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Abstract

We prove that the Coleff-Herrera residue current, corresponding to a pair
of holomorphic functions defining a complete intersection, can be obtained
as the unrestricted weak limit of a natural smooth (0, 2)-form depending on
two parameters. Moreover, we prove that the rate of convergence i Holder.
This result is in contrast to the fact, first discovered by Passare and Tsikh,
that the residue integral in general is discontinuous at the origin. We also
generalize our regularization results to pairs of so called Bochner-Martinelli,
or more generally, Cauchy-Fantappie-Leray blocks in the case of a complete
intersection.

We generalize the classical Cayley transform to tuples of unbounded op-
erators by using Taylor’s analytic functional calculus. We give necessary
and sufficient conditions on an m-tuple a of closed unbounded operators
in order that a can be transformed to an n-tuple of bounded commuting
operators by a projective transformation of CP". The components of such
tuples need not all have non-empty resolvent sets. The construction gives
an analytic functional calculus, supported by a closed subset of CP", for
each such a. This subset is then a natural candidate for a joint spectrum of
a. We provide an integral representation for this functional calculus. We
also study “all” tuples of unbounded operators admitting a smooth func-
tional calculus by considering multiplicative operator valued distributions
A with an additional property meaning, in a weak sense, that A(1) is the
identity operator.
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Leray current, regularization, division problem, Cayley transform, Taylor
spectrum, functional calculus, integral representation, projective space
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ON RESIDUE CURRENTS AND
MULTIVARIABLE OPERATOR CALCULUS

INTRODUCTION

HAKAN SAMUELSSON

1. RESIDUE AND PRINCIPAL VALUE CURRENTS

1.1. The case of one function. Let X be a domain in C", or more gener-
ally, a complex n-dimensional manifold and let f: X — C be a holomorphic
function. Of course, 1/f is not a function on X if Vy := f~'(0) is non-
empty, but Schwartz found that there is at least a distribution U on X
such that fU = 1, [21]. Let us consider the elementary case when X = C.
The function z — 1/z is locally integrable in C and hence (0¥/8z%) (1/z)
exists in the sense of distributions. We can realize it as the principal value
distribution

1
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In fact, by integrating by parts we see that
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and by Taylor expanding the functions (0%/8z%) ¢ to appropriate orders
and changing to polar coordinates it is not hard to see that the boundary
integrals tend to zero as ¢ — 0. Now, if f: C — C is holomorphic and
not identically zero then f has a discrete zero set and moreover, f(z) =
(z — a)* f(2) where f # 0 in some neighborhood of a € V;. Close to a we
can thus choose a k:th root, f1/¥ of f and make the change of variables
¢ = (z — a)f*(2). In the new coordinate, f is just ¢* and so from the
existence of this principal value distribution above it follows that one can
1
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define 1/f as a (0,0)-current, denoted [1/f], in C as

(2) 2(C) 5 p > lim L dz A dz.

e—0 |f|2>e
The 0-image, 9[1/f], of [1/f] is of particular interest. It is a (0, 1)-current,
called the residue current associated to f, and by integrating by parts its
action on a test form ¢ dz is given by

3 lim ® dz.
(3)

€—0 |f]2=e€
We note one feature of the residue current. Let (f) be the principal ideal
generated by f in O(C) and assume that h € (f). Since h = gf it is
clear from (3) that h annihilates the residue current 9[1/f]. On the other
hand, if A is an entire function such that h9[1/f] = 0 then h € (f). This
is so because the distribution h[1/f] extends the function h/f across Vj
and by hypotheses, d(h[1/f]) = hO[1/f] = 0. By elliptic regularity for the
0-operator it follows that g = h/f € O(C) and hence h € (f). However,
the duality
(4) he(f)@ha[%]zo
can be seen completely elementary since, by (3), an entire function h an-
nihilates 9[1/f] if and only if h vanishes where f does and to the same
orders.

In higher dimensions several difficulties arise. In particular, the zero
set of a holomorphic function f is no longer a discrete set of points. It
is an analytic variety of codimension 1 and may have singularities. These
can actually be resolved by Hironaka’s famous desingularization theorem,
[13]. It implies that if ¢/ is a sufficiently small neighborhood of a point
p € Vy then there exists a complex manifold U and a proper holomor-
phic map IT: & — U such that II i biholomorphic outside the hypersurface
II-(V}), and such that II!(V}) has normal crossings. This means that
locally around any point in ¢/ one can find coordinates, {, centered at the
origin such that IT* f = (* is a monomial. Using Hironaka’s desingulariza-
tion theorem Herrera and Lieberman proved in [12] that the principal value
current [1/f] defined by

(5) Dnn(X) 2 ¢ = lim o/ f
exists. Here, %, ,(X) denotes the space of test forms of bidegree (n,n),

i.e. the space of smooth compactly supported (n,n)-forms on X. As above,
the residue current is the 9-image, 9[1/f], of [1/f] and its action on a test
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form ¢ € Dpyn—1(X) is given by the limit as ¢ — 0 (along regular values
for |f|?) of the residue integral

() @=[  elf

One key fact discovered by Herrera and Lieberman is that if ¢ has bidegree
(n —1,n) then for each k there is a positive d; such that I}fk (€) = O(e%).

This can be used to obtain regularizations of the currents [1/f] and 9[1/f].
In fact, let ¢ be a test form of bidegree (n,n) and take a smooth function
x on [0,00) such that x(0) = 0 and lim; , x(¢) = 1. For some k > 1 we
can write the test form ¢ = ¢ A 0f/f¥, where ¢ is a test form of bidegree
(n—1,7n) whose restriction to |f|? = ¢ is unique, for each ¢ > 0. By Fubini’s
theorem we get

(@) [ P 10/f = [ (7P g nos/1+
_ 2/, k HPTE b . k .
= [xustrog s s = [“xwa( [ o)

Herrera’s and Lieberman’s result now implies that we may pass to the limit

in the last integral and we see that f X(|f|2/e)<p/f — fooo (flf\ZZt ¢/fk)dt/t
as € — 0. This last expression can, by Fubini’s theorem again, be seen
to be equal to the value at zero of X — [|f|**¢/f, which is the Mellin
transform of the integral in (5). This is an alternative way of comput-
ing [1/f].¢, see e.g. [3], and hence, x(|f|®/€)/f — [1/f] weakly. Since
differentiation is a continuous operation on distributions it follows that
ox(|f|?/e)/f — 0[1/f].- With the natural choice x(t) = t/(t + 1) we thus
get the well-known result that 0[1/f] can be obtained as the weak limit of
O(f/(|f|?+¢)). These regularization results are also consequences of Corol-
laries 4 and 5 in [ii]. For more historical accounts, see the survey article [7]
by Bjork.

1.2. The case of two functions. Let f and g be two holomorphic func-
tions X — C such that f and g define a complete intersection, i.e. the
common zero set V(s ) has codimension two. In order to generalize the du-
ality (4), we will try to define the exterior product of the residue currents
0[1/f] and 0[1/g]. In view of the previous section we consider the residue
integral

®) Tylene) = [ia, &

l9|?=¢2
However, the unrestricted limit as €1,e2 — 0 of the residue integral does
not exist in general. This was first discovered by Passare and Tsikh in
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[17], and Bjork later found that this indeed is the typical case, [6]. See
also [19]. We remark that if f and g do not define a complete intersection
then it is easy to see that the residue integral is discontinuous at the ori-
gin. One can simply take f = z; and g = 2129, see [17]. Via Hironaka’s
desingularization theorem one may assume that the hypersurface f-g =10
has normal crossings, which means that there is a (finite) atlas of charts
such that f(¢) = f(¢)¢* and g(¢) = §(¢)¢? where o and 8 are multiindices
(depending on the chart) and f and § are invertible holomorphic functions.
It is actually the invertible factors which cause problems. We can always
dispose of one of them by incorporating it in a coordinate, but in general
we can not dispose of both. However, if the matrix A, whose two rows are
the integer vectors « and f respectively, has rank two there is a change of
variables z = 7(¢) such that z® = f(¢)¢® and 28 = §(¢)¢P, see e.g. [15].
Hence, when « and 8 are not linearly dependent we can make both the
invertible factors disappear. Problems therefore arise in so called charts
of resonance where « and 3 are linearly dependent. Coleff and Herrera
realized that if one demands that €; and €5 tend to zero in such a way that
¢1/ek — 0 for all k € Z,, along a so called admissible path, then one will
get no contributions from the charts of resonance because one cannot have
|£(O)¢e| << |§(¢)¢P| if a and B are linearly dependent. They proved in
[8] that the limit, along an admissible path, of the residue integral exists
and defines the action of a (0, 2)-current, the Coleff-Herrera residue current
[0(1/f) AO(1/g)]. This current actually has the property that its annihila-
tor ideal equals the ideal generated by f and g. In [15] Passare smoothen
the integration over the set {|f|> = €1} N {|g|*> = €2} by introducing func-
tions x as described in the previous section, and he studies possible weak

limits of forms
9) 5X1<I§I2/el) N éxQuZP/eQ)

along parabolic paths (€1, €2) = (€°1,€°2), where s = (s1, s2) belongs to the
simplex $5(2) = {(z,y) € R%; s1 + so = 2}. He found that it is enough to
impose finitely many linear conditions (n;,s) # 0 to assure that (9) has a
weak limit along the corresponding parabolic path. The linear conditions
partition ¥9(2) into finitely many open segments and the weak limit of
(9) along a parabolic path corresponding to an s in such a segment only
depends on the segment. We say that (€1, €2) tends to zero inside a Passare
sector. Moreover, as we assume that f and g define a complete intersection,
the limit is even independent of the choice of segment. In this case it also
coincides with the Coleff-Herrera current. One can obtain a O-potential
to the Coleff-Herrera current e.g. by changing the integration set in (8) to
{If1? > e1} N {|g|? = €2} and pass to the limit along an admissible path or
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by removing the first 0 in (9) and pass to the limit inside a Passare sector.
This J-potential is denoted [(1/f)9(1/g)]. The main result in [ii], Theorem
1.3 below, implies the following result.

Theorem 1.1. Let x; € C®([0,00]), j = 1,2, satisfy x;(0) = 0 and
X;j(00) =1, then, in the sense of currents
2 ) 2 1-1
i 007/0) Brallalfe) _ 151
61,62—)0 f g f g

Moreover, the integral of the smooth form on the left hand side against a
test form is Holder continuous for (e1,e) € [0, 00)2.

Taking O this implies that (9) tends unrestrictedly to the Coleff-Herrera
current. For the particular case when x;(t) = t/(¢ + 1) our result, apart
from the Holder continuity, was announced in [i]. Actually, it is possible to
relax the smoothness assumption on one of the x; in Theorem 1.1. This is
so because, as mentioned above, we can always arrange so that one of the
invertible factors, say f , is trivial. Then, examining the proof one sees that
one may take x; to be the characteristic function of [1, 00|, and hence,

/ Ix(lgl*/e2) Ao — [151}#,
If12>e1 fg g

unrestrictedly as (e1,€2) — 0. It is worth noticing that if both x; and x2
are the characteristic function of [1, co] then the result is no longer true in
view of the examples of Passare-Tsikh and Bjork.

1.3. Currents of the Bochner-Martinelli and Cauchy-Fantappiée-
Leray type. We now consider an m-tuple f = (fi,..., f;) of holomorphic
functions on X. The residue integral corresponding to f, If‘p(el, cees€Em), 18
defined analogously to (8). If f defines a complete intersection, which now
means that the common zero set, V}, has codimension m, there is a well
defined way of associating a residue current to f by letting € = (e1, ..., €n)
tend to zero along an admissible path in the residue integral, see [8]. If
f does not define a complete intersection one can proceed as in [18] and
consider the mean value of the residue integral over ¢ € ¥,,(d) := {s €
R7?; " s; = 6}. One then obtains

S (T Ny O Ay
|FI2=5 | f[2m ’

where ¢, is a constant only depending on m. Passare, Tsikh, and Yger
prove in [18] that the limit of (10) as § — 0" exists and defines the action
of a (0,m)-current, which, in the case f defines a complete intersection,
coincides with the Coleff-Herrera current, and also with the currents studied

(10) Cm
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in [5] and [16]. We also mention that Passare proposed a way of associating
a residue current to a non-complete intersection by taking the average of the
currents corresponding to the various Passare sectors, see [15]. Based on
the work in [18], Andersson introduces more general currents of the Cauchy-
Fantappié-Leray type in [3]. In short, to a holomorphic section f of some
complex m-bundle over X he associates a singular form uf = Z“/{,k—p

where the terms ui,k_l are similar to the term in (10), and he shows that

it is extendible to X as a current U/, either as a principle value or by
analytic continuation. The residue current, R/, is derived from the current
Uf and equals the Coleff-Herrera current locally if f defines a complete
intersection. If f is a section of a line bundle, then, locally, we can write
f = fee, where f. is a holomorphic function and e is a local holomorphic
frame of the bundle. We point out that, in this case, U/ = [1/f.]e and
R = 0[1/f.] A e. We prove the following result in [ii].

Proposition 1.2. Let f be a holomorphic section of an m-bundle over X
and assume that x € C*([0,00]) vanishes to order min(m,n) + 1 at zero
and satisfies x(oo) = 1. Then for any test form ¢ we have

lim /X(|f|2/e)uf/\<p= Uf.(p
e—0T
and

lim /Bx(|f|2/e) Auf Ao =R ..
e—0+

We remark that this result is similar to Theorem 2.1 in [18]. However,
their regularizations of the terms of R/ are in general only smooth for the
term of top degree.

The main theme in [ii] is regularizations of products of two Cauchy-
Fantappie-Leray type currents. There is a natural way of defining the
product of the Cauchy-Fantappie-Leray type currents corresponding to two
section f and g so that formal Leibnitz rules hold, see [25]. The following
theorem is the main result in [ii].

Theorem 1.3. Let f and g be holomorphic sections (locally non-trivial) of
the holomorphic m;-bundles EJ* — X, j = 1,2, respectively. Assume that
the section f ® g of Ef @ E5 — X defines a complete intersection. Let
X1, X2 € C®([0,00]) be any functions vanishing to orders mi and mo at
zero respectively, and satisfying x;(co) = 1. Then, for any test form ¢ we
have

/xl(\fP/el)uf A Oxa(lg?fe2) Aud A = UT ARI.p

as €1, €2 — 0. Moreover, as a function of € = (€1, €2) € [0,00)? the integral
on the left hand side belongs to some Holder class independently of .
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As a consequence we get

Corollary 1.4. With the same hypotheses as in Theorem 1.3 we have
[ o5 /e) nul ndxallgfea) Aut A BRI AR,

(11) / xi(If2/e1) Al xo(lgle2) A g — R,
and

/ allF2/e) Al A ol Jex) A — 0

as €1,€2 — 0%, and as functions of € = (e1,€2) € [0,00)? the integrals on
the left hand sides belong to some Hélder classes independently of .

Assume that f defines a complete intersection and pick a holomorphic
function g such that f @ g also defines a complete intersection and such
that g is zero on the singular part of Vy. After resolving singularities we
can always choose coordinates so that ¢ is a monomial. Using this, one can
repeat the proof of Theorem 1.3 to see that (11) holds for y2 equal to the
characteristic function of [1,00]. It then follows, by letting €; tend to zero
before €, that lim,, o+ x,4(€2) R/ = R/, where x,(e2) is the characteristic
function of {|g|?> = e2}. Hence, in the complete intersection case, R/ does
not have any mass concentrated on the singular part of Vy, and we have
found the well-known result that R/ has the standard extension property.
We remark that the product x,(e2) R/ is well-defined since the wave front
sets of x4(e2) and R/ do not intersect for e, sufficiently small, see e.g. [7].

2. MULTIVARIABLE OPERATOR CALCULUS

2.1. Taylor’s functional calculus. The purpose of this subsection is to
give some background to Taylor’s analytic functional and to point out some
connections with residue currents. Let X be a Banach space and let a =
(a1,...,a,) be an n-tuple of bounded commuting operators on X. The
tuple a induces a continuous bilinear pairing

OC) x X 3 (f,z)— f(a)z = ana”‘m € X,

where ) c,2z® is the power series expansion of f. This gives us a con-
tinuous O(C")-module structure on X. Note that, for any open 2 C C",
a continuous O(€2)-module structure on X is equivalent to having a con-
tinuous algebra homomorphism O(2) — £(X). Here £(X) is the Banach
algebra of bounded linear operators on X. In this case one refers to the al-
gebra homomorphism as an O(£2)-functional calculus for a. Let A}? denote
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X @ ADI(C"), where ALY(C") is the space of vectors in AT} (C") of type
(p,q), and let ¢,_, denote interior multiplication with the operator valued
(1,0)-vector > 7(zj — a;j)(8/0%;|,). Since the a; are commuting, 62_, = 0,
and we get the complex

0ys—a 0z—a 0z a
(12) 0 AP0 A0 A0 .

The joint Taylor spectrum, o(a), of a is by definition the set of points
z € C" such that (12) is not exact. Observe that if (12) is exact then the
corresponding complex where (p,0) is replaced by (p,q) is exact. It turns
out, see [22], that o(a) is a compact non-empty subset of C". In [22], Taylor
also proves the following theorem.

Theorem 2.1 (Taylor). There is a continuous algebra homomorphism
O(o(a)) — L(X) which extends the O(C")-functional calculus. The im-
age, f(a), of f € O(o(a)) commutes with each b € L(X) that commutes
with all aj. If f = (f1,-.., fm) is an analytic mapping, f; € O(o(a)), and

fla) = (fi(a), ..., fm(a)), then o(f(a)) = f(o(a)).

In [1] Andersson gives a realization of Taylor’s functional calculus by
means of Cauchy-Fantappie-Leray type formulas, which we briefly describe.
For any open set 2 C C" we let £, 4(€2, X) be the space of smooth X-valued
(p, q)-forms in 2. We have 0,_q: Epy1,4(2, X) = &, 4(2, X) and as above,
62_, = 0. From the theory of parameterized complexes, see e.g. [23], it
follows that if (12) is exact at z then it is also exact in a neighborhood
of z. It also follows that the complexes (&, 4(2, X),6,_,) are exact if (12)
is exact for all z € Q, ie., if @ C C" \ o(a). It is straight forward to
check that 0d,_, = —8,_40 and so (Ee,0(2,X), 0,4, 0) is a double complex
with exact rows if @ C C" \ o(a). We then define the corresponding total
complex, (£*(f2),V,_,), where Z7() = @, ,—, Ep,¢(€%, X) and V,_, is
the coboundary operator §,_, — 0. From standard homological algebra
we know that if a double complex has exact rows (or columns) then the
corresponding total complex is again exact. Hence, (.£*(f2),V,_,) is exact
if @ C C" \ o(a). Denote by z the constant function C* — X with value
7€ X. Then V,_,z =0andso thereisau =) T ug 1 € L (C"\o(a))
such that £ = V,_,u. For degree reasons, 5un,n_1 =0, and if % is another
solution, z = V,_,1, then actually, @y, ,—1 and u, 1 are 0-cohomologous
in C" \ o(a). Hence, each z € X defines a 0-cohomology class w, .z €
HY™ Y(Cn \ o(a),X) called the resolvent. Andersson proves in [1] that if

7]
(2 is a neighborhood of o(a) and f € O(f2) then

(13) f@)e= o [ F@wraz,

(2mi)™ Jap
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where o(a) C D € © and D has smooth boundary. Note that by Stokes’
theorem, the integral in (13) only depends on the homology class of dD.
One can think of (13) as a residue formula. On a formal level we can write
(13) as (2mi)"f(a)r = O[w,_qx].f, and so if f — f(a), defined by (13),
extends to smooth f then Ow,_,x] can be interpreted as a residue cur-
rent with support o(a). We will discuss this connection between operator
calculus and residue currents in more detail by considering two examples.

Example 2.2. Let M be an m X m-matrix and denote by M’ the matrix of
all (m—1)x (m—1)-minors with the property that MM’ = M'M = det (M).
Let also P(z) = det (z — M). Then the resolvent of M is (z — M)'dz/P(z)
and the analytic functional calculus of M is given by

ooy ot [ a0 ESEE e o)

Note that we do not have to pass to the limit since the integral only de-
pends on the homology class of |P|? = ¢. However, if we want to extend
the analytic functional calculus to a smooth one, we will have to pass to
the limit. This limit exists in view of the discussion in the beginning of
Subsection 1.1 and equals the action of the operator valued residue current
O[(z — M)'dz/(2miP(z))] on the smooth function.

Example 2.3. Let A and B be two commuting 2 X 2-matrices. From
elementary linear algebra it follows that if Ker ANKer B = {0} then either
at least one of A and B is invertible or dimKer A = dimKer B =1 and in
addition,

(a) C? = Ker A ® Ker B,
(b) KerA=1ImB,
(¢) Ker B =1Im A.

Using this simple fact we will compute the joint Taylor spectrum o (A, B).
Exactness of (12) at z = (21, 22) means in this case that

(i) for all v € C? there are v1,v9 € C? such that v = (21 — A)vy + (22 —
B)'UQ,
(i) if (21 — A)v1 = (22 — B)vy then there is a v € C? such that v; =
—(292 — B)v and vy = (21 — A)v,
(iii) if (21 — A)v = (22 — B)v then v = 0.
Note that (iii) is equivalent to Ker (z; — A) N Ker (2o — B) = {0}. If (iii)
does not hold then z € o(A4,B). On the other hand, if (iii) holds then
either one of z; — A and 2z, — B is invertible, in which case (i) and (ii) hold,
or (a), (b), and (c) hold. But then clearly (i) holds by (a), (b), and (c),
and if (z1 — A)vy = (22 — B)ve then (21 — A)v; € Im (21 — A) NIm (22 —
B) = {0} by (a), (b), and (c), and analogously, (22 — B)ve = 0. Hence,
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v; € Ker(z; — A) =Im (22 — B) and vg € Ker (20 — B) = Im(2; — A) and
so by (a) we can choose 77 € Ker (z; — A) such that v; = (29 — B)9; and
D9 € Ker (22 — B) such that vg = (21 — A)02. Then v = 09 — 7, satisfies the
requirement in (ii). Thus, z ¢ 0(A, B). In conclusion, z ¢ o(A, B) if and
only if (iii) holds which in turn is equivalent to Ker (z; — A) N Ker (25 —
B) = {0}. We remark that in general, the vanishing of different homology
groups of (12) are independent statements. Now, let P, (z) = det (z; — A),
Py(z) =det (20 — B), P3(2) =det (21 — A+ 22 — B), and P = (P1, P», P3).
Then o(4,B) = P~1(0). In fact, if z € o(A, B) then there is a non-zero
v € Ker(z1 — A) NKer(z2 — B) and so P(z) = 0. Conversely, assume
that z ¢ o(A, B), i.e. that Ker(z; — A) N Ker (2o — B) = {0}. Then,
either at least one of z; — A and zp — B is invertible or (a), (b), and (c)
hold. In the first case, either Pj(z) or P5(z) is non-zero and in the second
case, if (z1 — A+ 22 — B)v = 0, then by arguing as above we find that
(21 — A)v = (22 — B)v = 0, that is v € Ker (21 — A) NKer (22 — B) = {0},
and so P3(z) # 0. We now construct the resolvent. Let

0,—(A,B) = (Pl (2’1 — A)’ + Pg(zl — A+ 2z — B)')dz1
+ (PQ(ZQ - B)I + 133(,21 - A + 29 — B)I)dZQ
and put s,_(4,) = Uz_(A,B)/|P|2. Recall that M’ is the matrix of minors
such that MM' = M'M = det (M). It is easily verified that 0,_(4,B)5,—(a,B)
is equal to the identity matrix £ and that
E = V., (a5 (s:—a,B) + S.—(a,8) N 0s,_(a,p))

Os—(A,B) = Oz—(A,B) N 5%_(,4,3)
VZ—(A,B)( P2 + |P[ )

outside P~1(0), i.e. outside o(A4, B). By Andersson’s theorem we have for
any f holomorphic in a neighborhood of P~1(0) that

1) fAB)=linos [ e T e AB),
)? JiPp2=c 1P|

As before we see by Stokes’ theorem that, for holomorphic f, the integral in
(14) is independent of (sufficiently small) e. From Subsection 1.2 we know
that the limit in (14) also exists for smooth f defined in a neighborhood
of P~1(0), and defines the action of a residue current. In this example
Taylor’s analytic functional calculus therefore is the pairing of a residue
current and a function holomorphic in a neighborhood of its support.

2.2. Cayley transforms of tuples of unbounded operators. Let a be
a closed, but not necessarily densely defined, linear operator on a Banach
space X. The spectrum, o(a), of a is the set of points z € C such that z—a
is a bijection from the domain, Dom(a), of a to X. The extended spectrum,
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&(a), is o(a) if a is bounded and o(a) U {oco} C C if a is unbounded. There
is also the point spectrum, op(a), which is the set of z € C such that z —a
is not injective. By the closed graph theorem the set C\ o(a), known as the
resolvent set of a, is the set of points z € C such that z — a has a bounded
inverse, (z —a)~!': X — Dom(a). The mapping z + (z —a) ™", for z in the
resolvent set, is called the resolvent.

The original Cayley transform, a — (a + i)(a — i) !, introduced by
von Neumann in [24], induces a one-to-one correspondence between the
self-adjoint operators and the unitary operators such that 1 is not in the
point spectrum. More generally, let ¢(z) = (m112 + m12)/(mao1z + ma9)
be any projective, or M6bius transformation of C. Then ¢(a) := (my1a +
m12)(mara+ maz)~! has a meaning as a closed operator on X if ¢~!(c0) ¢
op(a). Moreover, it is not hard to see that ¢(a) is bounded if and only if
¢ (o) ¢ &(a). See [23] or [ii]]. We say that ¢(a) is a Cayley transform
of a, and we conclude that the closed operators on X which can be Cayley
transformed to bounded operators are precisely those with a non-empty re-
solvent set. The spectral mapping property/\holds for these mappings, that
is, for any projective transformation ¢ of C such that ¢ !(co) ¢ 6,(a) it
holds that ¢(6(a)) = 6(¢(a)). The preceding discussion suggests that the
closed operator a (/i\eﬁnes some invariant object on CP! = C. In the canon-
ical affine part of C this object becomes the operator ¢ and in some other
affine part, corresponding to a Mobius transformation ¢ of the canonical
one, it becomes ¢(a) and has spectrum ¢(5(a)).

Now, consider instead a tuple a = (ay,...,a,) of closed operators on
X. If all a; have non-empty resolvent sets and their respective resolvents
commute, we can Cayley transform each a; separately to obtain a tuple of
bounded commuting operators on X, see [23] and [4]. A (Taylor) spectrum
of a can then be naturally defined as a closed subset of CP! x --- x CP!,
In [iii] we have another approach to multivariable Cayley transforms. We
describe a class of tuples of closed unbounded operators on X, which can
be transformed to tuples of bounded commuting operators by a projec-
tive transformation of CP". To achieve this we introduce an equivalence
relation on the set of n + 1-tuples of bounded commuting operators. It
turns out that if the Taylor spectrum of one member of an equivalence
class avoids 0 then the spectrum of any member in that class also does,
and moreover, the projections to CP" of the spectra of any two members in
such a class coincide. We call such classes projective operators and denote
by [b] = [bo,- .., bs] the class corresponding to b, and by o[b] the image in
CP™ of the spectrum of any of the members in [b]. We prove that there is
an O(o[b])-functional calculus for the projective operator [b] and that the
spectral mapping property holds, see Theorem 3.8 in [iii]. If o[b] avoids
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some hyperplane in CP" then we also provide integral formulas for this
functional calculus. This construction is analogous to Andersson’s realiza-
tion of Taylor’s functional calculus, see Section 7 in [iii]. Now, assume that
o[b] avoids the hyperplane {[z]; (z, \°) = 0} := [A\°] € CP™ and denote by
px the mapping

[2] = (¢, 21)/(2,0%), ..., (2, A7) /{2, A7)

where X%, ... A" are linearly independent. By the O(o[b])-functional cal-
culus, pA([b]) = (b3,...,by,), b; = (b, MY (b, A% 7L, is a tuple of bounded
commuting operators. It may happen, even if o[b] does not avoid the hy-
perplane [\°], that p,([b]) has a meaning as a tuple of closed unbounded
operators. We call these hyperplanes, together with the hyperplanes avoid-
ing o[b], admissible. In the case of one operator the set of admissible
hyperplanes corresponds to the complement of the point spectrum. One
can show, see [iii], that if [\°] is admissible then the tuple of closed op-
erators, (ai,...,an) = pa([b]), a; = (b, \°) (b, \7), satisfies the following
conditions:
(1) There exists a [A] € CP" such that the operator

n
ag := Ao + Z)\jaj
1

with domain Dom(ag) = [} Dom(a;) is closed, injective and sur-

jective.

(2) The operators ag, a1, ... ,a, satisfy the following commutation con-
ditions. If z € Dom(a;) N Dom(ajax) then z € Dom(aka;) and
ajapr = aga;z for 5,k =0,1,...,n.

We call a tuple of closed operators satisfying these conditions, an affine
operator. If a is just one single operator it is not hard to verify that a is
affine if and only if ¢ has non-empty resolvent set. We also remark that if
n > 2 then an affine operator does not necessarily consist of operators all
of which have non-empty resolvent sets. However, if all a; have resolvents
then conditions (1) and (2) imply that these commute. We prove in [iii]
that any affine operator is the image of a unique projective operator in the
following sense.

Theorem 2.4. Fiz [\°),[AY],...,[\"] linearly independent. Then to any
affine operator a = (ay,...,a,) it corresponds a unique projective operator

[b], having [X°] as an admissible hyperplane and with o[b] avoiding some
hyperplane, such that a; = (b, \°) "1 (b, N} for j =1,...,n.

It follows, by choosing any hyperplane avoiding o[b] as the new hyper-
plane at infinity, that any affine operator a can be transformed to a tuple
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of bounded commuting operators by a projective transformation of CP".
We call the tuple of bounded commuting operators a Cayley transform of
a. Conversely, any tuple of operators appearing as the (inverse) Cayley
transform of a tuple of bounded commuting operators is affine. We also
note that Theorem 2.4 implies that an affine operator has a natural spec-
trum o(a) C CP". We recall from above that if a = (ay,...,a,) consists
of operators, all of which have non-empty resolvent sets, then a also has a
natural spectrum, (a) C CP! x --- x CP!. We prove in [iii] that if a is
affine and consists of operators with non-empty resolvent sets then

o(a)NC"* Ca(a)NC".

If a = (a1, a2) is a pair we prove that the inclusion is an equality, but for
n-tuples, n > 2, we do not know whether this is true or not.

2.3. Unbounded operators with smooth functional calculi. Let a be
a closed operator on a Banach space X with real spectrum whose resolvent
satisfies growth conditions ||(z —a) || < |Imz|~Mx, Rez € K € R, My >
0. Then a admits a Z(R)-functional calculus given by

(15)  D(R) 5 ¢ pla) = ZLM (2 —a)"ldz A DG € L(X),

where ¢ is an almost holomorphic extension of ¢ to C with compact sup-
port such that |0@| = O(|Im z|*). For bounded a this construction is due
to Dynkin, [9], and it was generalized to unbounded operators by Helffer
and Sjostrand in [11]. If a is bounded then (15) extends to all smooth
functions ¢ on R and it coincides with the holomorphic functional calculus
if ¢ is holomorphic in a neighborhood of o(a). In general, (15) extends
continuously to the algebra G of all smooth functions on R which are holo-
morphic at infinity in C. In particular, it extends to all ¢t — 1/(z — t) for
z € C\ R, and the image under (15) equals (z — a)~!. Conversely, it was
proved in [4] that if there is a multiplicative mapping A: 2(R) — L(X),
which extends continuously to G, and such that U,cqg)Im A(p) is dense
in X and Nyeqr)Ker A(p) = {0}, then there is a closed operator a on X,
satisfying the growth conditions above, and giving A by (15). However,
there are operators admitting a Z(R)-functional calculus although they do
not have any resolvent. For example, the operator defined as multiplication
with ¢ ~ #(2 + sin#®) on the Sobolev space H'(R) has empty resolvent set
but nevertheless admits such a functional calculus. In [iv] we study abstract
multiplicative £(X)-valued distributions

A: DR - L(X),
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with the extra properties that D4 := U,ecprn)Im A(yp) is dense in X and
Neea@nKer A(p) = {0}. We call these objects hyperoperators. The as-
sumptions on the union of the images and the intersection of the kernels
are a weak way of saying that A(1) is the identity operator. We define
the spectrum of A as the support of the distribution and we show that the
class of hyperoperators is closed under tensor products and composition
with proper maps. It also turns out that to any hyperoperator A it corre-
sponds a unique closable operator (tuple of commuting closable operators),
a, defined on D4 admitting an £(R"™)-functional calculus with respect to
D 4, a so called weak hyperoperator. Roughly, this means that each z € D4
has a real and compact local spectrum with respect to D 4. We remark that
if A; and Ao are hyperoperators in R with corresponding weak hyperoper-
ators a; and ag respectively, then, as mentioned above, A = A; ® Ay is a
hyperoperator in R? and a = (ay, a3). But all hyperoperators in R? do not
arise in this way and this gives support for the idea in e.g. [14], [23], and [iii]
that a reasonable notion of a “tuple of commuting unbounded operators”
should be considered as an object in its own.
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A REGULARISATION OF THE COLEFF-HERRERA
RESIDUE CURRENT

HAKAN SAMUELSSON

ABSTRACT. We prove that if a holomorphic mapping from some com-
plex manifold to C? defines a complete intersection then the correspond-
ing Coleff-Herrera residue current can be smoothly regularised by a
(0,2)-form depending on two parameters.

RESUME. Une régularisation du courant résiduel de Coleff-Herrera
Nous démontrons que, si une application holomorphe d’une variété com-
plexe & valeurs dans C? définit une intersection compléte, alors le courant
résiduel de Coleff-Herrera correspondant peut étre régularisé par une
(0,2)-forme dépendant de deux paramétres.

VERSION FRANCAIS ABREGEE

Soit X une variété complexe et soit f = (f1, f2) : X — C? une application
holomorphe. Supposons que f définit une intersection compléte, autrement
dit que la variété Vy = {fi = fo = 0} est de codimension 2. Définissons,
pour toute forme ¢ € %, ,_2(X), l'intégrale résiduelle

Ifw(61,62) = / ﬁ

|f1]>=€1

fal?=e2
Le courant résiduel de Coleff-Herrera, noté [éf—ll A 5%], est défini comme
la limite de cette intégrale lorsque €1 et € tendent vers zéro le long d’un
“chemin admissible”, ce qui, dans ce cadre, signifie que, par exemple, €; tend
vers zéro plus vite que toute puissance de ez (cf. [5]). Il est bien connu que
'integrale résiduelle est, en général, dicontinue & l'origine [8], [3]. Dans cette
note, nous donnons une démonstration du résultat suivant.

Théoréme. Soit X une variété compleze et soit f = (f1, f2) : X — C? une

application holomorphe. Supposons que f définit une intersection compléte.
Alors

im [Tt AG_P
€1,62—0 |f1| + € |f2| + €2

pour toute forme ¢ € Dy pn_o(X).

Ap= [5%/\5%].90

Par conséquent, le courant de Coleff-Herrera peut étre obtenu comme la
limite (au sens des courants) d'une (0, 2)-forme réguliére dépendant de deux
paramétres, indépendamment de la facon dont on s’approche de 'origine.
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1. INTRODUCTION AND THE RESULT

Let X be a complex manifold and let f = (f1, f2) : X — C? be a holo-
morphic mapping. Assume that f defines a complete intersection, i.e. that
Vi = {fi = f2 = 0} has codimension 2 in X. The corresponding Coleff-
Herrera residue current was originally defined as follows, [4]. Denote the

residue integral by
I?(e1,€2) := / i,
rlene) fife

f1’=e

\fa]?=e2
where ¢ is any test form of bidegree (n,n—2). If we let €; and €5 approach the
origin along an “admissible path”, which in this context means that ¢; tends
to zero faster then any power of €9 or vice versa, then the residue integral has
a limit independently of the choice of admissible path and this limit defines
the action of a (0, 2)-current, the Coleff-Herrera residue current, on the test
form ¢. We will denote this current by [5%1 A 5%] It is known that an
unrestricted limit of the residue integral does not exist in general. Passare
and Tsikh showed in [8] that if we take f; = 2}, fo = 22 + 22 + 2} and a test
form which in a neighbourhood of the origin equals ¢(2) = 23 fo(2)d2z1 A dzy
then the residue integral has limit zero if we approach the origin along any
path § — (6%,¢0%), ¢ # 1 and a non zero limit if we approach the origin
along the path § +— (6%,62). Other examples disproving the continuity of
the residue integral at the origin have been found by Bjork, [3]. The aim of
this note is to outline a proof of the following result saying that the Coleff—
Herrera current can be obtained as the unrestricted (weak) limit of a smooth
(0,2)-form depending on two parameters.

Theorem 1. Let X be a complex manifold and let f = (f1, f2) : X — C? be
a holomorphic mapping. Assume that f defines a complete intersection in
X. Then

lim [ 512

Ao = [5 1 AO 1]
€1,62—0 |f12 + e [f2]2 + €2 Y= ¥

fi f
for all test forms ¢ of bidegree (n,n — 2).

Before we continue with the proof section we mention that a thorough
study of the limits of the residue integral along paths of the form ¢ ~—
(6%1,6%2) for (s1,s2) € Ry has been done by Passare in [6]. He shows that as
long as (s1, $2) avoids finitely many lines through the origin the correspond-
ing limit of the residue integral equals the limit along an admissible path.
We also mention, and will later use, an alternative approach to the Coleff-
Herrera residue current proposed by Passare and Tsikh [7]. If we compute
the (iterated) Mellin transform of the residue integral we get

/3|fl|2’\1 A | fo| 2
fi fo

at least for the real part of A\; and A large enough. Passare and Tsikh showed
that the integral as a function of A1 and A2 has an analytic continuation to a

N,
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neighbourhood of the origin in C? and that the value at A\; = A = 0 equals
the limit of the residue integral along an admissible path.

2. OUTLINE OF THE PROOF

We first present and indicate how to prove two technical results, Proposi-
tions 2 and 3, and then we finish the proof of Theorem 1 using these results.

Proposition 2. Let ¥ and ® be strictly positive smooth functions on C".
Then for any ¢ € D n(C") we have

i / (v (P [ 1 ]

im =|—=|-¢.
rea—0t | [CORT + ¢ C’B|2®+62(P Cath P

Proposition 3. Let ¥ and ® be strictly positive smooth functions on C".
Then for any ¢ € Dpn(C") we have

(otp
lim e
e1,ea—0F 2/(IC“IZ‘I’+61)(ICﬂl2‘1>+62)2(p

The key to understand Propositions 2 and 3 is the next lemma which
maybe also has some independent interest. It is a version of Taylor’s for-
mula but unlike the usual one that gives us a polynomial approximation in
a neighbourhood of the intersection of the coordinate hyperplanes our ver-
sion provides us with an approximation in a neighbourhood of the union of
the coordinate hyperplanes. Our approximation is in general not a polyno-
mial though, but has enough similarities for our purposes. Define the linear
operator M;j on C*(C") to be the operator that maps ¢ to the Taylor
polynomial of degree r; of the function (; — ¢({) (centered at {; = 0). A
straight forward computation shows that M ;j and M, commute.

=0.

Lemma 4. Let K C {1,...,n} and r = (r4y,..., 73, ) and define the linear
operator My, on C*(C") by
— & i pfTi K|+1 7 "]
My =Y M7 =" MM+ 4 (-1)/KIH a0 M

jEK 1]61(
1<j

Then for any ¢ € C*°(C") we have

o — Mo =O(]] 16",
€K

Moreover, My can be written as a (finite) sum of terms ¢r;(¢)¢I¢7 where
I +J; <1 fori € K and ¢15(C) is independent of the coordinate (; if
I; + J; > 0, and also if L is the set of indices i € K such that I; + J; = 0
then ¢17(¢) = O([Tier 16" ).

It is now quite easy to see that Propositions 2 and 3 hold in the case ¥
and ® are constant (for simplicity equal to 1). We illustrate by considering
Proposition 3. Choose K = {1,...,n} and r = a« +  — 1 and add and
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subtract Mz ¢. Then the integral in Proposition 3 splits into

¢oth ,
@ 2 /A (ICP T ) (PP + e k¥
§a+ﬂ r
@) * /A (CP T e) (P T e ¥~ Mico)

where A is a big polydisc containing the support of ¢. The integral (1) is
zero for all positive €; and ez by anti-symmetry since the terms in M ¢ are
polynomials in at least one of the variables. On the other hand, the integrand
in (2) is locally integrable when €1 = e = 0, and so by the Dominated
Convergence Theorem the limit of (2) equals the integral of the pointwise
limit of the integrand and this is zero (almost everywhere). In the general
case when ¥ and & are not constant we can not use anti-symmetry directly
to see that certain integrals vanishes. However we can use the following two
results to see that it actually is enough anti-symmetry left in the general
case to deduce the same thing. With the notation from Lemma 4 we have
3 g ) B , g d
) U+a/bd+c/d K<\Il+a/b<I>+c/d)

+ J116G 7 F(a,b,c.d,0),

€K

c/d c/d
(4) = My ( )
(T +a/b)(® + c/d)? (T 4+ a/b)(® + c/d)?
+ I F(a,b,c,d,0),
€K

where F and F are bounded on (0,00)* x D if D € C*. The homogeneity
in (3) and (4) enables us to re-write the integrals in Propositions 2 and 3 in
such a way that we can use anti-symmetry but we skip the details. We can
now finish the proof of Theorem 1 but first we need some terminology for
multiindices. We say that two multiindices o and  with the same number
of components are disjoint if a; # 0 implies that 8; = 0 and B; # 0 implies
that a; = 0.

Proof of Theorem 1. We prove the following slightly stronger statement

(5) - fo A [ 1. 1 ]
61,62—)0 |f1‘2 + €1 ‘f2|2 + €9 v= f1 f ¥
where ¢ is any test form of bidegree (n,n — 1). We will use the analytic

continuation definition of the right hand side of (5) ([7], [1]), that is we will

use that _

[LoL).p= [AARE,

fi fo i fo A=0"
By Hironaka’s theorem [5] for any sufficiently small open U C X we can
find a complex manifold U and a proper holomorphic map T:U > U
which is a biholomorphism outside the null-set 7*{f; - fo = 0} such that

{m* f1-7* fo = 0} has normal crossings in U. Hence locally in U we can choose
coordinates such that 7* f; = p1g1 and 7* fo = pusge where p; are monomials
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and g; are non-vanishing holomorphic functions. After a partition of unity
we may assume that ¢ has support in such a U, and so we see that in order
to prove (5) it suffices to prove
(©) g o= 2) 5 22
figi 5 20 . |1191]* Olp2g|
2 2 ANpmip —
lp1g1]? + €1 [p2gel? + € p191 H292

A prc* ,
p 90)‘:0

where p is a cut-off function in U. We write the monomials pj in local
coordinates ¢ on U as p1 = ¢*¢7 and po = ¢A¢® where the multiindices «,
B and 7y are pairwise disjoint and v; = 0 if and only if §; = 0. Hence «, 8
and J are also pairwise disjoint. Note that coordinate (; divides both p1 and
o if and only if y; # 0 or equivalently ¢; # 0. The right hand side of (6)
can be computed by integrations by parts as in e.g. [1] and the result can be
written

1 =[1171 pr*ep
) [Caﬂ”] ®a[C_f3]' 9192
Let K and L be the set of indices j such that 8; # 0 and y; # 0 respectively.
Decompose the 0-operator as @ = 0k + Oxe where 0 and Okec are the
parts corresponding to the variables ; with j € K and j ¢ K respectively.
Integrating by parts we see that the integral on the right-hand side of (6)
equals
5 Mgy {PHog

8 —/81( 7™
) (e’ PP + o
v e / Mg PO ({g2)

|Cxt7121gu]? + €1 (|CFH0[2|ga]? + €2

Let us first consider (8). When O falls on pm*p we get an integral which can
be handled by Proposition 2 and in the limit we get —[1/¢aT#+7+9]. Oy e

which is precisely (7). On the other hand, when O falls on the quotient we
get, since (3 is disjoint with both « and -y, an integral which by Proposition
3 tends to zero. It remains to see that also (9) tends to zero. When Oge
falls on go we run into no problems and Proposition 3 says that this integral
tends to zero. It is a bit more delicate when Ok falls on (% because then we
get

(9)

72 A p*p.

S [ ot S &,

€20; gige—= N pm .
220 [ TR giE e (PRI + 2 G N

Now for the first and only time we have to use that V; has codimension 2.
We use the Coleff-Herrera trick to see that m*¢ is a sum of terms which are
either divisible by (; or d(;. In fact, if we let z be local coordinates on our
original manifold X, then we can write

o= @rndz,
|[I|l=n—1

where the ¢ are (n,0)-forms. Since V; has codimension 2, the (0,n — 1)-
forms dz! vanishes on Vi. Hence 7w*dz! vanishes on 7*V}; and in particular,
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since (; divides both p; and ps for j € L, it vanishes on {(; = 0}. Moreover,
or*dz! = n*0dz' =0, and so if we write

mdz = Y Cy(Q)dl,

|J|=n—1

we see that the coefficients C7(¢) must be anti-holomorphic. Hence if dé;
does not divide d{” then {; must divide C(() since Cy(() is anti-holomorphic

and zero on {¢; = 0}. Thus, for j € L, the form d——gj A7*p is actually smooth
J

(and compactly supported) and so we can use Proposition 3 to see that all
the integrals in the sum above tend to zero. O
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REGULARIZATIONS OF PRODUCTS OF RESIDUE AND
PRINCIPAL VALUE CURRENTS

HAKAN SAMUELSSON

ABSTRACT. Let fi and f> be two functions on some complex n-manifold
and let ¢ be a test form of bidegree (n,n — 2). Assume that (fi, f2)
defines a complete intersection. The integral of ¢/(fif2) on {|fi|>
€1, |f2|> = €2} is the residue integral If t,(e1,€2). It is in general dis-
continuous at the origin. Let x1 and x2 be smooth functions on [0, co]
such that x;(0) = 0 and x;(co) = 1. We prove that the regularized
residue integral defined as the integral of dx1 A Ox2 A ¢/(f1f2), where
x; = x;(|fi|?/e;), is Holder continuous on the closed first quarter and
that the value at zero is the Coleff-Herrera residue current acting on
. In fact, we prove that if ¢ is a test form of bidegree (n,n — 1) then
the integral of x10x2 A ¢/(f1f2) is Holder continuous and tends to the
O-potential [(1/f1) AO(1/f2)] of the Coleff-Herrera current, acting on ¢.
More generally, let fi and f> be sections of some vector bundles and as-
sume that fi @ fo defines a complete intersection. There are associated
principal value currents U and U? and residue currents R’ and RY.
The residue currents equal the Coleff-Herrera residue currents locally.
One can give meaning to formal expressions such as e.g. U/ A R in
such a way that formal Leibnitz rules hold. Our results generalize to
products of these currents as well.

1. INTRODUCTION

Consider a holomorphic function f defined on some complex n-manifold
X and let V; = f71(0). Schwartz found that there is a distribution, or
current, U on X such that fU = 1, [23]. The existence of the principal value
current [1/f] defined by

Dpn(X) 3 @ = lim olf
e—0 |f|2>e
was proved by Herrera and Lieberman in [11] using Hironaka’s desingulariza-
tion theorem, [12] and gives a realization of such a current U. The §-image of
the principal value current is the residue current associated to f. By Stokes’
theorem its action on a test form of bidegree (n,n — 1) is given by the limit
as € — 0 (along regular values for |f|?) of the residue integral

o a=[  elr

One main point discovered by Herrera and Lieberman is that if ¢ has bidegree
(n—1,n) then for each k, I;fk (€) = O(e%) for some positive 8. Using this, one
can then smoothen the integration over |f|? = € and regularize the residue
current by using smooth functions x defined on [0, 00) such that x is 0 at
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zero and tends to 1 at infinity. In fact, we can make a Leray decomposition
and write any (n,n)-test form ¢ as ¢ A 0f /f* for some k, where ¢ is a test
form of bidegree (n — 1,n) whose restriction to |f|?> = ¢ is unique, for each
t > 0. Then writing the integral of x(|f|?/e)o/f as an integral over the
level surfaces |f|? = ¢ and using Herrera’s and Lieberman’s result one sees
that x(|f|?/€)/f is a regularization of the principal value current [1/f]. Tt
follows that the residue current can be obtained as the weak limit of the
smooth form Ox(|f|?/¢)/f. This is also a consequence of Corollary 5 below.
A natural choice for x is x(t) = t/(t + 1) and we see that we get the well
known result that the residue current can be obtained as the weak limit of
O(f/(|f|> + ¢)). We also briefly mention the more general currents studied
by Barlet, [3]. If we instead integrate over the fiber f = s in (1) and let ¢
have bidegree (n —1,n — 1) then the integral has an asymptotic expansion in
s with current coeflicients. The constant term is Lelong’s integration current
on V; and the residue current 9[1/f] can be obtained from the coefficient of
s™.

We turn to the main focus of this paper which is the codimension two case.
Let f and g be two holomorphic functions on X such that f and g define
a complete intersection, that is, the common zero set Vg4 has codimension
two. Consider the residue integral

©) Tylene) = [, &

lg|2=e2

The unrestricted limit of the residue integral as €1, e2 — 0 does not exist in
general. The first example of this phenomenon was discovered by Passare
and Tsikh in [19], and Bjork later found that this indeed is the typical case,
[6]. See also [21]. Via Hironaka’s theorem on resolutions of singularities one
may assume that the hypersurface f - g = 0 has normal crossings, which
means that there is a (finite) atlas of charts such that f(¢) = f(¢)¢* and
g(¢) = §(¢)¢P where a and B are multiindices (depending on the chart) and
f and § are invertible holomorphic functions. It is actually the invertible
factors which cause problems. One can always dispose of one of the factors,
but in general not of both. However, if the matrix A, whose two rows are
the integer vectors « and [ respectively, has rank two there is a change
of variables z = 7(¢) such that z* = f(¢)¢* and 2f = §(¢)¢P, see e.g.
[16]. Hence, when « and § are not linearly dependent we can make both
the invertible factors disappear. Problems therefore arise in so called charts
of resonance where o and [ are linearly dependent. Coleff and Herrera
realized that if one demands that €; and e tend to zero in such a way that
€1/ek — 0 for all k € Z,, along a so called admissible path, then one will
get no contributions from the charts of resonance because one cannot have
I£(O)¢®] << 1§(¢)¢h| if o and B are linearly dependent. They proved in
[8] that the limit, along an admissible path, of the residue integral exists
and defines the action of a (0, 2)-current, the Coleff-Herrera residue current
[0(1/f) AO(1/g)]. In [16] Passare smoothened the integration over the set
{If1? = e1} N {|g|? = €2} by introducing functions x as described above, and
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he studied possible weak limits of forms

(3) aXl('.;;'Q/El) A 8X2(|§|2/€2)

along parabolic paths (e1,€2) = (€%, €%2) where s = (s1, s2) belongs to the
simplex $5(2) = {(z,y) € R%; s1 + s, = 2}. He found that it is enough
to impose finitely many linear conditions (n;,s) # 0 to assure that (3) has
a weak limit along the corresponding parabolic path. The linear conditions
partition ¥5(2) into finitely many open segments and the weak limit of (3)
along a parabolic path corresponding to an s in such a segment only depends
on the segment. We say that (e1,€2) tends to zero inside a Passare sector.
Moreover, as we assume that f and g define a complete intersection, the
limit is even independent of the choice of segment. In this case it also
coincides with the Coleff-Herrera current. One can obtain a O-potential
to the Coleff-Herrera current e.g. by changing the integration set in (2) to
{If2 > e1}n{|g|? = €2} and pass to the limit along an admissible path or by
removing the first 0 in (3) and pass to the limit inside a Passare sector. This
O-potential is denoted [(1/f)3(1/g)]. The main result in this paper implies
that if x; € C*°([0, o0]) satisfy x;(0) = 0 and x;(co) =1 then, in the sense
of currents

" i 20072/60) D29 /e2) _ 1514
€1,62-0 f g f g

and the action of the smooth form on the left hand side on a test form
depends Holder continuously on (eg,ez) € [0,00)2. For the particular case
when x;(t) = t/(t + 1) our result, apart from the Holder continuity, was
announced in [22]. Actually, it is possible to relax the smoothness assumption
on one of the x; in (4). As mentioned above, one can always dispose of one
of the invertible factors. Say that we always arrange so that f =1. Then,
examining the proof, one finds that one may take x; to be the characteristic
function of [1, 00]. Hence,

3 2
/ Ix2(lgl*/e2) Ap— [131}90
12> fg I g
with Holder continuity. Note that if we let both y; and x2 be the charac-
teristic function of [1,00] then this result is no longer true in view of the
examples of Passare-Tsikh and Bjork.

Our result also generalize to products of pairs of so called Bochner-Martinelli
blocks. Consider a tuple f = (f1,..., fm) of holomorphic functions on X.
The residue integral corresponding to f, I}p(el,...,em), is defined anal-
ogously to (2). If we take the mean value of the residue integral over
€ = (€1,...,€p) in the simplex ¥,,(0) = {s € RT; > s; = 6} we obtain

S (1) N OF Ao
|f12=6 | f[2m ’

where ¢, is a constant only depending on m. It turns out, see [20], that
the limit as ¢ tends to zero of (5) exists and defines the action of a (0, m)-
current, which in the case f defines a complete intersection, coincides with

(5) Cm
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the Coleff-Herrera current and also with the currents studied in [5] and [18].
Based on the work in [20] Andersson introduces more general currents of
the Cauchy-Fantappié-Leray type in [2]. We will briefly discuss Andersson’s
construction in Section 3. In short, he defines a singular form uf = 3 ui, b1

where the terms uﬁ, x—y are similar to the form in (5), and he shows that it

is extendible to X as a current, U7, either as principal values or by analytic
continuation. The residue current, RY, is derived from the current U/ and
equals the Coleff-Herrera current locally if f defines a complete intersection.
If g is also a tuple of functions there is a natural way of defining the product of
the Cauchy-Fantappié-Leray type currents corresponding to f and g so that
formal Leibnitz rules hold, see [26]. If f & g defines a complete intersection
and x1,x2 € C*([0, o0]) vanish to high enough orders at zero and equals 1
at infinity then we prove that the smooth forms

X1(|f|2/€1)uf A 5X2(|g|2/62) Aud and

ax1 (|17 /er) Aud A Dxa(lg?/e2) A u?

are Holder continuous as currents for (e1,e) € [0,00)? and tend to Uf A RY
and RS A RY respectively as €1, e — 0; Theorem 21 and Corollary 23. If g
is a function such that f @ g defines a complete intersection, our techniques
can also be used to prove that dx1(|f|?/e1) A ufx2(|g|?/e2) — RS when xo
equals the characteristic function of [1,00]. We use this to conclude that
R/ has the standard extension property in the complete intersection case,
Corollary 24. For more historical accounts we refer to the survey article [7]
by Bjork.

The disposition of the paper is as follows: In Section 2 we outline a proof of
(4) since the proofs of the more general statements about Bochner-Martinelli
or Cauchy-Fantappié-Leray blocks are only more difficult to prove in the
technical sense and to make it clear that it is not necessary to work through
the constructions of Bochner-Martinelli or Cauchy-Fantappié-Leray type cur-
rents in order to prove (4). In Section 3 we recall Andersson’s construction
and explain some useful notation. Section 4 contains some fairly well known
regularization results about Cauchy-Fantappié-Leray type currents. As An-
dersson’s formalism makes the arguments a little smoother we also supply
the proofs. Section 5 contains the technical core of this paper. We study reg-
ularizations of products of monomial currents which we then use in Section
6 to prove our main results; Theorem 21 and its corollaries 23, 25 and 26 and
Theorem 27. In Section 7 we see by explicit computations that Corollary
26 holds for the example by Passare and Tsikh. This section is essentially
self-contained.

2. SKETCH OF PROOF IN THE CASE OF TWO FUNCTIONS

Let f and g be two holomorphic functions on X defining a complete in-
tersection. We sketch how one can handle the difficulties arising in charts of
resonance when proving (4). We study the integral

(6) /Xl('f} /61) 8X2(|Z| /62)

Ay
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where ¢ is a test form of bidegree (n,n — 1). By Hironaka’s theorem we
may assume that f = (¢ f and g = ¢#§ are monomials times non-vanishing
functions. One of the non-zero factors can be incorporated in a variable and
so we assume that f = 1. We assume also that we are in a chart of resonance,
i.e. that « and S are linearly dependent. After resolving singularities f and
g no longer define a complete intersection in general, but on the other hand
a degree argument shows that dfj / Zj A ¢ becomes a test form for any (;
dividing both f and g. See the proof of Theorem 21 for more details. Since
«a and S are linearly dependent, dC_j / C_j A @ is a test form for all j such that
a; # 0, or equivalently, 8; # 0. Now, (6) equals

> [ xall*P/e) oV /) KF | 46 7
; J

¢ ¢P €2

where U = |§|2 is a strictly positive smooth function. It now follows from
Corollary 15 that each term in this sum tends to zero as €; and e tend to
zero. Hence the charts of resonance do not give any contributions.

3. PRELIMINARIES AND NOTATION

Assume that f is a section of the dual bundle E* of a holomorphic m-
bundle £ — X over a complex n-manifold X. We will only deal with local
problems and it is therefore no loss of generality in assuming that £ —
X is trivial. However, the formalism will run smoother with an invariant
notation. As mentioned above, we will recall Andersson’s construction in 2]
and produce currents U/ and Rf and we emphasize that in the case E — X
is the trivial line bundle then U/ and R/ are the currents [1/f] and 9[1/f]
times some basis elements. On the exterior algebra AFE of E, the section f
induces mappings dy: A*H1E — AYE of interior multiplication and 51% =0.
We introduce the spaces & 4(X, A*E) of the smooth sections of the exterior
algebra of E @ Tjj; X which are (0,q)-forms with values in AFE. We also
introduce the corresponding spaces of currents, @(’)7q(X ,A¥E). The mappings
dy extend to mappings dy: 7 ,(X, AFHE) - Dp.q(X, AFE) with (5}% =0 and
these mappings anti-commute with the d-operator. Hence, @(I),q(X ,AFE) is
a double complex and the associated total complex is

B T ) R udb o oy DL

where L7(X, E) = @, =, 254X, A*E) and V; = 6; — 8. We will refer
to the total complex as the Andersson complex. The exterior product, A,

induces mappings

As £7(X, B) x £(X, B) — L7 (X, E)
when possible, and V; is an antiderivation, i.e. Vi(t Ao) = Vyr Ao +
(=)'t AVso if 7 € LT(X,E) and 0 € L5(X,E). If 1 € L™(X,E) we
write 7y 4, for the component of 7 belonging to 96,k+r(X’ AFE). Note

that functions define elements of £L°(X, E) of degree (0,0) and sections of E
define elements of £L71(X, E) of degree (1,0). One can show, see [2], that
if X is Stein and the zero:th cohomology group of the Andersson complex
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vanishes then for any holomorphic function h there is a holomorphic section
¢ of E such that dp¢p = h. This means that if f = (fi,..., fm) in some
local holomorphic frame for E* then the division problem ) f;1; = h has
a holomorphic solution. This cannot hold for all A if f has zeros and the
Andersson complex can therefore not be exact in this case. Still, we try to
look for an element u/ € £71(X, E) such that V;u/ = 1. To this end we
assume that E is equipped with some Hermitian metric | - | and we let s
be the section of F with pointwise minimal norm such that §psy = |f|°.
Outside Vy = f~1(0) we may put

f_  5f _ZSf/\ an
U =
Vfo 5f8f—33f |f|2k

Observe that Vs has even degree so the expression s7/V sy has meaning
outside V; and it follows immediately that Vyu = 1 there. The following
theorem is proved in [2].

k

Theorem 1. Assume that f is locally nontrivial. The forms |f|**u/ and
O|f1?* Aul are locally bounded if Re X is sufficiently large and they have
analytic continuations as currents to Me X > —e. Let U/ and RS denote the
values at A = 0. Then U' is a current extension of uf, Rf has support on
Vi and

ViUl =1-R’.
Moreover, Rf = R,f,p +- 4 R(J;,q where p = Codim(Vy) and g = min(m,n).

Note that if V; = ) then V;U/ = 1 on all of X, which implies that taking
the exterior product with U/ is a homotopy operator for the Andersson
complex. The current RS is the Bochner-Martinelli, or more generally, the
Cauchy-Fantappié-Leray current associated to f, and if f = (f1,..., fm) in
some local holomorphic frame €1,--- ,em, of E then

(7) R = [0 A- ]/\el/\ Aem

8
fl fm

if f defines a complete intersection, see [2].

Now if fj, j = 1,2, are sections of the dual bundles E7 of holomorphic
Hermitian mj-bundles E; — X we can apply the above construction to the
section f = f1 @ fo of the bundle Ef @ E3 and obtain the currents U/ and
R/. We could also try to combine the individual currents U/ and Rfi. Tt is
shown in [26] that the forms

[F11 P2t A fo| P uf?) | f1)P2uf AD| foA Aul? and 8] f1 22 Ault AD| fo| P Aul?,

which are locally bounded if $Re A is large enough, have current extensions
to e A > —e. The values at A = 0 are denoted UMt A U2, UMt A R, and
R/t A RP? respectively, and formal computation rules such as e.g. V f(Uf LA
Rf?) = (1 — R"") AR> = Rf2 — Rfi A R’ hold. It is also shown in [26] that
if f defines a complete intersection then Rf = R/1 A R,

We will use the names f and g, rather then f; and fs, for the sections of the
two bundles and the symbol V, without subscript, always denotes V tq,. We
will use multiindices extensively in the sequel. Multiindices will be denoted
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a and B or I and J and sometimes also r and p. The number of variables will
always be n but it will be convenient to define multiindices by expressions
like & = () jek for K C {1,...,n}. By this we mean that a = (a1,...,an)
where a; = 0if j ¢ K and aj = o; if j € K. Hence, if 2 = (21,...,2n)
then 2% = [ z;-xj and similarly for 0%/0z%. Multiindices are added and
multiplied by numbers as elements in Z™ and a +1 = (g £ 1,...,a, £ 1).
Also, |a| denotes the length of « as a vector in Euclidean space and #a is
the cardinality of the support of a.

Integration over domains in C" will always be with respect to the volume
form (i/2)"dz1 AdZi A ... Ndzy NdZy, := (i/2)"dz A dZ if nothing else is said.
If A is a Reinhardt domain in C" and ¢ is a function which only depends
on the moduli of the variables and such that 2%p(z) is integrable on A then

/Azo‘w(z) =0

if @ is a non-zero multiindex. This simple fact will play a fundamental role
to us in what follows and we will refer to it as anti-symmetry.

Unless otherwise stated, the symbol x with various subscripts will always
denote a smooth function on [0, co] which is zero to some order at 0 and such
that x(oco) = 1. By smooth at infinity we mean that ¢t — x(1/t) is smooth
at zero.

4. REGULARIZATIONS OF CAUCHY-FANTAPPIE-LERAY TYPE CURRENTS

Consider a function x as above and let x(s) = x(1/s). Then x is dif-
ferentiable at s = 0 and ¥'(s) = —x'(1/s)/s?. Letting ¢t = 1/s we see that
X'(t) = O(1/t?) as t — oo. This simple observation will be frequently used in
the sequel. It follows that for any continuous function ¢ with compact sup-
port in [0,00) we have |p(et)x’(t)] < C(t + 1)~2 for a constant independent
of €. Hence by the dominated convergence theorem we see that

> d > d > d
| gt = [ Lxtnptenar - o0 [ Lxtnir = o(0)
and we have proved

Lemma 2. Let x € C!([0,00]) satisfy x(0) = 0 and x(oc) = 1. Then
(d/dt) x(t/e) — do as measures on [0, 00).

Proposition 3. Assume x € C°°([0,00]) vanishes to order £ at 0 and satis-
fies x(00) = 1. Then

. 2 ! _ 7/
61_1>%1+/X(|f| [)uge 1 Np=Upgy 1
for any test form .

Proof. On the set Q = {(z,t) € C* x (0,00);|f(2)|*> > t} we have, for all
fixed € > 0, that

d 1 d
jude gt nel < Oy | gt/ <

12 d 1
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since dit x(t/€) = O(t*~1). Hence we have an integrable singularity on  and
by Fubini’s theorem we get

> d / _ [ 7 _
/0 7 x(t/e) /f|2>tuu_1 ANpdt = /“Z,E—l A 90/0 ax(t/e)dt =
® [t xtirPra A
But J(t) = f| f2>t u£ +_1 \ ¢ is a continuous function with compact support

n [0,00) with J(0) = Uéz_lxp, see [20] or [2]. Hence by Lemma 2 the left
hand side of (8) tends to Uz{e—r‘P and the proof is complete. O

If we take x(t) equal to appropriate powers of ¢/(t + 1) we obtain the
following natural ways to regularize the currents U and R/.

Corollary 4. For any test form ¢ we have
(9) lim / —/\go U’.
Jm | 2 ey o

and

. (0sy)
(10) hm/z 7= ) £+1/\‘10:Rf'('0'

+
e—0 >1

Proof. Letting x,(t) = t¢/(t + 1)¢ we see that

Hs )1

and so (9) follows from Proposition 3. To show that (10) holds we first note
that

Zsf/\(ést* _ St
2 2 )
=1 (If1*?+¢) Viyss+e
Hence
Sf/\ 3Sf£ 1 Sf Vfo (9Sf
\Y% =V = =1-
f; (|f]? +€)* foSf—I—e Visg+e ZZ% (1f2 + )+t

Since differentiation is a continuous operation on distributions it follows from
(9) that

. Osy)* sy A (Osp)t!
lim 1 %eﬁ — erlio+;f(|f|(2—+fe))’f —v, Ul =1-R!
in the sense of currents. The term with £ = 0 in the sum on the left is easily
seen to tend to zero in the sense of currents and hence (10) follows. d
Note that it is the difference
(11) 5(X€“£5_1) - 5f(XlZ+1U£+1,4) = dxe A U£5_1 + (xe — XZ+1)5fu£+1,e

which converges to the term of R/ of bidegree (¢,£). It is only for the term
of top degree, the last term in (11) is not present. This explains why the
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regularization result in [20], Theorem 2.1, coincides with our result for the
top degree term but not for the terms of lower degree.

We can also take one x which vanishes to high enough order at zero to
regularize all terms of U/ and R/.

Corollary 5. Assume that x € C*([0,0]), vanishes to order min(m,n)+ 1
at zero and satisfies x(oco) = 1. Then for any test form ¢ we have

im 2/e)ut =U/.
(12) Tim [ (7Pl ne =TT
(13) tim [ Ox(5P/) Aol Ay = RLp.

Proof. The first statement follows immediately from Proposition 3. For the
second one we note that

quf =VxA ul + xVuf = —0x A ul + XVuf,

and since x vanishes to high enough order at zero all terms are smooth.
Outside {f = 0} we have Vu/ = 1 and hence xVu/ = x everywhere.
Moreover, x(|f|?/¢) tends to 1 in the sense of currents and hence

IxNul =xVul —Vyxu/ -1 -(1-R)=R/

in the sense of currents. O

5. REGULARIZATIONS OF PRODUCTS OF MONOMIAL CURRENTS

This section contains the technical result about the normal crossing case
needed to prove our main theorems in the next section. Of particular impor-
tance is Proposition 11. First we need a generalization of Taylor’s formula.
Lemma 6 enables us to approximate a smooth function defined on C" in
a neighborhood of the union of the coordinate hyperplanes instead of in a
neighborhood of their intersection as in the usual Taylor’s formula. The ap-
proximating functions are in our case not polynomials in general but have
enough similarities for our purposes. For tensor products of one-variable
functions this corresponds to multiplying the individual Taylor expansions.
Lemma 6 appears as Lemma 2.3 in [22] but the formulation there is unfortu-
nately not completely correct. We also remark that Lemma 6 is very similar
to Lemma 2.4 in [8] and that very general Taylor expansions are considered
in Chapter 1 in [13]. Define the linear operator M;’ on C*°(C") to be the
operator that maps ¢ to the Taylor polynomial of degree r; of the function
¢j — ©(¢) (centered at (; = 0). We note that M;j and M]* commute. To
see this we only need to observe that

N A
d¢; 9¢; =V IG=0 9Gac;

where 0/ ij means that we do not specify whether we differentiate with
respect to (; or ;.

= 56 (5o
Gi=¢i=0 35]. aé ¢:i=0/1¢;=0
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Lemma 6. Let K C {1,...,n} have cardinality k and let r = (r})jek-
Define the linear operator My on C*(C") by

Mic = 30 M) = 30 MPM} e+ (M M
JEK iﬁgf

Then for any ¢ € C*°(C") we have

_\r ar+l1l
(14) o0 = Mo+ [ 121 O pitc) dt

[0,1]® 7! otr+1
where t( should be interpreted as (&1, ...,&n), § =1;( if j € K and & =
if 7 ¢ K. In particular ¢ — Mj.p = (’)(_|C’"+1|). Moreover, My ¢ can be
written as a finite sum of terms, ¢17(C)¢IC7, with the following properties:

(a) @rs(¢) is independent of some variable and in particular of variable
Gif I+ J; >0,

(b) Ij +J; <rj for j € K,

(c) if L is the set of indices j € K such that (; — ¢15(¢) is non-constant
then ¢1.1(¢) = O([1jer 1G4

Proof. 1t is enough to prove the lemma when K = {1,...,n}. In case n = 1,
(14) is Taylor’s formula. For m > 2, we write the integral in (14) as an
iterated integral. Formula (14) then follows by induction. One can also
show (14) by repeated integrations by parts. The difference ¢ — My is
seen to be of the desired size after performing the differentiations of ¢(t(¢)
with respect to ¢ inside the integral. To see that M} ¢ can be written as a
sum of terms ¢75(¢)¢!¢” with the properties (a), (b), and (c), we let 5,
for any K C K, denote the multiindex (Tj1s - - - ’lel?\)’ ri; € K. A straight
forward computation now shows that

Mip = Y M7(p- ML)
jeEK
. ] T i,
- X e R
ijEK
1<J

b

From the first part of the proof (and the definition of M ;j ) it follows that
every term on the right hand side is a finite sum of terms with the stated
properties. O

Lemma 7. Let o be a multiindex and let M = M7, be the operator defined
in Lemma 6 with K the set of indices j such that o > 2 and r; = aj — 2,
j € K. Then for any ¢ € 2(C") we have

| om0 = []-wtipracnac

if A is a polydisc containing the support of .
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Proof. Note that by Lemma 6 we have ¢ — My = O(|¢*!|) and so (¢ —
My)/¢® is integrable on A. Hence if we let Ay = AN, {|¢;| > 6} we get

1 1
[ gate—me) = tim [ oo me)

= 1l —p—1l —M
Jlj%/mca‘f’ 55% As G e

The first limit on the right hand side is the tensor product of the princi-
pal value currents [1 /CJa’] (acting on ¢ (i/2)"d{ A d{) and hence it equals
[1/¢Y.0 (i/2)"d¢ A dC. Tt follows by anti-symmetry that actually

—Mp=0
@

for all § > 0. In fact, My is a sum of terms ¢77(¢)¢I¢7 where I; + J; <
aj — 2 for all j and the coefficient ¢(¢) is at least independent of some
variable. O

Lemma 8. Let x1,x2 € C*®([0,00]) and let ® and ¥ be smooth strictly
positive functions on C*. Let also My be the operator defined in Lemma 6
with K and r arbitrary. Then

X1 (81 ®@)x2(t29) = M (x1(t1®)x2(t2¥)) + ("B (t1, 82, ),
where B is bounded on (0,00)? x D if D € C".

Proof. If D € C" both ® and ¥ have strictly positive infima and finite
suprema on D and so there is a neighborhood U of [0,00]2 in R x R such
that the function (¢1,%2,() — x1(t1P)x2(t2¥) is smooth on U x D. From
Lemma 6 it follows that

X1 (1®)x2(82¥) = Mic(xa (1 ®)x2(t29)) + D> Gyt t2,¢)¢ ¢!

1,JCK
Li+J;=rj+1

for some functions Gy which are smooth on U x D, and the lemma readily

follows. a

To prove Proposition 11 we will need the estimates of the following two
elementary lemmas.

Lemma 9. Let A be the unit polydisc in C* and put A® = {¢ € A;[¢*? > €}
and A?{éz ={¢ € A;[¢Y? > €1,|CP|? > e2}. Then for all €,¢; < 1 we have

/(2]al) |10g6|" 1

Joss TG ¢
avae 1G] 1Gal

and

1
€1,6), 2w < min{|a|™, |87t}
S g Sl {lal 1817}

€1,€2



12 HAKAN SAMUELSSON

Proof. On the set A\ A%Z, either [¢*|2 < € or [¢(P2 < € and so it follows
from the first inequality that the integral in the second inequality is less then
or equal to (a constant times)

6}/(2\a|)|10g ! +€;/(2|ﬂ\)|log€2|n—1 < 6}/(2la\)—v +6§/(2|B\)—U
S e e)[*,

for any v > 0 and w, < min{|a|™!,|B|7!}/2 — v. Hence the second in-
equality follows from the the first one. To prove the first inequality we first
integrate with respect to the angular variables and then we make the change

of variables z; = log |(;| to see that the integral in question equals

(15) (4m)"™ e %idg,

Qe
where Q. = {z € (—00,0]"; 2> ajr; < loge}. Since all z; < 0 on Q. we
have exp()_ z;) < exp(—|z|) here, and choosing R = |loge|/(2|a|) we see
that (15) is less then or equal to f{|w|>R} exp(—|z|)dz. In polar coordinates

this is easily seen to be of order e'/(2/¢)|log e[~ O

Lemma 10. Let A be the unit polydisc in C* and put A% = {¢ € A;|¢?? >
€} and A?l’,ﬂw ={C € A > e, |C/B|2 > ea}. Then, for e,e; < 1, we have

€ 1
/Ag R [log ]

€1 €2 1 < 3
S, G+ P T S )

51 ,62
and

€1€9 1
,-S (61562) wa
Jos CaPIPR a6 ~ ()

€1,€Q

where 2w < min{|a|7, |87}

Proof. The second and third inequality follow from the first one since it im-
plies that the integral in the second one is of the size (—:IH/(Q'&D +eg+1/(2"3|) S
[(€1,€2)|"™ for any 7 > 0 and that the integral in the third is of the size
min{e}/(2|a‘)| loge; "1, eé/(2|’3‘)| log e2|*1}. To prove the first inequality we
proceed as in the previous lemma and we see that the integral in question
equals

2T BEF
6 m)"€e 7J T = m)"e 7] T
1 Ay e d 4y S
Qe €72 %% Qenflz <R} €72 T

+ (47‘(’)”6/ ﬂdﬂu
Q.n{lz >R} €22 %%

where Qe = {z € (—00,0]"; 2> ajz; > loge}. We choose 2R = |loge|/|al,
and then Q. N {|z| < R} = {z € (—00,0"; || < R}. Ifall z; < 0 we
have ) z; < —|z| and by the Cauchy-Schwarz inequality we also have
— Y ajzj < |allz|. Hence we may estimate the integrand in the second
to last integral in (16) by exp((2|a| —1)|z|). In the last integral we integrate
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where €/exp(2)° ajz;) < 1 and so we see that the right hand side of (16)
is less then or equal to

(47T)”e/ eClel=Dlzl gy 4 (47r)"/ e 1l dz.
{lz|<R} {lz|>R}

By changing to polar coordinates this is seen to be of the size e!/(l) |log e|™ L.
O

The proof of the following proposition contains the technical core of this
paper.

Proposition 11. Assume that x1, x2 € C*®([0,00]) wanish to orders k > 0
and £ > 0 at 0, respectively, and that x1(oc0) = 1. Then for any test form
0 € Dpn(C") we have

Oa XQ(OO) =0

as €1,e3 — 07, Moreover, as a function of ¢ = (e1,€2) € [0,00)2, the integral
belongs to all w-Hélder classes with 2w < min{|ca|™!,|8|7}.

Remark 12. The values of the integral at points (e1,0) and (0, e2), € # 0,

are
Q) @|2 € Q) ’3 €
X2(00)_X1( |§ko¢| / 1) [CZ,B] and X2( |§e,3| / 2) Cka:| P

1 _
/g’m%fﬂh(‘1)|§a|2/€1)X2(‘I’|C’3|2/62)<p—>{[C’WHB]"P’ Xx2(00) =1

respectively.

Remark 13. The modulus of continuity can be improved by sharpening the
estimates in the Lemmas 9 and 10 but we will not bother about this. This
is because the multiindices a and 8 will be implicitly given by Hironaka’s
theorem and so we can only be sure of the existence of some positive Hélder
exponent when we prove our main theorems anyway.

Proof. We prove Holder continuity for a path (e1,e2) — 0, ¢; # 0. For a
general path (inside [0, 00)?) to an arbitrary point in [0, 00)? one proceeds in
a similar way. Let K be the set of indices j such that ka; +£8; > 2 and let
M = Mj, be the operator defined in Lemma 6 with r; = ka; + £8; — 2 for
j € K. Let also A be a polydisc containing the support of ¢. In this proof
we will identify ¢ with its coefficient function with respect to the volume
form in C*. We make a preliminary decomposition

1 1 1
(17) /WXDQ(P: /AWMXz((P—MQO) +/wa1X2M<P-
Denote by A, the set {¢ € A;|¢%2 > €1,|¢P|? > ey}. Since p — My =

O(|¢™*1)), according to Lemma 6, and x1(c0) = 1 we get

1 1
N WXlX?(‘P — Myp) - X2(00)/A W(W - MSO)‘

1
<
S [ e - xee)
1

1
/A|<1| o el ”*/A\A [l Gl

(18)
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It follows from Lemma 9 that the last integral is of order |e|* as €1, €2 — 0.
On the other hand, for ¢ € A, both [¢*?/e; > 1 and |¢P|?/ea > 1 and by
Taylor expanding at infinity we see that

x1(@[¢fer) = xi(o0) + ICal2 Bi(er/I¢*P, ),
X2(TICPP/e) = xao0) + ICBIQ Ba(e2/I6PP.€)

where B; and By are bounded. Using that xi(o0) = 1 we thus get that
Ix1x2 — x2(00)| is of the size €1/|¢C*|? + e2/|¢P|?. Hence, by Lemma 10 the
second to last integral in (18) is also of order |e|* as €1,e3 — 0. In view
of Lemma 7, we have thus showed that the first integral on the right hand
side of (17) tends to [1/¢k 48] if xa(00) = 1 and to zero if xo(c0) = 0
and moreover, belongs to the stated Holder classes. We will be done if
we can show that the last integral in (17) is of order |e|“. We know that
Mop=">3 ;01 7¢I¢7 where each @7 is independent of at least one variable
and I; + J; < koj +£B; — 2 for j € K. Hence, if ® and ¥ are constants (or
only depend on the modulus of the (;) then the last integral in (17) is zero
for all €1, €9 > 0 by anti-symmetry. For the general case, consider one term

1 _
(19) /A WXIXQ‘PIJCICJ

and let L be the set of indices j € K such that (; — ¢1;({) is constant. Let
also .# = M? be the operator defined in Lemma 6 with p; = kaj +£8; — I, —
Jj—2for j € L. We introduce the independent (real) variables, or “smoothing
parameters”, t; = |(®|?/e; and ty = |¢P|?/ea. Below, .4 (x1x2) denotes the
function we obtain by letting .# operate on ¢ — x1(t1P(¢))x2(t2¥(¢)) and
then substituting |¢%|?/e; and |¢#|? /ey for ¢ and t, respectively. We rewrite
the integral (19) as

7] Iet
/A %(le_%(mm)) + /A\A %(le—%(mxﬂ)

I1-J
(20) [ o H ).

Now, .#(x1x2) is a sum of terms which, at least for some j € L, are
monomials in ¢; and (; times coefficient functions depending on |(;| and
the other variables. The degrees of these monomials do not exceed p; =
koj+£8; —I; — J; —2 and since (; — ¢r(() is constant for j € L we see, by
counting exponents, that the last integral in (20) vanishes by anti-symmetry
for all €1,e9 > 0. By Lemma 8 we have

21)  x1(t1®)x2(t2®) — A (x2 (11 ®)x2(t2¥)) = |¢PTB(t1, 12, (),

where B is bounded on (0, 00)? x A. We note also that by Lemma 6, ¢7;(¢) =
O(ljer\x |¢j| ). From (21) we thus see that the modulus of the second
integral in (20) can be estimated by

C
aa Gl 1G]
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which is of order |¢|“ by Lemma 9. It remains to consider the first integral
n (20). On the set A, we have that ®|¢*|?/e; and ¥|¢P|?/ey are larger then
some positive constant and so by multiplying the Taylor expansions of the
functions t1 — x1(t1®) and ta — x2(t2¥) at infinity we get

X1 (Bl P fe)x2(TICP P fe2) = xa(oo) + |Cﬁ|2><2(|<ﬂ| /€2, ()
+ xz(oo )|Ca|2><1(|€“| /€1,¢)
€1€2

T IGE |€ﬂ|2X1(|Ca| /€1, $)X 2(|C’3|2/€2,C)

where ¥, are smooth on [1,00] x A. Now since |(*2/e; = t; and |¢P|?/e2 = to
are independent variables we conclude that

xix2 — A (x1x2) = |;TQ‘2(>~<2 — M X2) + |C€TI|QX2(OO)(>21 — M X1)

€162 _ o
+ W(le M (X1X2))

for ¢ € A¢. By Lemmas 6 and 10 we see that the first integral in (20) also is
of order |€|“ as €1,e2 — 07 and the proof is complete. O

Remark 14. Let us assume that the function @ is identically 1 in the previ-
ous proposition. Then, instead of adding and subtracting .# (x1x2) in (20),
it is enough to add and subtract x1.4#(x2). This suggests that one can relax
the smoothness assumption on ;. It is actually possible to take x1 to be
the characteristic function of [1,00]. If we define the value of the integral in
Proposition 11 at a point (e1,0) to be

(22) | gmmmalePlale - M)

where A and M are as in the proof above, then the conclusions of Proposition
11 hold for this choice of x1. Only minor changes in the proof are needed to
see this. One can also check that (22) is a way of computing

(6P /1) g )+

The product x1(|¢%|%/e1)[1/¢k2 4] is well defined because the wave front
sets of the two currents behave in the right way, at least for almost all ey,
see [7].

We make another useful observation. Since the function x(s) = x(1/s)
is smooth at zero and ¥'(s) := —-3x'(1/s), it follows that s — x'(1/s)/s
is smooth at zero and vanishes for s = 0. Hence, t + x/(¢)t is smooth on
[0, 0], vanishes to the same order at zero as x, and maps oo to 0. From
Proposition 11 we thus see that we have

Corollary 15. Assume that x1,x2 € C*([0,00]) vanish to orders k and ¢
at zero respectively, and satisfy xj(co) = 1. For any smooth and strictly
positive functions ® and ¥ on C* and any test form ¢ € Dy, ,(C") we have

@ i [ @@

61,62—>0+

=0,
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and moreover, as a function of € = (e1,€3) € [0,00)2, the integral belongs to
all w-Hélder classes with 2w < min{|a| ™1, |8]71}.

6. REGULARIZATIONS OF PRODUCTS OF CAUCHY-FANTAPPIE-LERAY
TYPE CURRENTS

We are now in a position to prove our main results. We start with a
regularization of the product Uf A U9. Recall that if f is function then
U/ =[1/f] times some basis element.

Theorem 16. Let f and g be holomorphic sections (locally non-trivial) of
the holomorphic m;-bundles E;‘ — X, 7 = 1,2, respectively. Let x1,x2 €
C°°([0,¢]) be any functions vanishing to orders mi and ma at zero respec-
tively, and satisfying x;(c0) = 1. Then, for any test form ¢ we have

[Pl Axallol feans A UF AU,

as €1, €3 — 0. Moreover, as a function of € = (e1,€2) € [0,00)? the integral
on the left hand side belongs to some Hdélder class independently of .

Proof. Recall that Uf AUY.¢ is defined as the value at zero of the meromor-
phic function

A= / \f\Q’\uf A |g|2’\ug A .

Assuming only that x; and 2 vanish to orders k¥ < mq and £ < mo at zero
respectively we will show that

A A
(24) /X1u£,k—1 AX2ug,_y Ao = / |fI? uﬁ,k—l AglPug, Ao =0

and that the left hand side belongs to some Hélder class. This will clearly
imply the theorem. We may assume that ¢ has arbitrarily small support
after a partition of unity. If ¢ has support outside f~1(0) U g 1(0) it is
easy to check that (24) holds and hence we can restrict to the case that
¢ has support in a small neighborhood U of a point p € f1(0) U g 1(0).
We may also assume that I/ is contained in a coordinate neighborhood and
that all bundles are trivial over . We let (fi,..., fm,) and (g1,---,9m,)
denote the components of f and g respectively, with respect to some holo-
morphic frames. It follows from Hironaka’s theorem, possibly after another
localization, that there is an n-dimensional complex manifold I/ and a proper
holomorphic map IT: & — U such that IT is biholomorphic outside the nullset
IT*{f1--- fmy 91" gm,} and that this hypersurface has normal crossings in
U. Hence we can cover U by local charts, each centered at the origin, such
that II* f; and II*g; are monomials times non-vanishing functions. The sup-
port of II*p is compact because II is proper and hence, we can cover the
support of IT*¢ by finitely many of these charts. We let p; be a partition
of unity on supp(IT*¢) subordinate to this cover. Now, following [20] and
[4], given monomials y; ...,u,, one can construct an n-dimensional toric
manifold X and a proper holomorphic map II: X — C? which is monoidal
when expressed in local coordinates in each chart. Moreover, II is biholo-
morphic outside TT*{t; ---%, = 0} and in each chart one of the monomials
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f[*ul, ... ,f[*u,, divides all the others. By repeating this process, if neces-
sary, and localizing with partitions of unity at each step, we may actually
assume that f; = uy; f] and g; = pg,;G; where fj and g; are non-vanishing
and py; and pg ; are monomials with the property that py,, divides all pf ;
and pg,,, divides all pg,; for some indices v1 and 2. Denote py,, by (% and
fig.0» Dy CP. Tt follows that |f|? = |¢*[>® and |g|? = |¢P|?¥ where ® and ¥
are strictly positive functions. Moreover, sy = & ¢ and
f _Sf/\(SSf)k_l _igf/\(égf)k_l _ 1 ~f

Ukh—1 = T = (ka Dk = cha k-

where ﬂ,’;k_l is a smooth form and similarly for ug,e-r In order to prove
(24) it thus suffices to prove

Plca 2 _ V] 812 ~ _
(25) /‘Xl( |§1m| /El)ui,kfﬂ\ xa |§Z,B‘ /62)ue,zf1/\<ﬂ

P PP,
- / ! A CT,B‘I’ Ugp 1 NP
where ¢ = py,II7 -+ - pp, IIjp and that the integral on the left hand side
belongs to some Holder class. But by Proposition 11 it does belong to some
Holder class and tends to [1/¢ke+t8 ]ﬂi, k1 NGg,_ A @. One can verify that
this indeed is equal to the right hand side of (25) by integrations by parts
as in e.g. [2]. O

A=0

Remark 17. This theorem can actually be generalized to any number of
factors UF. One first checks that the analogue of Proposition 11 holds for
any number of functions x; and then reduces to this case just as in the proof
above. In particular, if f;, j = 1,...,p, are holomorphic functions and x;
vanish at 0, we have

/X1(|f1|2/€1) xXp(1fol*/€p) N 11

fi Io fi “f_p].(P

unrestrictedly as all ¢; — 07. However, we focus on the two factor case since
we do not know how to handle more than two residue factors.

To prove our regularization results for the currents Uf ARY and Rf ARY we
have to structure the information obtained from an application of Hironaka’s
theorem more carefully and then use Proposition 11 and Corollary 15 in the
right way. The technical part of this is contained in the following proposition.

Proposition 18. Assume that x1,x2 € C*([0,00]) vanish to orders k and
£ at zero, respectively, and satisfy x;j(oc0) = 1. Let o/, o, B' and " be
multiindices such that o, o and B' have pairwise disjoint supports, and
oy = 0 if and only if B} = 0. Assume also that ¢ € Dnpn—1(C") has the
property that dC;/(j A € Dpn(CY) for all § such that o #0. Then for any
smooth and strictly positive functions ® and ¥ on C" we have

I o (@l e)Oxa (Ul e2) A = [ | @ 0
1m % g XU\ /€1)Ox 2\ Y 2|7 /€2) N = | ——77 5 | ¥
kb k(s ¢

€1,62—0T
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where i1 = ¥ and py = B B" . Moreover, as a function of e = (1, €2) €
[0,00)2, the integral belongs to all w-Hélder classes with 2w < min{|¢’ +
a//‘—l’ |,8, + ,8”|_1}-

Remark 19. Note that the hypotheses on the multiindices imply that a
factor (; divides both the monomials p1 and ps if and only if of # 0 (or

equivalently 87 # 0). In particular, the tensor product of the currents is well
defined.

Remark 20. We may let k or £ or both of them be equal to zero and the
conclusions of the proposition still hold. In case £ = 0 one should interpret
A[1/¢*'] as zero.

Proof. Let K, L and K¢ be the set of indices j such that 8} # 0, 8} # 0 and
ﬂ' = 0 respectively. Clearly L C K¢. We write 0 = 0k + 3}(0 and integrate
by parts with respect to Ok to see that

1
I o0 Bk + B A =
Ko
1 _
/ |M1 —x20K P N g — /Mk#¢X1X23K<P
II CJ
/ X (T8 : + Ok D) A

Note that O does not fall on |u1|? because of the hypotheses on the mul-
tiindices. By assumption, d(;/(j A ¢ € Dnn(C") for j € L and so the first
and the last integral on the right hand side of (26) tend to zero and has
the right modulus of continuity by Corollary 15. The second to last integral
in (26) tends to —[1/(u5ub)].0x¢ = [1/(uF¢")] @ 8[1/¢%"].¢ and has the
right modulus of continuity by Proposition 11. O

Theorem 21. Let f and g be holomorphic sections (locally non-trivial) of
the holomorphic m;-bundles E;‘ — X, j = 1,2, respectively. Assume that
the section f ® g of Ef @ E5 — X defines a complete intersection. Let
X1, X2 € C*([0,00]) be any functions vanishing to orders my and mo at zero
respectively, and satisfying xj(oo) = 1. Then, for any test form ¢ we have

(27) / i (F2/er)ud A dxa(lgl?fez) Auf A — T ARY.

as e1,e3 — 0. Moreover, as a function of € = (e1,€2) € [0,00)? the integral
on the left hand side belongs to some Hélder class independently of .

Proof. We will assume that x; and xo only vanish to orders & < m; and
£ < mg respectively and show that

(28) /Xlu,{’k_l/\axg/\ug,e_l/\go—)/\f\”‘u,];k_l/\8|g|2’\/\u2’5_1/\<p)\_0

By arguing as in the proof of Theorem 16 we may assume that |f|? = [¢%|2®
and |g|? = |¢?|?>T where ® and U are strictly positive functions and moreover,
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that u,{’k_l = ﬂ,{,k_l/gka for a smooth form ﬂ};k_l and similarly for “5,6—1'
What we have to prove is thus

x1(®[¢*%/en) Ix2(¥|¢P1?/ea) .

(29) / —Cka “1{,1;—1 A —C‘fﬂ Upy | NP
[SulkapeV APt .
— (0] u,’;k_l A I uz,z—1 AN@

Cka
where ¢ = pgII7 - - - py, IIT¢p.  After the resolutions of singularities we can
in general no longer say that the pull-back of f @ g defines a complete in-
tersection. On the other hand we claim that if (; divides both (% and ¢8
then dfj / Ej A @ is smooth. In fact, let z be local coordinates on our original
manifold. In order that the integrals in (28) should be non-zero, ¢ has to
have degree n — k — £+ 1 in dz and so we can assume that

o= Z ps Ndz;.
#T=n—k—t+1

A=0

Since the variety Vig, = f71(0) N ¢g!(0) has dimension n — m; — mg <
n—k—£+1 we see that dz; vanishes on Vyq4. The pull-back of dz; through
all the resolutions IT; can be written Y, Cr(¢)d(s and it must vanish on the
pull-back of Vig4. In particular it has to vanish on {¢; = 0} if {; divides both
¢*and ¢P. If dfj does not occur in d(; it must be that the coefficient function
C1(¢) vanishes on {¢; = 0}. But these functions are anti-holomorphic and so
¢; must divide Cr(¢). The claim is established. We now write (¢ = ¢ o +a
and (8 = (F+8" where o/, o” and B’ have pairwise disjoint supports and
o = 0 if and only if 8” = 0. Thus, {; divides both ¢* and ¢? if and only if
o # 0, or equivalently, 8 # 0. According to Proposition 18 the left hand
side of (29) belongs to some Hoélder class and tends to

1 =17 .5 . .

B [Cka+£ﬂ”] ® B[W] A p—1 N “g,e_1 Ag.
One can compute the right hand side of (29) by integrations by parts as in
e.g. [2] to see that it equals the same thing. O

Remark 22. The form dx2(|g|?/e2) Au9 is actually smooth even if 2 only
vanishes to order mg at 0. The only possible problem is with the top degree
term Ox2(|g|?/e2) A u? But we have

ma,ma—1"
C®(X) 5 AxelgP /2ty y 1) = DxellaPe2) Aty s
+ X2(|g‘2/62)3ufn2,m2*1’

and since uy, .. is O-closed (outside V) it follows that Ox2(|g|?/e2) A

9

Uy ma—1 18 smooth as well.

Corollary 23. With the same hypotheses as in Theorem 21 we have
/5X1(|f|2/61) Al ABxa(lgl? fe2) Aud Ap — RS A RY.g,

(30) / dxi(1f12/e1) Al xa(lgl2fe2) A p — RY .,
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and
(31) / xi(IF2/er) Al A (g2 fe2) Ap — 0

as €1,€9 — 01, and as functions of € = (e1,€2) € [0,00)2 the integrals on the
left hand sides belong to some Hélder classes independently of .

Proof. We have the following equality of smooth forms:
(32)  V(0x1Awf Axau?) = —0x1Axau® — Ox1 Aul Adxa Auf
+ Ox1A ufxg.

The computation rules established in [26], and Theorem 21 now imply that,
for any test form ¢ (of complementary total degree), we have

Rlo—RIANRI.9 = V(RIANU9.o=—-RI NUIVyp
= lim—/éxl Aul A xoud AV

= lim/V(gxl Aud A xoud) A .

The integral on the second row is Holder continuous by Theorem 21 and so,
also the integral on the third row is. By choosing ¢ of appropriate bidegrees
the corollary now follows from (32). O

The statements (30) and (31) actually hold with no assumptions on the
behavior of yo at zero. This can be seen by using that we know this when
x2 = 1 by Corollary 5, and when o vanishes to high enough order by the
previous corollary.

Assume that f defines a complete intersection and pick a holomorphic
function g such that f @ g also defines a complete intersection and such that
g is zero on the singular part of V;. After resolving singularities in the proof
of Theorem 21 we can find coordinates such that g is a monomial times a
non-vanishing holomorphic function g. But g can be incorporated in some
coordinate and we can therefore assume that § = 1. Repeating the proof of
Theorem 21 and using Remark 14 one shows that (30) holds for yo equal
to the characteristic function of [1,00]. Then, if we first let €; tend to zero,
keeping €9 fixed, and after that let es tend to zero we get that

lim X2(|g|2/62)R‘f = RS
€2—0T

We remark that the product x2(|g|?/e2) R is well defined since the wave front
sets of x2(|g|?/e2) and R/ behave properly, see e.g. [7]. Since x2(|g|?/e2)
equals the characteristic function of {|g|? > €2} we have

Corollary 24. If f defines a complete intersection then the Cauchy-Fantappie-
Leray current RY has the standard extension property.

This is a well known result and follows from the fact that RS equals the
Coleff-Herrera current in the sense of (7). It is even true that x,q(€)R/ —
R/, ¢ — 07 where p is a positive smooth function and x,,(e) is the char-
acteristic function of {|pg| > €}. In fact, via Hironaka and toric resolutions
one reduces to the case of one function and then one can proceed as in [7].
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We know from [26] that if f ®g defines a complete intersection then Rf AR9
consists of one term of top degree. Hence, it is only the top degree term of
dx1 Auf Adxa Aud which gives a contribution in the limit. With the natural
choices x1(t) = t™/(t + 1)™ and x2(t) = t™2/(¢t + 1)™2, Corollary 23 and
Remark 22 thus give

Corollary 25. Let f and g be holomorphic sections (locally non-trivial) of
the holomorphic m;-bundles E']* — X, 5 = 1,2, respectively. Assume that
the section f @ g of Ef ® E5 — X defines a complete intersection. Then, for
any test form ¢ we have

/53f A(@sp)™ 1 s, A (Osg)m2 7t
(IF? + €)™ (lgl? + €e2)™

as €1,ea — 07, and the integral to the left belongs to some Holder class
independently of .

Ao — RIANRIp

For sections f and g of the trivial line bundle we get the result announced
in [22].

Corollary 26. Let f and g be holomorphic functions defining a complete
intersection. Then for any test form ¢ we have

TN 1ol
0 ANOD ANp— |0=N0—]|.
[ o nogta e = P gl

as €1,ea — 07, and the integral to the left belongs to some Hélder class
independently of .

Proof. We consider f and g as sections of (different copies of) the trivial line
bundle X x C — X with the standard metric. Then, suppressing the natural
global frame elements, we have sy = f and sg = g. By Corollary 25 we are
done since R A RY is the Coleff-Herrera current. O

So far, in this section, we have used one function x to regularize all terms
of uf. One could try to take different y:s for different terms We recall the
natural choices #¥/(¢ + 1)* from Corollary 4 and we let ul = s i/(Vsp+e) =
Sosp A(0sp)*H/(|f|? + €)*. The next theorem says that, in the complete
intersection case, the product of two such regularized currents goes unre-
strictedly to the product, in the sense of [26], of the currents.

Theorem 27. Let f and g be holomorphic sections (locally non-trivial) of
the holomorphic m;-bundles E;‘ — X, j = 1,2, respectively. Assume that
the section f @ g of Ef ® E5 — X defines a complete intersection. Then, for
any test form ¢ we have

/u{1 AV, A= (U —UI ANRY).p

as €1,6o — 0%, and the integral to the left belongs to some Holder class
independently of .
Proof. We first note that

9 _1 839 e 1
Vud =1—¢ E
© 2 >1 (lg]? + e2)*
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see the proof of Corollary 4. As U/ A R/ is defined as the value at zero of
the analytic continuation (in the sense of currents) of |f|?*uf A 9]g|** A w9,
what we have to prove is

(33) / Sf A (gsf)k_l A (ésg)zf1 Ao —

(P +e)E " gl + )t

/ |f|2)‘U£,k_1 A 5|9|2/\ A Uz_u_g N \—0

and that the integral on the left belongs to some Holder class. We first
consider the case £ = 1. The right hand side of (33) should then be in-
terpreted as zero. We write the integrand on the left hand side of (33) as

x1(|£12/e)x2(lg? /e2)uf ,_ Ap where x1(t) = t£/(t+1)% and xa(t) = 1/(t+
1). Asin the proof of Theorem 16 we may assume that u,];k_l = ag,k_l/g’m,

where ﬂ,{’k_l is a smooth form, that |f|? = |[¢®|® and that |g|*> = |¢?|?T
where ® and U are strictly positive smooth functions. Since y2(oc) = 0 the
left hand side of (33) tends to zero and belongs to some Holder class by
Proposition 11. For £ > 2 we proceed as in the proof of Theorem 21 and we
see that we may assume that f = (f1,...,fm) and g = (g1,---,gm,) with
fi=¢¥ fj and g; = ¥ g; where all f; and g} are non-vanishing and more-
over, that for some indices v; and v» it holds that (¢ := ¢t divides all ¢’
and ¢# := ¢(#" divides all (¥ . From the same proof we also see that we may
assume that d(;/(; A ¢ is smooth (and compactly supported) for all ¢; which
divide both ¢® and (P, since f @ g defines a complete intersection. We use
the notation from the proof of Theorem 21, e.g. |f|? = [C*]*® = [¢¥'+*"?®,
u,j;kfl = uk’kfl/C’C @+a”) and |g2 = |¢P)2T = |¢F " 12T etc. We also in-
troduce the notation x;(t) for the function ¢/ /(¢ + 1)’, and so, in particular,
we can write 1/(¢ + €)? = x;(t/€)/t?. For £ > 2, one can verify that

9s. )1 1
(34) 62% = @ Oxe-1(|¢°PE/e2) NG,

1 2w
T X 1—1(1¢P P T /e )K | 6_13“2—1,5—2-

Using this identity we see that the integral on the left hand side of (33) splits
into two integrals. The integral corresponding to the last term in (34) tends
to zero as €1, es — 0 and belongs to some Holder class according to Corollary
15. By Proposition 18, the integral corresponding to the first term on the
right hand side of (34) also belongs to some Hélder class and tends to

1 = 1 - -
(35) - [m] ®0 [m] 'ui,k—l NGy o N

as €1, ez — 0. This is seen to be equal to the right hand side of (33) by using
the methods in [26]. O
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7. THE PASSARE-TSIKH EXAMPLE

Let f = zf, g =22+ 22+ 2} and ¢ = pzagdz; A dzy where p has compact
support and is identically 1 in a neighborhood of the origin. Since the com-
mon zero set of f and g is just the origin they define a complete intersection.
In [19] Passare and Tsikh show that the residue integral

(61,62) —> I;f,g(el,GQ) = /f2_61

lg2=¢2

fg

is discontinuous at the origin. More precisely, they show that for any fixed
positive number ¢ # 1 one has lim,_,q Ifg(e ce?) = 0 but lim,_,q I}pg( et e2) #
0. On the other hand, by Fubini’s theorem we have

/62621ﬁg(t1,t2)dt1dt2 :/ erd|f? R e2d|gl? N
(IFP+e)? (9> +e)*  fg

a (t1 + €1)%(t2 + €2)? fg
0,00

-  f - g
36 0 A0 A
(36) / ra N gpral?

Hence, this average of the residue integral is continuous at the origin by
Corollary 26. In this section we will examine the last integral in (36) as
€1,e2 — 0 explicitly. We will see that it is continuous at the origin with
Holder exponent at least 1/8 and that it tends to zero. Morally, the value
of I;f, o(€1,€2) at 0 should be the Coleff-Herrera current associated to f and
g multiplied by zsg acting on pdz; A dzo. But both g and 29 annihilate the
Coleff-Herrera current since g belongs to the ideal generated by f and g,
and 22 belongs to the radical of this ideal. We will thus verify Corollary 26
explicitly in this special case.

Our first objective is to resolve singularities to obtain normal crossings.
This is accomplished by a blow-up of the origin. The map 7: ByC? — C?
looks like 7(u,v) = (u,uv) and 7w(u',v") = (v'v',u') in the two standard
coordinate systems on ByC?. The exceptional divisor, E, corresponds to the
sets {u = 0} and {u/ = 0} and 7 is a biholomorphism ByC? \ E — C? \ {0}.
In the (u,v)-coordinates we have 7*f = u* and 7*¢g = u?(1 +v% +u). The
function 1 + v? + u has non-zero differential and its zero locus intersects F

normally in the two points v = i and v = —i. Moreover, in the (u',v')-
coordinates we have 7*f = u/*v'* and 7*g = u2(v"? + 1 + u'v'?). The zero
locus of v"? + 1+ u'v" intersects E normally in the points v/ = —i and v’ = 1,

which we already knew, and it does not intersect v’ = 0. Also, the differential
of v"? + 1 4 uw'v" is non-zero on the zero locus of v"? 4+ 1 4+ u/v"®. Hence,
{m*f-m*g = 0} has normal crossings. We assume that ¢ has support so close
to the origin that supp(m*@)N{1+v2+u = 0} has two (compact) components,
K; and K5, and that these components together with the compacts K3 =
supp(m*¢) N {v = 0} and K4 = supp(7*p) N {v =" 0} are pairwise disjoint.
We can then choose a partition of unity {p]-}‘ll such that " p; = 1 on the
support of 7*¢ and for each j = 1,2,3,4, the support of p; intersects only
one of the compacts Ky, Ko, K3 and K4. We choose the numbering such
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that the support of p; intersects K;. The last integral in (36) now equals

! - Tf N ]
37 /8 A0 ANpimto =11+ Iy + I3+ I4.
60 2 | Oy N pgp 1o T

In fact, it is only in I3 we have resonance and we start by considering the
easier integrals I;, Is and Iy. The integrals I; and I, are similar and we only
consider I;. The support of p; is contained in a neighborhood of p; = (0, 1)
in the (u,v)-coordinates and p;7*p = p1n*puvn*gudu A dv. Integrating by
parts we thus see that

= Tf |[m*g|? _
L=—]0 A ud(uvp1m* pdu A dv).
! / [ f? + €1 |7*g|? + €2 (@oprm*p )

Since m*f = u* depends on wu only, the term of d(uvp;m*p) involving du
does not give any contribution to I;. Hence we can replace 0(u¥pin*p) by
uw1 where ¢; is smooth and supported where p; is. We put (; = u and
(o = 1 +v? 4 u, which defines a change of variables on the support of p;. In

these coordinates 7*f = (f and 7*g = (¢, and so we get
1 _ _
1= = [ ZOX(CE /0GR fen) A i
1

where x(t) = t/(t +1). We also write dx(|¢{[*/e1) = 4X(I¢11%/e1)di /[,
where ¥(t) = t/(t + 1)2. To proceed we replace (the coefficient function of)
dC1/C1 A Crpr by its Taylor expansion of order one, considered as a function
of ¢; only, plus a remainder term |¢{|2B(¢), with B bounded. The terms
corresponding to the Taylor expansion do not give any contribution to Iy
since we have anti-symmetry with respect to {; for these terms. Hence, we
obtain

2
(38) ns . \%xum?/q)xucm|2/eg>|,

where A is a polydisc containing the support of ¢;. We estimate |B(()|
and x(|¢?¢2|?/e2) by constants, and on the sets A; = {¢ € A; [({|? > e}
and A\ A we use that x(|({|*/e1) S e/|¢1[* and X(I¢1*/er) S [C11% /e
respectively, to see that the right hand side of (38) is of the size |¢|'/®.

To deal with I we proceed as follows. The support of p4 is contained in a
neighborhood of ps = (0,0) in the (u/,v’)-coordinates and 7* f = u"v"* and
7*g = u?(1 + v + u'v®) := u%§. On the support of ps we have § # 0. The
multiindices (4,4) and (2,0) are linearly independent and so we can make
the factor § disappear. Explicitly, choose a square root §'/2 of § and put
¢1 = u'§"? and ¢, = v'§ /2. In these coordinates 7* f = ¢}¢§ and 7*g = (2.
One also checks that psm*¢ = |(1]27*gps where @y is a test form of bidegree
(2,0). After an integration by parts we see that

_ ™f 5 |7l 5 2
(39) = [ e gt v N2
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Since 7*g = (? only depends on ¢; we may replace 9(|C1|%¢p4) by [¢1|?0¢p4 in

(39). Computing d(|7*g|*/(|7*g|* + €2)) we find that
/C X |C1< |2/61)>~((|C12|2/€2)df_1 /\&04.
1

With abuse of notation we write the test form d¢; A Owy4 as @4dC A dC. Let
M = Mll,’; be the operator defined in Lemma 6. Explicitly, we have

Moy, = Mips+ Mips— M{Mzp,
= M{(ps— Mips) + M3 (s — Mips) + M{ Mjpy.

All of the following properties will not be important for this computation
but to illustrate Lemma 6 we note that the second expression of M ¢ reveals
that M, can be written as a sum of terms ¢77(¢)¢!¢? with I; +J; < 1 and
I, + J, < 2 and moreover, that ¢;; is independent of at least one variable
and is of the size O(|¢1]?) if it depends on (; and of the size O(|(2|?) if it
depends on (,. By Lemma 6 we also have ¢4 = My + |¢1]?|C2|>B(¢) for
some bounded function B and so

= [ oot [ odGPIGlBQ) = T+ Tia
AC1 41

where A is a polydisc containing the support of ¢4. By anti-symmetry
I,1 = 0. To estimate I1o we use that |xB| is bounded by a constant and
that Z(WIC22/e2) S e2/IC2? and R(WICEP /es) S [C2I%/ez on the sets A, =
{¢ € A;|¢32 > €2} and A\ A, respectively. Hence,

(40) a2 ~/Ae RERE +/A\Ae &lCil[Cl

which is seen to be of the size |e['/4.

It remains to take care of Is. We are now working close to u = v = 0
and 7 f = u* and g = u?(1 + v? + u) := u2§. The multiindices are linearly
dependent and we cannot dispose of the non-zero factor g. We rename our
variables (u,v) = ({1,(2) and proceed in precisely the same way as we did
when we were considering I;. We get

I = 4 / Ciia,fc(IG\2/61)x(<1>\C12|2/€2)903dC/\d4,

where ® = |g|? is a strictly positive smooth function and ¢3 is smooth with
compact support. As before, we replace 3 by Mcllgag, + |¢1|?B(¢). The
integral corresponding to |¢1|>B(¢) satisfies the same estimate as the one in
(38) and hence is of the size |e1]|'/8. We cannot use anti-symmetry directly
to conclude the the integrals corresponding to the other terms in the Taylor
expansion tend to zero since the factor g is present. We illustrate why this is
true anyway by considering the integral corresponding to the term 3(0, (3).
Let A be a polydisc containing the support of 3 and consider

(41) /A %X(\CfIQ/Q)X(@le|2/62)<P3(0,Cz)-
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We introduce the smoothing parameter ¢t = |[(?|?/e2 as an independent vari-
able and write

X(®t) = x(®t) — M, x(®t) + M, x(®1) == |G [*B(t, ¢) + M, x(21).

Here B is bounded on [0,00] x A. Substituting into (41) we obtain one
integral corresponding to |(1|2B(|¢?|?/e2, (), which satisfies an estimate like
(38), while the integral corresponding to M, 11 x(®[¢?|?/e2) is zero since we

have anti-symmetry with respect to ¢;. Hence |I5| < |¢|'/8.
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Paper III



MULTIDIMENSIONAL CAYLEY TRANSFORMS AND
TUPLES OF UNBOUNDED OPERATORS

HAKAN SAMUELSSON

ABSTRACT. We generalize the Cayley transform to tuples of unbounded
operators. To achieve this we introduce intrinsically defined objects,
with spectrum in projective space, which admit an analytic functional
calculus. We also provide an integral representation for this functional
calculus.

1. INTRODUCTION

The Cayley transform, a + (a+1i)(a—1i)~!, introduced by von Neumann
in [13] induces a one-to-one correspondence between the self-adjoint oper-
ators and the unitary operators such that 1 is not in the point spectrum.
More generally, one can consider any automorphism of C and apply it to
an arbitrary closed operator provided that the point mapped to infinity is
outside the point spectrum of the operator. In case this point is outside all
of the spectrum then the image is a bounded operator. In this way we get
an intrinsic object with spectrum in CP! which for any choice of point at
infinity, outside the point spectrum, and any linear coordinate gives rise to
a closed operator. One possible generalization to higher dimensions, i.e. to
tuples of operators, is to take the Cayley transform of each of the opera-
tors. This is possible if all the operators have nonempty resolvent sets, and
if the operators commute in the strong sense we obtain a tuple of bounded
commuting operators in this way. Vasilescu used this technique in [11] to
prove spectral theorems for unbounded self-adjoint operators. In a more
general setting this has recently been studied by Andersson and Sjéstrand
in [2]. There is also a notion of Quaternionic Cayley transform introduced
in [12] but we will not consider it here.

In this paper we are concerned with another generalization of the Cay-
ley transform. We characterize the n-tuples of closed unbounded operators
which by a projective transformation of CP" can be mapped to tuples of

2000 Mathematics Subject Classification. 47A13, 47A60, 32A26, 47A10, 47A65.
Key words and phrases. Cayley transform, functional calculus, Taylor spectrum, in-
tegral representation, projective space.
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bounded commuting operators. This is what we will call a multidimen-
sional Cayley transform. One point to be made is that these tuples of
unbounded operators may consist of operators with empty resolvent sets.
The characterization is in terms of an algebraic relation linking the oper-
ators together and a commutation condition stronger but similar to the
notion of permutability described in [5]. Tuples of closed unbounded oper-
ators satisfying these conditions will be called affine operators. We define
a Taylor spectrum for the affine operators and we show that the spectral
mapping property holds. In case all the operators making up the affine
operator have resolvents we can also consider the tuple of one-dimensional
Cayley transforms as mentioned above. This tuple has a well defined Taylor
spectrum and as in e.g. [11] and [2] we can define a joint spectrum for the
original tuple by claiming that the spectral mapping property should hold.
We show that the spectrum we define is contained in this spectrum and
that we have equality in the case of pairs of operators. To carry out our
idea we introduce projective operators, an intrinsic object in CP" with an
invariant spectrum and admitting an analytic functional calculus. From the
abstract point of view a projective operator is an O¢pr-module as described
in [4]; see also Section 7. More concretely, we realize projective operators
as certain equivalence classes of n + 1-tuples of bounded commuting oper-
ators. The spectrum for the projective operator can be described from the
Taylor spectrum for a representative and via integral formulas inspired by
[1] we can also describe the module structure from a representative of the
equivalence class. In this paper we will only consider projective operators
having a spectrum avoiding some hyperplane in CP™. In an affinization
where we take such a hyperplane to be the hyperplane at infinity the pro-
jective operator corresponds to a tuple of bounded commuting operators
and the module structure is Taylor’s functional calculus.

The disposition of the paper is as follows. In Section 2 we briefly re-
view Taylor’s functional calculus and we state the basic facts about one-
dimensional Cayley transforms. In Section 3 we define projective operators
and study their fundamental properties. In Section 4 we study the behavior
of projective operators under various projections from CP" to C* and we
define affine operators. In Section 5 we define a Taylor spectrum for affine
operators and relate it to some other existing definitions. In Section 6 we
summarize our results and interpret them on the affine level. In Section 7
we provide an integral representation for the analytic functional calculus
obtained in Section 3.

I am grateful to Mats Andersson who came up with the original idea
of this paper and with whom I have had many rewarding discussions. I
am also grateful to Lyudmila Turowska for many insightful comments and
careful reading, and to Florian-Horia Vasilescu for valuable discussions on
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topics in this paper and on general questions about tuples of unbounded
operators.

2. PRELIMINARIES

If a is an operator on some space X then %(a) is the domain of definition
for a and Z(a) is the range, i.e. the set of all az such that z € Z(a). The
set of z € P(a) such that ax = 0, the nullspace of a, is denoted A (a). If
also b is an operator on X then a C b means that the graph of a is included
in the graph of b in X x X. In particular ¢ = b means that ¢ and b have
the same domain of definition.

2.1. Taylor’s functional calculus. Let X be a Banach space, L(X) the
algebra of bounded operators on X and let E be an n-dimensional complex
vector space with a non-sense basis {ei,...,e,}. We write A¥X for the
tensor product X ® A*E of X and the k:th exterior product of E. Let
b= (b1,...,b,) be an n-tuple of bounded commuting operators on X. On
AX = @Y A*X we have the natural operation of interior multiplication
with the operator-valued co-vector Y 1 (z; — bj)e;-. We denote this operation
d,_p. Since b is commuting d, p o d, 5 = 0 and so we have the Koszul
complex

(1) 0 AOX < ALy ST D gy 0,

or Ke(d,—p, A*X) for short. The joint Taylor spectrum o(b) for b is defined
as the complement in C" of the set of points z such that Ke(d, 4, A*X)
is exact, [9]. Taylor’s fundamental result in [9] and [8] is that the natural
algebra homomorphism &(C") — L(X) given by > caz® = >, cab®
extends to an algebra homomorphism &'(o(b)) — L(X).

Theorem 2.1 (Taylor, 1970). There is an extension of the natural con-
tinuous algebra homomorphism O(C") — L(X) to a continuous algebra
homomorphism

[ i) 6(U) = L(X)
for all open sets U such that o(b) C U. If f = (f1,-..,fm) € OU,C™),
then f(o(b)) = o(f(b)), where f(b) = (f1(b),---, fn(b))-

The statement f(o(b)) = o(f(b)) will be referred to as the Spectral
mapping theorem.

2.2. The one-dimensional Cayley transform. Let X be a Banach space
and let (X)) be the set of closed, but not necessarily densely defined op-
erators on X. For any linear operator a on X the spectrum of a, o(a), is
the complement in C of the set of points A such that A — a is a bijection
P(a) — X. The point spectrum, o,(a) C o(a), is the set of A € C such
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that A — a is not injective. For a € € (X) we have by the Closed Graph
Theorem that A ¢ o(a) if and only if A — a has a bounded inverse. We let
C denote the extended complex plane; CU{oo} and we define the extended
spectrum 6 (a) as o(a) if a is bounded and o(a) U {oo} if a is not bounded.

Let ¢ be a projective-, or Mobius transformation of C. We claim that
#(a) has meaning as an element in ¢(X) if ¢ 1(c0) ¢ o,(a). Given the
projective transformation ¢ we let My € GL(2,C) be the corresponding
2 x 2-matrix. If My = {m,x}1<jk<2 and ¢ '(c0) ¢ o,(a) we may put

(2) ¢(a) = (m11a+ mip)(maia+ma) '

The matrix My acts naturally as a homeomorphism of X x X and it is
straight forward to verify that M,Graph(a) = Graph(¢(a)) and hence ¢(a)
is closed if a is. Moreover, it is not hard to see that ¢(a) is bounded if
and only if ¢~!(occ) ¢ 6(a). We conclude that the closed operators on X
which can be Cayley transformed to bounded operators are precisely those
with a non-empty resolvent set. The spectral mapping property holds for
these mappings, that is for any closed operator a on X and projective
transformation ¢ of C such that ¢=!(co) ¢ dp(a) it holds that ¢(5(a)) =
&(¢(a)). For a more thorough treatment of the one-dimensional Cayley
transform, see [11] and [7].

The preceding discussion suggests that the closed operator a defines some
invariant object on CP! = C if oo ¢ 0p(a). In the canonical affine part of
C this object becomes the operator a and in some other affine part, cor-
responding to a Mobius transformation ¢ of the canonical one, it becomes
¢(a) and has spectrum ¢(6(a)).

3. PROJECTIVE OPERATORS AND ANALYTIC FUNCTIONAL CALCULUS

In analogy with the construction of projective space we consider an equiv-
alence relation on a subset of the n + 1-tuples of bounded commuting oper-
ators on a Banach space and define a projective operator as an equivalence
class. We will see that a projective operator has a well defined invariant
Taylor spectrum in CP" and that it admits an analytic functional calculus.

Definition 3.1. Let b = (bg,...,b,) and b = (by,...,b,) be tuples of
bounded commuting operators on a Banach space X. We define b ~ b if
there are finitely many bounded commuting tuples &, j = 1,...,m such
that 8 = b and ™ = b and for j = 1,...,m — 1 we have p/11 = cjbj for
some invertible ¢; € (b’)"; the commutant of b/.

Lemma 3.2. The relation ~ of definition 3.1 is an equivalence relation.
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Proof. We note that the relation R on bounded commuting n + 1-tuples
defined by bRb if b = cb for some invertible ¢ € (b)" is reflexive and symmet-
ric. Reflexivity is obvious since e € (b)'. It is symmetric because if b = cb
for some invertible ¢ € (b)’ then b = ¢~'b and letting b = (by,...,b,) and
b= (bg,...,b,) we see

15 _ ~13 _p 3 . —=1_ 3 -1_35 -1
¢ bj=c cbj =b; =bjcc” =cbjcT =bjc

so ¢! € (b)'. The relation ~ is defined as the transitive closure of R so
it is by definition transitive and it inherits reflexivity and symmetry from
R. O

Remark 3.3. We will see later on, Remark 4.6, that for the tuples we will
be interested in there is a simpler description of the relation ~. For these
tuples it will also turn out, see Remark 4.5, that even though ~ is defined
as the transitive closure of R, any two representatives for an equivalence
class are not more than two steps from each other.

We denote the equivalence class containing b by [b] and we let 7 denote
the canonical mapping C*t! — CP".

Proposition 3.4. Let b = (by,...,b,) be a commuting tuple of bounded
operators on X and let ¢ € (b)' be invertible. If 0 ¢ o(b) then 0 ¢ o(cb) and

wo(bg,...,by) = wa(chy, ..., cby).

Proof. Define ¢ and ¢ : C**2 — C**! by

V(2,205 y2n) = (220y---,22n)

(2,20, -52n) = (205---52n)
respectively. The hyperplane in C**2 orthogonal to the vector (1,0,...,0)
does not intersect o(c, by, ..., by) since ¢ is invertible and we have
(3) O'(C, bOa"'abn) - O'(C) X O'(b(),...,bn)
according to [9]. Moreover from (3) and the assumption that 0 ¢ o (b) we see
that o(c, by, ... ,by) also avoids the coordinate axis (z,0,...,0). Hence we
may take a neighborhood U of o(c, by, . .., by) such that U does not intersect
neither the hyperplane orthogonal to (1,0,...,0) nor the coordinate axis

(2,0,...,0). Then the images V; and V5 of U under 9 and ¢ respectively
do not contain the origin and so the diagram

(4) v—" —wm
g y
v cpr

™



6 HAKAN SAMUELSSON

must commute. By the Spectral mapping theorem
o(bo,...,bp) =0 d(c,by,...by) = polc,by,...,by)

o(chg,...,cby) = o(c,by,...by) = o(c,by,...,by)
and since the diagram (4) commutes we conclude that = o(cbg,...,cb,) =
wo(bo,...,bp)- O

It follows immediately from this proposition that we have

Corollary 3.5. Let b ~ b and assume 0 ¢ o(b). Then 0 ¢ o(b) and

no(b) = wo(b).
Hence if 0 ¢ o(b) then 0 ¢ o(b) for any b € [b] and 7o (b) = 7o (b) and so
we can make the following definitions.

Definition 3.6. Let b be a commuting tuple of bounded operators on a
Banach space X such that 0 ¢ o(b). We define the projective operator [b]
as the equivalence class containing b.

Definition 3.7. Let [b] be a projective operator. The spectrum o[b] C CP"
of the projective operator [b] is defined by

o[b] = wo(b).

We now construct the analytic functional calculus for the projective op-
erators. The main theorem of this section is the following.

Theorem 3.8. If [b] is a projective operator, then there is a unique &(c[b])-
module structure on X given by

Oolb]) x X = X, (f,z) = f([b])z

and if f = (f1,- ., fm) € O(c[b],C™) then o (f([b]) = f(o[b]) where f([b]) =
(F1([o]), - - fm([B]))-

Proof. We construct the module-structure as follows. Given some f €
©(o[b]) we consider the canonical lift f of f to C*™'. Then f is holomorphic
in a neighborhood of o(b) for any representative b € [b] and f is constant
on the complex lines through the origin (with the origin deleted). From
Taylor’s analytic functional calculus we get for each b € [b] an operator
f(b) € L(X). We will see that in fact f(b) is independent of representative
b and our desired pairing €(o[b]) x X — X will be (f, ) — f(b)z where b
is any representative of [b].

Let b € [b] and let ¢ € (b)' be invertible. Put b = cb and let ¢ and 1 be
the mappings defined in Proposition 3.4. Let U; be a neighborhood of o (b)
in which f is holomorphic and let V be a neighborhood of o(c) such that

D(0,7) NV =0 for some 0 < r < 1. Since c is invertible 0 ¢ o(c) and such
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a neighborhood exists. Let U be the union over A ¢ D(0,r) of AU;. Then
fo¢and f o4 are holomorphic in V x U. Moreover since r < 1 we have
o(b) C U and so o(c,b) C o(c) x o(b) C V x U. Now since f is constant
on the complex lines through the origin we have f o ¢ |yxu= f o ¢ |yxv
and we conclude from the composition rule that f(b) = f o ¢ |vxv (¢,b) =
fo lyxu (c,b) = f(cb) = f(b). Tt follows inductively that f(b) = f(b) for
any two representatives b and b for [b]. Thus f is well defined on [b] and we
write f([b]) for the operator f(b).

To prove the spectral mapping property we proceed as follows. Since f
is constant on the complex lines through the origin f(o(b)) is the same for

all b € [b] and so from Theorem 2.1 we get

f(alb]) = F(a(b)) = o(f(b)) = o (f([B)).
Uniqueness follows from the spectral mapping property. See [4]. O

Let M be a complex manifold and assume f: U D o[b] - M is holomor-
phic. We obtain a &'(M)-module structure .# on X by

OM)x X = X, (g9,2)— go f([b])z.

In [4] Eschmeier and Putinar define the spectrum o(M,.#) C M of the
module .# and show that the &(M)-module structure extends uniquely to
an O(o(M,.#))-module structure on X. Moreover they show a Spectral
mapping theorem which in our case implies

o(M, M) = f(a[b]).

It is shown that if M = C™ we can realize the extended module structure
as the analytic functional calculus for an m-tuple of commuting bounded
operators ¢ on X by choosing coordinates on C™ and that the spectrum
of the abstract module is precisely o(c). The composition rule in Taylor’s
functional calculus is therefore built into the construction.

To stress the independence of coordinates in our study of projective
operators we adopt an invariant notation. For a subset M of CP" we
denote by M™* the dual complement of M, that is

M* = {[\] € CP™; (z,)\) # 0 V[z] € M}.

Geometrically M* is the set of hyperplanes in CP" which do not intersect
M. The correspondence between hyperplanes in CP" and points in CP™*
is the usual duality correspondence. To [A] € CP™ we associate the hyper-
plane {[z]; (z,A\) = 0}. We will not make any distinction between points in
CP™ and their corresponding hyperplanes and we will freely allow ourselves
to speak about “the hyperplane [A]” if [A\] € CP™".
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Lemma 3.9. Let [b] be a projective operator. Then
ob]* = {[A] € CP™; (b, \) is invertible}.

Proof. Since any two representatives of [b] differ by an invertible operator
we see that the statement in the lemma only depends on [b]. For the
inclusion C assume [u] € o[b]*. Then from the definition we have (z, u) # 0
for all [2] € o[b]. Thus the function z — 1/(z,u) from C**! to C is
holomorphic in a neighborhood of o(b). Hence from the functional calculus
we see that (b, u) is invertible.

For the other inclusion assume (b, ) is invertible. We shall show that
o(b) does not intersect the hyperplane pu. If 4 = (1,0,...,0) we have to
show that if by is invertible then o(b) does not intersect the hyperplane
orthogonal to (1,0,...,0). But if by is invertible then 0 ¢ o(bg) and since

o(b) Co(by) x o(br,...,by),

see [9], o(b) can not intersect the hyperplane in question. For the general
case let L be an invertible linear transformation sending u to (1,0,...,0).
By the Spectral mapping theorem, to show that o(b) does not intersect u
is equivalent to show that o(L* 'b) does not intersect Ly = (1,0,...,0).
But the first component in L*~1b is (L*~'b, Ly) = (b, u) which is invertible
by assumption and so the lemma follows. O

Remark 3.10. From now on we will always assume that o[b] avoids some
hyperplane in CP". We will do this because it will make it possible to
realize the projective operator as an ordinary n-tuple of bounded opera-
tors. Since the objective of this paper is to construct multidimensional
Cayley transforms of tuples of unbounded operators into tuples of bounded
operators the assumption is natural.

If we fix some [A] € o[b]* then the function [2] — (z, A)/(z, A) is holomor-
phic in a neighborhood of o[b] if also [A] € o[b]*. Theorem 3.8 then implies
that we get a holomorphic mapping from o[b]* to the algebra generated by
b for b € [b] given by [A] = (b, X)/(b, \). This is the Fantappi¢ transform of
the L(X)-valued analytic functional &(o[b]) — L(X), f — f([b]) given by
Theorem 3.8.

4. AFFINE OPERATORS

We extend the Fantappié transform to a larger set o[b]’,  , called the set
of admissible hyperplanes, and get instead a % (X)-valued mapping. We
will define affine operators to be tuples of closed operators with certain
commutation properties. We will show that affine operators are precisely
the tuples obtained by projecting a projective operator from an admissible
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hyperplane. In order to keep track of the various domains of definition that
turn up we start with some technical results.

In what follows we will often make implicit use of the following easily
checked fact.

Proposition 4.1. Let a be any closed operator on X and let b be bounded.
Then, the operator ab with domain 2(ab) = {z € X;bx € P(a)} is closed.

The following lemma generalizes the fact that if b and ¢ are bounded
operators and b is invertible, then bc = ¢b if and only if b 'c = cb .

Lemma 4.2. Let b and c be bounded operators on X and assume that b
is injective. Then bc = cb if and only if cb=1 C b~tc. If this condition is
fulfilled and in addition c is invertible then actually cb™' = b~ lc.

Proof. Assume bc = cb and let © € D(cb™!) = 2(b~'). Then z = by for
some y € X. Since b and ¢ commute we get cx = cby = bcy and so we must
have cx € 2(b1). Hence 2(cb ') C 2(b 'c) and

eb ez =cb by =cy = b lbey = b leby = b tex.

It follows that ¢~ C b~'c. Conversely assume ¢b~! C b~ 'c. Then if z €
P(b~1) we have cx € 2(b~!) and so b~'ch € L(X). By assumption b~'cb D
cb b = ¢ and because ¢ € L(X) we must have equality. Multiplying by b
from the left we obtain cb = be.

For the last statement assume c is invertible and commutes with b. Then
¢! also commutes with b. To show cb~! = b~!c it is enough to show
PD(b~1c) C D(cb ) by the proof this far. Take z € Z(b~'¢c), i.e. such that
cx € Z(b1). Then cx = by for some y € X. We get z = ¢ by = bey
and soz € 2(b=1) = D(cb™ ). O

The next lemma and the remarks following it shed some light on the
equivalence classes [b].

Lemma 4.3. Let [b] be a projective operator and assume that [A] € o[b]*.
Then there is a representative b/ for [b] such that

(B0 = N\t =e.
0

Proof. If A € o[b]* Lemma 3.9 says that B = (b,A) is invertible. Then
clearly [B='b] = [b] and b’ = B~1b is the desired representative. O

Remark 4.4. There is no loss of generality in assuming that Ay # 0 because
we may perturbate [A] a little and still belong to o[b]*.
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Remark 4.5. We have defined the equivalence relation on commuting tu-
ples as the transitive closure of a symmetric and reflexive relation R. The
proof of Lemma 4.3 shows that given a class [b] such that o[b]* is nonempty,
any representative is not more then one step from the representative b’ with
(b, \) = e. Hence if b and b are any two representatives for [b] then they
are not more then two steps from each other.

Remark 4.6. Lemma 4.3 also enable us to to give an alternative descrip-
tion of the equivalence relation ~ if we restrict ourselves to look at com-
muting n + 1-tuples of operators with the additional property that their
spectrum avoid some hyperplane through the origin in Crtl. In fact for
such tuples, b and b, we have b ~ b if and only if b = ¢b for some invert-
ible ¢. The only if part is clear. Conversely assume that b = cb for some
invertible ¢. The assumption on the spectrum for b says precisely that
0[5]* is nonempty and so from Lemma 4.3 we see that we may assume that
(b, \) = e for some [\]. Hence (b,\) = ¢~ so ¢ € (b)’ and therefore [b] = [b].

Definition 4.7. Let [b] be a projective operator. We define o[b]?, , the set
of admissible hyperplanes for [b], by saying that [a] € a[b]*,,, if (b, @) (b, \)
is injective, where [)] is some hyperplane in o[b]*.

The definition clearly does not depend on the representative b for [b] and
also not on the choice of [] because if [A] € o[b]* is some other choice, then
(b, @) (b, \) ™" = (b, @) (b, \) (b, \}(b, \) ™" and (b, \)(b, \) " is invertible by
the functional calculus.

Remark 4.8. Observe that o[b]’, is not defined as the dual complement
of some set in CP". Tt is defined directly as a subset of CP™*. However, in
the one variable case o[b]?, = corresponds to the point spectrum in the fol-
lowing sense. If [\] € o[b]* C CP! and Py a projection from the hyperplane

(point) [A] onto C then

oblaam = (Px op(PA(B])) "

Proposition 4.9. Let [b] be a projective operator and let [A] € o[b]* and
[@] € o[b%,,,- Then (b,a)™ (b, ) is a closed operator which does not de-
pend on the particular representative b € [b]. Moreover (b,a)~ (b)) =
(b, \){b, )™ and we denote this operator (b,\)/(b, ). Its domain of defi-
nition Py 1= D((b,\)/(b,a)) does not depend on the choice of [A] € o[b]*.
Finally if [B1],-.-,[Bn] are any points such that [al,[B1],...,[Bn] are in
general position then

Do = ﬂ @(<b’ a>71<b’ ﬁ]))

j=1
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Proof. Tt is clear that (b,a)™!(b, \) is a closed linear operator on X. Since
[A] € o[b]* we have that (b, A) is invertible and so it follows from Lemma
4.2 that (b,a)~1(b,\) = (b, A\)(b,a)"!. From this we immediately obtain
that

(5) (b, )/ (b, @) = ({b,@)/(b, )™

in the set theoretical sense and hence (b, A)/(b, @) does not depend on the
representative b € [b] since the right hand side of (5) does not. Moreover
since 2((b, \)(b,@)~*) = D({b, \){b,a)~ ") for any other [A] € o[b]* the do-
main %, can not depend on the choice of [A\] € o[b]*. For the last statement
we first assume that [a] = [1,0,...,0] and [3;] = [0,...,1,...,0] where the
1 is in the j:s position. Then what we have to show is 2((b,A)/by) =
Ny Q(bglbj). But from Lemma 4.2 we see that 2(b;'b;) D 2(bjby") =
2((b, /\)b* ) and so 9((?), A)/bo) €N} 2(by 'b;). On the other hand

NT 2(by 'b;) C 2(by (b, \)) so we are done. We reduce the general case to
this one by considering the projective transformation P defined by [z] —
(z,@),(z,B1),--- {2, Bn)]- Then P*'[a] = [1,0,...,0] and P*1[3;] =
[0,...,1,...,0]. We want to show the equality

2({b, \ ﬂ@ ((b, @) (b, B;))

but this is equivalent to
n
2((Pb, P*'))/(Pb,P*"'a)) = (] 2((Pb, P*" ) (Pb, P*' B})).
j=1
Hence the proposition follows from the special case above. O

Remark 4.10. We saw in the proof that there was no loss of generality
in assuming that the hyperplanes were of a special kind because we could
reduce to this case by a projective transformation of CP”. In order to sim-
plify calculations in the proofs below we will often make such assumptions
and it is supposed to be understood that there is no loss of generality in
doing it.

Let us fix an [a] € o[b]! ., and [B1],...,[B,] € CP"* such that [a], [3
[B.] are in general position. We denote the closed operator (b, )~
by a;.

T R
<b518j>

Proposition 4.11. With the hypothesis of the preceding proposition, if
z € D(aj) N D(ay) then the following conditions are equivalent

ajz € D(ay),
arr € YD(aj).
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If any of these conditions are satisfied then also arajr = ajarz.

Proof. We may assume [a] = [1,0,...,0] and [3;] = [0,...,1,...,0] and
hence a; = by 'b;. Suppose z € 2(b;'b;) N 2(by'bx). Then from Lemma
4.2 we get bkbalbja: = bjbalbkx. Hence balbja: € Q(balbk) precisely when
by ‘bz € D(by 'b;) and by 'biby ‘bz = by b, by O

Definition 4.12. A tuple (a1, ...,a,) of closed operators on X is called
an affine operator if

(1) it exists a [A] € CP" such that the operator
n
[T A() + Z )\jaj
1

with domain Z(ag) = (] Z(a;) is closed, injective and surjective,

(ii) the operators ag, a1, ..., a, satisfy the following commutation con-
ditions; if z € Z(a;)NZ(ajai) then z € P(ara;) and ajarr = ara;x
for 5,k =0,1,...,n.

Remark 4.13. In the one variable case Definition 4.12 just means that
o(a) is not all of C. In fact, if A\ # 0 then Ao + Aja is injective and
surjective if and only if —X\g/A1 ¢ o(a) and if Ay = 0 then Y(a) = X, i.e.
a is bounded and therefore o(a) # C. The commutation conditions are
clearly satisfied in the one variable case and so from Section 2 we see that
a closed operator is affine if and only if it can be Cayley transformed to a
bounded operator.

Remark 4.14. Morally what condition (i) should mean is that no matter
how we may define the spectrum of a, the hyperplane [A] should avoid its
closure in CP". For instance if [A\] = [1,0,...,0], that is the spectrum of a
does not intersect the hyperplane at infinity, then one should expect that
all the a; are bounded. In fact if [1,0,...,0] works as [A] in Definition 4.12
then condition (i) says that the domain of the identity is (] Z(a;), that
is Y(aj) = X for all j and so all the a; are bounded by the Closed Graph
Theorem.

Remark 4.15. We do not demand that each a; has a non-empty resolvent
set. We will see in Example 4.18 that there are affine operators such that
some of the components have all of CP! as spectrum.

Remark 4.16. Condition (ii) of Definition 4.12 implies that affine opera-
tors are pemutable multioperators in the sense of [5]. It also implies that
the operators ay,...,a, commute with the bounded operator ay Uin the
sense that ay'a; C ajag’. In fact, let z € P(a;). Then clearly aj'z €
P(a;) N D(ajao) and so condition (ii) implies that ay'z € P(aga;) and
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agajay 'z = ajapay ' = a;jz. Hence ajay'z = ag'ajz for all z € P(a;). Tt
will follow that if all a; have resolvents then these commute, see Corollary
4.19.

The operators we get when we project a projective operator from an
admissible hyperplane are affine, and these are the only affine operators as
we now show.

Theorem 4.17. A tuple a = (a1, ...,ay) of closed operators on X is affine
if and only if there is a projective operator [b] with o[b]* nonempty, an
la] € alblt,, and [Bi],...,[Bn] € CP™ in general position together with
[, such that

aJ:<b7a)_1<b7IBJ)7 jzl""7n'

Proof. We may assume that o = [1,0,...,0], 3; =[0,...,0,1,0,...0] where
1 is in the j:s place. First assume that a; = (b,a)™'(b,8;), j = 1,...,n
for some projective operator [b], that is a; = b, 'b;. Let [\] € o[b]* so that
B = (b, )\) is invertible. From Proposition 4.2 we get that bng = Bbo_1
and so we see that

n n n
ag:=by'B="by" Y Ajbj = Aiby'bj = do + > Nja;
0 0 1

has domain P(ag) = 2(by") = N} Z(a;) by Proposition 4.9, is closed,
injective and surjective. Hence a satisfies condition (i) in Definition 4.12.
Moreover Proposition 4.11 implies that if z € Z(a;) N Y(ajax) then z €
Y(ara;) and ajapr = agajz for j,k = 1,...,n. To see that this is also
satisfied for j = 0 and k = 0 respectively we first assume that z € Z(ag) N
P(apag). Then since z € PD(agay,) we have that by 'byz € 2(by') and
since also z € 2(b,"') Lemma 4.2 implies that b, 'bgz = biby 'z. Hence
beby 'z € D(by '), that is z € D(agag), and by by 'brx = by 'brby 'z that is
aparx = agaor. Now assume that z € P(a;) N Z(ajap) which just means
that z € 2(by') and bjby'z € 2(by'). From Lemma 4.2 we see that
biby 'z = by bz so by 'bjz € P(by"') and by by 'bjz = by 'bby 'z Hence
z € Y(aga;) and apa;jx = ajaor so a also satisfies condition (ii) and thus a
is affine.

Conversely assume that o is affine and take [A\] € CP" such that the
operator ag = Ao + Y Aja; satisfies the requirements of condition (i) in
Definition 4.12. Then

n n
bo := (Mo + Z)\jaj)_l’ bj = aj()\O + Z)\jaj)_l i=1...,n
1 1

are bounded operators by the Closed Graph Theorem. We claim that
b= (bo,...,b,) is commutative, that (b, \) is invertible and that a; = by 'b;.
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We start by showing commutativity. In Remark 4.16 we saw that it followed
from condition (ii) that aalaj - ajaal, that is bpa; C ajby for j =1,...,n.
Hence for any z € X we have aibir = boagbor € ] P(a;). So we see
from condition (ii) that for any z € X we have a;bparbor = aiarbiz =
akalb%x = apbpa;bgx. Thus b is commutative. To see that a; = balbk
we assume z € Y(ag), then condition (ii), via Remark 4.16, implies that
apboz = boagz € ] Z(a;). Hence ajapboz = agaiboz for all I by condition
(ii), and we obtain balakbox = aiz. Thus a; C balbk. To show equality it
suffices to show 2(by 'bx) C P(ax). Therefore assume x € P (by 'bg), that is
apbox € @(bal) and so, again by condition (ii), we have a;axbox = ara;box.
Hence a;bpx € P(ay) for all [ and this gives us x = balbow € Y(ay). Finally
we observe that

(b,\) = Z Ajbj = Xobo + Z Ajajbo = (Ao + Z Ajaj)bo = e.
0 1 1

Hence o(b) avoids the hyperplane A through the origin in C**! and hence
[b] is a projective operator with o[b]* nonempty. O

Example 4.18. Let K be the compact subset of C? defined by

Let X = C(K) be the Banach space of continuous functions on K and let
b; denote the operator on X of multiplication with the coordinate function
zj, 7 = 0,1,2. Then b = (by, b1, b2) defines a projective operator [b] and
o[b] = w(K), the projection of K on CP2. Moreover, one checks that
the hyperplane [2,1,—3/2] avoids o[b]. Clearly by is injective and so the
hyperplane [1,0,0] is admissible. We get the affine operator (aj,as) =
(bg'b1,by'b2). We claim that o(a;) = C. Let w € C be arbitrary and
take a point (zg,z1,22) € K such that z1/zp = w. If f € C(K) is such
that f(zo,21,22) # 0 then f is not in the range of w — a; and therefore
w € o(ay).

Corollary 4.19. If (a1,...,ay) is affine and each a; has resolvents then
these commute.

Proof. Let [b] be a projective operator such that a; = by 'b;. We consider
the case when each a; has a bounded inverse. The general case is completely
analogous. We first check that aj_1 = b]-_lbo. Actually, b; has to be injective
since otherwise bjz = 0 for some = # 0, but then z € Z(a;) and ajz = 0
which is impossible. Also, b; has to be surjective onto Z(by 1) and hence
X (by) C @(b;l). The closed operator b;lbo therefore has to be bounded.

It follows that by 'b;b; 'by is the identity on X and that b; 'bob, 'b; is the
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identity on Z(a;) and so aj_l = bj_lbo. Now we use Lemma 4.2 to see that
a;l and a,;l commute. Let y = a;lalglx = b;lboblzlboa; = b;lblzlb%x.
Then bz = bibjy = bjbry and hence y = b, 'bob; 'box = ay 'a; 'z since
Z(bo) € 2(b; ). O
Corollary 4.20. If (ai,...,a,) is affine then affine combinations of the a;
are closable.

Proof. To any affine map of C" it corresponds a projective transformation

of CP™. Substituting a projective operator, representing (a1, ...,a,), into
this map and projecting the result back to C* we obtain a closed extension
of the affine combination. O

The correspondence between affine- and projective operators is one-to-
one in the following sense.

Theorem 4.21. Fiz [a],[B1],-..,[Bn] € CP™ in general position. Then
to any affine operator a = (ai,...,a,) it corresponds a unique projective
operator [b] with nonempty o[b]* and with [a] € o[b]’,,, such that a; =
<b’a>_1<b7ﬁ]) fOTj = 17"'7”'

Proof. The existence of a projective operator [b] and [&] and [8;], j =
1,...,n, in general position such that a; = (b, &) (b, Bj)*l is part of
Theorem 4.17. Let L be an invertible projective transformation sending
[@] to [] and [B;] to [8;]- Then L*~1[b] is a projective operator with a; =
(L*1b, a)~H(L*~1b, B;) L. For uniqueness we assume that o = [1,0,...,0],
B; =10,...,0,1,0,...,0] and that [b] and [I;] are two projective operators
corresponding to a, i.e. we assume that balbj =aj = I;albj, j=1,...,n.
We may also assume that b is the representative for [b] such that e = (b, \)
by Lemma 4.3. We show that [b] = [b]. From Proposition 4.9 we get

D(by") = N2 (b, 'b;) = ND(by 'b;) = D(by ).
Hence ¢ := Ea 14y is an invertible bounded operator. Moreover from Lemma
4.2 and the assumption we see that b;jc = bjbalbo = balbjbo = balbjbo = b;
and so b = bc. It remains to show that ¢ € (b). But e = (b, \) = > 7 A;b;
so ¢! = Y0 Ajb; and hence c € (b)'. O
Definition 4.22. Let [a], [51],--.,[Bn] € CP" be fixed in general position.
We define p, g to be the mapping

[Z] = (<Za Ol>_1<Z,,81>, SRR <Za Ol>_1<Z,,8n>)-
The one-to-one correspondence can now be stated by saying that the

mapping pag: {[b];ob]* # 0, [a] € o[b]’,,} — {a;a is affine} is one-to-
one and onto.
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5. SPECTRA OF AFFINE OPERATORS

We define the spectrum of an affine operator a, corresponding to a pro-
jective operator [b] via p,g([b]) = a, and show that p,g(c[b]) = o(a).

Throughout this section we will assume that o = [1,0,...,0] and 3; =
[0,...,1,...,0] in the proofs.
Let a = (ay,...,ay,) be an affine operator. For z € C" we let §,_, denote

interior multiplication with 377 (2; — a;)e; and the domain of definition
P (6,—q) for this operator is all forms with coefficients in (] Z(a;). See

Section 2 for notation.

Definition 5.1. Let a = (aq,...,a,) be an affine operator. We define
o(a) C C" by specifying its complement: z ¢ o(a) if and only if for
any k-form f*¥ € A4(5,_,) it exists a k + 1-form f¥*! with coefficients
in 7 x=1 Z(a;ax) such that fr=6,_afFth

Remark 5.2. Affine operators are permutable multioperators and as such
they also have a joint Ionagcu-Vasilescu spectrum, [5]. If all components
in an affine operator have resolvents we can also consider the joint spec-
trum associated to an iterated one-dimensional Cayley transform as in [11]
and [2]. It is shown in [5] that this spectrum equals the Ionagcu-Vasilescu
spectrum in this case. We will see in Theorem 5.5 that our spectrum is
contained in the spectrum obtained by an iterative one-dimensional Cayley
transform in case both spectra are defined.

We denote the set of all forms with coefficients in n?,k:l D(ajar) by P2

Lemma 5.3. Let [b] be a projective operator and assume that [1,0,...,0] is
an admissible hyperplane and that o[b]* is nonempty. Put b’ = (by,...,b,)
and let a = (by 'b1,...,by *by). Then Ko(dy,X) is ezact if and only if for
any f* € N (8,) it exists an 51 with coefficients in D(by2) = A BE) such
that f* = 6o fF+1.

Proof. Note that 2(b,*) = N7 2(b, 'b;) by Proposition 4.9. Assume that
K.(0y,X) is exact and let f* € 4(6,). Then dyby ' f¥ =0 and so there is
an f¥+1 such that by ' f¥ = 0y f51. But then f* = dyby fFt! = 6,02 fF+1.
Thus f*1 := B3 f*+! has coefficients in 2(b, %) and f* = 5, f*+'.

Now assume that if f¥ € #(d,) it exists an f*¥*! with coefficients in
P (by?) such that f* = §,f*+1. If & f*¥ = 0 then clearly by f* € 4 (d,) and
so there is an f*+! with coefficients in 2(by?) such that byf* = J,fF+! =
by L fEt1. Hence f* = dyby 25! and so K. (dy, X) is exact. O
Theorem 5.4. Let a be an affine operator and let [b] be a projective opera-

tor with nonempty o[b]*. If o] € o[b]},,, has the property that a = pa p([b])
then o(a) = pa,p(ofb]).
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Proof. Under our assumptions on [a] and [3] we have that p, s is the
mapping [z] — (21/20,---,2n/20). We will show that [1,0,...,0] ¢ of[b]
if and only if 0 ¢ o(a). By the Spectral mapping theorem we get that
the line through the origin and (1,0,...,0) in C**! does not intersect
o(b) if and only if 0 ¢ o(by,...,b,). Thus what we have to show is that
0¢ o(by,...,b,) if and only if 0 ¢ o(a). But this is exactly the statement
in Lemma 5.3 and so the only thing left in order to prove the theorem is to
check that 2(b;?) = Njx=1 Z(ajax). Since ajar = by 1bby tbr D bibgby
the inclusion C is clear. Conversely assume z € ﬂ?’kzl Y(ajay). Then, at
least = € N} Z(a;) = 2(by ') by Proposition 4.9. Thus z = byy for some
y. The assumption on z now implies that byy = by 'brz € N 2(a;) =
P(by"') for k = 1,...,n. Since we may assume that e = g A\pby, we get
y =30 Mbpy € D(by"). Thus z = boy € 2(by>) and we are done. O

Theorem 4.21 implies that to an affine operator ¢ we have a unique
projective operator [b] such that a = p,g([b]) for some fixed choice of
[a], [B1],---,[Bn] in general position. So applying Theorem 5.4 we see that
o(a) has a well defined, invariant and closed extension 6(a) C CP" defined
by

&(a) = olb).

Now suppose that a = (aq,...,as) is affine and assume in addition that
each a; has a resolvent. As we have seen, Example 4.18, affine operators
need not have this property but may off course have it, see Example 5.7
below. After an affine transformation we may assume that each a; has a

bounded inverse a;l € L(X). Then as in e.g. [11] and [2] we can define the

spectrum for a as the inverse image of the spectrum of (a7’,...,a,!) under

the mapping (21,...,2,) = (1/2,...,1/2,). We will denote this spectrum
by &(a).

Theorem 5.5. Let a = (ay,...,a,) be an affine operator and assume that
each aj has a resolvent. Then o(a) C &(a) and in the case n = 2 we have
equality.

Since (ai,...,ay) is affine there is a unique projective operator [b] =
[bo, . .. ,by] such that a; = balbj and j = 1,...,n. Before we prove Theorem
5.5 we prove a lemma.

Lemma 5.6. A point (A1,...,\,) € C" is outside o(a) if and only if
0 € C" is outside a(by — A1bg, ..., by — Apbp)-

Proof. First note that from Theorem 5.4 (A1,...,A,) € C" is outside o(a)
if and only if [1,A1,...,A,] € CP" is outside o[b] which in turn precisely
means that the line through the origin and (1, A, ..., A,) in C**! does not
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intersect o(bg,...,b,). The lemma now follows by applying the Spectral
mapping theorem to the mapping (2q,...,2,) = (21 — A120,- -+ 2n — An20)-
O

Proof of Theorem 5.5. We may assume without loss of generality that 0 ¢
o(aj) for j = 1,...,n, ie. that each a;l is bounded. It follows from
the proof of Corollary 4.19 that a;l = b;lbo and thus in particular that
2(b, ') C @(b;l) for all j. Let (A1,...,A,) be any point in C*. We define
two boundary operators § and 6 on AX = @7 A’X by letting § and 5 be
interior multiplication with 377 (b; — Ajbo)e; and >- oy €f + > cp (1/A5 —
b;lbo)ej- respectively, where Iy and I is the set of indices with A\; = 0
and \; # 0 respectively. By the previous lemma (\1,...,\,) is outside
o(a1,-..,an) if and only if the complex K, (6, A®X) is exact. If some \; =0
then we are automatically outside &(a1,...,an) and if all \; are non zero
we are outside this spectrum if and only if the complex K, (8, A®X) is exact.
We now define morphisms of complexes ¥: K,(6, A*X) — K,(J, A*X) and
®: K,(0,A\*X) = K,(6,A*X). Let o/ be a commutative unital subalgebra
of L(X') containing by, b;, bj_lbo, j=1,...,n. Note that § and & are natural
mappings F — & extended as anti-derivations to &/ ® AE — &/ Q AE.
We define the injective mapping ¥: &f @ AE — & ® AE inductively
by setting W(e;) = Ajbje; and U(f A g) = ¥(f) A ¥(g). The operator
by -+ by is naturally a mapping & ® AE - &/ @ AE and if we are in the
image of this mapping we are in the image of ¥. We may thus define
& := U\ - A\,by -+ b, and get a mapping ®: o/ @ AE — o ® AE.
It is straight forward to check that 6¥ = ¥J and 6® = ®§ as map-
pings &/ ® AE — &/ ® AE and so we obtain our morphisms of complexes
U: K, (6,A*X) = K, (6,A*X) and &: K,(6,A*X) — K.(6,A*X). We now
claim that the quotient complex

(6) 0<— A X/A°Z(bg) <— -+ <— A"X/N"Z(by) <— 0

with boundary operator ¢ is exact. Indeed, since a is affine there is some
point 1 = (p1,...,un) outside o(a). Let §, be interior multiplication with
>-1(bj — pjbo)e;. From the previous lemma we know that Ke(d,,A*X)
is exact. Since § and §, are equal modulo elements with coefficients in
Z(bo) it suffices to see that (6) is exact with J, as boundary operator.
Assume that 6, (f*) € AF1%(by), i.e. 6, (f*) = bof¥ 1. Then byd,(f¥ 1) =
Su(bofr1) = 6i(fk) = 0 and since by is injective d,(f*~!) = 0. Hence
fE 1 =16,(g%) and so 0, (f* — bog*) = 0. Thus f*¥ —byg* = 6, (f¥!) which
precisely means that the equivalence class containing f* is in the image
of d,. Now suppose that the complex K, (6,A*X) is exact. Assume that
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5(fF) = 0. Since the quotient complex (6) with boundary operator ¢ is
exact there are g& and fk+1 such that f* = bogk + &( é““). Since by is

FEF such

injective it follows that §(g&) = 0 and so, again, there are g¥ and
that g5 = bog® + d(fF*!) and 6(g¥) = 0. Repeating this process we see that
we can write

k

(7) E= b6 gk + 8 bh s

Jj=0

and d(gk) = 0. Now, 0 = 1115( k) = §T(gF) and so by assumption, ¥(gk) =
5(hF*1) and thus \IJ(ka k) = §(bi T hE+1). But the range of by is contained
in the domain of every b; i and so b T RETL € (). Hence

(bk—|—1 k) 5(bk—|—1hk—|—1) S‘Inj[lfl(blg—klhk—kl) — \Pé'lpfl(blg—klhk—}—l)

and since VU is injective we get by 1 g = d0 1 (bE T REFL). According to (7)
we obtain

k
fk — 5( bk—|—1hk—|—1 ‘I‘ Z fk:—l—l
7=0

and K, (0, A*X) is exact. Note that in case some \; = 0 then automatically
K,(6,A*X) is exact. Thus o(a) C &(a).

We now show that if K,(d, A*X) is exact then Hy(d, AX) = 0 for k = 0,
k =n and for k = n — 1, thus implying that o(a) = 5(a) for a = (a1,as2).
We may of course assume that A\; # 0 for all j. If 8(f™) = 0 then 0 =
B6(f™) = 6®(f"). By assumption then ®(f™) = 0 and since ® is injective
(at this level the identity) we have f™ = 0. If instead 0(f* ') = 0 we
conclude that 0 = ®§(f* 1) = §®(f" ). Since & is the identity at the top
level we get

B(F"71) = 8(f") = 3B (f") = BI(f"),
which implies that f*! = 5( f™). Finally, given any f° € A°X we can
write fO = 0(f!). At the lowest level U is the identity and we see that
fO=0(f% = Ui(f!) = 6U(f!) finishing the proof. O

Example 5.7. Let X = L?(R) and let by and b; be multiplication with
1/(i+ &)? and 1/(i + £) on X and let by be the identity. Then [by, by, bo]
is a projective operator and (a1, a) = (by 'by1, b, 'b2) is affine and has the
property that each a; has a bounded inverse. It is straight forward to check
explicitly that o(a1,a2) = 6(a1,a2) = {(i + =, (i + z)?) € C%;z € R}, i.e.
the (essential) range of the multiplication operator (a1, as2).
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6. CAYLEY TRANSFORMS

We summarize our results to see that the affine operators are precisely
those operators which are Cayley transforms of bounded ones and that the
Spectral mapping theorem holds.

Let a = (ai1,...,a,) be affine and let [A] € CP" be such that condition
(i) in Definition 4.12 is fulfilled. Then if ag = Ag + Y_1 Aja;, the projective
operator [b] = [ay',a1ay",...,ana, "] projects to a and [\] € o[b]* by
Theorem 4.17 and its proof. Let [51],...,[Bn] be points in CP" such that
[Al, [B1],- -, [Bn] are in general position. Applying the projection pj g to [b]
we get the bounded commuting tuple

prs([B]) = ((Bro+ D Brjaj)ag’s. -, (Buo + Y Bnjaj)ag’)
1 1

and o(px3([b])) = prs(c[b]) by Theorem 3.8. Hence if ¢ is the correspond-
ing rational fractional transformation we see that ¢(a) = pyg([b]) is a
bounded commuting tuple and by Theorem 5.4 we have o($(a)) = ¢(6(a))
naturally interpreted.

Conversely assume that a tuple of closed operators a = (a1,...,a,) is
the Cayley transform of a bounded commuting tuple (b1, ...,b,), that is

n n
ak = (M0 + D X0,3b) T ko + D Meibs);
1 1

where (\;x) is an invertible matrix and Agg + D7 Ao ;b; is injective, i.e.
the affine hyperplane {z € C";(z,Ao) = 0} is admissible. Then clearly
[e,b1,...,by] is a projective operator and [1,0,...,0] € ole,bi,...,by]*.
Moreover, the hyperplane [XAgg, ..., o] has to be admissible and so a
is the projection of a projective operator from an admissible hyperplane.
Since the spectrum of the projective operator also has a nonempty dual
complement it follows from Theorem 4.17 that a is affine.

7. INTEGRAL FORMULAS FOR THE ANALYTIC FUNCTIONAL CALCULUS OF
PROJECTIVE OPERATORS

We provide integral formulas realizing the functional calculus described
in Section 3. Analogously to [1] we will construct a 0-closed (n,n — 1)-form,
wl'z, with values in X ® L", defined in U\ o[b], where L™! is the tautological
line bundle and U is CP" minus some hyperplane, such that if f € &(c[b)),

then (b A"
f@e= [ e

where A € o[b]* and D is a suitable neighborhood of o[b].
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We let &, denote interior multiplication with the vector field > zja%j.

Letting f be a k-homogeneous (p,0)-form in some cone in C**! then f is
the pullback of an L*-valued (p,0)-form in the projection of the cone in
CP™ if and only if §,f = 0. The statement is local and we may verify it
when zg # 0. If f is the pullback of an L*-valued (p,0)-form then f is
k-homogeneous and can be written as f = > frd(zr, /z0) A+ -+ ANd(z1,/20)-
Since 6,d(zi/20) = 8,(dzi/z0 — 2i/72d20) = zi/20 — z02i/25 = 0 we have
d,f = 0. Conversely, a straight-forward calculation shows that if f =
> frdzr is any k-homogeneous (p, 0)-form then

D (_1)1)71
f=25>" fid(zr,/20) A+ Nd(z1,/20) + ——(0:1) A dzo.
0¢1 0
Soif é,f = 0 then clearly f is the pullback of a (p, 0)-form which has to have
values in L* since f is k-homogeneous. In what follows we will identify the
space of X ® L¥ valued (p,0)-forms on some subset of CP™ with the space of
k-homogeneous X-valued §,-closed (p, 0)-forms on the cone over this subset
in C**1. Also if we are in e.g. U = CP™ \ {2, = 0} we will identify sections
of L*¥ with functions via the natural trivialization of L*¥ over U given by
putting zy = 1 in the k-homogeneous polynomials representing L*.

We let &, denote interior multiplication with ) g bjaizj' This operator
commutes with §, so it maps §,-closed X-valued forms to §,-closed X-
valued forms. However, §, reduces the homogeneity one step and therefore
dp maps k-homogeneous k-forms to k — 1-homogeneous k — 1-forms. More-
over b is commuting so we have d; o d, = 0, and we get the complex

(8) Ko(8, X ® L* @ A*°T*CPT,y).

The operator d, depends on the choice of representative for [b] but nev-
ertheless we have the following proposition.

Proposition 7.1. Let [b] be a projective operator and b any representative.
Then [z] ¢ o[b] if and only if the complez (8) is exact.

Proof. We may assume that [z] = [1,0,...,0]. We first claim that [1,0,...,0]
¢ o[b] if and only if 0 ¢ o(b1,...,b,). Actually, if 0 ¢ o(by,...,by), that
is (b1,...,by) is nonsingular, then (29 — by, b1, ...,by) is nonsingular for all
z9 € C, see [9]. Hence (29,0,...,0) ¢ o(bg,...,b,) for all zy € C, which
means that [1,0,...,0] ¢ o[b]. On the other hand, if [1,0,...,0] ¢ o[b] then
(20,0,...,0) ¢ o(bo,...,b,) for all zp € C. From the projection property
for the Taylor spectrum, [9], we conclude that 0 ¢ o(b,...,by).

To finish the proof we show that 0 ¢ o(b1,...,b,) if and only if the
complex (8) is exact at [2] = [1,0,...,0]. Note that for any f € X ® L* ®
Ak’OT*(C]P’ﬁ,O,_ o We have dp10,.01f = zoa%(]f = 0 so f does not contain any

ey
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dz. Hence ¢, acts just as interior multiplication with Y 7 bja%j, which we
denote by dy, and we can identify the complex (8) with the complex

Sy Syt Sy
0 A°X A'X A"X 0.
However, by definition, this complex is exact precisely when 0 ¢ o(b1,...,b,)
and we are done. O
Assume [1,0,...,0] € o[b]* and let ((1,...,(n) = (21/20,---,2n/20) be
local coordinates around [1,0, ..., 0]. In these local coordinates dj is interior
multiplication with
n
_ 0
bo Y (by 'bj — Cj)a_g-
1 J
if we work in the natural trivialization of L* around [1,0,...,0]. We ab-

breviate this operator boébo_lb_ ¢

Proposition 7.2. Let [b] be a projective operator with o[b]* nonempty and
let U be a neighborhood of o[b] which does not intersect a hyperplane. Then
for any q the following complex is exact:

Ko(0p,Eaq(U\ ao[b], X ® L*)).

Proof. We may assume that U does not intersect the hyperplane [1,0,...,0].
We know that pointwise for [z] € U \ o[b] the complex (8) is exact. In the
local coordinates ({1, -..,(n) = (21/20, - - -, 2n/20) this means that the com-
plex K.(X®A"0T*C”,b0(5b51b_c) is exact for ¢ € U\ o[b]. From the theory

of parameterized complexes it follows that
Ko(Eap(U \ o[b], X), boébalbic)

is exact, see e.g. [11]. But this is the statement in the proposition (in local
coordinates) for ¢ = 0. Taking exterior products with barred differentials
does not affect exactness since §, commutes with this operation. Hence the
statement is true for any q. d

We now construct the integral representation of the functional calculus.
Let f € €(U) where U is a neighborhood of o[b] that avoids a hyperplane.
Let z be the function which is identically z in U \ o[b]. From Proposition
7.2 we see that there is a form wjz € & (U \ o[b], X ® L') such that z =
5bw,}a:. Now 6 and 0 anti-commute and so (5(,50)%.’1) = —93, wgm = -0z =0.
Hence by Proposition 7.2 there is a form w? € £1(U \ o[b], X ® L?) such
that Ow}z = dpw?z. Continuing in this way and successively solving the
equations 5&1,{:1: = (5be+1$ we finally arrive at a form wj'z € &, n—1(U \
o[b], X ® L™). This form is 0-closed because, as above §,0wlz = 0 and since
dp is injective on this level we must have éwg’x = 0. If we start with another
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solution z = 5(,&1,}:1; and solve the equations édjgm = 5;,&){“:1: then wj'z and
wyw define the same 0-cohomology class. In fact, since 51,(ng — (Dfx) =
Owiz — wjz) and Gp(wiz — @iz) = 0 we get from Proposition 7.2 that
op(wiz — @lz) = ISw! = —60w', that is & (wiz — &2z + Ow') = 0, for
some w'. Inductively we obtain & (wl'z — &Pz + dw™ ') = 0 and since d
is injective on that level we get wj'z — wyz + Ow™ 1 = 0. Hence we get a
well defined mapping (depending on the representative b)

z > [wpx)5.
From the construction it is clear that this map is linear in .

Proposition 7.3. Let b be a projective operator and assume [\] € o[b]*.
Then the 0-cohomology class of (b, \)"(z,\)"wj'z does not depend on the
representative for [b).

Proof. Clearly (2, \){b, A\) 18, does not depend on the representative. Let

@/, j = 1,...,n be solutions to the equations z = (z,A)(b, Ao @ty
01 = (2, \)(b,\) 16 @*! in U \ o[b]. Then &' can not depend on the
representative. Moreover w’ := (2, A\)?(b,A\) 7&?, j = 1,...,n must satisfy

the equations z = fw', w! = Gw/t! in U \ o[b]. Hence we get that
(b, \)"(z,\) " witx defines the same 0-cohomology class as @" and we are
done. O

Theorem 7.4. Let [b] be a projective operator with [\] € o[b]*. Assume
that f € O(o[b]) and let D be a neighborhood of o[b] such that its closure
18 contained in an open set, which avoids some hyperplane and in which f
18 holomorphic. Then

[
= | 5

Proof. After a projective transformation we can assume that [A\] = [1,0,...,0]
and since the d-cohomology class of (b, \)"(z, A\) "wl'z does not depend on
the representative we may assume that b is the representative such that
e = (b, \) = by given by Proposition 4.3. We recapitulate the definition of
£([b]). Let f be the canonical lift of f to C**'. Then f([b])z = f(b)z. Let p
denote the mapping V = {z € C"*1; 25 # 0} — C" given by (20,---,2,) —
(21/20,---,2n/20) and let ¢ be the local chart ((1,...,(n) — [1,C1,- -+, Cn)-

Then
l \
p

'
= ¢ f

C
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must commute. From the composition rule in Taylor’s functional calculus
we get that f(b) = ¢* f(b1,...,b,). We will show that

[ fups =91, bo)e
oD

In the local chart ¢ and in the natural trivialization over it, d, is the operator
0y —¢ where b’ = (by,...,b,) because of our choice of b. So our solutions

wga: to the dp-equations must satisfy

T = Oy 4 (W)
09" (wy *(wi)

I
(=%
<
A
<
5

3¢ (@ 'a) = dy—c#' (W)

in ¢ 1(U \ o[b]). But from the Spectral mapping theorem ¢ (U \ o[b]) =
¢~ (U) \ o(¥). Hence [¢*(w}'z)]5 must be the same d-cohomology class as
the resolvent class Andersson defines in [1] corresponding to b’'. Moreover it
is shown in [1] that integrating against this resolvent realizes the functional
calculus. Thus we obtain

6 F(bry ... o)z = / & F o (wpa) = / & (Jupz) = / fojz. O

We have seen that the resolvent, that is the 0-cohomology class deter-
mined by (b, \)"(z, A\) "wj'z, does not depend on the representative for [b]
and that the functional calculus is realized by integrating against it. Ac-
tually, the resolvent is even independent of the choice of [A] € o[b]* in the
following sense.

Theorem 7.5. Let [b] be a projective operator and assume that [A], [\] €
olb]*. Let U be a pseudoconvez neighborhood of o[b] such that none of the
hyperplanes [ and [N intersect U. Then (b, \)™{z,\)™" wP'z and

(b, \)"(2,\) " wPz are §-cohomologous in U \ o[b].

In order to prove Theorem 7.5 we have to look more closely at the relation
between the homological construction of the functional calculus and the
integral construction. We recapitulate the homological construction. Let
¢ = (c1,...,¢y) be a commuting tuple of bounded operators on X. We let
Epq(U, X) denote the set of smooth X-valued (p, ¢q)-forms in U C C"* and
we put

LHU,X) = P £4(U,X).

q—p=k
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The operator V,_. = §,_. — 0 is an anti-derivative on b, Z*(U, X) and
maps .Z*(U, X) to ZL*¥T1(U, X). Moreover V,_.oV,_. = 0 and we get the
complex Tot.Z (U, X):

U (U, X) U R U, X) B MU, X)

This complex is exact if U is disjoint with o(c) since the Koszul com-
plex is exact outside of o(c). The crucial part of the homological con-
struction of the functional calculus for ¢ is to show that for any neighbor-
hood U of o(c) we have that X and H°(Tot.#(U, X)) are isomorphic as
0(C")-modules. Since H(Tot.Z (U, X)) has a natural &(U)-module struc-
ture, which extends the &(C")-module structure, the isomorphism yields a
O (U)-module structure on X extending the &(C")-module structure. Fur-
thermore one shows that if U’ C U are neighborhoods of o(c) then the
O (U')-module structure on X extends the &' (U)-module structure. Hence
we get a @(o(c))-module structure on X and this is our functional calcu-
lus. Given a function f € &(U) (U a neighborhood of o(c)) the X-valued
function z — zf(z) determines an element in H°(Tot.#(U, X)) and the
isomorphism maps this element to f(c)x by definition. This construction
is due to Taylor see [9] and [8].

The integral construction of f(c)z is first to solve the equation V,_.w,_.x
=z in U\ o(c), then identifying the component, w? .z, of w,_.z of bidegree
(n,n — 1), and put

fldz= [ [lz)w; .

aD
Note that for bidegree reasons, solving V, .w, . = x is exactly the
same as solving the equations z = 0,  wl .z, dwb o = §,_ Wtz

k=1,...,n—1. In [1] Andersson shows that the two definitions of f(c)z
coincide. The crucial step in proving Theorem 7.5 is the following lemma.

Lemma 7.6. Let ¢ = (c1,...,c,) be bounded commuting operators on X
and let U be a pseudoconvez neighborhood of o(c). If f € O(U) and f(c) =0
then [f(z) w}_.x]5 = 0, where w}_.x is the component of bidegree (n,n —1)
of a solution w,_.x to V, cw,_cx =z in U\ o(c).

Proof. Clearly we have V, . f(2)w,_cx = f(z)z in U \ o(c). From the
homological construction we see that zf(z) must be V,_.-exact in U since
f(c)z = 0. Hence, zf(z) = V,_.u(z) for some u € £ (U, X). Thus,
u— f(z)wz—cx i8 V,_c~closed in U \ o(c). Since Tot.Z(U \ o(c), X) is exact
there is a v € £ 72(U \ o(c), X) such that u(z) — f(2)w,—x = V,_.v(2) in
U\ o(c). Identifying terms of bidegree (n,n — 1) we see that

(9) Un—1 — f(2)w] T = Ovppn
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in U\ o(c). Moreover, V,_.u = zf(z) so for bidegree reasons Otnpn—1=0.
Since U is pseudoconvex unp—1 is actually d-exact and letting uppn—1 =
0 Un,n—2 we get from (9) that

f(z)wgfcm = 8('5n,n—2 - 'Un,n—2)

in U \ o(c) which is what we wanted to show. O
We proceed and prove Theorem 7.5.

Proof of Theorem 7.5. From Theorem 7.4 we know that both the forms
(b, \)"(z, \) "wy'x and (b, N (z, X)fnwglx represent the functional calculus.
We have to show that they are J-cohomologous in U \ o[b]. We let p
be a projection from [A]. From the proof of Theorem 7.4 we see that
P« ({0, \)"(z, \) "wyw) defines the resolvent class w¢_,((5)) corresponding to
p([b]) if we choose b € [b] such that (b, \) = e. Hence in the local coordinates
¢ = p([z]) the difference between the two forms has to be on the form

(1= £(C))we—p(a)
where f is holomorphic in p(U). Now since both of the forms realize the
functional calculus we must have 1(p([b])) — f(p([6])) = 0. Hence from

Lemma 7.6 we see that in the local coordinates, the two forms has to be
0-cohomologuos in p(U) \ a(p([b])). O

The function f(¢) is the function (b, A)*(z, \) ™ in the local coordinates
(. Hence we see that making a change of variables by a rational fractional
transform of C", computing the resolvent in the new coordinates and pulling
it back, we get (b, \)"(z({), A)~™ times the resolvent we get if we compute
it directly. Theorem 7.5 implies that the two forms are J-cohomologuos in
suitable domains.
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OPERATORS WITH SMOOTH FUNCTIONAL CALCULI

MATS ANDERSSON & HAKAN SAMUELSSON & SEBASTIAN SANDBERG

ABSTRACT. We introduce a class of (tuples of commuting) unbounded
operators on a Banach space, admitting smooth functional calculi, that
contains all operators of Helffer-Sjéstrand type and is closed under the
action of smooth proper mappings. Moreover, the class is closed under
tensor product of commuting operators. In general an operator in this
class has no resolvent in the usual sense so the spectrum must be defined
in terms of the functional calculus. We also consider invariant subspaces
and spectral decompositions.

1. INTRODUCTION

In this paper we study unbounded operators on a Banach space X that
admit smooth functional calculi, although they do not necessarily have re-
solvents. Throughout this paper X is a complex Banach space, L£(X) is
the space of bounded linear operators on X, and ex denotes the identity
operator.

Let a be a closed (densely defined) operator with real spectrum and with
the property that for each compact set K CC C there are N and Ck such
that

(1.1) lw, ol < Cx|Imz| V&, 2e€ K\R,

where w,_, is the resolvent form w, , = (2 — a) 'dz/2mi. Then there is a
continuous multiplicative mapping [a]: D(R) — £(X), defined by

(1.2) la](¢) = / wsma A OB,

where ¢ is an almost holomorphic extension to C of ¢ with compact support.
This was done by Dynkin, [7], for bounded operators a and for unbounded
operators by Helffer and Sjostrand, [10]. If a is bounded, [a] acts on all
smooth functions ¢ on R and it coincides with the holomorphic functional
calculus if ¢ is holomorphic in a neighborhood of the spectrum. In general,
[a] has a continuous extension to the algebra G of all smooth functions on
R that are holomorphic at infinity, in particular, to each r,(§) = 1/(z — &)
for z € C\ R, and [a](r,) = (z — a)~!. Conversely, it was proved in [3] that
if there exists such a multiplicative mapping [a] such that, in addition,

(1.3) Ugepm)lm [a](4) is dense, Nyepw)Ker [a](4) = {0},
and [a] extends continuously to G, then there is a closed operator a satisfying

(1.1) and such that (1.2) holds, see Theorem 6.3 for the precise statement.

1991 Mathematics Subject Classification. 47TA60; 47A13; 32A26.
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However, in many cases there exists such a smooth functional calculus al-
though the resolvent does not exist at all. For example, let a be multiplica-
tion with & +— £(2+siné3) on X = H'(R). Then the resolvent set is empty,
but nevertheless a admits a smooth functional calculus D(R) — £(X), and
(1.3) holds.

We take the existence of a smooth functional calculus as our starting
point, and introduce the notion of a hyperoperator, (with respect to smooth
functions). It is a multiplicative £(X)-valued distribution A on R such that
(1.3) holds. This additional requirement means that A(1) = ex in a weak
sense.

The spectrum of A is defined as the support of the distribution. A closable
operator (tuple of commuting closable operators) defined on a dense sub-
space D is a weak hyperoperator, who, if ¢ admits an £ functional calculus
with respect to D, i.e., a multiplicative continuous mapping £(R") — £(D),
where L£(D) is the set of closable operators mappings D — D. Roughly
speaking this means that each x € D has real and compact local spectrum
with respect to D. If a is a who and f is any smooth mapping then f(a)
is again a who. It turns out that for any hyperoperator A there is an as-
sociated who a. If f is proper, then the push-forward B = f,A of A is a
hyperoperator and b = f(a) is the who associated to B. Conversely, a who
a is (or corresponds to) a hyperoperator if and only if for each ¢ € D(R"),
¢(a) extends to a bounded operator on X. Moreover, a is bounded (extends
to a bounded operator) if and only if for each f € E(R"), f(a) extends to a
bounded operator on X.

It is a well-known problem to find a suitable definition of commutativ-
ity for unbounded operators to get a reasonable theory. We will consider
hyperoperators on R” as well, with a completely analogous definition. For
instance, if A; and Ao are hyperoperators in R, with associated whos a1 and
as, commuting in the functional calculus sense, then A = A;® A5 is a new hy-
peroperator in R?, and a = (a1, as) is the associated who. However, it is not
true that each hyperoperator in R? appears in this way. Similar phenomena
hold for the unbounded analogs of a commuting tuple of bounded operators
that are studied in e.g., [12], [15], [22], and [23]. This gives support for the
idea that a reasonable notion of “commuting tuple of unbounded operators”
must be considered as an object in its own. Weaker forms of commutativity
of unbounded operators are studied in [17], [18], [19], and [20].

One can think of (1.2) as meaning that

(1.4) Ow,—q = [a],

where [a] is the operator-valued distribution ¢ + ¢(a). For a general hyper-
operator the resolvent form does not exist, but we present other solutions
to (1.4) such that representations like (1.2) still hold.
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2. NOTATION AND SOME PRELIMINARIES

Any closed (densely defined) operator a on X, has a well-defined resolvent
set p(a) which is an open (possibly empty) subset of the extended plane C.
The spectrum of a is the set o(a) = C \ p(a). Moreover, the operator a is
bounded if and only if its spectrum is contained in C. For any automorphism
#(C) of C such that $~'(c0) is not in the point spectrum of a, ¢(a) is a
well-defined closed operator, and the spectral mapping property ¢(o(a)) =
o(¢(a)) holds. The automorphism

¢+
2.1 C() = .
(21) €=
maps R bijectively onto to the unit circle T. It induces the Cayley transform
which establishes a one-to-one correspondence between closed operators with
spectrum contained in R, and bounded operators b with spectrum contained
in T such that b — ex is injective.

T+1
T—1’

C () =i

If a is a densely defined operator on X, then it is closable if there is a
closed operator a’ such that a C d/, i.e., that the graph of a is contained in
the graph of a’. In that case the closure of the graph of a is the graph of
a (closed) operator called the closure a of a. If a has a bounded extension,
then it is equal to a.

We let H¥(R™) denote the Sobolev space consisting of all functions in
L?(R™) such that all derivatives up to order k belongs to L?(R") as well.

2.1. The Dynkin-Helffer-Sjostrand functional calculus. For any ¢ €
D(R) one can find an extension ¢ to C such that

9¢(¢) = O(|Tm ¢|*);

such a ¢ is called an almost holomorphic extension of ¢. Moreover, if K
is a complex neighborhood of supp ¢, one may assume that qNS has support
in K. Now let a be a closed operator with real spectrum such that (1.1)
holds, such an operator will be referred to as an HS operator. Then clearly
the integral in (1.2) converges, and it turns out to be independent of the
choice of almost holomorphic extension. The multiplicativity follows from
an application of the resolvent identity

1 1 1 1 1 1
+

w—az—a zZ—wWwW—a W—2Z—a
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It is easy to see that [a] is continuous in the sense that [a](¢;) — 0 in
operator norm if ¢; — 0 in D(R). It also follows that the support of [a]
coincides with o(a) N C. Moreover, we claim that

(2.2) [a](§¢)z = [a](¢)az, =z € Dom (a).
This is of course well-known, but for further reference we sketch a proof.
From the resolvent identity we have, assuming that —¢ is outside the support

of §,
/(a-ll-z'_z-ll-z')zd—za/\ng(z):

dz —~ _ dz ~
/ @ryery e / @rGTy o
where the last equality follows from Stokes’ theorem. Thus we have
1 1 1

——[al(¢) = [a)(#) - = [al(—4(©)).

Replacing ¢(&) by (£ +1)¢(¢) we get

(2.4 —Lal((€ +9)9) = [al((€ +)6) - = [al(9).

If £ € Dom (a) we therefore have [a](({ + 7)¢)z = [a]($)(a + i)z, which
implies (2.2).

(2.3)

Ezample 1. Let a be a closed operator with spectrum equal to {co0}. For
instance one can take the inverse of the Volterra operator. Then clearly
(1.1) holds, but the resulting multiplicative mapping [a] is identically 0. O

If a1,...,a, is a tuple of HS operators such that their resolvents (anti-)
commute, i.e., W¢;—q; N We—ap = —Wep—ay, N W¢j—aj, o1 (G, Cx € C\ R, then
[a] = [a1] ® [a2] - - ® [an] € D'(R", £(X)) is multiplicative. This follows by
simple abstract considerations, but it can also be realized explicitly as

la](¢) = / Wy Ao NG an N, B B(C),

where q~5 is a special almost holomorphic extension to C* with compact sup-
port as in [3], i.e., such that

(2.5) Ogy - 0, #(C) = O(Tm G| -+ - T G ).

2.2. Commuting bounded operators. Let ¢ = (a1,...,a,) be a com-
muting tuple of bounded operators on X. If the Taylor spectrum o(a) is
contained in R™, then it coincides with the spectrum of a with respect to
the commutative Banach algebra (a) generated by a. If the tuple a has real
spectrum, then we say that a admits a smooth functional calculus if the
real-analytic functional calculus [a]: O(R") — L£(X) has a continuous ex-
tension to a mapping [a]: E(R") — L(X). Since C¥(R") is dense in £(R™),
the extension is then unique and multiplicative, and in fact it extends to
E(o(a)) = L(X). The existence of such an extension is equivalent to that
exp(zat) has polynomial growth in ¢ € R”, see, e.g., [1]; it is also equivalent
to that the resolvent satisfies

llwz—all < C|Imz|_M,
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for some M > 0.

If @ has non-real (Taylor) spectrum o(a), then there is in general no unique
extension of the holomorphic functional calculus. For instance, let b be a
nilpotent operator and let A(¢) = ¢(b,0) and B(¢) = ¢(b,b) respectively,
where ¢(z,%) = ¢(z) for real-analytic ¢ (only a finite Taylor expansion is
needed). Then A and B extend to two different multiplicative mappings
E(C) — L(X) which both extend the holomorphic functional calculus. In
general, a possible smooth functional calculus is uniquely determined by the
image of Z (or Z; if we have an n-tuple of commuting operators). In our sit-
uation the bounded (tuples of) operators that appear are like b = A(¢) for a
possibly complex-valued ¢, and then we have a natural conjugated operator,
namely b* = A(¢). A smooth functional calculus for such an operator b is
then understood to map z to b*. If f(z) = f(z,2) = f(Re z,Im z), then

f(b) = f(b,b*) = f((b+b*)/2,(b— b*)/2i), and therefore we can reduce to
the case of real-valued functions ¢.

We conclude this section with the following useful observation.
Lemma 2.1. If A is a linear and multiplicative mapping D(R) — L(X)

then, for any x € D(R), z — A(x(§)/(z — &)) 1is strongly holomorphic in
C\R

Proof. Let x € D(R) be identically 1 on supp x. From linearity and multi-
plicativity we get

X _ o XO g Xy, XE)
(2.6) A(z—g)_A(zO—g) ( O)A(z—f)A(zo—g)'
Letting [|A(x(£)/(20 — £))|| = C and ||A(%(€)/(z0 — £))|| = C we see that
IA(x()/(z = &)l < C + |z — 20|C||A(x(£)/(z — )l

and so [|A(x(€)/(z — €)| < C/(1 — |z — 2|C). Thus [|A(x(€)/(= — &) is
locally uniformly bounded in z. From (2.6) it now follows that A(x(¢)/(z —

€)) is strongly continuous at zg. With this fact in mind it follows immediately
from (2.6) that

L XO) o xe
R ACTY — AT » A ) Ao,

in operator norm. O

3. DEFINITION AND BASIC PROPERTIES
We say that a linear mapping A: D(R") — L(X) is continuous, A €
D'(R", L(X)), if A(¢;) — 0 in operator norm when ¢; — 0 in D(R"). As
for ordinary distributions it follows immediately that A has finite order on

compact subsets, i.e., for any compact K C R” there is a constant C'x and
a non-negative integer Mg such that

|A()l < Cx > sup|o*g|
|| <M

for all ¢ € D(R"™) with support in K.
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Definition 1. A continuous multiplicative mapping A: D(R") — L(X) is
a hyperoperator on R*, A € Hp(gn)(X), if

(1) Dy =UImA(p) is dense in X, and
(1) N =nKer A(¢) = {0}.

If a is an HS operator such that [a] satisfies (¢) and (i%), then [a] is a hy-
peroperator. If a is bounded (or a commuting tuple of bounded operators),
then [a](¢) = ¢(a). It is readily checked that the operator (tuple of opera-
tors) Ox gives rise to the hyperoperator [0x], defined by [0x](¢) = ¢(0)ex.
In the same way, [ex](¢) = ¢(1)ex.

Remark 1. Let A: D(R") — L(X) be a continuous multiplicative mapping.
If A has compact support, i.e., A has a continuous extension to £(R"), then
(1) and (i7) hold if and only if A(1) = ex. In fact, let xny be a sequence in
D(R™) that tends to 1 in E(R™). If now A(1) = ex, then for any z € X
we have that z = A(1)z = lim A(xn)z, and hence () holds. In the same
way, if A(xn)z =0 for all N, then z = A(1)x = 0 so that (iz) holds as well.
Conversely, if z € Dy, then z = A(¢$)z and therefore A(1)z = A(1)A($)z =
A(1-¢)z = A(¢)z = z. If Dy is dense it follows that A(1) = ex. Therefore
it is natural to think of (i) and (i7) as a weak form of saying that A(1) =
ex. O

We say that xy € D(R") is an exhausting sequence if 0 < yny < 1,
XN~ 1, and the compact sets Ky = {xn = 1} form an exhausting sequence
of compact sets; i.e., Ky C int(Kyy1) and UKy = R™.

Lemma 3.1. Suppose that xn is an exhausting sequence in R" and A €
Hprny(X). Then UIm A(xn) = Da.

Proof. If ¢ € D(R™), then xy¢ = ¢ if N is large enough, and therefore

A(xn)A(d) = Alxng) = A(¢),

which shows that A(xn) is the identity on Im A(¢). Thus Im A(xn) D
Im A(¢). O

Proposition 3.2. Assume that A1 and As are hyperoperators in R" and
R™ respectively, and that they are commuting, i.e.,

A1(¢)A2(¥) = A2(9)A1(4), ¢ € D(R"), ¥ € D(R™).
Then A = A1 ® Ay is a hyperoperator in R"*™ and Dy = Dy, N Da,.

In particular it follows that D4, N D4, is dense as soon as A; and Ag are
commuting.

Proof. The tensor product A is defined as usual for distributions; thus A(¢®
) = A1(¢)A2(v), and it is extended to D(R™*™) by linearity and continuity.
The assumption on commutativity implies that A is multiplicative. If 0 =
A(pQ@v)x = A1(¢)A2(¢p)z for all ¢ and 9 it follows from condition (i7) for A;
and Ay that z = 0. Thus (4¢) holds for A. Given z € X we can find y and ¢
such that ||z— A1(¢)y|| < €/2. In the same way we can find z and 1) such that
ly— A2 (1)z]| < €/(2||A1(8)]))- Tt follows that ||z — A(¢®)z| < e. Thus Dy
is dense in X. On the other hand, since xn ® x), is an exhausting sequence



OPERATORS WITH SMOOTH FUNCTIONAL ... 7

in R"™™ if y ; and x/, are exhausting sequences in R” and R™, respectively,
it follows that z € D4 if and only if A(xny ® xm)z = z for sufficiently large
N and M, and this in turn holds if and only if z € D4, N Dy,. O

If a hyperoperator A in R*™™ is the tensor product 4; ® A, of two com-
muting, multiplicative £(X)-valued distributions in R” and R™, then each
Aj is indeed a hyperoperator. In fact, since x y ® X}, is exhausting in R**™,
UIm A(xn ® xhs) = UIm Az (xn)A2(xh,) = UIm Az (x,) A1 (xw) is dense, so
A satisfy condition (7). If Aj(¢)z = 0 for all § € D(R"), then A(¢®¢" )z =0
for all ¢, ¢'. Therefore A(p)z = 0 for all ¢ € D(R"*™), so z = 0. Hence A;
satisfies (i7).

Proposition 3.3. If A € Hpgrn)(X) and f € E(R",R™) is a proper map-
ping, then the push-forward B = f,A € D'(R™, L(X)) is a hyperoperator,
and Dg = Dy4.

Proof. Since f is proper, f*: D(R™) — D(R") and hence f,A, defined by
f+A(¢) = A(f*p) = A(d o f), is a multiplicative distribution. If xn is an
exhausting sequence in R™ since f is proper, then xy o f is an exhausting
sequence in R™. Therefore,

Dp = UNImf*A(XN) = UNImA(XN o f) =Dy

according to Lemma 3.1. Thus f,A satisfies (i). Finally, suppose that
[+A(@)y =0 for all p € D(R™). For fixed ¢ € D(R") and large N, then

A(p)y = A(d(xn o f))y = A($)A(xn © f)y =0,

and since ¢ is arbitrary, we conclude that y = 0. Thus f,A is a hyperoper-
ator. O

It is easy to check that any hyperoperator A extends to a multiplicative
mapping on the algebra D(R™) & C of smooth functions that are constant
outside some compact set, just by letting A(h) = h(oco)ex + A(h — h(00)).
If ¢ has compact support, then h = f o ¢ is in this algebra, and therefore
we have

Proposition 3.4. Assume that A € Hpgrn)(X) and ¢ € D(R",R™). Then
the bounded operator ¢(a) = A(p) admits a E-functional calculus that ex-
tends the holomorphic (real-analytic) functional calculus, defined by f +—

f(0)ex + A(f o ¢ — £(0)).

4. WEAK HYPEROPERATORS

We shall now see that for each hyperoperator A there is an associated
closable operator a on D 4. We will use the operator a to model the definition
of a weak hyperoperator, see Definition 2 below.

Let A be a hyperoperator in R” and let f: R — R™ be any smooth
mapping. If z € D4 and z = A(¢)y we define f(a)x = A(fp)y. If x =1 in
a neighborhood of supp ¢, then f(a)z = A(fx¢)y = A(fx)A(¢)y = A(fx)z;
thus f(a)z = A(fx)z and in particular f(a) is a well-defined densely defined
operator. Also observe that if ¢ € D(R"), then ¢(a)zr = A(¢)z for all
z € Dy.
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For any =z € X we let 0,(A) be the support of the X-valued distribution
¢+ A(¢)z; this is the local spectrum at z. If K C R” is compact, we let

Dy ={z € X; 0,(A) C K}.
It is readily checked that Dy = Ug Dy k-

Proposition 4.1. Assume that A is a hyperoperator in R".

(a) 1If f € E(R",R), then f(a) maps Do — D4, and if g € E(R™,R), then
g9(a)f(a) = (fg)(a) on Da.

(b) If f € E(R*,R™), then f(a) is a closable operator (tuple of operators).
(c) If fr = [ in E(R™,RP), then fr(a)r — f(a)x for all x € Dy.

(d) If ; € Dk for some fized compact set K and xz; — x in X, then
fla)z; — f(a)z.

Proof. If z € Dy and y = f(a)z, then y = A(xf)z for an appropriate x and
hence by definition y € D 4. Moreover,

g(a)f(a)z = g(a)A(xf)z = A(xg)A(xf)z = A(xxfg)r =
A(xfg)z = (fg)(a)z,

if A(x)z =z and x = 1 on the support of x. Thus (a) holds.

We can always take the closure of the graph of f(a) in X™ x X™. If
xg € Dy, zr, — z, and f(a)xzp — y, then for any ¢ € D(R"), A(¢) f(a)zr —
A(y)y; but also A(y)f(a)z, = A(Yf)rr — AW f)z, so APy = A(Yf)z.
Because of condition (i) we have that y is then uniquely determined by z,
and hence the closure is a graph. Thus (b) is proved.

Given z € Dy, take x such that A(x)z = z. Since frx — fx in D(R"),
we have that fx(a)z = A(fix)z — A(xf)r = f(a)z. Thus (c) holds. For
the last statement, observe that A(x)zy = zy if x = 1 in a neighborhood of
K. Hence f(a)zr = A(fx)zr — A(fx)z = f(a)x. O

Notice that if ¢ € D(IR™), then the closure of ¢(a) is equal to the bounded
operator A(¢). Moreover, the closure of 1(a) is equal to ex and the closure
of 0(a) is equal to Ox. Applying Proposition 4.1 to the mapping f(£) = &,
we find that ¢ has a meaning as a densely defined closable operator (tuple
of closable operators a; = fj(a), where f;(£) = ¢;, that commute on D).

In view of this proposition it is natural to introduce a special class of
densely defined linear operators. If D is a dense subspace, let £(D) be the
set of closable linear operators D — D.

Definition 2. Let ¢ = (¢, D) be a linear operator mapping the dense sub-
space D of X into itself. Moreover, assume that c is closable, and that there
is a linear and multiplicative mapping E(R") — L£(D), that extends the triv-
ial one on polynomials, and such that hi(c)z — h(c)z, for x € D if hy — h
in £(R™). Then we say that ¢, or rather (c, D), is a weak hyperoperator, a
who.

The sum of two closable operators is not necessarily closable (so £(D) is
not a space), so part of the requirement is that each polynomial p(c) in ¢ is
closable. Moreover, since the polynomials are dense in £ the extension to
E(R™) — L(D) is unique if it exists.
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Assume that A is a hyperoperator and f is any smooth mapping. If
h € E(R™,RP) then we can define h(f(a)) = (ho f)(a) on D4. Therefore
(a,D4) as well as (f(a),Dy4) are whos. Also notice that if f is proper,
B = f,A, and a and b are the associated whos, then b = f(a).

We say that a who ¢ = (¢, D) is (extendable to) a hyperoperator A if
D C D4 and ¢(c)r = A(¢)z for x € D. If such an A exists it is unique
in view of Proposition 4.2 below. In the sequel we will therefore often talk
about the hyperoperator a, meaning that a is the who associated to some
hyperoperator A.

Proposition 4.2. Suppose that A and A" are in Hprn)(X) and that DanN
D 4 is dense. Moreover, assume that there is a dense subspace D of D 4ND 4
such that aj = a;- on D and map D — D. Then A= A'.

Proof. If £ € D and y is identically 1 on a large enough set, then

Al¢ix)z = ajz = a}m = A'(&x)z.
Moreover, if x is 1 in a neighborhood of supp ¢, (recall that z € D implies
that ajz € D)

A(&kéix)z = A(&k&ixx)T = A(&ex) A& X)T =
A(kx)ajr = agajz = aﬁca;a: =...= A (&¢x)r,

and so on, so we get A(px)z = A'(px)z for all polynomials p. If ¢ is
a test function it follows by the Weierstrass approximation theorem that
A(d)z = A'(¢)z, and hence A(¢) = A’(¢) since D is dense. O

Corollary 4.3. If A is a hyperoperator and f is proper, then f.A = [0x] if
and only if f(a) = 0. In particular, A = [0x] if and only if a = 0.

In fact, if B = f,A, thenb= f(a),sobr =0=0xz forallz € Dg = Dy.
Hence, by the previous proposition, B = [0x].

Corollary 4.4. If A, A" are commuting hyperoperators and a = a' on D4 N
Dy, then A= A'.

This is just because D4 N D4 is dense if A and A’ commute, cf., Propo-
sition 3.2.

Assume that A is a hyperoperator and let h be smooth and constant
outside a compact set. It is easily checked that the bounded operator A(h) =
h(oco)ex + A(h — h(oo) is the closure of the densely defined operator h(a).
Therefore, cf., Proposition 3.4,

f(A(@))z = (f o ¢)(a)z, x € Dy,
for any smooth f if ¢ has compact support.

Proposition 4.5. Let ag be an HS operator such that [ag] satisfies (i) and
(13) so that A = [ag] is a hyperoperator. If a is the associated who, then
a = ag.

Proof. Since by assumption ag + ¢ has a bounded inverse, we have that
Dom (ag) = Dom (ag +i) = Im (ag +i)~!. If z € Dy, then x = A(x)z so by
(2.4)

1

2 = AGs = —— A((€ + )
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and hence z € Dom (ag) and by (2.2), az = apz. Thus a C ay.

Now, if z € Dom (ag) there is some y such that x = (ag + i)~'y. Take
yr € Dao C Dom (ag) such that yx — y. Then z; = (ag + 1) ‘yr = (a +
i)"lyr € D4 according to (2.3). Thus

aTp = QT = -y = Q0%

0 0
%
ap + iyk ap +1
since ag/(ag + ) is bounded. Therefore, (z,a9z) belongs to the closure of
(the graph of) a. O

It is now easy to see that there exist non-trivial hyperoperators.

Ezample 2. Let a be the unbounded operator defined as multiplication with
¢ on X = H'(Rg). It defines a hyperoperator A = [a] and the associated who
is (a,D4) where Dy = {z € X; suppz CC R}. The mapping f(£) = £(2 +
sin&3): R — R is proper and so B := f, A is a hyperoperator with Dg = D 4.
By definition B(¢) is multiplication with ¢ o f. The who b associated to B
is just multiplication with f because if z € Dp and x is chosen so that
suppz C {xo f =1} then bx = B(éx(€))z = A(fxo f)z = f(a)z = fz. We
claim that B is not [bg] for any HS operator by. If there were such a by, then
by Proposition 4.5, b = by and therefore there would be a bounded operator
c such that ¢(b + i)z = (b+i)cx = z for all z € Dg = Dom(b). However,
then ¢ would have to be multiplication with (f(£)+4)~! on the image of Dp
under b + 4 which again is Dp, but this is impossible since multiplication
with (f(&) +4)~! has no bounded extension to all of X. O

Ezample 3. If B is a hyperoperator in R? then the associated who b is equal
to (b1, be) where b; = ;b are whos as well. However it may happen that
none of the b; are hyperoperators. Let f;(€) be equal to ¢ for £ > 1 and sin £2
for ¢ < —1, and let fo(¢) = —f1(—€). Then F = (f1, fo): R — R? is proper
and therefore B := F,A is a hyperoperator, if A € Hpg)(H L(R)) is the
hyperoperator that sends ¢ to multiplication with ¢. In this case by = f1(a)
and by = fa(a). Now, ¢(b;) is multiplication with ¢ o f; and this operator
has in general no bounded extension to H'(R), so b; is not a hyperoperator.
Take for instance ¢ € D(R) such that ¢'(§) = 1 for —1 < ¢ < 1; then
(¢ o f;)(€) is unbounded. O

Ezample 4. Let (M,u) be a finite measure space and let h be a real or
complex valued measurable function (tuple of functions) defined a.e. with
respect to u. The operator defined as multiplication with h on LP(M, p),
1 < p < 00, is then a hyperoperator and o(a) (see Section 5) is the essential
range of h. Composing with smooth maps and/or taking tensor products
will not take us outside this class of multiplication operators. By basic
spectral theory any normal operator (tuple of normal commuting operators)
can be viewed as such an operator (tuple of operators) on some L%(M, p).
Therefore, our theory does not add anything to the usual theory of self-
adjoint operators. O

We conclude this section with a result which together with Proposition
4.1 characterizes those whos that are hyperoperators.

Proposition 4.6. Let a = (a, D) be a who such that the closure of ¢(a) is
bounded on X for all $ € D(R™). Then the mapping A defined by A(¢p) =
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#(a) is a hyperoperator with Dy = UgepIm $(a) D D. Moreover if a' is the
who associated to A then a' = a.

Let X and a be as in Example 2. Then (a, D(R)) is a who satisfying the
hypotheses of the proposition. The induced hyperoperator is A = [a] and
D4 is the space of all f in X with compact support.

Proof. We first show that A so defined is a continuous mapping D(R") —
L(X). To this end, we take a compact set K C R", and a cut-off function x
that is 1 in a neighborhood of K. For each £ € X we can define a mapping
Az: E(R) — X by Axf = (xf)(a)z. For z € Dy = DN {|z| < 1} the
mapping A, is continuous, since (a, D) is a who. By the Banach-Steinhaus
theorem it follows that {A;}zep, is equi-continuous, which means that

(4.1) [z f| <C Y sup|9°fl,

aj<m K

for some C, M and K’ independent of z € D;. Applying to ¢ with support
in K, and using that D is dense, we get

I¢(@)| < C Y sup|d”gl.
la]<M

Thus A is continuous. The multiplicativity A(¢y) = A(¢)A(v)) now follows
by continuity, since it holds when applied to x € D. Moreover, for any x € D
the map E(R") > f — f(a)x € X is continuous and therefore has compact
support, oz(a). If x =1 in a neighborhood of o, (a) it follows that x(a)z =
1(a)z = z. Hence A is a hyperoperator with D4 = UgepIm ¢(a) D D.

It remains to see that o/ = @. If yn is an exhausting sequence, then
Yy =E&xny — € in E(R™) and so for z € D C Dy we have

ar = ]}1_1)1100 Py (a)z = A}i_l)rlooA(z/)N)m =a'z.

Hence a C @' and so @ C a’. To obtain the converse inclusion it suffices to
show that Graph(a) D Graph(a'). Let (z,a'z) € Graph(a'). Since z € Dy,
there is an Ny such that A(xn,)z = z. Take any sequence y; in D converging
to z and put z; = xn,(a)y;. Then z; is a sequence in D and it also converges
to x since xn,(a) has a bounded extension. It follows that

azj = lim ¢Py(a)e; = lim 9 (a)xn(a)y; = ¥ (a)y; = Po(a)z,

as j — oo. However, ¥, (a)z = o’z and hence (z;,az;) = (z,d'z), that is,
(z,d'z) € Graph(a). O

Remark 2. Let (a, D) be a who. For each z € D the mapping ¢ — ¢(a)z is a
continuous mapping 4, : E(R") — X, and hence it has compact support. As
for a hyperoperator, we can define the local spectrum o, (a) as this support.
If Dk = {z € D; o4(a) C K}, then clearly D = UDg. For each x € Dg
we have an estimate like (4.1), where K’ is a compact neighborhood of K.
However, in general this estimate cannot be uniform in z for |z| < 1, since
otherwise ¢(a) would have a bounded extension to X.

To see how this lack of uniformity may appear, assume that a = f(b) for
some hyperoperator b, where f takes values in K CC R™. Then Dk, =
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Dy = D, because if z € Dy then x(b)z = z and since b has finite order on
supp x we get

[p(a)z| = |(po f-x)(B)z| <C Y sup|d*(¢o f-x)|lz]

|| <Ny

<C > sup|o®f|07x|sup|6°g||x|.
lot+B+7| <Ny "

However, N, and sup |0” f||07x| may blow up as x — 1. O

5. SPECTRUM OF A HYPEROPERATOR

We first recall

Proposition 5.1. Suppose that a = (a1, -..,a,) is a tuple of bounded com-
muting operators with real spectra and resolvents with temperate growths,
and A is the corresponding hyperoperator on R™. Then supp A is equal to
the (Taylor) spectrum of a.

For a proof, see [3]. In view of this result the following definition is natural.

Definition 3. For A € Hpgn)(X), the spectrum o(A) is the support of A
as a distribution.

When A is identified with the who a we often write o(a) instead of o(A).
Notice that A(¢) only depends on the values of ¢ in a small neighborhood
of o(A). If the spectrum of A is compact, then clearly A has a continuous
extension to a multiplicative mapping £(R") — L£(X). For such an A and
f € E(R™), we have that f(a)z = limA(fxn)x = A(f)z for x € D, and
thus the closure of f(a) is equal to the bounded operator A(f). Applying
to the identity mapping ¢ — £ on R” we get

Proposition 5.2. Suppose that A € Hpwny(X) and o(A) is compact in R".
Then the closure a of a is bounded, and [a] = A. Moreover, o(A) coincides
with the Taylor spectrum of a.

If f € £&(R™) has its support in the complement of o(A), then f(a)z =0
for all z € D, so the closure of f(a) is Ox.

Definition 4. For a who b = (b, D) we introduce the weak spectrum o, (b)
defined as the intersection of all closed sets F' such that ¢(b)z = 0 for all
z € D and ¢ with support in R” \ F.

Thus a point p is outside o, (b) if and only if for all ¢ with support
sufficiently close to p we have ¢(b)z = 0 for all z € D. It follows that if b
happens to be a hyperoperator then o,(b) = o(b). In particular, if bz = 0
for all z € D, then o,(b) = o(0) = {0}.

Proposition 5.3. Let b = (b,D) be a who and let f € E(R*,R™). Then
ow(f (b)) = f(ow(D)).

Proof. If h € D(R™) has its support outside f(o(b)), then h o f vanishes
in a neighborhood of o(b) so (ho f)(b)z = 0 for z € D, i.e, by defini-
tion, h(f(b))z = 0. This means that o, (f(b)) C f(ow(b)). For the converse
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inclusion, take any point p outside o,,(f(b)) and let h be a function identi-
cally equal to 1 in a neighborhood of p and with support outside o, (f(b)).
Then if y € f!(p) we have h o f identically equal to 1 in a neighborhood
of y. Hence for any ¢ with support in this neighborhood ¢ - (h o f) = ¢.
Since h has support outside o, (f (b)) we have ho f(b)x = h(f(b))z = 0 for
z € D and so ¢(b)x = ¢- (ho f)(b)z = ¢(b)h o f(b)z =0 for z € D. Thus
fHp) Now(d) =0, ie. fow(b)) C ow(f()). 0

Noting that o, (b) = o(b) when b is a (strong) hyperoperator we immedi-
ately get

Corollary 5.4. If A € Hpgn)(X) and f € D(R",R™), or f € E(R",R™)
is proper, then o(f(a)) = f(o(a))-

Since 04,(0p,) = 0(0x) = {0} we have

Corollary 5.5. If A € Hpgn)(X) and f € E(R",R™) and f(a)x = 0 for
all z € Dy, then a(a) C f~1(0).

It is not true in general that f(o(a)) bounded implies that f(a) is bounded
(if f is neither proper nor compactly supported). For instance, take f(&) =
siné™ and @ ~ £ on X = H'(R). Then |f| < 1 on o(a) but f(a), i.e.,
multiplication with siné™ is not bounded on X. However we have

Lemma 5.6. If a is a hyperoperator, f € E(R™), and b = f(a) is bounded,
then f(o(a)) C o(f(a)).

Proof. We know that p o f(a) = p(b) for all polynomials. Let ¢ € D(R")
have support outside o(b) and take p; such that p; = ¢ in E(R"). Then
pj — 0 uniformly in a neighborhood of o(b); we may even assume that this
holds in a complex neighborhood; thus we can conclude that p;(b) — 0 (even
though we do not know whether b admits a smooth functional calculus or
not!).

Moreover, pjo f = ¢o f in E(R™) so pjo f(a)z — ¢ o f(a)x for z € D.
Since p; o f(a) = p;(b) — 0 we conclude that ¢ o f(a) = 0. From Corollary
5.5 we get f(o(a)) C {¢ =0} and we conclude that f(o(a)) C o(b). O

Proposition 5.7. Assume that a = (a, D) is a who and that the closure of
r.(a) is bounded for each r,(§), z € C\R. Then a has real spectrum in the
usual sense.

Proof. We first prove that the closure b of r(a) = r;(a) is the inverse of
a + 1. We know that (a +i)bx = z = b(a + i)z for z € D. Suppose that
z € Dom (@ + i) = Dom (@). Then there are z; € D such that z; = = and
(a+14)x; = (a +i)z. Since b is bounded we have

z 4 xj=>bla+1i)r; = bla+i)x

so b(@ + i)z = z for x € Dom (a + ). Moreover, if z is arbitrary and z; € D
and z; = z, then bz; = br and (a + i)bz; = z; — = so by definition bz is
in the domain of @ + i and (@ + i)bx = . O
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6. REPRESENTATION BY PSEUDORESOLVENTS

We first consider the case n = 1. If a is an HS operator, then we have
the representation (1.2) of ¢(a). For a general a € Hpr)(X) such a repre-
sentation cannot hold simply because the resolvent is not defined. We will
discuss various ways to obtain formulas that will replace (1.2). The simplest
way is to use cut-off functions y and define

W', = X(Qwe—gle=a:  we—g = d(/(C — &)2mi.
Proposition 6.1. Suppose that a € Hp(g) (X). Then wé‘_a is holomorphic
for |[Im¢| > 0 and
(6.1) lwf Il = O(|Tm¢|~*)
for some M. If $ € D(R) and supp ¢ CC {x = 1}, then

(62) #0) = [ W nB30).

Proof. By Lemma 2.1 w) , is strongly holomorphic in C \ R. Since A4 has

finite order on K DD suppy, A(¢) only depends on a finite number of
derivatives of v if suppy C K and so we get (6.1). If

1 x(&)d¢ A~
$e(€) = 5 e €€ A 99(¢),

it is readily checked, for instance by approximating by Riemann sums, that

(63 o) = | N0

Moreover, ¢. — ¢x = ¢ in D(R), and hence ¢.(a) — ¢(a). Because of (6.1)
it follows that the right hand side of (6.2) is absolutely convergent and equal
to the limit of the right hand side of (6.3). O

Proposition 6.2. Each w)_, has a holomorphic continuation to the set
C\ o(a); more precisely, C\ o(a) is precisely the set where all w?_a are
strongly holomorphic.

Proof. The first statement is proved analogously to Lemma 2.1. If z € R\
o(a), let x be a cut-off function that is equal to x in a neighborhood of o(a)
and zero in a neighborhood of z. Then w)_, = A(%/(z — £)) and imitating
the proof of Lemma 2.1 we see that w)_, is strongly holomorphic close to z.
For the converse, assume ¢ has its support where wé‘_ o 1s holomorphic and

x identically 1 in a neighborhood of supp ¢. Then by Proposition 6.1,

A9 = [ n0d() =~ [d)x0) =0
by Stokes’ theorem and thus we are done. O

The advantage with the usual representation (1.2) is of course that a pri-
ori we only have to compute ¢(a) for ¢(&) = 1/(¢ — €). For the general
hyperoperator we must insert various functions x as well. However, if we
impose growth restrictions on [a], one single formula will do. In Section 7
we will consider the case with polynomial growth restrictions.
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If a is a hyperoperator or even just a who, then for each x € D, the
resolvent w¢_,x is holomorphic outside the compact set o,(a) C R, and
from (4.1) we have that |w;_oz| < C|Im¢|~™. With a similar argument as
above we therefore have the representation

da)z = / weeaz ADR(O), § € E(R).

Recall that G(R) is the algebra of functions on R that are holomorphic in
a complex neighborhood of co. Convergence in G(R) of a sequence f; means
that f; converges in £ (]ﬁ) and moreover, that all f; are holomorphic in a
fixed complex neighborhood of co and converge uniformly on compacts in
this neighborhood.

Theorem 6.3. A hyperoperator A € Hp ) (X)) corresponds to an HS opera-
tor if and only if A: D(R) — L(X) has a multiplicative continuous extension
to a mapping G(R) — L(X).

This result was more or less proved in [3]; one part is contained in the
proof of Proposition 7.2 in [3] and the other part is stated in Proposition
11.4 in the same paper, but for the reader’s convenience we supply a proof
here.

Proof. First we notice that such an extension of A must be unique if it exists
at all. In fact, for any ¢ € G(R) and x € D4 we have A(yx)z = 9(a)z if
x is chosen so that A(x)z = z. On the other hand if A is a multiplicative
extension of A we get A(y)z = A(1)A(x)z = A(x)z Hence A(4) coincides
with 9(a) on D4 and since D4 is dense and A(%) is bounded this uniquely
determines fl(zp) Here a denotes the who associated to A.

For the “only if”-part we first assume that (the closure of) a is an HS
operator, cf., Proposition 4.5. Then the action of A is given by (1.2) and
we want to extend this formula to any function f in G(R). Let F be the
holomorphic extension to a complex neighborhood O of oo, and let x be
a cut-off function in R that is equal to 1 in a neighborhood of K = R\
(RN O). One can find an almost holomorphic extension x which is 0 in a
complex neighborhood of co and 1 in a complex neighborhood of K. Then
f=0Q-x%F+ X. f is an almost holomorphic extension of f to a complex
neighborhood of R in C which is holomorphic in a neighborhood of co. Let
1 be a function identically equal to 1 in a neighborhood of R in C and with
support in a slightly larger neighborhood avoiding the point 7. Then

1 a—1 dC

(6:4) 27 —i(—a

O(f(¢)

provides the desired extension. In fact, if f has compact support then fi
is an almost holomorphic extension of f with compact support avoiding i.
It follows by Stokes’ theorem that formula (6.4) yields the same operator

s (1.2). Moreover (6.4) is continuous and multiplicative on G(R). This is
perhaps most easily seen by pulling back to the unit circle T. The Cay-
ley transform b = C(a), cf., (2.1), is a bounded operator with spectrum
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contained in the unit circle T, and

1 =~ 1 dw
o [ na(0) = o [ S AOUHC )

The right hand side is a continuous extension of the holomorphic functional
calculus for b to the space of smooth functions on T which are analytic in a
neighborhood of 1 since ||(w — b) || has tempered growth in T \ {1}. Since
the analytic functions are dense in this space, the multiplicativity follows
automatically.

Conversely, assuming that A is a hyperoperator that admits an extension
to G(R), we want to prove that @ is an HS operator. Since A now operates
on all 7,(§) = 1/(z — &) it follows from Proposition 5.7 that a has spectrum
in R in the usual sense. Clearly then 7,(a)dz/27i is the resolvent of a.
Given a compact K C R take x and x as above. As A has finite order m on
K' = supp x it follows that

H x(a)

(6.5) < Ck|Im z|~(m+1)

for any z € C\ R. For z in a small neighborhood of K, the functions

_ x(2) = x(6)
are uniformly bounded in G(R), and by (6.5) so are ||g.(a)|| = [A(g2)]-
Thus (1.1) follows by the triangle inequality. O

Remark 3. Let a € Hp(c)(X). Then we can define wé‘ia as a L(X)-valued
distribution ((1,0)-current) in C by
L [ x@$(Qde A dG

271 J, ¢—¢ £=a’
If we apply to 8¢ we get wi_,.0% = x(€)¥(€)|e=a = x(a)(a). Thus dw}_, =
xla]. If in fact a € Hpg)(X) and we choose 9 = ¢ in (6.6), then we can

move ¢ inside the integral and thus get back (6.2). However, in general it is
not possible to put a inside the integral. O

(6.6) pdC =

P € D(C).

If we want an absolutely convergent integral representation for ¢(a) when
a € Hp(rn)(X) we can use the Bochner-Martinelli form

_ /) n—1 _ Z f]dgj
and define w?_ W = X(E)we_gle—q. Then we_, is O-closed in C* \ R* and the
analogue of Proposition 6.1 holds. Proposition 6.2 also has a generalization
to the R case; C" \ o(a) is precisely the set where w)_, is strongly 0-
closed. If we consider a hyperoperator a € Hpreny(X) as an element in
a € Hp(c)(X), the analog of Remark 3 also holds.

Tensor products of hyperoperators can also be defined by integral formu-
las. Assume that Ay, ..., Ay, are in Hpgnj) but not necessarily commuting.
Then we can form the tensor product A = A4; ® --- ® 4,,, and obtain a lin-
ear continuous, though not multiplicative, operator D(R") — L£(X), where
n=mn+--+mny For¢ € DR") we can find an almost holomorphic
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extension ¢ such that (2.5) holds. In [3] this is only proved when all n; = 1
but the general case follows along the same lines. Then

6.7) (A1 @ ® Am)(d) = / WX A AW A BB BO),

if the support of ¢ is contained in the set where y1 ® --- ® x;m = 1. To
see this, first notice that the integral makes sense in view of the assumption
(2.5) and the estimates (6.1) of w?j oy Since (6.7) clearly holds for ¢ of the

form ¢ = ¢1 ® -+ ® ¢y, the general case follows by continuity. One can
also prove directly that (6.7) is independent of the choice of special almost
analytic extension ¢ along the lines in [3], and then use this as the definition
of the tensor product.

Remark 4. We can also generalize Theorem 6.3 to several variables, and
we illustrate by considering a hyperoperator A € Hpg2)(X). First we de-
fine G(R?) as the union (direct limit) of the spaces Gy (R?), U a complex
neighborhood of oo in @, defined as all smooth functions f on R x R which
are holomorphic on U x U and such that z — f(z,y) is holomorphic in
U for any y and y — f(z,y) is holomorphic in U for any z. A sequence
f; in G(R?) converges if all f; are in some fixed Gy (R?) and converges in
E((RUU) x (RUU)). The analog of Theorem 6.3 is: A has a continuous
extension to G(R?) if and only if the closures of a; = A(m)), j = 1,2, are
of HS type and commute strongly, i.e., their resolvents commute. Notice
however that this condition highly depends on the choice of coordinates on
R?, whereas the notion of general hyperoperator is coordinate invariant. [J

7. TEMPERATE HYPEROPERATORS

We say that A € Hpgny)(X) is temperate, A € Hggn)(X), if it extends
to a (necessarily multiplicative) mapping S(R") — L(X).

Since D(R™) is dense in S(R") it follows that a continuous multiplicative
map S(R") — L(X) satisfies (i) and (i) in Definition 1 if and only if it
holds with D(R") replaced by S(R™) (but the corresponding dense domain
may be larger).

For standard functional analysis reasons it follows that for any temperate
A there is an integer M such that

(7.1) A@)I<C Y supleforgl,

R
lal,| 8| <M

which in particular means that A(¢) is defined for ¢ such that its derivatives
up to order M as least have decay like 1/[£|M.

Ezample 5. Let X be the set of functions ¢(§) on R with norm |[¢| =
> ell8llce (ke  \intk,_,)- Then multiplication with (2 + sin ¢3) is a hyperop-
erator that is not temperate. O

The multiplication hyperoperator f(¢) = £(2 + siné3) on H!(R) from
Example 2 is a tempered hyperoperator, which has no ordinary resolvent.
Notice, though, that

1+ 1
i+ f(6)¢—f(8)
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is bounded for all ¢ € C\ R. More generally, if A € Hg(k)(X) and m is a
large enough integer we can define, in view of (7.1),

wit, = i4e mw ‘
¢—a Z+€ C_'ggza’

for ( € C\R. If A € Hg(gn)(X) we can take instead
m _ (1+¢-E\"
We—a = TR wc—&‘g:a-
for ( € C* \ R".

Proposition 7.1. The form wzn_a is 0-closed in C* \ R* and admits a O-

closed extension to C\ o(a). Moreover, if ¢ € S(R™) and ¢ is an appropriate
almost holomorphic extension, then

(7.2) A(g) = / Wl o A B,

This means, cf., Remark 3, that 5w2n_a = [a]. Moreover, if wye, has a
O-closed extension to C" \ F, then o(a) C F.

Sketch of proof. First notice that
1+¢<h™
|Im ¢[2n— 1+l

if just |B| < m. If A satisfies (7.1), therefore wi , is well-defined if m > M,
and

Baa, m
sup |£P0fwi | < C
Sup 7 0gwcse

(X+cp™
(7.3) lwi™ ol < [T ¢ [2n-171al”

Given ¢ € S(R™) we let

30) = / e Gty (VI F PRI ),

t
where x(s) smooth, supported in the unit ball in R" and identically 1 in
a neighborhood of the origin. One easily checks that ¢({) is smooth, and
equal to ¢ on R”, and that moreover,

(7.4) 06(C) = Onpynr, (Tm ¢|M (14 [¢]) M), My, My > 0.

)M
In view of (7.3), therefore, the integral in (7.2) is well-defined. Moreover,
from (7.4) it is easily seen that [we ¢ A 9¢(C) = $(€), and replacing $(¢)
by

#(¢
30 ()"

which satisfies a similar estimate, we get that
[wenai) = o6
One then proves (7.2) along the same lines as Proposition 6.1. O

For tempered hyperoperators the theory for tempered distributions is at
our disposal. We will use this to prove a new form of Stone’s theorem. We
first recall a simple known variant.
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Ezample 6. If v € C*(R", £(X)) and
(7.5) v(t+s) =v(t)v(s), v(0)=ex,

then v(t) = €'**) for the commuting tuple a = (0v/0t;)(0)/i in L(X). If
in addition |v(t)| = O(|t|™), when |t| — oo, then o(a) C R". If we only
assume that v(t) is continuous and satisfies (7.5), then the conclusion is not
true. (For instance, if n = 1 and a is multiplication with & on L?*(Rg), then
v(t) = €' is multiplication by e*¢? and thus a bounded operator, but v’ (0) is
not bounded.) However, v is generated by a hyperoperator A € Hg(gn)(X),
ie., v(t) =expia - t.

In fact, assume that v(t) is continuous in the weak sense that v(t)z is
continuous for each z € X. It then follows from the Banach-Steinhaus
theorem that ||v(¢)|| is uniformly bounded on compact sets. Therefore, v.¢ =
J;v(t)¢(t)dt is a bounded operator for each ¢ € S(R™). Moreover, the
condition v(0) = ex implies that NKerv(¢) = {0} and UImwv(¢) is dense.
In fact, let ¢; — dg. Then v(¢j)z — x since ¢ — v(yp)z is continuous and we
easily see that NKerv(¢) = {0} and that UImv(¢) is dense. The existence
of the generator A now follows from Proposition 7.2 below. O

Let A be a tempered hyperoperator and let D = Ugegwn)Im A(¢). If
f € E(R™) is a multiplier on S(R"), i.e., fS(R") C S(R™), we can define
fla)z for z € D as A(f¢)y if z = A(¢)y. To see that this is well-defined,
assume that also z = A(¢')y’. By the multiplicativity, we then have that
A(xnf8)y = A(xxf@)y' since xxf is in S. When N — oo, xnf¢ — [¢
in §, and hence A(f¢)y = A(f¢')y’. It is readily checked that f(a) maps
D — D and that (fg)(a)z = f(a)g(a)z.

Observe that f(£) = exp(i€-t) is a multiplier on S, so exp(ia-t)z is defined
for all x € D. Moreover, x = A(¢)y so exp(ia - t)x = A(P(&) exp(i€ - t))y,
and therefore (7.1) implies that

(7.6) |em'ta:| < Cw|t\M.

We claim that

(7.7) Az = / b(t)eadt, €S zeD.
t

In fact, the integral is convergent in view of (7.6) and it is easy to see that
it is equal to A(#)z since |t|<R¢(t)e*i‘5'tdt — (£) in S. In particular,
the integral in (7.7) has a continuous extension to X. Since 4 is in &' it
has a Fourier transform A, defined by A(1)) = A(+), and thus we have the
suggestive formula A(t) = exp(—ia - t). If we let v(t) = exp(—ia - t) = A(t)
then clearly v(t + s)z = v(t)v(s)z for z € D. Moreover, clearly v defined by
v.4) = 1(a) satisfies

@8 [ [otr900we = [v000 o6, sves

t s
and

(7.9) NKerv(¢) = {0}, Ulmwv(p) = D dense.

We have the following variant of Stone’s theorem.
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Proposition 7.2. Assume that v: S(R") — L(X) is linear, and continuous
in the sense that for fized v € X, v.¢pjz — 0 whenever ¢; — 0 in S(R").
Moreover, assume that v(t) is group of operators in the sense of (7.8) and
v(0) = ex in the sense of (7.9). Then v is generated by a hyperoperator A €
Hgwny(X) in the sense that v(t)z is smooth for x € D4 and (Ov/0ty)(0)z =
iapT.

Proof. Define A(¢) = v.¢. By the Banach-Steinhaus theorem the point-
wise continuity of v implies strong continuity and so A is a continuous
map S(R") — L£(X). Moreover, the weak multiplicativity of v implies that

v(¢ * 1) = v(¢)v(y) and hence
A(g) = v(§9) = v($ * $) = v(P)v() = A(P)A(Y).

Since the Fourier transform is an isomorphism of S(R") we get that NKer A(¢) =

{0} and UIm A(¢) = D is dense. Thus A is a tempered hyperoperator. For
x € D we can define u(t)r = €'z and since A satisfies an estimate like
(7.1) it is easy to see that |u(t)z| < C[t|M and so u(t)z defines an ele-
ment in S'(R?, X). We also see that ¢ — u(t)z is in C' (even in C*) and
u'(t)z = iaz. In fact, if ¢ € S then ¢(&)(e™ — 1)/t — i€p(€) in S as t — 0,
and hence if x = A(¢)y we get
iat iat __
¢ ; Xy = d(a)e ; ¢(a)y — ia¢(a)y = iazx.

We finally check that u(t)z = v(t)x as tempered distributions. If, as before,
x = A(¢)y, then for any ¢ € S we have

for - o=

= ABE)BE)y z-/zp

O

8. OPERATORS WITH ULTRADIFFERENTIABLE FUNCTIONAL CALCULUS

Let h(t) = H(|t|) where H(0) = 0 and H increasing and concave on
[0,00). Then h is subadditive. We also assume that limy _,., h(t)/[t| = 0
and that

) log(1 + |t])
8.1 limsup ———+
(81) tlsoo  D(P)

Let Aj, be the space of tempered distributions f on R™ such that f is a
measure and

(8.2) 14, = / F®)le"Ddt < .

Because of (8.1), Ay, is contained in C*®°(R"™). Clearly A}, is a Banach space
of functions that is closed under translations, and since h is subadditive it
follows, see e.g., [2], that Ap actually is a Banach algebra under pointwise
multiplication. These algebras were introduced by Beurling, [4]. If h(t) =
[t|%, 0 < @ < 1, then G, = UcsoAen s the classical Gevrey algebra, see [11].
We say that the class Ay, is non-quasianalytic if for each compact set F and

=0.
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open neighborhood U O FE there is a function y € Aj with support in U
which is identically 1 in some neighborhood of E. We recall the following
version of the Denjoy-Carleman theorem.

Theorem 8.1. The class Ay, is non-quasianalytic if and only if

(8.3) /1 ” H(‘?ds <

S

Assume now that h(t) = H(|t|) satisfies the condition (8.3). Let Bj be
the algebra of all functions on R” which are locally in A, for some ¢ > 1,
and let By, o be the subalgebra of functions with compact support. There is
an associated convex decreasing function G(s) = sup,(H (t) —ts) on (0, c0).
Let H.(s) = H(cs) and let G, be the corresponding decreasing function.

Proposition 8.2. A function ¢ € By, if and only if it admits an almost
holomorphic extension (/7) such that for each compact K C R", for some
¢ > 1 we have
sup |9¢|e?(mC) < oo,
Re (€K
If ¢ has compact support and U is a complex neighborhood of supp ¢ we can
choose qNS with support in U.

For a proof, see, e.g., [2]. It follows that composition of functions in
By, stays in Bp. In a completely analogous way as before we can now de-
fine a hyperoperator A € Hp, ,(X) as a continuous multiplicative mapping
Bpo(R") — L(X) such that Upep, (Im A(¢) = D is dense and Nge g, ,Ker A(¢) =
{0}. Everything that is done in Sections 3,4, and 5 carry over directly to
these ultrahyperoperators; for instance, D is the set of x € X such that
r = A(x)z for some cut-off function x in By. If A € Hp, ,(X), then
1A(¢)|| < Ccsupg: |4]a,, for each ¢ > 1. If we define wé‘_z = x(§)we—gle=q it
turns out that ||w2‘_z|| < C.expge(Im () for each ¢ > 1. If suppd C {x = 1}
we thus have the representation

9. INVARIANT SUBSPACES AND SPECTRAL DECOMPOSITION

Precisely as for a bounded operator (tuple of commuting bounded opera-
tors) that admits a smooth functional calculus, for a hyperoperator a there
is a rich structure of invariant subspaces as well as spectral decompositions.

Proposition 9.1. Assume that A € Hpwny(X), f € E(R*,R™), and let
X'"={x € Da; f(a)z =0}.

Then'Y = X' is an a-invariant subspace of X, and a’' = aly is a hyperoper-
ator. Moreover, Dy = X' and

(9.1) int {f =0} No(a) Co(a) C{f=0}Noc(a).

If {f = 0} contains some open subset of o(a), then'Y has nontrivial vectors.
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Proof. Since f(a) and ¢(a) commute, X’ and hence Y are a-invariant. If ¢
has compact support, then ¢(a) is bounded, and hence ¢(a’) extends to a
bounded operator on X’. Moreover, the continuity with respect to ¢ is clear.
Since 1(a')z = z for all z € X', the properties (i) and (#4) in Definition 1
are satisfied, so @' is indeed a hyperoperator on the Banach space Y.

By definition, X' C D,. If x € Dy, then z = x(a')z for some z € Y.
This means that z = x(a)z and so z € D,, and moreover f(a)z = 0. Thus
Dy = X'

If ¢(a) = 0 for all ¢ € D(w) then ¢(a’) = 0 for all such ¢, and hence
o(a') C o(a). If p is any point outside {f = 0} then f;(p) # 0 for some
fi (f = (fi,---,fm)). We may assume that f;(p) = 1. If w > p is small
enough, |f; — 1| <1/2 in w. For ¢ € D(w) we have that

$(a)z = $(a)(1 - f)N (a)z = (6(1 — f)¥)(@)z, =z €X',

and since ¢(1 — f;)V — 0 in D(w) when N — oo we can conclude that
#(a)xr = 0. Thus w is contained in the complement of o(a’) and so we
have proved the second inclusion in (9.1). To see the first one, take p €
int{f = 0} No(a) and a neighborhood w such that p € w C {f = 0}.
Since w intersects o(a) there exists some ¢ € D(w) and z € X such that
z = ¢(a)z # 0. However, then z € D and f(a)z = (f¢)(a)z = 0 since
fé =0,s80 z € X'. Thus w intersects o(a’). Since w > p can be chosen
arbitrarily small, we conclude that p € o(a’). If o(a’) is nonempty, then Y
is nontrivial, and so the last statement follows from (9.1). O

If p is an isolated point in o(a) and f = 0 in a neighborhood of p, then X’ is
non-trivial. There are also non-trivial a-invariant subspaces as soon as o(a)
contains more than one point. Notice that a’ is bounded if {f = 0} N o (a)
is compact.

It is easy to make spectral decompositions. Let A € Hpgn)(X) be a
hyperoperator and let {€2;} be a locally finite open cover of o(a). Moreover,
choose ¢; € E(R™) such that Q; C {¢; = 1}, and let

X; ={z € Da; ¢j(a)zr =z}.

If ©2; is bounded, we can choose ¢; in D(R") and then X; = Ker (ex — A(¢))
is a closed subspace of D4. Then X; are a-invariant subspaces, o(alx;) C

Q;No(a), and

(9.2) > X;=Da.
1

All these statements but the last one follows from Proposition 9.1. To see
(9.2), choose a smooth partition of unity x; subordinate to the cover {£2;}.
Then, since ) x; = 1, for each £ € Dy we have z = M x;j(a)z for some
M. However, (1 — ¢;)x; = 0 so x;(a)z belongs to X;. Hence, (9.2) follows.

In general the sum (9.2) is not direct. However, if o(a) is a disjoint
union of closed sets F;, we can find ¢; with disjoint supports such that
{¢; = 1} contain a neighborhood of F;. If z € X; N X}, then z = ¢;(a)r =
¢j(a)pr(a)r = (¢;¢r)(a)z = 0, and hence we get

Dy = @?OX]
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Ezample 7. Let A € Hprn)(X) and let f € E(R",R™) be a mapping such
that f(a) = 0. From Corollary 5.5 (or (9.1)) we know that o(a) C {f = 0}.
Let us also assume that the zero set {f = 0} = {a} is discrete. Then we
have the decomposition Dy = @©°X; where o(alx;) = {a’}. For each j,
let g{', ey ggj be functions in the local ideal generated by f at o/, and let
Y; = {z € Dgy; gﬁ(a)@ =0,4=1,...,¢4}. If zx € Xj, then z = ¢;(a)z,
and since moreover g;¢; = >, hi frp; for some hy, it follows that z € ;.
Thus X; C Y;. Furthermore, if for each j the common zero set of gg is
just the point «j, then by (9.1), 0(a,Y;) C {a;}. If z € Y; NY;, therefore
oz(a) = 0, and hence z = 0 since a is a hyperoperator. It therefore follows

that Xj = Y} '
If all zeros of f are of first order, i.e., the local ideal at o’ is generated by
& —al,i=1,...,n, then X; is the eigenspace

X;={r€Du; az=clz, i=1,...,n}.

If A € Hp(cy(X) and f is holomorphic in a neighborhood of o(a) and the
zeros o/ have multiplicities 7, then X; = {z € Da; (a — )z =0}. O

The situation in this example appears naturally when we consider homo-
geneous solutions to an equation like f(a)z = 0.

Ezample 8. Let A,(R"™) be a Beurling algebra, cf., Section 8, containing
cut-off functions, and let X be the space of inverse Fourier transforms of the
dual space A}. Then the tuple of commuting operators a; = i9/9¢; on X
admits an Ay, functional calculus (since A} is an algebra). Then D, is the
space of (inverse) Fourier transforms of elements with compact supports in
Aj,. Notice that Aj contains all distributions with compact support, but
also some hyperfunctions of infinite order. Let f be a Ap-smooth mapping
and consider the space {z € D,; f(a)z = 0}. If z is the inverse Fourier
transform of wu, then f(t)u(t) = 0, which means that u has support on
Z ={t € R*; f(t) =0}. It follows that we have the representation

9.3) 5(6) = / (i),

meaning the action of 4 on ¢ — expif-t. Since u has support on the
set Z = {f = 0}, z is expressed as a combination of exponentials with
frequencies in Z. O

Even if f is a polynomial, only solutions generated by real frequencies can
appear as long as we have restricted to non-quasianalytic classes. To get an
operator-theoretic frame of this kind for the general fundamental principle
of Ehrenpreis and Palamodov, [9] and [14], one must consider operators that
only admit a holomorphic functional calculus.

10. NON-COMMUTING HYPEROPERATORS

Assume that Ay, ..., Ay, are in Hpgn;) but not necessarily commuting.
Then we can form the tensor product A = 41 ® --- ® A, and obtain
a linear continuous, though not multiplicative, operator D(R") — L(X),
where n = nq1 + --- + nyp. This can also be done explicitly by the formula
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(6.7). We also write this operator of course as ¢(a1,...,a,). In case when
alln; = 1 and a; are HS operators, we get back the definition in [3]. Now the
order of the operators is crucial. Therefore it is convenient to use Feynman

notation, see, e.g., [13]. Then this operator ¢(ai, ..., an) can be written ¢(a;

Ty . . . .
,---,am) indicating that the operator a,, is to be applied first, then a,,_1
etc and finally a1, and the order is reflected by the order of the resolvents.
Therefore, if b is a bounded operator one can easily define for instance

¢(c?1,6112) 127: //(8@3@)5&(@,@) A w?ll_al A bw?;_az.

. .. . . 3 1 .
Notice that this is not an ordinary composition of f(a1,as) and b, while for

3
instance f((121, (112) b= bf(021, 012)-
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