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Abstract

In this thesis we first analyze the class of one-dependent trigonometric
determinantal processes and show that they are all two-block-factors. We
do this by constructing the two-block-factors explicitly.

Second we investigate the dynamic stability of percolation for the stochas-
tic Ising model and the contact process. This is a natural extension of what
previously has been done for non-interacting particle systems. The main
question we ask is: If we have percolation at a fixed time in a time-dependent
but time-invariant system, do we have percolation at all times? A key tool
in the analysis is the concept of e—movability which we introduce here. We
then proceed by developing and relating this concept to others previously
studied.

Finally, we introduce a new model which we refer to as the contact pro-
cess in a randomly evolving environment. By using stochastic domination
techniques we will investigate matters of extinction and that of weak and
strong survival for this system. We do this by establishing stochastic re-
lations between our new model and the ordinary contact process. In the
process, we develop some sharp stochastic domination results for a hidden
Markov chain and a continuous time analogue of this.

Keywords: Determinantal processes, k-dependence, k-block-factors,
percolation, stochastic Ising models, contact process, e—movability, hidden
Markov chain, stochastic domination
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1 Background

In this section, we will give a short historical overview of the research areas
and models studied in this thesis. We will also discuss some of the basic
properties of these models. We prefer to give here an informal description
rather than make precise mathematical statements. For exact definitions,
see the relevant references or the papers of this thesis. We will start with
determinantal processes and then proceed with a general description of in-
teracting particle systems. Finally we will discuss the stochastic Ising model
and the contact process.

1.1 Determinantal Processes

Since only a relatively small part of this thesis deals with determinantal
processes, we will not say much about it.

Determinantal processes arise in numerous contexts such as mathemati-
cal physics, random matrix theory and representation theory to name a few.
For a general survey see [24] and for the discrete case which we deal with
in this thesis see [I8]. See also [20] for a detailed analysis of the discrete
stationary case.

In the one-dimensional discrete case, let f : [0,1] — [0, 1]. It is possible
to define a translation invariant probability measure P/ on {0, 1}Z by letting
the probability of having 1’s at locations si,...,s, be given by the n x n
determinant with entry f (sj — si) at position ¢, j. In a more general setting,
one can take f : T¢ — [0,1] where T¢ := R?/Z9. In this case, the result-
ing process is indexed by Z¢ Apart from their usefulness in applications,
determinantal processes also have the interesting and unusual property of
being negatively associated; see [12] for an early reference and [23] for many
interesting examples, conjectures and open questions concerning negative
association.

1.2 Interacting Particle Systems

The theory of interacting particle systems is a branch of probability theory.
It emerged sometime around the late 1960’s pioneered by R.L. Dobrushin
and F. Spitzer. Within a decade, this field of research had grown remarkably
and today it is one of the major branches of probability theory.

The inspiration comes from a number of different sciences such as Physics
(the stochastic Ising model), Biology (the contact process) and Sociology
(the voter model). Another important example of an interacting particle
system is the exclusion process. This model is mostly used to model particle
motion. For instance, it can be a lattice gas or traffic flow, where in the latter
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case the “particles” are cars. Of these four models, this thesis is concerned
only with the first two. There has been a number of textbooks written on
the subject, some of the most standard being [I5] and [16] by T. M Liggett
and [2] by R. Durrett.

We will now give an informal description of a general interacting particle
system. All interacting particle systems are defined on a graph G = (S, E)
where a graph is a set of sites (.5, finite or infinite) and a set of edges
(E) connecting the sites. Furthermore, the assumption of bounded degree
is standard. This means that there exists some number A such that the
number of edges connected to any site is bounded by A. One then considers
a random or non-random initial configuration on the sites (or sometimes on
the edges) which evolves according to some probabilistic rule. Most common
is the case where every site is allowed to take one of two values, for example
{0,1} or {—1,1}. These values are referred to as the possible states of the
site. In the first case the full state space becomes {0, 1}* and in the second it
becomes {—1,1}°. The immediate interaction of the system occurs between
the sites which are connected by an edge. That is, for every s,s’ € S such
that there is an edge between s and s’ (often denoted by (s,s’) € For s ~ &
and referred to as s, s’ being neighbors) the rate at which the current state
of the site s changes can depend on the current state of the site s’ as well
as on the current state of s itself. However, it does not depend on the state
of any s” € S not being a neighbor of s. An important aspect is that the
rates are not dependent on the history. Thus, the system is Markovian. The
rates at which the changes at a site s € S occur are usually referred to as
flip rates and denoted by C(s, o) where ¢ is the configuration of the system,
ie. 0 €{0,1}° or 0 € {—1,1}°. Informally, we say that the site waits an
exponentially distributed time with parameter C(s,o) before changing its
state.

We will now proceed by giving a brief description of the two interacting
particle systems that we are mainly concerned with in this thesis.

1.2.1 The Stochastic Ising Model

For simplicity, let G = Z<, i.e. the graph consisting of the sites Z¢ and
all nearest neighbor pairs as the edges. The stochastic Ising model was
introduced by Glauber in 1963 [5] and is a dynamic version of the classical
Ising model. This latter model was introduced by W. Lenz [14] and E. Ising
[I1] around 1920 as a model in the study of magnetism. To understand the
stochastic Ising model one must understand the Ising model, and therefore
we start there. The Ising model is a random configuration on {—1,1}%
where each site represents an atom and the state represents the spin of
that atom. In the most studied ferromagnetic case, the sites “try” to align



with its connected neighbors. The relevant parameters are 8, the inverse
temperature, and h, the external magnetic field. As 8 increases, the strength
of the neighbor alignment forces increases. The value of h represents a
preference of the state +1 if h > 0 and —1 if A < 0, the magnitude of the
preference increasing with |h|.

The perhaps most interesting behavior occurs when h = 0. It is inter-
esting because the system undergoes a phenomenon called phase transition.
We will return to this point later. Take S, := Ay = {-n—1,...,n+ 1}¢
and F, to be the set of all nearest neighbor pairs of S,,. One can define two
Hamiltonians of the system Hﬂ[’ﬁ and H{’ﬁ by letting, for o € {—1,1}"»,

HY(o)=—p Y ol)ot) =5 Y  olt) (1.1)

(t,t')EER (t,t")EER
t,t/ €An tEAR
t’GAn+1\An

and

HA o)== 3 oo)+p 3 oW, (12
(t,t')EER (t,t')EER
ttl €Ay tEAn
t’EAn+1\An

respectively. The physical interpretation of the Hamiltonian is that it mea-
sures the energy of the configuration o. If the configuration has many neigh-
boring sites with opposite alignments, then the first term of the sums of (L))
and (C2) becomes large. The second term of these sums gives respectively
higher energy to configurations with many —1’s and +1’s directly inside of
the boundary. This is called a boundary condition. Define the probability
measures ,u,}L’ﬂ and pn B by letting

s e—HA P (o)

pn " (0) = — (1.3)
for any configuration o € {—1,1}*» where Z is a normalization constant. We
see that a configuration with a large Hamiltonian (high energy) is given less
probability than configurations with a Hamiltonian closer to the minimum
value (low energy). Analogously, define u, P using ([C2) instead of (L))
in (L3). It is known (see [I5], page 189) that the sequences {uﬂ[’ﬂ}n and
{tbn B }n converge weakly as n tends to infinity; these limits are denoted by
pHP and p=P. Tt is well known ([3], [4]) that there exists f. € [0, 00] such
that for 0 < 8 < f, we have that = = u™# (and it can then be shown
that there is a unique so called Gibbs state) and for 8 > ., p=F # utb.
For Z¢ with d > 2, B. € (0,00). This phenomenon is the phase transition
mentioned earlier, and (. is sometimes referred to as the critical inverse
temperature for phase transition in the Ising model. It is quite remarkable



that the effect of the boundary conditions on finite boxes survive for 8 > £,
as n — 00. One might have thought that this effect would have disappeared
as the size of the boxes grew to infinity. In one dimension this is indeed what
happens, i.e. 8. = co. The reason behind this difference in behavior is that
in one dimension, the boundary of the “box” always consists of two elements,
while in higher dimensions the number of elements of the boundary goes to
infinity as n goes to infinity.

For general h, it is possible to define measures ut#* and p=#" in a
similar way. However, on Z¢ for any h # 0, pH#" = =8 for every > 0
and so in this case there is no phase transition for any h # 0. This is not true
for all graphs. Tt is possible to define the corresponding measures p~5",
p PP on any connected graph of bounded degree. In [I3] they showed that
for any such graph which is also non-amenable (see [I3] for a definition)
there is phase transition for every h # 0.

Returning to the stochastic Ising model and Z¢, the flip rates can be
taken to be, for general h,

C(s,0) =exp(—B Y o(t)o(s) — ha(s)). (1.4)
tezd:
(t,5)€E
Using these flip rates, one can define Markov processes ¥ %" and ¥+
with =" and p™#" as initial and stationary distributions. We mention
that these rates are just one example, although perhaps the most natural
one, of possible choices of flip rates such that p~#" and p+P" become
stationary distributions for the corresponding Markov process. See [15] pg.
190 for a discussion about this. Furthermore, under the mild assumption of
attractiveness, (see [I5]) which is satisfied by the flip rates of equation (4],
it is known that the limit is unique iff %" = 8" This is Theorem 2.16
pg. 195 [15].

1.2.2 The Contact Process

This model was introduced by T. Harris in [I0)]. For results up to 1985, see
[15] and for results between 1985 and 1999 see [16]. It originated as a model
for the spread of an infectious disease.

Consider a graph G = (S, E) of bounded degree. In the contact process
the state space is {0,1}°. We will let 1 represent an infected individual,
while a 0 will be used to represent a healthy individual. Let A > 0, and
define the flip rate intensities to be

1 if o(s)=1
C(s,0) =< X > o(s) if o(s)=0. (1.5)
(s',8)EE
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In words, an individual that is infected becomes healthy at rate one, while
a healthy individual becomes infected at rate A times the number of in-
fected neighbors. Let dg,d1 denote the measures that put mass one on the
configuration of all 0’s and all 1’s respectively. Observe that dy is a station-
ary distribution for this model. If everyone is healthy then everyone stays
healthy. If we let the initial distribution be ¢ = 1, the distribution of this
process at time ¢, which we will denote by 6;7)\(t), is known to converge
as t tends to infinity. This is simply because it is a so-called “attractive”
process and o = 1 is the maximal state; see [I5] page 265. This limiting
distribution will be referred to as the upper invariant measure for the con-
tact process with parameter A and will be denoted by vy. We then let ¥*
denote the stationary Markov process on {0,1}° with initial (and invariant)
distribution vy. For any s € S, one can also define the process U*{5}. Here
we start with a single infected individual at the site s, and use the same flip
rates as before. We say that the process dies out if for any s € §

Mo, 20V > 0) =0,
and otherwise it survives. We also say that the process survives strongly if
oMt oy (s) = 11.0.) > 0.
We say that the process survives weakly if it survives but does not survive
strongly. It turns out, see [I6], that this definition is independent of the

choice of s. It is well known that for any graph (see [16] pg. 42) there exists
two critical parameter values 0 < A\;; < Ao < oo such that

o UM} dies out if A < Agg
o UMst gurvives weakly if Aop < A < Ao

o UM{s} gurvives strongly if A > Ag.

We mention that on Z¢ it is known, see [T6], that Aoy = Ae» and also that
the process dies out at this common critical value.
2 Summary of papers

In this section we will summarize the results of the four papers of this thesis
as well as putting these results into context.



2.1 Paperl

The first paper, “One-dependent trigonometric determinantal processes are
two-block-factors” deals with the following question concerning determinan-
tal processes:

Let the function f : [0,1] — [0,1] mentioned in Section [T} be of the
form

f(.’l?): in: ake—iZﬁkac_

k=—m

If {X;}icz has distribution P/, it is very easy to show that the resulting
probability measure will have the property that {X;};<x is independent of
{X:}i>k+m for any integer k. This is called m-dependence.

A process { X }iez is called a k-block-factor if there exists a function h
of k variables and an i.i.d. process {Y; };cz such that {h(Y;,...,Yi1k—1)}iez
and { X, };cz have the same distribution. Trivially, a k-block-factor is (k—1)-
dependent but the converse is false in general.

In the first paper it was proved that, for m = 1, P/ is a two-block-
factor and the factor map was explicitly constructed. This construction
gives an alternative description of the process and one might hope that this
will facilitate further analysis. It would be desirable to obtain a similar
description of the processes corresponding to m > 1. However, at this point
there has been no progress in that direction.

2.2 Paper II

Let ¥ be a stationary Markov process with state space S. For an event
A C S, let A; be the event that A occurs at time t. A general, classical
question in Markov process theory is to ask whether ¥(A; for some t >
0) > 07 If the answer is no, one says that A has zero capacity. Related
is the concept of exceptional times: If U(A;) = 1 for every t > 0, but
U(-.A; for some ¢t > 0) > 0, we say that the event A has ezceptional times
with positive probability. Here —.A; is the event that A does not occur at
time ¢. The relation between these concepts is that under the assumption
U(A;) = 1 for every t > 0, the statement “A does not have exceptional
times” is equivalent to the statement “—.4 has zero capacity”.

In the second paper of this thesis “Dynamical Stability of Percolation for
Some Interacting Particle Systems and e-movability” we studied the question
of exceptional times for a particular, interesting event for the contact process
and the stochastic Ising model.

To be more precise, let the state space be {0, 1}Zd and vy be the upper
invariant measure for the contact process with parameter A. Let C be the
event that there exists an infinite connected component of infected (i.e. in



state 1) sites, referred to as “percolation”. For d > 2, it is known that
there exists a critical parameter value A, < oo (see [I7]) for percolation, i.e.
vA(C) = 0if X < Ay and v5(C) = 1 if A > A, As in Section [CZZ let ¥ be
the contact process with stationary distribution vy. We proved that for any
A > Ap, T (C; for every t > 0) = 1. Hence, there are no exceptional times
at which we do not percolate. In fact, we proved this result for any graph
G of bounded degree satisfying A\, (G) < oco.

Let S be any countable set. For 0,0’ € {0,1}° we write ¢ < o' if
a(s) < d'(s) for every s € S. A function f : {0,1}* — R is increasing if
f(o) < f(o') whenever o < o'. For two probability measures u, v on {0,1}5,
we say that u is stochastically dominated by v, and write p < v, if for every
continuous increasing function f we have that u(f) < v(f).

Given u =< v, for € > 0, take a configuration according to v, and then
let each site that has the value 1, independently of everything else, change
to a 0 with probability e. Let (=) denote the distribution of the resulting
configuration. A natural question to ask is whether for € > 0 p < (=), If
the answer is yes we say that (u, v) is downwards e-movable. If the pair (u, v)
is downwards e-movable for some € > 0, we say it is downwards movable.

The key to the result that U*(C; for every ¢t > 0) = 1 for every A > ),
was to prove that for any A\; < Ay (vy,,Vy,) is downwards movable.

For the stochastic Ising model the situation is slightly different. Here
we have two parameters S and h. For fixed § it is not hard to prove that
for hi < hg, ptBhm < ptBh2 This leads to the result that for fixed S,
there exists a critical parameter value h. such that percolation of the state
+1 occurs (denoted CT) for h > h, but not for h < h.. It is also rela-
tively easy to show that the pair (uT#"1, utP"2) is downwards movable.
Again, this was the key that lead to results such as that for any h > h,,
THAR(CF occurs for every ) = 1.

The other case, when h is fixed and (8 varies is very different. It is
known that on Z¢, for any h, there are no values of 8; and Sy such that
ptPrh < B2k Therefore we had to use other techniques than the down-
wards e—movability. We used the connection between the Ising model and
the random cluster model and also an argument known as a Peierl’s argu-
ment.

2.3 Paper II1

In the third paper, “Refinements of Stochastic Domination”, we further
investigated the concepts of downwards and upwards e-movability. Upwards
e-movability is the symmetric analogue of downwards e-movability. We will
start with some relevant definitions and then explain the main result of the

paper.



Let S be any countable set and let x be a probability measure on {0,1}%.
Let m, denote the product measure with density p € [0, 1] and define ppax
to be the maximum number p such that m, < p. If the pair of probabil-
ity measures (7., .,#) is downwards movable we say that it is non-rigid
and otherwise we say that it is rigid. We say that y is uniformly upwards
extractable if there exists a probability measure v and an € > 0 such that
p = {9 Finally we say that x is uniformly insertion tolerant if there exists
an € > 0 such that for any s € S, u(o(s) = 1|o(S \ s)) > €. Defining uni-
form downwards extractable in the obvious way, we say that y is uniformly
extractable if it is both uniformly upwards and downwards extractable. Sim-
ilarly, having defined uniform deletion tolerant as the symmetric analogue
of uniform insertion tolerant, we say that u has uniform finite energy if it
has both of these properties.

Uniform finite energy and extractability have been studied before, often
in the context of information and communication theory and especially in
connection to the so called “rate distortion functions”. This is of practical
importance for instance in the development of audio and image compression
techniques. Uniform extractability has also been studied for the Ising model
as well as other Markov random fields in [I, 9, 21]. Earlier, in [0} [7, 8], a
similar question was studied for Markov chains and autoregressive processes.
Of related interest is the result in [9] that for Markov random fields, uniform
finite energy implies uniform extractability. Uniform finite energy is also
studied in [22] and insertion and deletion tolerance in [T9].

The goal of the paper was to provide a connection between these con-
cepts. We consider the following properties:

(I) p is uniformly upwards extractable.

(IT) p is uniformly insertion tolerant.

(IIT) p is rigid.

(IV) There exists a p > 0 such that m, < p.

Our main result concerning these properties is the following. We have that
(I) = (II) = (IV) and that (I) = (III) = (IV) while none of the four
corresponding reverse implications hold. Also, (III) does not imply (II).
Moreover, with S = Z, there exist translation invariant examples for all
of the asserted nonimplications. The implications are all fairly easy, while
the hard work is in finding counterexamples of the non-implications. Also
worth mentioning is that we showed that (II) implies (IIT) under the extra
assumption of u satisfying an FKG-lattice type condition. We do not know
whether or not the result is true without this extra assumption.



2.4 Paper IV

The fourth paper of this thesis is called “Stochastic Domination for a Hidden
Markov Chain with Applications to the Contact Process in a Randomly
Evolving Environment” (the last part abbreviated CPREE).

In the usual contact process every infected site waits an exponentially
distributed time with parameter 1 before becoming healthy. In this paper
we instead associate to every site an independent two-state, {0,1}, back-
ground process. Given §; < do, if the background process is in state 0 we
let a site s € S, if infected, become healthy at rate §;, while if the back-
ground process is in state 1, it becomes healthy at rate ds. Furthermore,
we normalize the infection rate to be 1. For the CPREE, we investigate
matters of survival (both strong and weak) depending on the properties of
the background process and the values of d1, ds.

Much of the analysis comes down to questions concerning stochastic
domination of a Poisson-like process with two possible intensities a; < ao.
We construct this process by starting with a two-state, {0,1}, background
process as above. We then let our Poisson-like process have intensity «;
if the background process is in state 0 and intensity ao if the background
process is in state 1. We then try to couple this Poisson-like process with an
ordinary Poisson process on [0, 00) such that if the ordinary Poisson process
has an arrival then so does our Poisson-like process. The maximum intensity
A of a Poisson process for which this coupling is possible is called Amax,u-
Analogously we can define Amin . Starting in a discrete setting and then
taking limits to get to continuous time, we find the exact values of Apax
and Amin ;- When we put more and more weight on state 1 in the background
process, Amax,, approaches ap if the rate at which the background process
jumps between its two possible states is high enough. In contrast, it turns
out that Amin,, is always equal to ag except for the degenerate case where
the background process is in state 0 with probability 1. In this paper we
prove these results as well as some other asymptotics. We also obtain results
of the same kind for finite time, although in this case we can only get upper
and lower bounds rather than an exact closed form expression.

Returning to the CPREE, the distribution at which the recoveries occur
is exactly the Poisson-like process just described. By using the stochastic
domination results mentioned above, we can compare the CPREE to an
ordinary contact process. However, because of the difference in the results
of Amax,u and Amin,, this comparison is straight forward in only one direc-
tion. That is, we can make sure that the ordinary contact process is “larger”
than the CPREE under suitable, non-trivial conditions. The other direction,
that is, trying to couple the CPREE so that it is “smaller” than the ordi-
nary contact process under non-trivial conditions is much harder. However,



with some adjustments it can be done. This fact somewhat complicates the
analysis of the CPREE as well as (in our opinion) makes it more interesting.
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One-dependent trigonometric determinantal
processes are two-block-factors

Erik I. Broman*

September 29, 2003

Abstract

Given a trigonometric polynomial f : [0,1] — [0, 1] of degree m, one
can define a corresponding stationary process { X; }icz via determinants
of the Toeplitz matrix for f. We show that for m = 1 this process, which
is trivially one-dependent, is a two-block-factor.

AMS subject classification: 60G10

Keywords and phrases: Determinantal processes, k-dependence,k-
block-factors

Short title: Determinants and two-block-factors

1 Introduction

We will start by defining a family of probability measures P/ on the Borel
sets of {0,1}% where f : [0,1] — [0,1] is a Lebesgue-measurable function
(see [9]). For such an f, define the probability of the cylinder sets by

Plfn(er) =+ =mnlex) =1] = P/[{ne{0,1}*:n(er) =+ =nlex) =1}]
= det[f(ej — ei)]lg,i,jgka

where e1, ..., e, are distinct elements in Z and k£ > 1. Here f denotes the
Fourier coefficients of f, defined by

A 1 .
f(k) ::/0 f(x)e k2 dy,

In [9] it is proven that P/ is indeed a probability measure. In fact they
showed this for the more general case of f : T¢ — [0, 1] where T¢ := R¢/Z¢;

*Research partially supported by the Swedish Natural Science Research Council



in this case the resulting process is indexed by Z¢. This result rests very
strongly on the results in [8]. Except for the two definitions below, {X;}icz
will always denote a process distributed according to some measure P/,
Throughout this paper, equality in distribution will be denoted by =p . Let
the function f : [0,1] — [0, 1] be of the form

f(iL‘): i ak67i27rkw.

k=—m

It is then easily checked that the process {X; }icz corresponding to the prob-
ability measure P/ is m-dependent according to the definition below.

Definition 1.1 A process {X;}icz is called m-dependent if {X;}i<k is in-
dependent of {X;}i>k+m for all integers k.

We will also need the definition of an m-block-factor.

Definition 1.2 The process {X;}icz is called an m-block-factor if there
exists a function h of m wvariables and an i.i.d. process {Y;}icz such that
{Xitiez =p {h(Yi, - .., Yitm—1) }icz-

We will as usual not distinguish between the process {X;}icz and the
corresponding probability measure P7.

Observe that an (m+1)-block-factor is trivially m-dependent. For some
time, it was an open question whether all m-dependent processes were in
fact (m+1)-block-factors (see [4],[5],[6],[7]). However, in [2] the authors
constructed a family of one-dependent processes which are not two-block-
factors, and in [3] the authors constructed a one-dependent process which is
not a k-block factor for any k. In [1] the authors construct a one-dependent
stationary Markov process with five states which is not a two-block-factor,
they also prove that this result is sharp in the sense that every one-dependent
stationary Markov process with not more that four states is a two-block-
factor. In view of the above it is a natural question to ask whether a certain
m-dependent process is an (m+1)-block-factor or not.

P/ as defined above is an m-dependent ”trigonometric determinantal
probability measure”. These probability measures are special cases of gen-
eral determinantal probability measures, see [10] or [8] for definitions and
results. Determinantal processes arise in numerous contexts e.g. mathemat-
ical physics, random matrix theory and representation theory to name a few.
For a survey see [10], for further results see [8] and for results concerning
the discrete stationary case, see [9]. In [9], they ask whether P/ above is an
(m+1)-block-factor. In that paper they say that if one can find sufficiently
explicit block factors for all trigonometric polynomials, then one can find



explicit factors of i.i.d. processes giving P/, where f is any function such
that f : T — [0,1]. This in turn would enable one to use more standard
probabilistic techniques when studying such a P/. We answer their question
positively for m=1 in Theorem (1.3), constructing an explicit two-block-
factor.

Theorem 1.3 If f:[0,1] — [0,1] is given by
f(CC) — b+ae—i27rz _I_cei27rm’

then the corresponding process {X;}icz is a two-block-factor.

2 Proof of theorem 1.3

Proof of theorem 1.3.
With f as in the statement of the theorem, it follows that a = ¢, b > 0
and hence if a = a1 + a9

f(z) = b+ 2ay cos(2nz) + 2azsin(2nz) = b+ 2|a| cos(2nz — ¢), (1)

for some suitable choice of ¢. Let, as usual, P/ be the corresponding prob-
ability measure, and write

Dy, := det [f(j — )i<ij<kr1

where k > 0.

Note that the process {X;};cz distributed according to P/ is obviously
stationary. Since P/ is one-dependent, it is easily seen that it is uniquely
determined among the one-dependent processes by the values of

Pli(i) = =ni+k) =1 =P/y1) = = (1 +k) = 1]

as k varies over the nonnegative integers.
We have that for k > 2

b a 0 0 0
a b a 0 0

Dy = det [f(j - Di<ij<kt1=| 0 @ b a 0 (2)
0 0 a b a




b a 0 0 O a a 0 0 0
a b a 0 0 0 ba 0 0
—pl0 @ b a O —al0 @ b a O
0 0a b a 0 0a b a

= bDy_1 — |a|* Dg_a,

where the determinant on the left-hand side of the third equality has size
(k+1) x (k+ 1), and the two on the right-hand side have size k x k.
Furthermore

D

|b] =
b
a

(3)

e o

The characteristic equation corresponding to equation (2) is

r’ —br +a|* =0, (5)
which has two roots
=2y ap (6)
2 4 ’
and
b b2
2 2

Case 1: Assume that 71 = r9 = r so that r = % and
2
Vi |‘1|2
and so (since b, |a] > 0)
b= 2|al.
We have by equation (1) that

max_f(z) = max (b+ 2|a| cos(2mz — ¢)) = b+ 2|a| = 2b
z€[0,1] z€[0,1]

and since f : [0,1] — [0,1] we get b < 1/2 and so |a| < 1/4.
With r; = ro = r, it follows from the basic theory of difference equations
that the solution to equation (2) is

Dy = (C1k + Co)r* VE > 0,



3/4+r

3/4
1/2+r

1/2
1/4+r

1/4

1/4 1/2 3/4 1

Figure 1: This figure shows A (the shaded area).

for some constants C7,Cs yet to be determined. Using (3) and (4), we get
that Cy = Dy = b = 2r and using this we get (C; +2r)r = D; = b —|a|? =
b?> — b%/4 = 3r?. Hence C; = r and so

Dy, = (kr + 2r)r* VE > 0. (8)

We will now construct a two-block-factor which we will show to be dis-
tributed according to P/. Let {Y;};cz be i.i.d. uniform on [0,1]. Define
h:[0,1] x [0,1] — [0,1] by h = I4 where

A
= 0,1 % 0,r] U0, 3) % 5,5+ U0, 3] % 2,5 +7]
Ugrg) ¥ [ +71U I, ;1 (5 +rUlG 5] X (3,5 +7]
13 11 3 3 3
U[iaZ]x[§a§+r]U[4a]x[ 4+]

A is depicted as the grey area of figure (1). Observe that r = |a| < 1/4.
We will show that
PA(Y;, Yig1) = -+ - = h(Yik, Yignt1) = 1] = Dy VE > 0.

Since {h(Y;, Y;11) }iez is one-dependent, this gives us {h(Y;, Yi41) }icz =p Pf
as desired. We first observe that the size of the shaded area of figure (1) is
81r = 2r = b, so that P[h(Y;,Y;41) = 1] = Dy.



If h(Y;,Yit1) = -+ - = h(Yitk, Yiggt1) = 1, then (Y4, Yiq;41) must be in
one of the boxes marked 1 through 8 of figure (1) VI € {0,...,k}. If (Y;,Y;11)
is in the box marked 1, then Yj;; € [0,7] and so (Y41, Yite) must be in one
of the boxes marked 1, 3 or 5 because otherwise (Yj11,Y;12) ¢ A. Similar
“rules” apply if (Y5, Y;1+1) is in one of the other seven boxes. We see that for
any w such that h(Y;(w),Yiy1(w)) =+ = h(Yijx(w), Yiqrt+1(w)) = 1 there
is a natural sequence joji---jr(w) € {1,...,8}*t! associated to it, where
the value of j; indicates that (Yji;(w),Yiti+1(w)) is in the box marked with
that value. In any such sequence the number 1 can only be followed by
either 1, 3 or 5, as described above, while the number 2 can only be followed
by either 2, 4 or 6. Additionally any one of the numbers 3, 4 or 7 must be
followed by a 7, while any one of 5, 6 or 8 must be followed by an 8.

We claim that the number of sequences jyji - jx described above is
(4k + 8). To see this, observe that every such sequence with ji ¢ {1,2} can
be extended into a sequence jo7ji - - - jx+1 in only one way, while if j € {1,2}
it can be extended in three ways. Observe also that there are only two
sequences joj1 - - - jkx ending in 1 or 2.

The set of w giving a specific sequence j95; ---jr € {1,...,8}**! has
probability (1/4)r¥*! since Y; must be in an interval of length 1/4, while
Yit1,...,Yi1k41 all must be within intervals of length r. Hence the total
probability of having h(Y;,Yi11) = -+ = h(Yitk, Yiqk+1) = 1 is (4k +
8)(1/4)r**t = (kr + 2r)r*. Comparing with equation (8) we see that

P[h(Y;, Yis1) = -+ = h(Yig, Yigg41) = 1] = Dy,

Vk > 0 and we conclude that {h(Y;,Yit1)}icz =p P/ and so this case is
proved.

Case 2: It remains to consider r1 # 7. According to equations (6) and

(7)

1+ 19 =0,

and
riry = |a|2.

In this case the solution to equation (2) is, again, from basic difference
equation theory,
Dy = Cir¥ + Cork VE > 0,

for some constants C,Cy yet to be determined. Using this with equation
(3) we get
C1+Cy =Dy =11+ 19,

and using equation (4) we get

Cir1+Corg =D = b2 — |CL|2 =(r + 7‘2)2 —T1T9 = 7‘% +rire + T%.



A straightforward calculation yields

2
T
Cy = 1
T — T2
and
2
Cy=——2
T —T2

and therefore for k£ > 1,

k+2 k+2 k42 k+1 k+1 k+1
T - T — 717 Tre+To(r -
Dy, = 1 2 _n 1 ( 1 2 ) :Tf+1+r2Dk,1.
T1L — T2 T1 — T2 (9)

Assume that b < % so that 2(r1 +72) < 1. We will now construct a two-block-
factor which we will show to be distributed according to P/. Let {Y;}icz be

i.i.d. uniform on [0,1] and again take h : [0,1] x [0,1] — [0,1] to be the
function h = I'4 where A is now

A
= [0,Cr] x [0,71] U[0,Cr1] x [2Cr1,2Cr1 + 79]
U[0,Cr1] x [2Cr1 + Cre,2Cr1 + Cra + 79]
U[Cr1,2Cr1] X [Cr1,Cr1 + 71]
U[Cr1,2Cr1] X [2Cr1,2CT1 + 79]
U[Cr1,2Cr1] X [2C711 + Cr9,2Cr1 + Cro + 79]
U[2Cr1,2Cr1 + Cro] X [2C711,2CT1 + 73]
U[2CT1 + Crg,1] X [2Cr1 4+ Cre,2Cr1 + Cro + 19),

and C' = ﬁ > 1. A is the shaded area of figure (2).

. 2ritry
Again we will show that

Ph(Y;,Yiy1) = -+ = h(Yiqk, Yigkps1) = 1] = Dy Vk > 0.

Since again {h(Y;, Y; 1) }icz is one-dependent this gives us {h(Y;, Yi11) }icz =p
P/. We observe that the size of the shaded area of figure (2) equals

2Crir1 +4Crire + 2C1r9r9 = 20(7‘1 + 7‘2)2 =71 +72

by our choice of C, and so P[h(Y;,Yiy1) = 1] = Dy.

For any w such that h(Y;(w),Yi+1(w)) = -+ = h(Viik(w), Yiskr1(w)) =1
there is a natural sequence joji - jr(w) € {1,...,8}¢*! associated to it
as before. Let {w : joji---Jjk(w)} denote the set of w giving a specific
sequence joji - - - jk, and for convenience we will write P[jgj1 - - - ji| instead
of P[{w : joj1 - jk(w)}]. Assume that jr_1 € {3,4,5,6,7,8}, we get

Pjoj1 - jr] = roPjoj1 - - - jr—1]



1
2Cr1 +Cra + 12

2Cry1 + Cro
2CT1 + 719

2Cry
Cri+m

Cri
T1

Crq 2Cr1 2Cr1 + Cro 1

Figure 2: This figure shows A (the shaded area).

since jj is either 7 or 8 (depending on the value of ji_1). If instead jp 1 =1
then j; must be either 1,3 or 5 and of course j; = 1 for all/ < (k—1). Hence
in this case

Pljoji -+ dk] = roPljog1 -+ jk—1] = roP 1L - - 1] = roCrp ™!
k

if ji is equal to 3 or 5 and
Pljoji---ju] = P[LL---1] = Ory*?
k+1

if jx = 1. Similarly if j5_1 = 2 then j; must be either 2,4 or 5 and of course
ji=2foralll < (k—1). Hence

Pljoj1 - ji) = roPljoj1 -+ jk—1] = roP[22- - 2] = rpCri™!
k

if ji is equal to 4 or 6 and

Pljoji---ju] = P[22---2] = Crf”
k+1

if G = 2.



Let Ay be the set of all sequences jgji - - - jx corresponding to the event
h(Y;‘,Yz‘_H_) == h(YVZ'-I—ka)/’i—HC—Fl) = 1. We have that

P[h(Y;, Yiy1) = h( itk Yirkt1) = 1]

—ZP[Jojl
- Z P[joj1---jr] + Z P[joj1 - jk]

k
Jk— 1&{1 2} Jr—1€{1,2}
. : E+1 k+2
=7y E Pljoj1 -« jx—1] + 4reCritt + 207
Ag—1
Je—1€{1,2}

=r2| >, Plioji ik 1]+P[11 1 +P[22--2
Ap
jk,1k€{11;2}
+2roCrith 4 202
=179 Z P[j0j1 .. 'jk—l] + QCT{C—H(’H + ’1“2)
Ag-1
= 1oP[h(Y;, Yig1) = -+ = h(Yish—1, Yigs) = 1] + 1
Comparing this to equation (9), and using P[h(Y;, Y1) = 1] = Dy we see
that
P[r(Y;, Yit1) = -+ = h(Yitk, Yigns1) = 1] = Dy
for all £ > 0, and so this case is also proved.
Finally the case b > % remains. Take

g(z) =1— f(z) =1—b—2|a|cos(2mz — ¢) = 1 — b+ 2|a| cos(2mz — ¢'),

for some suitable choice of ¢'. Since 1 —b < %, it follows from above that we
can construct a two-block-factor {h(Y;,Y;11)}icz such that

{n(Y;, Y1) Yiez =p PY.

With & = 1 — h, we get a new two-block-factor {B(Yi,YiH)}iez with ones
and zeros flipped. Lemma 2.4 in [9] then shows that {h(Y;,Yii1)}icz has
distribution P9, which in turn is P/.

QED

When trying to generalise theorem 1.3 to the case where f is a trigono-
metric polynomial of degree m, one must consider not only the values of

Plp(1) = =n(l+k) = 1],



but also the values of

P/p(er) =1+ =nlex) = 1]

where e; € Z Vi € {1,...,k} but where e; is not necessarily equal to e;_1 +1.
Analysing these new cylinder events adds to the complexity of the problem
and therefore, in our opinion, the generalisation of theorem 1.3 (if indeed
the generalisation is true) does not seem to be trivial.
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Abstract

In this paper we will investigate dynamic stability of percolation for
the stochastic Ising model and the contact process. We also introduce
the notion of downwards and upwards e-movability which will be a key
tool for our analysis.

AMS subject classification: 82C43, 82B43, 60K35

Keywords and phrases: percolation, stochastic Ising models, con-
tact process,

Short title: Dynamical Stability for IPS

1 Introduction

Consider bond percolation on an infinite connected locally finite graph G,
where for some p € [0,1], each edge (bond) of G is, independently of all
others, open with probability p and closed with probability 1 — p. Write m,
for this product measure. The main questions in percolation theory (see [10])
deal with the possible existence of infinite connected components (clusters)
in the random subgraph of G consisting of all sites and all open edges. Write
C for the event that there exists such an infinite cluster. By Kolmogorov’s
0-1 law, the probability of C is, for fixed G and p, either 0 or 1. Since 7,(C)
is nondecreasing in p, there exists a critical probability p. = p.(G) € [0,1]

such that
0 for p < p,

(C) _{ 1 for p > p,.

At p = p. we can have either m,(C) = 0 or m,(C) = 1, depending on G.

*Research supported by the Swedish Natural Science Research Council
fResearch partially supported by the Swedish Natural Science Research Council, NSF
grant DMS-010384 and the Géran Gustafsson Foundation (KVA).



In [15], the authors initiated the study of dynamical percolation. In
this model, with p fixed, the edges of G switch back and forth according to
independent 2 state Markov chains where 0 switches to 1 at rate p and 1
switches to 0 at rate 1 — p. In this way, if we start with distribution 7, the
distribution of the system is at all times 7,. The general question studied in
[15] was whether there could exist atypical times at which the percolation
structure looks different than at a fixed time.

We record here some of the results from [15]; (i) for any graph G and for
any p < p.(G), there are no times at which percolation occurs, (ii) for any
graph G and for any p > p.(G), there are no times at which percolation does
not occur, (iii) there exist graphs which do not percolate for p = p.(G), but
nonetheless, for p = p.(G), there are exceptional times at which percolation
occurs, (iv) there exist graphs which percolate for p = p.(G), but nonethe-
less, for p = p.(G), there are exceptional times at which percolation does
not occur, and (v) for Z? with d > 19 with p = p.(Z?%), there are no times
at which percolation occurs. In addition, it has recently be shown in [23]
that for site percolation on the triangular lattice, for p = p. = 1/2, there are
exceptional times at which percolation occurs. Given this, a similar result
would be expected for Z2.

The point of the present paper is to initiate a study of dynamical per-
colation for interacting systems where the edges or sites flip at rates which
depend on the neighbors. We point out that in a different direction such
questions in continuous space, but without interactions, related to contin-
uum percolation have been studied in [2].

Ising model results. Precise definitions of the following Ising model
measures and the stochastic Ising model will be given in Section 2. Fix an
infinite graph G = (S, E). Let ut#" be the plus state for the Ising model
with inverse temperature 8 and external field h on G (this is a probability
measure on {—1,1}%). Let ¥+#" denote the corresponding stochastic Tsing
model; (this is a stationary continuous time Markov chain on {—1,1}° with
marginal distribution "), Let C* (C~) denote the event that there exists
an infinite cluster of sites with spin 1 (—1) and let C;" (C,”) denote the event
that there exists an infinite cluster of sites with spin 1 (—1) at time ¢. It is
known that the family p+#" is, for fixed /3, stochastically increasing (to be
defined later) in h.

Theorem 1.1 Consider a graph G = (S, E) of bounded degree. Fix 3 >0
and let he = h.(B) be defined by

he := inf{h : ptPR(CT) =1},
Then for all h > h,,

WHBh(CE occurs for every t) =1



and for all h < h,

A3t > 0:CF occurs ) = 0.
If we modify h. to be instead

B = suplh s ptAh(CT) = 1),

the same two claims hold with C;" replaced by C;” and with h < h!, and h > hl,
reversed.

This result tells us what happens in the subcritical and supercritical
cases (with respect to h with 8 held fixed). It is the analogue of the easier
Proposition 1.1 in [15] where it is proved that if p < p. (p > p.), then, with
probability 1, there is percolation at no time (at all times).

The following easy lemma gives us information about when h, is non-
trivial.

Lemma 1.2 Assume the graph G has bounded degree and let § be arbitrary.
Then he > —oc. If p.(site) < 1, then h, < oc. Similar results hold if h. is
replaced by h..

The following theorems, where we restrict to Z¢, will only discuss the
case h = 0. However, this will in many cases give us information about the
“critical” case (f3,h.(f)) since in a number of situations, h.(8) = 0. For
example, this is true on all Z¢ with d > 2 and B sufficiently large. We
also mention that while the relationship between h. and A/, in Theorem 1.1
might in general be complicated, for Z¢, one easily has that h, = —hl; this
follows from the known fact that the plus and minus states are the same
when h # 0. When h = 0, we will abbreviate ut20 by p™# and ¥+80 by
U+#. We point out that while p+2" is stochastically increasing in h for
fixed B, there is no such monotonicity in g for fixed h, not even for h = 0.
Therefore we must use a different approach in the latter case.

We first study percolation of —1’s and then percolation of 1’s. Let

log 3

Bp(2) :=inf{B: Y 13" e " < oo} = R
=1

We will refer to 3,(2) as the critical inverse temperature of the Peierls regime
for Z2. The choice of 8,(2) might at first look quite arbitrary, but it is
exactly what is needed to carry out a contour argument (known as Peierls
argument) for Z2. For d > 3, there is a 3,(d), such that for 8 larger than
Bp(d), a similar (although topologically more complicated) argument works
for Z¢. As a result of this “contour argument”, it is well known and easy to
show that for 8 > f,(d), we have that

wHie) =o. (1)



Our next result is a dynamical version of (1) and we emphasize that
this corresponds to the critical case as it is easy to check that for these 3’s,

he(8) = 0.
Theorem 1.3 For Z¢ with d > 2 and 8 > B,(d)
U3t > 0: C; occurs) = 0.

It is well known that ,(d) > f.(d), the latter being the critical inverse
temperature for the Ising model on Z¢ For d = 2, Theorem 1.3 can be

extended down to the critical inverse temperature 3.(2). First, it is known
(see [5]) that on Z2 for all 8

wthe) =o. (2)

Our dynamical analogue for 8 > . is the following where we again point
out that this is also a critical case as it is easy to check that for these f3’s,
we also have h.(f8) = 0.

Theorem 1.4 For the stochastic Ising model VP on 72 with parameter

B> Be,
THP(3t > 0: C; occurs) = 0.

Interestingly, (1) is not always true for § > (.(d) although, as stated, it
is true for Z?2 or B sufficiently large. In [1], it is shown that for Z¢ with large
d, there exists T > .(d) such that the probability in (1) is in fact 1 for all
B < Bt. Moreover, they show that for these /3, there exists h > 0 with

ptoh ey =1.

For such f’s, this means that k! > 0 and hence it immediately follows from
Theorem 1.1 that

UHA(C, occurs for every t) = 1.

Note that for these values of 3, the case h = 0 is a non-critical case.

We next look at percolation of 1’s under x#. In the above results, we
have not discussed the case of percolation of —1’s when 3 < .. However,
by symmetry, this is the same as studying percolation of 1’s in this case and
so we can now move over to the study of C*.

First, it is well known that for any graph of bounded degree, pt#" #
p= Pt = B (CF) = 1. (This is proved in [3] for Z9; this argument extends
to any graph of bounded degree.) In particular, for any graph G of bounded
degree and for 8 > 5.(G),

pthet) =1, (3)



Our next result is a dynamical version of (3) for Z% We mention that
this result sometimes corresponds to a critical case and sometimes not. For
B > Bp(d) in Z4 or B > B.(2) in Z2, we have seen that h. = 0 and so, in
these cases, this next result covers the critical case. However, as pointed
out, for d large and f just a little higher than f., the result in [1] gives us
that h. < 0 and hence in this case, this next theorem already follows from
Theorem 1.1.

Theorem 1.5 For the stochastic Ising model UVF on 7% with parameter

B> Be(d),

\1!+’5(Ct+ occurs for every t) = 1.

(The proof we give actually works for any graph of bounded degree).
We mention that while 5 > [, is a sufficient condition for (3) to hold, it is
certainly not necessary. For example, on Z3 we have that u™%(C*) = 1 since
pt0 = 1/ and the critical value for site percolation on 7.3 is less than 1/2.
The reason (. appears is the connection between the Ising model and the
random cluster model; 5. corresponds to the critical value for percolation in
the corresponding random cluster model (see [13]).

We are now left with the case 8 < B.. We will not be able to say too
much since it is not known in all cases whether one has percolation at a
fixed time. We first however have the following easy result for d > 3. We
do not prove this result since it follows easily from the fact that the critical
value for site percolation on Z¢ is less than 1/2 for d > 3 as this gives easily
that h.(8) < 0 for § sufficiently small and hence Theorem 1.1 is applicable.

Note that the case 5 = 0 follows from the result in [15] mentioned above.

Proposition 1.6 For d > 3, there exists $1(d) > 0 such that for all f <
B1(d), we have that

UHB(C occurs for every t) = 1.

Finally, due to work of Higuchi, we can determine what happens with
B < B, for Z2. 1t is shown in [16] that for Z2, for all 8 < f3., we have that
he(8) > 0. The following result follows from this fact and Theorem 1.1.

Theorem 1.7 For d =2, for all 8 < 8., we have that
A3t > 0:C occurs ) = 0.

We note that even though it is known that for Z2, p*#(C*) = 0, we
cannot conclude that

UHPe(3t > 0: C;" occurs ) =0

since it is known (see [17]) that h.(8.) = 0. In contrast, based on the results
in [23], it is interesting to ask



Question 1.8 For the graph 72, is it the case that
Ut (3t > 0:CF occurs ) =17

We finally mention that interestingly it is also known (see again [17])
that for 8 < B,, utPrB)(Cct) = 0.

Contact process results. Precise definitions of the following items
will be given in Section 2. Fix an infinite graph G = (S, E/). Consider the
contact process on a graph G = (S, E) with parameter A\. Denote by pu)
the stochastically largest invariant measure, the so-called “upper invariant
measure” (this is a probability measure on {0,1}°). Let ¥* denote the
corresponding stationary contact process (this is a stationary continuous
time Markov chain on {0, 1}¥ with marginal distribution ). If0 < A\; < Ag,
it is well known that uy, is stochastically smaller than p),, denoted by

Par 2 [,

(see Section 2 for this precise definition).

Theorem 1.9 Consider the contact process ¥ on a graph G = (S, E), with
initial and stationary distribution py. Let A\, be defined by

Ap = inf{X\: uy(CT) =1}
We have that for all X > X,
TANCF occurs for every t) = 1.

In order for this theorem to be nonvacuous, we need to know that A, <
oo for at least some graph. First, the fact that there exists A such that
pA(Ct) > 0 for T¢ with d > 2 follows from [12]. Here T? is the unique
infinite connected graph without circuits and in which each site has exactly
d + 1 neighbours; T¢ is commonly known as the homogenous tree of order
d. Combined with a 0-1 law which we develop, Proposition 4.2, we obtain
that A, < oo in this case. For Z? with d > 2 (as well as for T?), it is proved
in [22] that for large A, pu) stochastically dominates high density product
measures which immediately implies that A\, < oo in these cases.

When we prove Theorem 1.1, we will in fact, prove a more general the-
orem which holds for a large class of systems. However, this proof will only
work for models satisfying the so-called FKG lattice condition (which we
call “monotone” in this paper.) We now point out the important fact that
for A < 2, in 1 dimension, the upper invariant measure for the contact pro-
cess, while having positive correlations, is not monotone (see [20]). These
terms are defined in Section 2. (One would also believe it is never monotone
whenever the measure is not dy.) Hence Theorem 1.9 does not follow from
the generalization of Theorem 1.1 which will come later.



e-movability. We now introduce the concepts of upwards and down-
wards e-movability. While we mainly introduce these as a technical tool to
be used in our main results, it turns out that they are of interest in their
own right. In [4], the concept of upwards movability is studied for its own
sake and related to other well studied concepts such as uniform insertion
tolerance.

Let S be a countable set. Take any probability measure y on {—1,1}5
and let X be a {—1,1}" valued random variable with distribution p. Let
Z be a {—1,1}° valued random variable with distribution m; . and be in-
dependent of X. Define X(— by letting X (¢ (s) = min(X(s), Z(s)) for
every s € S, and let u(—9) denote the distribution of X(— . In a similar way,
define X(+:¢) by letting X+ (s) = max(X(s), Z(s)) for every s € S, where
7 has distribution 7, and is independent of X. Denote the distribution of
x (+:€) by N(+’6)-

Definition 1.10 Let (i1, p2) be a pair of probability measures on {—1,1}7,
where S is a countable set. Assume that

M1 = .

If

=y,
then we say that this pair of probability measures is downwards e-movable.
If the pair is downwards e-movable for some € > 0, we say that the pair is
downwards movable. Analogously, if

+7

i < o,
then we say that the pair (u1, pa) is upwards e-movable and that it is upwards
mowvable if the pair is upwards e-movable for some € > 0.

For probability measures on {0, 1}°, we have identical definitions.

The relevance of downward (or upward) e-movability to our dynamical
percolation analysis will be explained in Section 5. In Section 3, we will
prove e-movability for general monotone systems which will eventually lead
to a proof of Theorem 1.1 (and its generalization). We now state a similar
and key result for the contact process.

Theorem 1.11 Let G be a graph of bounded degree, 0 < A1 < Ay and
W, s M, e the upper invariant measures for the contact process on {0, 1}S
with parameters A1 and Ao respectively. Then (uy,, pix,) is downwards mov-

able.



We finally mention how the above questions that we study fall into the
context of classical Markov process theory. Let (2, F,P) be the probability
space where a stationary Markov process {X;};>¢ taking values in some
state space S is defined. Letting i denote the distribution of X; (for any ¢),
consider an event A C S with pu(A) = 1. Let A; be the event that A occurs
at time t. We say that A is a dynamicaly stable event if P(A; Vi > 0) = 1.
In Markov process terminology, this is equivalent to saying that A° has
capacity zero. All the questions in this paper deal with showing, for various
models and parameters, that the event that there exists/there does not exist
an infinite connected component of sites which are all open is dynamically
stable.

The rest of this paper is divided into 9 sections. In Section 2, we
will give all necessary preliminaries and precise definitions of our models.
Sections 3 and 4 will deal with the concept of e-movability. In Section 3, we
develop what will be needed to prove Theorem 1.1 and its generalization.
In Section 4, we will prove Theorem 1.11 (which is the key to Theorem
1.9) as well as give a proof that A, < oo for trees. In Section 5, we prove
2 elementary lemmas which relate the notion of e-movability to dynamical
questions. In the remaining sections, proofs of the remaining results are
given. We note that the proof of Theorem 1.4 will use the proof of Theorem
1.5 and hence will come afterwards.

We end with one bit of notation. If p is a probability measure on some
set U, we write X ~ p to mean that X is a random variable taking values
in U with distribution pu.

2 Models and definitions

Before presenting the interacting particle systems discussed in this paper we
will present some definitions and results related to stochastic domination.
Let S be any countable set. For 0,0’ € {—1,1}% we write 0 < o’ if 0(s) <
o'(s) for every s € S. An increasing function f is a function f : {-1,1}° = R
such that f(o) < f(o’) for all ¢ < ¢’. For two probability measures u, i’ on
{—1,1}° we write p < p' if for every continuous increasing function f we
have that u(f) < p'(f). (u(f) is shorthand for [ f(x)du(x).) When {—1,1}
is replaced by {0,1}°, we have identical definitions. Strassens Theorem (see
[19], page 72) states that if u <y, then there exist random variables X, X’
with distribution p, 4’ respectively such that X < X’ a.s.

A very useful result is the so called Holley’s inequality, which appeared
first in [18]. We will present a variant of the theorem by Holley; it is not
the most general but is sufficient for our purposes.

Theorem 2.1 Take S to be a finite set. Let u, ' be probability measures on
{—1,1}5 which assign positive probability to all configurations o € {—1,1}5.



Assume that

p(o(s) =1a(S\s) = &) < p(o(s) = lo(S\s) =¢)
for every s € S and &€ < & where £,&' € {—1,1}°\5. Then pu < 1.
Proof. See [9] or [13] for a proof.
QED

Two properties of probability measures which are often encountered
within the field of interacting particle systems are the monotonicity property
and the property of positive correlations presented below.

Definition 2.2 Take S to be a finite set. A probability measure p on
{—1,1}° which assigns positive probability to every o € {—1,1}° is called
monotone if for every s € S and £ < & where £,&' € {—1,1}9\5,

u(o(s) = 1o (S\ 5) = &) < plo(s) = o (S \ s) = &).

We point out immediately, that it is known that this is equivalent to the
so-called FKG lattice condition.

Definition 2.3 A probability measure pn on {—1,1}° is said to have positive
correlations if for all bounded increasing functions f,g : {—1,1}* — R, we
have

w(fg) > pn(f)n(g).

The following important result is sometimes known as the FKG inequal-
ity (see [7]).

Theorem 2.4 Take S to be a finite set. Let p be a monotone probability
measure on {—1,1}5 which assigns positive probability to every configura-

Proof. This was originally proved in [7], see also [9] for a proof.
QED

In this section and also later in this paper we will talk about convergence
of probability measures. Convergence will always mean weak convergence,
where {0,1}9 is given the product topology.



2.1 The Ising model

Take G = (S, E), where |S| < oo. The Ising measure p®" on {—1,1}° at in-
verse temperature 8 > 0, external field h and with free boundary conditions
is defined as follows. For any configuration o € {—1,1}", let

HPM o) =-p Y o(t)o(t') = h)_alt). (4)
{t,t'}EE tes

HP" is called the Hamiltonian. Define p%" by assigning the probability

—HPM (o)
Bhiy €
o) = — (5)

to any configuration o € {—1,1}* where Z is a normalization constant. Of
course Z depends on the graph and the values 8 and h, but this will not be
important for us and therefore not reflected in the notation.

Take S, :== Api1 = {-n —1,...,n +1}¢ and E, to be the set of all
nearest neighbor pairs of S,,. Given a configuration £ on {1, I}Zd\’\", let,
for o € {—1,1}7n,

HEPMo) =8 S oo(t) - h> ot) -8 Y. o)) (6)

{t,t'}€En teA, {t,t'}€En
tt' €Ny teEAp
t'€Ay 41\ An

be our Hamiltonian. Here £ is called a boundary condition. Again we define
a probability measure using (5) but using the Hamiltonian of (6) instead.
This Ising measure will be denoted by ,u,%’ﬁ’h‘. The cases £ =1 and £ = —1
are especially important and the corresponding Ising measures are denoted
by uj{’ﬁ’h‘ and ,uﬁ’ﬂ’h’ respectively. We view uj{’ﬁ’h‘ (,u,;’ﬂ’h’) as a probability
measure on {—1, I}Zd by letting, with probability 1, the configuration be
identically 1 (—1) outside A,. It is known (see [19], page 189) that the
sequences {u "} and {pn®"} converge as n tends to infinity; these limits
are denoted by p#" and 4",

The same kind of construction can be carried out on any infinite con-
nected locally finite graph G = (S, E). One defines a Hamiltonian analogous
to the one in (6) but with A, replaced by any A C S where |A| < co. With
£ =1or & =—1, one then considers the corresponding limits of Ising mea-
sures as A 1 S, the limit turning out to be independent of the particular
choice of sequence. See for instance [9] for how this is carried out in detail.
Fix h = 0 and abbreviate p*#% and p=#0 by pt# and p=#. Tt is well
known ([8], [9]) that for any graph, there exists 8. € [0,00] such that for
0 < B < Be, we have that =% = P (and there is then a unique so called
Gibbs state) and for 8 > B, p % # ptP. For Z% with d > 2, and many

other graphs, . € (0,00). B, is sometimes referred to as the critical inverse
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temperature for phase transition in the Ising model. Furthermore in [14],
the author shows that if G is of bounded degree, the condition 8. < oc is
equivalent to the condition p. < 1, where p. is the critical parameter value
for site percolation on G. It is easy to see that for any graph of bounded
degree p. > 0 (see the proof of Theorem 1.10 of [10]). This in turn implies
via the connection between the random cluster model and the Ising model,
described below, that 5. > 0 for any graph of bounded degree.

2.2 Spin Systems.

A configuration o € {—1,1}° can be seen as particles on a discrete set S
having one of two different “spins” represented by —1 and 1. To this we
will add a stochastic dynamics, and assume that the system is described
by “flip rate intensities” which we will denote by {C(s,0)}cs seq-11}s-
C'(s, o) represents the rate at which site s changes its state when the present
configuration is . Of course C(s,0) > 0 Vs € S,0 € {—1,1}", and we
assume that the interaction is nearest neighbour in the sense that the flip
rate of a site s € S only depends on the configuration ¢ at s and at sites ¢
with {s,t} € E. We will limit ourselves to only allow one site flip in every
transition and we will only consider flip rate intensities such that

supC(s,0) < oo.

§,0

In many cases we will consider translation invariant systems and then this
last condition will hold trivially. Furthermore we will always assume the
trivial condition that for every s € S

sup C(s,o(s)) >0, sup C(s,o(s)) > 0.
o:0(s)=0 o:0(s)=1

We will call such an object a spin system (see [19] or [6] for results concerning
general spin systems). Given such rates, one can obtain a Markov process
¥ on {—1,1}° governed by these flip rates; see [19]. Such a Markov process
with a specified initial distribution g on {—1,1}% will be denoted by WH.
Given a Markov process, p will be called an invariant distribution for the
process if the projections of U* onto {—1,1} at any fixed time ¢t > 0 is
. In this case, ¥# will be a stationary Markov process on {—1,1}* all of
whose marginal distributions are u. Of course the state space {—1,1}° can
be exchanged for either {0,1} or {0,1}7.
Sometimes we will work with two different sets of flip rates

{C1(s,0) }ses, oeq1,1ys and {Ca(s,0) beg, seq1,1}5, governing two Markov
processes W1 and ¥, respectively. We will write C; < Cy if the following
conditions are satisfied;

Cy(s,09) > Ci(s,01) Vs € S, Yo R 09 s.t. 01(s) = 02(s) =0,  (7)

11



and
01(8,0'1) > CQ(S,(IQ) Vs € S, Vo1 =R o9 s.t. ()’1(8) = ()’2(8) =1. (8)

The point of Cy =2 Cs is that a coupling of ¥y and ¥y will then exist for
which {(n, ) : n(s) < (s)Vs € S} is invariant for the process; see [19].

2.3 Stochastic Ising models

We will now briefly discuss stochastic Ising models. We will omit most
details; for an extensive discussion and analysis see again [19]. Consider
Gn = (S, Ey,) defined in the subsection 2.1. Given § and h, it is possible

to construct flip rates C; on {—1,1}" for which ,u,f’ﬁ’h is reversible and

invariant. We denote by \I/,J{’ﬂ’h the corresponding stationary Markov process
with initial distribution ,uj{’ﬂ’h’. One possible choice of flip rate intensities are

that for every s € A, and o € {—1,1}°,

Cf(s,0) =exp[-B( Y o(t)o(s)+ Y. o(s)) = ho(s)]
tEAR: tE/\n+1\/\n:
{t,;s}€En {t,s}€Ep

Sites in Ap4q \ A, are kept fixed at 1. Observe that if s € A,,_1, the second
sum is over an empty set. A straightforward calculation gives

Cyf (s,0)y P (0) = Cyf (s, 05) ™" (), (9)

where

[ o) if t#s
os(t) = { —o(t) if t=s.

This shows that indeed y,*?" is reversible and invariant for C;F. Any family
of spin rates satisfying (9) is called a stochastic Ising model (on our finite
set). One can show that there exists a limiting distribution ¥+%" of o, Ph
when n tends to infinity; see [19], Theorem 2.2, page 17 and Theorem 2.7,
page 139. Furthermore UA:" is a stationary Markov process on {-1, I}Zd

with marginal distribution p+#" governed by flip rate intensities

C(s,0) =exp(—B 3 o(t)als) — ho(s)); (10)

tezd:

{t,s}€E
see [19] Theorem 2.7 page 139. It is also possible to construct THAh directly
on {1, I}Zd without going through the limiting procedure. Furthermore
there are several possible choices of flip rate intensities that can be used
to construct a stationary and reversible Markov process on {—1, I}Zd with
marginal distribution g *+%". In [19], a stochastic Ising model is defined to be

12



any spin system with flip rate intensities {C(s,0)}

that for each s € Z¢

C(s,o)exp(B Y o(t)o(s) + ho(s)) (11)
{t,s}€E

s€Zd pe—1,1}2¢ satisfying

is independent of o(s). Therefore, when we refer to a stochastic Ising model
U +AP with marginal distribution ut-2", we will have this definition in mind.
It is particularly easy to see that (11) (or the condition of detailed balance
as it is often referred to) is satisfied for the flip rate intensities of (10) but
there are many other rates satisfying this. It is known that the set of so
called Gibbs states are exactly the same as the class of reversible measures
with respect to the flip rates satisfying (11); see [19] page 190-196. Note also
that the condition specified in (11) with Z? replaced by A,, is equivalent to
that of (9) (modified with the boundary condition removed).

While we defined above stochastic Ising models on {—1, I}Zd, this con-
struction can be done on more general graphs (see [19]).

2.4 The random cluster model

Unlike all other models in this paper, the random cluster model deals with
configurations on the edges F of a graph G = (S, E). We will review the
definition of the regular random cluster measure on general finite graphs
and the “wired” random cluster measure on A, C Z? We will also recall
the limiting measures and in the next subsection the connection between
the random cluster model and the Ising model. In doing so we will follow
the outlines of [9] and [13] closely.

Take a finite graph G = (S, E). Define the random cluster measure v
on {0,1}¥ with parameters p € [0,1] and ¢ > 0 as the probability measure
which assigns to the configuration n € {0,1}* the probability

DA\ g n(e) (1 _ p)1-n(e) 12
ve'(n) = —— [ p" (1 =p)' =" (12)
eck

Here Z is again a normalization constant and k(7)) is the number of connected
components of 1. From now on we will always take ¢ = 2 and therefore we
will suppress q in the notation.

Take G, = (S,, E,), where S,, = A,.1 C Z? and E, is the set of all
nearest neighbour pairs of A, ;1. Write v}, for I/gn, and define

vP(-) = vE(+] all edges of F,, with both end sites in A, 11 \ A, are present).

(13)
This is the so called “wired” random cluster measure. It is called “wired”
since all edges of the boundary are present. It is immediate from the defining

13



equations (12) and (13) that for e € E,, and any ¢ € {0,1}F\¢

P, if the endpoints of e are
vh(n(e) = 1n(E, \ e) = §) = connected in &, (14)
2%} otherwise.

One can show (see [9] or [13]) that when n tends to infinity, the probabil-
ity measures {7} },cn+ converge to a probability measure . Furthermore,
the construction of 7, on {0,1}¥» can be done on any finite subgraph by
connecting all sites of the boundary of the graph with each other. As a
consequence, we can also define random cluster measures on more general
graphs than Z%, see for example [11].

2.5 The random cluster model and the Ising model

Take G, = (Sp, Ep,) as in Section 2.4. As in [13], let P, be the probability
measure on {—1,1,}% x {0,1}F» defined in the following way.

1. Assign each site of A, 41\ A, and every edge with both endpoints in
Apni1 \ Ay the value 1.

2. Assign each site of A, the value 1 or —1 with equal probability, assign
each edge with not more than one endpoint in A, ;1 \ A, the value 0
or 1 with probabilities 1 —p and p respectively. Do this independently
for all sites and edges.

3. Condition on the event that no two sites with different spins have an
open edge connecting them.

One can then check that P} (o, {0,1}7") = ,u,t’ﬂ(a) with = —log(1 —
p)/2, and that Ph({—1,1}°,n) = &5 (n). Here, Ph(0,{0,1}7) is just the
marginal in the first coordinate of P,. The same kind of construction can
be carried out on any finite graph G = (S, F).

2.6 The contact process

Consider a graph G = (S, E) of bounded degree. In the contact process the
state space is {0,1}%. Let A > 0, and define the flip rate intensities to be

1 if o(s)
C(S,U): A Z ()’(S’) if (f(s):

(s',s)EE

1

If we let the initial distribution be ¢ = 1, the distribution of this process
at time ¢t which we will denote by ¢;7(¢) is known to converge as t tends
to infinity. This is simply because it is a so called “attractive” process and
o = 1 is the maximal state and {§;T)\(¢)} is stochastically decreasing; see
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[19] page 265. This limiting distribution will be referred to as the upper
invariant measure for the contact process with parameter A and will be
denoted by py. We then let U* denote the stationary Markov process on
{0,1}* with initial (and invariant) distribution sy.

3 e-movability for monotone measures

In this section, we prove movability results for classes of monotone measures.
The finite case is covered by Lemma 3.3, while the countable case is discussed
in Proposition 3.4. In this section, we will always assume that our measures
have full support.

For any |S| < oo, s € S, & € {0,1}°\* and probability measure x on
{0,113 write pu*9)(il¢) for 9 (a(s) = i|o(S\ s) = €), u=)(iN¢E) for
u9 ({o(s) = i} N {o(S\5) = €}) and a9 (€) for = (o (S \5) = ¢). Here,
* can represent either + or — and i € {0,1}. Note that s is suppressed in
the notation and so should be understood from context.

We begin with an easy lemma whose proof is left to the reader. The
idea is that if the configuration outside of s is ¢ under p(—9, it must have
been at least as large under p “before flipping some 1’s to 0’s”; then use
monotonicity.

Lemma 3.1 Assume that i is a monotone probability measure on {0,1}°
where |S| < co. Take s € S and let & € {0,1}°\5. Then, for any e > 0, we
have that

pO(LE) > (1 — ) p(1]€)
and that
pHI0[€) > (1 — e)u(0]e).

The next lemma will be used to prove lemma, 3.3.

Lemma 3.2 Assume that i is a monotone probability measure on {0,1}5
where |S| < co. For any € > 0, u(—9 is also monotone.

Proof. Let s € S be arbitrary, X ~ g and X(—9 ~ p(—9. For any 6,7 €
{0,115\% define the probability measures ps5 and py on {0, 1}5\% by letting
ps(A) = P(X € AIXC9(S\ 5) =6) and p,(A) = P(X € AIXI(S\ 5) =
n) for every event A in {0, 1}3\5, respectively. We will prove that

e = py Y6 2. (15)

This will give us (since P(X(s) = 1| X (S \ s) = n) is an increasing function
of n) that

P(X9(s) = XS\ 5) =)
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— (10 / P(X(s) = X (S \ ) = 7)djun ()
Jie{0,1}5\s

>0 [ P(X(s) = 1|X(S\ 5) = 7)dus(7)
Jie{0,1}5\s

=P(XT)(s) = 1|XTI)(S\ 5) = 4).

Since s was choosen arbitrarily this would prove the statement.

We now prove (15). Define for n < 7 d(,n) := [{t € S\ s : 7(t) =
1} —|{t € S\'s:n(t) =1} and d(n,0) = [{t € S\ s: 7(t) = 1}|. Here
| - | denotes cardinality. Let pug\4(n) = P(X(S \ s) = n) and define u‘(qf\r’:)
similarly. We have that for n < 7 :

i (1) (16)
_ e -\ Ms s(ﬁ)
= P(XCI(S\ ) =0 X(S\ ) = i) 5 —
Frs\ s (n)
= (dlim) (1 e)d(n,ﬂ)'u(s\%:)(ﬁ)_
,US\; (n)
(17)
It is well known that p being monotone implies that for every s, N
ps\s (71 V 0 psys (71 A 6) > gy s (7) s (6). (18)

By a simple modification of Theorem 2.9 pg 75 of [19], it is enough for us
to show that

s (71 8) (71 A 8) >y (77) s (9) (19)
for all 7 = 1 and 6 = & to show (15). An elementary calculation shows that
d(i v 0,) +d(i) A9, 6) = d(ij,n) + d(5, ). (20)

We therefore get

Nn(ﬁ \% 5)#(5(~ A S)
_ 6d(ﬁv5,n)+d(ﬁ/\5,6) 1- 6)az(n,o)+d(5,o) ”5’\8(’7 vV 4) ”5’\8(77 A 6)
o) nG )

3

> 6d(ﬁ,n)+d(5,5)(1 - 6)(1(77’0)4_(1(5’0) N(S\s)(ﬁ) N(S\s)(é)
povs (1) pgys” (9)

= 11y (7)) 15 (3),

where (16) is used in the first and last equality and equations (18) and (20)
are used in the inequality.

QED
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Lemma 3.3 Let juy, g be probability measures on {0,1}° where |S| < oo.
Assume that po is monotone and that

A= i [ua(o(s) = 1o(S\ 8) = &) — i (0(s) = (S \ 5) = )] > 0.

SES
ce{0,1}5\s

Then for any choice of € > 0, such that

1
A> — —1,
1—¢€

we have
e
Hence (u1, p2) is downwards movable.

Proof. Monotonicity of us, Lemma 3.1, the definition of A and our choice
of € give us that for any s € S and & € {0, 1}5\S

s (116)
> (1 pa116) = (1 - A+ (1))
>0 gt ),

By Lemma 3.2, ugf’e) is monotone and so \75 <&,

m (1) < s (11€) < w7 (118).
The proof is completed by the use of Holley’s inequality, Theorem 2.1.
QED

Proposition 3.4 Let S be any finite or countable set and consider
(Sn)nent, a collection of sets such that |S,| < oo Vn € NT and S, T S.
Let (p1.n)nent (B2.n)nent, be two collections of probability measures, where
Win, fon are probability measures on {0, 1} for every n € N*. Further-
more, assume that all of the probability measures (p11n)nen+ ((H2,n)nen+)
are monotone, that (11, — p1 and that po, — po. Set

Aui= if [aoalo(s) = Uo(S\ 5) =€) - pia(o(s) = (S \ 5) = ©)].
£€{0,1}5n\s
If
inf A, >0,
neN+

then (u1, pe) is upwards (downwards) movable.
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Proof. Take € > 0 such that

inf A, > —1.

neN+ 1—c¢

With this choice of €, Lemma 3.3 says that (u1p,p2,,) is upwards (down-
wards) e-movable. Since p1, — p1 and ps, — p we easily get that

pé;f) — ,uéf’ﬁ) and ,u(lﬁf) — ,ug+’€). Furthermore since the relations
Hin 2 05
and
+1
ug,nE) j MQ,TZ

are easily seen to be preserved under weak limits, we get that

pr <y and it < .

QED

4 e-movability for the contact process and a 0-1
Law

The conditions in our next proposition might seem overly technical; however,
these represent the essential features of the contact process (after a small
suitable time rescaling) and therefore we feel it is instructive to highlight
these features. In Proposition 4.1 and Lemmas 5.1, 5.2 and 8.1 we will
use the so-called graphical representation to define our processes; see for
instance [19] page 172.

Proposition 4.1 Let py and py be two probability measures defined on
{0,1}‘9, where S is a countable set. Assume that pu1 =< po and that there
exists two stationary Markov processes Wi and Vo, governed by flip rate

intensities {C1(8,01)}scs.0,eq0,1)s and {Ca(8,02) }seg gpeqo1ys respectively,
and with marginal distributions gy and pg. Assume that C; < Co (conditions
(7) and (8) of the introduction). Consider the following conditions;

1. There exists an €1 > 0 such that

CQ(S,(IQ) — 01(8,01) 2 €1 (21)
Vs € S, Yoy > 01 s.t. ()’2(8) =0 and 01(8,0'1) # 0.

2. There exists an eo > 0 such that

Ci(s,01) — Ca(s,02) > € (22)
Vs € S, Yoy > 01 s.t. ()’1(8) =1 and CQ(S,()’Q) # 0.
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3. There exists an eg > 0 such that

01(8,01) > €3 Vs €S, Yoq s.t. 01(8) =1, (23)

4. There exists an €4 > 0 such that

CQ(S,(IQ) > €4 Vs €S, Yog s.t. (IQ(S) = 0. (24)

If conditions 1 2 and 3 are satisfied, then (u1, u2) is downwards movable.
If conditions 1 2 and 4 are satisfied, then (u1,p2) is upwards movable.

Proof. We will prove the first statement, the second follows by symmetry.
Define
A= sup Cy(s,o2)+ sup Ci(s,01).
s,02:02(s)=0 s,01:01(8)=1

Our aim is to construct a coupling of the processes {Xj;};>0 ~ ¥y and
{X2,}i>0 ~ ¥y such that X;; < Xy, V£ > 0 in such a way that we prove
the proposition. Before presenting the actual coupling we will discuss the
idea behind it. For every site s € S associate an independent Poisson process
with parameter A. Next, let {Us }scsk>1 and {U! ,}sesx>1 be independent
uniform [0, 1] random variables also independent of the Poisson processes.
If 7 is an arrival time for the Poisson process at site s, we write Uy ; for U,
where k is such that 7 is the kth arrival of the Poisson process at site s.
Now, let 7 be an arrival time for the Poisson process associated to a site s.
For i € {1,2}, let X, ;- and X; .+ denote the configurations before and after
the arrival. We will let the outcome of U, decide what happens with the
{X2,:}1>0 process at time ¢t = 7, and then we will let US’,T together with U, ,
decide what happens with the {X7;};>0 process at time ¢ = 7. As we will
see, we will do this so that X ; < Xy ; for all £ > (. Furthermore, we will do
this in such a way that there exists an e € (0, 1) such that if U, > 1—¢, then
X1,.+(s) = 0 regardless of the outcome of Us ;. Consider now the process
{X{ }i>0 we get by taking X((s) = 1 for every s € S and letting { X[ (s) }s>0
be updated at every arrival time 7 for the Poisson process associated to s,
and updated in such a way that X, (s) =0ifU;, > 1—¢ and X, (s) =1
if U, < 1 — e Of course the distribution of X{ will converge to w1 ..
Observe that whenever X{(s) = 0 we have that X; ;(s) = 0. Therefore we
can conclude that

X],t j min(Xg,t,XtE) Vit 2 0. (25)

Furthermore since the process {Xf};>0 does not depend on any U, we
have that X{(s) is conditionally independent of X5 ; if there has been an
arrival for the Poisson process associated to s before time t. Let s;, 1 €
{1,...,n} be distinct sites in S and let A; be the event that all Poisson
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processes associated to s; through s, have had an arrival by time ¢. Of
course P(A;) = (1 — e )™ and so we get that

P(X9: Xf(s1) = = X9 X[ (sp) = 1)
=P(X9 Xf{(s1) =+ = X9 X[ (sn) = 1|A)P(A)
FP(Xo4 X7 (s1) = -+ = X231 X (s0) = 1 AF)P(A)
=P(Xo(s1) =+ = Xo(sn) = 1| As)
XP(X{(s1) =+ = X{(sn) = 1| A)P(A)
+P( X9, Xi(s1) = -+ = X9 X[ (sn) = 1] A7) P(Af)
=P(Xo(s1) = - = Xo4(sn) = 1| A)P(A) (1 — €)"
+P (X, fX,(sl) o= X941 X[ (sp) = 1]A7)P(Af)
=P({X2.4(s1) = —ng(sn) =1}nA)1 —¢e)"
+P( Xy Xy (51) = Xo 1 X{ (sn) = 1|A7)P(A])
> (P(Xa4(s1) == Xay(sn) = 1) = P(A})) (1 —€)”
+P( X, tXtE(S]) = Xop X (sn) = 1A))P(Af)
=P(Xgy(s1) == X2,t(5n) =1)(1—¢)"
‘HP(AC)( (X2 Xi(s1) = = X9 X{(sn) = 1JA7) — (1 = €)")
No(s1) =+ ZU(%) =1)
( 1) (P(X2, X7 (91) = X, Xi(sp) = 1[A}) — (1 —€)")
ZF s No(s1) = = osn) = 1).

In addition

P(Xg’t(sl) == Xg’t(Sn) =1nN Af)(l - 6)”
<P(Xagu(s1) == Xoy(sp) =1)(1 —¢)"
= n\ N o(s1) =+ = a(sn) = 1)

Hence, by inclusion exclusion, we have that the distribution of

min(Xs, Xf) approaches ,uéf’ﬁ) as t tends to infinity. So by first taking the

limit in (25), we get that p; < ,uéf’ﬁ), as desired.
Now to the construction. Take X g ~ p1, X2 ~ pg, such that Xy <
X2,0. Let 7 be an arrival time for the Poisson process associated to s. Take

Usr and Ug .. The following transition rules apply:

XQ,T* X2,T+ if

0 1 U, < )
R A S )

It is easy to check that the process {XQ’t}tZO thus constructed will have
the right flip-rate intensities. The construction of { X ;};>¢ is slightly more
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complicated. If Ca(s,X5,-) = 0 and Xy ,-(s) = 0 then it follows from

Ci(s,X,
(7) that Ci(s,X;,-) = 0, and in that case we interpret (N;E%;:ii as 0.

Observe that Ca(s, X5 .- ) can be 0 when X, - (s) = 1 but it will not cause
any problems. With these observations in mind, these are the transition
rules we apply:

(Xl,T*aXZT*) (X],T+aXZT+) ( ) if ( )
Co(s, . C1(s,X =
(an) (17 1) U?,T = ( ,\2 | and U; T < CQES’X;’Tg
Ca(s,X, - Ci(s, X, -
(0,0) (0,1) Uy < 20250 pnq g C;(s,x;r,)
(0,0) (0,0) otherwise
A—Ca(s,X, -
(0,1) (0,0) U, > )
sup  Ca(s,09)
$,02:02(8)=0
(0,1) (1,1) Usr < /\ and
(&3} S,XLT,)

/
<
Usr sup  Ca(s,02)
s,02:02(8)=0

0,1 0,1 otherwise

(0,1) (0,1)

(1,1) (0,0) U,, > 22 t)
(1,1) (0,1) U, < 200Xar) g

A-=C1(s, X, __)
! LT
Usﬂ' 2 A*CQ(S,XQ T,)

(1,1) (1,1) otherwise

It is not difficult to check that all flip rate intensities are correct and
that X;; < Xy, for all ¢ > 0. Observe that by the definition of A, the

sup  Cy(s,09)

A—Ca(5,X, ) 5,02:02(8)=0 .
events {US’T > %} and ¢ U, < 72:2(5) X are dis-

joint when (X, .-, X, ,-) = (0,1).

We now want to show that there exists an e > 0 so that U, > 1 —
€, implies that X; ,+(s) = 0. Note that if (X;,-,X5,-) = (0,0) and
Ci(s,X1,-) >0 (= Cy(s, X5,-) > 0) then

& (SaXl,T*) < CQ(SaXQ,T*) — € <1- €1 <1
CQ(SaXQ,T*) CQ(SaXQ,T*) sSup 02(5502)

$,02:02(8)=0

and if (X, ;—, Xy .-) = (0,0) and C; (s, X; .-) = 0 then

Cl (S, Xl ,T*)

=0.
CQ(sa XQ,T*)
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Furthermore if (X; -, Xy .-) = (0,1) and Cy(s, X; ,-) > 0, then

C(s, Xy :
1(s 1,7 ) <1- €1 <1
sup  Cs(s,09) sup  Cy(s,09)

$,02:02(8)=0 $,02:02(8)=0

while again if (X, ,-, Xy ,-) = (0,1) and Cy(s, X; ,-) = 0, then the 0 never
changes to a 1. Finally if (X;,-,Xy,-) = (1,1) and Cy(s, Xy ,-) > 0
(= C1(s, Xy ,-) > 0), then

)‘701(‘an],7*) < AiCQ(SaXZ,T*)7€2 1 €2 <17€_2
A— OQ(SaXQ,T*) B A— CQ(Sa XQ,T*) B A— OQ(SaXQ,T*) B A
and if (X, ;—, Xy .-) = (1,1) and Ca(s, Xy .- ) = 0,

A—Ci(s, Xy -

1(s, 1,T)§>\ € _1_ %81

A—Cy(s, Xo ) A A

Therefore, whenever
Ul > max | 1 - ° 1-21-8

sup  Cs(s,09)’ A7 A

$,02:02(8)=0

we have that X, +(s) = 0 regardless of the outcome of U . Therefore
(1, p2) is downwards e-movable where

€1 €9 €3
= 1 1 12,8
¢ max sup  Cy(s,09)’ A’ A

s,02:02(s)=0

“ ©2 &
sup  Cy(s,09)" A7 A

s,02:02(s)=0

QED

Proof of Theorem 1.11. Take § > 0 such that A;(14+6) < Ay and consider
the process {Xt}tz(] constructed in the following way. Take Xg = 1 and let
the process evolve with flip rate intensities

1+4 if o(s)
Ci(s,0) =0 M(140)D o(s) if o(s) =

sl~s

1
: (26)

Denote the limiting distribution of X; as ¢ tends to infinity by 1145, (144)-
It is easy to see that this process is just a time-scaling of the contact process
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constructed in Section 2.6 with parameter A;. Recall that that process had
limiting distribution puy,, the upper invariant measure for the contact pro-
cess. Thus we have py, = py45x,(1445). By Proposition 4.1 with Cy as above
and C5 as in Section 2.6 with parameter Ao, there exists an € > 0 such that

P1+6.7: (140) = ME\;’E)-

Hence (g, i»,) is downwards movable.
QED

For the rest of this section we will only consider the graph T? for d > 2.
The following is a 0-1 law for the upper invariant measure for the contact
process.

Proposition 4.2 Let A C {0, I}Td where d > 2 be a set which is invariant
under all graph automorphisms on T¢. Then, for X > 0, we have that

UA(A) € {07 1}'

Proof. Let ¢ > (. By elementary measure theory, there exists a cylinder
event B depending on finitely many coordinates such that

A (AAB) < e. (27)

Let suppB denote the finite number of coordinates with respect to which
B is measurable. Letting {T\(¢)};>0 denote the Markov semigroup for the
contact process with parameter A\, we have that §;7(¢f) — ) and also that
wx = 01 T)\(t) for every t > 0. Choose t so that for all (equivalently some)

sites s
€

WTAE) (n(s) = 1) < palnls) = 1) + 5

It follows easily that if m is any coupling of §;T(¢) and u) which is concen-
trated on {(n,0) : 7 = 0}, then for any finite set S of sites

m({(n,0) : n(s) # d(s) occurs for some s € §) < %

In particular, if £ is any event depending on at most 2|suppB| sites, then
ITA(E) — ua(B)| < e (28)

For this fixed ¢, Theorem 4.6 page 35 of [19] shows that there exists an
automorphism v € AUT(T?) such that

TN (BOAB) — 5T\ (H)(B)S Ty (1) (4B)] < e. (29)
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Furthermore, since p) is invariant under automorphisms (27) implies that

pr(YAAYB) <
and since A = y.A, we have

pr(AAYB) <€
It follows that

A (BAYB) < px(AAYB) + pr(AAB) < 2e.
Next, (28) implies that
01T\ (1) (BAYB) — pr(BAYB)| < ¢,

and so

11 T\(t)(BAYB) < 3e. (30)
We get that

AP = |pa(A) — pa(A)pa(rA)]

< lua(B) = pa(B)pa(yB)| + 3e

< \51Tx(t)(3) — 61T\ (t)(B)61Tx(t)(vB)| + be
< 5Ty (8)(B) — 61Ty (£) (B A yB)| + Te

< 01T (t)(BAYB) + 7e < 10e.

[a(A) — pa(
) —

Where we used (27), (28) and (29) for the three first inequalities and (30)
in the last. Since € > 0, was choosen arbitrarily we get that

pa(A) = pa(A)?
and so py(A) € {0,1}.
QED

Remarks: The above proof works for any transitive and even quasi-
transitive graph. For the case of Z¢ this was proved in Proposition 2.16
page 143 of [19]. It is mentioned there that while ;T\ (#) is ergodic for
each t, one cannot conclude immediately the ergodicity of u) because the
class of ergodic processes is not weakly closed. We point out however that
there is another important notion of convergence given by the d-metric (see
[24] page 89 for definition) on stationary processes. Convergence in this
metric is stronger than weak convergence and weaker than convergence in

the total variation norm. It is also known that the ergodic processes are d-
closed and that weak convergence together with stochastic ordering implies
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d-convergence. In this way, one can conclude ergodicity of py using the d-
metric giving an alternative proof of Proposition 2.16 of [19]. In fact, the
proof of Proposition 4.2 is essentially based on this idea. However, because
of the open question listed below, it is not so easy to formulate the d-metric
for tree indexed processes and so we choose a more hands on approach.
Observe that the crucial property of d-convergence which is essentially used
in the above proof is that for each fixed k, one has uniform convergence
of the probability measures (in say the total variation norm) over all sets
which depend on at most &k points. (The point is that the k points can lie
anywhere and hence this is much stronger than weak convergence).

Open Question related to defining the d-metric for tree indexed
processes: Assume that y and v are two automorphism invariant proba-
bility measures on {0,1}T" such that ; < v. Does there exist a T%invariant
coupling (X,Y) with X ~ 4, Y ~vand X Y7

Proposition 4.3 On T¢, d > 2 there ezists a Ap such that for all X > )\,
p(Ch) = 1.

Proof. By Theorem 1.33(c), page 275 in [19], for sufficiently large A,
pux(n(s) =1) > 2/3. By [12] we have that if uy(n(s) = 1) > 2/3, then

pA(CT) > 0.
Finally, Proposition 4.2 then implies that

pa(Ch) = 1.
QED

5 Relationship between e-movability and dynam-
ics

In the general setup we have a family of stationary Markov processes para-
metrised by one or two parameters, e.g. the contact processes ¥* () is here
the only parameter) or a stochastic Ising model g B (8 and h being the
parameters). Many of the proofs in this paper will involve comparing the
marginal distributions of these Markov processes for two different values of
one of the involved parameters. Let p be the parameter and let p; < ps.
Assume that the marginal distributions are p,, and p,, respectively and
that pp, = pp,. Lemmas 5.1 and 5.2 shows that there is a close connection
between showing that (i, . p,) is downwards e-movable and that the infi-
mum of the second process over a short time interval is stochastically larger
than the first process.
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Let U* be a stationary Markov process on {0,1}° with marginal distri-
bution p and let {X;};>¢ ~ W¥. For § > 0 and s € S define

Xings(s) := teif[l]fd] Xi(s),

and denote the distribution of Xi,¢ s by pinf,s. Similarly define

Xup,s(s) := sup Xy(s),
te(0,d]

and denote the distribution of Xg,, 5 by fsup,s-

Lemma 5.1 Take S to be the sites of a bounded degree graph. Let
{C(s,0)}ses, oef_1,1ys be the flip rate intensities for a stationary Markov
process WH on {—1,1}% with marginal distribution p. Let

A= sup C(s,0).

(5,0)

For any 7 > 0, if we set e := 1 — e~ ", we have that
1) < g
Similarly, we get that
Hsup,t = ,U/(+’€)-

Proof. We will prove the first statement, the second statement follows by
symmetry. Take 7 > 0. For every s € S associate an independent Poisson
process with parameter A. Define {(X/, X7)};>0 in the following way. Let
X(l) = Xg ~ u, and take #' to be an arrival time for the Poisson process
of a site s. For i € {1,2}, let XZ,,, and XZ,,+ denote the configurations
before and after the arrival. We let X/, (s) # X/, _(s) with probability
C(s,X}_)/X and we let X7 (s) = 0 and finally we let X} (S \ s) =
X, _(S\s), X7 (S\s) =X _(S\s). Do this independently for all arrival
times for all Poisson processes of all sites. Observe that once X?(s) is 0, it
remains so. Note also that X! ~ p, X2 ~ u(—9. Furthermore if X} (s) = 0
for some t € [0, 7] the construction guarantees that X?2(s) = 0 and therefore
X2 < Xilmcﬁ ~ linf,r-

QED

Lemma 5.2 Take S to be the sites of any bounded degree graph. Let
{C(8,0) }ses, oef—1,1)s be the flip rate intensities of a stationary Markov
process WH on {—1,1}5 with marginal distribution u. Define

A= inf  C(s,0).

s,0:0(s)=1
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If Ay > 0 then for any 0 < e < 1, if we set 7 := —M, we have that

A1
fing,r < 9.
Similarly, defining Ao := 9 U'ir(lf)_ﬂ C(s,0), if Ao > 0, then for any 0 < e < 1,
if we set T:= —w, w’e.have that
NH’E) = Hsup,r-

Proof. We will prove the first statement, the second statement follows
by symmetry. For every s € S associate an independent Poisson process

with parameter A := sup C(s,0). Next, let {Us}scsr>1 be independent
(5,0) a

uniform [0, 1] random variables also independent of the Poisson processes.
If t' is an arrival time for the Poisson process at site s, we write U,y for
Us,r where k is such that t' is the kth arrival of the Poisson process at site
s. Define {(X/,X}?)}i>0 in the following way. Let X = X¢ ~ pu, and
take ¢’ to be an arrival time for the Poisson process of a site s. We let
X} (s) # X} _(s) if Uy < C(s,X},_)/A Furthermore we let X7, (s) =0
if Ugy < Ai/Aor X2_(s) =0, and finally we let X, (S\s) = X, _(S\s),
X7 . (S\s)=X7_(S\s). Do this independently for all arrival times for all
Poisson processes of all sites. Clearly X! ~ p and X2 ~ 1), Furthermore,
if X2(s) = 0, then either X (s) = X2(s) = 0 or there exists a t € [0,7]
such that ¢ is an arrival time for the Poisson process associated to s and
Ust < Ai/A. Since Ay < C(s, X/) if X (s) =1, we get that either X/, (s)
or X! (s) is 0 and therefore X |, < X2

inf,7

QED

To illustrate why the condition A; > 0 of Lemma 5.2 is needed, consider
the case p = 7, for some p > 0. With € > 0, if we assume the trivial dynamics
C(s,0) =0 for all 5,0, we will of course not have that piine , < 19 for any
T>0.

6 Proof of Theorem 1.9

Proof of Theorem 1.9. Take A > X, and let X' = (A + X,)/2. By Theo-

rem 1.11 there exists an € > 0 such that (uy,puy) is downwards e-movable.

Lemma 5.1 gives us that there exists a 7 > 0 such that ,ugf’ﬁ) = o inf,r and

hence that py = pyinf,r- Therefore, since CT is an increasing event and
X' > X,, we have that

1=ypy (C+) < M)\,inf,T(C+)

and so
WA Ve [0,7])) = 1.

The theorem now follows from countable additivity.
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QED

7 Proof of Theorem 1.1

In this section we will deal with stationary distributions for interacting par-
ticle systems which are monotone in the sense of Definition 2.2.

Let G = (S,E) be a countable connected locally finite graph and let
A C S be connected and |A| < oo. Let {pf },e7, where I C R be a family of
probability measures on {—1,1}* such that

=l Vo1 < po.
Assume that there exist stationary Markov processes \I'f\ governed by flip
rate intensities {Cp A (s, 0) }sen pef—1,134 and with marginal distributions e
Furthermore assume that there exists limiting distributions U? of U and
pP of pfi as A 1 S. Assume that pf are monotone for every p and A. For
p1 < p2, let

Anpips = inf [ (0(s) = Uo(A\s) = &)=} (o(s) = 1|o(A\s) = €)]
ee{—1,13M\s

and assume that for all p; < ps

inf A > 0.
ACS A,p1,p2

For fixed p; < po there exists by Proposition 3.4 an € > 0 such that (uP', uP?)
is both upwards and downwards e-movable. Next, by Lemma 5.1 there exists
a 7 > (0 such that
O <
and therefore
T i (31)

inf,7"
Theorem 7.1 Consider the setup just described. Let A be an increasing
event on {—1,1}% and let A; be the event that A occurs at time t.
(1) Let a € R. If
pP(A) =1
for all p € I with p > a, then
UP(A; occurs for every t) =1

for all p € I with p > a.
(2) Let a € R. If

pP(A) =0
for all p € I with p < a, then

WP(A; occurs for some t) =0

for all p € I with p < a.
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Proof. We prove only (1) as (2) is proved in an identical way. Take p > a
and let py = (p + a)/2. By the argument leading towards (31), there exists
7 > 0 such that

W7 (A) < b (A).

By using pP2(A) =1 and
fing - (A) < WP (A occurs for every t € [0, 7]),
we get by countable additivity that
UP(A; occurs for every ¢) = 1.
QED

We will now be able to prove Theorem 1.1 easily.
Proof of Theorem 1.1. We prove only the very first statement; all the
other statements are proved in a similar manner. We fix 8 > 0 and then A
will correspond to our parameter p in the above set up. For any A C S, any
s € A and any & € {—1,1}*\*, we have that

1
+.8,h — — ) —
HA (0'(3) = 1|0'(A \ S) - 5) - 1+ o—2B(% 10y E(1))—2h (32)

where we let £(¢) = 1 if £ € A° in order to take the boundary condition

into account. It is obvious from (32) and the definition of monotonicity that
+7ﬂ7h
A

1 is monotone for any h and A. Letting h; < hg, it is immediate that
A = inf ! 1 >0
Ahishy = seA [1 + e 2B hns €02k ] 4 o260 E(1) -2 ] ’
cef{—1,1}M\s

where again &(t) = 1 for all ¢ € A°. It is not hard to see that this strict
inequality must hold uniformly in A; i.e.,

inf A > 0.
AQS A7h11h2

It follows that all of the assumptions of Theorem 7.1 hold and part (1) of
that result gives us what we want.

QED

Proof of Lemma 1.2. Fix § > 0. Given any p € (0,1), it is easy to see
that there exists a real number ho such that for all h > ho, for s € S and
for all ¢ € {—1,1}5\s

ptih(o(s) = 1o (S\ s) =€) > p
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and hence m, < ptBh Tt is also easy to see that there exists a real number
hi such that for all h < hy, for s € S and for all £ € {—1,1}5\s

ptih(o(s) = 1o(S\s) =€) <p

and hence pt8h < mp. The statements of the lemma easily follow from
these facts.

QED

8 Proof of Theorem 1.3

In this section we will use a variant of the so called Peierls argument to prove
Theorem 1.3. We prove this only for Z?; the proof (with more complicated
topological details) can be carried out for Z¢ with d > 3.

We will write 0 < OAp for the event that there exists a path of sites
in state —1 connecting the origin to dA;, := Ar41 \ Az, at time ¢ and we

. . —,t . . . .
will write 0 < oo for the event that there exists an infinite path of sites
in state —1 containing the origin at time t. We will also write 0 JAELN OA7,

and 0 <% oo for the obvious analogous events. We will first need Lemma
8.1 and the concept of a dual graph. The dual graph Gdual = (§dual  pdual)
of G, = (Sn, Ey) consists of the set of sites S2 1= {—n — 1,... . n+ 3}°
and E% which is the set of nearest neighbor pairs of S In this paper
we will only work with the edges of the dual graph. An edge e € Edual
crosses one (and only one) edge f € E, and the end sites of this edge f will
be called the sites (of G,) associated to e. For a random spin configuration
X on {—1,1}" define a random edge configuration Y on {0, I}Eg"al in the

following way:
o v {0 X() = X(s) -
@={1 i X9 7x00 (33)

where s,t are the sites associated to edge e € E Tn figure (1) we have

drawn a configuration o € {—1,1}! and the induced edge configuration on
dual

{0,1}F",

Assume that the sites evolve according to the flip rate intensities
{Cn(8,0)}ses,, oef—1,135-- Consider v, a (finite) path of edges in the dual
graph. Take 7' to be a subset of 7y. Assume that all edges of 7’ are absent and
all edges of v\’ are present at ¢ = 0. We want to estimate the probability of
the event that all edges of 7/ are present at some point (not necessarily all at
the same time) during some time interval [0, 7]. In other words we want to es-
timate the probability of the event {Ys,p - (7') = 11Yo(7') =0, Yo (v\Y') = 1}.
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Figure 1: S; and the edges of it’s dual graph. A solid circle marks a site
with spin 1, while an empty circle has spin —1. A solid line is a present edge
of the dual graph, and a dashed line is an absent edge of the dual graph.

Lemma 8.1 Let {Cy(s,0)}scs,, gef—1,135. be the flip rate intensities for a
stationary Markov process on {—1,1}%" and let Y; be defined as above. Let

A= sup Cp(s,0) (< 00).
(5,0)

For any 7 > 0 and any ~' C E®al,
P(Y;UD,T(’Y’) = I‘YO(’Y’) = O,Yg(Egual \fy’)) < (4(1 _ e*)ﬂ')l/ﬁl)h’\‘

Proof.

Take 7 > (. For every s € S,, associate an independent Poisson process
with parameter A. Define {X;};>0 in the following way. Let Xy ~ p and
take ¢’ to be an arrival time for the Poisson process of a site s. We let
Xp.+(s) # Xp.—(s) with probability C(s, Xy.—)/A. Do this independently
for all arrival times for all Poisson processes associated to the different sites.
It is immediate that X, ~ pu. Let s;, ¢« € {1,...,1} be distinct sites of S,,.
The event { Xinf - (5;) # Xsup,r(si) Vi € {1,...,1}} is contained in the event
that every Poisson process associated to the sites s;,4 € {1,...,1} have had
at least one arrival by time 7. The probability that a particular site has had
an arrival by time 7 is 1 — e~ *7. Furthermore this event is independent of
the Poisson processes for all other sites. Therefore

P (Xingr(5i) # Xsupr(si) Vi € {1,...,1}) < (1 —e 7). (34)
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Given 7/, consider the set of all sites associated to some edge of 4 and let
n be the cardinality of that set. Observe that n, < 2|7'| and that in order
for the event {Yaup (7)) = 1[Yo(y') = 0, Yo(Eal\ o)} to occur, at least
|7'|/4 of the sites associated to 4" must flip during [0, 7]. This is because one
site is associated to at most 4 edges. Denote the event that at least |y'|/4 of
the sites associated to ' flips during [0, 7] by A, /. Take S to be a subset of
the sites associated to 7' such that |S| > |7'|/4. By (34), the probability that
all of these sites flips during [0, 7] is less than (1 — e *7)I91 < (1 — e 27)I/4,
To conclude, observe that the number of subsets of the sites associated to v/
is bounded by 2217’ Hence, the probability of the event A, ., must be less
than (1 — e *7)17'1/4221'land so

P (Yaup,r () = 1Yo(7') = 0, V(B \ )
< P(Ary) < ((1—e )il
QED

Proof of Theorem 1.3. We will prove the theorem for d = 2. For 8 > f3,,

choose 41 > 0 so that ' := 52;51 > [, and hence

o0
lel”e*%l < 00.
=1

Next, choose N and e < 1/2 such that % < 61, and eV < e P2=0) and let

7 be such that € = 4(1 — e *")1/4. Let § > 0 be arbitrary and choose L so
that

[ee]
3y 1301200 < 5.
=L

Let £, be the event that 0 PN OAp, for some t € [0,7]. Let TP be
defined as in Section 2.3. We will show that

TP (ELy) <6 VYn> L.

Since \Ilf{’ﬂ(SL,T) — UHB(EL ), (see Section 2.3) we get that UH5(&, 1) < 6.
Letting L — oo and § — 0, we get that

B3t e[0,7]:0 PN o0) =0,
and then by countable additivity
GBIt > 0:0 <% 00) = 0.
It is well known (see [8]) that if all sites in Ap41 \ A, takes the value +1,

Err (35)
C {3y C E™a € [0,7] : |y| > L, 7 surrounds the origin, Y;(y) = 1}
C{3y C Eg""’l :|y| > L, v surrounds the origin, Yg,, -(v) = 1}.
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To prove \Ilj{’ﬂ(EL,T) < 8, consider vy with |y| = I a contour in Edua!
surrounding the origin. By Lemma 8.1, P(Ygup - (7') = 1[Y5(7') = 0, Yo(y \
v") = 1) < 'l whenever v C ~. We get

P(Ysup,r(v) =1) (36)

P(Yo(v)=0,Yo(v\7) =1)

!
M-
]

i
o
N
2

32

XP (Youp,r (7)) = 1Y0(v) =0, Yo (v \ ') = 1)

P(Yo(y) =0,Y5(y\ ) = 1)é*

M-
]

End
Il
=}

"Cy
=k

32

l
Z P({all edges except k of 7 are present at ¢ = 0})e*
k=
/

2 o

P ({all edges except k of 7 are present at £ = 0})e*

o
o

l
+ Z P ({all edges except k of y are present at t = 0})e.
k=l/N+1

Obviously, [/N need not be an integer, but correcting for this is trivial and
is left for the reader.

We need to estimate P({all edges except k of v are present at ¢ = 0}).
For this purpose, define T: {—1,1}°» — {~1,1}°", by

(To)(s) = o(s) if sis not in the domain bounded by ~
TN = —o(s) if sisin the domain bounded by v

for all 0 € {~1,1}%". Let E, = {0 : all edges except k of y are present}.

Since H;? of (6) gives a contribution of —( for adjacent pairs of equal

spin and +/ for adjacent pairs of unequal spin, we have that for o € Ey,

H,’(To) = (o) = 28(17| — k) + 28k = Hy"(0) — 26ln| + 4Pk
Hence, for o € Ej,

~HP(0) - P (To)~28]n|+48k

e
(o) = ——— = ~ :
and so
P (By)
2681+48k e Hi (1)
_ Z,uj{’ﬂ(a):e*6+ﬂ Z Z
o€l oEE,
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o Hi P (To)
< ¢ 2BI+4Bk Z _ 672ﬁl+4ﬂk’
oe{-1,1}5n

where the last equality follows from T being bijective. We then get that

IN
Z P ({all edges except k of 7y are present at ¢ = 0})e* (37)
k=0
I/N I/N
< Ze*2ﬂl+46k6k < o 281+%% Zﬁk < 9p—281+%¢
k=0 k=0

< 26 BB _ 90281

Furthermore

!
Z P ({all edges except k of 7 are present at ¢ = 0})e* (38)
k=1/N+1
I
< N Z P({all edges except k of y are present at t = 0})
k=l/N+1
< N < B0 _ 261

where we use that {all edges except k of 7y are present at ¢ = 0} are disjoint
events for different k. Hence (36), (37) and (38) combined gives us

P(Ysupr(7v) =1) < 3¢ 20!

and so by (35), for all n > L,

U2 (EL,r)
< U P(3y € B |y > L, 5 surrounds the origin, Yaup, () = 1)

oC
<) st 3e M < g,
I=L
where the second to last inequality follows from the fact that the number of
contours around the origin of length / is at most 13'=1, (see [8]).
QED

Remark: For Z% the proof is generalized by noting that the number of
connected surfaces of size | surrounding the origin is at most C(d)', for some
constant C'(d). The arguments are the same but the “topological details” are
messier.
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9 Proof of Theorem 1.5

We will start this subsection by presenting a theorem by T.M. Liggett, R.H.
Schonmann and A.M. Stacey ([21]).

Theorem 9.1 Let G=(S,E) be a graph with a countable set of sites in which
every site has degree at most A > 1, and in which every finite connected
component of G contains a site of degree strictly less than A. Let p,a,r €
[0,1],g = 1 — p, and suppose that

(1—a)(1—r)>!
(1—a)a®!

q,
q.

VARV

If u € G(p), then mor = p. In particular, if ¢ < (A — 1)271/AD, then
7, = u, where

1/A

. (1 (A —(i)(Al)/A> (1= (qg(A = 1))/5).

Here G(p) denotes the set of probability measures on {—1,1}° such that if
w € G(p), X ~ p then for any site s € S

P[X(s) = Uo({X (1) : {s,#} € E})] > p a.s.

Observe that when p - 1 = ¢ — 0 and so p — 1. The above theorem
is stated as the original in [21]. However, by considering the line-graph of
G = (S, E), it can be restated in the following way.

Corollary 9.2 Let G= (5’, E) be any countable graph of degree at most A.
For each 0 < p < 1 there exists a 0 < p < 1 where p = p(A,p) such that
if Y ~ v where v is a probability measure on the edges of G such that for
every edge e € E

PIY(e) = Ho({Y(f) : e # F1] > p aus.

we have that Wf <.

By e # f we of course mean that the edges e and f does not have any
E

endpoints in common. Here, m,

the edges of G.

Consider a graph G = (S, E) and a subgraph G’ = (S', E') where ' = S
and E' C E. Let X ~ 7, on S. We declare an edge e € E’ to be closed if any
of the endpoints takes the value 0 under X. Corollary 9.2 gives us that for
any p < 1 there is a p < 1 such that this method of closing edges dominates
independent bond percolation with density p on E’. Observe that we can
choose p independent of E’ since the maximal degree of E’ is bounded above
by the maximal degree of F.

is the product measure with density p on
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Let (X,Y) ~ P7, defined in Section 2.5. Close every e € E, such
that Y(e) = 1 independently with probability e thus creating (X, Y (—)).
Compare this to closing every site in S,, independently with parameter ¢’
(creating X (—¢)) and defining

Y (e) = 1 if Y(e) =1 and neither one of the endpoints of e flips
“ 7 0 otherwise.

By the arguments of the last paragraph we see that for a fixed e there exists
an € (that we can choose independent of (X,Y) and n) such that the first
way (i.e. independent bond percolation) of removing edges is stochastically
dominated by the latter. Hence

PL((X, Y9 e ({-1, 13, )|(X,Y))
<PL(XT YY) e ({-1,13%,)|(X, ).

By averaging over all possible (X,Y), the next lemma follows.

Lemma 9.3 With notation as above, for any € > 0 there exists € > 0
independent of n such that

P (X, Y9 e ({=1,1}% ) < PR((X) v) € ({—1,1}5)).
Observe that
PP ((X,Y(9) € ({=1,1}5, ) =p i (79() (39)

and that

PL((XT,Y) € ({-1,1}")) =p pp PL(0). (40)
We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. For any choice of > (3, take p=1—¢ 28
and let § € (0,p — p.). Now, (14) and Holley’s inequality implies that

P70 < P ¥n e N,

Since by (14) both 17,’%76 and 7§, are monotone, there exists by Lemma 3.3
(it is easy to check that all other conditions of that lemma are satisfied) an
€ > 0 such that

pP=0 < pP (=) yn e NT. (41)

In [13] they show that the limit lim 72 °(0 «— dA,,) exists and that
n

lim 72 ~° (0 «+— dA,) > 0. (42)
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Here {0 +— 0JA,} denotes the event that there exists a path of present
edges connecting the origin to A, := Ap41 \ Ay,. Since {0 +— 0A,} is an
increasing event on the edges, Lemma 9.3 guarantees the existence of an
¢’ > 0 such that

290 «— 9A,)
= PP((X,YT9)) € ({=1,1}%,0,+— 0A,,))
<P

p
PUXD vy e ({=1,1}%,0 +— OA,)) Vn € Nt

If there exists a path of present edges connecting the origin to the boundary
OA,, under Y, all the sites of this path must have the value 1 under X.
Similarly for (X(*"'), Y‘/), if there exists a path of present edges connecting
the origin to the boundary 0A, under Y, all the sites of this path must
have the value 1 under X(—¢). Hence
P2((X Y)Y e ({=1,1}%,0 +— dA,))
— E’ E/ +
=PP((XTD YY) € (0 = dA,, 0 +— OA,,))
<PE((XT, YY) € (0 ¢ 9A,, {0,1}5))

= u 0 & ).
Of course
PN 0 S 0A,) < pt PN (0 <5 0AL) VI < n.
Therefore, for any L we have that
0 < lim P00 +— 0A,)
< lim i f 400 5 0AL) = (0 5 0AL),
and so

0< liinp*"ﬂ’(”")(o &5 0AL) = ptP (0 <5 00).

The limit in L exists since {0 & OAL,} C {0 & OAL, } for Ly < Lo. Since
ptP s ergodic (see [19] page 143 and 195) it follows that p+f(—¢) must
also be ergodic. This is because p+’5’(”€') can be expressed as a function of
two independent processes, one being # and the other a product measure.
We conclude that

B ey = 1, (43)

By Lemma 5.1, there exists a 7 > 0 such that

+7ﬂ

+1ﬂ7(7761) j /"Llnf -

W
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and therefore
Therefore

\1!+’5(Ct+ occurs for every t € [0,7]) = 1.

Finally using countable additivity
THP(C;" occurs for every t) = 1.

QED

10 Proof of Theorem 1.4

The aim of this section is to prove Theorem 1.4. For that we will use
Theorem 1.5 and Lemma 10.1. We will not prove Lemma 10.1 since it
follows immediately from the proof of Lemma 11.12 in [10] due to Y. Zhang.
A probability measure p on {—1,1}° is said to have the finite energy
property if all conditional probabilities on finite sets are strictly positive.

Lemma 10.1 Take p to be any probability measure on {—1, 1}Z2 which has
positive correlations and the finite energy property. Assume further that p

is invariant under translations, rotations and reflections in the coordinate
azes. If n(CT) =1, then u(C~) = 0.

Proof of Theorem 1.4. Fix § > .. By (43), there exists € > 0 such that
M+1ﬂ7(77€)(c+) — 1

Since pt? and m_, both have positive correlations, it follows that p*#:(—)
has positive correlations. This is because (see [19], page 78) the product of
two probability measures which have positive correlations also has positive
correlations. Furthermore, a collection of increasing functions of random
variables which have positive correlations also has positive correlations. In
addition, the finite energy property is easily seen to hold for p+’5’(”€). Using
this we can by Lemma 10.1 conclude that

ptP 9y =o.

+76

inf.r and hence

By Lemma 5.1 there exists a 7 > 0 such that p+5(—¢ <

pin(C7) =0,

It follows that
UHA(3t € [0,7] : C; occurs) = 0,

and by countable additivity, we conclude

TPt > 0:C; occurs) = 0.
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QED
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Refinements of stochastic domination

Erik I. Broman? Olle Higgstrom! and Jeffrey E. Steif

October 3, 2005

Abstract

In a recent paper by two of the authors, the concepts of upwards
and downwards e-movability were introduced, mainly as a technical
tool for studying dynamical percolation of interacting particle systems.
In this paper, we further explore these concepts which can be seen as
refinements or quantifications of stochastic domination, and we relate
them to previously studied concepts such as uniform insertion tolerance
and extractability.

AMS subject classification: 60G99.

Keywords and phrases: finite energy, stochastic domination, ex-
tractability, rigidity

1 Introduction

In [3], certain refinements of stochastic domination were introduced, which
we call upwards and downwards e-movability; see Definition 1.1 below. These
concepts were introduced mainly as a technical tool in the analysis of dy-
namical percolation for interacting particle systems, but they turn out to be
interesting in their own right.

The purpose of the present paper is to relate them to other concepts that
have arisen in a number of problems and that we feel belong to the same
circle of ideas. These include finite energy [16] and insertion and deletion
tolerance [13]; see Definition 1.5. Later, we also define the term eztractability;
see Definition 1.6. Although the term is our own, this concept does have a
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history; in particular, there has been interest in finding lower bounds on €
for which e-extractability holds. The question of uniform extractability has
been studied for the Ising model as well as other Markov random fields in
[1, 8, 15]. Earlier, in [5, 6, 7], a similar question was studied for Markov chains
and autoregressive processes. Of related interest is the result in [8] that for
Markov random fields, uniform finite energy implies uniform extractability.

Let S be a countable set. For p € [0,1], let m, = [[,cgpd1 + (1 —p)do be
the standard product measure with density p. When talking about product
measures on {0, 1}%, we will always mean these uniform ones (with the same
p for every s € S).

Let u be an arbitrary probability measure on {0,1}°. For € € (0,1), we
will let 1{T:¢) denote the distribution of the process obtained by first choosing
an element of {0, 1}* according to x and then independently changing each 0
to a 1 with probability e. Similarly, we will let x(—¢) denote the distribution
of the process obtained by first choosing an element of {0,1}° according to
1 and then independently changing each 1 to a 0 with probability €. Finally,
for § € (0,1), we let u{—4H9) denote the distribution of the process obtained
by first choosing an element of {0, 1}* according to x4 and then independently
changing each 0 to a 1 with probability § and each 1 to a 0 with probability
€.

It is elementary to check that for any € € [0, 1), ug+’6) = /zg+’6) or ,ug_’e) =

,ug_’e) implies that u1 = po.

For 0,0’ € {0,1}° we write o < o' if o(s) < o'(s) for every s € S. A
function f :{0,1}¥ — R is increasing if f(co) < f(o') whenever o < ¢'. For
two probability measures u, ' on {0,1}°, we say that u is stochastically
dominated by p/, and write u < p/, if for every continuous increasing
function f we have that u(f) < p'(f). (u(f) is shorthand for [ fdu.) By
Strassens theorem (see |9, p. 72|), this is equivalent to the existence of random
variables X, X’ € {0,1}° such that X ~ p, X’ ~ ¢/, and X < X' a.s.; here

and throughout, “~” means “has distribution”.

For a probability measure y on {0,1}°, define pmax, by

Pmax,u = sup{p € [0,1] : mp < p};

the supremum is easily seen to be achieved.

Definition 1.1 Let (u1,u2) be a pair of probability measures on {0,1}°,

where S is a countable set. Assume that 1 = pa. If, given € > 0, we have
= s,

then we say that the pair (u1, o) is downwards e-movable. (u1, o) is said

to be downwards movable if it is downwards e-movable for some € > 0.

Analogously, if, given € > 0, we have

w9 <,



then we say that the pair (ui1,pe) is upwards e-movable, and we say that
(u1,p2) is upwards movable if the pair is upwards e-movable for some
€ > 0.

Note that if we restrict to the case where both u; and po are product
measures, then these concepts become trivial.

Following is a natural example where a stochastically ordered pair of proba-
bility measures is neither downwards nor upwards movable. We assume that
the reader is familiar with the Ising model; for a definition and survey, see,
e.g., [4] or [9].

Example 1.2 Let x™# and p—# be the plus and minus states for the Ising
model on Z% with zero external field at inverse temperature 8 > 0. It is well
known that p~# < u™#, and it is known (see [12]) that Py i +6 = Prmax,u—8-
Assume that the pair (u—#, uP) is upwards e-movable for some € > 0. It
then follows that

(mp

which of course contradicts the definition of pp,y ,+.6. Therefore the pair
is not upwards movable. By symmetry of the model, it is not downwards
movable either. O

)(+’6) — (ﬂ-p )(+’€) j (M_’ﬂ)('he) j H+’/B,

max,y,+aﬂ ma,x,y,*:ﬂ

Next, we provide an easy example of a pair of measures which is down-
wards but not upwards movable.

Example 1.3 Let v = %Wq—l— %50 and p = %Wp + %50 where ¢ < p and where
do is the measure which puts probability 1 on the configuration of all zeros.
It is trivial to check that when |S| = oo, (v, ) is downwards but not upwards
movable. O

In [3] a considerable amount of effort was spent on trying to show down-
wards movability when the pair considered was two stationary distributions,
corresponding to two different parameter values, for some specific interact-
ing particle system. In particular, the so called contact process (see [10] for
definitions and a survey) was investigated. Considering (u1, p2), where p; is
the upper invariant measure for the contact process with infection rate A;,
it was shown in [3] that if A\; < A2, then the pair is downwards movable.

Another result from [3] is that if g1 < po, pe satisfies the FKG lattice
condition (see [9, p. 78]) and

inf inf [a(o(s) = 1o(5\ 5) =€) — wi(o(s) = o(5\ 5) = 6)] > 0
[S|<o0 EE{O,I}S\S
then (p1,p2) is downwards movable. This however is not sufficient to get
the result for the contact process mentioned above since by [11], the upper



invariant measure for the contact process on Z does not satisfy the FKG
lattice condition when A < 2.

In the present paper, we will concentrate on the case where i is a product
measure but po is not. We now proceed with some further explanations and
definitions needed to state our main results, Theorems 1.7 and 1.10 below.

If pmax,u = 0, then trivially (7p,,,, ,,#) is downwards movable but not
upwards movable. Assume next that p is a probability measure with prax,, >
0. If p € [0, Pmax,), then the pair (m,, 1) is trivially upwards movable. It
is also easy to see that it is downwards movable by arguing as follows. By
Strassen’s theorem, we may choose X ~ yandY ~ mp_ ..  such that X >V
a.s. Then choose € > 0 such that (1 — €)pmax,y > p, and let Z ~ m_, be
independent of both X and Y. We obtain min(X, Z) > min(Y, Z) a.s., and
since min(Y, Z) ~ m, . (1_¢) we conclude that m, < p(=9), as desired.

The final case we are left with (when one of the measures is a uniform
product measure) is (7, ., 4) With prax, > 0. This pair is by definition
not upwards movable, but we believe it is an interesting question to ask if it
is downwards movable and this question motivates the following definition.

Definition 1.4 We say that p is nonrigid if the pair (7p,,,, ., 1) is down-
wards movable and otherwise we will say that p is rigid.

All uniform product measures other than §y are trivially rigid while all
p such that pyax, = 0 are trivially nonrigid. Heuristically, it is natural to
expect that as long as pmax,, > 0, then typically 4 should be rigid. This issue
turns out to be quite intricate, however; see Proposition 3.1 and Theorem
3.2 below.

Definition 1.5 We say that u is e-insertion tolerant if for any s € S, we
have that

pul(o(s) =1lo(S\ s)) > € a.s. (1)
We say that p is uniformly insertion tolerant if it is e-insertion tolerant
for some € > 0. The analogous notions of e-deletion tolerant and uni-
formly deletion tolerant are defined similarly (the “1” is replaced by “07).
Finally, we say p has finite e-energy if it is both e-insertion tolerant and
e-deletion tolerant, and that it has uniform finite energy if it has finite
e-energy for some € > 0.

Closely related are the following notions of extractability.

Definition 1.6 We call u e-upwards extractable if there exists a prob-
ability measure v such that p = v+ We call 4 uniformly upwards
extractable if it is e-upwards extractable for some € > 0. The notions
of e-.downwards extractable and uniformly downwards extractable
are defined analogously (the “+7” is replaced by “—”). Finally, p is called e-
extractable if there ezists a probability measure v such that p = v(—eHe),
and it is called uniformly extractable if it is e-extractable for some € > 0.



We are now equipped with all the definitions needed to state our main theo-
rem. We refer to Figure 1 for a comprehensive diagram over the implications
and non-implications that the theorem asserts.

Theorem 1.7 Let S be a countable set and consider the following properties
of a probability measure p on {0,1}°:

(I) p is uniformly upwards extractable.

(IT) p is uniformly insertion tolerant.

(III) p is rigid.

(IV) There ezists a p > 0 such that mp < p.

We then have that (I) = (II) = (IV) and that (I) = (III) = (IV) while none
of the four corresponding reverse implications hold. Also, (I11) does not imply
(IT). Moreover, with S = Z, there exist translation invariant ezamples for all
of the asserted nonimplications.

In addition, it turns out that (IV) does not even imply “(II) or (III)”; see
Remark 3.4. Note that we have not managed to work out whether or not
(IT) implies (III).

Figure 1. Hasse diagram of the implications between properties (I),
(IT), (III) and (IV) in Theorem 1.7: we have proved that one property
implies another iff there is a downwards path in the diagram from the
former to the latter. We do not know whether the dashed line between
(IT) and (III) should be there or not, i.e., whether or not uniform
insertion tolerance implies rigidity. As will be seen in Theorem 1.9,
the desired implication (II) = (III) holds under an additional FKG-
like assumption. If we restrict to finite S, then some of the implications
will turn into equivalences; see Theorem 1.10.

Some of the asserted implications are easy: (I) trivially implies (II). The
implication (III) = (IV) is also trivial as we saw. It is a direct application
of Holley’s inequality (see, e.g., [4, Theorem 4.8]) to see that e-insertion
tolerance implies that m. < p, whence (II) implies (IV). Thus, apart from



the implication (I) = (III) (which is in fact not so hard either), we see all
the implications claimed in the theorem. Therefore our interest in Theorem
1.7 is more in the counterexamples showing the distinction between some of
these properties rather than in the implications.

As mentioned above, we do not know in general whether (II) implies (III).
However Theorem 1.9 provides us with a partial answer, telling us that this
is true under the extra assumption of u being downwards FKG, a property
weaker than satisfying the FKG lattice condition and defined as follows.

Definition 1.8 A measure u on {0,1}° is downwards FKG if for any finite
S' € S and any increasing subsets A, B

(AN Blo(S") = 0) > u(Alo(S") = 0)u(Blo(S") = 0).

The concept of downwards FKG was made explicit in [12], and was further
studied in [2], where it was proved that the upper invariant measure for the
contact process is downwards FKG.

Theorem 1.9 Let i be a translation invariant downwards FKG measure on
{0,1Y2°. Then (11) implies (I11).

Of course, some of the nonimplications in Theorem 1.7 can become im-
plications under appropriate auxiliary assumptions. For instance, for proba-
bility measures u on {0, 1}% satisfying translation invariance and conditional
negative association (see [14] for a definition of the latter), (IV) implies (III).
This follows readily from results in [14]; we omit the proof.

Another situation in which further implications between the various prop-
erties arise, is when S is taken to be finite. By the support of a measure y
on {0,1}*, denoted supp(u), we mean {¢ € {0,1}° : u(a(S) =€) > 0}.

Theorem 1.10 Let S be finite, and consider properties (I)~(IV) of proba-
bility measures on {0,1}°. We then have

(I) & (II) & supp(u) is an up-set, (2)

and
(ITI) & (IV) & wu(o(S)=1) > 0. (3)

Consequently, the properties in (2) imply those in (3) but not vice versa.
Note in particular that if we are in the full support case, then (I)-(IV) all
hold.

The rest of this paper is organized as follows. In Sections 2-3, we will
establish a number of auxiliary results, in Section 4, we prove Theorem 1.9
and in Section 5, we tie things together giving proofs of Theorems 1.7 and
1.10. Finally, in Section 6, we list some open problems.



2 Uniform insertion tolerance and upwards
extractability

In this section we focus on uniform upwards extractability (property (I))
and uniform insertion tolerance (property (II)). Proposition 2.1 provides an
equivalence between these properties when S is finite, while Theorem 2.2
exhibits a contrasting scenario for S countable.

Proposition 2.1 If S is finite and u is a probability measure on {0,1}%,
then the following are equivalent:

(i) uniform insertion tolerance,

(i) wniform upwards extractability, and
(iii) supp(p) is an up-set.

Theorem 2.2 For S countably infinite, there exists a probability measure
p on {0,1}5 that is uniformly insertion tolerant but not uniformly upwards
extractable. Moreover, we can take u to be a translation invariant measure

on {0,1}%.

Proof of Proposition 2.1. (i) = (iii) and (ii) = (i) are immediate, and
so it only remains to show (iii) = (ii).

In what follows, given a configuration o € {0,1}°, |o| will be the number
of I’s in o. If there is to exist a v such that g = v(H9) with € € [0,1), it is
not hard to see that we must have

vio) = Y (=€) 77171 — )17 7 Iu(5) Vo € {0,137 (4)
<o

This can be verified through a direct calculation, but it is easier to calculate
v(+9)(5) and check that it is indeed equal to u(o), as follows.

VT (g) = Z dol=loil 1 — ¢)ISI=lely (o)

010

= 3 eIl = lsi=lel 3 (—elenl=loal(1 — )l =151y (ry)

o1<0 02201

Z Z lol=lol(_g)lonl=loal (1 _ ¢)lo2l=1ol (i)

01=0 0201

S Lo N S R S ()

o2 01:02=01=0

If we fix 09, then the binomial theorem gives that the last summation is
equal to 0 unless 09 = ¢ in which case it is equal to 1. We therefore easily
obtain that v(+€)(g) = u(o) for every o.



What remains is to check that v(o) > 0 for all 0. From (4) it is immediate
that v(o) = 0 for every o ¢ supp(u) since supp(u) is an up-set. For o €
supp(u) on the other hand, it is easy to see that if we do this construction
for different €’s, then we get

limv(o) = p(o).

e—0
Since p(o) > 0 for all o € supp(u) and |S| < oo, for € > 0 small enough,
we get that v(o) > 0 for all o € supp(p). This shows that p is e-upwards
extractable for all such e. g

Proof of Theorem 2.2. Let S = U2, S, where
Sk = ((ka 1)7 (k72)7 ceey (kak)) .
We will take the probability measure x on {0,1}° to be the product measure

po= pg X fi3 X - (5)

where each py, is a probability measure on {0,1}%%. The py’s are constructed
as follows, drawing heavily on an example in [8]. For o € {0,1}%k, let

if the number of 1’s in o is even
if the number of 1’s in o is odd.

49—k
We may think of uy as the distribution of a {0, 1}*k-valued random variable
X}, obtained by first tossing a biased coin with heads-probability %, and if
heads pick the components of X}, i.i.d. (%, %) conditioned on an even number
of 1’s, while if tails pick the components i.i.d. (1, ) conditioned on an odd
number of 1’s. One can also check that this distribution is the same as
choosing all but (an arbitrary) one of the variables according to 7/, and
then taking the last variable to be 1 with probability 1/3 (2/3) if there
are an even (odd) number of 1’s in the other bits. This last description
immediately implies that uy is %—insertion tolerant. Because of the product
structure in (5), this property is inherited by p, which therefore is uniformly
insertion tolerant.

It remains to show that u is not uniformly upwards extractable. To this
end, let X be a {0,1}-valued random variable with distribution p, and for
k=2,3,... let Yy denote the number of 1’s in X (Si). It is immediate from
(6) that

P(Yy, is even) = 2 (7)

for each k. Using our last description of uy, the weak law of large numbers

implies that
Y — L in probabilit k
. 5 in probability as k& — oo.



Hence, in particular,
lim P(Yy, <k—-m) =1 (8)

k—o0

for any fixed m.

Now assume (for contradiction) that p = () for some fixed € > 0;
since y being es-upwards extractable implies it is e€;-upwards extractable for
€1 < €2, we may without loss of generality assume that € < 1/3. Pick X’
according to v; we may then suppose that X has been obtained from X' by
randomly switching 0’s to 1’s independently with probability €. The intuition
behind the argument leading up to a contradiction is that the process of
independently flipping 0’s to 1’s will cancel all preferences of ending up with
an even number of 1’s.

If X'(Sk) contains precisely [ 0’s, then the conditional probability (given
X') that an even number of these switch to 1’s when going from X’ to X is
easily seen to equal

T+ 3(1—2¢).

The easiest way to see this is using an equivalent random mechanism where
each 0 independently “updates” with probability 2¢ and then all the sites
which have updated then independently actually switch to a 1 with proba-
bility 1/2. It follows that the conditional probability (again given X') that
Y) is odd is at least

min{3 + 1(1 — 2¢)', 5 — 3(1 — 2¢)'} = § — 2(1—2¢)".

Now pick m large enough so that 3 — 2(1 — 2¢)™ > 3. Since X’ < X as.,
we get from (8) that
lim P(Ay) = 1

k—00

where Ay is the event that there are at least m 0’s in X'(Sy). This gives

lim P(Y} is odd) > klim P(Yy, is odd | Ag)P(Ag)
—00

k—00

> (b= 30 -29") Jim () > .

This clearly contradicts (7).

We now translate this example into the setting of translation invariant
distributions on {0, 1}2.

Begin with randomly designating either all even integers or all odd in-
tegers (each with probability %) in the index set Z to represent copies of
Sy. Assume that we happened to choose the even integers (the other case is
handled analogously). Then we toss another fair coin to decide whether to
put i.i.d. copies of X (S2) on the pairs {...,(-4,-2),(0,2),(4,6),...} in Z,
or on {...(—2,0),(2,4),(6,8),...}. Then use one more fair coin to decide
whether {... -3,1,5,9,...} or {...,—1,3,7,11,...} should be designated
for i.i.d. copies of X (S3), and once this is decided toss a fair three-sided coin



to choose one of the three possible placements of the length-3 blocks in this
subsequence to put these copies. And so on.

This makes the resulting process X* translation invariant. Also, since the
property of e-insertion tolerance is obviously closed under convex combina-
tions, we easily obtain that X* is %—insertion tolerant and therefore uniformly
insertion tolerant.

Furthermore, for any k& > 2, we may apply (7) to the i.i.d. copies of X (Sy)
to deduce that with probability 1 there will exist 4 € {0,1,...,k2F"1 — 1}
such that

R 2
Hm 2 e = 3 ©)
Jj=1
where B; ;i denotes the event that the number of 1’s in
{i4jk2F 1 i jh2b Lokl kb1 0.0k i jkokl(k—1)2F 1)

is even. The right way to think of 4 is that it is the first place to the right of
the origin where a copy of X (S) starts. The summation variable j on the
other hand, makes us jump to the starting points of all the other copies of
X (Sk) to the right of the origin. Furthermore, by arguing as in for the non-
translation invariant construction, we have that if X* is uniformly upwards
extractable, then for large k the limit in (9) will be less than 1 — & = &
for all i € {0,1,...,k2¥~1 —1}. But this contradicts (9), so we can conclude

that X* is not uniformly upwards extractable. O

Note, finally, that the examples in the above proof also show that uniform
finite energy does not imply uniform extractability.

3 Rigidity

We now proceed to discuss the issue of when a measure is rigid. As men-
tioned in the introduction, any measure which does not dominate a nontrivial
product measure is trivially nonrigid and so it would be more interesting to
have a nonrigid measure which dominates a nontrivial product measure; such
a measure is provided in Theorem 3.2 below.

Proposition 3.1 If S is finite and u is a probability measure on {0,1}5,
then the following are equivalent.

(i) u dominates m, for some p > 0,
(i) p is rigid, and
(iii) p(o(S) =1) > 0.

This does not extend to infinite S, as shown in the following result.

10



Theorem 3.2 For S countably infinite, there exists a u which dominates
a nontrivial product measure m, but is nevertheless nonrigid. Moreover, we
can take pi to be a translation invariant measure on {0,1}%.

Proof of Proposition 3.1. It is easy to see that the condition that u
dominates m, for some p > 0 is equivalent to the condition that p(o(S) =
1) > 0. Also, recall that if g is rigid it must dominate a non-trivial product
measure.

To make the proof complete, it only remains to show that (i) and (iii) of
the statement imply that p is rigid. We have .., 2 u, so that

Tpmanu (A) < p4(A) (10)

for all increasing events A C {0,1}°. We next claim that
34 # 0,{0,1}" such that A is increasing and mp,,, ,(4) = p(4).  (11)

To see this, note that if we had strict inequality in (10) for all such nontrivial
increasing events A, then we could find a sufficiently small § > 0 so that

ﬂ-pmax,,u,‘Hs(A) < /“L(A)

for all such A (this uses the finiteness of \S), contradicting the definition of
Pmax,u- Now, for such an A we have that u(A4) > p(o(S) = 1) > 0 and hence
for any € > 0

W9(A) < p(A)
(again because S is finite), which in combination with (11) yields

Trpmax,p, ﬁ ,u’(_’e) -

Since € > 0 was arbitrary, y is rigid. d

It will be convenient for the proof of Theorem 3.2 to have the following
lemma, whose elementary proof we omit.

Lemma 3.3 For k > 1, p € (0,1) and m € {0,1,...,k}, write pgpm for
the distribution of a Binomial(k,p) random wvariable conditioned on taking
value at least m. For p1 < po, we have

Pk,p1,m = Pk,pa,m -
Proof of Theorem 3.2. As in the proof of Theorem 2.2, we take § =
U , Sk where Sy, = ((k,1),(k,2),...,(k,k)), and the probability measure p

on {0,1}° to be the product measure

Bo= o X pg X -

11



where each puy is a probability measure on {0,1}%¢. This time, we take the
px’s to be as follows. For o € {0,1}5%, set

k~127% if the number of 1’s in ¢ is exactly 1,
pr(o) =< 1-27% ifo=(1,1,1,...,1), (12)
0 otherwise.

We now make three claims about the pj measures:
CLAIM 1. prmaxy, > 3 for all k.

. 1
CLAIM 2. limg 00 Pmax,uy, = 3-

CrAM 3. For any fixed € < %, we have for all k sufficiently large that
/J](c_’e) t T

where 71 is product measure with p = 1 on {0,1}%.
2

We slightly postpone proving the claims, and first show how they imply the
existence of a nonrigid measure that dominates 71 .

Let us modify S and p slightly by setting, for 'm > 2,

Sm = U2, Sk

and
P = Hm X fomg1 X - - (13)

so that in other words fi,, is the probability measure on {0, 1} which arises
by projecting u on {0,1}%m.

Using the product structure (13), we get from CLAIM 1 that pmax,in > 5
(for any m), and from CLAIM 2 that pmaxz,, < 3 (for any m). Hence

_ 1
Pmax,fim, = 3

for any m. Fixing € € (0,1/2), we can also deduce from (13) and CLAIM 3
that
i =y =

1
2

(14)

,ITpmax,[lm

for m sufficiently large. For such m we thus have that fi,, is nonrigid.

It remains to prove CLAIM 1, CLAIM 2 and CLAIM 3.

CLAIM 1 is the same as saying that pg >~ 1. This is immediate to
verify, but the best way to think about it is as follows. Suppose that we pick
X}, € {0,1}* according to ™1, and if X} = (0,0,...,0) then we switch one
of the 0’s (chosen uniformly at random) to a 1, while otherwise we switch all
0’s to 1’s. The resulting random element of {0,1}% then has distribution
k-

12



To prove CLAIM 2, it suffices (in view of CLAIM 1) to prove that
lim sup pmax,u, < 3
k—o0 2
and to this end it is enough to show for any § > 0 that
pe LT (15)

for all sufficiently large k. Let A; denote the event of seeing at most one 1 in
{0,1}°; then Ay is a decreasing event and its complement —Ay, is increasing.
Now simply note that

pie (Ak) (3)"

7l'%+(5(Ak) - (3 =8k + k(3 +0)(5 —)k? (16)

which tends to oo as k — oo. Hence, taking k large enough gives ug(Ax) >
W%M(Ak), so that pr(—A4x) < 7'('%_'_5(—!14]9) and (15) is established, proving
CLAIM 2.

To prove CLAIM 3, note first that both 7« 1 and p,,(;’e) are invariant under
permutations of Sk, so that it suffices to show for & large that

uI(B,) < m1(By) (17)

1
2

for n =0,1,...,k — 1, where B,, is the event of seeing at most n 1’s in S.
For n =0 we get

(9B e+ (1 - (3)k)ek
“ii;(éo;) =& +<(%)'f = "
while for n =1
ug OBy _ (3)F (1 ()M + ket (1 - 9) (19)

Ti(B1) (k+1)(1)*

The right-hand sides of (18) and (19) tend to € and 0, respectively, as k — oo,
so (17) is verified for n = 0 and 1 (and k large enough). To verify (17) for
n > 2 (and all such k), define two random variables Y and Y’ as the number
of 1’s in two random elements of {0, 1}°* with respective distributions uk_’e)
and . Note that Y conditioned on taking value at least 2 has the same
distribution as a Bin (k,1 — €) random variable conditional on taking value
at least 2, while the conditional distribution of Y’ given that it is at least
2, is that of a Bin (k, ) variable conditioned on being at least 2. Defining
Pk,(1—e),2 and Pr,L o S in Lemma 3.3, we thus have for n € {2,...,k — 1}
that

e (Ba) = 1= (= p B~ pr02(Br)  (20)

13



and
T

(Ba) = 1= (L= m1(B))(1 — py 1 o(Ba). (21)

=

But we have already seen that ui_’e)(Bl) <71 (B1), and Lemma 3.3 tells us
that pg (1—e),2(Bn) < pk’%’Q(Bn), so (20) and (21) yield

and CLAIM 3 is established.

Finally, we translate this example into the setting of translation invariant
distributions on {0,1}%. The measure fi,, can be turned into a translation
invariant measure fi}, on {0,1}¥ by the same independent-copy-and-paste
procedure as in Theorem 2.2. The property
< ()

T m

N[

is obviously inherited from (14). Thus, in order to show that &, is nonrigid,
it only remains to show that it does not stochastically dominate 1is for any
0 > 0. This follows using (16) by an argument analogous to (9) in Theorem
2.2: If we pick k depending on ¢ as in the justification of CLAIM 2, then,
under iy, certain infinite arithmetic progressions will have subsequences of
length k& which contain at most one 1 often enough (under spatial averaging)
that the corresponding event has 1, j-measure 0. We omit the details. O

Remark 3.4 The measure fi,, is obviously not uniformly insertion tolerant,
and we have thus demonstrated the existence of a measure for which property
(IV) holds while neither (II) nor (III) does. O

Remark 3.5 For any p € (0,1), the construction above can be modified by
replacing 27% by p* in (12). Proceeding as in the rest of the proof yields the
result that for any p,e € (0,1) such that p+ € < 1, there exists a measure p
on {0,1}° where S is countably infinite, with the property that Pmax,u = P
and

(7a€)

7Tpmax,p, j :u -

This is obviously sharp. O

4 Further results on rigidity

In this section, we continue the study of rigidity, and prove Theorem 1.9.

The proof of Theorem 1.9 will make use of the following technical lemma.

14



Lemma 4.1 Let y be a measure on {0, 1}Zd. Assume that it is d-insertion
tolerant for some 6 > 0. If for some p € (0,1) and € > 0

pCNe({1,...,n}Y) =0) < (1 —p)"d for alln >0, (22)
then there exists p' > p such that
plo({1,...,n}) =0)< (1 —p')"d for allm > 0.

Proof. Let X ~ py and Z ~ mi_ be independent and let X6 =
min(X, Z). It is easy to see using the d-insertion tolerance that for any
s€{1,...,n}¢ and any ¢ € {0, 1}{17---’"}d\5

P(X(s) =1NnX{1,...,n}%\ s) =)
b}
Z J—

1_51[»()((3) =0NX({1,...,n}%\ s) =0).

Iterating this, we get that for any ¢ € {0, 1}{1"“7”}d

]
PX({1,...,n}%) = &) > (%) P(X({1,...,n}%) = 0).

Here || denotes the cardinality of the set {s € {1,...,n}?: £(s) = 1}. An
elementary and straightforward calculation will now yield that

P(XI{1,...,n}9) =0) > <1+ 16_‘55) P(X({1,...,n}%) =0).

Using this in combination with (22) proves the lemma. O

Proof of Theorem 1.9. The case ppax,, = 1 is trivial and we therefore
assume that pmax, € (0,1). In [12], it is shown that if p is downwards FKG
and if

plo({1,...,n}) =0)< (1 —p)”d for all n > 0, (23)

then m, < u. Therefore if 7, = p{=€) for some € > 0, then (22) trivially
holds (with p = pmax,,) and so we can conclude from Lemma 4.1 and the
above result in [12] that 7y < p for some p’ > pmax,u, @ contradiction. O

5 Proof of main result

Lemma 5.1 If i is uniform upwards extractable, then for any € > 0 there
exists a & > 0 such that (u(=9)+9) < 4.

Proof. Let v and @ > 0 be such that g = v{(*%). One can easily compute
that for any «, €, and §, we have that

((M(+7a))(_a€))(+’6) — u(—,e(l—&),—|—,a(1—€)+0€€(5+(1—0¢)(5) .
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Now, given € > 0, choose § > 0 such that a(1 —¢€) + aed + (1 — a)d < a. We
therefore get that

(u(_’e))('hd) — ((l/('i"a))(_:é))(_h(s) j y(_’e(1_6)7+’a) j I/(+’a) = U.
0

Lemma 5.2 Given a probability measure pn on {0,1}° assume that for every
€ > 0, there exists a 6 > 0 such that (=)0 < 4. Then p is rigid.

Proof. The case pmaxy = 1 is trivial, and we will therefore assume that
Pmax,u € (0,1). Assume for contradiction that p is nonrigid. Then there
exists an € > 0 such that mp, .., =< p{—9). By assumption there exists a
§ > 0 such that (u(—9)(+9 < 4. Hence (ﬂpmax’u)(+’6) < (uENED) <y
Since pmaxy < 1, (Tpmax, M)(+’5) is a product measure with density strictly
larger than pmax - This is a contradiction. O

Our next example provides us with an example of a u which is on one
hand rigid but on the other hand not uniformly insertion tolerant. It is a
variant of [14, Remark 6.4] and shows that the reverse statement of Lemma
5.1 is false.

Example 5.3 Let {X;}ien be defined in the following way. For every even
i > 0, let independently (X;, X;11) be (1,1) or (0,0) with probability 1/2
each. Let p, denote the distribution of this process. For e,6 > 0 let
(x(e1=0)+0

; )}ieN be a sequence of random variables with distribution
75(1_5)7'1'56)

ug_ = (ué"f))(+=5). By noting that for any € > 0 there exists a
¢ > 0 such that for even i
—,e(1-9),+,0 —,e(1-9),+,0

P(max(X U700 x =00y ) o 1
we see that for the same choice of €, § we get that (ug_’f))(+’5) =< te. Lemma
5.2 gives us that u. is rigid. However, it is easy to see that p. is not uni-
form insertion tolerant. Furthermore it is possible to make this example
translation invariant by some easy manipulations. O

Proof of Theorem 1.7. Lemma 5.1 together with Lemma 5.2 shows that
property (I) implies property (IIT) and all the other implications were indi-
cated in the introduction. As far as all of the reversed implications claimed
not to hold, we continue as follows. Example 5.3 together with Lemma 5.2
shows that (III) does not imply (II) (and hence that (III) does not imply (I)
and that (IV) does not imply (II)). Theorem 3.2 implies that (IV) does not
imply (III). Finally, Theorem 2.2 shows that (II) does not imply (I). Also,
all of these examples were translation invariant measures on {0, 1}%. d

Proof of Theorem 1.10. This follows immediately from Propositions 2.1
and 3.1. O
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Of some interest in this context is the following result, which is an easy
consequence of Lemma 5.1.

Corollary 5.4 Assume that (u1,u2) is downwards movable and that ps is
uniformly upwards extractable. Then (u1, pe) is also upwards movable.

Although it would take us too far afield to discuss details, let us men-
tion that the processes studied in [14] provide a nice source of examples
illustrating the various concepts in this paper. For example, one can find
there examples of processes which are rigid but are not uniformly insertion
tolerant.

6 Open problems
We end the paper with a list of open problems.

1. Does property (II) imply (III) in Theorem 1.77

2. Let S be countable and p be a uniformly insertion tolerant probability
measure on {0,1}°. Is it the case that for all € > 0, there exists a d > 0
such that (u(—9)(+9 < 4? A positive answer to this question would
of course yield a positive answer to question 1.

3. Is the reverse statement of Lemma 5.2 true?
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Abstract

In this paper we introduce and study the contact process in a ran-
domly evolving environment. This can be thought of as a contact
process depending on a two-state background process, where the rate
of recovery at any time ¢ > 0 is chosen according to the current state
of this background process. By using stochastic domination techniques
we will investigate matters of extinction and that of weak and strong
survival. All of the results will be obtained in three steps. First, we
will analyze a certain hidden Markov chain for which we obtain some
sharp stochastic domination results. This process is constructed by us-
ing two i.i.d. sequences, both with state space {0,1} but with different
densities. We then let our process be a mix of these two, depending on
the state of a two-state background process. Secondly we will exploit
these results to get an analogue in continuous time. This analogue is
constructed by using two ordinary Poisson processes with different in-
tensities, where the one we use depends on a continuous time two-state
background process. Finally we will use these continuous time results
to analyze the contact process in a randomly evolving environment.

AMS subject classification: 82C22, 60K35

Keywords and phrases: contact process, stochastic domination,
hidden markov chain

Short title: Stoch. dom. and a randomly evolving c.p.

1 Introduction

The first part of this introduction will discuss the concept of stochastic dom-
ination and then move on to state our discrete time results. We will then
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proceed by defining the Contact Process in a Randomly Evolving Environ-
ment, from now on referred to as CPREE, that we introduce in this paper.
We would like to point out that a model called the Contact Process in a
Random Environment (or CPRE) has been studied before. The first pa-
pers concerning this latter model were [2] and [7], and then further studies
were carried out in for instance [1], [8], [13] and [14]. However the random
environments in these papers are static while here they change over time.

In this paper we are concerned with models on connected graphs G =
(S, E) of bounded degree, in which every site s € S can take values 0 or
1. Here ¢ and ¢ will mainly denote configurations on S, i.e. o,& € {0,1}5.
We say that & < £ if £(s) < £(s) for every s € S. An increasing function f
is a function f : {0,1}° — R such that f(¢) < f(€) for all ¢ < £. For two
probability measures p, ' on {0,1}°, we write u < p' if for every continuous
increasing function f we have that u(f) < p'(f). (u(f) is shorthand for
[ f(z)dpu(z).) Strassens Theorem (see [9], page 72) states that if pu < u/,
then there exist random variables X, X’ with distributions u, ' respectively,
defined on the same probability space, such that X < X' a.s.

We will need the following standard definition.

Definition 1.1 Let S be such that |S| < co and let p be a probability mea-

sure on {0, 1}5 with full support. p is said to be monotone, if for every s € S
and any &, & € {0, 1}5\3 such that € < &, one has that

wlo(s) = 1o (S \ 5) =€) < p(a(s) = 1o(S \ s) =€)

If |S| = oo, we say that a probability measure u on {0,1}° is monotone if
the restriction of i to any finite subset of S is monotone.

For p € [0,1], let each site s € S, independently of all others, take value 1
with probability p and 0 with probability 1 — p. Write m, for this product
measure on {0,1}°. For any probability measure x on {0,1}* define pmax,,
by

Pmax,u ‘= Sup{p € [07 1] *Tp = /1’}
The supremum is easily seen to be obtained, which motivates the notation.
Similarly define

Pmin,y = inf{p € [0,1] : p < mp}.

Next, informally we will here think of {B,}52; as a background process
which influences another process {X,}52,. Formally, fix 0 < ap < og <1
and let {B,}>°, be any process with state space {0,1}. Conditioned on
{Br}5°; let the process { X, }5° ;, also with state space {0, 1}, be a sequence
of conditionally independent random variables where the (conditional) dis-
tribution of X} is

if then with prob.
B,=0 Xx=1 «a (1)
Bk =1 Xk =1 aq,



for every k > 1.
We will say that y is translation invariant on N if for every [ > 1, kK > 0
and any ¢ € {0,1}{11}

wlo(1,....0) =& =pulck+1,....k+1) =¢).
In section 2 we will prove the following proposition.

Proposition 1.2 Assume that the distribution of { By}, is monotone and
translation invariant. Then the sequence

{PXp=1Xp1=--=X1 = 0)}n21,

is decreasing in n. In addition the limit equals pyax i, where p is the distri-
bution of {Xn}2,.

The proof is an easy consequence of results from [5] and [11].

We are now ready to define the discrete background process that we
will use throughout this paper. For p,vy € [0,1], define the Markov chain
{B}5°; in the following way:

] 1 wp. p
B = { 0 wp. 1—p, (2)
and for k£ > 2,
if then W.p.
Bp1=0 By=1 ~p (3)

Br1=1 Bp=0 ~(1-p).

In other words, By takes the same value as Bi_1 unless there is an update
which happens independently with probability . If an update occurs, By =
1 with probability p, and By, = 0 with probability 1 — p. The resulting joint
process {(Bp, Xp)}o2, with the second marginal defined through (1), is an
example of a so called hidden Markov chain. The main theorem of Section
3 is the following, here p refers to the distribution of {X,}5%; with the
background process as above.

Theorem 1.3 We have that

pmax,u:%(l_c_ V(l_C)2_4D)’
where
C=(1-ay—a)—y(1—a—(1-p)lea — o))

and
D = aga; + y(a1(1 — ap) — (1 — p) (a1 — a)).-



Furthermore

1
Pmin,y = § (1 + Cl + \/(1 — Cl)2 — 4D'> ,
where C' and D' are as C and D but with ag,a1,p and v replaced by 1 —
ai,1l —ag, 1 —p and v respectively.

The proof of this theorem unfortunately involves some tedious (but straight-
forward) calculations; however this result is needed for all the other results
of this paper.

From the results of Section 3, we will in Section 4 prove our next result.
First define

n
X¢ = ZX,- Vn € N,

i=1
where ¢ indicates that we are counting the number of 1’s up to time n. The
pair of processes {(B;, X¢)}¢>0, to be defined below, will be the continuous
time analogue of the pair of processes {(By, X%)}52,. We will let By =1
with probability p and By = 0 with probability 1 —p. Thereafter the process
waits an exponentially distributed time with parameter v > 0 and updates
its status. After an update, the process takes value 1 with probability p and
0 with probability 1 — p, and all of this is done independently of everything
else. Having defined {B;};>o we define {X;};>¢ by starting with an ordi-
nary Poisson(ai)-process on [0,00) and thin it in the following way. If the
Poisson(a; )-process has an arrival at some time 7 € [0,00) and if B; = 0
then, independently of everything else

X, = { X,- +1 with prob. 2¢

X, - otherwise.

If instead B, = 1, we let X; = X, - + 1. In words, {X;};>0 is the count-
ing process for a type of Poisson process where the parameter comes from
{B4}t>0- Analogous to the definition of pyax,u, define Amax ,, Where p here
refers to the distribution of {X;};>¢, in the following way. Amax,, is the
maximum real number A such that a Poisson(\)-process can be coupled
with the process {X;};>0 so that if the Poisson(\)-process has an arrival at
time 7 € [0,00) then so does the {X;};>o process. In other words, there
exists {X{}¢>o with distribution Poisson()) coupled with {X;};>¢ such that

X; — X, is non-decreasing in t.

Define Ayin,y, to be the minimal real number X such that a Poisson(\)-process
can be coupled with the process {X;};>0 so that if the {X;};>¢ process has
an arrival at time 7 € [0, 00) then so does the Poisson(A)-process. Observe
that Amax,u = Amax,u(ao, @1,7,p). We will write out the arguments in most



equations, but not in more general discussions. Trivially ap < Amaxy <
Amin,u < aq. For future convenience let PoilP , ~denote the distribution of
{Xi}¢>0 and Poiy denote the distribution of a Poisson process with intensity
A. The coupling described above is a form of stochastic domination and we

will write

Poi) 0y = Poiz;op’al, (4)
and
Poiz;op, a; 2 Poix - (5)
Define

A= X(O‘Oaala'yap)
1
= 5(040 +o1+7— V(1 —ag— )2+ (1 - p)(a1 — ).

Theorem 1.4 Let {(B;, X;) }s>0 be as above. For every choice of ag, o1,y >
0 with ap < g and p € [0, 1] we have that

Amzi)c,u(aOaOfla’)’ap) = X, (6)

and for p >0
/\min,u(QOaala%p) = Q.

Remarks:

e Note the apparent lack of symmetry between Anyax , and Ayin . Infor-
mally, consider for a moment the model to be a point process, where
the process is 0 unless there is an arrival, in which case it takes the
value 1. We can then see that the true symmetric statement of the
Amax,yu Tesult would concern a model which is 1 unless there is an arrival
in which case it takes the value 0. This however does not correspond
to the result concerning Amin,y-

e We will show in Section 4 that Amax (a0, @1,7,p) = min(ai, ag + )
as p — 1. Hence if v > oy — ap, then Apax (o, 1,7,p) = o
as p — 1 which one would expect. In contrast, for every p > 0
Amin (@0, @1,7,p) = a1 and 80 Aminu(@o0,@1,7,p) # ag as p — 0
as one might have suspected; this gives a discontinuity at p = 0. Also,
it is trivial to show that Amax u(0,1,7,p) = g as p — 0.

e Furthermore, for fixed 0 < p < 1, it follows from the proof of Propo-
sition 1.9, where we take the limit y — oo in equation (6) above, that
limy 00 Amax,u (@0, @1,7,p) = pai + (1 — p)ag. This is exactly what
one should expect, since as y grows larger, the suppressing of possi-
ble arrivals becomes “increasingly independent”. Whenever a possible
arrival occurs, the background process has with very high probability



been updated since the last possible arrival, and if so the new arrival
is suppressed independently of everything else. Also, by letting v — 0
in equation (6) we get that Amax (0, 1,0,p) = ap. This last result
is also natural. As vy becomes smaller, we will find longer and longer
time intervals in which the background process is in the lower state.
Therefore the Poisson process we dominate must have lower and lower
density.

It is natural to ask for quantitative versions of Theorem 1.4 for finite
time, and in fact we will need such results to prove Theorem 1.4. There-
fore, for T > 0, let )\ﬂax,u(ao,al,'y, p) denote the maximum intensity of
the Poisson process which the second marginal of the truncated process
{(Bt, Xt) }1e[o,r) can dominate. Define Agin’u(ao,al,’y, p) analogously. We
feel that this bound is interesting in its own right and we therefore present
it in our next theorem together with a lower bound on )\glax,“(ao,al,'y, p)
and a result for A?;lin, (@0, @1,7,p) (this last result will follow from the proof
of Theorem 1.4).

Let

L = L(ag, a1,7,p) == v/ (a1 — ag —7)2 + 4y(1 — p) (a1 — ap)-

Theorem 1.5 For every choice of ag,a1,v,T > 0 with ap < a1 and p €
(0,1) we have that

Aﬁax,u(aoa O‘l,')’ap) > A+ (pOél + (1 —p)Oéo - X)eiTL. (7)
Furthermore there exists a constant E > 0, depending on a1, ap,y and p,

such that

1 _1-—¢TE

)‘gax,p(aoaalafﬁp) < A + T(pal + (1 —p)Oéo - A)T (8)

Finally
Aﬁin,/,a = Amin,u = 1.

Remark: Observe that the right-hand side of equation (7) tends to pa; +
(1 — p)ag as T tends to 0, and that it tends to A = Amax u(0, @1,7,p) as
T tends to infinity. Both results are of course what you would expect. The
same is true for the upper bound of equation (8).

1.1 Models
1.1.1 The contact process

In this section we will discuss some basic concepts concerning the contact
process, see [9] for results up to 1985 and [10] for results between 1985 and



1999. Consider a graph G = (S, FE) of bounded degree. In the contact
process the state space is {0,1}°. We will let 1 represent an infected indi-
vidual, while a 0 will be used to represent a healthy individual. Let A > 0,
and define the flip rate intensities to be

1 if o(s)
C(s,0) =< X Z a(s") if o(s)

(s',8)EE

1
0. 9)

By flip rate intensities, informally, we mean as usual that every site s €
S waits an exponentially distributed time with parameter C(s,o) before
changing its status. Here, 1p,1; will denote the measures that put mass one
on the configuration of all 0’s and all 1’s respectively. If we let the initial
distribution be o = 1, the distribution of this process at time #, which we
will denote by 117(¢), is known to converge as t tends to infinity. This
is simply because it is a so-called “attractive” process and ¢ = 1 is the
maximal state; see [9] page 265. This limiting distribution will be referred
to as the upper invariant measure for the contact process with parameter A
and will be denoted by vy. We then let ¥* denote the stationary Markov
process on {0, 1} with initial (and invariant) distribution vy. One can also
choose to start the process with any set A C S of infected individuals and
then use the flip rate intensities above. Denote this latter process by U4,
We say that the process dies out if for any s € S

Mo, 20V ¢ > 0) =0,
and otherwise it survives. We also say that the process survives strongly if
M (gy(s) = 1 1.0.) > 0.

We say that the process survives weakly if it survives but does not survive
strongly. These and all other statements like it, made here and later, are
independent of the specific choice of the site s; see [10]. We will use the
same definition of survival for some closely related processes below. It is
well known that for any graph (see [10] pg. 42) there exists two critical
parameter values 0 < A;; < A2 < oo such that

o UM} dies out if A < Ay
o UMs} gurvives weakly if Aop < A < A2

o UMs} gurvives strongly if A > Ao.

The above description of the contact process with flip rate intensities
chosen according to (9) is standard. However for our purposes it is more



convenient to use the following flip rate intensities. Let § > 0 and

0 if o(s)=1
C(s,0) =9 > o(s) if a(s)=0. (10)

(s',s)EE

This is just a time scaling of the original model. We will denote the upper
invariant measure by vs and the corresponding process starting with distri-
bution v5 by ¥s. If we instead choose to start with a specific set A C S of
infected individuals, we denote the corresponding process by ‘1134. We will
let the distribution of the process at time ¢ > 0 be denoted by Vé?t- At some

point we need to consider the process \I/(s’\’A, this is exactly like the model
just described except for a A inserted in front of the sum in equation (10).
As above, it follows that there exists 0 < §.1 < d.2 < 0o such that

o \Pgs} dies out if § > .9
° \Ifgs} survives weakly if .1 < § < 0

. \Ifgs} survives strongly if § < &.;.

We point out that on G = Z? it is known (see [3]) that .; = 6. It is also
well known (see [10]) that on any homogeneous tree of degree larger than or
equal to 2, this is not the case.

1.1.2 CPREE

This model is a pair of processes {(By,Y;)}1>0 with state space {{0,1} x
{0,1}}5. The second coordinate of {(By,Y;)}+>0 will represent whether an
individual is infected or not, while the first coordinate will represent how
prone the individual is to recover. With a slight abuse of notation we have
chosen the first coordinate to be denoted by {B;};>0 even though a process
with this notation was already defined previously in the introduction. How-
ever, at every site s € S, the marginal of the {B;};>¢ process defined in this
subsection (denoted by {B;(s)}:>0) will be independent of the rest of the
{B4}t>0 process defined here, and have distribution according to the process
with the same notation defined earlier. It will be clear from context which
of these two we are referring to.

For any A C S, let Yy(s) = 1 iff s € A, and let By ~ m,. For 0 < §p <
01 < 00,y > 0 and p € [0,1], let the flip rate intensities C(s, (B, Y;)) of a
site s € S be

from to  with intensity

0,00 (0,1) > V(s

(s',8)EE



(0,0) (1,0) ~p

(071) (0’0) 50

0,1) (1,1) ~p

(1a0) (050) 7(1_p)

L,O) (L) Y V()
(s',8)€EE

(1’1) (071) ’7(1_p)
(1,1) (1,0) d;.

Denote the distribution of {Y;};>0 by \Iﬂ’p ”14 and the distribution at a fixed

time ¢ by I/g’p it The definition of dying out, surviving weakly and surviving

strongly is the same as for the ordinary contact process. At this point a
question naturally arises. For fixed §g, d1,7 and p, do the initial state of the
background process have any effect on this definition? This point is raised
in Section 6, where we list some open questions. Note that we are here
assuming that By ~ 7, which then is included in the definition.
We will write
vpnt < v

when we mean that there exists a process {Y;};>0 with distribution as above
and a process {Y}'}+>¢ with distribution \I/:;‘ coupled such that

Yi(s) <Y/(s) Vs €S andVt >0,

and use the obvious notation for all similar types of situations. This stochas-
tic ordering also implies that

v,0,A
1/505175%1/“ Vvt > 0.

It is easy to show that \Iﬂ’p " is in this sense stochastically decreasing in
p. We have already 1ntroduced this notation for continuous time processes
in (4) and (5). There it was a relation between jump processes indexed by
t > 0, while here it is a relation between processes with state space {0, 1}°.
It will be clear from the context which one we are referring to. It will be
useful to observe that with this definition, the recovery process at every site
of our CPREE is in fact a Poij”;; process as defined earlier. This explains
the relation between Theorem 1.4 and our next result.

We will let Ag denote the maximum degree of a graph G of bounded
degree. We can now list our main results concerning this model:

Theorem 1.6 Let G = (S, E) be any graph of bounded degree and A C S,
be such that |A| < oo. For any 6 < min(dy,d0 + 7y) there exists a p =
p(9,00,01,7) € (0,1) large enough so that

/77])7 A
‘1160 (51 R \:D(S .



Remark: To prove this theorem we couple the recovery rates of the CPREE
with the recovery rates of an ordinary contact process. One would perhaps
hope to get this result for any § < §1, rather then for § < min(dq,dg + ).
However, the specific coupling here cannot in general be done for every
< dy.

Our next result also uses Theorem 1.4. However, it does so in a different
way. The reason for this is that a straightforward approach would need a re-
sult for Amin (a0, 1,7, p) analogous to the one we have for Amax (@0, @1,7,p)-
However this is false since Amin (0, a1,7,p) is equal to ag for any p > 0.
Here, let ‘Ilg(f (gﬁ Bo(A)=0 denote the distribution of \I/gf (;14 conditioned on the
event that By(s) = 0 for every s € A.

Theorem 1.7 Let G = (S, E) be any graph of bounded degree. Let A C S,
be such that |A| < oo and v > Ag. For any choice of 6 > §p and A < 1 there
exists a p = p(0, A, o, 01,7) € (0,1) small enough so that
w2 ‘I’gféiBo(A)EO'

Remarks: It is unfortunate that we need the assumption that By(s) = 0
for every s € A. However, this is of no importance when we later apply the
theorem to prove Theorem 1.8 stated below. Furthermore, it would be nice
if we could remove the assumption v > Ag. However we do not conjecture
whether this is possible or not. Also, as A — 1, the proof requires that
p — 0. Finally, for A = 1 the proof does not work. Again we do not
conjecture whether the result is valid for A = 1 or not.

We are now ready to state the main theorem concerning the CPREE
model of this paper. Results 1 — 3 use an easy coupling argument while
4 —6 follow from applications of Theorems 1.6 and 1.7. Here, any statements
similar to p.1 < p < pe2 in the case that p.; = peo should be interpreted as
empty statements.

Theorem 1.8 Lets € S,0 < dy < 61 < oo and consider the process \Ilg(;p(gfs}.
We have the following results:

1. Assume that 6, < 8y < Oc2 < 1. There exists peo = pea(do, 01,7) €
[0,1] such that \I'g(;p(’sfs} dies out if p > peo and survives weakly if p <
Dc2-

2. Assume that §o < 6c1 < e < 01. There exists pe2 = pe2(do, d1,7) €
[0,1] and pe1 = pc1(do,01,7y) € [0,1] such that pei < pe2 and \Ifg(f(;fs}
dies out if p > peo survives weakly if p.1 < p < pea and survives
strongly if p < pe1-

10



3. Assume that 6y < 6c1 < 01 < Oc2. There exists par = pei(do, 01,77) €
[0,1] such that \Ifg(’)p (gfs} survives strongly if p < p.1 and survives weakly
if p> pe1-

4. In case number 1, if v > 0.2 — 0o then peo < 1 and if v > Ag, then
P2 > 0.

5. In case number 2, if v > dco — 0o then peo < 1, if v > 8. — 0y then
Pe1 < 1 and if v > Ag, then pe1,peo > 0.

6. In case number 3, if v > .1 — &g then poy < 1 and if v > Ag, then
P > 0.

Remarks:

e We do not include trivial cases like d.1 < dy < 01 < 2 in the state-
ment.

e One might suspect that the condition v > §e. — dp should in fact be
v > §1 — &g, considering the statement of Theorem 1.6. The point is
however that we must only be able to choose the ¢ of Theorem 1.6 to
be larger than ., not 4.

e We would like to point out that even if we only show that pe1,pee < 1
whenever v > 0.1 — &g, ¥ > 02 — do respectively, there is no apparent
reason why this should not be true for all v > 0. Similarly for p.1, peo >
0.

e By using the renormalization methods of [3] it seems like it is possible
to show that on Z<, for every v > 0, pe1,pe2 > 0. However, since such
a proof would need to explain substantial parts of the renormalization
argument and is a result only valid for Z? we choose not to explore it
further.

The rest of the paper is organized as follows. Proposition 1.2 is proved
in Section 2. This is then used to prove Theorem 1.3 in Section 3. In Section
4 we use a limiting argument to conclude Theorem 1.4 from Theorem 1.3.
We then exploit Theorem 1.4 to prove Theorems 1.6 and 1.7 in Section
5. Finally, these last two theorems, will be used to prove our main result,
Theorem 1.8 in the same section.

We exploit the techniques for proving Theorem 1.6 further to conclude
the following results concerning p.; and pco.

Proposition 1.9 Fizi € {1,2} and assume that §o < 6.;. We have for pei,

O¢i — 0
lim sup pei (80, 61,7) < 5=
y—00 1 — 00

11



Remark: We conjecture that the limit exists and that

) dei — 0o
lim pe; ) = .
71 pCZ(607 61? ) 61 50

We cannot prove this with the techniques of this paper; this is closely related
to the remarks after Theorem 1.4. However, the intuition why it should be
true is that as v — oo, the recovery process should become increasingly
similar to an ordinary Poisson(dy + p(d1 — dp))-process (see the remarks of
Theorem 1.4). In turn, our CPREE then should become more and more like
an ordinary contact process with recovery rate &y + p(d1 — dg). Therefore we
should get that p. solves the equation d. = dy + p(61 — do)-

As v tends to 0 we can unfortunately not conclude anything about p,;.
The reason is yet again connected to the remark after Theorem 1.4. We
know that for v = 0, Amin,u(0, @1,0,p) = @ from Theorem 1.4 and that
Amax,u (@0, 01,0,p) = ag. Therefore the stochastic domination techniques we
use in this paper do not yield any nontrivial results. We also point out that
the case v = 0, corresponds to the CPRE and we therefore refer to the
papers mentioned in the first paragraph of the introduction.

We also have the following easy result about p.1, pco.
Proposition 1.10 We have that for any v > 0 and §; > s > o, where
ie{l,2}

lim Pei(do,61,7) = 0.

010%ci

Remark: One would of course expect that

lif}l'pci(‘soﬂsla')') =1

140¢ci

However, it is not possible to prove this the same way as we prove Proposi-
tion 1.10; again this is a fact that propagates from Theorem 1.4.

2 Proof of Proposition 1.2

The proof of Theorem 1.2 will require the following two results, the first uses
Lemma 3.2 of [5] and the second is a restatement (which is more suitable
for our purposes) of Theorem 1.2 of [11].

Lemma 2.1 If {B,}52, is monotone then {X,}°2, is monotone.

Proof Let {Z,};2, ~ 7,

serve that {X,, }5° | has the same distribution as {max(min(By,, Z,), Z,)}5° ;.
It follows from Lemma 3.2 of [5] that {min(By, Z,)}5%; is monotone. It then
follows similarly that {max(min(B,, Z,), Z},)}2, is monotone.

_1-ay and {Z}}5°, ~ w4, be independent. Ob-
l—ag

12



QED

Lemma 2.2 Let u be a translation invariant measure on {0,1}N which is
monotone. Then the following two statements are equivalent.

1.

Tp =

2. For anyn € N
plo(n) =1o(1,...,n—1) =0) > p.
Proof of Proposition 1.2. Let
A, =P(X,=1X,-1=---=X; =0).

Since {X,,}>° ; is monotone (Lemma 2.1) and translation invariant it is easy
to see that A, is decreasing in n, and therefore the limit A = lim, o Ap
exists. It is now an easy consequence of Lemma 2.2 that this limit is equal

t0 Pmax,p-

QED

The above results show that when the assumptions of the theorem hold
then

nEN’selI{l(il}n—l P(Xn = 1|(Xn_1, e ,X]_) = 6) = pmax,p-

It is very easy to find examples for which this statement is not true. For
instance let (X,Y) € {0,1} x {0,1} and P(X =Y =1) =P(X =Y =
0) = 1/2. This dominates a product measure with positive density but in
this case pmax,u = 0.

3 Discrete time domination results

This section is devoted to the proof of Theorem 1.3. {(B,, X,)}32, are the

n=1
processes defined in the introduction. We start with the following lemma;
we do not include the elementary proof.

Lemma 3.1 The process { B}, is monotone.

We will also need the following lemma which gives us a recursion formula
of A,, expressed in terms of A,,_1.

Lemma 3.2 We have that
CAn—l + D
Ay = 1_714”_1, (11)

with C,D as in Theorem 1.8

13



Proof. The proof is straightforward, however it involves some tedious cal-
culations. We have

P(X, =1,Xp_1 = 0|(Xp_2,...,X1) = 0)
P(X, 1 =0[(X, 2,...,X1) =0)
P(X, =1, Xn_1 = 0/(Xpn_g,...,X1) = 0)
1- An—l )

Ay =

Observe that

P(X, = 1|(Xn_1,..., X1) = 0)
— P(Xp = 1By = 1, (Xn_1, ..., X1) = O)P(Bp = 1|(Xn_1,..., X1) = 0)
YP(X, = 1|By = 0, (Xn_1,..., X1) = 0)P(By = 0|(Xn_1, .., X1) = 0)
= P(B, =1|(Xp-1,...,X1) =0)
tao(l = P(Bp = 1/(Xnt,-.., X1) = 0))
=ap + (g — a)P(Bp, = 1|(Xp—1,.-.,X1) =0).

Therefore
P(B, = 1|(Xp-1,...,X1) =0)
— P(X’n = ].|(Xn,1,... aXl) = 0) — Qo _ A’n —

i — ap ar —ap

Furthermore, using the above we get

P(X, =1, Xn_1 = 0|(Xp_o2,...,X1) = 0)
== ]P)(Xn = 1,Xn_1 = 0|Bn_1 == 1, (Xn_g, . ,Xl) = O)
xP(Bp-1 = 1|(Xp-2,...,X1) =0)
+P(X, =1,X,-1 =0|Bp—1 =0,(Xp_2,...,X1) =0)
XP(Bp-1 =0/(Xp-2,...,X1) =0)
=P(X, = 1|Xn—1 =0,B,_1=1)
An1—

X]P(Xn_l = O|Bn_1 = 1) Crlv;— o

—I—IP’(XH = 1|Xn_1 =0,B,-1 = 0)

A .

xP(Xp_1 = 0|Bp_y = 0) (1 - M)
a1 — O

= [ (1 =~(1 = p)) + agy(1 = p)](1 - al)AZ%_a:O
+eayp + ao(1 —yp)](1 — o) (1 - u)
] — Qg

Ap—1 —

~lonyp + ao(1 = 1p))(1 — a0)) + 17 + an(1 — yp))(1 - o).

14



Finally observing that

L [lo11 =91~ )+ aur (1~ (1 - )
~loryp + ao(1 = 1p)](1 — o)
= 1 [io1 (a1 — a1 -

(1—a1) = [(o1 — ap)yp + ) (1 — ao)]
T 1ao [[al(l —a1) —ag(l - 0‘0)] =y -p)(1 - a1) —yp(1 — ao)
=(1l-ap—o1) —y(1 —p)(1 — a1) —vp(1l — ap)

=(l-a—a1) =1 —ao— (1 —p)(a1 — )],

and that

Qg

o — an ([a1(1 —v(1 = p)) + apy(1 = p)|(1 — 1)

~Jo1yp + ao(1 = 7p)](1 = a0) ) + [a17p + ao(1 = 7p)](1 — )

aq

= ———[a1yp + ao(1 —vp)|(1 — ao)
a1 ()]

Qg

o agler(1= (1 =p)) + a0r(1 = p))(1 — )

- i [[O‘O + (a1 — ap)yp|(1 — ag)ent
a7 ()]

~loa = (a1 — a0}y = P)I(L ~ @)
= i [ao(l —ap)ag —ag(l — al)ao]
al — o
+yp(1 — ag)ar + (1 = p)(1 — a1)o
= apgar + yp(1 — ag)ag +y(1 —p)(1 — a1)a
= apar +7[(p — @ + (1 —p)ag)ar + (1 — p)ag — (1 — p)agau]

= qpop + ’7[0&1(1 — ao) - (1 —p)(Oq - a())],

completes the proof.
QED

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. From Proposition 1.2 we know that the limit
A = lim,,_,, A, exists, and therefore we can take the limit of both sides of
equation (11) (A, is easily seen to be uniformly bounded away from 1) to

15



conclude that

A= lim A, = lim S ¥ D _CAFD

n—00 n—oo 1 — Ap_1 1 -A "

This gives us that
A—A2=CA+D,

and therefore
A2+ (C-1)A+D=0,

solving this equation gives

%@_oivﬁtﬁvim)

:%(1—Cj:\/(2(11—(1—C))2—4(D+a%—041(1—0)))-

A=

We will now proceed to rule out one of the solutions.

D+a?—a(1-0)
=a? — o +apog +y(a (1 —ap) — (1 —p)(ag — ap))
+a1((1 - ap—a1) —y(1 —ap — (1 = p)(a1 — ap)))
=v(a1(1 — ap) — (1 — p)(e1 — a)) —yar (1 — g — (1 — p) (a1 — avg))
=(=(1 = p)(a1 — ap) + (1 = p)ai (a1 — ap))

= —y(1 = p)(a1 — a)(1 — a1).

Using that y(1 — p)((a1 — ag)(1 — a1)) > 0 we get

(1-c+ om0 -0p -4+t~ (- o))

N =

2%(1—0-1-\/(2041—(1—0))2) 2%(1—C+(2a1—(1—0))):0‘1'

Obviously we cannot have
A Z ai,

since already (for y,p € (0,1))
Ay = IP)(XQ = 1|X1 = O) <o

and A < A, for every n. We conclude that

A:%@_c_¢a?afzmy

Using Proposition 1.2 we then conclude that pmax , = A. Finally, the result
for prin,, follows from an easy symmetry argument.
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QED
Observe that when o = a1 = o, { X}, is i.i.d. and pmax,y = Pminy =
a. Note that in this case C = 1 — 2a — (1 — @) and D = o? + ya(l — «),

and so

Pmax,u

= % <2a+7(1 —a)—VQ2a+7(1-a))? —4(c? +ya(l — a))

= 2 (2at90 -0~ VBRI -a)?) =0,

as we should get. Similarly one can check that that pmin,, = .

Furthermore if we choose v = 1, {X,,}22, is again i.i.d. and we would
expect to get that pmax y = Pminu = @0 + p(on — ). Again, this is easy to
check. Finally, as v — 0 we get that pmax , — oo and pmin,u — o1. It is not
hard to see why this is what we should expect.

4 Continuous time domination results

In this section we prove Theorem 1.4.

For T > 0, let Dy[0,T] be the set of functions from [0,7"] to N that are
right-continuous and have left limits. Let Dy[0,00) be defined in the same
way, but with [0, 7] replaced by [0, 00). Let a function be called a count path
if it is a non-decreasing function that takes integer values and has jumps of
size 1. Define D, C D0, 1] to be the set of count paths. D, is closed under
the Skorokhod topology, see [4] pg. 137.

Let ap, 1,77 > 0 and let m be such that ag ., := ag/m, a1y, = oy /m,
Ym :=7v/m € (0,1). Consider the model in the last section with ag,a; and
7 replaced by g m, a1,m and 7y, respectively (p is not changed). Denote the
corresponding processes by {(B7*, X™)}°° , but consider only the truncated
part {(Bj, X")}™_;. As in the introduction, let

n=1

n
Xom =" X" for n € {1,---,m}.
=1
Define the continuous time version {(B[", X{") };c[o,1] by letting

(B, X{") = (B, X;™) fort € [n—1,n)/m and n € {1,---,m}, (12)

and (B, X™ ) = (B™, X;"). According to Theorem 1.3, we can couple
the {(B]', X7")}m_, process with an i.i.d. process {Y;"}™ , with density
Pmax,u, (Where p,, denotes the distribution of {X]"}>° ) such that

Y < X™ Vne{l,---,m}. (13)
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Here pmax u,, is given by Theorem 1.3. Define {Y;;"™}°° , in the obvious way
and the continuous time version {Y;"};c[0,1] by letting

Y'"=Y " fort€[n—1,n)/m, ne{l,---,m}
and ;™ =Y;;™. We get from equation (13) that
X" — Y/ is non-decreasing in t Vn € {1,---,m}. (14)

We state the following lemma; the proof is an elementary exercise in
convergence in the Skorokhod topology.

Lemma 4.1 The set {(f,g9) € D. x D : f — g is non-decreasing} is closed
in the product Skorokhod topology.

Consider now {(Bt, X¢)}4e[o,1) defined in section 1. It is easy to see that
the flip rate intensities corresponding to {(B, X¢) }se[0,1] are

from to with intensity (15)
0,k)  (Lk) p

(0,k) (0,k+1) a

(L) (0,k)  ~(1-p)

(Lk)y (LE+1) a,

for any k > 0. Observe that for {(B7, X;")}°2, we have the transition
probabilities

from to with probability (16)
(0,k)  (0,k)  (1—ao/m)(1—yp/m)

0,k)  (1,k)  (wp/m)(1—a1/m)

(O’ k) (O’k + 1) (1 _7p/m)a0/m

(0,k) (1,k+1) ypay/m?

(Lk)  (L,k)  (I—a/m)(1—~(1-p)/m)

Lk (0k)  (y/m)A -p)(l —ag/m)

(Lk) (Lk+1) (ar/m)(1—~(1—p)/m)

(1,k) (0,k+1) (1 —p)ag/m>.

Using the flip rate intensities of equations (15) and (16), it is a standard
result to show the next lemma. Again we omit the proof. However see for
instance [6] for a survey on the convergence of Markov processes in general.

Lemma 4.2 The sequence of processes {(Bf", X{") }yc[o,1] defined above and
indeved by m, converges weakly to the Markov process {(By, Xt) }ef0,1]-

QED
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We are now ready to prove our main results of this section. We will start
by proving the following lemma.

Lemma 4.3 With the assumptions of Theorem 1.4, we have that

)\max,u(ao, aq, 77p) > 5\

Proof We will start by constructing the coupling on the finite time-interval
[0,1] and then argue that we can extend it to infinite time.

Let {(B{", X{",Y{")}ic[0,1] be any sequence of processes indexed by m
where, as indicated by the notation, the marginals {(B[", X{")};c[0,1] and
{Y{™}e[o,1) have the distribution of the processes defined at the beginning
of this section. Furthermore assume that these marginals are coupled so that
X" =Y;™ is non-decreasing for every m. Obviously the marginal {Y;" };¢c(0,1;
converges weakly to a Poisson process {Yi}te[o,l] with intensity

lim m
o0 Pmax,pim,

1 1 1
= lim 5(040 + a1 +y(1 - ool (1 —P)E(Oél — ag)))

m— 00

(@0 + e +9(1~ 20— (1~ p) - (on — a0)))?

~4{agan + (e (1~ ) = (1= p)(or — en))))

(ao +ar 49— V(o + o1 +7)% — 4(aoen + (oo + play — ao))))

N =N =

(040 +oar+y—V(—ap—7)?+4y(1 —p)(oa — ao)) =\

Lemma 4.2 shows that also the sequence {(B}", X{") }+¢[o,1] converges weakly.
It can then be argued that the sequence {(Bj", X", Y™)}sc0,1) is tight and

so there exists a subsequence {{(Bln(k),XZn(k),Kfm(k))}te[o,l]},;“;l that con-
verges weakly to some process {(Bt,)”ct,ﬁ)}te[oyu. Of course, the marginal
distribution {(By, X;) }+¢[0,1] must be equal to the distribution of {(By, X¢)}eo,1];

and the marginal distribution {Yt}te[o,l] must be equal to the distribution
of {Y;}1e[0,1- Furthermore using Lemma 4.1 we conclude that

X; —Y; is non-decreasing. (17)

It not hard to see that we can adapt the proof to work for any time-interval
[0,T]. It is then easy to construct the coupling on Dy[0,c0). Hence we have
established that

/\maX,u(O‘Oa ai,”,p) > A.

QED
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Considering {(B;’, X]")}o21, let for every m,i > 1 A = P(X]" =
X" =+ =X"=0), and let A™ := prax u,, = lim; o0 AT". In our next
lemma, we will need that T'm (where T' > 0) is an integer, which will not
always be the case. However, adjusting the proofs for this is trivial and we
therefore leave it to the reader. The same comment applies for other results
to follow.

Lemma 4.4 For any T > 0,

e—(aotar+7)T

. m _ Y £y
lim mAf, = A+ (pa1 + (1 —p)ag — A)e—’_\T]P’(Xt —0vicp.T)

Proof Let C™,D™ denote C,D of Theorem 1.3 with parameters ag/m,
a1/m, v/m and p. By Lemma 3.2, for any n,

AP — AT
- CmAnm_1+Dm _CmAm+Dm
S 1-Am 1— Am
(CMARL, + D™)(1 — A™) — (C™A™ + D™)(1 — A7t )
(1-A7 )1 - Am)
CM(Az_, — A™) + DAL, — A™)
(1 —AzL)(d —A™)

m 4 pm
-1
== (AT A™) (ClmjAl?nm)n 7;:%(11— A7)
Furthermore
c™+ D™

= (1 —ao/m —ar/m) —y/m(l — ag/m — (1 = p)(ar/m — ag/m))
+agar/m? +y/m(a1/m(l — ao/m) — (1 — p)(e1/m — ag/m))
=1—ap/m— ai1/m+ agar/m? —y/m(1 — ag/m — a1 /m(1 — ag/m))

= (1 —ag/m)(1 — ar/m)(1 —~/m).

Recall also that we in Lemma 4.3 proved that A = lim,,_seo mA™. We get
that

1. limy, oo (C™ + Dm)Tm*1 — ¢ (@0tar+7)T
limy, 00 (1 — A™)T™71 = Timy, o eTm D 10(1=4™)
e(Tm=1)(=A™+0((A™)?)) AT

3. limy, oo [Ty ' (1 — ATY) = limy, 00 P(XJ* = 0 VE € [0, T — 1/m)])
= P(X; =0Vt e [0,T))

4. mAT = m(Pal/m + (1 —p)ao/m) = pai + (1 —p)ao-
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Therefore

Jim mAfz, (18)
cm™ 4+ pm\ Tl 1
_ m m
= n}l_rgomA + (mAT — mA™) ( 1= Am ) gml I a7

e~ (aota1+7)T
e MP(X; =0Vt e [0,T])

as desired.
QED

Next we prove the upper bound in Theorem 1.5 of )\gax’u(ao, a1,7,p).

Lemma 4.5 For every choice of ag,a1,7v,T > 0, with ag < a1 and p €
(0,1) we have that there exists a constant E > 0, depending on a1, g,y and
p such that

T ;1 _1—eTE
)‘max,p(a()aal;’\/ap) < A+ f(pal + (1 _p)Oé() — )\)T
Proof of Lemma 4.5 We have that
Tm
P(X" =0Vt e [0,7]) = [](1 - A (19)
k=1

_ S 0g(1-A) _ - SIT AP+O((AT)) _ LO0/m)-XEn AT

Using equation (19) it is easy to see that it suffices to get an estimate on
f;nl AP, To that end, let » > 0 be an integer and let T} := kT'/n for
k€ {1,...,n}. Using that for fixed m, A} is decreasing in k, we get that

Tim Tom Tom
Sap-yoape 3% aprer 30 ap
k=T1m+1 k=Tp—1m+1
< T1mA1 (T — Tl)mATlm ot (Tn — Tnfl)mAT’Fn_lm

Using equation (18), that m A" = pai+(1—pay) and that (T —T;1) =T/n
for every k, we get that

Tm
nganAz” < —(poa + (1 - p)aw) (20)

N

e~ (aotar+7)Tk
_ATk]P’( =0Vte [O Tk])

+Z X+ (po1 + (1 — p)ag — A)
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Note that the existence of this limit follows from the existence of the limit
on the left hand side of equation (19). We observe that trivially P(X; =
0Vt € [0,T]) > e *Tand so we get that

e—(@o+a1+7)T
< exp(—(ag + a1 +7)T) + ATj; + a1 Tj)

= eXP(T]c (ao +ar+y+ V(g —ag—7)2 +4y(1 —p)(ag — 040)) + o Ty,)

T;
= exp(— " (00 + o + 7+ |an — ag — | +2E) + i)

= exp(Ty(on — max(ay, 9 +7) — E)) < e Bl

where E solves the equation

o —ag — 7| + 2B = V/|ag — ap — y2 + 49(1 — p) (1 — ).
We get that

il e (@0+ai+7)Tk

= n e MiP(X; =0Vt € [0,T%))

(21)

n—1 T
—ETy _ — —ET/n\k
; e — > (e

<

S|

1—¢eTE T [ e TE/n _ o—TE
(1 _ o—TE/n 1) T o\ 1 _eTE/m
e TE/m _¢~TE \ [ ~TB/n _ o~TE
TE/n+0(1/n2?) ]  \ E+0(1/n) |
Combining equations (20) and (21) and taking the limit as n tends to infinity
(after taking the limit as m tends to infinity), we get that

S|

S|

Tm ~ _1_ ¢ TE/2
: m B ol tER
J%;Ak <TA+ (por + (1 - plag - N)—

Combining equation (19) with this yields
P(X, =0Vt € [0,T]) = lim P(X™ =0Vt e [0,T))
m—0o0

B 1 _ o TE/2
> exp (— (T)\ + (par + (1 — p)ag — /\)T)) :

Finally we conclude that

T <01 o 1—e TE/2
Amax,,u(OAOaO‘l,')’ap) <A+ T(pal + (1 —p)ao - )\)T
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QED

Remark: It is interesting that in the above proof we “lift ourselves up by
the boots” by using a simple estimate for P(X; = 0 V¢ € [0,7]) to obtain a
better one.

Proof of Theorem 1.4. The first statement follows immediately from
Lemmas 4.3 and 4.5, by letting T" tend to infinity.

We can of course trivially conclude that )\min,u(ao, a1,7,p) < ay. To see
why we have equality consider the event

{There are at least k arrivals during [0, 1]}.

Let a < a3, we have that

0 l
Poiy (There are at least k arrivals during [0, 1]) = Z e_a(;—‘.
I=k '

We also see that

0 l
Poi)?  (There are at least k arrivals during [0,1]) > pe™” Z e 2L

@, I
1=k

Since

we get that for every a < aj, v > 0 and p > 0 there exists a k such that

Poi, (There are at least k arrivals during [0, 1])
< Poi}P,, (There are at least k arrivals during [0, 1]).

Obviously this contradicts

P .
Poi”,, = Pola,

and 80 Amin,u (@0, a1,7,p) > a1.
QED

In the next section we will need the following easy corollary to Theorem
1.4.

Corollary 4.6 For any 6 < min(dq,d9 + ) we can find a 0 < p < 1 close
enough to one so that

3 P
Pois < Poi So.01"
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Proof. We just need to observe that

Il)l_)n% )\ma,x,/.z(éoa 617’751’) (22)

1
Zgl_)ni 5(50 + 61+ — /(61— 6 —7)2 + 4y(1 — p)(61 — 9)))

- %(51 + 8o+ — |1 — 6o — 9|) = min(d1, do + 7).
QED
Observe that
Poiy’; (There are no arrivals in [0,¢]) > (1 — p)e el — (1 — p)e=(rtoo)t

and that

Pois(There are no arrivals in [0,]) = e~%.

Therefore, if § > v + dg, we have for fixed p and some ¢ that
e 0t < (1 _ p)ef(v—i—éo)t’
and so we cannot have that

3 7P
Pois < Poi So.017

which is an alternative way to see why the limit in equation (22) cannot
simply be equal to d;.

Proof of Theorem 1.5. The upper bound is just Lemma 4.5.
For the lower bound, we start by observing that using Theorem 1.4 we
trivially get that P(X; = 0 Vt € [0,T]) < e~*T. Therefore by equation (18)

: m
i, A,
_ _ e (aotar+y)T
> A+ (par+ (1 -plag — AN)——5—
e

=X+ (poqg + (1 —p)ag — Ve TL.

We therefore need to show that Agax’u > limy, oo mAT, . Observe that

the second marginal of the discrete time process {(B™, X™)}1™ trivially
dominates an i.i.d. sequence of density AT, . Therefore, going through a
limiting procedure very similar to the one of Lemma 4.3, we get that the
second marginal of {(By, Xt)};¢[o,r] dominates a Poisson process with inten-
sity limy, oo mAT, on the time interval [0, 7.

The result for /\gin, ,, follows as in the proof of Theorem 1.4.

QED
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5 CPREE-results

Proof of Theorem 1.6. For every site s € S the recoveries of the ‘Ilg(;p(gl

process at that site has the same distribution as the arrivals of a ng’p 5

process. By Corollary 4.6 we can couple the processes \Ilg(; (’5 and U4 5 SO
that at every site the former has a recovery whenever the latter does. Fur-
thermore, coupling the infection rates are of course trivial. This gives the
result.

QED

For A C S such that |A| < oo, let U7? c’>o .B(A)=o denote the CPREE where

a site s € S always is healthy (i.e. in state 0) as long as the background
process of the site s is in state 1. That is, we do not allow the site to become
infected if the background process of the site is in state 1. More precisely,
for any graph G = (S, E) let {(By,Y;)}+>0 be a pair of processes with state
space {{0,1} x {0,1}}® such that By ~ 7, conditioned on the event that
By(s) = 0 for every s € A, and let Yy(s) = 1 iff s € A. Observe that the
conditioning does not affect the probability of By(s) being 0 or 1 for any
s € A. Let the pair evolve according to the following flip rate intensities at
any site s.

from to  with intensity

(0,0) (1,0) ~p

(0,0) (0,1) > Yi(s)
(s',8)EE

(Oal) (070) 50

0,1) (1,0) ~p

(110) (070) 7(1_p)'

Observe that with this definition the state (1, 1) is not allowed. Informally,
this can be interpreted as letting the rate of recovery when By(s) = 1 be
infinite, hence the notation.

Proof of Theorem 1. 7 We start by observing that it is easy to see

from the definitions of \I!g’p (;1’ Bo(A4)=0 and \Iﬂ’p A o0, B(A)=0 that
’7apaA \I/'Yapv
Jo,oo,B(A) (50,(51,30( ) 0°
We will construct {(B,Y;) }1>0 to have distribution \I!g’péo B(A)=0 , for some p

close to 0, and couple it with a process {Y;};>o such that {¥;};>¢ stochas-
tically dominates {Y}'}¢>0. It will be easy to see that in turn {Y/};>o will
stochastically dominate \I!(s’\’A.
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We now proceed to the actual construction. Let By ~ m, conditioned
on the event that By(s) = 0 for every s € A. For every site s € S, associate
an independent process {By(s), X;(s)}+>0 such that {1 — By(s), X¢(s)}i>o is
the model of Theorem 1.4 with ag = 0, a3 = Ag and with p replaced by
1 — p. We get from Theorem 1.4 that

Amax,u (07 AGa v, 1= p)
= 20+ Ag 47— (Be 077 T 091~ (1~ p)(Bg 0)

- %(AG +v9—V(Ag —7)2 + 4Ac7p)).

That is, we can couple the pair of processes {By(s), X;(s) }+>0 with a Poisson
process {X}(s)}t>0 with intensity Amaxu(0,Ag,7,1 — p) such that if this
latter process has an arrival then so does {X;(s)}¢>o. There is a slight issue
with s € A, where we have conditioned that By(s) = 0. However, this
corresponds to conditioning that the background process of Theorem 1.4
starts in state 1, and it is not hard to see that the conclusion of the theorem
is still valid in this case. Informally, if we in this theorem start with the
background process in state 1, this means that we are starting in the higher
intensity state, and so it becomes “easier to dominate”. It is easy to make
this statement precise.

Let for every s € S, {D(s)}+>0 be a Poisson process with intensity do
and consider some quadruple {B;(s), Xy(s), X{(s), D¢(s) }s>0 with marginal
distributions as indicated by the notation. We now proceed to construct
{(Bt,Y3)}+>0 (the first marginal is of course already defined) and {Y}}:>o
from these four processes. Let Yj(s) = Y(s) for every s € S and let Yj(s) =
Yy(s) = 1iff s € A. Let for every s € S {(By(s),Y:(s))}+>0 and {Y}(s)}+>0
denote the marginals of the processes {(By,Y;)}i>0 and {Y}'}i>0 at the site
s.

Let N(s,Y7(s)), N(s,Y/(s)) denote the number of neighbors of the site
s that are infected at time 7 under {Y;};>0 and {Y}};>0 respectively. Recall
that by definition, for any s € S, Yy(s) = Y;(s) = 0 if By(s) = 1. We will
write X, (s) # X,-(s), X7 (s) # X__(s) and D,(s) # D,-(s) to indicate that
these processes have an arrival at time 7. Observe that by construction, for
every s € S and t > 0, if X7 (s) # X' _(s) then X, (s) # X,-(s). We will
also write B,-(s) < B:(s) when we mean that the B; process flips from 0
to 1 at time 7.

At time 7, {(Y3(s),Y{(s))}+>0 will change:

from to if (23)
(1,1) (0,0) Dy(s) # D,-(s) or B,—(s) < By (s)
(1,0) (0,0) Dr(s) # D,-(s) or B,-(s) < Br(s)
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and also:

from to with probability if
(0,0) (1,1) N(s,Y(s))/Ac X7(s) # X - (s)
(0,0) (1,0) (N(s,Yr(s)) — N(s,Y(s)))/Ac X7(s) # X _(s) (24)
(0,0) (1,0) N(s, Y (s))/Ag X1(s) = X! _(s),
X:(s) # X, (s
(1L,0) (1,1) N(s,Y!(s))/Aa X1(s) # X!_(s).

No other transitions are allowed. Note that by construction {X;(s)};>0 and
{X}(s)}+>0 only have arrivals when {B;(s)}+>¢ is in state 0. Therefore, these
rates make sure that {Y;};>0 and {Y}'};+>0 are in state 0 when {By(s)}i>0 is
in state 1. Note also that since N(s,Y;(s)) = N(s,Yy(s)) for every s € S,
the rates make sure that

Y/(s) <Yi(s) Vs €S, t>0,

and that N(s,Y/(s)) < N(s,Yi(s)) for every s € S and ¢t > 0.

It remains to check that {(B,Y:)}i>0 and {Y}'};>0 have the right distri-
bution. As noted above {Y;};>¢ is 0 if {B;};>0 is 1. Furthermore it is easy
to see that when {By;}>¢ is 0, {Y;}+>0 flips from 0 to 1 at rate N(s,Y,(s))
and from 1 to 0 at rate dp. It is also easy to see that {Y}};>o flips from 1
to 0 at a rate which is the minimum of two exponentially distributed times
with parameters dy and yp, the latter being the rate at which {B;};>¢ flips
from 0 to 1. Hence {Y}}+>¢ flips from 1 to 0 at rate dp +yp and by choosing
p small enough this is less that d. It also not hard to see that {Y}};>o flips
from 0 to 1 at a rate Amax,u(0, Ag,7, 1 —p)N(s,Y/(s))/Aq. Furthermore by
choosing p perhaps even smaller, we get that

)\max,u(oa Ag,7,1— p)N(S, Y;SI(S))/AG'
N(s,Y{(s))

Y w Cotch V(A —7)? +4A67p)) > AN(s,Y/(s)).
G

Here we used that v > Ag. Therefore {Y}'};>0 is a contact process with
infection rate larger than A and with recovery rate less that ¢, and so the
distribution of {Y}'};>¢ dominates \IJJ)"A.

QED

We are now ready to prove Theorem 1.8.

Proof of Theorem 1.8. We will start with the existence of p.1 and pco.
Let 0 < p1 < ps < oo and let {B}}>0, {B#}i>0 be two background

processes with parameters pi, py respectively. Let Bé have distribution mp,

and B? have distribution m,, and couple them so that Bj(s) < B2(s) for

every s € S. It is easy to see that we can then couple the processes so that

B}(s) < B(s) ¥Vt >0, Vs € S.
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Using these processes to construct {(B},Y;}) }i>0 and {(B?, Y;?) }1>0 with dis-
tributions ‘Ilg(;p (}I’A and \Ilg(;p (?I’A, it is easy to see that we couple the marginals

{Ytl}tZOa {Yt2}t20 so that
V72(s) <Y(s) V>0, Vs € S.

This establishes the existence of p.; and pes.

We now proceed to prove the part of statement 4 concerning p.o > 0. We
will then argue that the rest of the statements follow in the same or similar
ways. For the process \I!g(f 5’14, associate to every site s € S, a Poisson process
with intensity y+d1; +Ag. This Poisson process will be the underlying process
that controls everything that can happen at the site, possible updates for the
background process, possible recoveries and possible infections. The point
of using these Poisson processes is that if it at some site s, does not have an
arrival during some time interval [0,7], it gives no information about the
state of the background process at time 7" at that site.

Let B be the set of sites s such that either s € A or s has a neighbor which
is in A. Let E; be the following event: None of the Poisson(y + §1 + Ag)-
processes associated to the sites of B\ A have any arrivals during the time
interval [0,1]. All of the sites of A have exactly one arrival during the
time interval [0,1], and this arrival results in that the background process
is updated to a 0. It is easy to see that the event F; has strictly positive
probability, and it is also easy to see that if £; occurs this gives us no extra
information about the status of By(s) for any s ¢ A. Therefore if F; occurs
we have the situation at ¢ = 1 that B; have distribution 7, conditioned on
the event that Bi(s) = 0 for every s € A, and Yi(s) = 1 iff s € A. By
choosing § > J; close enough to dy and A < 1 close enough to 1 so that the
contact process \I!g’A survives weakly, and then using Theorem 1.7 to couple
our process \Ilg(f (;‘14 above \Ilg’A for ¢t > 1 the statement follows.

All of the statements about p.1,pee > 0 are proved in exactly the same
way. All of the statements about p.1,pe.2 < 1 are proved in a similar way, but
follow even easier since we can use Theorem 1.6 directly without worrying
about the initial status of the background process at the sites of A.

QED

Proof of Proposition 1.9. We will show the theorem for p.s, the proof
for p.1 is identical. First, we use Taylor expansion to see that

’yli)l{.lo Amax,p(éoa o1, Y, p)

L1
= ryli)rgo 5(50 + 61 + ¥ — \/(50 + 61 + ’}’)2 — 4(50(51 + ’}’((50 +p((51 — (50))))

o1 |y 40061 +v(do + p(d1 — o))
—7152102(50+51+7)(1 \/1 A
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45051+7(60+p(61 d0))

— lim X T Geraty? 1
—7151(}02(50+61+7) 1 1 2 +0(72)
. 0p01 + (b0 + p(01 — o)) 1
BT mraty ) TRt

It is now clear from Theorem 1.4, the proof of Theorem 1.6 and the above
calculation that given any € > 0, we can find 7' large enough so that with
d = dp + p(61 — do) — € we have that for all y >~/

7:p,A A
Uit 25
and so the \I!g’p(g dies out if §y + p(d1 — dp) — € > dco. This is the same as
saying that for any € > 0 there exists v/ large enough so that for all y > «/,
if
b2 — g+ €
>
P 01 — do
the process dies out. Therefore for every v > 4/ we have that
1) 2 — (50 +e€
Pe2(do, 01,7) < 0575
1= 0g

We can therefore conclude that

]
lim sup pe2 (o, d1,7) < ;2 60'
y—00 1 — 00

QED
Proof of Proposition 1.10. We show the proposition for p.s, the proof

for p.; is identical. Observe (for example by using Taylor-expansion) that
for any p,

Amax,u(‘soa 617 v p)
1
= 5(50 + 61 4+7— (61— 60 —7)2+4v(1 — p)(61 — o))

1
= 5(d0 + 01+ 7= /(0o — 51 — )2 — 4yp(d1 — b))
1
> 5(50 + 61+ — |6 — 61 — | + 2py(d1 — o)) = o + py(1 — do)-

Therefore, for every p > 0, we can choose dy < d.o sufficiently close to (502 Lo}
that Amax,u(00,01,7,p) > dc2. Therefore, as above, the process \Ifg’p 5 dies
out and therefore

Jllm Pe2(00,61,7) < p-

002

Since p > 0 was arbitrary, limsy15,, Pe2(d0,91,77) = 0 and we are done.

QED
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6 Open questions

We here list some open questions related to the results of this paper.

1. Do either of the critical values p.; and p.o depend on the initial state
of the background process?

2. Instead of studying the CPREE model one could study other inter-
acting particle systems such as a stochastic Ising model in a random
evolving environment.

3. Is it possible to generalize the model used for the background process
in some way? For instance, can we analyze the situation where we
allow more than 2 different states?
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patiently reading this manuscript many times before its completion.
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