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Abstract

This thesis deals with the mathematical and computational studies of kinetic equations
in the presence of an external force field and a Gaussian thermostat. We introduce a
stochastic model where particles with one and three-dimensional velocities, in addition
to the random collisions, are acted upon by an external force field and in the presence of
a Gaussian iso-kinetic thermostat. We derive master equations, which govern the time
evolution of the probability distribution of the velocities. Kinetic equations are derived
under the assumption of molecular chaos. These equations describe the time evolution
of the one-particle distribution function in the limit of infinitely many particles. We also
consider the stationary problems.

For the time-dependent thermostatted Kac equation the existence of solutions is es-
tablished and the time evolution of moments of the solutions are also studied. The
non-equilibrium stationary states are treated in further detail. In a particular case, it
is shown that, such a state has a singularity. We also discuss a method of constructing
asymptotic solutions to the stationary equation.

Numerical simulations using the Monte Carlo method are carried out for both one and
three-dimensional velocities. The simulation results, illustrating the main features of the
stationary solutions for the respective equations, are presented.

Key words and phrases : Many-particle system, Gaussian iso-kinetic thermostat,
Kac’s master equation, Kac equation, Boltzmann equation, Non-equilibrium stationary
states, Monte Carlo method.
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Summary

This dissertation comprises four chapters and one published article. It deals with the
mathematical and computational studies of kinetic equations in the presence of an ex-
ternal force and a Gaussian thermostat.

The first chapter contains some introductory material. It highlights the essentials of
kinetic equations and the mathematical background of deterministic thermostats to mo-
tivate our study.

In the second chapter we combine the ideas from chapter one, to derive a Kac-like master
equation, which governs the time evolution of probability densities ΨN on SN−1(

√
N):

∂

∂t
ΨN + ∇ ·

(
FΨN

)
= K(ΨN ).

Here F is a thermostatted force field - obtained by projecting an arbitrary applied field
onto the tangent space of S

N−1(
√

N). Physically this corresponds to keeping the ki-
netic energy constant. The operator K is a linear integral operator acting on pairs of
coordinates of ΨN and corresponds to the collision operator in the Boltzmann equation.

Assuming molecular chaos a kinetic equation – the thermostatted Kac equation – is
derived. It describes the time evolution of the one-particle distribution function in the
limit of infinitely many particles and is given by

∂

∂t
f + E

∂

∂v

((
1 − ζ(t) v

)
f
)

= Q(f, f), (1)

where E denotes the strength of the applied field,

ζ(t) =

∫

R

v f(v, t) dv,

and

Q(f, f)(v) =

∫

R

∫ π

−π

(
f(v′, t)f(v′

∗, t) − f(v, t)f(v∗, t)
) 1

2π
dθ dv∗.
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We prove existence of solutions to this equation and study the time evolution of moments
of the solutions. The non-equilibrium stationary states for the thermostatted Kac equa-
tion are studied in further detail. We show that the stationary solutions of (1) are given
by fixed points of the map f 7→ A(f) which is defined by

A(f)(v) =
1

|v − κ|

∫

R

Φ

(
w − κ

v − κ

)
Q+(f, f)(w)dw,

where

Φ(y) =
γ + 1

|y|γ+1
11{y>1}(y).

It is also proved that, for E <
√

2, f ∈ C(R); for E =
√

2, f has a logarithmic singularity;
and for E >

√
2, f has a power-like singularity. A method of constructing an asymptotic

solution to the stationary equation is also considered.

The third chapter contains a related study for the case of three-dimensional velocities.
The spatially homogeneous Boltzmann equation is considered in the presence of an ex-
ternal force field and a Gaussian thermostat. Some of the questions that were studied
for the Kac case are addressed, although mostly on a formal level. Assuming molecular
chaos, the limiting Boltzmann equation is derived:

∂f

∂t
+ divv

((
e − ζe(t)v

)
f(v, t)

)
= Q(f, f)(v, t),

where e(v) ∈ R3 denotes the external force field,

ζe(t) =

∫

R3

e · v f(v, t) dv,

and

Q(f, f)(v, t) =

∫

R3

∫

S2

(
f(v′, t)f(v′

∗, t) − f(v, t)f(v∗, t)
)
B dσ dv∗,

is the usual collision operator with differential cross section B. In this case the stationary
state is a Dirac mass.

This thesis also contains computational studies using the Monte Carlo method. This
is presented in the fourth chapter. We show detailed simulation results for the one-
dimensional thermostatted Kac case and some results for the three-dimensional velocities
for the Boltzmann case. These results illustrate the main features of the stationary
solutions for the respective equations.

Finally we give some concluding remarks and briefly mention some open problems.

Published article [appended here as Paper I]:
B. Wennberg and Y.Wondmagegne. Stationary states for the Kac equation with a Gaus-
sian thermostat. Nonlinearity, 17:633–648, 2004.
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Chapter 1

Introduction

This chapter contains some background materials. It highlights the essentials of kinetic
equations and the mathematical settings of deterministic thermostats to motivate our
study.

1.1 The Boltzmann equation

According to classical kinetic theory of rarefied mon-atomic gases, the state of a gas at
time t ≥ 0 is described by the distribution function f(x,v, t) of its molecules over the
space coordinate x ∈ R3 and the velocity coordinate v ∈ R3. The time evolution of f is
governed by the Boltzmann equation

∂f

∂t
+ v · ∇xf + ∇v ·

(
F f

)
= Q(f, f), (1.1)

where ∇x denotes the gradient of f with respect to x, and F denotes the force field acting
on the particles. In many applications F is specified in terms of the external force per
unit mass: gravitational, electrical or electro-magnetic forces. The dot here stands for
the usual Euclidean inner product in R3.

The collision term on the right hand side of the equation is a nonlinear integral operator
and describes the binary collisions involved. The collisions are assumed to be localized
in time and space, so that the collision operator acts only on the velocity dependence of
the distribution function f . We can write f(v) 7→ Q(f, f)(v), where

Q(f, f)(v) =

∫

R3

∫

S2

(
f ′f ′

∗ − ff∗
)
B

(
|v − v∗|,

v − v∗
|v − v∗|

· ω
)

dωdv∗. (1.2)
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Here we use the notation f ′ = f(v′), f ′
∗ = f(v′

∗) and f∗ = f(v∗), where v′ and v′
∗ are the

post-collisional molecular velocities to the respective pre-collisional molecular velocities
v and v∗. The collisions are assumed to be elastic, so that momentum and kinetic energy
are conserved:

v′ + v′
∗ = v + v∗ and |v′|2 + |v′

∗|2 = |v|2 + |v∗|2.

This gives four constraints on six variables implying that the set of kinematically possible
collisions is two dimensional. This may be parameterized by a vector in S

2-the unit sphere
in R

3. One such parameterization is

v′ =
v + v∗

2
+

|v − v∗|
2

ω

v′
∗ =

v + v∗
2

− |v − v∗|
2

ω.

(1.3)

In (1.2) dω denotes the normalized surface measure on S
2 and dv∗ denotes the Lebesgue

measure on R
3. The collision kernel B is a non-negative function whose exact form de-

pends on the physical properties of the gas under study, and thereby on the intermolecular
force law which specifies the particular molecular model.

For example, when the intermolecular force varies like 1/rs, where r denotes the inter-
molecular distance and s > 2, then the kernel B takes the form

B (|v − v∗|, cos θ) = |v − v∗|α b(cos θ). (1.4)

Here α = (s − 5)/(s − 1) and b is a non-elementary function of θ which behaves like

|θ|− s+1
s−1 , for θ close to 0. The scattering angle θ is defined by

cos θ =
v − v∗
|v − v∗|

· ω.

Since s+1
s−1 > 1, the singularity in the angular variable θ is always non-integrable. To

overcome this difficulty Grad [22] introduced the idea of angular cutoff near θ = 0. This
means that b is truncated in such a way that (1.4) is integrable.

In the setting of (1.4) the special case α = 0, or equivalently s = 5, where the dependence
on |v − v∗| vanishes, results in what is known as Maxwell molecules.

When the state of the gas is uniform, so that the distribution function is independent of
x, (1.1) reduces to the spatially homogeneous Boltzmann equation

∂f

∂t
= Q(f, f), (1.5)

or, when there is an external force field

∂f

∂t
+ ∇v ·

(
F f

)
= Q(f, f). (1.6)
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In the remaining part of the thesis, only the spatially homogeneous case is considered.

There is a symmetric bilinear form Q(f, g) associated with the collision integral, namely

Q(f, g)(v) =
1

2

∫

R3

∫

S2

(
f ′ g′∗ + g′ f ′

∗ − f g∗ − g f∗
)
B dω dv∗. (1.7)

When g = f , (1.7) reduces to (1.2). It also holds that Q(f, g) = Q(g, f).

The collision operator possesses fundamental properties which imply the conservation
principles. To state some of them, let ϕ(v) be any, sufficiently regular, function. If f
and ϕ are such that the indicated integrals exist, the collision integral Q(f, f) fulfills

∫

R3

Q(f, f)(v)ϕ(v) dv =
1

2

∫

R3

∫

R3

∫

S2

(
ϕ′
∗ + ϕ′ − ϕ∗ − ϕ

)
f f∗ B dω dv∗ dv. (1.8)

By standard changes of variables, this is equivalent to

∫

R3

Q(f, f)(v)ϕ(v) dv =
1

4

∫

R3

∫

R3

∫

S2

(
f ′f ′

∗− ff∗
)(

ϕ+ϕ∗−ϕ′−ϕ′
∗
)
B dω dv∗ dv.

In terms of the distribution function f , the mass, ρ, momentum, m, and energy, E, are
given as moments:




ρ
m

E


 =

∫

R3

f(v)




1
v

1
2 |v − m/ρ|2


 dv.

The conservation of mass, momentum and energy at the level of the Boltzmann operator
is then recovered by taking ϕ(v) = 1, vi,

1
2 |v|2 with i = 1, 2, 3 in (1.8).

∫

R3

Q(f, f)(v)




1
vi

1
2 |v|2


 dv = 0.

For an integrable cross section B, i.e. with the angular cutoff assumption of Grad[22],
the collision integral (1.2) can be decomposed as Q = Q+ − Q−, where

Q+(f, f)(v) =

∫

R3

∫

S2

f(v′)f(v′
∗)B dω dv∗, (1.9)

Q−(f, f)(v) =

∫

R3

∫

S2

f(v)f(v∗)B dω dv∗. (1.10)

For any test function ϕ it holds that

∫

R3

ϕ(v)Q+(f, g)(v) dv =

∫

R3

∫

R3

∫

S2

ϕ(v′) f(v) g(v∗)B dω dv∗ dv. (1.11)
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From the bilinear structure it also follows that

Q+(f, f) − Q+(g, g) = Q+(f − g, f) + Q+(g, f − g). (1.12)

One other property peculiar to the Boltzmann equation is the H-theorem, a result which
Boltzmann used to successfully explain the irreversible approach to an equilibrium dis-
tribution. Define the functional H[f ] by

H[f ](t) =

∫

R3

f(v, t) log f(v, t) dv.

Boltzmann’s H-theorem states that for every velocity distribution function f

d

dt
H[f ](t) =

∫

R3

Q(f, f)(v) log f(v, t) dv ≤ 0.

This result formally follows from (1.8) with ϕ(v) = log f(v, t). It says that the entropy
H[f ], of any solution f to the Boltzmann equation, is non-increasing with time. Equality
holds only for the Maxwellian distribution function M(v), which describes an equilibrium
state of the gas. The form of this Maxwellian is

M(v) =
( m

2πkT

) 3
2

exp
(
− m |v − u|2

2kT

)
,

where m denotes the mass, u denotes the mean velocity, T denotes the temperature of
the gas, and k is the Boltzmann constant.

The Boltzmann equation is thoroughly treated in several books, e.g. [10, 11, 12, 36].

1.2 The Kac model and the Kac equation

The Boltzmann equation can formally be derived as the limit of the evolution of an N -
particle system, when N → ∞, in such a way that the mean time between collisions, or
more precisely the mean free path, remains constant [28, 34, 11]. There are enormous
mathematical difficulties in doing this rigorously, and up to date, there is no derivation
that is valid for general initial data or for long time intervals.

To overcome this difficulty Kac [27] introduced a stochastic model that evolves due to
the random interactions between pairs of particles. Kac considered a spatially homo-
geneous ’gas’ consisting of N point-particles with one-dimensional velocities vi ∈ R,
i = 1, 2, . . . , N . At exponentially distributed time intervals a pair of velocities, say vi

and vj , are selected randomly and are assigned new velocities, v′
i and v′

j respectively, by

a random rotation in R2, i.e.

v′
i = vi cos θ − vj sin θ

v′
j = vi sin θ + vj cos θ.

(1.13)
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We remark that, in this model the scattering angle θ is chosen from a uniform distribution
over [−π, π). Distributions favoring some collisions over others have also been considered
in [17].

We also note that v2
i + v2

j = v′
i
2

+ v′
j
2
, and thus the total energy,

∑N
i=1 v2

i , is conserved
in the process. This stochastic model, therefore, defines a jump process on the (N − 1)–
dimensional sphere S

N−1, which is normalized to have radius
√

N , and is centered at the
origin of R

N . For this process to mimic a system of real particles, one takes the jump
frequency, i.e. the rate in the exponential distribution, to be proportional to N .

Let V ≡ (v1, v2, . . . , vN ), the master vector, denote a point on SN−1
(√

N
)
, and let

ΨN (V, 0) denote an initial probability distribution of points on S
N−1

(√
N

)
. If each of

these points evolve according to the Kac process, then the evolved probability density
ΨN (V, t) satisfies

∂

∂t
ΨN (V, t) = K(ΨN )(V, t), (1.14)

where K is the linear operator

K(ΨN ) = N
(
K̃ − I

)(
ΨN

)
. (1.15)

Here I denotes the identity operator, and K̃ is defined by

K̃(ΨN )(V, t) =

(
N

2

)−1 ∑

1≤i<j≤N

1

2π

∫ π

−π

ΨN

(
Aij(θ)V, t

)
dθ,

where Aij(θ)V =
(
v1, . . . , v

′
i, . . . , v

′
j , . . . , vN

)
. Equation (1.14) is known as Kac’s master

equation.

The Kac model has attracted much interest recently. One example is [9], where the
spectral gap of the operator K is computed rigorously. This gives an estimate on the
rate of convergence towards the steady state.

The main result in [27] concerns the behavior of the one-particle marginal. Towards
stating this result, fix a finite k and define the k-particle marginal fN

k by

fN
k (v1, . . . , vk, t) =

∫

SN−1−k

(√
N−P

k

i=1 v2
i

) ΨN (v1, . . . , vk; vk+1, . . . , vN , t) dσk, (1.16)

where dσk = dσk(vk+1, . . . , vN ) denotes the surface element on SN−1−k
(√

N − ∑k
i=1 v2

i

)
.

Special cases are the one-particle marginal fN
1 and the two-particle marginal fN

2 which

5



are given respectively by

fN
1 (v1, t) =

∫

SN−2
(√

N−v2
1

) ΨN (v1; v2, . . . , vN , t) dσ1, and (1.17)

fN
2 (v1, v2, t) =

∫

SN−3
(√

N−v2
1−v2

2

) ΨN (v1, v2; v3, . . . , vN , t) dσ2. (1.18)

Kac proved rigorously that, under suitable conditions on the initial data, fN
1 (v1, t) con-

verges, as N → ∞, to a solution f(v, t) of the equation

∂

∂t
f(v, t) = Q(f, f)(v, t), (1.19)

where

Q(f, f)(v, t) =

∫

R

∫ π

−π

(
f(v′, t)f(v′

∗, t) − f(v, t)f(v∗, t)
) 1

2π
dθ dv∗, (1.20)

with v′ = v cos θ − v∗ sin θ and v′
∗ = v sin θ + v∗ cos θ.

Equation (1.19), describing the time evolution of the velocity distribution function f , con-
stitutes the Kac equation which is a one-dimensional caricature of the spatially homoge-
neous nonlinear Boltzmann equation. Observe that in the Kac equation, mass and energy
are conserved, but not momentum. This is a significant difference with the Boltzmann
equation, and we will see later that it has an important impact when a thermostatted
force field is added.

One assumption in Kac’s derivation of the nonlinear Boltzmann equation from a micro-
scopic linear model is that, for each N , the probability density ΨN is symmetric in the
v1, v2, . . . , vN variables.

Differentiating both sides of (1.17) with respect to t, and using (1.14) yields

∂tf
N
1 (v1, t) =

∫

SN−2
(√

N−v2
1

) ∂tΨN (v1; v2, . . . , vN , t) dσ1

=

∫

SN−2
(√

N−v2
1

) K(ΨN )(v1, v2, . . . , vN , t) dσ1.

Evaluating this integral, making use of the symmetry condition on ΨN , and using the
form of fN

2 as defined in (1.18) gives

∂tf
N
1 (v1, t) =

∫ √
N−v2

1

−
√

N−v2
1

1

2π

∫ π

−π

(
fN
2 (v′

1, v
′
2, t) − fN

2 (v1, v2, t)
)

dθ dv2, (1.21)

where v′
1 = v1 cos θ − v2 sin θ and v′

2 = v1 sin θ + v2 cos θ.
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This is strongly related to the result in (1.19). Note that instead of f(v, t) f(v∗, t) as
in (1.20), here we have fN

2 (v1, v2, t). An equation for fN
2 would contain fN

3 , etc., and
thus (1.21) and the corresponding equations for each of the fN

k , k ≥ 2, would not form
a closed system of equations unless all of them up to k = N are included.

The central concept in establishing this connection is the notion of propagation of molec-
ular chaos [9, 8, 27, 30, 32, 35]. It deals with the hypothesis that the stochastic indepen-
dence of two random particles in a many-particle system, persists in time, in the limit of
infinitely many particles. The following definition is due to Kac [27].

Definition 1.1. A family of probability densities {ΨN}∞N=1 is said to have the Boltzmann
property, if

lim
N→∞

fN
k (v1, . . . , vk, 0) =

k∏

j=1

lim
N→∞

fN
1 (vj , 0).

This says that, as N → ∞, any fixed finite number of coordinates become independent
with the same probability distribution.

The following is the main result in [27] on the propagation in time of molecular chaos:

Theorem 1.1. If ΨN (v1, . . . , vN , 0) has the Boltzmann property, then ΨN (v1, . . . , vN , t),
namely the solution to (1.14), has also the Boltzmann property:

lim
N→∞

fN
k (v1, . . . , vk, t) =

k∏

j=1

lim
N→∞

fN
1 (vj , t).

As a consequence of Theorem 1.1, Kac proved that f(v, t) = limN→∞ fN
1 (v1, t) satis-

fies (1.19).

Looking back to (1.21), the above property then implies that

lim
N→∞

fN
2 (v1, v2, t) = lim

N→∞
fN
1 (v1, t) lim

N→∞
fN
1 (v2, t),

which in turn makes the evolution equation for the one-particle marginal autonomous
but nonlinear.

For the purpose of illustrating the above ideas consider the uniform probability density
function given by

ΨN (V, t) =
∣∣SN−1(

√
N)

∣∣−1
, (1.22)

7



where |SN−1(
√

N)| denotes the surface measure of the sphere S
N−1(

√
N). The corre-

sponding one-particle marginal is

fN
1 (v1, t) =

(
1 − v2

1/N
)(N−3)/2

∫ √
N

−
√

N

(
1 − v2

1/N
)(N−3)/2

dv1

. (1.23)

In the limit N → ∞, this fN
1 (v1, t) converges to the Maxwellian distribution

M(v) =
1√
2π

exp

(
− v2

2

)
. (1.24)

Here we remark that the constant function given in (1.22) is a stationary solution to
the master equation (1.14), and the above Maxwellian distribution M(v) is a stationary
solution with unit energy to the Kac equation (1.19).

The two-particle marginal corresponding to the ΨN in (1.22) is

fN
2 (v1, v2, t) =

(
1 −

(
v2
1 + v2

2

)
/N

)(N−4)/2

∫

v2
1+v2

2<N

(
1 −

(
v2
1 + v2

2

)
/N

)(N−4)/2

dv1 dv2

. (1.25)

We see from (1.25) that the two-particle marginal do not factorize for N finite, i.e.
fN
2 (v1, v2, t) 6= fN

1 (v1, t) fN
1 (v2, t). In such a case the velocities are clearly not indepen-

dent: if v2, . . . , vN are known, then v2
1 = N −∑N

i=2 v2
i . In the limit N → ∞, on the other

hand, fN
2 (v1, v2, t) tends to (and thereby factorizes to)

M2(v1, v2) =
1

2π
exp

(
−v2

1 + v2
2

2

)
= M(v1)M(v2). (1.26)

This example shows that the stochastic independence of velocities may not be achieved
before passing to the limit N → ∞.

A related many-particle system with the more physical three-dimensional velocities is
studied in [23, 29, 8]. Let the N velocities be denoted by v1,v2, . . . ,vN ∈ R3. Let, at
random times, pairs of these velocities, say vi and vj , undergo random ’collisions’ and
are assigned new velocities, v′

i and v′
j , according to (1.3). This defines a jump process

on the (3N − 1)-dimensional sphere S3N−1 which is normalized to have radius
√

N . In
this case the jumps satisfy v′

i + v′
j = vi + vj , in addition to the conservation of energy.

One may, thus, consider the jump process to take place on

S
3N−1

(√
N

)
∩

{
(v1,v2, . . . ,vN ) :

N∑

i=1

vi = const.

}
.
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The probability density ΨN (v1,v2, . . . ,vN ; t) of the N velocities changes in time due to
the random collisions according to the master equation

∂

∂t
ΨN = G(ΨN ), (1.27)

where

G(ΨN ) = N (G̃ − I)(ΨN ). (1.28)

Here I denotes the identity operator, and G̃ is given by

G̃
(
ΨN

)
(V, t) =

(
N

2

)−1 ∑

1≤i<j≤N

1

4π

∫

S2

ΨN

(
Aij(ω)V, t

)
dω,

with Aij(ω)V =
(
v1, . . . ,v

′
i, . . . ,v

′
j , . . . ,vN

)
and v′

i and v′
j are as in (1.3). Grünbaum[23]

proved propagation of chaos in this case, and as a consequence that the Boltzmann
equation can be derived in the limit N → ∞. Note that this form of G corresponds to a
special case of Maxwellian molecules. Grünbaum[23] considers the more general case of
cut-off cross sections.

In general it is not possible to find explicit solutions to the nonlinear Boltzmann equation.
This is mainly on account of the quadratic nonlinearity in the collision term. Making some
basic assumptions on the collision kernel reduces the complexity and help gain insight
into the nature of the solution to the Boltzmann equation. Apart from the equilibrium
state, there is only one known case of a particular solution to (1.19) with a special type
of initial distribution. This is discussed in [19] and is given by

f(v, t) =
1

2C
3
2

(
3

2
(C − 1) + (3 − C)

v2

C2

)
exp

(
−v2

C

)
, (1.29)

where

C ≡ C(t) = 3 − 2 exp

(
−
√

π

16
t

)
.

This special solution is obtained using the symmetry property of the Boltzmann equation
for Maxwell molecules. This has been thoroughly investigated by Bobylev in [5]. A
class of solutions to a model Boltzmann equation for arbitrary initial conditions is given
in [18, 2]. They are given in the form of a series expansion in orthogonal polynomials,
the coefficients of which can be determined sequentially from a set of nonlinear moment
equations. Related techniques are used to study the Kac equation with a force term
in [15, 16].
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1.3 Deterministic thermostats

In a system composed of a large number of identical particles, where external effects are
neglected, the random collisions between the particles will eventually move the system
towards equilibrium. The velocity distribution for such a system is the Maxwellian. If, on
the other hand, an external force field acts on the system, it results in the production of
heat. The applied field does work on the system thereby moving it away from equilibrium.
The excess energy needs to be removed so as to achieve a steady state. There are different
methods of accomplishing this. One is by coupling the system to thermal reservoirs where
the heat is removed by conduction, radiation or convection to the boundaries. This is
done by modeling isothermal reservoirs surrounding the system of interest and let the
reservoirs exchange heat with the system.

Another method, which is common in non-equilibrium molecular dynamics simulations, is
the use of deterministic thermostats. This technique has been in common use in statistical
mechanics as a means of constructing and characterizing steady states of relatively simple
but still interesting models of systems which are far from equilibrium.

The use of deterministic thermostats in molecular dynamics simulations was first pro-
posed simultaneously and independently by Hoover[25] and Evans[20]. Both proceed by
introducing a damping term into the equations of motion, although in slightly different
ways. The damping term is adjusted so as to keep the kinetic energy constant in the
former and to keep the internal energy constant in the latter.

This way of thermostatting non-equilibrium molecular dynamics simulations by mod-
ifying the equations of motion was put in a theoretical framework when the connec-
tion with Gauss’ principle of least constraint was established, see for example, Evans
et al [21]. This dynamical principle states that a system subject to constraints will
follow trajectories which, in the least-square sense, differ minimally from their uncon-
strained Newtonian counterparts. To this effect, consider a system described by co-
ordinates X = (x1,x2, . . . ,xN ), and time t. Suppose that the system is subject to a
constraint, the general form of which is

g(X, Ẋ, t) = C, (1.30)

where C is a constant. Differentiating both sides of (1.30) with respect to t gives an
acceleration dependent constraint equation:

λ(X, Ẋ, t) · Ẍ + β(X, Ẋ, t) = 0, (1.31)

where

λ(X, Ẋ, t) =
∂ g

∂Ẋ

β(X, Ẋ, t) =
∂ g

∂X
· Ẋ +

∂ g

∂t
.

10



The constraint in (1.31) imposes a condition on the acceleration vector of particles in the
system.

While unconstrained trajectories obeying Newtonian equations(i.e. Ẍ = F) are free to
leave the constraint-hypersurface, the constrained trajectories following the equations of
motion Ẍ = F − αB are prevented from doing so by the application of the additional
constraint force −αB satisfying (1.31):

α =
B · Ẍ + β

B · B .

For a Gaussian iso-kinetic thermostat where the kinetic energy Ke of the system is
constant of the motion, so that g(X, Ẋ, t) = Ẋ2 − Ke = 0, the constrained equations of
motion are Ẍ = F − αẊ. This gives

α =
F · Ẋ
Ẋ2

. (1.32)

The subject of deterministic thermostats in connection with non-equilibrium steady states
is thoroughly treated in [24, 31, 33, 37]. A review on the development of the thermostat
approach in the study of non-equilibrium systems is detailed in [31].

Gaussian iso-kinetic thermostats have also been used in connection with the Lorentz
model for conduction in metals [13, 14, 33]. Related studies, both numerical and analyt-
ical, of a system where one or several particles are moving in a two-dimensional array of
fixed hard disk scatterer under the influence of an electric field, are also made in [6, 7].
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Chapter 2

The Kac equation

with a Gaussian thermostat

In the original Kac model the system evolves due to the random jumps which correspond
to the random interactions between pairs of particles. It is also interesting to study the
effect of an external force on the dynamics of the system, in addition to the collisions.

In this chapter we introduce a stochastic model where the particles in the Kac system,
in addition to the random collisions, are accelerated by an external uniform force field.
The energy supplied into the system is absorbed by a Gaussian thermostat, a term which
keeps the total kinetic energy of the system constant. We derive a Kac-like master
equation, which governs the time rate of change of the probability distribution of the
N -particle velocities. We then derive and study the limiting Boltzmann-like equation
which describes the time evolution of the one-particle distribution function in the limit
of infinitely many particles. Existence of solutions to this equation are established and
the time evolution of moments of the solutions are also investigated. We study the non-
equilibrium stationary states in further detail. A method of constructing an asymptotic
solution to the stationary problem is presented.

2.1 The master equation

Consider a spatially homogeneous gas consisting of N point-particles with one-dimensional
velocities vi ∈ R, i = 1, 2, . . . , N . We modify the original stochastic model by incorpo-
rating an external uniform force field E = E(1, 1, . . . , 1) ∈ RN which accelerates the

13



particles between the collisions. This field is supposed to be acting equally on each par-
ticle, but in order to keep the total energy constant, it must then be projected onto the
tangent plane to the energy surface SN−1

(√
N

)
at the point V. More precisely, between

collisions, the master vector V = (v1, v2, . . . , vN ) evolves according to

dV

dt
= E − E · V

|V|2 V. (2.1)

Because of the relatively simple form of this system, the trajectories of V can be computed
explicitly. This is presented and is used in the numerical simulation part.

Let ΨN (V, t) be the probability density of the N -velocities at time t. The unique solution
to (2.1) with a given initial data V0 defines an evolution operator T t such that V = T tV0.
For a fixed t, the map V0 7→ V defines a change of variables, and if we denote its Jacobian
determinant by J, we get the condition that ∂t

(
ΨN (V(t,V0), t) J

)
= 0, which in turn,

since J 6= 0, gives

∂

∂t
ΨN + ∇ΨN · dV

dt
+ ΨN

1

J

∂J

∂t
= 0. (2.2)

To further explore the coupling to the dynamics in (2.1) we introduce the quantities J(t)
and U(t) as

J(t) =
1

N

N∑

i=1

vi(t), (2.3)

U(t) =
1

N

N∑

i=1

vi(t)
2. (2.4)

It is easily verified that U(t) is constant, as it should be. We therefore set, without loss
of generality, U = 1, which is in accordance with taking V ∈ S

N−1
(√

N
)
.

Then (2.1), written component-wise, becomes

dvi(t)

dt
= E

(
1 − J

U
vi(t)

)
, i = 1, 2, 3, . . . , N. (2.5)

This leads us to denote the vector field in the right hand side of (2.1) by F ≡ F(V),
where

F = E

(
1 − J

U
V

)
= E

(
1 − J

U
v1, . . . , 1 − J

U
vN

)
, (2.6)

and 1 = (1, 1, . . . , 1) ∈ RN . With this we can rewrite (2.2) as

∂

∂t
ΨN + ∇ΨN · F + ΨN∇ · F = 0.

14



This takes the form of the continuity equation

∂

∂t
ΨN + ∇ ·

(
FΨN

)
= 0,

and says that the number of particles is conserved.

We remark that, F can also be expressed in the form

F = E N
√

U ∇
(

J√
U

)
,

which shows that, F is tangent to the sphere SN−1(
√

N), since J/
√

U is homogeneous of
degree 0.

Until now the dynamics was due only to the driving field F. If we further allow velocity
jumps to occur just like in the Kac model, then the probability density ΨN will evolve
in time according to

∂

∂t
ΨN + E ∇ ·

(
FΨN

)
= K(ΨN ). (2.7)

Here F is as in (2.6) and K is the same collision term as in Kac’s original model, i.e.

K(ΨN )(V, t) =
2

N − 1

∑

1≤i<j≤N

1

2π

∫ π

−π

(
ΨN (Aij(θ)V, t) − ΨN (V, t)

)
dθ,

with

Aij(θ)V = (v1, . . . , vi cos θ − vj sin θ, . . . , vi sin θ + vj cos θ, . . . , vN ).

Equation (2.7) constitutes a Kac-like master equation.

2.2 The limiting Boltzmann equation

In this section we pass to the limit N → ∞, to derive a Kac equation to f – the limit of
the one-particle marginals of the probability densities ΨN . Note that because we have
assumed U = 1 in the previous section, we necessarily have

∫
R

v2f(v, t)dv = 1.

Theorem 2.1. Suppose that ΨN (v1, . . . , vN , t) is a sequence of C1-solutions to (2.7) and
that ΨN is symmetric in the variables v1, . . . , vN . If ΨN has the Boltzmann property,
and if further

f(v, t) = lim
N→∞

fN
1 (v, t),
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exists, then f satisfies the equation

∂

∂t
f + E

∂

∂v

((
1 − ζ(t) v

)
f
)

= Q(f, f), (2.8)

where

ζ(t) =

∫

R

v f(v, t) dv, (2.9)

and

Q(f, f)(v) =

∫

R

∫ π

−π

(
f(v′, t)f(v′

∗, t) − f(v, t)f(v∗, t)
) 1

2π
dθ dv∗. (2.10)

Notation. In the sequel, for the sake of simplicity, we denote the sphere SN−1
(√

N
)

by

Ω0, S
N−2

(√
N − v2

1

)
by Ω1, and S

N−3
(√

N − v2
1 − v2

2

)
by Ω2. Let dσ0, dσ1, and dσ2

denote the surface elements on Ω0, Ω1, and Ω2 respectively.

Proof of Theorem 2.1. Consider the one-particle marginal fN
1 and the two-particle

marginal fN
2 which are special cases of the k-particle marginal fN

k defined in (1.16),
namely

fN
1 (v1, t) =

∫

Ω1

ΨN (v1; v2, . . . , vN , t) dσ1,

fN
2 (v1, v2, t) =

∫

Ω2

ΨN (v1, v2; v3, . . . , vN , t) dσ2.

Differentiating fN
1 (v1, t) with respect to t and using (2.7) we have that

∂

∂t
fN
1 (v1, t) =

∫

Ω1

∂

∂t
ΨN (v1; v2, . . . , vN , t) dσ1

= − E

∫

Ω1

∇ ·
(
FΨN

)
dσ1 +

∫

Ω1

K(ΨN ) dσ1.

This in turn can be written as

∂

∂t
fN
1 (v1, t) + E

∫

Ω1

∇ ·
(
FΨN

)
dσ1 =

∫

Ω1

K(ΨN ) dσ1. (2.11)

We recall Kac’s result (see Section 1.2) that, in the limit N → ∞, the integral in the
right hand side of (2.11) takes the form of Q(f, f) as given in (2.10). We need to assume
that this also holds in the present case. Then the rest of the proof follows through the
result of Lemma 2.1, which is stated and proved below. ¥
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Lemma 2.1. Let the densities ΨN (v1, . . . , vN , t) be as specified in Theorem 2.1. Let ζ(t)
be as defined in (2.9), and F as given in (2.6). Then, in the limit N → ∞, we have that

∫

Ω1

∇ ·
(
FΨN

)
dσ1 → ∂

∂v

((
1 − ζ(t) v1

)
f
)
.

Proof : Let ϕ ∈ C1
0 (R) be such that ϕ = ϕ(v1), and let ηr = ηr(|V|). This ηr will

later be taken to be an approximation to 1|V|<r, the characteristic function of the ball
{V : |V| < r}.

Since ηr is radial we have ∇ηr · F = 0. We also have that

∇ϕ · F =
∂ϕ

∂v1

(
1 − J

U
v1

)
.

Then we continue by noting that,

∫

Ω0

ϕ ∇ ·
(
F ΨN

)
dσ0 =

∫ √
N

−
√

N

ϕ

[√
N

N − v2
1

∫

Ω1

∇ ·
(
F ΨN

)
dσ1

]
dv1.

Since we are interested in the limit N → ∞ there is no restriction in assuming that
supp (ϕ) ⊂ [−

√
N,

√
N ], and hence the above integral can be written as

∫

R

ϕ

√
N

N − v2
1

∫

Ω1

∇ ·
(
F ΨN

)
dσ1 dv1. (2.12)

Formally, if ηr = 1|V|<r,

∫

Ω0

ϕ ∇ ·
(
F ΨN

)
dσ0 =

d

dr

(∫

RN

ηr ϕ ∇ ·
(
F ΨN

)
dV

) ∣∣∣∣
r=

√
N

.

In the calculations that follow, we assume that ηr is smooth, and then we conclude, by
letting ηr converge to the characteristic function. Integration by parts gives

∫

RN

ηr ϕ ∇ ·
(
F ΨN

)
dV = −

∫

RN

∇
(
ηr ϕ

)
·
(
F ΨN

)
dV

= −
∫

RN

ϕ ∇ηr ·
(
F ΨN

)
dV −

∫

RN

ηr∇ϕ ·
(
F ΨN

)
dV.

Using the fact that ∇ηr ·F = 0 and that ϕ depends only on v1 the above sum reduces to

−
∫

R

∂ϕ

∂v1

(∫

RN−1

ηr

(
1 − J

U
v1

)
ΨNdv2 · · · dvN

)
dv1.
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We may assume supp (ϕ) ⊂ (−r, r) because eventually we will set r =
√

N . Then this
integral equals

−
∫

R

∂ϕ

∂v1

[∫ √
r2−v2

1

0

(∫

SN−2(ρ)

(
1 − J

U
v1

)
ΨN dσ1

)
dρ

]
dv1,

where ρw̃ = (v2, . . . , vN ), with w̃ = (w2, . . . , wN ) ∈ SN−2 and ρ > 0, makes this integral
to take the form

−
∫

R

∂ϕ

∂v1

[∫ √
r2−v2

1

0

∫

SN−2(1)

[
1 − v1 + ρ w̃ · 1

v2
1 + ρ2

v1

]
ΨN (v1; ρw̃) ρN−2 dw̃ dρ

]
dv1.

Differentiating this with respect to r gives

−
∫

R

∂ϕ

∂v1

r√
r2 − v2

1

∫

SN−2(1)

[
1 − v1 +

√
r2 − v2

1 w̃ · 1
r2

v1

]
[
r2 − v2

1

]N−2
2 ΨN dw̃ dv1.

Setting r =
√

N and expressing the integral in terms of dσ1 rather than the dw̃ on SN−2

gives

−
∫

R

∂ϕ

∂v1

√
N√

N − v2
1

∫

Ω1

(
1 − J

U
v1

)
ΨN dσ1 dv1.

We prove in Lemma 2.2 below that

−
∫

R

∂ϕ

∂v1

√
N√

N − v2
1

∫

Ω1

(
1 − J

U
v1

)
ΨN dσ1 dv1 → −

∫

R

∂ϕ

∂v1

((
1− ζ(t) v1

)
f
)

dv1,

when N → ∞, and after integration by parts this is
∫

R

ϕ
∂

∂v1

((
1 − ζ(t) v1

)
f
)

dv1.

Comparing this with (2.12) gives the desired result because ϕ is arbitrary. ¥

Lemma 2.2. Let the densities ΨN (v1, . . . , vN , t) be as specified in Theorem 2.1 and let
ζ(t) be as defined in (2.9). Then, in the limit N → ∞, we have that

∫

Ω1

(
1 − J

U
v1

)
ΨN dσ1 →

(
1 − ζ(t)v1

)
f(v1, t). (2.13)

Proof : We start by noting that
∫

Ω1

(
1 − J

U
v1

)
ΨN dσ1 =

∫

Ω1

ΨN dσ1 − v1

∫

Ω1

J

U
ΨN dσ1

= fN
1 − v1

∫

Ω1

J

U
ΨN dσ1. (2.14)
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Next, we use the definition of J , the symmetry condition on ΨN , and the condition that
the energy is kept constant at 1, to further simplify the integral in (2.14) as

∫

Ω1

J

U
ΨN dσ1 =

1

N

∫

Ω1

v1

U
ΨN dσ1 +

1

N

∫

Ω1

v2 + · · · + vN

U
ΨN dσ1

=
1

N
v1 fN

1 +
N − 1

N

∫

Ω1

v2 ΨN dσ1. (2.15)

We write the integral in (2.15) as an iterated integral

∫

Ω1

v2 ΨN dσ1 =

∫ √
N−v2

1

−
√

N−v2
1

v2

[√
N − v2

1

N − v2
1 − v2

2

∫

Ω2

ΨN (v1, v2; v3, . . . , vN , t)dσ2

]
dv2

=

∫ √
N−v2

1

−
√

N−v2
1

v2

√
N − v2

1

N − v2
1 − v2

2

fN
2 (v1, v2, t) dv2. (2.16)

By assumption, ΨN has the Boltzmann property, and hence

fN
2 (v1, v2, t) → f1(v1, t) f1(v2, t),

as N → ∞. We use this and rewrite the integral in (2.16) as

∫ √
N−v2

1

−
√

N−v2
1

v2f
N
1 (v1, t)f

N
1 (v2, t)dv2 +

+

∫ √
N−v2

1

−
√

N−v2
1

v2

[√
N − v2

1

N − v2
1 − v2

2

fN
2 (v1, v2, t) − fN

1 (v1, t) fN
1 (v2, t)

]
dv2. (2.17)

Because of our assumption, the functions fN
k decay sufficiently fast that passing to the

limit (N → ∞), the integral in (2.16) converges to f(v, t)
∫ ∞
−∞ v f(v, t) dv. By combining

(2.16), (2.15), and (2.14); letting N → ∞, we conclude that

∫

Ω1

(
1 − J

U
v1

)
ΨN dσ1 →

(
1 − ζ(t) v1

)
f(v1, t).

¥
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2.3 On the existence of solutions

In this section we examine the conditions under which a non-negative solution to the
time-dependent thermostatted Kac equation exists.

Given a non-negative f0 we study the following initial value problem

∂

∂t
f + E

∂

∂v

((
1 − ζ(t) v

)
f
)

= Q(f, f), (t > 0) (2.18)

f(v, 0) = f0(v), (2.19)

ζ(t) =

∫

R

v f(v, t) dv. (2.20)

Theorem 2.2. Let a non-negative f0 with
∫

R
f0(v)dv = 1 be given. Then there exists a

non-negative f ∈ C
(
(0,∞);L1(R)

)
– mild solution to the initial value problem (2.18)-

(2.20) and such that
∫

R
f(v, t)dv = 1.

Remark 2.1. With initial datum f0 as in Theorem 2.2 one can not hope for a strong
solution in the sense of a C1–function. For such a strong solution to exist one needs to
assume that f0 ∈ W 1,1.

We start by stating and justifying some preliminary results on the time evolution and
the exact form of the current ζ(t).

Lemma 2.3. Let a non-negative f0 with
∫

R
f0(v)dv = 1 be given. Assume that there

exists a non-negative f , solution to the initial value problem (2.18)-(2.20) such that∫
R

f(v, t) dv = 1, and |v|f(v, t) → 0 as |v| → ∞, for each t ≥ 0. Then ζ(t) fulfills

d

dt
ζ(t) = E

(
1 − ζ(t)2

)
− ζ(t), (2.21)

ζ(0) = ζ0 ≡
∫

R

vf0(v)dv.

This can be solved explicitly as

ζ(t) =
ζ+ − ζ− C e−

√
1+4E2 t

1 − C e−
√

1+4E2 t
, (2.22)

where

ζ± =
2E

1 ±
√

1 + 4E2
, (2.23)

and

C =
ζ+ − ζ0

ζ− − ζ0
.
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Proof. First we note that, the collision term Q, as given in (2.10), can be written as

Q(f, f)(v, t) = Q+(f, f)(v, t) − f(v, t).

Multiplying both sides of this by v, integrating the resulting expression over R with
respect to v, and noting that

∫

R

v Q+(f, f)(v, t) dv =

∫

R

v′ Q+(f, f)(v, t) dv = 0,

we find that
∫

R

v Q(f, f)(v, t) dv =

∫

R

v Q+(f, f)(v, t) dv −
∫

R

v f(v, t) dv = −ζ(t). (2.24)

Next, from the definition of ζ(t), it follows that

d

dt
ζ(t) =

∫

R

v
∂

∂t
f(v, t) dv.

We then use (2.18) to rewrite the the right hand side of the above as

∫

R

v Q(f, f)(v, t) dv − E

∫

R

v
∂

∂v

((
1 − ζ(t) v

)
f(v, t)

)
dv.

Noting the result in (2.24) and performing integration by parts gives the form of the
differential equation as stated in (2.21).

If ζ(0) = ζ+ or ζ(0) = ζ− then ζ(t) = ζ(0) for all t > 0. Otherwise, the unique solution
to the first order non-linear differential equation (2.21) is obtained to be (2.22). ¥

In (2.22) we see that the magnitude of the external force E appears as a parameter.
Further, as t → ∞ the current ζ(t) → ζ+ independent of the initial data ζ0. In Figure 2.1
we plot the time evolution of ζ(t) as given in (2.22) with E =

√
2 and with some values

of the initial data ζ(0) varying between −1 and +1.

Next we study the initial value problem

∂

∂t
f + E

∂

∂v

((
1 − ζ̄(t) v

)
f
)

= Q(f, f), (t > 0), (2.25)

f(v, 0) = f0(v), (2.26)

ζ̄(t) =
ζ+ − ζ− C e−

√
1+4E2 t

1 − C e−
√

1+4E2 t
. (2.27)
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Figure 2.1: The evolution of ζ(t) according to (2.22) with initial data ζ(0) =
−0.95, 0, 0.95, (E =

√
2).

This is exactly like (2.18)–(2.20) except that ζ(t) =
∫

R
vf(v, t)dv is replaced by the known

function ζ̄(t).

Towards stating and proving the result on existence and uniqueness of solution to (2.25)–
(2.27) we first rewrite (2.25) as

∂

∂t
f + E

(
1 − ζ̄(t) v

) ∂

∂v
f +

(
1 − E ζ̄(t) v

)
f = Q+(f, f), (2.28)

where

Q+(f, f)(v, t) =

∫

R

∫ π

−π

f(v′, t)f(v′
∗, t)

1

2π
dθ dv∗.

This constitutes a first-order semilinear equation. We solve this by the method of char-
acteristics and perform an iteration scheme in line with Arkeryd[1].

After integration along characteristics (2.28) becomes

d

dt
f# +

(
1 − E ζ̄(t)

)
f# = Q+(f, f)

#
, (2.29)

where, for each v ∈ R, we use the notation

f#(v, t) = f
(
V (v, t), t

)
,

Q+(f, f)
#

(v, t) = Q+(f, f)(V (v, t), t).
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Here we make use of the transformation

V (v, t) = v e−λ(t) + E e−λ(t)

∫ t

0

eλ(s) ds, (2.30)

with

λ(t) = E

∫ t

0

ζ̄(s)ds.

The Jacobian of the transformation in (2.30) is J = e−λ(t) > 0. That J doesn’t vanish
makes it possible to solve for v as a function of V and t. Let’s denote, for each t ≥ 0,
ψt(v) = V , so that we can write v = ψ−1

t (V ), where

ψ−1
t (V ) = V eλ(t) − E

∫ t

0

eλ(s) ds. (2.31)

For notational convenience, we write

Λ(t) =

∫ t

0

(
1 − E ζ̄(s)

)
ds,

or, in other words Λ(t) = t − λ(t).

Let T > 0 be fixed. The integral form of (2.29) in the time interval [0, T ] is

f#(v, t) = e−Λ(t) f#(v, 0) + e−Λ(t)

∫ t

0

eΛ(τ) Q+(f, f)
#

(v, τ) dτ, ∀t ∈ [0, T ]. (2.32)

Using (2.31) we can rewrite (2.32) in terms of f

f(v, t) = Γf0
(f)(v, t), (2.33)

where

Γf0
(f)(v, t) = e−Λ(t)f0

(
ψ−1

t (v)
)

+ e−Λ(t)

∫ t

0

eΛ(τ)Q+
(
f, f

)(
ψτ ◦ψ−1

t (v), τ
)
dτ. (2.34)

Now we adapt the notion of mild solution to the setting at hand.

Definition 2.1. A function f is said to be a mild solution to the initial value prob-
lem (2.25)–(2.27) on the time interval [0, T ] if f(·, t) ∈ L1(R) and f(·, t) satisfies (2.33)
for all t ∈ [0, T ].

Theorem 2.3. Let a non-negative f0 with
∫

R
f0(v)dv = 1 be given. Then there ex-

ists a unique, non-negative f ∈ C
(
(0,∞);L1(R)

)
– mild solution to the initial value

problem (2.25)-(2.27) and such that
∫

R
f(v, t)dv = 1.
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Proof. Define a sequence of successive approximations
{
f (n)(·, t)

}∞
n=1

inductively by
setting

f (1)(v, t) = 0, (2.35)

f (n)(v, t) = Γf0

(
f (n−1)

)
(v, t), (n > 1). (2.36)

The monotonicity of Q+ and the condition that f0 is non-negative gives that the iterates
are all non-negative.

It is also immediate that

f (2)(v, t) = e−Λ(t)f0

(
ψ−1

t (v)
)
, (2.37)

from which we see f (2)(v, t) ≥ f (1)(v, t) for all v ∈ R. Suppose now, for some n ≥ 3, that
f (n−1) ≥ f (n−2) and consider the difference f (n) − f (n−1), which is equal to

e−Λ(t)

∫ t

0

eΛ(τ)
[
Q+

(
f (n−1), f (n−1)

)
− Q+

(
f (n−2), f (n−2)

)] (
ψτ ◦ ψ−1

t (v), τ
)
dτ. (2.38)

We recall, for any two functions f and g, that

Q+(f, f) − Q+(g, g) = Q+(f − g, f) + Q+(g, f − g).

This makes (2.38) to take the form

e−Λ(t)

∫ t

0

eΛ(τ)
[
Q+

(
f (n−1) − f (n−2), f (n−1)

)
+ Q+

(
f (n−2), f (n−1) − f (n−2)

)]
dτ. (2.39)

Since, by the induction hypothesis, f (n−1) − f (n−2) ≥ 0 we use the monotonicity of Q+

to conclude that the integral in (2.39) is non-negative. This shows, for each t ≥ 0, and
by induction for all n, that f (n)(v, t) ≥ f (n−1)(v, t) for all v ∈ R.

Since
∫

R
f0(v)dv = 1 the result in (2.37) gives

∫
R

f (2)(v, t)dv = e−t ≤ 1. Suppose now,

for some n ≥ 3, that
∫

R
f (n−1)(v, t)dv ≤ 1. Then

∫

R

f (n)(v, t)dv = e−t + e−t

∫ t

0

eτ

∫

R

Q+
(
f (n−1), f (n−1)

)
(z, τ)dz dτ.

We recall that
∫

R

Q+
(
f (n−1), f (n−1)

)
(z, τ)dz =

∫

R

f (n−1)(z, τ)dz

∫

R

f (n−1)(z∗, τ)dz∗.

Writing m(n)(t) =
∫

R
f (n)(v, t)dv, we find that

m(n)(t) = e−t + e−t

∫ t

0

eτm(n−1)(τ)2dτ.
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Using the induction hypothesis gives

m(n)(t) =

∫

R

f (n)(v, t) dv ≤ e−t + e−t

∫ t

0

eτdτ = 1.

The bounded, monotonically increasing sequence
{
f (n)(·, t)

}∞
n=1

of non-negative terms

has a non-negative limit f(·, t) in L1(R) such that f (n) → f as n → ∞.

This limit satisfies (with the notation that m(t) =
∫

R
f(v, t)dv)

m(t) = e−t + e−t

∫ t

0

eτm(τ)2dτ.

The unique solution to this equation is m(t) ≡ 1. From this we conclude, by Levi’s
theorem that

∫
R

f(v, t)dv = 1. This says that f solves (2.33), thereby showing that this
f is a mild solution to (2.25)–(2.27). This completes the proof, apart from the uniqueness.
That will follow from the calculations leading to the proof of Theorem 2.2. ¥

Next we prove that f is a mild solution to (2.18), i.e. we prove Theorem 2.2. To do this
it is enough to show that

∫
R

v f(v, t) dv = ζ̄(t). In general, to study the moments of f

it is more convenient to study a different sequence
{
g(n)(·, t)

}∞
n=1

, which converges to f .
This sequence is defined inductively by setting

g(1)(v, t) = f0(v), (2.40)

g(n)(v, t) = Γf0

(
g(n−1)

)
(v, t), (n > 1). (2.41)

In the sequel we will also use the following equivalent form of (2.41):

eΛ(t) g(n)
(
ψt(v), t

)
= f0(v) +

∫ t

0

eΛ(τ) Q+
(
g(n−1), g(n−1)

)(
ψτ (v), τ

)
dτ. (2.42)

The sequence
{
g(n)

}∞
n=1

is defined in the same way as the sequence
{
f (n)

}∞
n=1

except

that (2.35) is replaced by g(1) = f0. This sequence is not monotonous in general, but
converges to f , as we shall demonstrate. The advantage of working with

{
g(n)

}∞
n=1

is
that the first few moments can be computed explicitly and are independent of n.

Lemma 2.4. Suppose that the non-negative f0 is given, and that it satisfies

∫

R

f0(v) dv = 1,

∫

R

v f0(v) dv = ζ0, and

∫

R

v2 f0(v) dv = 1.

Let

ζ̄(t) =
ζ+ − ζ− C e−

√
1+4E2 t

1 − C e−
√

1+4E2 t
.
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Then, for each t ≥ 0, and for each n
∫

R

g(n)(v, t) dv = 1, (2.43)

∫

R

v g(n)(v, t) dv = ζ̄(t), (2.44)

∫

R

v2 g(n)(v, t) dv = 1. (2.45)

Proof. By the assumption on f0 we see that
∫

R
g(1)(v, t) dv = 1. We will prove by induc-

tion that the same holds for all n. Suppose now, for some n ≥ 2, that
∫

R
g(n−1)(v, t) dv =

1. Integrating both sides of (2.42) over R with respect to v, and using the transforma-
tion (2.30) gives

et

∫

R

g(n)(v, t)dv =

∫

R

f0(v)dv +

∫ t

0

eτ

∫

R

Q+
(
g(n−1), g(n−1)

)
(v, τ) dv dτ. (2.46)

Note first that
∫

R

Q+
(
g(n−1), g(n−1)

)
(v, τ)dv =

(∫

R

g(n−1)(v, τ) dv

)2

, (2.47)

which in turn is 1, by the induction hypothesis. Thus the right hand side of (2.46) equals
∫

R

f0(v) dv +

∫ t

0

eτ dτ,

which sums up to be et. Thus we conclude, for all t ≥ 0, and by induction for all n, that
∫

R

g(n)(v, t) dv = 1.

To prove (2.44), we multiply both sides of (2.41) by v, and integrate the result over R

with respect to v to get
∫

R

v g(n)(v, t)dv = e−Λ(t)

∫

R

vf0

(
ψ−1

t (v)
)
dv +

+ e−Λ(t)

∫

R

∫ t

0

eΛ(τ)vQ+
(
g(n−1), g(n−1)

) (
ψτ ◦ ψ−1

t (v), τ
)
dτdv.

(2.48)

Use of the transformation (2.31) makes the first term in the sum (2.48) to be

e−Λ(t)

∫

R

v f0

(
ψ−1

t (v)
)
dv = e−t+λ(t)

∫

R

e−λ(t)
(
v + E q(0, t)

)
f0(v)e−λ(t)dv

= e−t−λ(t)

(∫

R

v f0(v) dv + E q(0, t)

∫

R

f0(v) dv

)

= e−t−λ(t)
(
ζ0 + E q(0, t)

)
, (2.49)
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where q(τ, t) =
∫ t

τ
eλ(s)ds.

Using (2.30) and (2.31) once more, the second term in the sum (2.48) equals

e−t−λ(t)

∫

R

∫ t

0

eτ
(
v eλ(τ) + E q(τ, t)

)
Q+

(
g(n−1), g(n−1)

)
(v, τ) dτ dv.

This in turn is

e−t−λ(t)

∫ t

0

eτ+λ(τ)

∫

R

v Q+
(
g(n−1), g(n−1)

)
(v, τ) dv dτ +

+ e−t−λ(t)E

∫ t

0

eτ q(τ, t)

∫

R

Q+
(
g(n−1), g(n−1)

)
(v, τ) dv dτ.

(2.50)

Now we use the result
∫

R
v Q+

(
g(n−1), g(n−1)

)
(v, τ) dv = 0 with (2.43) and (2.47) so that

the sum in (2.50) reduces to

E e−t−λ(t)

∫ t

0

eτ q(τ, t) dτ. (2.51)

Combining (2.49) and (2.51) makes (2.48) to take the form

∫

R

v g(n)(v, t) dv = e−t−λ(t)

(
ζ0 + E q(0, t) + E

∫ t

0

eτ q(τ, t) dτ

)
.

We further note, through integration by parts, that

∫ t

0

eτ q(τ, t) dτ = −q(0, t) +

∫ t

0

es+λ(s) ds.

Thus we have
∫

R

v g(n)(v, t) dv = ζ0 e−t−λ(t) + E e−t−λ(t)

∫ t

0

es+λ(s) ds. (2.52)

We are now left to show that the right hand side of (2.52) and ζ̄(t) are equal. Towards

this, we denote the right hand side of (2.52) by ζ̂(t), namely let

ζ̂(t) = ζ0 e−t−λ(t) + E e−t−λ(t)

∫ t

0

es+λ(s) ds.

Now we see that, ζ̂(t) fulfills

d

dt

(
et ζ̂(t)

)
= E et

(
1 − ζ̄(t) ζ̂(t)

)
,

with ζ̂(0) = ζ0. Similarly, ζ̄(t) satisfies

d

dt

(
et ζ̄(t)

)
= E et

(
1 − ζ̄(t) ζ̄(t)

)
,
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with ζ̄(0) = ζ0.

Since ζ̄(t) is bounded we conclude that ζ̂(t) = ζ̄(t). This together with (2.52) finally
implies the desired result that

∫

R

v g(n)(v, t) dv = ζ̄(t).

To prove (2.45) we first multiply both sides of (2.42) by v2 and integrate over R with
respect to v, to get

eΛ(t)

∫

R

v2g(n)
(
ψt(v), t

)
dv =

∫

R

v2 f0(v)dv

+

∫

R

∫ t

0

eΛ(τ)v2Q+
(
g(n−1), g(n−1)

)(
ψτ (v), τ

)
dτdv.

(2.53)

With the transformation (2.30) the left hand side of (2.53) can be rewritten as

et

∫

R

(
v2e2λ(t) − 2Eq(0, t)eλ(t)v + E2q(0, t)2

)
g(n)(v, t)dv,

which in turn equals

et+2λ(t)

∫

R

v2g(n)(v, t)dv−2Eq(0, t)et+λ(t)

∫

R

vg(n)(v, t)dv+E2q(0, t)2et

∫

R

g(n)(v, t)dv.

Using the results from (2.43) and (2.44) we thus write

eΛ(t)

∫

R

v2 g(n)
(
ψt(v), t

)
dv = et+2λ(t) M

(n)
2 (t)−2E ζ̄(t) q(0, t) et+λ(t) +E2 q(0, t)2 et,

where M
(n)
2 (t) =

∫
R

v2g(n)(v, t)dv.

Use of (2.30) and (2.31) makes the second term in the sum at the right hand side of (2.53)
to take the form

∫ t

0

eτ

∫

R

(
v2 e2λ(τ) − 2E q(τ) eλ(τ) v + E2 q(τ)2

)
Q+

(
g(n−1), g(n−1)

)
(v, τ)dvdτ.

This can be split into three terms as

∫ t

0

eτ+2λ(τ)

∫

R

v2 Q+
(
g(n−1), g(n−1)

)
(v, τ) dv dτ

− 2E

∫ t

0

q(τ) eτ+λ(τ)

∫

R

v Q+
(
g(n−1), g(n−1)

)
(v, τ) dv dτ (2.54)

+ E2

∫ t

0

eτ q(τ)2
∫

R

Q+
(
g(n−1), g(n−1)

)
(v, τ) dv dτ.
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We recall that
∫

R

Q+
(
g(n−1), g(n−1)

)
(v, τ) dv = 1,

∫

R

v Q+
(
g(n−1), g(n−1)

)
(v, τ) dv = 0, and (2.55)

∫

R

v2 Q+
(
g(n−1), g(n−1)

)
(v, τ) dv =

∫

R

v2 g(n−1)(v, τ) dv,

so that the sum in (2.54) reduces to

∫ t

0

eτ+2λ(τ) M
(n−1)
2 (τ) dτ + E2

∫ t

0

eτ q(τ)2 dτ.

Now we put the pieces together and rearrange the terms so as to rewrite (2.53) as

et+2λ(t)M
(n)
2 (t) = 2Eζ̄(t)q(0, t)et+λ(t) − E2q(0, t)2et + 1

+

∫ t

0

eτ+2λ(τ)M
(n−1)
2 (τ)dτ + E2

∫ t

0

eτ q(τ)2dτ. (2.56)

The next step is to differentiate (2.56) with respect to time, but first we note that

2E
d

dt

(
ζ̄(t) q(0, t) et+λ(t)

)
= 2λ′′(t)q(0, t)et+λ(t) + 2

(
λ′(t)

+ λ′(t)2
)
q(0, t) et+λ(t) + 2λ′(t)et+2λ(t).

We also have λ′′(t) = E2 − λ′(t) − λ′(t)2, so that

2E
d

dt

(
ζ̄(t) q(0, t) et+λ(t)

)
= 2E2q(0, t)et+λ(t) + 2λ′(t)et+2λ(t).

Since d
dtq(0, t) = eλ(t),

−E2 d

dt

(
q(0, t)2 et

)
= −2E2q(0, t)et+λ(t) − E2q(0, t)2et.

Computing the time derivatives of the last two terms on the right hand side of (2.56) we

have et+2λ(t) M
(n−1)
2 (t) and E2 et q(0, t)2 respectively.

Combining all these terms gives

d

dt

(
et+2λ(t)M

(n)
2 (t)

)
= 2λ′(t)et+2λ(t) + et+2λ(t)M

(n−1)
2 (t).

We rewrite the right hand side of this and get

d

dt

(
et+2λ(t) M

(n)
2 (t)

)
= 2λ′(t) et+2λ(t) + et+2λ(t) + et+2λ(t)

(
M

(n−1)
2 (t) − 1

)
.
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Supposing that M
(n−1)
2 (t) = 1, then the last term in the above sum is zero so that the

remaining terms can be rewritten as

d

dt

(
et+2λ(t) M

(n)
2 (t)

)
=

d

dt

(
et+2λ(t)

)
.

Integration and rearrangement of the terms gives

M
(n)
2 (t) =

(
M

(n)
2 (0) − 1

)
e−t−2λ(t) + 1.

This leads to the result that M
(n)
2 (t) = 1, namely

∫

R

v2 g(n)(v, t) dv = 1.

This completes the proof of Lemma 2.4. ¥

Proof of Theorem 2.2: It suffices to prove g(n) → f in L1, because in view of the
boundedness of

∫
R

v2g(n)dv this would imply that
∫

R
vf(v, t) dv = ζ̄.

By construction fn ≤ gn. We thus have
∫

R

∣∣f − g(n)
∣∣ dv = 2

∫

{f≥g(n)}

(
f − g(n)

)
dv −

∫

R

(
f − g(n)

)
dv.

But
∫

R
f(v, t)dv =

∫
R

g(n)(v, t)dv = 1, so we find
∫

R

∣∣f − g(n)
∣∣ dv = 2

∫

{f≥g(n)}

(
f − g(n)

)
dv

≤ 2

∫

R

(
f − f (n)

)
dv → 0,

when n → ∞. In the following section we will prove that
∫

R
v4g(n)dv is uniformly

bounded in n, and from that we may conclude also that
∫

R
v2f(v, t) dv = 1.

Almost the same argument implies the uniqueness result in Theorem 2.3. In fact, if
f∗(v, t) is any solution to (2.33) then

f∗(v, t) = Γf0

(
f∗

)
(v, t).

The monotonicity of Q+, and thus that of Γf0
, then implies that, for all n,

f (n)(v, t) ≤ f∗(v, t),

and the same holds for f(v, t) = limn→∞ f (n)(v, t). But
∫

R

f∗(v, t)dv =

∫

R

f(v, t)dv = 1,

and thus f∗ = f . ¥
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2.4 On higher order moments

What we have studied in Lemma 2.4 is an explicit form of the first few moments of the
iterates. In this section we continue to look at the third and fourth moments of the
iterates in detail, thereby demonstrating how the method can be used to get a general
form for all other higher order moments of the iterates. In a similar way, we derive a
general form to the higher order moments of the solution directly from the main equation.

Notation. For k = 1, 2, . . ., let M
(n)
k (t) denote moment of order k of the iterate g(n)(v, t),

and let Mk(t) denote moment of order k of the solution f(v, t), i.e.

M
(n)
k (t) =

∫

R

vk g(n)(v, t) dv,

Mk(t) =

∫

R

vk f(v, t) dv.

We start with the third moment of the iterates. We multiply both sides of (2.42) by v3

and integrate both sides of the resulting expression over R with respect to v to get

eΛ(t)

∫

R

v3g(n)
(
ψt(v), t

)
dv =

∫

R

v3f0(v)dv

+

∫

R

∫ t

0

eΛ(τ) v3 Q+
(
g(n−1), g(n−1)

)(
ψτ (v), τ

)
dτdv.

(2.57)

Use of the transformation (2.30) turns the left hand side of (2.57) in to

et

∫

R

(
v3e3λ(t) − 3E q(t) e2λ(t) v2 + 3E2 q(t)2 eλ(t) v − E3 q(t)3

)
g(n)(v, t) dv,

where q(t) = q(0, t). This in turn equals

et+3λ(t)

∫

R

v3g(n)(v, t) dv − 3E q(t) et+2λ(t)

∫

R

v2g(n)(v, t)dv

+ 3E2 q(t)2et+λ(t)

∫

R

vg(n)(v, t)dv − E3 q(t)3 et

∫

R

g(n)(v, t)dv.

(2.58)

By Lemma 2.4, (2.58) equals

et+3λ(t)M
(n)
3 (t) − 3E q(t) et+2λ(t) + 3E2 q(t)2 et+λ(t)ζ̄(t) − E3 q(t)3 et. (2.59)

Using (2.30), the second term in the sum on the right hand side of (2.57) takes the form

∫ t

0

eτ+3λ(τ)

∫

R

v3Q+dv dτ − 3E

∫ t

0

q(τ) eτ+2λ(τ)

∫

R

v2Q+dv dτ +

+ 3E2

∫ t

0

q(τ)2eτ+λ(τ)

∫

R

vQ+dvdτ − E3

∫ t

0

q(τ)3eτ

∫

R

Q+dvdτ,

(2.60)

31



where Q+ = Q+
(
g(n−1), g(n−1)

)
(v, τ). Noting that

∫
R

v3Q+dv = 0 and using (2.55) the
sum (2.60) reduces to

−3E

∫ t

0

q(τ) eτ+2λ(τ) dτ − E3

∫ t

0

q(τ)3 eτ dτ. (2.61)

We use (2.59) and (2.61) in (2.57), rearrange the terms so that

et+3λ(t)M
(n)
3 (t) = M

(n)
3 (0) + 3Eq(t)et+2λ(t) − 3E2q(t)2et+λ(t)ζ̄(t) +

+ E3q(t)3et − 3E

∫ t

0

q(τ)eτ+2λ(τ)dτ − E3

∫ t

0

q(τ)3eτdτ.

Taking the time derivative of both sides we have

d

dt

(
et+3λ(t)M

(n)
3 (t)

)
= 3Eet+3λ(t) + 3Eq(t)et+2λ(t) + 6Eλ′(t)q(t)et+2λ(t)

− 6Eλ′(t)q(t)et+2λ(t) − 3E3q(t)2et+λ(t) + 3E3q(t)2et+λ(t)

+ E3q(t)3et − 3Eq(t)et+2λ(t) − E3q(t)3et,

which, after simplification, reduces to

d

dt

(
et+3λ(t)M

(n)
3 (t)

)
= 3E et+3λ(t). (2.62)

Integration gives

M
(n)
3 (t) = M

(n)
3 (0) e−t−3λ(t) + 3E e−t−3λ(t)

∫ t

0

es+3λ(s)ds.

Since this is independent of n we have, as n → ∞, M
(n)
3 (t) → M3(t) where

M3(t) = M3(0) e−t−3λ(t) + 3E e−t−3λ(t)

∫ t

0

es+3λ(s)ds.

To study the fourth moment of the iterates we multiply both sides of (2.42) by v4 and
integrate both sides of the resulting expression over R with respect to v. This gives

eΛ(t)

∫

R

v4g(n)
(
ψt(v), t

)
dv =

∫

R

v4f0(v)dv +

+

∫

R

∫ t

0

eΛ(τ)v4Q+
(
g(n−1), g(n−1)

)(
ψτ (v), τ

)
dτdv.

(2.63)

We rewrite this expression using (2.30), and obtain

eΛ(t)

∫

R

v4g(n)
(
ψt(v), t

)
dv =

4∑

j=0

(−1)4−j

(
4

j

)(
E q(t)

)4−j
et+jλ(t)M

(n)
j (t), (2.64)
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which in turn equals

2∑

j=0

(
4

j

)(
−E q(t)

)4−j
et+jλ(t)M

(n)
j (t) − 4Eq(t)et+3λ(t)M

(n)
3 (t) + et+4λ(t)M

(n)
4 (t). (2.65)

Another use of (2.30) makes the second term in the sum at the right hand side of (2.63)
to be

3∑

j=0

(
4

j

)
(−E)4−j

∫ t

0

q(τ)4−jeτ+jλ(τ)

∫

R

vj Q+dvdτ +

∫ t

0

eτ+4λ(τ)

∫

R

v4 Q+dvdτ,

where again Q+ = Q+
(
g(n−1), g(n−1)

)
(v, τ).

Collecting and rearranging the terms gives

et+4λ(t)M
(n)
4 (t) = M

(n)
4 (0) + 4Eq(t)et+3λ(t)M

(n)
3 (t) +

∫ t

0

eτ+4λ(τ)

∫

R

v4 Q+dvdτ

+
2∑

j=0

(−1)j+1

(
4

j

)(
E q(t)

)4−j
et+jλ(t)M

(n)
j (t)

+

1∑

j=0

(
4

2j

)
E4−2j

∫ t

0

q(τ)4−2jeτ+2jλ(τ)M
(n−1)
0 (τ)M

(n−1)
j (τ)dτ.

(2.66)

Here we have used∫

R

Q+
(
g(n−1), g(n−1)

)
(v, τ)dv = M

(n−1)
0 (τ)M

(n−1)
0 (τ),

∫

R

v2 Q+
(
g(n−1), g(n−1)

)
(v, τ)dv = M

(n−1)
0 (τ)M

(n−1)
2 (τ).

Of the terms in the right hand side of (2.66) the only one depending on n is
∫ t

0

eτ+4λ(τ)

∫

R

v4 Q+
(
g(n−1), g(n−1)

)
(v, τ) dv.

Therefore

et+4λ(t)
(
M

(n)
4 (t) − M

(n−1)
4 (t)

)

=

∫ t

0

eτ+4λ(τ)

∫

R

v4
(
Q+

(
g(n−1), g(n−1)

)
− Q+

(
g(n−2), g(n−2)

))
dvdτ

which in turn equals
∫ t

0

eτ+4λ(τ)

∫

R2

∫ π

−π

[
g(n−1)(v)g(n−1)(v∗) − g(n−2)(v)g(n−2)(v∗)

]

×
[
v cos θ − v∗ sin θ

]4 1

2π
dθ dv dv∗ dτ.

(2.67)
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Here we use

g(n−1)(v)g(n−1)(v∗) − g(n−2)(v)g(n−2)(v∗)

=
(
g(n−1)(v) − g(n−2)(v)

)
g(n−1)(v∗) + g(n−2)(v)

(
g(n−1)(v∗) − g(n−2)(v∗)

)
,

and

1

2π

∫ π

−π

(
v cos θ − v∗ sin θ

)4
dθ

= v4 1

2π

∫ π

−π

cos4 θ dθ + 6v2v2
∗

1

2π

∫ π

−π

cos2 θ sin2 θ dθ + v4
∗

1

2π

∫ π

−π

sin4 θ dθ.

=
3

8
v4 +

3

4
v2v2

∗ +
3

8
v4
∗.

Therefore (2.67) is equal to

∫ t

0

eτ+4λ(τ)

∫

R2

[ (
g(n−1)(v) − g(n−2)(v)

)
g(n−1)(v∗) +

+ g(n−2)(v)
(
g(n−1)(v∗) − g(n−2)(v∗)

) ] (
3

8
v4 +

3

4
v2v2

∗ +
3

8
v4
∗

)
dv dv∗ dτ.

(2.68)

Note that
∫

R

v2
(
g(n−1)(v) − g(n−2)(v)

)
dv = 0,

and recall also that
∫

R
g(n)(v)dv = 1. What remains after simplification is

3

4

∫ t

0

eτ+4λ(τ)
(
M

(n−1)
4 (τ) − M

(n−2)
4 (τ)

)
dτ.

So we have

M
(n)
4 (t) − M

(n−1)
4 (t) =

3

4
e−t−4λ(t)

∫ t

0

eτ+4λ(τ)
(
M

(n−1)
4 (τ) − M

(n−2)
4 (τ)

)
dτ.

It then follows that {M (n)
4 }∞n=1 is convergent in a sufficiently small interval 0 < t < t̄ and

that the limit M4(t) must satisfy

d

dt
M4(t) = −4Eζ(t)M4(t) + 4EM3(t) − M4(t) +

3

4
M4(t) +

3

4
. (2.69)

The solution can be extended from the interval (0, t̄ ] to the whole of R+, and we conclude
from (2.69) that M4(t) remains bounded for all t if it is bounded at t = 0.

The third moment, M3(t) satisfies the equation

d

dt
M3(t) = 3E − 3Eζ(t)M3(t) − M3(t).

34



By formal calculations we can derive an explicit differential equation for any moment
Mk(t), where k is a positive integer. We recall the main equation

∂f

∂t
+ E

∂

∂v

((
1 − ζ(t) v

)
f
)

= Q(f, f). (2.70)

Write Q = Q+ − f , multiply both sides of (2.70) by vk, and integrate with respect to v,
to get
∫

R

vk ∂f

∂t
dv+E

∫

R

vk ∂

∂v

((
1−ζ(t) v

)
f
)
dv =

∫

R

vkQ+(f, f)(v)dv−
∫

R

vkf(v, t)dv. (2.71)

With integration by parts and rearrangement of the terms, (2.71) can be rewritten as

d

dt
Mk(t) = k E Mk−1(t) − k E ζ(t)Mk(t) − Mk(t) +

∫

R

vk Q+(f, f)(v) dv. (2.72)

The last term in the sum (2.72), which involves the integral of Q+ can always be calcu-
lated in terms of Mj(t) where j ≤ k. For this we first note, for each odd k

∫

R

vkQ+(f, f)(v)dv =

∫

R2

∫ π

−π

(v′)kf(v)f(v∗)
1

2π
dθdv∗dv = 0.

Thus, for each odd k, (2.72) takes the form

d

dt
Mk(t) = k E Mk−1(t) − k E ζ(t)Mk(t) − Mk(t). (2.73)

If k is even, so that k = 2m for some m ∈ N, we have that
∫

R

vk Q+(f, f)(v) dv =

∫

R

v2m Q+(f, f)(v) dv

=

∫

R

∫

R

∫ π

−π

(v′)2mf(v) f(v∗)
1

2π
dθ dv∗ dv.

This in turn equals

2m∑

j=0

(
2m

j

)∫

R

v2m−j f dv

∫

R

vj f dv

[
1

2π

∫ π

−π

cos2m−j θ sinj θ dθ

]

=

m∑

j=0

(
2m

2j

)
(2j − 1)!! (2m − 2j − 1)!!

(2m)!!

∫

R

v2m−2jf dv

∫

R

v2jf dv.

We thus have, for each even k

∫

R

vkQ+(f, f)(v)dv =

k/2∑

j=0

(
k

2j

)
(2j − 1)!! (k − 2j − 1)!!

k!!
Mk−2j(t)M2j(t). (2.74)
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The double factorial m!! is defined by

m!! =





m · (m − 2) · . . . 5 · 3 · 1, m > 0 odd
m · (m − 2) · . . . 6 · 4 · 2, m > 0 even
1, m = −1, 0.

We thus have established the result that

Lemma 2.5. For k = 1, 2, . . ., let Mk(t) denote moment of order k of the solution f(v, t)
to (2.25). Then Mk(t) satisfies the differential equation

d

dt
Mk(t) = k E Mk−1(t) − k E ζ(t)Mk(t) − Mk(t) +

∫

R

vkQ+(f, f)(v)dv, (2.75)

where the integral in the last term can be computed in terms of Mj(t), j ≤ k.

To illustrate how higher order moments of the solution evolve in time we take a closer
look at the first few cases of (2.72). Towards this, we notice that

∫

R

v2 Q+(f, f)(v) dv = M2(t),

∫

R

v4 Q+(f, f)(v) dv =
3

4
M4(t) +

3

4
M2(t)M2(t),

∫

R

v6 Q+(f, f)(v) dv =
5

8
M6(t) +

15

8
M4(t)M2(t).

These results used in (2.72) give

d

dt
M2(t) = 2E ζ(t) − 2E ζ(t)M2(t),

d

dt
M4(t) = 4E M3(t) − 4E ζ(t)M4(t) − 1

4
M4(t) +

3

4
M2(t)M2(t),

d

dt
M6(t) = 6E M5(t) − 6E ζ(t)M6(t) − 3

8
M6(t) +

15

8
M4(t)M2(t).

We then solve the resulting system of differential equations, where k = 1, 2, . . . , 7, with
initial data Mk(0) = 0 for k = 1, 3, 5, 7; M2(0) = 1, M4(0) = 3, and M6(0) = 15.
Figure 2.2 shows part of this result, illustrating the evolution of the first four moments
of the solution f . The evolution of the other moments, namely Mk(t) with k = 5, 6, 7,
are shown in Figure 2.3. Here we use E =

√
2. This choice of E and Mk(0) will enable

us to compare these results with those obtained from Monte Carlo simulations which are
presented in Figure 4.10 in the section on numerical results.
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Figure 2.2: The evolution of moments of the solution, Mk(t) with k = 1, 2, 3, 4, according
to (2.72), (E =

√
2).
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Figure 2.3: The evolution of moments of the solution, Mk(t) with k = 5, 6, 7, according
to (2.72), (E =

√
2).

37



2.5 The stationary problem

In this section we formulate the stationary problem associated with the time-dependent
thermostatted Kac equation (2.8) and present a summary of the main results in Paper I.
As an extension of these results, we also discuss the singular behavior that Q+(f, f)
shows at those points where the stationary solution f has singularities.

A time-independent solution of the thermostatted Kac equation satisfies the following
equation

E
d

dv

((
1 − ζ v

)
f(v)

)
= Q(f, f)(v), (2.76)

where

ζ =

∫

R

v f(v) dv, (2.77)

and

Q(f, f)(v) =

∫

R

∫ π

−π

(
f(v′) f(v′

∗) − f(v) f(v∗)
) 1

2π
dθ dv∗. (2.78)

With the condition
∫

R
f(v) dv = 1, the collision integral (2.78) can be rewritten as

Q(f, f)(v) = Q+(f, f)(v) − f(v). (2.79)

Now we multiply both sides of (2.76) by v, integrate the resulting expression with respect
to v, and note that

∫
R

vQ+(f, f)(v)dv =
∫

R
v′Q+(f, f)(v)dv = 0. This gives, on the

one hand
∫

R

v Q(f, f)(v) dv =

∫

R

v Q+(f, f)(v) dv −
∫

R

v f(v) dv = − ζ,

and on the other hand, by partial integration,

∫

R

v
d

dv

((
1 − ζ v

)
f(v)

)
dv = −

∫

R

(
1 − ζ v

)
f(v)dv = −1 + ζ2.

These in turn give that ζ2 + (1/E)ζ − 1 = 0. Of the two roots to this equation, only one
is possible if the energy

∫
R

v2 f(v) dv = 1, namely

ζ =
2E√

1 + 4E2 + 1
. (2.80)

This gives the value of ζ in terms of E, the magnitude of the external force. We remark
that, this value of ζ coincides with ζ+ which was calculated in (2.23). Further, for any
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E > 0, we see from (2.80) that 0 < ζ < 1, where in the limit E → ∞ we have that ζ → 1
and in the limit E → 0 we have that ζ → 0.

Using (2.79) in (2.76) results in

(
1

E
− ζ

)
f(v) +

(
1 − ζ v

) d

dv
f(v) =

1

E
Q+(f, f)(v). (2.81)

With the notations κ = 1
ζ and γ = 1

Eζ − 1, equation (2.81) takes the form

γ f(v) − (v − κ)f ′(v) = (γ + 1)Q+(f, f)(v),

or, when v 6= κ,

f ′(v) − γ

v − κ
f(v) = −γ + 1

v − κ
Q+(f, f)(v).

We then find the integrating factor |v − κ|−γ , so that

d

dv

(
1

|v − κ|γ f(v)

)
= − γ + 1

|v − κ|γ+1
Q+(f, f)(v).

Any solution to (2.76), with
∫

R
f(v) dv = 1 and

∫
R

v2 f(v) dv = 1 , satisfies

f(v) = A(f)(v),

where A(f)(v) is defined by

A(f)(v) =
1

|v − κ|

∫

R

Φ

(
w − κ

v − κ

)
Q+(f, f)(w)dw, (2.82)

with Φ : R → [0,∞) given by

Φ(y) =
γ + 1

|y|γ+1
11{y>1}(y).

The main result in Paper I is the following:

Theorem 2.4. For all field strengths E > 0, the mapping A defined by (2.82) has a
nonnegative fixed point f , which is a solution to (2.76)–the stationary Kac equation with
a Gaussian thermostat. This solution satisfies

(i)
∫

R
f(v)dv = 1,

∫
R

vf(v)dv = ζ, and
∫

R
v2f(v)dv = 1.

(ii)
∫

R
v2mf(v)dv = Cm,E, for all positive integers m, where Cm,E depends only on E

and m. The value of these constants can be computed recursively.

(iii) f ∈ C
(
R r {κ}

)
.
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(iv) For E <
√

2, f ∈ C(R);
for E =

√
2, f has a logarithmic singularity near v =

√
2; and

for E >
√

2, f has a singularity of the form |v − κ|γ near v = κ.

The result that, for E <
√

2, f ∈ C(R) gives boundedness in Q+(f, f). This ceases
to be the case if the field E is sufficiently large. We thus make some calculations to
briefly study the behavior of Q+(f, f) at those points where f has power-like singularity.
Towards this we recall that

Q+(f, f)(v) =

∫

R

∫ π

−π

f(v′) f(v′
∗)

1

2π
dθ dv∗,

where v′ = v cos θ − v∗ sin θ and v′
∗ = v sin θ + v∗ cos θ. By a change of variables, Q+ can

be rewritten as

Q+(f, f)(v) =

∫ +∞

|v|
g(r)

r√
r2 − v2

dr,

where

g(r) =
1

2π

∫ π

−π

f(r cos θ) f(r sin θ) dθ.

If f(v) ∼ |v − κ|γ near v = κ, then

g(r) >

∫ π/8

−π/8

|r cos(θ + π/4) − κ|γ |r sin(θ + π/4) − κ|γ dθ

= C

∫ π/8

−π/8

∣∣∣∣
r√
2

cos θ − r√
2

sin θ − κ

∣∣∣∣
γ ∣∣∣∣

r√
2

sin(θ) +
r√
2

cos(θ) − κ

∣∣∣∣
γ

dθ.

This in turn gives

g(r) ∼
∫ π/8

−π/8

∣∣∣r sin(θ) −
(
r −

√
2κ

)∣∣∣
γ ∣∣∣r sin(θ) +

(
r −

√
2κ

)∣∣∣
γ

dθ.

This finally makes g(r) ∼
∣∣r −

√
2 κ

∣∣1+2γ
near r ∼

√
2 κ. With this we see that

Q+
(
f, f

)(√
2κ

)
∼

∫ R

√
2κ

|r −
√

2 κ|1+2γ r√
r2 − 2κ2

dr

=

∫ R

√
2κ

|r −
√

2 κ| 12+2γ r

|r +
√

2 κ| 12
dr,

where R is large. This is integrable only when 1
2 + 2 γ > −1, i.e. γ > − 3

4 . This in turn

corresponds, from the definition of γ and the relation (2.80), to E < 2
√

5 ∼ 4.47.
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2.6 Asymptotic solutions to the stationary problem

In this section we present a method of constructing an asymptotic solution to the sta-
tionary problem (2.76). This will enable us to study the effect of the force field on the
behavior of the solution. If E = 0, then the solution to the stationary thermostatted Kac
equation is the Maxwellian

M(v) =
1√
2π

exp

(
− v2

2

)
,

which is chosen to have unit mass and energy. For the Kac equation we necessarily have
that

∫
R

v M(v) dv = 0.

In this section, the field strength is denoted by ε, to indicate that it is relatively small.
Then

d

dv

((
1 − ζ v

)
f(v)

)
=

1

ε
Q(f, f)(v). (2.83)

We may see this as fixing a time scale which is adapted to the field strength, and increasing
the jump rate. For the Boltzmann equation it corresponds to decreasing the mean free
path. A standard technique for studying the limit when ε → 0 is the Hilbert expansion.

Having the form of the steady current ζ as a continuous function of ε > 0, given in (2.80),
we perform a series expansion of type ζ =

∑∞
k=1 ζ̃k εk for small values of ε and get

ζ =

∞∑

k=1;k odd

(
1/2

(k + 1)/2

)
2k εk, (2.84)

where, for r ∈ R, we use the usual combinatorial notation

(
r

k

)
=

r(r − 1) · · · (r − (k − 1))

k!
.

From (2.84) we deduce that ζ0 = 0, and for k = 1, 2, 3, . . .

ζ̃k =





0 , for k even(
1/2

(k + 1)/2

)
2k, for k odd.

(2.85)

We now look for a solution f(v) to (2.76) in terms of a power series in ε:

f(v) =

∞∑

k=0

εk fk(v). (2.86)
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Corresponding to each of the terms in this sum we also introduce the quantities ek =∫
R

v2 fk(v) dv, and note that e0 = 1 and ek = 0 for k = 1, 2, 3, . . .. To be used in
conjunction with these conditions is the result that

∫
R

vm M(v) dv = 0 for all odd m, and∫
R

vm M(v) dv > 0 for all even m.

Inserting the formal series (2.86) in to the stationary equation (2.76) gives

∞∑

k=0

εk


 d

dv
fk −

k∑

j=0

ζk−j

(
fj + v

d

dv
fj

)
 =

∞∑

k=0

εk−1Qk, (2.87)

where

ζk =

∫

R

v fk(v) dv, (2.88)

and for k = 0, 1, 2, . . .

Qk =

k∑

j=0

Q(fj , fk−j). (2.89)

In this sum, we have the bilinear form associated with the operator Q

Q(f, g) =
1

2

∫

R

∫ π

−π

(
f ′
∗g

′ + f ′g′∗ − f∗g − fg∗
) 1

2π
dθdv∗, (2.90)

with the notation that f∗ ≡ f(v∗), f ′
∗ ≡ f(v′

∗), f ′ ≡ f(v′), and f ≡ f(v).

Multiplying both sides of (2.87) with v and integrating the resulting expressions over R

with respect to v shows that ζk and ζ̃k satisfy the same recursive relation, and therefore
ζk = ζ̃k.

Matching various orders in ε, we find a sequence of equations that can be solved recur-
sively for fk, similar to the Hilbert expansion of the Boltzmann equation. Accordingly,
at the ε−1 level, we have that Q(f0, f0) = 0, which holds only if f0 = M .

Rewriting (2.89) as

Qk = Q(fk,M) + Q(M,fk) +

k−1∑

j=1

Q(fj , fk−j),

we note that 2Q(M,fk) acts as a linear operator on the unknown fk, while the remainder
can be written as a source term, which we denote by M Sk−1. It is also convenient to
put fk = M hk, with h0 = 1, and to consider the hk as the unknown. Thus Qk takes the
form

Qk = M Lhk + M Sk−1,
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where the linearized collision operator L is given by

Lhk = 2M−1 Q(M,Mhk)

=

∫

R

∫ π

−π

M∗
(
h′

k∗ + h′
k − hk∗ − hk

) 1

2π
dθ dv∗. (2.91)

Thus at the εk level, one obtains

d

dv
fk −

k−1∑

j=0

ζk−j

(
fj + v

d

dv
fj

)
= M Lhk+1 + M Sk, (2.92)

which is equivalent to

−v hk +
d

dv
hk −

k−1∑

j=0

ζk−j

(
hj − v2hj + v

d

dv
hj

)
− Sk = Lhk+1. (2.93)

Here ζk is given by (2.85). Note that d
dv (hj M) =

(
d
dv hj − v hj

)
M . Note also that, the

sum in the left hand side of (2.93) runs up to j = k − 1, because ζ0 = 0.

We see from (2.91) that L is self adjoint with respect to M(v) dv. Moreover

Lhk = 0 if and only if hk = a + bv2, a, b ∈ R,

i.e. Ker(L) = {a + b v2 : a, b ∈ R}.

It then follows that Lhk+1 = ϕ has a solution if and only if ϕ ⊥ ker(L∗) = ker(L), i.e.
if

∫

R

ϕ (a + b v2)M(v) dv = 0.

The solution is unique up to a polynomial α + β v2 ∈ ker(L). The Hilbert procedure
consists in choosing α and β so that with hk + α + β v2 inserted in to (2.93) makes the
left hand side orthogonal to Ker(L). It is then possible to solve for hk+1, again modulo
a polynomial in ker(L).

The simple structure of the collision operator in the Kac equation makes it possible to
perform very explicit calculations. We first note that, for a fixed non-negative integer m,
if gm(v) = vm, then Lgm(v) is given by

∫

R

∫ π

−π

M∗

[ m∑

j=0

(
m

j

)
vm−jvj

∗

[
(−1)m−j sinm−j θ cosj θ+cosm−j θ sinj θ

]
−vm

∗ −vm

]
dθ

2π
dv∗.
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It then follows that,

Lgm(v) = −gm(v), for all odd m,

Lg0(v) = Lg2(v) = 0,

Lg4(v) = −1

4

(
v4 − 6v2 + 3

)
, (2.94)

Lg6(v) = −3

8

(
v6 − 5v4 − 15v2 + 15

)
, etc....

In fact,

Lg2i =

∫

R

∫ π

−π

M∗ v2i
((

sin2i θ + cos2i θ
)
− 1

) dθ

2π
dv∗ + lower order terms

= − v2i

(
1 − 1

π

∫ π

−π

cos2i θdθ

)
+ lower order terms.

Moreover, S0 = 0 and for k = 2, 3, 4, . . . we have

Sk = M−1
k∑

j=1

Q(Mhj ,Mhk−j+1)

=
1

2

k∑

j=1

∫

R

∫ π

−π

M∗
[
h′

j∗h
′
k−j+1 + h′

jh
′
k−j+1∗

− hj∗hk−j+1 − hjhk−j+1∗
] 1

2π
dθ dv∗. (2.95)

Suppose now that, hk(v) is a polynomial of degree at most k, for k ≤ k0:

hk(v) = ak,k vk + ak,k−1 vk−1 + . . . + ak,0.

The left hand side of (2.93) is then a polynomial of degree at most k + 1(k ≤ k0),
because Sk contains products of the form hj hk+1−j , and the sum in (2.93) runs up to
j = k−1 only. The coefficient ak+1,k+1 of vk+1 in hk+1 can now be determined uniquely.
Similarly, all coefficients in the polynomial hk+1 can be determined, and so also hk0+1 is
a polynomial of degree at most k0 + 1.

For k = 1, 2, . . ., at each εk level of (2.93), we use the conditions on the ek, and the
form of Sk as given in (2.95), and determine, as an illustration, the first few terms of the
unknown functions hk:

hk(v) = 0, for all even k,

h1(v) = v,

h3(v) = −v3 + 2v,

h5(v) = v5 − 6v3 + 4v, etc....
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We put these terms back in the setting of (2.86) with fk = Mhk, for k = 1, 2, . . ., together
with f0 = M . This then gives the result that, for a small ε > 0

M(v)
(
1 + εv + ε3

(
− v3 + 2v

)
+ ε5

(
v5 − 6v3 + 4v

)
+ · · ·

)
, (2.96)

solves (2.76) asymptotically.

Part of this asymptotic solution is plotted in Figure 2.4 for some values of ε. Also
depicted in Figure 2.4 is the behavior, as ε → 0, of these non-equilibrium stationary
solutions tending to the Maxwellian, thereby recovering the usual solution to the un-
derlying Boltzmann equation. As shown in Figure 2.5 the truncated series may assume
negative values which clearly is unphysical.
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Figure 2.4: Asymptotic solution to the stationary problem according to (2.96) with
external forces of relatively small magnitude.
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Figure 2.5: Use of external forces of slightly big magnitude in the asymptotic solu-
tion (2.96) causing unphysical result. More terms are needed in the expansion in order
to get a good approximation.
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Chapter 3

The Boltzmann equation

with a Gaussian thermostat

In this chapter we consider the spatially homogeneous Boltzmann equation in the presence
of an external force field and a Gaussian thermostat. Some of the questions that were
studied for the Kac equation are addressed, although mostly on a formal level.

The first section describes the thermostatted particle system. The master equation gov-
erning the time evolution of the probability density of the three-dimensional velocities
is presented. In the second section a formal derivation of the limiting Boltzmann equa-
tion is discussed. We make a closer look at the stationary equation in the final section
of the chapter. In preparation for the numerical study in the next chapter, the major
calculations are detailed for the special case where the force field is constant.

3.1 The thermostatted system

Consider a system of N velocities: vi = (vi1, vi2, vi3) ∈ R
3, i = 1, 2, . . . , N . Let the

corresponding ’master vector’ (v1,v2, . . . ,vN ) ∈ R3N be denoted by V. We study the
dynamics of such a system as the particles interact by random collisions while they are
under the influence of an external force field e ∈ R

3 and in the presence of a Gaussian
thermostat. Note that, one may consider the case where e is a function of velocity, i.e.
e = e(v). We denote by E the ’master field’

E = E(V) =
(
e(v1), e(v2), . . . , e(vN )

)
,
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and for notational convenience we also write ei = e(vi), i = 1, 2, . . . , N .

All the particles are accelerated by the field e, and in order to keep the total energy,
1
2

∑N
i=1 |vi|2, constant, the ’master field’ E must then be projected onto the tangent

plane to the energy surface S
3N−1

(√
N

)
at the point V. More precisely, between the

jumps V evolves according to

dV

dt
= E − E · V

|V|2 V ≡ F. (3.1)

Here we use the shorthand notations E · V =
∑N

i=1 ei · vi and |V|2 =
∑N

i=1 |vi|2. The
right hand side of (3.1) is the thermostatted master field, which, from now on, is denoted
by F.

Let J = J(t) and U = U(t) be defined by

J =
1

N

N∑

i=1

vi = (J1, J2, J3), (3.2)

U =
1

N

N∑

i=1

|vi|2. (3.3)

If e is constant, then (3.1) may be written in terms of J and U as

dV

dt
= E − e · J

U
V. (3.4)

Let α = (E·V)/|V|2 and write (3.1) component-wise as dvi/dt = ei−αvi. The dynamics
of U is then given by

dU(t)

dt
=

2

N

N∑

i=1

vi ·
(
ei − αvi

)
=

2

N

(
N∑

i=1

vi · ei − α
N∑

i=1

|vi|2
)

=

=
2

N

(
E · V − E · V

|V|2 |V|2
)

= 0.

This shows that U is constant in time, as it should be. It is, therefore, convenient to set
U = 1. With this we can rewrite (3.1) component-wise as

dvi

dt
= ei − 1

N

(
E · V

)
vi, i = 1, 2, . . . , N. (3.5)

We note that, these equations are coupled via E(V) · V.

If we restrict the calculations to the case where e is independent of v, then without loss
of generality we can write e = (ǫ, 0, 0). There is then very little difference between the
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one-dimensional and the three-dimensional cases. Equation (3.5) can, in this case, be
expressed, component-wise, as

dvi1(t)

dt
+ ǫ J1(t) vi1(t) = ǫ,

dvi2(t)

dt
+ ǫ J1(t) vi2(t) = 0, (3.6)

dvi3(t)

dt
+ ǫ J1(t) vi3(t) = 0,

where i = 1, 2, . . . , N . This can be solved explicitly, as soon as we have an exact expres-
sion for J1(t). This is treated in Chapter 4 where the explicit solutions are also used in
the numerical simulations.

Let ΨN be a time-dependent probability density of the N three-dimensional velocities
on S3N−1. In the presence of the external force field and with the introduction of the
Gaussian thermostat, ΨN evolves in time according to

∂

∂t
ΨN + ∇ ·

(
F ΨN

)
= G

(
ΨN

)
. (3.7)

Here G is as given in (1.28), and ∇·
(
FΨN

)
is a shorthand notation for

∑N
i=1

∂
∂vi

[
Fi ΨN

]

with Fi = ei − 1
N

(
E ·V

)
vi. Equation (3.7) constitutes the master equation to the three-

dimensional case and is analogous to (2.7). Using (3.5) we can also rewrite (3.7) as

∂

∂t
ΨN (V, t) +

N∑

i=1

∂

∂vi

([
ei − 1

N

(
E · V

)
vi

]
ΨN (V, t)

)
= G

(
ΨN

)
(V, t). (3.8)

3.2 The limiting Boltzmann equation

Consider the three-dimensional master equation (3.7). We assume, throughout this sec-

tion, that 1
N

∑N
i=1 |vi|2 = 1. For all fixed finite k ∈ N, let the k-particle marginal fN

k be
defined by

fN
k (v1, . . . ,vk, t) =

∫

S3(N−k)−1
(√

N−P

k

i=1 |vi|2
) ΨN (v1, . . . ,vN , t)dσk, (3.9)
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where dσk(vk+1, . . . ,vN ) is the surface element on S3(N−k)−1
(√

N − ∑k
i=1 |vi|2

)
. Spe-

cial cases of (3.9) are the one-particle marginal fN
1 and the two-particle marginal fN

2 :

fN
1 (v1, t) =

∫

S3(N−1)−1
(√

N−|v1|2
) ΨN (v1;v2, . . . ,vN , t) dσ1, and (3.10)

fN
2 (v1,v2, t) =

∫

S3(N−2)−1
(√

N−|v1|2−|v2|2
) ΨN (v1,v2;v3, . . . ,vN , t) dσ2. (3.11)

We recall that ΨN is said to have the Boltzmann property if

lim
N→∞

fN
k (v1, . . . ,vk, t) =

k∏

j=1

lim
N→∞

fN
1 (vj , t).

The main result of this section is

Theorem 3.1. Suppose that ΨN (v1, . . . ,vN , t) is a sequence of C1-solutions to (3.7) and
that ΨN is symmetric in the variables v1, . . . ,vN . If ΨN has the Boltzmann property,
and if further

f(v, t) = lim
N→∞

fN
1 (v, t), with

∫

R3

f(v, t) dv = 1 and

∫

R3

|v|2 f(v, t) dv = 1,

exists, then f satisfies the equation

∂f

∂t
+ divv

((
e − ζe(t)v

)
f(v, t)

)
= Q(f, f)(v, t), (3.12)

where

ζe(t) =

∫

R3

e · v f(v, t) dv, (3.13)

and

Q(f, f)(v, t) =

∫

R3

∫

S2

(
f(v′, t)f(v′

∗, t) − f(v, t)f(v∗, t)
) 1

4π
dσ dv∗. (3.14)

Proof. We recall the result in Grünbaum[23] that, in the limit N → ∞, the integral in
the right hand side of (3.15) takes the form of Q(f, f) as given in (3.14). His result is
valid for the Boltzmann equation with no external force field. We assume that his result
remains valid in the present situation. For the terms in the left hand side we carry out
the proof for the general case where e = e(v), and follow similar procedure as in the
one-dimensional case.
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We differentiate fN
1 (v1, t) with respect to t and use (3.7) to get

∂

∂t
fN
1 (v1, t) =

∫

S3N−4
(√

N−|v1|2
)

∂

∂t
ΨN (v1;v2, . . . ,vN , t)dσ1

=

∫

S3N−4
(√

N−|v1|2
)

(
− ∇ ·

(
FΨN

)
+ G

(
ΨN

))
dσ1.

This in turn can be written as

∂

∂t
fN
1 (v1, t) +

∫

S3N−4
(√

N−|v1|2
) ∇·

(
FΨN

)
dσ1 =

∫

S3N−4
(√

N−|v1|2
) G

(
ΨN

)
dσ1. (3.15)

Then the rest of the proof follows through the result of Lemma 3.1 which is presented
next. ¥

Lemma 3.1. Let ΨN and f be as in Theorem 3.1. Let ζ(t) be as defined in (3.13). Let
F be as given in (3.1). Then,

lim
N→∞

∫

S3N−1(
√

N)

∇ ·
(
F ΨN

)
dσ0 = divv

((
e − ζe(t)v

)
f
)
. (3.16)

Proof. We carry out similar calculations like in the one-dimensional case. Let ϕ =
ϕ(v1) ∈ C1

0 (R3). For r > 0, let ηr = ηr(|V|). This is to be taken as the characteristic

function of the ball {V : |V| < r}. Then ηr is radial, so that ∇ηr ·F =
∑N

i=1
∂ηr

∂vi

·Fi = 0,

where Fi = ei −
(
E·V
N

)
vi.

On the one hand, we have
∫

S3N−1(
√

N)

ϕ(v1) ∇ ·
(
FΨN

)
dσ0

=

∫

|v1|<
√

N

ϕ(v1)

√
N

N − |v1|2
∫

S3N−4
(√

N−|v1|2
) ∇ ·

(
FΨN

)
dσ1 dv1

=

∫

R3

ϕ(v1)

√
N

N − |v1|2
∫

S3N−4
(√

N−|v1|2
) ∇ ·

(
FΨN

)
dσ1 dv1, (3.17)

since ϕ has compact support in R
3.

On the other hand, we formally have

∫

S3N−1(
√

N)

ϕ ∇ ·
(
F ΨN

)
dσ0 =

d

dr

{∫

R3N

ηr ϕ ∇ ·
(
FΨN

)
dV

}∣∣∣∣
r=

√
N

. (3.18)
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Integration by parts gives
∫

R3N

ηr ϕ ∇ ·
(
F ΨN

)
dV = −

∫

R3N

∇
(
ηr ϕ

)
·
(
F ΨN

)
dV

= −
∫

R3N

ϕ∇ηr ·
(
FΨN

)
dV −

∫

R3N

ηr ∇ϕ ·
(
FΨN

)
dV.

Since ∇ηr · F = 0, the first integral at the right hand side vanishes, and thus

∫

R3N

ηr ϕ ∇ ·
(
F ΨN

)
dV = −

∫

R3

∂ϕ

∂v1
·
{∫

R3N−3

ηr F1 ΨN dṼ

}
dv1,

where F1 = F1(v1) = e1 −
(
E·V
N

)
v1 is the first R

3–component of the master field F and

dṼ = dv2 . . . dvN . Next we rewrite the inner integral as

∫

R3N−3

ηr F1 ΨN dṼ =

∫ √
r2−|v1|2

0

{∫

S3N−4(ρ)

F1 ΨN dσ1

}
dρ.

Writing 1
N (E · V) = 1

N

(
e1 · v1 +

∑N
i=2 ei · vi

)
, the above integral can be rewritten as

∫ √
r2−|v1|2

0

{∫

S3N−4(ρ)

(
e1 −

1

N

(
e1 · v1 +

N∑

i=2

ei · vi

)
v1

)
ΨN dσ1

}
dρ.

This in turn equals

∫ √
r2−|v1|2

0

{∫

S3N−4(1)

[
e1 −

1

N

(
e1 · v1 +

N∑

i=2

e(ρωi) · ρωi

)
v1

]
ΨN ρ3N−4 dω̃

}
dρ,

where ω̃ = (ω2, . . . ,ωN ) = 1
ρ (v2, . . . ,vN ). As in the case of the Kac equation, we

differentiate with respect to r, and set r =
√

N , to get

√
N

r̃

∫

S3N−4(1)

[
e1 −

1

N

(
e1 · v1 +

N∑

i=2

e
(
r̃ωi

)
· ωi

)
v1

]
r̃3N−4ΨN dω̃,

where r̃ =
√

N − |v1|2. This then takes the form

√
N

N − |v1|2
∫

S3N−4
(√

N−|v1|2
)

(
e1 − 1

N

(
E · V

)
v1

)
ΨN dσ1.

Using Lemma 3.2, which is stated and proved below, the above expression equals

−
∫

R3

∂ϕ

∂v1

{√
N

N − |v1|2
∫

S3N−4
(√

N−|v1|2
)

(
e1 − 1

N

(
E · V

)
v1

)
ΨN dσ1

}
dv1.
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This then converges, in the limit N → ∞, to

−
∫

R3

∂ϕ

∂v1

((
e1 − ζe(t)v1

)
f(v1, t)

)
dv1.

Integration by parts gives

∫

R3

ϕ(v1) divv1

((
e1 − ζe(t)v1

)
f(v1, t)

)
dv1,

and comparing this with (3.17) gives the desired result, since ϕ is arbitrary. ¥

Lemma 3.2. Let ΨN and f be as in Theorem 3.1. Let ζ(t) be as defined in (3.13).
Then,

lim
N→∞

∫

S3N−4
(√

N−|v1|2
)

(
e1 − 1

N

(
E · V

)
v1

)
ΨN dσ1 =

(
e1 − ζe(t)v1

)
f(v1, t).

(3.19)

Proof: As in the previous proof we write E·V
N = 1

N e1 ·v1 + 1
N

∑N
i=2 ei ·vi. Then we have

∫

S3N−4
(√

N−|v1|2
)

1

N

(
E · V

)
v1 ΨN dσ1 =

=
1

N

∫

S3N−4
(√

N−|v1|2
)(e1 · v1)v1ΨNdσ1 +

+
1

N

∫

S3N−4
(√

N−|v1|2
)

(
N∑

i=2

ei · vi

)
v1ΨNdσ1.

This, due to the symmetry assumption on ΨN , equals

1

N
(e1 · v1)v1

∫

S3N−4
(√

N−|v1|2
) ΨNdσ1 +

+
N − 1

N
v1

∫

S3N−4
(√

N−|v1|2
)(e2 · v2)ΨNdσ1,

which in turn equals

1

N
(e1 · v1)v1f

N
1 (v1, t) +

(
1 − 1

N

)
v1

∫

S3N−4
(√

N−|v1|2
)(e2 · v2)ΨNdσ1.
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Those terms with factor 1/N in the above sum vanish, in the limit N → ∞. To study
the remaining term, in the limit N → ∞, we see that

∫

S3N−4
(√

N−|v1|2
) e2 · v2 ΨN dσ1 =

=

∫

|v2|<
√

N−|v1|2
e2 · v2

(√
N − |v1|2

N − |v1|2 − |v2|2
∫

S3N−7

ΨN dσ2

)
dv2

=

∫

|v2|<
√

N−|v1|2
e2 · v2

√
N − |v1|2

N − |v1|2 − |v2|2
fN
2 (v1,v2, t) dv2. (3.20)

We rewrite (3.20) as
∫

|v2|<
√

N−|v1|2
e2 · v2f

N
1 (v1, t)f

N
1 (v2, t)dv2 +

∫

|v2|<
√

N−|v1|2
e2 · v2

[√
N − |v1|2

N − |v1|2 − |v2|2
fN
2 (v1,v2, t) − fN

1 (v1, t)f
N
1 (v2, t)

]
dv2.

Under the assumption of molecular chaos, this converges, as N → ∞, to

f(v1, t)

∫

R3

e(v2) · v2 f(v2, t)dv2

which takes the form ζe(t) f(v1, t). By assumption, we also have, as N → ∞, that
∫

S3N−4
(√

N−|v1|2
) e1 ΨN dσ1 = e1 fN

1 (v1, t) → e1 f(v1, t).

Thus the result in (3.19) follows. ¥

3.3 The stationary equation

We consider (3.12) in the special case when e = (ǫ, 0, 0) so that (e ·v)/|e| = v1. Let also,
for i = 1, 2, 3,

ζi(t) =

∫

R3

vi f(v, t)dv.

In the above case ζe(t) = ǫ ζ1(t). Multiplying both sides of (3.12) by v1 and then inte-
grating with respect to v gives

∫

R3

v1
∂f

∂t
dv +

∫

R3

v1 divv

((
e − ǫ ζ1(t)v

)
f
)
dv =

∫

R3

v1 Q(f, f)(v, t)dv. (3.21)
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We recall that, for i = 1, 2, 3
∫

R3

vi Q(f, f)(v, t) dv = 0,

and that
∫

R3

v1 divv

((
e − ǫ ζ1(t)v

)
f
)
dv = − ǫ

∫

R3

f dv + ǫ ζ1(t)

∫

R3

v1 f dv

= − ǫ + ǫ ζ1(t)
2.

From these observations, we see that (3.21) takes the form

d

dt
ζ1(t) = ǫ − ǫ ζ1(t)

2.

In the same way, for i = 2 and i = 3, we have
∫

R3

vi
∂f

∂t
dv +

∫

R3

vi divv

((
e − ǫ ζ1(t)v

)
f
)
dv =

∫

R3

vi Q(f, f) dv,

so that

d

dt
ζi(t) = − ǫ ζ1(t) ζi(t),

which can also be solved to give

ζi(t) = ζi(0) exp

(
− ǫ

∫ t

0

ζ1(τ)dτ

)
.

Thus we get the following system of differential equations

d

dt
ζ1(t) = ǫ − ǫ ζ1(t)

2, (3.22)

d

dt
ζ2(t) = − ǫ ζ1(t) ζ2(t), (3.23)

d

dt
ζ3(t) = − ǫ ζ1(t) ζ3(t). (3.24)

Given an initial data ζ1(0), between −1 and +1, we solve (3.22) to get

ζ1(t) =
C − exp(−2 ǫ t)

C + exp(−2 ǫ t)
,

where C =
(
1 + ζ1(0)

)
/
(
1 − ζ1(0))

)
, so that

ζ1(t) =
1 + ζ1(0) − (1 − ζ1(0)) exp(−2 ǫ t)

1 + ζ1(0) + (1 − ζ1(0)) exp(−2 ǫ t)

=
ζ1(0) cosh(ǫ t) + sinh(ǫ t)

ζ1(0) sinh(ǫ t) + cosh(ǫ t)
. (3.25)
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Looking at (3.25) we note that ζ1(t) → 1 as t → ∞, and the limit is independent of ǫ.

Having the form of ζ1(t) as in (3.25), and given initial data ζ2(0) we solve (3.23) to get

ζ2(t) =
2 ζ2(0)

1 + ζ1(0) + (1 − ζ1(0)) exp(−2 ǫ t)
exp(−ǫ t)

=
ζ2(0)

cosh(ǫ t) + ζ2(0) sinh(ǫ t)
. (3.26)

Similarly, given ζ3(0) we solve (3.24) and get

ζ3(t) =
ζ3(0)

cosh(ǫ t) + ζ3(0) sinh(ǫ t)
. (3.27)

Here we also notice, respectively from (3.26) and (3.27), that ζ2(t) → 0 and ζ2(t) → 0 as
t → ∞.

These observations say that, for the special case e = (ǫ, 0, 0), the current ζ(t) → 1 as
t → ∞. This shows that, in the limit t → ∞, ζ(t) is independent of ǫ, contrary to the
corresponding result for the modified Kac case. In fact, there are two different time scales
involved: the collision frequency and a typical time scale for the accelerating field. While
for the Kac equation, the collisions have an effect on the current ζ, this is not true for
the Boltzmann equation, because

∫
R3 v Q(f, f)(v) dv = 0.

Thus the stationary case of (3.12) looks like

divv

((
e − ǫv

)
f(v)

)
= Q(f, f)(v).

An equivalent way of writing this is

ǫ
∂f(v)

∂v1
− 3 ǫ f(v) − ǫv · gradvf(v) = Q(f, f)(v).

We finally note that if there are no collisions then the stationary solution is a Dirac mass
at the point (1, 0, 0). But this is a Maxwellian with zero temperature, and so this is still
a solution when the collision term is added. And in fact,

∫

R3

f(v, t)
∣∣v − (1, 0, 0)

∣∣2 dv =

∫

R3

f(v, t)
(
|v|2 − 2 v1 + 1

)
dv

= 2 − 2 ζ1(t) → 0,

when t → ∞, and so the temperature goes to zero while the kinetic energy is conserved.

So from this point of view the stationary equation is much less interesting here than for
the Kac equation, at least if one assumes uniqueness of the stationary state.
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Figure 3.1: Explicit form of ζ1(t) according to (3.25): (a) corresponds to ǫ = 0.1 and (b)
corresponds to ǫ = 0.2. A change of field strength only changes the time scale. Collisions
do not influence this result.
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Figure 3.2: Explicit form of ζ2(t) according to (3.26).
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Figure 3.3: Explicit form of ζ3(t) according to (3.27).
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Chapter 4

Computational results

The mathematical difficulties involved in achieving exact analytical solutions on the one
hand, and the need for practical calculations in rarefied gas dynamics on the other, have
initiated the development of computational techniques to the Boltzmann equation. Simu-
lation procedures, deterministic as well as stochastic types, of various levels of complexity
have evolved along with the advent of powerful computers. Examples of the latter types
are the Monte Carlo(MC) methods. Used mainly in statistical physics, MC methods have
been serving as a means of simulating real physical processes using sequences of random
numbers. The basis for MC simulations is to construct a suitable stochastic model in
which the expected value of a certain random variable is equivalent to the value of the
physical quantity to be determined. The expected value is then estimated by the average
of many independent samples representing the random variable.

One variant of MC methods which has been widely employed for the modeling of rar-
efied gas flows is the Direct Simulation Monte Carlo(DSMC) method. Studies in rarefied
gas dynamics require that calculations be performed at a molecular level, through the
computation of the motion and collisions of representative molecules. The idea in im-
plementing the DSMC method is to simulate a gas by letting a relatively small number
of particles represent the whole gas. The collisions are simulated by assuming that the
gas is homogeneous in a small space volume, and then to let all the particles in this vol-
ume evolve according to the stochastic processes similar to the models described in this
thesis. Details and recent advances on the DSMC method, the underlying mathematical
principles and its applications can be found, for e.g., in [3, 4, 11, 26].

In this chapter we present some numerical approximations of the stationary solutions
to the thermostatted kinetic equations studied in the previous chapters. We are simu-
lating a large number of trajectories to the jump processes defined on S

N−1
(√

N
)

and
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S
3N−1

(√
N

)
, as described in Section 2.1 and Section 3.1 respectively. Following this brief

introduction, we present some preliminary calculations where we give explicit formulas
which are then used in the simulation. We then describe the method of simulations
followed by discussion of the numerical results obtained.

4.1 Preliminary calculations

A random trajectory on SN−1
(√

N
)

can be computed exactly thanks to the fact that
there is an explicit solution to the evolution of the master vector V in between the
jumps. Before discussing the results, we give these formulas, and describe the method of
simulation.

For the one-dimensional velocities, we recall the definitions of J and U given in (2.3)
and (2.4) respectively, and see that U is constant in time, while J evolves according to

dJ(t)

dt
= E − E

U
J(t)2.

Having initial data vi(t0), and thus J0 ≡ J(t0), we solve for J at a later time t:

J(t) =
J0 cosh( E√

U
t) +

√
U sinh( E√

U
t)

J0√
U

sinh( E√
U

t) + cosh( E√
U

t)
.

The evolution in (2.1) can then be rewritten, component-wise, as the equations

dvi(t)

dt
+

E

U
J(t)vi(t) = E, i = 1, 2, . . . , N,

which have the solutions

vi(t) =

√
U sinh( E√

U
t) + J0 cosh( E√

U
t) − J0 + vi(t0)

cosh( E√
U

t) + J0√
U

sinh( E√
U

t)
, i = 1, 2, . . . , N. (4.1)

This describes the velocity of each particle, under the influence of the external force,
before any possible subsequent collision. We observe that, as time goes to infinity all the
velocities concentrate at

√
U , namely that

vi(t) →
√

U as t → ∞.

We adapt these calculations to the 3-dimensional case. Recall the definitions of J and U
as given in (3.2) and (3.3) respectively. As we have seen before U is constant in time,
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thus we set U = 1. The dynamics of J, in this special case, is

d

dt
J1(t) = ǫ − ǫ J1(t)

2,

d

dt
J2(t) = −ǫ J1(t)J2(t), (4.2)

d

dt
J3(t) = −ǫ J1(t)J3(t).

In the case where e depends on v one cannot, in a natural way, write a closed system
of equations for the components of J, and then it is also not possible to write separate
equations for the components of vi either, as we did in (3.6).

Given an initial state V(0), and thus J(0) = (J1(0), J2(0), J3(0)), we solve the sys-
tem (4.2) at a later time t > 0, and get

J1(t) =
J1(0) cosh(ǫ t) + sinh(ǫ t)

J1(0) sinh(ǫ t) + cosh(ǫ t)
,

J2(t) = J2(0) exp
(
− ǫ

∫ t

0

J1(τ)dτ
)
,

J3(t) = J3(0) exp
(
− ǫ

∫ t

0

J1(τ)dτ
)
.

With the explicit form of J1(t) available, the system in (3.6) is solved (for i = 1, 2, . . . , N)
to have the solutions

vi1(t) =
sinh(ǫ t) + J1(0) cosh(ǫ t) − J1(0) + vi1(0)

cosh(ǫ t) + J1(0) sinh(ǫ t)
,

vi2(t) =
vi2(0)

cosh(ǫ t) + J1(0) sinh(ǫ t)
, (4.3)

vi3(t) =
vi3(0)

cosh(ǫ t) + J1(0) sinh(ǫ t)
.

This gives the components of vi as it moves under the influence of the external uniform
force field e = (ǫ, 0, 0) before it encounters any possible collision. In the limit t → ∞, we
see that vi → (1, 0, 0) and that only the rate of convergence depends on ǫ.

4.2 The algorithm

Next we briefly describe the algorithm used in the simulations. This is essentially the
same for the one-dimensional velocities and the three-dimensional velocities. Fixed here
are the initial distribution, the collision frequency, the terminal time, and N -the total
number of velocities in the system.

61



i. Choose a waiting time randomly from an exponential distribution with rate pro-
portional to N .

ii. Let all the vi’s evolve according to (4.1) during the chosen time interval.

iii. Perform collision:

a. Choose a pair of indices i and j, i 6= j, randomly from {1, 2, . . . , N}.
b. Choose a collision parameter.

c. Compute the post-collisional velocities v′
i and v′

j according to (1.13).

iv. Repeat this, until the terminal time is reached, with all random variables taken
independently of the previous ones.

The only real difference between the two is the formula for computing the velocities after
a collision. In adapting the above algorithm to the three-dimensional case we remark
that the vi’s are to evolve according to (4.3), and the post-collisional velocities v′

i and
v′

j are to be computed according to (1.3).

Remark 4.1. Since the computational cost for each step is proportional to N (with a
rather large proportionality factor, due to the complicated expression for the exact solution
of the system of ODEs), and because the time interval between collisions is proportional
to 1/N , the total cost grows quadratically in N . Here we only use the simulations to
illustrate the mathematical results, and hence we can afford to wait for the computations
to finish. However, in real and practical situations, it would be necessary to devise a more
efficient implementation.

The simulation is also used to study the singular behavior of Q+(f, f) for the stationary
solution f . We recall that

Q+(f, f)(v) =

∫

R

∫ π

−π

f(v′) f(v′
∗)

1

2π
dθ dv∗.

For v ∈ R, through a change of variables, we can rewrite Q+(f, f)(v) as

Q+(f, f)(v) =
1

2π

∫

{u2+u2
∗
>v2}

1√
u2 + u2

∗ − v2
f(u) f(u∗) du du∗. (4.4)

To evaluate this integral by the algorithm described in Section 4.2, we let the process
run until a stationary state is obtained. Then at stage (iii. c) of the algorithm, we save
the resulting post-collisional velocities v′

i and v′
j . This gives a list of M collisional pairs

{(um, um∗)}M
m=1. The term Q+(f, f)(v) is then estimated as

1

π M

M∑

m=1

11{u2
m

+u2
m∗

>v2}√
u2

m + u2
m∗ − v2

, (4.5)

a sum which is computed for a rather large number of values for v.
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4.3 Results

We first present the results for the one-dimensional case in line with the modified Kac
equation. In presenting the simulation results, it is illustrative to first look at the case
N = 3. Having no force field (E = 0), Figure 4.1 shows the resulting one-particle
marginal. Using the result that |S2(

√
3)| = 12π in (1.22), and normalizing the resulting

distribution then we get the constant one-particle marginal f3
1 (v) = 1

2
√

3
. This is in full

agreement with the aforementioned simulation result. Figure 4.2 shows the distribution
of phase points over the surface of the sphere S2(

√
3), demonstrating the uniformity.

Figure 4.3 and Figure 4.4 show the one-particle marginals obtained as we apply force
fields of slightly higher magnitude on to the dynamics. We observe the slight departure
from a uniform distribution.

The simulation also demonstrates the competition between the collision process, which
tends to spread out phase points uniformly on the sphere, and the thermostatted force
field, which tries to keep them concentrated at (1, 1, 1) (for any N , vj(t) → 1 as E t → ∞).
For an extremely strong field E, we observe that the thermostatted field forces the most
part of the density to concentrate at the point (1, 1, 1) in the time interval between two
collisions. The one-dimensional collision corresponds to a random rotation in a randomly
chosen coordinate plane, and then the collisions would draw circles around the sphere,
along the planes vj = 1, j = 1, 2, 3. On the other hand, a very weak field would hardly
move the particles between two collision events, and then the stationary distribution
would remain almost uniform. Figure 4.5 shows an intermediary case, where the field is
strong enough to indicate the concentration along the three circles {vj = 1} ∩ S2(

√
3),

j = 1, 2, 3.

Next we consider a large number of particles, and study the one-particle distribution.
When N is sufficiently large, we expect the simulation result to approach f(v), the
stationary solution to (2.76). According to the theory, when the force field satisfies
E ≥

√
2, the stationary solution has a singularity, and in the first simulation we study

the limiting case E =
√

2 for a range of different N . A very large number of particles is
needed to show the singularity. Figure 4.6 shows the one-particle marginal for simulations
with varying N . The last one, with the highest peak corresponds to N = 106 and takes
several hundred CPU-hours on a 2 GHz Pentium PC.

Figure 4.7 shows simulations for E = 9
10

√
2, E =

√
2, and E = 11

10

√
2. For 500 particles,

one clearly sees how the maximum of the density moves with a varying field E, but it
takes large N before one can begin to see the qualitative difference between fields smaller
and bigger than E =

√
2. Figure 4.8 shows the densities for a bigger interval of f .

When E → ∞, the stationary distribution should approach a Dirac mass at v = 1.
Figure 4.9 shows how the density peaks for E = 10

√
2. The value of N used in that

simulation is 104.

63



While these simulations show that a very large number of particles is needed to accurately
demonstrate the singularity, a rather much smaller number of particles is enough if all
that one is interested in is computing moments,

∫
R

vj f(v) dv. The last graph, Figure 4.10,

shows the time evolution of the first few moments of the stationary solution f , for E =
√

2.
The number of particles is 5000 which is more than sufficient to get an accurate estimation
of the stationery values.

The results in Figures 4.11 – 4.14 show some observations on the behavior of Q+(f, f) for
the stationary solution f of (2.76). To be noted here is that when the field is sufficiently
strong (E > 2

√
5) then Q+(f, f)(v) displays a singularity at |v| =

√
2 κ as explained in

Section 2.5. This implies that even though f(v) is continuous except at v = κ, it is not
C1 as f ′(v) has a singularity at |v| =

√
2 κ.

We have also done some simulations for the three-dimensional velocity case. This is done
with N = 5000 and a force field of the form e = (0.1, 0, 0). The initial distribution is of
the form

f0(v1, v2, v3) =
1

2

(
δ−0.5 + δ0.5

) 1

2π
exp

(
−

(
v2
2 + v2

3

))
.

In the result we notice that the majority of the velocities have first component close to 1
while the other two are close to zero. This is shown in the respective velocity-marginals
in Figure 4.15 and Figure 4.16. The time evolution of Jk = 1

N

∑N
i=1 vik, with k = 1, 2, 3,

for this simulation are also shown in Figure 4.17. These results are to be compared with
the exact solutions for ζk(t) =

∫
R3 vk f(v, t) dv with k = 1, 2, 3, which were presented in

Figures 3.1–3.3 in Section 3.3.

Results from the simulation showing the time evolution of the various moments of the
solution f(v, t) are also presented in Figure 4.18. Those on the left correspond to∫

ϕ(v)f(v, t)dv with ϕ(v) = v2
1 , ϕ(v) = v2

2 , and ϕ(v) = v2
3 . Those on the right are

similar results for ϕ(v) = v2
1 + v2

2 + v2
3 and ϕ(v) = v4

1 + v4
2 + v4

3 .
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Results for the one-dimensional case
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Figure 4.1: One-particle marginal f3
1 (v) (E = 0).
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Figure 4.2: Uniform distribution of phase points on S2(
√

3). (N = 3, E = 0).
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Figure 4.3: One-particle marginal f3
1 (v) (E = 0.1).
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Figure 4.4: One-particle marginal f3
1 (v) (E = 0.5).
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Figure 4.5: The stationary distribution of phase points on S2(
√

3) for N = 3. Note the
concentration along the circles {vj = 1} ∩ S2(

√
3), j = 1, 2, 3.
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Figure 4.6: The stationary density f(v); a close-up view near the singularity point v = κ.
E =

√
2 (so κ =

√
2) and N = 50; 500; 5000; 106.
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Figure 4.7: A closer view of the stationary state for E = 9
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√
2, E =

√
2, and E = 11

10

√
2,

near the singularity point, starting with the lowest curve. ( N = 5000 (dashed line) and
N = 105 (solid line) ).
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Figure 4.8: Stationary state for E = 9
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√
2 and E =
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2, starting with the lowest curve;

N = 5000. The dashed line shows the one-particle marginal for the uniform distribution
on SN−1(

√
N), which almost coincides with the Maxwellian.
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Figure 4.9: Stationary state for E = 10
√

2 with N = 10000, a close-up view near the
singularity point v = κ.

0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

Figure 4.10: The evolution of moments,
∫

R
vj f(v, t) dv, j = 1, 2, 3, 4, 5, starting from the

lowest curve. (N = 5000, E =
√

2.)
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Some observations on the behavior of Q+(f, f)
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Figure 4.11: Q+(f, f)(v) for the stationary solution f of (2.76). (N = 10000, E =
√

2).
The spikes in the graph are due to simulation noise.
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Figure 4.12: Q+(f, f)(v) for the stationary solution f of (2.76). (N = 10000, E = 2
√

2).
(For E = 2

√
2, κ ∼ 1.1923 and

√
2 κ ∼ 1.6861).
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Figure 4.13: Q+(f, f)(v) for the stationary solution f of (2.76). (N = 10000, E = 4
√

2).
Note that Q+(f, f)(v) shows singularities at v = κ and v =

√
2κ. (For E = 4

√
2,

κ ∼ 1.0923 and
√

2 κ ∼ 1.5447).
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Figure 4.14: Q+(f, f)(v) for the stationary solution f of (2.76). (N = 10000, E = 10
√

2).
Note that Q+(f, f)(v) shows singularities at v = κ and v =

√
2κ. (For E = 10

√
2,

κ ∼ 1.036 and
√

2 κ ∼ 1.465).
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Some results for the three-dimensional case
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Figure 4.15: The v1-marginal of f(v, t):
∫

R
f(v1, v2, v3, t)dv2dv3 at t = 0, 10, 20, 30, 40, 50.
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Figure 4.16: The v2-marginal of f(v, t):
∫

R
f(v1, v2, v3, t)dv1dv3 at t = 0, 10, 20, 30, 40, 50.

Note that the v3-marginal of f(v, t) shows similar behavior.
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Figure 4.17: The time evolution of J1(t) (left), J2(t) and J3(t) (right).
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Figure 4.18: The time evolution of the various moments of f(v, t):

∫
ϕ(v)f(v, t)dv where

(on the left) (a) corresponds to ϕ(v) = v2
1 , (b) to ϕ(v) = v2

2 , (c) to ϕ(v) = v2
3 . Similarly

(on the right) (d) corresponds to ϕ(v) = v2
1 + v2

2 + v2
3 , and (e) to ϕ(v) = v4

1 + v4
2 + v4

3 .
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Concluding Remarks

We finally mention the prospect for further developments in the direction of this study
and briefly present some open problems.

1. In deriving the main equation studied in Chapter 2 we made a special assumption
that the probability densities had to fulfill – the Boltzmann property. It is of great
interest, therefore, to actually prove the propagation of molecular chaos in the
presence of the thermostatted force field.

2. For the thermostatted Kac equation that we have studied, one would like to have
stronger results regarding the long-time behavior of the solutions. One would like
to prove that there is a unique stationary state, and that the unique solution to
the time-dependent equation converges to this state as time tends to infinity. In
that case it would also be interesting to find explicit rate estimates. The usual
entropy arguments used in proving the trend to equilibrium do not work, as it is
not immediate to find a natural candidate for the entropy functional in this case. It
seems likely that a proof can be obtained via Fourier transform techniques. Work
in this direction is in progress.

3. It would also be interesting to study the Kac collision term with more general
collision cross sections. A non-cutoff cross section seems to eliminate the singularity
of the stationary solution. This is also work in progress, in collaboration with
Véronique Bagland.

4. In Chapter 3, concerning the Boltzmann equation, of course all of the above ques-
tions are still interesting, and they are not treated in this thesis. But many of the
results that have been established for the Kac equation need to be solved for the
Boltzmann equation as well. So for example, this thesis does not treat the exis-
tence and uniqueness problem for the Boltzmann equation with a thermostatted
force field.

5. We have considered, in Chapter 3, that the force field that may depend on the
velocity, and the limiting Boltzmann equation is derived with this possibility. It
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would, therefore, be interesting to see what kind of force field would be needed to
grant more interesting stationary situations.

6. If this kind of problem would appear in a situation where real numerical simula-
tions are necessary, then one would need to find a more efficient way of doing the
simulations. In particular it is less efficient to use the explicit solution of the system
of ODE’s to update the velocities between the collisions.
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