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Abstract

Recursive saturation and resplendence are two important notions in mod-
els of arithmetic. Kaye, Kossak, and Kotlarski introduced the notion of
arithmetic saturation and argued that recursive saturation might not be as
rigid as first assumed.

In this thesis we give further examples of variations of recursive sat-
uration, all of which are connected with expandability properties similar
to resplendence. However, the expandability properties are stronger than
resplendence and implies, in one way or another, that the expansion not
only satisfies a theory, but also omits a type. We conjecture that a special
version of this expandability is in fact equivalent to arithmetic saturation.
We prove that another of these properties is equivalent to β-saturation.
We also introduce a variant on recursive saturation which makes sense in
the context of a standard predicate, and which is equivalent to a certain
amount of ordinary saturation.

The theory of all models which omit a certain type p(x̄) is also investi-
gated. We define a proof system, which proves a sentence if and only if it
is true in all models omitting the type p(x̄). The complexity of such proof
systems are discussed and some explicit examples of theories and types
with high complexity, in a special sense, are given.

We end the thesis by a small comment on Scott’s problem. The problem
is to characterise standard systems of models of arithmetic. We prove that,
under the assumption of Martin’s axiom, every Scott set of cardinality <
2ℵ0 closed under arithmetic comprehension which has the countable chain
condition is the standard system of some model of PA. However, we do not
know if there exists any such uncountable Scott sets.

Keywords: First-order arithmetic, recursive saturation, resplendence, omit-
ting types, standard systems, Scott’s problem
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Introduction

The story of recursive saturation and resplendence, of which this thesis is
a part, sprung from the useful notion of saturated models in classic model
theory. However, as it turned out, there are set theoretic universes in
which some theories, with infinite models, do not have saturated models.
The situation is even worse if you want countable saturated models. By
joining computability with saturation, Barwise and Schlipf, and indepen-
dently Ressayre,1 came up with the notion of recursive saturation in the
seventies.

Every theory, in a recursive language, with an infinite model has a
lot of recursively saturated model. More importantly, any such theory
has a countable recursively saturated model. It turned out that countable
recursively saturated models behave very much like saturated models. A
lot of techniques used in classic model theory could now be adopted to, for
example, first-order arithmetic, or Peano arithmetic as it is often called.

However, recursive saturation is mostly a useful notion only for count-
able models. The slightly stronger notion of resplendence seems to work
better with uncountable models. A model is resplendent if any Σ1

1-formula
which is consistent with the theory of the model is in fact true in the model.
By a theorem of Kleene this is equivalent to that if T is a theory in a re-
cursive extension of the language of the model which is consistent with the
theory of the model, then there is an expansion of the model satisfying
the theory. For countable models resplendence and recursive saturation
coincide. The notion of resplendence was, also, introduced by Barwise and
Schlipf.

For long it seemed that recursive saturation was a very rigid notion.
For example, recursively enumerable saturation coincide with recursive sat-
uration. Also resplendent and recursive saturation coincide for the most
interesting case of countable models. This view has changed since the
work of Kaye, Kossak and Kotlarski, [KKK91], where they find an inter-
esting variation which is strictly stronger than recursive saturation. They
call it arithmetic saturation and they characterise all countable models of

1For a more detailed account on the history of recursive saturation see [BS76, §3].
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arithmetic which are arithmetic saturated in terms of properties on the
automorphism group of the model, both as a permutation group and as a
topological group. Later Lascar proved that the automorphism group of
such a model of arithmetic has the small index property, thus reducing the
property of the automorphism group as a topological group to a property
of the group as an abstract group.2

It is in this context the second chapter of this thesis should be read.
There we introduce several new variations of recursive saturation and re-
splendence.

The notion of recursive saturation, and its cousins, is very tightly in-
tervened with coding properties. The standard system of a model is the
collection of all sets of natural numbers coded in the model. It can be
seen as a measure on the degree of saturation of the model. For countable
models Scott characterised all algebras of sets of natural numbers occur-
ring as standard systems. By doing a limit construction this actually also
work for models of cardinality ℵ1, however the construction can not, to our
knowledge, be taken further. Very little is known about which algebras of
cardinality larger than ℵ1 are realized as standard systems. There will be
more on this in the last chapter of this thesis.

The thesis consists of four chapters. The first one is an introduction
to some background material we will need in the other three chapters. In
it we present an overview of the literature and most of the results are not
ours. Some small, and easy, remarks and are, however, to our knowledge,
new. The next three chapters are new, except possibly for the first part of
the third chapter.

First chapter, background

Various background material needed for the rest of the thesis is covered in
the first chapter. Most of it comes from models of arithmetic, but there
are also some material from descriptive set theory and second-order arith-
metic. Some proofs are presented, and others are not. We have chosen to
include proofs which are important for the rest of the thesis or which are
particularly nice.

Most of the material is known, but some small comments seems to be
new. For example the notion of low saturation and the easy propositions
1.19 and 1.21 are new. Also, we have not been able to find the proof of
Theorem 1.14 explicitly in the literature even though we understand it is
well-known.

2Thus there are countable recursively saturated models of arithmetic with different
automorphisms groups. This was unknown before the paper of Kaye, et. al. and the
paper by Lascar.
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Second chapter, expansions omitting types

The second chapter is the main one of this thesis. It constitutes of several
proposed generalisations of the notion of resplendence, an expandability
property of structures. A model is resplendent if for all recursive theories
T , in a language recursively extending the language of the model, which is
consistent with the theory of the model, there is an expansion of the model
satisfying it.

The proposed notions try to generalise this to, not only satisfying a
theory, but also omitting a type. The most naive generalisation would be,
for all recursive T and p(x̄) if T + p↑ + Th(M), where p↑ is a non first-
order sentence expressing that p(x̄) is omitted, has a model then there is an
expansion of M satisfying T+p↑. Trivially, this generalisation is too strong,
since if p(x̄) is a type realized in M such that Th(M) + p↑ is consistent,
then no expansions of M could ever satisfy p↑. We propose two different
ways of weakening this naive notion:

1. Strengthening the consistency assumption on T + p↑.

2. Weakening the expandability conclusion of M .

In the first section of this chapter the first proposed solution is dis-
cussed. The resulting notion is called transcendence, and we prove that,
for countable models, enough saturation implies transcendence; and that,
for models of PA, transcendence implies quite a lot saturation. However,
we have not been able to tie up the loose ends completely and prove an
equivalence between transcendence and a saturation property.

The second section discusses what happens if we restrict the types we
can omit in expansions to limit types, i.e., types which are not isolated.
It turns out that arithmetic saturation is enough to prove this form of
transcendence, at least for countable models; and we conjecture that, for
models of arithmetic, it is also necessary.

We go on and have a look at expansions to theories T + p↑ which are
categorical, in the sense that for a given T0 for every M |= T0 there is
at most one expansion satisfying T + p↑. The main example of such a
theory is the theory TK=ω which expresses that a unary predicate K is
the predicate of standard numbers, it is categorical over PA. Some general
results about such theories are proven with the help of transcendence; these
results inspired the next section.

The fourth section discusses the special case when T +p↑ extends TK=ω

and only one constant symbol is added to the language; this notion only
applies to models of PA. We prove that the resulting notion, called recursive
standard saturation is in fact equivalent, for countable models of PA, to a
saturation property.

3
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Lastly we discuss the second way of weakening the naive notion of ex-
pandability. The conclusion is now, not that there is an expansion satisfying
a theory and omitting a type, but that there is an elementary submodel
having such an expansion. It turns out that this notion, called subtranscen-
dence, is equivalent, for models of PA, to β-saturation. A model of PA is
β-saturated if its standard system is a β-model, i.e., if SSy(M) ≺Σ1

1
P(ω),

where SSy(M) and P(ω) are interpreted as ω-models of second-order arith-
metic.

All results presented in this chapter are new, and we think they show
that there are other saturation properties apart from recursive and arith-
metic saturation that are interesting.

Third chapter, the theory of omitting types

Given a theory T and a type p(x̄) what is the theory, Th(T + p↑), of all
models of T omitting p(x̄)? This question is answered in the third chapter
by defining a new inference rule that, schematically, looks like this:

. . . ∀x̄(ϕ(x̄) → pi(x̄)) . . . i∈ω

¬∃x̄ϕ(x̄) (p-rule)

where p(x̄) = { pi(x̄) | i ∈ ω }, i.e., we may deduce ¬∃x̄ϕ(x̄) if we can de-
duce ∀x̄(ϕ(x̄) → pi(x̄)) for all i ∈ ω.

We also apply some of the theory developed in the second chapter to
prove that there is a type and a theory with rank ωCK

1 , where the rank of
a theory and a type is a measure on how isolated the type is by the theory.
If the type p(x̄) is isolated by T then the rank of p(x̄) over T is 0, if not
then the rank measures how many times the p-rule has to be used to get
the theory Th(T + p↑).

The proof system discussed in this chapter is already implicit in a pa-
per by Casanovas and Farré, [CF96]. However, our approach is somewhat
different, and we think that most of results are new.

Fourth chapter, standard systems

Scott’s problem is to characterise the standard systems of models of PA.
For countable models, and for models of cardinality ℵ1, this has been done.
In the case of the continuum hypothesis this settles the problem. However,
if the continuum hypothesis fails very little is known about the problem for
models of cardinalities greater than ℵ1.

We prove that, under the assumption of Martin’s axiom, every Scott
set of cardinality < 2ℵ0 closed under arithmetic comprehension which has
the countable chain condition is the standard system of some model of PA.
However, we do not know if there exists any such uncountable Scott sets.

4



The ultraproduct construction in this chapter is strongly inspired by one
of Kanovei’s papers, [Kan96], where he, given a countable arithmetically
closed set X , constructs a model M of true arithmetic with SSy(M) = X
and such that a set A ⊆ ω is representable (without parameters) over
(M,ω) by a Σk-formula iff it is definable (without parameters) by a Σ1

k

formula over X .
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1
Background

We start this chapter by presenting some notation and definitions. Then we
go on with some words on how to arithmetise logic inside first-order arith-
metic, this yields the arithmetised completeness theorem. The important
notions of recursive saturation and resplendence are presented in sections
1.3 and 1.6. Scott sets and X-saturation are also presented together with
arithmetic saturation. We also introduce the notion of low saturation. We
end the chapter with some results from second-order arithmetic and de-
scriptive set theory.

1.1 Notation and preliminaries

Most of the notation and definition used are taken from [Kay91]. For clarity
we repeat most of them here.

Languages will mostly be countable and recursive and denoted by L .
The theory of a model M is

Th(M) = { ϕ |M |= ϕ and ϕ is a sentence } ;

if T is a first-order theory then

Th(T ) = { ϕ | T ` ϕ and ϕ is a sentence } .

The underlying language will, hopefully, be clear from the context. If
ā, b̄ ∈M then

tpM (ā/b̄) = {ϕ(x̄, b̄) |M |= ϕ(ā, b̄), and ϕ(x̄, ȳ) is a formula
with all free variables shown}.

7



1. Background

We write tpM (ā) to mean tpM (ā/∅), and tp(ā/b̄) if the model M is under-
stood from the context. Observe that tpM (ā/b̄) is the same set of formulas
as tp(M,b̄)(ā), and that tpM (∅/b̄) is Th(M, b̄).

Given any first-order theory T , a complete type over T is a set tpM (ā)
for some ā ∈M |= T , and a type over T is a subset of a complete type over
T . The set of all complete types over T with k free variables is denoted
Sk(T ), i.e.,

Sk(M) =
{

tpM (ā/b̄)
∣∣ ā, b̄ ∈M, |ā| = k, |b̄| < ω

}
.

A complete type over a model M is a set tpN (ā/b̄) for some b̄ ∈M ≺ N
where ā ∈ N , and a type over M is a subset of a complete type over M . The
set of all complete types over M with k free variables is denoted Sk(M).

The three sets Sk(Th(M)), Sk(M), and Sk(Th(M,a)a∈M ) differs only in
how many parameters we allow the types to have; in the first no parameters
are allowed, in the second we allow finitely many parameters in each type,
and in the third arbitrarily many parameters are allowed.

PA is full first-order arithmetic in the ordinary language of arithmetic,
LA = {<,+, ·, 0, 1 }. PA− is PA but without the induction scheme.

1.2 Arithmetising logic

Let us fix some standard Gödel numbering of formulas and terms, and
identify a syntactic object with its Gödel number. Thus; it makes sense
saying that a theory is, for example, recursive. Sometimes we will, however,
write the Gödel number of a formula ϕ(x̄) as ϕ(x̄) if clarity is gained.

We will use some machinery for coding sequences of elements by a single
element in a model of PA. The details for constructing such a coding will
not be carried out, see for example [Kay91]. The standard notation (x)y
will be used for the yth element coded by x. A set A ⊆ ω is said to be
coded in a model M of PA if there is a ∈M such that A = setM (a), where

setM (a) = { k ∈ ω |M |= (a)k 6= 0 } .

The standard system of a model M of PA is

SSy(M) = { setM (a) | a ∈M } .

Given a finite set S ⊂ ω, the least standard natural number coding S will
be denoted [S].

A set X ⊆ M is also said to be coded in M if there is a ∈ M such
that X = {m ∈M |M |= (a)m 6= 0 }. This terminology might be slightly
confusing. Since a set A ⊆ ω is coded, in this second sense, iff A is finite,
we hope that the reader accepts this abuse of terminology. All coded sets,

8



Arithmetising logic

again in this second sense, are definable and bounded, and, by using the
induction axiom, any definable bounded set is coded.

We will assume the existence of formulas Prfzϕ(x, y) which, in the stan-
dard way, enumerates the relation of

“x is a proof of the formula y using the non logical axioms
{ z | ϕ(z) }.”

See any good textbook on the arithmetisation of logic for the details. The
formula Prfzϕ(y) is a convenient short-hand for ∃xPrfzϕ(x, y), and Conzϕ is
the formula ∃x¬Prfzϕ(x). When the free variable of ϕ is easily understood
from the context we will omit the superscript z. If a is an element of some
model M the formula Conx(a)x 6=0 is denoted by Cona.

Definition 1.1. Given a model M |= PA and another model N in some
recursive language we say that N is strongly interpreted in M if the domain
of N is a subset of M , and there are formulas dom(x) and sat(x, y), with
parameters from M , such that the domain of N is

{ a ∈M |M |= dom(a) }

and for any ā ∈ N , any b ∈M coding the sequence ā, and any ϕ(x̄) in the
language of N the following holds

N |= ϕ(ā) iff M |= sat(ϕ, b).

By proving the completeness theorem inside PA you get the following:

Theorem 1.2 (Arithmetised Completeness Theorem). If M |= PA
and T ∈ SSy(M) is a consistent theory in a recursive language such that
M |= Conτ for some τ(x, a), a ∈ M , enumerating T in M ; then there
exists a model of T strongly interpreted in M .

Proof. Do the ordinary Henkin construction of the completeness theorem,
but this time inside M . See [Kay91, Section 13.2] for the details. a

In fact, by an overspill argument, we can replace the assumption M |=
Conτ in the theorem by the assumption that

for all finite S ⊆ T we have M |= Con[S], (1.1)

where [S] is the least standard natural number coding the finite set S: If
(1.1) holds and τ(x, a) enumerates T then

M |= Conτ(x,a)∧x<k

for all k ∈ ω, and so by overspill

M |= Conτ(x,a)∧x<b

9



1. Background

for some nonstandard b ∈M .
This last argument gives a formula, with parameters from M , enumerat-

ing T such that M thinks the theory defined by the formula is consistent. If
we assume T to be recursive there is a more uniform way of doing this: the
Feferman construction [Fef61, Theorem 5.9]. It gives a formula (without
parameters) that works in any model of

PA +
{

Con[S]

∣∣ S ⊆ T and S is finite
}
,

i.e., a formula τ(x) such that

PA +
{

Con[S]

∣∣ S ⊆ T and S is finite
}
|= Conτ .

It should be noted that even though it is assumed that T is recursive the
formula τ(x) is, in general, not Σ1.

1.3 Recursive saturation and homogeneity

Throughout this section, and most of the thesis, we will assume the base
language L to be recursive. When not specifying anything else M will be
a structure in L . A type p(x̄, ā) over M is said to be recursive if the set{

ϕ(x̄, ȳ)
∣∣∣ ϕ(x̄, ā) ∈ p(x̄, ā)

}
⊆ ω

is recursive.

Definition 1.3. A model M is recursively saturated if all recursive types
over M are realized in M .

Recursively saturated models behave very well as we will see; and they
exist in abundance:

Proposition 1.4. Any model M (in a recursive language) has an elemen-
tary extension N which is recursively saturated and such that |M | = |N |.

Proof. The proof is by a union of chains argument. a

A closely related notion is homogeneity.

Definition 1.5. A model M is called ω-homogeneous if for all ā, b̄ ∈ M
satisfying tp(ā) = tp(b̄), and for all c ∈ M there is a d ∈ M such that
tp(ā, c) = tp(b̄, d). M is said to be strongly homogeneous if for every
ā, b̄ ∈ M such that tp(ā) = tp(b̄) there is an automorphism of M taking ā
to b̄.

For countable models these two notions of homogeneity coincide; which
is proved by a straight forward back-and-forth argument.

Recursive saturation implies ω-homogeneity:

10



Scott sets

Proposition 1.6. Any recursively saturated model is ω-homogeneous.

Proof. Let ā, b̄ ∈M be such that tpM (ā) = tpM (b̄), and let c ∈M . Define

p(x) =
{
ϕ(ā, c) → ϕ(b̄, x)

∣∣ ϕ(ȳ, x) a formula
}

;

then p(x) is a recursive type over M since for any ϕ(ȳ, x), if M |= ϕ(ā, c)
then M |= ∃xϕ(ā, x) and so M |= ∃xϕ(b̄, x), which, by compactness, proves
that p(x) is a type over M . Any d ∈ M realizing p(x) has the property
that tpM (ā, c) = tpM (b̄, d). a

Combining the last proposition with the fact that any countable ω-
homogeneous model is strongly homogeneous we get that any countable
recursively saturated model is strongly homogeneous.

1.4 Scott sets

Definition 1.7. A set X ⊆ P(ω) is a Scott set if it is non-empty and

• if A,B ∈ X then A ∪B, ω \A ∈ X ,

• if A ∈ X and B ≤T A, i.e., B is recursive in A, then B ∈ X ,

• if T ∈ X is a theory in some recursive language then there is a
complete consistent theory Tc ∈ X extending T .

The definition says that a Scott set is a boolean algebra of sets of nat-
ural number which is closed under relative recursiveness, and completing
theories.

The last clause in the definition of a Scott set could be replaced by
saying that if T ∈ X is an infinite binary tree (coded as a set of natural
numbers), then there is an infinite path P ∈ X through T . 1

There are recursive theories T without recursive completions (for ex-
ample PA), so the set of recursive sets is not a Scott set. By using the low
basis theorem we can find a low completion Tc of any theory T , meaning
that Tc′ ≤T T ′, i.e., that the jump of the completion is recursive in the
jump of the theory. Therefore; the set LOW of all low sets, i.e., A ∈ LOW
iff A′ ≤T ∅′, is a Scott set. It is important to note that there are Scott sets
not including LOW as a subset; in fact, for each non-recursive A ⊆ ω there
is a Scott set X such that A /∈ X .

Definition 1.8. A model M is said to be X -saturated, where X is a Scott
set, if for every complete type p(x̄, ā) over M we have

∃b̄ ∈M |= p(b̄, ā) iff p(x̄, ȳ) ∈ X .

1The alternative definition is the more common way of defining a Scott set; but we
think that our definition makes more sense in this setting.
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1. Background

We will sometimes be a bit sloppy and write p(x̄, ā) ∈ X instead of
p(x̄, ȳ) ∈ X . In fact; this sloppiness is quite alright since, if we extend the
Gödel numbering to the parameters ā, we have that p(x̄, ā) and p(x̄, ȳ) are
Turing equivalent; thus, one of them is in a given Scott set iff the other one
is.

Since models of PA admits coding of finite sequences we can replace
finite sequences of variables in types by a single variable in the following
recursive way: Given a type p(x̄, ā) define

p′(x, b) = {∀ȳ, z̄
(
y0 = (x)0 ∧ . . . ∧ yk−1 = (x)k−1 ∧

z0 = (b)0 ∧ . . . ∧ zl−1 = (b)l−1 → ϕ(ȳ, z̄)
)
| ϕ(x̄, ā) ∈ p(x̄, ā)}

where b codes the finite sequence ā, and k and l are the lengths of x̄ and ā
respectively. For any model of PA, p(x̄, ā) is realized exactly when p′(x, b)
is realized.

Proposition 1.9. If M is X -saturated and p(x̄, ā) ∈ X is a, not neces-
sarily complete, type over M , then p(x̄, ā) is realized in M .

Proof. Let q(c̄, ā) ∈ X be a consistent completion of p(c̄, ā), where c̄ are
new constant symbols. Then q(x̄, ȳ) ∈ X and so the type q(x̄, ā) is realized
which clearly implies that p(x̄, ā) is realized. a

Since any Scott set includes all recursive sets we get that any X-
saturated model is recursively saturated.

Proposition 1.10. If M |= PA is nonstandard then SSy(M) is a Scott set.
Also, if M is recursively saturated then M is X-saturated iff X = SSy(M).

Proof. The proof that SSy(M) is a Scott set is straight forward but a bit
lengthy, so we skip it here.

Let M |= PA be recursively saturated and p(x, a) ∈ SSy(M) a complete
type over M . Then there is b ∈ M such that setM (b) = p(x, y). Let
q(x, a, b) be the recursive set{

ϕ(x, a) → (b)n 6= 0
∣∣∣ ϕ(x, y) a formula and n = ϕ(x, y)

}
.

It is a type since p(x, a) is a type; thus, by the recursive saturation, it is
realized by some m ∈ M . Now, M |= p(m,a) since if ϕ(x, a) ∈ p(x, a)
then M |= (b)n = 0, where n = ¬ϕ(x, y) , and so M 2 ¬ϕ(m,a), i.e.,
M |= ϕ(m,a). This proves that M realizes all complete types in SSy(M).

To prove that it does not realize anything outside of SSy(M) let a, b ∈
M . Then

p(x, a, b) =
{
ϕ(a, b) ↔ (x)n 6= 0

∣∣∣ ϕ(x, y) a formula and n = ϕ(x, y)
}

12



Scott sets

is a recursive type and so realized. Any m ∈M realizing p(x, a, b) satisfies

setM (m) = { ϕ(x, y) | ϕ(x, b) ∈ tpM (a/b) } .

Thus tpM (a/b) ∈ SSy(M) and we conclude that M is SSy(M)-saturated.
For the other direction suppose M is X-saturated. Let A ∈ X and

p(x) = { (x)k 6= 0 | k ∈ A } ∪ { (x)k = 0 | k /∈ A } .

The type p(x) is recursive in A and so is in X which implies that p(x)
is realized. Any m ∈ M realizing p(x) satisfies setM (m) = A. Thus;
X ⊆ SSy(M).

If A ∈ SSy(M) let a ∈ M be such that setM (a) = A. Since M is X-
saturated tpM (a) ∈ X and A is recursive in tpM (a), so A ∈ X . All this
proves that if M is X-saturated then X = SSy(M). a

Theorem 1.11 ([Sco62]). For any consistent recursive theory T (in the
language of arithmetic) extending PA and any X ⊆ P(ω) the following
are equivalent:

(i) X is a countable Scott set.

(ii) There is a countable nonstandard model M |= T with SSy(M) = X .

Proof. The implication (ii) ⇒ (i) is Proposition 1.10. The other implica-
tion is a Henkin construction. a

This theorem could be taken a bit further: Given a Scott set X of
cardinality ℵ1 there is a nonstandard model of T with standard system X .
To prove this strengthening we need a definition and a lemma:

Definition 1.12. Given a theory T , in the language of arithmetic, we say
that a set A ⊆ ω is represented in T (sometimes called strongly represented)
if there is a formula ϕ(x) such that for all n ∈ A we have T ` ϕ(n) and for
all n ∈ ω \A we have T ` ¬ϕ(n). By rep(T ) we denote the collection of all
sets represented in T .

Lemma 1.13. Let T be a consistent complete theory in the language of
arithmetic extended by countably many constant symbols. If rep(T ) ⊆ X ,
where X is a countable Scott set, then there is a countable model M |= T
such that SSy(M) = X .

Proof. We use a Henkin style argument to construct the model M |= T . Let
L = LA ∪ { ci }i∈ω be the language of T , D = { d }i∈ω be new constants,
ϕk(x) be an enumeration of all L (D)-formulas with one free variable, and
{Xi }i∈ω an enumeration of X .
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1. Background

We construct consistent theories Ti ⊆ Ti+1 such that Xi ∈ rep(Ti+1),
Ti \ T ∈ X , and if Ti+1 ` ∃xϕi(x) then Ti+1 ` ϕ(dj) for some j ∈ ω. Let
T0 = T and, given Ti, if Ti ` ∃xϕi(x) let Ti+1 be

Ti + ϕi(dj) + { (dj)k 6= 0 | k ∈ X }+ { (dj)k = 0 | k /∈ X }
+ { (dl)k 6= 0 | k ∈ Xi }+ { (dl)k = 0 | k /∈ Xi }

where dj and dl are constants not occurring in Ti or in ϕi(x), and X ∈
X . To find X such that Ti+1 is consistent let Thmn (T ) be the set of all
LA∪{ c0, . . . , cm } sentences which are Σn and provable by T . Even though
T might not be in X the set Thmn (T ) ∈ X for all m,n ∈ ω since it is
represented in T (by a truth-definition for Σn-formulas). Let n be such
that all sentences in { ϕi(x) } ∪ Ti \ T is Σn and let m be large enough so
that no ci, where i ≥ m, occurs in Ti \ T or in ϕi(x). By construction, the
set Ti \ T is in X so the theory Ti \ T + Thmn (T ) + ϕ(dj) is in X . Let
S ∈ X be any consistent completion of that theory, and let X ∈ X be
such that

n ∈ X iff (dj)n 6= 0 ∈ S.

It should be clear that this X makes the theory Ti+1 consistent.
If Ti 0 ∃xϕi(x) let Ti+1 be

Ti + ¬∃xϕi(x) + { (dl)k 6= 0 | k ∈ Xi }+ { (dl)k = 0 | k /∈ Xi } ,

where dl does not occur in Ti or ϕi(x).
The union of all Ti is a consistent complete Henkin theory; its term

model has standard system X . a

To prove that any Scott set of cardinality ℵ1 is realized as a standard
system we use a union of chains argument. Let X = {Xα }α<ω1

and
X0 ⊂ X be any countable Scott set. Moreover; let M0 |= T be a countable
model with standard system X0. Define Mα and Xα, for α ≤ ω1, by
induction: Given Xα and Mα, let Xα+1 be a countable Scott set such that

Xα ∪ {Xα } ⊆ Xα+1 ⊆ X .

Since SSy(Mα) ⊆ Xα+1 we have that rep(Th(Mα, a)a∈Mα
) ⊆ Xα+1 and

so, by the lemma, there is a model Mα+1 of Th(Mα, a)a∈Mα
with standard

system Xα+1. Clearly Mα ≺ Mα+1. For limit ordinals λ ≤ ω1 let Mλ be
the union of {Mα }α<λ and Xλ the union of {Xα }α<λ. It is should be
clear that Mω1 |= T and SSy(Mω1) = Xω1 = X . We have proved the
following theorem.

Theorem 1.14. Given a consistent completion T of PA and a Scott set
X of cardinality ℵ1 or ℵ0, there is a model of T with X as its standard
system.

14



Arithmetic saturation

The problem of characterising standard systems in general is known as
Scott’s problem. The theorem above solves it completely if we assume the
CH to hold. Very little is known about it otherwise, but see Chapter 4 for
a small result in this direction.

Let us now use the arithmetised completeness theorem to give a suf-
ficient condition for when a theory T has a X-saturated model, for some
given Scott set X of cardinality ℵ0 or ℵ1.

Theorem 1.15 ([Wil75, Theorem 2.29]). If X is a Scott set, |X | ≤ ℵ1

and T ∈ X is a consistent theory then there is an X-saturated model of
T .

Proof. Let T ′ = PA +
{

Con[S]

∣∣ S ⊆ T is finite
}

. By Theorem 1.14 there
is a nonstandard model M |= T ′ such that SSy(M) = X . Let t ∈M code
T and by overspill let a ∈M \ ω be such that

M |= Con(t)x 6=0∧x<a.

By the arithmetised completeness theorem, Theorem 1.2, there is a model
N |= T strongly interpreted in M . It should now be easy to see that N is
X-saturated. a

If T is complete this condition is also necessary: If M is X-saturated
then Th(M) ∈ X .

To sum up we have;

• any SSy(M), where M |= PA, is a Scott set,

• any Scott set X , where |X | ≤ ℵ1, is equal to SSy(M) for some
M |= PA, and

• if M |= PA and T ∈ SSy(M) is a consistent theory, then there is a
SSy(M)-saturated model of T .

We will later need the next proposition which says that there is only
one (up to isomorphism) countable X-saturated model.

Proposition 1.16. If M and N are two countable models of the same
complete theory which both are X-saturated, then they are isomorphic.

Proof. Easy back-and-forth. a

1.5 Arithmetic saturation

Definition 1.17. A model M is arithmetically saturated if every type
p(x̄, ā) over M which is arithmetic in some realized type tpM (b̄) is realized
in M .

15



1. Background

Theorem 1.18 ([KKK91, Proposition 5.2]). For countable recursively
saturated models M |= PA the following are equivalent:

1. M is arithmetically saturated,

2. For any f ∈M there is c ∈M such that M |= f(k) > n for all n ∈ ω
iff M |= f(k) > c, k ∈ ω.

3. There exists g ∈ Aut(M) such that fix(g) = { a ∈M | g(a) = a } =
dcl(∅).

Observe that (3) could be expressed as realizing a theory and omitting
a type in a bigger language: Let T say that g is an automorphism and let
p(x) say that x is not definable and g(x) 6= x.

We could extend the list with properties of the automorphism group
of M , either as a permutation group, a topological group, or an abstract
group. Therefore, there are two countable recursively saturated models of
PA with non-isomorphic automorphism groups.

Arithmetically saturated models are easier to handle than recursively
saturated models as the following theorem shows, which is unknown to be
true if arithmetic saturation is replaced by recursive saturation. Observe
that for models of PA this theorem reduces to Proposition 1.10.

Proposition 1.19. Every arithmetically saturated model is X-saturated
for some Scott set X .

Proof. Let X be the arithmetic closure of { tp(ā) | ā ∈M }. Clearly X
is a Scott set (since it is the arithmetic closure of something) and for all
ā, b̄ ∈M , the type tp(ā/b̄) is in X since tp(ā/b̄) ∈ X by definition means
tp(ā, b̄) ∈ X . Let p(x̄, ȳ) ∈ X . Since if A is arithmetic in B which is
arithmetic in C then A is arithmetic in C we have that p(x̄, ȳ) is arithmetic
in some tp(b̄). Thus, by the definition of arithmetic saturation, if p(x̄, ā) is
a type then it is realized. a

The same is true for recursively saturated models of cardinality at most
ℵ1 as we will prove in the next section, but the proof is more complicated
and it is unknown if it holds for models of greater cardinalities.

In fact, we do not need full arithmetic saturation to prove the last
theorem.

Definition 1.20. A model M is low saturated if every type p(ā, x̄) over
M which is low in some tpM (b̄) is realized in M .

Proposition 1.21. Any low saturated model is X-saturated for some Scott
set X .

Proof. Let X be the set of sets low in some tpM (ā) where ā ∈M . If A is
low in B, which, in turn, is low in C; then A is low in C. Thus; the proof
above also works for low saturated models. a
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Resplendence

1.6 Resplendence

In some sense recursive saturation is a sort of expandability property: For
any recursive theory T in a language expanded by finitely many constants
and finitely many parameters ā ∈ M which is consistent with Th(M, ā)
there is an expansion of M satisfying T . Here is a version of recursive
saturation, introduced by Barwise and Schlipf,2 along those lines:

Definition 1.22. An L -model M is resplendent if for any ā ∈ M , any
recursive extension L + of L (ā) and any recursive T in L + consistent
with Th(M, ā) there exists an expansion M+ of M satisfying T .

The next theorem shows that, in the countable case, recursive saturation
implies resplendence. However, first we would like to prove something much
easier: Any countable low saturated model is resplendent:

Let M be countable and X-saturated, where X is a Scott set such
that if A is low in B ∈ X then A ∈ X . Let ā ∈ M and L + be a
recursive extension of L (ā), and let T be a recursive theory consistent
with Th(M, ā). By Theorem 1.15 there is a countable X-saturated model
N of Th(M, ā) + T since Th(M, ā) + T ∈ X . Since both M and N are
countable and X-saturated, by using Theorem 1.16, the restriction of N
to the language of M is isomorphic to M with an isomorphism taking the
interpretation of ā in N to ā in M . Thus; M has an expansion satisfying
T .

Theorem 1.23. A countable L -model is resplendent iff it is recursively
saturated. In fact, if M is countable and recursively saturated and T is
as in the definition of resplendence, then there is a recursively saturated
expansion of M satisfying T .

Proof. The easy direction is to prove that any resplendent model is recur-
sively saturated:

If M is resplendent, then given a recursive type p(x̄, ā), ā ∈ M , let
T = p(c̄, ā) where c̄ are new constants. Clearly Th(M, ā) + T is consistent
so by resplendence there is an expansion M � M+ |= T . The elements
of M interpreting c̄ realizes the type p(x̄, ā). Since p(x̄, ā) was chosen
arbitrarily, any recursive type is satisfied, i.e., M is recursively saturated.

For the other implication let ā ∈ M and T be a recursive theory in a
recursive extension L + of L (ā) such that Th(M, ā)+T is consistent. Also;
let { ϕi(x) } be an enumeration of all L +(M) formulas with exactly one
free variable. We will build finite L +(M)-theories Tk such that T + Tk +
Th(M,a)a∈M is consistent and if Ti+1 ` ∃xϕi(x) then for some m ∈M we
have Ti+1 ` ϕi(m).

2Their definition is slightly different and needs a theorem of Kleene on the express-
ibility of Σ1

1-formulas to prove that it implies recursive saturation.
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1. Background

We start off by letting T0 = ∅. Assume Ti has been defined and satisfies
the above properties; define Ti+1 in the following way: Let b̄ ∈ M be all
parameters occurring in Ti, ϕi(x) and ā. If

T + Ti + Th(M, b̄) 0 ∃xϕi(x)

let Ti+1 = Ti + ¬∃xϕi(x), else, if there is b ∈ b̄ such that

T + Ti + Th(M, b̄) 0 ¬ϕi(b),

let Ti+1 = Ti + ϕ(b) + ∃xϕi(x).
Otherwise; let

p(x, b̄) =
{
θ(x, b̄) ∈ L (b̄)

∣∣ T + Ti ` ∀x
(
ϕi(x) ∧ x 6= b̄→ θ(x, b̄)

) }
,

where x 6= b̄ is a shorthand for
∧
b∈b̄ x 6= b. The set p(x, b̄) is recursively

enumerable, so by Craig’s trick (see [Kay91, p. 150]) it is logically equiva-
lent to a recursive set. To prove that it is a type let θ(x, b̄) ∈ p(x, b̄) then,
since

T + Ti + Th(M, b̄) ` ∃x
(
ϕi(x) ∧ x 6= b̄

)
∧ ∀x

(
ϕi(x) ∧ x 6= b̄→ θ(x, b̄)

)
,

we have
T + Ti + Th(M, b̄) ` ∃xθ(x, b̄)

and so M |= ∃xθ(x, b̄). This shows that p(x, b̄) is a type over M since
p(x, b̄) is closed under conjunctions. Let m ∈M |= p(m, b̄); if

Th(M,a)a∈M + T + Ti + ϕi(m) `⊥

then there is M |= θ(m, b̄) such that

T + Ti ` ϕi(m) → ¬θ(m, b̄).

Since m does not appear in T or Ti (since x 6= b̄ ∈ p(x, b̄)) we have

T + Ti ` ∀x
(
ϕ(x) → ¬θ(x, b̄)

)
,

and so ¬θ(x, b̄) ∈ p(x, b̄) which contradicts the fact that m satisfies p(x, b̄).
Therefore Ti+1 = Ti+ϕi(m) makes the theory Th(M,a)a∈M +T +Ti+1

consistent.
Any Henkin model of Th(M,a)a∈M + T + ∪iTi is a model of T whose

L -reduct is isomorphic to M .
To prove that the model can be taken to be recursively saturated we

need to introduce satisfaction classes. We will not do it here; see [Kay91,
Theorem 15.8] for the details, and [Eng02] for more on satisfaction classes.

a
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Resplendence

The theorem is not true in the uncountable case since any ω1-like, i.e., of
cardinality ℵ1 but with all its proper initial segments countable, recursively
saturated model M of PA is not resplendent: Let T state that f is an
isomorphism from M onto a proper initial segment of M , T is consistent
with Th(M) by Friedman’s theorem [Fri73, Section 4] (or [Kay91, Theorem
12.4]), but clearly there is no expansion of M satisfying T . A recursively
saturated ω1-like model of PA can be found by using Friedman’s theorem
ones more, see [Kay91, Page 247] for the details.

The next proposition says that in the countable case all recursively
saturated models are X-saturated for some Scott set X . It is not known
if this is true for higher cardinalities, except for the case of models of
cardinality ℵ1, in which a union of chains argument will prove that any
recursively saturated model is X-saturated for some X . If, in addition, the
continuum hypothesis holds it is not very hard to prove that any recursively
saturated model M is X-saturated for some Scott set X : By a downward
Löwenheim-Skolem argument let M0 ≺ M be recursively saturated and
realizing exactly the same complete types as M does. M0 can be chosen
of cardinality ≤ ℵ1 and so there is a Scott set X for which M0 is X-
saturated. Clearly, M is also X-saturated. See Theorem 1.19 for more in
this direction.

Proposition 1.24. Every countable and recursively saturated model is X-
saturated for some Scott set X .

Proof. LetM be a countable recursively saturated model in L , by Theorem
1.23, it is resplendent and so let M � M+ |= PA, where the arithmetic
language of PA is disjoint with L , be recursively saturated. Let X =
SSy(M+); then M+ is X-saturated and so for any complete type p(x̄, ā)
over M , p is realized in M iff p(x̄, ȳ) ∈ X . This means that also M is
X-saturated. a

We can now prove something slightly stronger than Theorem 1.23.

Proposition 1.25. Let M be a countable recursively saturated model in the
language L , X such that M is X-saturated, ā ∈M , and T ∈ X a theory
in a recursive extension of L (ā) such that Th(M, ā)+T is consistent. Then
there is an X-saturated expansion M �M+ |= T .

Proof. Since X is a Scott set we have Th(M, ā)+T ∈ X . By Theorem 1.15
there is a countable X-saturated model of Th(M, ā) + T and by Theorem
1.16 the restriction of this model to L is isomorphic to M . a

We finish off this section by proving that resplendent models are very
symmetric in the sense of homogeneity.

Proposition 1.26. Any resplendent model is strongly homogeneous.
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1. Background

Proof. Let ā, b̄ ∈M be such that tpM (ā) = tpM (b̄). Let L + be L ∪ { g }
where g is a unary function symbol. Let T be{

∀x̄
(
ϕ(x̄) ↔ ϕ(g(x̄))

) ∣∣ ϕ(x̄) ∈ L
}

+ ∀x∃y
(
x = g(y)

)
+ g(ā) = b̄,

where g(x̄) is g(x0), g(x1), . . . , g(xk) if x̄ is x0, x1, . . . , xk. We have to prove
that Th(M, ā, b̄) + T is consistent. Let N be any countable recursively
saturated model of Th(M, ā, b̄), then N is ω-homogeneous and countable
so it is strongly homogeneous. Also tpN (ā) = tpN (b̄) and so there is an
automorphism f ∈ Aut(N) of N taking a to b, and so (N, f) |= T . By
resplendence there is an expansion of M satisfying T . Any realization of
the function symbol g is an automorphism of M taking ā to b̄. a

1.7 Second-order arithmetic

We will now shortly discuss second-order arithmetic theories, i.e, theories
with two types of variables, one for numbers and one for sets of numbers.
The set variables will be written with capital letters and the number vari-
ables with lower case letters. We add a new type of atomic formula: x ∈ X,
which should be interpreted as ‘the number x is a member of the set X’.
Models of second-order arithmetic have two domains, the number domain
is the ordinary domain and the set domain which is a subset of the power
set of the number domain. The semantics for such models are evident.
It should be noted that these theories are expressible in first-order logic.
Second-order logic would have implied that the set domain was the full
power set of the number domain.

Full second-order arithmetic, denoted Z2, is PA− (PA without the in-
duction axioms) plus the second-order induction axiom

∀X
(
0 ∈ X ∧ ∀x(x ∈ X → x+ 1 ∈ X) → ∀x(x ∈ X)

)
, (1.2)

and the comprehension scheme

∃X∀x
(
x ∈ X ↔ θ(x)

)
,

where θ(x) is any formula in which X does not occur freely (θ(x) may have
other free variables, both set and number variables).

A formula is called arithmetic, or first-order, if it has no bound set
variables (it may still have free set variables). The ordinary arithmetic
hierarchy of formulas (Σk, Πk and ∆k) extends to set quantifiers (Σ1

k, Π1
k

and ∆1
k). For example, a formula

∃X1∀X2 . . . QXkϕ(X1, X2, . . . , Xk, Ȳ , x̄)

is Σ1
k if Q is ∃ when k is odd and ∀ otherwise, and ϕ a first-order formula.

Hence; the set of arithmetic formulas can be written as ∆1
0.
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Second-order arithmetic

An ω-model of Z2 (or some of its subsystems) is a model

(ω,X , <,+, ·, 0, 1)

where X ⊆ P(ω). We often specify an ω-model only by the set domain
X . N2 is the full ω-model of Z2, i.e., P(ω).

RCA0 is the subsystem of Z2 consisting of IΣ1 (PA− plus the first-order
induction scheme for Σ1-formulas), the second-order induction axiom (1.2),
and the ∆1-comprehension scheme, i.e.,

∃X∀x(x ∈ X ↔ θ(x))

for all ∆1-formulas θ(x), where X does not occur in θ and θ(x) may have
other free variables.

WKL0 is RCA0 plus an axiom saying that any coded infinite tree has a
coded infinite path. The ω-models of WKL0 are precisely the Scott sets, or
to be more precise the set domains of ω-models of WKL0 are exactly the
Scott sets.

ACA0 is Z2 but with the comprehension scheme restricted to arithmetic
formulas.

We say that an ω-model X ⊆ P(ω) is a βk-model if for any Σ1
k-sentence

Θ with set-parameters from X , we have X |= Θ iff N2 |= Θ. A β-model
is a β1-model (β-models were first studied by Mostowski in [Mos61]).

It could be worth mentioning that if we are working over full second-
order arithmetic Z2 a β-model is just a model M for which well-orderings
are absolute. To be more precise, if ≺∈M is any non well-ordering on |M |
then there exists a witness for the non well-ordering of ≺ in M , i.e.,the
following holds

M |= ∃f∀x(f(x+ 1) ≺ f(x)).

Clearly well-orderings are absolute in any β-model. To prove the other
implication we need that any Σ1

1-formula is equivalent to saying that a
certain tree has an infinite branch. This is, in turn, equivalent to saying
that the Brouwer-Kleene ordering of the specific tree is a well-ordering. For
the details of the proof see [AM74, Theorem 1.11].

A set X is a βω-model if it is a βk-model for all k ∈ ω. Observe that
X is a βω-model iff X ≺ P(ω) as second-order ω-models.

Definition 1.27. If ∆ is a collection of sets of natural numbers and Γ a
collection of subsets of P(ω) we say that ∆ is a basis for Γ if for any γ ∈ Γ
we have γ ∩∆ 6= ∅.

That X is a βω-model is then equivalent to that X is a basis for the
collection of subsets of P(ω) definable by a second-order formula with
parameters from X .
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1. Background

If Ā ⊆ ω, then Σ1,Ā
k will denote both the collection of sets of natural

numbers definable in N2 by an Σ1
k-formula θ(x, Ā), and the collection of

subsets of P(ω) definable by a Σ1
k-formula θ(X, Ā). The sets Π1,Ā

k and
∆1,Ā
k are defined similarly.

Under Gödels set-theoretic assumption V=L, saying that every set is
constructible, see [Jec03, Chapter 13], we have the following:

Theorem 1.28 ([Hin78, Corollary V.2.7]). Assume V=L holds; then
∆1,A
k is a basis for Σ1,A

k for all k ≥ 2 and A ⊆ ω.

Proof. The proof is by defining a well-ordering of P(ω) which is ∆1
2 and

then choose the smallest element according to that well-ordering. This
would, at first sight, give us that Π1,A

k+1 is a basis for Σ1,A
k , but you can take

this further and prove the theorem. a

Similarly, under the assumption of Projective Determinacy, or PD for
short (see [Jec03, Chapter 33]), we have:

Theorem 1.29 ([Hin78, Corollary V.3.6]). Assume PD holds; then
∆1,A
k is a basis for Σ1,A

k for all even k ≥ 2 and all A ⊆ ω.

Together these last two theorems give us:

Corollary 1.30. Assume that either V=L or PD holds, then for all A ⊆ ω
the set ∆1,A

∞ is a basis for itself.

If Γ is any class of formulas then a set X ⊆ P(ω) is said to satisfy
Γ-comprehension if

X |= ∀Ȳ ∃X∀n
(
n ∈ X ↔ θ(n, Ȳ )

)
for all formulas θ ∈ Γ, where X does not occur freely. The set X is said
to satisfy true Γ-comprehension if for all θ ∈ Γ and all Ȳ ∈ X there is an
X ∈ X such that

N2 |= ∀n
(
n ∈ X ↔ θ(n, Ȳ )

)
.

Proposition 1.31. Let X be a βk-model, k ≥ 1, then:

1. If Θ(x, X̄) is a Σ1
k-formula, then there is a Σ1

k-formula Ψ(X̄) such
that both X and N2 satisfies

∀X̄
(
∀x(Θ(x, X̄) ↔ Ψ(X̄)

)
.

2. X satisfies Σ1
k-comprehension iff it satisfies true Σ1

k-comprehension.

3. X satisfies ∆1
k-comprehension and true ∆1

k-comprehension.
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Second-order arithmetic

Proof. The first statement is easily seen to be true for N2 (see for example
[Rog87, Theorem 16.III]). On the other hand assume X |= ∀xΘ(x, Ā) for
some Ā ∈ X . Then N2 |= ∀xΘ(x, Ā) and so N2 |= Ψ(Ā). We can conclude
that X |= Ψ(Ā). The other direction is equally easy.

For the second statement all we have to do is to observe that for any
βk-model X

N2 |= θ(n, Ā) iff X |= θ(n, Ā)

for all Σ1
k-formulas θ(x, Ā), where Ā ∈ X .

By statement two, to prove the third one, it is enough to prove that X
satisfies ∆1

k-comprehension.
We want to prove that for all ∆1

k-formulas Θ(X̄) and all Ā ∈ X there
is a Σ1

k-formula Φ(X̄) such that

X |= Φ(Ā) ↔ ∃Y ∀n(n ∈ Y ↔ Θ(n, Ā))

and N2 |= Φ(Ā); in that case X |= Φ(Ā) and so

X |= ∃Y ∀n(n ∈ Y ↔ Θ(n, Ā)).

Since Θ(X̄) is ∆1
k it is also ∆1

k in X (remember that X is a βk-model).
Therefore it is not hard to see that x ∈ Y ↔ Θ(x, X̄) is Σ1

k. By using
statement one we see that ∀x(x ∈ Y ↔ Θ(x, X̄) is also Σ1

k proving the
statement. a

Corollary 1.32. Assume either V=L or PD and k ≥ 2 is even, then a set
X ⊆ P(ω) is a βk-model iff it satisfies true ∆1

k-comprehension.

Proof. The right-to-left implication is just a combination of Theorem 1.28
and 1.29. For the other direction let Ā ∈ X and N2 |= Θ(x, Ā) ↔ Ψ(x, Ā),
where Θ is a Σ1

k-formula and Ψ a Π1
k ditto. Clearly

X |= Θ(x, Ā) ↔ Ψ(x, Ā),

and so the formula x ∈ X ↔ Θ(x, Ā) is equivalent to a Σ1
k-formula. And

thus, by the proposition,

∃X∀x
(
x ∈ X ↔ Θ(x, Ā)

)
is also equivalent to a Σ1

k-formula. Therefore it holds in X , since it holds
in N2.

The ω-model X therefore satisfies ∆1
k-comprehension; by the proposi-

tion it also satisfies true ∆1
k-comprehension. a

Corollary 1.33. Any βω-model satisfies both Σ1
∞-comprehension and true

Σ1
∞-comprehension.
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1. Background

We end this chapter by a recent theorem of Mummert and Simpson,
which we will need later.

Theorem 1.34 ([MS04, Corollary 3.7]). For any k ∈ ω there is a
countable βk-model which is not a βk+1-model.

The proof is by showing that for each recursively enumerable second-
order arithmetic theory T , if there is a βk-model T then there is a βk-model
of T+“there is no βk-model of T”, a sort of incompleteness theorem for βk-
models, and observe that any βk+1-model of T satisfies“there is a βk-model
of T”.
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2
Expansions omitting types

In this chapter we will investigate when a model can be expanded to satisfy
certain non first-order theories in bigger languages. First, we discuss the
notion of transcendence. A model is transcendent if for all theories of the
form T + p↑, where T is a first-order theory, p(x̄) is a type, and p↑ is
the (non first-order) sentence expressing that p(x̄) is omitted, is consistent,
in a rather strong special sense, then there is an expansion of the model
satisfying T + p↑. Transcendence has some connections with saturation
properties of the model, for example it implies some very strong saturation.

We will then go on and investigate what happens if we restrict ourselves
to non-isolated, or limit, types p(x̄). It turns out that that notion is much
weaker than transcendence.

Some theories of the form T +p↑ has the property that for any M |= T0

there is at most one expansion of M satisfying T +p↑. Such theories T +p↑
are said to be categorical over T0. For those theories we can say quite a bit
more about the expansions satisfying it. This is dealt with in the section
following. As a special case we get the standard predicate, which tells you if
an element of a model of arithmetic is standard or not. If we expand a model
of arithmetic with the standard predicate the resulting structure is clearly
not recursively saturated. We define a version of recursive saturation that
works for such structures. We also characterise all such models in terms of
ordinary saturation.

We end the chapter with the notion of subtranscendence, which is like
transcendence, but instead of concluding that there is an expansion of the
model in question, it predicts that the model has an elementary submodel
with such an expansion. It turns out that a model of arithmetic is sub-
transcendent iff it is β-saturated. The last proposition of the chapter is a
characterisation of β-models in terms of closure under completing certain
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2. Expansions omitting types

non first-order theories.

2.1 Transcendence

Given a set p(x̄) of first-order formulas in a countable language L we
denote the Lω1ω-sentence

∀x̄
∨

ψ(x̄)∈p(x̄)

¬ψ(x̄)

by p↑, where the arrow binds all free variables of p(x̄). The sentence ex-
pressing that p(x̄) is realized, i.e., ¬p↑ is denoted by p↓. Observe that
even though p↓ is not a first-order sentence it is equivalent to realizing a
first-order theory.

A transcendent model is a model which is resplendent in, not only first-
order logic, but first-order logic plus the option of omitting a type. More
precisely, but see Definition 2.4 for the exact definition, a strongly homo-
geneous X-saturated model M is transcendent if the language L of M is
recursive and for every recursive extension L + of L and every T, p(x̄) ∈ X
such that there exists a model N |= Th(M) + T + p↑, where N�L is ω-
saturated; there is an expansion of M satisfying T + p↑.

The property is of the schematic form:

for all T, p(x̄) ∈ X such that Con(Th(M), T, p(x̄)) there is an
expansion of M satisfying T + p↑.

In this case Con(T0, T, p(x)) is taken to be SatCon(T+p↑/T0) which means
that there exists a model of T0+T+p↑ whose L -part is ω-saturated, where
L is the language of T0. This is a rather strong condition but none weaker
seems to work. In particular the notion of ordinary consistency is too weak
as the following shows:

Let M be a non-standard model of true arithmetic, i.e., M ≡ N. There
exists a realized recursive type p(x) such that Th(M)+p↑ is consistent; let
p(x) be { x > 0, x > 1, . . . }. Clearly, M realizes p(x) and so no expansion
of M satisfies p↑.

Another possibility would be to take Con(T0, T, p(x)) to hold iff for all
types q(x̄) over T0 the theory T0 + T + p↑+ q↓ is consistent. Later in this
section we will see why this does not work.

A natural question to ask is if it is possible to strengthen the express
power of the logic to full L +

ω1ω to get a property like: if Θ is a L +
ω1ω sentence

which is somehow consistent with M then there exists an expansion of M
satisfying Θ? The simple answer is no, but of course this depends on the
consistency notion in use. The following very well-known theorem by Dana
Scott will show that the answer is negative if the consistency notion is taken
to be SatCon.
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Transcendence

Theorem 2.1 ([Sco65]). For any countable model N in a countable lan-
guage L there is an Lω1ω-sentence σN such that any other model in the
same language L is back-and-forth equivalent with N iff it satisfies σN ; in
particular any countable model satisfying σN is isomorphic to N .

Let M |= T be any countable model of a non ω-categoric complete the-
ory T (in a countable language L ) and let N be any other countable model
of T , i.e., M � N . An ω-saturated model K of T is back-and-forth equiva-
lent with N so K |= σN , and so SatCon(σN/Th(M)). However, M 2 σN ,
since for countable models back-and-forth equivalence and isomorphism
coincide.

Question 2.2. Is there a fragment L ′ of Lω1ω such that any countable
model has a countable elementary extension having expansions satisfying
all L ′-theories T such that SatCon(T/Th(M))?

Basic definitions

Since we are investigating the property of omitting a type it is not impor-
tant that the type is consistent with the base theory. Therefore, when we
say that p(x̄) is a type, we only mean that p(x̄) is a set of formulas with
x̄ as the only free variables. However, that p(x̄, ā) is type over a model M
(or a theory T ) still means that p(x̄) is consistent with Th(M, ā) (or T ).

Consistency will always mean consistency in the semantical sense, i.e.,
a theory is consistent iff there is a model satisfying it. This is important
since we are dealing with theories which are not first-order. We will later
on, in Chapter 3, deal with syntactic notions of consistency.

We write M+ � M or M � M+ to mean that M+ is an expansion of
M .

Let T0 be a first-order theory in a recursive language L and S a theory
(not necessarily first-order) in a recursive extension L + of L .

Definition 2.3. The property SatCon(S/T0) holds if there exists a model
N |= T0 + S such that the L -reduct of N is ω-saturated.

Strictly speaking the smaller language L should be indicated when
we write SatCon(S/T0), but it is usually understood to be the language
of T0 (mostly T0 is complete in L ). For first-order theories S SatCon is
the ordinary first-order consistency, i.e., SatCon(S/T0) holds iff S + T0 is
consistent.

Let us now define the main concept of this chapter.

Definition 2.4. A strongly homogeneous model M is called transcendent
if there is a Scott set X for which M is X-saturated and for all recursive
extensions L + of the language of M , all first-order L +-theories T ∈ X ,
and all types p(x̄) ∈ X also in L + such that SatCon(T + p↑/Th(M))
there is M �M+ |= T + p↑.
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2. Expansions omitting types

That we require the model to be strongly homogeneous is a way of get-
ting rid of mentioning parameters in the definition. The following proposi-
tion shows that.

Proposition 2.5. If M is transcendent and ā ∈ M then (M, ā) is tran-
scendent.

Proof. Given that SatCon(T + p↑/Th(M, ā)) it clearly follows that

SatCon(T + S + p↑/Th(M)),

where S is Th(M, ā) but with the parameters ā replaced by some new
constants c̄. By the transcendence of M let M ′ be an expansion of M
satisfying T +S + p↑. The problem now is that c̄ might not be interpreted
in M ′ as ā, the homogeneity of M helps us fix this.

Let b̄ ∈ M be the interpretation of c̄ in M ′. Clearly tpM (ā) = tpM (b̄)
and so by the strong homogeneity of M there is an f ∈ Aut(M) such that
f(b̄) = ā. Let M+ be f(M ′), i.e.,

M+ |= P (m̄) iff M ′ |= P (f−1(m̄))

for any predicate symbol P and any m̄ ∈M ,

M+ |= g(m̄) = n iff M ′ |= g(f−1(m̄)) = f−1(n)

for any function symbol g and any m̄, n ∈M , and

M+ |= c = m iff M ′ |= c = f−1(m)

for any constant symbol c. The mapping f : M ′ →M+ is an isomorphism,
so M+ |= T + p↑ and the interpretation of c̄ in M+ is ā. Furthermore; M+

is an expansion of M since M+�L is M . a

Transcendence implies resplendence which follows directly form the last
proposition; still we formulate it as a proposition.

Proposition 2.6. Any transcendent model M is resplendent.

Proof. Let ā ∈ M , L + and T be as in the definition of resplendence, i.e.,
L + is an extension of L (ā) and T is a recursive first-order L +-theory
consistent with Th(M, ā). Clearly SatCon(T/Th(M, ā)) and since (M, ā)
is transcendent there is an expansion of (M, ā) satisfying T . a

Clearly; if M is transcendent and T, p(x̄), q(x̄) ∈ X are such that

SatCon(T + p↑+ q↑/Th(M))
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Transcendence

then there is an expansion of M satisfying T + p↑+ q↑. This is easily seen
since

|= p↑ ∧ q↑ ↔ r↑

where
r(x̄) = { ϕ(x̄) ∨ ψ(x̄) | ϕ(x̄) ∈ p(x̄), ψ(x̄) ∈ q(x̄) } .

Countable transcendent models exist

The next proposition gives us some easy facts about SatCon; it will help
us to build transcendent models.

Proposition 2.7. Let L + be an extension of a language L , T a first-
order theory in L +, T0 a first-order theory in L and p(x̄) an L +-type.
Assume SatCon(T + p↑/T0).

1. If σ is a sentence in the language L + then either

SatCon(T + σ + p↑/T0), or SatCon(T + ¬σ + p↑/T0).

2. If T0 is complete and q(x̄) a type over T0 (i.e., consistent with T0)
then

SatCon(T + p↑/T0 + q(c̄))

for any constant symbols c̄ not in L +.

3. If c̄ are constants in L + then there is ψ(x̄) ∈ p(x̄) such that

SatCon(T + ¬ψ(c̄) + p↑/T0).

4. If T ` ∃xϕ(x) then there is a complete type q(x) over T0 and a new
constant symbol c such that

SatCon(T + ϕ(c) + p↑/T0 + q(c)).

Proof. Let N witness that SatCon(T + p↑/T0), i.e., N�L is ω-saturated
and N |= T + p↑+ T0.

1. Either N |= σ or N |= ¬σ, and so either SatCon(T + σ + p↑/T0) or
SatCon(T + ¬σ + p↑/T0).

2. Since q(x̄) is consistent with T0 and T0 = Th(N) there is b̄ ∈ N
realizing q(x̄). The model (N, b̄) witnesses that SatCon(T + p↑/T0 +
q(c̄)).

3. Let b̄ ∈ N be the interpretation of c̄. Since N |= p↑ there has to be
ψ(x̄) ∈ p(x̄) such that N |= ¬ψ(b̄) and so SatCon(T+¬ψ(c̄)+p↑/T0).
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2. Expansions omitting types

4. Let b ∈ N be such that N |= ϕ(b), and let q(x) = tpN (b). The model
(N, b) witnesses that SatCon(T + ϕ(c) + p↑/T0 + q(c)). a

These are the only properties of SatCon we will be using. Observe that
it is only (2) which is not true for ordinary consistency, it is the property
making SatCon work for us.

Let us now find a saturation property which, for countable model, im-
plies transcendence. The following definition says that a Scott set X is
SatCon-closed if we can complete theories, using the consistency notion
SatCon, inside X .

Definition 2.8. We say that a Scott set X is SatCon-closed if for every
language L , any extension L + of L , and any T, T0, p(x̄) ∈ X such that
SatCon(T + p↑/T0) there exists a complete L +-theory Tc ∈ X such that
T ⊆ Tc and SatCon(Tc + p↑/T0).

Clearly, by a union of chains argument, any Scott set lies inside a
SatCon-closed Scott set of the same cardinality.

Definition 2.9. We say that a model is SatCon-saturated if it is X-
saturated for a SatCon-closed Scott set X .

Thus; a model of arithmetic is SatCon-saturated iff it is recursively
saturated and SSy(M) is SatCon-closed. We formulate the existence of
SatCon-saturated models as a theorem.

Theorem 2.10. For any model M , countable or not, there exists an ele-
mentary extension N �M which is SatCon-saturated and such that |N | =
|M |.

If M is an X-saturated model, where X is SatCon-closed, and T ,
p(x̄) ∈ X (as usual T and p(x̄) are in a recursive extension of the recursive
language of M) are such that SatCon(T + p↑/Th(M)) we can choose the
type q(x) in part (4) of Proposition 2.7 to lie in X in the following sense.

Let ā ∈ M and T, p(x̄) ∈ X be in an extension of L (ā), where L is
the language of M . If

SatCon(T + ∃xϕ(x) + p↑/Th(M, ā))

then there is a complete L (ā)-type q(x) ∈ X over Th(M, ā) and a new
constant c such that

SatCon(T + ϕ(c) + p↑/Th(M, ā) + q(c)).

To see this let S ∈ X be a completion of T + ϕ(c) such that SatCon(S +
p↑/Th(M, ā)); there is such a S since SatCon(T + ϕ(c) + p↑/Th(M, ā)).
Let

q(x) = { ψ(x) ∈ L (ā) | ψ(c) ∈ S } .
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Transcendence

As q(c) ⊆ S we have SatCon(S + p↑/Th(M, ā) + q(c)) and thus

SatCon(T + ϕ(c) + p↑/Th(M, ā) + q(c)).

We can now show that countable transcendent models exist in abun-
dance.

Theorem 2.11. Every countable SatCon-saturated model is transcendent.

Proof. Let M be a SatCon-saturated countable model and X a SatCon-
closed Scott set such that M is X-saturated. Let L +, T and p(x̄) be as
in the definition of transcendence.

The expansion M � M+ |= T + p↑ is constructed by a Henkin type
construction. Let { ϕk(x) }k∈ω be an enumeration of all formulas in the
language L +(M) with at most one free variable.

We define a sequence of L +(M)-sentences { σk }k∈ω such that

1. σk+1 ` σk, and all parameters from M occurring in some σi, i ≤ k
occur in σk+1,

2. SatCon(T + σk + p↑/Th(M, b̄)), where b̄ are all parameters from M
occurring in σk,

3. σk ` ∃xϕk(x) or σk ` ¬∃xϕk(x),

4. if σk ` ∃xϕk(x) then σk ` ϕk(m) for some m ∈M , and

5. if all elements of m̄ ∈ M occur in σk then there exists ψ(x̄) ∈ p(x̄)
such that σk ` ¬ψ(m̄),

hold for all k ∈ ω.
Given such a sequence of sentences define S = T + { σk }k∈ω. The

theory S is a complete Henkin theory in the language L +(M). Let M+ be
the term model of S. The domain of M+ can be identified with the domain
of M . If ϕ(ā) is an L (M)-sentence and M |= ϕ(ā) then there is k such that
all elements of ā occur in σk and either σk ` ϕ(ā) or σk ` ¬ϕ(ā); let k be
greater than the l satisfying that ϕ(ā) is ϕl, then, by (3), either σk ` ∃xϕ(ā)
or σk ` ¬∃xϕ(ā). By (2) we have SatCon(T + σk + p↑/Th(M, ā)) and so
the theory σk + Th(M, ā) is consistent. This implies that σk ` ϕ(ā) and so
S ` ϕ(ā). Thus

Th(M+�L , a)a∈M+ = Th(M,a)a∈M ,

and so M+�L is M . Clearly M+ |= T , and if ā ∈M+ then there is k such
that all elements of ā occur in σk; by (5) there is some ψ(x̄) ∈ p(x̄) such
that S ` ¬ψ(ā), i.e., M+ |= ¬ψ(ā). Therefore M+ |= p↑.
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2. Expansions omitting types

We have to construct such a sequence {σk}. For the construction to be
as uniform as possible define σ−1 to be ∃x(x = x) and assume ϕ0(x) to be
x 6= x.

Suppose σk−1 has been constructed. Let b̄ ∈ M be all parameters
occurring in σk−1 or in ϕk(x). If

SatCon(T + σk−1 + ¬∃xϕk(x) + p↑/Th(M, b̄))

let σ be ¬∃xϕk(x); this is the case when k = 0 and so then σ is ¬∃x(x 6= x).
Otherwise; if there exists a parameter d ∈ b̄ such that

SatCon(T + σk−1 + ϕk(d) + p↑/Th(M, b̄))

let σ be ϕk(d).
For the last case we have

SatCon(T + σk−1 + ∃x(ϕk(x) ∧ x 6= b̄) + p↑/Th(M, b̄)),

where x 6= b̄ means
∧
b∈b̄ x 6= b. Let q(x) ∈ X be a complete type over

Th(M, b̄) such that for a new constant symbol c we have

SatCon(T + σk−1 + ϕk(c) + c 6= b̄+ p↑/Th(M, b̄) + q(c));

such a q(x) can be found by the argument preceding this theorem. Since
q(x) ∈ X and M is X-saturated there is m ∈ M realizing q(x). Let σ be
ϕk(m) and expand b̄ to include m.

In all three cases we have

SatCon(T + σk−1 + σ + p↑/Th(M, b̄)).

Let N witness this, i.e.,

N |= T + σk−1 + σ + p↑+ Th(M, b̄)

is such that N�L is ω-saturated; we may therefore assume that M ≺ N�L .
For all m̄ ⊆ b̄ let ψm̄(x̄) ∈ p(x̄) be such that N |= ¬ψm̄(m̄). Finally let σk
be the conjunction of σk−1, σ and all sentences of the form ¬ψm̄(m̄).

We have to check that σk satisfies all the properties it is supposed to
satisfy. (1) is clear since σk−1 is one of the conjuncts of σk. Property (2) is
also easily seen to be true since all the conjuncts of σk is true in the model
N above. The other three, (3), (4) and (5) are all obviously true. a

In the previous proof full SatCon-closedness of X is not needed; all
we used was the special case when T0 is Th(M, ā) for some ā ∈ M , i.e.,
if T, p(x̄) ∈ X is in an extension L + of L (ā) for some ā ∈ M and
SatCon(T + p↑/Th(M, ā)) then there is a completion Tc ∈ X of T such
that SatCon(Tc + p↑/Th(M, ā)). We could even take this further and get
rid of the parameters ā ∈M :
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Transcendence

Corollary 2.12. If M is a countable X-saturated model, where X satisfies
that for all T, p(x̄) ∈ X in an extension L + of the language L of M
satisfying SatCon(T +p↑/Th(M)) there is a completion Tc ∈ X of T such
that SatCon(Tc + p↑/Th(M)), then M is transcendent.

Proof. By the argument above we only need to prove that if T, p(x̄) ∈ X is
in an extension L + of L (ā) for some ā ∈M and SatCon(T+p↑/Th(M, ā))
then there is a completion Tc ∈ X of T such that

SatCon(Tc + p↑/Th(M, ā)).

Let T and p(x̄) be such. Then SatCon(T +Th(M, ā)+p↑/Th(M)), and
so there is a completion Tc ∈ X of T such that SatCon(Tc + Th(M, ā) +
p↑/Th(M)). But then clearly SatCon(Tc + p↑/Th(M, ā)). a

If we fix p(x̄) in the proof of the theorem we get the following.

Corollary 2.13. Let M be a countable X-saturated model and L + an
extension of the language of M . Fix an L +-type p(x̄) and suppose that
for all first-order theories T ∈ X such that SatCon(T + p↑/Th(M)) there
is a completion Tc ∈ X of T satisfying SatCon(Tc + p↑/Th(M)). Then
for any L +-theory T ∈ X such that SatCon(T + p↑/Th(M)) there is an
expansion of M satisfying T + p↑.

Corollary 2.14. Any countable model M has a countable transcendent
elementary extension.

Proof. Combine Theorems 2.10 and 2.11. a

As an easy application we get a joint consistency test for theories of the
form T + p↑. It should be noted that this theorem is provable by a more
direct argument as well.

Theorem 2.15. Let T1 and p1(x̄) be a theory and a type in the language
L1 and T2 and p2(x̄) in the language L2. Furthermore let L0 be L1 ∩L2

and T0 a complete theory in L0. Assume also that L0 is recursive and
L1 and L2 are recursive extensions of L0. If SatCon(T1 + p1↑/T0) and
SatCon(T2 + p2↑/T0) then there exists a countable model of T0 + T1 + T2 +
p1↑+ p2↑.

Proof. Let X be a countable SatCon-closed Scott set including T0, T1, T2,
p1(x̄), and p2(x̄). Assume M |= T0 is countable and X-saturated. Since
SatCon(Ti + pi↑/T0) for i = 1, 2 there exists expansions M1 and M2 of M
such that Mi |= Ti + pi↑. Since L0 = L1 ∩L2 we can merge M1 and M2

together to one expansion M+ |= T0 + T1 + T2 + p1↑+ p2↑. a
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2. Expansions omitting types

Not all recursively saturated models are transcendent

Given a language L , which is an extension of the arithmetic language
LA = { 0, 1,+, ·, < }, let K be a new unary predicate symbol and define
the Lω1ω-theory TK=ω to be S + p↑ where

S = {K(n) | n ∈ ω } ,
p(x) = { x 6= n | n ∈ ω } ∪ {K(x) } ,

and n is the nth numeral, i.e., 1 + 1 + . . .+ 1 with n ones. It is easy to see
that S + p↑ holds in an expansion of a model of PA iff K is interpreted as
the set of natural numbers.

Define the K-translate, ΘK , of any second-order arithmetic formula Θ1,
so that the following holds:

(t = r)K is t = r,

(X = Y )K is
(
∀x(x ∈ X ↔ x ∈ Y )

)K
,

(t ∈ X)K is K(t) ∧ (xX)t 6= 0,

(Ψ1 ∨Ψ2)K is ΨK
1 ∨ΨK

2 ,

(¬Ψ)K is ¬ΨK ,

(∃xΨ)K is ∃x(K(x) ∧ΨK), and

(∃XΨ)K is ∃xXΨK

where X and Y are set variables, t and r are terms, and xX is a first-order
variable chosen in such way that xX does not occur in Θ and if X and Y
are two different second-order variables then xX and xY are different.

Lemma 2.16. For any N |= PA, any second-order arithmetic formula

Θ(x0, . . . , xk, X0, . . . , Xl),

any n0, . . . , nk ∈ ω and any d0, . . . , dl ∈ N we have

(N,ω) |= ΘK(n0, . . . , nk, d0, . . . , dl) iff
SSy(N) |= Θ(n0, . . . , nk, setN (d0), . . . , setN (dl)).

Proof. The proof is by induction on the construction of Θ. First assume Θ
to be atomic. There are three cases.

• Θ is t = r for some terms t and r. Clearly N |= t(n̄) = r(n̄) iff
t(n̄) = r(n̄).

1For simplicity we assume that the only logical symbols of Θ are =, ∨, ¬, and ∃.
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• Θ is t ∈ X for some term t. (N,ω) |= (t ∈ X)K(n̄, d) iff (N,ω) |=
K(t(n̄)) ∧ (d)t(n̄) 6= 0 iff t(n̄) ∈ setN (d).

• Θ is X = Y . This case reduces to the other cases.

If Θ is not atomic, it is composite; there are three cases here as well.

• Θ is ¬Ψ or Ψ1 ∨ Ψ2. This is obvious from the definition (since K-
translate and ¬/∨ commutes ).

• Θ is ∃xΨ(x0, . . . , xk, x,X0, . . . , Xl). (N,ω) |= ∃x(K(x) ∧ ΨK)(n̄, d̄)
iff there is n ∈ ω such that (N,ω) |= ΨK(n̄, n, d̄) iff there is n ∈ ω
such that SSy(N) |= Ψ(n̄, n, D̄) iff SSy(N) |= ∃xΨ(n̄, x, D̄), where D̄
are the sets coded by the elements d̄.

• Θ is ∃XΨ(x0, . . . , xk, X0, . . . , Xl, X). We have

(N,ω) |= ∃xXΨK(n̄, d̄)

iff there is d ∈ N such that

(N,ω) |= ΨK(n̄, d̄, d)

iff there is D ∈ SSy(N) such that

SSy(N) |= Ψ(n̄, D̄,D)

iff
SSy(N) |= ∃XΨ(n̄, D̄,X).

By induction the lemma holds for any second-order arithmetic formula
Θ. a

Theorem 2.17. If M |= PA is transcendent then SSy(M) is a βω-model.

Proof. Let Ψ(Ā), where Ā ∈ SSy(M), be a second-order sentence true in
N2. Let ā ∈M code Ā, i.e., ai codes Ai. By taking N to be an ω-saturated
model of Th(M, ā) we see that (N,ω) |= ΨK(ā) since by the lemma this is
equivalent to SSy(N) |= Ψ(Ā) and SSy(N) = P(ω). Therefore

SatCon(TK=ω + ΨK(ā)/Th(M, ā))

and so by the assumption and Proposition 2.5 there is an expansion of M
satisfying TK=ω + ΨK(ā). There could only be one such expansion and so
we have

(M,ω) |= ΨK(ā).

By using the lemma once again we have that

SSy(M) |= Ψ(Ā)

and thus SSy(M) is a βω-model. a
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2. Expansions omitting types

Definition 2.18. We say that M is βω-saturated (β-saturated) if it is
X-saturated for some βω-model (β-model) X .

For historical reasons we note that Jonathan Stavi2 proved that a short
cofinally expandable model has a standard system which is a β-model,
see [Smo81, Fact 3.13].3 That is the only other place we found any notion
closely related to β-saturation, though it should be noted that a short model
is never recursively saturated. However, Robert Solovay later proved that
no short cofinally expandable models exist, see [Smo82].

Corollary 2.19. If M |= PA is transcendent then M is βω-saturated.

Proof. Since M is a recursively saturated model of PA it is X -saturated,
where X = SSy(M), and by the theorem above SSy(M) is a βω-model. a

The predicate SatCon is certainly not recursive, in fast it is not even
arithmetic or analytic. The next corollary shows that it is not Σ1

k for any
k ∈ ω, i.e., that it is not in the analytical hierarchy of sets.

Corollary 2.20. There is no second-order arithmetic formula Θ(X,Y )
such that for all first-order theories T0 and T

SatCon(TK=ω + T/T0) iff N2 |= Θ(T, T0).

Proof. Assume, by contradiction, that Θ(X,Y ) is such a formula which
is, say, Σ1

k. Let X be a countable βk-model which is not a βk+1-model,
such a model exists by Theorem 1.34; and let M |= PA be countable and
X-saturated. The model M is βk-saturated but not βk+1-saturated, since
if M is Y -saturated then Y = X , and X is not a βk+1-model.

Assume that T, T0 ∈ SSy(M) and SatCon(T + TK=ω/T0) then

N2 |= ∃X
(
Θ(X,T0) ∧ T ⊆ T0 ∧X is a complete theory

)
.

Since SSy(M) is a βk-model and the sentence is Σ1
k it is also true in SSy(M)

and so there is a completion Tc ∈ SSy(M) of T satisfying SatCon(Tc +
TK=ω/T0).

We don’t know if M is SatCon-saturated, but what we do know is that
if T, T0 ∈ SSy(M) are such that SatCon(T + TK=ω/T0) then there is a
completion Tc ∈ SSy(M) of T such that SatCon(Tc + TK=ω/T0).

Therefore, by Corollary 2.13, for any T ∈ SSy(M) satisfying

SatCon(T + TK=ω/Th(M))

2At least Smoryński, in [Smo81], claims that it is due to Jonathan Stavi.
3In fact, Stavi seems to have proved something weaker, but a slight modification of

his proofs gives the result.
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there is an expansion of M satisfying T+TK=ω. We might call this property
TK=ω-transcendence. In fact, since M is strongly homogeneous, for all
ā ∈M the model (M, ā) is TK=ω-transcendent by the same argument that
proved Proposition 2.5.

The proof of Theorem 2.17 only uses that (M, ā) is TK=ω-transcendent
for all ā ∈ M . Thus; that argument proves that SSy(M) is a βω-model
which contradicts the assumption that SSy(M) is not a βk+1-model. a

Let tpN2
(A), where A ⊆ ω, be the type of A in the standard second-

order model of arithmetic, i.e.,

tpN2
(A) = {Θ(X) second-order arithmetic formula | N2 |= Θ(A) } .

Theorem 2.21. Let M |= PA be transcendent; if A ∈ SSy(M) then

tpN2
(A) ∈ SSy(M).

Proof. Assume M |= PA is transcendent and A ∈ SSy(M) is coded in M
by a ∈M . Let T + p↑ be

TK=ω +
{

(c)n 6= 0 ↔ ΘK(a)
∣∣∣ Θ(X) second-order, n = Θ(X)

}
.

If N is an ω-saturated model of Th(M) and b ∈ N codes the type tpN2
(A)

then
(N,ω, b) |= T + p↑

since for all second order Θ(X) we have

N2 |= Θ(A) iff (N,ω, a) |= ΘK(a).

By the transcendence of M there is d ∈M such that

(M,ω, d) |= T + p↑.

Thus, d codes the theory of the second-order model (SSy(M), A) which is
elementary equivalent to (N2, A) since SSy(M) is a βω-model. a

Under certain set-theoretic assumptions we have that if a Scott set is
closed under the operator A 7→ tpN2

(A) then it is a βω-model:

Theorem 2.22. If V=L or PD hold then any Scott set X satisfying the
property that if A ∈ X then tpN2

(A) ∈ X , is a βω-model.

Proof. By Corollary 1.30 it is enough to prove that X satisfies true ∆1
∞-

comprehension. Let θ(x,A) be any second-order arithmetic formula, where
A ∈ X . Clearly X satisfies arithmetic comprehension since it is closed
under the jump operator. Let B be such that

X |= ∀x(x ∈ B ↔ θ(x,A) ∈ tpN2
(A)),
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2. Expansions omitting types

clearly
N2 |= ∀x(x ∈ B ↔ θ(x,A));

and so X satisfies true ∆1
∞-comprehension which shows that X is indeed

a βω-model. a

We end this section with an open question and a conjectured partial
answer.

Question 2.23. Is, for countable models, transcendence characterised by
saturation properties? I.e., is there a property of Scott sets such that any
countable model is transcendent iff there is such a Scott set X for which
the model is X-saturated?

Our guess is that this is true for models of PA, but not otherwise.
Clearly, for models of any complete T ⊇ PA it is true, since any count-
able recursively saturated model of PA is characterised by its theory and
standard system.

Conjecture 2.24. There is a property of Scott sets such that a countable
recursively saturated model M |= PA is transcendent iff SSy(M) has the
property.

Are all transcendent models βω-saturated?

Observe that if T0 is complete and has a countable saturated model then
there is a Σ1

2 formula Θ(X,Y, Z) such that if T and p(x̄) are a theory and
a type respectively in an extension L + of the language L of T0 then

N2 |= Θ(T, p(x̄), T0) iff SatCon(T + p↑/T0).

To see this let Θ(X,Y, Z) say

∃M∀q(x̄, ā)
(
M is a model of T0 + T + p↑ ∧

if q(x̄, ā) is a type over M in L then q(x̄, ā) is realized in M
)
.

This formula has the desired property since if SatCon(T + p↑/T0) then
there is a countable N+ |= T + T0 + p↑ such that N+�L is ω-saturated.
To see this let L+ |= T + T0 + p↑ be such that L+�L is ω-saturated and
N+

0 ≺ L+ a countable model. By a standard argument let N+
0 ≺ N+

1 ≺ L+

be countable such that N+
1 realizes all L -types over N+

0 (with parameters
from N+

0 ), such a model can be constructed since there are only countably
many L -types over N+

0 . Continue in this fashion to construct a sequence{
N+
i

}
i∈ω such that N+

i ≺ N+
i+1 ≺ L+ and such that N+

i−1 realizes all
L -types over N+

i . Let N+ be the union of this sequence.
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Corollary 2.25. If T0 has a countable saturated model then there is a
transcendent model of T0 which is X-saturated for a Scott set X which is
not a β3-model.

Proof. Let T1 be a completion of T0 such that T1 has a countable saturated
model and, by Theorem 1.34, let X be a countable β2-model which is
not a β3-model. Assume M is a countable X-saturated model of T1. If
T, p(x̄) ∈ X are such that SatCon(T + p↑/T1) and Θ(X,Y, Z) is as above
we have

N2 |= ∃X
(
Θ(X, p(x̄), T1) ∧ T ⊆ X ∧X is complete

)
and so, since X is a β2-model, there is a completion Tc ∈ X of T such
that SatCon(Tc + p↑/T1). By Corollary 2.12 this is enough for the model
M to be transcendent. a

It is still, for us, not clear whether there is a model which is transcendent
but not βω-saturated. If we assume V=L or PD, to find such a model it
is enough to construct a theory T ∈ X2 with countably many complete
types of which one is in Xω \X2, where X2 is the least β2-model and Xω

is the least βω-model. That X2 and Xω exists follows from Corollary 1.32.
In this case any X2-saturated model of T omits p(x̄), and is therefore not
βω-saturated, but is transcendent by the discussion above.

Question 2.26. Is there a transcendent model which is not βω-saturated?

Alternative consistency notions

Let us now discuss some possible alternative consistency notions: Are there
weaker notions of consistency which can replace SatCon in the definition
of transcendence?

We say that a property Con(T0, T, p(x̄)) is possible if any countable
model has a countable elementary extension M satisfying the definition of
transcendence with

SatCon(T + p↑/Th(M))

replaced by
Con(Th(M), T, p(x̄)).

If Con also satisfies that Con(T0, T, p(x̄)) holds for every T0, T , and p(x̄)
such that there is a model of T0 + T and |= p↑; then we say that Con is
good, i.e., Con is good if for first-order T+p↑ the predicate Con(T0, T, p(x̄))
coincide with the ordinary first-order consistency of T0 + T + p↑.

Any model M satisfying the definition of transcendence with SatCon
replaced by some good Con has to be recursively saturated.

As we have seen before, defining Con(T0, T, p(x̄)) to hold iff there is a
model of T0 + T + p↑ makes Con not possible. We can do a bit more:
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2. Expansions omitting types

Proposition 2.27. Define Con(T0, T, p↑) to hold iff for all types q(x̄) over
T0 there is a model of T0 + q↓+ T + p↑. Then Con is not possible.

Proof. Let T0 be any complete extension of PA. We will define a theory
T + p↑ such that no recursively saturated model of T0 has an expansion
satisfying T + p↑, but Con(T0, T, p(x)). If Con, defined in this way, was
possible it would also be good so finding such a theory would be enough.
The theory T + p↑ will be TK=ω together with a formalisation of

Σ is a truth predicate ∧ there is an omitted coded complete type. (2.1)

Given a type q(x̄) over T0, let M be the prime model of T0 + q(c̄); M is
not recursively saturated, therefore

(M,ω,Th(M,a)a∈M ) |= T + p↑.

Thus; Con(T0, T, p(x̄)) but no recursively saturated model of T0 has an
expansion satisfying T + p↑.

We will give a hint on how to formalise (2.1). That Σ is a truth pred-
icate means that it includes the truth-definition for ∆0-formulas, which is
definable in PA, that it respects Tarski’s definition of truth, and that it is
complete for all standard formulas. Let Ψ(Σ,K) express this, i.e.,

(M,Σ, ω) |= Ψ(Σ,K) iff Σ = Th(M,a)a∈M ,

for every M |= PA.
By the use of Σ and the standard predicate K it is easy to express that

an element a ∈ M codes a complete type. It should also be clear how to
formalise the statement that a type is omitted in this context. This should,
hopefully, convince the reader that (2.1) is indeed formalisable. a

We end this section with an open question:

Question 2.28. Assume Con(T0, T, p(x̄)) holds iff there is a model of

T0 + T + p↑+ { q↓ | q(x̄) ∈ Sk(T ) for some k ∈ ω } .

Is Con possible?

2.2 Limit types

A type p(x̄) is isolated in T if there exists ϕ(x̄) such that T + ∃x̄ϕ(x̄) is
consistent and

T ` ∀x̄
(
ϕ(x̄) → ψ(x̄)

)
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for all ψ(x̄) ∈ p(x̄). We say that p(x̄) is a limit in T if it is not isolated in
T .4 Observe that if p(x̄) is not consistent with T , i.e., it is not a type over
T , or T itself is inconsistent, then p(x̄) is a limit in T .

If p(x̄) is a limit in T and σ is a sentence such that there exists ϕ(x̄)
satisfying

T + σ ` ∀x̄
(
ϕ(x̄) → ψ(x̄)

)
for all ψ(x̄) ∈ p(x̄), then

T ` ∀x̄
(
σ ∧ ϕ(x̄) → ψ(x̄)

)
.

for all ψ(x̄) ∈ p(x̄). Thus; if the type p(x̄) is a limit in T then it is also a
limit in T + σ.

Let us formulate this as a proposition:

Proposition 2.29. If p(x̄) is a limit in T and σ is a sentence consistent
with T then

1. p(x̄) is a limit in T + σ, and

2. T + σ + p↑ is consistent iff T + σ is consistent.

Proof. We have already proven (1). The omitting types theorem says that
if T is consistent then so is T + p↑. The statement (2) then follows from
the omitting types theorem and (1). a

Furthermore; if p(x̄) is a limit in T then there is a completion Tc of T ,
arithmetic using T and p(x̄) as oracles, such that Tc + p↑ is consistent. To
see this do the ordinary proof of the omitting types theorem. That gives
you a theory S in the language L ∪ { ci | i ∈ ω }, where the cis are new
constant symbols and L is the language of T and p(x̄). The Henkin theory
S is such that T ⊆ S and the canonical model of S omits p(x̄). Furthermore;
S is recursive using Th(T ) and p(x̄) as oracles, and so is arithmetic using T
and p(x̄) as oracles. The theory Tc = S∩L is a completion of T consistent
with p↑.

Thus; if X is any arithmetically closed Scott set and T, p(x̄) ∈ X
are such that p(x̄) is a limit in T and T is consistent then there exists a
completion Tc ∈ X of T such that Tc + p↑ is consistent.

Theorem 2.30. Let X be an arithmetically closed Scott set and let M
be an X-saturated countable model in a recursive language L . Assume
T, p(x̄) ∈ X are in a recursive extension L + of L and such that p(x̄) is
a limit in T + Th(M, m̄) for all m̄ ∈ M . If T + Th(M) is consistent then
there exists M+ �M such that M+ |= T + p↑.

4The terms isolated and limit comes from the the fact that a complete type over T
is isolated iff it is a isolated point in the topological space S(T ) of all complete types
over T .
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2. Expansions omitting types

Proof. The proof follows, more or less, the proof of Theorem 2.11. We will
construct the sequence σk as in that proof with the exception that (2) is
replaced by the weaker condition

(2’) T + σk + Th(M, b̄) + p↑ is consistent, where b̄ are all parameters
occurring in σk.

Clearly this is enough for the term model of { σk }k∈ω to be (isomorphic
to) an expansion of M satisfying T + p↑.

Before we construct σk please observe that T + Th(M, m̄) + σ is con-
sistent iff T + Th(M, m̄) + σ + p↑ is consistent, this is true since p(x̄) is a
limit in T + Th(M, m̄) and so in T + Th(M, m̄) + σ.

The construction of σk given σk−1 is as follows (as before we let σ−1 be
∃x(x = x) and can forget about the base case in the construction).

Suppose σk−1 has been constructed. Let b̄ ∈ M be all parameters
occurring in σk−1 or in ϕk(x). If

T + σk−1 + ¬∃xϕk(x) + Th(M, b̄) + p↑

is consistent let σ be ¬∃xϕk(x).
Otherwise, if

T + σk−1 + ϕk(d) + Th(M, b̄) + p↑

is consistent for some d ∈ b̄ let σ be ϕk(d).
In the last case

T + σk−1 + ϕk(c) + c 6= b̄+ Th(M, b̄) + p↑ (2.2)

is consistent, where c is a new constant symbol. Since p(x̄) is a limit in
T + Th(M, b̄) it is also a limit in

T + σk−1 + ϕk(c) + c 6= b̄+ Th(M, b̄). (2.3)

By the argument preceding the theorem let S ∈ X be any completion of
(2.3) such that S + p↑ is consistent, and let

q(x) =
{
ψ(x) ∈ L (b̄)

∣∣ ψ(c) ∈ S
}
.

The type q(x) ∈ X , so it is realized by d ∈M where d 6= b̄. Let σ be ϕ(d)
and expand b̄ to include d.

In all cases we have that

T + σk−1 + σ + Th(M, b̄) + p↑

is consistent.
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Let N witness this, i.e.,

N |= T + σk−1 + σ + p↑+ Th(M, b̄).

For all m̄ ⊆ b̄ let ψm̄(x̄) ∈ p(x̄) be such that N |= ¬ψm̄(m̄). Finally let σk
be the conjunction of σk−1, σ and all ¬ψm̄(m̄).

We have to check that σk satisfies all the properties it is supposed to:
(1) is clear since σk−1 is one of the conjuncts of σk. Property (2′) is also
easily seen to be true since all the conjuncts of σk is true in the model N
above. The other three, (3), (4) and (5) are all obviously true. a

Corollary 2.31. Let X be an arithmetically closed Scott set, M a count-
able X-saturated model in a recursive language L , ā ∈ M , and L + a
recursive extensions of L (ā). For all T, p(x̄) ∈ X in L + such that p(x̄)
is a limit in T + Th(M, ā, m̄) for all m̄ ∈ M there exists an expansion of
M satisfying T + p↑.

Proof. The corollary follows from the strong homogeneity of M in the same
way as in Proposition 2.5. a

Let L + be LA, the language of arithmetic, with one unary function
symbol, g, added; and let σg∈Aut stand for the sentence expressing that g
is an automorphism for the language LA. Define the type p(x) to be

{ g(x) = x ∧ x 6= t | t is a closed Skolem term for the language LA } .

A model (M,f) |= PA + σg∈Aut + p↑ iff M |= PA and f ∈ Aut(M) is
such that the fixed points of f are exactly the definable points of M , i.e.,
fix(f) = M0, where M0 is the least elementary submodel of M . Any such
automorphism f is said to be a maximal automorphism.

Question 2.32. Is there a recursive set of sentences, S, in the language
LA ∪ { c, g }, where c is a new constant symbol and g is a unary function
symbol, satisfying that for any completion T0 of PA in the language LA ∪
{ c }, T0 + S is consistent and the type p(x̄) is a limit in T0 + S.

If the answer is positive we have a converse of 2.30 in the sense that a
countable model of arithmetic, M , is arithmetically saturated iff it satisfies
the following property: For any T, p(x̄) ∈ SSy(M), if p(x̄) is a limit in
T + Th(M,m) for all m ∈ M , and T + Th(M) is consistent then there is
M+ � M such that M+ |= T + p↑. This follows directly from Theorem
1.18.

Observe that there are completions T0, in the language LA ∪ { c },
of PA which isolates p(x̄). For example, if T0 is a completion of PA +
{ c 6= t | t is a Skolem term } then the formula x = c ∧ g(c) = c isolates
p(x).

43



2. Expansions omitting types

It should also be mentioned that even if the answer to the question is
negative arithmetic saturation might be strong enough to prove Theorem
2.30 for a slightly larger class of types p(x̄),5 and thus, we might still have
a converse to the theorem.

2.3 Categorical theories

We will now study a special sort of theories, which we call categorical,
of the form T + p↑, where T is first-order. We then use the theory of
transcendent models to prove an interesting property of them. The main,
and motivating, example of a categorical theory is TK=ω.

In model theory we say that a theory is categorical if it only has one
model, such a first-order theory does not exists by the Löwenheim-Skolem
theorems. However, there do exist theories which are κ-categorical in the
sense that there is only one model (up to isomorphism) of cardinality κ
satisfying the theory. The categoricity we now define is over a model.

Definition 2.33. A theory T , first-order or not, is categorical over the
model M if there is at most one expansion of M satisfying T . We say that
T is categorical over a theory S if T is categorical over any model of S.

For any model M , a theory T in the same language as M is categorical
over M since either M satisfies T or not. In either case there is at most
one expansion satisfying T . Another, almost as trivial, example is the
theory TK=ω which is categorical over PA; if M |= PA there is exactly one
expansion of M satisfying TK=ω, which is (M,ω).

Now for the main theorem of this section; it says that the expansion to
categorical theories T + p↑ is well-behaved.

Theorem 2.34. Assume M is a countable transcendent model in the re-
cursive language L . Let X be as in the definition of transcendence and
T, p(x̄) ∈ X are such that T + p↑ is categorical over M . If SatCon(T +
p↑/Th(M)) and N |= T + p↑ witnesses this property, i.e., N�L is ω-
saturated, then M+ ≺ N , where M+ is the unique expansion of M satisfy-
ing T + p↑.
Proof. Since N�L is ω-saturated we may assume that M ≺ N�L . We
prove that the embedding is elementary for L +. Suppose N |= ϕ(ā),
where ā ∈M and ϕ(x̄) is an L +-formula. Then

SatCon(T + p↑+ ϕ(ā)/Th(M, ā))

and therefore, by Theorem 2.5, there is an expansion of (M, ā) satisfying
T + p↑+ϕ(ā). Since T + p↑ is categorical over M , and so over (M, ā), that
expansion has to be (M+, ā). Thus M+ |= ϕ(ā). a

5For example, types p(x̄) such that rk(Th(M, m), p(x̄)) < ω for all m ∈ M , where
rk(T, p(x̄)) is defined in Chapter 3.
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Corollary 2.35. Let T + p↑ be categorical over a complete theory T0 such
that SatCon(T + p↑/T0) and let N1 and N2 be witnesses of SatCon(T +
p↑/T0). Then N1 ≡ N2.

Proof. Let M be a countable transcendent model of T0 such that T, p(x̄) ∈
X , where X is as in the definition of transcendence. Then M+ is elemen-
tary embeddable in both N1 and N2, where M+ is the unique expansion
of M satisfying T + p↑. Thus; N1 ≡ N2. a

Indeed, a small modification of the proof shows something stronger,
namely that the models N1 and N2 are back-and-forth equivalent.

Corollary 2.36. Let M1 ≡M2 be countable transcendent models, and X1

and X2 as in the definition of transcendence for M1 and M2 respectively.
Suppose T, p(x̄) ∈ X1 ∩ X2, that T + p↑ is categorical over both M1 and
M2, and that SatCon(T + p↑/Th(M1)). If M+

1 and M+
2 are the unique

expansions of M1 and M2, respectively, satisfying T +p↑, then M+
1 ≡M+

2 .

Proof. Let N witness that SatCon(T+p↑/Th(M1), then, by Theorem 2.34,
M+

1 ≺ N and M+
2 ≺ N and so M+

1 ≡M+
2 . a

We knew before that if M is a transcendent model of PA then SSy(M)
is a βω-model, i.e., that SSy(M) ≺ N2. Theorem 2.34 says that if M also
is countable then (M,ω) ≺ (N,ω) for any ω-saturated model N |= Th(M),
which, by the K-translate of second-order formulas, is stronger than saying
that SSy(M) ≺ N2.

Theorem 2.37. Let M |= PA be transcendent, ā ∈ M and T, p(x̄) ∈
SSy(M) in an extension L + of LA(ā) such that T + p↑ is categorical
over (M, ā). If SatCon(T + p↑/Th(M, ā)) then there is a completion Tc ∈
SSy(M) of T such that SatCon(Tc + p↑/Th(M, ā)).

Proof. Let

S =
{

(c)n 6= 0 ↔ ϕ
∣∣ ϕ an L +-sentence and n = ϕ

}
where c is a new constant. Let N witness that SatCon(T + p↑/Th(M, ā))
and let d ∈ N code the theory Th(N); then (N, d) |= S and therefore

SatCon(T + S + p↑/Th(M, ā)).

By the transcendence of M there is an expansion (M+,m) |= T + S + p↑
of M , where m is the interpretation of c. Then setM (m) = Th(M+)
and by Theorem 2.34 M+ ≺ N so Th(M+) = Th(N). By letting Tc =
Th(M+) we have a completion Tc in SSy(M) of T such that SatCon(Tc +
p↑/Th(M, ā)). a

The last theorem will help us, in the next section, to find something
like a converse to Theorem 2.11.
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2. Expansions omitting types

2.4 Standard recursive saturation

There is an interesting special case of transcendence for models of PA,
very much like recursive saturation is a special case of resplendence. If we
expand a model of arithmetic with the standard predicate, K, it is easily
seen not to be recursively saturated; the type

{ x > n ∧K(x) | x ∈ ω }

is omitted. However, if we strengthen the consistency assumption of types
including the standard predicate to SatCon we get a new notion of recursive
saturation. We call it recursive standard saturation.

Definition 2.38. Let M |= PA and ā ∈ M . A type q(x̄, ā) over the
model (M,ω) is a standard type over M if there is an ω-saturated model
N |= Th(M, ā) such that q(x̄, ā) is realized in (N,ω).

In other words, a set of formulas q(x̄, ā) in the language LA(K, ā),
where ā ∈M , is a standard type over M iff

SatCon(TK=ω + q↓/Th(M, ā)),

where q↓ is the non first-order sentence expressing that q(x̄, ā) is realized.
Observe that any type over M is a standard type over M . We will often
say that M realizes, or omits, a standard type even if we really mean that
(M,ω) realizes, or omits, the type.

Definition 2.39. A model M |= PA is recursively standard saturated if it
realizes all recursive standard types over M .

Clearly, recursive standard saturation is stronger than recursive sat-
uration, it says that the the expanded model (M,ω) is, not recursively
saturated, but as much recursively saturated as we could hope for. Also,
any transcendent model is standard recursively saturated.

Lemma 2.40. If M is recursively standard saturated then any standard
type q(x̄, ā) in SSy(M) over M is realized in (M,ω).

Proof. Let d ∈M code q(x̄, ȳ) and define

r(x̄, ā, d) =
{

(d)n 6= 0 → ϕ(x̄, ā)
∣∣

ϕ(x̄, ȳ) is an LA(K)-formula and n = ϕ(x̄, ȳ)
}
.

It is easy to check that r(x̄, ā, d) is a recursive standard type over M , and
that (M,ω) |= r↓ ↔ q↓. Therefore, q(x̄, ā) is realized in (M,ω). a

Lemma 2.41. Let q(x̄, ā) ∈ SSy(M) be a standard type over a recur-
sively standard saturated model M . Then there is a complete standard type
r(x̄, ā) ∈ SSy(M) over M extending q(x̄, ā).
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Standard recursive saturation

Proof. Let

s(z, x̄, ā) = q(x̄, ā) ∪
{

(z)n 6= 0 ↔ ϕ(x̄, ā)
∣∣

ϕ(x̄, ȳ) is an LA(K) formula and n = ϕ(x̄, ȳ)
}
.

Let N |= Th(M, ā) be ω-saturated, b̄ ∈ N such that (N,ω) |= q(b̄, ā),
and d ∈ N code the theory Th(N,ω, b̄, ā) in N . It should be clear that
(N,ω) |= s(d, b̄, ā) and therefore that s(z, x̄, ā) is a standard type over M .
Let d′, b̄′ ∈M realize s(z, x̄, ā) in M ; the set coded by d′ in M is the theory
Th(M,ω, b̄′, ā). Let

r(x̄, ā) =
{
ϕ(x̄, ā)

∣∣ ϕ(b̄′, ā) ∈ Th(M,ω, b̄′, ā)
}

;

then r(x̄, ā) is a complete type, coded in M , and extending p(x̄, ā). To see
that r(x̄, ā) is a standard type we prove that (M,ω) ≺ (N,ω) which shows
that (N,ω) realizes r(x̄, ā) since it is realized in (M,ω).

Suppose ā ∈M and ϕ(ā) is an LA(K, ā)-sentence true in (N,ω). Define
the trivial recursive standard type

p(x̄, ā) = { ϕ(ā), x = x } .

Since M is recursively standard saturated the standard type p(x̄, ā) is re-
alized in (M,ω) and so (M,ω) |= ϕ(ā). Thus (M,ω) ≺ (N,ω) as we
wanted. a

Theorem 2.42. Let M |= PA be countable and recursively saturated; then
M is recursively standard saturated iff for all standard types q(x̄, ā) ∈
SSy(M) over M there is a complete standard type r(x̄, ā) ∈ SSy(M) over
M extending q(x̄, ā).

Proof. Lemma 2.41 takes care of the left to right direction of the equiv-
alence. For the other direction suppose M |= PA is countable, recur-
sively saturated and that SSy(M) satisfies the closedness-condition in the
statement of the theorem. Let q(x̄, ā) be a recursive standard type over
M and let T = q(c̄, ā) where c̄ are some new constants. We have that
SatCon(TK=ω+T/Th(M, ā)) and we can construct an expansion of (M, ā)
satisfying T + TK=ω in the same way as Theorem 2.11 is proven.

We only have to check that if

SatCon(TK=ω + T + σ + ∃xϕ(x)/Th(M, b̄)),

where σ and ϕ(x) are formulas in LA(K, b̄) for some b̄ ⊇ ā, then there is a
complete type r(x, b̄) over Th(M, b̄) such that

SatCon(TK=ω + T + σ + ϕ(c)/Th(M, b̄) + r(c, b̄)).
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2. Expansions omitting types

Let s(x, b̄) be the standard type T+ϕ(x)+σ over M . By the assumption on
M let r(x, b̄) be a complete standard type over M extending T +ϕ(x) +σ.
Thus,

SatCon(TK=ω + T + σ + ϕ(c) + r(c, b̄)/Th(M, b̄))

and therefore

SatCon(TK=ω + T + σ + ϕ(c)/Th(M, b̄) + r(c, b̄))

as we hoped for.
Therefore; there is an expansion of (M, ā) satisfying TK=ω + T . Let

m̄ ∈M be the interpretation of c̄; then

(M,ω) |= q(m̄, ā)

and the arbitrarily chosen recursive standard type q(x̄, ā) is realized in
(M,ω). a

Thus; we have a complete characterisation of recursive standard sat-
uration for countable recursively saturated models of arithmetic in terms
of their standard system. By the proof of Theorem 2.21 we see that any
recursively standard saturated model has a standard system which is closed
under the operation

A ⊆ ω 7→ tpN2
(A).

Question 2.43. Is this condition also sufficient for countable recursively
saturated models of arithmetic, i.e., given a countable recursively saturated
model of arithmetic such that for any A ∈ SSy(M) the set tpN2

(A) ∈
SSy(M), is the model recursively standard saturated?

Question 2.44. Are all countable recursively standard saturated models
of arithmetic transcendent?

2.5 Subtranscendence

We now consider a slightly different notion of transcendence. It is much
weaker then full transcendence but still quite a lot stronger than recursive
saturation and resplendence. This notion is like transcendence but with the
conclusion that there is an elementary submodel of M with an expansion
satisfying T +p↑. However, we need to include parameters in the definition
which makes the definition slightly more complicated.

Before we define this notion let us consider a variant of resplendence,
which we call subresplendence. We introduce the following practical short-
hand:

M � N iff ∃K(M � K ≺ N).
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Subtranscendence

Definition 2.45. A model M is subresplendent if for every ā ∈ M , every
recursive theory T in an extension L + of L (ā), where L is the language of
M , such that T + Th(M, ā) is consistent, there is an elementary submodel
L ≺M and an expansion L+ of L satisfying T , i.e., there is L+ �M such
that ā ∈ L+ |= T .

For countable models resplendence and recursive saturation coincide,
but not for uncountable models. Subresplendence, on the other hand, co-
incide with recursive saturation for arbitrary models.

Proposition 2.46. A model is recursively saturated iff it is subresplendent.

Proof. To prove that a subresplendent model is recursively saturated all
we have to do is to observe that it is enough for a type to be realized in
an elementary submodel of M to be realized in M . The other direction of
the equivalence is proven by a Henkin construction which is a combination
of the constructions in the proof of Theorem 1.23 and 2.48. We omit the
details here. a

Let us now define the notion of subtranscendence.

Definition 2.47. A recursively saturated model M is subtranscendent if
there is a Scott set X for which M is X-saturated, and for all ā ∈M and
all extensions L + of the language L (ā) of (M, ā), all L +-theories T ∈ X ,
and all L +-types p(x̄) ∈ X such that T +p↑+Th(M, ā) is consistent there
is L+ �M such that ā ∈ L+ |= T + p↑.

Subtranscendent models exist, as the next theorem shows us.

Theorem 2.48. Every β-saturated model is subtranscendent.

Proof. Let M be a β-saturated model and X a β-model such that M is
X-saturated. Let L +, ā, T and p(x̄) be as in the definition of subtran-
scendence.

We construct the model L+ � M by a similar construction as the one
in the proof of Theorem 2.11.

Let { ∃xϕk(x, ȳ) }k∈ω be an enumeration of all L +-formulas starting
with an existential quantifier such that ∃xϕk(x, ȳ) has at most k free vari-
ables. For technical reasons we also assume that every formula occurs
infinitely often in the sequence. We construct a sequence of sentences
{ σk }k∈ω, and a sequence { bk }k∈ω of elements in M , such that if b̄k is
b0, . . . , bk then

1. σk+1 ` σk, and all elements of b̄k and ā occur in σk+1,

2. T + σk + p↑+ Th(M, b̄k, ā) is consistent,

3. σk ` ∃xϕk(x, b̄k−1) or σk ` ¬∃xϕk(x, b̄k−1),

49



2. Expansions omitting types

4. if σk ` ∃xϕk(x, b̄k−1) then σk ` ϕk(bk, b̄k−1), and

5. if all elements of m̄ ∈M occur in b̄k or ā then there exists ψ(x̄) ∈ p(x̄)
such that σk ` ¬ψ(m̄),

for all k ∈ ω.
Given such a sequence { σk }k∈ω, the union S = { σk | k ∈ ω } is a

complete Henkin theory: To see that S is complete let ϕ(ā, b̄) be a sentence
in

L +(ā, b0, b1, . . .)

and let k ∈ ω be so large that all elements in b̄ are among b0, b1, . . . , bk and
ϕk(x, b̄k−1) is ϕ(ā, b̄) ∧ x = x. By (3) either σk ` ϕ(ā, b̄) or σk ` ¬ϕ(ā, b̄).
The argument to prove that S is Henkin is similar.

Let L+ be the term model of S. We can identify the domain of L+ with
the set { bk | k ∈ ω } ⊆M , since if t(ā, b̄) is a term in L +(ā, b0, b1, . . .) then
there is a k ∈ ω such that ϕk(x, b̄k−1) is t(ā, b̄) = x and so σk ` t(ā, b̄) = bk.

Furthermore ā ∈ L+ ≺L M since

Th(L+�L , a)a∈L+ ⊆ Th(M,a)a∈M .

Clearly L+ |= T , and if m̄ ∈ L+ then there is k such that all elements in
m̄ appears in b̄k and so there is ψ(x̄) ∈ p(x̄) such that σk ` ¬ψ(m̄) by
condition (5).

We have to construct such a sequence { σk }k∈ω. For the sake of uni-
formity let σ−1 be ∃x(x = x) and assume ϕ0(x) to be x = x; this makes
the base case of the construction trivial.

Inductively define σk, given σk−1, as follows; if

T + ¬∃xϕk(x, b̄k−1) + Th(M, ā, b̄k−1) + p↑

is consistent let σ be ¬∃xϕk(c, b̄k−1) and bk = bk−1. Observe that in this
case k ≥ 1 and so bk−1 really exists.

Otherwise; if there exists a parameter d in b̄k−1 or in ā such that

T + σk−1 + ϕ(d) + Th(M, ā, b̄k−1) + p↑

is consistent let σ be ϕ(d) and bk = d.
For the last case let c be a new constant symbol and S ∈ X satisfy

“ϕk(c, b̄k−1) ∈ S ∧ p(x̄) is not isolated in S ∧
S is a complete L +(b̄k−1, c)-theory including

Th(M, ā, b̄k−1) + T + σk−1 + c 6= ā+ c 6= b̄k−1”, (2.4)
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where c 6= ā is a shorthand for c 6= a0∧ . . .∧c 6= al and similar for c 6= b̄k−1.
Such a theory S can be found since X is a β-model; there is an S ∈ P(ω)
satisfying (2.4) since

Th(M, ā, b̄k−1) + σk−1 + ϕk(c, b̄k−1) + c 6= ā+ c 6= b̄k−1 + p↑

is consistent and hence p(x̄) is not isolated in the theory of such a model.
Let

q(x) =
{
ϕ(x) ∈ L (ā, b̄k−1)

∣∣ ϕ(c) ∈ S(c)
}

;

since S ∈ X we have q(x) ∈ X , and since

q(c) + Th(M, ā, b̄k−1)

is consistent, there is an e ∈M realizing q(x).
We know that e does not occur in ā or b̄k−1 since x 6= ā ∧ x 6= b̄k−1 ∈

q(x). If we let bk = e then

T + σk−1 + ϕk(bk, b̄k−1) + Th(M, ā, b̄k) + p↑

is consistent since, by the omitting types theorem, S+p↑ is consistent. Let
σ be ϕk(bk, b̄k−1).

In all three cases we have that

T + σk−1 + σ + p↑+ Th(M, ā, b̄k)

is consistent; let N be a model of it. For all b̄ ⊆ ā ∪ b̄k let ψb̄(x̄) ∈ p(x̄) be
such that N |= ¬ψb̄(b̄). Finally let σk be the conjunction of σk−1, σ and
all sentences of the form ¬ψb̄(b̄).

We claim that σk satisfies the five properties above. a

Theorem 2.49. If M |= PA is subtranscendent then SSy(M) is a β-model.

Proof. Let Θ(X, Ā) be an arithmetic formula with set-parameters Ā from
SSy(M), such that N2 |= ∃XΘ(X, Ā). We want to find B ∈ SSy(M) such
that N |= Θ(B, Ā).

Let T + p↑ be ∃xΘK(x, ā) + TK=ω, where ā codes Ā. To see that
Th(M, ā) + T + p↑ is consistent, take a model N of Th(M, ā) such that N
is β-saturated, then (N,ω) |= Th(M, ā) + T + p↑.

By the assumption that M is subtranscendent there is a model L+ such
that

ā ∈ L+ ≺L M and L+ |= T + p↑.

Thus, if b ∈ L+ is such that L+ |= ΘK(b, ā) then N |= Θ(setL+(b), Ā)
and since L+ is elementary embedded in M the set B = setL+(b) is in
SSy(M). This completes the proof. a

Corollary 2.50. If M |= PA is subtranscendent then it is β-saturated.
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2. Expansions omitting types

Proof. This follows from the fact that a recursively saturated model M of
PA is SSy(M)-saturated. a

This characterises the subtranscendent models of PA as those which are
β-saturated.

Corollary 2.51. If M |= PA is transcendent then it is subtranscendent.

Proof. If M |= PA is transcendent then M is βω-saturated by Theorem
2.17 and so by Theorem 2.48 M is subtranscendent. a

We also get an interesting corollary about β-models.

Corollary 2.52. A Scott set X is a β-model iff for every T, p(x̄) ∈ X
such that T + p↑ is consistent there is a completion Tc ∈ X of T such that
Tc + p↑ is consistent.

Proof. Assume that X is a β-model, and that T, p(x̄) ∈ X are such that
T +p↑ is consistent. Let Θ(X,T, p(x̄)) be an arithmetic formula expressing

“X is a complete theory ∧ p(x̄) is a limit in X ∧ T ⊆ X”.

Since there is X ∈ P(ω) satisfying Θ(X,T, p(x̄)) and X is a β-model,
there is Tc ∈ X such that N2 |= Θ(Tc, T, p(x̄). By the omitting types
theorem Tc + p↑ is consistent.

For the other direction let X be such and M |= PA a countable X -
saturated model. The proof of Theorem 2.48 goes through since it uses
only that X is closed under such completions and no other properties
of β-models, thus M is subtranscendent. Theorem 2.49 then says that
SSy(M) = X is a β-model. a
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3
Proof theory of omitting a type

The property of omitting a type from a proof theoretic point of view is con-
sidered in this chapter. First, we recapitulate the definition of an isolated
type.

Definition 3.1. The type p(x̄) is isolated in T if there exists a formula
ϕ(x̄) such that T + ∃x̄ϕ(x̄) is consistent and T |= ∀x̄

(
ϕ(x̄) → ψ(x̄)

)
for all

ψ(x̄) ∈ p(x̄). It is called strongly isolated in T if, in addition, T |= ∃x̄ϕ(x̄).
If p(x̄) is not isolated in T then we say that it is a limit in T .

For complete theories T a type p(x̄) is isolated in T iff it is strongly
isolated in T , iff T |= p↓. Remember that p↓ stands for the sentence
expressing that p(x̄) is realized.

Let Sk(T ) be the Stone space of complete k-types in T , i.e., the space
with complete k-types in T as points and

[ϕ(x̄)] = { q(x̄) ∈ Sk(T ) | ϕ(x̄) ∈ q(x̄) }

as basic open sets. These spaces are compact and Hausdorff. A complete
type p(x̄) ∈ Sk(T ) is isolated in T iff it is isolated as a point in the topo-
logical space Sk(T ).

Theorem 3.2 (The omitting types theorem). If p(x̄) is a limit in T
then there is a model of T + p↑.

Thus; if p(x̄) is a limit in T then Th(T ) = Th(T+p↑), where Th(T+p↑)
is the set of all sentences true in all models of T + p↑. The omitting types
theorem reduces the proof theory of T + p↑, when p(x̄) is a limit in T , to
the first-order proof theory of T . On the other hand if p(x̄) is isolated in
T then Th(T ) 6= Th(T + p↑). In this chapter we will investigate the theory
Th(T + p↑) when p(x̄) is isolated in T . First we will give a syntactical
description of it.
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3. Proof theory of omitting a type

3.1 Syntactic characterisation of Th(T + p↑)

If nothing else is said, the language we are working with will be recursive,
and therefore countable. Thus; any type is countable and we may use a
standard enumeration { pi(x̄) }i∈ω of the type p(x̄).

Given a type p(x̄) we will define an extension of first-order logic by
adding a new inference rule to the ordinary rules. You should think about
this rule, schematically, as

. . . ∀x̄(ϕ(x̄) → pi(x̄)) . . . i∈ω

¬∃x̄ϕ(x̄) (p-rule)

i.e., we may deduce ¬∃x̄ϕ(x̄) if we can deduce ∀x̄(ϕ(x̄) → pi(x̄)) for all
i ∈ ω. However, instead of discussing proof-trees we will define theories
[T ]pα, where [T ]p0 is the first-order closure of T , and [T ]pλ+1 are all sentences
provable from [T ]pλ with at most one application of the p-rule. Let us make
this more precise.

When T is a first-order theory, Th(T ) is the logical closure of T , i.e.,
the set of all sentences provable, in first-order logic, from T . Define

(T )p =
{
¬∃x̄ϕ(x̄)

∣∣ T |= ∀x̄
(
ϕ(x̄) → ψ(x̄)

)
for all ψ(x̄) ∈ p(x̄)

}
,

[T ]p = Th
(
T + (T )p

)
,

and, by recursion,

[T ]p0 = Th(T ),

[T ]pα+1 =
[
[T ]pα

]p
, and

[T ]pλ =
⋃
α<λ

[T ]pα

for limit ordinals λ. Let finally

[T ]p∞ =
⋃

α∈Ord

[T ]pα,

where Ord is the class of all ordinals.

Lemma 3.3. Suppose that ¬∃x̄ϕ0(x̄), . . . , ¬∃x̄ϕk−1(x̄) ∈ (T )p, then

¬∃x̄
(
ϕ0(x̄) ∨ . . . ∨ ϕk−1(x̄)

)
∈ (T )p.

Proof. If T |= ∀x̄
(
ϕi(x̄) → pj(x̄)

)
for all i < k, j ∈ ω, then

T |= ∀x̄
(
ϕ0(x̄) ∨ . . . ∨ ϕk−1(x̄) → pj(x̄)

)
for all j ∈ ω. By the definition of (T )p we have that ¬∃x̄

(
ϕ0(x̄) ∨ . . . ∨

ϕk−1(x̄)
)
∈ (T )p. This proves the lemma. a
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Syntactic characterisation of Th(T + p↑)

Next some basic properties of the theories [T ]p and [T ]p∞.

Proposition 3.4. Let p(x̄) be a type over T , then

1. p(x̄) is strongly isolated in T iff [T ]p is inconsistent,

2. p(x̄) is isolated in T iff Th(T ) 6= [T ]p, and

3. p(x̄) is a limit in [T ]p∞.

Proof. 1. If p(x̄) is strongly isolated in T then there is ϕ(x̄) such that
T |= ∀x̄

(
ϕ(x̄) → pi(x̄)

)
for all i ∈ ω and T |= ∃x̄ϕ(x̄). Therefore

¬∃x̄ϕ(x̄) ∈ [T ]p and so [T ]p |=⊥. On the other hand; if [T ]p |=⊥ then
T + (T )p |=⊥ and, by Lemma 3.3, there is ¬∃x̄ϕ(x̄) ∈ (T )p such that
T |= ∃x̄ϕ(x̄). Thus; p(x̄) is strongly isolated in T by ϕ(x̄).

2. If p(x̄) is isolated in T the set (T )p is non empty. Let ¬∃x̄ϕ(x̄) ∈ (T )p.
T 2 ¬∃x̄ϕ(x̄) since T+∃x̄ϕ(x̄) is consistent, so [T ]p 6= Th(T ). On the
other hand if Th(T ) 6= [T ]p then there is ¬∃x̄ϕ(x̄) ∈ (T )p such that
T 2 ¬∃x̄ϕ(x̄) and so T + ∃x̄ϕ(x̄) is consistent, thus p(x̄) is isolated
in T by ϕ(x̄).

3. Assume p(x̄) is isolated in [T ]p∞. Let α be an ordinal such that [T ]pα =
[T ]pα+1. Then [T ]pα = [T ]p∞, and, by (2), we have

[T ]pα = Th([T ]pα) 6=
[
[T ]pα

]p = [T ]pα+1,

which is a contradiction. a

The next proposition characterises [T ]p∞ as the smallest theory including
T and in which p(x̄) is a limit.

Proposition 3.5. Let p(x̄) be a type over T . Then [T ]p∞ is the least theory
closed under first-order provability, including T , and such that p(x̄) is a
limit in T .

Proof. Clearly [T ]p∞ is closed under first-order provability, including T and,
by Proposition 3.4, p(x̄) is a limit in [T ]p∞. Suppose S is another such
theory, i.e., S is closed under first-order provability, p(x̄) is a limit in S,
and T ⊆ S.

By induction assume that [T ]pα ⊆ S for all α < β. If β is a limit ordinal
then clearly [T ]pβ ⊆ S, if not then β = γ+1 and [T ]pγ ⊆ S. We need to prove
that ([T ]pγ)p ⊆ S. Assume ¬∃x̄ϕ(x̄) ∈ ([T ]pγ)p, i.e., [T ]pγ |= ∀x̄

(
ϕ(x̄) →

pj(x̄)
)

for all j ∈ ω. Since [T ]pγ ⊆ S we also have S |= ∀x̄
(
ϕ(x̄) → pj(x̄)

)
for all j ∈ ω. By the assumption on S, p(x̄) is a limit in S, we have
S |= ¬∃x̄ϕ(x̄). Therefore [T ]pβ ⊆ S and, by induction, [T ]p∞ ⊆ S. a
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3. Proof theory of omitting a type

Proposition 3.6. Let p(x̄) be a type over T , then T + p↑ is consistent iff
[T ]p∞ is consistent. In fact; any model of T + p↑ is a model of [T ]p∞, i.e.,
T + p↑ |= [T ]p∞.

Proof. Suppose M |= T + p↑ and assume, by induction, that M |= [T ]pα for
all α < β. If β is a limit ordinal we get directly that M |= [T ]pβ ; if β is
a successor ordinal, β = γ + 1, we need to check that if M |= ∀x̄

(
ϕ(x̄) →

pi(x̄)
)

for all i ∈ ω then M |= ¬∃x̄ϕ(x̄). If not then any ā ∈ M |= ϕ(ā)
would realize p(x̄). Therefore; M |= [T ]pβ and by induction M |= [T ]p∞.

If [T ]p∞ is consistent then by the omitting types theorem there is a model
of [T ]p∞ + p↑ since, by Proposition 3.4, p(x̄) is not isolated in [T ]p∞. That
model is, of course, also a model of T + p↑. a

The other way around is, in general, not true, i.e., in general not every
model of [T ]p∞ is a model of T + p↑. A trivial example of this would be
to take a type p(x̄) over T , which is a limit in T ; then [T ]p∞ = T and so
[T ]p∞ + p↓ is consistent.

We are now in a position where we can prove the deduction theorem
for this kind of proof system.

Proposition 3.7. If p(x̄) is a type over T then (ϕ → σ) ∈ [T ]p∞ iff σ ∈
[T + ϕ]p∞.

Proof. If (ϕ→ σ) ∈ [T ]p∞ then clearly σ ∈ [T+ϕ]p∞ since [T+ϕ]p∞ is closed
under first-order provability, [T ]p∞ ⊆ [T + ϕ]p∞ and ϕ ∈ [T + ϕ]p∞.

For the other direction we will, by induction on β, prove that, for all σ
and ϕ, if σ ∈ [T + ϕ]pβ then ϕ → σ ∈ [T ]pβ . If β is zero or a limit ordinal
this is trivial. Therefore; assume β = γ + 1 and that σ ∈ [T + ϕ]pγ+1. By
Lemma 3.3 there is ¬∃x̄ψ(x̄) ∈

(
[T + ϕ]pγ

)p such that

[T + ϕ]pγ |= ¬∃x̄ψ(x̄) → σ.

By the induction hypothesis we have

[T ]pγ |= ϕ→
(
¬∃x̄ψ(x̄) → σ

)
. (3.1)

We show that [T ]pγ+1+ϕ |= ¬∃x̄ψ(x̄) since then we would have [T ]pγ+1+ϕ |=
σ. We know that

[T + ϕ]pγ |= ∀x̄
(
ψ(x̄) → pi(x̄)

)
for all i ∈ ω, and so, by the induction hypothesis again, we have

[T ]pγ |= ϕ→ ∀x̄
(
ψ(x̄) → pi(x̄)

)
.

Thus;
[T ]pγ |= ∀x̄

(
ϕ ∧ ψ(x̄) → pi(x̄)

)
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for all i ∈ ω, which implies that

[T ]pγ+1 |= ¬∃x̄
(
ϕ ∧ ψ(x̄)

)
,

i.e., [T ]pγ+1 + ϕ |= ¬∃x̄ψ(x̄). By using (3.1), we conclude that [T ]pγ+1 |=
ϕ→ σ. a

Finally we can prove that Th(T + p↑) = [T ]p∞.

Corollary 3.8. Let p(x̄) be a type over T ; then Th(T + p↑) = [T ]p∞.

Proof. By Proposition 3.4 the theory [T ]p∞ is true in any model of T + p↑.
If ϕ /∈ [T ]p∞ it means, by Proposition 3.7, that [T +¬ϕ]p∞ is consistent. By
Proposition 3.4, again, there is a model of T + ¬ϕ+ p↑, i.e., ϕ is not true
in all models of T + p↑, and so ϕ /∈ Th(T + p↑). a

To follow the practice of logic we write T + p↑ ` ϕ instead of ϕ ∈
Th(T + p↑), which then, as the corollary shows, is the same as ϕ ∈ [T ]p∞.

Observe that up to this point all results are valid for arbitrarily large
languages; the assumption that the languages are recursive was purely for
typographic laziness. We will now, however, use the recursiveness of the
language and investigate the complexity of Th(T + p↑).

3.2 The complexity of Th(T + p↑)

Let us pin down where the set Th(T + p↑) is in the analytic hierarchy. It
turns out that, for recursive T and p(x̄), it is both Π1

1 and implicit Π1
1.

Proposition 3.9. The set Th(T + p↑) is uniformly Π1,T,p(x̄)
1 , i.e., there

exists a Π1
1-formula Θ(X,Y, z) such that for all theories T , all types p(x̄)

and theories T , and all sentences ϕ we have N2 |= Θ(T, p(x̄), ϕ) iff ϕ ∈
Th(T + p↑).

Proof. Let Θ(T, p(x̄), ϕ) be

∀S
(
[S]p ⊆ S ∧ T ⊆ S → ϕ ∈ S

)
.

The formula Θ(X,Y, z) is Π1
1 since σ ∈ [S]p is equivalent to the following

arithmetic expression:

∃τ
(
τ(x̄) is a formula with free variables x̄ ∧ (S + ¬∃x̄τ(x̄) ` σ) ∧

∀i[S ` ∀x̄(τ(x̄) → pi(x̄))]
)

By definition [T ]p∞ is the smallest theory including T , and closed under the
operator X 7→ [X]p. Thus; N2 |= Θ(T, p(x̄), ϕ) iff ϕ ∈ Th(T + p↑) as we
wanted. a
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3. Proof theory of omitting a type

A set A ⊆ ω is implicit Π1,B̄
1 if there is a Π1

1-formula Θ(X, B̄), with B̄
as parameters, such that

N2 |= ∃!XΘ(X, B̄) ∧Θ(A, B̄).

Proposition 3.10. The set Th(T+p↑) is uniformly implicit Π1,T,p(x̄)
1 , i.e.,

there is a Π1
1-formula Θ(X,Y, Z) such that

N2 |= ∃!ZΘ(T, p(x̄), Z) ∧Θ(T, p(x̄), [T ]p∞)

for all theories T and all types p(x̄).

Proof. Let Θ(T, p(x̄), Z) express

for all S such that T ⊆ S, S is closed under first-order prov-
ability, and if p(x̄) is a limit in S then Z ⊆ T .

It should be clear that Θ can be taken to be Π1
1 and that it satisfies the

proposition. a

We now investigate a proof theoretic measure of complexity, which in-
deed is strongly connected to the analytic hierarchy.

Definition 3.11. Let rk(T, p(x̄)) be the least ordinal α such that [T ]pα =
[T ]p∞.

If δ : P(ω) → P(ω) is an operator on P(ω) then we say that δ is Γ,
where Γ is some complexity class, e.g., Π1,Ā

k , if the relation n ∈ δ(X) is Γ,
i.e., if the set { 〈n,X〉 | n ∈ δ(X) } is Γ.

For any T and p(x̄) let

ΨT,p : X 7→ [X + T ]p

be the operator taking a theory X to the theory [X + T ]p.
The countable ordinal ωCK

1 is the least ordinal not order isomorphic to
any recursive well-ordering.

By adopting Theorem IV.2.15 in [Hin78] to our setting we get:

Proposition 3.12. If ΨT,p is Π1
1 then rk(T, p) ≤ ωCK

1 .

Proposition 3.13. Let p(x̄) be a type over a theory T , both in a recursive
language L . If T and p(x̄) both are Π1

1 then rk(T, p(x̄)) ≤ ωCK
1 .

Proof. Follows directly from the proposition above since if both T and p(x̄)
are Π1

1 then so is ΨT,p. a
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A set A is hyperarithmetic in B̄ if A is ∆1,B̄
1 , i.e., if there are a Σ1

1-
formula Θ(x, Ȳ ) and a Π1

1-formula Ψ(x, Ȳ ) such that

N2 |= ∀x
(
Θ(x, B̄) ↔ Ψ(x, B̄) ↔ x ∈ A

)
.

We will now use the theory of subtranscendent models to prove that
Proposition 3.13 is the best possible result, at least for hyperarithmetic
T and p(x̄). First we need a proposition which is sort of a reverse to
Proposition 3.12:

Proposition 3.14. If rk(T, p(x̄)) < ωCK
1 then Th(T + p↑) is ∆1,T,p(x̄)

1 .

Proof. By Corollary III.3.12 in [Hin78], the least fixed point of ΨT,p is
∆1,T,p(x̄)

1 . Th(T + p↑) is the least fixed point of ΨT,p. a

Proposition 3.15. There are hyperarithmetic T and p(x̄) (in a recursive
language) such that rk(T, p(x)) = ωCK

1 .

Proof. If not then, by the proposition above, Th(T + p↑) is ∆1
1 for all

hyperarithmetic T and p(x̄). By using Corollary 2.52 we will prove that
the set of hyperarithmetic sets HYP is a β-model, which is a contradiction.

Given T, p(x̄) ∈ HYP in a language L , where p(x̄) is a type and T a
theory such that T + p↑ is consistent, we will find a completion of T in
HYP, which is consistent with p↑, in much the same way as the omitting
types theorem is proven.

We first observe that the relation T + p↑ ` ϕ is hyperarithmetic, since
it is equivalent to ϕ ∈ Th(T + p↑).

For simplicity we will assume that the type p(x̄) only has one free vari-
able and thus can be written as p(x). Let ∃xϕi(x) be an enumeration of all
L (C)-sentences, where C is a set of infinitely many new constant symbols.

We will construct sentences σi for all i ∈ ω. Start off by letting σ0 be
¬∃x(x 6= x). If T + p↑ 0 σi → ∃xϕi(x) let σi+1 be

σi ∧ ¬∃xϕi(x).

Otherwise let ψ(x) ∈ p(x) be such that

T + p↑ 0 σi → ∀x(ϕi(x) → ψ(x))

and let σi+1 be
σi ∧ ϕi(c) ∧ ¬ψ(c)

for some c ∈ C not occurring in σi or ϕi(x).
It should be clear that T + σi + p↑ is consistent for each i ∈ ω and that

the theory Tc = { ϕ ∈ L | ∃i ∈ ω(ϕ ∈ Ti) } is complete, consistent with p↑,
and includes T .

The construction of Tc is arithmetic using Th(T + p↑), T , and p(x̄) as
oracles. Thus; Tc is ∆1

1, or in other words, Tc ∈ HYP.
By Corollary 2.52 HYP is a β-model which is a contradiction (see, for

example, [Sim99, p. 39] or [Hin78, Corollary III.4.8]). a

61



3. Proof theory of omitting a type

3.3 Some theories with high rank

We have seen that there exists hyperarithmetic T and p(x̄) such that
rk(T, p(x̄)) = ωCK

1 , we will now build some concrete examples of recur-
sive types and theories with high ranks. More exactly, given α < ε0 we
construct recursive T and p(x̄) with rank α. It should be noted that ε0,
the least ε such that ωε = ε, is much less than ωCK

1 .
We start off with an example where rk(T, p(x)) = 2 which is taken from

[CF96].
Let the language L be { P,Qi, Ui }i∈ω, where all symbols are unary

predicate symbols. Let the theory T be the set of the axioms:

∃xP (x)

∀y¬Qi(y) → ∀x
(
P (x) → Ui(x)

)
∀x

(
Qi(x) → Uj(x)

)
∃≥ix

∧
k≤i

Uk(x)

for all i, j ∈ ω; and let
p(x) = { Ui(x) }i∈ω .

Clearly T+p↑ is inconsistent, since if M |= T then either there is i such that
M |= ∃xQi(x) in which case such an x ∈ M would realize p(x), otherwise
M |= ∀x(P (x) → Ui(x)) for all i and any x ∈M satisfying PM will realize
p(x).

Therefore; [T ]p∞ is the inconsistent theory. In [CF96] it is shown that
p(x) is not strongly isolated in T , which means that [T ]p1 is consistent; thus
[T ]p∞ 6= [T ]p1. It is easy to see that [T ]p2 = [T ]p∞, and so we have that
rk(T, p) = 2.

We will now generalise this example and find theories Tα such that
rk(T, p(x)) = α, where p(x) is the same type as above, for each ordinal
α < ω2. However, we first need some general theory about well-founded
trees.

To talk about trees we need to talk about sequences. We denote the
empty sequence by ε and 〈s0, s1, . . . , sk−1〉 the sequence of length k with
the ith element si−1. Given a sequence s = 〈s0, s1, . . . , sk−1〉, the sequence
s�l is s if l ≥ k, and 〈s0, s1, . . . , sl−1〉 otherwise.

Definition 3.16. A tree τ is a subset of ω<ω such that for all s ∈ τ
s�k ∈ τ for every k ∈ ω. An infinite branch in a tree τ is an f ∈ ωω such
that 〈f(0), f(1), . . . , f(k)〉 ∈ τ for every k ∈ ω. A tree is well-founded if it
has no infinite branches.

The reader should be warned that the natural numbers i ∈ ω will play
a dual role, both as a number and as the singleton sequence 〈i〉. Moreover;
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Figure 3.1: A picture of τω given that {ω}(k) = k for all k ∈ ω.

if s, t ∈ ω<ω we define s a t ∈ ω<ω to be the finite sequence starting with
s and ending with t, i.e., the concatenation of s and t.

Definition 3.17. If τ is a well-founded tree and s ∈ ω<ω we define rkτ (s),
the rank of s in τ , to be either −1 or an ordinal, by recursion:

rkτ (s) =

{
supi∈ω(rkτ (s a i) + 1) if s ∈ τ
−1 otherwise,

and let rk(τ) = rkτ (ε).

The function rkτ : ω<ω → ω is well-defined since τ is well-founded: if
not then for some node s ∈ τ rkτ (s) would not be defined and so there
is a child of t where rkτ is not defined, and so on; this would define an
infinite path through τ and violate the well-foundedness of τ . Observe
that rkτ (s) = 0 iff s is a terminating node in the tree τ . And that rkτ (s)
only depends on the subtree of τ below s, i.e., if τ�s = { t | s a t ∈ τ } then
rkτ (s) = rk(τ�s).

For every countable limit ordinal λ fix a strictly increasing sequence of
ordinals cofinal in λ, i.e., let {λ} : ω → λ be such that supi∈ω{λ}(i) = λ
and {λ}(i+ 1) > {λ}(i) for all i ∈ ω.

By transfinite recursion define trees τα, for countable ordinals α: Let

τ0 = { ε } ,
τα+1 = { ε } ∪ { i a s | i ∈ ω, s ∈ τα } , and

τλ = { ε } ∪
{
i a s

∣∣ i ∈ ω, s ∈ τ{λ}(i) }
,

for limit ordinals λ.
By transfinite induction on α it is easy to see that rk(τα) = α for every

countable ordinal α.
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Let us now return to the problem of finding T and p(x̄) with high rank.
Given a well-founded tree τ we define a theory Tτ in the language

Lτ = { Ps | s ∈ τ, s 6= ε } ∪ { Ui | i ∈ ω } ,

where all predicate symbols are unary, as the set of axioms

¬∃xPsai(x) → ∀x
(
Ps(x) → Ui(x)

)
, for s a i ∈ τ, s 6= ε and i ∈ ω,

∀x
(
Ps(x) → Ui(x)

)
, for i ∈ ω and rkτ (s) = 0, and

∃≥ix
∧
j≤i

Uj(x), for i ∈ ω,

where ∃≥ixϕ(x) is a short-hand for

∃x0, x1, . . . , xi−1

∧
k,j<i
k 6=j

(
xk 6= xj ∧ ϕ(xj)

)
.

As before, let p(x) be the type { Ui(x) | i ∈ ω }.
For convenience we will write Tα for the theory Tτα

; we will also write
[T ]β when we really mean [T ]pβ (the type p(x) does not depend on β so this
should not introduce any ambiguities).

Sometimes the exposition may benefit from thinking of Tα as formulated
in the full language

L2<ω =
{
Ps

∣∣ s ∈ 2<ω, s 6= ε
}
∪ { Ui | i ∈ ω }

with the extra axioms

¬∃xPs(x), for s /∈ τα.

Lemma 3.18. If β ≤ α are countable ordinals then [Tα]β ` ¬∃xPs(x) for
all s ∈ τα such that rkτα(s) < β.

Proof. The ordinal α will be fixed, so we simplify things by letting τ = τα,
rk = rkτ , and T = Tα.

We proceed by induction on the ordinal β. For β = 0 the statement
holds trivially. The case β = 1 needs special treatment. Let rk(s) = 0,
then [T ]0 ` ∀x

(
Ps(x) → Ui(x)

)
for all i ∈ ω. Thus; [T ]1 ` ¬∃xPs(x) as we

hoped for.
For the induction step assume β = γ + 1 > 1. Since [T ]γ ` ¬∃xPs(x)

for all rk(s) < γ, we have [T ]γ ` ∀x
(
Ps(x) → Ui(x)

)
if rk(s a i) < γ.

Therefore, [T ]β ` ¬∃xPs(x) for all rk(s) < β, since if rk(s) < β then
rk(s a i) < γ.

If β = λ is a limit ordinal, then [T ]λ = ∪γ<λ[T ]γ and [T ]γ ` ¬∃xPs(x)
for all rk(s) < γ < λ. Therefore [T ]λ ` ¬∃xPs(x) for all rk(s) < λ. a
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Lemma 3.19. If β ≤ α < ω2 then

[Tα]β ≡ Tα + { ¬∃xPs(x) | rkτα
(s) < β } .

Proof. As before, let τ = τα, rk = rkτ and T = Tα.
We prove the lemma by induction on β. For β = 0 it is clear. Assume

β = γ + 1. We prove that if

[T ]γ ` ∀x
(
ϕ(x) → Ui(x)

)
for every i ∈ ω, then

[T ]γ ` ∀x
(
ϕ(x) →

∨
s∈t

Ps(x)
)

for some finite set t ⊆ τ such that rk(s) = γ for all s ∈ t. If not, then the
theory

[T ]γ + ϕ(a) + { ¬Ps(a) | rk(s) = γ }

is consistent by compactness; and since ∃≥ix(U0(x) ∧ U1(x) ∧ . . . ∧ Ui(x))
is provable in [T ]γ we can conclude that

[T ]γ + ϕ(a) + { ¬Ps(a) | rk(s) = γ }+ a 6= b+ { Ui(b) | i ∈ ω } (3.2)

is consistent, again by compactness. Let M be a model of (3.2).
We will find i0 ∈ ω such that no Psai0 nor any Ui0 occur in ϕ, and such

that if rk(s a i0) < γ then rk(s) ≤ γ. Such an i0 can be found since there
are only a finite number of limit ordinals < α, and therefore we can define
i0 such that {λ}(i0) ≥ γ for every limit ordinal γ < λ < α: Suppose that
rk(s a i0) < γ, if rk(s) is not a limit then rk(s) = rk(s a i0) + 1 ≤ γ;
otherwise, rk(s) is a limit and rk(s a i0) = {rk(s)}(i0) < γ. Thus; rk(s) ≤
γ by the choice of i0.

To recapitulate, i0 is such that Ui0 is not in ϕ, neither are any Psai0 ;
furthermore, if rk(s a i0) < γ then rk(s) ≤ γ. Define a model N just like
M except that

PNsai0 = PMsai0 ∪
{
bM

}
and

UNi0 = UMi0 \
{
aM

}
for every s a i0 ∈ τ such that rk(s a i0) ≥ γ. By the choice of i0 N
satisfies ϕ(a) and ¬Ui0(a); also if rk(s) < γ then N satisfies ¬∃xPs(x)
since, by Lemma 3.18, M satisfies it and PNs = PMs for all s such that
rk(s) < γ. Therefore

N |= { ¬∃xPs(x) | rk(s) < γ }+ ϕ(a) + ¬Ui0(a).
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We will now prove that N |= T , because then it would follow, by the
induction hypothesis, that

N |= [T ]γ + ϕ(a) + ¬Ui0(a)

and therefore [T ]γ 0 ∀x
(
ϕ(x) → Ui0(x)

)
.

In checking that N |= T we first observe that all sentences of the form
∃≥ix

∧
j≤i Uj(x) hold in N since

M |= ∃≥i+1x
∧
j≤i

Uj(x).

Also; the sentences of the form ∀x
(
Ps(x) → Ui(x)

)
, where s is a terminating

node, hold in N . This follows by the induction hypothesis trivially if γ > 0,
since then M |= ¬∃Ps(x). Assume γ = 0; then if PNs (c), where c ∈ N ,
we have PMs (c) or c = b, in either case c satisfies UMi . We know that
M |= ¬Ps(a) since rk(s) = γ = 0 and so c 6= a and therefore c satisfies UNi .

We need to check that the sentences in T of the form

¬∃xPsai(x) → ∀x
(
Ps(x) → Ui(x)

)
hold in N . There are two cases which both need careful checking:

• If i = i0 and N |= ¬∃xPsai0(x) then M |= ¬∃xPsai0(x) and so M |=
∀x

(
Ps(x) → Ui0(x)

)
. We also have that rk(s a i0) < γ and so, by

the choice of i0 rk(s) ≤ γ. Therefore N |= ¬Ps(a). If c ∈ N satisfies
PNs then either c satisfies PMs or c = b. In either case it satisfies UMi0 ,
and, since c 6= a, it also satisfies UNi0 . Thus N |= ∀x

(
Ps(x) → Ui(x)

)
.

• If i 6= i0 and N |= ¬∃xPsai(x) we have M |= ¬∃xPsai(x) and so
M |= ∀x

(
Ps(x) → Ui(x)

)
. Therefore N |= ∀x

(
Ps(x) → Ui(x)

)
, since

the only possible difference in the interpretations of Ps is that in N it
may happen that N |= Ps(b) but UMi was chosen in such a way that
UMi (b) and therefore UNi (b).

All this proves that [T ]γ+1 = [T ]β is weaker than

[T ]γ + { ¬∃xPs(x) | rk(s) = γ }

and so, by the induction hypothesis, is weaker than

T + { ¬∃xPs(x) | rk(s) ≤ γ } .

By the preceding lemma it is at least as strong as that theory; therefore
they coincide.

If β = λ is a limit ordinal, the result follows immediately by the com-
pactness theorem. a

66



Some theories with high rank

Theorem 3.20. The rank of Tα and p(x) is α, i.e., rk(Tα, p(x)) = α, for
any ordinal α < ω2.

Proof. By the preceding lemma we have

[Tα]α ≡ { ¬∃xPs(x) | s ∈ τα, s 6= ε }+
{
∃≥ix

∧
j≤i

Uj(x)|i ∈ ω
}
,

since for s ∈ τα, rkτα
(s) < α iff s 6= ε.

We prove that p(x) is a limit in T = [Tα]α. Suppose T + ∃xϕ(x)
is consistent. Let M |= T + ϕ(a) and let i0 be such that Ui0 does not
occur in ϕ. Let N be like M except that UNi0 = UMi0 \ { a }; then N |=
T + ϕ(a) + ¬Ui0(a) and so T 0 ∀x

(
ϕ(x) → Ui0(x)

)
. This proves that p(x)

is not isolated in T and so rk(Tα, p(x)) ≤ α.
If β < α then p(x) is isolated in [Tα]β : If rkτα

(s) = β then p(x) is
isolated by Ps(x) since, by the Lemma 3.19, [Tα]β |= ¬∃xPsai(x) for all
i ∈ ω. Also [Tα]β + ∃xPs(x) is consistent: Let M be a model with domain
ω, and with the predicates UMi = ω for all i ∈ ω, PMs = ω, and PMt = ∅ if
t 6= s; then M |= [Tα]β + ∃xPs(x).

Thus rk(Tα, p(x)) > β for every β < α and so rk(Tα, p(x)) = α. a

Observe that the proof, and therefore the theorem, does not depend on
the choice of the functions {λ} : ω → λ which was used in the construction
of the well-founded trees τα. By choosing these functions explicitly we can
extend the result to all ordinals strictly less than ε0, the least solution of
ωε = ε.

Theorem 3.21. There are functions {λ} : ω → λ such that rk(Tα, p(x)) =
α for all countable ordinals α < ε0.

Proof. Given any ordinal λ < ε0 we can write (uniquely)

λ = n1ω
λ1 + . . .+ nkω

λk

where ni ∈ ω, ni > 0, and λ > λ1 > . . . > λk ≥ 0.1 This is called the
Cantor normal form of λ [Jec03, Theorem 2.26]. Observe that λk > 0 iff λ
is a limit ordinal.

Define the functions {λ} : ω → λ, for λ < ε0, by transfinite recursion:

{n1ω
λ1 + . . .+ nkω

λk}(i) ={
n1ω

λ1 + . . .+ (nk − 1)ωλk + ω{λk}(i) if λk is limit
n1ω

λ1 + . . .+ (nk − 1)ωλk + iωξ if λk = ξ + 1

1By αβ we mean β taken α times, which, for us, seems more natural than the more
common definition of αβ as α taken β times.
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Fix α < ε0 and γ < α, and let rk = rkτα . If we can find an i0 such that
rk(s) ≤ γ when rk(s a i0) < γ for all s ∈ τα then the proof of Lemma 3.19
will go through as it stands and rk(Tα, p(x)) = α.

Therefore; we need to find an i0 such that for all limit ordinals λ, if
γ < λ < α then {λ}(i0) ≥ γ. Fix such a limit ordinal λ; let

λ = n1ω
λ1 + . . .+ nkω

λk ,

and
γ = m1ω

γ1 + . . .+mlω
γl ,

be the Cantor normal forms of γ and λ respectively (observe that λk > 0
but γl might be 0). We may assume that {λ}(0) < γ.

If λk is a limit then

{λ}(0) = n1ω
λ1 + . . .+(nk−1)ωλk +ω{λk}(0) < m1ω

γ1 + . . .+mlω
γl = γ

< n1ω
λ1 + . . .+ nkω

λk = λ.

We can easily see that l ≥ k, ni = mi for i < k, nk = mk + 1, and λi = γi
for i ≤ k. Therefore there are at most l different such λ, each corresponding
to different values of k, or in more loose terms, where to “chop off” γ.

More or less the same argument works if γk is a successor ordinal, then

{λ}(0) = n1ω
λ1 + . . .+ (nk − 1)ωλk < m1ω

γ1 + . . .+mlω
γl = γ

< n1ω
λ1 + . . .+ nkω

λk = λ,

and l ≥ k, ni = mi for i < k, nk = mk + 1, and λi = γi for i ≤ k.
Thus, in both cases, we can choose i0 such that for each limit λ satisfying

γ < λ < α we have {λ}(i0) > γ. a
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Scott’s problem

Scott’s problem is to characterise the standard systems for models of first-
order arithmetic. For countable models Dana Scott showed in [Sco62] that
the standard systems are exactly the countable Scott sets, i.e., countable
boolean algebras of sets of natural numbers closed under relative recursion
and König’s lemma. It follows, by a union of chains argument, see Theorem
1.14, that for models of cardinality ℵ1 the standard systems are the Scott
sets of cardinality ℵ1.

If the continuum hypothesis holds this settles the problem. However,
if it fails then very little is known about standard systems of models of
cardinality strictly greater than ℵ1, although it is easy to see that any
standard system of any model is a Scott set.

Given a Scott set, X , closed under jump, realizing the countable chain
condition, and of cardinality strictly less than 2ℵ0 we will, assuming Mar-
tin’s axiom, construct a model of arithmetic with X as its standard system.
Any countable Scott set closed under jump satisfies these conditions. How-
ever, we do not know if there exists any such uncountable Scott sets.

The construction in this chapter is strongly inspired by one of Kanovei’s
constructions in [Kan96] where he, given a countable arithmetically closed
set X , constructs a model M of true arithmetic with SSy(M) = X and
such that a set A ⊆ ω is representable (without parameters) over (M,ω)
by a Σk-formula iff it is definable (without parameters) by a Σ1

k formula
over X .

4.1 Definitions

Let (P,<) be a partial order. Two elements x, y ∈ P are said to be com-
patible if there is z ∈ P such that z ≤ x and z ≤ y.
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The partial order (P,<) is said to have the countable chain condition
(c.c.c. for short) if for every uncountable set A ⊆ P there are x, y ∈ A such
that x and y are compatible.

Recall that a set X ⊆ P(ω), where P(ω) is the power set of ω, is
called a Scott set if it is a boolean algebra closed under relative recursion
and such that if τ ∈ X is an infinite binary tree (coded with a suitable
Gödel numbering) then there is an infinite path in X through τ . Any
arithmetically closed, i.e., closed under relative recursion and the jump
operator, set X ⊆ P(ω) is a Scott set.

A Scott set X ⊆ P(ω) is said to have the c.c.c. if the partial order
(Xinf ,⊂) has the c.c.c., where Xinf is the collection of all infinite sets in
X .

A filter F on a partial order P is an up-wards closed subset of P such
that if x, y ∈ F then there is z ∈ F satisfying z ≤ x and z ≤ y. If P is a
boolean algebra a filter F is an ultrafilter if for all p ∈ P either p ∈ F or
¬p ∈ F .

A set D is dense in P if for every p ∈ P there is q ∈ D such that q ≤ p.
If D is a collection of dense sets we say that a filter F on P is D-generic if
for every D ∈ D we have D ∩ F 6= ∅.

Martin’s axiom, MA for short, says that for any partial order P with the
c.c.c. and any collection D of dense sets of cardinality < 2ℵ0 there is a D-
generic filter on P . Clearly, ZFC + CH ` MA, but it is also the case that if
ZFC is consistent then so is ZFC+MA+¬CH. In fact, if ZFC is consistent
and κ ≥ ω1 is regular such that 2<κ = κ, then ZFC + MA + 2ℵ0 = κ is
consistent, see [Kun80, Theorem VIII.6.3].

Finally, the standard system of a model M of PA, written SSy(M), is
the collection of all sets of natural numbers coded in M , i.e., SSy(M) =
{ setM (a) | a ∈M } where setM (a) =

{
n ∈ ω

∣∣ M |= (a)n 6= 0
}

, n is the
nth numeral and (a)x is the xth element of the sequence coded by a.

The main theorem we will prove is the following.

Theorem 4.1. If MA holds, |Y | < 2ℵ0 is an arithmetically closed Scott
set with the c.c.c., and T0 ∈ X is some completion of PA; then there is a
K |= T0 such that SSy(K) = Y .

4.2 The construction

Let X be a subset of the power set of the natural numbers. We say that
a model M is coded in X if there is a model N isomorphic to M whose
domain is in X and such that the elementary diagram of N , Th(N, a)a∈N ,
also is in X (we will as usual identify a formula with its Gödel number).
Since M and N are isomorphic we will usually assume, for simplicity, that
M = N when saying that M is coded in X . A set A is recursive in M
when A is recursive in the elementary diagram of M , Th(M,a)a∈M . It
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should be pointed out that this is not the standard definition of a set being
recursive in a model, nor of a model being coded.

Let X be any Scott set, T ∈ X a completion of PA and M |= T a model
coded in X . Such a model M can be found, for any T ∈ X , by doing
the ordinary Henkin construction starting with T ; the resulting complete
Henkin theory will be recursive in T and the corresponding model M is
therefore coded in X . Let

∏
X M be the set of all functions f : ω → M

which are in X (we identify a function with its graph, and a pair with its
Gödel number).

For any ultrafilter U in X define
∏

X M/U to be the set of equivalence
classes of the equivalence relation ≡U defined on

∏
X M by

f ≡U g iff { n | f(n) = g(n) } ∈ U.

The set
∏

X M/U can be interpreted as a structure in the language of PA
by interpreting the function symbols pointwise. That X is a Scott set
guarantees that

∏
X M is closed under addition and multiplication. By

the canonical map c 7→ c̄, where c̄ is the constant function n 7→ c, M is a
submodel of

∏
X M/U .

Let K be the model
∏

X M/U , where U is some fixed ultrafilter on X .
Let σ be a sentence in the language LPA(

∏
X M). The LA(M)-sentence

we get by replacing all occurrences of functions f by the value f(i) will be
denoted by σ[i]. By [σ] we mean the LA(

∏
X M/U)-sentence we get by

replacing all functions f by the equivalence class [f ] of f .
The ordinary  Los theorem follows:

Lemma 4.2. For any sentence σ of LPA(
∏

X M) we have

K |= [σ] iff { i |M |= σ[i] } ∈ U.

Proof. This is proved by induction on σ.
First, we prove that for a term t([f1], . . . , [fk]), if f ∈

∏
X M is the

function defined by M |= f(i) = t(f1(i), . . . , fk(i)) then

K |= t([f1], . . . , [fk]) = [f ].

For the base case t is [f1] and clearly K |= [f1] = [f ] if f1 = f . If t is

t1([f1], . . . , [fk]) + t2([f1], . . . , [fk])

then by the induction hypothesis if

M |= tj(f1(i), . . . , fk(i)) = gj(i)

for j = 1, 2 then
K |= tj([f1], . . . , [fk]) = [gj ]
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and so
K |= t([f1], . . . , [fk]) = [g1] + [g2] = [g1 + g2],

and clearly M |= t(f1(i), . . . , fk(i)) = g1(i) + g2(i) = (g1 + g2)(i). Similar
for the case with multiplication.

This takes care of the case when σ is atomic. The induction step for ¬
and ∨ are easy; they only need that X is a boolean algebra.

Let us focus on the induction step for the existential quantifier; when
σ is of the form ∃xϕ(x, f1, . . . , fk).

Then, K |= [σ] iff there is f ∈
∏

X M such that

K |= ϕ([f ], [f1], . . . , [fk]),

iff there is f ∈
∏

X M such that

{ i |M |= ϕ(f(i), f1(i), . . . , fk(i)) } ∈ U. (4.1)

Thus, if K |= [σ] there is f satisfying (4.1) and so the larger set

{ i |M |= σ[i] }

is in U since it is recursive using Th(M,a)a∈M , f1, . . . , fk as oracles.
On the other hand if A = { i |M |= σ[i] } ∈ U then the function defined

by

f(i) =

{
(µx)M |= ϕ(x, f1(i), . . . , fk(i)) if i ∈ A
0M otherwise

is recursive using Th(M,a)a∈M , A, f1, . . . , fk as oracles, and so is in∏
X M . Therefore

K |= ϕ([f ], [f1], . . . , [fk])

and we get that K |= [σ]. a

Observe that in proving  Los theorem all that is needed is that X is a
boolean algebra closed under relative recursion.

 Los theorem gives us that M ≺ K. To see this let K |= ϕ(c̄1, . . . , c̄k),
i.e.,

{ i |M |= ϕ(c1, . . . , ck) } ∈ U.

Since ∅ /∈ U we must have that M |= ϕ(c1, . . . , ck).
Let us now return to the proof of the main theorem.

Proof of Theorem 1. Let U be a non-principal ultrafilter on Y . That U is
non-principal implies that all sets in U are infinite and that if A 4 B =
(A \ B) ∪ (B \ A) is finite then A ∈ U iff B ∈ U . Let KU be the proper
elementary extension

∏
Y M0/U of M0.

72



The construction

Given X ∈ Y we will find [f ] ∈ KU such that [f ] codes X, i.e.,

KU |= ([f ])n 6= 0 iff n ∈ X,

where n is the nth numeral. Let f(k) be the code in M0 of the finite set
X ∩ { 0, 1, . . . , k − 1 }. The definition of f is recursive in M0 and X, and
therefore f ∈ Y . For any n, k ∈ ω we have M0 |= (f(k))n 6= 0 iff n < k
and n ∈ X, and so

n ∈ X ⇒
{
k

∣∣ M0 |= (f(k))n 6= 0
}

= ω \ { 0, 1, . . . , n } ,
n /∈ X ⇒

{
k

∣∣ M0 |= (f(k))n 6= 0
}

= ∅.

Thus, n ∈ X iff
{
k

∣∣ M0 |= (f(k))n 6= 0
}
∈ U , i.e., iff KU |= ([f ])n 6= 0.

So far we have neither used the fact that Y is arithmetically closed nor
that Y has the c.c.c. To prove that all sets coded are in KU we need to
find a generic ultrafilter U , for that we need these extra conditions on Y .

Given any filter F on Yinf , let F ′ be F with all cofinite sets added. The
collection F ′ of sets has the finite intersection property in Y since if X is
infinite and Y is cofinite then X ∩ Y is infinite. In Y F ′ can be extended
to an ultrafilter U and since U includes all cofinite sets it is non-principal.
Thus, every filter on Yinf can be extended to a non-principal ultrafilter on
Y . Therefore MA gives us, for any collection D of dense subsets of Yinf of
cardinality strictly less than 2ℵ0 , a non-principal D-generic ultrafilter on
Y .

We say that a ∆0(
∏

Y M0) sentence σ is true on X ⊆ ω if M0 |= σ[k]
for almost all k ∈ X (i.e., for all but a finite number). Observe that, since
we are assuming that U is a non-principal ultrafilter, KU |= [σ] iff there is
X ∈ U such that σ is true on X. The set X decides σ if either σ or ¬σ is
true on X.

If f ∈
∏

X M0 let

Df =
{
V

∣∣ ∀n(
V decides (f)n = 0

) }
and D = {Df | f ∈

∏
X M0 }. We prove that D is a collection of dense

sets, i.e., given f ∈
∏

Y M0 and X ∈ Yinf there is V ∈ Y , V ⊆ X, deciding
all sentences of the form (f)n = 0.

Let such f and X be given, V0 = X, and let Vn+1 ⊆ Vn be either of{
k ∈ Vn

∣∣ M0 |= (f(k))n = 0
}

or
{
k ∈ Vn

∣∣ M0 |= (f(k))n 6= 0
}
,

whichever is infinite.
Define V = { in }n∈ω where in ∈ Vn and in+1 is chosen to be the least

element of Vn+1 strictly larger than in; then

V \ Vn ⊆ { i0, i1, . . . in−1 } .
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Hence V decides all sentences (f)n = 0. Since Y is arithmetically closed
it is easy to see that V ∈ Y and so V ⊆ X and V ∈ Df .

Since D is a collection of dense sets and |D | < 2ℵ0 , by MA there is a
D-generic non-principal ultrafilter on Y . Let G be such a non-principal
D-generic ultrafilter on Y and let K be KG.

To prove that any X ⊆ ω coded by some [f ] ∈ K is in Y we use the fact
that if f ∈

∏
Y M0 then there is a V ∈ G deciding all formulas (f)n = 0.

Since
K |= ([f ])n = 0 iff

{
k

∣∣ (f(k))n = 0
}
∈ G

we get K |= ([f ])n = 0 iff (f)n = 0 is true on V . Thus the set X is
arithmetic in f and V and therefore X ∈ Y . This ends the proof of the
equality SSy(K) = Y . a

Theorem 4.3. Assume X is a Scott set, T ∈ X is any completion of
PA and M |= T is coded in X . Let also U be a non-principal ultrafilter
on X ; then the elementary extension K =

∏
X M/U of M is recursively

saturated.

Proof. Let p(x, [g]) = { ϕi(x, [g]) }i∈ω be a recursive type over K with, for
simplicity, [g] as the only parameter. We may assume that

|= ∀x
(
ϕi+1(x, [g]) → ϕi(x, [g])

)
.

Then
K |= ∃xϕi(x, [g])

for all i ∈ ω; let

Vi = { k |M |= ∃xϕi(x, g(k)) } ∈ U.

Define f ∈
∏

X M as follows: Given k ∈ ω find the largest i ≤ k, if it
exists, such that k ∈ Vi, i.e., M |= ∃xϕi(x, g(k)), and let f(k) be such that
M |= ϕi(f(k), g(k)). If no such i exists let f(k) be 0M . The function f is
recursive in M and satisfies the property

if k ∈ Vi and i ≤ k then M |= ϕi(f(k), g(k)).

Fix i ∈ ω and consider the set

V ′
i = { k |M |= ϕi(f(k), g(k)) } .

If k ≥ i then k ∈ Vi iff k ∈ V ′
i so Vi 4 V ′

i is finite and therefore V ′
i ∈ U .

Thus;
K |= ϕi([f ], [g])

for all i ∈ ω. Any recursive type over K is realized in K and so K is
recursively saturated. a

74



The construction

Thus, given any arithmetically closed Scott set X with the c.c.c. and
of cardinality strictly less than the continuum, and a completion T ∈ X
of PA, we can construct an X-saturated model M |= T .

However, if interesting such Scott sets exist is unclear to us.

Question 4.4. Does there exist uncountable Scott sets closed under jump
with the c.c.c.?

Clearly any countable Scott has the c.c.c. By a rather simple argument,
see for example [Kun80, Chapter II: Theorem 1.2], it can be seen that the
full power set P(ω) does not have the c.c.c. Nothing else concerning Scott
sets and the c.c.c. is known to us.
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