{(xεk ,sεk,λλλ εk,uεk)} be a sequence of KKT-points to{(W εk)}. Then, every limit point
of this sequence is feasible in the limiting problem(W ), and in addition it verifies the
non-smooth FJ stationarity conditions(2.6).
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Proof. Without loss of generality we assume that{(xεk,sεk,λλλ εk,uεk)} → (x,s,λλλ ,u) ask
converges to infinity. Owing to Proposition 2.6, the point(x,s,λλλ ,u) is feasible in(W ).

The stress constraints imply that the gradients∇E (xεk,sεk,λλλ εk) are uniformly
bounded fork= 1,2, . . . Therefore, the sequence{∇E (xεk,sεk ,λλλ εk)} has at least one limit
point that by definition is a member of∂aE (x,s,λλλ). It is now an easy exercise to verify
that the point(x,s,λλλ ,u) satisfies the system (2.6). 2

Again, the optimality conditions we obtain in Theorem 2.15 are rather weak, but we
cannot expect more from points of local minima for(W ) in general; see the discussion in
Section 2.4.5.

2.5 Numerical experiments

While a substantial amount of theoretical studies of topology optimization problems
for trusses including unilateral frictionless contact hasbeen carried out (see, e.g.,
[BTKNZ99, PaP02, EPP03]), surprisingly little numerical experience has been reported.
Therefore we use a comprehensive numerical study of Stolpe [Sto03] (who was inter-
ested in finding globally optimal solutions using a branch-and-cut algorithm) as a rich
and authoritative source of benchmark problems, unfortunately however for trusses with-
out contact. We also compare our algorithm against a few tests of “classic” MPEC algo-
rithms (implicit programming-based algorithm, IMPA, [LPR96, Section 6.3], and penalty
interior point algorithm, PIPA, [LPR96, Section 6.1]), MMA[Sva87] (see also [Sva02]),
as well as the smoothing algorithm [FJQ99], made by Hilding [HKP99, Hil00]. Unfor-
tunately, the latter studies are not concerned withtopologyoptimization (i.e., a strictly
positive bound on the bar volumes is imposed) and stress constraints are not included.

Below we present some preliminary numerical experience with an academic imple-
mentation of our approximation method.

2.5.1 Implementation issues

A sequence of smooth optimization subproblems{(W εk)} has been solved using the SQP-
solver SNOPT [GMS02]. The optimal solution obtained at stepk was used as a starting
point for the stepk+ 1. We used a simple update rule forε: εk+1 = γεk, whereγ ∈
[0.25,0.75].

The biggest computational difficulty we have noted is that the projected gradient of
the potential energy with respect to displacements is closeto zero for all points feasible
in (W ε) whenε is small, resulting in rather slow progress of the optimization procedure
based on the first order information only. The use of second order information in this case
seems essential for improving the performance.

Another problem is that the complementary energy has a rather unusual scaling when
the design variablesx are close to the boundary∂R

m
+. While we obtained satisfactory

results with automatic scaling in SNOPT, a specific scaling of the relaxed equilibrium
constraint may be necessary for more robust convergence of the algorithm.
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2.5.2 Numerical results: topology optimization, contact- less
case

A number of “classic” weight minimization problems for trusses without frictionless con-
tact but including stress, and possibly local buckling constraints and bounds on displace-
ments have been solved to global optimality by Stolpe [Sto03]. We benchmark our relax-
ation algorithm against the results reported in the cited paper and find that in many cases
our local algorithm is capable of finding globally optimal solutions. We keep the problem
numbers assigned by Stolpe [Sto03] and report the results weobtained on a subset of
these problems in Tables 2.1 (only stress and/or displacement constraints) and 2.2 (stress
and local buckling constraints).

Since we use a local algorithm to solve non-convex optimization problems, starting
the optimization procedure from different starting pointsmay result in obtaining different
optimal solutions. We started the algorithm from the designobtained by uniformly dis-
tributing structural material among bars, and calculatingthe corresponding equilibrium
forces/displacements.

Some comments are in order. In problems 24–26 the number of bars in the structure
is m = 10, but the volumes of 4 of them are fixed, which leaves us only 6design vari-
ables. In addition, these are the only problems with displacement constraints, and the
optimal weight we report differs from the known globally optimal solution despite the
small value of the relaxation parameterε we used. The reason for such a behaviour is
that the potential energyΠ(x,u)− ftu becomes rather insensitive to some components of
the displacements for designsx that are close to the boundary∂R

m
+. In problems 24–26

this allows the optimization procedure to choose displacements that are reasonably far
from the equilibrium displacements (compared to the size ofthe relaxation parameterε)
but are feasible with respect to the imposed bounds on the displacements. (Recall, that
Proposition 2.7 does not guarantee the convergence of the displacements as designs con-
verge.) This may or may not be a problem in practice, depending on how stringent the
displacement constraints are, if present. In particular, we guarantee the convergence of
forces, and always keep the stress (and local buckling) constraints satisfied, which means
that the structure will not suffer from destructive stresses. (Even though stress constraints
are imposed not on the “equilibrium” stresses, stress bounds are usually chosen far from
the point where plastic deformation occurs.) In any case, our algorithm successfully finds
the optimal topology, which is of major importance in many applications.

In problem 17 our algorithm indeed finds a better solution to the classic 25-bar truss
problem stated in [ScF74] than the one reported in [Sto03, ScF74]. The reason for this
small victory of a local optimization algorithm over a global one is that the branch-and-cut
method developed in [Sto03] may be applied only to problems with bounds imposed on
all variables involved. In the original formulation of the problem 17 taken from [ScF74]
there are no upper bounds on the volumes of the bars, and the optimal weight of the truss
we obtained for theoriginal formulation is 510.157. On the other hand, Stolpe [Sto03]
imposes artificial bounds on the design variables for the branch-and-cut method to func-
tion, which leads to a globally optimal solution with the weight 545.264; in fact, the newly
introduced bounds are inactive at the latter solution but owing to the non-convexity of the
problem they cannot be safely removed without changing the optimal solution. The last
comment about the problem 17 is that in the original formulation there are only 2 load
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Problem m n k wour w[Sto03] source
2 5 4 2 39.9856 33.5000 [ChG97]
5 4 2 2 185.597 185.667 [Hob96]
9 10 8 1 4896.95 4898.31 [ScF74]

11 10 8 1 1583.99 1584.00 [ScF74]
13 10 8 1 4425.16 4426.52 [ScF74]
15 10 8 1 1655.99 1656.00 [ScF74]

∗17 25 18 5 510.157 545.264 [ScF74]
18 10 8 1 1583.99 1584.00 [ChG97]
23 5 4 1 24.0000 24.0000 [ChJ92]
24 10(6) 8 1 18199.4 18211.8 [Kir90]
25 10(6) 8 1 20021.8 20035.3 [Kir90]
26 10(6) 8 1 22799.7 22817.3 [Kir90]
27 10 8 1 1979.99 1980.00 [GCY01]
28 5 4 2 79.9713 79.9716 [GCY01]

Tab. 2.1: Results of numerical experiments: weight minimization under stress and/or
displacement constraints

Problem m n k wour w[Sto03] source
5 4 2 2 408.312 408.628 [Hob96]

27 10 8 1 8553.44 8553.44 [GCY01]
28 5 4 2 105.831 105.831 [GCY01]

Tab. 2.2: Results of numerical experiments: weight minimization under stress and local
buckling constraints

scenarios and many linear constraints on the design variables related to the required sym-
metry of the truss. Instead, we consider all design variables to be independent and obtain
a symmetric solution by introducing additional load cases.

2.5.3 Numerical results: sizing optimization of trusses in
contact

Hilding et al. [HKP99] (see also Hilding [Hil00]) were interested in minimizing the max-
imal contact force, that is, to achieve as uniform contact pressures as possible. The formal
problem statement can be written as follows:

(Λ)





min
(x,s,λλλ ,u,λmax)

λmax,

s.t.(x,s,λλλ ,u) ∈ F (f),

xi ≤ xi ≤ xi , i = 1, . . . ,m,

w(x) ≤ w,

λℓ ≤ λmax, ℓ = 1, . . . , r,
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wherexi , xi , w are given positive numbers,i = 1, . . . ,m. In general, allowing lower bounds
on the design variables to be zero results in an ill-posed optimization problem, unless
bounds on the compliance of the structure or stress constraints are added (see [PaP02]).

The problem(Λ) is thus not a topology optimization problem and does not suf-
fer from the difficulties outlined in Section 2.4.1; in particular, the smoothing method
of Facchinei [FJQ99] outlined in Section 2.3 is directly applicable to this problem
(see [Hil00], where smoothing was used for “the heuristic avoiding of local minima”)
and we use it as one of the benchmarks for our new smoothing algorithm.

On some instances of the problem(Λ) Hilding et al. [HKP99] also implemented and
tested some classic MPEC algorithms (IMPA [LPR96, Section 6.3] and PIPA [LPR96,
Section 6.1]) on the family of structures shown in Figure 2.2. Also, they tested on(Λ)
a very popular method in the structural optimization community: the method of moving
asymptotes, MMA, [Sva87], even though it is not guaranteed to work on this problem.
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Fig. 2.2: Test problem found in [Hil00]. 5×5 case is shown.

We apply SNOPT to the following relaxation of the problem(Λ):

(Λε)





min
(x,s,λλλ ,u,λmax)

λmax,

s.t.(x,s,λλλ ,u) ∈ F ε (f),

xi ≤ xi ≤ xi , i = 1, . . . ,m,

w(x) ≤ w,

λℓ ≤ λmax, ℓ = 1, . . . , r,

whereε > 0 is a relaxation parameter. We report the results we obtained for trusses
of different sizes (see Figure 2.2) in Table 2.3 along with the results found in [HKP99,
Hil00].

We report the size of the structure, the number of bars (design variables) and the op-
timal values obtained by PIPA and IMPA/MMA as reported in [HKP99] (the two latter
algorithms are reported to produce the same optimal values); the optimal values produced
by IMPA and MMA as applied to the smoothed MPEC using the methodology introduced
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3×3 58 - 3.0 1.0 1.0 1.0
4×4 113 - 2.0 1.0 1.0 1.0
5×5 190 1.67 2.5 1.0 1.25 1.07

10×10 875 2.5 5.0 - - 2.0

Tab. 2.3: Results of numerical experiments: contact force minimization.

in [FJQ99], as reported in [Hil00]; and the optimal values obtained using our new smooth-
ing procedure. The “-” sign in the table columns means that the corresponding algorithm
has not been applied to a given problem instance.

One can see that our algorithm favourably competes with classic MPEC algorithms
on these tests. As we already mentioned, general MPEC algorithms cannot be applied
to truss optimization problems if we remove strictly positive lower bounds on the design
variables, i.e., consider topology optimization problems.

2.6 Conclusions and further research

In this paper we proposed a new algorithm for solving MPEC problems arising from
the topology optimization of trusses with unilateral contact conditions. The algorithm
is based on the approximation of topology optimization problems with sizing-type prob-
lems, where in addition we relax the equilibrium constraint. We studied the convergence
of global optimal solutions and stationary points to approximating problems towards, re-
spectively, globally optimal solutions and stationary points to the original, singular prob-
lem. We have also performed some numerical testing of the proposed method.

Many open problems remain. On the numerical side, we need a better implementation
(probably utilizing second order information); also, a much more thorough numerical test-
ing should be done, especially for trusses with unilateral contact. However, in our opinion,
the most challenging task is to improve the optimality conditions we obtained in this pa-
per. To do that, the comparative analysis of modern KKT-typeoptimality conditions for
general MPEC problems (see, e.g., [FlK02a, FlK02b, FlK02c]) and the FJ-type optimality
conditions we obtained needs to be performed. We hope to address these questions in our
future research.

Acknowledgement: This research is supported by the Swedish Research Council(grant
621-2002-5780).
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Paper 3

ON THE LIMITS OF POROUS MATERIALS
IN THE TOPOLOGY OPTIMIZATION OF
STOKES FLOWS

Anton Evgrafov ∗

Abstract

We consider a problem concerning the distribution of a solidmaterial in a given bounded control
volume with the goal to minimize the potential power of the Stokes flow with given velocities at
the boundary through the material-free part of the domain. We also study the relaxed problem of
the optimal distribution of the porous material with a spatially varying Darcy permeability tensor,
where the governing equations are known as the Darcy-Stokes, or Brinkman, equations. We show
that the introduction of the requirement of zero power dissipation due to the flow through the porous
material into the relaxed problem results in it becoming a well-posed mathematical problem, which
admits optimal solutions that have extreme permeability properties (i.e., assume only zero or infinite
permeability); thus, they are also optimal in the original (non-relaxed) problem.

Two numerical techniques are presented for the solution of the constrained problem. One is
based on a sequence of optimal Brinkman flows with increasingviscosities, from the mathematical
point of view nothing but the exterior penalty approach applied to the problem. Another technique
is more special, and is based on the “sizing” approximation of the problem using a mix of two
different porous materials with high and low permeabilities, respectively.

This paper thus complements the study of Borrvall and Petersson [Internat. J. Numer. Methods
Fluids, vol. 41, no. 1, pp. 77–107, 2003], where only sizing optimization problems are treated.
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3.1 Introduction

WHILE topology optimization of structures in (very) rough terms can be described as
the science of introducing holes in the structure so as to improve the structural per-

formance, in the vast majority of the literature on the subject, especially computationally-
oriented one, the appearence of holes isprecludedfrom the very beginning by the require-
ment that the minimal structural dimension is positive at every point.

The reason for introducing such a constraint is two-fold. From the numerical point
of view, the FEM-stiffness matrix of the governing differential equation is guaranteed
to be positive definite in this case, resulting in stable numerical procedures. However,
more importantly, allowing some structural parts to disappear we often end up with an
optimization problem having a non-closed feasible set and,as a result, lacking optimal
solutions.

In topology optimization of solids and structures the classic problem of minimizing
the structural compliance is known to possess optimal solutions, if we allow microstruc-
tures to be used in the optimal structure (cf. [BeS03, Appendix 5.2]). At the same time, if
we are interested in a pure solid–void design, free of microstructures, the same problem
lacks optimal solutions. Since the “grey” optimal solutions (the ones involving micostruc-
tures, as opposed to “black–white” pure solid–void solutions) are usually difficult to in-
terpret and to manufacture, various restriction or regularization methods are considered in
order to reduce the amount of the “microstructural material” in the optimal structure; see
the bibliographical notes (8) in [BeS03]. The pure void parts, the very heart of the topol-
ogy optimization, are not allowed to appear in such methods and are usually modelled by
a very compliant material. However, the limits of optimal designs as the properties of the
compliant substitute approach those of void are not investigated.

In the case of topology optimization of truss structures, the question of the continu-
ity of the optimal solutions w.r.t. the lower bound on the minimal structural dimension
has received significant attention in the literature (see, e.g., the bibliographical notes (16)
in [BeS03] on the “stress singularity phenomenon”). Despite the abundant amount of lit-
erature on the topology optimization of linearly elastic continuous systems, similar studies
have not been conducted in this case.

Recently, topology optimization techniques have been applied to optimization prob-
lems in flow mechanics [BoP03], where traditionally shape optimization methods were
prevealing (see the pioneering works of Pironneau [Pir73, Pir74] on the optimality con-
ditions for shape optimization in fluid mechanics; see also the bibliographical notes (2)
in [BeS03] for classical references). The benefits of using topology optimization (or con-
trol in coefficients) over shape optimization include easier implementation and sensitivity
analysis, and better integration with existing FEM codes. Borvall and Petersson [BoP03]
considered the optimal design of flow domains for minimizingthe total power of the
Stokes flows. The set of admissible designs is a set of porous materials with a spatially
varying Darcy permeability tensor, under a constraint on the total volume of fluid in the
control region. The appearence of internal walls in the domain (regions with pure solid
material, not permitting flow; these can be interpreted as “holes in the flow”) is not per-
mitted. Thus, thetopology, i.e., connectivity of the flow region does not change, and,
carrying over the terminology from optimization in solid mechanics, we will refer to this
case as that of a “sizing” optimization.
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In the present paper we study the “real” topology optimization case of the Stokes
flow, i.e., pure solid and pure flow regions are allowed. We show that the relaxed prob-
lem of distributing porous material, as well as the pure solid–void (zero–one) problem,
possesses optimal solutions. Furthermore, we show that thesizing optimal solutions have
limits as the permeability of the porous material is allowedto vanish (i.e., converge to the
permeability of solid material).

The outline of the present paper is as follows. In the next section, we describe the
necessary notation and state precisely the weak formulation of the governing equations,
its interpetation, and the objective functional. Section 3.3 is dedicated to the proof of
the existence of the optimal solutions to the relaxed problem, while in Section 3.4 we
introduce a well-posed formulation of the zero-one optimalproblem and establish the
well-posedness of the latter. Two numerical approaches forthe solution of the zero-one
control problem are the topics of Sections 3.5 and 3.6. In Section 3.7, we show that for
functionals other than the total power of the flow, the control problem might be ill-posed,
even if rather strong continuity requirements are imposed on the objective functional. We
end the paper with a brief discussion of further research topics.

3.2 Prerequisutes

3.2.1 Notation

We follow standard engineering practice and will denote vector quantities, such as vectors
and vector-valued functions, using thebold font. However, for functional spaces of both
scalar- and vector-valued functions we will use regular font.

Let Ω be a connected bounded domain ofR
d, d ∈ {2,3} with a Lipschitz continuous

boundaryΓ. In this domain we would like to control the Darcy-Stokes, orBrinkman,
equations [NiB99] with the prescribed flow velocitiesg on the boundary, and forcesf
acting in the domain by adjusting the inverse permeabilityα of the medium occupyingΩ,
which depends on the control functionρ :





−ν∆∆∆u+ α(ρ)u+ ∇∇∇p = f,

divu = 0

}
, in Ω,

u = g, on Γ.

(3.1)

In the system (3.1),u is a flow velocity,p is a pressure, andν is a kinematic viscosity. Of
course, the functiong must satisfy the compatibility condition

∫

Γ
g·n = 0,

wheren denotes the outward unit normal. Ifα(ρ(x)) = +∞ for somex∈ Ω, we simply
requireu(x) = 0 in the first equation of (3.1).

Our control setH is defined as follows:

H = {ρ ∈ L∞(Ω) | 0≤ ρ ≤ 1,a.e. inΩ,
∫

Ω
ρ ≤ γ|Ω|},
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where 0< γ < 1 is the maximal volume fraction that can be occupied by the fluid. Every
elementρ ∈ H describes the scaled Darcy permeability tensor of the medium at a given
point x∈ Ω in the following (informal) way:ρ(x) = 0 corresponds to zero permeability
at x (i.e., solid, which does not permit any flow at a given point),while ρ(x) = 1 corre-
sponds to infinite permeability (i.e., 100% flow region; no structural material is present).
Formally, we relate the permeabilityα−1 to ρ using a convex, decreasing, and nonnega-
tive functionα : [0,1] → R+ ∪{+∞}, defined as

α(ρ) = ρ−1−1.

Modelling the Stokes flow, we are interested only in the two extreme values of perme-
ability, α−1 = 0, orα−1 = +∞. For this purpose, we will introduce the following subset
of H :

H̃ = {ρ ∈ H | ρ ∈ {0,1},a.e. inΩ}.

However, both from the analytical and computational pointsof view, it is impossible to
state the control problem in the set̃H , because it is nonconvex, and not weakly∗ closed.
Therefore, we first study the properties of the relaxed control problem posed over the set
H .

In the rest of the paper, we will use the symbolχA for A ⊂ Ω to denote the charac-
teristic function ofA: χA(x) = 1 for x ∈ A; χA(x) = 0 otherwise. Also, foru ∈ H1(Ω),
we define a setΩnz(u) := {x ∈ Ω | u(x) 6= 0}. Finally, let Ω(u) ⊂ Ω be such that(i)
x ∈ Ω(u) =⇒ ∀y ∈ Ω\Ω(u) : u(x) ·u(x) ≥ u(y) ·u(y), and(ii) |Ω(u)| = γ|Ω|.

3.2.2 Weak formulation

To state the problem in a more analytically suitable way, andto incorporate the special
caseα = +∞ into the first equation of the system (3.1), we introduce a weak formulation
of the equations. Let us consider the set of admissible flow velocities and test functions

U = {v ∈ H1(Ω) | v = g on Γ},
V = {v ∈ H1(Ω) | v = 0 on Γ},

and pressures

L2
0(Ω) = {q∈ L2(Ω) |

∫

Ω
q = 0}.

Then, the weak formulation of (3.1) reads as follows: forf ∈ L2(Ω), compatibleg ∈
H1/2(Γ), andρ ∈ H find (u, p) ∈ U ×L2

0(Ω) such that

ν
∫

Ω
∇∇∇u ·∇∇∇v+

∫

Ω
α(ρ)u ·v−

∫

Ω
pdivv =

∫

Ω
f ·v, ∀v ∈ V ,

∫

Ω
qdivu = 0, ∀q∈ L2

0(Ω)
(3.2)

(In the system above we use the usual convention∞ ·0 = 0.)
Allowing designs with zero permeability significantly increases the complexity of the

control problem. From the purely technical side, the inverse permeabilityα may be infi-
nite on sets of positive measure, and thus does not belong to any of the common functional
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spaces. Even worse, internal walls that do not permit flows with the given boundary con-
ditions might appear as limits of admissible designs, making the design space not closed.
The latter difficulty is demonstrated in the following example.

Example 3.1 (Diminishing permeability). Let g be some compatible non-zero bound-
ary condition,f be arbitrary inL2(Ω). Let ρk ≡ 1/k in Ω, ρ ≡ 0 in Ω, so thatρk → ρ in
L∞(Ω) ask→ ∞. It is not difficult to check (this follows from the standard theory for the
Stokes equations as well as from the results in [BoP03]) thatfor eachk = 1,2, . . . , there
is a solution(uk, pk) to (3.2). However, sinceα(ρ) ≡ +∞ in Ω, from the first equation
in (3.2) it follows thatu ≡ 0 in Ω, which is clearly not compatible with the boundary con-
ditions. In other words, there is no solution(u, p) to (3.2) corresponding to the limiting
controlρ , which means that the set of admissible controls is not closed even in the strong
topology ofL∞(Ω)!

This is in vast contrast with the sizing case, which can be modelled by requiring
ρ ≤ ρ ≤ ρ , a.e. inΩ, for some constants 0< ρ ≤ ρ ≤ 1. Under these conditions, Borrvall
and Petersson [BoP03] show that the set of admissible controls is closed in the weak∗

toplogy of L∞(Ω). (In fact, the caseρ = 1 or α = 0 is not allowed in the cited work;
however, the arguments used there work for this case as well because, owing to Fredrichs’
inequality, the semi-norm| · |1 is equivalent to the norm ofH1(Ω) in the problem we
consider; see also Theorem 3.4).

Example 3.1 demonstrates that the lower semicontinuity of the objective functional
alone is not sufficient for the topology optimization of the Darcy-Stokes flow to possess
optimal solutions; e.g., take the problem of minimizing the“volume of the flow”

∫
Ω ρ to

recover a situation similar to that of Example 3.1. Hovewer,if the objective functional also
enjoys an inf-compactness property w.r.t. the set of admissible controls, every minimizing
sequence converges, thus making the control problem well-posed. In what follows we
establish that the power functional, introduced below, forthe Darcy-Stokes flow is both
lower semi-continuous and inf-compact, thus extending theresults of [BoP03] from sizing
to topology optimization.

Let J S : U → R denote the potential power of the Stokes flow:

J S (u) =
1
2

∫

Ω
∇∇∇u ·∇∇∇u−

∫

Ω
f ·u.

Let us further define the additional power dissipationJ D : H ×U → R∪{+∞}, due
to the presence of the porous medium:

J D(ρ ,u) =
1
2

∫

Ω
α(ρ)u ·u.

Finally, letJ (ρ ,u) = J S (u)+J D (ρ ,u) denote the total power of the Darcy-Stokes
flow.

Assumingα(ρ) < +∞, one can derive the variational formulation of the system (3.1)
(cf. [BoP03]):

φ(ρ) = min
u∈U

J (ρ ,u),

s.t. divu = 0, weakly inΩ,

(3.3)
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the system (3.2) being the first order necessary optimality conditions for (3.3). In particu-
lar, the pressurep∈ L2

0(Ω) is defined as a Lagrange multiplier for the constraint divu = 0.
In what follows, we will denote the feasible set of the problem (3.3) byUdiv.

Now, assume that for a givenρ ∈ H there is a solutionu ∈ H1(Ω) to the varia-
tional problem (3.3). Define the new domainΩnz(u) = {x ∈ Ω | u(x) 6= 0}. Clearly,
α < +∞, a.e. inΩu, andu solves the variational problem (3.3) in the domainΩnz(u)
with the boundary conditionsu = g on Γ, u = 0 on ∂Ωnz(u) \Γ. Therefore, there must
be an associated pressurep : Ωnz(u) → R such that the pair(u, p) solves the weak for-
mulation of the Darcy-Stokes equation in the domainΩnz(u) with the already described
boundary condition. (In particular, ifα = 0 a.e. inΩnz(u), then(u, p) is a weak solu-
tion to the Stokes equation in the domainΩnz(u).) With this interpretation, we will use
the variational formulation (3.3) of the problem instead of(3.2) in the development that
follows.

3.2.3 Objective functional

The objective functional in our problem will be to minimize the total potential power of
the flow, which in the case off = 0 amounts to minimizing the power dissipated by the
flow. (The same problem can be interpreted as a minimization of the average pressure
drop, providedf = 0 andg = gn [BoP03].)

Therefore, the optimization problem we consider can be written as follows:

min
ρ∈H

φ(ρ), (3.4)

whereφ : H → R∪{+∞} is defined in (3.3).
As has been announced above, with this functional the control problem (3.4) possesses

optimal solutionsdespitethe fact that the set of admissible controls is not closed (see
Corollary 3.5). Furthermore, in contrast to the situation in the case of linear elasticity, the
“discrete” problem of minimizing the total power of the Stokes flow with controls inH̃
possesses optimal solutions. However, special approximation techniques are necessary to
find them (see Sections 3.5 and 3.6).

3.3 Existence of optimal solutions

In this section we prove that the problem (3.4) admits optimal solutions; see Theorem 3.4
and its Corollary. However, we need a few auxiliary results first.

Proposition 3.2. The function h: [0,1]×R
d → R+∪{+∞} defined as h(x,y) = x−1y ·y

with the conventions0−1 = +∞ and+∞ ·0= 0 is convex and lower semicontinuous.

Proof. The proof is elementary and can be found in [Roc70, p. 83]. 2

Lemma 3.3. Let{(ρk,uk)} ⊂ H ×Udiv be such that:
◦ lim inf k→+∞ J D (ρk,uk) = C, for some constant C< +∞;
◦ w* -limk→+∞ ρk = ρ in L∞(Ω);
◦ w-limk→∞ uk = u in H1(Ω).
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Then, the pair(ρ ,u) ∈ H ×Udiv, andJ D (ρ ,u) ≤C.

Proof. The first claim is obvious.
Since

∫
Ω α(ρk)uk ·uk =

∫
Ω h(ρk,uk)−

∫
Ω uk ·uk, whereh is defined in Proposition 3.2,

and the last integral converges to
∫

Ω u ·u, it remains to estimate liminfk→+∞
∫

Ω h(ρk,uk).
The weak lower semicontinuity of(ρ ,u) 7→ ∫

Ω h(ρ ,u) follows from the (pointwise) con-
vexity and lower semicontinuity ofh (Proposition 3.2), Fatou’s Lemma and Corollary 2.2
in [EkT99]. 2

Now we are ready to establish the existence result.

Theorem 3.4 (Existence of optimal solutions).The optimization problem

min
(ρ ,u)∈H ×Udiv

J (ρ ,u). (3.5)

possesses at least one optimal solution(ρ∗,u∗).

Proof. Let u0 be the solution to the Stokes problem inΩ (i.e., the solution to (3.3) corre-
sponding toρ ≡ 1 in Ω); setρ0 ≡ γ/|Ω|. Then(ρ0,u0) ∈ H ×Udiv, andJ (ρ0,u0) <
+∞. Furthermore, for all(ρ ,u) ∈ H ×Udiv it holds thatJ (ρ ,u) ≥ J (1,u0) > −∞,
i.e., the problem (3.5) is feasible andJ is proper w.r.t. its feasible set.

The setH is weakly∗ compact inL∞(Ω), and the setUdiv is weakly closed inH1(Ω).
Owing to the weak lower semicontinuity ofJ S in H1(Ω) (cf. [Dac89, Theo-

rem 2.3]), and lower semicontinuity ofJ D in the weak∗×weak topology ofL∞(Ω)×
H1(Ω) (cf. Lemma 3.3), it remains to show that every minimizing sequence{(ρk,uk)}
of (3.5) has bounded second components.

The valid inequality +∞ > limsupk→+∞ J (ρk,uk) ≥ limsupk→+∞ J (1,uk) =
limsupk→+∞ J S (uk) implies that{|uk|1} is bounded. SinceΩ is bounded, anduk|Γ = g,
Fredrichs’ inequality implies that{‖uk‖} is bounded. 2

Corollary 3.5. The optimization problem(3.4)possesses at least one optimal solution.

Proof. Let (ρ∗,u∗) be optimal solution to (3.5); then,ρ∗ is optimal in (3.4). 2

3.4 Existence of black-white solutions

From the engineering point of view, it is important to find optimal solutions to the prob-
lem (3.4) that also lie inH̃ . Such optimal solutions are traditionally calledzero-one, or
black-white, solutions in the topology optimization literature. Zero-one optimal solutions
are easy to interpret and to manufacture (e.g., one does not need to include microstructures
into the final design in linear elasticity, or materials withvarying porosity in Darcy-Stokes
flow mechanics).

Let u∗ be a flow that is optimal in the problem (3.4). We can always obtain an optimal
controlρ∗ for this flow as a solution to the following opimization problem:

min
ρ∈H

J (ρ ,u∗). (3.6)
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For the problem (3.6) to admit optimal solutions at the extreme points of the control
setH , i.e., in H̃ , it is necessary for the inverse permeabilityα to depend onρ in a
concaveway. At the same time, the lower semicontinuity of the objective functionalJ
depends on the fact thatα (in fact, h, cf. Lemma 3.3) depends on its arguments in a
convexmanner. Clearly, there is no function mapping[0,1] onto [0,+∞] satisfying both
requirements. Therefore, we need to specify the requirement that there must be at least
one solution to (3.4) inH̃ as an additional constraint. As will be shown in Theorem 3.6,
this can be achieved by adding a requirement of zero energy dissipation due to the flow
through the porous material, i.e.,J D(ρ ,v) = 0.

On the other hand, in the case of the sizing optimization problems considered
in [BoP03], the design spaceH describes inverse permeabilitiesα which belong to the
bounded subset{0 < α ≤ α ≤ α < +∞} of L∞(Ω). Therefore, one has a freedom to
choose an affine mapping (that is, both convex and concave)α(ℓ)(ρ) = α + (α −α)ρ
to describe the dependence of the inverse permeability on the design; with such a choice,
there is always an optimal solutionρ∗ ∈ H̃ to the sizing optimization problem (cf. Corol-
lary 3.1 in [BoP03]). Hovewer, the zero-one optimal solutions obtained in [BoP03] are
not black-white in the traditional interpretation (i.e., black denotes solid material, and
white is its opposite: void in linear elasticity, or flow region in flow mechanics), but rather
“dark-grey – light-grey”! Namely, they are composed of two porous materials with high
and low permeabilities, respectively. A priori, it is not clear how close they are to the real
black-white solutions (if any of the latter exist).

Therefore, our further goals are as follows. In this section, we show how to set up,
in an analytically suitable manner, an optimization problem for minimizing the poten-
tial power of the Stokes flow that possesses black-white solutions. This problem is not
suitable for numerical computations though, because the zero-one solution requirement
is posed as a complementarity condition between the inversepermeability and the veloc-
ity of the flow. (Complementarity conditions are known to generate highly non-convex
feasible sets, which often violate standard constraint qualifications [LPR96] and are there-
fore extremely hard to solve to global or even local optimality.) As a remedy, in the two
subsequent sections we propose two computational approaches to the zero-one problem:
one is based on a penalty function, with the viscosity of the flow playing the role of a
penalty parameter; the other one is based on the aforementioned “dark-grey – light-grey”
approximations.

Theorem 3.6 (Existence of 0–1 solutions).The optimization problem




min
(ρ ,u)∈H ×Udiv

J S (u),

s.t. J D (ρ ,u) = 0,
(3.7)

possesses at least one optimal solution(ρ̃,u∗) ∈ H̃ ×Udiv.

Proof. The constraint of the problem (3.7) can be equivalently written asJ D(ρ ,u) ≤ 0,
which, together with Lemma 3.3, implies the closedness of the feasible set of the prob-
lem (3.7) in the weak∗ × weak topology ofL∞(Ω)×H1(Ω). Therefore, following the
proof of Theorem 3.4, we can establish existence of the optimal solution (ρ∗,u∗) ∈
H ×Udiv, provided there is at least one solution that is feasible in (3.7).
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To construct a feasible solution, we choose a closed setΩ0 ⊂ Ω, such that|Ω0| =
(1− γ)|Ω| andΩ \Ω0 is connected and has a Lipschitz continuous boundary. LetuS

be the Stokes flow inΩ \Ω0 with boundary conditionsuS = g on Γ anduS = 0 on
∂ (Ω\Ω0)\Γ; setρS = χΩ\Ω0

. When,J S (uS ) < +∞ andJ D(ρS ,uS ) = 0.
Now, let ρ̃ = χΩnz(u∗), whereΩnz(u∗) = {‖u∗‖ 6= 0}. Then,

∫
Ω ρ̃ ≤ ∫

Ω ρ∗ and

J D (ρ̃,u∗) = 0, yielding an optimal solution(ρ̃ ,u∗) ∈ H̃ ×Udiv. 2

We would like to stress the fact that, owing to Theorem 3.6, for every optimal solution
to (3.7), there is an optimal solution to the following zero-one problem





min
(ρ ,u)∈L∞(Ω)×Udiv

J S (u),

s.t.





ρ(x) = 0 =⇒ u(x) = 0,a.e. inΩ,

u(x) 6= 0 =⇒ ρ(x) = 1,a.e. inΩ,
∫

Ω
ρ ≤ γ|Ω|,

(3.8)

having the same objective value. Therefore, every optimal solution to (3.8) is also optimal
in (3.7). In this sense, the problems (3.8) and (3.7) areequivalent, i.e., neither one is a
relaxation nor a restriction of the other. Such an equivalence is a very important and
unique fact about the topology optimization of Stokes flows.We recall that the zero-
one problem “as is” in linear elasticity is ill-posed, and either relaxation or restriction is
necessaryto guarantee the existence of optimal solutions (cf. the biliographical notes (8)
in [BeS03] for an extensive account of relaxation and restriction methods in topology
optimization in solid mechanics).

3.5 Black-white solutions via increasing the viscosity

There is a school of thought arguing that under some circumstances the viscosityν and
permeabilityα−1 in the system (3.1) alone do not adequately describe the Stokes flow
in porous media. An additional parameterµ is introduced into the first PDE as fol-
lows [NiB99]:

−ν∆∆∆u+ µα(ρ)u+ ∇∇∇p = f.

Now, the parameterµ is the viscosity of the flow, whileν is an “effective viscosity”.
Repeating the arguments of Section 3.1, we then arrive at thefollowing formulation of
the optimization problem (3.4):

min
(ρ ,v)∈H ×Udiv

J S (v)+ µJ D (ρ ,v). (3.9)

Clearly, this is nothing but the exterior penalty reformulation of the problem (3.7), with
the viscosityµ playing the role of a penalty parameter. The arguments of Theorem 3.4 are
applicable to the problem (3.9) as well, so that there existsa family of optimal solutions
{ρ∗

µ ,u∗
µ}, µ > 0 to (3.9). From the standard theory for nonlinear programs (cf. Theo-

rem 9.2.2, [BSS93]), it follows that every weak∗ × weak limit point of this sequence as
µ → +∞ (and there is at least one) is an optimal solution to (3.7).
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We note that the problem (3.9) does not contain any complicating state constraints,
and thus is much easier to solve than (3.7). While the penaltymethod might converge
quite slowly, and the approximating designs might contain quite a large amount of porous
material with intermediate values of permeability, we think it is instructive to mention
this approach, owing to its clear mathematical and physicalinterpretations (compare with,
e.g., the most popular “SIMP” approach [BeS99] in the topology optimization of elastic
materials, or the more material science-compatible “RAMP”method [StS01]; see also the
discussion in [BeS03, p. 64]).

3.6 Black-white solutions as limits of “dark-grey – light-g rey”
solutions

In this section we will approximate the zero-one problem (3.7) using the aforementioned
two-value “dark-grey – light-grey” optimal controls obtained in [BoP03]. To perform
such an approximation, we introduce two sequences,{αk} ↓ 0 and{αk} ↑+∞, of extreme
inverse permeabilities. Further, we letρ

k
= (αk + 1)−1, ρk = (αk + 1)−1, and define

an affine functionα(ℓ,k) : [ρ
k
,ρk] → R+ so thatα(ℓ,k)(ρ

k
) = αk, α(ℓ,k)(ρk) = αk. To

simplify the discussion somewhat, we assume that the sequence {(αk,αk)} is chosen
so that the inequalityρkγ + ρ

k
(1− γ) ≤ γ is satisfied. Then, we can also define the

approximating control setsHk = {ρ ∈ H | ρ
k
≤ ρ ≤ ρk,a.e. inΩ}, andH̃k = {ρ ∈

H | ρ ∈ {ρ
k
,ρk},a.e. inΩ}. Finally, we defineJ D

k (ρ ,v) = 1/2
∫

Ω α(ℓ,k)(ρ)v · v, and

Jk(ρ ,v) = J S (v)+J D
k (ρ ,v).

The main result of this section is Theorem 3.9, establishingthe convergence (under
some arguably mild conditions) of the “dark-grey – light-grey” approximations towards
the black–white limits. We begin with some auxiliary results.

The following lemma allows us to define a “limiting” desigñρ ∈ H̃ , corresponding
to the limiting flowu, even though the sequence of “dark-grey – light-grey” controls{ρk}
might have no limit points inH̃ in the usual weak∗ sense.

Lemma 3.7. Let{uk} ⊂ H1(Ω) weakly converge tou ∈ H1(Ω). Defineρk = ρkχΩ(uk) +

ρ
k
χΩ\Ω(uk), and assume thatρk ∈ H̃k (i.e.,

∫
Ω ρk ≤ γ|Ω|), and that

lim inf
k→+∞

J D (ρk,uk) = lim inf
k→+∞

1
2

[
αk

∫

Ω(uk)
uk ·uk + αk

∫

Ω\Ω(uk)
uk ·uk

]
≤C,

for some constant C< +∞. Then, there is̃ρ ∈ H̃ such that

J D(ρ̃ ,u) = 0. (3.10)

In particular, |Ωnz(u)| ≤ γ|Ω|.

Proof. The existence of limit points follows from the inclusioñHk ⊂ H , k = 1,2, . . . ,
and the weak∗-compactness of the latter. Therefore, we will assume that the original
sequence{ρk} weakly∗ converges toρ ∈ H .
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The control functionρk is a solution to the following optimization problem with a
linear objective functional and weak∗-compact feasible set:

max
ρ∈Hk

∫

Ω
ρuk ·uk, (3.11)

Since{uk ·uk} converges strongly inL1(Ω), from Proposition 4.4 in [BoS00] it follows
thatρ must solve the following optimization problem:

max
ρ∈H

∫

Ω
ρu ·u, (3.12)

Further, since the objective functional of (3.12) is linear(in ρ), the problem possesses a
zero-one optimal solutioñρ ∈ H̃ ; we can always takẽρ = χΩ(u).

Clearly,

2C≥ lim inf
k→+∞

∫

Ω
α(ρk)uk ·uk = lim inf

k→+∞
αk

∫

Ω\Ω(uk)
uk ·uk,

which implies that

0 = lim inf
k→+∞

∫

Ω\Ω(uk)
uk ·uk = lim

k→+∞

∫

Ω
ρkuk ·uk =

∫

Ω
ρ̃u ·u =

∫

Ω\Ω(u)
u ·u,

where we used the convergence of optimal values for the problems (3.11) to the one of
the problem (3.12) ask goes to+∞ (again, by Proposition 4.4 in [BoS00]). We conclude
thatu ≡ 0 on Ω\Ω(u), which implies (3.10). 2

Corollary 3.8. In addition to the assumptions of Lemma 3.7, assume that|Ωnz(u)| =

γ|Ω|. Then, the sequence{ρk} converges tõρ ∈ H̃ strongly in L1(Ω).

Proof. The additional assumption implies that the problem (3.12) possesses the only op-
timal solutionρ̃ = χΩ(u) = χΩnz(u). This implies the weak∗ convergence of the sequence
{ρk} towardsρ̃ in L∞(Ω). Strong convergence inL1(Ω) then follows from Corollary 3.2
in [Pet99]. 2

Now, the main result of this section can be established.

Theorem 3.9 (Convergence of “dark-grey – light-grey” approximations). Consider
the sequence of sizing optimization problems:

min
(ρ ,v)∈Hk×Udiv

Jk(ρ ,v), k = 1, . . . , (3.13)

Let{(ρ∗
k ,u∗

k)} be a sequence of “dark-grey – light-grey” optimal solutionsto (3.13)(i.e.,

(ρ∗
k ,u∗

k) ∈ H̃k×Udiv, k = 1,2, . . . ), which exists by Corollary 3.1 in [BoP03]. Then, an
arbitrary weak limit pointu of the sequence{u∗

k} ⊂ H1(Ω) (and there is at least one) de-

fines a controlρ = χΩ(u) ∈ H̃ such that(ρ ,u) is an optimal solution to the problem(3.7).
If, in addition,|Ωnz(u)| = γ|Ω|, then{ρk} strongly converges toρ in L1(Ω).
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Proof. Let uS be the Stokes flow constructed in the proof of Theorem 3.6; setρk =
ρkχΩnz(uS ) + ρ

k
χΩ\Ωnz(uS ). Then,(ρk,uS ) is feasible in (3.13),k = 1,2, . . . . Therefore,

the following inequalities hold:

limsup
k→+∞

Jk(ρ∗
k ,u∗

k) ≤ limsup
k→+∞

Jk(ρk,u
S )

≤ J S (uS )+ lim
k→+∞

1/2αk‖uS ‖L2(Ω)

= J S (uS ) < +∞.

This directly implies the boundedness of the sequence{u∗
k}; we therefore assume that

the original sequence weakly converges tou. Furthermore, owing to Lemma 3.7, the pair
(ρ ,u), with ρ = χΩ(u), is feasible in (3.7).

Let (ρ∗,u∗) ∈ H̃ ×Udiv be an arbitrary zero-one optimal solution to (3.7). By the
weak lower semicontinuity ofJ S , we have:

J S (ρ∗,u∗) ≤ J S (ρ ,u) ≤ lim inf
k→+∞

J S (u∗
k) ≤ lim inf

k→+∞
Jk(ρ∗

k ,u∗
k).

On the other hand, letting̃ρk = ρkχΩ(u∗) + ρ
k
χΩ\Ω(u∗), we obtain the reverse inequality:

J S (ρ∗,u∗) = J (ρ∗,u∗) = lim
k→+∞

Jk(ρ̃k,u
∗) ≥ limsup

k→+∞
Jk(ρ∗

k ,u∗
k),

owing to the feasibility of(ρ̃k,u∗) in (3.13),k = 1,2, . . . . This establishes the optimality
of (ρ ,u) in (3.7).

The last claim is a simple application of Corollary 3.8. 2

Now we are ready to discuss the additional assumption of Theorem 3.9 (the as-
sumption of Corollary 3.8), which guarantees the strong convergence of the optimal
approximating controls. This condition necessarily holdsif the flow volume constraint∫

Ω ρ ≤ γ|Ω| is active (binding) ateverycontrol that is optimal in (3.7). While we do not
know if this condition holds in every instance of the problem(3.7), it can always be sat-
isfied by decreasing the flow volume factorγ, if the convergence towards the flowu with
|Ωnz(u)| < γ|Ω| is observed, and resolving the problem.

There is an obstacle, however, which might prevent this fromworking in practice:
each of the approximating problems (3.13) is nonconvex, and, therefore, we cannot ex-
pect them to be solved to global optimality by numerical algorithms. (Many structural
optimization problems are rather difficult to approximate due to the inherent nonconvex-
ity of the approximating problems; see [StS01].) Despite this fact, in realistic instances
of (3.7) we expect the flow volume constraint to be binding.

3.7 Bilevel programming in flow mechanics: a possible
generalization?

Assume that we are interested in the optimal control of the Darcy-Stokes equations with
respect to an alternative objective functionalF : H ×H1(Ω) → R∪ {∞}, whereH
denotes the abstract control set. Formally, we would like tosolve the followingbilevel
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(cf. [LPR96, page 10]) programming problem:





min
(ρ ,u)∈H ×H1(Ω)

F (ρ ,u),

s.t. u ∈ argmin
v∈Udiv

J (ρ ,v),
(3.14)

Similarly, if we are interested only in pure Stokes flows, theoptimization problem can
be posed as follows: 




min
(ρ ,u)∈H ×H1(Ω)

F (ρ ,u),

s.t.





u ∈ argmin
v∈Udiv

J (ρ ,v),

J D (ρ ,u) = 0.

(3.15)

Of course, the minimization of the power function is the simplest problem one can
consider in flow topology optimization, owing to the fact that we can join the lower-level
and upper-level optimization problems into one: then, the bilevel program (3.14) reduces
to (3.5). This fact allows us to minimize the objective functionalF ≡ J simultaneously
w.r.t. (ρ ,u), resulting in a problem with an inf-compact, l.s.c. functional (w.r.t. the weak∗

×weak topology ofL∞(Ω)×H1(Ω)) that, thus, possesses optimal solutions. In the bilevel
case, the mappingρ → argminv∈Udiv

J (ρ ,v) is not closed in the weakly∗ × weakly
topology ofL∞(Ω)×H1(Ω). The next example shows that this mapping is not closed
even in the strong topology ofL1(Ω)×H1(Ω), which in particular prevents us from using
the weak∗ topology ofBV(Ω) (or evenSBV(Ω), cf. [AFP00]) for the design space of the
problems (3.14) and (3.15).

Example 3.10 (Disappearing wall in the driven cavity flow problem). Let
Ω = (0,1)× (−1,1) ⊂ R

2, Ω+ = (0,1)× (0,1), Ω− = Ω \Ω+, f ≡ 0 in Ω, g ≡ (1,0)
on the “upper” boundary (the line connecting the points(0,1) and (1,1)), andg ≡ 0
otherwise. Defineu+ to be the solution to the “lid-driven cavity flow” problem (see, e.g.,
[Jia98, page 146]) inΩ+, u+ = 0 in Ω−.

Consider a sequence{ρk} ⊂ L∞(Ω) ∩ BV(Ω), with ρk ≡ 1− χ(1,0)×(−1/k,0) in Ω,
k = 1,2, . . . . The solution to the Darcy-Stokes problem (3.2) in this caseis uk = u+;
thus{(ρk,uk)} → (1,u+) strongly inL1(Ω)×H1(Ω). At the same time, the flow corre-
sponding toρ ≡ 1 in Ω is the solution to the driven cavity flow problem inΩ, which is
not equal tou+. Thus, the mappingρ → argminv∈Udiv

J (ρ ,v) is not closed even in the
strong topology ofL1(Ω)×H1(Ω), even though limsupk→+∞ J (ρk,uk) < +∞.

Now, defineF (ρ ,v) = ‖1−ρ‖BV(Ω) +‖v−u+‖H1(Ω), H = {ρ ∈ BV(Ω) | 0≤ ρ ≤
1,a.e. inΩ}. Then, the sequence{(ρk,uk)} is a minimizing sequence for both prob-
lem (3.14) and (3.15), which does not converge to a feasible point of either of the prob-
lems. Therefore, the classic “flow tracking problem” posed as a bilevel topology opti-
mization problem of Darcy-Stokes flow has no solutions.

If we restrict the set of admissible controls so thatρ ≥ ρ > 0 in Ω, the problem (3.14)
becomes well-posed for every enough continuous objective functional; however, making
such a restriction we arrive at a less interesting for us sizing case. Therefore, the problem
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of choosing practically interesting and well-posed formulations of the topology optimiza-
tion of Stokes flows with objective functionals other than the total powerJ remains
open.

3.8 Conclusions and further research

We have shown that the topology optimization problem of the Darcy-Stokes equations
w.r.t. total power minimization admits optimal solutions,even if the limiting zero and
infinite permeabilities are included in the design domain. We have further established
that the problem of finding a zero-one optimal control, or optimal pure Stokes flow, can be
set up in a well-posed way; no additional restriction techniques are necessary in contrast
with the case of linear elastisity (cf. [BeS03]). Two techniques were proposed for solving
the zero-one optimal control problem. We have also shown that the topology optimization
problem w.r.t. alternative functionals might be ill-posed, and might lack optimal solutions.

It would be particularly interesting to study the zero-one topology optimization prob-
lem of Navier-Stokes or Euler flows. For the Navier-Stokes flows, which are of much en-
gineering interest, one can take the same design parametrization as for the Stokes flows.
The problematic part, as it is typical in topology optimization, is to establish the inf-
compactness property of the chosen objective functional onthe set of admissible designs.
The theory for the sizing case is straightforward, and only the numerical part needs to be
investigated. For the Euler flows, even the design parametrization is unclear, partly due to
the fact that flows of inviscid fluids through porous media arenot so well investigated in
the literature.

As for the Stokes flow, the further study of bilevel optimization problems might be
interesting, as well as the consideration of alternative flow boundary conditions (cf. [Jia98,
Section 8.2.2]).

Acknowledgement: The author is grateful to Michael Patriksson for his careful reading of
the manuscript and suggestions that improved the presentation. This research is supported
by the Swedish Research Council (grant 621-2002-5780).
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Paper 4

TOPOLOGY OPTIMIZATION OF SLIGHTLY
COMPRESSIBLE FLUIDS

Anton Evgrafov ∗

Abstract
We consider the problem of optimal design of flow domains for Navier–Stokes flows in order to
minimize a given performance functional. We attack the problem using topology optimization tech-
niques, or control in coefficients, which are widely known instructural optimization of solid struc-
tures for their flexibility, generality, and yet ease of use and integration with existing FEM software.
Topology optimization rapidly finds its way into other areasof optimal design, yet until recently it
has not been applied to problems in fluid mechanics. The success of topology optimization methods
for the minimal drag design of domains for Stokes fluids (see the study of Borrvall and Petersson
[Internat. J. Numer. Methods Fluids, vol. 41, no. 1, pp. 77–107, 2003]) has lead to attempts to use
the same optimization model for designing domains for incompressible Navier–Stokes flows. We
show that the optimal control problem obtained as a result ofsuch a straightforward generalization
is ill-posed, at least if attacked by the direct method of calculus of variations.

We illustrate the two key difficulties with simple numericalexamples and propose changes in
the optimization model that allow us to overcome these difficulties. Namely, to deal with impenetra-
ble inner walls that may appear in the flow domain we slightly relax the incompressibility constraint
as typically done in penalty methods for solving the incompressible Navier–Stokes equations. In
addition, to prevent discontinuous changes in the flow due tovery small impenetrable parts of the
domain that may disappear, we consider so-called filtered designs, that has become a “classic” tool
in the topology optimization toolbox. Technically, however, our use of filters differs significantly
from their use in the structural optimization problems in solid mechanics, owing to the very unlike
design parametrizations in the two models.

We rigorously establish the well-posedness of the proposedmodel and then discuss related
computational issues.

Keywords. Topology optimization, Fluid mechanics, Navier–Stokes flow, Domain identifica-
tion, Fictitious domain.
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4.1 Introduction

THE optimal control of fluid flows has long been receiving considerable attention by
engineers and mathematicians, owing to its importance in many applications involv-

ing fluid related technology; see, e.g., the recent monographs [Gun03, MoP01], and arti-
cles [Fei03, Ton03b, Ton03a, vBS02, ChG02, GuM02, Kim01, GKM00, OkK00, DzZ99,
GuK98, DRSS96, Sue96, BoB95, NRS95, StS94, BeD92, BFCS92],including the pio-
neering works of Pironneau [Pir73, Pir74] on the optimalityconditions for shape opti-
mization in fluid mechanics. According to a well-established classification in structural
optimization [BeS03, page 1], the absolute majority of works dealing with optimal design
of flow domains fall into the category of shape optimization.(See the bibliographical
notes (2) in [BeS03] for classic references in shape optimization.) In the framework
of shape optimization, the optimization problem formulation can be stated as follows:
choose a flow domain out of some family so as to maximize an associated performance
functional. The family of domains considered may be as rich as that of all open subsets
of a given set satisfying some regularity criterion (see, e.g. [Fei03]), or as poor as the
ones obtained from a given domain by locally perturbing somepart of the boundary in a
Lipschitz manner (cf. [Ton03b, GKM00, GuK98]). Unfortunately, it is typically only the
problems in the latter group that can be attacked numerically. On the other hand,topology
optimization(or, control in coefficients) techniques are known for theirflexibility in de-
scribing the domains of arbitrary complexity (e.g., the number of connected components
need not to be bounded), and at the same time require relatively moderate efforts from the
computational part. In particular, one may completely avoid remeshing the domain as the
optimization algorithm advances, which eases the integration with existing FEM codes,
and simplifies and speeds up sensitivity analysis.

While the field of topology optimization is very well established for optimal design
of solids and structures, surprisingly little work has beendone for optimal design of fluid
domains. Borrvall and Petersson [BoP03] considered the optimal design of flow domains
for minimizing the total power of the incompressible Stokesflows, using inhomogeneous
porous materials with a spatially varying Darcy permeability tensor, under a constraint on
the total volume of fluid in the control region. Later, this approach has been generalized
to include both limiting cases of the porous materials, i.e., pure solid and pure flow re-
gions have been allowed to appear in the design domain as a result of the optimization
procedure [Evg03]. (We also cite the work of Klarbring et al.[KPTK03], which however
studies the problem of optimal design of flow networks, wheredesign and state variables
reside in finite-dimensional spaces; in some sense this is ananalogue of truss design prob-
lems if one can carry over the terminology and ideas from the area of optimal design of
structures and solids.)

However, applications of the Stokes flows are rather limited, while the Navier–
Stokes equations are now regarded as the universal basis of fluid mechanics [Dar02].
Therefore, it has been suggested that the optimization model proposed by Borrvall and
Petersson [BoP03] (with straightforward modifications), in particular the same design
parametrization should be used for the topology optimization of the incompressible
Navier–Stokes equations [GH03]. Essentially, in this model we control the Brinkman-
type equations including the nonlinear convection term [All90a] (which will be referred
to as nonlinear Brinkman equations in the sequel) by varyinga coefficient before the ze-
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roth order velocity term. Setting the control coefficient tozero is supposed to recover the
Navier–Stokes equations; at the same time, infinite values of the coefficient are supposed
to model the impenetrable inner walls in the domain. In Section 4.3 we illustrate the dif-
ficulties inherent in this approach, namely that the design-to-flow mapping is not closed,
leading to ill-posed control problems.

It turns out that if we employ the idea offilter [Sig97, SiP98] (which has become
quite a standard technique in topology optimization, see [Bou01, BrT01] for the rigorous
mathematical treatment)in addition to relaxing the incompressibility constraint (which
is unique to the topology optimization of fluids) we can establish the continuity of the
resulting design-to-flow mapping, and therefore the existence of optimal designs for a
great variety of design functionals; this is discussed in Section 4.4. Not going into details
yet, we comment that our use of filters significantly differs from the traditional one in
the topology optimization. Namely, not only do we use filtersto forbid small features
from appearing in our designs and thus to transform weak(-er) design convergence into
a strong(-er) one (cf. Proposition 4.5), but also to verify certain growth conditions near
impenetrable walls [see inequality (4.4) and Proposition 4.27], which later guarantees the
embedding of certain weighted Sobolev spaces into classic ones (see inequality (4.14) in
the proof of Proposition 4.12), and finally allows us to provethe continuity of design-to-
flow mappings in Section 4.5. The existence of optimal designs, formally established in
Section 4.6, is an easy corollary of the continuity of the design-to-flow mappings.

Some computational techniques are introduced in Section 4.7. Namely, in Subsec-
tion 4.7.1 we discuss a standard topic of approximating the topology optimization prob-
lems with so-called sizing optimization problems (also known as “ε-perturbation”), which
in our case reduces to approximation of the impenetrable walls with materials of very low
permeability. In Subsection 4.7.2 we touch upon techniquesaimed at reducing the amount
of porous material in the optimal design. We conclude the paper by discussing possible
extensions of the presented results, open questions, and further research topics in Sec-
tion 4.8. Proofs of some results are found in Appendix 4.A.

4.2 Prerequisites

4.2.1 Notation

We follow standard engineering practice and will denote vector quantities, such as vectors
and vector-valued functions, using thebold font. However, for functional spaces of both
scalar- and vector-valued functions we will use regular font.

Let Ω be a connected bounded domain ofR
d, d ∈ {2,3} with a Lipschitz continu-

ous boundaryΓ. In this domain we would like to control the nonlinear Brinkman equa-
tions [All90a] with the prescribed flow velocitiesg on the boundary, and forcesf acting in
the domain by adjusting the inverse permeabilityα of the medium occupyingΩ, which
depends on the control functionρ :





−ν∆∆∆u+u ·∇∇∇u+ α(ρ)u+ ∇∇∇p = f,

divu = 0

}
, in Ω,

u = g, on Γ.

(4.1)
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In the system (4.1),u is the flow velocity,p is the pressure, andν is the kinematic vis-
cosity. Of course, owing to the incompressibility ofu, the functiong must satisfy the
compatibility condition ∫

Γ
g·n = 0, (4.2)

wheren denotes the outward unit normal. Ifα(ρ(x)) = +∞ for somex ∈ Ω, we simply
requireu(x) = 0 in the first equation of (4.1).

Our control setH is defined as follows:

H = {ρ ∈ L∞(Ω) | 0≤ ρ ≤ 1,a.e. inΩ,
∫

Ω
ρ ≤ γ|Ω|},

where 0< γ < 1 is the maximal volume fraction that can be occupied by the fluid. Every
elementρ ∈ H describes the scaled Darcy permeability tensor of the medium at a given
point x ∈ Ω in the following (informal) way:ρ(x) = 0 corresponds to zero permeability
at x (i.e., solid, which does not permit any flow at a given point),while ρ(x) = 1 corre-
sponds to infinite permeability (i.e., 100% flow region; no structural material is present).
Formally, we relate the permeabilityα−1 to ρ using a convex, decreasing, and nonnega-
tive function (cf. [BoP03, Evg03])α : [0,1]→ R+∪{+∞}, defined as

α(ρ) = ρ−1−1.

In the rest of the paper we will use the symbolχA for A⊂Ω to denote the characteristic
function ofA: χA(x) = 1 for x ∈ A; χA(x) = 0 otherwise.

4.2.2 Variational formulation

To state the problem in a more analytically suitable way and to incorporate the special
caseα = +∞ into the first equation of the system (4.1), we introduce a weak formulation
of the equations. Let us consider the sets of admissible flow velocities:

U = {v ∈ H1(Ω) | v = g on Γ},
Udiv = {v ∈ U | divv = 0,weakly inΩ}.

Let J S : U → R denote the potential power of the viscous flow:

J S (u) =
ν
2

∫

Ω
∇∇∇u ·∇∇∇u−

∫

Ω
f ·u.

Let us further define the additional power dissipationJ D : H ×U → R∪{+∞}, due
to the presence of the porous medium (we use the standard convention 0·+∞ = 0):

J D (ρ ,u) =
1
2

∫

Ω
α(ρ)u ·u.

Finally, letJ (ρ ,u) = J S (u)+J D(ρ ,u) denote the total power of the Brinkman flow.
Then, the requirement “α(ρ) = +∞ =⇒ u = 0” is automatically satisfied ifJ D (ρ ,u) <
+∞.

We will use epi-convergence of optimization problems as a main theoretical tool in
the subsequent analysis, thus it is natural to study the following variational formulation
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(cf., e.g., [Evg03]) for Darcy-Stokes flows [i.e., obtainedby neglecting the convection
termu ·∇∇∇u in (4.1)]: for f ∈ L2(Ω), compatibleg∈ H1/2(Γ), andρ ∈ H , find u ∈ Udiv

such that
u ∈ argmin

v∈Udiv

J (ρ ,v).

Naturally, taking convection into account, this can be generalized to the following fixed
point-type formulation of (4.1) (see Subsection 4.5.2 for the rigorous discussion of its
well-posedness): forf ∈ L2(Ω), compatibleg∈ H1/2(Γ), andρ ∈ H find u ∈ Udiv such
that

u ∈ argmin
v∈Udiv

{
J (ρ ,v)+

∫

Ω
(u ·∇∇∇u) ·v

}
. (4.3)

4.3 Problems with the existing approach

When we allow impenetrable walls to appear and to disappear in the design domain, we
create two particular types of difficulties, each related toa corresponding change in topol-
ogy (see Subsection 4.3.1 and 4.3.2). We note that in the “sizing” case, which can be
modeled by introducing an additional design constraintρ ≥ ε, a.e. inΩ (for some small
ε > 0) these difficulties do not appear. (In fact, it is an easy exercise to verify that under
such circumstances the design-to-flow mapping is closed w.r.t. strong convergence of de-
signs, e.g., inL1(Ω), andH1(Ω)-weak convergence of flows.) Such a distinct behavior
of the sizing and topology optimization problems may indicate that the former is not a
useful approximation of the latter in this case.

4.3.1 Disappearing walls

For the sake of simplicity, in this subsection we assume thatthe objective functional in our
control problem (which is not formally stated yet) is the powerJ of the incompressible
Navier–Stokes flow. This functional is interesting from at least two points of view. Firstly,
in many cases the resulting control problem is equivalent tothe minimization of the drag
force or pressure drop, which is very important in engineering applications [BoP03]. Sec-
ondly, while it is intuitively clear that impenetrable inner walls of vanishing thickness
change the flow in a discontinuous way, for the Stokes flows thetotal potential power
is lower semi-continuous w.r.t. such changes, which allowsus to apply the Weierstrass
theorem and ensure the existence of optimal designs (cf. [Evg03, Theorem 3.3]). In this
subsection we consider two examples illustrating the discontinuity of the flow as well
as non-lower semicontinuity of the power functional in the case of the incompressible
Navier–Stokes equations; this means that the corresponding control problem of minimiz-
ing the potential power is ill-posed, at least from the pointof view of the direct method of
calculus of variations.

Example 4.1 (Infinitely thin wall). We consider a variant of the backstep flow with
ν = 1.0 · 10−3 (which corresponds to the Reynolds number Re= 1000), as shown in
Figure 4.1. We specifyu on the inflow boundary to be(0.25− (y− 0.5)2,0.0)t , on the
outflow boundary we requireuy = 0 as well asp = 0; on the rest of the boundary the
no-slip conditionu = 0 is assumed. We consider a sequence of the domains containinga
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Fig. 4.1: Flow domain for the backstep flow.

thin but impenetrable wall of vanishing thickness (as shownin Figure 4.1 by dashed line).
The limiting domain is the usual backstep shown with the solid line. Direct numerical
computation in Femlab (see Figure 4.2 showing the flows) shows that for the domains
with thin wall we haveJ ≈ 0.8018, while for the limiting domainJ ≈ 0.8263. This
demonstrates the non-lower semicontinuity of the total power functional in the case of
incompressible Navier–Stokes equations.

We note that while the “jump” of the power functional may seemnegligible in this
example, other examples may be constructed where this jump is much bigger.

It may be argued that in the example above the thin wall may be substituted by the
complete filling of the resulting isolated subdomain with impenetrable material, and the
following example is more peculiar and demonstrates that wecan control the behavior of
the Navier–Stokes flow with an infinitesimal amount of material. It is interesting to note
that the example is based on the construction of Allaire [All90a], which in some sense is
“opposite” to our design parametrization. Namely, we try tocontrol the Navier–Stokes
equations by adjusting the coefficients in the nonlinear Brinkman equations, while the
sequence of perforated domains considered in Example 4.2 has been used to obtain the
nonlinear Brinkman equations starting from the Navier–Stokes equations in a periodically
perforated domain as a result of the homogenization process.

Example 4.2 (Perforated domains with tiny holes).We assume that the boundaryΓ is
smoothand impenetrable (i.e., the homogeneous boundary conditionsg = 0 hold), and
that the viscosityν is large enough relatively to the forcef to guarantee the existence
of a unique solution to the Navier–Stokes system inΩ. Let Ωε denote a perforated do-
main, obtained fromΩ by taking out spheres of radiusrd(ε) with centersεZ

d, where
limε→+0 rd(ε)/ε = 0; see Figure 4.3. Let(ũε , p̃ε) denote a solution to the Navier–Stokes
problem insideΩε with homogeneous boundary conditionsũε = 0 on ∂Ωε . We extend
ũε onto the wholeΩ by setting it to zero inside each sphere; we further denote byuε this
extended solution. For every smallε > 0 it holds thatuε solves the problem (4.3) for
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(a) (b)

(c) (d)

Fig. 4.2: Backstep flow: Example 4.1. (a), (b):x- andy-components, respectively, of
the flow velocity when the impenetrable wall has arbitrary but positive thick-
ness (only the part of the domain with nontrivial flow is shown); (c), (d): x-
andy-components, respectively, of the flow velocity as the impenetrable wall
disappears.Note the different color scales.

ρε = χΩε . Allaire [All90a] has shown that depending on the limitC = limε→+0 rd(ε)/ε3

for d = 3, orC = limε→+0−ε2 log(rd(ε)) for d = 2, there are three limiting cases:

C = 0: {uε} converges strongly inH1(Ω) towards the solution to the Navier–
Stokes problem in the unperforated domainΩ, i.e., the solution to the prob-
lem (4.3) corresponding toρ = 1 (see [All90b, Theorem 3.4.4]);

C = +∞: {uε} converges towards 0 strongly inH1(Ω) (in fact, there is more infor-
mation about{uε} available, see [All90b, Theorem 3.4.4]);

0 < C < +∞: {uε} converges weakly inH1(Ω) towards the solution to the nonlinear
Brinkman problem in the unperforated domainΩ, i.e., the solution of
the problem (4.3) corresponding toρ = σ , for a computable constant
σ(d,ν,C) > 0 (see [All90a, Main Theorem]).

We note that in all three cases the sequence of designs{ρε} strongly converges to zero
in L1(Ω), while only in the caseC = 0 the corresponding sequence of flows converges to
the “correct” flow. As for the other two cases, we can either completely stop (C = +∞) or
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Fig. 4.3: The perforated domain (a) and a periodic cell (b).

just slow (0< C < +∞) the flow using only infinitesimal amounts of structural material
(recall thatrd(ε)/ε → +0). Moreover, the sequence of perimeters ofρε converges to
zero, and therefore the perimeter constraint cannot enforce the convergence of flows in
this case (contrary to the situation in linear elasticity, cf. [BeS03, p. 31]). In the same
spirit, the regularized intermediate density control method considered by Borrvall and
Petersson [BoP01] classifies the designsρε as regular for all enough smallε > 0 (since
they are indeed close to a regular designρ ≡ 0 in the strong topology ofLp(Ω), 1≤ p <
∞); thus the latter method also fails to recognize the pathological cases illustrated in the
present example.

4.3.2 Appearing walls

Walls that appear in the domain as a result of the optimization process may break the
connectivity of the flow domain (or some parts of it), so that the incompressible Navier–
Stokes system may not admit any solutions in the limiting domain (resp., some parts of
it). While obtaining such results may seem to be a failure of the optimization procedure,
completely stopping the flow might be interesting (or even optimal) with respect to some
engineering design functionals.

The following example is purely artificial and its only purpose is to demonstrate the
possible non-closedness of the design-to-flow mapping whennew walls appear in the do-
main. It essentially repeats [Evg03, Example 2.1], but we include it here for convenience
of the reader.

Example 4.3 (Domain with diminishing permeability). Let Ω = (0,1)2, g ≡ (1,0)t ,
andf ≡ 0. Let furtherρk ≡ 1/k in Ω, k = 1,2, . . . , ρ ≡ 0 in Ω, so thatρk → ρ , strongly in
L∞(Ω) ask → ∞. Then,u ≡ (1,0)t is a solution of the problem (4.3) for allk = 1,2, . . . ;
clearly,(ρk,u)→ (ρ ,u), strongly inL∞(Ω)×H1(Ω). At the same time, it is not difficult to
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verify that the problem (4.3) has no solutions for the limiting designρ , which means that
the design-to-flow mapping is not closed even in the strong topology ofL∞(Ω)×H1(Ω)!

The problem related to the appearence of walls completely stopping the flow in some
domains has been solved for Stokes flows by (implicitly) introducing an additional con-
straintJ (ρ ,u) ≤C, for a suitable constantC. Owing to the coercivity ofJ onH1

0(Ω),
this keeps the flows in some bounded set. However, in view of the non-lower semicon-
tinuity of the power functional for the Navier–Stokes flows (see Example 4.1), this set is
not necessarily closed, making the problems with appearingwalls much more severe in
the present case.

We consider the next example in some detail, even though it isquite similar to the
previous one, because we will return to it later in Subsection 4.4.2.

Example 4.4 (Channel with a porous wall).We consider a channel flow at Reynolds
number Re= 1000 (ν = 1.0 · 10−3) through a wall made of porous material with van-
ishing permeability appearing in the middle of the channel (see Figure 4.4). We specifyu
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Fig. 4.4: Flow domain of Example 4.4.

on the inflow boundary to be(1−y2,0.0)t , on the outflow boundary we requireuy = 0 as
well asp = 0; on the rest of the boundary the no-slip conditionu = 0 is assumed except
that on the “lower” edge we have slip (i.e., onlyuy = 0) due to the symmetry.

We chooseρ so thatα(ρ) = 0 onΩ1∪Ω3 andα(ρ) = α on Ω2, whereα assumes
values 1.0, 1.0 ·102, 1.0 ·104, +∞. The corresponding flows (calculated in Femlab) are
shown in Figure 4.5; the incompressible Navier–Stokes problem in the last (limiting as
α → +∞) domain admits no solutions.

To summarize, even though the sequence of designsρα → χΩ1∪Ω3, strongly inL∞(Ω),
the corresponding sequence of flows does not converge to the flow corresponding to the
limiting design, simply because the latter does not exist.
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(a) (b)

(c) (d)

Fig. 4.5: Incompressible flow through the porous wall: (a)α = 1.0, (b)α = 1.0·102, (c)
α = 1.0 ·104, (d) α = +∞.

4.4 Proposed solutions to the difficulties outlined

Difficulties inherent in the straightforward generalization of the methodology proposed by
Borrvall and Petersson [BoP03] for Stokes flows to incompressible Navier–Stokes flows
have been outlined in Section 4.3. One possible solution, which allows us to avoid these
difficulties, is simply to forbid topological changes and toperform sizing optimization,
interpreting optimal designs as distributions of porous materials with spatially varying
permeability (cf. [All90a, All90b]; see also [Hor97]). As it has already been mentioned
the resulting designs may or may not accurately describe thedomains obtained by substi-
tuting the materials with high permeability by void, and those with low permeability by
impenetrable walls. Furthermore, if we decide to keep the porous material, it is question-
able whether such designs can be easily manufactured and thus it is unclear whether they
are “better” from the engineering point of view. Thus we do not employ this approach but
instead try to slightly modify the design parametrization as well as the underlying state
equations with the ultimate goal to rigorously obtain a closed design-to-flow mapping
while maintaining a clear engineering/physical meaning ofour optimization model.



Topology optimization of slightly compressible fluids 65

4.4.1 Filters in the topology optimization

In both examples in Subsection 4.3.1 we constructed the sequences of designs having very
small details, which disappear in the limit. Using the notion of a filter [Sig97, SiP98] we
can control the minimal scale of our designs; we will employ this technique, which has
become quite standard in topology optimization of linearlyelastic materials [BeS03].

Following Bourdin [Bou01], and Bruns and Tortorelli [BrT01], we define afilter F :
R

d →R of characteristic radius R> 0 to be a function verifying the following properties:

F ∈C0,1(Rd), suppF ⋐ BR, suppF is convex,

F ≥ 0 in BR,

∫

BR

F = 1,

whereBR denotes the open ball of radiusR centered in origo. We denote the convolution
product by a∗ sign, i.e.

(F ∗ρ)(x) =
∫

Rd
F(x−y)ρ(y)dy.

Owing to the Lipschitz continuity ofF , F ∗ρ is a continuous function (cf. [Bre83, Propo-
sition IV.19]).

In order to compute the convolution between the filter and a given designρ the latter
must be defined not only onΩ, but also on the whole spaceRd. Therefore, in the sequel
we consider the following redefined design domain:

H = {ρ ∈ L∞(Rd)∩L1(Rd) | 0≤ ρ ≤ 1,a.e. inR
d,

∫

Rd
ρ ≤V },

for a givenV > 0.
One of the consequences of the fact thatF is Lipschitz continuous inRd and not just

in BR is that the following importantgrowth conditionis verified (see Proposition 4.27):

(F ∗ χ
Rd\suppF)(x) ≤C|x|2, (4.4)

as|x| → 0, for some appropriate constantC > 0, which implies thatα((F ∗ρ)(·)) grows
at least as fast as dist−2(·,{F ∗ρ = 0}) arbitrarily near to impenetrable walls. It is this
condition that allows us to prove an approximation result, Proposition 4.12, which is in
turn the key ingredient in the proof of our closedness theorems.

For notational convenience we setJ F(ρ ,u) = J (F ∗ρ ,u). As a consequence of
the introduction of the filter, we can demonstrate the following simple claim, which trans-
lated to normal language says that impenetrable walls cannot disappear in the limit. In
the following Proposition, Limsup is understood in the sense of Painlevé-Kuratowski,
see [AuF90, Definition 1.4.6], or [BoS00, Definition 2.52].

Proposition 4.5. Consider an arbitrary sequence of designs{ρk} ⊂ H , such thatρk ⇀
ρ , weakly in L1loc(R

d), for someρ ∈ H . Define a sequence{Ωk
0} of subsets ofΩ as

Ωk
0 = {x ∈ Ω | (F ∗ρk)(x) = 0},

Ω∞
0 = {x ∈ Ω | (F ∗ρ)(x) = 0}.

Then,Limsupk→∞ Ωk
0 ⊂ Ω∞

0 ∪Γ.
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Proof. Let I ⊂ N be an infinite subsequence of indices, such that for somexk ∈ Ωk
0, k∈ I ,

there existsx∈R
d such thatx = limk∈I xk. We know thatρk ≡ 0 a.e. onxk+suppF, k∈ I .

Then,ρ ≡ 0 a.e. onx+suppF , i.e.,(F ∗ρ)(x) = 0. Clearly,x ∈ clΩ, which finishes the
proof. 2

Remark 4.6. The convergence of flow domainsΩ\Ωk
0 induced by the weak convergence

of designs (which implies strong convergence of filtered designs) can be compared to the
convergence of domains in some topology defined for set convergence, e.g., the comple-
mentary Hausdorff topology. It is known, in general, that the latter topology is weaker
(see, e.g., [SoZ92, Section 2.6.2]). However, such a comparison is not quite fair in the
present situation, where the domains we deal with can be rather irregular (e.g., lie on two
sides of their boundaries), and, more importantly, the domains in the sequence may have
different connectivity compared to the “limiting” domain.

Later we will see that we need even stronger convergence ofΩk
0 → Ω∞

0 to obtain
closedness of the design-to-flow mappings.

The use of filtered designsF ∗ρ in place ofρ in problem (4.3) allows us to overcome
the difficulties caused by disappearing walls. While we delay the formal statement of this
fact until Section 4.5, at this point we can consider an example that illustrates the effect
of using filters.

Example 4.7 (Example 4.2 revisited).Consider an arbitrary filterF and a sequence of
designs{ρε} defined in Example 4.2. Let for everyε > 0 extend the definition ofρε
(that has been defined only onΩ) by settingρε(x) = 1 for all x ∈ (Ω +suppF)\Ω, and
ρε(x) = 0 for all x ∈ R

d \ (Ω +suppF). Then,F ∗ρε → 1 asε → +0, uniformly in clΩ,
and the corresponding sequence of flows converges to a pure Navier–Stokes flow in the
domainΩ (caseC = 0 in Example 4.2).

4.4.2 Slightly compressible fluids

While it seems difficult to imagine a reasonable cure for Example 4.3, because the limiting
flow must be zero onΩ with nonzero trace onΓ, we can at least try to get a closed
design-to-flow mapping if impenetrable walls do not appear too close to the boundary
with non-homogeneous Dirichlet conditions on velocity, asin Example 4.4. The difficulty
in the latter example is that in our model the porous wall doesnot stop, or slow, the
incompressible fluid while we use material with positive permeability. At the same time,
the limiting domain does not permit any incompressible flow through it, because it is not
connected.

We can solve this problem by relaxing the incompressibilityrequirement divu = 0 in
the system (4.1) [of course, we do not need to require the compatibility condition (4.2)
in this case]. For example, we may assume that the fluid isslightly compressible, i.e.,
choose a smallδ > 0 and let divu+ δ p = 0. In fact, it is known that for a fixed domain
admitting an incompressible flow, the difference between the regular incompressible and
slightly compressible flows is of orderδ , i.e., we change model only slightly ifδ is small
enough. The slightly compressible Navier–Stokes equations are often used as approxima-
tions of incompressible ones in so-calledpenalty algorithms[Gun89, Chapter 5]. On the
other hand, with the gained maturity of mixed finite element methods, the incompressible
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system can be equally well solved to approximate the behavior of slightly compressible
fluids [Tem01].

Whether one considers slightly compressible Navier–Stokes fluids to be the most suit-
able mathematical model of the underlying physical flow (seeRemark 4.9) or just an
accurate approximation of the incompressible Navier–Stokes equations, we make an as-
sumption of slight compressibility because it allows us to achieve the ultimate goal of this
paper: to obtain a closed design-to-flow mapping. Again, delaying the precise formula-
tions until Section 4.5, we revisit Example 4.4 to illustrate our point.

Example 4.8 (Example 4.4 revisited).We chooseδ = 1.0 · 10−3 and resolve the flow
problem of Example 4.4 forα ∈ {1.0,1.0 ·102,1.0 ·104,+∞}. The corresponding flows
(calculated in Femlab) are shown in Figure 4.6; in contrast with the incompressible
Navier–Stokes case we can see the convergence of flows as domains converge (i.e., as
α increases) to a limiting flow, which exists in the compressible case. Note that for small
values ofα andδ the incompressible and the slightly compressible flows looksimilar.

(a) (b)

(c) (d)

Fig. 4.6: Compressible flow through the porous wall: (a)α = 1.0, (b)α = 1.0 ·102, (c)
α = 1.0 ·104, (d) α = +∞. Compare with Figure 4.5.

Remark 4.9. It is known that the pseudo-constitutive relation divu + δ p = 0 lacks an
adequate physical interpretation for many important physical flows (e.g., see [HeV95]).
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In particular, there is no physical pressure field compatible with the flow shown in Fig-
ure 4.6 (d). On the other hand, the pseudo-constitutive relation resulting from the penalty
method can still be used as a mathematical method of generating flows approximating
those of incompressible viscous fluids. Moreover, the idea of relaxing the incompressibil-
ity contraint may also be useful for topology optimization in fluid dynamics, where the
corresponding relation divu+ δdp/dt = 0 is known to be physical.

4.5 Continuity of the design-to-flow mapping

4.5.1 Stokes flows

We start by showing the closedness of the design-to-flow mapping for slightly compress-
ible Stokes flows with homogeneous boundary conditions, andthen show the necessary
modifications for the inhomogeneous boundary conditions. For the compressible Stokes
system the variational formulation is as follows. Givenρ ∈ H , find the solution to the
following minimization problem:

min
v∈U

{
J F(ρ ,v)+ (2δ )−1

∫

Ω
(divv)2

}
. (4.5)

We note that in the case of homogeneous boundary conditions we haveU = H1
0(Ω).

Remark 4.10. Since the condition divu = 0 is violated, we should replace the term∫
Ω |∇∇∇u|2 in the definition ofJ S with

∫
Ω |E(u)|2, whereE(u) = (∇∇∇u + ∇∇∇ut)/2 is the

linearized rate of strain tensor (cf. [Gun89, Section 4.3]). However, both quadratic forms
give rise to equivalent norms onH1

0(Ω) (cf. [CaK84, Bre83]) and thus do not affect our
theoretical developments in any way. Therefore, we choose to keep the definition ofJ S

for notational simplicity.
In fact, one can go one step further and replace the term

∫
Ω |∇∇∇u|2 with

∫
Ω P(|E(u)|),

whereP is a positive convex function verifying certain growth assumptions, thus in-
cluding non-Newtonian flows into the discussion [FuS00, Chapters 3 and 4]. For some
functionals this will not affect the discussion, while for others (e.g., Prandtl-Eyring flu-
ids) we must reconsider the very basic problem statements [such as (4.5)]. Therefore, in
this paper we consider Newtonian fluids only (that is, the case P(x) = x2) and discuss
possible extensions in Section 4.8.

Proposition 4.11. For every designρ ∈ H the optimization problem(4.5)has a unique
solutionv ∈ H1(Ω) whenever its objective functional is proper w.r.t.U , in particular if
U = H1

0(Ω).

Proof. See Appendix 4.A. 2

The proof of the main theorem of this section, Theorem 4.13, which establishes the
continuity of the design-to-flow mapping in the case of Stokes flow with homogeneous
boundary conditions, heavily depends on the following approximation result. Its proof
can be found in the Appendix 4.A.



Topology optimization of slightly compressible fluids 69

Proposition 4.12. Letu ∈ H1
0(Ω), ρ ∈H , andJ F(ρ ,u)≤ M < +∞. Define alsoΩ0 =

{x ∈ Ω | (F ∗ρ)(x) = 0}. Then, there exists a sequence{uk} ⊂ H1
0(Ω) such that:

(i) suppuk ⋐ (Ω\Ω0);
(ii ) limk→+∞ uk = u, strongly in H1

0(Ω);
(iii ) limsupk→+∞ J F(ρ ,uk) ≤ M.

Theorem 4.13. Consider a sequence of designs{ρk} ⊂ H and the corresponding se-
quence of flows{uk} ⊂ H1

0(Ω), k = 1,2, . . . (i.e., uk solves the problem(4.5) for ρk).
Assume thatρk → ρ0, strongly in L1(Ω +BR), anduk ⇀ u0, weakly in H1

0(Ω). Then,u0

is the flow corresponding to the limiting designρ0.

Proof. Throughout the proof we denote the optimal value of the optimization prob-
lem (4.5) for a given designρ as val(ρ). Owing to the weak lower-semicontinuity ofJ
(cf. [Evg03, Lemma 3.2]) and the weak lower-semicontinuityof

∫
Ω(divu)2 (cf. [EkT99,

Corollary 2.2]) we have that

val(ρ0) ≤ J F(ρ0,u0)+ (2δ )−1
∫

Ω
(divu0)

2 ≤ lim inf
k→∞

val(ρk). (4.6)

If we can also show that val(ρ0) ≥ limsupk→∞ val(ρk), then since val(ρ0) < +∞ (ow-
ing to Proposition 4.11) we must have equality throughout in(4.6), which means thatu0

solves (4.5) forρ0.
Without any loss of generality, we assume that val(ρ0) = limk→∞ val(ρk). Let ũ0

be the optimal solution of (4.5), and consider a sequence{un
0} ⊂ H1

0(Ω) constructed in
Proposition 4.12 forρ0 andũ0. Due to the properties of{un

0}, for everyε > 0 there exists
N(ε) ∈ N such that for alln > N(ε) it holds that

val(ρ0)+ ε > J F(ρ0,un
0)+ (2δ )−1

∫

Ω
(divun

0)
2. (4.7)

Moreover, strong convergence ofρk together with Lipschitz continuity ofF imply uni-
form convergence ofF ∗ρk towardsF ∗ρ0 on clΩ (cf. [Bre83, Théorème IV.15]). Since
un

0 ⋐ Ω\ {x ∈ Ω | (F ∗ρ0)(x) = 0}, it holds thatα(F ∗ρk) uniformly converges towards
α(F ∗ρ0) on suppun

0, and thus there isK(n,ε) ∈ N such that for allk > K(n,ε) we have

J F(ρ0,un
0)+ (2δ )−1

∫

Ω
(divun

0)
2 + ε > J F(ρk,u

n
0)+ (2δ )−1

∫

Ω
(divun

0)
2 ≥ val(ρk),

(4.8)
where the last inequality is due to the feasibility ofun

0 in (4.5) for the designρk. Combin-
ing (4.7) and (4.8), and lettingk grow to infinity in the latter we get

val(ρ0)+2ε > lim
k→∞

val(ρk).

Finally, lettingε go to zero, we finish the proof. 2

Remark 4.14. Theorem 4.13 shows the epi-convergence of the objective functionals
of the ρ-parametric optimization problem (4.5) as the parameters strongly converge in
L1(Ω +BR) (cf. [BoS00, p. 41]).
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Remark 4.15. We use strong convergence on the space of designs in order to guar-
antee the Lipschitz continuity (cf. [AuF90, Definition 1.4.5]) of the family of walls
{x ∈ Ω | (F ∗ ρk)(x) = 0}, parametrized byk ∈ N, which is a stronger property than
upper-semicontinuity (cf. Proposition 4.5). We need Lipschitz continuity to justify (4.8).

In the case of non-homogeneous boundary conditions, the proof is essentially the
same provided we can keep the walls away from the regions of the boundary where injec-
tion/suction of the fluid is performed; see Subsection 4.4.2and Example 4.3 for motiva-
tions.

Theorem 4.16. Consider a sequence of designs{ρk} ⊂ H and the corresponding se-
quence of flows{uk} ⊂ U , k = 1,2, . . . (i.e.,uk solves the problem(4.5) for ρk). Assume
that ρk → ρ0, strongly in L1(Ω + BR), anduk ⇀ u0, weakly in H1(Ω). Further assume
that for some positive constantsε,τ it holds that

inf{(F ∗ρk)(x) | k∈ N,x ∈ Ω∩ (suppg+Bε)} ≥ τ. (4.9)

Then,u0 is the flow, corresponding to the limiting designρ0 (i.e., u0 solves the prob-
lem(4.5) for ρ0).

Proof. Let w ∈ U be a function with suppw ⋐ Ω∩ (suppg+ Bε). Then, owing to the
additional condition (4.9), the objective functional of (4.5) is finite when evaluated atw,
for everyρk, k∈N, as well as forρ0. Therefore, for everyρk, k∈N, (resp., for the limiting
designρ0) the optimization problem (4.5) admits a unique optimal solution, which can be
written asuk = w+vk, vk ∈ H1

0(Ω) (resp.,̃u0 = w+ ṽ0, ṽ0 ∈ H1
0(Ω)).

The epi-convergence of the mappingsH1
0(Ω) ∋ v → J F(ρ ,w + v) +

(2δ )−1∫
Ω(div(w + v))2 as the parametersρ strongly converge inL1(Ω + BR) keep-

ing (4.9) true, can be shown exactly as in the proof of Theorem4.13. The latter implies
the claim. 2

Remark 4.17. We note that the condition (4.9) is automatically verified for Stokes prob-
lems with homogeneous boundary conditions, because the infimum is taken over the
empty set in this case (suppg = /0).

4.5.2 Navier–Stokes flows

In the case of the Navier–Stokes equations things get much more complicated, because
we do not seek a minimizer of some functional anymore, and we cannot apply epi-
convergence results directly. Nevertheless, we can utilize them to show the closedness
of the design-to-flow mappings even in the Navier–Stokes case.

We introduce a general fixed-point framework related to the optimization prob-
lem (4.5), and then show (at least for the case of homogeneousboundary conditions) that
the slightly compressible Navier–Stokes equations can be considered in this framework.

Let A(u,v) : U ×U → R be a weakly continuous functional, and consider the prob-
lem of finding a fixed point of the point-to-set mappingTρ : U ⇉ U defined forρ ∈ H
as

Tρ(u) = argmin
v∈U

{
J F(ρ ,v)+ (2δ )−1

∫

Ω
(divv)2 +A(u,v)

}
. (4.10)
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Theorem 4.18. Consider a sequence of designs{ρk} ⊂ H and the corresponding se-
quence of fixed points{uk}⊂U , k= 1,2, . . . (i.e.,uk ∈ Tρk(uk) for Tρk defined by(4.10)).
Assume thatρk → ρ0, strongly in L1(Ω+BR), uk ⇀ u0, weakly in H1(Ω), and T(u0) 6= /0.
Further assume that for some positive constantsε,τ the condition(4.9) is satisfied. Then,
u0 ∈ Tρ0(u0).

Proof. It is enough to show that the objective functionals of the parametric optimization
problems (4.10) epi-converge as(ρk,uk) converge towards(ρ0,u0). This follows from
Theorem 4.16, the continuity ofA, and [RoW98, Exercise 7.8.(a)]. 2

Remark 4.19. In fact, weak continuity ofA(u,v) is an unnecessarily strong requirement.
We can repeat the arguments of Theorem 4.13 with straightforward modifications and
prove Theorem 4.18 under the following weaker assumptions on A:

(i) A(u,u) ≤ lim infk→∞ A(uk,uk) wheneveruk ⇀ u, weakly inU ; and
(ii ) A(u,v) ≥ limsupk→∞ A(uk,vk) wheneveruk ⇀ u, weakly in U , and vk → v,

strongly inU .

As an example application of Theorem 4.18, we consider a particular penalty for-
mulation of the incompressible Navier–Stokes equations with homogeneous boundary
conditions studied in [CaK84]. A more general treatment is of course possible, including
inhomogeneous boundary conditions and variants of slightly compressible Navier–Stokes
equations; the main difference is in the number of technicaldetails to be covered.

To put the penalty formulation considered in [CaK84] (of course, without the control
termα) into the framework of (4.10) we define

A(u,v) =

∫

Ω
(u ·∇∇∇u) ·v+2−1

∫

Ω
(u ·v)divu. (4.11)

We note that the last integral adds an additional stability to the penalty algorithm [CaK84]
and identically equals zero in the incompressible case; we can thus expect that the ef-
fects of its presence can be almost neglected in the slightlycompressible case. Owing
to [CaK84, Lemma 2.7], the functionalA defined in (4.11) is weakly continuous on
H1

0(Ω)×H1
0(Ω), and in order to apply Theorem 4.18 it remains to establish ananalogue

of Proposition 4.11.

Proposition 4.20. With U = H1
0(Ω) and A defined by(4.11), the fixed-point prob-

lem(4.10)admits solutions for everyρ ∈ H .

Proof. The functionalA(u, ·) is linear and continuous onH1
0(Ω). Applying Lemma 4.29

to the “force”〈f, ·〉+ A(u, ·) ∈ H−1(Ω), we conclude that for everyρ ∈ H the operator
Tρ(u) is single-valued and completely continuous.

Now, assume thatw = σTρ(w) for somew ∈ H1
0(Ω) and 0< σ ≤ 1. Then, using

the fact thatA(aw,bw) = a2bA(w,w) = 0 for all a,b ∈ R, where the last equality is
by [CaK84, Lemma 2.4], and evaluating the objective function of (4.10) atσ−1w (the
optimal solution) and0∈ H1

0(Ω) we get the inequality

ν
2σ2

∫

Ω
|∇∇∇w|2 +

1
2σ2δ

∫

Ω
(divw)2 +

1
2σ2

∫

Ω
α(F ∗ρ)|w|2− 1

σ

∫

Ω
f ·w ≤ 0,
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which implies that‖w‖H1
0 (Ω) ≤ C‖f‖L2(Ω) holds, for some constantC independent ofσ .

An application of the Leray-Schauder Theorem (cf. [GrD03, §6, Theorem 5.4]) concludes
the proof. 2

Remark 4.21. While the mapping(ρ ,u) → Tρ(u) is in many cases single-valued for
every pair(ρ ,u), there might be more than one solution to the fixed point problem (4.10)
with this operator. In other words, we do not assume that the compressible Navier-Stokes
system admits a unique solution.

Remark 4.22. We can use another popular weak formulation of slightly compressible
Navier–Stokes equations (e.g., see [LCW95]), identifying

A(u,v) =
1
2

(∫

Ω
(u ·∇∇∇u) ·v−

∫

Ω
(u ·∇∇∇v) ·u

)
.

Our results hold even in this case without any changes.

Remark 4.23. Of course, the fixed-point framework (4.10) is not bounded toNavier–
Stokes equations. For example, putting, for someu0 ∈ R

d,

A(u,v) =

∫

Ω
(u0 ·∇∇∇u) ·v,

we can show continuity results for Oseen flows [Gal94]. This type of flow is probably not
very interesting in bounded domainsΩ, but illustrates the possible uses of the fixed-point
formulation (4.10). Finally, we note that settingA ≡ 0 we recover the original Stokes
problem.

4.6 Existence of optimal solutions

4.6.1 Ensuring strong convergence of designs and
condition (4.9)

The results established in Section 4.5 all require strong convergence of designs inL1(Ω+
BR). In order to guarantee convergence we need to embed our controlsH into some space
that is more regular thanL∞(Rd)∩L1(Rd). The most appropriate choice, in our opinion,
is the spaceSBV(Rd) (cf. [AFP00]), which is typically used for perimeter constrained
topology optimization (see [BeS03, p. 31] and references therein; see also [FGR99, Pet99,
HBJ96]). Other choices are possible, includingW1,1(Rd)∩ L∞(Rd) (that is, imposing
“slope constraints” on the design space; see [PeS98], but also [Bor01, BoC03]). Bounds
on the perimeter, or slope, may be introduced into the problem directly as constraints, or
added as penalties to the objective function.

Regardless of the particular method used, we get the required property: ρk ⇀ ρ ,
weakly inH , impliesρk → ρ , strongly inL1(Ω+BR), allowing us to establish the closed-
ness of the design-to-flow mappings.

As for the condition (4.9), it can be easily verified if we require in addition that every
designρ ∈ H , satisfying the bounds 0≤ ρ ≤ 1, a.e. onRd, also satisfiesρ ≥ τ, a.e. on
suppg+BR+ε , for some positive constantsε,τ.
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4.6.2 An abstract flow topology optimization problem

Now we are ready to formally discuss the well-posedness of anabstract flow topology
optimization problem:

min
(ρ ,u)

F (ρ ,u),

s.t.

{
(ρ ,u) ∈ Z ,

u ∈ Tρ(u).

(4.12)

The previous results imply the following theorem.

Theorem 4.24. Let Z be a nonempty weakly compact subset ofH ×U ⊂ SBV(Rd)×
H1(Ω), and let for allρ ∈ H the assumption(4.9)be verified(see the discussion in Sub-
section 4.6.1). We also assume that A[which defines the mapping Tρ via (4.10)]enjoys the
conditions of Remark 4.19, and that for everyρ ∈ H the fixed-point problem(4.10)ad-
mits solutions. Finally, letF : SBV(Rd)×H1(Ω)→ R be weakly l.s.c. Then, there exists
at least one optimal solution to the abstract flow topology optimization problem(4.12).

Proof. Essentially this is a Weierstrass Theorem adapted to our specific notation, because
the hypotheses and Theorem 4.18 imply that the feasible set of (4.12) is nonempty and
weakly compact. 2

Remark 4.25. If the assumptions of Theorem 4.24 about the flow model are satisfied, we
may set

Z = {(ρ ,u) ∈ Z0×U | G (ρ ,u) ≤C},

whereZ0 is a nonempty weakly compact subset ofH ⊂ SBV(Rd) verifying condi-
tion (4.9),G (ρ ,u) is an arbitrary weakly l.s.c. functional, which is in addition coercive in
u, uniformly w.r.t.ρ , andC∈ R is an arbitrary constant but such thatZ 6= /0.

In particular, we may setG = J , or G = J F (cf. [Evg03, Lemma 3.2]).

At last, we note that assumptions of Theorem 4.24 about the solvability of the fixed-
point problem for every feasible designρ are verified in many practical situations. For
example, we have shown that they are satisfied for Stokes equations (see Proposition 4.11
and Remark 4.23) and for Navier–Stokes equations with homogeneous boundary condi-
tions (see Proposition 4.20).

4.7 Computational issues

In this section we briefly discuss two topics that are standard in topology optimization
with specialization to flow topology optimization problems. Throughout the section we
will use problem (4.12) as a model example, and we assume thatthe assumptions of
Theorem 4.24 are verified without further notice.
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4.7.1 Approximation with sizing optimization problems

Clearly, no finite element software can be applied to the problem (4.10) if α(F ∗ ρ) is
allowed to become arbitrarily large; from the practical point of view the theory of Sec-
tion 4.5 implying the existence of optimal solutions to (4.12) is pointless, unless we can
describe a computational procedure capable of finding approximations of these optimal
solutions. In fact, once we have proved Theorem 4.18 the latter goal can be easily ac-
complished. For arbitraryε > 0, consider the setZε = {(ρ ,u) ∈ Z | ρ ≥ ε,a.e.}, i.e.,
only designs with porosity uniformly bounded away from zeroare allowed, implying in
particular the uniform boundα(F ∗ρ)≤ ε−1−1, for every(ρ ,u) ∈ Zε .

Then, the following easy statement holds.

Proposition 4.26. Assume that the sequence{Zε} is lower-semicontinuous in Painlevé-
Kuratowski sense(topology inH ×U being the strong one), namely

Liminf
ε→+0

Zε = Z , (4.13)

(in particular, Zε 6= /0 for all small ε > 0). Let further, for every smallε > 0, (ρε ,uε)
denote a globally optimal solution of an approximating problem, obtained from(4.12)
substitutingZε in place ofZ . Then, an arbitrary limit point of{(ρε ,uε)} (and there is
at least one) is a globally optimal solution of the limiting problem(4.12).

Proof. All claims easily follow from the uniform inclusionZε ⊂ Z , Theorems 4.24
and 4.18, and finally [BoS00, Proposition 4.4]. 2

The assumption (4.13) is probably easier to check in every particular case rather than
to develop a general sufficient condition implying it; we only mention that for typical
constraints in topology optimization, such as constraintson volume and on the perimeter,
it is easily verified.

In general, there is a substantial amount of literature on the topic of approximation
of topology optimization problems using sizing ones. (See the bibliographical notes (16)
in [BeS03] for a survey of the situation in the topology optimization of linearly elas-
tic materials; also see [Evg03, Section 6] for results on incompressible stokesian flows,
and [KPTK03, Appendix A.2] for a similar problem arising in the design of flow net-
works.) Cases of interest in such literature are when some ofthe underlying assumptions
of Proposition 4.26 are violated, such as the compactness ofZ or Zε , or the assump-
tion (4.13); in some particular situations it is nevertheless possible to prove statements
similar to Proposition 4.26. We do not try to generalize our result in this direction, be-
cause computationally the problem (4.12) is already extremely demanding for realistic
flows, and complicated constraints violating (4.13) are hardly necessary in practical situ-
ations.

4.7.2 Control of intermediate densities

Starting with the problem of distributing the solid material inside a control volumeΩ so as
to minimize some objective functional dependent on the flow,we expect an optimal design
of the typeρ = χA, whereA⊂ Ω is a flow region (“black–white” designs). Usually, this
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is a very naïve expectation [BeS03, Section 1.3.1]; however, there are some exceptions,
such as the minimum-power design of domains for Stokes flows [BoP03, Evg03], or the
design of one-dimensional wave-guides for stopping wave propagation [Bel03].

However, if we use a filter, it is simply impossible to obtain optimal distributions of
material assumingonlyvalues zero or one (not counting the trivial designsF ∗ρ ≡ 0 and
F ∗ρ ≡ 1), becauseF ∗χA is a continuous function, and the “edges”∂A will be “smoothed
out” by the filter. One possible way to reduce the amount of porous material in the final
optimal designF ∗ ρ is to use a filter of a smaller radius. This may or may not work
as expected — since the control problem (4.12) is non-convex, the optimal designs may
change significantly as we vary the radius only slightly.

Another possibility is to add a penalty termµJ D(F ∗ ρ ,u), for some positiveµ ,
requiring that the power dissipation due to the flow through the porous part of the do-
main should be relatively small [Evg03, Section 5]. We must warn that increasing penalty
µ might lead to unexpected results, because as we have alreadymentioned, the pres-
ence of the filterrequiresthe presence of porous regions in the domain (except for trivial
cases), thus the sequence of designs may converge to either one of those trivial designs, or
µJ D(F ∗ρ ,u) may grow indefinitely. Therefore, suitable values ofµ should be obtained
in each case experimentally.

At last, various restriction or regularization techniquesthat are designed to control the
amount of “microstructural material” in topology optimization of linearly elastic struc-
tures may be used for similar purposes in our case. We alreadymentioned the regular-
ized intermediate density control method [BoP01]; other possible choices may be found
in [BeS03, bibliographical notes (8)].

4.8 Conclusions and further research

We have considered the topology optimization of fluid domains in a rather abstract set-
ting, and established the closedness of design-to-flow mappings for a general family of
slightly compressible fluids, whose behavior is characterized by the fixed-point formula-
tion (4.10). We used the notion of epi-convergence of optimization problems as a main
analytical tool (cf. [BoS00, Proposition 4.6]) that allowsus to treat very ill-behaving func-
tionals, which arise due to the fact that we allow completelyimpenetrable walls to appear
in the design domain.

It is of course of great engineering interest to perform numerical experiments with
topology optimization of slightly compressible fluids for various objective functionals,
theoretical foundations for which are established in this paper. Provided a stable solver
of the underlying flow problem is available, it should not be adifficult task to combine
it with the optimization code; in the end, the ease of integration with FEM software is
one of the main reasons why topology optimization techniques are widely accepted and
still gain popularity in many fields of physics and engineering [BeS03]. In fact, one such
successful attempt of integrating topology optimization with Femlab is done for incom-
pressible Navier–Stokes fluids [GH03]. Unfortunately, at the time of writing this code
was not available to the author. We hope to be able to perform numerical computations in
the near future.

The motivation for relaxing the incompressibility requirement is found in Sec-
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tion 4.3.2; however, if one is not convinced, and for the sakeof completeness it would
be interesting to prove the main approximation result, Proposition 4.12, for divergence-
free functions, from which the rest of the theory should follow for incompressible fluids
as well.

The method we used is of course not bound to Newtonian fluids. It seems that our
results should hold for many common non-Newtonian fluids, including power-law, Bing-
ham, and Powell-Eyring models (cf. [FuS00, Chapter 3]), without any major modifica-
tions (cf. Remark 4.10). Additional work is obviously needed for fluids of Prandtl-Eyring
type [FuS00, Chapter 4]; we however feel that the special treatment this (mathematically)
exotic type of fluids deserves lies well outside the scope of this paper.

At last, but not the least, we feel it is important to establish the existence of solutions,
or construct a disproving counter-example, for the “original” problem of power minimiza-
tion for incompressible Navier–Stokes fluids without the use of filtered designs. While we
have shown that this problem looks ill-posed and is probablyunsuitable for practical nu-
merical computations, knowing whether optimal solutions exist would greatly contribute
to the deeper understanding of Navier–Stokes flows and affect the further development in
the area of topology optimization of fluids.

Acknowledgement: This research is supported by the Swedish Research Council(grant
621-2002-5780).
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4.A Appendix

Proposition 4.27. Under the assumptions on the filter F made in this paper the condi-
tion (4.4) is satisfied.

Proof. Let |x| = h and defineSh = {y ∈ suppF | dist(y,∂ suppF) ≤ h}. |Sh| ≤
hHd−1(∂ suppF), whereHd−1(∂ suppF) is the Hausdorff measure of∂ suppF (i.e.,
perimeter of∂ suppF). Moreover, supy∈Sh

F(y) ≤ Lh, whereL is the Lipschitz constant
for F. Thus,

(F ∗ χ
Rd\suppF)(x) ≤

∫

Sh

F ≤ h2LHd−1(∂ suppF). 2
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Proof (of Proposition 4.11).The functionU ∋ v → J F(ρ ,v) + (2δ )−1∫
Ω(divv)2 is

strongly convex and l.s.c. (in particular, owing to Poincaré inequality [Bre83, Corol-
laire IX.19]). Of course, if it is also proper w.r.t.U we get both existence and uniqueness
of solutions. In particular, the last property holds in the case0∈ U . 2

We will make use of the following statement, which can be found in the proof
of [Kuf80, Theorem 9.7]. We remark thatΩ needs not to be regular for this to hold
(cf. [Tri78, Section 3.2.3]).

Lemma 4.28. Let Ω ⊂ R
d be a bounded domain. Then, for every h> 0 there is a cut-off

function Fh ∈C∞
0 (Ω) such that:

(i) 0≤ Fh ≤ 1,
(ii ) ∀x ∈ Ω : |∇∇∇Fh(x)| ≤C1h−1 for a suitable constant C1 > 0, and
(iii ) Fh ≡ 1 on Ω\Ωh, whereΩh = {x ∈ Ω | dist(x,∂Ω) ≤ h}.

We can always(and in fact will) assume that Fh ∈C∞
0 (Rd), extending Fh by zero onRd\Ω.

The proof of the Proposition 4.12 essentially mimics the proof of [Kuf80, Theo-
rem 9.7]; however, we adapt it to our notation. The most important difference is the
fact that the specific growth condition holds not on the wholeboundary of our domain but
rather only on part of it, therefore we cannot apply the citedtheorem directly.

Proof (of Proposition 4.12).We apply Lemma 4.28 to a set(Ω + BR) \Ω0 to obtain a
family of “cut-off” functions{Fh} ⊂C∞

0 ((Ω +BR)\Ω0), h > 0, and setuh = Fhu on Ω.
Defininguh in such a way implies that{uh} ⊂ H1

0(Ω) and clearly gives us(i) and the
uniform estimation

∫
Ω α(F ∗ρ)|uh|2 ≤

∫
Ω α(F ∗ρ)|u|2. Thus it suffices to verify(ii) to

obtain(iii ) as well.
DefineΩh = {x ∈ Ω\Ω0 | dist(x,Ω0) ≤ h}. Sinceu−uh = (1−Fh)u, ∇∇∇u−∇∇∇uh =

(1−Fh)∇∇∇u−∇∇∇(1−Fh) ·u, and supp(1−Fh) ⊂ Ωh, it is necessary to estimate the differ-
ences only onΩh.

lim
h→+0

‖u−uh‖2
L2(Ω) ≤ lim

h→+0

∫

Ωh

(1−Fh)
2|u|2 = 0,

because 0≤ Fh ≤ 1, u ∈ H1(Ω), and|Ωh| → 0 ash→ +0.
Similarly,

lim
h→+0

‖∇∇∇u−∇∇∇uh‖2
L2(Ω) ≤ lim

h→+0

∫

Ωh

(1−Fh)
2|∇∇∇u|2 + lim

h→+0

∫

Ωh

|∇∇∇Fh|2|u|2,

and the first limit is zero, as before, since 0≤Fh ≤ 1,u∈H1(Ω), and|Ωh|→ 0 ash→+0.
We estimate the last integral as

∫

Ωh

|∇∇∇Fh|2|u|2 ≤C2
1

∫

Ωh

h−2|u|2 ≤C2
1C−1

∫

Ωh

α(F ∗ρ)|u|2, (4.14)

where the constantC1 is given by Lemma 4.28, and the last inequality holds owing to
the filter growth condition (4.4). Owing to the boundJ F(ρ ,u) < +∞, the last integral
converges to zero ash does, and thus the proof is complete. 2

The following fact is very well known for elliptic forms; we only show that possible
infinite values ifα do not change it.
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Lemma 4.29. For everyρ ∈ H ,

H−1(Ω) ∋ f ⇉ argmin
v∈H1

0 (Ω)

{
ν
2

∫

Ω
∇∇∇v ·∇∇∇v+

1
2δ

∫

Ω
(divv)2 +

1
2

∫

Ω
α(F ∗ρ)v ·v−〈f,v〉

}
,

where 〈·, ·〉 denotes the canonical pairing between the H−1(Ω) and H1
0(Ω) is single-

valued, linear, and completely continuous.

Proof. Both existence and uniqueness follow from Proposition 4.11. It is an easy exercise
to verify the linearity off → u(f). Furthermore, comparing objective functionals atu(f)
and at0, and using Poincaré inequality [Bre83, Corollaire IX.19] we get the inequality
‖u(f)‖2

H1
0 (Ω)

≤ C〈f,u(f)〉, for someC independent off. Of course, it implies complete

continuity at zero, which owing to the linearity is equivalent to complete continuity at
every point. 2
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