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Abstract

This thesis consists of four papers in which we discuss various kinds of Lie bialgebra
structures, their connection with solutions of the classical Yang-Baxter equation and
explicit quantization.

In the first paper, we present the theory of rational solutions of the classical Yang-
Baxter equation for a simple compact real Lie algebra g. We prove that, up to gauge
equivalence, any rational solution has the form X (u,v) = unj+t1 Alg+...41on 1 Atoy,
where  denotes the quadratic Casimir element of g and {¢;} are linearly independent
elements in a maximal torus t of g. The quantization of these solutions is also
emphasized.

In the second paper we investigate the rational solutions of the CYBE for o(n)
from the point of view of orders in the corresponding loop algebra. In the case
of so-called singular vertices, we use the list of connected irreducible subgroups of
SO(n) locally transitive on the Grassmann manifolds IG} of isotropic k-dimensional
subspaces in C", obtained by E. Vinberg and B. N. Kimel'fel'd . New arguments
based on the analysis of the structure of the stationary subalgebra of a generic point
allow us to find several rational solutions in o(7), o(8) and o(12).

The third article is focused on some Lie bialgebra structures on parabolic sub-
algebras. Given a complex simple finite-dimensional Lie algebra g with fixed root
system, there exists a so-called classical Drinfeld-Jimbo r-matrix, . Consider any
parabolic subalgebra Ps C g defined by a subset S of the set of simple roots. We
prove that the Lie bialgebra structure on g defined by r can be restricted to Ps.
Moreover, it turns out that the corresponding classical double D(Ps) is isomorphic
to g @ Red(Ps), where Red(Ps) denotes the reductive part of Ps.

Finally, in the fourth article, we study classical twists of Lie bialgebra structures
on the polynomial current algebra. We focus on the structures induced by so-called
quasi-trigonometric solutions of the classical Yang-Baxter equation. We give com-
plete classification for sly and sl3. For the sl, case we also emphasize quantization.
We obtain a two-parameter twist of the quantum affine algebra and of the Yangian.
Consequently, we determine the deformed quantum R matrices which correspond to
quasi-trigonometric and rational solutions in sls.

2000 Mathematics Subject Classification: 17B37, 17B45, 17B62, 17B65,
17B81.

Keywords: classical Yang-Baxter equation, Lie bialgebra, rational solution,
trigonometric solution, locally transitive group, twisting, quantum affine algebra,
Yangian, quantization, parabolic subalgebra.
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IULIA POP

1. GENERAL INTRODUCTION

1.1. Quantum Yang-Baxter equation. The Yang-Baxter equation, also known
as the star triangle relation, the factorization equation or the quantum Yang-Bazter
equation, appeared in several different contexts in literature and sometimes its so-
lutions even preceded the equation. In the end of the 19th century, this equation
was taught in the standard high school electricity courses as a device for solving
problems in electrical network theory.

One can trace three streams of ideas from which the Yang-Baxter equation has
emerged: the Bethe Ansatz, commuting transfer matrices in statistical mechanics,
and factorizable S-matrices in field theory.

In the beginning of 1960’s, the Yang-Baxter equation occured in the study of a one-
dimensional quantum mechanical many-body problem with ¢ function interaction.
By building the Bethe-type wavefunctions, J. M. McGuire [34], F. A. Berezin, V.
N. Sushko [8] and others discovered that that the N-particle S-matrix factorized
into the product of two-particles ones. In the late 1960’s, C. N. Yang treated the
case of arbitrary statistics of particles by introducing the so-called nested Bethe
Ansatz. The Yang-Baxter equation appeared here as the consistency condition for
the factorization.

In statistical mechanics, the importance of the Yang-Baxter equation was illus-
trated by L. Onsager who used it for proving commutation properties of certain
transfer matrices |36, 37]. Later on, in the work of C. N. Yang [51, 52] and R. J.
Baxter [1, 2| from 1970’s, the method of producing such commuting matrices ad-
vanced, leading to breakthroughs in the study of two-dimensional lattice statistical
mechanics and the quantum mechanics of many particle systems on the line. The
method is based on the use of a parametrized family of matrices satisfying certain cu-
bic relations. One of these equations became known as the (quantum) Yang-Baxter
equation.

Nearly a decade after the pioneering works of C. N. Yang and R. J. Baxter, the
theory of factorized S-matrices was resumed in the relativistic setting by A. A.
Zamolodchikov and A. Al. Zamolodchikov [53], and other authors, showing how the
S-matrix is determined by requiring the factorization problem along with unitarity
and crossing symmetry.

Taking into consideration these works and also the development in soliton theory,
L. D. Faddeev, L. A. Takhtajan, E. K. Sklyanin and their collaborators in Leningrad
proposed the quantum inverse scattering method as a synthesis of classical and quan-
tum integrable systems [42|. The traditional Bethe Ansatz found an algebraisation
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in the framework of commutation relations of operators that are derived from the
Yang-Baxter equation. E. K. Sklyanin reviewed [44] the quantum inverse scattering
method on the examples treated earlier by J. M. McGuire, C. N. Yang and others.
It was emphasized that the transition between the quantum and classical systems
can be done by preserving integrability.

In [29], P. P. Kulish and E. K. Sklyanin proposed a system of terms and definitions
for the theory of the Yang-Baxter equation and formulated the problem of classifying
its solutions. They listed the known methods and also various applications of this
equation to the theory of integrable quantum and classical systems. One year later,
the same authors together with N. Yu. Reshetikhin realized that certain special
cases of solutions of the YBE could be found via representation theory [30]. They
systematically studied the rational R-matrix associated with gi(n) and showed that
the products of R-matrices yield new ones corresponding to symmetric and skew-
symmetric tensor representations.

Since the quantum Yang-Baxter equation (QYBE) arises in a variety of contexts, it
has different forms. Three fundamental forms are: the constant, the one-parameter
and the two-parameter (see for instance [33]).

Let V denote a vector space over a field ¥ and suppose that R € End(V ® V).
Define R = R® 1y, R® =1y @ R, R = (1y  7)(R ® 1y)(ly ® 7), where 7 :
VeV — VYV is the twist map. The constant form of the QYBE is

R12R13R23 — R23R13R12.

Given an arbitrary set X, a subset Z of X x X and ¢ : Z — X, the one-parameter
form of the QYBE is defined as

R (21)R"(p(21, 29)) R* (z2) = R*(22) R* (p(1, 7)) R (1),

for all (z1,22) € Z, where V is a vector space over k and R : X — End(V ®
V). In the full generality of the definition, ¢ is not assumed to have any special
properties. However, classically, X is the set of complex numbers and ¢ is addition
or multiplication.

Finally, the two-parameter form is the following

R"™(u, v)R"®(u, w)R®(v, w) = R (v, w)R"(u, w) R"?(u, v),
for all u, v, w in X, where X is again a fixed set, and R: X x X — End(V @ V).
An important case is when one takes the complex numbers as parameter set X and

an operator R(u,v) depending only on u — v. In this case one can write x = u — v
and think of R as a one-parameter solution in z. Therefore the equation becomes

R2(2)R"(x + y)R*(y) = B*(y)R™(z + y) R"(2).
The quantum Yang-Baxter equation has connections not only with quantum in-
tegrable systems and statistical mechanics, but also with knot theory and invariants

of 3-manifolds (see [38, 39]) The constant form is very closely related to the so-called
braid equation:

RI2RBRI2 _ R pl2p2s
which is of significant importance in the construction of knot and link invariants.
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As an application in pure algebra, let us mention an interesting connection estab-
lished between the QYBE and Frobenius algebras.

In [3] it was shown by K. I. Beidar, Y. Fong and A. Stolin that every Frobenius
algebra over a commutative ring determines a class of solutions of the QYBE, which
forms a subbimodule in the tensor square. It was also proved that a generator for
this class is invertible in the tensor square if and only if the algebra is Azumaya.

In a second paper [4], these results were applied to Hopf algebras over commutative
rings which are finitely generated and projective as modules. An explicit formula of
the solution of QYBE was obtained in terms of the integral and antipode. Moreover,
this solution was used to give characterizations of separable Hopf algebras over rings.
The interaction between Frobenius extensions on the one hand and Hopf subalgebras,
solutions of the QYBE, the Jones polynomials and 2-dimensional quantum field
theories on the other hand was discussed further by L. Kadison in [26] and [27].

1.2. Classical Yang-Baxter equation. The classical Yang-Baxter equation has
emerged from the QYBE through the correspondence principle. It was first intro-
duced by E. K. Sklyanin in [43]. Compared to the quantum Yang-Baxter equation,
an important and simplifying feature of the classical version is that it can be for-
mulated in the realm of Lie algebras, independently of the way it is represented by
matrices.

Like the quantum Yang-Baxter equation, the CYBE has several forms: without
spectral parameter or with one (two) spectral parameters.

Let g denote a finite-dimensional complex Lie algebra and U(g) be its universal
enveloping algebra. We recall the following standard notation [5]: if r =3, 4, ®z; €
gRg weset r'2=>13Q281€UE™® r*=>,1011®2 € Ug)* and
=310y ®z c U(g)®.

Definition 1.1. The classical Yang-Bazter equation without spectral parameter is
the following:
[7‘12, ,,,13] + [,,,127 7,23} + [7‘13,7‘23] =0.
Any solution of the CYBE is called a (constant) r-matric.
For a general Lie algebra g, there is no known classification or explicit construction

of solutions. However, very important results have been obtained when g is a simple
complex finite-dimensional Lie algebra. We will present this case later in detail.

Definition 1.2. The classical Yang-Bazter equation with one spectral parameter is

[r2(21 — 22),7"3(21 — 23)] + [r'2(21 — 22), 7% (22 — 23)]

Hr3 (2 — 23), 7% (20 — 23)] = 0,

where 7(2) is function of one complex variable z with values in g ® g. Solutions of
this equation are called m-matrices with one spectral parameter.

One also encounters a third form of the CYBE:
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Definition 1.3. The classical Yang-Bazter equation with two spectral parameters is
[r'? (21, 22), 7' (21, 28)] + 12 (21, 22), 7% (22, 23)]
+[T13(zlv 23)7 7‘23(227 23)] =0,
where 7(z1, 22) is a function of two complex variables, assuming values in g ® g.

1.3. The Belavin-Drinfeld classification of nondegenerate solutions with
one spectral parameter. In their famous paper [5] from 1982, A. A. Belavin and
V. G. Drinfeld investigated solutions of the CYBE with one spectral parameter,
under the assumption that g is a complex finite-dimensional simple Lie algebra.
Moreover, they looked for solutions r(z) in the class of meromorphic functions de-
fined in a neighbourhood of 0 and satisfying one of the equivalent conditions:

(1) The determinant of the matrix formed by the coordinates of the tensor r(z)
is not identically equal to 0;

(2) The function r(z) has at least one pole and there does not exist a Lie subal-
gebra g’ of g such that r(z) € g’ ® g';

(3) The function r(z) has for z = 0 a pole of first order with residue of the form
€2, where cis a scalar and Q = ) I, ®I,. Here {I,} denotes an orthonormal
basis in g with respect to the Killing form.

A solution 7(2) satisfying one of the three equivalent conditions is called nondegen-
erate. A. A. Belavin and V. G. Drinfeld obtained the classification of nondegenerate
solutions, up to the so-called “methods of propagation of solutions”. The first method
of propagation is the following:

Definition 1.4. Two solutions 7 (z) and r9(z) defined in a neighbourhood U of the
origin are called equivalent if there exists a meromorphic function ®: U — Aut(g)
such that
ri(z —t) = (®(2) ® ®(¢))ra(z — 1).
In order to describe the second method, let us recall the definition of invariant
solution:

Definition 1.5. A solution r(z) of the CYBE is called invariant with respect to a
subalgebrah C g if [ h® 14+ 1® h,r(z)] =0 for any h € h.

Suppose r(z) is an invariant solution with respect to a subalgebra h C g. Let
7o € h Ah be a constant solution of the CYBE. Then 7(z) := r(z) + r, satisfies the
CYBE. If h is a commutative subalgebra of g, then any ¢ € h A h provides a new
solution 7(2) + r of the CYBE with spectral parameter.

Theorem 1.6. (Belavin-Drinfeld) Any nondegenerate solution also satisfies the uni-
tarity property, i.e. r'2(2) = —r?'(=2), and extends meromorphically to the entire
complez plane. All poles of r(2) are simple and they form a discrete subgroup T of
C.

(a) If T has rank 2, then r(z) is an elliptic function.

(b) If T has rank 1, then r(2) is equivalent to a solution of the form f(e*?), where
f is a rational function. Such solutions are called trigonometric.

(¢) If T =0, then r(z) is equivalent to a rational solution.
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Remark 1.7. Moreover, it was proved that elliptic solutions exist only for g = si,.

Concerning trigonometric solutions, the complete classification was obtained. It
turned out that, up to the methods of propagation of solutions and such trivial
transformations like multiplication of a solution by a number and replacement of z
by cz, the number of trigonometric solutions in finite.

Let us recall the main result concerning trigonometric solutions. Let o be an
automorphism of the Dynkin diagram A of g, C' be a corresponding Coxeter auto-
morphism and h the Coxeter number of (g, o).

We set h = {z € g: Cz = 2}, g; .= {z € g: Cz = wiz}, where w = /",
For any o € h*, one considers gf := {z € g : [a,2] = a(a)w, for all @ € h}. Let
I :={a € h*: g? # 0} denote the set of simple weights. The projection of Q on
g; ® g—; will be denoted by Q;.

Definition 1.8. An admissible triple is a triple (I'1,T',7), where I'; and 'y are
subsets of I', 7 is a one-to-one map of I'y onto I's such that

(l) For any «, /8 € rly (T(a)7T(ﬂ)) = (017,6)7

(ii) For any o € T, there exists a natural number k such that 7%(c) ¢ T';.

Let (I'1,T',7) be an admissible triple. Denote by a; the subalgebra of g which is
spanned by the subspaces g for all & € I';. There exists a unique projector P of g
onto a; such that P(g$) = 0 if g ¢ a;. For any o € T'; we fix an isomorphism of
) which can be extended to an isomorphism of Lie algebras
0: a; — as. This induces a nilpotent operator 0~by the formula 8 := 0P and finally

one defines ¢ := 0/(1 — 6)

vector spaces gf = gf(a

Theorem 1.9. (Belavin-Drinfeld) Let o be an automorphism of the Dynkin diagram
A of g and C be a corresponding Cozeter automorphism. Let (I'y,Ts,7) be an
admassible triple and r € h @ h be a tensor satisfying the system of equations

242 =Q,

(ra®1)(r)+ (11 a)(r) =0,
for any a € T'y. Then the function
1k ol h—1 o h-1 "
7(2) :T+ez,12 —Ze (\I/®1)Qj+Ze (1eW)Q
Jj=0 J=1 J=1

is a solution of the CYBE with set of poles 2miZ. and residue Q at zero. In addition
r(z +2mi) = (C ® 1)r(z).

Any trigonometric solution with set of poles 2mwiZ and residue Q2 at zero, corre-
sponding to an automorphism o of the Dynkin diagram, is equivalent to a solution
of the above form.

Remark 1.10. [5] The solution constructed above is hg-invariant, where hq denotes
the set of all @ € h such that a(a) = 7a(a) for any @ € T'y. Thus, adding to
this solution any skew-symmetric tensor from hg ® hy one obtains a new solution.
Starting from one solution, one can get in this way all solutions corresponding to
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an admissible triple. Moreover, the solution r(z) depends on the choice of the
isomorphisms gf* = gI(a), a € T'1, and change of them leads to the replacement of

solution by (€24(®) ® ¢24(@))p(2), where a € h.

Regarding rational solutions of the CYBE, A. A. Belavin and V. G. Drinfeld
succeeded in finding only some methods of constructing such solutions and left the
classification problem open. One decade after, A. A. Stolin developed the theory of
rational solutions based on so-called orders and obtained some classification [47, 48,
49].

1.4. Lie bialgebras and classical double. In 1983 a new meaning was given to
the classical Yang-Baxter equation. In [10] V. G. Drinfeld showed that a classical
r-matrix induces a Poisson-Lie group structure on the corresponding Lie group. We
recall that a Poisson-Lie group is a Lie group G together with a grouped Poisson
structure (i.e. G is endowed with a Poisson bracket and the group multiplication
law is a Poisson map).

Theorem 1.11. (Drinfeld) Let G be a Lie group and g its Lie algebra. Choose a
basis {1,} in g and let 9, be the right-invariant vector field on G defined by I,,. Let
r=a"I,®I, be such that a** = —a"*. If ¢, v € C°(G) set {p, ¥} = a" 0,90, 1.
Then the following conditions are equivalent:

(1) The operation (¢,9) — {@,¥} is a Poisson bracket;

(2) r satisfies the CYBE.

It turns out that Poisson-Lie groups have a very strong connection with some
new algebraic structures called Lie bialgebras. In fact, the category of connected
and simply-connected Poisson-Lie groups is equivalent to the category of finite-
dimensional Lie bialgebras.

Definition 1.12. (Drinfeld) Let g be a finite-dimensional vector space and sup-
pose that both g and g* have Lie algebra structures. These structures are called
compatible if -

C]:sflzj = Clarfsja - szrf;a - Cznsfrja + szs rm
where c¥, and f,zj are the structure constants of g and g* with respect to dual bases.
We will say that g is given a Lie bialgebra structure if g and g* have compatible Lie
algebra structures.

Theorem 1.13. (Drinfeld) Suppose g and g* have fized Lie algebra structures.
Define the linear map ¢ : g* @ g* — g* by setting ¢(I1 @ Is) = [l1,1ls]. Then the
following conditions are equivalent:

(1) The Lie algebra structures on g and g*are compatible.

(2) The map ¢* : g - g®g is a 1-cocycle. It is understood that g acls ongR g
by means of the adjoint representation.

(8) There is a Lie algebra structure on g & g* inducing the Lie algebra struc-
tures on g and g*which is such that the bilinear form @ given by the formula
Q(z1,11), (za, 1)) = li(wa) + la(m1) is invariant with respect to the adjoint repre-
sentation of g ® g*.
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Moreover, the Lie algebra structure on g @ g* referred to in (8) is unique if it
ezists. This Lie algebra is called the classical double of g.

In 1986, in his famous talk from Berkeley [11], V. G. Drinfeld defined the notion
of Lie bialgebra structure for any Lie algebra g, finite or infinite-dimensional, over
a field of characteristic 0:

A Lie bialgebra structure on a Lie algebra g is a 1-cocycle § : g — g A g which
satisfies the co-Jacobi identity:

Alt(6 ® id)é(z) = 0,
for any 2 € g, where Alt : g® — g®3 is the alternation map:
Alt(a®b®c) =a®b®c+b®c®a+cR®a®b.
The notion of classical double is defined as in the finite-dimensional case.

Remark 1.14. There is a one-to-one correspondence between Lie bialgebras and so-
called Manin triples (see [11], [21]).

A finite-dimensional Manin triple is a triple of finite-dimensional Lie algebras
(p, P1, P2), where p is equipped with a nondegenerate invariant bilinear form such
that

(1) p1, p2 are Lie subalgebras of p and p; @ p, = p as vector spaces;

(2) p1, p2 are isotropic with respect to the fixed invariant form on p.

The correspondence between Lie bialgebras and Manin triples is constructed in
the following way: if (p, p1,p2) is @ Manin triple, then we consider g = p; and
define the cocommutator to be the dual to the commutator mapping ps ® ps — ps.
Conversely, if a Lie bialgebra g is given, then (g®g*, g, g*) is a Manin triple, where
g @ g* is the classical double of g.

The generalization to the infinite-dimensional setting requires an additional con-
dition (see [21]):

(3) The invariant form on p induces an isomorphism ps & pj.

With this definition, the notions of Manin triple and Lie bialgebra are again
equivalent. Let us mention that in some papers (see [17], [15]) infinite-dimensional
Manin triples are equipped with certain topologies. If (p, p1, p2) satisfies conditions
(1)-(3), then one considers the discrete topology on p1, the weak topology on p, and
the product topology on p = p; @ ps. In a similar manner, if g is a Lie bialgebra,
then g and g* are regarded as topological Lie algebras with respect to the discrete
and weak topologies. The classical double g @ g* is also equipped with the product
of these two topologies.

Let us finally note that in the infinite-dimensional setting, the notion of Manin
triple is not “symmetric”: if (p, p1,p2) is a Manin triple and dimp; = oo, then
(p, P2, P1) is not necessarily a Manin triple.

1.5. The Belavin-Drinfeld classification of non-skewsymmetric constant r-
matrices. Given a finite-dimensional Lie algebra g, it is natural to try to find all
Lie algebra structures on g* compatible with it. This question is discussed in |7] for
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the case when g is a simple complex Lie algebra. Any l-cocycle 6 : g - gA g is
therefore a coboundary, i.e. there exists s € g A g such that

0(a) =ds(a) :=[a®1+1®a,s],

for any a € g.

On the other hand, é must satisfy the co-Jacobi identity. This is equivalent to
CY B(s) := [s12, sB]+[s!3, s2]+[s!2, %] is an invariant element of A3g. In literature
a skewsymmetric tensor s satisfying this condition is sometimes called an r-matrix
as well.

Let © be the quadratic Casimir element associated to a nondegenerate invariant
form on g. The subspace of ad-invariant elements in A%g is one-dimensional. Then
CY B(s) = A\[2'%,0%], for some complex number \.

In other terms, the classification of Lie bialgebra structures on g reduces to the
classification of those r € g ® g satisfying CY B(r) = 0 and 7'? + r?! = £, where ¢
is a complex number (consider s =r — %Q) This problem ramifies in two principal
cases:

(1) r'2 4+ 72! £ 0 (strict quasi-triangular case);
(2) 712 + 72 =0 (triangular case).
The first case reduces in fact to solving the following system

(1.1) N

(12) [T12, 7”13] 4 [T12, 7‘23] 4 [T13’ 7‘23] =0.

All solutions of this system have been found by A. A. Belavin and V. G. Drinfeld
in [7]. Let g be a simple Lie algebra with a fixed nondegenerate invariant form. Let
g=n_®dh®n, be a triangular decomposition. Let I" denote the system of simple
roots and (I'y, 9, 7) be an admissible triple (I'; and I'y are subsets of I, 7 : I'} —
I'; is an isometry and for any o € I'; there exists a natural number k such that
7 (c) ¢ T1). Choose a root vector X, such that (Xo, X o) =1 and 7(Xs) = Xr(a)
for all @ € ZT';. Define a partial order on the set of positive roots by a < f if there
exists n > 0 such that 7 (a) = 3. Denote by £y the “Cartan part” of the Casimir
element .

Theorem 1.15. (Belavin-Drinfeld) In the above setting, let 7o € h @ h satisfy the
system
o2 + 12 = Qo,
(T(@)®@ 14+ 1Q a)(ry) =0,
for any o € I'y. Then the tensor
r=ro+» X a®Xat Y. XaAXp
a>0 a,>0,a>8

satisfies (1.1), (1.2). Moreover, any solution of (1.1), (1.2) is of the above form,
for a suitable triangular decomposition of g and a suitable choice of a basis {X,}-
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Remark 1.16. Among these solutions there is the so-called standard Drinfeld-Jimbo
r-matriz which is obtained for I'y =Ty = (:

Q
TDJ :ZX,()@XQ—‘,-?O.
a>0

The second (triangular) case has not been completely solved. Its difficulty lies,
for instance, in the fact that it contains a subproblem of classification of Frobenius
Lie subalgebras. The following result is known from [5]:

Theorem 1.17. (Belavin-Drinfeld) There is a one-to-one correspondence between
triangular structures on g and pairs (L, B), where L is a Lie subalgebra of g and B
is a nondegenerate 2-cocycle on L with values in the trivial representation C.

1.6. Quantization of Lie bialgebras. The first occurence of a quantum group is
in the work [31] of P. P. Kulish and N. Yu. Reshetikhin. In the course of constructing
trigonometric solutions of Yang-Baxter equation, they introduced a deformation of
the universal enveloping algebra of sly. In [45] E. K. Sklyanin defined an elliptic
version, in connection with the so-called “eight-vertex model”.

The example of Kulish-Reshetikhin was later generalized to arbitrary simple or
affine Lie algebras. The quantum group Uy(g) was introduced in 1985 independently
by M. Jimbo (23] and V. G. Drinfeld [12]. These works were motivated by the
quantum inverse scattering method.

In [12] V. G. Drinfeld observed that the natural language for the description of
quantum groups as well as for the quantum inverse scattering method are Hopf
algebras. In his report from Berkeley [11], one year later, Drinfeld presented the
new theory of quantum groups. Let us also note that Faddeev, Reshetikhin and
Takhtajan proposed in [22] a dual approach which is closer to the quantum inverse
scattering method. Following the spirit of noncommutative geometry, these authors
quantized, instead of a Lie group G, the algebra of functions Fun(G) on it. They
introduced the so-called FRT construction which connects the constant and one-
parameter forms of the QYBE to bialgebras.

A Lie bialgebra is the classical analogue of a Hopf algebra, in the following mean-
ing:

Definition 1.18. By a (Hopf) quantized universal enveloping algebra we mean a
topological Hopf algebra A over C[[#]] such that:

(i) the Hopf algebra A/hA is a universal enveloping algebra;

(ii) as a topological C[[A]]-module, A is isomorphic to V[[A]] for some vector space
V over C (a base of neighbourhoods of zero in V[[A]] is given by A"V[[A]], n € N).

Remark 1.19. 1) The term “quantized universal enveloping algebra” will be abbre-
viated QUE-algebra.

2) The term “topological Hopf algebra” means in particular that the comultipli-
cation A maps A into the completion AQA of the tensor product.

3) The Lie algebra g such that A/hA = U(g) is unique:

g={ac A/RA  Ala) =a®1+1Qa}.
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4) If A is a (Hopf) QUE-algebra with A/AA = U(g), then g has a Lie bialgebra
structure with the cocommutator given by

§(z) = i (A(a) — A(a)) mod A,

where a is the inverse image of z in A. The Lie bialgebra (g, §) is called the classical
limit of A and A is the quantization of (g, §).

Recall [11] that a coboundary Hopf algebra is a pair (A, R) consisting of a Hopf
algebra A and an invertible element R € A ® A such that A”(a) = RA(a)R™,
RPR? =1, R?(A®id)(R) = RB(id® A)(R), (¢ ®¢)(R) = 1.

A quasi-triangular Hopf algebra is a pair (A, R) where R satisfies (A ® id)(R) =
RBRE, (id® A)(R) = R1*R'?, A?(a) = RA(a)R L.

A quasi-triangular Hopf algebra is called triangular if R*?R?' = 1.

Definition 1.20. A coboundary QUE-algebra is a coboundary Hopf algebra (A, R)
such that A is a QUE-algebra and R = 1 mod .

We say that a coboundary QUE-algebra A is a quantization of a coboundary Lie
bialgebra (g, dr) if

(1) A is a quantization of g

(2) r=A""(R—1) mod .

Remark 1.21. Similar definitions are given for quasi-triangular and triangular QUE-
algebras.

In [14] V. G. Drinfeld formulated a number of questions in quantum group theory,
among which were the following:

Question 1. Can every Lie bialgebra be quantized?

Question 2. Does there exist a universal quantization for Lie bialgebras?

Question 3. Given an associative algebra A and a solution » € A® A to the
classical Yang-Baxter equation, does there always exist a formal series

oo
R=R(h) =1+hr+Y Ruh"
n=2
satisfying the quantum Yang-Baxter equation?

Question 4. Does there exist a universal solution to the above quantization prob-
lem?

Question 5. Does there exist a universal solution to the unitary quantization
problem? (if r2' = —r, then it is natural to look for an R such that R?! = R™L.
This is called the unitary quantization problem).

In finite-dimensional case, question 5 was answered by Drinfeld in [13], where the
quantization of constant solutions of the CYBE was obtained.

The answer to questions 1-4 is given by the work of P. Etingof and D. Kazhdan
[17, 18, 19]. In [17] the existence of a quantization for Lie bialgebras is proved.
In the first part the finite-dimensional case is presented. Then the construction is
slightly modified to fit the infinite-dimensional setting. Additionally, they proved
that any classical r-matrix over an associative algebra A can be quantized and also
showed that R is unitary if 7 is unitary.
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In [18] Drinfeld’s question of the existence of a universal quantization is discussed.
Etingof and Kazhdan showed that there exists a functor from the category of Lie
bialgebras to the category of QUE-algebras. This functor defines an equivalence
between these two categories.

The third article [19] of this series deals with g-valued functions on a punctured
rational or elliptic curve, where g is a finite-dimensional simple Lie algebra. The
result of [17] applies to this case as well but is not sufficiently effective. The paper
[19] gives a more manageable quantization procedure for this specific case.

Although any Lie bialgebra admits a quantization, to find explicit quantizations of
classical r-matrices is difficult. Let us consider, for instance, the non-skewsymmetric
classical r-matrices without spectral parameter from the Belavin-Drinfeld list [7] . In
1985 V. G. Drinfeld introduced the quantum group Uy(g) which was a quantization
of the Lie bialgebra structure induced by the standard Drinfeld-Jimbo r-matrix.
However, the quantization of the entire list [7| has only recently been obtained by
P. Etingof, T. Schedler and O. Schiffmann in [20].

The same question of finding an explicit quantization has been formulated for
classical r-matrices with spectral parameter.

The simplest rational solution of the CYBE for a simple complex Lie algebra g
is r(2) = £, where Q = 3 I, ® I, for a basis {I,} orthonormal with respect to the
Killing form on g. This solution induces a Lie bialgebra structure on g[z] := g®cC[z]
by

5(a(2)) = [a(z) @ 1+ 1 @ at), r(z — 1)].
In [12] V. G. Drinfeld constructed a quantization of this Lie bialgebra in the following
way:

Theorem 1.22. The Lie bialgebra (gu],d) admits a unique homogeneous quantiza-
tion (A,A). The algebra A regarded as an associative topological algebra with unity
is generated by elements I and Jy with defining relations:

[I/\v Iu] = CKMIIH [I)\y Ju] = CK#J,”
(Ins [Ty L] = [, [Ty L] = hzaggl{lwlﬂv L}
[[JA: JM]! [IT: JSH + [[JT: JSL [I/\7 JIAH =
= hQ(“igZC:s + a’gﬁjciu){la1 Iﬂa I’Y}:
where ¢, are structure constants of g and

afy _ i c
Ay 24 pYet

(,'7 k

ik
1€y Cig
{z1, 72,23} = Z T T T
i#ik
Here deg I, = 0 and deg J), = 1. Moreover,

A(I,\):I,\®1+1®I)\

h
A(J)\) =LhR1+1QJ,+ §CK“L, ®Iﬂ'
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The Yangian, denoted by Y (g), is the Hopf algebra over C obtained by setting
i = 1 in the above relations. The Yangian is a so-called pseudotriangular Hopf
algebra. More precisely, for any a € C define an automorphism 7, of Y(g) by
T.(I)) = I, T,(Jy) = Jx + al. There exists a unique formal series

R(z)=1+ Zsz_’“,
k=1

where Ry, € Y(g) ® Y(g), such that

(T. ® 1)A”(a) = R(z)((T. ® 1)A(a))R(2) "
for all a € Y(g). Moreover, R satisfies the QYBE, R is unitary and R; = Q.

Concerning the quantization of other rational solutions, some answer was given
in [28, 32]. An explicit quantization of the simplest “nonstandard” rational r-matrix
for sly, namely r(2) = % + h A f, was presented.

As we know, another type of nondegenerate solutions of the CYBE with spectral
parameter are the trigonometric solutions. An immediate question would be whether
it is possible to quantize them all. The most typical ones are the classical solutions
associated to the generalized Toda system. In [24] M. Jimbo reported the explicit
form of the quantum R-matrix in the fundamental representation for the generalized
Toda system associated to non-exceptional affine Lie algebras. Consequently, one
obtained a quantization of the corresponding classical solutions.

However, from the Belavin-Drinfeld classification of trigonometric solutions and
the theory of rational solutions developed by A. Stolin [47, 48, 49|, we see that
there exist more solutions than the ones we mentioned. Their explicit quantization
represents an interesting challenge.

2. OVERVIEW OF THE THESIS

This thesis consists of four papers in which we discuss various kinds of Lie bialge-
bra structures, their connection with solutions of the classical Yang-Baxter equation
and explicit quantization.

I. In the first article, we discuss the theory of rational solutions of the CYBE for
a simple compact Lie algebra g over R. Our method is similar to that developed
by A. Stolin for the study of rational solutions for a simple complex Lie algebra in
[47, 48, 49], based on the theory of so-called orders. We look for functions X : R2—
g ® g such that the following conditions are satisfied:

(2.1) (X% (uy, ug), X' (u, us)] + (X" (ur, ug), X (ug, us)|+
+[X13(U1, Ug), X23(u2, Ug)] = 0,

X2 (u,v) = =X (v, u).
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Let us consider the Killing form K on g. Let {I,} be an orthonormal basis in g
with respect to (—K) and Q := =Y 1, ® I,.

Definition 2.1. 1) A solution of (2.1) and (2.2) is called rational if it is of the form

Q
X(u,v) = P + r(u,v),

where r(u, v) is a polynomial with coefficients in g ® g.
2) Two rational solutions X; and X, are said to be gauge equivalent if there exists
o(u) € Aut(g[u]) such that

Xi(u,v) = (0(u) @ 0(v)) Xa(u, v).

Here Aut(g[u]) denotes the group of automorphisms of g[u] considered as an algebra
over Rlu].

The main result of the article is the following:

Theorem 2.2. Up to gauge equivalence, any rational solution of the CYBE for a
simple compact Lie algebra g over R has the form

Q
X(u,v) = P + il Ata+ ...+ top-1 A iton,

where t1,..., ta, are linearly independent elements in a mazimal torus t of g.

The proof is done in several steps. First, we construct a one-to-one correspondence
between rational solutions and certain Lagrangian subalgebras which turn out to be
orders over R((u1)).

Theorem 2.3. Let g be a simple compact Lie algebra over R and glu] := g Qg Rlu],
gllu 1)) i— g@xRu ), g((u 1) - g@xR((u ).

There is a natural one-to-one correspondence between rational solutions of the
CYBE and subalgebras W C g((u™")) such that

(1) W 2 u Ng[[uY]] for some N > 0;

(2) W o glu] =g((u™));

(3) W is a Lagrangian subspace with respect to the invariant nondegenerate bilin-
ear form on g((u™')) given by

(@(u), y(u)) = Tr(adz(u) - ady(u)) 1,

1

meaning that we take the coefficient of u™' in the series expansion of Tr(adz(u) -

ady(u)).

Definition 2.4. An R-subalgebra W C g((u™")) is called an order in g((u™")) if
there exist two non-negative integers Ny, Ny such that

u Mgl €W CuMgl[u!]].

Remark 2.5. Any subalgebra W which satisfies conditions (1) and (3) of Theorem
2.3 is an order. It also turns out that two rational solutions X; and X, are gauge
equivalent if and only if the corresponding orders W, and W, (via the correspondence
from Theorem 2.3) are gauge equivalent, i.e. there exists o(u) € Aut(g[u]) such that
W1 = U(U)WQ.
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Then, using some results from the theory of Bruhat-Tits buildings [9], we prove

Theorem 2.6. Let g be a simple compact Lie algebra over R. Then any order W
in g((u™?)) is gauge equivalent to an order contained in g[[u~"]]. Consequently, any
rational solution of the CYBE for g is gauge equivalent to a solution of the form
X(u,v) =L +7r, where r € g A g is a constant r-matriz .

Finally, using the correspondence between skew-symmetric constant r-matrices
and pairs (L, B), where L is a subalgebra of g together with a nondegenerate 2-
cocycle B € Z2(L,R), we deduce Theorem 2.2.

We also discuss the quantization of the Lie bialgebra structures corresponding
to solutions of the above form. The quantization is obtained by twisting the real
Yangian Y;(g). Explicit formulae are given.

II. In the second article, we investigate the rational solutions of the CYBE for the
simple complex Lie algebra o(n), from the point of view of orders in the correspond-
ing loop algebra. The starting point for our study is the following result obtained
in [48]. We refer to [48] for notation.

Theorem 2.7. (Stolin) Let « be a singular vertez of the extended Dynkin diagram of
a simple complex Lie algebra g and let P, be the corresponding parabolic subalgebra.
The set of subalgebras W C Q, , which correspond to rational solutions, is in one-
to-one correspondence with the set of pairs (L, B) such that:

(1) L is a subalgebra of g and L+ P, = g;

(2) B is a 2-cocycle on L which is nondegenerate on LN P, .

We will say that a subalgebra L of g provides a rational solution corresponding
to Q, if there exists a 2-cocycle B on L such that (L, B) verifies conditions (1) and

2).

Remark 2.8. Condition (1) is equivalent to the fact that G(L) acts locally transitively
on G(g)/G(P,) and 1- G(Py;) is a generic point of this action. For any Lie algebra
A, G(A) denotes the Lie group generated by ¢2d(®),

Definition 2.9. [16, 47] A Lie algebra F is called Frobenius if there exists f € F*
such that the skew-symmetric bilinear form B; defined by the formula Bj(z,y) =
f([z,y]) for any z, y € F, is nondegenerate.

A Lie algebra F is called quasi-Frobenius if there is a nondegenerate 2-cocycle B
on F' with values in C.

Remark 2.10. Condition (2) from Theorem 2.7 implies that L N P, is a quasi-
Frobenius Lie algebra. On the other hand, if LN P, is a Frobenius Lie algebra, then
there exists a 2-cocycle B on L such that condition (2) is satisfied.

Our goal is to find examples of subalgebras L of o(n) which provide rational solu-
tions, using Theorem 2.7, particularly the previous remarks. E. Vinberg and B. N.
Kimel'fel’d classified in [50] all the connected irreducible subgroups of SO(n) locally
transitive on the Grassmann manifolds G}, of isotropic k-dimensional subspaces in
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C". We give a method which allows us to use the structure of the stationary subalge-
bra S of a generic point in order to find rational solutions. The idea is to decompose
the Lie subalgebra L of a locally transitive irreducible subgroup of SO(n) into a sum
L = L+S such that LNS is a Frobenius Lie algebra. In this way L induces a rational
solution. In the cases that are considered in our paper, the stationary subalgebra
S turns out to be either parabolic or Frobenius, fact which enables us to construct
L which provides us with solutions in o(7), o(8) and 0(12). We also show how the
solutions in o(5) found in [48] induce solutions in o(8). Finally, in constructing a
nonconstant solution in 0(12), we encounter a stationary subalgebra S which is a
14-dimensional Frobenius Lie algebra whose unipotent part is noncommutative (see
for comparison the classification for the commutative case [16]).

III. In the third article, we deal with Lie bialgebra structures on parabolic subal-
gebras. Let g be a simple complex finite-dimensional Lie algebra. We consider the
root system R with respect to a Cartan subalgebra h of g, A the set of simple roots
and {g%}acr the root spaces. For any S C A, let us denote by II(S) the set of all
z € R such that if z = ) ke, then k, > 0 for any @ € S. It is known that any
parabolic subalgebra can be transformed by an inner automorphism to one of the
following subalgebras:

Ps = h @ Z ga.
aclI(S)

Given a parabolic subalgebra Pg of g, we prove that the Drinfeld-Jimbo r-matrix
for g induces a Lie bialgebra structure §, on Ps and we describe the classical double
associated to it. The main result of the paper is the following:

Theorem 2.11. Let g be a complex simple finite-dimensional Lie algebra. Consider
a parabolic subalgebra Ps C g defined by a subset S of the set of simple roots.
Then the classical double D(Ps), corresponding to the Lie bialgebra structure 6,, is
isomorphic to the Lie algebra g ® Red(Ps).

In particular, for S = (), the well-known result [40] D(g) = g @ g follows.

Remark 2.12. Our result has an infinite-dimensional analogue. Given g simple, we
set glu] := g ®c Clu], g[[u']] := g ® C[[u"']] and g((u")) := g &c C((u"")). Let
us take {I,} an orthonormal basis in g with respect to the Killing form K and set
Q:=Y1,®I, Let ro =7+ £ . We consider the map d: glu] — g[u] Ag[v] defined
by

o(a(w) = [ 4 1,0 © 110 aw)],

which gives a Lie bialgebra structure on g[u]. According to the results of F. Montaner
and E. Zelmanov [35], the classical double D(g[u]) induced by ¢ is isomorphic to
the direct sum of Lie algebras g((u ') @ g, which is equipped with the following
invariant bilinear form:

Q((f(u),a), (g(w),b)) = K(f(u),g(u))o — K(a,b),

where the index zero means that we have taken the free term in the series expansion.
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We notice that g[u] is a parabolic subalgebra of g((u 1)) and the reductive part of
it, Red(g[u]) = ugg[’[ﬂ], is isomorphic to g. Therefore D(g[u]) 2 g((u™!))®Red(g[u]),
exactly as in the finite-dimensional case.

IV. The goal of the fourth article is to reconsider Belavin-Drinfeld classification
of trigonometric solutions [5] from the point of view of Lie bialgebra structures on
g[z]. As we have seen, the CYBE is strongly related to the fundamental concepts
of Lie bialgebra and classical double. We are interested in the description of the
classical double corresponding to Lie bialgebra structures on g[z]. In the work of
F. Montaner and E. Zelmanov [35] it was proved that there exist only four types of
classical doubles. We will consider two of them: g((x™!)) and g((v™!)) ® g.

A natural question arises: which nondegenerate solutions, after a suitable change
of variables, may be used to induce Lie bialgebra structures on g[z]?

Let us consider rational solutions. It was proved in [47] that this type of solutions
provide Lie bialgebra structures on g[z, 2 '] which can be reduced to g[z]. The
corresponding classical double was shown to be g((27')).

For trigonometric solutions, the situation is different. Any trigonometric solution
has the form f(e"), where f is a rational function. After setting e = Z, this
solution does not induce, generally speaking, a Lie bialgebra structure on gz].

Therefore we are motivated to introduce a new class of solutions of trigonometric
type that will induce Lie bialgebra structures on g[z]. Let Q denote the quadratic
Casimir element of g. We say that a solution X of the CYBE is quasi-trigonometric
if it is of the form:

tQ2
X(z,t) = Z—1 +p(2,1),

where p(z,t) is a polynomial with coefficients in g ® g. We prove that by apply-
ing a certain holomorphic transformation and a change of variables, any quasi-
trigonometric solution becomes trigonometric, in the sense of Belavin-Drinfeld clas-
sification.

We focus on the study of quasi-trigonometric r-matrices for a simple complex
finite-dimensional Lie algebra g. Any quasi-trigonometric solution X of the CYBE
induces a Lie bialgebra structure on g[z] by considering the 1-cocycle dx defined by

dx(a(2)) = [X(z,1),a(z) @ 1 + 1@ a(1)],

for any a(z) € g[z]. The Lie bialgebra structures associated to different quasi-
trigonometric solutions are {wisted to each other, in the sense of [15]. Therefore one
expects that the corresponding classical doubles are isomorphic. Indeed, we prove

Theorem 2.13. Let X be a quasi-trigonometric solution and 6x be the Lie bialge-
bra structure on g[z] induced by it. The corresponding classical double D (g[z]) is
isomorphic to the direct sum of Lie algebras g((27')) @ g, where we consider the
following invariant bilinear form:

Q((f(2),a),(9(2),b)) = K(f(2),9(2))o — K(a,b).

Here the index zero means that we have taken the free term in the series expansion.
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Remark 2.14. The Lie algebra g[z] is naturally identified with
Vo :={(a(2),a(0)); a(2) € glz]}.

Moreover we construct a one-to-one correspondence between this type of solutions
and a special class of Lagrangian subalgebras of g((z 1)) @ g:

Theorem 2.15. There exists a natural one-to-one correspondence between quasi-
trigonometric solutions of the CYBE and linear subspaces W of g((27!)) & g such
that

1) W is a Lie subalgebra in g((z 1)) @ g such that W 2 2 Ng[[z7!]] for some
N >0;

2WeVy=g(z") @g;

3) W is a Lagrangian subspace with respect to the inner product of g((27})) @ g.

We consider quasi-trigonometric solutions up to gauge equivalence. As expected,
two quasi-trigonometric solutions are gauge equivalent if and only if the correspond-
ing Lagrangian subalgebras of g((27!)) @ g are gauge equivalent.

In the case g = sl,, the correspondence given by Theorem 2.15 can be exploited
further:

Theorem 2.16. Let W be a Lie subalgebra corresponding to a quasi-trigonometric
solution in sl,. Then, up to a gauge equivalence, W is embedded into L :=
dy ' sla[[27"]|di @ sln, where dy, = diag(1,...,1,z,...z) (k-many 1’s) and 0 < k < [2].

Moreover, the problem of finding all such W which are contained in Lj can be
replaced by a finite-dimensional problem.

Theorem 2.17. There is a bijection between the set of subalgebras W of Ly, corre-
sponding to quasi-trigonometric solutions, and the set of Lagrangian subalgebras W
of sl, @ sl, such that W & Ay, = sl, ® sl,,, where

s=1(5 5)-(5 o)

(here A and D are matriz blocks of order k and n — k respectively).

In the cases sly and sl3, we describe the Lagrangian subalgebras W which are
complementary to Ay, and we obtain the complete classification of nontrivial quasi-
trigonometric solutions. Here nontrivial means that the polynomial part is noncon-
stant.

We are also interested in obtaining an explicit quantization of the unique (up to
gauge equivalence) nontrivial quasi-trigonometric solution for sly:

Q 1
Xa,b(zly z9) = 2 +0 Qo'+ -0*®0c*
Z1 — 29 4
+a(z10” Q0" — 200° ® 07 ) +blo” @o* —0*®07).
for any nonzero constants a and b (here 0%, 06—, o is the standard basis of sly). Our
method is based on the following conjecture:
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Conjecture 2.18. Any classical twist can be extended to a quantum twist.

We support this /c\onjecture by constructing a two-parameter twist of the quantum
affine algebra Ug(sly). Surprisingly, it has the simple form of a g-power function,
but with g-commuting arguments (we refer to the article for notation). Using gen-
eralizations of Faddeev-Volkov identities, we prove:

Theorem 2.19. The element

F=(1-@2p 1®e at+bg"@q"e o)y

is a quantum twist of Uq(;l\g) for any constants a and b.

Consequently, we determine the quantum R matrix which is a quantization of
Xap(21,22). Moreover, the Yangian degeneration of the quantum twist F' becomes
the usual power function whose arguments belong to an additive variant of the
Manin ¢-plane. We obtain an explicit quantization of the unique nontrivial rational
solution in sly:

Q

r(uy, ug) = +&(uw0” ®0* —uo* ®07).
Uy — Ug

Let us stress the fact that the quantization of this solution has not been obtained

by other methods. Thus we answer the question of quantization of all the rational

solutions of the CYBE for sy (see also [28, 32]).
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ABSTRACT. In [8,9,10] a theory of rational solutions of the classical Yang-Baxter
equation for a simple complex Lie algebra g was presented. We discuss this theory
for simple compact real Lie algebras g. We prove that up to gauge equivalence all
rational solutions have the form X (u,v) = u‘zv +t1 Aty + ... +ton_1 Atap, where
) denotes the quadratic Casimir element of g and {¢;} are linearly independent
elements in a maximal torus t of g. The quantization of these solutions is also
emphasized.
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1. INTRODUCTION

In their outstanding paper from 1982, A. A. Belavin and V. G. Drinfeld obtained
an almost complete classification of solutions of the classical Yang-Baxter equation
with spectral parameter for a simple complex Lie algebra g. These solutions are
functions X (u,v) which depend only on the difference v — v and satisfy the CYBE
and some additional nondegeneracy condition. It was proved in [1| that nondegen-
erate solutions are of three types: rational, trigonometric and elliptic. The last two
kinds were fully classified in [1]. However, the similar question for rational solution
remained open. This problem was solved in [8,9] by classifying instead solutions of
the form

(1.1) X (u,v) = % + r(u,v),

where 7(u,v) is a polynomial with coefficients in g ® g and © denotes the quadratic
Casimir element of g. This new type of solutions, which will also be called rational,
look somehow different from those in the Belavin-Drinfeld approach. However, as it
turned out in [2], any solution of this type can be transformed into one which depends
only on u — v, by means of a change of variables and a holomorphic transformation.

In [8,9,10] a correspondence was established between rational solutions of the form
(1.1) and so-called orders in g((u1)), i.e. subalgebras W of g((u!)) which satisfy
the condition

(1.2) uwiglu ] € W C Mgl

for some non-negative integers N; and Ny. The study of rational solutions is essen-

tially based on this correspondence and the description of the maximal orders.
1
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In the present paper, we follow the method developed in [8,9,10] to study rational
solutions of the CYBE for a simple compact Lie algebra g over R. We establish a
similar correspondence between solutions and orders and we are interested in the
description of the maximal orders. We obtain that there is only one maximal order,
the trivial one. Therefore all rational solutions will have the form

Q
(13) X(U,’U)— E—FT,

where r € g A g is a constant r-matrix. Here we would like to note that this theorem
was communicated to the second author by V. Drinfeld without proof.

On the other hand, there exists a 1-1 correspondence between skew-symmetric
constant r-matrices and pairs (L, B), where L is a subalgebra of g together with
a non-degenerate 2-cocycle B € Z2(L,R). A subalgebra L for which there exists
a non-degenerate B is called quasi-Frobenius. We prove that any quasi-Frobenius
subalgebra of a compact simple Lie algebra is commutative. Consequently, up to
gauge equivalence, any rational solution has the form

Q
(14) X(U,’U) = H—Ftl /\t2+...+t2",1/\t2",

where 11,..., {o, are linearly independent elements in a maximal torus t of g.

Finally we discuss the quantization of the Lie bialgebra structures corresponding
to solutions of the form (1.4). The quantization is obtained by twisting the real
Yangian Yj(g).

2. RATIONAL SOLUTIONS AND ORDERS

Let g denote a simple compact Lie algebra over R and U(g) its universal envelop-
ing algebra. Let [, ] be the usual Lie bracket on the associative algebra U(g)®?.

We recall the following notation [1]: @12, @13, o3, @211 g ® g — U(g)®® are the
linear maps respectively defined by ¢12(a®b) =a®b®1, p13(a®b) =a®1® b,
p(a®b) =1Ra®band py(a®b) =bRa®1, for any a, b € g.

For a function X : R? — g ® g, we consider X¥: R? — U(g)%®® defined by
X (ui,u) = @i (X (ui, u5)).
Definition 2.1. [1] A solution of the classical Yang-Baxter equation (CYBE) is a
function X : R2— g ® g such that the following conditions are satisfied:

(21) [Xlz('u,l, UQ), Xls(ul, U3)] + [X12(u1, UQ), X23(UQ, U3)]+
+[X13(U1, Ug), X23(’L62, U3)] =0
(2.2) X2 (u,v) = — X (v, u).

Let us consider the Killing form K on g. Then (—K) is a positive definite invariant
bilinear form on g. Let {I,} be an orthonormal basis in g with respect to (—K).
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We denote by © the quadratic Casimir element of g, i.e. @ = —>" I, ® I,. Now we
define rational solutions as in the complex case [8,9,10]:

Definition 2.2. A solution of the CYBE is called rational if it is of the form
Q

2.3 X = —

(23) (1,0) = ——+ r(u,v),

where 7(u, v) is a polynomial with coefficients in g ® g.

Remark 2.3. The simplest example of a rational solution is X¢(u,v) = % By
adding to Xo(u,v) any skew-symmetric constant r-matrix, we also obtain a rational
solution.

We will consider rational solutions up to a certain equivalence relation:

Definition 2.4. Two rational solutions X; and X, are said to be gauge equivalent
if there exists o(u) € Aut(g[u]) such that

(2.4) X1 (u,v) = (0(u) ® 0(v)) Xa(u, v).

Here Aut(g[u]) denotes the group of automorphisms of g[u] considered as an algebra
over Ru].

Remark 2.5. One can check that gauge transformations applied to rational solutions
also give rational solutions.

Let R[[u~!] be the ring of formal power series in u~! and R((u™!)) its field of quo-
tients. Set gfu] = g @x Rlu), gl[u '] := g@xRl[u']] and g((u 1)) = g@xR((u )
There exists a nondegenerate ad-invariant bilinear form on g((u™!)) given by
(2:5) (@(w), y(u)) = Tr(adz(u) - ady(u)) -1,
meaning that we take the coefficient of u~! in the series expansion of Tr(adz(u) -
ady(u)).

In [8, Th.1| a correspondence between rational solutions and a special class of

subalgebras of g((u!)) was presented. The same result holds when g is real com-
pact:

Theorem 2.6. Let g be a simple compact Lie algebra over R. There is a natural
one-to-one correspondence between rational solutions of the CYBE and subalgebras
W C g((u™")) such that

(1) W D u=Ng[[u™']] for some N > 0;

(2) W o glu] = g((u));

(3) W is a Lagrangian subspace with respect to the bilinear form on g((u™")) given
by (2.5), i.e. W =W+

Proof. We briefly sketch the proof which is similar to that in the complex case. Let
V :=glu]. Then V* = u~'g[[u~!]]. If f € V* and 2 € V then f(z) := (f,z), where
(', ) is the bilinear form given by (2.5).

Denote by Homeont(V*, V') the space of those linear maps F : V* — V such that
Ker(F) 2 wNV* for some N > 0. To motivate the notation, we make the remark
that this space consists of all linear maps F' which are continuous with respect to the
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“y ! - adic” topology. R[[u!]] is a topological valuation ring and V* is a topological

free R[[u~!]] - module. We also put the discrete topology on V.
There exists an isomorphism @ : V ® V. — Homeon(V*, V) defined by

(2.6) (z ®@y)(f) = f(y)z,
for any z, y € V and f € V*. The inverse map is given by

n o
(2.7) N F) ==Y Fu* ") e Lut,

=1 k=0
for any F' € Homeon(V*, V). We make the remark that F(Lu™*1) =0 for k > N
so that the sum which appears in (2.7) is finite.

There is a natural bijection between Hom e (V*, V) and the set of all subspaces
W of g((u™!)) which are complementary to V and such that W 2 u™NV* =
u~N1g[[u!]] for some N > 0. Indeed, for any F' € Homeon:(V*,V), we consider
the following subspace of g((u™!))

(2.8) W(F):={f+F(f): feV"}
which satisfies the required properties.

The inverse mapping associates to any W the linear function Fy, such that for
any f € V*, Fi(f) = —z, uniquely defined by the decomposition f = w + z with
weWandzeV.

One can easily see that W (®(r)) is Lagrangian with respect to the bilinear form
(2.5) if and only if r'*(u,v) = —r?!(v, u). Consequently, Q/(u —v) + r(u, v) satisfies
the unitarity condition (2.2) if and only if W (®(r)) is Lagrangian subspace.

Finally, if Q/(u — v) + r(u, v) is a solution of (2.1)-(2.2), then
(2.9) (If +@(r)(f); g+ @(r)(9)]; b + 2(r)(h)) = O
for any elements f, g, h in V*. Because W (®(r)) is Lagrangian, (2.9) implies that
W (®(r)) is a subalgebra of g((u™1)). O

Remark 2.7. One can easily see that if W is contained in g[[u™']] and satisfies the
above properties, then the corresponding rational solution has the form X (u,v) =
Q/(u — v) + r, where 7 is a constant polynomial.

Definition 2.8. An R-subalgebra W C g((u™?)) is called an order in g((u™!)) if
there exist two non-negative integers N1, No such that
(2.10) u Mgllu '] € W C uMgl[u ],

Obviously g[[u]] is an order.

Remark 2.9. Let W satisfy conditions (1) and (3) of Theorem 2.6. Then W is an
order.
Concerning gauge equivalence, the result of Theorem 2 in [8| remains true:

Theorem 2.10. Let g be simple compact Lie algebra over R. Let X, and Xy be
rational solutions of the CYBE and W, W, the corresponding orders in g((u™?)).
Let 0(u) € Aut(g[u]). Then the following conditions are equivalent:
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(1) X1(u,0) = (0(u) @ 0(0) Xa(u, v);
(2) Wl = U(U)WQ.
Definition 2.11. Let V; and V, be subalgebras of g((u~!)). We say that V; and V;
are gauge equivalent if there exists o(u) € Aut(g[u]) such that V; = o(u)Vs.

3. MAXIMAL ORDERS FOR COMPACT LIE ALGEBRAS
We will prove the following result:

Theorem 3.1. Let g be a simple compact Lie algebra over R. Then any order W
in g((u™?!)) is gauge equivalent to an order contained in g[[u~!]].

Proof. Let G be a connected compact Lie group whose Lie algebra is g. Then G is
embedded into SL(n,C) via any irreducible complex representation. Without any
loss of generality, we may suppose that the image of a maximal torus 7" of G is
included into the diagonal torus H of SL(n,C).

Let W denote an order of g((u~')). Since we have the following sequence of
embeddings
(3.1) W WerC < (g®rC) ®c C((u™)) < sl(n, C((u™))),
we may view any w € W as a matrix in sl(n, C((u™))).

Let us prove that for each weW, the exponential exp(w) defined formally by

wk
(3.2) exp(w) := Z R
k>0

makes sense as an element of SL(n,C((u™1))).
Without any loss of generality, we may suppose that W is an R[[z !]]-module of
finite rank. We set @ := C[[u"']] and consider the G-module

(3.3) M:=0"+W0O"+ ...+ WW.WQO" + ...
Let us show that there exists some integer [ such that
(3.4) M C J'or.
If z1,..., 7, is a basis of the R[[u~']]-module W, then obviously
(3.5) MC Zx’fle’@)"
k>0

It is well-known that the field K := C((u!)) may be endowed with the discrete
valuation v(3_;5 ayu~*) = N. For any f €K, we consider its norm:
(3:6) =2,

Note that O is the set of all f such that |f| < 1.
On the other hand, one can define a norm on gl(n, K) which is compatible with
the norm of K. Given a matrix A of gi(n, K), one sets

(3.7 4] =2,
where ¢ := inf k such that AQ" C v*Q".
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This norm satisfies the properties: |A;As] < |Ay1]|As|, |f(w)- Al = |f(u)]|A4],
|A1 + As| < sup{|A4:],]|As|}.

We make the remark that, since W is an order, there exists N > 0 such that
|w| < 2N for allw € W.

In order to prove (3.4), it is enough to show that

(3.8) sup |2¥. 2| < oo.
(k1. kr)

This means that for each 1 < < r there exists a positive integer M; such that

(3.9) sup |z¥| < M;.
k

It suffices to prove that the norms of the eigenvalues of z; for the action of z; on
K" are less or equal to 1. Indeed, let us suppose that this requirement is fulfilled.
Then the coefficients of the characteristic polynomial of z; have norm less or equal
to 1, so they belong to @. In follows that x; is integral over @, i.e. there exists a;,,
..y @j1 in O such that =¥ + ai,,ix”"l +...4+a;; = 0. One can check by induction that
z¥, for any k > 0, is a linear combination of 1, z;, ..., zz’f"fl with coefficients in Q.
Since the elements of @ have norm less or equal to 1, we get that

(3.10) ‘xﬂ < sup{1,|zil, ..., zfrl‘}

for any £ > 0 and thus (3.9) will be fulfilled.

Let w be an arbitrary element of W. Let &1(w),..., en(w) be the eigenvalues of
w for the action of w on K*. We will show that |;(w)| < 1 for all ;. Without any
loss of generality, we may suppose that w is a diagonalizable element. Consider the
eigenvalues o (w),..., am(w) for the action of w on (g ®g C) ®c C((v!)). Some of
them are zero and some behave as roots. For any a;(w) there exists a corresponding
eigenvector which belongs to W. Since W ®g C is an (-module of finite type, it
follows that |o;(w)| < 1 for all j. On the other hand, because the weights of a
representation are linear combinations of simple roots, we have that &1 (w),..., en(w)
are linear combinations of some c;(w) with rational coefficients. This implies that
lei(w)| < 1 for all 4.

Thus (3.9) holds and this implies (3.4). Since (3.4) holds for some integer ,
exp(w) belongs to SL(n, C((u~1))), for any w € W. We denote by S the connected
subgroup generated by exp(w) for all w € W. Tts Lie algebra is .

Recall that G is embedded into SL(n,C) such that the image of a maximal torus
T of G is contained in a maximal torus H of SL(n,C). Let T be the affine Bruhat-
Tits building associated to G(R((u'))) and the valuation v. Let 7' be the affine
Bruhat-Tits building associated to SL(n,C((u"!))) and the valuation v. According
to |4, p. 202-204] there exists an embedding

(3.11) ToT
which is compatible with the preceding embedding G — SL(n,C).
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Since W is contained in g((u™')), one has that

(3.12) S CGR((u™))) = SL(n, C((u))).

The module M given by (3.3) satisfies the property SM C M. Since @* C M C
u'Q", it follows that SO" C »!Q”. Therefore S must be a bounded subgroup of
SL(n,C((u™!))), i.e. there is an upper bound on the absolute values of the matrix
entries of the elements of S.

According to [3, p. 161], S is bounded in the sense of Bruhat-Tits bornology for
the building 7" (see [3, p. 160]). Because the embedding 7 < T is compatible
with the building metric, it follows that S is a bounded subgroup of G(R((u™1))),
in the sense of Bruhat-Tits bornology corresponding to the building 7.

Now the Bruhat-Tits fixed point theorem (|3, p. 157, 161]) implies that .S fixes a
point p of the building 7.

It was proved in [7] that the action of G(R[u]) on the Bruhat-Tits building as-
sociated to G(R(u)) and the valuation w defined by w(f/g) = deg(g) — deg(f),
admits as simplicial fundamental domain a so-called “sector”. This result remains
true when we pass to our building 7 since, by taking the completion R((u 1)), the
building does not change, only the apartment system gets completed. Moreover, the
action of G(R[u]) is continuous. Let H denote the Cartan subalgebra of si(n,C)
corresponding to H and Hg its real part. The simplicial fundamental domain for
the action of G(R[u]) on 7T is contained in the standard apartment of the building
T which is identified with Hp.

Let h be the point of #r which is equivalent to p via the action of G(R[u]). There
exists X € G(R[u]) such that Xp = h, which implies that X.SX ! is contained in
the stabilizer P, of h under the action of G(R((v™"))) on 7.

On the other hand, P, = P, N G(R((u™!))), where P} is the stabilizer of A under
the action of SL(n,C((z1))) on 7T". Tt follows that

(3.13) Ad(X)W C g@r R((u ™)) N Lie(P}).

The stabilizer P, was computed in |4, p. 238| and its Lie algebra is

(3.14) O = {(9) € sl(n, C((u™))) : v(gy) = ay (W)},
Let us prove that

(3.15) g®rR((u))NO, Cger Rju ']

We know that

(3.16) g®x R((u™)) N Oy C su(n) @ R((u™)) N Op.

It is enough to show the following:

(3.17) su(n) ®r R((u 1)) N O C su(n) @ R[u']].

If a matrix (g;;) belongs to su(n) ®x R((z1)) N Oy, then v(g;;) > a;;(h) for
all 4, j and g¢;; + g;; = 0. We have v(g;;) = v(—gi;) = v(g;i). On the other
hand, v(gj;) > —a;(h). We conclude that v(g;;) > 0 and therefore (g;;) belongs to
su(n) Qg Rl[u~]].
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In conclusion, for some X € G(R[u]), one has that
(3.18) Ad(X)W C g @ R[[u™']]

which completes the proof.

4. DESCRIPTION OF RATIONAL SOLUTIONS
Theorem 3.1 has an important consequence:

Corollary 4.1. Let g be a simple compact Lie algebra over R. Any rational solution
of the CYBE for g is gauge equivalent to a solution of the form
Q
4.1 X =
( ) (U, U) u—ov + T,
where r € g A g is a constant r-matriz .

Proof. We know that any order W of g((u~!)) is gauge equivalent to an order
contained in g[[u~']]. On the other hand, if a rational solution X (u,v) corresponds
to an order W C g[[u!]] then, by Remark 2.7, X (u,v) = Q/(u — v) + r, where r is
a constant polynomial. Because X (u,v) is a solution of the CYBE, it results that r
itself is a solution of the CYBE. O

Let us recall a result which describes constant solutions in a different way. This
theorem was formulated for the complex case in [1], but the proof obviously works
for any simple compact Lie algebra g over R.

Theorem 4.2. Any rational solution of the CYBE of the form (4.1) induces a pair
(L, B), where L is a subalgebra of g and B is a non-degenerate 2-cocycle on L. The
Lie subalgebra L is the smallest vector subspace in g such that r € LAL and B 1is the
bilinear form on L which is the inverse of r. Conversely, any pair (L, B) provides
a rational solution of the form (4.1), where r € L A L is the inverse of B.

Remark 4.3. In particular, if L is a commutative subalgebra of g and B is a non-
degenerate skew-symmetric form on L, then there exists the corresponding solution
of the form (4.1).

Recall that a subalgebra L of g is called quasi-Frobenius if there exists a non-
degenerate 2-cocycle B € Z?(L,R).

Theorem 4.4. Let g be a simple compact Lie algebra over R. Any quasi-Frobenius
Lie subalgebra L of g is commutative.

Proof. Any subalgebra of a compact Lie algebra is compact. Therefore L must be
compact as well. Moreover (see for example |6, p. 97]), the derived algebra L' of L
is semisimple and if {(L) denotes the center of L, then
(4.2) L=La&(L).

Let us assume that L' # 0 and there exists a non-degenerate 2-cocycle B on L.
We have the following identity

(4.3) B([z,y],2) + B(ly, 2], 2) + B([z,2],y) = 0
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for any z, y € L' and z € ((L). This implies B([z,y], z) = 0 for arbitrary z, y € L'
and z € ((L). Since L' is semisimple, its derived algebra coincides with L'. We
obtain

(4.4) B(w,z) =0

for any w € L' and z € {(L).

On the other hand, since L' is semisimple, the restriction of B to L' is a cobound-
ary, i.e. there exists a non-zero functional f on L' such that B(wy, ws) = f([w1,ws]),
for all wy, wy in L'. Let ag be the element of L' which corresponds to f via the
isomorphism L' 22 (L')* defined by the Killing form. Then for all w € L' one has

(4.5) B(ap,w) = K(ay, [ag, w]) = K([ag, ag], w) = 0.

Together with (4.2) and (4.4) this implies that

(4.6) B(ap,1) =0

for all elements [ of L. Thus B is degenerate on L, which is a contradiction. O

Corollary 4.5. Up to gauge equivalence, any rational solution of the CYBE for a
simple compact Lie algebra g over R has the form

Q
(47) X(u,v): H+t1/\t2+....+t2n_1/\t2n,

where ty,..., to, are linearly independent elements in a mazimal torus t of g.

Proof. We have seen that rational solutions are determined by pairs (L, B), where
L is a quasi-Frobenius Lie subalgebra and B a non-degenerate 2-cocycle on L. By
the previous result, L is a commutative subalgebra and B is a non-degenerate skew-
symmetric form on L. Then L is contained in a maximal commutative subalgebra
t of g and the dimension of L is even, say 2n.

Moreover, it is well-known that there exists a basis ti,..., 9, in L such that
B(tQi_l,tzl‘) = _B(t2i;t2i—1) =—1forl S A S n and B(t]’,tk) = 0 otherwise. The
rational solution induced by the pair (L, B) is precisely (4.7). O

5. QUANTIZATION

Let g be a simple compact Lie algebra over R. Let us recall that the rational
solution X¢(u,v) = L induces a Lie bialgebra structure on glu] via the 1-cacycle
do given by
(5.1) do(a(u)) = [a(u) ® 1 + 1@ a(v), Xq(u, v)],
for any a(u) € glu].

We have seen that, up to gauge equivalence, rational solutions have the form (4.7).

To any such solution one can associate a Lie bialgebra structure on gfu] by defining
the 1-cocycle

(5.2) 8 (a(u)) = [a(u) ® 1 +1® a(v), X (u,v)].

Here 7 = t; Aly + ... + tan—1 A ton. In other words, the Lie bialgebra (g[ul,d,) is
obtained from the Lie bialgebra (g[u], d) by so-called twisting via r.
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Remark 5.1. This notion was introduced by V. G. Drinfeld in a more general setting
for Lie quasi-bialgebras.

The purpose of this section is to give a quantization of the Lie bialgebra (g[ul], d,).

Let us begin by pointing out that the Lie algebra (g[u], §y) admits a unique quanti-
zation which we will denote by Y;(g) (here # is Planck’s constant). The construction
is analogous to that of the Yangian introduced in [5]. We recall that if K denotes
the Killing form of a simple compact g, then (—K) is a positive definite invariant
bilinear form. Let {I,} be an orthonormal basis in g with respect to (—K). Then
Y5 (g) is the topological Hopf algebra over R[[A]] generated by elements I, and J)
with defining relations

(5.3) (I Iu] = 5,1
(54) [Iz\a Ju] = CK[I.JV
(5.5) (I, s 1] = (I, [ ol = B2aSe) { 1o, I, 1}

(56) [[J)\a JML [Iry JS]] + [[Jra Js]7 [IM JI‘” =

12 (a507cl, + a5 s, ) L, 15, I, },

afy . _ 1 ik ok — R TR
where a5} 1= ﬁClAaCLﬁCmCi]’ and {z1, 29, 23} 1= X, 42;x;2. The co-multiplication,

the co-unit and the antipode are given by the following:
(5.7) AL)=L®1+1®1,

h
(5.8) A(h) =h@1+18 1~ 3¢, ® I,

(5.9) e(ly) =e(Jn) =0,e(1) =1
(5.10) S(I,) = -1,

h
(5.11) S(h) =D+

Clearly Yj(g) contains U(g)[[7]] as a Hopf subalgebra.

Since the generators of Y,(g) are simultaneously generators for the complex Yan-
gian and all the structure constants are real, it follows immediately from [5, Th.3|
that Y;(g) is a pseudotriangular Hopf algebra. More precisely, for any real number
a, define an automorphism 7, of Y;(g) by the formulae

(5.12) To(Iy) = I

(5.13) T,(Jy) = Jy + aly.

Then there exists an element R(u) = 1+ Y o, Ryu ¥, where B = Q and Ry, €
Vi(g)®2, such that the following conditions are satisfied:

(5.14) (To ® Ty)R(u) = R(u+a—b)
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(T, ® 1)A%(z) = R(u)((T, ® 1)A(z))R(u) "
(A®1)R(u) = R®(u)R®(u)
R2(w)R*(~u)=1®1

Rlz(ul — Uz)Rls(Ul — U3)R23(U2 — ’LL3) =
= R®(uy — \3)R™ (w1 — us) R (uy — us).
Here A% denotes the opposite comultiplication.
In order to give a quantization of (g[u],d,), we introduce a deformation of the
Yangian Y;(g) by a so-called quantum tuist. The approach is based on [11, Th.5]|
that we recall below:

Theorem 5.2. Let F € (U(g)[[A]])®? such that
(5.19) F = 1(modh)

(5.20) (e®)F=(1Qe)F=1Q1
(5.21) (A )F -F2=(1® A)F - F®
Denote by IN/h(g) the associative unital algebra which has the same multiplication m
as Yy(g) but the comultiplication is
(5.22) A:=F'AF.
Then the following statements hold:
1) Yi(g) is a Hopf algebra with antipode
(5.23) S :=Q'SQ,
where @ = m(S ® 1)(F)). N
2) Let R(u) := (F?)"'R(u)F. Then the equations (5.14)-(5.18) hold for R(u)
and A(u).

Remark 5.3. In literature, an element F satisfying (5.19)-(5.21) is called a quantum

twist of Y;(g). The Hopf algebra ?ﬁ(g) is the twisted (or deformed) Yangian by the
tensor F'.

We can easily construct a quantum twist in the following way:

Proposition 5.4. Suppose that ty,..., ta, are linearly independent elements in a
mazimal torus t of g. Then the two-tensor

(5.24) F=exp(h(t @t + ... + ton_1 Q@ 1ay))
is a quantum twist of Yi(g).

Proof. Conditions (5.19)-(5.21) can be checked by straightforward computations.
O

Theorem 5.2 implies the following
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Corollary 5.5. The deformed Hopf algebra )N/h(g), obtained by applying the quantum
twist F' given by (5.24), is a quantization of (g, 6,), where r = t1 Ata+...+ton_1 Atoy.

Proof. For any a € ?h(g), we have to check the following:
(5.25) A Y(A(a) — A%(a)) mod h = 6,(a mod h).
Since A = F~'AF, we obtain
(5.26) A(a) — A%(a) = F'A(a)F — (F?') 'A% (a) F?
On the other hand, since Y;(g) is a quantization of (g, dy), we have that
(5.27) A(a) — AP (a) = hidy(a mod #) + O(72).
Using (5.26), (5.27) and (F?')~'F = exp(hr), we obtain
(5.28) Ala) — A%(a) = W([A(a), ] + do(a mod h)) + O(h?)

= hé,(a mod k) + O(h?).

O

Finally, we give the explicit formulae for the comultiplication and antipode of the
twisted Yangian Yj(g). Let us recall the root system of g with respect to a torus,
according to [6, p. 98-99]. We denote by h a Cartan subalgebra of g ®g C and let A
be the root system with respect to h, together with a lexicographic ordering of A. We
choose the root vectors e, corresponding to each root a, such that K(e,,e o) = —1.
Let hg = {h € h: a(h) € R for all a}. We put

(5.29) Cy = i(ea +e q)

V2

(5.30)

It is well-known that
(5.31) g =ihz ® ) (RC, ®RS.).
a>0

An orthonormal basis in g, with respect to the bilinear form(—K), is formed by
the elements C,, S, and p; := ik;, where {k;} is an orthonormal basis in hg. We
choose this basis as our {I,}. The role of {J,} is played correspondingly by some
elements denoted by U,, V,, and P;. For any h € hg we have the following:

(5.32) [ih, Ca] = a(h)S,
(5.33) [ih, Sa] = —a(h)Ca
(5.34) [ih, Ua] = a(h)Va

(5.35) [ih, Va] = —a(h)U..
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Let us consider now a quantum twist £ as in (5.24). Since F is a a product of
exponents, it is enough to perform computations for
(5.36) F = exp(h(t; ® t2)),

where ¢; and ¢35 are two linearly independent elements in the torus t = thg. Let
t; = ih; and &y = 1hy, where h; and hy are elements of hg.

Lemma 5.6. Let T, := ihia(h1)hy and T, = iha(ho)hy. The following identities
hold:

(5.37 THCa® 1)F = Co ® c05(Tia) — Sa ® sin(Tia)
11 ® Cp)F = c08(Tae) ® Co — sin(Tha) ® S,
“1(Sa ® 1)F = S, ® cos(Tha) + Co ® sin(Tig)

(
1 ® Sa)F = cos(Taa) ® Sa + 5in(Tha) ® Co.

Uy ®1)F = U, ® cos(Thg) — V ® sin(Thg)
M1 QUL)F = c08(Taa) ® Un — sin(Ton) @ Va
(Vo ®1)F =V, ® cos(Tia) + Uy ® sin(T,)
F'(1® Vo) F = cos(The) ® Vy + sin(The) ® U,
Proof. To prove the first identity, we use relations (5.32)-(5.33) and the formula
(545)  exp(exp(—A) = exp(ad () = i+ N, + o5 0 [ 4] +

for X := —h(ih1 ® ihy) and p:= Cy ® 1.
Identities (5.38)-(5.44) can be proved in a similar way.

Consequently we obtain the following result:

Proposition 5.7. The comultiplication A of the twisted Yangian ?}l(g) is given on
its generators by the following:

A(Cy) = Co ® 08(Tha) — Sa ® sin(Tia) + c08(Toa) ® Co — sin(Toa) ® Sa
A(Sq) = S ® c08(T1a) + Co @ sin(T1a) + cos(The) ® Sa + sin(The) & C
A(Uy) = Uy ® c08(T1a) — Vo @ sin(T14) + c08(Toa) ® Us — sin(T2,) ® V.
) —
(
)

fg[Ca ® cos(Tha) — Sa @ sin(T1y), Q]

A(Vy) = Vo ® c08(T1a) + Uy @ sin(Tiy) + c08(Tae) @ Ve + sin(Tag) ® Uy
—g[Sa ® cos(T14) + Cfp ® sin(Tha), Q]
Ap)=p;®1+10p
AP)=P®1+10 P — g[pj®1,(1],
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0= (Cacos(Taa) + Sasin(Tha)) ® (cos(Tia)Ca + sin(Tia) Sa)+
a>0

+(Cysin(Toy) — Sq c08(Tae) & (sin(T14)Co — c08(T14)Sa) + Zp] ® pj-

We conflude by expliciting the antipode S of the twisted Yangian ?ﬁ(g). It is
given by S = Q 15Q, where Q = exp(fih, hy).
Similarly to Lemma 5.6, one can prove

Lemma 5.8. Let T, := ihi(a(ha)hi + a(h)hy). The following identities hold:
(5.46) Q7'C,Q = exp(fice(hy)ax(hy))(cos(T,)Cq + sin(T,)S,)

(5.47) Q7'5,Q = exp(ha(hi)a(hg))(cos(Ty)Sa — sin(T,)Cy)
(5.48) Q7'U,Q = exp(fia(hy)a(hg))(cos(Ty) Uy + sin(T,) Vy)

(5.49) Q Vi@ = exp(fia(hy)au(hs))(cos(Ta) Vi — sin(Ta)Ua).

Proposition 5.9. The antipode 5 of the deformed Yangian ?h(g) s given on its
generators by

(5.50) 5(Ca) = — exp(hia(hy ) hs)) (cos(T,)Cy + sin(T)Sa)

(5.51) S(Sa) = — exp(hia(hy)a(hy))(cos(Ta)Sa — sin(T,)Ca)

(5.52) S(U.) = exp(hia(hy)a(hs))(cos(Ta) (~Ua + QCQ)Jr

+sin(T,)(=Va + %SQ))

S(Va) = exp(ha(h)a(hs))(cos(T)(—Va + S )+

+sin(T,)(Ua — Ca)).
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RATIONAL SOLUTIONS OF THE CYBE AND LOCALLY
TRANSITIVE ACTIONS ON ISOTROPIC GRASSMANNIANS

IULIA POP

ABSTRACT. This paper continues the investigation of the theory of rational solu-
tions of the CYBE for o(n) from the point of view of orders in the corresponding
loop algebra, as it was developed in [8]. As suggested by [8], in the case of “singu-
lar vertices”, we use the list of connected irreducible subgroups of SO(n) locally
transitive on the Grassmann manifolds IG} of isotropic k-dimensional subspaces
in C" obtained in [11]. New arguments based on the analysis of the structure of
the stationary subalgebra of a generic point allow us to construct several rational
solutions in o(7), o(8) and o(12).

Keywords: classical Yang-Baxter equation, rational solution, locally transitive
group, Grassmannian.
2000 Mathematics Subject Classification: 17B37, 17B45, 17B65, 17B81.

1. INTRODUCTION

In 1982 A. A. Belavin and V. G. Drinfeld listed all elliptic and trigonometric
solutions X (u,v) of the classical Yang-Baxter equation, where X takes values in
a simple complex Lie algebra g and left the classification problem of the rational
solutions open. In 1984 V. G. Drinfeld conjectured that if a rational solution is
equivalent to a solution of the form X (u,v) = Q/(u — v) + r(u,v), where Q is the
quadratic Casimir element and 7 is a polynomial in u, v, then deg, r = deg, 7 < 1.
In [7], [8] A. Stolin proved Drinfeld’s conjecture and developed a theory of rational
solutions based on the classification of the so-called “orders” in simple Lie algebras
over the field C((u1)). The maximal orders in the loop algebra of g correspond in
turn to the vertices of the extended Dynkin diagram D¢(g). In the case of so-called
“singular” vertices, A. Stolin established a relationship between orders and connected
subgroups of a simple Lie group which are locally transitive on a quotient space
by some maximal parabolic subgroup. On the other hand, E. Vinberg and B. N.
Kimel'fel’d classified in [11] all the connected irreducible subgroups of SO(n) locally
transitive on the Grassmann manifolds G} of isotropic k-dimensional subspaces in
C". The list of irreducible subgroups corresponding to the case k¥ = 1 was obtained
earlier by B. N. Kimel'fel'd in [5]. Using [11], A. Stolin found in [8] all nonconstant
solutions in o(5) and examples for o(7), 0(10) and o(14).

In the present paper we continue the investigation of the same list. We give a
method which allows us to use the actual structure of the stationary subalgebra S
of a generic point in order to find rational solutions. The idea is to decompose the

Lie subalgebra L of a locally transitive irreducible subgroup of SO(n) into a sum
1
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L = L+ S such that LN S is a Frobenius Lie algebra. In this way L induces a
rational solution. In the cases that we will consider, the stationary subalgebra S
turns out to be either parabolic or Frobenius, fact which enables us to construct
L and find solutions in o(7), o(8) and 0(12). We also show how the solutions in
o(5) found in [8] provide solutions in o(8). Finally, in constructing a nonconstant
solution in 0(12), we encounter a stationary subalgebra S which is a 14-dimensional
Frobenius Lie algebra whose unipotent part is noncommutative (see for comparison
the classification in the commutative case given in [3]).

2. INTRODUCTION TO THE THEORY OF RATIONAL SOLUTIONS OF THE CYBE

Let us first recall some definitions, notations and main results from [8| that will
be used in our paper.

2.1. The correspondence between rational solutions and orders in g((u})).
Let g be a simple complex finite-dimensional Lie algebra. Consider the universal
enveloping algebra U(g) and let ¢1a, 013, a3, Y211 € ® g — U(g)®® be the linear
maps respectively defined by ¢12(a ® b)) = a @b ® 1, p13(a®b) = a® 1,
p3(a®b)=18a®band gy (a®b) =b®a® 1. For a function X : C? - gQ g,
we consider X*: C* — U(g)®® defined by X% (u;,u;) = ¢ij(X (us,u;)). Let [,] be
the usual Lie bracket on the associative algebra U(g)%®.

A solution of the classical Yang-Baxter equation (CYBE) is a function X : C2—
g ® g such that the following conditions are satisfied:

(21) [X12(u1, Uz), Xls(ul, Ug)] + [Xlz(ul, Ug), XQB(UZ, U3)]+
+[X13(U1, Ua), X23(UQ, U3)] = 0

(2.2) X2 (u,v) = =X (v, u).
Definition 2.1. [8] A solution of the CYBE is called rational if it is of the form

(2.3) X(u,v) = " ? s r(u,v),

where 7 (u, v) is a polynomial with coefficients in g ® g and Q is the quadratic Casimir
element of g.

Remark 2.2. 1) The rational solutions we are dealing with look somehow different
from those in Belavin-Drinfeld approach (see [1], [2]), where the solutions X (u,v)
depend only on u — v. As it turns out in [8], the above definition is more suitable
for a classification of rational solutions.

2) The simplest example of a rational solution is Yang’s r-matrix: Xo(u,v) = u%
By adding to Xo(u,v) any skew-symmetric constant r-matrix, we also obtain a
rational solution. However there are many more solutions than these.
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Definition 2.3. [8] Two rational solutions X; and X, are said to be gauge equivalent
if there exists o(u) € Aut(g[u]) such that

(2.4) X1 (u,v) = (o(u) ® 0(v)) Xa(u, v).

Remark 2.4. Here glu] := g ® Clu] and Aut(gu]) denotes the group of automor-
phisms of g[u] seen as an algebra over Clu]. One can check that gauge transforma-
tions applied to rational solutions also give rational solutions.

Let O := C[[u!] be the ring of formal power series in ™! and K := C((u"!)) be
the field of quotients of Q. Set g[[u™"]] := g®0 and g((u™")) := g®K. There exists
a nondegenerate ad-invariant inner product on g((u!)) given by

(2.5) (z(u), y(u)) = Resy—otr(adz(u) - ady(u)).

Theorem 2.5. [8] There is a natural one-to-one correspondence between rational
solutions of the CYBE and subalgebras W C g((u™")) such that

(1) W 2 uNg[[u™']] for some N > 0;

(2) W@ glu] =g((u™));

(3) W is a Lagrangian subspace with respect to the inner product on g((u™?))
given in (2.5), i.e. W = W+,

Definition 2.6. [8] A C-subalgebra W C g((u™!)) is said to be an order in g((u™?))
if there exist two non-negative integers N;, N, such that u=Mg[u~!]] C W C

u™egllu ]
Remark 2.7. Let W satisfy (1) and (3) from Theorem 2.5. Then W is an order.

Theorem 2.8. [8] Let X, and X, be rational solutions of the CYBE and Wy, W,y
the corresponding orders in g((u1)). Let o(u) € Aut(g[u]). Then the following
conditions are equivalent:

(1) Xy(u,0) = (0(u) @ (1)) Xau, 0);

(2) W1 = U(U)Wz.

Definition 2.9. [8] Let V; and V, be subalgebras of g((u!)). We say that V; and
Vs are gauge equivalent if there exists o(u) € Aut(g[u]) such that V; = o(u)Vs.

2.2. Maximal orders in g((z7!)). Let h be a Cartan subalgebra in g, A the set
of roots of g and {g®}.ca the root spaces. Let us denote by h(R) the set of all
h € h such that a(h) €R for all @ € A. One can define a valuation on K by
v(Y 4>y aktt ¥) = N. For any root o and any h € h(R) one sets My(h) = {f € K
v(f) > a(h)} and

(2'6) ®h = h[[uilﬂ @ (®a&AMa(h) (20} ga)'

Obviously, @y, is an order for any h.
The following result was formulated in V. G. Drinfeld’s correspondence with J. P.
Serre (cf. [8]) and then proved by A. Stolin in [9]:

Theorem 2.10. [8] Let Ay = {h € h(R): a(h) > 0 for all simple roots o and
Qmaz(h) < 1}. Then the following statements hold:
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(1) Any order M in g((u™")) such that M + glu] = g((u™?)) is gauge equivalent
to an order contained in Q) for h € Ay.

(2) Any magzimal order T such that T + glu] = g((u™")) is gauge equivalent to a
mazimal order corresponding to a vertex of the standard simplexr Ag.

Moreover, to any such maximal order corresponds a vertex of the extended Dynkin
diagram. Explicitly, the vertices of Ay are 0 and hy, ..., h,, where r denotes the
rank of g. To every order O, we assign a vertex of the extended Dynkin diagram
De(g) of g according to the following rule:

0« Qmaz

hi oy,

where o;(hj) = d;;/k; and k; are given by the relation ) kjo; = Qunaz. We will
denote by O, the maximal order corresponding to the vertex « of the extended
Dynkin diagram.

Let G be the simply connected Lie group with Lie algebra g. Denote by Gaq the
Lie group G/center and by Gaa(K) the set of its K-points.

Proposition 2.11. [8] Let H be the Cartan subgroup of G, Haa s image in Gaq,
a a vertez of D(g) such that 0(a) = —amey for some o € Aut(D*(g)). Then
0, = H;'QyH, for some H, € Haa(K).

Remark 2.12. 1) If there exists an automorphism of g sending «; to ay then the
corresponding orders are gauge equivalent and there is a one-to-one correspondence
between solutions corresponding to «; and to .

2) An order W corresponding to a rational solution X (u,v) = -£ + r(u,v) is
contained in @y if and only if r is a skew-symmetric constant r-matrix.

2.3. Solutions corresponding to singular vertices.

Definition 2.13. A vertex of the extended Dynkin diagram D¢(g) is called singular
if there exists an automorphism of D¢(g) sending the vertex to —aunq, and regular
otherwise.

We suppose that we have fixed the Cartan subalgebra h and the root system. For
any simple root «, let us denote by ITE the set of all positive (respectively, negative)
roots which do not contain « in their decomposition into linear combination of simple
roots. We consider the following parabolic subalgebras:

(2.7) P}l =h® (®p>08") © (D112 8")

(2.8) Py =h & (9p<08") ® (9,12 8")-

Let now « be a singular vertex of D¢(g). The following classification theorem was
given in [8]:
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Theorem 2.14. [8] The set of subalgebras W C Q, satisfying the conditions from
Theorem 2.5 is in one-to-one correspondence with the set of pairs (L, B) such that:
(1) L is a subalgebra of g and L + P, = g;
(2) B is a 2-cocycle on L which is nondegenerate on LN P, .

Remark 2.15. 1) A similar result is true if one takes P} instead of P, .

2) By dimension considerations, condition (1) is equivalent to the fact that G(L)
acts locally transitively on G(g)/G(P, ) and 1 - G(P,) is a generic point of this
action. From now on, for any Lie algebra A, G(A) denotes the Lie group generated
by exp(adz).

We will say that a subalgebra L of g provides a rational solution corresponding
to @, if there exists a 2-cocycle B on L such that (L, B) verifies conditions (1) and

(2).

Definition 2.16. [3], [6], [8] A Lie algebra F is called Frobenius if there exists
f € F* such that the skew-symmetric bilinear form Bj; defined by the formula
By(z,y) = f([z,y]) for any z, y € F, is nondegenerate.

A Lie algebra F is called quasi-Frobenius if there is a nondegenerate 2-cocycle B
on F' with values in C.

Obviously any Frobenius Lie algebra is quasi-Frobenius.

Remark 2.17. Condition (2) from Theorem 2.14 implies that L N P, is a quasi-
Frobenius Lie algebra. On the other hand, if L N P, is a Frobenius Lie algebra,
then there exists a 2-cocycle B on L such that condition (2) is satisfied. Indeed any
linear functional on L N P, can be extended to L and the corresponding 2-cocycle
is nondegenerate on LN P, .

2.4. Solutions corresponding to singular vertices for the case g = o(n).
Suppose « is a singular vertex of D¢(o(n)). In order to find subalgebras L of o(n)
which satisfy condition (1) of Theorem 2.14, we can use the list of connected irre-
ducible subgroups of SO(n) locally transitive on the Grassmann manifolds G} of
isotropic k-dimensional subspaces in C" given in [11]. Moreover, k is not arbitrary.
The next result shows how one has to choose k.

Lemma 2.18. [8] The following statements hold:

1) Let oy be the singular vertez of D(o(2n + 1)). To find solutions corresponding
to @, we have to take k =1 in the list from [11].

2) Let ou, an_1 and o, be the singular vertices of D(o(2n)). To find solutions
corresponding to Oy, or Q,, (gauge equivalent Q,,_, ), we have to take k = 1 or
k=n.

Let us finally recall the following result about nonconstant solutions in o(5). We
will use it later for constructing solutions in 0(8). We denote by 4A; the represen-
tation of sl(2) in the vector space S*(C?) induced by the standard representation
Al-
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Lemma 2.19. [8] 1) There is a unique nonconstant solution corresponding to the
singular verter c; € D(o(5)) and an irreducible L C o(5). In this case L = sl(2),
via the embedding 4A;.

2) Besides this there are 8 nonconstant solutions. They correspond to «; and to
the following subalgebras L C o(5):

a)

L=g!

—b

—C —a

where g € SO(5) is such that g(0,0,0,0,1)* = (1,0,v/2,1, —1).

3. LOCALLY TRANSITIVE ACTIONS AND THEIR APPLICATIONS TO RATIONAL
SOLUTIONS

We intend to give concrete applications of Theorem 2.14 and find solutions corre-
sponding to @, (as in Lemma 2.18). From now on we consider k£ = 1. We will use
the list given in [5] (case k = 1 in [11]), to find subalgebras L C o(n) which verify
the conditions of Theorem 2.14. For this purpose, we will prove two lemmata which
allow us to simplify the problem by using the structure of the stationary subalgebra
of a generic point.

Let g be any simple complex finite-dimensional Lie algebra and « a singular vertex
of D*(g).

Lemma 3.1. Suppose that L is a Lie subalgebra of g such that G(L) acts locally
transitively on G(g)/G(Py ). Suppose that x-G(Py) is a generic point of this action,
z € G(g). Then L+ Ad(z)(P,) =g.

Proof. Let S be the stationary subalgebra of the generic point z - G(P, ). It results
that S = LN Ad(z)(P; ) and since we also have dim L — dim S = dimg — dim P,
it follows that L + Ad(z)(P,) =g. O
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Lemma 3.2, Let L be a subalgebra of g such that G(E) acts locally transitively
on G(g)/G(P;). Let S be the stationary subalgebra of a generic point x - G(Py)
z € G(g). Suppose that L is a subalgebra of L such that

(1))L=L+S;

(2)’ LN S is a Frobenius Lie algebra.

Then Ad(z')(L) provides a rational solution corresponding to Q,.
Proof. We know that S = L N Ad(z)(P;). By Lemma 3.1, L + Ad(z)(P;) = g.
Since L = L+ S, it follows that L + Ad(z)(P;) = g and thus Ad(z~*)(L) + P; =
g. We also have LN S = LN Ad(z)(P,) or, equivalently, Ad(z~')(L N S) =

Ad(z7")(L)N Py . Tt results that Ad(z~')(L) N P, is a Frobenius Lie algebra. The
conclusion follows immediately by Theorem 2.14 and Remark 2.17. O

Remark 3.3. The result remains true if condition (2)’ is replaced by: there exists a
2-cocycle B on L which is nondegenerate on LN S.

Lemma 3.2 allows us to find examples of rational solutions in the following way:

We start with a subalgebra L which is the Lie algebra of a connected irreducible
Lie subgroup of SO(n) locally transitive on IG?. We choose a generic point p = [v]
and we find its stationary subalgebra S. In [5] B.N. Kimel’fel'd gave a classification
of the stationary subalgebras of generic points. However for our purpose we will
need specific presentations. The stationary subalgebra may be Frobenius or not. It
S is Frobenius then L (or a conjugate of it) provides a solution for our problem. If
the answer is negative, we will look instead for a subalgebra L of L such that we
have the decomposition L = L + .S and LN S is a Frobenius Lie algebra.

3.1. Rational solutions provided by trivial stationary subalgebra of a generic
point. If the stationary subalgebra S of a generic point is trivial, then we obviously
obtain a solution. By looking at the classification list, we find two such situations:

I. L =sl(2), g = o(5), via the embedding 4A;. This has already been noticed in
8]-
II. L = sl(2) x sl(2), g = o(8), via the embedding A; x 3A;. This example is
presented in [5] but not in [11], probably a misprint in [11].

3.2. Rational solutions provided by nontrivial stationary subalgebra of a
generic point. In this section we will treat the following cases from the list of
connected irreducible subgroups locally transitive on isotropic Grassmannians:

I. SL(3) € SO(8) (the embedding is via Ad-representation). According to
[5], SL(3) acts locally transitively on the 6-dimensional manifold IG$ via Ad-
representation. Here IG?% is considered with respect to the Killing form of si(3).
Let h be the Cartan subalgebra of s/(3). One can check that for any isotropic h €
h the corresponding line is a generic point and its stationary subalgebra is h.

On the other hand, there exists a subalgebra L C sl(3) such that L @& h = si(3).
Indeed, it is clear that L must be 6-dimensional and therefore a parabolic subalgebra.
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Let us consider the “standard” parabolic subalgebra of sl(3):

(3.1) P=

The following conjugate of P is a complement to h:

1 00 100
(3.2) L=]010|P[01O0
111 111

If P, denotes as usual the negative parabolic subalgebra of o(8) corresponding to
a1 € D(0(8)), then Lemma 3.2 (the second condition simply disregarded) implies
that Ad(z~')(L) @ P;, = 0(8), for some 2 € SO(8). Thus Ad(z™')(L) provides a
solution corresponding to Qy, .

II. Gy C SO(7) (the embedding is via A;). Let us find the stationary subalgebra
of a generic point.

Let h be the Cartan subalgebra of gy, 8; and /3 be the simple roots of gs (5; the
short one). For any root  denote by gz’ﬁ the corresponding root space in gy and let
us choose eg € g5 such that K(eg,e_g) =1 . We consider the parabolic subalgebra

(3.3) Pi=he) glog™
B>0

The standard 7-dimensional representation of G, A;, has the highest weight A =
231+ ;. We consider the action of G5 on the projective space P® induced by A;. Let
p € S be the point corresponding to the eigenspace with eigenvalue \. According
to [4, p. 388|, the stabilizer of the point p is the parabolic subgroup corresponding
to the subset of simple roots that are orthogonal on A. Since only f, is orthogonal
on )\, it follows that the stabilizer of the point p is the parabolic subgroup whose
Lie algebra is Pﬂt.

On the other hand, the orbit of the point p is a 5-dimensional projective algebraic
variety. According to [4, p. 391], it is a quadric hypersurface. Therefore there exists
a nondegenerate symmetric bilinear form @ on C” which is preserved by the action
of G. We consider the Grassmannian IG7 with respect to this Q. It follows that the
orbit of p coincides with IG7 (the action is transitive) and its stationary subalgebra
is PEZ .

This fact enables us to construct a subalgebra of go which produces a solution
corresponding to the singular vertex a; € D(o(7)). Let ap and g denote the other
two simple roots of o(7).
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Proposition 3.4. Consider the following parabolic subalgebra of go

(3.4) P,=he) glogl.
<0
Then the subalgebra Ad(z~")(Pg,) provides a rational solution corresponding to
Oy, , where © = exp(€_qy-2a5)- Here €_ o, 24, S a 100t vector corresponding to the
root —agy — 2ai3.

Proof. Gy acts transitively on IG]. Let p € P be the point corresponding to the
eigenspace with eigenvalue A = 23, + 3 = —as — 2a3. Its stationary subalgebra
is Pg,. Let us check if conditions (1)’ and (2)’ of Lemma 3.2 are verified. Here
L=gy,Co(7),S= Pﬂt and L = Py, The condition L+S = gy is obviously satisfied.
On the other hand, LNS=h®g)' @& gz_52. This 4-dimensional Lie subalgebra is
Frobenius. Indeed, let us define the linear functional f by f(h+aes, +be_g,) = a+b
for any h € h and complex numbers a, b. Let By be the induced 2-cocycle. Let
hg; = [es,, e_g,], i = 1,2. One can check that the matrix of By in the basis hg,, hg,,
eg,, e_p, is nondegenerate and therefore L NS is Frobenius. Lemma 3.2 implies that
Ad(z7")(Ps,) provides a solution corresponding to Oy, . O

III. Sp(2s) x SL(2) C SO(4s), s > 2. The embedding is via the representation
Ay x Ay According to [5], Sp(2s) x SL(2) acts locally transitively on IG{*. In
order to find the stationary subalgebra corresponding to a generic point, we need
the explicit form of the embedding of sp(2s) x sl(2) in o(4s).

Let {e;}i=1,.25 and {f;};=12 be the canonical bases in C* and C? respectively.
We consider the following skew-symmetric bilinear forms: @; on C2?* given by
Qi(eiyessi1 i) = 1 for i < s and Qi(ej,e;) =0if i +j # 25 +1 and Q, on C?
defined by Qs(f1, fo) = 1. It is clear that @, and Qs induce a symmetric bilinear
form Q on C*@C’ by Q(v1 ® wy, va ® wa) = Q1(v1, v2)Qa (w1, wy).

We consider sp(2s) defined as the Lie algebra of invariant matrices with respect
to @, and sl(2) as the Lie algebra of invariant matrices with respect to Q.. We

Cc A

with respect to the second diagonal and A is obtained from A by skew-symmetry. It
follows immediately that the symmetric form @) defined previously is invariant with
respect to the representation A; x A; and therefore the image of sp(2s) x sl(2) is
included in o(4s). Let us choose the following basis in C*®C?: e; ® fi, €1 ® fo,...,
es® f1, €5 ® fa,—€511 @ f1, €511 ® fa,...,—€2s ® fi1, €2, ® fa. Obviously the matrix of
@ with respect to this basis has 1 on the second diagonal and 0 elsewhere.

Any pair (X}, X;) € sp(2s) x sl(2) acts on C?*®C? in the canonical way: (X, X)-
(v®w) = X1v @ w+ v ® Xow. With respect to the chosen basis in C*®C?, the
operator induced by (X7, Xs) has a matrix which can be computed explicitly and is
skew-symmetric with respect to the second diagonal.

A B
will write any matrix from sp(2s) in the form { ~ } , where B, C' are symmetric
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Let us consider the Grassmannian IG}® of isotropic lines in C** (identified with
C¥®C?) with respect to the symmetric bilinear form Q. By direct calculations using
the embedding of sp(2s) x sl(2) in o(4s), one can prove the following

Proposition 3.5. The line spanned by e; ® f1 + es @ fo is a generic point for the
locally transitive action of Sp(2s) x SL(2) on IG}* and its stationary subalgebra S
is the set of pairs

+ p(A) € sp(2s) x sl(2),

for all A € gl(2), B € sp(2s — 4), where ¢ : gl(2) —sl(2) is defined by

abidzi—c
Pled] | b o2 |-

We make the remark that the dimension of S is 25> — 3s + 5, as expected. It is
clear that S cannot be a Frobenius algebra if s is even because the dimension of S
would be odd. In this case, in order to find a solution to our problem, we shall look
instead for a subalgebra L of sp(2s) x sl(2) such that L + S = sp(2s) x sl(2) and
L NS is Frobenius. In the case when s is odd, S has even dimension and it might
happen that it is Frobenius.

We will apply these general ideas to construct several solutions in the cases s = 2
and s = 3.

Let us consider s = 2. In this situation, the stationary subalgebra S is a 7-
dimensional subalgebra:

A %
(35) s=1(y §)+etanacae)
We can easily construct a suitable subalgebra L:

Proposition 3.6. Let X be any element of SO(8) sending the isotropic vector
(1,0,0,1,0,0,0,0)* to (1,0,0,0,0,0,0,0) in C°. Consider the following subalgebra
L of sp(4) x sl(2):

0
*
*

L= x sl(2).

*

Then the subalgebra Ad(X)(L) provides a rational solution corresponding to Oy, ,
where o s the first singular vertez of D(o(8)).

Proof. One can easily check that L + S = sp(4) x sl(2) and that

0 0 0
d 0
— 0
—b —a

(3.6) Lns={
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is a 4-dimensional Frobenius algebra. The conclusion follows by applying Lemma
3.2. O

Let us recall that all nonconstant solutions corresponding to the singular vertex
in o(5) were given in Lemma 2.19. The following result shows how the solutions in
o(5) provide solutions in o(8):

Proposition 3.7. Suppose that L is a subalgebra of o(5) which provides a rational
solution corresponding to ay € D(o(5)). Then Ad(X)(L x sl(2)) C o(5) x sl(2)
provides a rational solution in o(8), where X is chosen as in Prop. 3.6.

Proof. Let us fix un isomorphism i : o(5) — sp(4). Let L = i(L) x sl(2). Let
S C sp(4) x sl(2) be the stationary subalgebra from (3.5). In other words, S =
(td ® m)(P), where

(3.7)

A B
and 7 is the projection of sp(4) onto sl(2) given by 7 { c i } = p(A). Tt is clear
that P is a 7-dimensional parabolic subalgebra of sp(4). Via the isomorphism 4, its
image in o(5) will be also a 7-dimensional parabolic subalgebra. One may choose
the isomorphism ¢ such that this parabolic subalgebra is the one corresponding to
the singular vertex oy € D(0(5)):

(3.8) Pt =

(3]

0

It is clear that .S is isomorphic to (id @ 7i)(P} ) C o(5) x sl(2). Since L provides a
solution corresponding to oy in 0(5), L + P, = o(5) and there is a 2-cocycle on L
which is nondegenerate on LN P, . We have that L+ 2 L x sl(2)+ (id®ni)(P} ) =

o(5) x sl(2) and LN S = (L x sl(2)) N (id@®mi)(P}) = LN P,.. Remark 3.3 implies

that Ad(X)(L) provides a solution in o(8). O
This result combined with Lemma 2.19 gives the following:

Corollary 3.8. Let L be one of the four subalgebras from Lemma 2.19. Then
Ad(X)(L x sl(2)) provides a rational solution in o(8), where X is chosen as in
Prop. 3.6.

Remark 3.9. It follows that the solution obtained in Proposition 3.6 is equivalent to
one solution from the corollary.
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Let us consider now s = 3. In this case, the stationary subalgebra S found in
Proposition 3.5 is 14-dimensional:

*

(3.9) + { d?b %ﬁ }}-
0

We intend to prove that S is a Frobenius Lie algebra. It is useful to decompose S
into the unipotent part U and the reductive part R, both of them 7-dimensional
subalgebras. More precisely,

(3.10)

[eniNeniir S

(3.11)

—d
0 —c
Obviously, R acts on U by means of the Lie bracket. We make the important
remark that U is not commutative and a problem arises here. Several criteria have
been given in literature but for Lie algebras with commutative unipotent part. For
instance, A. Elashvili obtained in [3| a classification theorem. A more general result
about nondegenerate 2-cocycles on a semidirect sum of an arbitrary Lie algebra and
a commutative ideal was also obtained in [10]. Since our Lie algebra does not fit
into this picture, we will give a constructive proof.

Proposition 3.10. S is a Frobenius Lie algebra.

Proof. We will construct f € S* such that the skew-symmetric bilinear form defined
by Bs(z,y) = f([z,y]), for any z, y€ S, is nondegenerate. Let us decompose the
subalgebra S into the unipotent part U and the reductive part R as above. Let us
choose the canonical basis for U: E; = e13 — eqq5, Ey = €14 + €35, E3 = e15 + e,
Ey = eg4 + €35, B5 = ea3 — ess5, B = e, By = eg5 and for R: F1 = e — e,
Fy = ey — es5, F3 = €33 — eqq, Fy = e3q, F5 = ey3, Fs = €12 — €56, F7 = €31 — €65 We
put f(E;) = o; and f(F;) = §; for all 4 = 1,..., 7. We will prove that we can choose
«;, fB; such that By is nondegenerate. Let us make the remark that the matrix of
By with respect to the basis E\,...,E7, Fi,..., F; consists of four blocks of dimension
7
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(3.12) Mg, = [ B oC

where A = (a;;) = (By(E;, Ej)), B = (b;) = (By(E;, Fj)) and C = () =
(By(F;, F})). These matrices can be computed explicitly, A and B depend on «;’s
and C on f;’'s. We make the remark that U is not commutative and therefore A
is not zero. Simple computations show that B is degenerate for any choice of the
numbers «;, but there exist «;'s such that the rank equals 6. Moreover one can
choose ;s such that the first 7 rows are linearly independent and then find 3; such
that the whole matrix is nondegenerate. Such a choice is a; = a3 = @y = a5 = 1,
oz =0, 06 =3, oy = —3 and ; = 0 except #3 = 1. Thus S is Frobenius. O
Corollary 3.11. Let Y be any element of SO(12) sending the isotropic vector
(1,0,0,1,0,..,0) to (1,0,...,0)* in C'2. Then Ad(Y)(sp(6) x sl(2)) provides a non-
constant rational solution in 0(12).

Proof. The result follows by Lemma 3.2. O
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ON THE CLASSICAL DOUBLE OF PARABOLIC SUBALGEBRAS

IULIA POP

ABSTRACT. Given a complex simple finite-dimensional Lie algebra g with fixed
root system, there exists a so-called classical Drinfeld-Jimbo r-matrix, r. Consider
any parabolic subalgebra Ps C g defined by a subset S of the set of simple roots.
We prove that the Lie bialgebra structure on g defined by r can be restricted
to Ps. Moreover, it turns out that the corresponding classical double D(Ps) is
isomorphic to g ® Red(Ps), where Red(Ps) denotes the reductive part of Ps.

Keywords: Lie bialgebra, parabolic subalgebra, Drinfeld-Jimbo r-matrix,
classical double.
2000 Mathematics Subject Classification: 17B62, 17B20.

1. INTRODUCTION

The notion of Lie bialgebra was introduced by V. G. Drinfeld in [3]|. Let us recall
the definition:

Definition 1.1. Let g be a finite-dimensional vector space over C and suppose that
both g and g* have Lie algebra structures. The Lie algebra structures are called
compatible if

(1.1) o = ch,dl® — ol di* — ¢ d® + ), di*

ar'’s ar'’'s as™'r

where ck, and dfcj are the structure constants of g and g* with respect to bases of
g and g* which are dual to each other. We will say that g is equipped with a Lie
bialgebra structure if g and g* have compatible Lie algebra structures.

In [3] it was proved the following result:

Theorem 1.2. Suppose that g and g* have fized Lie algebra structures. Define the
linear map ¢ : g* ® g* — g* by setting ¢(ly ® ly) = [l1,1s]. Then the following
conditions are equivalent:

1) The Lie algebra structures on g and g* are compatible.

2) The map ¢* : g — g ® g is a 1-cocycle, where it is understood that g acts on
g ® g by means of the adjoint representation, i.e. for any a, b € g,
(1.2) ¢*([a,8]) = a.¢"(b) — b.¢"(a),
where a.b®¢c) =[a®14+1Qa,bQ@c|=[a,b] @ c+b® [a,c].

3) There is a Lie algebra structure on the vector space g @ g* inducing the given

Lie algebra structures on g and g*, which is such that the bilinear form Q on g®g*
defined by the formula

(1.3) Q((lell)y(x%lz))l:ll($2)+l2($1);
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is invariant with respect to the adjoint representation of g ® g*. Moreover, such a
Lie algebra structure on g @& g* is unique if it exists.

The linear space g @ g* equipped with this Lie algebra structure is called the
classical double of the Lie bialgebra g and is denoted by D(g).

Let us remark that in order to equip g with a Lie bialgebra structure, we need a
1-cocycle § : g — g A g which satisfies the co-Jacobi identity:

(1.4) Per(6®1)0d(a) =0,

for any a € g, where Per(a®b®c¢)=a®bQc+c®a®b+b®cQa.

Let us suppose now that g is a simple finite-dimensional Lie algebra over C. In
this case, any 1-cocycle § is a co-boundary and therefore it is given by the formula
0(a) =[a®1+1Q®a,r] for some r € g g. It was shown in [3] that 7 can be
chosen skew-symmetric and satisfying the following condition: < r,r >= [r'2 r!¥]+
[r12,7%3] 4 [r13,723] is an ad-invariant elment of g® g®g. Since g is simple, there is
only one ad-invariant tensor in g®g®g up to a scalar factor, namely a-c;;, I; [;Q1Iy,
where {I;} is an orthonormal basis of g with respect to the Killing form, ¢;;. are the
corresponding structure constants and a € C.

In the case a # 0, all these tensors r were found by Belavin and Drinfeld in [1]. A.
Stolin has proved in |9] that any classical double D(g) is graded by its root system.
As a consequence, D(g) = g ® A, where A is a unital commutative associative
algebra of dimension 2. There are two possibilities for A: nilpotent or semisimple.
The nilpotent case corresponds to the case ¢ = 0 and the semisimple to the case
a # 0.

In our paper, we replace g by a parabolic subalgebra and we give a description of
the classical double induced by the classical Drinfeld-Jimbo r-matrix.

We recall that a parabolic subalgebra of a Lie algebra is a subalgebra that contains
a Borel subalgebra (i.e. a maximal solvable subalgebra).

Let g be a complex simple finite-dimensional Lie algebra. We consider the root
system R with respect to a Cartan subalgebra h of g, A the set of simple roots and
{g%}acr the root spaces. For any S C A, let us denote by II(S) the set of all z € R
such that if x = 3 kv, then k, > 0 for any o € S. It is known that any parabolic
subalgebra can be transformed by an inner automorphism to one of the following
subalgebras:

(1-5) Pg =ho Z ga_
aclI(S)

Let us consider the Killing form K on g. For any nonzero element e, € g¢, there
exists an element e_,€ g~ such that K(e,,e_,) = 1. With these notations, the
classical Drinfeld-Jimbo r-matrix is the following:

1
(1.6) r= EZea/\e,a.
a>0
It is well-known that r has the following properties:

(1.7) r? 4% =0
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and the tensor < r,7 > defined by
(18) <rr>= [TIQ’ T13] 4 [le, 7‘23} 4 [T13, 7‘23]

is ad - invariant.

Given a parabolic subalgebra Ps of g, we prove that r defines a Lie bialgebra
structure on Pg and we describe the classical double associated to it. We will show
that the classical double of a parabolic subalgebra Pg of g, induced by the tensor r,
is isomorphic to g @ Red(Ps).

In particular, for S = (), the well-known result D(g) = g & g (see [7]) will follow.

2. BAsIC LIE BIALGEBRA STRUCTURE FOR A PARABOLIC SUBALGEBRA

Let 7 be the classical Drinfeld-Jimbo r-matrix defined in (1.6) and let us consider
the 1-cocycle d,: g — g A g defined by

(2.1) dla)=[a®1+1®a,r]

foralla € g.
Let S be a subset of A and Ps the corresponding parabolic subalgebra of g.

Proposition 2.1. The map §, provides a Lie bialgebra structure for any parabolic
subalgebra Ps.

Proof. Because 6, is a 1-cocycle that satisfies the co-Jacoby identity, it is enough
to show that 6,(Ps) C Ps A Ps. For all v € R, we have chosen e,€ g7 such that
K(ey,e_) = 1. It is known that {e,},50 is a basis forn, =37 g7 and {e_},>0
is a basis forn_ = Zwog’”. Therefore it is enough to check that d,(e,) € Ps A Pg
for any v > 0 and v < 0 which does not contain roots belonging to S. Define N, g
by the formula [e,, 5] = Nygeaip for a, 8, a+p € R. If o, BE R, o+ ¢ R and
a # —f, we set Ny =0.
Consider v > 0. We have:

1 1
Gre)) =ley ®@1+1® ey, 5 Y esNe sl = 3 > (leyses] Ae s+ es Nley,e g]).
B£>0 B>0

We make the following remarks: If —3 € II(S), then [e,,eg] Ae_g = N, geq8 Ae_g
or it is zero. In any case it is an element from Ps A Ps. If v — /3 is not a root or
v — B € II(S), then eg A [ey,e_g] = N, _geg ANey_g € Ps A Pg or it is contained in
Ps Ah. Thus the terms that remain to be considered are N, ge, 3 A e_g when
contains at least one root from S, and N, _geg A e,_g when § = 8 — v > 0 contains
roots from S. We consider B, g = {6 > 0 : 0 contains simple roots from S in its
decomposition and v+ € R}. Consequently, from the previous remarks, it follows
that

(2.2) 8r(en) = D (Nyg+ Ny ys)esss Ae_g € Ps A Ps.
0€Bys
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Similarly, for v > 0 which does not contain roots from S,

1
dr(e—) =3 D (leyeslnes+esAle e g))
B>0
and the only “problematic” terms are N_, ge_,15 A e_g for B > 0 containing roots
from S and N_, _geg Ae_,_g when 8+ v contains roots from S. Therefore we have
proved that

(2.3) Sr(ey)— D (Noqs+Noyqos)eyis Ae_s € Ps APs.

deB_y s
The following lemma will prove that the two sums that appear in (2.2) and (2.3)
vanish and thus é,(e,) € Ps A Ps for all ¥ > 0 and v < 0 which does not contain
roots belonging to S. O

Lemma 2.2. Suppose that o, 3, v € R salisfy the relation « + f + v = 0. Then
Nony+ Ng,=0.

Proof. One has the following:
Nay = NoyK(e—p,e5) = K(Napeatr; €5) =
= K([eq, e,], ) = K(eq, [y, €8]) = K(ea, Nyge_o) = N, 5.

3. THE CLASSICAL DOUBLE

In the previous section we proved that the 1-cocycle §, provides a Lie bialgebra
structure for a parabolic subalgebra Ps of a complex simple finite-dimensional Lie
algebra g . Therefore there exists a classical double associated to it, which we denote
by D(Ps). We will give a description for D(Ps). We will prove that the classical
double is isomorphic to g®Red(Ps). We recall that Red(Ps) denotes the reductive
part of Pg and is isomorphic to }%, where the orthogonal is considered with respect
to the Killing form of g. °

Let As = {1 € R p does not contain simple roots from S in its decomposition}
and Bg = {§ > 0: § contains simple roots from S in its decomposition}. Then it is
well-known that
(3.1) Py=3 g

deBg
and therefore
(3.2) Red(Ps)=he > g
peAs

This allows us to compute the dimension of Red(Ps) and we get that the linear
spaces D(Ps) = Ps® P} and g ® Red(Ps) have the same dimension. Thus they are
isomorphic as vector spaces.

Consider now the map d : Ps — g @ Red(Ps) defined by d(z) = (z,n(z)), where
m Pg — ;Ssr is the canonical projection. Red(Ps) is equipped with the Killing form
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of g, which is nondegenerate on Red(Ps). Therefore we can define a nondegenerate
symmetric bilinear form Q on g ® Red(Ps) by

(3.3) Q((a,b),(c,d)) = K(a,c) — K(b,d).

Q is also invariant with respect to the adjoint representation.

We are interested in finding a Lagrangian subalgebra W of g & Red(Ps), with
respect to the bilinear form @, which satisfies the additional condition WnNd(Ps) = 0.
We give its construction in the next lemma:

Lemma 3.1. There ezists a Lagrangian subalgebra W in g ® Red(Ps), with respect
to the bilinear form Q, such that W N d(Ps) = 0.

Proof. Suppose that for all ¥ € R we have chosen e, € g” such that K (e,,e_,) = 1.
Put [e,,e_,] = h, € h. The canonical basis of Ps is formed by hg for all 5 € A (set
of simple roots) and e, for v € II(S). We make the following remarks: i) if v > 0
contains simple roots from S, then 7(e,) = 0; ii) if v € R does not contain roots
from S, then 7(e,) = e,; iii) for any B € A, w(hg) = hg.

Let Cs = {6 > 0: & does not contain simple roots from S in its decomposition}.
Putb.=h®n_ and bg = hEBZ&CS g®. We consider the following Lie subalgebra
of g ® Red(Ps):

(3.4) W ={(z,y) € b_ ®bg : zn + yn = 0},

where zp, yn denote the “Cartan parts” of x and y respectively. Let us choose
the following basis in W: F7 denoting (e_,,0) if v > 0 and (0,—e_,) for v <
0 which does not contain simple roots from S in its decomposition, and H? =
(hg,—hg) for all B € A. We will prove that W is a Lagrangian subalgebra.
Firstly, dimW = dimP = }dim(g © Red(Ps)). So it suffices to show that
W C Wi, We have the following: Q((e_,,0),(e 4,0)) = K(e ,,e ) = 0 for
7,6 > 0; Q((0,—e_,), (0,—e_5)) = —K(e_,,e_5) = 0 for 7,6 < 0 which do not
contain simple roots from S; Q((e_,,0), (hg, —hg)) = K(e_,,hg) = 0 for v > 0,
B € A; Q((Oa 76*7)7 (hﬂa 7hﬂ)) = 7K(6,7, hﬁ) =0 and Q((hﬂv 7h5)7 (h97 7h9)) =
when 3,0 € A. In conclusion, W is a Lagrangian subalgebra.

On the other hand, the canonical basis in d(Ps) is formed by the following ele-
ments: E, representing (e,, 0) for v > 0 which contains simple roots from S; (e, e,)
for v € R which does not contain simple roots from S; Gg = (hg, hg) for all 3 € A.
Now it follows immediately that W N d(Ps) = 0. This completes the proof. O

In order to get to the main result of this paper, we will build a basis in W
which is dual to the canonical basis of d(Ps) described in the previous lemma.
Firstly, we notice that @Q((e,,0), (e—5,0)) = K(e,,e_5) =1 if v = ¢ and 0 otherwise;
Q((ey,€4), (e—5,0)) = K(ey,e—5) and Q((e,, €,), (0, —e—s)) = K(e,,e_5). We only
have to change the elements (hg, —hg), 8 € A in order to make them dual to (hg, he),
0 € A. For any § € A we take

(35) Eﬁ = Zamh,\.

AcA

IULIA POP

We determine agy by imposing (*) Q((he, hg), (Eﬁ,*?{lﬁ))z 1iff =6and0
otherwise. On the other hand,

(3.6) Q((ha, ha), (hs,—hg)) =2 apaK (ha, ).

A€A

Because the restriction of K to the Cartan subalgebra h is nondegenerate, the
matrix (K (hg, ha))g e a is invertible and thus the linear system equivalent to condi-

tion (*) has a unique solution for any fixed § € A. Let us denote H® = (hg, —hs)
(which we determined above). We have proved the following result:

Lemma 3.2. The systems (E,,Gg) and (F7, H?) are dual bases in d(Ps) and W
respectively.

The last step that we need in order to prove that the Lie algebras D(Ps) and
g ® Red(Ps) are isomorphic is the following:

Lemma 3.3. The Lie algebras W and P§ are isomorphic.
Proof. We recall that P% has a Lie algebra structure induced by the 1-cocycle §,.

The linear spaces W and P§ have the same dimension, so they are isomorphic. Let

us consider the dual basis (E,, Gg) and (F7, H?) from the previous lemma. Take
v > 0. We have the following computations:

[FVY H’H] = [ 6,7, Zaﬂ)\h)\, Z“ﬁAhA ] = Za[»\ [e,,y,h,\] 0)
AeA AeA AeA
Since K (hy, hy) = K(hn,[er, o)) = K(lha,e,]se—) = 1)K (erre ) = 2(ha),
one has that [e_,, hy] = y(hy)e_y = K(h,, hy)e_,. Thus we have obtained
(3.7) [P, 7] = (3 apa K (hy, b)) (e, 0).
AeA

On the other hand, if we write h, =Y c,ghg (summation after all # € A) and we
take into consideration that the constants agy verify the conditions

(3.8) > asrK (s ) =

PYSVAN

(39) ZGBAK(hH;hA) ZU,Q#ﬁ,
AeA
we conclude that
1
(3.10) [F7,H?) = (D cypapK (h, hy)) F? = el
AdeA

Analogously, when v > 0 does not contain simple roots from S, recalling that
F7 = (0, —e,), we obtain the following

=5 1
(3.11) [F 7, H] = 3emF 7.
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Now we have to analyse the bracket induced by 8, on P§. Using the computations
from the second section, it results that for any v > 0,

1 1
(3.12) 6r(ey) = 26 A hy, = 5 207967 A hg
6eA
and for any v > 0 which does not contain simple roots from S in its decomposition,
1 1
(3.13) or(e—y) = 261 Ahy = 5 Z Cyge—y N hyg.
beA

We can consider F7 and H?as elements of P; since the linear spaces W and Pg
are already identified. Because the Lie algebra structure on PZ is induced by the
1-cocycle §,, we have the following computations

(3.14) [F, f]ﬁ]Pg(e,\) =0 (F" @ HP)(ex) = (F" ® H?)(5,(ex)).

Suppose that v > 0. By construction, the bases (E.,, Gg) in d(Ps) and (F7, Flﬁ) in
W are dual. Thus, if A # v, then [F7, H?]p:(e,) = 0. Otherwise, [F, Hf]p:(e,) =
1¢yp. In this way we see that

~ 1
(3.15) [F",HP|p, = 36"
If v > 0 and does not contain simple roots from S, we obtain analogously that
~ 1
(316) [F_W,Hﬂ]Pg = icﬁyﬂF_W.

It is not necessary to consider brackets between other types of elements from the
system (F7, H?) because they are zero.

In conclusion, we have proved that the Lie bracket is in fact the same and thus
W 2 P{ as Lie algebras. O

We can now state the main result of this paper. The proof is straightforward from
the above lemma.

Theorem 3.4. Let g be a complex simple finite-dimensional Lie algebra. Consider
a parabolic subalgebra Ps C g defined by a subset S of the set of simple roots. Then
the classical double D(Ps), induced by the 1-cocycle §,, is isomorphic to the Lie
algebra g ® Red(Ps).

Example 3.5. Consider g = sl(3) and the parabolic subalgebra

P=

corresponding to the root «, defined by a(ahy + bhy)= a + 2b, where h; = e1; — es3,
hg = ez — es3-

IULIA POP

We put r = %(812/\621 +essNega+erzAesr ) and take the Lie bialgebra structure on P
0 0 = x % 0

induced by 4,. Since P+ = 00 , Red(P) = £ = x % 0 =
00

* P

0 0 0 =
gl(2).
Therefore D(P) 2 sl(3) ® gl(2), where the direct sum of Lie algebras is equipped
with the following nondegenerate invariant bilinear form:

Q((A,B),(C, D)) =Tr(AC) — Tr(BD) —TrB-TrD.

Final remark. Our result has an infinite-dimensional analogue. Let us consider
C[[u~"]] the ring of formal power series in u~! and C((u™1)) the field of its quotients.
We set glu] = g & Clul, gllu '] = g ® ClJu ]| and g((u™ 1)) == g @ C((u 1)), Let
us take {I,} an orthonormal basis in g with respect to the Killing form K and set
Q:=31,01I, Letrg=r+ % which satisfies the following equations:

(3.17) i+ =Q
(3.18) [ro*,70°] + [ro”, 75°] + [ro®, 73°] = 0.

We consider the map 6: g[u] — g[u] A g[v] defined by

(3.19) 8(a(u)) = [% +r0,a(u) ® 141 a(v)],

which is a 1-cocycle and therefore defines a Lie bialgebra structure on glu.

According to the results in [6] (cf. [10]), the classical double D(g[u]) induced by
d is isomorphic to the direct sum of Lie algebras g((u ")) & g, which is equipped
with the following invariant bilinear form:

(3'20) Q((f(u)a a‘)a (g(u)7 b)) = K(f(u)7 g(u))o - K(U‘7 b)a
where the index zero means that we have taken the free term in the series expansion.
We notice that g[u] is a parabolic subalgebra of g((z')) and the reductive part of

it, Red(g[u]) = ui[["u]], is isomorphic to g. Therefore D(g[u]) 2 g((u™!))®Red(g[u]),

exactly as in the finite-dimensional case.
Acknowledgement. The author is thankful to Professor A. Stolin who suggested
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ABSTRACT. We study classical twists of Lie bialgebra structures on the poly-
nomial current algebra. We focus on the structures induced by so-called quasi-
trigonometric solutions of the classical Yang-Baxter equation. We give complete
classification for sl and sl3. For the sls case we also emphasize quantization. We
obtain a two-parameter twist of the quantum affine algebra and of the Yangian.
Consequently, we determine the deformed quantum R matrices which correspond
to quasi-trigonometric and rational solutions in sls.

Keywords: classical Yang-Baxter equation, Lie bialgebra, rational solution,
trigonometric solution, twisting, quantization, quantum affine algebra, Yangian.
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1. INTRODUCTION

1.1. General introduction. Recall that, given a Lie algebra g, the classical Yang-
Baxter equation with one spectral parameter is the equation

(1.1) [X"(2), X (2 + )] + [X2(2), X2 ()] + [X (2 +1), X (1)] = 0,

where X (z) is a meromorphic function of one complex variable z, defined in a neigh-
bourhood of 0, taking values in g ® g. In their outstanding paper [2|, A. A. Belavin
and V. G. Drinfeld investigated solutions of the CYBE for a simple complex Lie
algebra g. They considered so-called nondegenerate solutions (i.e. X(z) has max-
imal rank for generic z). It was proved in [2]| that nondegenerate solutions are of
three types: rational, trigonometric and elliptic. Moreover the authors completely
classified trigonometric and elliptic solutions, the last ones for the case g = si,,.

In literature there were several attempts to reconsider Belavin- Drinfeld classifi-
cation. In [21] a connection between the CYBE and the Ay-constraint was given.
It was proved that all nondegenerate elliptic solutions for sl, arise from certain
triple Massey products on elliptic curve. Moreover all nondegenerate trigonometric
solutions for sls are produced in a similar manner by considering A..-categories of
singular curves of arithmetic genus 1. It was also conjectured that this holds for si,,.

The goal of the our paper is also to reconsider Belavin-Drinfeld list but from the
point of view of Lie bialgebra structures on g[z]. The classical Yang-Baxter equation
is strongly related to the fundamental concepts of Lie bialgebra and classical double
introduced by V. G. Drinfeld in [5,6]. We are interested in the description of the

classical double corresponding to Lie bialgebra structures on g[z]. In the work of
1
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Montaner and Zelmanov [20] it was proved that there exist only four types of classical
doubles. We will consider two of them: g((u~!)) and g((v™!)) & g.

A natural question arises: which nondegenerate solutions, after a suitable change
of variables, may be used to induce Lie bialgebra structures on g[z]?

Let us consider rational solutions. It was proved in [23] that this type of solutions
provide Lie bialgebra structures on gz, 27!] which can be reduced to g[z]. The
corresponding classical double was shown to be g((271)).

For trigonometric solutions, the situation is different. Any trigonometric solution
has the form f(e¥*), where f is a rational function. After setting e = , this
solution does not induce, generally speaking, a Lie bialgebra structure on gz].

Therefore we are motivated to introduce a new class of solutions of “trigonometric”
type that will induce Lie bialgebra structures on g[z]. Let Q denote the quadratic
Casimir element of g. We say that a solution X of the CYBE is quasi-trigonometric
if it is of the form:

(1.2) X(z,1) = z% +0(2,0),

where p(z,t) is a polynomial with coefficients in g ® g. We will prove that by
applying a certain holomorphic transformation and a change of variables, any quasi-
trigonometric solution becomes trigonometric, in the sense of Belavin-Drinfeld clas-
sification (see Appendix).

The study of the Lie bialgebra structures given by quasi-trigonometric solutions
will be based on the description of the classical double. We show that all quasi-
trigonometric solutions induce the same classical double g((27')) & g.

Another question that arises is the quantization of the Lie bialgebras correspond-
ing to quasi-trigonometric solutions. As it was proved by P. Etingof and D. Kazhdan
in [9], any Lie bialgebra can be quantized and this quantization is given by an uni-
versal, functorial construction. However, to find explicit quantizations of classical
r-matrices seems rather difficult. A very important step was made by P. Etingof,
T. Schedler and O. Schiffmann in [11]. They obtained the explicit quantization of
all non-skewsymmetric classical r-matrices from the Belavin-Drinfeld list [1]. More-
over a quantization of all the dynamical r-matrices for semisimple Lie algebras was
given. Their method consists in constructing an appropriate (dynamical) twist in
the tensor square of the Drinfeld-Jimbo quantum group U,(g).

Concerning the quantization of the classical r-matrices with spectral parameter,
some results were obtained for rational solutions. The simplest rational solution of
the CYBE for a simple complex Lie algebra g is r(z) = Q/z. The quantization of
the corresponding Lie bialgebra structure on g[z] is the well-known Yangian, Y (g).
In [16] an explicit quantization of the simplest nonstandard rational r-matrix for
sly, namely 7(z) = Q/z + ho A e_,, was presented. The quantization was obtained
by twisting the usual Yangian Y'(sl;). The deformed Yangian turned out to be
a two-parametric deformation of the universal enveloping algebra U(sly[z]) of the
polynomial current algebra sly|z].

Regarding trigonometric solutions, the most typical ones among the trigonometric
r-matrices are the classical solutions associated with the generalized Toda system. In
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[14] M. Jimbo reported the explicit form of the quantum R-matrix in the fundamen-
tal representation for the generalized Toda system associated with non-exceptional
affine Lie algebras.

However, the problem is far from being solved because there exist many nontrivial
rational and trigonometric solutions. As we will see later, the first nontrivial ex-
amples are a rational and a quasi-trigonometric r-matrix with values in sly. These
r-matrices can be obtained from the standard rational or trigonometric solutions by
adding a polynomial of the first degree in the spectral parameters. In our paper we
found the corresponding deformed quantum R matrices.

1.2. Structure of the paper. We devote this paper to the study of the quasi-
trigonometric r-matrices for a simple complex finite-dimensional Lie algebra g. Our
approach is from the point of view of classical twists (see Section 2). As it turns
out in Section 3, quasi-trigonometric solutions are an infinite-dimensional example
of twisting of a certain Lie bialgebra structure on g[z]. We prove that the classical
double corresponding to any quasi-trigonometric solution is isomorphic to g((z71))®
g. Moreover we construct a one-to-one correspondence between this type of solutions
and a special class of Lagrangian subalgebras of the g((z 1)) ®g. By exploiting this
correspondence, in Sections 4, 5 and 6 we investigate the case sl, and compute all
(up to gauge equivalence) quasi-trigonometric solutions for sls and sis.

In the following sections, we determine the quantum R matrix which corresponds
to the nontrivial quasi-trigonometric and rational solutions in sly. Our method is
based on the following conjecture: Any classical twist can be extended to a quan-
tum twist (Section 7). We support this conjecture by constructing a two-parameter
twist of the quantum affine algebra Uq(gl\z) (Sections 8 and 9). Surprisingly, it has
the simple form of a ¢-power function, but with g-commuting arguments. More-
over, its Yangian degeneration becomes the usual power function whose arguments
belong to an additive variant of the Manin ¢-plane. In this setting, the g-power
functions satisfy nontrivial generalizations of their standard properties, fact which
guarantees the cocycle identity for the quantum twist. In Section 10 we compute
the corresponding deformations of the quasi-trigonometric and rational R-matrices,
including them into a single family. Finally, in Section 11 we give the two-parameter
integrable deformations of the XXZ and XXX Heisenberg chains. As a particular
case we get the deformed XXX chain discussed in [19].

2. LIE BIALGEBRA STRUCTURES AND CLASSICAL TWISTS

Let g denote an arbitrary complex Lie algebra. We recall that a Lie bialgebra
structure on g is a 1-cocycle 6 : g — A2g which satisfies the co-Jacobi identity. In
other words, § provides a Lie algebra structure for g* compatible with the structure
of g.

To any Lie bialgebra one associates the so-called classical double. It is defined as
the unique Lie algebra structure on the vector space g @ g* such that:

1) it induces the given Lie algebra structures on g and g*
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2) the bilinear form @ defined by
Q(zy + Ui, T2 + o) = (@) + la(21)

is invariant with respect to the adjoint representation of g ® g*.
Let us denote by D(g,d) the classical double of (g,d) and recall the following
notion defined in [15]:

Definition 2.1. Two Lie bialgebra structures ¢, and d» on g are said to be equiv-
alent if there is a Lie algebra isomorphism f : D(g,d,) — D(g,d,) satisfying the
properties:

1) Qi(z,y) = Qa(f(2), f(y)) for any z, y €D(g, §1), where @; denotes the canon-
ical form on D(g,4;),i=1,2.

2) f o ji1 = ja, where j; is the canonical embedding of g in D(g, d;).

If we regard any Lie bialgebra as a Lie quasi-bialgebra, there is a notion of classical
twist according to [7]:

Definition 2.2. Let §; be a Lie bialgebra structure on g. Suppose s € A%g satisfies
[s2,813] + [s'2, 2] + [s13, sB] = Alt(6, ® id)(s),

where Alt(z) := z'2 + 2% + 2312 for any 2 € g®%. Then

d2(a) :=d(a)+[a®1+1Qa,s]

defines a Lie bialgebra structure on g. We say that d, is obtained by twisting via s
and s is a classical twist.

Remark 2.3. For a finite-dimensional g, it was shown in [15] that two Lie bialgebra
structures are equivalent if and only if one is obtained from the other by twisting
via a classical twist.

Example 2.4. Let g be finite-dimensional. All Lie bialgebra structures induced
by triangular r-matrices are equivalent. The classical double corresponding to any
triangular 7-matrix is isomorphic to the semidirect sum g + g* such that g* is a
commutative ideal and [a, ] = ad*(a)(!) for any a € g and | € g*.

Another example of twisting is the following:

Example 2.5. Suppose g is simple and let § be the Lie bialgebra structure induced
by the standard Drinfeld-Jimbo r-matrix. Then the entire Belavin-Drinfeld list [1] is
obtained by twisting the standard structure dy. The classical double corresponding
to any r-matrix from this list is isomorphic to g @ g.

Now, if we pass to the case of infinite-dimensional Lie bialgebra structures, we
encounter more examples of twisting.

Let us recall several facts from the theory of rational solutions as it was developed
in [23]. We let again g denote a simple Lie algebra. Denote by K the Killing form
and let € be the corresponding Casimir element of g. We look for functions X:
C?— g ® g which satisfy
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(X2 (21, 20), X3 (21, 23)] + [ X2 (21, 22), X* (29, 23)]+
+[X13(Zl, Z3), X23(252, 23)] = 0,

(22) X12(Z],ZQ) = —XQI(ZQ,Zl).

Remark 2.6. We will call these two equations the classical Yang-Baxter equation
(CYBE). In the case of rational and quasi-trigonomtric solutions, the unitarity con-
dition (2.2) can actually be dropped. We will prove in Appendix that (2.2) is a
consequence of (2.1).

Definition 2.7. Let X (z,t) = % + p(2,t) be a function from C? to g ® g, where
p(z,t) is a polynomial with coefficients in g ® g. If X satisfies the CYBE, we say
that X is a rational solution.

Two rational solutions X; and X are called gauge equivalent if there exists o(z) €
Aut(g[z]) such that Xy(z,t) = (0(2) ® o(t))X1(z,1t), where Aut(g[z]) denotes the
group of automorphisms of g[z] considered as an algebra over C[z].

Remark 2.8. It was proved in [23] that any rational solution can be brought by
means of a gauge transformation to the form:

Q
X(z,1) = T 1 =+ Poo + P10z + port + pr12t,
where poo, P1o; Po1, P11€ 8 ® 8.

We recall that any rational solution induces a Lie bialgebra structure on the
polynomial current algebra g[z]. Let us consider a rational solution X and define
the map dx: g[z] — g[z] A g[z] by

(2.3) dx(a(z)) = [X(2,1),a(z) @ 1 +1®a(t)],

for any a(z) € g[z]. Obviously dy is a 1-cocycle and therefore induces a Lie bialgebra
structure on g[z].

The following result, proved in [23], shows that all Lie bialgebra structures corre-
sponding to rational solutions are equivalent.

Let C[[27']] be the ring of formal power series in 27! and C((z ")) its field of
quotients. Consider the Lie algebras g[z] = g ® C[2], g[[z7!]] = g ® C[[z!]] and
g((z 1) = g®C((z ).

Theorem 2.9. Let Dx(g[z]) be the classical double corresponding to a rational so-
lution X of the CYBE. Then Dx(g[z]) and g((z7!)) are isomorphic as Lie algebras,
with inner product which has the following form on g((271)):

(2.4) Q(f(2),9(2)) = Res.oK(f(2), 9()),
where £(2), 9(2)€ g((=™)).
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Remark 2.10. This result means that g((z7')) can be represented as a Manin triple
g((271)) = g[z] ® W, where W is a Lagrangian subalgebra with respect to the
invariant form Q.

In the case g = sl,, all the rational solutions were described in the following way:

Let di = diag(1,...,1,2,...,2) (k many 1’s), 0 < k < [3]. Then it was proved in
[23] that every rational solution of the CYBE defines some Lagrangian subalgebra
W contained in d, 'sl,[[z!]]dx for some k. These subalgebras are in one-to-one
correspondence with pairs (L, B) verifying:

(1) L is a subalgebra of sl, such that L+ P = sl,,, where Py denotes the maximal
parabolic subalgebra of sl, not containing the root vector e, of the simple root ay;

(2) B is a 2-cocycle on L which is nondegenerate on L N Fy.

In case of sly one has just two non-standard rational r-matrices, up to gauge
equivalence:

Q
(25) Xl(Z,t) = m+ha/\e_a
and
Q
(2.6) Xo(z,t) = P + 26_q @ hg — thy ® e_q,
”—

where e, = €19, €_o = €91 and h, = €11 — €9y is the usual basis of si,.

3. QUASI-TRIGONOMETRIC SOLUTIONS

We devote this section to studying another interesting case which provides infinite-
dimensional Lie bialgebra structures on the polynomial current algebra g[z]. We
consider the simplest trigonometric solution and classical twists of it.

Let g be as before. We fix a Cartan subalgebra h and the associated root system.
We choose a system of Chevalley-Weyl generators e,, e, and h,, where « is a
positive root, such that K(eq,e_o) = 1.

Let rg denote the standard Drinfeld-Jimbo r-matrix

(3.1) ro = %(Zea/\e,a—kﬂ),

a>0
which satisfies the modified CYBE:

(3.2) ro+rdt =Q,

(33) [r6” o’ + [r9”, 75°] + [r9” 75°] = 0.

We consider the function X defined by

[29)
(3.4) Xo(z, t) = : + 7o

It is easy to check that X, satisfies (2.1) and (2.2).
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Let us make the remark that X is related to the simplest trigonometric 7-matrix.
If we make the change of variables z = e* and ¢ = e*, then
Q
A oh) —
(3.5) Xo(e*, e") = ] + g
is a trigonometric solution, according to [2].

Definition 3.1. We say that a solution X of the CYBE is quasi-trigonometric if it
is of the form:

9
where p(z,t) is a polynomial with coefficients in g ® g.

Proposition 3.2. Let Aut(g[z]) denote the group of automorphisms of g[z] con-
sidered as an algebra over Clz]. Let X, be a quasi-trigonometric solution and
o(z) € Aut(g[z]). Then

Xo(z,t) = (0(2) @ o(t)) X1 (2, 1)
is also a quasi-trigonometric solution.
Proof. Let Xi(z,t) = Zt—?t + p(z,t). Since Xy obviously satisfies the CYBE, it is
enough to check that X5 is quasi-trigonometric. We have the following:
t

X(z,t) = (w ®a(t)2+ m(a(t) ® a(t))Q+

+(o(2) ® o(t))p(z,1).
Let pi(z,1) := (L2E-0) & (1)) and ps(z,1) := (6(z) ® o(t))p(2,1). These are

t
2=t
polynomial functions in z, ¢. Since (o(t) ® o(t))Q2 = £, we obtain

(294
X2(27 t) = m +p1(zat) +p2(z7 t)

and this ends the proof. O

Definition 3.3. Two quasi-trigonometric solutions X; and X, are called gauge
equivalent if there exists o(z) € Aut(g[z]) such that

(3.7) Xo(z, 1) = (0(2) ® o(£) X (2, 1).

Any quasi-trigonometric solution X of the CYBE induces a Lie bialgebra structure
on g[z]. Let dx be the 1-cocycle defined by

(3.8) dx(a(z)) = [X(2,1),a(z) ® 1 + 1 @ a(t)],

for any a(z) € glz].

It is expected that all Lie bialgebra structures corresponding to quasi-trigonometric
solutions induce the same classical double. Let us first recall the description of the
classical double corresponding to the solution Xy, according to [20]:
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Theorem 3.4. Let Dx,(g[2]) be the classical double of g[z] corresponding to X,.
Then Dy, (g[2]) is isomorphic to the direct sum of Lie algebras g((271)) & g, where
we consider the following invariant bilinear form:

(3.9) Q((f(2),a), (9(2),0)) = K(f(2),9(2))o — K(a,b).

Here the index zero means that we have taken the free term in the series expansion.

Remark 3.5. The Lie algebra g|z] is embedded into g((z!)) & g via a(z) —>
(a(2),a(0)). The Lie algebra g[2] is naturally identified with

(3.10) Vo i= {(a(2), a(0))sa(z) € gl2]}.

Moreover, the Lie algebra (g[z])* is identified with the following Lie subalgebra of
g(z"))oe:

(3.11) Wy =z"'g[lz""]] @ {(a,b) €b, ®b_ : ay + b, = 0}.

Here h is the fixed Cartan subalgebra of g, b, are the positive (negative) Borel
subalgebras and ay, denotes the “Cartan part” of a.

In order to show that all quasi-trigonometric solutions induce the same classical
double, we will prove the following result:

Theorem 3.6. There exists a natural one-to-one correspondence between quasi-
trigonometric solutions of the CYBE and linear subspaces W of g((27')) @ g such
that

1) W is a Lie subalgebra in g((z ') & g such that W 2 2 Ng[[z7']] for some
N > 0;

2)WeaVy=g((z) @g;

3) W is a Lagrangian subspace with respect to the inner product of g((27!)) @ g.

Proof. Let Vi and Wy be the Lie algebras given in Remark 3.5. We choose dual bases
in Vy and W, respectively. Let {k;} be an orthonormal basis in h. The canonical
basis of V; is formed by e,2¥, e_a2*, k;2* for any o > 0, k > 0 and all j; (e_a,€-4),
(eq, €a) for any a > 0, and (kj, k;), for all j. The dual basis of W, is the following:
e_az K, eaz ®, kjz ¥ for any @ > 0, k > 0 and all j; (e,,0) and (0, —e_,) for all
a >0, and 3(k;, —k;), for all j. Let us simply denote these dual bases by {v;} and
{wg} respectively. We notice that the quasi-trigonometric solution Xy given by (3.4)
can be written as

(3.12) Xo(z,t) = (1@ 7)) wh @vy),

where 7 denotes the projection of g((27!)) @ g onto g((271)).

We denote by Homon (W, Vo) the space of those linear maps F: Wy — Vj such
that KerF D 2z Vg[[z7!]] for some N > 0. It is the space of linear maps F' which
are continuous with respect to the “z™! - adic” topology.

Let us contruct a linear isomorphism ®: Vo ® Vo — Homeent(Wo, Vo) in the fol-
lowing way:

(3.13) B(z ® y)(wo) = Q(wo, y) - z,
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for any z, y € Vj and any wy € Wy. It is easy to check that & is indeed an
isomorphism. The inverse mapping is ¥: Homeont(Wo, Vo) = Vo ® V defined by

(3.14) U(F) =) F(uw)) ®uv;.

We make the remark that this sum is finite since F(wj) # 0 only for a finite number
of indices 1.

The next step is to construct a bijection between Hom (W, Vy) and the set
L of linear subspaces W of g((27!)) @ g such that W & V5 = g((27!)) @ g and
W 2 27Ng[[27!]] for some N > 0. This can be done in a very natural way. For any
F € Homont(Wo, Vo) we take

(3.15) W(F) = {wo + F(wo); wy € Wo}.

The inverse mapping associates to any W the linear function Fyy such that for any
wg € Wy, Fiw(wp) = —v, uniquely defined by the decomposition wy = w + v with
w €W and v € Vj.

Therefore we have a bijection between Vy ® V5 and L. By a straightforward
computation, one can show that a tensor r(z,t) € Vy ® V; satisfies the condition
r(2,1) = —r®(t,2) if and only if the linear subspace W (®(r)) is Lagrangian with
respect to Q.

Let us suppose now that X (z,t) = Xo(z,t)+7(2,t) and r(z2,t) = —r%(¢,2). Then
X (z,t) satisfies (2.1) if and only if W(®(r)) is a Lie subalgebra of g((z7')) @ g.
Indeed, since r is unitary, we have that W(®(r)) is a Lagrangian subspace with
respect to Q. It is enough to check that X (z,t) satisfies (2.1) if and only if

(3.16) Q([wy + D(r)(w1), wa + @(r)(wa)], ws + D(r)(ws)) =0

for any elements w;, wy and ws of Wy. This follows by direct computations.

In conclusion, we see that a function X (z,t) = z%ﬂt—i-p(z, t) is a quasi-trigonometric
solution if and only if W(®(p —7)) is a Lagrangian subalgebra of g((27!)) &g. This
ends the proof. O

Corollary 3.7. The Lie bialgebra structures on g[z] induced by quasi-trigonometric
solutions are equivalent. The corresponding classical double is g((27")) ® g together
with the form @ given by (3.9).

Proof. One can easily check that if W is a Lagrangian subalgebra of g((271)) & g,
corresponding to a quasi-trigonometric solution X (z,t) = £ + p(z,1), then W is
isomorphic to (g[z])* with the Lie algebra structure induced by X.
Indeed, with the notation introduced in Theorem 3.6, let F':= Fyy. It is enough
to check that for any v € Vy and wy, ws € W, the following equality is satisfied:
Qv, [wr + F(w1),ws + F(ws)]) =< dx(v), w1 @ wg >,

where <, > denotes the pairing between V? and W induced by Q. This equality
is implied by the following identities:

Q(v, [wy,ws]) =< bx,(v), w1 ® wy >,
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Qv, [F(wy), ws]) =< [p — 19,1 @ v], w1 @ ws >,

Qv, [wy, F(ws)]) =< [p — ro,v ® 1], w; ® wy > .
O

Remark 3.8. If W is a Lagrangian subalgebra of g((27!)) @ g satisfying the condi-
tions of Theorem 3.6, then the corresponding solution X (z,t) is constructed in the
following way: take a basis {w'} in W which is dual to the canonical basis {v;} of
V4 and construct the tensor

(3.17) 7(z,t) = Zwi ® v;.

Let 7 denote the projection of g((27!)) ® g onto g[z] which is induced by the
decomposition g((271)) ® g = Vo & Wy. Explicitly,

(3.18) (a2 + o dag+a 127t 4. b) = an2™ + .+ a2zt

1
+§(a0h +bn) + ao— + b4

Here ag = agn +aoy + ap— and b = by, + b, + b_ are the decompositions with respect
tog=h®n, &n_. Then

(3.19) X(z,t) = Xo(z,t) + (m @ m)(7(2, 1)).
At this point we note the following fact that we will prove in Appendix:

Proposition 3.9. Let W be a Lie subalgebra satisfying conditions 2) and 3) of
Theorem 3.6. Let 7 be constructed as in (3.17). Assume 7 induces a Lie bialgebra
structure on g[2] by &7(a(2)) = [F(z,t),a(z) ® 1 + 1 @ a(t)]. Then W 2 u Ng[[u']]
for some positive N.

Theorem 3.10. Let X, and X, be quasi-trigonometric solutions of the CYBE.
Suppose that Wi and Wy are the corresponding Lagrangian subalgebras of g((z7')) @
g. Let 0(z) € Aut(g[z]) and 5(z) be the automorphism of Vi induced by o(z). The
following conditions are equivalent:

1) X1(2,t) = (0(2) ® (1)) Xa(2,1);

Proof. 1) = 2). Let us begin by proving this for the particular case X; = X, and
X5 = (0(2) ® 0(t))Xo(z,t). The Lagrangian subalgebra corresponding to X, is W,
given by (3.11). On the other hand, one can check the Lagrangian subalgebra W,
corresponding to the solution Xs, consists of elements

Fe=3"050))  5(wy) =Y G (), v:) - 5(wp),

i i

for any f € W,. Here {v;} and {wi} are the dual bases of V;, and W, introduced in
the proof of Theorem 3.6. We show that Wy = ().
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Let g denote the projection of 5 1(f) onto Wy induced by the decomposition
Vo@ Wy =g((27')) ©g. Then

9= () v)-wp
which implies that f = (g). Therefore Wy C &(W;). The other inclusion is similar.

Let us pass to the general case. If Xi(z,t) = X¢(z,t) + r(z,t) is a quasi-
trigonometric solution with r(z,2) = > axz* ® b;#7, then the corresponding W,
consists of elements of the form f + Y (f,b;2%)ax2*, for any f in W,. Now let
Xo(z,t) = (0(z) ® 0(t))X1(2,t). The corresponding subalgebra W, is formed by
elements of the form

fr= Do) - awh) + D (f.5(b;27))5 (an?").
It is easy to see that f, =5(h), where h := g+ (g, b;2?)ar2* and g is the projection
of 571(f) onto Wy. These considerations prove that &(W;) = Wa.

2) = 1). Suppose that Wy = 5(W;). Let Xy = (0(2) ® o(t))X1(z,1). Tt is
a_quasi-trigonometric solution which has a corresponding Lagrangian subalgebra
Wy. Because 1) = 2) we obtain that Wy = &(W;) and thus Wy = W,. Since
the correspondence between solutions and subalgebras is one-to-one, we get that
X2 = Xg. D

Remark 3.11. We will say that W, and W, are gauge equivalent if condition 2) of
Theorem 3.10 is satisfied.

Theorem 3.12. Let X(z,t) = ;—Yt +p(z,t) be a quasi-trigonometric solution of the
CYBE and W the corresponding Lagrangian subalgebra of g((z71)) & g. Then the
following are equivalent:

1) p(z,1) is a constant polynomial;

2) W is contained in g[[27']] © g.

Proof. We keep the notations from the proof of Theorem 3.6 and also those from
Remark 3.8. Let r(2,t) = p(2,t) — ro and F = &(r(z,t)). If p(z,t) is constant,
then F(wp) € g ® g for any wg € Wy. Therefore W(F) C g[[z"!]] @ g. Conversely,
let us suppose that W is included in g[[z7']] ® g. The orthogonal of g[[z7']] & g
with respect to @ is obviously z 'g[[z"!]]. Since W is a Lagrangian subalgebra, it
follows that W contains z7'g[[27!]]. According to the previous remark, r(z,t) =
(m @ m)(7(z,t)), where 7 is the projection onto g[z] induced by the decomposition
g((z™)) ®g =Vo®Wy and 7(2,t) = Y, w' ®v;. Now it is clear that r is a constant.
This ends the proof. O

Remark 3.13. A function X (z,1) = B +r, where r € g ® g, satisfies the CYBE if
and only if r is a solution of the modified CYBE.

Definition 3.14. A quasi-trigonometric solution X(z,t) = Zt—?t + p(z,t) is called
trivial if p(z,1) is a constant polynomial, and nontrivial otherwise.
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Let us finally notice the following fact that we will use in the next section:

Remark 3.15. Any W satisfying conditions 1) and 3) of Theorem 3.6 is bounded, i.e.
there exists M > 0 such that W C 2zMg[[z7!]] ® g. Conversely, if W is Lagrangian
and bounded, then condition 1) is verified.

4. QUASI-TRIGONOMETRIC SOLUTIONS FOR sl

In the case g = sl,, the result of Theorem 3.6 can be exploited further. We recall
the following result [23]:

Theorem 4.1. Any bounded subalgebra W of sl,((z7")) is contained in g~'sl,[[z"']]g
for some g € GL,(C((271))).

As a consequence, we obtain a similar result for the bounded subalgebras of
sla((271)) @ sly:

Theorem 4.2. Any bounded subalgebra W of sl,((27)) @ sl,, is contained in
g 'shallz" g @ sl
for some g € GL,(C((z™1))).
By the so-called “Sauvage Lemma” (see [23]), one obtains

Corollary 4.3. Any bounded subalgebra of sl ((z ")) @ sl is gauge equivalent to a
subalgebra contained in d~'sl,[[z']]d @ sl,, where d = diag(z™, ...,z2™), with m;
integers such that m; < ... < my,.

Now, quasi-trigonometric solutions correspond to bounded subalgebras that sat-
isfy the conditions of Theorem 3.6. By Corollary 4.3 and condition 2) we get:

Corollary 4.4. Let W C g 'sl,[[z 1]]g @ sl, be a Lie subalgebra corresponding to
o quasi-trigonometric solution. Then, up to a gauge equivalence, g = dy, where
dy = diag(1,...,1,2,..2) (k-many 1’s) and 0 < k < [F].

Remark 4.5. In the above corollary, one could also consider g = d,,_. However the
corresponding solutions are not distinguished from those corresponding to g = d.
They are equivalent via an outer automorphism induced by the automorphism of
order 2 of the Dynkin diagram for sl,,.

Corollary 4.4 and Theorem 3.6 imply the following

Theorem 4.6. Any quasi-trigonometric solution for sl, is gauge equivalent to a
quasi-trigonometric solution of the form

iQ
X(z,1) = p— ~+ poo + p1oz + port + p112t,

where poo, Pro, Por, P11 €V E-
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Recall that a similar result was valid for rational solutions (see Remark 2.8).
Let us consider now

(4.1) Ly, == d;; 'sly[[z "]]dy @ sl
We intend to investigate the quasi-trigonometric solutions for which the corre-
sponding Lagrangian subalgebra W is contained in L;. We make the remark that
L = 271d, 'sl,[[z7"]|dk, with respect to the inner product Q. It follows that

Ly di sl [[2]dk

4.2 ey G Sl G g g o~ gl
(42) If = 2 d sl e 0o @

. . . A Bz . A B
We identified the class of the matrix ( cx!' D ) with ( c D ) and therefore

the quotient that appears on the right-hand side is isomorphic to sl,,. Here A and
D are matrix blocks of order k£ and n — k respectively. .
Let us also notice that sl,, @ sl, has an invariant bilinear form, (), induced by Q:

(43) @((aab)7 (Ca d)) = K(aa C) - K(b7 d)

We denote by p the canonical projection of L onto sl, @ sl,. We recall that
we considered Vo={(a(z),a(0)); a(z) € sl,[2]}. We immediately get that L, NV
consists of all pairs

(1.0 (s 75%).(a o)

where A and D are matrix blocks of order k£ and n — k respectively. Therefore its
image p(Ly N Vo) in sl, @ sl,, is

(4.5 a=t( 5 B) (a5

Theorem 4.7. There is a bijection between the set of subalgebras W of Ly, corre-
sponding to quasi-trigonometric solutions, and the set of Lagrangian subalgebras W
of sl, @ sl, such that W & Ay, = sl, & sl,,.

Proof. Let W C Ly, be a Lagrangian subalgebra of sl,((z 1)) @ sl, complementary
to Vo. We set p(W) = W. It is clear that W is isotropic with respect to Q. Let
us show that W + A, = sl,, @ sl,,. For any (a,b) € sl, @ sl,, there exists I' € Ly
such that p(I') = (a,b). But I’ = w+ v with w € W and v € Vp. Tt follows that
v € Ly N Vg and thus p(v) € Ag. Thus (a,b) = p(w) + p(v), p(w) € W, p(v) € A,
Since W C L and W = W it follows that L;- C W. This inclusion and WNV; = 0
imply that WN Ay, = 0. Thus W is a subalgebra complementary to A and isotropic
with respect to . Moreover W is Lagrangian because it is complementary to A,
and thus its dimension is n? — 1.

Conversely, suppose that W is a Lagrangian subalgebra satisfying W @ A, =
sl, @ sl, and take W = p~'(W). It is obvious that Ly C W. We also have
Ly + Vo = sly((27Y)) @ sly. These facts imply W + Vg = sl,,((271)) @ sl,. Let
w € W NV, therefore p(w) € W N Ay, so p(w) = 0. Tt follows that w € Li N V4.
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But one can check that Ly NV, = 0 and thus w = 0. In this way W is complementary
to V;. Since W is isotropic with respect to Q we have that W is isotropic with respect
to Q. Let « € W+, We have @ = w + v, where w € W and v € V;. Because W
is isotropic with respect to @, it follows that v € W=. On the other hand, V; is
isotropic, so v is in the kernel of @, which is 0. This implies v =0 and & € W. In
conclusion, W is Lagrangian. The condition W 2 2~V sl,[[2']] for some positive N
is obviously satisfied because W is Lagrangian and bounded.

The correspondence which we established is a bijection: p(p~'(W)) = W (p is
surjective) and p~(p(W)) = W (since L C W). O

This result enables us to replace the problem of finding Lagrangian subalgebras
corresponding to quasi-trigonometric solutions and contained in L; by a similar
finite-dimensional problem. The question we have to answer is to determine the
Lagrangian subalgebras W of sl, @ sl, which are complementary to A; given by
(4.5).

Remark 4.8. All subalgebras W which induce trivial quasi-trigonometric solutions
are in one-to-one correspondence with Lagrangian subalgebras of sl,, & sl,, which are
complementary to Ay = {(a,a);a € sl,}.

On the other hand, it is known that these Lagrangian subalgebras are in one-
to-one correspondence with solutions of the modified CYBE. We obtain again (see
Theorem 3.12) that the trivial quasi-trigonometric solutions are exactly of the form
X(z,t) = £ + r, where r satisfies the mCYBE.

It is useful to recall also the classical description of Lagrangian subalgebras in
terms of triples:

Lemma 4.9. There ezists a one-to-one correspondence between the set of Lagrangian
subalgebras of sl, @ sl,, and the set of triples (S, Ss, ®) such that S; are subalge-
bras of sl,, S; 2 S+ ,i=1,2, and ® : 5—1 — g—j 1s a Lie algebras isomorphism
preserving the induced bilinear form. ' ’

5. APPLICATION 1: QUASI-TRIGONOMETRIC SOLUTIONS FOR sly

In this section we will compute all (up to gauge equivalence) quasi-trigonometric
solutions for sly using the results obtained in the previous section. Let e, = ejs,
€ o = €s1, hq = €11 — egy be the usual basis of sly. According to the definition of
Xy, in this case we have
(5.1) Xolot) = T By @ hat —Ca®e ot ——ca®e
. 0\%, _4(Z—t)a a Z—ta —a Z—tia a-

The main result of this section is the following:

Theorem 5.1. Up to gauge equivalence, there exists a unique nontrivial quasi-
trigonometric solution for sly, given by

(5.2) Xi(z,t) = Xo(2,t) + (2 — t)ea @ eq.
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Let us begin to investigate the subalgebras W of sly((u 1))@ sly which correspond
to nontrivial quasi-trigonometric solution. Up to a gauge equivalence, such W is
embedded into L; = d,'sl[[z7!]|d; @ sly, where d; = diag(1,2). Theorem 4.7
implies the following

Corollary 5.2. There is a bijection between the set of subalgebras W of Ly, corre-
sponding to quasi-trigonometric solutions, and the set of Lagrangian subalgebras W
of sly @ sly such that W & Ay = sly & sly, where

(5.3) Alz{(<g _”a><g _ca>;a,b,c€C}.

Let us recall a result from [23] which is important for the proof of the main
theorem of this section.

Lemma 5.3. Let L be a Lie algebra, Ry, Ry and N be its subalgebras such that L =
R+ N and L = Ry+ N. Assume there ezxists X € G(L) such that Ry = Ad(X)R,.
Then there exists Y € G(N) such that Ry = Ad(Y)Ry.

Proposition 5.4. There exists only one family of Lagrangian subalgebras W of
slo®sly such that W@ A, = slo®sly and which provide nontrivial quasi-trigonometric
solutions:

(5.4) Wy = {(z,TaT™); 2 € sl},
where T = (t,]) € SL2 with t21 ?é 0.

Proof. Recall by Lemma 4.9 that any Lagrangian subalgebra W of sl, @ sl, is con-
structed from the following data: two subalgebras S; and Sy of sl, such that S; D S;t
(with respect to the bilinear form on sly) and a Lie algebras isomorphism ®: 5t —

S
Sy
corresponding Lagrangian subalgebra is

which is an isometry. More precisely, if (Si, S, ®) is a triple as above, then the

(5.5) W=5'es +{(no@)s e %}.
i

On the other hand, the only subalgebras of sls which contain their orthogonal
are sly and, up to conjugation, the Borel subalgebra b_. The subalgebras S; which
provide a Lagrangian subalgebra W are either both sly or both Borel.

Case 1. S; = Sy = sly. It follows that SS— = sly. Any automorphism of sl is
inner and preserves the Killing form. Therefore we have a triple (sly, sly, ®) for any
automorphism & of sly. If we impose the requirement that the induced Lagrangian
subalgebra is complementary to Ay, we obtain a family of triples (sly, sly, @1), where
@ is defined by ®p(z) = TaT~ ', T = (t;;) € SLy with ty # 0. The triples of this
family induce exactly the subalgebras W .

Case 2. We suppose that S; and Sy are Borel subalgebras. There exist X and Y in
SLs such that Ad(X)(S;) = b_ and Ad(Y)(S2) = b_. We obtain that (Ad(X) @
Ad(Y))(W) C b_@b_. It results that W is contained in a Borel subalgebra B

conjugated to b_ @b_. If W is complementary to Ay, then B4+ A; = sly @ sl. On

16 S.M. KHOROSHKIN, LI. POP, A.A. STOLIN, V.N. TOLSTOY

the other hand, (b_@®b_)+A; = sly® sly. These facts imply (see Lemma 5.3) that
there exists a conjugation preserving A; which transforms B into b_ @ b_.

In conclusion, by means of a gauge transformation, one may suppose that the
subalgebras S; are both b_. It follows that Sﬁ} is isomorphic to the Cartan subalgebra
h. An automorphism of h preserves the bilinear form only if it is +idy,.

If we impose the requirement that the induced Lagrangian subalgebra is com-
plementary to A;, we obtain one possible triple: (b_,b_, —idy). The Lagrangian
subalgebra corresponding to this triple is
69 wo=t((5 %) () rabeey
The Lagrangian subalgebra T, induces the trivial solution X,. Indeed, let W, be
the corresponding Lagrangian subalgebra of slo((27!)) @ sl (via the bijection from
Corollary 5.2). One may check that W; is exactly the subalgebra given by (3.11)
which corresponds to the solution Xy. This ends the proof. O

Remark 5.5. All the subalgebras W are conjugate to each other, particularly to

67 wo=t((¢ ) (5 S Daneey
0 1
-1 0 )

In the following lemma we will construct a conjugation which preserves A; and
transforms W, into Wy. Moreover we will extend this conjugation to a gauge
equivalence of the corresponding Lagrangian subalgebras, Wy and Wy, in sly((271))®
sly. Therefore the induced quasi-trigonometric solutions will be gauge equivalent.

Lemma 5.6. Let W, and Wr, where T = (t;;) € SLy, to1 # 0, be as above. There
exist constants a, b and A such that

(5.8) (Ad(T,,) ® Ad(Ty0) (W) = W,

where T, \ = ( 3\ /\?1 ) and Ty \ = ( 6\ /\Iil ) .

Proof. By imposing the condition that W, is transformed into Wy we obtain that
a, b and A must satisfy the following property

(5.9) TTopaT, T ' = Ty\TiaTy ‘T, 5,

for any x € sl,. Equivalently, TT, x = £T;,,71. In the first case, we obtain A2 =
—t;ll, a = —)\_ltgz/tgl and b = —\ty;. In the second case, one gets \2 = t;ll,
a = —)\_1t22/t21 and b = )\tn.

With these choices of a, b and A\, Ad(Z,,) ® Ad(7},) transforms W, into Wo.
This ends the proof. O

We will reconstruct now the corresponding Lagrangian subalgebras of sly((z!))®
sly which are complementary to V; and are included in L;, according to Corollary
5.2.

which corresponds to T} =
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Lemma 5.7. The Lagrangian subalgebras of sly((27")) @ sla which correspond to
W1 and W respectively, via the bijection from Corollary 5.2, are the following:

o w3

a,b,c €C, f,9,h € C[[z"']]},

a+ f(z)z7! bz +g(z a
(5.11) Wr = {(( cz ! +(h()z)z’2 —a— f?z();’l ) T ( c
a7b7c€C7f’g7h E C[[Zil]]}.

Proposition 5.8. The subalgebras W, and Wy given by Lemma 5.7 are gauge equiv-
alent.

Proof. In Lemma 5.6 we constructed an automorphism of sly @ sly preserving A;
and sending W, to Wp. We check that this automorphism can be lifted to a gauge
equivalence between W, and Wy. Indeed, keeping the notations of Lemma 5.6, let
us recall that there exist a, b and A such that

(5.12) (Ad(T,) ® Ad(T,)) (W) = W
We consider the following automorphism ¥ of sly((27!)) @ sl, defined by
(5.13) U = Ad(T(z)) ® Ad(T(0)),

where

(5.14) T(2) = ( 6\ “ijﬁb ) .

A simple computation shows that
(5.15) W(Wy) = W

It is not difficult to check that ¥ preserves Vy. Therefore W is a gauge equivalence.
O

Remark 5.9. By the same procedure, we can see that any automorphism of sly &® sl
preserving A; can be lifted to an automorphism of sly((271)) @ sly which preserves
Vo.

By Theorem 3.10 and the previous result we obtain:

Corollary 5.10. The quasi-trigonometric solutions corresponding to Wy and Wy
are gauge equivalent.

Therefore in sly there erists a unique nontrivial quasi-trigonometric solution, up
to gauge equivalence.

We proceed now to the determination of the quasi-trigonometric solution corre-
sponding to the Lagrangian subalgebra W;.
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Proposition 5.11. The quasi-trigonometric solution corresponding to Wy is the
following:

(5.16) Xi(z,t) = Xo(2, 1) + (2 — t)ea Q €q.
Proof. We keep the notations of Theorem 3.6 and we apply the constructive pro-

cedure given in Remark 3.8. Let us first take two dual bases in W and Vj. We
recall that the canonical basis of Vj is: eq2*, e_o2*, %hazk forall k > 2, e_az, €z,
J5ha?, (€a,€a), (€-a,€-a) and 55 (ha, ha). The dual basis of W, is formed by the
following elements: e_o27*, eq27*, %haz”“ forallk > 2, ea27!, (e a2t —€q; —€a),
%hazila (eaza —B,Q), (eaa 0)1 %(hm _ha)

Let us simply denote these dual bases in W, and V; by {w'} and {v;} respectively
and construct the tensor

(5.17) Mz, t) =Y w' @

It follows that

- tQ
(5.18) 7(z,1) = T (€as €a) R eat + (€a2, —€_o) R (€4, €4)

1
+(em 0) ® (e—m e—a) + i(hm _ha) ® (hm ha)-

Let us take, as in Remark 3.8, the projection 7 onto sls[z] induced by the decom-
position Vo & Wy = sly((27")) @ slo. Let

(5.19) r(z,t) = (1 @ 7)(7(z,1)).

A simple computation gives

(5.20) r(z,t) = (z = t)(eq ® €q4).

Therefore the solution corresponding to W is exactly X, given by (5.16).
The above result and Corollary 5.10 prove Theorem 5.1.

Remark 5.12. We will show in Appendix that the solution X is related to the
following trigonometric solution obtained via Belavin-Drinfeld classification [2]:

e +1 ea®e qte o ey
4(ev — l)h'l ® ha + eu/? — g—u/?

+(e? —e7?)ey ® eq.

(5.21) XEP(u) =

+

In the following sections concerning quantization, we are not going to quantize
directly X; but another quasi-trigonometric solution which is gauge equivalent to
it. Therefore we need the following:

Corollary 5.13. The quasi-trigonometric solution X is gauge equivalent to the
following solution:

Q) 1
(5.22) Kap(z,t) = p— te o®eq+ Zha ® ho+
-
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+a(ze_o @ hy —tha @ e_g) +b(e—q ® hg — hg @ e_y),
for any nonzero constants a and b.

Proof. One can easily check that X, is obtained from X; by applying the gauge
transformation o(z) = Ad(T'(z)) with

0 At
() = ( -\ —(nz+v) )
where ), ¢z and v are chosen such that \* = 4ab, u = —2a\ ™', v = 26\ 1.

6. APPLICATION 2: QUASI-TRIGONOMETRIC SOLUTIONS FOR sl3

We compute the nontrivial quasi-trigonometric solutions of the CYBE for sl3 (up
to gauge equivalence).

The Lagrangian subalgebras of sl3((z 1)) @ sl3 corresponding to nontrivial quasi-
trigonometric solutions may be embedded, after a gauge transformation, into Ly =
dy'sls[[z"]]da @ sls, where dy = diag(1,1, 2).

Proposition 6.1. There is a bijection between the set of subalgebras W of Lo,
corresponding to quasi-trigonometric solutions, and the set of Lagrangian subalgebras
W of sl3 @ sl3 such that W & Ay = sl3 @ sl3, where

A b A b .
(6.1) Az={((0 7T7,A),<0 _TTA>),A6gl2,b,beC2}.

Theorem 6.2. Up to gauge equivalence, in sls there exist two nontrivial quasi-
trigonometric solutions. They correspond to the following Lagrangian subalgebras of
sly @ sls:
—a—d 0 0 a b 0
(6.2) W= {( * a b |, cd 0 )}
* c d * * —a—d

(6.3) Wy = {(z,T2T™");z € sls},

010
T=|100
011

Proof. We will prove the theorem in several steps:

Step 1. By Proposition 6.1, the quasi-trigonometric solutions are given by the
Lagrangian subalgebras W of sl @ sl3 complementary to Ay. On the other hand,
there exists a one-to-one correspondence between the set of Lagrangian subalgebras
of sl3 ® sl3 and the set of triples (S1,.Ss, ®) such that S; are subalgebras of sl3, S; D
S+ and @ : g—i — 5—1 is a Lie algebras isomorphism preserving the induced bilinear
form. Let us also recall that the trivial quasi-trigonometric solutions correspond to
Lagrangian subalgebras which are included in sl3[[z7']] @ sls.

Step 2. From the previous step, we see that the subalgebras S; which provide
a Lagrangian subalgebra W are simultaneously irreducible or reducible. Let us
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consider the irreducible case. It is clear that both S; = sl3. Any automorphism of
sl preserves the Killing form and therefore it induces a Lagrangian subalgebra of
sl3 @ sl of the following form:

(6.4) We = {(z,®(2);z € sl3}.
On the other hand, any automorphism of sl3 has one of the following forms:

(6.5) ®O(x) =TT,

(6.6) ®(z) = —Ta'T !,
where 7' € SLj and therefore we have two families of Lagrangian subalgebras:

(6.7) Wy = {(z,TaT™"); v € slz},

(6.8) Wy = {(z, ~T'T Y);z € sls}.

All the Lagrangian subalgebras in the first family are conjugate to each other and
the same is true for the second family.

One can easily check that the Lagrangian subalgebra Wy is complementary to A,
if and only if T = (t;;) € SLj is such that the following matrix has rank 8:

0 —t91 t19 0 0 0 —i3 0
—t1g T11 — 12 0 t19 0 0 —i3 O
—2t13 1y 0 —ti3 ti tiz —tl3z O

a1 0 tog—t1n —tyy 0 0 0 —t3

0 191 —119 0 0 0 —139
2131 0 t39 t31 0 0 0
P 0 %Up 0 0 0

0 0 0 0 t31 t30 0 0

0

—tla3 0 —t13  —2ty3 ty taa 0 —i33
0
0

All these Lagrangian subalgebras induced by various 7" satisfying the above con-
dition are conjugate to each other. Lemma 5.3 insures the fact that there exists a
conjugation preserving A, which transforms one into the other and therefore the
induced quasi-trigonometric solutions are gauge equivalent.

In conclusion, up to gauge equivalence, there is only one quasi-trigonometric so-
lution which corresponds to the following:

(6.9) Wy = {(z,T2T™ )z € sls},

010
(6.10) T=(100
011

Now, let us analyse the Lagrangian subalgebras of the second type, Wr. The
condition that Wy N Ay = 0 is equivalent to the fact the following matrix has rank
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=2t —tig —ty 0 0 —tiz 0 —i3 O

—t12 —t22 —t11 —l12 0 —t13 —tzz O
0 —193 0 113 0 0 —t33 0

—tg1 —t22 —t11 —lo1  —lo3 0 iy
0 0 —1l1g —tyy —2l99 0 0 —t39
to3 0 —113 0 0 33
0 —139 0 131 —133 0 0
t39 0 —131 0 0 —133 0 0
t33 0 0 133 0 0 0 0

By direct computations, one can prove that the rank of this matrix is at most
7. In conclusion, the Lagrangian subalgebra Wy induced by the second type of
automorphisms of sl3 is never complementary to A,, for any choice of the matrix
T € SLs.

Step 3. Both S; determining W are reducible and each preserve a line in C*. Then
S; and S, can be embedded, by means of some conjugations (not necessarily the
same) into the following maximal parabolic subalgebra:

* 0
(6.11) P=|x %0
*

Thus there exist X, Y in SLj such that
(6.12) (Ad(X)o AdY))(W) C B @ P,

It results that W is contained in a maximal parabolic subalgebra P conjugate to
P, ® P,. Since W @ Ay = sl3 & slg, it follows that P + Ay = sly @ sl3. On
the other hand, (P, & P,) + Ay = sl3 @ sl;. Lemma 5.3 implies that there is a
conjugation preserving A, which transforms P, @ P, into P. In conclusion, by a
gauge transformation, W may always be embedded into P, @ P,. One can easily see
that such W can only provide trivial solutions, if there are any. The simple reason
is that the corresponding subalgebra in sl3((271)) @ sl3 is included in sl3[[z1]] @ sl;.

Step 4. Each of S; preserves some plane in C?. By the same method as in step 3,
if there is some solution, then by means of a gauge transformation, we may suppose
that S; and S, are included in

00
(6.13) P = x %
* %

Actually, either both coincide with Py or they are both solvable and in this situation
we are back to step 3. If S; and Sy coincide with P;, then obviously (e, €91) is in
the intersection W N A,. Therefore we have no solution at all in this case.

Step 5. S; preserves a line and S, preserves a plane in C*. By means of a gauge
transformation, we may suppose that S; C P, and So C P;. We see again that if
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there exist some solution, then this is trivial because the corresponding subalgebra
of sl3((u™1)) @ sls is contained actually in sl3[[271]] @ sl;.

Step 6. S preserves a plane and Sy preserves a line in C*. Again we may reduce
the problem to the analysis of the case S; C P, and Sy C P,. Moreover, since the
solvable cases have been treated earlier, we may even suppose that S; = P, and
Ss = P,. In this case,

(6.14)

* x 0
(6.15) =1 % % 0

0 0
Both these subalgebras are isomorphic to gls. Any isometry between the subalgebras
S1

<k and SS% is therefore given by an automorphism ¢ of gl which preserves the

bilinear fozrm (Q defined as
(6.16) Q(A,B) =Tr(AB)+TrA-TrB.

Tt is not difficult to see that any automorphism of gl, which preserves @ has one of
the following forms:

(6.17) gou<‘cl2)=U<‘;z>U*1,

(6.18) wy(‘é Z):U(;d _ba)U‘l,

where U € SL,. The Lagrangian subalgebras which correspond to the triples
(S1, S9, 0v) and (Si, S, Yy) respectively are the following:

(6.19) Wy = {(( rra o ) : ( eu(4) o ))}.

(6.20) Wy = {(( _ZTA j ) : ( wU,EA) TEA ))}.

A simple computation shows that W is complementary to A, if and only/if uy; # 0.
On the other hand, one can check that the Lagrangian subalgebra Wy is never
complementary to Ay, for any choice of U.

In conclusion, we have one family of Lagrangian subalgebras Wy that provides
nontrivial quasi-trigonometric solutions. All these subalgebras are conjugate to each
other, in particular to

(6.21) W= {(
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Moreover, Lemma 5.3 implies that all these subalgebras induce gauge-equivalent
quasi-trigonometric solutions. O

Lemma 6.3. The Lagrangian subalgebras of sl3((271)) @ sly which correspond to
W, and Wy respectively, via the bijection from Corollary 5.2, are the following:
(6.22) Wy = diag(z ', 27", 2 2)sla[[z Y|diag(1,1, 2)®

—a—d 0 0 a b 0
{( 9 a bz |, cd 0 )}
hz=! ezl d e f —a—d

Wy = diag(z ', 27", 2 2)sls[[2z |diag(1,1, 2)®

apy a1 a3z ayy Qi1 a3
—1
{ ( Qg1 a2 Qag32 T [I5] 23 T )}
—1 1
ag1z agaz —a11 — a2 agy Ggz —ap — A

Let Xy = :—ft + 7 be the simplest quasi-trigonometric solution in sl3. Here

1<j 2]
and

1
(625) To = 6 Z(e“ — 6]']') ® (eii — e]']‘) + Zei]- ® €ji.

i<j i<

Corollary 6.4. The quasi-trigonometric solutions induced by the Lagrangian subal-
gebras Wy and Wy given by (6.22) and (6.23) are respectively the following:

(626) Xl(Z, t) = X()(Z, t) + t621 ® €93 — ZE€93 ® €91
1
*6(611 —e29) A (g0 — e33),
(6.27) Xo(z,t) = Xo(z,t) + ze13 @ (e12 + e91) — t(e1a + €21) @ €13

1 1 2 1 1 2
+ze3 ® (5611 + 5622 - 5633) - t(gen + 5622 - 5633) ® ea3

1 1 2 1
“+eaz A (€12 + €91) + €13 A (3811 + 5822 - 5933) - 6(611 — €92) N (€99 — es3).
Proof. Let Vo = {(a(2),a(0)); a(z) € slslz]}. In order to construct the quasi-
trigonometric solution corresponding to W;, we apply the standard procedure of
choosing convenient dual bases in Vy and W;.

For Wi we choose (6322_1 + ea1, €21), (e23z,€12), (—en + €2, €11 — €33), (—en +
€33, €29 — e33) and the rest are standard. The dual basis of V; is ea3z, —(€a1,e2),
(—%611 + %822, —%611 + %622), (—%622 + %633, —%622 + %633) and the rest are standard.
The induced quasi-trigonometric solution is X;(z,t) given by (6.26).
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For W2 we take the following: (631271 — €19 — €91, —€192 — 621), (632271 — (%611 +

%622 - %633)7 —(%en +%622 - %633)), (e12+eas+ersz, e3), (ea3+e132, e23—ea1), (ens,0),
(—%611 - %622 + 3€33, —3€11 — 3622+ %633 —ea1) (€3, 0), (—e12 —eq1, —e12 — €91 —e€3),
(€11 — €20 — €13 — €932, €29 — €35 — €13), (-%811 + %322 + %633, %611 - §€22 + %633) and the
rest are standard. The corresponding dual elements in Vj are: e13z, €532, (€21,€21),
(612, 612), (631, 631), (613, 613), (632, 632), (623, 623), (—%611 - %622 + %633, —%611 - %622 +
§e33), (—e11 +e33, —e11 +e33) and the rest are standard. The corresponding solution
is Xs(z,t) given by (6.27). This ends the proof. O

Remark 6.5. (1) We will discuss in Appendix the relationship between the quasi-
trigonometric and the trigonometric solutions in the Belavin-Drinfeld classification
for the slz case [2, p. 173].

(ii) The form of the quasi-trigonometric solutions appears to be also related to that
of the rational solutions in sl3 (see Table 3 in [20, p.64]). This fact gives hope that
quasi-trigonometric and rational solutions in sl3 might be quantized simultaneously.

7. QUANTUM TWISTS

Let us recall (see [10, p. 84-85]) that a method for constructing new quan-
tized enveloping algebras from old ones is the quatization by twists. Let H =
(H,m,A,i,e,S) be a QUE-algebra.

Definition 7.1. An invertible element F' € H ® H is called a quantum twist if

1) F = 1(mod A),

2) (e®id)F=(id®e)F=1®1,

3) FRA®id)F = FB(id ® A)F - ®, for some H-invariant element ® of H®3.
Here we use the standard notation: F'2 = Y a; ®b;® 1, F2 =Y. 1® a; ® b; if

The following proposition is well-known:

Proposition 7.2. Any quantum twist F' defines a new QUE-algebra
Hy = (H,m,Ap,i,¢,Sr)
if we set

(7.1) Ap=FAF ',

(7.2) Sr=Q5Q ",
where @ = m((S ® 1)(F)).
The classical limit of Hp is a Lie bialgebra (g, dx), where dp is not necessarily the

cobracket ¢ we started with. It turns out that 6r can be obtained by twisting ¢, in
the classical meaning. More precisely, according to [10, p. 147], we have:

Proposition 7.3. Let H be a QUE-algebra and F' o quantum twist. Let Hp denote
the twist of H by F. Set s = F’Tpm (mod h). Then the classical limit of Hp is
obtained from the classical limit of H by twisting via s.
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In this way, any quantum twist induces a classical twist. Concerning the converse
statement, there is a general opinion that the following conjecture is true.

Conjecture 7.4. Any classical twist can be extended to a quantum twist.

This conjecture is supported by some examples. Let us recall the following cases
that we considered in Section 2:

Example 7.5. In [8], V.G. Drinfeld proved that any triangular r-matrix can be
quantized, by constructing an appropiate quantum twist of the universal enveloping
algebra.

Another illustration of the conjecture is the quantization of the Belavin-Drinfeld
list [1], in the way it was performed in [11]:

Example 7.6. Let g be a finite-dimensional simple complex Lie algebra. Denote
by 7¢ the “standard” Drinfeld-Jimbo r-matrix. We have seen in Example 2.5 that
by twisting the standard structure one obtains the entire Belavin-Drinfeld list [1].
Let ¢ = "2 and U,(g) denote the Drinfeld-Jimbo quantum universal enveloping
algebra, which is a quantization of the Lie bialgebra (g, d,,). It was proved in [11]
that any twist s of ry can be extended to a quantum twist F.

8. ¢-POWER FUNCTION OVER ¢-COMMUTING VARIABLES

In this section we generalize the well known Faddeev-Volkov identity [12], which

will be used later in the construction of a quantum twist for Uy (sls).
Let us consider the following g-binomial series of an indeterminate u (see [13]):

—a+1)g(—atk=1) ,

81  F=01-u)=1+) (o)l OX
k>0 7

where (a), = (¢ — 1)/(g — 1). We recall that if |¢| < 1 then F,(u) is uniquely
characterized by the difference equation

_1—qu

(8:2) Falu) = Fa(qu)-

1—u

Proposition 8.1. The unital formal power series Fy(u) satisfies the following ad-
ditive properties:

(53) (1= W1 = g w)® = (1 — e
(8.4) 1-w)@1-0)=01-u—v+q "uv)®

(8.5) (1-0)1-uw)=01-u—v+u),

where the variables u and v in (8.4) and (8.5) q-commute, i.e. vu = quuv.
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Proof. These properties may be deduced from the presentation of F,(u) as a ratio
of g-exponential functions and from the corresponding properties of ¢ exponents.
More precisely, let

(8.6) exp,(u) =1+ Z (Z—)ﬂq'
(8.7) (w3 @) = (1 = u)(1 - qu)...
It follows that

exp(t27) (¢ " @)oo

exp,(B2)  (40)

(8.8) Fy(u) =

since the right-hand side of (8.8) satisfies the same difference equation (8.2) under
the assumption |g| < 1. Clearly, under this assumption, the solution F,(u) of (8.2)
is unique if F,(0) = 1.

Let us note that (8.3) is a direct corollary of (8.8). The relations (8.4) and (8.5)
follow from the addition law for the g-exponents ([17])

(8.9) exp,(u) exp,(v) = exp,(u +v)
and the Faddeev-Volkov identity(see [12]):
(8.10) exp,(v) exp,(u) = exp,(u + v + (¢ — 1)vu).
O

Remark 8.2. We refer to the identities (8.4) and (8.5) also as to Faddeev-Volkov
identities. We will prove below a more general result and get (8.4) and (8.5) as
consequences.

Let us consider now the g-power series as a function of a sum of two ¢g-commuting
variables u and v, vu = quuv:

(8.11) Fylu+v)=(1-u—v)®.

Proposition 8.3. The formal power series Fo(u + v) has the following properties:
—b - b) _ b

(8.12) (1-gq v—u)g")(l—v—q “u)g) —(1—u—v)‘(1‘”),

(8.13) QI-—w(l-g—q'u)y N1 -u-—0)=1-u-—v-w),

(8.14) (1—u-— v),(]“)(l —(1—qlv— q’“u)’lw)g") =(1-u—v— w),(]“),
where vu = quv everywhere and vw = quv, uw = ¢ ‘wu in (8.13) and (8.14).
Proof. The proof is based on the following observation:

(8.15) I-gqgw—u)(1=-¢v—qu)=01-¢v—u)(l-q¢v—q v
for g-commuting variables u and v.

In order to prove (8.12), let us note that it is sufficient to show this identity only
for positive integers a and b. Indeed, both sides are infinite power series and they




LIE BIALGEBRA STRUCTURES ON POLYNOMIAL ALGEBRAS 27

are equal for any g-commuting u and v if and only if their coefficients of the ordered
monomials are equal. But these coefficients are rational functions of ¢and ¢°, so if
they are equal for all positive integers a and b, then they are equal identically.
From (8.3) we know that for any positive integer n the following relation holds:
(8.16) (1—w)"=01-q'u)(1-q 2u)..(1—q "u).
Then, by means of the identity (8.15), we can reorder the factors of the product

(8.17) Q—u—v)W=01-q¢'u—q)..1-¢"u—q™)
and get another presentation:

(8.18) 1-—u-v)"=(1-q¢"—q'u)

(=g ™Dy —g2u)..(1 — ¢t — ¢ ™).
This implies now the identity (8.12).

Similarly, let us check that (8.13) is satisfied for any positive integer a. Denote the
left-hand side of (8.13) by F,(u, v, w) and the right-hand side by G, (u, v, w). Clearly,
Fi(u,v,w) = Gi(u,v,w). Next, we see from (8.12) that the function F,(u,v,w)
satisfies the recurrence relation

(8.19) Fop(uyv,w) = (1 —w(@l —q @y —g ) ).

Fo(u, ¢ v, ¢ ' w)(1 = ¢ lo — g7 ).
So it remains to show that the same recurrence is satisfied by G,,(u,v,w). For this,
we note that we can, analogously to (8.18), prove the following identity:
(8.20) (l—qglv—u-— q’lw)g")(l —qglw—qg ") =
=1l—-¢"Ww-qlu—q¢?w)..(l-q¢2w—qg"u—q¢g " 'w)(l—q'v—q " 'u).
Then one obtains
(8.21) l-¢g'v—u—gq lw)( (1—q ' — ¢ ") =

=(1—¢g"Ww—qg w1 —q¢ "% —q%u—q%w)..
(1 =q¢ ' — g™y — ¢ )
and this proves the desired recurrence for Gy, (u,v, w). Thus (8.13) holds. O

Remark 8.4. We will call the identities of the above proposition the generalized
Faddeev-Volkov identities.

Moreover we can obtain a rational degeneration of the generalized Faddeev-Volkov
identities by the procedure established in [4].

Set x = u + q,?—flv, y = v and 2 = w. Then the g-commutativity relations
vu = quu, vw = quwv and uw = ¢~ 'wu are transformed respectively into

(8:22) zy —q 'yz = —ny’

(8.23) Yz = qzy
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(8.24) 1z —q tzw = —n(2)5y2.
1

Here g = q~
z, y and z2:

1=z —n)g)™ = (1 -z —nlc+ b))V (1 — ¢ "z — ¢ "n(c— a)y),
(1=2(1 =gz —mglc+a—1)zy) )1 -z —nlc)y) =
= (12— )y — 2,

c—a+ l)qy)’lz)g") =
()

. Therefore we can rewrite the equalities (8.12)-(8.14) in the variables

)
(1-z =) (1 - (1—q "z —ng*(
)

=1 —z—nlc)gy -2

All these relations make sense for the Yangian limit ¢ = 1. In this case, the

g-power series becomes the usual geometric series for the power function (1 — z)°

considered now as a function of linear combinations of the Yangian variables « and
y verifying [z,y] = —ny?. We obtain the following

Corollary 8.5. Suppose [z,y] = —ny?, [y,2] = 0 and [z,2] = —2nyz. Then the
following identities hold:

(8.25) (-2 ney)™ = (1- & nle+b)y)*( — 2 nlc - a)y)’,

(826) (1—2(1—a—nlcta—1)y) )1 -z —ney)*=(1-z—ney—2)°,

(821) (1o eyl —(1-a—nle—a+1)y) 2= (1o ney2)"
9. TWISTING COCYCLES

In this section we construct a proper quantum twist of the quantum affine algebra
Uy(sla). -

Let €14, €1(5-o) and g"+> = ¢ be the generators of Uy(sly) with zero central
charge, satisfying the relations

(9.1) ¢"e1aq™" = ¢ 10,
(9.2) d"er5-a) = 071 (5-a),

h —h
" —q
9.3 €a,€_q
(9.3) [ | =
ah—q"
qg—qt’
(9'5) [eim e¥(5—ﬂt)] =0,

together with g-Serre relations, which we do not use here. The comultiplication is
given by the following formulae:

(9.4) [66—04, e—(Ha] =

(9.6) Ales) =ea®1+q " ®ec,
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(9.7) Ales o) =€ o1 +¢"Qes 4
(9.8) Ale_a)=ea®¢"+1®e_q

(9.9) Ale_sia) =€ 510 ® "1 € j5ta-
Let a and b be two constants and set
(9.10) u=(2),ae5_q

(9.11) v =(2)2bg "e_q
These elements satisfy the relations vu = ¢?uv, u¢” = ¢"*2u and vg" = ¢"+2v

Let us also make the following notation: z; = z®1®1, 7 = 1Qz®1, 73 = IQ1Rx
for any x € Uy(sly).

Lemma 9.1. The following identities hold:

(9.12) u—%—qufﬂ(hw+ww:

—h1 ha—2n

hy
U3),(122 "

= (¢Mvg+u)"(1—v3—gq

(9.13) (a7 0p + wa)" (1 = g 700 = ¢ P u)y") =

= (g5 + up)(1 — ¢ "vg — ¢"* Pug) )™
Proof. Let us check the first identity. The right-hand side may be written as
(914) (qihl’UQ + U2)n Z Dmn(US + qh272nu3)m’
m>0

ha ha
—=24n) 2..(—2+n+m—1) o .
where D,,, = —2 )y 2 Jg . Since
mn (m)ng

h h
(¢ Moy + UZ)"(—TZ +n+m)z = (—72 +m) (g Mg+ ug)",

we obtain

hy_p
(9.15) (q vy + up)*(1 — v — qhz*z"ug,);; ) =

= ZEm(q_’“vz +u2) (’U3 +qh2 —2n )m,
m>0

hy by im
where E %

On the other hand, one can easily check by induction that
(9.16) (g ™My + ug)™(vs + ¢ Pus)™ = (vs + ¢"us)™(q Mvy + uy)"
and the identity (9.12) follows now directly.
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We will prove the second identity. We proceed by induction. The equality is
obvious for n = 1. We assume that the identity is true for some n. By the first
generalized Faddeev-Volkov identity (8.12),

ha—2n-2, \(-n—1) _ (1 — g haton

“3)q2 ha—2n—2 )(—1),

(1-q 03¢ U3 — ¢ u3) 2

h ha—2n,, \(=n)
(1—q vy — ¢ Muy)p -

The left-hand side of the identity we intend to prove for n + 1 equals

(q—hlv2 + uz)n+1(1 _ q—h2+2nv3 _ qhz—Zn—Qus)—l X (1 _ q—hzvs _ qh2—2nu3)é;n).
On the other hand, the following equality holds
(9_17) (q—hl,u2 + U,z)n(l o q—h2+2nv3 o qh2—2n—2u3)—1 —

= (1—q ™03 — ¢"2u3) (g va + ug)™.
By the inductive assumption and the above identity, if follows that the equality
(9.13) is true for n + 1. This ends the proof. O

Theorem 9.2. The element
(9.18) F=(1-2)p0 1Qe oat+bg"2q
is a quantum twist of Uq(gl\g) for any constants a and b.

Proof. Set u = (2),2ae5—q, v = (2),2bg "e_, and keep the notation as in Lemma
9.1. The cocycle identity

(9.19) F2(A®id)F = F®id® A)F

is equivalent to the following identity:

hi+h.
=2 _

_hy
(9.20) (1— g Muy — uz)éz 2 )(1 — g hhay, us3)

q2
1 o ) —h1, —hi—hy ha, \(—)
=(1-q Us Us)q (1—q¢g™vy—q U3 — Uz —¢q Us)qz
By the first generalized Faddeev-Volkov identity (8.12) we obtain

2 ?) —ha (_,172) —
(9.21) (1—vs—q" U3) (1—q "0y — U3)q2 =1
and therefore the following equality remains to be proved

h
)

(9.22) (1-v3—gq us)(T)(l —q My, — uQ)fI;

h1+h2)

(1 —g " "2y — Us) 2 =(1— g Moy, — g M2y, —uy — qh2u3)2;_
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Let us write the second factor of the left-hand side as a series and permute each

term with the factor (1 —vs — q"2U3) 2 . We have

)

(%2) —h =3 _
(9.23) (1 -5 —q"ug) 2 (1 =g "vg —ug) p 27 =

72
=(1—vg— g" ug) ZC (g7 vg 4 ug)™,
n>0

_ (D42 tn-1)p

(")qa!

where C),

. By the first identity of Lemma 9.1, we get
(72)( ) _

(9.24) (1—v3—q" 2uy),

1—q hl”J2—U2)

he _
= ZCn(qf'“vz + ug)"(1 — vz — g2 2" )222 ",
n>0
By using the first generalized Faddeev-Volkov identity (8.12), the above identity is
equivalent to
)

%) _
p )g2

(9.25) (1 —v3 —¢"uz) 2 (1 — g "y — uy

h
= Z Co(g Mvy + ug)"(1 — ¢ M205 — qh272nu3) ")(1 —v3 — qhzua);?)-
n>0

The second identity of Lemma 9.1 implies that the right-hand side of the above
identity is equal to

_h hy
(1 — (g ™Mva +u2)(1 — g "2v3 — thzus)’l)fl2 2 )(1 — v — q"2ug) F).

It results that the desired equality (9.22) is equivalent to

_h h
(9:26) (1= (q"vs + ua)(1 — ¢ ™03 — " 2uz) ™) 2 (1 = w5 — ¢"2ug) (.

h1+h2 _hy
(1= g Moy — Us)( ) =(1—qg My —q My —uy— qh2U3);z 2

and moreover to

hy

(9:27) (1= (g ™0y +ua)(1 — g "05 — ¢ 2us) 1)is -

h
-5)

.(1 _ q*hlfhzvs _ qh2u3);2 —ha

n
= (1= g M0y — g Py — up — gPuy)l .

This is exactly the second generalized Faddeev-Volkov identity (8.13) and therefore
the cocycle identity is satisfied by F'. The proof is now complete. O
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Further, as in the previous section, we can make a change of variables (see [25],
[26]) such that the twisting element F' has a limit when ¢ — 1. Let us consider the
following elements:

(9.28) fi=tiat g "ea

(9.29) fo=a"e

The elements f;, fo and h generate a Hopf subalgebra of Uq(;l\z), considered now as
an algebra over C[[n]](q) (see [25], [26]):

(9.30) [h, fil = =2f1
(9.31) [h, fo] = —2fo
(9.32) fifo=a7fofy = —nf3
(9.33) Alf)=fo®1+q"® f

(9.34) Alf))=®1+¢"® fi +1¢"(h)g-2 ® fo.

Corollary 9.3. Leta =€ and b = q—f;—”; The twisting element F given by (9.18)
has the form

hel)

(9.35) F=(1- @00 fi +n(2)e © ol

Moreover, in the Yangian limit ¢ =1, F has the following form:

(9.36) F=(-200fi+nh o ).

10. QUANTIZATION OF QUASI-TRIGONOMETRIC AND RATIONAL SOLUTIONS

In this section we use the quantum twist F of the quantum affine algebra Uq(s/l\z)
to construct the corresponding twisted R-matrix. Let m/5(z) be the two-dimensional

vector representation of Uq(gl;). In this representation, the generator e_, acts as a
matrix unit es;, es_o as zeg; and h, as ey; — egs. In this section and the following
we will also use the notation o7 = ey, 0~ = ey; ggd 0% = e — .

According to [14], the quantum R-matrix of Uq(slz) in the tensor product 7 /5(21)®

m12(22) is the following:

-z
(10.1) Ry(21,22) = €11 ® €11 + €33 @ e + ZZ
- 2

p (€11 ® €22 + €22 ® €11)

1

gl—q

717(22612 ® ea1 + 21621 ® e12).
q "z — 4z
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Let us consider the quantum twist F constructed in the previous section. We note
that the image of F' in the representation 7 9(2) of Uy(sly) is

-1

(10.2) F=1+ T (aze + bq_h“) ® ey

=1+ ((azy +b)ens — (¢ azy + gb)esy) ® ean.

As a consequence we obtain the following

Proposition 10.1. In the (ibove representation, the quantum R-matriz of the twisted
quantum affine algebra by F' is the following:

21 — 23

(10.3) RY(21,20) = F'RyF ' = Ry(z1, 20) + ((b+az)o* @0~

72— qz
+(g7"az1 + gb)o” @ 0% + (b + az) (¢ 'az + gb)o” @0 7).

Corollary 10.2. The R-mairiz given by (10.3) is a quantization of the following
quasi-trigonometric solution of the CYBE:

Q 1
(10.4) Xop(21,22) = 2 40 Q0T+ -0*®0"
Z1 — 29 4
+a(210" Q0° — 20" ®0" )+ blo” ®o*— 0" Q07).
Remark 10.3. This is exactly the solution we obtained in the end of Section 5, given
by (5.22).

In order to get a deformation of Yang’s R-matrix, we use again the realization
(9.28) -(9.29) of U,(sly) and the evaluation homomorphism

(105) Fua) () = (u+ () ) f

(10.6) m12(u)(fo) = qo,

which corresponds to a shift of the spectral parameter
(10.7) z=u—n/(¢?-1).

In this notation, the non-twisted R-matrix Ro(u1,us) has the following form:
Uy — Ug

— = (1-0*Q®0"
2(¢ g — quo — qn)( )

1
(10.8) Ry(u1,us) = 5(1 +0"®0%) +
—1 __ _ —1 _ _
(fgl Q2= 4o (i Qui—qn -
q Uy —quz —qn q Uy —quz —qn
As a consequence one obtains the following

®o™.
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Proposition 10.4. With the above realization of Uq(gl;), the twisted R-matriz given
by (10.8) has the form

Uy — U2
gt — qus — qn
+E(q ur — qn)o” @ 0 + Eug(g M ur — qn)o” ®07).

Moreover, in the Yangian limit ¢ = 1, a deformation of Yang’s R-matriz is ob-
tained:

(10.9) RY (uy,u9) = Ro(ug,ug) + (—€uo* @ 0™+

Uy — Uz

Py
(I-n
Uy — Uz — 17 Uy — Uz

(10.10) RY (uy,up) = —¢uo* @~
+(ur — o ® 0% + Eus(ur — )o* ® 0°).
Here Pyy denotes the permutation of factors in C*®C2.

Corollary 10.5. The rational degeneration RY (uy,us) given above is a quantization
of the following rational solution of the CYBE:

Q
(10.11) (w1, ug) = +&(vo Qo° —uo* @0 ).
Uy — U

Thus we answer the question of quantization of all the rational solutions of the
CYBE for sl, (see also [16]).

11. DEFORMED HAMILTONIANS

In this section we compute the Hamiltonians of the periodic chains related to
the twisted R-matrix we found in the previous section. Let us firstly notice that
R¥ (21, z) satisfies the basic property R (z,2) = Pa.

Let us compute the deformed Hamiltonians. We consider

(111) t(Z) = TT()RON(Z, ZQ)RON_l (Z, 22)...R01 (Z, ZQ)

a family of commuting transfer matrices for the corresponding homogeneous periodic
chain, [t(2'), t(2”)] = 0, where we treat zo as a parameter of the theory and z = 2
as a spectral parameter. Then the Hamiltonian

_ d _
(11.2) Hopay = (07" = @)z 1(2) [s=2 17 (22)
can be computed by a standard procedure:
(11.3) Heope, = Hxxz + Z(C(U;UEH + 04 0541) + Doy oy,

k
Here C = ((¢ — 1)/2)(b — azaq™!), D = (azy + b)(q taza + gb), 0 = €12, 0~ = €2,
0% = €11 — €92 and

+qt

- . q
(11.4) Hxxz = Z(Uzakﬂ + oo+ TUI’;UI’;H).
k
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We see that, by a suitable choice of parameters a, b and 25, we can add to the
XXZ Hamiltonian an arbitrary linear combination of the terms ), 0fo, ., +0, 0f 4
and ), 0, 0, and the model will remain integrable.

In the realization (9.28)-(9.29) of U,(sly), the R-matrix R¥ (u;,u,) satisfies again
the property R (u,u) = Pys and the Hamiltonian

(115) Hygas = (07" = 000 070) 1 (0) oy 17 (02)

for

(116) t(u) = TT‘().R(]N(U, UQ)R{]N_l(U, Uz)...R()] (u, ’UQ),

is given by the same formula (11.2), where C' = £((¢™* — 1)/2)us — (g7 '¢n)/2 and
D = 2uy(q 'uy — qn). Now it also makes sense in the XXX limit ¢ = 1:

(11.7) Hyeu, = Hxxx + Y _(Clofoy,y + 0, 0741) + Doy og,),
k

where C' = —¢n/2 and D = 2uy(ug — ).

Remark 11.1. It would be interesting to study the spectra and the eigenstates of the
above Hamiltonians. The particular case of (11.7) with C' = 0 was studied in [19].
The study was based on a quantization of a simpler r-matrix suggested in [16]. It was
shown that in this case the spectrum of the Hamiltonian remains unchanged after
the deformation. However, the deformed Hamiltonian has Jordanian blocks and
thus it is not diagonalizable. Therefore one can expect that at least the deformed
XXZ chains (11.7) are not equivalent to the undeformed one.

12. APPENDIX
In this appendix we give the proofs of the following results mentioned in the text:

Proposition 12.1. Let X be a rational or quasi-trigonometric solution of (2.1).
Then X satisfies the unitarity condition (2.2).

Proof. The proof is almost a word to word transcription of the proof of |2, Prop.
4.1]. Interchanging z, and z, and also the first and second factors in g% in equation
(2.1), we obtain

(12.1) (X% (29, 21), X2 (29, 23)] + [ X (22, 21), X (21, 23) ]+
H[ X (29, 23), X3(21, 23)] = 0.
Adding (12.1) and (2.1), we get
(12.2) [X2(21, 22) + X2 (22, 21), X3 (21, 23) + X?* (29, 23)] = 0.
a) Suppose X is rational, i.e. X(z,) = % +p(z,t), where p is a polynomial. For
z1and 2z fixed, let us multiply (12.2) by 25 — z3 and let z3 — 2o. It follows that
(12.3) [X"%(21,29) + X*! (22, 21), 0%] = 0.

It is known that if a tensor r € g ® g satisfies [r ® 1,Q22%] = 0, then r = 0. It follows
that X12(2y, 25) + X2!(2,2,) = 0.
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b) Suppose X is quasi-trigonometric, i.e. X(z,¢) = 2 + g(z,1) where ¢ is a
polynomial function. By the same procedure we get
(124) [Xlz(zl,ZQ) +X21(Zg,21),22923] =0
which also implies the unitarity condition. O
Proposition 12.2. Let W be a Lie subalgebra satisfying conditions 2) and 3) of
Theorem 3.6. Let T be constructed as in (3.17). Assume 7 induces a Lie bialgebra
structure on gz] by 6r(a(z2)) = [F(2,1),a(z) ® 1 + 1 @ a(t)]. Then W D u Ng[lu!]]
for some positive N.

Proof. Since W is Lagrangian subalgebra, it is enough to prove that W is bounded.
Let us write

(12.5) 7(z,1) = Xo(z,) + > T
where Ty, is the homogeneous polynomial of degree m with coefficients in g ® g:

(12.6) Tm= Y Gmuz"t".
ntk=m
It is enough to prove that there exists a positive integer N such that I',, = 0 for
m > N.
We know that d7(a) should belong to g[z] ® g[t] for any element a of g. On the
other hand, one can see that [I'),,a ® 1 + 1 ® q] is either 0 or has degree m. This
implies that [[),,a ® 1 + 1 ® a] = 0 for m large enough. Therefore

(12.7) Ty = Pu(z,1)0
with Pp,(z,t) € C[[z,]]. Let us compute the following:
[p,az®1+1Qat] = Pp(z,t)(z —1)[Qa® 1]+ Pp(z,1)tQ,a® 1+ 1 ®d]
= Pu(z,1)(z — 1)[Q,a®1].
We choose an element a such that [, a ® 1] # 0. We obtain that if P, (z,t) is not

identically zero then P, (z,1)(z —1)[Q, a®1] is a homogeneous polynomial of degree
m + 1. Consequently,

(12.8) b¢(az) = Pu(z,t)(z = 1)[Qa® 1]

cannot belong to g[z] ® g[t] unless P, (z,t) = 0 for m large enough. O

Theorem 12.3. Let X (21, 22) be a quasi-trigonometric solution of the CYBE. There
ezists a holomorphic transformation and a change of variables such that X (z1, z2)

becomes a trigonometric solution, in the sense of Belavin-Drinfeld classification.
Proof. The proof follows the ideas of [3]. Let us consider X (z;, z9) = zf"’fzz +p(21, 22),
where p is a polynomial. After applying the change of variables z; = €%, 25 = €¥ we
obtain the function

(12.9) X(u,v) = 8 +p(e*,e’)
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which satisfies the equation
(12.10) (X2 (y, ug), X3 (uy, ug)] + [X 2wy, us), X (g, us]+
+[ X3 (uy, us), X2 (ug, us)] = 0.

Let us decompose the solution X as

(12.11) X(u,v) = ugj—i-g(u,v),

where

Q Q w v
(12.12) 9lu,) = s — e e”)
oC

(e",¢")

is a holomorphic function in a neighbourhood of (0, 0) (here B, denote the Bernoulli
numbers).
Let {I;} be an orthonormal basis in g with respect to the Killing form and {cf]-}
denote the structure constants with respect to {I;}. Let us write
g(u,v) = Zgij(u, v); ® 1.
1]
Following the method from [3], we construct the function

h(u) ==Y g (u, u)[L;, 1;].
1,J

We notice that the term %71 — - has no contribution to h(w). In fact, the only

u—v

contribution comes from p(e*, e”). If we put

(12'13) p(euyev) = Zaij(u7 U)Ii ®Ij7
1]
then
(12.14) h(u) =" a(u,w)[l;, ] = a¥ (u, u)ck Iy,
1,J 1,5,k

Suppose ¥(u) is a function with values in Aut(g) which satisfies the differential
equation
d¥ (u)

du
According to [3], the function Y (u,v) defined as

(12.16) Y (u,0) = (U(u) "' @ U(v) )X (u,v)
has the property

(12.15) = (adh(u)) - ¥ (u).

Y (u,v) N Y (u,v)

(12.17) 5 o

=0
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and therefore Y (u,v) is a function of u — v.

Let us prove that Y (u,v) is a trigonometric solution, in the sense of Belavin-
Drinfeld classification. Obviously Y (u, v) satisfies the CYBE since X has this prop-
erty. We have to check that the set of poles is a 1-dimensional lattice.

It is enough to show that the equation (12.15) admits a holomorphic solution
W (u) defined on the entire complex plane. Let U(u) be the matrix of the unknown
operator ¥(u) in the basis {/;}. Equation (12.15) is equivalent to

dU (u)

(12.18) - = Hu)U(u),

where H(u) is the matrix with elements

(12.19) hij(u) = Z clicha’ (u,u).

8,1t

Since the matrix function H(u) is holomorphic in C, the matrix equation (12.18)
admits a unique solution satisfying U(0) = E. This solution is holomorphic in C
because U(u) = P exp(f;' H(v)dv) (ordered exponential) and

U ()] = 1+/0uH(v)dv+/ou(/0ul H(vl)H(vz)dvg)dvl-l—...H <

< exp( / ") do.

Moreover, according to [3], the linear operator ¥(u), corresponding to U(u), is an
automorphism of g. This ends the proof. O

Remark 12.4. The following converse question arises: can trigonometric solutions
X (u) from the Belavin-Drinfeld list be changed into quasi-trigonometric solutions
by setting ¢* = 2 and applying some non-holomorphic transformation? For sy and
sl3 we found positive answers.

(i) For sl case, we have two nonequivalent trigonometric solutions [2, p. 172]:
e +1
4(ev — 1)
€12 ® ez +e91 ® e

eu/2 — e—u/2 ?

(12.20) XBP () = (e11 — e22) ® (€11 — ean)+

(12.21) XEP(u) = X, (u) + (672 — /%) (e1y ® e12).

Let X2P(2,t) and X£P(z, ) be obtained from the above solutions by making the
substitution e* = 2. Let ¢ : C — Aul(g) be defined by ¢(z) = Ad(T(z)), where
T(z) = diag(1,2"/?). Then

(12.22) Xo(z,1) = (0(2) ® 9(t)) X' (2, 1),
(12.23) X1(z,1) = (p(2) @ (1) X P (2,1)

are the two quasi-trigonometric solutions for sly given respectively by (5.1) and (5.2).
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(ii) Let us consider now the sl3 case, where we have four nonequivalent trigono-
metric solutions, according to [2, p. 173]|. Three of them correspond to one Coxeter
automorphism denoted by C and one corresponds to the second automorphism Cs.

By setting e* = % and applying the singular transformation ¢(2) = Ad(T(2))
with T(2) = diag(1,z /3,2 2/3), all three solutions corresponding to C; lead to
quasi-trigonometric solutions. One can check that cases a) and b) of |2, p. 173]

provide two trivial quasi-trigonometric solutions:

N 10 2
(1224) )xl(z,t) = :+T0+ljz_10','jeii®€j]’,
—a
with (o) = —a 0 , a € C and r( is given by (6.25);
a —a 0

(1225) XQ(Z, t) = Xl(Z, t) =+ a(en - 622) N (622 - 633) + e12 A €39.

Case ¢) of |2, p. 173] gives a nontrivial quasi-trigonometric solution:

(12.26) Xs(z,t) = Xo(2,t) — z(e13 @ (e12 + €a3) + €12 ® €13))+

+t((612 + 623) Rezt+e3® 612).

We conjecture that the remaining solution which corresponds to the Coxeter au-
tomorphism Cj also provides a nontrivial quasi-trigonometric solution by applying
a singular transformation.

In this way, for sly and sl3 we obtain a one-to-one correspondence between trigono-
metric solution of the Belavin-Drinfeld list [2] and quasi-trigonometric solutions.

Acknowledgement. The authors are thankful to Professor P. P. Kulish who read an
initial version of this paper and gave helpful suggestions.
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DiscussioN

Finally, let us formulate some open problems that might be of interest for future
work:

1. Classification of the nontrivial quasi-trigonometric solutions for si,.

As we have seen in paper IV, this problem reduces to the question of finding, for all
k=1,.., [%] , the Lagrangian subalgebras W of sl,@sl, such that WdA, = sl,®sl,.

So far we have not been able to find a general method to classify the Lagrangian
subalgebras satisfying this condition (unfortunately, the results in [5] do not apply
here).

2. Any classical twist can be extended to a quantum twist.
In paper IV we formulated the “refined” Drinfeld conjecture that any classical
twist can be quantized. It would be worthwhile to verify it.

3. An explicit quantization of the quasi-trigonometric solutions for si3.

In paper IV we presented an explicit quantization of the rational and quasi-
trigonometric solutions for sly. Unfortunately so far we have not obtained a similar
result for sl3. Hopefully the construction of an appropriate quantum twist could
lead to the quantization of both quasi-trigonometric and rational solutions for sls.

4. To find nontrivial rational solutions in exceptional Lie algebras.

As we have seen, the theory of rational solutions for a simple complex Lie algebra g
is based on the study of so-called orders in g((u™!)). In this theory the central part is
played by the maximal orders corresponding to the vertices of the extended Dynkin
diagram of g. A vertex of the extended Dynkin diagram is either singular (i.e.,
there exists an automorphism of the extended Dynkin diagram sending this vertex
tO0 —Qumaz) OF Tegular (i.e., there is no such automorphism). In the decomposition
of the maximal root, singular vertices appear with coefficient 1 and regular vertices
with coefficient > 1.

In paper II of the thesis we found examples of rational solutions for o(n) by
investigating orders corresponding to singular vertices.

For exceptional Lie algebras, a way of obtaining rational solutions could be the
analysis of orders corresponding to regular vertices with coefficient 3. In [9] the
following result was given (we refer to [9] for notation):

Theorem. (9] Let g be a simple complex finite-dimensional Lie algebra and o be a
simple root whose coefficient in the decomposition of the mazimal root with respect
to simple ones is 3. Then there is a one-to-one correspondence between isotropic
orders W C O, such that W @ glu] = g((u™")) and the set of pairs (S, B), where:
(1) S is a subalgebra of (Lo, V) such that S+ (Py, Pyy) = (Lay Va,1)-
(2) B is a skewsymmetric bilinear form on S, nondegenerate on SN (Py, P, ;)
and such that

B([I:y]aﬁz) + B([zﬂt]aﬁyi'i' B([y,z]af,x) = ([x,y],z)

2

for any elements x, y, z of S. Here in the expression ([z,y],z) we consider z, y, z
as elements of Lo + eV, + EQVQ,Z +&3L,.

For each exceptional Lie algebra g, the data (La, Va,1, Py, Pyy) has been deter-
mined in [9]. Tt remains to find the rational solutions themselves, in case they exists,
i.e., to find pairs (S, B) satisfying the conditions of the above theorem.

5. Rational solutions of CYBE for simple real Lie algebras.

In the first paper of the thesis we presented the theory of rational solutions of
CYBE for simple compact Lie algebras. One could develop a theory of rational
solutions for simple real Lie algebras also based on the study of orders. The corre-
spondence between solutions and orders is valid so the next task would be to describe
the maximal orders in terms of real root system.

6. Poisson homogeneous G(Clu])-spaces and relations with classical dy-
namical Yang-Baxter equation with spectral parameter.

The notion of Poisson homogeneous space was formulated by Drinfeld as a gener-
alization of the notion of homogeneous spaces to the Poisson-Lie group context (see
[1]). He gave a general approach to the classification of Poisson homogeneous spaces
showing that if G is a Poisson-Lie group, g is the corresponding Lie algebra, then
Poisson homogeneous G-spaces are esentially in a one-to-one correspondence with
G-orbits in the set of Lagrangian subalgebras of the classical double D(g). For the
case when g is a simple complex Lie algebra with strictly quasitriangular structure,
the classification of such Lagrangian subalgebras was given in [5].

On the other hand, the classical dynamical Yang-Baxter equation (CDYBE) for a
pair (g, u), consisting of a finite-dimensional complex Lie algebra g and a subalgebra
u, was defined by G. Felder as a generalization of the CYBE (see [4]). The first
classification results for the solutions of the CDYBE were obtained by P. Etingof,
A. Varchenko and O. Schiffmann, for the pair (g, h), where g is a complex simple Lie
algebra and h a Cartan subalgebra (see [2, 3, 8]). In [7] J.-H. Lu found a connection,
which is esentially a one-to-one correspondence, between dynamical r-matrices for
the pair (g,h) and Poisson homogeneous G-structures on G/H, where H is the
Cartan subgroup with Lie algebra h and G is equipped with the standard strictly
quasitriangular Poisson-Lie structure. This result was generalized by E. Karolinsky
and A. Stolin who gave some general conditions under which the Lu correspondence
is one-to-one (see [6]).

So far the Lie bialgebra g has been considered finite-diminesional. It might be
worthwhile to discuss the above problems for some infinite-dimensional cases. In the
fourth paper of the thesis we discussed Lie bialgebra structures on g[u] which are
induced by rational and quasi-trigonometric solutions of the CYBE. Consequently,
G(Clu]) is equipped with a triangular Poisson-Lie structure. In this context, it
would be perhaps interesting to study Poisson homogeneous G(Clu])-spaces and to
find a relationship with solutions of the CDYBE with spectral parameter.
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