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Abstract

In this thesis we present a new adaptive multiscale method for solving
elliptic partial differential equations. The method is based on numerical so-
lution of decoupled local fine scale problems on patches. Critical parameters
such as fine and coarse scale mesh size and patch size are tuned automatically
by an adaptive algorithm based on a posteriori error estimates. We extend
the method to a mixed formulation of the Poisson equation and derive error
estimates in this case as well.

We also present a framework for adaptivity based on a posteriori error
estimates for multi-physics problems. We study a coupled flow and transport
problem and derive an a posteriori error estimate for a linear functional by
introducing two dual problems, one associated with the transport equation
and one associated with the flow equation. We also apply this method to a
model problem in oil reservoir simulation.

Keywords: finite element method, Galerkin, duality, a posteriori error
estimation, adaptivity, variational multiscale method, mixed formulation,
multi-physics, oil reservoir simulation
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1 Introduction

Multiscale and multi-physics problems are some of the greatest challenges
in computational mathematics today. In all branches of the engineering
sciences we encounter problems with several physical processes on several
different scales. These problems often transforms into systems of partial
differential equations with multiscale features in e.g. coefficients and these
equations are very hard to solve within a reasonable tolerance on a single
global mesh on a single processor.

Even if we for the moment neglect the multi-physical aspect and study
one single equation with multiscale features we are still often forced to solve
the problems by, in some way, splitting the equations into smaller subprob-
lems that can be handled and then try to form a global solution out of these
local approximations. Many methods using different versions of this idea has
been developed over the last couple of decades and some of them have be-
come important tools in engineering. Similarly, when solving multi-physics
problems it is common to use optimized black-box solvers for each equation
again breaking up the problem into simplified subproblems.

Both the idea of splitting up the multiscale problem into subproblems
and using different solvers for different parts in a multi-physics computation
introduces lots of new parameters to the equations. In an ordinary single
mesh approach there are often just a few parameters such as the mesh size
and size of the time steps. In multiscale and multi-physics solvers one often
need to consider mesh sizes on all scales, size of subdomains for the local
problems, boundary conditions for the local problems, different meshes for
the different equations involved, different timesteps for different equation
and so on. The more complicated the problems and methods get, the more
parameters need to be set by the user.

This is not a trivial task since we often just have an idea of how these
parameters relates in an asymptotic regime, and in many cases we are far
from that in applications. It is obvious that there is a great need of guidance
here. We need to make the solver understand when a certain mesh needs
to be refined or when we need to solve some of our subproblems more accu-
rately. We need clever solvers that can analyze already computed solutions
and draw conclusions in order to improve the next version of the solution.

Such methods have been known for single mesh methods for a long time.
In the finite element community they are referred to as adaptive algorithms.
These algorithms are based on theoretical but computable bounds or esti-
mates of the error committed by discretizing the problem. Adaptive algo-
rithms work iteratively and uses earlier iterates of the solution to improve
the next solution candidate.

We believe that such methods needs to be developed for multiscale and
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multi-physics problems as well and we also believe that there is even more
to gain from using adaptive methods in these fields.

1.1 Thesis Objectives

The main objectives of this thesis are to:

• Develop a new multiscale method for solving partial differential equa-
tions where error estimation and adaptivity is an integrated part of
the method. We wish that the error estimate and adaptive algorithm
of this method could serve as a framework for adaptivity in multiscale
problems.

• Develop a framework for error estimation and adaptivity in multi-
physics problems.

• Implement and test the algorithms on practically relevant test cases.

1.2 Main Results

1.2.1 A New Adaptive Variational Multiscale Method

• We develop a new adaptive multiscale method. We start from the
variational multiscale formulation where the solution space is divided
into a coarse and a fine part. We decouple the fine scale part into
subproblems on patches and solve these local problems numerically
using homogeneous Dirichlet boundary conditions. (Paper I)

• We derive an a posteriori error estimate for the energy norm and linear
functionals of the error and present adaptive algorithms that automat-
ically tunes the critical parameters of the method in order to obtain
reliable and efficient approximations. We also implement the adaptive
variational multiscale method and show that it works on basic test
problems. (Paper I and Paper II)

• We derive an optimal order a posteriori error estimate in energy norm
for mixed finite element methods using richer function spaces for the
flux then the displacement. (Paper III)

• We extend the multiscale theory to a mixed formulation again with
error estimates both for linear functionals and in energy norm, using
the results from the three earlier papers and apply the mixed method
to a model problem in oil reservoir simulation. (Paper IV)
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1.2.2 A Framework for Adaptivity in Multi-Physics

• We present a framework for duality based a posteriori error estimation
for multi-physical problems. (Paper V)

• We apply the theory to a coupled transport and flow problem that
serves as a basic model problem in oil reservoir simulation.

1.3 Future Work

The development of adaptive algorithms based on a posteriori error esti-
mates for multiscale and multiphysics problems has just started and we
expect a rapid future development. There are thus many open problems
and we formulate a few natural extensions that we have touched on during
our work.

• Formulate the multiscale method for more then two scales and thereby
be able to take on problems with more extreme scale separation.

• Make a comprehensive evaluation of how the method performs com-
pared to other multiscale methods when solving for example the oil
reservoir problem.

• Prove a priori error estimates for the multiscale method.

• Extend the multiscale method to time dependent problems.

• Extend the multiscale method to the transport equation and to even
more challenging equations, for instance the Navier-Stokes equations.

2 The Poisson Equation

2.1 The Standard Formulation

Throughout this thesis we will mainly study the Poisson equation i.e.,

{

−△u = f in Ω,
u = 0 on Γ,

(2.1)

where f are given data, Ω is a given domain with boundary Γ, and u is
the unknown solution. The most characteristic feature of the equation is
that it smoothes out rough parts of the load f which gives the solution
higher regularity then the data. The equation models diffusion processes
and appears in all branches of the engineering sciences such as heat transfer,
structural mechanics, and electro magnetics.
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2.2 The Mixed Formulation

By rewriting equation (2.1) we get the Poisson equation on mixed form







σ −∇u = 0 in Ω,
−∇ · σ = f in Ω,

n · σ = 0 on Γ.
(2.2)

This is actually the same problem but this formulation is more common in
applications such as flow in porous media where one is mainly interested in
the flux σ.

In this thesis we will work with both these versions of the Poisson equa-
tion but in the introduction we will focus on the standard formulation.

3 The Finite Element Method

The finite element method was developed by engineers in the 1950’s and
1960’s as an alternative to the finite difference methods for computing ap-
proximate solutions to differential equations. In the early days the method
was mainly used in structural mechanics, see e.g. [25] for an overview. How-
ever, the finite element method also has a strong mathematical foundation
in functional analysis, see [6]. The mathematical foundation provides the
tools to derive analytical error estimates which can be used in a construc-
tive way to improve the approximate solution. The method can also easily
treat complex geometrical domains which makes it very useful in engineering
applications.

3.1 The Weak Form

The first step in formulating a finite element method is to reformulate the
problem on weak form. We introduce a set of test functions v ∈ V = {v ∈
H1(Ω) : v = 0 on Γ}, multiply equation (2.1) by v, integrate over the domain
Ω and integrate by parts. The weak form reads: find u ∈ V such that,

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx, for all v ∈ V. (3.1)

The finite element method aims at approximating the solution to equation
(3.1) rather then (2.1) which is different from the widely used finite difference
method. Using the weak form gives access to lots of powerful tools from
functional analysis which makes it possible to derive error estimates. We
let Vh be a discrete approximation of V consisting of piecewise polynomials
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defined on a mesh consisting of elements ∪K = K with diameter hK , see
Figure 1. The finite element methods reads: find U ∈ Vh such that,

∫

Ω

∇U · ∇v dx =

∫

Ω

fv dx, for all v ∈ Vh. (3.2)

Since Vh ⊂ V , U will not be equal to u but hopefully a good approximation.

3.2 Error Estimation

There are two classes of finite element error estimates, a priori and a pos-

teriori. The a priori estimate bounds the error e = u− U in terms of data,
u, and h while a posteriori estimates bounds e in terms of data, U , and h.
In this thesis we will only consider a posteriori error bounds since they are
computable once you have calculated U . A posteriori error estimates of the
Poisson equation can be found in many books i.e. [11, 5, 17, 22]. We present
such an estimate here in energy semi norm.

‖∇e‖2 ≤ C
∑

K∈K

ρ2
K , (3.3)

where ρ2
K = h2

K‖f +△U‖2K + hK‖[n · ∇U ]‖2∂K , ∂K is the boundary of K,
[·] is the difference in function value over edges ∂K, and C is a constant
independent of h.

3.3 Adaptive Algorithms

An adaptive algorithm is an iterative process that repeatedly solves the
problem in richer and richer spaces Vh. We will now show how we can use
equation (3.3) to formulate an adaptive algorithm:

1. Solve equation (3.2) on an initial mesh, see Figure 1 (left).

2. Calculate ρK from equation (3.3).

3. If
∑

K∈K ρ2
K is sufficiently small stop, else refine the mesh according to

ρK by splitting elements with big contributions to the error. Return
to 1.

For a typical adaptive mesh see Figure 1 (right).

This sums up the section on adaptive finite element methods. There is
obviously much more to say about this and we guide the reader to works as
[17, 11] for an overview.
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Figure 1: Quasi uniform mesh (left) and adaptively refined mesh (right).

4 Multiscale Methods

A theoretical foundation for multiscale methods can be found in Homog-
enization theory [8]. Homogenization deals mainly with problems where
data has a periodic structure. For example we can add a space dependent
coefficient to the Poisson equation (2.1),

{

−∇ · a∇u = f in Ω,
u = 0 on Γ,

(4.1)

where a > 0 and let a = a(x/ǫ) which means that a has a period of ǫ. In
homogenization theory it is of interest to find an effective coefficient ā with
corresponding solution Ū that solves (4.1) in the limit when ǫ → 0. This
means extreme scale separation that could for example be found in metals.

One multiscale method that has its roots in this theory and has got a lot
of recognition is the multiscale finite element method presented in 1997 by
Hou and Wu, [14]. In this method the standard finite element base functions
are replaced by new base functions containing fine scale structure. These
new base functions are calculated by solving local fine scale problems. Lately
Aarnes and Lie have extended this method to the mixed setting (2.2) and
applied it to oil reservoir problems, [2, 1].

4.1 The Variational Multiscale Method

Another important multiscale method is the variational multiscale method
formulated by Hughes in 1995, see [15, 16]. This method is based on the
idea of splitting the finite element spaces into a coarse and a fine part,
V = Vc ⊕ Vf . If we introduce this split in equation (3.1), rearrange terms
and introduce the scalar product notation (v,w) =

∫

Ω
v w dx we get: find
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uc ∈ Vc and uf ∈ Vf such that,

(∇uc,∇vc) + (∇uf ,∇vc) = (f, vc) for all vc ∈ Vc,
(∇uf ,∇vf ) = (f, vf )− (∇uc,∇vf ) for all vf ∈ Vf .

(4.2)

The coarse space Vc is a standard finite element space but the fine space Vf

is infinite dimensional. Hughes suggests that the fine scale solution uf could
be solved by analytical approximations on each coarse element in terms of
uc. After this is done uc can be calculated directly in the coarse space Vc.

4.2 Adaptive Variational Multiscale Methods

The method we present in this thesis starts with the variational multiscale
framework. We adopt the split between coarse and fine spaces but we solve
the local problem numerically instead of analytically and we solve them on
larger patches instead of on just one coarse element. This gives us two new
parameters, namely the fine scale mesh size h and the patch size L, other
then the coarse mesh size H.

Given this freedom it is important to use it wisely. We accomplish this by
deriving an a posteriori error bound of the multiscale solution in terms of H,
h, and L. We can now formulate an adaptive algorithm in the same spirit as
in section 3.3, see [Paper I, Paper II] and [19, 24] for the Poisson equation
on standard form and [Paper IV] for the Poisson on mixed form. These
adaptive algorithms makes the method unique. Solving difficult problems
with methods that lacks parameters that can be tuned or has parameters
but no information on how they should be modified in order to improve the
solution gives solutions that are difficult to evaluate and therefore rely on.

4.3 Adaptive Framework in Multi-Physics

In Paper V we study a different model problem,






ċ +∇ · (σc)− ǫ△c = g in Ω× (0, T ],
n · ∇c = 0 on Γ,
c = c0 for t = 0,

(4.3)

where g is given data, c0 is initial data, and the flux σ is given as a solution
to the following equation,







1

a
σ −∇u = 0 in Ω,
−∇ · σ = f in Ω,

n · σ = 0 on Γ.
(4.4)

This is a coupled transport and flow problem. The pressure equation (4.4)
is however almost the same as the one we have studied earlier (2.2). We let
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ǫ be very small since we want to minimize diffusion in our applications. To
still get a stable solution we use streamline diffusion [13, 11, 17].

Again the a posteriori error estimate is the main theoretical result of
the paper. Since we have a coupled set of PDE’s we need to introduce a
coupled set of dual problems to control the error in a given linear functional.
It is often easy to decide in what sense the transport problem should be
accurate. For example, a pointwise value could be of interest or an integrated
quantity on an out flow boundary. It is not so easy to understand how this
goal translates into the other equations that are present in a multi-physics
problem. This is however solved by the error estimate we present in the last
paper of this thesis. We also present an extensive numerical example on a
simple petroleum reservoir model problem.

5 Oil Reservoir Simulation

Numerical simulation has become a more and more important complement
to laboratory test and analytical models in oil reservoir simulation. To solve
the full oil reservoir problem one would have to solve several coupled non
linear partial differential equations, see for instance [2].

It is common to use various degrees of simplified versions of the oil reser-
voir problem, see for instance [9, 4, 1]. We have also chosen to study a sim-
ple model (4.3) just containing a flow problem and coupled with a transport
problem. This model simulates the concentration of water in the reservoir
after injecting water it a well in order to move the oil. Even though we do
not consider the full complexity of the problem in this work we use proper
data from the tenth SPE comparative project which gives us a similar fine
scale structure as you would get from solving the full problem, see Figure 2.
Since this problem both contains multiple scales and multi-physics it is very
suitable to illustrate our ideas. We believe that there are many reasons for
using adaptivity in oil reservoir simulation and we have taken a first step in
that direction in this thesis.

6 Summary of papers

6.1 Paper I

Adaptive variational multiscale methods based on a posteriori error estima-

tion: Energy norm estimates for elliptic problems, (submitted) (with Mats
G. Larson)
The variational multiscale method (VMS) provides a general framework for
construction of multiscale finite element methods. In this paper we propose
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Figure 2: The permeability a used in the numerical example is taken from
the Tenth SPE Comparative Solution Project. It is the bottom layer in the
Upper Ness formation in log-scale

a method for parallel solution of the fine scale problem based on localized
Dirichlet problems which are solved numerically. Next we present a poste-
riori error estimates for VMS which relates the error in energy norm to the
discretization errors, resolution and size of patches in the localized problems,
in the fine scale approximation. Based on the a posteriori error estimates
we propose an adaptive VMS with automatic tuning of the critical parame-
ters. We study elliptic second order partial differential equations with highly
oscillating coefficients or localized singularities.

6.2 Paper II

Adaptive variational multiscale methods based on a posteriori error estima-

tion: Duality techniques for elliptic problems Lecture notes in: Computa-
tional Science and Engineering. B. Enquist, P. Löstedt, O. Runborg (eds.)
Vol. 44, 181-193, 2005. (with Mats G. Larson)
In applications it is very common to seek a specific functional of the solu-
tion rather than the solution itself. Such a functional may be a point value,
derivative, or a mean value of the solution on a certain part of the domain.
In this paper we extend the theory in Paper I to these kind of applications.
We develop an a posteriori error estimate for a linear function of the error
and present numerical tests where we for example decreases the error in a
certain part of the domain by solving well refined local problems.
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6.3 Paper III

A posteriori error estimates for mixed finite element approximations of el-

liptic problems, (submitted) (with Mats G. Larson)
When solving elliptic problem on mixed form using a richer space for the
flux then the scalar variable it is known that a standard a posteriori error es-
timate will not give an optimal bound. One way to get around this problem
is to replace the scalar variable in the method by a post processed improved
version. In this paper we derive an a posteriori error estimate in energy
norm that gives an optimal estimate for several commonly used elements.

6.4 Paper IV

A mixed adaptive variational multiscale method with applications in oil reser-

voir simulation, (submitted)
In this paper we extend the theory from Paper I and Paper II to the mixed
formulation of the Poisson equation, equation (2.2). We solve local Neu-
mann problems instead of local Dirichlet problems on the patches and use
the results from Paper I, II, and III to derive an a posteriori error estimate
in the energy norm and for a linear functional. This new adaptive multiscale
method is applied to an elliptic problem from oil reservoir simulation. We
show numerical examples where we illustrate how the adaptive algorithm
automatically chooses where to put the most computational effort.

6.5 Paper V

Goal oriented adaptivity for coupled flow and transport problems with ap-

plications in oil reservoir simulation, to appear in Math. Models Methods
Appl. Sci. (with Mats G. Larson)
We derive an error estimation framework for multi-physics problems. By
associating a dual problem to each primal problem in a coupled set of equa-
tions we are able to minimize the error in a specific output quantity using
different refinements for each individual equation. Standard a posteriori er-
ror estimators give information on which elements that needs to be refined
in order to improve the solution. By using a set of dual problems we can also
get error indicators that point out which equations that needs to be solved
more efficiently in order to decrease the error. We apply the method to a
coupled problem in oil reservoir simulation that contains a transport equa-
tion and an elliptic pressure equation. In the numerical experiments we use
totally different elements and refinement strategies for the two equations.
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Adaptive Variational Multiscale Methods

Based on A Posteriori Error Estimation:

Energy Norm Estimates for Elliptic

Problems

Mats G. Larson∗ and Axel Målqvist†

August 19, 2005

Abstract

We develop a new adaptive multiscale finite element method using
the variational multiscale framework together with a systematic tech-
nique for approximation of the fine scale part of the solution. The
fine scale is approximated by a sum of solutions to decoupled local-
ized problems, which are solved numerically on a fine grid partition of
a patch of coarse grid elements. The sizes of the patches of elements
may be increased to control the error caused by localization. We derive
an a posteriori error estimate in the energy norm which captures the
dependency of the crucial discretization parameters: the coarse grid
mesh size, the fine grid mesh size, and the sizes of the patches. Based
on the a posteriori error estimate we present an adaptive algorithm
that automatically tunes these parameters. Finally, we show how the
method works in practice by presenting various numerical examples.

1 Introduction

The application of multiscale problems are numerous. They appear in all
branches of the engineering sciences, for instance, composite materials, flow
in porous media, fluid mechanics, and quantum physics. A common feature
for all these applications is that they are very computationally challenging
and often impossible to solve to an acceptable tolerance with standard one
mesh methods. We thus need to develop new methods which are based
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on a combination of global and localized computations, so called multiscale
methods. Further to guarantee accuracy we need to develop error estimates
and adaptive algorithms. In this paper we take a first step in this direction.

Previous work. The Variational Multiscale (VMS) method serves as a
general framework for the solution of multiscale problems, see [9, 10]. The
idea is to decompose the solution into fine and coarse scale contributions,
solve the fine scale equations in terms of the coarse scale residual, and fi-
nally eliminate the fine scale solution from the coarse scale equation. This
procedure leads to a modified coarse scale equation where the modification
accounts for the effect of fine scale behavior on the coarse scales. In several
works various ways of analytical modeling are investigated often based on
bubbles or element Green’s functions, see Hughes [9], Oberai and Pinsky,
[15], and Arbogast [1]. In [7, 8] Hou et.al. present a different approach.
Here the fine scale equations are solved numerically on a finer mesh. The
fine scale equations are solved inside coarse elements and are thus totally
decoupled. To reduce the effect from the boundary conditions forced on the
patches Hou and Wu also present a method using slightly larger patches
called the over-sampling method, see [8].

In the adaptive variational multiscale method (AVMS), first introduced
by Larson and Målqvist [13, 12], the fine scale equations are decoupled and
solved approximately on patches. In [12] an a posteriori error estimate is
presented for control of a linear functional of the error. The method is
adaptive in the sense that both the subdomains where local problems are
solved and the resolution in these local problems are chosen automatically.

New contributions. The focus of this paper is to present the AVMS
method and to derive an a posteriori error estimate in the energy norm.
The basic idea of AVMS is to split the fine scale residual into localized con-
tributions using a partition of unity and solving corresponding decoupled
localized problems on patches with homogeneous Dirichlet boundary condi-
tions. The fine scale solution is approximated by the sum Uf =

∑

i Uf,i of
the solutions Uf,i to the localized problems associated with coarse node i.
The accuracy of Uf depends on the fine scale mesh size h and the size of the
patches. We note that the fine scale computation is naturally parallel.

To optimize performance we want to construct an adaptive algorithm
for automatic control of the coarse mesh size H, the fine mesh size h, and
the size of patches. The algorithm is based on the following a posteriori
estimate of the error e = u − Uc − Uf in the energy norm for the Poisson
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equation with variable coefficient a:

‖e‖2
a ≤ C

∑

i∈C

‖HR(Uc)‖2
ωi
‖ 1√

a
‖2

L∞(ωi)
(1.1)

+ C
∑

i∈F

(

‖
√

HΣ(Uf,i)‖2
∂ωi

+ ‖hRi(Uf,i)‖2
ωi

)

‖ 1√
a
‖2

L∞(ωi)
,

where

(−Σ(Uf,i), vf )∂ωi
= (f+∇·a∇Uc, ϕivf )ωi

−a(Uf,i, vf )ωi
, for all vf ∈ V h

f (ω̄i),
(1.2)

C refers to nodes where no local problems have been solved, F to nodes
where local problems are solved, Uc is the coarse scale solution, U = Uc+Uf ,
{ϕi}i∈C∪F is a partition of unity, R(U) is a computable bound of the residual
f+∇·a∇U ,Ri(Uf,i) is a bound of the fine scale residual ϕi(f+∇·a∇Uc)+∇·
a∇Uf,i, Σ(Uf,i) is related to the normal derivative of the fine scale solution
Uf,i and measures the effect of restriction to patches, and V h

f (ω̄i) is a finite
element space on the fine scale local problem i. If no fine scale equations are
solved we obtain the first term in the estimate; the first part of the second
sum measures the effect of restriction to patches; and finally the second part
measures the influence of the fine scale mesh parameter h.

The framework of AVMS is fairly general and may be extended to other
types of multiscale methods, for instance, based on localized Neumann prob-
lems.

Outline. The remainder of the paper is organized as follows: in Section
2 we introduce the model problem and the adaptive variational multiscale
formulation; in Section 3 we present and prove a posteriori error estimates;
in Section 4 we study the special case of periodic coefficients; in Section 5
we present an adaptive algorithm based on the a posteriori error estimate;
and, finally, in Section 6 we present illustrating numerical results.

2 The Variational Multiscale Method

2.1 Model Problem

We study the Poisson equation with variable coefficients and homogeneous
Dirichlet boundary conditions: find u ∈ H1

0 (Ω) such that

−∇ · a∇u = f in Ω, (2.1)

u = 0 on Γ, (2.2)
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where Ω is a polygonal domain in Rd, d = 1, 2, or 3 with boundary Γ,
f ∈ L2(Ω), and a ∈ L∞(Ω) such that a(x) > 0 for all x ∈ Ω. The variational
form of (2.1) reads: find u ∈ V = H1

0 (Ω) such that

a(u, v) = (f, v) for all v ∈ V , (2.3)

with the bilinear form

a(u, v) = (a∇u,∇v), (2.4)

for all u, v ∈ V.

2.2 The Variational Multiscale Method

We focus on two scales and employ the variational multiscale scale formula-
tion, see Hughes [9, 10] for an overview. We choose two spaces Vc ⊂ V and
Vf ⊂ V such that

V = Vc ⊕ Vf , (2.5)

where Vc is associated with the coarse scale and Vf is associated with the
fine scale. Introducing these spaces in (2.3) gives us the following weak
formulation: find uc ∈ Vc and uf ∈ Vf such that

a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,
a(uc, vf ) + a(uf , vf ) = (f, vf ) for all vf ∈ Vf .

(2.6)

We let R : V → V ′ denote the residual defined by

(R(v), w) = (f,w)− a(v,w) for all w ∈ V. (2.7)

The fine scale equation now takes the form: find uf ∈ Vf such that

a(uf , vf ) = (R(uc), vf ) for all vf ∈ Vf . (2.8)

Thus the fine scale solution is driven by the residual of the coarse scale
solution. Denoting the solution uf to (2.8) by uf = T R(uc) we get the
modified coarse scale problem

a(uc, vc) + a(T R(uc), vc) = (f, vc) for all vc ∈ Vc. (2.9)

Here the second term on the left hand side accounts for the effects of fine
scales on the coarse scales.

In terms of matrices this gives us a modified stiffness matrix and a mod-
ified right hand side since a(T R(φi), φj) = Tij + dj for some matrix T and
vector d. Note that (R(v), w) defined in equation (2.7) is affine in v. If we
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denote the standard Galerkin stiffness matrix by A and the right hand side
by b we would get AUG = b for the standard Galerkin but

(A + T )Uc = b− d, (2.10)

for the modified version.
Another approach is to solve equation (2.6) iteratively with the Galerkin

solution as an initial guess.

2.3 Approximation of Fine Scale Equations Based on Local-

ized Dirichlet Problems

We use the method described in our earlier work [12, 13] for the approximate
solution of the fine scale equations. The idea is to decouple the fine scale
equations by including a partition of unity in the right hand side and then
solve the resulting problems on patches. We start with some preliminary
notations.

We introduce a partition K = {K} of the domain Ω into coarse shape
regular elements K of diameter HK and we let N be the set of coarse nodes.
Further we let Vc be the space of continuous piecewise polynomials of degree
p defined on K.

We let uf =
∑

i∈N uf,i where

a(uf,i, vf ) = (ϕiR(uc), vf ) for all vf ∈ Vf , (2.11)

and {ϕi}i∈N is a partition of unity e. g. the set of Lagrange basis functions
in Vc, be the solution to the decoupled fine scale equations. We note that the
right hand side has the same support as ϕi and a small support compared
to Ω.

We introduce this expansion of uf in the right hand side of the fine scale
equation (2.6) and get: find uc ∈ Vc and uf =

∑

i∈N uf,i ∈ Vf such that

a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,
a(uf,i, vf ) = (ϕiR(uc), vf ) for all vf ∈ Vf and i ∈ N .

(2.12)

The next step is to solve the fine scale equations approximately. For each
element ϕi in the partition of unity we associate a domain ωi on which
we solve Dirichlet problems. The local domain ωi contains the support of
the element in the partition of unity ϕi and will be chosen large enough to
give a good approximate solution. The quality of the solution is controlled
by error estimates. We now define the local finite element space Vh

f (ωi)
associated with node i. We refine the coarse mesh on the patch ωi and let
Vh

f (ωi) be the fine part of the nodal hierarchical basis on this mesh that
fulfills homogeneous Dirichlet boundary conditions on the boundary of the
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Figure 1: Two (left) and one (right) layer stars.

patch ωi. This means that functions in Vh
f (ωi) are continuous piecewise

polynomials of degree p on the fine scale equal to zero in the coarse nodes.
We let h denote the fine scale mesh parameter associated with these spaces.
In Figure 1 we show an examples of patches with fine meshes and the coarse
mesh.

The resulting method reads: find Uc ∈ Vc and Uf =
∑

i∈N Uf,i where
Uf,i ∈ Vh

f (ωi) such that

a(Uc, vc) + a(Uf , vc) = (f, vc) for all vc ∈ Vc,
a(Uf,i, vf ) = (ϕiR(Uc), vf ) for all vf ∈ Vh

f (ωi) and i ∈ N .
(2.13)

Since the functions in the local finite element spaces Vh
f (ωi) are equal to zero

on ∂ωi, Uf and therefore U will be continuous.

Remark 2.1 For problems with multiscale phenomena on a part of the do-
main it is not necessary to solve local problems for all coarse nodes. We let
C ⊂ N refer to nodes where no local problems are solved and F ⊂ N refer
to nodes where local problems are solved. Obviously C ∪ F = N . We let
Uf,i = 0 for i ∈ C.

Remark 2.2 The choice of the subdomains ωi is crucial for the method.
We introduce a notation for mesh stars of many layers of coarse elements
recursively in the following way. Let Si

1 be the support of the coarse scale
Lagrangian base function ϕi in node i. The extended mesh star Si

L =

∪xj∈Si
L−1

Sj
1 for L > 1, where ϕj(xj) = 1, nodes on the boundary are in-

cluded. We refer to L as the numbers of layers, see Figure 1.

Remark 2.3 Note that the construction of the fine scale local problems are
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Figure 2: A typical localized solution Uf,i of the fine scale equations in a
smooth region using one, two, three layer stars, and the entire domain.

inspired by energy norm a posteriori error estimates based on local Dirichlet
problems on stars. See [2] and [14] for further details on such estimates.

To understand how the localized solution Uf,i behaves when the domain
ωi is increased we plot different solutions Uf,i in a smooth region of the
solution u in Figure 2. Since Uf,i is solved in the slice space Vf and since
the right hand side of the fine scale equations of (2.13) has the same support
as ϕi, Uf,i will decay rapidly towards the boundary of ωi, this can also be
seen in Figure 2. We note that one layer stars appears to give bad accuracy
while two and more layer stars captures the main features of the exact fine
scale solution uf,i.

If we let ωi = Ω we will get the same solution as if we solve the global
problem on the fine mesh, given that h in constant between the patches.
However, to determine a suitable number of layers we develop error esti-
mates.
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3 A Posteriori Error Estimate in the Energy Norm

We start by introducing notations for bounds of the residual. Let R(U) be
a bound of the residual defined in the following way, see [6]:

R(U) = |f +∇ · a∇U |+ 1

2
max
∂K\Γ

H−1
K |[a∂nU ]| on K ∈ K, (3.1)

where K is the set of elements in the mesh and [·] is the difference in
function value over the current interior edge. We note that |(R(U), v)| ≤
‖HsR(U)‖‖H−sv‖ for s ∈ R. We define Ri(Uf,i) in the same way as R(U)
on the local mesh but with U replaced by Uf,i, H by h, and f by ϕiR(Uc).

We also define a new space on the patches ωi. Let Vh
f (ω̄i) be the fine

scale part of the hierarchical space of piecewise polynomials of degree p
defined on the fine mesh on patch ωi. This space is identical to Vh

f (ωi)

with the difference that Vh
f (ω̄i) is not necessarily zero on the boundary ∂ωi.

This means that Vh
f (ωi) ⊂ Vh

f (ω̄i). We also introduce the space Vh
f (∂ωi)

which is the restriction of Vh
f (ω̄i) on the boundary ∂ωi. For a given function

v ∈ Vh
f (ω̄i) we have that v restricted to the boundary is in Vh

f (∂ωi).

We derive an error estimate involving both the coarse scale error ec =
uc − Uc and the fine scale error ef =

∑

i∈N ef,i :=
∑

i∈N (uf,i − Uf,i) that
arises from using our finite element method (2.13).

If we subtract the coarse part of equation (2.13) from the coarse part of
equation (2.12) we get the Galerkin orthogonality,

a(ec, vc) + a(ef , vc) = 0 for all vc ∈ Vc. (3.2)

The same argument on the fine scale equation gives for i ∈ F ,

a(ef,i, vf ) = −a(ec, ϕivf ), for all vf ∈ Vh
f (ωi). (3.3)

We state the following estimate for the error in the energy norm, ‖e‖a =
a(e, e)1/2.

Theorem 3.1 Let a ∈ L∞(Ω) and f ∈ L2(Ω). Then the error e = u −
U where u is the exact solution to (2.1) and U = Uc +

∑

i∈N Uf,i is the
approximate solution defined by (2.13) satisfies the estimate

‖e‖2
a ≤ C

∑

i∈C

‖HR(Uc)‖2
ωi
‖ 1√

a
‖2

L∞(ωi)
(3.4)

+ C
∑

i∈F

(

‖
√

HΣ(Uf,i)‖2
∂ωi

+ ‖hRi(Uf,i)‖2
ωi

)

‖ 1√
a
‖2

L∞(ωi)
,
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where Σ(Uf,i) ∈ Vh
f (∂ωi) is defined by

(−Σ(Uf,i), vf )∂ωi
= (ϕiR(Uc), vf )ωi

− a(Uf,i, vf )ωi
, for all vf ∈ V h

f (ω̄i).
(3.5)

Proof. We use the error equation (3.2) with vc as the Scott-Zhang inter-
polant πce onto the coarse space Vc, see [3], to get,

‖e‖2
a = a(e, e) (3.6)

= a(e, e − πce) (3.7)

= a(u− Uc, e− πce)− a(Uf , e− πce) (3.8)

= (R(Uc), e− πce)− a(Uf , e− πce) (3.9)

=
∑

i∈C

(ϕiR(Uc), e− πce) (3.10)

+
∑

i∈F

(ϕiR(Uc), e − πce)− a(Uf,i, e− πce)

=
∑

i∈C

(ϕiR(Uc), e− πce) (3.11)

+
∑

i∈F

(ϕiR(Uc), πf,i(e− πce)) − a(Uf,i, πf,i(e− πce))

+
∑

i∈F

(ϕiR(Uc), e − πce− πf,i(e− πce))

−
∑

i∈F

a(Uf,i, e− πce− πf,i(e− πce))

= I + II + III, (3.12)

where πf,i is the Scott-Zhang interpolant onto Vh
f (ω̄i). We start by esti-

mating the first term of equation (3.12), I. From interpolation theory [3] we
have,

∑

i∈C

(ϕiR(Uc), e − πce) ≤
∑

i∈C

‖ϕiR(Uc)‖ωi
‖e− πce‖ωi

(3.13)

≤ C
∑

i∈C

‖HR(Uc)‖ωi
‖∇e‖ωi

. (3.14)

Next we turn our attention to the second term of equation (3.12), II.
We introduce Σ(Uf,i) ∈ Vh

f (∂ωi) as the piecewise polynomial defined on
∂ωi that uniquely solves,

(−Σ(Uf,i), vf )∂ωi
= (R(Uc), ϕivf )ωi

− a(Uf,i, vf )ωi
, for all vf ∈ V h

f (ω̄i).
(3.15)
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With this definition we get the following estimate for the second term,

II =
∑

i∈F

(−Σ(Uf,i), πf,i(e− πce))∂ωi
(3.16)

≤
∑

i∈F

‖
√

HΣ(Uf,i)‖∂ωi
‖ 1√

H
πf,i(e− πce)‖∂ωi

. (3.17)

We use the the following trace inequality from [3],

‖πf,i(e− πce)‖2
∂ωi

≤ C

(

1

H
‖πf,i(e− πce)‖2

ωi
+ H‖∇πf,i(e− πce)‖2

ωi

)

.

(3.18)

Next we use that the Scott-Zhang interpolant is both L2 and H1 stable on
shape-regular meshes from [5, 4] to get,

‖πf,i(e− πce)‖2
∂ωi

≤ C

(

1

H
‖e− πce‖2

ωi
+ H‖∇(e− πce)‖2

ωi

)

(3.19)

≤ CH‖∇e‖2
ωi

. (3.20)

We conclude

II ≤ C
∑

i∈F

‖
√

HΣ(Uf,i)‖∂ωi
‖∇e‖ωi

. (3.21)

We now take on the third term in equation (3.12),
∑

i∈F (ϕiR(Uc), e−πce−
πf,i(e− πce))− a(Uf,i, e− πce− πf,i(e− πce)),

III ≤ C
∑

i∈F

‖hRi(Uf,i)‖ωi
‖∇(e− πce)‖ωi

(3.22)

≤ C
∑

i∈F

‖hRi(Uf,i)‖ωi
‖∇e‖ωi

. (3.23)

We need to make the following simple observation,

‖∇e‖ωi
≤ ‖ 1√

a
‖L∞(ωi)‖

√
a∇e‖ωi

, (3.24)

by Hölder’s inequality. We go back to equation (3.6) and use the estimates

10



of the three terms together with equation (3.24)

‖e‖2
a ≤

∑

i∈C

(ϕiR(Uc), e− πce) (3.25)

+
∑

i∈F

(ϕiR(Uc), πf,i(e− πce)) − a(Uf,i, πf,i(e− πce))

+
∑

i∈F

(ϕiR(Uc), e − πce− πf,i(e− πce))

−
∑

i∈F

a(Uf,i, e− πce− πf,i(e− πce))

≤ C
∑

i∈C

‖HR(Uc)‖ωi
‖∇e‖ωi

(3.26)

+ C
∑

i∈F

‖
√

HΣ(Uf,i)‖∂ωi
‖∇e‖ωi

+ C
∑

i∈F

‖hRi(Uf,i)‖ωi
‖∇e‖ωi

≤ C

(

∑

i∈C

‖HR(Uc)‖2
ωi
‖ 1√

a
‖2

L∞(ωi)

)1/2

‖e‖a (3.27)

+ C

(

∑

i∈F

‖
√

HΣ(Uf,i)‖2
∂ωi
‖ 1√

a
‖2

L∞(ωi)

)1/2

‖e‖a

+ C

(

∑

i∈F

‖hRi(Uf,i)‖2
ωi
‖ 1√

a
‖2

L∞(ωi)

)1/2

‖e‖a.

Finally we get

‖e‖2
a ≤ C

∑

i∈C

‖HR(Uc)‖2
ωi
‖ 1√

a
‖2

L∞(ωi)
(3.28)

+ C
∑

i∈F

(

‖
√

HΣ(Uf,i)‖2
∂ωi

+ ‖hRi(Uf,i)‖2
ωi

)

‖ 1√
a
‖2

L∞(ωi)
,

which proves the theorem.

Remark 3.1 The quantity Σ(Uf,i) defined by (3.5) may be interpreted as
a variational approximation of n · a∇Uf,i. See [11] for further discussion on
variational approximation of the flux. By defining Uf,i = 0 on Ω \ ωi we
extend Uf,i to Ω. Then the jump residual ‖

√
H[Σ(Uf,i)]‖∂ωi

simplifies to
‖
√

HΣ(Uf,i)‖∂ωi
. Thus the latter quantity is actually a residual quantity.
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To compute Σ(Uf,i) we note that Σ(Uf,i) is a piecewise polynomial defined
on the boundary of patch ωi. Recalling that

(ϕiR(Uc), vf )ωi
− (a∇Uf,i,∇vf )ωi

= 0, for all vf ∈ Vh
f (ωi), (3.29)

we conclude that we have the same number of unknowns and equations and
in practice calculating Σ(Uf,i) will come down to solving a linear system
with a mass matrix defined on the boundary of the patch.

Remark 3.2 Since we need to calculate residuals in order to estimate the
error we need to assume that discontinuities on the coefficient a are aligned
with the fine scale mesh. Otherwise ∇ · a∇U can not be calculated as it
stands in the estimate. If the discontinuities are not aligned we will use an
approximation of a in the domains that is continuous and consider the error
committed as a modelling error. More on model errors and how they can
be included in error estimates see [6].

4 Special Case: Periodic Coefficients

Many multiscale applications features periodic fine scale structure. In this
special case we can get more information out of our calculations. We assume
that we have local scale of size ǫ and a global scale of size 1. Further we
assume a = a(x/ǫ) to be smooth. If we discretize Poisson’s equation with a
mesh parameter H > ǫ using the standard Galerkin finite element method
we have the following estimate from [8].

Proposition 4.1 Given 0 < a < β such that a = a(x/ǫ) and f ∈ L2(Ω) it
holds,

‖e‖a ≤ C
H

ǫ
‖f‖. (4.1)

Here f ∈ L2(Ω). From this estimate it is clear that we can not hope to get
a good approximation without resolving the fine scales. We make a similar
calculation for the variational multiscale approach presented in this paper.
Since the data is periodic we expect the solution to be equally hard to solve
in all parts of the domain and therefore we use same sized patches with the
same resolution for all patches. The fine scale mesh size is chosen to be
smaller then the oscillations, h < ǫ.

Theorem 4.1 Assuming f ∈ L2(Ω), 0 < a < β such that a = a(x/ǫ), and

12



u ∈ H2(Ω) we have the following estimate of the error,

‖e‖2
a ≤ C

(

h

ǫ

)2

‖f‖2 + C
∑

K∈K

‖
√

HΣ(Uf,i)‖2
∂ωi
‖ 1√

a
‖2

L∞(ωi)
. (4.2)

Proof. We use a global Scott-Zhang interpolant of v on the fine mesh
associated with h, πv, in the following calculation,

‖e‖2
a = a(e, e) (4.3)

= a(e, e − πe) + a(e, π(e − πce)) (4.4)

= a(e, u− πu) +
∑

i∈N

a(ec, ϕiπf,i(e− ec)) + a(ef,i, πf,i(e− πce)) (4.5)

= a(e, u− πu) +
∑

i∈N

(Σ(Uf,i), πf,i(e− πce))∂ωi
(4.6)

= I + II. (4.7)

We start with the first part. We shall use the following result from approx-
imation theory,

‖u− πu‖2
a ≤ β2‖∇(u− πu)‖2 ≤ β2h2|u|22, (4.8)

where |u|2 is the H2(Ω) semi-norm of u and the following regularity estimate,
see [8],

|u|2 ≤
C

ǫ
‖f‖. (4.9)

Together equations (4.8) and (4.9) give,

‖u− πu‖a ≤ C
h

ǫ
‖f‖. (4.10)

We can now proceed with the following calculation,

I ≤ 1

4
‖e‖2

a + ‖u− πu‖2
a ≤

1

4
‖e‖2

a + C

(

h

ǫ

)2

‖f‖2. (4.11)

For the second part, II in equation (4.3), we use Cauchy-Schwartz for sums,
the H1-stability of π, see [5, 4], and uf = u− uc to get,

II ≤
∑

i∈N

√
H‖Σ(Uf,i)‖∂ωi

‖ 1√
H

πf,i(e− πce)‖ωi
. (4.12)
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Using Cauchy-Schwartz for sums, equations (3.20), and (3.24) we get,

II ≤ C

(

∑

i∈N

‖
√

HΣ(Uf,i)‖2‖ 1√
a
‖2

L∞(ωi)

)1/2

‖e‖a (4.13)

≤ C
∑

i∈N

‖
√

HΣ(Uf,i)‖2‖ 1√
a
‖2

L∞(ωi)
+

1

4
‖e‖2

a. (4.14)

Finally, combining equations (4.7), (4.11), and (4.14) the theorem follows.

Again we see that the error committed by the restriction to patches is
measured by the size of the normal derivative of the fine scale solution on
the boundary of the patch. This quantity will go to zero when the patch
size equals the entire domain which means that the method is guaranteed
to converge to the reference solution on the global fine mesh.

When solving problems with periodic coefficients it is very reasonable to
choose structured meshes if possible aligned with the oscillations. It is also
natural to put in equal computational effort in all parts of the domain which
means that no adaptivity in terms of where the fine scale should be solved
is necessary. However, it is still important to choose the relation between
the parameters h and L adaptively.

If the mesh is aligned with the oscillations local problems solved inside
the domain will differ only in the right hand side which means that the
computational effort is almost negligible. If f is also periodic we would get
identical contributions to the modifying matrix T and vector d in equation
(2.10) from the local calculations.

Patches including parts of the boundary will also appear repeatedly in
the calculations, one of each kind needs to be computed.

5 Adaptive Algorithm

We shall now use use the energy norm estimate in Theorem 3.1 to construct
an adaptive algorithm. Recalling the estimate

‖e‖2
a ≤ C

∑

i∈C

‖HR(Uc)‖2
ωi
‖ 1√

a
‖2

L∞(ωi)
(5.1)

+ C
∑

i∈F

(

‖
√

HΣ(Uf,i)‖2
∂ωi

+ ‖hRi(Uf,i)‖2
ωi

)

‖ 1√
a
‖2

L∞(ωi)
.

The three contributions to the error can easily be understood. The first
term is the standard a posteriori error estimate for a Galerkin solution on
the coarse mesh i.e. this is what we get if we do not solve any local problems.
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The first part of the second sum represents the error arising from the fact
that we solve the local problems on patches ωi instead of the entire domain.
Remember that Σ(Uf,i) is closely related to the normal derivative of the fine
scale solution on the boundary of the patches. Finally, the second part of
the second sum represents the fine scale resolution. The two contributions to
the second sum clearly points out the parameters of interest when using our
method. The first one is the patch size, increasing patch size will decrease
‖
√

HΣi(Uf,i)‖∂ωi
since Σi(Uf,i) is an approximation of the normal derivative

of Uf,i which decreases as the patch size increases due to the localized load in
the right hand side of the fine scale equations (2.13) and the split of spaces
which forces Uf,i to be zero in all coarse nodes. The second part represents
the effect of discretizing the local problems using the fine scale mesh size h.

Based on the error estimate (5.1) we now state the following adaptive
algorithm:

Adaptive Algorithm.

1. Start with no nodes in F .

2. Calculate a solution Uc on the coarse mesh by solving (2.13).

3. For all i ∈ C calculate the residuals for each coarse node, Ri =
‖HR(Uc)‖2

ωi
.

4. For all i ∈ F calculate the contributions from the first term of the
local problems, Si = ‖

√
HΣ(Uf,i)‖2

∂ωi
and the second term, Wi =

‖hRi(Uf,i)‖2
ωi

.

5. For large values in Ri add i to F , for large values in Si or Wi either
increase the number of layers or decrease the fine scale mesh size h for
local problem i. Return to 2 or stop if the desired tolerance is reached.

The idea is to start with an adaptively refined mesh on the coarse scale
that is derived using standard techniques with refinement and coarsening.
When we finally start to use the algorithm above and solve local problems it
is also possible to use coarsening in areas where the solution is too good. This
can either be done by increasing the local mesh parameter h or decreasing
the patch size L and it is done according to the indicators Si and Wi.

6 Numerical Examples

We solve two dimensional model problems with piecewise linear approxima-
tion defined on a uniform triangular mesh.
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Figure 3: Unit square with slits between (0.25, 0.5) and (0.75, 0.5) and be-
tween (0.5, 0.25) and (0.5, 0.75).
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Figure 4: The solution calculated using 1089 nodes.

Example 1. In the first example we let a = 1, f = 1, and Ω be the unit
square with a crack that forms a plus sign, see Figure 3. The solution u
is forced to be zero on the boundary including the slits, see Figure 4. We
solve the problem by using the adaptive algorithm above with a refinement
level of about 20 % in each iteration. We start with one refinement and one
layer stars for the local problems. Figure 5 (left) shown the adaptive choice
of coarse nodes for which local problems needs to be solved.

After the second iteration no more local problems are added but the
number of layers is increased to two, see Figure 5 (right). As seen the
algorithm decides to increase the number of layers for all coarse nodes. This
indicates that the normal derivative of Uf,i is not small on the boundary of
the patches. This is exactly what we get if we study a specific choice of Uf,i

with center close to the cracks, see Figure 6. These solutions looks quite
different from the ones that origins from a smooth region found in Figure 2.
The local contribution has a constant sign which indicates a constant signed
error in the Galerkin solution. In Figure 7 we study the error compared
to a reference solution of the standard Galerkin solution and the solutions
after one and two iterations. We use the same scale in all three plots. The
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Figure 5: Refinement level, h = H ·2−k (left), and number of layers L (right)
for each coarse node after the first and second iteration. We have k = 1 after
both iterations and L = 1 after the first and L = 2 after the second.
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Figure 6: Localized solution Uf,i to the fine scale equations in a rough region
using one, two, three layer stars, and the entire domain.
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Figure 7: The error in the Galerkin solution (left), after one step in the
adaptive algorithm (middle), and after two steps (right).

Figure 8: The coefficient is discontinuous with the values a = 1 on the white
areas and a = 0.05 on the dark areas.

Galerkin solution has large error in the singularities and the error is positive.
We see that the local problems decreases the error in each iteration.

Example 2. In this example we use a simple geometry, the unit square,
but we let the coefficient a oscillate rapidly with period ǫ = 1/8 according
to Figure 8. The thickness of the black squares with a = 0.05 in Figure
8 is 1/96 and this is the scale we need to resolve in order to get a good
approximation. We calculate a reference solution on the fine space there
h = 1/192 and compare it to standard Galerkin calculated using quadrature
on the coarse mesh H = 1/48 with and without solving local problems.
We see that standard Galerkin on a coarse mesh performs badly for this
problem, see Figure 9. This is not surprising. From equation (4.1) we see
that we have no control of the error what so ever when using Galerkin if the
fine scale features are not resolved. In this case H = 1/48 but the fine scale
features are of size 1/96 ever though the period of repetition is 1/8.

The approximation calculated using two layer stars on the other hand
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Figure 9: Reference solution (left), standard Galerkin on coarse mesh (mid-
dle), and solution with local problems using two layer stars (right).
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Figure 10: Error for standard Galerkin (left) and for the solution using local
problems with two layer stars (right).

gives a very nice improvement of the solution. Here the fine scale features are
resolved and the error committed are only due to the restriction to patches.
The magnitude is correct and if we study the error between this solution
and the reference solution we get a ten times smaller error, see Figure 10.
The coarse mesh is aligned to the oscillations in a so this nice solution can
be calculated by solving extremely few small localized problems at a very
low cost.

As mentioned before calculating a modified stiffness matrix rather than
using an iterative approach is very efficient in the periodic setting. To under-
stand the method it is interesting to know how the method actually modifies
the stiffness matrix. We do this by studying the spectrum of the resulting
matrix A + T for different number of layers in Figure 11. We study the
twenty lowest and most significant eigenvalues. The first thing we note is
that the eigenvalues of A + T always are smaller than the ones of A. This
is natural since the discretization increases eigenvalues of the operator. We
also see that already after two layers we get very nice agreement with the
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Figure 11: The twenty lowest eigenvalues of the matrix A + T for fine scale
problems solved using no stars, one layer stars, two layer stars, three layer
stars, and on the entire domain.

correct spectrum we like to approximate.

From our numerical examples we conclude that using one layer stars
almost never is enough to get good accuracy but already two layer stars
gives very nice improvement of the standard Galerkin solution.
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Summary. The variational multiscale method (VMS) provides a general frame-
work for construction of multiscale finite element methods. In this paper we propose
a method for parallel solution of the fine scale problem based on localized Dirichlet
problems which are solved numerically. Next we present a posteriori error represen-
tation formulas for VMS which relates the error in linear functionals to the coarse
scale discretization error, resolution of fine scales, and size of the patches in the lo-
calized fine scale problems. These formulas are derived by using duality techniques.
Based on the a posteriori error representation formula we propose an adaptive VMS
with automatic tuning of the critical parameters. We primarily study elliptic second
order partial differential equations with highly oscillating coefficients or localized
singularities.

1 Introduction

Many problems in science and engineering involve models of physical systems
on many scales. For instance, models of materials with microstructure such
as composites and flow in porous media. In such problems it is in general not
feasible to seek for a numerical solution which resolves all scales. Instead we
may seek to develop algorithms based on a suitable combination with a global
problem capturing the main features of the solution and localized problems
which resolves the fine scales. Since the fine scale problems are localized the
computation on the fine scales is parallel in nature.

Previous work.

The Variational Multiscale Method is a general framework for derivation of
basic multiscale method in a variational context, see Hughes [7, 8]. The basic

⋆⋆Corresponding author
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idea is to decompose the solution into fine and coarse scale contributions, solve
the fine scale equation in terms of the residual of the coarse scale solution, and
finally eliminate the fine scale solution from the coarse scale equation. This
procedure leads to a modified coarse scale equation where the modification
accounts for the effect of fine scale behavior on the coarse scales. In practice
it is necessary to approximate the fine scale equation to make the method
realistic. In several works various ways of analytical modeling are investigated
often based on bubbles or element Green’s functions, see Oberai and Pinsky,
[11] and Arbogast [4]. In [6] Hou and Wu present a different approach. Here
the fine scale equations are solved numerically on a finer mesh. The fine scale
equations are solved inside coarse elements and are thus totally decoupled.

New contributions.

In this work we present a simple technique for numerical approximation of
the fine scale equation in the variational multiscale method. The basic idea
is to split the fine scale residual into localized contributions using a partition
of unity and solving corresponding decoupled localized problems on patches
with homogeneous Dirichlet boundary conditions. The fine scale solution is
approximated by the sum Uf =

∑
i Uf,i of the solutions Uf,i to the localized

problems. The accuracy of Uf depends on the fine scale mesh size h and
the size of the patches. We note that the fine scale computation is naturally
parallel.

To optimize performance we seek to construct an adaptive algorithm for
automatic control of the coarse mesh size H , the fine mesh size h, and the size
of the patches. Our algorithm is based on the following a posteriori estimate
of the error e = u−Uc−Uf for the Poisson equation with variable coefficient
a:

(e, ψ) =
∑

i∈C

(ϕiR(Uc), φf ) +
∑

i∈F

((ϕiR(Uc), φf )− a(Uf,i, φf )) , (1)

where ψ ∈ H−1(Ω) is a given distribution, C refers to nodes where no local
problems have been solved, F to nodes where local problems are solved, Uc is
the coarse scale solution, U = Uc + Uf , R(U) = f +∇ · a∇U is the residual,
{ϕi}i∈C∪F are coarse base functions, and φf is the fine scale part of a dual
solution driven by ψ.

If no fine scale equations are solved we only obtain the first term in the
estimate. The second term relates the fine scale mesh parameter h to the
patch size ωi on which the local problems are solved. We have derived a
similar estimate for the error in energy norm, see [10].

The framework is fairly general and may be extended to other types of
multiscale methods, for instance, based on localized Neumann problems.

Outline.

First we introduce the model problem and the variational multiscale formu-
lation of this problem, we also discuss the split of the coarse and fine scale
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spaces. In the following section we present a posteriori estimates of the error.
These results leads to an adaptive algorithm. We present numerical results
and finally we present concluding remarks and suggestions on future work.

2 The Variational Multiscale Method

2.1 Model Problem

We study the Poisson equation with a highly oscillating coefficient a and
homogeneous Dirichlet boundary conditions: find u ∈ H1

0
(Ω) such that

−∇ · a∇u = f in Ω, (2)

where Ω is a polygonal domain in Rd, d = 1, 2, or 3 with boundary Γ ,
f ∈ L2(Ω), and a ∈ L∞(Ω) such that a(x) ≥ α0 > 0 for all x ∈ Ω. The
variational form of (2) reads: find u ∈ V = H1

0
(Ω) such that

a(u, v) = (f, v) for all v ∈ V, (3)

with the bilinear form
a(u, v) = (a∇u,∇v), (4)

for all u, v ∈ V .

2.2 The Variational Multiscale Method

We employ the variational multiscale scale formulation, proposed by Hughes
see [7, 8] for an overview, and introduce a coarse and a fine scale in the
problem. We choose two spaces Vc ⊂ V and Vf ⊂ V such that

V = Vc ⊕ Vf . (5)

Then we may pose (3) in the following way: find uc ∈ Vc and uf ∈ Vf such
that

a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,

a(uc, vf ) + a(uf , vf ) = (f, vf ) for all vf ∈ Vf .
(6)

Introducing the residual R : V → V ′ defined by

(R(v), w) = (f, w)− a(v, w) for all w ∈ V , (7)

the fine scale equation takes the form: find uf ∈ Vf such that

a(uf , vf ) = (R(uc), vf ) for all vf ∈ Vf . (8)

Thus the fine scale solution is driven by the residual of the coarse scale so-
lution. Denoting the solution uf to (8) by uf = TR(uc) we get the modified
coarse scale problem

a(uc, vc) + a(TR(uc), vc) = (f, vc) for all vc ∈ Vc. (9)

Here the second term on the left hand side accounts for the effects of fine
scales on the coarse scales.
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2.3 A VMS Based on Localized Dirichlet Problems

We introduce a partition K = {K} of the domain Ω into shape regular ele-
ments K of diameter HK and we let N be the set of nodes. Further we let Vc

be the space of continuous piecewise polynomials of degree p defined on K.
We shall now construct an algorithm which approximates the fine scale

equation by a set of decoupled localized problems. We begin by writing uf =∑
i∈N uf,i where

a(uf,i, vf ) = (ϕiR(uc), vf ) for all vf ∈ Vf , (10)

and {ϕi}i∈N is the set of Lagrange basis functions in Vc. Note that {ϕi}i∈N

is a partition of unity with support on the elements sharing the node i. We
call the set of elements with one corner in node i a mesh star in node i

and denote it Si
1
. Thus functions uf,i correspond to the fine scale effects

created by the localized residuals ϕiR(uc). Introduce this expansion of uf in
the right hand side of the fine scale equation (6) and get: find uc ∈ Vc and
uf =

∑
i∈N uf,i ∈ Vf such that

a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,

a(uf,i, vf ) = (ϕiR(uc), vf ) for all vf ∈ Vf and i ∈ N .
(11)

We use this fact to construct a finite element method for solving (11) approx-
imately in two steps.

• For each coarse node we define a patch ωi such that supp(ϕi) ⊂ ωi ⊂ Ω.
We denote the boundary of ωi by ∂ωi.

• On these patches we define piecewise polynomial spaces Vh
f (ωi) with re-

spect to a fine mesh with mesh function h = h(x) defined as a piecewise
constant function on the fine mesh. Functions in Vh

f (ωi) are equal to zero
on ∂ωi.

The resulting method reads: find Uc ∈ Vc and Uf =
∑n

i Uf,i where Uf,i ∈
Vh

f (ωi) such that

a(Uc, vc) + a(Uf , vc) = (f, vc) for all vc ∈ Vc,

a(Uf,i, vf ) = (ϕiR(Uc), vf ) for all vf ∈ Vh
f (ωi) and i ∈ N .

(12)

Since the functions in the local finite element spaces Vh
f (ωi) are equal to zero

on ∂ωi, Uf and therefore U = Uc + Uf will be continuous.

Remark 2.1 For problems with multiscale phenomena on a part of the do-
main it is not necessary to solve local problems for all coarse nodes. We let
C ⊂ N refer to nodes where no local problems are solved and F ⊂ N refer to
nodes where local problems are solved. Obviously C ∪ F = N . We let Uf,i = 0
for i ∈ C.
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Remark 2.2 The choice of the subdomains ωi is crucial for the method. We
introduce a notation for extended stars of many layers of coarse elements
recursively in the following way. Let Si

1
be the support of the coarse scale La-

grangian base function ϕi in node i. The extended mesh star Si
L = ∪xj∈Si

L−1

S
j
1

for L > 1, where ϕj(xj) = 1, nodes on the boundary are included. We refer
to L as the numbers of layers, see Figure 1.
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0.7

0.8

0.9

1

Fig. 1. Two (left) and one (right) layer stars.

In Figure (2) we plot solutions to localized fine scale problems Uf,i on different
patches. We note how Uf,i decays rapidly outside the support of ϕi. It appears
to be enough to use two layers in this example to capture the true behavior
of the fine scale solution.

2.4 Subspaces

The choice of the fine scale space Vf can be done in different ways. In a paper
by Aksoylu and Holst [3] three suggestions are made.

Hierarchical basis method.

The first and perhaps easiest approach is to let Vf = {v ∈ V : v(xj) = 0, j =
N}, where {xi}i∈N are the coarse mesh nodes. When Vf is discretized by
the standard piecewise polynomials on the fine mesh this means that the fine
scale base functions will have support on fine scale stars.

BPX preconditioner.

The second approach is to let Vf be L2(Ω) orthogonal to Vc. In this case
we will have global support for the fine scale base functions but rapid decay
outside the fine mesh stars.



6 Mats G. Larson and Axel Målqvist
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Fig. 2. The fine scale solution Uf,i for different patches.

Wavelet modified hierarchical basis method.

The third choice is a mix of the other two. The fine scale space Vf is defined as
an approximate L2(Ω) orthogonal version of the Hierarchical basis method.
We let Qa

cv ∈ Vc be an approximate solution (a small number of Jacobi
iterations) to

(Qa
cv, w) = (v, w), for all w ∈ Vc, (13)

and define the Wavelet modified hierarchical basis function associated with
the hierarchical basis function ϕHB to be,

ϕWHB = (I −Qa
c)ϕHB , (14)

see Figure 3.
For an extended description of these methods see [2, 3, 1]. In this paper

we focus on the WHB method.
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Fig. 3. HB-function and WHB-function with two Jacobi iterations.

3 A Posteriori Error Estimates

3.1 The Dual Problem

To derive a posteriori estimates of the error in a given linear functional (e, ψ),
with e = u − U and ψ ∈ H−1(Ω) a given weight, we introduce the following
dual problem: find φ ∈ V such that

a(v, φ) = (v, ψ) for all v ∈ V. (15)

In the VMS setting this yields: find φc ∈ Vc and φf ∈ Vf such that

a(vc, φc) + a(vc, φf ) = (vc, ψ), for all vc ∈ Vc,

a(vf , φf ) + a(vf , φc) = (vf,ψ), for all vf ∈ Vf .
(16)

3.2 Error Representation Formula

We now derive an error representation formula involving both the coarse scale
error ec = uc−Uc and the fine scale error ef =

∑
i∈N ef,i :=

∑
i∈N (uf,i−Uf,i)

that arises from using our finite element method (12).
We use the dual problem (16) to derive an a posteriori error estimate for

a linear functional of the error e = ec + ef . If we subtract the coarse part
of equation (12) from the coarse part of equation (11) we get the Galerkin
orthogonality,

a(ec, vc) + a(ef , vc) = 0 for all vc ∈ Vc. (17)

The same argument on the fine scale equation gives for i ∈ F ,

a(ef,i, vf ) = −a(ec, ϕivf ), for all vf ∈ V
h
f (ωi). (18)

We are now ready to state an error representation formula.

Theorem 3.1 If ψ ∈ H−1(Ω) then,

(e, ψ) =
∑

i∈C

(ϕiR(Uc), φf ) +
∑

i∈F

((ϕiR(Uc), φf )− a(Uf,i, φf )) . (19)
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Proof. Starting from the definition of the dual problem and letting v = e =
u− Uc − Uf we get

(e, ψ) = a(e, φ) (20)

= a(e, φf ) (21)

= a(u− Uc, φf )− a(Uf , φf ) (22)

= (R(Uc), φf )− a(Uf , φf ) (23)

= (R(Uc), φf )−
∑

i∈F

a(Uf,i, φf ) (24)

=
∑

i∈C

(ϕiR(Uc), φf ) +
∑

i∈F

(ϕiR(Uc), φf )− a(Uf,i, φf ), (25)

which proves the theorem.

Since equation (12) holds we can subtract functions vh
f,i ∈ Vh

f (ωi) where

i ∈ F from equation (25). For example we choose vh
f,i = πh,iφf , where πh,iφf

is the Scott-Zhang interpolant, see [5], of φf onto Vh
f (ωi) to get

(e, ψ) =
∑

i∈C

(ϕiR(Uc), φf ) (26)

+
∑

i∈F

((ϕiR(Uc), φf − πh,iφf )− a(Uf,i, φf − πh,iφf )) .

Remark 3.1 Since the dual problem defined in equation (16) is equally hard
to solve as the primal problem we need to solve it numerically as well. Normally
it would not be sufficient to solve the dual problem with the same accuracy as
the primal due to the Galerkin Orthogonality. However in this setting things
are a bit different. Calculating φf with minimum refinement (one time) on
the local problems for i ∈ N will not result in an error (e, ψ) equal to zero.
The important thing is to only store the part of φf with support on ωi when
calculating term i in the sum of equation (19). The entire function φf might
be hard to store in the memory of the computer.

4 Adaptive Algorithm

We use the error representation formula in Theorem 3.1 to construct an adap-
tive algorithm. We remember the result,

(e, ψ) =
∑

i∈C

(ϕiR(Uc), φf ) +
∑

i∈F

((ϕiR(Uc), φf )− a(Uf,i, φf )) . (27)

The first sum of the error representation formula is very similar to what we
would get from using standard Galerkin on the coarse mesh. The function
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φf = φ − φc ∼ H∇φ which is exactly what we would expect. For the second
sum we have an extra orthogonality namely that from equation (26). We have
φf−πh,iφf ∼ h∇φ if the patches ωi = Ω i.e. we get the fine scale convergence.
But in practice the patches are much smaller so we end up somewhere in
between h and H convergence. To sum up this discussion there are three
parameters of interest that need to be considered in an adaptive algorithm,
H , h, and the size of the patches.

Adaptive Algorithm.

1. Start with no nodes in F .
2. Calculate the primal Uc by solving equation (12).
3. Calculate the dual solution locally φf with low accuracy for all coarse

nodes. (φf does not need to be solved very accurately to point out the
correct nodes for local calculations.)

4. Calculate the contributions to the errorCi = (ϕiR(Uc), φf ) for each coarse
node where no fine scale problems have been solved and the contributions
Fi = ((ϕiR(Uc), φf )− a(Uf,i, φf )) to nodes where fine scale problems have
been solved.

5. For large values in Ci solve more local problems and for large values in Fi

either increase the number of layers or decrease the fine scale mesh size h
for local problem i. Stop if the desired tolerance is reached or go to 2.

5 Numerical Examples

We solve two dimensional model problems with linear base functions defined
on a uniform triangular mesh.

Example 1.

In this example we demonstrate how we can get highly improved accuracy in
one part of the domain by choosing the load in the dual problem ψ equal to
the indicator function for this domain. We consider the unit square with a
crack in the form of a plus sign on which the solution is forced to be zero, see
Figure 4 (left). We let ψ be equal to one in the lower left quadrant (marked
with a thin lattice in the figure) and zero in the rest of the domain. To the
right in Figure 4 we see a reference solution to the Poisson equation with
a = f = 1 and homogeneous Dirichlet boundary conditions on this geometry.
The idea is to use the adaptive algorithm to choose which areas that needs
to be solved with higher accuracy. In Figure 5 we plot the dual solution, with
ψ chosen as described above, to the left and the fine scale part of the dual
solution to the right. After two iterations in the adaptive algorithm we see
clearly that local problems have only nodes in the lower left corner. In Figure
6 the small circles refer to fine scale problems solved with two layer stars and
the bigger circles refer to fine scale problems solved with three layer stars. The
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Fig. 5. Dual solution (left) and fine scale part of the dual solution (right) calculated
with ψ = I{0≤x,y≤0.5}.
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Fig. 6. Local problems solved with two and three layer stars.
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improvement in the solution after two iterations in the adaptive algorithm is
very clear. In Figure 7 we compare the standard Galerkin solution and the
adaptive solution to a reference solution. We see how the error in the lower
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Fig. 7. Galerkin error (left) and adaptive variational multiscale method error
(right).

left quadrant is much smaller but the error in the rest of the domain is very
similar to the standard Galerkin error.

Example 2.

Next we turn our attention to a model problem with oscillating coefficient a
in a part of the domain, see Figure 8. In this example we choose f = ψ = 1
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Fig. 8. The coefficient a = 1 on the white parts and a = 0.05 on the lattice (left)
and reference solution on this geometry (right).

which makes the primal and the dual equivalent. In Figure 9 we note that the
adaptive algorithm automatically picks nodes in the left part of the domain
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for local problems to increase accuracy. In the first example we want to refine
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Fig. 9. The dots marks coarse nodes where local problems have been solved.

a certain part of the domain and therefore we choose ψ in order to do so,
here we want good accuracy in the whole domain and the adaptive algorithm
chooses where to refine automatically. Again we compare standard Galerkin
and our solution to a reference solution calculated on a finer mesh. The result
can be seen in Figure 10. Again we see a nice improvement compared to the
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Fig. 10. Standard Galerkin error (left) and the error using adaptivity (right).

standard Galerkin error. The choice ψ = 1 indicates control of the mean of
the error over the domain.
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6 Conclusions and Future Work

We have presented a method for parallel solution of the fine scale equations
in the variational multiscale method based on solution of localized Dirich-
let problems on patches and developed an a posteriori error analysis for the
method. Based on the estimates we design a basic adaptive algorithm for au-
tomatic tuning of the critical parameters: resolution and size of patches in the
fine scale problems. It is also possible to decide whether a fine scale compu-
tation is necessary or not and thus the proposed scheme may be combined
with a standard adaptive algorithm on the coarse scales. The method is thus
very general in nature and may be applied to any problem where adaptivity
is needed.

In this paper we have focused on two scales in two spatial dimensions. A
natural extension would be to solve three dimensional problems with multiple
scales. It is also natural to extend this theory to other equations modeling
for instance flow and materials. We also intend to study non-linear and time
dependent equations using this approach.
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11. A. A. Oberai and P. M. Pinsky, A multiscale finite element method for the

Helmholtz equation, Comput. Methods Appl. Mech. Engrg. 154 (1998) 281-297.



A Posteriori Error Estimates for Mixed

Finite Element Approximations of Elliptic

Problems
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Abstract

We derive residual based a posteriori error estimates of the flux in
L2-norm for a general class of mixed methods for elliptic problems.
The estimate is applicable to standard mixed methods such as the
Raviart-Thomas-Nedelec and Taylor-Hood elements, as well as stabi-
lized methods such as the Galerkin-Least squares method. The element
residual in the estimate employs an elementwise computable postpro-
cessed approximation of the displacement which gives optimal order.

1 Introduction

The Model Problem. We consider the mixed formulation of the Poisson
equation with Neumann boundary conditions:







σ −∇u = 0 in Ω,
−∇ · σ = f in Ω,

n · σ = 0 on Γ,
(1.1)

where Ω is a polygonal domain in Rn with boundary Γ. Assuming
∫

Ω f dx =
0, we get a well posed problem with a solution u ∈ H1(Ω)/R and σ ∈ V =
{v ∈ H(div;Ω) : n · v = 0 on Γ}. See [9] for definitions of these function
spaces.
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Previous Work. Several works present a posteriori error estimates for
mixed methods. In Carstensen [10] an error estimate in the H(div;Ω) norm
of the flux is presented. The H(div;Ω) norm may be dominated by the
div-part which is directly computable. When it comes to error estimates of
the flux in L2 norm of methods using richer spaces for the flux σ than the
displacement u, such as Raviart-Thomas-Nedelec (RTN) elements, there are
known difficulties. Braess and Verfürth presents a suboptimal estimate in
[4]. The reason for the suboptimality is that the natural residual that arises
from the first equation σ − ∇u = 0 in problem (1.1) may be large if the
flux space is richer than the displacement space. In a recent paper Lovadina
and Stenberg [13] derive an a posteriori error estimate of the L2-norm of the
flux for the RTN based methods which employs a particular postprocessed
approximation of U . The proof is based on a posteriori error analysis of an
equivalent method which involves the postprocessed approximation of U .

New Contributions. We derive a general a posteriori error estimate
in the energy norm which is applicable to most mixed methods including
the classical inf-sup stable elements, Raviart-Thomas elements, the BDM-
elements and the Taylor-Hood. Our estimate is closely related to the esti-
mate presented by Lovadina and Stenberg [13], however, our proof is more
general and also reveals the fact that one can use any piecewise polynomial
approximation of the displacement when computing the residual. By a small
adjustment of the argument we finally, derive an estimate for the stabilized
mixed method of Masud and Hughes [14]. The same technique applies to
other stabilized schemes, for instance the Galerkin least squares method.

Outline. We start by presenting finite elements and the discrete version of
equation (1.1) in Section 2 then we present the a posteriori error estimates
in Section 3.

2 Weak Form and the Finite Element Method

Weak Formulation. We multiply the first equation in (1.1) by a test
function v ∈ V and integrate by parts. The second equation in (1.1) is
multiplied by a test function w ∈ W = L2(Ω). The weak form reads: find
σ ∈ V and u ∈ W such that,

{

(σ,v) + (u,∇ · v) = 0 for all v ∈ V ,
(−∇ · σ, w) = (f,w) for all w ∈ W.

(2.1)

Our aim is to derive a posteriori error estimates of finite element approxi-
mations {Σ, U} of the exact solution {σ, u} in the energy norm ‖σ −Σ‖0,
where ‖ · ‖0 denotes the L2(Ω) norm.
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The Mixed Finite Element Method. We let K = {K} be a partition of
Ω into shape regular elements of diameter hK and define the mesh function,
h(x) : Ω → R+, by letting h(x) = hK for x ∈ K.

We seek an approximate solution in discrete spaces V h ⊂ V and Wh ⊂
W defined on the partition K. It is well known that for finite element
methods based on the standard weak form (2.1) the discrete spaces must be
chosen so that the inf-sup condition, see [9], is satisfied in order to guarantee
a stable method. Only rather special constructions of the discrete spaces
yield stable methods. In Section 3.3 we consider a stabilized mixed finite
element method based on a modified weak formulation which can be based
on standard continuous piecewise polynomials. We summarize some of the
most well known choices of stable discrete spaces on triangles and tetrahedra
for a given integer k ≥ 1:

• Raviart-Thomas-Nedelec (RTN) elements, see [16, 15],
V h = {v ∈ H(div;Ω) : v|K ∈ [Pk−1(K)]n ⊕ xP̃k−1(K) for all K ∈ K},
Wh = {w ∈ L2(Ω) : w|K ∈ Pk−1(K) for all K ∈ K}.

• Brezzi-Douglas-Marini (BDM) elements, see [8, 7],
V h = {v ∈ H(div;Ω) : v|K ∈ [Pk(K)]n for all K ∈ K},
Wh = {w ∈ L2(Ω) : w|K ∈ Pk−1(K) for all K ∈ K}.

• Taylor-Hood (TH), see [12],
V h = {v ∈ C(Ω) : v|K ∈ [Pk+1(K)]n for all K ∈ K},
Wh = {w ∈ C(Ω) : w|K ∈ Pk(K) for all K ∈ K}.

Here C(Ω) denotes the space of continuous functions on Ω, Pk(K) the space
of polynomials of degree k on element K, and P̃k(K) the set of homogeneous
polynomials of degree k. For a more complete account of inf-sup stable
spaces we refer to Brezzi-Fortin, [9]. The norms used in this paper are
standard Sobolev norms following the notation, ‖ · ‖s,ω = ‖ · ‖Hs(ω) = ‖ ·
‖W s

2
(ω), see [1].
The mixed finite element method reads: find Σ ∈ V h and U ∈ Wh such

that:
{

(Σ,v) + (U,∇ · v) = 0 for all v ∈ V h,
(−∇ ·Σ, w) = (f,w) for all w ∈ Wh.

(2.2)

3 A Posteriori Error Estimates

3.1 Estimate for Standard Mixed Methods

Here we present a general a posteriori error estimate in the energy norm ‖σ−
Σ‖0 involving a piecewise polynomial function Q, which may be obtained
by postprocessing U . The possibility to replace U by Q is important since it

3



leads to a posteriori error estimates of optimal order. We are not interested
in tracking the constants in the error estimates.

Theorem 3.1 For arbitrary Q ∈
⊕

K∈K Pl(K), with l ≥ 0 and f ∈ L2(Ω)
it holds,

‖σ −Σ‖2
0 ≤ C

∑

K∈K

(

h2
K‖f +∇ ·Σ‖2

0,K + ‖Σ−∇Q‖2
0,K + h−1

K ‖ [Q] ‖2
0,∂K

)

,

(3.1)
where the jump denoted [·] is the difference in function value over a face in
the mesh.

Proof. Starting with the left hand side we have

‖σ −Σ‖2
0 = (σ −Σ,σ −Σ) (3.2)

= (σ,σ −Σ)− (Σ,σ −Σ) (3.3)

= −(u,∇ · (σ −Σ))− (Σ,σ −Σ) (3.4)

= −(u−Q,∇ · (σ −Σ)) + (Q,−∇ · (σ −Σ))− (Σ,σ −Σ)
(3.5)

= (u−Q, f +∇ ·Σ) (3.6)

+
∑

K∈K

(

(Q,−∇ · (σ −Σ))K − (Σ,σ −Σ)K

)

= I + II. (3.7)

We treat the two terms in equation (3.7) separately, beginning with I. From
the second part of equation (2.2) we have the Galerkin orthogonality prop-
erty (f +∇ ·Σ, w) = 0 for all w ∈ Wh. We let πh denote the Scott-Zhang
interploant, see [6], onto Wh and proceed with the estimates as follows

I ≤ |(f +∇ ·Σ, u−Q)| (3.8)

≤ ‖h(f +∇ ·Σ)‖0‖h
−1(u−Q− πh(u−Q))‖0 (3.9)

≤ C‖h(f +∇ ·Σ)‖0‖∇(u−Q)‖0 (3.10)

= C‖h(f +∇ ·Σ)‖0‖σ −Σ + Σ−∇Q‖0 (3.11)

≤
3C2

2
‖h(f +∇ ·Σ)‖2

0 +
1

4
‖σ −Σ‖2

0 +
1

2
‖Σ −∇Q‖2

0. (3.12)
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We now turn to the second term II in equation (3.7) and start with inte-
gration by parts,

II =
∑

K∈K

(

(Q,−∇ · (σ −Σ))K − (Σ,σ −Σ)K

)

(3.13)

=
∑

K∈K

(

(∇Q,σ −Σ)K − (Q,n · (σ −Σ))∂K − (Σ,σ −Σ)K

)

(3.14)

= (∇Q−Σ,σ −Σ)−
∑

K∈K

(Q,n · (σ −Σ))∂K (3.15)

≤ ‖∇Q−Σ‖2
0 +

1

4
‖σ −Σ‖2

0 +

∣

∣

∣

∣

∣

∑

K∈K

(Q,n · (σ −Σ))∂K

∣

∣

∣

∣

∣

. (3.16)

Using that n · (σ − Σ) is continuous over element faces we can subtract
an arbitrary function v ∈ H1(Ω) in the term

∑

K∈K(Q,n · (σ − Σ))∂K =
∑

K∈K(Q− v,n · (σ −Σ))∂K . We then have the estimate

II ≤ ‖∇Q−Σ‖2
0+

1

4
‖σ−Σ‖2

0+

∣

∣

∣

∣

∣

inf
v∈H1(Ω)

∑

K∈K

(Q− v,n · (σ −Σ))∂K

∣

∣

∣

∣

∣

. (3.17)

We now use the Cauchy-Schwartz inequality followed by the trace inequality,

‖n · (σ −Σ)‖−1/2,∂K ≤ C(‖σ −Σ‖0,K + hK‖∇ · (σ −Σ)‖0,K) (3.18)

= C(‖σ −Σ‖0,K + hK‖f +∇ ·Σ‖0,K), (3.19)

see [11], to estimate the sum in equation (3.17) as follows
∣

∣

∣

∣

∣

inf
v∈H1(Ω)

∑

K∈K

(Q− v,n · (σ −Σ))∂K

∣

∣

∣

∣

∣

(3.20)

≤ inf
v∈H1(Ω)

∑

K∈K

‖Q− v‖1/2,∂K‖n · (σ −Σ)‖−1/2,∂K (3.21)

≤ inf
v∈H1(Ω)

(

∑

K∈K

‖Q− v‖2
1/2,∂K

)1/2(
∑

K∈K

‖n · (σ −Σ)‖2
−1/2,∂K

)1/2

(3.22)

≤ C inf
v∈H1(Ω)

(

∑

K∈K

‖Q− v‖2
1/2,∂K

)1/2
(

‖σ −Σ‖2
0 + ‖h(f +∇ ·Σ)‖2

0

)1/2

(3.23)

≤ C2 inf
v∈H1(Ω)

∑

K∈K

‖Q− v‖2
1/2,∂K +

1

4
‖σ −Σ‖2

0 +
1

4
‖h(f +∇ ·Σ)‖2

0.

(3.24)
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Together equation (3.17) and equation (3.20-3.24) gives a bound of the sec-
ond term, II, in equation (3.7),

II ≤ ‖∇Q−Σ‖2
0 +

1

2
‖σ −Σ‖2

0 +
1

4
‖h(f +∇ ·Σ)‖2

0 (3.25)

+ C2 inf
v∈H1(Ω)

∑

K∈K

‖Q− v‖2
1/2,∂K .

We combine equation (3.8) and equation (3.25) to get,

I + II ≤ C‖∇Q−Σ‖2
0 +

3

4
‖σ −Σ‖2

0 + C‖h(f +∇ ·Σ)‖2
0 (3.26)

+ C inf
v∈H1(Ω)

∑

K∈K

‖Q− v‖2
1/2,∂K .

To estimate the last term on the right hand side in equation (3.26) we employ
the technique of Lemma 4 in [3]. For completeness we include the details
of the proof. We let N be the set of nodes in the mesh, {φ}i∈N piecewise
linear base functions, ωi = supp(φi), CPi continuous piecewise polynomials
on ωi , and CP = ⊕i∈NφiCPi ∈ H1(Ω).

Using that CP ⊂ H1(Ω) followed by the inverse inequality ‖Q−v‖2
1/2,∂K ≤

Ch−1
K ‖Q−v‖2

0,∂K , which holds since both v and Q are piecewise polynomials,
we get

inf
v∈H1(Ω)

∑

K∈K

‖Q− v‖2
1/2,∂K ≤ inf

v∈CP

∑

K∈K

‖Q− v‖2
1/2,∂K (3.27)

≤ C inf
v∈CP

∑

K∈K

h−1
K ‖Q− v‖2

0,∂K . (3.28)

We write v =
∑

i∈N φivi ∈ CP and proceed with the estimate as follows

‖Q− v‖2
0,∂K =

∑

i∈N

(Q− v, φi(vi −Q))∂K (3.29)

≤
∑

i∈N

‖φ
1/2
i (Q− v)‖0,∂K‖φ

1/2
i (vi −Q)‖0,∂K (3.30)

≤ ‖Q− v‖0,∂K

(

∑

i∈N

‖φ
1/2
i (vi −Q)‖2

0,∂K

)1/2

, (3.31)

where we used that {φi}i∈N is a partition of unity. We have

inf
v∈H1(Ω)

∑

K∈K

‖Q− v‖2
1/2,∂K ≤ inf

v∈CP

∑

i∈N

∑

K∈K

h−1
K ‖φ

1/2
i (vi −Q)‖2

0,∂K . (3.32)
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Further the following bound holds,

inf
vi∈CPi

∑

K∈K

h−1
K ‖φ

1/2
i (vi −Q)‖2

0,∂K ≤ C
∑

K∈K

h−1
K ‖φ

1/2
i [Q] ‖2

0,∂K , (3.33)

since the right hand side of equation (3.33) is zero when Q in continuous on
ωi so we may choose vi = Q|ωi

which means that the left hand side is also
zero. The estimate follows from finite dimensionality and scaling. We end
up with,

inf
v∈H1(Ω)

∑

K∈K

‖Q− v‖2
1/2,∂K ≤ C

∑

K∈K

∑

i∈N

h−1
K ‖φ

1/2
i [Q] ‖2

0,∂K (3.34)

= C
∑

K∈K

h−1
K ‖ [Q] ‖2

0,∂K , (3.35)

again we use that {φi}i∈N is a partition of unity.

Combining equation (3.25) and (3.34) we get,

I+II ≤ C‖∇Q−Σ‖2
0+

3

4
‖σ−Σ‖2

0+C‖h(f+∇·Σ)‖2
0+C

∑

K∈K

h−1
K ‖ [Q] ‖2

0,∂K .

(3.36)
Since I + II = ‖σ −Σ‖2

0 from equation (3.2-3.7) we just need to subtract
3/4‖σ −Σ‖2

0 from both sides of equation (3.36) to prove the theorem.

3.2 Estimate Based on Postprocessing

We now turn to the question of how to choose Q in Theorem 3.1. We know
that choosing Q = U results in a suboptimal estimate of the energy norm
error, [4]. A natural idea is to choose Q to be a postprocessed version of U .
There have been several works [8, 5, 17, 13] following Arnold and Brezzi [2],
published in the mid eighties, on postprocessing methods where information
from the calculated flux Σ is used to compute an improved approximation
of u.

We focus on the method considered in Lovadina and Stenberg [13] and
show that Theorem 3.1 directly gives the estimate presented in [13]. We
denote the postprocessed version of U by U∗. To define U∗ we introduce
some notations. For all K ∈ K we let Ph,K : L2(Ω) → Wh,K be the L2

projection onto Wh,K, where Wh,K is the restriction of Wh onto K. Fur-
thermore, we let W ∗

h,K denote the following spaces: W ∗
h,K = Pk(K) for RTN

elements, W ∗
h,K = Pk+1(K) for BDM elements, and W ∗

h,K = Pk+2(K) for
TH elements.
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Definition 3.1 (Postprocessing method) Find U∗ such that U∗|K = U∗
K ∈

W ∗
h,K where U∗

K is defined by

Ph,KU∗
K = UK , (3.37)

and

(∇U∗,∇v)K = (Σ,∇v)K for all v ∈ (I − Ph,K)W ∗
h,K . (3.38)

Proposition 3.1 Given f ∈ L2(Ω) it holds,

‖σ−Σ‖2
0 ≤ C

∑

K∈K

(

h2
K‖f +∇ ·Σ‖2

0,K + ‖Σ−∇U∗‖2
0,K + h−1

K ‖ [U∗] ‖2
0,∂K

)

,

(3.39)
where U∗ is taken from Definition 3.1.

Proof. The proof follows directly from Theorem 3.1 with Q = U∗.

Remark 3.1 In Corollary 2.6 in [13] the following a priori estimate of the
error is presented for BDM and RTN elements,

‖σ −Σ‖+ ‖U − U∗‖1 ≤ Chk+1|u|k+2 for BDM,
‖σ −Σ‖+ ‖U − U∗‖1 ≤ Chk|u|k+1 for BDM,

(3.40)

where | · |k is the Hk(Ω) semi norm, see [1]. These estimates shows that the
postprocessed function U∗ gives optimal order estimates and indicates that
the error estimators we present are of optimal order.

3.3 Estimate for Stabilized Methods

Here we extend our estimate to stabilized mixed methods, in particular, we
consider the recent method presented in Masud and Hughes [14]. Stabilized
methods are based on a modified weak formulation which yields a stable
method for standard continuous piecewise polynomial approximations, e.g.
piecewise linear functions for both displacement and flux.

The stabilized method of Masud and Hughes reads: find Σ ∈ V h and
U ∈ Wh such that,

(−∇ ·Σ, w) + (Σ,v) + (U,∇ · v)−
1

2
(Σ−∇U,v +∇w) = (f,w), (3.41)

for all v ∈ V h and w ∈ Wh. Applying the same ideas as in Theorem 3.1 to
this stabilized method we obtain the following a posteriori error estimate.
The argument may be modified to cover other stabilized methods such as
the Galerkin least squares method.
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Proposition 3.2 For the approximate solution of equation (3.41) using
continuous piecewise polynomials it holds,

‖σ −Σ‖2
0 ≤ C

∑

K∈K

(

h2
K‖f +∇ ·Σ‖2

0,K + ‖Σ−∇U‖2
0,K

)

. (3.42)

Proof. Using the same arguments as in equations (3.2-3.7) in the proof of
Theorem 3.1, we obtain the following error representation formula,

‖σ −Σ‖2
0 = (u−Q, f +∇ ·Σ) + (Q,−∇ · (σ −Σ))− (Σ,σ −Σ). (3.43)

Next, setting v = 0 in (3.41) we have the Galerkin orthogonality property

(f +∇ ·Σ, w) = −
1

2
(Σ−∇U,∇w), (3.44)

for all w ∈ Wh. Subtracting the Scott-Zhang interpolant [6], πh(u −Q), of
u−Q, using (3.44) followed by an interpolation estimate we get

‖σ −Σ‖2
0 = (u−Q− πh(u−Q), f +∇ ·Σ)−

1

2
(∇πh(u−Q),Σ−∇U)

(3.45)

+ (Q,−∇ · (σ −Σ))− (Σ,σ −Σ) (3.46)

≤ C
∑

K∈K

(

h2
K‖f +∇ ·Σ‖2

0,K + h−1
K ‖ [Q] ‖2

0,∂K

)

+ C‖Σ−∇Q‖2
0

(3.47)

+
1

2
‖σ −Σ‖2

0 + ‖Σ−∇U‖0‖∇πh(u−Q)‖0. (3.48)

To get this estimate we also use arguments that are identical with the ones
in the proof of Theorem 3.1. We choose Q = U . Since U is continuous the
jump terms will vanish. We also use the stability of the interpolant πh in
H1(Ω),

‖σ −Σ‖2
0 ≤ C

∑

K∈K

h2
K‖f +∇ ·Σ‖2

0,K + C‖Σ−∇U‖2
0 (3.49)

+
1

2
‖σ −Σ‖2

0 + C‖Σ−∇U‖0‖σ −∇U‖0 (3.50)

≤ C
∑

K∈K

h2
K‖f +∇ ·Σ‖2

0,K + (C2 + C)‖Σ−∇U‖2
0 (3.51)

+
1

2
‖σ −Σ‖2

0 +
1

4
‖σ −∇U‖2

0. (3.52)
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But since ‖σ −∇U‖0 ≤ ‖σ −Σ‖0 + ‖Σ−∇U‖0 we have,

‖σ−Σ‖2
0 ≤ C

∑

K∈K

h2
K‖f +∇ ·Σ‖2

0,K + C‖Σ−∇U‖2
0 +

3

4
‖σ−Σ‖2

0, (3.53)

so the proposition follows immediately after subtracting 3/4‖σ −Σ‖2
0 from

both sides.
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A Mixed Adaptive Variational Multiscale

Method with Applications in Oil

Reservoir Simulation

Axel Målqvist∗

August 19, 2005

Abstract

We present a mixed adaptive variational multiscale method for solv-
ing elliptic second order problems. This work is an extension of the
adaptive variational multiscale method (AVMS), introduced by Lar-
son and Målqvist [15, 16, 17], to a mixed formulation. The method
is based on a particular splitting into coarse and fine scales together
with a systematic technique for approximation of the fine scale part
based on solution of decoupled localized subgrid problems. We present
the mixed AVMS method and derive a posteriori error estimates for
both linear functionals and the energy norm. Based on the estimates
we propose an adaptive algorithm for automatic tuning of critical dis-
cretization parameters. Finally, we present numerical examples on a
two dimensional slice of an oil reservoir.

1 Introduction

We consider the Poisson equation on mixed form with positive diffusion
coefficient a ∈ L∞(Ω):







1
aσ −∇u = 0 in Ω,
−∇ · σ = f in Ω,
n · σ = 0 on Γ.

(1.1)

We assume the integral over the polygonal domain Ω of the right hand side
to be zero,

∫

Ω f dx = 0, in order to get a well posed problem with a solution
u ∈ H1(Ω)/R and σ ∈ H(div;Ω), see [3] for definitions of these spaces. The

∗Graduate Research Assistant, Department of Mathematics, Chalmers University of

Technology, Göteborg, axel@math.chalmers.se.
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Figure 1: Two dimensional slice of the permeability a in an oil reser-
voir (in log scale) taken from the tenth SPE comparative solution project
max a/min a = 8.8 · 106.

boundary of Ω is denoted Γ. Our main focus is to develop a method for
solving this problem in the case when a has fine scale features that can not
be resolved by a single mesh, see Figure 1 for a typical coefficient a with
microstructure.

Previous Work. Various multiscale methods have been developed in re-
cent years. Hou and Wu [12] presented a method in 1997 based on homog-
enization theory. This method has been improved and extended by Aarnes
and Lie et. al. [1, 2] and successfully applied to oil reservoir problems.

The variational multiscale method was introduced in 1995 by Hughes
[13, 14]. Here the spaces are divided into a coarse and a fine part and then
analytical methods are used to approximate the effect of the fine scales on
the coarse scale. See also the work by Arbogast [4] for mixed formulations.

In [15, 16, 17] we develop a new multiscale method for the standard
formulation of Poisson’s equation with diffusion coefficient a:

{

−∇ · a∇u = f in Ω,
u = 0 on Γ.

(1.2)

We also derive a posteriori error estimates both in the energy norm and for
linear functionals and based on these estimates we propose and implement
adaptive algorithms. In [19] we prove optimal energy norm a posteriori error
estimates for standard mixed finite element approximations of (1.1), with
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a = 1, such as the Raviart-Thomas [21, 20], BDM [8], and Taylor-Hood
[11] elements. Together [15, 16, 17, 19] provides the theoretic starting point
to develop a mixed adaptive variational multiscale method for the Poisson
equation.

New Contributions. In this paper we present the mixed adaptive vari-
ational method. We also derive a posteriori error estimates for both linear
functionals and the energy norm of the error and based on the estimate we
formulate an adaptive algorithm that automatically tunes the parameters
in the method according to the error estimate. This is a very important
feature of the method. We apply the adaptive method on an oil reservoir
problem and obtain very promising results.

Outline. The remainder of the paper is organized as follows: in Section
2 we present the method; we discuss implementation issues in Section 3;
in Section 4 we derive the a posteriori error estimators used in Section 5
to formulate an adaptive algorithm; and finally in Section 6 we present
numerical results.

2 The Mixed Variational Multiscale Method

We start by deriving the variational formulation of equation (1.1) by mul-
tiplying the first equation with a test function v ∈ V = {v ∈ H(div;Ω) :
n · v = 0 on Γ}, integrate over the domain Ω, and integrate by parts. We
also multiply the second equation by a test function w ∈ W = L2(Ω) and
integrate over Ω. The weak form reads: find σ ∈ V and u ∈W such that,

{

( 1
aσ,v) + (u,∇ · v) = 0,
−(∇ · σ, w) = (f,w),

(2.1)

for all v ∈ V and w ∈ W , where (v,w) = (v,w)Ω =
∫

Ω v w dx. Since we
focus on problems that features fine scale behavior it is natural to split the
spaces V = V c⊕V f and W = Wc⊕Wf into a discrete coarse part that we
can resolve using a standard finite element method on a single mesh and a
fine part that needs to be taken care of in a non-standard way.

By this argument we end up with the variational multiscale formulation,
see [13] for an overview, of equation (1.1): find σc ∈ V c, σf ∈ V f , uc ∈Wc,
and uf ∈Wf such that,















( 1
aσc,vc) + ( 1

aσf ,vc) + (uc,∇ · vc) + (uf ,∇ · vc) = 0,
−(∇ · σc, wc)− (∇ · σf , wc) = (f,wc),

( 1
aσf ,vf ) + (uf ,∇ · vf ) = −( 1

aσc,vf )− (uc,∇ · vf ),
−(∇ · σf , wf ) = (f,wf ) + (∇ · σc, wf ),

(2.2)
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Figure 2: The pressure uc, uf , and u = uc + uf .

for all vc ∈ V c, vf ∈ V f , wc ∈ Wc, and wf ∈ Wf . We note that the fine
scale equations are driven by the coarse scale residual multiplied by the fine
scale test functions. In Figure 2 we illustrate uc, uf , and u in an example
where a = 1 and f is −1 in the lower left corner and 1 in the upper right
corner.

2.1 Splitting into Coarse and Fine Scales

There are many possible ways of splitting the spaces V and W into coarse
and fine parts. This choice is fundamental since the splitting determines in
what sense the approximate coarse scale part of given by the method will
minimize the error. It is obvious that this aspect is of great importance
when deriving a method.

For example if we would like to have a method that aims at nodal exact-
ness on the coarse mesh nodes we would choose a nodal based hierarchical
basis. This works since Vf in this case is zero in the coarse nodes and we
know that we have not made any approximations hence Vc will be nodal ex-
act in coarse nodes, see also [15, 16, 17]. However since we are interested in
problems with strong fine scale behavior it is more natural to approximate
some kind of mean value of the solution locally.

In this paper we will use the lowest order Raviart-Thomas elements on
rectangles together with piecewise constants for the coarse spaces. For the
fine scale we use the natural hierarchical basis. This choice makes sense in
terms of the optimized output quantity which will, for the pressure, be a
mean value (L2 projection) over coarse elements rather then a point value
and for the fluxes we get the meanvalues over the faces.

We also get another nice feature which simplified both the analysis and
the numerics. Some terms in equations (2.2) will actually vanish using this
split,

(wc,∇ · vf ) =
∑

K∈K
(wc,∇ · vf )K =

∑

K∈K
wK

c

∫

∂K
n · vf dx = 0, (2.3)
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where wK
c is the constant value wc has at coarse element K and K = ∪K is

the set of coarse elements on Ω. We also have,

(wf ,∇ · vc) =
∑

K

(wf ,∇ · vc)K =
∑

K

∇ · vK
c

∫

K
wf dx = 0, (2.4)

where ∇ · vK
c is the constant vector ∇ · vc at coarse element K. Equation

(2.3) and (2.4) holds for all vc ∈ V c, vf ∈ V f , wc ∈Wc, and wf ∈Wf .

If we for the moment only modify the coarse scale equations (2.2) trans-
forms to: find σc ∈ V c, σf ∈ V f , uc ∈Wc, and uf ∈Wf such that,















( 1
aσc,vc) + ( 1

aσf ,vc) + (uc,∇ · vc) = 0,
−(∇ · σc, wc) = (f,wc),

( 1
aσf ,vf ) + (uf ,∇ · vf ) = −( 1

aσc,vf )− (uc,∇ · vf ),
−(∇ · σf , wf ) = (f,wf ) + (∇ · σc, wf ),

(2.5)

for all vc ∈ V c, vf ∈ V f , wc ∈Wc, and wf ∈Wf .

2.2 Decoupling Fine Scale Equations.

Since the fine scale equations are to computationally expensive to solve in
one global computation we seek a way to decouple them. We construct two
partitions of unity related to the base functions in analogy with the earlier
papers [15, 16, 17]. We let ψi be piecewise constant on the coarse mesh such
that

∑

i∈N ψi = 1, see Figure 3 (left). Further we let φi be the lowest order
Raviart-Thomas basis functions on the coarse mesh, see Figure 3 (right).
For the Raviart-Thomas space in two spatial dimensions we form a matrix
partition of unity {φi}i∈N in the following way,

φi =

[

φx
i

φy
i

]

, φi =

[

φx
i 0
0 φy

i

]

, (2.6)

and in the same way in three dimensions. We note that
∑

i∈N φi = I,
where I is the identity matrix. We include these partitions of unity next
to the fine scale test functions and end up with a decoupled problem. We
introduce σf,i ∈ V f and uf,i ∈ Wf such that σc, uc, σf =

∑

i∈N σf,i, and
uf =

∑

i∈N uf,i solves:















( 1
aσc,vc) + ( 1

aσf ,vc) + (uc,∇ · vc) = 0,
−(∇ · σc, wc) = (f,wc),

( 1
aσf,i,vf ) + (uf,i,∇ · vf ) = −( 1

aσc, φivf )− (uc,∇ · (φivf )),
−(∇ · σf,i, wf ) = (f, ψiwf ) + (∇ · σc, ψiwf ),

(2.7)

5



0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.05

0.1

0.15

0.2

0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: Elements of the two partitions of unity, to the left pressure ψi,
and to the right flux φi.

for all vc ∈ V c, vf ∈ V f , wc ∈ Wc, and wf ∈ Wf . Again we can drop two
terms since,

(wc,∇ · (φivf )) =
∑

K∈K
wK

c

∫

∂K
n · (φivf ) dx = 0, (2.8)

and,

(∇ · vc, ψiwf ) =
∑

K

∇ · vK
c ψK

∫

K
wf dx = 0. (2.9)

Thus we get the following simplified problem: find σc ∈ V c, uc ∈ Wc,
σf,i ∈ V f , and uf,i ∈Wf such that,















( 1
aσc,vc) + ( 1

aσf ,vc) + (uc,∇ · vc) = 0,
−(∇ · σc, wc) = (f,wc),

( 1
aσf,i,vf ) + (uf,i,∇ · vf ) = −( 1

aσc, φivf ),
−(∇ · σf,i, wf ) = (f, ψiwf ),

(2.10)

for all vc ∈ V c, vf ∈ V f , wc ∈Wc, and wf ∈Wf .
To get an idea of how typical fine scale solutions σf,i and uf,i can look

like we give an example in Figure 4 where a = 1 and f = −1 in the lower
left corner and f = 1 in the upper right corner. The basis functions in the
right hand side are chosen in the middle of the domain.

2.3 Solving Local Neumann Problems on Patches

We let V c = V H be the lowest order Raviart-Thomas finite element space
and Wc = WH be the space of piecewise constants on a mesh ∪K = K
with mesh function H defined as a piecewise constant function equal to the
diameter of the current element. Since V f and Wf are infinite dimensional
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Figure 4: The local solutions σf,i and uf,i
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Figure 5: One, two, and three layer patches made out of coarse elements.

they also need to be discretized. We introduce a new mesh function h≪ H
individually for the decoupled problems by refining the coarse mesh once or
several times. These meshes resolves the fine scale behavior but are to rich
to solve a discrete system of equations on. To get around this problem we
introduce patches on which we solve decoupled fine scale equations instead
of solving them on the entire domain.

Since the spaces V H and WH are discrete we seek approximate solutions
with coarse part in these spaces Σc ∈ V H and Uc ∈ WH . For the approxi-
mation of the fine scale solutions Σf,i and Uf,i we introduce corresponding
solution spaces, V h(ωi) and Wh(ωi) where {ωi} are domains (patches) such
that,

supp(φi) = supp(ψi) ⊂ ωi ⊂ Ω, (2.11)

see Figure 5 for three different sizes of patches, all including the support of
the basis functions (the two coarse elements in the center of the picture in
Figure (5)). The fine scale spaces V h(ωi) and Wh(ωi) are constructed on the
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patch ωi as a hierarchical extension of the spaces V H and WH restricted to
the patch. Since they are hierarchical spaces all v ∈ V h(ωi) fulfil

∫

F n·v ds =
0 on each coarse face F and all w ∈Wh(ωi) fulfil

∫

K w dx = 0 on each coarse
element K. The bars over the domains in the fine scale spaces symbolizes
that we have not yet forced any boundary conditions on the spaces. Since
we aim at solving local Neumann problems on patches we want to include
the boundary condition in the definition of the spaces. The final fine scale
spaces we will use are the following,

V h(ωi) = {v ∈ V h(ωi) : n · v = 0 on ∂ωi}, (2.12)

and

Wh(ωi) = Wh(ωi). (2.13)

The piecewise constant space is not affected by the boundary conditions as
seen above. We sometimes refer to V h(ωi) and Wh(ωi) as slice spaces since
they are just the fine scale part of a classic finite element spaces.

We will frequently refer to layers in the rest of this paper. Layers are
a measure of how large the patches are. One layer will be the two coarse
element on which the coarse Raviart-Thomas base function has its support,
two layers are these two coarse element together with all coarse element that
neighbors the first two and so on. If we use rectangular elements the n-layer
patches will also be rectangular and the higher n is the larger the patch
becomes. See Figure 5 for one, two, and, three layer patches.

We are now ready to present the method. The finite element formulation
reads: find Σc ∈ V H ,Σf,i ∈ V h(ωi), Uc ∈WH , and Uf,i ∈Wh(ωi) such that















( 1
aΣc,vc) + ( 1

aΣf ,vc) + (Uc,∇ · vc) = 0,
−(∇ ·Σc, wc) = (f,wc),

( 1
aΣf,i,vf ) + (Uf,i,∇ · vf ) = −( 1

aΣcφi,vf ),
−(∇ ·Σf,i, wf ) = (f,wfψi),

(2.14)

for all vc ∈ V H , vf ∈ V h(ωi), wc ∈WH , wf ∈Wh(ωi), and i ∈ N .

For computational reasons we are also going to modify the decoupling
presented in equation (2.10) slightly in order to get a simplified version of the
method. We will replace σcφi by σi

cφi, where σc =
∑

i∈N σi
cφi, and σi

c ∈ R.
On discrete form the simplified method reads: find Σc =

∑

i∈N Σi
cφi ∈ V H ,

Uc ∈WH , Σf,i ∈ V h(ωi), and Uf,i ∈Wh(ωi) such that,















( 1
aΣc,vc) + ( 1

aΣf ,vc) + (Uc,∇ · vc) = 0,
−(∇ · σc, wc) = (f,wc),

( 1
aΣf,i,vf ) + (Uf,i,∇ · vf ) = −( 1

aΣi
cφi,vf ),

−(∇ ·Σf,i, wf ) = (f, ψiwf ),

(2.15)
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for all vc ∈ V H , vf ∈ V h(ωi), wc ∈ Wc, and wf ∈ Wh(ωi). Note that we
only use a slightly different partition of unity. The error estimates of the
two methods (2.14) and (2.15) will be the same with the only difference that
we replace Σcφi by Σi

cφi in all equations. We present the error analysis for
the original method (2.14).

In the next section we discuss implementation issues and here we use the
simplified version of (2.15) the method in order to make the presentation
more accessible to the reader.

3 Implementation

3.1 Iterative Method

There are primarily two ways to implement the method. The first one that
comes to mind is perhaps an iterative approach. We simply assume Σf = 0
in equation (2.15) and solve the coarse problem. This gives the lowest order
Raviart-Thomas approximate solution on the coarse grid. Then we use this
solution in the right hand side of the fine scale equations and calculate a new
version of Σf =

∑

i Σf,i. We include the new approximation of Σf into the
coarse scale equations and solve them again and so on. This method yields
a sequence of solutions {Σj

c}m
j=1 and {Σj

f}m
j=1 which hopefully converges to

the desired solution Σ. However in this paper we will not analyze or use
this approach. We will instead use a direct method.

3.2 Direct Method

The aim here is to directly get the converged solution by modifying the
matrices and vectors of the linear system of equations. When solving the
Poisson equation on mixed form using Raviart-Thomas elements we end up
with the following system of equations,

[

A B

−BT O

] [

Σ

u

]

=

[

0

b

]

, (3.1)

where
Aij = ( 1

aφj,φi),
Bij = (ψj ,∇ · φi),
bj = (f, ψj).

(3.2)

To get a similar system of equations using the multiscale method we need
to express Σf in terms of Σc. To do this we introduce the following two fine
scale help problems. The first one reads: find ξi ∈ V h(ωi) and ζi ∈Wh(ωi)
such that

{

( 1
aξi,vf ) + (ζi,∇ · vf ) = −( 1

aφi,vf ),
−(∇ · ξi, wf ) = 0,

(3.3)
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for all vf ∈ V h(ωi), and wf ∈ Wh(ωi) and i ∈ N . Here f is replaced by 0
and Σi

c is replaced by 1 compared to the fine part of equation (2.15). The
second problem reads: find βi ∈ V h(ωi) and ρi ∈Wh(ωi) such that

{

( 1
aβi,vf ) + (ρi,∇ · vf ) = 0,
−(∇ · βi, wf ) = (fψi, wf ),

(3.4)

for all vf ∈ V h(ωi), and wf ∈ Wh(ωi) and i ∈ N . Here instead Σi
c is

replaced by 0. Since all equations are linear we conclude that,

Σf,i = Σi
cξi + βi, (3.5)

so if we let β =
∑

i βi,

Σf =
∑

i∈N
Σi

cξi + β. (3.6)

We are now ready to go back to the coarse part of equation (2.15) and
replace Σf by the expression derived in equation (3.6),

{

( 1
a

∑

j Σj
cφj,φi) + ( 1

a(
∑

j Σj
cξj + β),φi) + (

∑

k U
k
c ψk,∇ · φi) = 0,

−(∇ ·∑j Σj
cφj , ψi) = (f, ψk).

(3.7)
If we write this system on matrix form in analogy with equation (3.1) we
get,

[

A + T B

−BT O

] [

Σ

u

]

=

[

d

b

]

, (3.8)

where
Tij = ( 1

aξj ,φi),

dj = −( 1
aβ,φj).

(3.9)

3.3 Is the Method Locally Conservative?

If we assume that the local meshes coincide for all patches we can proceed
with the following calculation,

(−∇ ·Σ, wf ) = (−∇ ·Σf , wf ) (3.10)

=
∑

i∈N
(−∇ ·Σf,i, wf ) (3.11)

=
∑

i∈N
(fψi, wf ) (3.12)

= (f,wf ), (3.13)

where we use equation (2.15). This shows that the method is conservative
using this assumption. If the meshes differ we still have a conservative
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method on the refinement level where the meshes coincide. If we for example
have one mesh refinement in all patches but one where we have two mesh
refinements compared to the coarse mesh we have a conservative method for
one refinement over the whole domain.

3.4 Is the Method Parallel?

The fine scale problems described in equation (3.3) and (3.4) are totally de-
coupled and can be solved without any communication between each other.
After the solutions ξi and βi have been calculated we can compute the en-
tries in the T matrix and d vector directly in the local calculation. We just
multiply all test functions that are non zero on the current patch with ξi

and βi. This means that we never need to actually construct and save any
global data on the fine reference space. This is an important feature of the
method. In many cases it is impossible to form the total fine scale solu-
tion for storage reasons. The method is parallel, the fine scale patches only
communicates with the coarse scale and only in one direction.

3.5 A Symmetric Method

Since the new stiffness matrix A + T is built up of elements (A + T )ij =
( 1

aφj ,φi + ξi) we see directly that it is not symmetric anymore. This is a
bit unfortunate and may cause instabilities in the method. However, if we
for a moment assume the patches to be equal to the entire domain ωi = Ω
and that we use the same resolution on all local problems, which means Σ is
the standard Raviart-Thomas solution on the fine mesh we note, using the
third part of equation (2.15) summed over all i, that,

(
1

a
Σ, ξi) = −(Uf ,∇ · ξi) = 0, (3.14)

since (∇ · ξi, wf ) = 0 for all wf ∈ V h(ωi) = V h(Ω). So in the limit it
is equivalent to let (A + T )ij = ( 1

aφj + ξj,φi + ξi). We also note that
independent of the patches we always have,

(ψj ,∇ · ξi) = 0, (3.15)

since ξi is a fine scale function. This lead us to formulate a modified version
of the method:

[

(A + T)sym
B

−BT O

] [

Σ

u

]

=

[

dsym

b

]

, (3.16)
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where

(A + T)sym
ij = ( 1

aφj + ξj,φi + ξi),

Bij = (ψj ,∇ · (φi + ξi)) = (ψj ,∇ · φi),
b = (f, ψj),
d

sym
j = −( 1

aφj + ξj ,β).

(3.17)

Comparing equation (3.16) and (3.17) with equation (3.1) and (3.2) we note
that they differ in d and that the old base functions for the flux are replaced
by new ones,

φi := φi + ξi. (3.18)

This makes the stiffness matrix (A + T)sym symmetric and positive definite.
The symmetric multiscale method and the standard multiscale method de-
scribed in this paper converge to the same result, when using meshes that
coincide, as the patch size increases, however they will give different results
for small patches. If the standard method seems to need very big patches
to work the symmetric method may be an alternative.

The size of the patches will play a crucial role for both methods. The
only thing we know so far is that we will get the correct solution on the fine
mesh if we let all ωi = Ω. This result is not interesting from a practical
point of view. So let us first discuss why we expect a good approximation
from this method at all, when using a few layer patches. The right hand
side of the fine scale equations has the same support as the elements in the
partition of unity. We also solve the fine scale equations on the slice spaces
V h(ωi) which makes the solution decay much faster since

∫

F n ·Σf,i dx = 0
for all coarse faces F . This forces the solution to be very localized. This
leads us to believe that we can expect a good approximation even if we
decrease the size of the patch around the current coarse edge on which we
solve the fine scale problem.

To be able to give a more solid statement of the accuracy of the method
we need good a posteriori error element-indicators. These will be used to
formulate an adaptive strategy that will increase the accuracy. We want to
make a method that automatically tunes the patch size and fine scale mesh
size in order to give us an optimal solution given the amount of time we are
ready to spend.

In the next section we derive such error indicators for linear functionals
and in energy norm, further on we present adaptive algorithms for auto-
matic improvement of the solution. Adaptivity is a fundamental part of this
method.
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4 A Posteriori Error Estimate

4.1 Postprocessing of Uf,i

In this section we introduce functions U∗f,i that are post processed (improved)
versions of Uf,i. It is known from [18] and [19] that in order to get optimal
a posteriori error estimates U has to be replaced by a postprocessed version
U∗ when computing the residuals for mixed methods using a richer approx-
imation space for Σ than U . For example, this is the case for the lowest
order Raviart-Thomas together with piecewise constant elements. There are
different methods for computing U∗, see [18] and the references therein. The
basic idea is to use the displacement U and the flux Σ to determine U∗ in
a richer space.

In the multiscale setting only the fine part of U need to be modified. In
the error analysis in the next section we will not assume any particular choice
of U∗f,i other then U∗f,i ∈

⊕

K∈K P1(K), where P1(K) is bilinear functions
on element K. However, in practise we compute U∗f,i ∈ P1(K) using the
following equations

(U∗f,i, v) = (Uf,i, v) for all v ∈ P0(K), (4.1)

(a∇U∗f,i,∇w) = (Σf,i + Σcφi,∇w) for all w ∈ (I − PK)P1(K), (4.2)

where PK is the local L2(K) onto constants.

Finally, we also need a technical definition to state the error representa-
tion formula. We let Fi be the coarse face on which |φi| = 1 i.e.

Fi = {x : |φi| = 1}. (4.3)

In Figure 3 Fi is the line between (x, y) = (0.4, 0.4) and (x, y) = (0.6, 0.4).
We next define the auxiliary function Uc,i.

Definition 4.1 For each fine element K ∈ K(ωi) we let UK
c be the constant

interior value of Uc on K and define Uc,i on ∂K as,

{

Uc,i = UK
c when x ∈ Fi,

Uc,i = 0 otherwise.
(4.4)

Thus Uc,i is defined on all faces of every fine scale element K. It takes
the value zero on all faces except Fi. On Fi it takes either value of the
discontinuous function Uc depending on which side of Fi element K is on.
For example in Figure 3, Uc,i would have one constant value below Fi and
an other constant value above Fi.
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4.2 Error Representation for Linear Functionals

We introduce the following dual problem,
{

1
aχ−∇η = ω,
−∇ · χ = 0.

(4.5)

Using the dual problem we can derive an error representation formula for a
linear functional.

Proposition 4.1 For arbitrary U∗f,i ∈
⊕

K∈K P1(K) it holds,

(σ −Σ,ω) =
∑

i∈N
(−1

a
(Σcφi + Σf,i) +∇U∗f,i,χ) (4.6)

−
∑

i∈N

∑

K∈K(ωi)

(U∗f,i + Uc,i,n · χ)∂K\∂ωi

−
∑

i∈N
(U∗f,i,n · χ)∂ωi\Γ

−
∑

i∈N
(fψi +∇ · (Σcφi + Σf,i), η − πcη − πf,iη).

Proof. We use the dual problem to get,

(σ −Σ,ω) = (σ −Σ,
1

a
χ−∇η) (4.7)

= (
1

a
σ,χ)− (

1

a
Σ,χ)− (σ −Σ,∇η) (4.8)

= −(u,∇ · χ)− (
1

a
Σ,χ) + (∇ · (σ −Σ), η) (4.9)

= −(
1

a
Σ,χ) + (∇ · (σ −Σ), η), (4.10)

where we use the boundary conditions to eliminate the boundary terms,
n ·σ = n ·Σ = 0. We note from the second equation in (2.14) together with
equation (2.3) that,

(f +∇ ·Σ, πcη) = (f +∇ ·Σc, πcη) = 0. (4.11)

Next, we continue the main calculation using (4.11),

(σ −Σ,ω) = −(
1

a
Σ,χ) + (∇ · (σ −Σ), η − πcη) (4.12)

=
∑

i∈N
−(

1

a
(Σcφi + Σf,i),χ) (4.13)

−
∑

i∈N
(fψi +∇ · (Σcφi + Σf,i), η − πcη).
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In analogy with [19] we are now ready to add the term −(U,∇ · χ) = 0 to
equation (4.13). We let KH(ωi) be the set of coarse elements on patch ωi.
We have,

0 = −(U,∇ · χ) (4.14)

= −
∑

i∈N

(

(U∗f,i,∇ · χ) + (Uc,∇ · (φiχ))
)

(4.15)

=
∑

i∈N



(∇U∗f,i,χ)−
∑

K∈K(ωi)

(U∗f,i,n · χ)∂K −
∑

K∈KH(ωi)

(Uc,n · (φiχ))∂K





(4.16)

using integration by parts and the fact that ∇Uc is zero in the interior of
coarse elements. We would like to have the two last terms of equation (4.16)
on the same form. To accomplish this we need to turn to the last term.

Since we use rectangular elements (Uc,n · (φiχ))∂K will be zero on all
but one face in the coarse mesh. This is due to orthogonality between n and
φiχ and that φi is only non zero on two coarse elements. The one face where
(Uc,n · (φiχ))∂K 6= 0 is Fi, see equation (4.3). Since (Uc,n · (φiχ))∂K =
(Uc,n · χ)∂K on Fi we use the auxiliary function Uc,i defined earlier to
conclude that, (Uc,n · (φiχ))∂K = (Uc,i,n · χ)∂K .

Continuing from equation (4.14) we get,

0 =
∑

i∈N



(∇U∗f,i,χ)−
∑

K∈K(ωi)

(U∗f,i,n · χ)∂K −
∑

K∈KH(ωi)

(Uc,n · (φiχ))∂K





(4.17)

=
∑

i∈N



(∇U∗f,i,χ)−
∑

K∈K(ωi)

(U∗f,i,n · χ)∂K −
∑

K∈K(ωi)

(Uc,i,n · χ)∂K





(4.18)

=
∑

i∈N



(∇U∗f,i,χ)−
∑

K∈K(ωi)

(U∗f,i + Uc,i,n · χ)∂K



 . (4.19)

Adding this term to equation (4.13) gives,

(σ −Σ,ω) =
∑

i∈N
(−1

a
(Σcφi + Σf,i) +∇U∗f,i,χ)ωi

(4.20)

−
∑

i∈N

∑

K∈K(ωi)

(U∗f,i + Uc,i,n · χ)∂K

−
∑

i∈N
(fψi +∇ · (Σcφi + Σf,i), η − πcη − πf,iη).
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Finally, splitting the second term in equation (4.20) into an interior and a
boundary part proves the proposition.

The error representation formula (4.6) can be used to create an adaptive
algorithm as it stands. The dual problem needs to be solved numerically.
The more effort we put into the calculation of the solution to the dual
problem the better control of the error we get. We may also proceed on the
calculation using estimates to get abound of the error.

4.3 Error Estimates

In this paper we are primarily interested in deriving a posteriori error esti-
mates which are easy to implement and scale properly with the error so that
they can serve as a basis for adaptive algorithms. We are thus not interested
in tracking constants C independent of the mesh size.

Theorem 4.1 For arbitrary U∗f,i ∈
⊕

K∈K P1(K) it holds,

|(σ −Σ,ω)| ≤
∑

i∈N
C‖√a‖L∞(ωi)‖∇U∗f,i −

1

a
(Σcφi + Σf,i)‖ωi

‖ 1√
a
χ‖ωi

(4.21)

+
∑

i∈N
C‖√a‖L∞(ωi)





∑

K∈K(ωi)

h−1‖[U∗f,i + Uc,i]‖2
∂K\∂ωi





1/2

‖ 1√
a
χ‖ωi

+
∑

i∈N
C‖√a‖L∞(ωi)‖h−1/2U∗f,i‖∂ωi\Γ‖

1√
a
χ‖ωi

+
∑

i∈N
C‖√a‖L̃∞(ωi)

‖h
a

(fψi +∇ · (Σcφi + Σf,i))‖ωi
‖ 1√

a
χ‖ωi

+
∑

i∈N
C‖√a‖L̃∞(ωi)

‖h
a

(fψi +∇ · (Σcφi + Σf,i))‖ωi
‖√aω‖ωi

,

where we use the notation,

‖√a‖L̃∞(ωi)
= max

K∈K(ωi)
‖a‖L∞(K)‖

1√
a
‖L∞(K). (4.22)
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Proof. Start from equation (4.20) we have

(σ −Σ,ω) =
∑

i∈N
(−1

a
(Σcφi + Σf,i) +∇U∗f,i,χ) (4.23)

−
∑

i∈N

∑

K∈K(ωi)

(U∗f,i + Uc,i,n · χ)∂K

−
∑

i∈N
(fψi +∇ · (Σcφi + Σf,i), η − πcη − πf,iη)

= I + II + III. (4.24)

We thus have three terms that we will treat separately. We use Cauchy-
Schwartz and Hölder’s inequalities to get a bound of the first term,

I =
∑

i∈N
(−1

a
(Σcφi + Σf,i) +∇U∗f,i,χ) (4.25)

≤
∑

i∈N
‖∇U∗f,i −

1

a
(Σcφi + Σf,i)‖ωi

‖χ‖ωi
(4.26)

≤
∑

i∈N
‖√a‖L∞(ωi)‖∇U∗f,i −

1

a
(Σcφi + Σf,i)‖ωi

‖ 1√
a
χ‖ωi

. (4.27)

Next turning to the second term II we note that we can subtract a
continuous function equal to zero on the boundary of the patch from U∗f,i +

Uc,i in the second term II of equation (4.23). For v ∈ H1
0 (ωi) = {v : v ∈

H1(ωi) such that v = 0 on ∂ωi} we have
∑

K∈K(ωi)

−(U∗f,i + Uc,i,n · χ)∂K = inf
v∈H1

0
(ωi)

∑

K∈K(ωi)

−(U∗f,i + Uc,i − v,n · χ)∂K

(4.28)

≤
∑

K∈K(ωi)

‖U∗f,i + Uc,i − v‖1/2,∂K\Γ‖n · χ‖−1/2,∂K (4.29)

≤



C
∑

K∈K(ωi)

h−1‖[U∗f,i + Uc,i]‖2
∂K\Γ





1/2



∑

K∈K(ωi)

‖n · χ‖2
−1/2,∂K





1/2

.

(4.30)

Here we used the estimate,

inf
v∈H1

0
(ωi)

∑

K∈K(ωi)

‖U∗f,i + Uc,i − v‖2
1/2,∂K ≤ C

∑

K∈K(ωi)

h−1‖[U∗f,i + Uc,i]‖2
∂K ,

(4.31)
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from Lemma 4 in [5] with VgD
= H1

0 (ωi) and n ·χ = 0 on Γ which allows us
to replace U∗f,i +Uc,i− v by zero on Γ. To treat the second term of equation
(4.30) we use the following trace inequality together with the observation
∇ · χ = 0,

‖n · χ‖−1/2,∂K ≤ C(‖χ‖K + h‖∇ · χ‖K) = C‖χ‖K , (4.32)

see [10]. Continuing the calculation in (4.30) we get,
∑

K∈K(ωi)

− (U∗f,i + Uc,i,∇ · χ) (4.33)

≤ C





∑

K∈K(ωi)

h−1‖[U∗f,i + Uc,i]‖2
∂K\Γ





1/2



∑

K∈K(ωi)

‖χ‖2
K





1/2

(4.34)

≤ C‖√a‖L∞(ωi)





∑

K∈K(ωi)

h−1‖[U∗f,i + Uc,i]‖2
∂K\Γ





1/2

‖ 1√
a
χ‖ωi

.

(4.35)

Summation over i ∈ N gives,

II ≤ C
∑

i∈N
‖√a‖L∞(ωi)





∑

K∈K(ωi)

h−1‖[U∗f,i + Uc,i]‖2
∂K\Γ





1/2

‖ 1√
a
χ‖ωi

.

(4.36)
We can now split the interior and boundary contributions from equation
(4.36) to get the terms in the Proposition.

Finally, we consider the last term, III. This term is standard and straight
forward to estimate. We simply use the interpolation estimate,

‖η − πcη − πf,iη‖K ≤ Ch‖∇η‖K , (4.37)

and get,

III ≤
∑

i∈N

∑

K∈K(ωi)

Ch‖(fψi +∇ · (Σcφi + Σf,i))‖K‖∇η‖K (4.38)

≤
∑

i∈N
C‖√a‖L̃∞(ωi)

‖h
a
(fψi +∇ · (Σcφi + Σf,i))‖ωi

‖√a∇η‖ωi
(4.39)

≤
∑

i∈N
C‖√a‖L̃∞(ωi)

‖h
a
(fψi +∇ · (Σcφi + Σf,i))‖ωi

‖ 1√
a
χ‖ωi

(4.40)

+
∑

i∈N
C‖√a‖L̃∞(ωi)

‖h
a

(fψi +∇ · (Σcφi + Σf,i))‖ωi
‖√aω‖ωi

,
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where

‖√a‖L̃∞(ωi)
= max

K∈K(ωi)
‖a‖L∞(K)‖

1√
a
‖L∞(K). (4.41)

If we finally combine equation (4.23, 4.27, 4.36, and 4.40) the theorem fol-
lows immediately.

This estimate is of the correct form for adaptivity. For each patch we
have element indicators that can be decrease either by decreasing h or in-
creasing the patch size. The first, second, and fourth term decays when h
decreases. Since U∗f,i will decay rapidly on the boundary of the patch when
the patch size increases we can get a rapid decay in the third term in the
error estimate as well. Another observation from the estimate is that if,
ω = ∇w, i.e. ω can be written as a gradient we will get trivial solutions
to the dual problem, η = w and χ = 0 which will simplify the estimate
significantly. This is not very surprising since,

(σ −Σ,ω) = (σ −Σ,∇w) = −(∇ · (σ −Σ), w) = (f +∇ ·Σ, w). (4.42)

Finally, we use Theorem 4.1 to get an error estimate in the energy norm,

‖σ −Σ‖a = (
1

a
σ −Σ,σ −Σ)1/2. (4.43)

Corollary 4.1 For arbitrary U∗f,i ∈
⊕

K∈K P1(K) it holds,

‖σ −Σ‖a ≤
(

∑

i∈N
C‖√a‖2

L∞(ωi)
‖∇U∗f,i −

1

a
(Σcφi + Σf,i)‖2

ωi

)1/2

(4.44)

+





∑

i∈N
C‖√a‖2

L∞(ωi)

∑

K∈K(ωi)

h−1‖[U∗f,i + Uc,i]‖2
∂K\∂ωi





1/2

+

(

∑

i∈N
C‖√a‖2

L∞(ωi)
‖h−1/2U∗f,i‖2

∂ωi\Γ

)1/2

+

(

∑

i∈N
C‖√a‖2

L̃∞(ωi)
‖h
a

(fψi +∇ · (Σcφi + Σf,i))‖2
ωi

)1/2

.

Proof. We will simply use Cauchy-Schwartz repeatedly on the result of
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Theorem 4.1,

|(σ −Σ,ω)| ≤
(

∑

i∈N
C‖√a‖2

L∞(ωi)
‖∇U∗f,i −

1

a
(Σcφi + Σf,i)‖2

ωi

)1/2

‖ 1√
a
χ‖

(4.45)

+





∑

i∈N
C‖√a‖2

L∞(ωi)

∑

K∈K(ωi)

h−1‖[U∗f,i + Uc,i]‖2
∂K\∂ωi





1/2

‖ 1√
a
χ‖

+

(

∑

i∈N
C‖√a‖2

L∞(ωi)
‖h−1/2U∗f,i‖2

∂ωi\Γ

)1/2

‖ 1√
a
χ‖

+

(

∑

i∈N
C‖√a‖2

L̃∞(ωi)
‖h
a
(fψi +∇ · (Σcφi + Σf,i))‖2

ωi

)1/2

‖ 1√
a
χ‖

+

(

∑

i∈N
C‖√a‖2

L̃∞(ωi)
‖h
a
(fψi +∇ · (Σcφi + Σf,i))‖2

ωi

)1/2

‖√aω‖.

Next we note that if we multiply equation (4.5) by χ and integrate over the
domain,

‖ 1√
a
χ‖2 = (ω,χ) + (∇η,χ) = (

√
aω,

1√
a
χ)− (η,∇ · χ) ≤ ‖√aω‖‖ 1√

a
χ‖.

(4.46)
Hence ‖ 1√

a
χ‖ ≤ ‖√aω‖. We now simply choose,

ω =
1

a
(σ −Σ), (4.47)

and the Corollary follows immediately.

5 The Adaptive Algorithm

We will base our adaptive strategy on the energy norm estimate presented
in Corollary 4.1. The same ideas may be used in the duality based case.
The parameters we will tune to get an improved solution are the individual
mesh size on each patch and the individual size of each patch. We do not
discuss how the coarse mesh is chosen. The idea is that we have reached
a point where we can not afford a richer coarse space and need to consider
parallel methods. The coarse mesh will in practise probably be constructed
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using a standard adaptive algorithm for a single mesh, see [9, 6] for such
methods.

We will use the error indicators from Corollary 4.1 to refine and extend
the patches. The refinements does not need to be uniform since we can
calculate indicators for individual fine element on the patch. However in this
section we will present a simple algorithm that uses different but uniform
meshes on each patch.

We have the following four error indicators if we ignore the constants,



















‖√a‖2
L∞(ωi)

‖∇U∗f,i − 1
a(Σcφi + Σf,i)‖2

ωi
,

‖√a‖2
L∞(ωi)

∑

K∈K(ωi)
h−1‖[U∗f,i + Uc,i]‖2

∂K\∂ωi
,

‖√a‖2
L∞(ωi)

‖h−1/2U∗f,i‖2
∂ωi\Γ,

‖√a‖2
L̃∞(ωi)

‖h
a (fψi +∇ · (Σcφi + Σf,i))‖2

ωi
.

(5.1)

We are mainly interested in creating an adaptive algorithm that automati-
cally improves the solution in an iterative fashion based on an error estimate
that scales correctly in the parameters of interest. The main goal is therefore
not to calculate a good approximation of the error. This means that we are
more interested in how the four indicators compare to each other than of
their absolute value. But when we look at the four term we immediately see
that the fourth term has a different a dependent term in front of it. However
this is not a big issue since if the a coefficient is constant on the fine mesh,
and we can assume that it is close to constant since we have resolved the
coefficient with the fine mesh, we have the following identity,

‖√a‖2
L∞(ωi)

= max
K∈K(ωi)

‖a‖2
L∞(K)‖

1√
a
‖2

L∞(K) := ‖√a‖2
L̃∞(ωi)

. (5.2)

With this result in mind we are ready to present four indicators that will be
used in the adaptive algorithm,



















Xi = ‖∇U∗f,i − 1
a(Σcφi + Σf,i)‖2

ωi
,

Yi =
∑

K∈K(ωi)
h−1‖[U∗f,i + Uc,i]‖2

∂K\∂ωi
,

Zi = ‖h−1/2U∗f,i‖2
∂ωi\Γ,

Wi = ‖h
a (fψi +∇ · (Σcφi + Σf,i))‖2

ωi
.

(5.3)

We do not take the a dependent coefficient into account since it multiplies
all expressions with the same factor. The four error indicators in equation
(5.3) are easy and cheep to calculate.

Since we are not primarily interested in the absolute size of these esti-
mators, just how they compare to each other, we do not use a tolerance as
a stopping criteria. Below we will sketch a simple adaptive algorithm based
on the four estimators in equation (5.3).
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1. Calculate the solution the solution to equation (2.14) Σ using small
patches with low resolution.

2. Calculate the four error indicators on each patch, equation (5.3).

3. For large values in Xi, Yi, and, Wi refine the mesh once for patch i.

4. For large values in Zi increase the patch size by one layer for patch i.

5. Stop if the solution is sufficiently good or go back to 1.

6 Numerical Examples

We will show numerical examples in 2D using the the permeability a of the
tenth SPE comparative solution project for oil reservoir simulation. An often
used method in oil drilling is to inject water into the oil reservoir in order to
move the oil to a producer. Quick numerical simulation is important in this
process in order to make correct decisions. The two phase flow in the oil
reservoir is often modeled by a non linear transport equation. This equation
is coupled with an elliptic equation for the pressure in the oil reservoir, see
[2] for a review on this subject. The pressure gradient is then passed to the
transport equation. The pressure equation basically takes the form of our
model problem (1.1).

We take the permeability a from the lowest layer of the Upper Ness for-
mation in all examples below, see Figure 1. The permeability is represented
as a piecewise constant function on a grid consisting of 220× 60 rectangular
elements. We let f = 1 in the lower left corner simulating an injector and
f = −1 in the upper right corner simulating a producer. In Figure 6 we plot
reference solutions calculated on a 440× 120 grid. In the examples we use a
coarse rectangular mesh consisting of 55× 15 blocks.

6.1 First Example: Dependency on the Number of Layers

In this first example we study how the method converge to a reference so-
lution on the fine mesh when we use the same fine mesh for all patches and
varies the patch size starting with one layer for all patches, then two layers
for all, and so on. The quality of the reference solution is not so crucial here
since we are, for the moment, only interested in the effect of the number of
layers. We therefore use a reference solution calculated on 220×60 cells. We
get a constant h on all patches by performing two uniform refinements. This
means that if we would use maximum size patches, ωi = Ω we would get the
same result from our method as we get from the reference solution. This is
of course not interesting in practice but good to know when we interpret the
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Figure 6: Above we see the reference solution, (left) flux −Σ and (right)
pressure u.

results of our method using different sized patches. In this example we use
no adaptivity, the same size on all patches. In Figure 7 we display the max
norm error compared to the reference solution in log scale versus number of
layers.

We note that we have exponential decay in the the error both in pressure
and flux. Increasing the number of layers further will bring us closer and
closer to the reference solution but already after two layers we get a very good
agreement and taking into account the discretization error in the reference
solution it is probably not of interest to use more than two layers in this
example without refining the mesh.

6.2 Second Example: The Adaptive Algorithm

Next we will see how the adaptive algorithm works for the same problem. We
use a reference solution calculated on a mesh that uses 440 × 120 elements
and coarsened the data a two times to a 55 × 15 grid which means that
the reference solution now has good quality. We start by using one layer
patches with one refinement and then perform two iterations of the adaptive
algorithm above. In each iteration we refine the mesh in 35% of the patches
according to X, Y , and W in equation (5.3) and increase the number of
layers in 35% of the patches according to Z in equation (5.3). In Figure 8
we give a graphic representation of the number of layers used for the local
problems. In Figure 9 we show the number of refinements in each patch
after two and three iterations.

We see clearly that more computational work is put in to certain areas,
in particular close to the injector and the producer. We also compare the
solutions to the reference solution calculates on the 440 × 120 grid. We
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Figure 7: Max norm error (compared to reference solution) in log scale
versus number of layers.

present the error in Figure 10.

In the upper left corner we have the standard Galerkin solution. The
relative error compared to the reference solution in energy norm is 106% and
we see clearly that the error has the same structure as the solution itself,
compare |σ|. In the upper right corner we see the error after one refinement
and one layer patches. The error is now decreased to 16% but we still see
a similar structure as the solution. After two refinements we solve more
accurate fine scale problems close to the injector and the producer and we
also see that the error decreases in these areas, the relative error in energy
norm is now down to 10%. Finally after three iterations the error drops to 8%
and we see from Figure 10, in the lower left corner, that the error is scattered
over the domain. Remember that we would need three refinements for all
patches and several layers to come very close to the reference solution. So
the adaptive algorithm gives a substantial improvement at a low cost which
was exactly our goal.
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Figure 8: After the second iteration (above) we have increased 35% of the
patches to two layers, these patches are indicated by circles. After the third
iteration (below) again we increase 35% of the patches. This means that
we have one layer patches on most patches illustrated by small dots, then
we have some patches of two layers illustrated by medium circles and finally
the three layer patches illustrated by the large dots.

25



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9: After the second iteration (above) we are using two refinements
in 35% of the patches, these patches are indicated by a larger circles. After
the third iteration (below) again we refine the mesh uniformly in 35% of
the patches. This means that we have patches with one, two and three
refinements represented by small dots, medium circles, and large dots.
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Figure 10: Upper left corner we have the relative error in energy norm for
standard Galerkin (106%). Upper right corner is the error after using one
refinement and one layer patches (16%). Lower left corner is the error after
the second iteration (10%) and lower right is the error after three iterations
(8%). We use rectangular elements in the computation but the plot function
transforms this into triangles.
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[16] M. G. Larson and A. Målqvist, Adaptive variational multiscale methods

based on a posteriori error estimation, Proceedings of the 4th European
Congress on Computational Methods in Applied Sciences and Engineer-
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Goal Oriented Adaptivity for Coupled

Flow and Transport Problems with

Applications in Oil Reservoir Simulation.
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Abstract

Goal oriented adaptivity has become an important and widely used
technique for solving partial differential equations at a reduced com-
putational cost. The technique is based on a computable estimate of
the error in a linear functional of interest and an adaptive strategy
that improves the solution, for instance by refining the mesh locally
according to the error estimator.

In this paper we extend this theory to a multi-physical setting in-
volving a coupled set of equations. Here adaptive algorithms become
even more crucial since we do not only need estimators that indicates
in which part of the domain the solution needs to be improved but also
which equation that contributes most to the error and thus needs to
be solved more accurately.

We derive a goal oriented error estimator for a system of coupled
pressure and transport that serves as a basic model for oil reservoir
simulation. We present an extensive numerical example where we ex-
plain in detail how the adaptive algorithm works in practice.

1 Introduction

In this paper we develop adaptive algorithms based on goal oriented a poste-
riori error estimates for a coupled pressure-transport problem, which serves
as a basic model problem for oil reservoir simulation. The pressure equation
determines the convection field which is used in the transport problem. The
error estimate is based on duality arguments and identifies the individual
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†Professor of Applied Mathematics, Department of Mathematics, Ume̊a University,

Ume̊a, mats.larson@math.umu.se.

1



effects of discretization errors in the pressure and transport solvers on the
quantity of interest. The approach is fairly general and may be employed to
other multi-physics problems, for instance fluid structure interaction, and
thermal expansion problems in solid mechanics.

The Model Problem. We consider the following transport problem,







ċ+∇ · (σc)− ǫ△c = g in Ω× (0, T ],
n · ∇c = 0 on Γ,
c = c0 for t = 0,

(1.1)

where Ω is a polygonal domain in Rn with boundary Γ, g ∈ L2(Ω) is given
data, c0 ∈ L

2(Ω) is initial data, and the flux σ is determined by the following
equation,







1
aσ −∇u = 0 in Ω,
−∇ · σ = f in Ω,

n · σ = 0 on Γ.
(1.2)

Here a ∈ L∞(Ω) is positive and f ∈ L2(Ω). Assuming that
∫

Ω f dx = 0 we
have a well posed problem with a solution u ∈ H1(Ω)/R and σ ∈ V = {v ∈
H(div;Ω) : n · v = 0 on Γ}. See [10] for definitions of these function spaces.

Previous Work. There have been many works on goal oriented adaptivity
during the last decade, see for instance Johnson et.al. [12, 15, 13], Rannacher
et.al. [6], and the references therein. The treatment of single-physics prob-
lems is fairly well understood, while the theory has not yet been applied
to multi-physics problems to any large extent. Coupled flow and transport
problems appear in numerous applications, for instance in simulation of oil
reservoirs, see Aarnes and Lie et.al. [2, 1], Wheeler et.al. [11], Arbogast
et.al. [4], for background on this topic.

New Contributions. In this paper we develop adaptive algorithms for a
coupled pressure-transport equation, motivated by oil reservoir simulation,
based on a posteriori error estimates. Often one is particularly interested
in the production of oil in a reservoir simulation. The production may be
expressed as a linear functional (the localized value of the solution at the
producer) of the solution and thus the problem is ideal for a goal oriented
approach. We also have a strong multiscale scale structure in the perme-
ability that requires different degrees of refinement in different parts of the
domain. A third reason and perhaps the most important is that this prob-
lem consists of several partial differential equations that most likely need
different meshes and the choice of suitable meshes is difficult to do by hand.
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Pressure Transport

Dual data

Primal data

Parameters

Figure 1: Information flow between solvers and data base.

When one must determine a large number of discretization parameters such
as mesh sizes, time steps, and so on automatic tuning of these parameters
by an adaptive algorithm becomes crucial. The need for automatic tuning
of parameters thus becomes more and more apparent when several solvers
are connected in a multi-physics simulation.

We present a duality based a posteriori error estimate for a linear func-
tional of the error together with an adaptive algorithm and numerical ex-
amples on a simple model problem for oil reservoir simulation. To illustrate
the flow of data in the adaptive algorithm we present a schematic picture
in Figure 1. The box with parameters symbolizes the known data in the
equations such as g, c0, Ω, a, f and so on. The box to the left is the solver
of the pressure equation that feeds the transport solver (to the right) with
the calculated flux σ. In the transport solver we solve the primal transport
problem but also a dual transport problem driven by a given weight that
determines in what sense we control the error (the type of linear functional).
The primal and dual transport solutions are then combined according to the
error estimates and used as data to a dual pressure solver. At this point
we are ready to refine the meshes according to the error estimates and start
over again by solving the primal pressure problem.

Outline. The remainder of the paper is organized as follows: in Section 2
we present the finite element formulation of the model problem; in Section
3 we derive error estimates that leads to an adaptive algorithm in Section
4; and finally in section 5 we present extensive numerical examples.
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2 The Finite Element Method

We introduce some notations before we can present a discrete version of the
weak form of equation (1.1). We let,

(v,w) =

∫

Ω
v · w dx, (2.1)

for all v,w ∈ L2(Ω) and ‖v‖Ω be the L2(Ω) norm of v. We let Vh be the
space of continuous piecewise linear functions on a triangulation K = {K},
which satisfies the minimal angle condition, of Ω. The mesh parameter h is
a piecewise constant function such that on each element K, h = diam(K).
Furthermore, we let

π : L2(Ω) → Vh, (2.2)

be the Scott-Zhang interpolant onto the space of piecewise linears Vh, see
[9]. We also recall for later use that π is stable in H1(Ω).

2.1 The Transport Problem

Since σ is an unknown solution to equation (1.2) we assume, for the moment,
that we have a discrete approximation Σ such that n ·Σ = 0 on Γ. We will
use the cG1-cG1 method to approximate the transport equation, see [13].
This means that C : (0, T ] → Vh will be the solution to:

∫

Ik

(Ċ, v)+(∇·(ΣC), v)+(ǫ∇C,∇v) dt =

∫

Ik

(g, v) dt, for all v ∈ Vh, (2.3)

where k = 1, ..., n, Ik = [tk−1, tk], tk−1 < tk, t0 = 0, and tn = T . We
also introduce the notation △tk = tk − tk−1. We define △t as a piecewise
constant function in time. For t ∈ Ik, △t = △tk.

The continuous piecewise linear basis functions we use in time gives the
following identities,

∫

Ik

(Ċ, v) dt = (C(tk)− C(tk−1), v), (2.4)

∫

Ik

(∇ · (ΣC), v) dt = △tk · (∇ · (Σ(
C(tk) + C(tk−1)

2
)), v), (2.5)

∫

Ik

(ǫ∇C,∇v) dt = △tk · (ǫ∇
C(tk) +C(tk−1)

2
,∇v), (2.6)

and
∫

Ik

(g, v) dt = △tk · (g, v), (2.7)
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since we assume g to be independent of time. We introduce the notation
C(tk) = Ck and get the following finite element method: find Ck ∈ Vh such
that

(Ck +
△tk
2
∇ · (ΣCk), v) +

△tk
2

(ǫ∇Ck,∇v) (2.8)

= (Ck−1 −
△tk
2
∇ · (ΣCk−1), v)

−
△tk
2

(ǫ∇Ck−1,∇v) +△tk(g, v),

for all v ∈ Vh, k = 1, ..., n, and C0 equal to the L2(Ω) projection of c0 onto
Vh.

To stabilize the cG1-cG1 method for convection dominated problems, ǫ
small compared to Σ, we use the streamline diffusion method. We replace
the test function v by v+ δ∇ · (Σv) in two terms of equation (2.3), the first
one is the convection term (∇· (ΣC), v) and the second one is the load term
(f, v). The parameter δ is defined as a piecewise constant on K

δ =
D

√

( 1
△t2

+
¯|Σ|

2

h2 )

, (2.9)

D will throughout this paper constants and Σ̄ is the mean value of Σ on
the current element. For more information on streamline-diffusion see [14,
12, 13].

2.2 The Flow Problem

We let Q = {K} be a partition, possibly different from K, of Ω, V h be
the lowest order Raviart-Thomas space [20, 19] for the flux, and Wh be the
space of piecewise constants on Q. The finite element method then reads:
find Σ ∈ V h and U ∈Wh such that,

{

( 1
aΣ,v) + (U,∇ · v) = 0,
−(∇ ·Σ, w) = (f,w),

(2.10)

for all v ∈ V h and w ∈Wh.

3 A Posteriori Error Estimation

We do not focus our attention on tracking constants in this paper, instead
we seek to derive error estimates that scale properly with the error modulo
constants. Constants denoted D does not depend on the mesh size h. We
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will not consider the streamline-diffusion term in the error analysis. For an
extensive discussion on streamline-diffusion method we guide the reader to
[14, 15].

3.1 Error Equation

We get the following Galerkin orthogonality for the error e = c − C by
subtracting equation (2.3) from the weak form of equation (1.1),

∫

Ik

(ė, v) + (∇ · (Σe), v) + (ǫ∇e,∇v) dt = −

∫

Ik

(∇ · ((σ −Σ)c), v) dt (3.1)

=

∫

Ik

((σ −Σ), c∇v) dt, (3.2)

for all v ∈ V h. In the last equality we used that n · (σ−Σ) vanishes on the
boundary Γ.

3.2 Dual Transport Problem

Next we introduce the dual problem,







−φ̇−Σ · ∇φ− ǫ△φ = ψ in Ω× (0, T ],
n · ∇φ = 0 on Γ,
φ = 0 for t = T,

(3.3)

where ψ ∈ H−1(Ω). Note that this dual problem is solved backwards in
time starting with initial data at time T .

3.3 Error Estimate of the Transport Problem

Proposition 3.1 For an arbitrary distribution ψ ∈ H−1(Ω) it holds,

∫ T

0
(e, ψ) dt ≤

∫ T

0
D

∑

K∈K

ρK(C)(△t‖φ̇‖K + h‖∇φ‖K) dt (3.4)

+ |(σ −Σ,

∫ T

0
c∇πφ̄ dt)|,

where,

φ̄ =
1

△tk

∫

Ik

φdt, (3.5)

for t ∈ Ik and

ρK(C) = ‖Ċ +∇ · (ΣC)− ǫ△C − g‖K + h−1/2‖ǫ[n · ∇C]‖∂K . (3.6)
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Proof. Multiplying the dual problem (3.3) by the error and integrating by
parts, in time for the first term and in space for the second and third term,
where boundary terms vanish due to the boundary conditions, we get the
following identities

∫ T

0
(e, ψ) dt =

∫ T

0
(e,−φ̇−Σ · ∇φ− ǫ△φ) dt (3.7)

=

∫ T

0
(ė, φ)− (Σe,∇φ) + (ǫ∇e,∇φ) dt (3.8)

=

∫ T

0
(ė, φ) + (∇ · (Σe), φ) + (ǫ∇e,∇φ) dt. (3.9)

We define the time mean value of φ in each time slab,

φ̄ =
1

△tk

∫

Ik

φdt, (3.10)

for t ∈ Ik, and use equation (3.1) to subtract πφ̄ ∈ Vh, from equation (3.7),

∫ T

0
(e, ψ) dt =

n
∑

k=1

∫

Ik

(ė, φ) + (∇ · (Σe), φ) + (ǫ∇e,∇φ) dt (3.11)

=

n
∑

k=1

∫

Ik

(ė, φ− πφ̄) + (∇ · (Σe), φ − πφ̄) dt (3.12)

+
n

∑

k=1

∫

Ik

(ǫ∇e,∇(φ− πφ̄)) + (σ −Σ, c∇πφ̄) dt.

Next we use the fact that c is the exact solution to (1.1) to eliminate c and
we also recall that σ and Σ are independent of time to simplify the last
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term on the right hand side in (3.12).

∫ T

0
(e, ψ) dt =

∫ T

0
(g − Ċ −∇ · (ΣC), φ− πφ̄) + (ǫ∇C,∇(φ− πφ̄)) dt

(3.13)

+ (σ −Σ,

∫ T

0
c∇πφ̄ dt)

≤

∫ T

0

∑

K∈K

(g − Ċ −∇ · (ΣC), φ− πφ̄)K dt (3.14)

+

∫ T

0

∑

K∈K

(ǫ∇C,∇(φ− πφ̄))K dt+ (σ −Σ,

∫ T

0
c∇πφ̄ dt)

≤

∫ T

0

∑

K∈K

‖g − Ċ −∇ · (ΣC) + ǫ△C‖K‖φ− πφ̄‖K dt (3.15)

+

∫ T

0

∑

K∈K

|
1

2
(ǫ[n · ∇C], φ− πφ̄)∂K | dt

+ (σ −Σ,

∫ T

0
c∇πφ̄ dt),

where the jumps [·] in equation (3.15) denotes the difference in function value
over an interior face in the mesh. These jumps appears since C does not
have continuous derivative over element edges, see for instance [13, 16, 6].
Using standard estimates, see for instance [16], we can estimate the jump
term in the following way,

(ǫ[n · ∇C], φ− πφ̄)∂K ≤ h−1/2‖ǫ[n · ∇C]‖∂Kh
1/2‖φ− πφ̄‖∂K (3.16)

≤ Dh−1/2‖ǫ[n · ∇C]‖∂K‖φ− πφ̄‖K (3.17)

+Dh−1/2‖ǫ[n · ∇C]‖∂Kh‖∇(φ− πφ̄)‖K).
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Since π is stable in H1(Ω) we have ‖∇(φ− πφ̄)‖K ≤ D(‖∇φ‖K + ‖∇φ̄‖K).
We further assume ‖∇φ̄‖ ≤ D‖∇φ‖. We conclude,

∫ T

0
(e, ψ) dt ≤

∫ T

0

∑

K∈K

‖g − Ċ −∇ · (ΣC) + ǫ△C‖K‖φ− πφ̄‖K dt (3.18)

+D

∫ T

0

∑

K∈K

h−1/2‖ǫ[n · ∇C]‖∂K‖φ− πφ̄‖K dt

+D

∫ T

0

∑

K∈K

h−1/2‖ǫ[n · ∇C]‖∂Kh‖∇φ‖K dt

+ (σ −Σ,

∫ T

0
c∇πφ̄ dt).

Lets consider the interpolation term ‖φ− πφ̄‖K on a given time interval Ik.
We note that,

‖φ− πφ̄‖K ≤ ‖φ− φ̄‖K + ‖φ̄− πφ̄‖K , (3.19)

but since φ̄ is a mean value in time the first term can be estimated by
‖φ − φ̄‖K ≤ D△tk‖φ̇‖K and for the second term we have interpolation
which gives, ‖φ̄− πφ̄‖K ≤ Dh‖∇φ‖K i.e.

‖φ− πφ̄‖K ≤ D(h‖∇φ‖K +△tk‖φ̇‖K), (3.20)

if we use the result from equation (3.20) in equation (3.18) we end up with,

∫ T

0
(e, ψ) dt ≤ D

∫ T

0

∑

K∈K

‖g − Ċ −∇ · (ΣC) + ǫ△C‖Kh‖∇φ‖K dt (3.21)

+D

∫ T

0

∑

K∈K

‖g − Ċ −∇ · (ΣC) + ǫ△C‖K△t‖φ̇‖K dt

+D

∫ T

0

∑

K∈K

h−1/2‖ǫ[n · ∇C]‖∂K(h‖∇φ‖K + k‖φ̇‖K) dt

+ (σ −Σ,

∫ T

0
c∇πφ̄ dt).

We now introduce the following element indicator function,

ρK(C) = ‖Ċ +∇ · (ΣC)− ǫ△C − g‖K + h−1/2‖ǫ[n · ∇C]‖∂K . (3.22)

This proves the proposition.

The last term in the estimate accounts for the influence of the error in
the flux σ − Σ and may be interpreted as a modeling error term. Clearly
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(σ−Σ,ω) with ω =
∫ T
0 c∇πφ̄ dt is the functional of the flux which needs to

be controlled to guarantee overall accuracy in the transport computation.
We are thus naturally led to deriving a goal oriented error estimate for this
particular functional.

3.4 Dual Elliptic Problem

To handle the last term in Proposition 3.1 we introduce another dual prob-
lem:







1
aχ−∇η = ω in Ω,
−∇ · χ = 0 in Ω,
n · χ = 0 on Γ,

(3.23)

and formulate the following proposition.

3.5 Error Estimate for the Mixed Problem

Proposition 3.2 It holds,

|(σ −Σ,ω)| ≤ D
∑

K∈Q

(‖∇U∗ −
1

a
Σ‖K + h−1/2‖[U∗]‖∂K\Γ)‖χ‖K (3.24)

+D
∑

K∈Q

h‖∇ ·Σ + f‖K‖∇η‖K ,

for arbitrary U∗ ∈
⊕

K∈Q P
1(K) where P 1(K) are piecewise linear polyno-

mials on K.

Proof. We have,

(σ −Σ,ω) = (
1

a
(σ −Σ),χ)− (σ −Σ,∇η) (3.25)

= −(u,∇ · χ)− (
1

a
Σ,χ) + (∇ · (σ −Σ), η) (3.26)

= −(
1

a
Σ,χ) + (∇ · (σ −Σ), η). (3.27)

We let PK : W → Wh be the elementwise L2-projection and note, by using
the second part of equation (2.10), that we can add (f + ∇ · Σ, PKη) to
equation (3.27). We also introduce the arbitrary function U∗ by adding,

−(U∗,∇ · χ) = 0. (3.28)
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This gives,

(σ −Σ,ω) = −(U∗,∇ · χ)− (
1

a
Σ,χ)− (∇ ·Σ + f, η − PKη) (3.29)

=
∑

K∈Q

(∇U∗ −
1

a
Σ,χ)K − (U∗, n · χ)∂K (3.30)

− (∇ ·Σ + f, η − PKη).

Since we aim to get an element error indicator we would like to use the
Cauchy-Schwartz inequality. This is simple for the first and third term in
equation (3.30) but a bit more complicated for the second term.

We use the proof of Theorem 3.1 in [18] to get the following bound,

(U∗, n · χ)∂K ≤ Dh−1/2‖[U∗]‖∂K\Γ(‖χ‖K + h‖∇ · χ‖K) (3.31)

= Dh−1/2‖[U∗]‖∂K\Γ‖χ‖K ,

since ∇ · χ = 0 and n · χ = 0 on Γ. Using equation (3.31) and Cauchy-
Schwartz inequality in equation (3.30). We end up with,

(σ −Σ,ω) =
∑

K∈K

(∇U∗ −
1

a
Σ,χ)K − (U∗, n · χ)∂K (3.32)

− (∇ ·Σ + f, η − PKη)

≤ D
∑

K∈K

(‖∇U∗ −
1

a
Σ‖K + h−1/2‖[U∗]‖∂K\Γ)‖χ‖K (3.33)

+D
∑

K∈K

h‖∇ ·Σ + f‖K‖
1

h
(η − PKη)‖K (3.34)

≤ D
∑

K∈K

(‖∇U∗ −
1

a
Σ‖K + h−1/2‖[U∗]‖∂K\Γ)‖χ‖K (3.35)

+D
∑

K∈K

h‖∇ ·Σ + f‖K‖∇η‖K ,

using the interpolation estimate ‖(η − PKη)/h‖K ≤ D‖∇η‖K . The propo-
sition follows immediately.

In Proposition 3.2 we introduce the function U∗ instead of simply using
U . It is known from [5, 8, 17, 21] that in order to get an optimal order error
estimate when using a richer space for the flux then for the pressure, U needs
to be improved. There are many ways to do this postprocessing and in this
paper we will use the method formulated by Stenberg et. al. in [17, 21]. In
the case of lowest order Raviart-Thomas base functions together with piece-
wise constants the idea is simply to derive a piecewise linear approximation
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of U with the same mean value as U but with a gradient approximately
equal to Σ/a.

A short description of the method is to be found in [18]. We also present
it here for completeness. We let P 1(K) denote the space to piecewise linear
functions on K.

Definition 3.1 (Postprocessing method) Find U∗ such that U∗|K = U∗K ∈
P 1(K) where U∗K is defined by

PKU
∗
K = UK , (3.36)

and

(∇U∗,∇v)K = (
1

a
Σ,∇v)K for all v ∈ (I − PK)P 1(K). (3.37)

With this definition together with the two propositions we are ready to
present the main theorem of this paper.

Theorem 3.1 It holds,

∫ T

0
(e, ψ) dt ≤ D

∑

K∈K

∫ T

0
ρK(C)(k‖φ̇‖K + h‖∇φ‖K) dt (3.38)

+D
∑

K∈Q

(‖∇U∗ −
1

a
Σ‖K + h−1/2‖[U∗]‖∂K\Γ)‖χ‖K

(3.39)

+D
∑

K∈Q

h‖∇ ·Σ + f‖K‖∇η‖K , (3.40)

where,

φ̄ =
1

△tk

∫

Ik

φdt, (3.41)

for t ∈ IK , U∗ is defined in Definition 3.1 and

ρK(C) = ‖Ċ +∇ · (ΣC)− ǫ△C − g‖K + h−1/2‖ǫ[n · ∇C]‖∂K . (3.42)

Proof. We simply combine the results in Proposition 3.1 and 3.2.

We are now ready to formulate an adaptive algorithm based on this
estimate. The parameters we want to tune are the mesh sizes of the transport
problem and the elliptic problem. Remember that we have the possibility
to choose different meshes for the two equations.
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4 Adaptive Strategy

We construct an algorithm that improves a certain linear functional of the
solution,

∫ T
0 (c, ψ) dx, ψ is chosen arbitrarily.

1. Calculate the solutions Σ and U to the elliptic problem (2.10) on a
given initial mesh, Q.

2. Calculate the solution to the transport problem C by solving equation
(2.8) on an other initial mesh, K.

3. Calculate an approximate solution of the dual transport problem (3.3),
Φ, given ψ, on the same mesh as the transport problem or a uniformly
refined version.

4. Calculate an approximation to ω =
∫ T
0 c∇πφ̄ dx from C and Φ.

5. Calculate the approximate solutions to the dual elliptic problem χ and
η on the mesh Q or perhaps a uniformly refined version.

6. Calculate the elementwise error indicators using the calculated primal
and dual solutions,







IK
1 =

∫ T
0 ρK(C)(k‖φ̇‖K + h‖∇φ‖K) dt,

IK
2 = (‖∇U∗ − 1

aΣ‖K + h−1/2‖[U∗]‖∂K\Γ)‖χ‖K

+h‖∇ ·Σ + f‖K‖∇η‖K .

(4.1)

7. Derive the sums I1 =
∑

K∈K I
K
1 and I2 =

∑

K∈Q I
K
2 .

8. If the indicators are sufficiently small we stop. If not we refine the
meshes in the following way.

9. If I1 > EI2 given a constant E > 1 we just refine the mesh, K, for
the transport problem and return to 1. For example we can refine a
certain percentage (refinement level) of the element according to the
element indicators IK

1 .

10. If I2 > EI1 we just refine the mesh for the elliptic problem, Q, accord-
ing to IK

2 and return to 1.

11. If non of these hold we refine both K and Q and return to 1.

We do not consider adaptivity in time in this paper. However it will be very
straight forward to do so following the work of Johnson et. al. [13, 12]. In
the next section we will show a numerical example where we follow the steps
of the adaptive algorithm closely.
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Figure 2: The permeability a used in the numerical example is taken from
the Tenth SPE Comparative Solution Project. It is the top layer in the
Tarbert formation in log-scale. max a/min a = 1.53 · 106

5 Numerical Examples

We will study a simplified model of flow in petroleum reservoirs. The perme-
ability a in the example is taken from the Tenth SPE Comparative Solution
Project and is represented as a piecewise constant function on a 220 × 60
grid. We use a two dimensional slice of data representing the top layer of
the Tarbert formation, see Figure 2. We start to solve the pressure equation
(2.10) on a 220 × 60 block rectangular grid with f = 1 for |(x, y)| ≤ 0.025
and f = −1 for |(x, y)−(1, 1)| ≤ 0.025. In Figure 3 we see the flux −Σ to the
left and the pressure U to the right. Using this vector field as a convection
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Figure 3: The solution to the pressure equation after one iteration.
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Figure 4: The solution to the transport problem after one iteration.

term we solve the transport problem, see equation (2.8), on a quasi uniform
triangular mesh with mesh parameter h ≈ 0.03 and g = max(f, 0), see Fig-
ure 4 for solutions at six different times. We see how the water is injected
in the lower left corner and how it follows the vector field from Figure 3 on
its way to the producer in the upper right corner. We let ǫ = 3× 10−6 and
use streamline diffusion to get stabilized solutions.

By using different kind of meshes for the two equations we want to
show that the method of using coupled dual problems is very general. In
many engineering applications each solver is its own black box and perhaps
only some of the solvers supports element split or other local methods for
improving the solution. In this example we will assume that the transport
solver uses a triangular mesh that we can split to improve the solution locally
while the elliptic solver does not support local mesh refinement. However
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Figure 5: The dual solution to the transport problem after one iteration.

we can of course decrease the mesh size globally also for the elliptic solver.
Following the steps of the adaptive algorithm in Section 4 we are now

ready to calculate the dual solutions. First we need to choose a right hand
side ψ. In the oil reservoir application we want to measure the water concen-
tration at the producer located in the upper right corner of the domain. We
choose ψ to be the Dirac delta measure in the upper right corner, x = y = 1,
ψ = δ(1,1). This means that we control the quantity,

∫ T

0
(e, ψ) dx =

∫ T

0
e(1, 1, t) dx. (5.1)

In Figure 5 we see the dual transport solution at six different times. The
dual problem indicates which areas that contributes most to the error. We
plot the solution backward in time and we can see how it propagates from
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Figure 6: The dual solution to the pressure equation after one iteration.

the producer and through the domain. The dual problem is solved using
the same method as the primal on the same mesh. Given an approximation
to the primal and the dual we are ready to calculate the right hand side for
the dual elliptic problem. We remember that,

ω =

∫ T

0
c∇πφdx ≈

∫ T

0
C∇Φ dx. (5.2)

The dual solution we get using this right hand side can be seen in Figure
6. To the left we see the flux. Remember that ∇ · χ = 0 so we have no
production in this variable, just a curl part this gives characteristic eddies.
One can see that we have strong eddies at the producer and along the main
flow path lower of the diagonal of the domain. Especially we see large
magnitudes of the solution where the primal to the transport problem C
changes direction. To the right we see the gradient part of the solution η.
We can clearly see how it follows the flow from the solution Σ and therefore
also C and Φ.

We are now ready to start calculating the error indicators at step 6 in
the adaptive algorithm. We start by IK

1 and divide it into two parts. The
first part is the residual denoted ρK(C) throughout the paper, see Figure
7. The residual gets it main contributions along the front of the wave C.
The second part is the weights from the dual solution, △t‖φ̇‖K + h‖∇φ̄‖K ,
see Figure 8. Again we see that also the weight part of the error indicator
follows the front, this time of the dual solution Φ.

We also have an error indicator associated with the elliptic problem. In
Figure 9 to the left we see the residual part of the primal solution ‖∇U∗ −
Σ/a‖K + h−1/2‖[U∗]‖∂K in log-scale. Remembering the permeability a in
Figure 2 we recognize the difficult vertical area to the left of the domain
where we also get large error indicators. We also not large values very close
to the injector and producer. To the right in Figure 9 we have the other
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Figure 7: The residual ρ after the first iteration.
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Figure 8: The weight function △t‖φ̇‖K + h‖∇φ‖K backwards in time.
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Figure 9: The two residual parts of the elliptic equation. To the left ‖∇U∗−
Σ/a‖K + h−1/2‖[U∗]‖∂K in log-scale and to the right h‖f +∇ ·Σ‖.

0
50

100
150

200
250

0

10

20

30

40

50

60

−5

0

5

10

0
50

100
150

200
250

0

10

20

30

40

50

60

−5

0

5

10

Figure 10: The weight functions for the elliptic equation in log-scale. To the
left ‖χ‖K and to the right ‖∇η‖K .

contribution to the residual, h‖f+∇·Σ‖. Since f is zero almost everywhere
and the method is locally conservative we mostly get zero contribution from
this part. However we also here get contributions close to the injector and
producer where f is non-zero.

In Figure 10 we see the functions χ to the left and ∇η to the right. Here
it is obvious how the influence of the transport equation affects the error
indicator of the elliptic problem. If we just would have used the residual
from Figure 9 as an indicator for refinement we would lose all information
that is associated with which output quantity we seek to minimize. This
information is stored in the weights and needs to be taken into account.

We are now ready to use this error indicators to refine the mesh and
iterate until we are satisfied with the solution. We use a refinement level
of 15% for the transport equation and 100% for the elliptic equation, since
we can not refine this mesh locally. We let E = 2.5 in step 8 and 9 of the
adaptive algorithm which means that if the transport error is larger then 2.5
times the elliptic error, we only refine the mesh for the transport problem
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Figure 11: The error indicators for the transport and the elliptic problem
at each iteration. We see a steady decay for the transport part as we expect
since the mesh is refined at each iteration. For the elliptic indicator we see
a drop after three iterations. This is because we refine the mesh uniformly
after this iteration. This is the only modification the algorithm does to the
mesh of the elliptic problem.

and vice versa.

We perform five iterations of the adaptive algorithm. In Figure 11 we
plot the error indicators I1 and I2 after each iteration. We see that the
largest contribution to the error comes from the transport problem after the
first three iterations. We refine the triangular mesh by 15% at each iteration
and the indicator decreases. Since we do not refine the mesh for the elliptic
problem this indicator is fairly constant. At the fourth iteration we no
longer have I1 > 2.5I2 so we refine both meshes. For the elliptic solver this
means a uniform refinement. As seen from the figure this decreases the error
indicator both for the elliptic and transport problem. At the last iteration
we again just refines the triangular mesh. In Figure 12 we plot the five
triangular meshes together with the initial rectangular mesh. At the fourth
iteration the rectangular mesh will be uniformly refined but it will of course
have the same structure so this mesh is not included in the picture. We see
clearly how the mesh follows the two main paths of the flow.

The final solution on the last mesh can be seen in Figure 13. Analysis
of the error indicators is one way of evaluate the method. An other way
is to see how the solutions seems to converge as we put more and more
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Figure 12: Five meshes for the transport problem after each of the five
iterations. In the lower right corner the first mesh for the elliptic problem.
A uniform refinement of the mesh for the elliptic problem is performed after
the third iteration but this uniformly refined rectangular mesh is not present
in the figure.
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Figure 13: The final solution to the transport problem after five iterations.
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Figure 14: The water concentration at the producer at different times for
approximations after one, three, and five iterations.

computational effort into solving the problem. Since we are interested in a
specific output

∫ T
0 C(1, 1, t) dx we will now look how this quantity varies in

the different approximations.

In Figure 14 we plot C(1, 1, t) after one three and five iterations. As we
expect we have no water (pure oil) until the front reaches the producer and
then the concentration of water increases to finally reach one. We zoom in
on two parts of this figure. First we study the time when the front reaches
the producer, see Figure 15 (left). We see that after more iterations we get
steeper and steeper solutions. The fourth solution seems to be very close to
the fifth. The second zoom is a bit later in the calculation. Again the fourth
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Figure 15: The water concentration at the producer zoomed around two
specific times for four approximations.
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Figure 16: We choose the fifth approximation as reference to compare the
other four approximations with. We calculate the relative error in concen-
tration of water at the producer integrated over time.

and fifth iterates are very close.
We now use the fifth iterate as a reference solution and study the how

close the prior iterates are to the last one. In Figure 16 we plot,

|

∫ T

0
Ci(1, 1, t) dx −

∫ T

0
C5(1, 1, t) dx|, (5.3)

for i = 1, 2, 3, 4, i indicating the four prior iterates. We see a big drop in the
error between the first and second iteration then a small increase followed
by an other big drop. Even though the decrease in error is not monotone
we see orders of magnitude lower error for the solutions using refine meshes
compared to the quasi regular meshes in the first iteration. Remember that
just 15% of the elements where refined at each iteration.
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