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Bergman kernel asymptotics and holomorphic Morse inequalities

Robert Berman
Department of Mathematical Sciences
Division of Mathematics
Chalmers University of Technology and G&teborg University

Abstract

In complex analysis and complex geometry it is important to be able
to produce holomorphic sections of high tensor powers LF of a given line
bundle L over a complex manifold X. A line bundle has curvature and it
is well-known that positive curvature is very favourable. One of the main
motivations for this thesis is to be able to produce and study holomorphic
sections in situations where the curvature of the line bundle is not strictly
positive or when the manifold X has a boundary whose curvature also has to
be taken into account. On a closed manifold Demailly’s holomorphic Morse
inequalities estimate the asymptotic dimensions of cohomology groups with
values in L* in terms of curvature integrals. In paper I a new approach to
Demailly’s inequalities is introduced, leading to local (i.e. point-wise) ver-
sions of Demailly’s inequalities. The Bergman kernel on the diagonal, i.e.
the “dimensional density” of the corresponding spaces, at a fixed point is
estimated by a model Bergman kernel in Euclidean complex space obtained
by freezing the curvature of the line bundle at the point. In paper II the
approach is used to study holomorphic sections of semi-positive line bundles
and more generally 0—harmonic forms with values in a line bundle. Applica-
tions to sampling and the asymptotics of super Toeplitz operators are given.
Finally, in paper III Demailly’s inequalities are extended to line bundles over
complex manifolds with boundary, by adding a boundary term expressed as
a certain average of the curvature of the line bundle and the (Levi) curva-
ture of the boundary. The inequalities are then used to study holomorphic
sections of positive line bundles, when the boundary of the manifold has
negative curvature, i.e. when the manifold is pseudoconcave.

From a purely analytical point of view this thesis is concerned with the
study of global solutions of certain partial differential equations (the null
space of the d—Laplacian with 0—Neumann boundary conditions) in the
“semi-classical limit” when the parameter k£ tends to infinity. The main
motivation comes from certain geometric situations where a priori estimates
are missing.
key words: Line bundles, Cohomology, Harmonic forms, Holomorphic sec-

tions, Bergman kernel. MSC(2000): 32A25, 32110, 32120
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BERGMAN KERNEL ASYMPTOTICS AND
HOLOMORPHIC MORSE INEQUALITIES

ROBERT BERMAN

“Think globally, act locally” - John Lennon

INTRODUCTION

In complex analysis and complex geometry, as well as in related ap-
plications, it is crucial to be able to construct many complex analyti-
cal /holomorphic objects (holomorphic subvarieties, meromorphic func-
tions etc). To this end one usually looks for holomorphic sections of a
given line bundle L over a complex manifold X. Such sections can be
considered as twisted functions, where the twist is described by the line
bundle L. The basic example is a complex polynomial. A line bundle has
curvature (measuring its twisting) and if the curvature is positive every-
where and the manifold X is closed, then there is a wealth of techniques,
introduced by Kodaira, Hérmander and others, to produce many holo-
morphic sections. To get a rich and flexible theory one often considers
high tensor powers L¥, focusing on the asymptotic properties of its holo-
morphic sections when k tends to infinity. This corresponds to studying
properties of large degree polynomials. The flexibility that arises when &
tends to infinity is somewhat similar to the way any continuous function
on a segment of the real line can be obtained as the limit of a sequence
of polynomials of increasing degree. Yet, polynomial functions of a fized
degree are very rigid objects.

In the case of a line bundle L with positive curvature over a closed
manifold X, the study of the large k behaviour of the space H°(X, L*)
of holomorphic sections of L*, especially its Bergman kernel, is closely
related to various current research areas. For example, an important
strategy in complex differential geometry is to use holomorphic sections
of high powers L¥ to approximate canonical metrics on the base mani-
fold X (e.g. Kéhler-Einstein metrics) by “polynomial” metrics, directly
defined in terms of the Bergman kernel of L¥ [39, 40, 99]. Other develop-
ments, using Bergman kernel asymptotics, include the study of random
holomorphic sections [97, 13|, extending the classical study of random
polynomials with applications to to the study of quantum chaos [22] in
physics and, very recently, the statistical study of the vacuum selection
problem in string/M-theory [44|. A unifying theme in many of these
developments is the notion of “quantization”, which of course originates
in physics, with 1/k playing the role of Planck’s constant and the holo-

morphic sections the role of the wavefunctions [41]. The large & limit
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corresponds to the semi-classical limit in physics (which is mathemati-
cally studied in semi-classical and microlocal analysis in the context of
general partial differential equations [36, 80]).

In general, the obstruction to construct holomorphic sections is mea-
sured by cohomology groups and it is hence vital to be able to decide
when these groups vanish. The study of the corresponding wvanishing
theorems was introduced in the fifties by Serre in algebraic geometry for
ample line bundles and by Kodaira in complex differential geometry, who
showed that ample line bundles correspond to line bundles with positive
curvature. In the general case of line bundles with varying curvature De-
mailly’s holomorphic Morse inequalities, from the middle of the eighties,
estimate the dimensions of the corresponding cohomology groups of high
powers L* in terms of curvature integrals, leading to asymptotic vanishing
theorems for semi-positive line bundles. For example, such line bundles
(as well as line bundles satisfying other weak notions of positivity) play an
important role in the classification theory of higher dimensional complex
algebraic varieties (Mori’s minimal model program [66, 67]).

One of the main motivations for this thesis is to be able to produce
and study holomorphic sections in situations where the curvature of the
line bundle is not strictly positive or when the manifold X has a bound-
ary whose curvature also has to be taken into account. In the latter
situation, one of the most interesting cases is when the line bundle L
has positive curvature, while the boundary has negative curvature (i.e.
X is pseudoconcave). The starting point is a new approach (in Paper I)
to Demailly’s holomorphic Morse inequalities, based on Bergman kernel
asymptotics, which gives point-wise versions od Demailly’s inequalities.

In the following sections the main results of this thesis are presented
in the light of previous results and developments. In the appendix some
model examples of Bergman kernels are collected, comparing those oc-
curing in this thesis with classical ones.

CONTENTS
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3. Bergman kernel asymptotics and Toeplitz operators 10
3.1. Paper II 13
4. Line bundles over manifolds with boundary 16
4.1. Paper III 18
Appendix A. Model examples 22
A.1. Complex space with a constant curvature line bundle 22
A.2. The torus with a constant curvature line bundle. 23
A.3. The unit disc 24
A.4. The lower half plane 25
A.5. The model boundary case 25

2



A.6. Compact version of the model boundary case 26
References 28

1. 'SETUP

A section of a holomorphic line bundle L over a complex manifold X (of
complex dimension n) is holomorphic when it is in the null space of the
O0—operator (i.e. when it is solution of the Cauchy-Riemann equations).
The basic example is a polynomial of degree k on complex space C"
which extends to a section of the kth tensor power of the hyperplane
line bundle O(1) over complex projective space P". In the general case
it is natural to consider high tensor powers L¥ and to treat k as an
asymptotic parameter, generalizing the degree of a polynomial. A general
line bundle L may have very few or even no holomorphic sections at
all. For example, the sections of the trivial holomorphic line bundle are
just ordinary holomorphic functions which are all constant on a closed
manifold (i.e compact without boundary). A line bundle L is called big
if the dimension of the space H°(X, L*) of holomorphic sections of L*
grows as a constant C times k™, i.e. as in the case of polynomials of
degree k. The leading constant C' is called the volume of L :

(1.1)  vol(L) := limsup k™" dim H°(X, L*), vol(L) # 0 < L big
k

and it has received much recent attention from various points of view, in-
cluding algebraic geometry (see the recent book [70]), complex analytical
geometry in the context of singular metrics on line bundles (see [21] and
the survey [34]), representation theory (inspired by statistical physics)
[85] and string/M-theory [64]).

Fix a Hermitian fiber metric on L (i.e. a smooth family of Hermitian
norms on the fibers of L). Then its curvature is a two-form on X. The
local picture is as follows: fixing a local holomorphic trivialization of
L any holomorphic section of L is represented by a local holomorphic
function o and its point-wise norm may be written as

o)

for some local function ¢(z) representing the fiber metric on L. The fiber
metric induced on LF is locally given by k¢(z). The curvature of the fiber
metric is the two-form of bidegree (1, 1) given by

_ 82 _
00 = ZJ 5oz dz; A dz;,

which turns out to be a globally defined form on X. The normalized
curvature-form 5-00¢ represents the first Chern class c1(L) of L in the

lgeneral references for this section are the books [56, 35].
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FIGURE 1.1. Assume that the curvature form 99¢ > 0 (e.g.
#(z) = |z[*). The bowl represents the local graph of the fiber
metric ¢(z) and the peak inside the bowl represents the graph
of the point-wise norm e~?(#) of the local holomorphic section
a=1.

De Rham cohomology group H?(X,R)? The curvature is said to be posi-

832{;‘52_,) is positive definite. This means that
10Zj
the curvature is positive when ¢(z) is plurisubharmonic, i.e. subharmonic

along complex lines. When the manifold X is C*, the corresponding

weighted L2—norms
[ latz)ee
o

(integrating with respect to the Euclidean measure) were introduced by
Hoérmander in the sixties in his study of the d-equation [60].

When X has a boundary 0X we denote by p a defining function for 0.X,
i.e. p is defined in a neighborhood of the boundary of X, vanishing on
the boundary and negative on X and dp # 0. Then the (Levi) curvature
of 0X is the restriction of the two-form 00p to the maximal complex
subbundle of the real tangentbundle of d.X. The latter bundle is denoted
by TH%(0X). Given an Hermitian line bundle L, denote by D* the unit
disc bundle in the dual bundle L*. Then L has positive curvature precisely
when the boundary of D* has has positive curvature (compare appendix
A.6).

The 0—operator extends to a whole complex, the Dolbeault complex:
(1.2)

tive if the Hermitian matrix (

0 0
= QMYXLR) = QY(X LR — QUTY(X LF) — (0 =0)
Its cohomology groups are the Dolbeault cohomology groups:
ker 0 : Q%(X, LF) — QO+l (X, Lk
HY(X, L") = er_a (X, LF) = (X, L)
ImQ : QO4-1( X, Lk) — Q0e(X, L¥)

2Conversly, any closed (1,1)—form that represents an integral class can always be
realized as the normalized curvature form of a fiber metric ¢ on a holomorphic line
bundle L [56].
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(when X has a boundary the cohomology will be assumed to be defined
by forms that are smooth up to the boundary). Hence the zeroth coho-
mology group H(X, L¥) is just the space of global holomorphic sections
and the first cohomology group H'(X, L*¥) measures the obstruction to
solve the inhomogeneous 0-equation:

(1.3) ou = a,

for a given form « satisfying the necessary condition dor = 0. The inho-
mogeneous 0-equation typically appears when trying to extend or modify
local holomorphic sections into global ones.

Fix a hermitian metric on X (also referred to as the base metric). It
may be identified with a (1,1)—form w, locally given by », ; hi;dz; Adzj,
where h;; is a positive definite Hermitian matrix. The fiber metric on L
together with the base metric on X induce L?—norms on the Dolbeault
complex 1.2. When the manifold X is closed (i.e. compact without
boundary) the classical Hodge theorem gives an isomorphism between
the Dolbeault cohomology group H?(X, L¥) and the space H4(X, L¥) of

0—harmonic forms

(1.4) HY(X, L") ~ HY(X, LF).

The latter space is the null space of the d—Laplacian:
(1.5) Ay :=00 +90,

where 8" denotes the formal adjoint of 0, which depends on the fiber
metric on L and the given metric w on X. If X has a boundary H?(X, L)
denotes the space of 0—harmonic forms satisfying 0-Neumann boundary
conditions [52] and it may be identified with HY(X, L¥), under certain
curvature assumptions (compare section 4).

2. LINE BUNDLES OVER CLOSED MANIFOLDS

As pointed out above the trivial line bundle has only constant holomor-
phic sections, which follows immediately from the maximum principle.
This line bundle is flat, i.e. it admits a fiber metric with vanishing cur-
vature form. Similarly, the maximum principle forces all holomorphic
sections of a negative line bundle to vanish identically. However, when
the curvature of L is positive the fundamental work of Kodaira, Hor-
mander established the existence of many holomorphic sections of high
powers L* of the line bundle. The key point is the presence of a posi-
tive uniform lower bound for the d-Laplacian acting on Q%!(X, L*), for
k sufficiently large (compare appendix A.1 for a simple example of such
a bound). This is equivalent to the fact that the d-equation 1.3 may
be solved with an L?—estimate which is independent of k. As a direct
consequence, the obstruction group H'(X, L*) vanishes if k is large. In
fact, Kodaira’s vanishing theorem gives vanishing in all positive degrees:

(2.1) dim H*(X, LF) =0,¢ >0, k >> 1
5



and Kodaira showed that one can produce enough holomorphic sections
to embed X in projective space. By Chow’s lemma |56| this means the X
is a projective algebraic manifold. The Kodaira embedding maps a point
x to the projectivization of the corresponding evaluation functional on
HO(X, L*), that may be identified with the projective hyperplane in
PH?(X, L*) of all sections vanishing at x :

(2.2) X — PHO(X, L*)* ko >> 1,

(dually, if (¥;) is an orthonormal base for H°(X, L*), x is mapped to
(¥y(z) : Uy(x)... : Un(z)). The Kodaira embedding theorem may also be
formulated without any explicit reference to the line bundle L : if X
admits an integral Kdhler metric® then X is projective algebraic. The
existence of a Kihler metric leads to very precise L?—estimates. However,
in many natural situations one has to allow the curvature to degenerate.
In other words, the curvature is only semi-positive. For example, the
pull-back of a positive line bundle is flat along the fibers of the map.
Hence, if the map is generically one-to-one (e.g. the map obtained by
blowing up a point) it gives rise to a semi-positive line bundle that is
positive almost every where. There are remarkable recent examples of
line bundles with such curvature properties where there is no uniform
lower bound for the 0-Laplacian on Q%'(X, L*) [43]. Demailly’s holo-
morphic Morse inequalities [32][33] handled the corresponding analytical
difficulties in a new way. Their weak version estimate the dimensions of
the ¢th cohomology groups in terms of the curvature of L:

(2.3) dim HY(X, L¥) < k"(—l)q(i)”/ (00¢)™ /n! + o(k™),

X(q)

i.e. X(q) is the set where 1004 is non-degenerate with exactly ¢ negative
eigenvalues, i.e. where the curvature form has index ¢q. Demailly’s inspira-
tion came from Witten’s supersymmetry approach to the classical Morse
inequalities on a real manifold X, where the role of the fiber-metric ¢ on
L is played by a Morse function [101]. When L is semi-positive, the holo-
morphic Morse inequalities above replace Kodaira’s vanishing theorem
2.1 by

(2.4) dim H*4(X, L*) = o(k™),

i.e. all cohomology groups of positive degree are “small”. Given this re-
sult (which was first obtained by Siu [98][92], using a different method) it
follows by a standard argument in complex geometry that L is big (com-
pare formula 1.1) if it is semi-positive and positive somewhere. Indeed,
the asymptotic version of the Riemann-Roch theorem expresses the Euler

3The (1,1)—form w representing the metric on X is said to be Kdhler if it is closed
and integer if -[w] € H?(X,Z). Equivalently, w = 00¢, where ¢ is a fiber metric on
an Hermitian holomorphic line bundle L [56].
6



characteristic of the Dolbeault complex 1.2 as

(2.5)  (=1)"7 dim HY(X, L*) = k"(—-1)"(

=0

Ly / (006)" /! + (k™).
2" Jx
But 2.4 shows that the contribution to the sum from positive degrees is
negligible, giving that the volume of L (formula 1.1) may be expressed
as
(2.6) vol(L) = (- / (996)" /n!
2n x

if L is semi-positive. In particular, L is big if it is positive somewhere.
Moreover, since big line bundles can also be characterized as the line bun-
dles for which the map 2.2 is bimeromorphic [70, 33| this yields a weaker
form of the Kodaira embedding theorem for complex manifolds with a
semi-positive line bundle, as long as the line bundle is positive some-
where. This is the Grauert-Riemenschneider solved by Siu [98], saying
that such line bundles are Moishezon manifolds [83](i.e. bimeromorphic
to projective algebraic manifolds [83, 87|. There are examples of such
manifolds that are not even Kdhler!

Demailly’s strong Morse inequalities can be seen as a refinement of the
Riemann-Roch argument above. These inequalities give bounds on the
truncated Euler characteristics of the Dolbeault complex:

2.7)

q

> (1) dim HY (X, L*) < km(—1)9(—)" / (00¢)™ /n! + o(k™).
- 2m° Jx(<a)
7=0

For example, the case when ¢ = 1 can be used to obtain lower bounds
on the dimension of H°(X, L*). To prove that the strong Morse inequal-
ities hold, one first shows that the weak Morse inequalities 2.3 become
equalities if H(X, L*) is replaced with the space HZ, (X, L*) spanned
by all eigenforms of Az with eigenvalues bounded by vy, where v, = ik

and py is a certain sequence tending to zero:
) / (036)" n! + o(k")
X(q)

>The next point is that the cohomology groups of the Dolbeault complex
1.2 may be obtained as the cohomology groups of a subcomplex that
Demailly calls the “Witten 0—complex”:

(2.9)

)
2T

(2.8) dim H, (X, L*) = k"(—1)(

<vg

0 0
S HLU(XLF) - ML, (X LF) - HUNX,LF) -
(this fact just uses that v > 0 and can be seen as a generalization of the
Hodge isomorphism 1.4). The fact that it is a subcomplex, follows from

“In fact, any Moishezon manifold that is Kihler is automatically projective [83].
Sthis is the approach taken in paper I. In [32] Demailly considers v = ek and lets
€ tendo to zero in the end of the argument.
7



the commutation relation
(2.10) 45,8] =0,

showing that 0 preserves eigenforms of Az. Since the dimensions of the
components of the Witten d—complex are given by 2.8, a basic homo-
logical algebra argument gives the strong Morse inequalities 2.7. Subse-
quently, proofs based on asymptotic estimates of the heat kernel of the
0— Laplacian, were given by Demailly, Bouche and Bismut ([33], [20]
and [11]).

2.1. Paper 1. In this paper a new approach to holomorphic Morse in-
equalities is introduced, based on asymptotic Bergman kernel estimates.
The Bergman function of the space H?(X, L’“) is defined as

(2.11) B%F( Z Wy (z

where (¥;) is an orthonormal base for H4(X, L*). This function can be
seen as a “dimensional density” of the space H?(X, L*), since integration
over X gives

/ B%*w, = dimHI(X, LF).
X

(such functions are also called density of states functions in the physics
literature). In this paper it is shown that B%*(z) may be estimated in
terms of model Bergman functions. The model Bergman function BY .,
associated to a point z is obtained by replacing the manifold X with C”
and the line bundle L with the constant curvature line bundle over C"
obtained by freezing the curvature of L at the point x. Since C" is non-
compact all forms are assumed to have finite L>—norm. More concretely,
one may always arrange so that locally around the fixed point =,

2.12 zZ) = )\z 212+..., wiz :l dzz/\d_zﬁ—
(2.12) ¢(2) Zl 2] (2) 2;

where the dots indicate lower order terms and the leading terms are called
model metrics. Hence, the corresponding model L?—norm on C" is given
by

(213) [l e st
cr

integrating with respect to the Euclidean measure on C". The model
harmonic space associated to the point z is just the L?—null space of the
0—Laplacian defined with respect to the norm above.

Theorem 2.1. Let X be a closed manifold with a given metric w (more
generally, if X s non-compact all forms are assumed to have finite
norm). Then the following point-wise bound holds

(2.14) limksup k" BY () < BL e (0)
8



and the left hand side is uniformly bounded by a constant. Moreover,
1., —

B! 0 (0) = (52)"Lx( (2) |det(999),

where 1x(q) is the characteristic function of the set X (q) (compare for-

mula 2.8 and below). In particular, outside X (q) :
(2.15) B%*(z) = o(k").

Integrating the inequality over X we get Demailly’s inequalities 2.3
(using the uniform bound to interchange the limits). The proof of the
theorem is based on an extremal characterization of the Bergman func-
tion. For example, when ¢ = 0 the following classical expression holds:

(2.16) BY (z) = sup la@)]",

Y

where the supremum is taken over all sections « in H°(X, L*) of unit
norm. A similar extremal characterization holds for higher degree forms,
if the different components of the forms are taken into account. This gives
a convenient way to localize the problem, since one just has to estimate
the limiting value of a sequence of forms «y at a fixed point. To this end
one notes the the parameter £ introduces a natural “length scale” into
the problem of the order k~'/2. Indeed, on a fixed ball of radius slightly
larger than k~'/2 the fiber metrics k¢ on L* tend, according to formula
2.12, to the model fiber metric (and similarly for the metric w on X).
Now restricting the sequence of forms to such shrinking balls one obtains
after “magnification”, i.e. after scaling the coordinates z by a factor k'/2,
a sequence of forms on expanding balls in C"*. It is not hard® to see that
the sequence converges to a model harmonic form in C", which is hence
a contender for the supremum in formula 2.16 in the model case. This
proves the upper bound in the theorem. Finally, the model harmonic
space is computed explicitly giving the last part of the theorem.
Similarly, a local version of Demailly’s dimension formula 2.8, showing
that the upper bound in theorem 2.1 becomes an asymptotic equality if
the corresponding Bergman function of the space ’H,‘iuk is used instead.

Theorem 2.2. Let X be a closed manifold with a given Hermitian metric
w. Then the following limit holds point-wise

: —n 1 n ¥a)
lim k™" BE, (2) = (5-)" Lo (z) |det(996),

Y

for some sequence py, tending to zero.

The upper bound is obtained as before, since the scaled forms still
converge to harmonic model forms as long as py tends to zero. The
lower bound is obtained by showing that an extremal model form gives
rise to an extremal form of H%, (X, L*). The latter is obtained by first
smoothly extending the former and then orthogonally projecting it on

HL,, (X, L¥). The point is that there are no obstructions to produce

q

elements of HZ,

(X, L*), as opposed to 0—harmonic forms.

6just using local elliptic estimates for the d-Laplacian
9



FIGURE 2.1. Starting with a line bundle L of negative cur-
vature a local deformation yields a new fiber metric on L with
positive curvature close to a fixed point z as in the left pic-
ture below. The local situation then looks like in picture 1.1,
where the section o now corresponds to the section saturating
the equality 2.16 in the model case at x (compare the right
picture below). However, a cannot be perturbed to a global
holomorphic section (since H°(X, L¥) is trivial for a line bun-

dle admitting a globally negatively curved metric).

Theorem 2.2 (and its proof) may be conveniently formulated in terms
of the local scaling map

(2.17) Fi(z) =k 122

centered at a fixed point z in X. Replace the base metric w on X by
kw for each fixed k (this has the effect of multiplying the Bergman ker-
nels by £~™). The point is that the corresponding model metrics kwy and
k¢o are invariant under the pull-back of the scaling map Fy, as are the
model Bergman functions. From this point of view the proof of theorem
2.2 shows that the general Bergman function Bi’zkk tends to the corre-
sponding scale-invariant model at each fixed point of X when £ tends
to infinity. As pointed out in [13], in the case of holomorphic sections
of a positive line bundle, such fixed point formulations are related to
a long tradition of (largely heuristic) scaling and universality results in
statistical mechanics [51].

3. BERGMAN KERNEL ASYMPTOTICS AND TOEPLITZ OPERATORS

If L is positive then the lower bound for the —Laplacian on Q%! (X, L*)
(compare the beginning of section 2) yields a spectral gap for the O-
Laplacian on Q%9(X, L*)  saying that its positive eigenvalue is larger
than a constant times k. Combining this fact with theorem 2.2 immedi-

ately gives an asymptotic equality for the Bergman function (or measure)
10



FIGURE 3.1. The Bergman kernel Kg’k(y), gives rise to a se-
quence of peak sections of H°(X, L*) peaking at the point z.

of H°(X, LF) that may be formulated as

! n(99 A\n

5 )" (009)

More generally, it is important to study the whole Bergman kernel Kggk (z,9)
of HY(X, L¥), whose point-wise norm on the diagonal is the Bergman
function BY*(z). The Bergman kernel K" (z,y) takes values in L* ® L
and can be characterized either “intrinsically” as a reproducing kernel for
the Hilbert space HO(X, L*), i.e. K%* represents point evaluation at z :

(3.2) a(z) = (a, KJ*)

or “extrinsically” as the integral kernel of the orthogonal projection P%*
(the Bergman projection) from the smooth sections of L* onto the holo-
morphic ones:

(3.1) lim k" BYrwt = (

(3.3) P QY0(X, ILF) — HY(X, LF)
In terms of an orthonormal base (¥;) for H°(X, Lk)
(3.4) K" (z,y) sz ) ® iy

If L is positive the convergence 3.1 may be generalized to give the weak
leading asymptotics of K(z,y)in terms of a delta function (or rather
distribution) supported on the diagonal:

Y(wp)| = (o) |det(909).] 6 — 1)

Hence, K%*, gives rise to a sequence of peak sections peaking at the point
x (compare figure 3.1). Peak sections were used by Tian [100] to show
that the Kodaira map is “almost” an isometry/symplectomorphism in a
suitable sense.” Similar peak sections were used by Donaldson [42, 41]

(3.5) lim k"

"The point is that if the curvature form dd¢ is positive it induces both an Hermitan
mertric on X and a symplectic form, i.e. a non-degenerate real two-form.
11



in symplectic geometry and subsequently by Shiffman-Zelditch [96] to
extend the Kodaira embedding theorem to the symplectic setting. The
point is that the map 2.2 may be represented by mapping z to the section
K,.

In fact, much stronger results than 3.1 are known in the case when L

has positive curvature, giving a complete asymptotic expansion in powers
of k :

(3.6) BY (z) ~ k™(bo(z) + by (z)k™t + ....)

and similarly, including a phase-function, for K%*(x,y) (compare the
references at the end of the section). The lower-order terms depend not
only on the curvature of the fiber metric on L, but also on the curvature
(and its covariant derivatives) of the metric w on X. The expansion above
can be seen as a point-wise version of the Riemann-Roch theorem, which
combined with Kodaira’s vanishing theorem, formula 2.1 gives an ezact
formula for the dimension of H%(X, L¥) (for k sufficiently large), refining
formula 2.5:

(3.7) dim H*(X, L¥) = / Td(X) A erer ),
X

where ¢;(L) is the first Chern class of L that may be represented by
5-00¢. The Todd polynomial Td(X) is a characteristic class of the holo-
morphic tangent bundle of X and may be represented by a differential
form constructed from the curvature of the metric w on X, according to
Chern-Weil theory [56][7]. The integral in formula 3.7 should be inter-
preted as the super integral of a differential form, i.e. the usual integral
of its top degree component:
n n—1
(3.8) / Td(X)Aeker D) .= / knToﬂMnflTQ /\%
X X n! (n—1)!
where T'd(X) and e**1(*) have been expanded with respect to form degree.
The convergence in the C?—topology was first obtained by Tian [100],
thereby proving a conjecture of Yau [103] and increasingly many terms
where then computed by Ruan [91] and Lu [73], using Tian’s method of
peak sections. Subsequently, the existence of the complete asymptotic
expansion was obtained independently by Zelditch [102] and Catlin [27],
by first reducing the problem to the study of the singularity structure of
the Szegd and Bergman kernels for functions on the circle and disc bun-
dles in the total space of the dual bundle L*. Then the microlocal analysis
of Boutet de Monvel-Sjéstrand [25] (which in turn extended the seminal
work [50] of Fefferman) yields the expansion 3.6. See also [89] [65] [28, 29]
for relations to star products and deformation quantization and ([14, 15],
[30] for relations to the problem of quantization of membranes in M-
theory). Lately, many new results on asymptotic expansions of Bergman
kernels in the orbifold and symplectic setting have been obtained stimu-
lated by the spectacular applications to Kdhler geometry introduced by

Donaldson [39, 40], Tian and others (compare [99]). See for example
12
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[31]|75] for an approach to Bergman kernel expansions using heat ker-
nels motivated by local index theory [12| and [16, 17][95]|74] for other
approaches. Very recently a new and simple proof of 3.6 and the corre-
sponding result for Kggk (x,y) was obtained jointly with Berndtsson and
Sjostrand [8, 94|, building on [93]. In particular, a new efficient algorithm
to compute the coefficients of the expansion was obtained. However, all
of these approaches to 3.6 use the existence of a positive lower bound for
the d—Laplacian on Q%!(X, L¥), which is absent in the general case of a

line bundle L whose curvature may degenerate on parts of the manifold
X.

3.1. Paper 1II. In this paper the results on the leading Bergman ker-
nel asymptotics for positive line bundles are extended in two directions:
to line bundles with weaker curvature properties than positivity, such
as semi-positivity and to d—harmonic (0,¢)— forms with values in L*.
To emphasize the analogy between holomorphic sections and harmonic
forms, rudiments of the theory of super manifolds [38][27| is used. The
main point of the paper is to show that the method of local Morse in-
equalities from paper I may be used to obtain the leading asymptotics
of Bergman kernels, in situations where there is no lower bound on the
0—Laplacian. For example, it is shown that if L is semi-positive the con-
vergence 3.1 still holds on X (0), i.e the part of X where the curvature of
L is positive.

The “extrinsic” definition (preceding formula 2.16) of the Bergman
kernel of the space carries over immediately to the space H9(X, L*).®
Locally, the Bergman kernel K%*(z,y) is a matrix and B%*(z) is the trace
of its restriction to the diagonal. In paper II the “intrinsic” definition 3.2
is extended to the space HY(X, L¥), so that the Bergman kernel becomes
a bundle valued form on X x X, denoted by K%* (x,y) (which corresponds
to replacing the tensor product in 3.4 by a wedge product). Its restriction
to the diagonal gives rise to the Bergman form B%* () (using the fiber
metric on L) which is a (¢, ¢)—form on X. It turns out that B%" (z) is not
only concentrated to X (q) (compare formula 2.15) but all of its leading
asymptotic contribution comes from a special “direction” (i.e. a special
component of the form). The point is that in the model case (compare
formula 2.12), when the eigenvalues ); are ordered so that precisely the
first ¢ eigenvalues of the curvature form are negative, any 0—harmonic
(0, qg)— form may be written as

B(2)dz1 A -+ + Adzg,

for a function B(z) (which is holomorphic with respect to a new complex
structure on C"). To make this precise a (g, ¢)-form x?? called the di-
rection form with support on X (g) is introduced. This form is naturally
determined (using the metric w on X) by the rank ¢ subbundle of the

8stictly speaking, when ¢ > 1 this is a generalized Bergman kernel (compare the
notation in [75]). In [9] the term Bergman-Hodge kernel was introduced for such a
kernel.
13



holomorphic tangent bundle of X consisting of the “negative directions”
of the curvature form of L. °It is shown that

1 _
E~"BY (z) — (5.-)"x™ |det,,(00¢).|

weakly if X (¢—1) and X (¢+1) are empty (generalizing the condition that
L be positive in the case of holomorphic sections). The direction form y%4
can be used to transform a differential form f on X to a function f, with
support on X (¢). Now the weak convergence of the whole Bergman kernel
form may be formulated, using the super integral (compare formula 3.8),
in the following way.

Theorem 3.1. Let Kggk be the Bergman kernel form of the Hilbert space
HI(X, LF) and suppose that f and g are differential forms on X. If X (¢—
1) and X (q+ 1) are empty, then
—n Z. n 3 3 x
69 67 [ 5@ Ag() ARY () AR 0, g) A B
XxX

tends to

N |~

( )anxgx(85¢)n/n!a

where Oy (z,y) = —ko(z) — kd(y) — 2iw(x) — 2iw(x), using the super
integral and “reversed complex conjugation” t (compare section 3.1 in
paper II).

When the curvature is non-degenerate, i.e. X = X(g) for some g,
the existence of a complete asymptotic expansion (including a phase-
function) of K%*(z,y) was obtained very recently, using semi-classical
analysis, in joint work with Sjostrand [9, 94|, building on [81]). The
expansion was obtained independently in [76]| (without a phase-function).
The relation to almost holomorphic sections [96] on symplectic manifolds,
defined with respect to a new almost complex structure on X was also
explored in [9].

In the case of holomorphic sections of positive line bundles, the Bergman
kernel asymptotics, were used by Lindhom |72| to study Toeplitz opera-
tors, when the complex manifold X is C* (see also [10] for the extension
to the case when X is closed). Given a function f on X the Toeplitz
operator with symbol f, is the operator acting on H°(X, L¥), defined by

(3.10) Tf:= P%o f.

where f- denotes the usual multiplication operator and P%* is the projec-
tion 3.3. The operator T} is also called the Berezin-Toeplitz quantization
of the function f on X (see for example [1, 28, 65]). In [72][10] it was
shown how to obtain the asymptotic distribution of the eigenvalues of
a Toeplitz operator, when £ tends to infinity, in terms of the symbol of
the operator (this was first shown by Boutet de Monvel-Guillemin [24],

9n the usual real Morse theory [82] this bundle corresponds to the tangent spaces
of the unstable manifolds over the set of critical points of index gq.
14



extending the classical limit theorem of Szeg6 [58|). In paper II the fol-
lowing generalization to super Toeplitz operators acting on HY(X, L¥),
whose symbol is a differential form on X is obtained (see paper II, section
4, for the precise definitions):

Theorem 3.2. Let (7;) be the eigenvalues of the super Toeplitz operator
Ty with symbol f and denote by d&;, the spectral measure of Ty divided by
k™, i.e.

(3.11) g =k™Y 0.,

Then d§y, tends, in the weak*-topology, to the push forward of the measure
(52)"(009) /n! under the map f,.

Similar super Toeplitz operators were studied in [23| in the context of
quantization of symplectic super manifolds'®. The theorem may also be
expressed in terms of the spectral counting function N(7y > 7) which
counts the number of eigenvalues of T (including multiplicity) that are
greater than a given number 7. For example, when L is a semi-positive
line bundle and 7 acts on its holomorphic sections one obtains (for
almost all ) :

(3.12) Bm k™ N(Tf > v) = (L)"/ (009)" /n!

. 207 Jigsaynx)
Taking f as the characteristic function of a set U in X (0) yields a large
supply of holomorphic sections concentrated on U in the sense that

2 2
lellg > (1 =) [lallx

for a given positive (small) number €. Indeed, if v = 1 — ¢ then the eigen-
sections of the corresponding Toeplitz operator satisfy the concentration
property above.

Following [72]|[10] in the case of a positive line bundle (and originally
[68, 69] in the case of the classical Paley-Wiener spaces on R"), such
concentrated sections are used to study the problem of sampling of holo-
morphic sections, i.e. the problem of stably determine any section from
its values at the sampling points. For each k£ one chooses a sampling set
Dy in X. The sampling points are assumed to be uniformly separated by
a distance of the order k~'/2 (so that the total number of sampling points
matches the order k™ of the dimension of H°(X, L¥)). More precisely, the
sequence of sets Dy is said to be sampling for the sequence of Hilbert
spaces H°(X, L*) if there exists a uniform constant A such that

ATETY @) < ol < AR (@),
Dy, Dy,

for any element o in H°(X, L*). The model example of a sequence of
sampling sets is a sequence of lattices k~'/2AZ" + ik~/?\Z™ in C".

OHowever, in [23] T acts on the space of all holomorphic forms with values in L*
(on certain symmetric spaces), rather than H?(X, L*) (compare remark 4.2 in Paper
I1I).
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Theorem 3.3. Suppose that L is semi-positive (or more generally, that
X(1) is empty). Then a necessary condition for a sequence Dy to be
sampling is that the number of sampling points in U is greater than

7

F ()" / (009" /! + (k")

for any given open subset U of X (0).

Equivalently, the sequence Dy, gives rise to a sequence of (normalized)
currents on X with support on D, and the theorem says that the limit-
ing current is bounded from below by (5=)"(99¢)"/n! on X (0), if Dy is
sampling.

4. LINE BUNDLES OVER MANIFOLDS WITH BOUNDARY

Now consider the situation when the complex manifold X has a bound-
ary 0X. If the curvature d0p of 0X is positive (a basic example is given
by the unit ball in C*), then the dimension of the space of holomorphic
functions on X is infinite. This is the classical theory of pseudoconvex
manifolds, developed by Oka, Levi, Cartan and others. For example,
the interior of such a manifold may be mapped bimeromorphically and
properly into some CV and even biholomorphically if X is a Stein man-
ifold" (the Bishop-Remmert-Narasimhan theorem [61]). The study of
the boundary behaviour of the Bergman kernel of the space of square
integrable holomorphic functions on pseudoconvex manifolds has a long
history. Its general leading behaviour was first determined by Hérmander
[60]. The existence of the complete asymptotic expansion (in powers of
the defining function of the boundary) was then obtained by Fefferman
[50] on the diagonal and subsequently by Boutet de Monvel-Sjstrand
[25] complete generality.

In the opposite case when the curvature of 0X is negative, i.e. X is
pseudoconcave, one has to introduce a line bundle L over X to get non-
trivial holomorphic sections. For example, such a situation appears if one
starts with a positive line bundle over a closed manifold (of dimension at

Hthis is the case if p may be chosen such that 89p > 0 on all of X. In general on
open manifold is said to be a Stein manifold if it carries a strictly plurisubharmonic
exhaustion function.
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least two) and makes a “hole” in the manifold by removing a small ball.

This is the case when X is the complement in P" of the unit ball and
L is the restriction of the hyperplane line bundle O(1). In this particular
case X may also be described as a neighbourhood of the hyperplane
at infinity in P”, consisting of complex deformations of the hyperplane.
More generally, any neighbourhood X of a complex hypersurface with
positive normal bundle in an ambient manifold gives rise to a similar
situation [55, 48|.

However, in the general case, when the curvature of L is positive and
the curvature of 0.X is negative, it is not even known if a sufficiently
high power of L has any holomorphic sections at all. As in the case of
degenerate curvature in section 2, the analytical problem - now coming
from the presence of both positive and negative curvature - is the lack of
a spectral gap for the 0—Laplacian. This problem is closely related to
the well-known fact that in the global L?>— estimates for the 0—operator
of Morrey-Kohn-Hérmander-Kodaira there is a curvature term from the
line bundle as well from the boundary and, in general, it is difficult to
control the sign of the total curvature contribution. Still, the following
conjecture has been made by Marinescu [77] and Henkin [59].

Conjecture 4.1. If X is pseudoconcave (i.e. its boundary has negative
curvature) and of complex dimension at least three, then any positive line
bundle over L is big, i.e.

dim H°(X, LF) ~ k".

The upper bound holds for any line bundle over X. according to a
classical result of Andreotti [2]. By a well-known theorem of Rossi [90]
any pseudoconcave manifold of dimension at least three may be filled,
i.e. embedded as a manifold with boundary in a closed manifold X of
the same dimension as X (in dimension two there are counterexamples'?
). However, the conjecture above is related to the problem of extending
the line bundle L as a (semi-) positive line bundle to X. This problem

2for example obtained by starting with the complement of the unit ball in P? and

deforming the standard complex structure close to the boundary three sphere [90, 54].
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is similar to various filling problems in symplectic and contact geometry
|45, 49]. The conjecture is also closely related to the problem of extending
the Kodaira embedding theorem 2.2 to a pseudoconcave manifold (which
turns out to be equivalent to the the problem whether X above may be
chosen to be a projective algebraic manifold |2, 5]). Embedding and de-
formation problems of pseudoconcave manifolds and of Cauchy-Riemann
(CR) manifolds (realized as the boundary of a pseudoconcave manifold)
is a very active area of current research (the surface case is investigated
by Epstein-Henkin in [48], see also [71]) extending the work of Andreotti,
Tomassini, Siu, Grauert, Kuranishi and others from the beginning of the
seventies (see for example |5, 4]). See also [86] for relations to Penrose’s
twistor theory.

The notion of a pseudoconcave manifold can also be defined for any
open manifold Y (i.e. not realized as the interior of a manifold X with
boundary), following Andreotti-Grauert [3, 54]. Essentially, ¥ is an
(open) pseudoconcave manifold if it can be exhausted by pseudocon-
cave manifolds with boundary, i.e. if there exists an ezhaustion func-
tion with certain concavity properties. The simplest example is obtained
by removing a point (instead of a ball, as before) from a closed mani-
fold. More generally, removing an analytic variety gives an open manifold
with certain concavity or convexity properties [54]. If the original closed
manifold is a projective manifold, the resulting open manifold is called
quasi-projective. Conversely, it is natural to ask when a pseudoconcave
manifold can be “compactified”, for example realized as a quasi-projective
manifold? A necessary assumption to be quasi-projective is the existence
of a complete Kihler metric (see [84] for a survey on similar compatifica-
tion problems, including the relations to the Baily-Borel-Satake compact-
ifications of arithmetic quotients [23] and [37, 79] for the “hyperconcave”
case)

The study of holomorphic Morse inequalities on manifolds with bound-
ary was initiated by Bouche [20] and Marinescu [77] and they obtained
the same curvature integral, formula 2.3, as in the case when X has no
boundary. However, it was assumed that, close to the boundary, the
curvature of the line bundle L is adapted to the curvature of the bound-
ary, which excludes the interesting mixed curvature cases above. Morse
inequalities over strictly pseudoconvex CR manifolds were obtained by
Getzler [53], who also suggested that one should try to prove similar for-
mulas for the 9—Neumann problem on a complex manifold with bound-
ary. This is achieved in paper III. Morse inequalities on CR manifolds
have also been announced by Ponge very recently [88].

4.1. Paper III. In this paper Demailly’s weak holomorphic Morse in-
equalities are generalized to any line bundle L over a manifold X with
(non-degenerate) boundary. To motivate the appearance of a boundary

term in the inequality, consider the unit disc D in C and the Hilbert space
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H (D) of polynomials of degree at most k£ with the usual Euclidean norm
i _
(4.1) 5 [ 10O dcndC
D

Hence, the space Hy(D) is the restriction to D of the space H°(P!, O(1)*)
with a particular norm. Denote by By the Bergman function of the
Hilbert space Hi(D) (note that the fiber-metric ¢ = 0). Clearly,

(4.2) () lignk‘lBk(C) =0, (i) lim /D ET'Bp(¢) =1

Indeed, (i) essentially follows from theorem 2.1 (since 09¢ = 0) and (i7)
follows from the fact that the dimension of Hy (D) is equal to k+1. But the
point is that the limit (7) is not uniform (as the boundary is approached
k has to be increased in order for the balls of radius £ /2, used in the
proof of theorem 2.1, to fit inside D). Hence, combining (i) and (%)
shows that the mass of the Bergman measure B, (C)(%d{/\d() divided by
k, is pushed out towards the boundary. By rotational invariance it tends
to the usual invariant measure supported on the boundary of D, i.e. on
the unit circle (compare section A.3 in the appendix for further details
on this example).

In order to state the next theorem, recall that X(q) is the subset of
X where index(09¢) = ¢ (compare the definition following formula 2.3)
and let T'(q), . be the set of all positive numbers ¢ such that 99¢ + tddp
has index ¢ along T°(9X),.

Theorem 4.2. Suppose that X is a compact complex manifold with

boundary, such that the Levi curvature form is non-degenerate on the
boundary. Then the dimension of H1(X, L*) is bounded by
(4.3)

o B B B
k"(—l)q(i)n (/ (009)" + n/ / (00¢ +t00p)™ 1 A Op A dt)
2m X(g) 0X JT(9)pe

up to terms of order o(k™).

n!

Morse inequalities on g—concave manifolds were also independently
obtained by Marinescu in a recent preprint [78], but the boundary term
was not as precise as the one above. Note that the boundary integral
above is finite precisely when there is no point in the boundary where
the Levi form i00p has exactly ¢ negative eigenvalues. Indeed, any suf-
ficiently large ¢ will then be in the complement of the set T'(g),, (the
case when the Levi form has exactly ¢ negative eigenvalues everywhere
on the boundary and the line bundle L is trivial was recently studied
by Hérmander in [63]). The corresponding generalization of the strong
holomorphic Morse inequalities (including the case of open manifolds) is
also obtained in this paper, assuming as usual that suitable ¢g—convexity
or g—concavity holds.

The boundary term in theorem 4.2 expresses the interplay between the
two curvature forms 00¢ and 90p of the line bundle L and the bound-

ary 0X, respectively, along T"%(0X). As an application of theorem 4.2
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(or rather of the strong version of the inequalities) pseudoconcave man-
ifolds X of dimension n > 3 with a positive line bundle L are studied.
It is shown that if it is further assumed that the curvature forms are
conformally equivalent i.e.

(4.4) 00p = — f00¢

along T4%(9X) for some positive function f on X, then, up to terms of
order o(k"),
(4.5)
1 - 1 _
dim H°(X, LF) = k"(—)"(/ (iaa¢)"/n!+—/ (i00p)™ *ANOp)/(n—1)!
27 X n Jox
if the defining function p is chosen in an appropriate way. In particular,
such a line bundle L is big (which confirms the conjecture 4.1 in this
case) and the dimension formula above, generalizing formula 2.6, can be
expressed as

Vol(L) =Vol(X) + %Vol(aX)

in terms of the corresponding symplectic volume of X and contact volume
of 0X.

Examples are provided, showing that the leading constant in theo-
rem 4.2 is sharp. In particular, in the generic examples, i.e. when the
condition 4.4 does not hold,

dim H'(X, L) ~ Ck"

when L is a positive line bundle over a pseudoconcave manifold X, in
contrast to the case when X is closed. The theorem is also shown to be
sharp, as soon as the pair (X, L) may be filled, i.e. when L extends to
a semi-positive line bundle over a closed manifold. The confirmation of
this fact is based on the observation that the boundary integral in the
theorem may also be expressed more intrinsically in terms of symplectic
geometry as

(4.6) /X (@ idBo)/a,

where (X, dvy) is the symplectification of the contact manifold 0X in-
duced by the complex structure of X [6] (compare figure 4.1)

The proof of theorem 4.2 follows from local estimates for the corre-
sponding Bergman measure BY*w"/n!, where B%*(z) is the Bergman
function of the space H%(X, L*) of —harmonic (0, ¢)—forms satisfy-
ing 9—Neumann boundary conditions (which is isomorphic to H?(X, L*)
when the boundary integral in 4.3). It is shown that, for large k, the
Bergman function (or more precisely the corresponding measure) is es-
timated by the sum of two model Bergman measures, giving rise to the
bulk and the boundary integrals in theorem 4.2. The model at a point x
in the interior of X is the same as in the case when X is closed (compare
the overview of paper I above). Similarly, the model at a boundary point

is obtained by replacing X with the unbounded domain X in C", whose
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FIGURE 4.1. Assume that X is a pseudoconcave manifold
(the left picture) with a positive line bundle L. In the right
picture the subset X (0) of the symplectification X, has
been attached to the original manifold X along 0X. The
form dvy+i09¢ on X, (0) coincides with 4 times the curva-
ture form 99¢ of L along the contact distribution 71°(9X)
and (dy + i00¢)™ vanishes on the boundary of X LI X, (0).

constant Levi curvature is obtained by freezing the Levi curvature at
the boundary point in X. The line bundle L is replaced by the constant
curvature line bundle over Xy, obtained by freezing the curvature along
the complex tangential directions, while making it flat in the complex
normal direction. Concretely, the model at a boundary is given by the
domain with defining function

n—1
(4.7) po(z, w) = Imw + Z i |zl
i=1

and with fiber metric ¢9 and metric wy given by
n—1 i n—1
Po(z,w) = ;)\i 2%, wo = 3 ;dzi A dz; + 2i0py N Opo

respectively (more precisely, a slightly more general metric wy is needed).

The method of proof is an elaboration of the technique introduced in
paper I to handle Demailly’s case of a manifold without boundary. The
major new technical challenge that appears comes from the fact that
the geometry close to the boundary introduces a new “length scale” of
the order k! (in the normal direction) as opposed to the interior length
scale k~'/2. This corresponds to the two different homogeneity /scaling
properties of the bulk and boundary models; at the boundary the scaling
map 2.17 is replaced by

Fi(z,w) = (2/k"?, w/k).

It is shown how to interpolate between these two different length scales

as the boundary is approached. The key point is to use a base metric
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that depends on £ in the normal direction close to the boundary. In the
model boundary case this corresponds to using the metric

. n—1
) — , —
W0 == 3 z; dz; N\ dz; + k2i0pg N\ Opy
1=
which has the important property that Fy(kwgo) = wo.

APPENDIX A. MODEL EXAMPLES

In the following section some simple examples of Bergman kernels for
spaces of holomorphic sections are collected. The aim is to illustrate
the general theory and results in the simplest possible situations. The
arguments are mostly just sketched (see paper III for detailed proofs in
the more general case of 0—harmonic forms).

A.1. Complex space with a constant curvature line bundle. Con-
sider the Hilbert space H°(C, ¢) of all holomorphic functions on the Eu-
clidean complex plane C with the norm

(A1) /(C la(z)]? 9

Taking ¢(z) = A |z|” corresponds to a (holomorphically trivial) line bun-
dle L) with constant curvature form Adz A dz. First assume that A is
positive so that the constant function 1 is in H°(C, ¢) (compare figure
1.1). By symmetry the Bergman function B(z) is constant and applying
the reproducing property 3.2 to the constant function 1 fixes the value
at the origin, giving

Since, by definition K (z,2) = B(z)e*®) and K(z, 2') is anti-holomorphic
in the first variable and holomorphic in the second variable it follows that
A
(A.2) K(z,7') = =M,
0
Note that if A is replaced by kA then the corresponding Bergman kernels
K, scale as

kK (k Y22,k Y%2) = Ky (2, 7))

If \ is non-positive the space H°(C, ) is trivial by the L?—version of
Liouville’s theorem. If X is strictly negative, the space H°(C, ¢) is trivial
by the usual version of Liouville’s theorem, saying that there are no
bounded holomorphic functions on C. In this case the d-Laplacian Az is
bounded from below by A. To see this, first note that for a general fiber
metric ¢ over Euclidean C the formal adjoint %* is given by

9* 4, 0 9 99

9 _ 4_ 9\ -¢__0
(A.3) 5 —¢ (5, 2: o2



(which follows directly from the definition A.1 of the norm and a partial
integration). In particular, the following important commutation relation
holds

0 o' 99" 070 09
5% T ozer 07 95 005

Since the 0-Laplacian on functions is given by

00
Y5 o

it follows that

2 ang
+ <—%Q/, Oé>
13 proving that Ay is uniformly bounded from below by a positive con-
stant as soon as the curvature % is negative and bounded from above.
Also note that the study of the space H!(C, ¢) of all square integrable
0-harmonic (0,1)-forms is essentially “dual” to the previous case. The
point is that H'(C, #) is the null space of %*. For example, the com-
mutation relation A.3 gives a positive lower bound on the corresponding
Laplacian if the curvature is positive (illustrating Hérmander’s and Ko-

daira’s theorems, referred to in the beginning of section 2.

(Aga, o) = H£ «

A.2. The torus with a constant curvature line bundle. Now re-
place Euclidean C by the flat torus T = C/(y/7Z + i\/7Z). Note that
the form Adz A dZ descends to a closed (1,1) -form on the torus. More-
over, multiplying the form by /27 and integrating over the torus gives
A. Hence if ) is an integer Adz A dz is the curvature form of a hermitian
holomorphic line bundle L, over the torus. Note that Ly = L?. When \
is positive, the space H°(T, Ly) of holomorphic sections may be identified
with the classical theta functions at level A [56]. As in the case of the
complex plane above

A
(A.4) B(z) = -
The non-trivial part is to prove that L; has a non-trivial holomorphic
section. If A is negative then the space H(T, L) is trivial (essentially
by the same argument as in the case of the complex plane above). See
also remark 7.3 in paper III. Integrating A.4 gives

(A.5) dim HY(T, L) = A ifA > 0.

and it vanishes if A < 0.

13Strictly speaking, one has to use a sequence of smooth cut-off functions x g such
that the norms of the differential dxg are uniformly bounded, to perform the partial
integration. In general such cut-off functions exist on manifolds with complete Kahler
metrics [57].
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A.3. The unit disc. Consider the Hilbert space H°(D) of all holomor-
phic functions on the unit disc with respect to the usual Euclidean norm
(formula 4.1). Taylor expanding an element «(¢) around the origin gives

(A.6) a(Q) = a;¢!

720
Hence, the monomials ¢/ form an orthogonal bases for H°(D) with norms
given by

1
(A7) 1¢7|” = 27r/ (r*rdr =2r(1/2)(5 +1)~*
0
Formula 3.4 then gives

1 i i
K(G,¢) ==Y ¢ +1)
"z
Writing this is a differentiated geometric series (on the diagonal) yields
the following classical formula

K(¢.¢)=—(1-3)
In particular K blows up along the diagonal on the boundary. Note that
writing .
C _ e—%wt
induces a local biholomorphism between the unit disc (|¢|* < 1) and the
lower half plane (Imw < 0). In the new local coordinates

1 i (1Y
A8 Kw,w) ==Y e®@ i 41).
(A.8) (w,w') = — g
Note that a; = &; in the Taylor expansion A.6 are the Fourier coefficients
of the restriction of « to the boundary (i.e. the unit circle) and the fact
that « extends to the interior of the disc corresponds to the fact that
&; = 0 when j <0).

If we consider the subspace Hi(D) of all polynomials of degree at
most k& (compare the beginning of section 4.1), then its Bergman kernel
Ky (w,w') is simply obtained by by restricting the sum A.8 to all j < k.
Writing . 1

-2 ! i(wew')d J T
b Ky (w/k, w'/k) = — ‘Z el )’“(T)E
Le(o,1]
and letting k£ tend to infinity so that the sum converges to an integral
(formally j/k — t and 1/k — dt), shows that the following scaling
asymptotics for K hold

]_ 1 i (o !
k2K (w/k,w'/k) — = / 2@ty
™ Jo

In particular, the corresponding Bergman function By, grows as k? when
the distance to the boundary is of the order £~!, which is consistent with

4.2.
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A.4. The lower half plane. Now consider the Hilbert space of all holo-
morphic functions on the lower half plane with respect to the usual Eu-
clidean norm. Analogous arguments to the previous ones give

4w
One just replaces the Taylor expansion A.6, i.e. the corresponding Fourier
series, by the “expansion”

oo .
a(w) = / ae” 3t
0

using the Fourier-Laplace transform &;. Moreover, the norm calculation
A.7 is now replaced by the formula

(A.9) (0, a) = 4r / (@, @) 1/t

where 47 comes from integration with Imw fixed (using the Plancherel
formula) and 1/t comes from

]_ *° i (7 ’
K(w,w') = / e2 @)t
0

(A.10) / I}t (Tmgp) = 1/¢.
Imw<0
We now obtain the classical formula
1
K(w,w') =

271 (w — w')?’
that may also be written as
1
A1l K=—p?
(A.11) P
using the suggestive notation p for the function p(w,w’), that is anti-
holomorphic in the first variable and holomorphic in the second variable
(like K) and such that p(w,w) is the usual defining function.

A.5. The model boundary case. Consider the model boundary do-
main (compare formula 4.7) and assume for concreteness that the dimen-
sionn =2:

X:{p<0}:{(z,w):Imw—i-,u|z\2<0},

and with fiber metric ¢(z,w) = A|z|> on the (holomorphically trivial)
line bundle L). The corresponding norm is given by

[ e
Imw+p| 2|2 <0

integrating with respect to the Euclidean measure. Note that X is a half
plane bundle over (or rather under) C with fiber coordinate w and base
coordinate z. For a fixed ¢ we denote by K, the Bergman kernel of the
space HO(C,, (tu+ A)|z|*) (section A.1) and by (-,-); the corresponding
scalar product. Fixing z and applying A.9 now gives

(0, a) x = 4n / (@ @) 41t
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(the point is that the upper limit in the integral A.10 is replaced by

Imw + 12 |2|%), which gives an extra t—dependent factor e #!#*). Using
this expression for the scalar product on X one can show that

]. *° i (7 !
K(z,w; 2, w') = 4—/ e2 @I E, (2,2 ))dt
T Jo

Hence, formula A.2 (with X replaced by ut + A\) applied to K; gives

K(Z, w; Z’, w/) _ il/ e%(ﬁ—w')t+u§z’t+)\2z’t(/\ + t,u)dt,
AT w T(0)

where T'(0) is the set of all positive ¢ such that A + tu is positive, i.e.
T(0) = [0, —A/u]. Formulated in another way

11 / e o1det (L (906 + t9Tp))dt,
7(0) 2

using the suggestive notation explained in connection to formula A.11.

Example A.1. ( Siegel’s lower half plane). Setting u =1 and A = 0

gives
11 [« 11 [
K = ——/ ePdt = ——/ ePt2dt.
Adrw Jo drm J,

Since fooo e?dt = 1/p and the factor ¢? can be obtained by differentiating
two times with respect to p we obtain

which is the classical Bergman kernel of Siegel’s lower half plane (which
is biholomorphically equivalent to the interior of the unit ball in C?).

Example A.2. If 4 < 0, i.e. X is pseudoconcave, one has to take A > 0,
i.e. a line bundle with positive curvature to make sure that 7°(0) is non-
empty. For example, (u, ) = (—1,1) gives

11t
= ——/ e TOL(1 — t)dt.
0

A

A.6. Compact version of the model boundary case. Let X be the
manifold obtained as the total space of the unit disc bundle in the dual
of the line bundle L, over the torus T', where L, is defined as in section
A.2. We obtain an Hermitian holomorphic line bundle over X in the
following way. Denote by 7 the natural projection from X onto the torus
T. Then the pulled back line bundle 7*L, is a line bundle over X. The
construction is summarized by the following commutative diagram

7T*L)\ L)\
3 \:
X <= L, - T

The following local description of the situation is useful. The part of X

that lies over a fundamental domain of the torus 7" can be represented
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in local holomorphic coordinates (z, (), where ( is the fiber coordinate,
as the set of all (z,() such that

¢ exp(+p2”) < 1

and the fiber metric ¢ for the line bundle 7*L) over X may be written
as
6(z,¢) = Alz]".

Hence, X is locally biholomorphic to the non-compact model domain in
the previous section.

Any section a of H°(X, 7*Ly) may be locally Taylor expanded in the
fiber variable:
(A12) a(z:¢) = 3 ay(2)¢7.

Jj=>0
Note that o;(z) may be identified with an element of H*(T', L7 @ Lym*Ly).
The reason is that the fiber coordinate ( may be identified with a sec-
tion of m* L} over X (the “tautological section”). 14 Conversely, any
sequence in H°(T, Li ® Lym*L)) determines an element of H°(X,7*L,).
This means that
H°(X,7" L)) = @ H°(T, L}, ® Lyn"Ly).
320

Now the Bergman kernel of H°(X, 7* L)) may be obtained as in the pre-
vious section, using the Taylor expansion A.12 (compare paper III). In
particular, when X is replaced by kA, i.e when the line bundle 7*L, is
replaced by its kth tensor power, one obtains the following scaling asymp-
totics for the corresponding Bergman kernels (using the local coordinate
w along the fiber, as in section A.3):

1 o= —
k3K (kY22 ks kY22 k') — (=)? / et”+¢’tdet(%(88¢+t66p))dt,
T Jr(0)
where T'(0) = [0, —\/u]. Note that the dimension of H%(X,7*L,) may
be computed directly in the following way. Formula A.5 (and the corre-
sponding vanishing for non-positive \) gives

(A.13) dim H(X, 7" Ly) = Y (A+jp),
J€J(0)

where J(0) = [0, —\/p] N Z, which may also be written as the integral

1 —_ -
(A1) (50 [ (006-+300p) A (~0p)
T Jox ,
JeJ(0)
When A is replaced by kA and k tends to infinity one obtains an asymp-
totic equality in theorem 4.2, since the sum becomes a Riemann sum as
in section A.3. Note that the integral over X in theorem 4.2 vanishes
since the pulled back line bundle is flat in the fiber-direction.

“Indeed, a point in X (locally given by (z,()) is defined as a vector in the fiber
(L},)= (and the vector is locally given by ().
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BERGMAN KERNELS AND LOCAL HOLOMORPHIC
MORSE INEQUALITIES.

ROBERT BERMAN

ABSTRACT. Let (X,w) be a hermitian manifold and let L* be a high
power of a hermitian holomorphic line bundle over X. Local versions
of Demailly’s holomorphic Morse inequalities (that give bounds on the
dimension of the Dolbeault cohomology groups associated to L*), are
presented - after integration they give the usual holomorphic Morse
inequalities. The local weak inequalities hold on any hermitian manifold
(X, w), regardless of compactness and completeness. The proofs, which
are elementary, are based on a new approach to pointwise Bergman
kernel estimates, where the kernels are estimated by a model kernel in
cr.

1. INTRODUCTION

Let X be an n—dimensional (possibly non-compact) complex manifold
equipped with a hermitian metric two-form, denoted by w. Furthermore,
let L be a holomorphic line bundle over X. The hermitian fiber metric on
L will be denoted by ¢. In practice, ¢ is considered as a collection of local
functions. Namely, let s be a local holomorphic trivializing section of L,
then locally, |s(2) |z = 7% and the canonical curvature two-form of L can

be expressed as 00¢.! When X is compact Demailly’s holomorphic Morse
inequalities [6] give asymptotic bounds on the dimension of the Dolbeault
cohomology groups associated to L* :

(1.1) dime H'(X, L¥ ® E) < k”ﬂl/ (290¢)" + o(k™),
a n! X(q) 2

where X (g) is the subset of X where the curvature-two form 99¢ has ex-
actly ¢ negative eigenvalues and n — ¢ positive ones. These are the weak
holomorphic Morse inequalities - they also have stronmg counterparts in-
volving alternating sums of the dimensions. Demailly’s inspiration came
from Witten’s analytical proof of the classical Morse inequalities for the
Betti numbers of a real manifold [18|, where the role of the fiber metric ¢
is played by a Morse function. Subsequently, proofs based on asymptotic
estimates of the heat kernel of the — Laplacian, were given by Demailly,
Bouche and Bismut ([7], [5] and [3]). All of these proofs use quite delicate
analytical arguments - heat kernel estimates and global estimates deduced
from the Bochner-Kodaira-Nakano identity for non-K&hler manifolds. In
the present paper it is shown that Demaillys inequalities may be obtained

Key words and phrases. Line bundles, Cohomology, Harmonic forms, Holomorphic
sections, Bergman kernel, Extremal function. MSC (2000): 32A25, 321.10, 32L20.
The normalized curvature two-form 1 190¢ represents c! (L), the first Chern class of
L, in real cohomology.
1



2 ROBERT BERMAN

from comparatively elementary considerations. The starting point is the
formula

(1.2) dime HY(X, LF) = /X > 1%,

where {¥;} is any orthonormal base for the space of 9—harmonic (0, ¢)—forms
with values in L*), when X is compact (this is obvious for the dimension of
the harmonic space - and by the Hodge theorem the dimensions coincide).
It is shown that the integrand, called the Bergman kernel function B%*(z),
may be asymptotically estimated by a model kernel in C". Integration then
yields Demailly’s weak inequalities and a similar argument gives the strong
inequalities. The main point of the proof is to first show the correspond-
ing localization property for the closely related extremal function Sg(’k(x)
defined as
()|’

2 bl
lelx
where the supremum is taken over all 9—harmonic (0, ¢)—forms with values
in L*. Since the estimates are purely local, they hold on any (possibly
non-compact) complex manifold, and yield local weak holomorphic Morse
inequalities for the corresponding L?—objects. The main inspiration for
the present paper comes from Berndtsson’s recent article [2].

One final remark: it is fair to say that the formula 1.2 is the starting point
for the previous writers’ approaches to Demailly’s inequalities, as well. The
heat kernel approach is based on the observation that the term correspond-
ing to the zero eigen value in the heat kernel on the diagonal e®*(z, x;t) is
precisely the Bergman kernel function BL*(z) (if X is compact). Moreover,
when ¢ tends to infinity the contribution of the the other eigenvalues tends
to zero. The main problem, then, is to obtain the asymptotic expression
for the heat kernel in £ and ¢ and investigate the interchanging or the lim-
its in k£ and t. The point of the present paper is to work directly with the
Bergman kernel.

sup

1.1. Statement of the main result. Recall that the 9—Laplacian is de-
fined by Ag := 00 +8 0 (where @ denotes the formal adjoint of 9) and its
L?—kernel is the space of harmonic (0, g)-forms with values in L*, denoted
by H%4(X, L¥). By the well-known Hodge theorem this space is isomor-
phic to the Dolbeault cohomology group Hg’q(X , L¥), when X is compact.

Now define the Bergman kernel function Bg(’k(x) and the extremal function
S%F(x) of HI(X, LF) by

ja(a)”

ol °

Bt (@) =) [Wi(@)]”, S%(x) :=sup

where {U;} is any orthonormal base in #7(X, L*) and the supremum is
taken over all forms in H?(X,LF). To define the corresponding “model”
functions at a point = in X, Bg’@ and Sg,((:na proceed as before, replacing
the manifold X with C", the base metric in X with the Euclidean metric
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in C" and the fiber metric ¢ on L with the fiber metric ¢, on the trivial
line bundle over C*, where

n
= Z )\i,m |Zz|2 )
i=1

and where the curvature two-form 9d¢, in C" is obtained by “freezing”
the curvature two-form d0¢ on X, at the point z (with respect to on or-
thonormal frame at x).? Finally, denote by X (q) the subset of X where
the curvature-two form 00¢ has exactly ¢ negative eigenvalues and n — ¢
positive ones. Its characteristic function is denoted by 1x(4). Moreover, let

( ) U0<z<q ( )

The first theorem we shall prove is a local version of Demailly’s weak
holomorphic Morse inequalities. Note that the manifold X is not assumed
to be compact, neither is there any assumption, e.g. completeness, on the
hermitian metric w.

Theorem 1.1. Let (X,w) be a hermitian manifold. Then

lim sup kan’ (z) < Bg’(cn (0), limsup anq’ (z) < S'x],@ 0) ,
k

and '
B3 o (0) = 550 (0) = %1)(((1) detw(%aaﬁ)z
Moreowver,
lim L — B%(z )—lm nSq, (z)

k k"
if one of the limits exists.

k

This seems to be a new result. The inequality for S2*(z) generalizes
results of Bouche [5] and Gillet, Soulé, Gromov 9], that are non-local and
concern compact manifolds X. Integration of the inequality for the Bergman
kernel gives Demailly’s weak inequalities 1.1.

When X is compact the local Morse inequalities can be extended to an
asymptotic equality as follows. Let Bi’,fk be the Bergman kernel function
of the space spanned by all the eigenforms of the d—Laplacian, whose
eigenvalues are bounded by vy.

Theorem 1.2. Let (X,w) be a compact hermitian manifold. Then

1
3 -n 1k —
]1I£nk BZ, i (z) = ﬁlx(q)

detw(%agqb)w ,

for some sequence py, tending to zero.

Again, integrating this yields, with the help of a well-known homolog-
ical algebra argument Demailly’s strong holomorphic Morse inequalities®.

2Equivalently: the Ai e are the eigenvalues of the curvature two-form of L with respect
to on orthonormal frame at z.

3Just as in the papers of Demailly, Bouche and Bismut (|7],[5] and [3]). In fact, the
idea of using the “low-energy spectrum” was introduced in Witten’s seminal paper [18].
A similar technique is used in the heat equation proof of Atiyah-Singer’s index theorem.
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When the curvature of the line bundle L is strictly positive the asymptotic
equality holds for the usual Bergman kernel for the space of holomorphic
sections of L¥. This was first proved by Tian [19]) with a certain control on
the lower order terms in k. A complete asymptotic expansion was given in
[20] using microlocal analysis. See also [14] where the manifold is C* and
[4] where the complex structure is non-integrable.

Remark 1.3. The two theorems have straight forward generalizations to the
case where the forms take values in L* @ E, for a given rank r hermitian
holomorphic vector bundle E over X. The estimate for the extremal func-
tion S%* is unaltered, while the results for the Bergman kernel function
B%* are modified by a factor 7 in the right hand side.

Notation 1.4. The notation a ~ (<)b will stand for a = (<)Cyb, where Cy
tends to one when £ tends to infinity.

1.2. A sketch of the proof of the local weak holomorphic Morse
inequalities. First we will show how to obtain the estimate

(1.3) limksup ETmSTE(z) < Sq.cn (0)

By definition, there is a unit norm sequence oy of harmonic forms with
values in L* such that
lim sup £ "S%*(z) = limsup k™" | (2)|?
k k

Now consider the restriction of the form oy (z) to a ball Bg, with center in
the point x and with radius R; decreasing to zero with k. The main point
of the proof is that the form a4 is asymptotically harmonic, with respect to
a model fiber metric, on a ball of radius slightly larger than ﬁ and is then
a candidate for the corresponding model extremal function. Indeed, we can
arrange that the fiber metric k¢ on the line bundle L* can be written as

ko(z) = k(21 Ailzl” + kO(|2])

in local coordinates around z. The form B®) := k=3"a*)_ defined on the
scaled ball B, zp , where a'®)(2) denotes the (component wise) scaled form
a(7z), satisfies

lim sup k™" S%* () = lim sup ‘,B(k)(()) ‘2

k k
Moreover, 3*) is harmonic with respect to the scaled Laplacian A(gk ), taken
with respect to the scaled fiber metric (k¢)* on L* :

n

kd)®)(z) = N |z LO 2

(ko)™ (z) ;z|z|+\/% (I2[%)
The point is that the scaled fiber metric converges to the quadratic model
fiber metric ¢y in C", with an appropriate choice of the radii R;. As a con-
sequence the operator Ag“ ) converges to the model Laplacian Aj , . Stan-
dard techniques for elliptic operators then yields a subsequence of forms
B%i) converging to a form S defined in all of C*, which is harmonic with
respect to the model Laplacian. This means that
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lim sup k™S4 (2) = [B(0)|” < 57 . (0),
k bl
proving 1.3. Finally, lemma 2.1, relating S%*(x) and the Bergman ker-
nel function B%*(z), is used to deduce the corresponding estimate for the
Bergman kernel function. All that remains is to compute the Bergman
kernel and the extremal function in the model case (section 4).

2. THE BERGMAN KERNEL FUNCTION B(z) AND THE EXTREMAL
FUNCTION S(z).

In section 1.1 the Bergman kernel function B‘)](’k and the extremal function
S%* were defined. We will also have use for component versions of S2*. For
a given orthonormal frame ! in AY?(X, L*) let

q,k ‘QI(,’IT)‘2
XI(fL") = Sup 2
el

where ar(z) denotes the component of « along el. It will be clear from
the context what frame is being used. These functions are closely related
according to the following, simple, yet very useful lemma. Its statement
generalizes a lemma used in [2] (see also [13]).

Lemma 2.1. Let L be a hermitian holomorphic line bundle over X. With
notation as above

5% (z) < B () < ) S¥ (@)
I

Proof. To prove the first inequality in the statement, take any o in H%9(X, L)
of unit norm. Since « is contained in an orthonormal base, obviously
la(z)|> < B(z), which proves the first inequality. For the second inequal-
ity, let {¥?} be an orthonormal base for H%¢(X, L*), so that B%*(z) :=
Do Wi(z))* = i Wi (2)|?. Fix a J and let ¢; := ¥ (z). Then, summing
only over 1, gives ,

1/2
Sl = S eavito) = o) (T

% %

— . ¢ i 1e . q k . .
where o = ), 7(Ei‘6i|2’)1/2\11 lies in H?(X, L*) and is of unit norm. Thus,

i

. s (@)
(Z\‘I’S(x)\2> = ay(z) = -~ < 8(x)V2

[lee]

2

Finally, squaring the last relation and summing over J proves the second
inequality. O
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3. THE WEAK HOLOMORPHIC MORSE INEQUALITIES

In this section we prove the local version of Demailly’s holomorphic Morse
inequalities over any complex manifold X. The usual version is obtained as
a corollary. Around each point z in X, fix local complex coordinates {z;}
and a holomorphic trivializing section s of L such that*

w(z) = £ 32, hij(2)dzi Adzj, hij(0) = 6
and
[5(2) = €79, g(2) = 20, A, (1),
where the quadratic part of ¢ is denoted by ¢g. Note that in the local

coordinates the base metric w coincides with the Euclidean metric at the
origin. Moreover, we have the identities,

Al,w/\Q,x te /\'n,a:VOZ(X,w) = det ( 68(15) VOZ(X w) = ( 88(;5)

The following notation will be useful. Let Bg := {z : |z| < R} in C* and
let Ry, := 1\‘}% Using the local chart around z, a (small) ball Bg, is identified
with a subset of X. Given a function f on the ball Bg,, we define a scaled

function on B VER, DY
®)(2) := =
FOG) = £ )

Forms are scaled by scaling the components. When scaling an object that is

indexed by £, e.g. a,(ck), we will write o®) to simplify the notation. Observe

that scaling the fiber metric on L* gives

(3.1) (k)™ ZA i +70(|z\)

which motivates the choice of scaling. The radius Ry := % has been chosen

to make sure that the fiber metric on L* tends to the quadratic model fiber
metric ¢g with all derivatives on scaled balls, i.e.

(3.2) sup |8a((/€¢)(k) - ¢0)(z)‘ — 0,
|2| <VkRy,

where the convergence is of the order ﬁ to some power, which follows
immediately from the expansion 3.1. Moreover, vk R}, tends to infinity, so
that the sequence of scaled balls B s exhausts C". Let us denote by Agc )

the Laplacian, taken with respect to the scaled fiber metric (k¢)*) and the
scaled base metric w®). One can check that

1
(3.3) A(gk)a = E(Agoz)(k).

Hence, if o, is a form with values in L*, which is harmonic with respect to
the global Laplacian, i.e Az = 0, then the scaled form a®) satifies

Agc)a(k) =0,

“this is always possible; see [17].
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on the scaled ball B zp . Moreover, because of the convergence property
3.2 it is not hard to check that

(3.4) AW = Ag,~+ Dy,

where D, is a second order partial differential operator with bounded vari-
able coeffiecients on the scaled ball B ;p and € is a sequence tending to
zero with & (in fact, all the derivatives of the coefficients of Dy are uni-
formly bounded). It also follows from 3.2 that for any form o with values
in LF,
(3.5) el ~ £ 10 i,

z

where the factor k™" comes from the change of variables w = T in the
integral.

The proof of the following lemma is based on standard techniques for
elliptic operators.

Lemma 3.1. For each k, suppose that 5% is a smooth form on the ball
B i, Such that Ag)ﬁ(’“) = 0. Identify B*) with a form in L3, (C) by
extending with zero. Then there is constant C' independent of k such that

sup [0, < O 89] ,

)Hzm@ 18 bounded, then there is

a subsequence of {ﬂ(k)} which converges uniformly with all derivatives on
any ball in C" to a smooth form B, where [ is in Lio (C).

Moreover, if the sequence of norms Hﬁ(k

Proof. Fix a ball Bg, of radius R in C*. By Garding’s inequality for the
elliptic operator (A(gk))m, we have the following estimates for the Sobolev

norm of S®on the ball B with 2m derivatives in L? :

Yk k)||2 (kym (k) ||
36 18y < Crx (1891, + a2 ).
for all positive integers m. Since A(gk ) converges to Az, on the ball By it
is straight forward to see that C'r; may be taken to be independent of k.
Hence, for all positive integers m,

18911z, 2 < € 189,

and the continuous injection L?* — C° k > n, provided by the Sobolev
embedding theorem, proves the first statement in the lemma. To prove the

is uniformly bounded in k. Then

second statement assume that Ha(’“) HZO,@

3.6 shows that )
Hﬂ(k)HBR,mm < Dg

Since this holds for any m > 1, Rellich’s compactness theorem yields, for
each R, a subsequence of {ﬁ(k)}, which converges in all Sobolev spaces
L*#(Bg) for k > 0. The compact embedding L** < C', k > n + 11, shows
that the sequence converges in all C!(Bg). Choosing a diagonal sequence,
with respect to a sequence of balls exhausting C”, finishes the proof of the
lemma. U
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Before turning to the proof of the local weak holomorphic Morse inequal-
ities, theorem, we state the following facts about the model case, that will
be proved in the following section:

1
By (0) = S50 (0) = X (z)

Moreover, suppose that the first ¢ eigenvalues of the quadratic form ¢, are

negative and the rest are positive (which corresponds to the case when z
is in X (g)). Then

(3.7) Sl a0 (0) =0,
unless I = (1,2, ..., q).

detw(%ﬁgqﬁ)x

Theorem 3.2. Let (X,w) be a hermitian manifold. Then the Bergman
kernel function ngk and the extremal function S;I(’kof the space of global
O0—harmonic (0,q) forms with values in L*, satisfy

lim sup,, k" B%*(z) < B.(0), limsupk "S%*(z) < 7. (0) ,
where

1 )

7-‘-’n

and limy, kinB}](k(a:) = limy, kinSg(k(a:) if one of the limits exists.
Proof. First we will prove that

limsup k™" S%*(z) < S 1 (0)
k
By definition, there is a unit norm sequence oy in H%?(X, L¥) such that

lim sup k" S%* () = limsup k™" |ay(z)]* .
k k

Now consider the sequence f*) = k’%"a(k), where 3%) is a form on the
ball B /;p that we identify with a form in Lio (C"), by extending with zero
(we write o(*) instead of oz,(ck)) to simplify the notation). Note that

lim sup HB(’“)HZ = limsup k™ Ha( < lim sup ||ak||§( =1,
k 0 k k

9,

(z’O’B\/ER,C
where we have used the norm localization 3.5. According to the previous
lemma there is a subsequence of {3*i)} that converges uniformly with all
derivatives to § on any ball in C", where § is smooth and ||ﬁ||§)0 < 1. Hence,
we have that Ag s = 0, which follows from the expansion 3.4, showing
that

0) 12
lim sup k-5 (2) = Tim [8%(0)]* = 150)° < 2Ol < 51, (0),
k J 1811,
Moreover, by proposition 4.3,
1 -
g,@, (0) = BZ,@ (0) = ﬁlx(q) (x) detw(iaaqﬁ)x .
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Lemma 2.1, then shows that limy k~"B%*(z) =0 outside the set X(g).

Next, if 2 is in X (¢) we may assume that A; up to A, are the negative
eigenvalues. By 3.7 we then have that 37 = 0 if I # (1,2, ...,q). We deduce
that for I # (1,2, ...,9) :

2
lim k;"5§74(0) = lim k; ™ oz;ﬁj(O)‘ = 8O)| =0.

This proves that
lim k~"S%9(0) = 0,
if I #(1,2,...,q). Finally, lemma 2.1 shows that

limsupk "By (z) < 0+ 0+ ... + 5% (0) = B . (0),
k

which finishes the proof of the theorem. ]
As a corollary we obtain Demailly’s weak holomorphic Morse inequalities:

Corollary 3.3. Suppose that X is compact. Then
—-1)7 1 i
dime HYY(X, L*) < k"(——/ ~00¢)" + o(k™).
me HY(X, 15 < K2 5000y ol

Proof. Let us first show that the sequence k~"S%*(x) is dominated by a
constant if X is compact. Since X is compact it is enough to prove this
for a sufficiently small neighbourhood of a fixed point xy. Now, for a given
form ay, in #%9(X, L*) consider its restriction to a ball of radius = with
center in xy. Using Garding’s inequality 3.6 as in lemma 3.1, we see that
there is a constant C'(xg), depending continuosly on zy such that

|k (z0)|” < C(0) Hoz(’“)HZO,Bl

for k larger than kq(zo), say. Morever, we may assume that the same ko(xg)
works for all z sufficiently close to xy. Using the norm localization 3.5 we
get that
kn |c(0)[* < 2C (o) [l I

for k larger than ki (zo) and the same k; works for all = sufficiently close to
xo. This proves that k’"Sg(’k(a:) is dominated by a constant if X is compact.
By 2.1 and the fact that X has finite volume, this means that the sequence
k~"B%*(z) is dominated by an L'—function. Finally, the Hodge theorem
shows that

lim sup dimg k™" H(X, L*) = lim sup / k" B%F
k k X

and Fatou’s lemma yields, since the sequence k_"Bg(’lC is L'— dominated,

_1)9 .
/limsup k" BYF < ( i) / (388@",
X(q) 2

™

where we have used the previous theorem and the fact that
1,4 —
(3000)" = (-1)"

nl2
on X (q). O

detw(%agqﬁ)w Vol
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Remark 3.4. If there is no point where the curvature two-form is non-
degenerate and has exactly one negative eigenvalue, then Demailly observed
(see [7]) that combining his weak inequalities with their strong counterparts,
gives that

dime HoY(X, L*) = k"(——/ ~008)" + o(k™).
me B 1) = K5 | (50000 + olk)
Now, if one also uses theorem 1.1° one gets the following asymptotic result
for the Bergman kernel function:
1

7 —

1
0,k
By (z) — p

in L'(X,w"/n!). In particular there is a subsequence of k~"B%*(x) that
converges to 7%" ‘detw(%85¢)z| almost everywhere on the part of X where
the curvature two-form is strictly positive (on the complement the limit is
zero). This seems to be a new result (in case L is stricly positive on all
of X a complete asymptotic expansion of ngk is known [20]). The result
is used in [1] to obtain asymptotic results on the Bergman kernel K (x,y)
associated to the space of holomorphic section with values in L¥, when for
example L is semi-positive (the Bergman kernel function By is the pointwise
norm of the restriction of the Bergman kernel K} to the diagonal).

4. THE MODEL CASE

In this section we will be concerned with C* with its standard metric.
Any smooth function ¢ defines a hermitian metric on the trivial line bundle
and associated bundles, via \1|§s (z) = e~%). Explicitly, this means that if

%1 =3, frdz! is a (0, ¢)—form on C" , then

0, 2 _ 2 _
0] (2) = S Ifu(e) P e 40,
I
The standard differential operators on smooth functions are extended to
operators on forms, by letting them act componentwise. We denote by %*
the formal adjoint of % with respect to the norm induced by ¢. A partial
integration shows that

2" 0 0

9 9o 9

AL L L

The following classical commutation relations (|12|) are essential for what
follows:

(4.1)

000 070
0z;0z;  0%Z; 0%
In this section ¢ = ¢ := Y., Ai |2|*, so that the right hand side simplifies
to 5”)\“

50nly the case when ¢ = 0 is needed. This case is considerably more elementary
than the other cases. Indeed, all sections are holomorphic (independently of k) and one
can use the submean inequality for holomorphic functions, without invoking the scaled
Laplacian.
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The next lemma gives an explicit expression for Ag ., that will enable
us to compute the model Bergman kernel function.

Lemma 4.1. We have that
Jd 0° o*o . -
Zaz 07 Z 75 550 97 = (B5.f)dz"),

with respect to the fiber metric ¢y on the trivial line bundle.

Proof. All adjoints and formal adjoints are taken with respect to ¢y. The
following notation will be used. We let dz* act on forms by wedge multipli-
cation, and denote the adjoint by dz**. Then we have the anti-commutation
relations

(4.3) dzidzi +dzd dzi = 0if i # j
Also,
) % J — ) ] 1 J — ’
(4.4) (dzt dzt)dz _{O, iEJdZdZ dz—{l e
0 can now be expressed as
0
— 2 d7 =N "d7
o oz Z “ oz
Applying * to this relation immediately yields
% a — 1% —5 1% a
9 = Z 77 —;dz =
Now we compute Az :=99 +0 0 :
90 +00= ———dzdz" 90 i,
* Zazzaz]z ¢ +Zaz] zzz ‘

By applying 4.3 to second term and splitting the sum this equals

o o oo o 0
9 & 99 Gz 7.
7 o7 +Zazaz g +Z dror o on v

According to the commutation relation 4.2 the second sum vanishes and
4.4 finally gives that

(00" +9°0)(fde") = () — ) fdzl.
e 07Z; Z < 0z; 0%

In order to be able to integrate partially in C"* without getting boundary

terms, the following lemma is useful. See [11] for a slightly more general
proof. The point is to choose xz(z) = (x(%))?, where x is a smooth

compact supported function, that equals 1 on the unit ball, say.
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Lemma 4.2. There is an ezhaustion sequence X such that for any smooth
function f and smooth (0,q)— form « with f, (%f, a and (04 0 )a in
Lio (c")

2

li}zn (Aza, xrO) = H @+0)a

> /90 e
¢07h}%n<azi a—Z_,Lf,XRf>_'8—Z_Zf

2

and similarly for H % f

Next, we turn to the Bergman kernel function Bgo,@ (2) and the extremal
function S o (2). They are defined as in section 2 but with respect to the
space ’Hg’oq (C) of all (0, ¢)—forms in C*, that are —harmonic with respect

to the fiber metric ¢y and have finite L? norm with respect to ¢y. Note that
with notation as in section 1.1,

Bio,@ (2) = Bg,@n (2)

if ¢(2) = ¢o(2) + O(|z]*) is the local expression of the fiber metric of L at
the point x in X.

The proof of the following proposition is based on a reduction to the case
when ¢ = 0 and we are considering holomorphic functions in the so called
Fock space. Then it is well-known that

1
(4.5) By o (2) = 52 (0) = 2 Ml [Aaf - -+ [An]

Indeed, if f is holomorphic, then | f|2 is subharmonic. Hence,

(4.6) /A ‘f(O)‘Z e ko (2) < /A \f(z)|2 e—k¢0(z)’

where Ap is a polydisc of radius R and where we have used that ¢, is radial
in each variable. Letting R tend to infinity, shows 4.5 for S¢. (0).

Proposition 4.3. Assume that q of the numbers )\; are negative and the
rest are positive. Then

1
Bjycn (0) = S0 (0) = — i o] -+ [al
Otherwise there are no d—harmonic (0,q)—forms in L3 (C*), i.e.
BY, (0) = % (0) = 0.

With notation as in section 1.1 this means that

1
Bg,@n (0) = Sg,cn (0) = ﬁlX(q) (z)

Proof. Suppose that a7 = Y7, frdz',a® € L7 (C") and Ay, o7 = 0.
Then (Aza*9, xga®?), =0 and we get that

Z (Arfr, XRfI)¢0 = 0.

I
Letting R — oo and using lemma 4.2 shows that

%o . el
3z—;)f1 =0,1el Hﬁifl

det,( % 00¢),

¢

(4.7) )

2 2
=0,72€I°.
®o %o
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Let Fy(¢) = e~ ZierNilsl’ £, where ¢; = z; if i € I and (; = 2 if i € I°.
Then 4.7 and 4.1 implies that F} is holomorphic:

0
GZZ-FI = 0 for all 3.
Moreover,
(4.8) filse = Fila, s ®1(2) =D =Nzl + ) Azl

el ielc

Now assume that it is not the case that g of the numbers \; are negative and
the rest are positive. Then ®;(z) = Y7, A! [z, with some Af := A! < 0.
By assumption, [ |f;|°e ¢ < co. Now 4.8 and Fubini-Tonelli’s theorem give
that

Since %FI = 0 and A/ < 0 this forces Fy(0,..,2;,,0,..) = 0 and in
particular f7(0) = 0,%which proves that B, (0) = S&. (0) = 0.

Finally, assume that ¢ of the numbers \; are negative and the rest are
positive. We may assume that A\; up to A\, are the negative ones. Then the
same argument as the one above gives that f;(0) = 0if I # I, := (1,2, ...,q).
Now since Afo > 0 for all 7 we get

2 2 2
F ANy - A,
1 (0 sup 2@ _ V@) @ ey
[l /5ol g4 1Frolle, m
where we have used 4.5 in the last step. Since A; = |);|this proves the

statement about S&. (0). The proof is finished by observing that S¢. (0) =
B, (0). This follows from lemma 2.1, but it is also easy to see directly in
this special case, since all the components Fy vanish if I # (1,2,...,q). O

Remark 4.4. The statement 3.7 also follows from the previous proof.

A similar argument to the one in the previous proof shows that if 09¢,
is non-degenerate and if it is not the case that ¢ of the numbers )\; are
negative and n — ¢ of the numbers are positive, then there is an apriori
estimate of the form

),

where the norms are taken with respect to ¢q. The result appears already
in Hormander’s seminal paper [12] and it can be used to give a direct proof
of the fact that the global Bergman kernel function B%* vanishes (modulo
terms of order o(k™) at a point outside X (¢), where the curvature two-form
is non-degenerate.

lo?l” < Co([[Bac]* + |[3"ar

6this follows for example from the submean inequality 4.6
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5. THE STRONG HOLOMORPHIC MORSE INEQUALITIES

In this section X is assumed to be compact. While the weak holomorphic
Morse inequalities give estimates on individual cohomology groups, their
strong counter parts say that

(5.1) ) (-1)"7dime H/ (X, L*) < k”ﬂ ! /X(< )(ia&b)” + o(k™).

. ™ n! 2
J=0

Let ’H‘éyk (X, L*) denote the space spanned by the eigenforms of Az whose

eigenvalues are bounded by v, and denote by B%’fk the Bergman kernel

function of the space HZ,, (X, L¥). Extending the previous methods (section

3) we will show the asymptotic equality

1

3 —-n ;k —_
11’?1k BZ, (z) = le(q) ,

detw(%agqﬁ)z

where {1} is a judicially chosen sequence. From its integrated version

: q k\ _ 1.n (_1)q l 1 L\ n

dim¢ HZ, (X, L") =k e X(q)(283¢) + o(k"™)
one can then deduce the strong inequalities 5.1 as in [6]. The basic idea is
as follows. First we obtain an upper bound on the corresponding Bergman
kernel function, by a direct generalizaton of the harmonic case: the local
weak Morse inequalities. We just have to make sure that terms of the form

H(Agc ))mﬁ(k) , which are now non-zero, tend to zero with k. Recall,

2
‘x/ERk
that Agc ) denotes the O-Laplacian with respect to the scaled metrics on
the ball B gz . In fact, for scaling reasons they give contributions which
are polynomial in%t. This dictates the choice vy = pgk with i tending to
zero with k. The last step is to get a lower bound on the spectral density

function on X(g), which amounts to proving the existence of a unit norm
sequence {ay} in HL, (X, LF) with

9 1
—
an(a) = "

det, (3000)z |+ o(h").

To this end we first take a sequence {a4} of (0, ¢)—forms on C”, which are
harmonic with respect to the flat metric and the fiber metric k¢y, having
the corresponding property. The point is that the mass of these forms
concentrate around 0, when k tends to infinity. Hence, by cutting down
their support to small decreasing balls we obtain global forms aj on X,
that are of unit norm in the limit. Moreover, their Laplacians are “small”.
After projection on H%, (X, L¥), we finally get the sought after sequence.

We now proceed to carry out the details of the argument sketched above.

Proposition 5.1. Assume that pr, — 0. Then the following estimate holds:

detw(%65¢)w + o(k").

1
k
B%ukk(x) < knﬁ_an(q)
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Proof. The proof is a simple modification of the proof of the local holo-
morphic Morse inequalities and in what follows these modifications will be
presented. The difference is that oy is in H<Nk (X, L*) and we have to

make sure that the all terms of the form (A%)) (k~2a®) = (A(;))m(ﬁ(’“))

vanish in the limit But for any ball B,
<k (A(gk))ma

e
¢0,B

SE () anllx

O’B\/ER
and the last term is bounded by a sequence tending to zero:
k_Zm(N k)2m N 0

since by assumption o is of unit norm and in H%? ek (X L*) and py — 0.
Garding’s inequality as in 3.6 gives that

k) m
1891, e < © (1890 5+ 27890 ) £ 0+ G 5 0
which shows that the conclusion of lemma 3.1 is still valid. Finally, A58 =0
as before and the rest of the argument goes through word by word. U

The next lemma provides the sequence that takes the right values at a
given point z in X (¢), with “small” Laplacian, that was referred to in the
beginning of the section.

Lemma 5.2. Let c4(z) = |detw(%85¢)w‘ . For any point xy in X(q)
there is a sequence {ay} such that ay, is in Q%9(X, LF) with

(6 la(2)* = k"%(ﬂ?)

(i) ||k~ (A5) ™y =0
Moreover, there is a sequence Oy , independent of xq and tending to zero,

such that
(’LU) <k_1A50£k, O[k;>X S 519

Proof. We may assume that the first ¢ eigenvalues ), ;, are negative, while
the remaining eigenvalues are positive. Define the following form in C" :

Ml AalNT
Bw)=|———) et X=Xl aguy A dug A ... A dig,
m

so that? ‘ﬂ‘(j) — M — i il fws? and ||ﬁ||¢0,(C“ = 1. Observe that (3 is

in L2Om, the Sobolev space with m derivatives in LQO, for all m Now define
ar on X by

a(2) = k2 xi (VE2)B(VE2),
where x, (w) = X(fR ) and x is a a smooth function supported on the unit

ball, which equals one on the ball of radius 5. Thus |a (0)]? = k"cy(z),
showing (7). To see (i) note that

2 2 2
(5-2) lowllx = IIxeBllgg.c0 = 181501 vir, + 6Bl 51 veR,

"compare the proof of proposition 4.3.
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and the “tail” ||ﬁ||zo,2%\/,;Rk tends to zero, since f is in L} (C") and VR,
tends to infinity.

Next, we show (i77). Changing variables (proposition 3.3) and using 3.4
gives

(5.3)  |[k7™ ozkHX < H () ym-= "(Ag 4 +eka)(Xk5)) o /ER

where Dy, is a second order PDQ, whose coefficients have derivatives that
are uniformly bounded in k. To see that this tends to zero first observe that

5.4 H ABym-1
o4 ( 9 ) 8¢0Xkﬁ) $0,VERy,
tends to zero. Indeed, S has been chosen so that Az, 8 = 0. Moreover,

Az 4, is the square of the first order operator 9+0"%"

[ and obeys a Leibniz like rule, showing that

A soXkB = WP
where 7, is a function, uniformly bounded in &, and supported outside the
ball B 1VkR, (7k contains second derivatives of xy). Now using 3.4 again we
see that 5.4 is bounded by the norm of

’Ykp(wa w)ﬁ,

where p is a polynomial. Thus 5.3 can be estimated by the “tail” of a con-
vergent integral, as in 5.2 - the polynomial does not affect the convergence
- which shows that 5.4 tends to zero. To finish the proof of (7ii) it is now
enough to show that

, which also annihilates

|a®)m D)

¢07ka
is uniformly bounded. As above one sees that the integrand is bounded by
the norm of

q(w, )8,
for some polynomial ¢, which is finite as above.
To prove (iv) observe that, as above,

2

<k_1A5ak, ak> = JEER .

7(6+8)

Hence, by Leibniz’ rule

<k Aaak,ak> < H X, ( 6+8 ﬁH

@+ 0 )

Clearly, there is an expansion for the first order operator (5 +a ) as in
3.4, giving

2n
(k' Agag, ar) < e (||/3||2 +; ||3i/3||2> (\fR 2 1811* .

Note that even if ||||” is independent of the eigenvalues ); 4,, the norms
10;8]|°do depend on the eigenvalues, and hence on the point zo. But the
dependence amounts to a factor of eigenvalues and since X is compact, we
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deduce that ||9;5]]%is bounded by a constant independent of the point z.
This shows that (k™' Agoy, k) < d. Note that e also can be taken to
be independent, of the point zy, by a similar argument. U

Proposition 5.3. Assume that the sequence uy is such that p # 0 and
Z—’; — 0, where d;, is the sequence appearing in lemma 5.2. Then, for any

point x in X (q), the following holds

lim inf k™~ "Bi’ k(@) > — |det, (5 85¢)z

Proof. Let {ay} be the sequence that lemma 5.2 provides and decompose it
with respect to the orthogonal decomposition Q%¢(X, L*) = H (X, L*)®
He i (X, L¥), induced by the spectral decomposition of the elliptic opera-
tor Ay :

Qp = 01 + Qg

First, we prove that

2
(5.5) lin ag’“)(o)‘ —0.

As in the proof of lemma 3.1 we have that

o (0)‘2 < C(x) (k ‘2) .

To see that the first term tends to zero, observe that by the spectral de-
composition of Ay :

K)||? k)
k o) (A57)" a5

+ k"

2 ]- ]- -1 5/6
| < - Dot ane)y < - (k™ Ao, i) . < -
Furthermore, the second term also tends to zero:
_n (K)\m (k)% m )
Efafymal]| < kg ey < [k (Ag) e ][§ 0.

by (i4i) in lemma 5.2. Finally,
|1 (0)]°

kSR (@) > k"
lleve1]%

> k" a0 = k" [ (0) — azk(0)]-

By 5.5 this tends to the limit of k™ |a4(0)|”, which proves the proposition
according to (7) in lemma 5.2 and lemma 2.1. O

Now we can prove the following asymptotic equality:

Theorem 5.4. Let (X,w) be a compact hermitian manifold. Then

1
limk "BLY  (z) = — 1x)

) |det,, ( 65(}5)55

for some sequence py, tending to zero.

Proof. Let i :== /). The theorem then follows immediately from proposi-
tion 5.1 and proposition 5.3 if z is in X (q). If z is outside of X( ) then the
upper bound given by proposition 5.1 shows that limy &~ ”Bi’u L(z) =0,
which finishes the proof of the theorem. Il



18 ROBERT BERMAN

Acknowledgement 5.5. The author whishes to thank his advisor Bo Berndts-
son for stimulating and enlightening discussions and for his positive atti-
tude. Furthermore, the author is grateful to Johannes Sjostrand for com-
ments on an early draft of the manuscript.

REFERENCES

[1] Berman, R: Work in progres.
[2] Berndtsson, B: An eigenvalue estimate for the — Laplacian. J. Differential Geom.
60 (2002), no. 2, 295-313
[3] Bismut, J-M: Demailly’s asymptotic Morse inequalities: a heat equation proof. J.
Funct. Anal. 72 (1987), no. 2, 263-278.
[4] Borthwick, D; Uribe, A: Nearly Kahlerian embeddings of symplectic manifolds.
Asian J. Math. 4 (2000), no. 3, 599-620.
[5] Bouche, T: Asymptotic results for Hermitian line bundles over complex manifolds:
the heat kernel approach. Higher-dimensional complex varieties (Trento, 1994), 67—
81, de Gruyter, Berlin, 1996.
[6] Demailly, J-P: Champs magnetiques et inegalite de Morse pour la d”-cohomologie.,
Ann Inst Fourier, 355 (1985,185-229)
[7] Demailly, J-P: Holomorphic Morse inequalities. Several complex variables and com-
plex geometry, Part 2 (Santa Cruz, CA, 1989), 93-114
[8] Demailly, J-P: Introduction & la théorie de Hodge. In “Transcendental methods in
algebraic geometry. Lectures given at the 3rd C.I.M.E. Session held in Cetraro, July
4-12,1994.” Lecture Notes in Mathematics, 1646. Springer-Verlag, 1996.
[9] Gillet, H; Soulé, C: Amplitude arithmétique. C. R. Acad. Sci. Paris Sér. I Math.
307 (1988), no. 17, 887-890.
[10] Griffiths, P; Harris, J: Principles of algebraic geometry. Wiley Classics Library.
John Wiley & Sons, Inc., New York, 1994.
[11] Gromov, M: Kihler hyperbolicity and L?-Hodge theory. J. Differential Geom. 33
(1991), no. 1, 263-292.
[12] Hérmander, L: L? estimates and existence theorems for the d—operator. Acta Math.
113 1965 89-152.
[13] Li, P: On the Sobolev constant and the p-spectrum of a compact Riemannian man-
ifold. Ann. Sci. Ecole Norm. Sup. (4) 13 (1980), no. 4, 451-468.
[14] Lindholm, N: Sampling in weighted L? spaces of entire functions in C" and estimates
of the Bergman kernel. J. Funct. Anal. 182 (2001), no. 2, 390-426
[15] Siu, Y. T: Some recent results in complex manifold theory related to vanishing
theorems for the semipositive case. Workshop Bonn 1984 (Bonn, 1984), 169-192,
Lecture Notes in Math., 1111, Springer, Berlin, 1985.
[16] Siu, Y.T: A vanishing theorem for semipositive line bundles over non-K#hler man-
ifolds. J. Differential Geom. 19 (1984), no. 2, 431-452.
[17] Wells, R. O., Jr.: Differential analysis on complex manifolds. Graduate Texts in
Mathematics, 65. Springer-Verlag, New York-Berlin, 1980.
[18] Witten, E: Supersymmetry and Morse theory. J. Differential Geom. 17 (1982), no.
4, 661-692.
[19] Tian, G: On a set of polarized Kahler metrics on algebraic manifolds. J. Differential
Geom. 32 (1990), no. 1, 99-130
[20] Zelditch, S: Szegd kernels and a theorem of Tian. Internat. Math. Res. Notices 1998,
no. 6, 317-331.

E-mail address: robertb@math.chalmers.se



Paper 11






SUPER TOEPLITZ OPERATORS ON LINE BUNDLES
ROBERT BERMAN

ABSTRACT. Let L* be a high power of a hermitian holomorphic line
bundle over a complex manifold X. Given a differential form f on X,
we define a super Toeplitz operator T acting on the space of har-
monic (0, g)-forms with values in L¥, with symbol f. The asymptotic
distribution of its eigenvalues, when k tends to infinity, is obtained
in terms of the symbol of the operator and the curvature of the line
bundle L, given certain conditions on the curvature. For example,
already when ¢ = 0, i.e. the case of holomorphic sections, this gen-
eralizes a result of Boutet de Monvel and Guillemin to semi-positive
line bundles. The asympotics are obtained from the asymptotics of
the Bergman kernels of the corresponding harmonic spaces, which
have independent interest. Applications to sampling are also given.

1. INTRODUCTION

Let (X,w) be an n—dimensional compact hermitian manifold and let
L be a hermitian holomorphic line bundle over X. The fiber metric on
L will be denoted by ¢. It can be thought of as a collection of local
functions: let s be a local holomorphic trivializing section of L, then
locally, |s(z) \i = ¢~%() and the canonical curvature two-form of L is 90¢.
Denote by X (g) be the subset of X where the curvature two-form of L
is non-degenerate and has exactly ¢ negative eigenvalues. The notation
np := 1P /p! will be used in the sequel, so that the volume form on X may
be written as wy,.

The spaces H°(X, L¥), consisting of global holomorphic sections with
values in high powers of L, appear naturally in complex and algebraic ge-
ometry, as well as in mathematical physics. In many applications the line
bundle L is positive i.e. its curvature two-form is positive and the asymp-
totic properties of the sequence of Hilbert spaces H°(X, L¥) have been
studied thoroughly in this case. For example the asymptotic behaviour
of the corresponding Bergman kernels is known and can be used to study
asymptotic properties of Toeplitz operators acting on H°(X, L*) as well
as asymptotic conditions on the density of the distribution of sampling
points on the manifold X (see [3| for a recent survey from this point of
view). The aim of the present article is to extend these results in two
directions: to line bundles with weaker curvature properties than pos-
itivity, such as semi-positivity (part 1) and to harmonic (0,q)— forms
with values in L* (part 2). To emphasize the analogy between holo-

morphic sections and harmonic forms, some rudiments of the theory of
1
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super manifolds is recalled. The super formalism also offers a compact
notation.

In part 1, following [16] and [3], everything is reduced to knowing the
leading asymptotic behaviour of the Bergman kernel K (z,y). The asymp-
totics, in turn, are obtained using a new and comparatively elementary
approach based on the method used in [2] to prove local holomorphic
Morse inequalities. The main application is a generalization of a theo-
rem of Boutet de Monvel and Guillemin that expresses the asymptotic
distribution of the eigenvalues of a Toeplitz operator in terms of the sym-
bol of the operator [6], [14]. When L is positive the associated dual disc
bundle over X is strictly pseudoconvex. Omne can then profit from the
knowledge of the Bergman kernel on a strictly pseudoconvex manifold
[7]. However, when L is only semi-positive one would have to use the
corresponding result on a weakly pseudoconvex manifold, which is not
available. In fact, a recent counter example of Donnelly [12] to a conjec-
ture due to Siu, shows that the tangential Cauchy-Riemann operator on
the boundary of the dual disc bundle does not have closed range. This
property is essential to the previous approaches to the asymptotics of the
Bergman kernel.

In part 2 the approach in part 1 is extended to study the Bergman ker-
nel of the space of harmonic (0, ¢)— forms with values in L*, considered
as a bundle valued form on X x X. The main application is a general-
ization of the theorem of Boutet de Monvel and Guillemin to Toeplitz
operators, whose symbol is a differential form on X. These operators are
called super Toeplitz operators and they are closely related to the oper-
ators introduced in [4] in the context of Berezin-Toeplitz quantization of
symplectic super manifolds.

It should be added that part one is just a special case of part two (when
q is equal to zero), except for the applications to sampling. However, it
has been included to motivate the more general discussion given in the
second part.

Part 1. Holomorphic sections

Let (¢;) be an orthonormal base for H°(X, L). Denote by 7; and 7, the
projections on the factors of X x X. The Bergman kernel of the Hilbert
space H°(X, L) is defined by

sz ) @ iy)

Hence, K (z,y) is a section of the pulled back line bundle 77 (L) ® 73 (L)
over X x X. For a fixed point y we identify K,(z) := K(z,y) with a
section of the hermitian line bundle L ® L,, where L, denotes the line
bundle over X, whose constant fiber is the fiber of L over y, with the
induced metric. The definition of K is made so that K satisfies the
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following reproducing property

(1.1) a(y) = (o, Ky)

for any element o of H°(X, L), which also shows that K is well-defined.
In other words K represents the orthogonal projection onto H°(X, L) in
L%*(X, L). The restriction of K to the diagonal is a section of L ® L and
we let B(z) = |K(z,z)| be its point wise norm:

Bla) = 3 (o).

We will refer to B(z) as the Bergman function of H*(X, L). It has the
following extremal property:

(1.2) B(z) = sup|a(z)[*,

where the supremum is taken over all normalized elements o of H°(X, L).
An element realizing the extremum, is called an extremal at the point x
and is determined up to a complex constant of unit norm. In order to
estimate K (x,y) we will have great use for a more general identity. It

is just a reformulation of the fact that, by the reproducing property 1.1,
K,/+/B(z) may be identified with an extremal at the point z.

Proposition 1.1. Let o be an extremal at the point x. Then

K (z,9)]" = |a(y)| B(z)
Proof. First fix the point x and take a local holomorphic trivialization
of L around z. Then we may identify K(z,y) with an element K, of
H(X,L). Now we may assume that |[|[K,|| # 0 - it will be clear that
otherwise the statement is trivially true. By the reproducing property
1.1 of K the normalized element K,/ | K| is an extremal of B at z.
Furthermore, the reproducing property 1.1 also shows that the squared

norm of K, is given by (K, K;) = K;(z) = K(z, z). Hence

la()]” = [Kz(y)[* /K (2, 2),
for any other extremal o of B at z. Since |K (z,y)> = |K,(y)|> e @) and
since by definition K (z,z)e?®) = B(x) this proves the proposition. [

Next, we will define certain operators on H°(X, L). Given a complex-
valued bounded measurable function f on X we define T, the so called
Toeplitz operator with symbol f, by

Tf = Po f-,

where f- denotes the usual multiplication operator on L?(X, L) and P is
the orthogonal projection onto H°(X, L). Equivalently:

(1.3) (Tye, B) = (fev, B),
for all elements « and 8 of H°(X; L). Note that the operator 7} is her-
mitian if f is real-valued.

!We are abusing notation here: the scalar product (-,-) on H(X, L) determines a
pairing of K, with any element of H°(X, L), yielding an element of L.
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When studying asymptotic properties of L*, all objects introduced
above will be defined with respect to the line bundle L.

2. ASYMPTOTIC RESULTS FOR BERGMAN KERNELS AND TOEPLITZ
OPERATORS.

Let us first see how to prove the following upper bound on the Bergman
kernel function B(z) :

1) B <Ky

detw(%a&b)z +o(k™),

where we have identified the two-form i00¢ with an endomorphism, using
the metric w, so that its determinant is well-defined. Integrating this
over all of X gives an upper bound on the dimension of the space of
holomorphic sections:

(2.2) dime HO(X, LF) < k"ﬂi/ (385@” + o(k™),

™ n! X(0) 2
which is precisely Demailly’s holomorphic Morse-inequalities for (0, ¢) —forms
when ¢ = 0. In [2] the inequality 2.1 and it’s generalization to harmonic
(0,q)— forms were called local holomorphic Morse-inequalities. As we
will see 2.1 follows from the submean property of holomorphic functions
and a simple localization argument. Fix a point z in X and choose
complex coordinates z and a holomorphic trivialization s of L around
x, such the metric w is Euclidean with respect to z at 0 and the fiber
metric ¢(2) = ¢o(2) + O(|2[*), where ¢o(2) = S0, \i|zi” and \; are
the eigenvalues of the curvature two-form 00¢, with respect to the base
metric w, at the point z. According to the extremal property 1.2 of B(z)
we have to estimate the point wise norm of section o at x in terms of
the global L? norm. Let Bpg, be balls centered at z of radius R, — 0.
By first restricting the global norm to the ball Bg, and than making the
change of variables z = % in the integral we get
2 2
Ol ol e [ e,
loulle — Tlowl, b

where the holomorphic functions f; represent a4 in the local frame. The
factor py comes from the base manifold metric and the terms of order
in

O(|z|?) in the fiber metric on L. If we now choose e.g. Ry = Tllz then the

factor p, — 1 and the scaled radii VEkRy — oo so that the integration
in the variable w is over all of C* in the limit. Furthermore, since |f|”
is plurisubharmonic the quotient in the right hand side can be estimated
by the inverse of the Gaussian

1/ e 9o)
B\/ERk
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which tends to (1/7m)"A1Ag - - - A, if all eigenvalues are positive and is
equal to zero in the limit otherwise. This proves the upper bound on
the Bergman kernel function 2.1. In fact, what we have proved is the
stronger statement that for any sequence (ay), where oy, is in H°(X, L¥),

: —n 1
(2.3) hmksupk ()] / ||ak||QBRk < S lx(@)

detw(%agqﬁ)w

which will be important in the proof of theorem 2.4.

It is well-known that 2.1 is actually an asymptotic equality when L
is positive on all of X. One can e.g. use Hormander’s celebrated L2
estimates to obtain the equality [17],[16], [3] (for complete asymptotic
expansions see [19] , which is based on the micro local analysis in [7]
and [1] for a simple and direct approach). But these methods break
down if the curvature of L is only semi-positive. On the other hand
Demailly proved, using his holomorphic Morse inequalities, that 2.1 is
an asymptotic equality under the more general condition that X (1) is
empty. Combining Demailly’s result with the upper bound 2.1 we obtain
the following theorem:

Theorem 2.1. Suppose that X (1) is empty. Then

1
kian(.I) — _an(O) (.T)

i
- det, (5004)

in LY (X, w,). In particular, the measure B*w, k™ converges to T "1 x(0) (00¢)n
in the weak*-topology.

Proof. The upper bound 2.1 says that

limsup k~"B*(z) < —1x(o)(2) ‘detw(%85¢)w| ,
k

for any line bundle L. Moreover, if the curvature of the line bundle L is
such that X (1) is empty, then

1
. —-n k
hlgnk / B (az)wn =— /1)((0) (w)

To see this, note that the left hand side is the dimension of the space
HO(X, L*). In this form the statement was first shown by Demailly in
[9]. See also proposition 3.2 in the present paper. Finally the theorem
follows from the following simple lemma: (]

Wn-

detw(%agqﬁ)z

Lemma 2.2. Assume that (X, i) is a finite measure space and that f and
fr are bounded functions, where the sequence f;, is uniformly bounded. If

(4) li;n/kad,u:/de,u, and (#) limsup fr < f.

Then the sequence fi converges to f in LY(X, ).
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Proof. By the assumption (i)

limsup/ |fk—f\d,u=21imSUP/ Xk (fx — f)dp,
k X k X

where xi is the characteristic function of the set where fy — f is non-
negative. The right hand side can be estimated by Fatou’s lemma, which
is equivalent to the inequality

limsup/ gkd,ug/limsupgkd,u,
k X Xk

if the sequence gy, is dominated by an L'—function. Taking g = xx(f —
f) and using the assumption (i7), finishes the proof of the lemma. O

The weak convergence of the previous theorem can be reformulated in
terms of Toeplitz operators:

Corollary 2.3. Suppose that X (1) is empty. Then for any bounded
function f on X

limk " TrT; = (27) ™ f(i006),
k X(0)
Proof. From the definition 1.3 of a Toeplitz operator TrTy = ). (f¥;, ¥;),
which is equal to [, fBg(2)wy,. The corollary now follows from the L'
convergence in the previous theorem. O

We have seen how to obtain the leading asymptotics of B(z), the norm
of the Bergman kernel K on the diagonal. The main point of the present
paper is that the argument presented actually also shows that |K (z,y)[?
tends to zero off the diagonal to the leading order. The idea is that
combining the upper bound 2.3 with the asymptotics for B(x), one sees
that any sequence of extremals a4 at a given point x, becomes localized
around z in the large £ limit. Since K, (y) is essentially equal to ay(y),
this will show that K(z,y) localizes to the diagonal when k& tends to
infinity. A similar argument has been used by Bouche [5] to construct
holomorphic peak sections when L is positive.

Theorem 2.4. Suppose that X (1) is empty. Denote by A the current of
integration on the diagonal in X x X. Then

limy, k= [ K* (2, y)|* wa(2) A wa(y) = 27) " 1x(0)A A (i006),,
as measures on X X X, in the weak *-topology.

Proof. First note that the mass of the measures py, := ‘Kk (z,9) |2 JE"wn ()
wn(y) are uniformly bounded in k: first integrating over y and using the
reproducing property 1.1 gives

(X xX) = k" / [(KE, KE) | wn () = k" / By(w)w, = k=" dim H(X, LF),

x x
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which clearly is bounded by 2.2. Moreover, the mass of X (0)¢ x X tends
to zero:

pe(X(0) x X) = k‘”/ (KE, KE)| = k—"/ By.(7)w, =0,
X(0) X(0)
where we have used the bound 2.1.

Hence it is enough to prove the convergence on X (0) x X. Moreover
since the mass of the measures pu; is bounded, it is enough to show
that any subsequence of y; has another subsequence that converges to
T "lx0)ANA (00@)n, in the weak*-topology. To simplify the notation the
first subsequence will be indexed by & in the following.

According to theorem 2.1 and standard integration theory there is a
subsequence of k™" By that converges to 7" ‘detw(%85¢)z‘ almost every-
where on X (0). Fix a point z in X (0) where k" By(x) converges. Take a
sequence of sections ay, where «y is a normalized extremal at the point
x. Then according to proposition 1.1:

2
(2.4) [KE)[" = |ew(y)|” B ()
We will now show that there is a subsequence of oy such that

. 2
(2.5) hlgn ”ak”BRk(x) =1

where By, (z) is a ball centered in z of radius k of radius Ry, := Ink/Vk
with respect to the “normal” coordinates around z used in section 2.
Since the global norm of a4 is equal to one and the radii Ry tend to
zero, it follows that the function |oy(y)|* on X converges to the Dirac
measure at z in the weak*-topology. From this convergence we will be
able to deduce the statement of the theorem. To prove the claim 2.5 first
observe that there is a subsequence of «; such that at the point z :

ﬂ_—n

detw(%aggﬁ)w

= lijr_n k" |, () ‘2

Indeed, since o is normalized 1.2 says that the right hand side is equal
to k™ times By(z), the Bergman function at the point z, which in turn
tends to the left hand side according to theorem 2.1 and by the assump-
tion on the point x.

Furthermore, since a4 is normalized the restricted norm ||ak||2BRk (z) 15

less than one. Hence the right hand side is trivially estimated by
. _ 2 2
lim sup & ™ o, ()| / HaijBRk (@) "
j i

According to 2.3 this in turn may be estimated by ‘detw(%85¢)w| . All in
all this shows that
7_‘_771

det, (-000). et (5006).

—n1: 2
=7 11JI_II /Ho‘ijBRkj(w)

Since the left hand side is non-zero on X (0) this proves the claim 2.5.
Now to prove the theorem we take a test function f(z,y) and consider
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the integral
n . 2
K / £, 9) |K5 (2, 9) [ wal() A wn(y).
X(0)xX

We may restrict the integration over the first factor in X (0) x X to the set
of all z satisfying the assumption used above, since the the complement
is of measure zero. Using the identity 2.4 the integral over y (for a fixed
point x) equals

k" BY () /X F(@,) ok, (9)] waly).

Since by 2.5 the function |ay(y)[* converges to the Dirac measure at z in
the weak*-topology, the integral is equal to f(z,z) in the limit and the
first factor is equal to 7" |detw(%85gb)z| in the limit (by theorem 2.1).
Hence the previous integral is equal to

(2m)~" /X(O)f(x,x)(iaggb)n

in the limit, which finishes the proof of the theorem. U

As before the convergence may be formulated in terms of Toeplitz
operators (a more general statement will be proved in part II (corollary
5.5)).

Corollary 2.5. Suppose that X (1) is empty. Then
limy, k7" TrTyy = limg K" TrTT, .

We will now use the results on the asymptotics of the Bergman ker-
nel K to express asymptotic spectral properties of Toeplitz operators in
terms of their symbol. Denote by

N(Ty > )

the number of eigenvalues of 7y that are greater than the number v
(counted with multiplicity). Furthermore, N(7y < 7) is defined similarly.

Theorem 2.6. Suppose that X (1) is empty and that f is a real-valued
bounded function. Then for all v except possibly countably many the
following holds:

(2.6) lim k"N (T > ) = (2m) ™" / (1096),
{r>v1Nx(0)

and similarly for N(Ty < 7).

Proof. Given the asymptotic behaviour of K(z,y) in theorem 2.4, the
proof can be adapted word by word from [16],[3]. But for completeness
we give a proof here, that slightly simplifies the proof in [16]. We first
prove the statement when f is the characteristic function for a given set
Q: f = 1q. Let us denote by T, the corresponding operator. We may
assume that 1 > v > 0. By corollary 2.3 the right hand side of 2.6 is
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then equal to the limit of £7"Tr Tq. Moreover, by corollary 2.5 this limit
in turn is equal to the limit of k=" TrTZ. We will now see that this can
happen only if limy k"N (T > ) = limg k7" Tr Tq, which proves the
statement with this special choice of f. Indeed, since if we denote by 7
the eigenvalues of T},

lim £~ Y n-1) =0,
it follows from estimating (1 — 7;) from below that
lim £~ » =0
7 <7
Hence
limk " 7 =limk "Tr To = / (80¢),,
k S k 2 X(0)

Now it is not hard to deduce that limy k"N (Tq > ) = an X(0) (00¢),.

By comparing an arbitrary function f with a characteristic function

we will now finish the proof of the theorem. Let us first prove the lower
bound

(2.7)  liminfk™"N(T; > ) > (2r)™" / (i099)y..
k {(/>7}NX(0)

First note that we may assume that f is non-negative by adding an ap-
propriate constant to f. By the max-min principle applied to the operator
Ty and by 1.3

N(Tf > ) =max{dimV : (fo,a) > v(a,0)Va € V},

where V is a linear subspace of H°. Hence we have to find a sequence of
subspaces Vj, with

(2.8) dim V; = k™(2m)™" / (1006), + o(k™),
{r>73Nx(0)

such that for any normalized « in V} (fa, @) > . To this end denote by
Q) the set where f >« and denote by x the corresponding characteristic
function. Since we have already proved the theorem for characteristic
functions, there is, for any given small positive ¢, a sequence of subspaces
Vi with the correct dimension 2.8 such that

(xa,a) >1—¢
for all @ in Vj, Since by definition f > vy it follows that
(ka, Oé) > 7(1 - 5)7
for all & in V. By symmetry this means that

liminf & "N (Ty > ) > (2%)"/ (1008) -
k {F>v+}NX(0)
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By letting € tend to zero in the right hand side we obtain the desired
lower bound 2.7. If we now apply this result to the function —f we
obtain the following equivalent result:

(2.9) liminfk "N(T; < §) > (2m) ™ / (100¢)s,.
k {f<8} N X(0)

Now note that for all except countably many numbers 7, the set {f = v}
is of measure zero with respect to the measure (i09¢), on X. Indeed,
the function g(y) = [ U< NX(0) (i00¢),, on the real line is increasing and
it is well-known that an increasing function is continuous accept on a
countable set. This forces the measure of the set {f = v} to be zero for
all v accept those in the countable set. Finally, since the total number of
eigenvalues for any operator 7} is equal to the dimension of H(X, L),
we get, when k tends to infinity, that the sum

lilgn E~"(N(Ty > ) + ]ign k"N(Tr <)

is equal to the asymptotic dimension

(2m)"( / (i096), + (27) " / (i096),)
{f>7}Nx(0) {f<y}NX(0)

for all v such that the measure of the set {f = 7} is zero. Combing this
with the lower bounds 2.7 and 2.9, we see that we must have equality in
2.7, which proves the theorem. O

The main application of the previous theorem is to show that there is
a large supply of holomorphic sections concentrated on any given set €2
in X (0), in the following sens:

2 2
lellg = (1 =€) [lallx

for any given positive (small) e. To see this, denote by x the characteristic
function of the set €2, and note that if « is a linear combination of eigen-
sections of the Toeplitz operator T then o will be concentrated on €2, as
long as the eigenvalues are bounded from below by (1—¢). The number of
such sections « is precisely the spectral counting function N(7) > 1—¢).
Hence, the previous theorem shows that there is a subspace of dimension

k" (2m) /Q (i096)n + o(k™),

consisting of concentrated sections, a result that will be useful when
studying sampling sequences in the next section.

The following equivalent formulation of theorem 2.6 can be obtained by
standard methods in spectral theory. It generalizes a theorem of Boutet
de Monvel and Guillemin [6], [14], valid when L is positive, to the case
when X (1) is empty.
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Theorem 2.7. Suppose that X (1) is empty. Let (1;) be the eigenvalues
of Ty and denote by d&j, the spectral measure of Ty divided by k", i.e.

déy =k b,

where &, is the Dirac measure centered at 7,. Then d& tends, in the
weak*-topology, to the push forward of the measure 1x(oy(27)"(1006),
under the map f, i.e.

timS " a(r) = (20) / o(f(2)(1096),
L X(0)
for any measurable function a on the real line.

3. SAMPLING

Let D, be a finite set of points in X. We say that the sequence of
sets Dy is sampling for the sequence of Hilbert spaces H°(X, L¥) if there
exists a uniform constant A such that

ARy la@)P <ol < k) la(@),
Dy, Dy,

for any element o in H°(X, LF). The points in Dj, will assumed to be
separated in the following sense: the distance between any two points in
Dy, is bounded from below by a uniform constant times k~'/2. Consider
the measures dvgy on X corresponding to the sets Dy :

dvg ;= k™" Z O
Dy,

Because of the separability assumption their mass is uniformly bounded
in k. Hence any subsequence has a subsequence that is weak *-convergent.
Denote by dv such a limit measure. It is natural to ask how dense the
sampling points should be, for large £, in order to be sampling. i.e.
we ask for asymptotic density conditions on the measure dv. The model
case is sampling on lattices for the Fock space, i.e. X is taken to be C"
with its standard Euclidean metric form wand L is the line bundle with
constant positive curvature —2iw. If the sequence Dy is a sequence of
lattices generated over Z by k= %(ay, ..., ag, ), where the a; are positive
numbers, then a necessary condition for this sequence to be sampling is
that ay ---ag, < 7™. In ([16], [3]) this necessary condition was generalized

to any positive line bundle. Namely, the limit measure has to satisfy
dv > (27) "(i00¢),.

The next theorem shows that in order to sample H°(X, L¥) when X (1)
is empty, the sampling points have to satisfy the same necessary density
conditions in X (0) (the part of X where L is positive) as in the case
when the curvature is positive everywhere on X.
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Theorem 3.1. Assume that the sequence of sets Dy is sampling for the
sequence of Hilbert spaces H*(X, L¥). If X (1) is empty then the following
necessary condition holds:

dv > (27)7"(i00¢)n
on X (0). In other words

(3.1) lim inf #(Dy () Q)/k" > (27) 7" / (100¢),,
Q
for any smooth domain Q contained in X (0).

Proof. Given theorem 2.6 (applied to the characteristic function for a set
) the proof can be given word by word as in [16], [3]. For completeness
we give the argument. Suppose that the sequence Dy is sampling and
consider a set {2 in X (0). As was explained as a comment to theorem 2.6,
the theorem shows that there is subspace of dimension

k" (2m) / (i006), + o(k™)
Q
consisting of functions satisfying the concentration property

(3.2) lallg > (1—¢) llallk

(we fix some small €).Now the claim is that for any such concentrated «
the sampling property of the sequence Dy yields

(3-3) ol < Ak Y Ja(@),

Dy N 2%,

where € consist of all points with distance smaller than 1/v% to €.
Accepting this for a moment it is easy to see how the theorem follows.
First note that it is enough to prove the theorem with {2 replaced with the
larger set €2, since the number of points in Dy (2 — Q) is of the order
o(k™). To get a contradiction we now assume that the number of points in
Dy, N Q is strictly less than £"(27)™" [,,(00¢), + o(k™) (meaning that
condition 3.1 in the theorem does not hold). But then we can find a
non-trivial element a concentrated on ) and vanishing in all the points
in Dy () €%. Indeed, a can be chosen in a space of dimension of order
k™ (2m) ™ [ i00¢), and by assumption there are sufficiently few linear
condltlons to find such an « vanishing in all the points in Dy (2. But
then 3.3 forces « to vanish on all of X, which is a contradiction.
Finally, we just have to show how 3.3 follows. For any point x a simple
submean inequality gives as in the beginning of section 2:

E o) < Clal, -

By the separation property of D, we may thus estimate the sum over
Dy, (N €2 to obtain

F S Ja@)P < Cllalh <

Dy N5,
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where we have used the concentration property 3.2 in the last step.
Hence, we have proved 3.3, which finishes the proof of the theorem. [

Part 2. Harmonic forms

The aim of the second part of the paper is to generalize the results
in part one to 0—harmonic (0,q)— forms with values in L*¥. We denote
the corresponding spaces by H(X, L*), which by Hodge’s theorem are
isomorphic to the Dolbeault cohomology groups HY(X, L*). The first part
was based on the observation 2.1 that there is always an asymptotic upper
bound on the Bergman kernel function By(z) of the space of holomorphic
sections with values in L*. Furthermore, if the line bundle L is such
that X (1) is empty, then it was shown, using Demailly’s strong Morse
inequalities, that the estimate is actually an asymptotic equality (at least
in the sense of L'—convergence).

Let us recall the approach to Demailly’s inequalities presented in [2].
First one shows that

(3.4) dime HL, (X, LF) = k”ﬂ / (faéqs)n + o(k™),
Vg n X(q) 2

™

for the space H%, (X, L*) spanned by all eigenforms of Az with eigenval-
ues bounded by_z/k, where v, = urk and py is a certain sequence tending
to zero. We will refer to the elements of the previous space as low-energy
forms. The dimension formula 3.4 is deduced from the following point
wise asymptotics for the corresponding Bergman kernel functions:

n

k i
(3.5) BL,, (w) = = 1x(g |detu(5009)| + ok")

The method of proof is a generalization of the argument used to prove
the upper bound on By(z) in section 2 and will not be repeated here.
From 3.5 one immediately gets an upper bound on the Bergman kernel
functions for the space of all harmonic forms:

kn

(3.6) Bi(2) < “1x detw(%agqﬁ)m + o(k™)

(in [2] these bounds were called local holomorphic Morse inequalities).
However, the equality 3.5 captures much more of the asymptotic infor-
mation of the Dolbeault complex as can be seen in the following way.
First observe that the complex

(3.7) (%, (X, L*),0),

consisting of all eigenforms of Az with eigenvalue j;, forms a finite di-
mensional sub complex of the Dolbeault complex (Q* (X, LK), 5) . Indeed,
0 commutes with Ay. Moreover, the complex is exact in positive degrees
for non-zero y,. The Witten 0—complex is now defined as the direct sum
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of all the complexes 3.7 with eigenvalue iy, less than v;. By the Hodge
theorem the inclusion of the Witten 0—complex

(H%, (X, LF),0) — (Q*(X, LF),0),

<vg
is a quasi-isomorphism, i.e. the cohomologies of the complexes are iso-
morphic and 3.4 gives the dimension of the components of the Witten
0—complex. A homological argument now yields Demailly’s strong Morse
inequalities for the truncated Euler characteristics of the Dolbeault com-
plex [9].

The main point of this is approach to Demailly’s inequalities is to
first prove the Bergman kernel asymptotics 3.5 - the rest of the proof is
more or less as Demailly’s original proof, which in turn was inspired by
Witten’s analytical approach to the classical real Morse inequalities [18|.

Let us now turn to the study of harmonic (0, ¢)— forms for a fixed ¢,
i.e. the space H(X, LF). As above this space can be identified with the
cohomology groups at degree ¢ of the Witten 0—complex:

(3.8)

0 0
L= HENX LR — HL, (X, LF) — %gi(X,Lk) o

<vg
The natural condition on the line bundle L that generalizes the condition

that X (1) is empty, which was used in the study of holomorphic sections
in part one, is that X (¢ — 1) and X (¢ + 1) both are empty.

Proposition 3.2. Suppose that X(q—1) and X(q+1) are empty. Then

dime H9(X, IF) = g D / (gaéqs)" +o(k").
X(q)

™ nl
Proof. Consider the orthogonal decomposition
HL, (X, LF) = HUX, LF) @ HL(X, LF),

<vg

where HZ (X, L*¥) denotes the eigenspaces corresponding to positive eigen-
values. According to the dimension formula 3.4 we just have to show that
the dimension of H2 (X, L*) is of order o(k™). Since the operator & + 9"
maps HY (X, L¥) invectively into HZ, (X, L*) @ HZL, (X, L*) the propo-
sition now follows by applying the dimension formula 3.4 again. O

Combining the previous proposition with the upper bound on the
Bergman kernel function Bj(z) of the space of harmonic (0, ¢)—forms
shows that

1 1. =
(3.9) k" Bi(@) = —Lxy (@) |det, (5006),

in L'(X, wy,), exactly as in the proof of theorem 2.4. When ¢ is zero B} ()
is the point wise norm of the restriction of the Bergman kernel K(z,y)
to the diagonal. For ¢ positive, K (z, z) is (locally) a matrix and B}(z) is
its trace. But this means that there is now a larger gap between 3.9 and
the behaviour of K (z,y) - one would rather like to obtain generalizations
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of theorem 2.4 to the matrix elements of K (z,y). To achieve this in an
invariant way it will be very convenient to think of K(z,y) as a bundle
valued form on X x X. It will turn out that K (z, y) is not only localized on
the subset corresponding to X (¢) of the diagonal in X x X, but all of the
contribution to K(z,z) comes from a special direction. This is already
clear from Demailly “s work. In [2] this fact was shown by reducing the
problem to a model case in C* where it can be checked explicitly. In
order to treat K(z,y) as a form and to define the special direction the
following formalism will be useful.

3.1. The super integral and the dagger } (reversed complex con-
jugation ). Consider first a real m—dimensional manifold X. Let f be
a differential form on X i.e. f is an element of Q*(X, C). Then the super
integral of f is defined to be the usual integral of the top degree form of

f,ie
/Xf1+f2+...+fmt=/Xfm,

where we have decomposed the form f with respect to the degree grading
of *(X, C). It is often convenient to think of the super integral of a form
as a double integral in the following way. Suppose that we are given a
volume element, that we write as wy,, on X. Fix a point x in X. Then
f(z) is element of the exterior algebra over x and we define an “integral”

of f(z) by

(3.10) (x) :== fi(x)/wm(z).

X0|m
Next, for a function f; on X, we let

[ @)= [t

i.e. the usual integral over X of f, with respect to the volume form w;,.
Then the super integral of a form can be written as

/x I= /Xmo /xmm f@).

A word on the notation: In the mathematics literature the integral 3.10
is called the Berezin integral. In the physics literature one often thinks
of a differential form as a “super” function of m commuting (“bosonic”)
variables z; and m anti-commuting (“fermionic”) variables dz;. Taylor-
expanding the function f(x1,..., Zm,dz1,...,dz,,) in the anti-commuting
variables yields the usual expression of a differential form. This has been
formalized in the theory of super manifolds, where the super integral
corresponds to the integral of a function over the super manifold X™™,
that can be obtained from the manifold TX* by changing the parity
along the fibers [11],[8].

Now assume that X is an n-dimensional complex manifold with a her-
mitian metric w. Consider a (0, ¢)—form f on X. It is well-known that
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the squared norm of f may be written as

1FI% = e /X FATAWG (- g,

in terms of the usual integral, where ¢, , is complex constant needed to
make the right hand side real and positive. Using the super integral we
may write the squared norm of any form f in Q%*(X,C) as

1= G [ asine,

where w' = —2iw and where the dagger ' is the linear operator on
Q*(X, C) that coincides with the usual complex conjugation on Q' (X, C)
and satisfying

(anp)' =B Aal,
for any elements o and § in Q*(X,C). In particular w'f = ' and if if
I = (iy,...,14), then

dz' Ad2"t = (dz AdZMY A - A (d2 A dZ)

If there is also given a hermitian line bundle L over X, then the squared
norm of an element o of Q%*(X, C) may be written as

a5 = (1)”/ aAal Ae
2" Jx

Note that we are abusing notation here: the function e™? representing
the fiber metric on L is only defined locally and a A af is a (g, ¢)— form
with values in L ® L and may not be canonically integrated. However,
the combination o A af A e~? yields a well-defined global (g, ¢)—form on
X. When X is C* with its standard Euclidean metric form wand L is
the line bundle with constant positive curvature w’, the exponent in the
norm above, is equal to

> (—z% + dzi A dz)
i
and from the point of view of super manifolds the corresponding Hilbert
space is the space of super functions on C*™ that are holomorphic in the
even variables and anti-holomorphic in the odd variables.

3.2. The direction form x?9. Fix a point z in X (¢). Using the metric
w we can identify the curvature two-form 00¢, at r with a hermitian
endomorphism of the fiber over z of the holomorphic tangent bundle
T X0 in the usual way [13]. By the definition of X (q), 0¢ has precisely
q negative eigenvalues at x and we denote the complex subspace spanned
by the corresponding eigenvectors by V(q),. 2 This defines a sub bundle
V(q) of TX"Yover X(q). Denote the corresponding inclusion map by i

°In the usual real Morse theory the space V(q), corresponds to the linearisation
of the unstable manifold at a critical point.
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and let m be the orthogonal projection of TX*? onto V(g). On X (q) we
define the direction form x%? by

x%? .= 7'('*7;*0.):1
and extend it by zero to all of X. Locally, x¥%? can be expressed in the
following way on X (q). Let (e;) be a local orthonormal frame of 7X!°
such that ey, ...,e, is a local frame for V(g) and denote by €' the dual
(1,0)— forms. Then

(3.11) X% := efo A elot

In the sequel, when working with local frames over X (¢), we will assume
that ey, ..., e, are as above. Given a a form f in Q*(X,C) let f, be the
function defined by

1

Ala) = G [ X0 A g ne,

which is just a compact way of saying that on X (q) f, is a sum of f*%and
all coefficients f;; such that J () Iy = (,where fr; denotes components
of the form f with respect to the local base elements e’ A e’T.

One final remark: in the notation of the previous section one can think
of 7 as a cut-off function on the super manifold X"

4. BERGMAN KERNELS AND TOEPLITZ OPERATORS

Let (t;) be an orthonormal base for a finite dimensional Hilbert space
H%4 of (0, ¢)— forms with values in L. Denote by 7; and 7, the projections
on the factors of X x X. The Bergman kernel form of the Hilbert space

H%4 is defined by
Z i(z) A i

Hence, K(z,y) is a form on X x X with values in the pulled back line
bundle 7§(L) @ 75(L). For a fixed point y we identify K, (z) := K(z, y)
with a (0, g)—form with values in L ® Q%4(X, L),. The definition of K is
made so that K satisfies the following reproducing property:

(4.1) aly) = (L) /X a AKL A et

for any element o in H%9. The restriction of K to the _diagonal can be
identified with a (¢, ¢)—form on X with values in L ® L. The Bergman
form is defined as K(z,z)e %@, i.e.

(4.2) B(z) = Z bi(z) A i (z)Te

and it is a globally well-defined (¢, ¢)—form on X. Note that the Bergman
function B is the trace of BY, i.e.

Buwy, = ¢p oB A wp_yg.
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For a given form « in Q%¢(X, L) and a decomposable form 6 in Q%¢(X),
of unit norm, let ay(z) denote the element of Q%°(X L), defined as

ag(z) = (@, 0),

where the scalar product takes values in L,. We call ag(z) the value of «
at the point x, in the direction 6. Similarly, let By(x) denote the function
obtained by replacing 4.2 by the sum of the squared point wise norms of
Vi p(x). Then By(x) has the following useful extremal property:

(4.3) By(w) = sup [y ()",

where the supremum is taken over all elements a in H? of unit norm.
An element « realizing the supremum will be referd to as an extremal
form for the space H™! at the point z, in the direction 0. The reproducing
formula 4.1 may now be written as

(4.4) ag(y) = (@, Kyp)
and we have the following extremal characterization of the Bergman ker-

nel (which also gives 4.3).

Lemma 4.1. Let o be an an extremal at the point x in the normalized
direction 6. Then

Koo )] = |a(y)|” Bo(z)

Proof. Fix the point z and the form # in A" %°(X), and take frames
around z such that # = e’.Then the pair (z, ) determines a functional
on HI:
a — arx) .
By the reproducing property 4.4
i

ar(z) = (§)R/XO‘/\ Ko A = (o, K, 1)

for any element o in H*4, where K, ; := Y, 9! (z)¢; is an element of H7.
In terms of a frame at y we can write

Ka,1 (y) = Z Kz, y)eT

By the reproducing property 4.4 K, ;/ || K, 1
z in the direction el. This means that if « is another extremal at the
point z in the direction el then

la(y)]” = [Kor (9)/ 1Ke,r
The previous equality may be written as
(4.5) By(z,2) |a(y)* = K1 (y)[ e,

since the reproducing property 4.4 shows that ||K, /|| = K(z,z) and
by definition K;;(z,x)e~%® := By(x). This proves the lemma. O

| is an extremal at the point

I

7
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Next, denote by Q% (X, C) the commutative sub algebra b, ¥+ (X, C)

of 2*(X, C). For an element f in QO (X, C), we define T}, the so called
super Toeplitz operator with form symbol f, by

(4.6) (Tra)(y / fAaAKD A e ot
Equivalently,
(4.7) (Tre, B) = / FAanBtAe ot

for all elements o and 3 of H9. Note that the operator T is hermitian
if f is a real form with respect to the real structure on €, 2P?(X, C)

defined by f.i.e. if ff = f. This means that if f is real-valued in the usual
sense i.e. f is an element of Q*(X,R), then ™7} is hermitian for some
integer m. In the following we will only consider symbols f that are real
with respect to 7.

When studying asymptotic properties of L*, all objects introduced
above will be defined with respect to the line bundle L*.

Remark 4.2. The term super Toeplitz operator was used in [4] in a closely
related context. However, the most natural global setting corresponding
to |4] is obtained by taking the sequence of Hilbert spaces to be the
spaces H*(X, L¥), i.e the direct sum of all harmonic (g, 0)—forms with
values in L*, where ¢ = 0,1,..n and where L is a positive line bundle.
Then H*°(X,LF) is actually the space of all holomorphic forms with
values in LF. In particular, the space H?°(X,L*) may be written as
HY(X,L* ® E,), where E, is a holomorphic vector bundle, so that the
analysis for the corresponding Bergman kernels is reduced to the situation
studied in part 1 (twisting with a fixed vector bundle has only minor
effects on the analysis).

5. ASYMPTOTIC RESULTS FOR BERGMAN KERNELS AND TOEPLITZ
OPERATORS.

The next theorem generalizes the bound 2.3 in part 1 to low-energy
forms on X, i.e. elements of #%, (X, L*). It is a refined formulation of
the local weak holomorphic Morse inequalities obtained in |2].

Theorem 5.1. Fiz a point  in X and a direction form 6 in A®4(X),.
Then the following inequality holds:

2 :
1 _
lim sup (k_” sup |a0(:§)| ) < — {(x®%,0 A 0T>m detw(zaﬁé)ac
K lallp,, /7 2
where the supremum is taken over all elements o of HZ,, (X, LF) and

Ink
Ry = 7,
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Proof. In the statement of the theorem concerning local holomorphic
Morse inequalities in [2] the global norm ||c||% was considered. However,
the proof given there actually yields the stronger statement involving
||ak||23Rk . An outline of the argument is as follows. It is enough to prove

the statement for # = e!. Consider the restriction of the normalized form
o to the ball Bp, centered at the point z. Let %) (2) := km2ma(k22)
and extend it by zero to a form on all of C". In [2] it was shown that one
may assume that the sequence 5%)(z) tends to a form 3 weakly in L?(C").
Moreover, the sequence convergences uniformly with all derivatives on the
the unit ball. This entails that 8 is harmonic with respect to the fiber
metric @y (section 2) on the trivial line bundle in C". Thus,

(1) timswp|gP0)] /8P|, o < 18:OF /1181
k

where we have used that ||]|%, < lim sup||ﬁ(k)H2Bl (0 thanks to the

weak L?— convergence in C". In |2]| the right hand side was shown to
be bounded by 7" |det 65(15 | if I = I, and equal to zero other-
Wise Since the limit in the left hand side in 5.1 equals the limit of

|oz,C ‘ / ||ak||BR (z) » this proves the theorem for § = el O

In [2]| the asymptotics of By(x), the trace of the Bergman kernel form
By associated with the Hilbert spaces ’H<Uk (X, L*), was deduced from
the previous theorem. In fact, the proof given there actually yields the
asympototics of the Bergman kernel form itself. As in part 1 the con-
vergence holds for the Hilbert spaces H4(X, L*) as well, under special
conditions on the curvature of L.

Theorem 5.2. Let By be the Bergman (q,q)— form of the Hilbert space
HL, (X, LF). Then

1 u
B (2) » X" detw(%aagb)m

point wise. If X(q — 1) and X(q + 1) are empty than the convergence
holds in L*(X,wy) for Bl associated to the Hilbert space HY(X, LF).

Proof. Using the extremal property 4.3 of By, the upper bound follows
immediately from the previous theorem. In particular k=" B;(z) tends to
zero unless I = I, (using frames as in section 3.2). Hence, it is enough
to prove the lower bound for the trace By(z) of By. But this is contained
in the asymptotics 3.9 proved in [2] by constructing a sequence of low-
energy forms that become sufficiently large at the point x, when £ tends
to infinity. The corresponding result for #?(X, L*) follows just as in the
proof of theorem 2.1 in part 1, now using proposition 3.2. U

The following corollary is obtained just as in part 1:
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Corollary 5.3. Let Ty be the super Toeplitz operator on the Hilbert space
HE, (X, L*) with symbol form f. Then

li;n KTy = W_”/ fAxe detw(%aggb)m Ne
X
The right hand side may also be written as

(2m)" /X £(i096),

If X(¢ —1) and X(q+ 1) are empty then the corresponding result holds
for the Hilbert space H(X, LF).

Now we can give the weak convergence of the Bergman kernel stated
in an invariant way.

Theorem 5.4. Let K, be the Bergman kernel form of the Hilbert space
HL, (X, L*) and suppose that f and g are forms in QO(X,C). Then

(5.2)
= / F (@) Ag(9) K (2, ) AK(z, 1)L AP0 5 (2) /X Fx(i006)n,

XxX
where Qy(z,y) = —kd(z) —ko(y) +w'(z) +w'(y). If X(¢—1) and X (¢ +
1) are empty then the corresponding result holds for the Hilbert spaces
HI(X, LF).

Proof. Let us first assume that the Hilbert space is HZ, (X, L*). Consider
asubset UxV of X, Where U and V are open sets in X (¢) with associated
local frames e}, and e{,. By using a partition of unity it is enough to
prove the convergence with X x X replaced by U x V for any such
product. Moreover, by linearity we may assume that f(z) = F(z)el"X(x)
and g(y) = G(y)e™M(y), where F and G are functions and e!*! is an
abbreviations for el A eff. Note that f, is equal to F if LI is empty
and vanishes otherwise. Using the special form of f and g, the integral
5.2 can be written as

2k / F(2)G(y) |K1s(z,y)| e 50w, () A wa(y),

UxV

where the sum is over all (I, J) such that L()I and M () J are empty.
Let us now show that

(5.4) lilgn k‘”/ |Kp(x, y)|2 e‘kd’(z)_kd’(y)wn(as) A wy(y) =0,
UxV

unless U x V' is contained in X(q) x X(q) and (I, J) = (I, Jp) for the
special indices related to the direction form x?? as in 3.11. To see this,
assume for example that U is in the complement of X (q) or I # I, on U.
The integral above is trivially estimated by the limit of

203 [ Ko 04500, 2) A n(y),

UxX
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Note that the latter integral may be written as the integral of || K, s ||” e ~*¢(®)
over all x in U. Now, by the reproducing property 4.4 this integral equals
fU Bjwy,, which vanishes if U is in the complement of X (q) or I # I, by
theorem 5.2. This proves 5.4. Using 5.4 we may now write the limit of
2.3 as

lim k™ [ [ (2)gx(y) [Kpon (@, 9)]" e O™ W, (2) A wa(y).
UxV

Hence to prove the theorem it is is enough to show that if U x V is
contained in X (¢) x X(q), the following holds:

(5.5) hmk Z/ h(z,y) | K, (z,y)? —/ h(z,z)(00),,

UxV UNX(q)

for any test function h(z,y), integrating with respect to e=##(@)=keW)y, (z)A
wn(y) in the left hand side (using 5.4 again). To this end, recall the re-
lation between K and an extremal « at the point x in the direction efo :

N Koz, y) e @590 = | () eH0 By, (),
J

given in lemma 4.1. Now the proof of 5.5, just as the proof of theorem
2.4, is based on the observation that a sequence of extremals «; at the
point x in the direction I; satisfies the localization property

: 2
(5.6) hlgn ||ak||BRk =1

To show this, note that by theorem 3.9

57) Limk ™ |af(z)|? e *¢@ = lim k"B, (x) =7 " |det, 185(15 w
k k k 0 2

and by theorem 5.1

3 bt 1 0 — n 7/ —
(5.8) limsupk ‘a,ﬁ( )| ke(z /||a||BR @ < detw(iaagﬁ)m

Now 5.6 follows from 5.7 together with 5.8 just as in the proof of theorem
2.4. Indeed, for a fixed point z the mass of

E S Ky (,y) P e H0 500
J

considered as a function of y becomes localized close to y = x,when £k
tends to infinity.

Finally, assume that X (¢—1) and X (¢+1) are empty and consider the
Hilbert space H(X, L¥). Using the L' —convergence in 3.9 one sees that
5.6 holds almost everywhere on X for a subsequence of (ay). As in the
proof of theorem 2.4 this is enough to prove the convergence of K(z,y)
stated in the theorem. O
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To formulate the convergence in terms of the local matrix elements of
the Bergman kernel, let e’ be a local frame as in section 3.2 on the open
set U in X. Then we may write the convergence on U x U in the following
suggestive way

ligl k" |K1J($, y)|2 e—k¢(z)—k¢(y) = 5($—y)51J1X(q) (x)lq(l)w_” detw(%85¢)z

where 1,(I) = 1if I = I, and zero otherwise. Asin part 1 the convergence
may also be formulated in terms of (super) Toeplitz operators:

Corollary 5.5. Let Ty and T, be the super Toeplitz operators on the
Hilbert space 7{%% (X, L¥) with symbol forms f and g, respectively. Then

liin k" Tr(TfT,) = lilgn K" Tr(Ty, )

If X(¢ —1) and X(q+ 1) are empty then the corresponding result holds
for the Hilbert spaces H(X, L*).

Proof. By definition we have that for any o and 3 in H%9

(Tro, B) = /Xf Aa A Ble kot

Choosing o = Ty and B = ¥ and and expressing 7 in terms of the
Bergman kernel form 4.6 gives

(TyT, 0, ¥) = / f(@) A g(x) A(z) ARy (2,y) AU (y)T A e @),
XxX

where @y (z,y) = —ko(z) — ko(y) + w'(x) + w'(y). Finally, if we let ¥ be

an orthonormal base element ¥; and sum over all ¢ the corollary follows

from the previous theorem. O

Finally, the following theorem expresses the asymptotic distribution of
the eigenvalues of a super Toeplitz operator in terms of the symbol of
the operator and the curvature of the line bundle L.

Theorem 5.6. Let Ty be the Toeplitz operator with form symbol f on the
Hilbert space M, (X, L*). Let (1;) be the eigenvalues of Ty and denote
by d&i the spectral measure of Ty divided by k™, i.e.

dg = k") 0,

where 6,, is the Dirac measure centered at T;. Then d¢& te@ds, mn the
weak*-topology, to the push forward of the measure (2m)~"(i00¢),, under
the map f,, i.e.

lim k3 afr) = (27) " / ol () (i096),

for any measurable function a on the real line. If X(q¢ — 1) and X (q +

1) are empty then the corresponding result holds for the Hilbert spaces
HIU(X, LF).
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Proof. As in part 1 we just have to prove the theorem for a equal to the
characteristic function of a half interval, i.e. for the counting function of
Ty. Using a partition of unity and the max-min-principle we may assume
that f is supported in a small open set U and is of the form Fels!, where
F'is a function on U. By a comparison argument it is enough to prove
the theorem for F' a characteristic function 1q, just as in the proof of
theorem 2.6 in part 1. Furthermore, as previously we just have to show
that

lim k*"TTTJ? = limk "TrTy.
K 2

To this end, observe that for f = 1qe® clearly f7 = f,. Hence, corol-
lary 5.5 shows that limy TrT]? = limy T'rTy, , which finally is equal to
limy, T'r'Ty, by corollary 5.3. O
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HOLOMORPHIC MORSE INEQUALITIES ON
MANIFOLDS WITH BOUNDARY

ROBERT BERMAN

ABSTRACT. Let X be a compact complex manifold with boundary
and let L* be a high power of a hermitian holomorphic line bundle
over X. When X has no boundary, Demailly’s holomorphic Morse in-
equalities give asymptotic bounds on the dimensions of the Dolbeault
cohomology groups with values in L¥, in terms of the curvature of L.
We extend Demailly’s inequalities to the case when X has a bound-
ary by adding a boundary term expressed as a certain average of the
curvature of the line bundle and the Levi curvature of the boundary.
Examples are given that show that the inequalities are sharp.

Soit X une varieté complexe compacte & bord et soit L* une grande
puissance d’un fibré en droites hermitien holomorphe sur X. Quand
X n’a pas de bord, les inégalités de Morse holomorphes de Demailly
donnent des estimations asymptotiques des dimensions des groupes
de cohomologie de Dolbeault & valuers dans L¥, en termes de la cour-
bure de X. On étend les inégalités de Demailly au cas ou X a un bord,
en ajoutant un terme au bord exprimé comme une certaine moyenne
de la courbure du fibré et de la courbure de Levi du bord. Des ex-
emples sont donnés qui montrent que les inégalités sont optimales.

1. INTRODUCTION

Let X be a compact n—dimensional complex manifold with boundary.
Let p be a defining function of the boundary of X, i.e. p is defined in
a neighborhood of the boundary of X, vanishing on the boundary and
negative on X. We take a hermitian metric w on X such that dp is of
unit-norm close to the boundary of X. The restriction of the two-form
i00p to the maximal complex subbundle 7°(0X) of the tangent bundle
of 0.X, is the Levi curvature form of the boundary 0.X. It will be denoted
by L. Furthermore, let L be a hermitian holomorphic line bundle over
X with fiber metric @, so that i00¢ is the curvature two-form of L. It
will be denoted by ©. The line bundle L is assumed to be smooth up to
the boundary of X. Strictly speaking, ¢ is a collection of local functions.
Namely, let s; be a local holomorphic trivializing section of L, then locally,
|5:(2)|> = %), The notation 7, := 7?/p! will be used in the sequel, so
that the volume form on X may be written as w,.

Key words and phrases. Line bundles, Cohomology, Harmonic forms, Holomorphic
sections, Bergman kernel. MSC (2000): 32A25, 32L10, 32L20.
1
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When X is a compact manifold without boundary Demailly’s (weak)
holomorphic Morse inequalities [9] give asymptotic bounds on the dimen-
sion of the Dolbeault cohomology groups associated to the k£ :th tensor
power of the line bundle L :

(1.1) dime HY(X, LF) < k"(—1)q(i)”/ O, + o(k"),
2" Jx()

where X (q) is the subset of X where the curvature-two form © has ex-
actly ¢ negative eigenvalues, i.e the set where index(©) = ¢g. Demailly’s
inspiration came from Witten’s analytical proof of the classical Morse
inequalities for the Betti numbers of a real manifold |28, where the role
of the fiber metric ¢ is played by a Morse function. Subsequently, holo-
morphic Morse inequalities on manifolds with boundary where studied.
The cases of g—convex and ¢—concave boundary were studied by Bouche
[7], and Marinescu [21], respectively, and they obtained the same curva-
ture integral as in the case when X has no boundary. However, it was
assumed that, close to the boundary, the curvature of the line bundle L
is adapted to the curvature of the boundary. For example, on a pseu-
doconcave manifold (i.e the Levi form is negative on the boundary) it is
assumed that the curvature of L is non-positive close to the boundary.
This is related to the well-known fact that in the global L?— estimates for
the O—operator of Morrey-Kohn-Hérmander-Kodaira there is a curvature
term from the line bundle as well from the boundary and, in general, it
is difficult to control the sign of the total curvature contribution. Morse
inequalities over strictly pseudoconvex CR manifolds have been obtained
by Getzler [15], who also suggested that one should try to prove simi-
lar formulas for the 0—Neumann problem on a complex manifold with
boundary. This will be done in the present paper.

We will consider an arbitrary holomorphic line bundle L over a com-
plex manifold with boundary and extend Demailly’s inequalities to this
situation. We will write h?(L*) for the dimension of H%(X, LF), the
Dolbeault cohomology group of (0, q)—forms with values in L¥. The co-
homology groups are defined with respect to forms that are smooth up to
the boundary. Recall that X(g) is the subset of X where index(©) = ¢
and we let

T(g)ps = {t >0 : index(© + L) = g along T"°(0X),} .

The main theorem we will prove is the following generalization of De-
mailly’s weak holomorphic Morse inequalities.

Theorem 1.1. Suppose that X is is a compact complex manifold with
boundary, such that the Levi form is non-degenerate on the boundary.
Then, up to terms of order o(k™),

(1.2)
1

hi(LF) < k”(—l)‘I(%)"(/X( )&ﬁ[jx /T() (©+1tL)p_1 AOp Adt),
q q)p,x
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The boundary integral above may also be expressed more directly in
terms of symplectic geometry as

(1.3) /X ( )(e + da),

where (X, da) is the symplectification of the contact manifold 0X in-
duced by the complex structure of X (section 7.1).

Examples will be presented that show that the leading constants in the
bounds of the theorem are sharp. We will also obtain the correspond-
ing generalization of the strong holomorphic Morse inequalities. The
most interesting case is when the manifold is a strongly pseudoconcave
manifold X of dimension n > 3 with a positive line bundle L. Then, if
the curvature forms of L and 0X are conformally equivalent along the
complex tangential directions of 0X, we will deduce that

(1.4) RO(LF) = k"(/ O, + %/{’X(’iagp)n_l A idp)) + o(k™),

X
if the defining function p is chosen in an appropriate way. In particular,
such a line bundle L is big and 1.4 can be expressed as

Vol(L) =Vol(X) + %Vol(aX)

in terms of the corresponding symplectic volume of X and contact volume
of 0X. Examples are provided that show that theorem 6.5 is sharp and
also compatible with “hole filling”.

The proof of theorem 6.5 will follow from local estimates for the cor-
responding Bergman function ngk where ng’“ is the Bergman function of
the space H%?(X, L¥) of d—harmonic (0, ¢)—forms satisfying d—Neumann
boundary conditions (simply referred to as the harmonic forms in the se-
quel). The point is that the integral of the Bergman function is the
dimension of H%¢(X, L¥). It is shown that, for large k, the Bergman
function (or more precisely the corresponding measure) is estimated by
the sum of two model Bergman functions, giving rise to the bulk and the
boundary integrals in theorem 6.5. The model at a point x in the inte-
rior of X is obtained by replacing the manifold X with flat C* and the
line bundle L with the constant curvature line bundle over C* obtained
by freezing the curvature of the line bundle at the point x. Similarly,
the model at a boundary point is obtained by replacing X with the un-
bounded domain X, in C", whose constant Levi curvature is obtained by
freezing the Levi curvature at the boundary point in X. The line bundle
L is replaced by the constant curvature line bundle over X, obtained
by freezing the curvature along the complex tangential directions, while
making it flat in the complex normal direction.

The method of proof is an elaboration of the, comparatively elemen-
tary, technique introduced in [4] to handle Demailly’s case of a manifold
without boundary.

Remark 1.2. The boundary integral in 1.2 is finite precisely when there is
no point in the boundary where the Levi form :00p has exactly ¢ negative
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eigenvalues. Indeed, any sufficiently large ¢ will then be in the comple-
ment of the set 7°(g),. Since, we have assumed that the Levi form i00p
is non-degenerate, this condition coincides with the so called condition
Z(q) |14]. However, for an arbitrary Levi form the latter condition is
slightly more general: it holds if the Levi form has at least ¢+ 1 negative
eigen values or at least n — ¢ positive eigen values everywhere on 0X. In
fact, the proof of theorem 6.5 only uses that 0.X satisfies condition Z(q)
and is hence slightly more general than stated. Furthermore, a function
p is said to satisfy condition Z(q) at a point z if x is not a critical point of
p and if 90p satisfies the curvature condition at = along the level surface
of p passing through .

One final remark about the extension of the Morse inequalities to open
manifolds:

Remark 1.3. The cohomology groups H%*(X, L¥) associated to the man-
ifold with boundary X occurring in the weak Morse inequalities, theorem
2.1, are defined with respect to forms that are smooth up to the bound-
ary. Removing the boundary from X we get an open manifold, that
we denote by X. By the Dolbeault theorem [16]| the usual Dolbeault co-
homology groups H%*(X,L*) of X are isomorphic to the cohomology
groups H*(X, O(L*)) of the sheaf O(LF) of germs of holomorphic sec-
tions on X with values in L*. Moreover, if we assume that condition
Z(q) and Z(q+1) hold then H%4(X, L¥) and H®(X, L¥) are isomorphic
[14]. Furthermore, consider a given open manifold Y with a smooth ex-
haustion function p, i.e a function such that the open sublevel sets of p
are relatively compact in Y for every real number c. Then, if for a fixed
regular value ¢y, the curvature conditions Z(q) and Z(g + 1) hold for p
when p > ¢, the group H%4(Y, L*¥) is isomorphic to H%4(X,,, L¥)[19],
where X, is the corresponding closed sublevel set of p. In this way one
gets Morse inequalities on certain open manifolds Y.

Notation 1.4. The notation a; ~ ()b will stand for ap = (<)Cybg,
where Cj, tends to one when k tends to infinity. The d—Laplacian [16]
will be called just the Laplacian. It is the differential operator defined
by A:= 08" +8 0 (where & denotes the formal adjoint of 9) acting on
smooth forms on X with values in L*. Similarly, we will call an element
in the kernel of A harmonic, instead of d—harmonic.

The paper is organized in two parts. In the first part we will state and
prove the weak holomorphic Morse inequalities. In the second part the
strong holomorphic Morse inequalities are obtained. Finally, the weak
Morse inequalities are shown to be sharp and the relation to hole filling
investigated.
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Part 1. The weak Morse inequalities
2. SETUP AND A SKETCH OF THE PROOF

In the first part we will show how to obtain weak holomorphic Morse
inequalities for (0, ¢)— forms, with values in a given line bundle L over a
manifold with boundary X. In other words we will estimate the dimension
of H*(X, L*¥) in terms of the curvature of L and the Levi curvature of
the boundary of X. With notation as in the introduction of the article
the theorem we will prove is as follows.

Theorem 2.1. Suppose that X is is a compact complex manifold with
boundary, such that the Levi form is non-degenerate on the boundary.
Then, up to terms of order o(k™),

RI(LF) < k"(— / @+// @+t£ 1 AOp Adt),
27T X

Note that the last integral is mdependent of the choice of defining
function. Indeed, if p' = fp is another defining function, where f is a
positive function, the change of variables s = ft shows that the integral
is unchanged. A more intrinsic formulation of the last integral will be
given in section 7.1. Let us now fix the grade ¢. Since, the statement
of the theorem is vacuous if the Levi form i90p has exactly ¢ negative
eigenvalues somewhere on X (compare remark 1.2) we may assume that
this is not the case. Then it is well-known that the Dolbeault cohomology
group H%Y(X E) is finite dimensional for any given vector bundle E over
X. The cohomology groups are defined using forms that are smooth up to
the boundary. Moreover, the Hodge theorem, in this context, says that
H%(X, E) is isomorphic to the space H%4(X, F), consisting of harmonic
(0, g)—forms, that are smooth up to the boundary, where they satisfy
0—Neumann boundary conditions ([14]). The space H*4(X, E) is defined
with respect to given metrics on X and FE.

The starting point of the proof of theorem 2.1 is the fact that the
dimension of the space H*4(X, L¥) may be expressed as an integral over
X of the so called Bergman function Bq’]c defined as

BZF( Z |0 (z
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where {U;} is any orthonormal base for #%?(X, L¥). Indeed, the integral
of each term in the sum is equal to one. Note that the Bergman function
Bg;k depends on the metric w on X. It is convenient to use kw as metric
for a given k. The point is that the volume of X measured with respect
to kw is of the order £™. Hence, the dimension bound in theorem 2.1 will
follow from a point-wise estimate of the corresponding Bergman function
B'}(’k. Another reason why kw is a natural metric on X is that, since
k¢ is the induced fiber metric on L*, the norms of forms on X with
values in L* become more symmetrical with respect to the base and
fiber metrics. In fact, we will have to let the metric w itself depend
on k (and on a large parameter R) close to the boundary and we will
estimate the Bergman function of the space H%?(X, kwy, L*) in terms of
model Bergman functions and compute the model cases explicitly. The
sequence of metrics wy will be of the following form. First split the
manifold X in an inner region X., with defining function p 4+ ¢ and its
complement, the boundary region, given a small positive number €. The
level sets where p = —Rk ! and p = —k /2 divide the boundary region
into three regions. The one that is closest to the boundary of X will be
called the first region and so on. Next, define wr, the complex tangential
part of w close to the boundary by

wr = w — 2i0p A Op

(recall that we assumed that dp is of unit-norm with respect to w close
to the boundary of X). The metric wy, is of the form

(2.1) wy = wr + ax(p) 12i0p A Ip,

where the sequence of smooth functions a; will be chosen so that, basi-
cally, the distance to the boundary, when measured with respect to kwy,
in the three different regions is independent of k. The properties of wy
that we will use in the two regions will be stated in the proofs below,
while the precise definition of wy, is deferred to section 5.4.

2.1. A sketch of the proof of the weak Morse inequalities. To
make the sketch of the proof cleaner, we will just show how to estimate
the extremal function
(2.2) S5 (2) = sup |ax ()

oy
closely related to ng’“, where the supremum is taken over all normalized
elements of the space H%9(X,wy, L*¥). When ¢ = 0, i.e the case of holo-
morphic sections, it is a classical fact that they are actually equal and
the general relation is given in section 3. Let us first see how to get the
following bound in the inner region X, defined above:

(2.3) 5% (2) S St 0(0),

where the right hand side is the extremal function for the model case
defined below. Moreover, the left hand side is uniformly bounded by
a constant, which is essential when integrating the estimate to get an
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estimate on the dimension of H%9(X, kwy, L*). The proof of 2.3 proceeds
exactly as in the case when X is a compact manifold without boundary
[4]. Let us recall the argument, slightly reformulated. Fix a point z in
X.. We may take local holomorphic coordinates centered at x and a local
trivialization of L such that

n o 1; n _
(2.4) o(z) = Z:Zl)\zzzzZ + ..., w(z)= 2 i:ZIdZi Ndz; + ...

where the dots indicate lower order terms and the leading terms are called
model metrics and denoted by ¢y and wy, respectively. Hence, the model
situation is a line bundle of constant curvature on flat C*. Note that the
unit ball at x with respect to the metric kwy corresponds approximately
to the coordinate ball at 0 of radius £~'/2. To make this more precise,
define a scaling map

Fi(z) =k 122

and consider a sequence of expanding balls centered at 0 in C* of radius
7k, slowly exhausting all of C*. We will call F}'(k¢) and Fj(kw) the scaled
metrics on the expanding balls. The point is that they converge to the
model metrics ¢y and wy. This follows immediately from the expressions
2.4 and the fact that the model metrics are invariant when £ Fj is applied.
Next, given a (0,¢) form on X with values in L¥, we denote by o*) the
scaled form defined by olf) = Fyay. Then, by the convergence of the
scaled metrics,

2
By, ’

(2.5) okl s,y ~ [

using the norms induced by the model metrics in the right hand side
above. Now, if ¢ is a normalized sequence of extremals (i.e realizing the
extremum in 2.2) we have

S5 (@) = [a® (O

By 2.5, the norms of the scaled sequence a(¥) are less than one, when k
tends to infinity. Moreover, o®) is harmonic with respect to the scaled
metrics and since these converge to model metrics, inner elliptic estimates
for the Laplacian show that there is a subsequence of a(®) that converges
to a model harmonic form # in C". In fact, we may assume that the
whole sequence a®) converges. Hence,

lim sup [a® (0)|* = 8(0)
k
which in turn is bounded by the model extremal function Sy, ,(0). More-
over, since X, may be covered by coordinate balls of radius £~ /2, staying
inside of X for large k, one actually gets a uniform bound.
Let us now move on to the boundary region X — X, that we split into
three regions as above. Fix a point ¢ in the boundary of X. We may take
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local coordinates centered at o and orthonormal at o, so that
n—1
2
plz,w) =v — Z,ui |2i|” + ...
i=1

where v is the imaginary part of w [8]. The leading term of p will be
denoted by pg, and will be referred to as the defining function of the
model domain Xy in C". Observe that the model domain X, is invariant
under the holomorphic anisotropic scaling map

Fi(z,w) = (2/EY?,w/k).

Moreover, the scaled fiber metric on L* now tends to the new model
fiber metric ¢q(z,0), since the terms in ¢ involving the coordinate w are
suppressed by the anisotropic scaling map Fj. Now, the bound 2.3 is
replaced by

(2.6) SZk0, iv/k) < S(0,iv),

in terms of the new model case. To see this one replaces the balls of
decreasing radii used before with Fy(Dy) intersected with X, where Dy,
is a sequence of slowly expanding polydiscs. Moreover, we have to let the
initial metric w on X depend on £ in the normal direction in order that
the scaled metric converge to a non-degenerate model metric. In the first
region we will essentially let

W = Wr + szap N (')_p

As a model metric in Xy we will essentially use
Wy = %85 |Z|2 + 218/}0 A (‘3—p0

Then clearly
(2.7) F} (kwg) = wo

in the model case and it also holds asymptotically in £, in the general

case. Replacing the inner elliptic estimates used in the inner part X,

with subelliptic estimates for the 0—Laplacian close to the boundary one

gets the bound 2.6 more or less as before. Finally, using similar scaling

arguments, one shows that the contribution from the second and third

region to the total integral of Bg(’k is negligible when £ tends to infinity.
This gives the bound

0
/ B (kwi)n < k”(/ B, ,wn +/ / B%, ,(iv)dvdo)
X X ’ 8X J —oco ’

integrating over an infinite ray in the model region X, in the second
integral (after letting R tend to infinity). Computing the model Bergman
functions explicitly then finishes the proof of the theorem.
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3. BERGMAN KERNEL FORMS

Let us now turn to the detailed proof of theorem 2.1. First we introduce
Bergman kernel forms to relate the Bergman function ngk to extremal
functions taking account of the components of a form (see [5] for proofs).
Let (1;) be an orthonormal base for a finite dimensional Hilbert space
H%4 of (0, ¢)— forms with values in L. Denote by 7; and 7, the projections
on the factors of X x X. The Bergman kernel form of the Hilbert space

H%4 is defined by
Z i) A iy

Hence, K?(z,y) is a form on X x X with values in the pulled back line
bundle 7} (L) ® 75 (L). For a fixed point z we identify K2 (y) := K9(x, y)
with a (0, ¢)—form with values in L ® A%(X, L),. The definition of K¢
is made so that K? satisfies the following reproducing property:

(3.1) a(z) = cn,q/ aAKEAe Pw,
X

for any element a in H%%, using a suggestive notation and where ¢, , is a
complex number of unit norm that ensures that 3.1 may be interpreted
as a scalar product. Properly speaking, «(x) is equal to the push forward
o (Cn g AK? Awy,_ge?) (). The restriction of K to the diagonal can be
identified with a (g, ¢)—form on X with values in L ® L. The Bergman
form is defined as KY (x x)e*"b(w) ie.

(3:2) Z i(T) A i

and it is a globally Well—deﬁned (g,q)—form on X. The following notation
will turn out to be useful. For a given form « in Q%¢(X, L) and a de-
composable form in Q%¢(X), of unit norm, let ay(z) denote the element
of Q%°(X, L), defined as

ag(z) = (@, 0),
where the product takes values in L,. We call ay(x) the value of o at
the point x, in the direction 0. Similarly, let Bj(z) denote the function
obtained by replacing 3.2 by the sum of the squared pointwise norms of
i 9(z). Then B{(x) has the following useful extremal property:

(3-3) Bj(z) = sup (),

where the supremum is taken over all elements o in H%? of unit norm.
The supremum will be denoted by S7(z) and an element « realizing the
supremum will be referred to as an eztremal form for the space H%? at
the point x, in the direction 6. The reproducing formula 3.1 may now be

written as
ag(z) = (0, K p)-
Finally, note that the Bergman function B is the trace of BY, i.e.

Blwy, = ¢y B! A wp_g.
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Using the extremal characterization 3.3 we have the following useful ex-
pression for B :

(3.4) B(z) =) So(w),

where the sum is taken over any orthonormal base of direction forms 6
in A%(X),.

4. THE MODEL BOUNDARY CASE

In the sketch of the proof of the weak holomorphic Morse inequalities
(section 2.1) it was explained how to bound the Bergman function on
X by model Bergman functions. In this section we will compute the
Bergman kernel explicitly in the model boundary case. Consider C"
with coordinates (z,w), where z is in C"™' and w = u + v. Let X; be
the domain with defining function

n—1
polz,w) =v+1o(2) =v+ D i lail,
=1

and with the metric
wo = %85 2|* + a(p)~'2i8py A Bpy.

Note that the corresponding volume element (wp), is given by a(p)™"
times the usual Euclidean volume element on C". We will take a(py)
to be comparable to (1 — py)? (compare section 5.4) but we will only
use that the corresponding metric wy is “relatively complete” (compare
section 4.1). We fix the ¢ and assume that condition Z(g) holds on 90Xy,
i.e. that at least ¢ + 1 of the eigen values p; are negative or that at least
n — g of them are positive.

Let H%4( Xy, ¢) be the space of all (0,¢)— forms on X that have finite
L?— norm with respect to the norms defined by the metric wy and the
weight e=%0(2) where ¢y is quadratic, and that are harmonic with respect
to the corresponding Laplacian. Moreover, we assume the the forms
are smooth up to the boundary of X, where they satisfy 0—Neumann
boundary conditions (in fact, the regularity properties are automatic,
since we have assumed that condition Z(g) holds [14]). The Bergman
kernel form of the Hilbert space H*(Xy, ¢o) will be denoted by K% . We
will show how to expand K% in terms of Bergman kernels on C*~', and
then compute it explicitly. Note that the metric wy is chosen so that the
pullback of any form on C*~! satisfies 0—Neumann boundary conditions.
Conversely, we will show that any form in H%%(Xj, ¢¢) can be written as
a superposition of such pulled-back forms.

By the very definition of the metric wy, the forms dz; and a='/29p,
together define an orthogonal frame of (1,0)— forms. Any (0,¢)— form
«a on X may now be uniquely decomposed in a tangential and a normal
part:

o = or + ay,
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where o = oy modulo the algebra generated by dpy. A form o with-
out normal part will be called tangential. The proof of the following
proposition is postponed till the end of the section.

Proposition 4.1. Suppose that « is in ’?_—to’q(XO, ¢0). Then « is tangen-
tial, closed and coclosed (with respect to 0).

By the previous proposition any form « in H%¢( X, ¢9) may be written
as
o(zw) = 3 fud
I

Moreover, since « is in L%(X, ¢) and 0— closed, the components f; are
in L?(Xo, ¢o) and holomorphic in the w— variable. We will have use for
the following basic lemma:!

Lemma 4.2. Let m(v) be a positive function on [0, 00 with polynomial
growth at infinity. If f(w) is a a holomorphic function in {v < ¢} with
finite L2—norm with respect to the measure m(v)dudv, then there exists

a function f(t) on ]0,00[ such that

fl) = [ e iat

Moreover,

(4.1) / ) / :o_oo\ () m(v)dudy = 47 / ) /t:: 7] e*tm(v)dtao

——

We will call f(t) the Fourier transform of f(w). Now, fix z in C"!
and take ¢ = —1)(2) and m(v) = a(py) ™t = a(v + o (2))~L. Then f;, as
a function of w, must satisfy the requ/ire\ments in the lemma above for
almost all z. Fixing such a z we write f;.(z) for the function of ¢ obtained
by taking the Fourier transformation with respect to w.

Hence, we can write

(4.2) a(z,w) = /0 h &i(2)e 2¥tdt

for almost all z, if we extend the Fourier transform and the integral to act
on forms coefficient wise. Note that the equality 4.2 holds in L?(Xj, ¢y)-
The following proposition describes the space H%(Xj, @) in terms of
the spaces H*4(C"~L, t1hy + ¢yg), consisting of all harmonic (0, g)— forms
in L2(C* 1, ty)o + o) (with respect to the Euclidean metric in C*). The
corresponding scalar products over C* ! are denoted by (-, );.

Proposition 4.3. Suppose that « is a tangential (0, q)—form on Xo with
coefficients holomorphic with respect to w. Then &y is in L2(C*™1, {1y +
¢o) for almost all t and

(4.3) (0, )x, = dr / (@0, @) (1),

IThis lemma can be reduced to the Payley-Wiener theorem 19.2 in [24].
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where b(t) = [,_, e*a(po)~'ds. Moreover, if o is in H*(Xo, ¢o), then &y
is in HO(C"1, tahy + ¢o) for almost all t.

Proof. 1t is clearly enough to prove 4.3 for the components f; of o, i.e for a
function f in X that is holomorphic with respect to w. When evaluating
the norm (f, f)x, over X, we may first perform the integration over u,
using 4.1, giving

(f, P)x = 4 /

~ 2
ft(z)‘ e’te ¥ a(py) dzdtdv,
po<0

where dz stands for the Euclidean volume form (£99|z|*), 1 on C*~1,
If we now fix z and make the change of variables s := v + 9)y(2) and
integrate with respect to s we get

i |

Since this integral is finite, it follows that (ﬁ, ]/t;) is finite for almost all ¢.

Next, assume that o is in #%9( Xy, ¢). By proposition 4.1 « is 0—closed,
so that 4.2 gives that &; is 0—closed for almost all t. Let us now show
that @; is —coclosed with respect to L?(C* !, t1)y + ¢) for almost all ¢.
Fix an interval I in the positive half-line and let 8 be a form in X, that
can be written as

~

Fe)| blt)e O didz = a / (F )eb(t)dt.

Bz, w) = /tEI nt(z)e_%”’tdt

where 7; is a smooth (0,q — 1)—form with compact support on C*~! for
a fixed ¢ (and measurable with respect to ¢ for z fixed). In particular
B is a smooth form in L?(X, @) that is tangential and holomorphic
with respect to w. According to 4.2 Bt is equal to n; for t € I and
vanishes otherwise. By proposition 4.1 o is —coclosed (with respect to
L?(Xy, dg)). Using 4.3 we get that

0=(@a,0) = (,08) = 4r | (@ On)ib(o)dr

tel
where we have used lemma 4.6 proved in the next section to get the
second equality. Since this holds for any choice of form S and interval

I as above we conclude that 8 @; = 0 for almost all ¢. Hence &, is in
HO(CV 1, 1Ty + ¢) for almost all £. O

Denote by K? the Bergman kernel of the Hilbert space H%¢(C* !, t¥y+
o).

Lemma 4.4. The Bergman kernel Kg(o may be expressed as
1 o i (775 !
K, (2w, 2, u) = = / K (2, 2/ )e 3@t (1)1
T Jo

In particular, the Bergman form ]Bg(o s given by

1 o0
/ B (2, 2)ePotb(t)Ldt.
0

]B%g(0 (z,w) = in
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Proof. Take a form « is in H%¥(Xy, ¢o) and expand it in terms of its
Fourier transform as in 4.2. According to the previous lemma &; is in
HOY(C1, 1T + @) for almost all t. Hence, we can express it in terms
of the corresponding Bergman kernel K}, giving

fe) = [ e v = [(@e) K e

where K{ | ; denotes the Bergman kernel form K{ at the point z in the di-
rection dz7 (see section 3) and where have used the reproducing property
3.1 of the Bergman kernel. Now, using the relation between the different
scalar products in the previous lemma we get

fr(z,w) = 41 a(Z,w' /K‘g“ ") 3Tt 50’ b(t) " dt) x,

where (2/,w’) are the integration variables in the scalar product. But
this means exactly that K% as defined in the statement of the lemma
is the Bergman kernel form of the space H%9(Xj, ¢y) since o was chosen
arbitrarily. Finally, by definition we have that

B, (z,w) = K%, (z,w, z,w)e~ ) BI(z,2) = K!(z,2")e”tPot?o)),
Hence, the expression for IEB%O is obtained. O

Now we can give an explicit expression for the Bergman kernel form
and the Bergman function. In the formulation of the following theorem
we consider Xy as a fiber bundle of infinity rays | — oo, 0] over (or rather
under) the boundary 0X,. Then we can consider the fiber integral over 0,
i.e. the push forward at 0, of forms on X,. Moreover, given a real-valued
function n on C*~! such that %857) has exactly ¢ negative eigenvalues,
we define an associated (g, ¢)— form x?? by

X290 = (i/2)%" A ANelAel A+ Aed

where €' is a orthonormal (1,0)—frame that is dual to a base e; of the
direct sum of eigen spaces corresponding to negative eigenvalues of i00n
(compare [5]). The (g, ¢)— form associated to £00¢o+t£99p, is denoted
by x}'? in the statement of the following theorem.

Theorem 4.5. The Bergman form 183(0 can be written as an integral over
a parameter t :

1 1
47'('”1

B, (0,u +iv) = / X! det(zag(/ﬁo + tiagpo)e”tb(t)’ldt,
T(q) 2 2
where b(t) = fp<0 e’ta(p)~tdp. In particular, the fiber integral over 0 of

the Bergman function By, times the volume form is given by
(4.4)

0 .
/ B%,(0,iv)(wo)n = (L)n(_1)q/ (0o + t0po)n 1 A Op A dt.
v T(q)

o 2m
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Proof. Let us first show how to get the expression for ]B%g(o. Using the pre-
vious proposition we just have to observe that in C™, with n a quadratic
weight function, the Bergman form is given by

1 U=
(45) ]Bg’ = ﬂ__le(q)Xq’q det(iﬁﬁn),

where the constant function 1y, is equal to one if %8577 has precisely ¢
negative eigenvalues and is zero otherwise (see [4], [5], [6]). Next, from
section 3 we have that BY (wo)n is given by BY (wo)n—q- Note that

1 = :
XA (@o)a—q = (500 |2 )1 A alpo) " (20)Dp0 A dpo,

Thus, the fiber integral of BY, (wo)n over 0 reduces to 4.4 since the factor
b(t) is cancelled by the integral of e**a(v) . O

Let us finally prove proposition 4.1 .

4.1. The proof of proposition 4.1: all harmonic forms are tan-
gential, closed and coclosed. We may write

wo = %aé 12|? + 2i9p' A O

for a certain function p’' of py. The forms 271/2dz; and 2'/20p' together
define a orthonormal frame of (1,0)— forms. However, we will use the
orthogonal frame consisting of all dz; and dp’ in order not to clutter the
formulas. A dual frame of (1,0)— vector fields is obtained as
0 . _ 0 . . 0

(4.6) Zi = 92 2wizia—w,z =1,2,...,n N:= ml/?a—w,

where Z; is tangential to the level surfaces of p, while N is a complex
normal vector field. We decompose any form « as

a=ar+ay=)_ frdz+0 Ag™!

Similarly, we decompose the 0— operator acting on the algebra of forms
0% (X,) as

(4.7)

Ql
I
&
+
S
I
N

Az A +NOp A,

where the vector fields Z; etc act on forms over X, by acting on the
coefficients where dz;A etc denotes the operator acting on forms on X,
obtained by wedging with dz;. The adjoint operator will be denoted by
dz*. Note that the expression for 0 is independent of the ordering of the
operators, since the elements in the corresponding frame of (0, 1)—forms
are 0—closed. We denote by Ar and Ay the corresponding Laplace
operators, i.e.

Ar =0r0r +0r Or, Ay =0yOn + Oy O,
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Recall that « is said to satisfy d—Neumann boundary conditions if dp’"
applied to a and Ja vanishes on the boundary of Xy, or equivalently if
ay and (Oa)y vanishes there.

Lemma 4.6. Denote by Z:and N'the formal adjoint operators of the
operators Z;and N acting on Q%*(X,). Then

Z* — _€¢0Zze_¢0
(4.8) N = 2N
Moreover, if the form « has relatively compact support in Xo then for any
form smooth form B in Xo we have that (Or «, 8) = (o, OrB) and if fur-

thermore o satisfies 0—Neumann boundary conditions, then (aN*oz, B) =
(o, OnB) (in terms of the formal adjoint operators).

Proof. 1t is clearly enough to prove 4.8 for the action of the operators on
smooth functions with compact support (i.e we write « = f and 8 = g,
where f and g are smooth functions with compact support). To prove
the first statement in 4.8 it is, using Leibniz rule, enough to show that

/X (Zi(f7e*) (wo)n = 0

But this follows from Stokes theorem since the integrand can be written
as a constant times the form

d(fge="a™'(/\ dz; A dz) A dz; A dw A dD),
i#i

using that Z;(a™!) = 0, since Z; is tangential. Similarly, to prove the
second statement in 4.8 it is, using Stokes theorem, enough to observe
that

/ d(fge *a'?(00 |2|")" ' A dw) = 0,
X
Indeed, we have that N := —ia'/?.2 so the statement now follows from

Leibniz’ rule. Finally, the last two statements follow from the arguments

above, since the boundary integrals obtained from Stokes theorem vanish.
O

Lemma 4.7. The 0— Laplacian A acting on Q°%* (Xo) decomposes as
A == AT + AN-

Proof. Expanding with respect to the decomposition 4.7 we just have to
show that the sum of the mixed terms

(OnOr + 07 Oy) + (On Or + Opdy )
vanishes. Let us first show that the first term vanishes. Observe that the

following anti-commutation relations hold:

dz; A Op + 0p dzZA = 0.
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Indeed, this is equivalent to the corresponding forms being orthogonal.
Using this and the expansion 4.7 we get that

@ndr" +07°0y) = Y IN.Z,107 dz A

But this equals zero since the commutators [N, Z;] vanish, using the
expressions in lemma 4.6. To see that the second terms vanishes one can
go through the same argument again, now using that the commutators
[N", Z,] vanish. O

We will call a sequence x; of non-negative functions on Xg a relative
ezhaustion sequence if there is sequence of balls Bg, centered at the origin
and exhausting C", such that x; is identically equal to 1 on Bpg,/; and
with support in Bg,. Moreover, if the metric w is such that the sequence
X: can be chosen to make |dy;| uniformly bounded then (X, w) is called
relatively complete. The point is that when (X, w) is relatively complete,
one can integrate partially without getting boundary terms “at infinity”.
For a complete manifold this was shown in [17] and the extension to the
relative case is straightforward.

Lemma 4.8. Suppose that (Xo,w) is relatively complete. Then there is
a relative exhaustion sequence x; of Xosuch that, if ais a smooth form in
L*(Xy), then

lim(x;Are, @) = (07 o, 0 @) + (Ora, Ora).
Moreover, if o satisfies 0— Neumann boundary conditions on 0Xy, then
(4.9) lim(x;Aya, o) = (a*a,a*a) + (Oya, Oya).

Proof. Since (X, w) is relatively complete, following section 1.1B in [17]
it is enough to prove the statements for a form « with relatively compact
support, with y; identically equal to 1 (this is called the Gaffney cutoff
trick in [17]). Assuming this, the first statement then follows immedi-
ately from lemma 4.6. To prove the second statement we assume that «
satisfies 0—Neumann boundary conditions, i.e. ay = (0a)y = 0 on 0X,.
According to lemma 4.6 the first term in the right hand side of 4.9 may
be written as (m*a, «), since ay = 0 on 90X, by assumption. To show
that the second term may be written as (0% 0y, ) we just have to show
that (Oya)nx = 0 on 0X,. To this end, first observe that Oy = dyar and
(0a)y = Oray + Oyar. Now, by assumption (0a)y = 0 on 0Xy. Comb-

ing this with the previous two identities we deduce that One = —O0ray
on dX,. But ay = 0 on X, and 97 is a tangential operator, so it follows
that draxy = 0 on 0X,. This proves that (Oya)x = 0 on 0Xj. O

Finally, to finish the proof of proposition 4.1, first observe that the
model metric wy corresponding to a(py) = (1— pp)? is relatively complete.
Now take an arbitrary form « in H%(X, ¢). Then (x;Aa,a) = 0 for
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each 7. Hence, using lemma 4.7 together with lemma 4.8 we deduce, after
letting ¢ tend to infinity, that

(4.10) 0= |[Bro* + 3" + |[Bwal + |[ow "o

In particular, Oy « vanishes in Xo. If we write ay = 0p A >, grdzr this
means that

N*gj =0

in X, for all I. Moreover, since « satisfies 0—Neumann boundary condi-
tions, each function g; vanishes on the boundary of X;. It follows that
gr = 0 in all of X;. Indeed, let ¢} := a(p)~'/?g7 and consider the restric-
tion of g} to the half planes in C obtained by freezing the z;— variables.
Then ¢} is holomorphic in the half plane, vanishing on the boundary. It
is a classical fact that g} then actually vanishes identically. Moreover,
4.10 also gives that o is — closed and coclosed. This finishes the proof
of proposition 4.1.

5. CONTRIBUTIONS FROM THE THREE BOUNDARY REGIONS

In this section we will estimate the integral of the Bergman function
over the three different boundary regions. The contribution from the
inner part of X was essentially computed in [4].

5.1. The first region. Recall that the first region is the set where p >
—R/k). Fix a point o in 0X and take local holomorphic coordinates
(2,w), where z is in C*~! and w = u + sv. By an appropriate choice 8],
we may assume that the coordinates are orthonormal at 0 and that

n—1

(5.1) plz,w) =Y v+ pilal* + O(l(z,w) ) = polz,w) + O(|(2, w)[).

i=1

In a suitable local holomorphic trivialization of L close to the boundary
point o, the fiber metric may be written as

¢(2) = 2 Nijzizi + O([w)O(|z]) + O(Jwl*) + O(I(z,w) ).

ij=1
Denote by F}, the holomorphic scaling map
Fi(z,w) = (2/k?,w/k),
so that
Xy = Fi(Duwi) [ X

is a sequence of decreasing neighborhoods of the boundary point o, where
D\, denotes the polydisc of radius In k£ in C". Note that

F 1 (Xy) — Xo,
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in a certain sense, where Xj is the model domain with defining function
po- On F ' (X)) we have the scaled metrics Fykwy, and Fjk¢ that tend
to the model metrics wy and ¢¢ on Xy, when k tends to infinity, where

. n—1
(5.2)  wo= %65 121> + a(po) 2i0po A Dpo and ¢o(z) = Z NijziZj,
ij=1
for a smooth function a(pg) that is positive on | — oo, 0]. The factor a(py),
and hence the model metric wy, really depends on the number R (used
in the definition of the boundary regions). However, the dependence on
R will play no role in the proofs, since R will be fixed when k£ tends
to infinity. Recall that the space of model harmonic (0, ¢)—forms in

L*(Xy, wo, ¢o) satisfying —Neumann boundary conditions is denoted by
7-L()’q()(Oa ¢0)

Lemma 5.1. For the component-wise uniform norms on F'(X}) we
have that

|1Fykp—polle — 0
”F];kkwk_wO”oo - 0
| Fpk¢ — doll, — O

and similarly for all derivatives.

Proof. The convergence for p and ¢ is straightforward (compare [4]|) and
the convergence for wy will be showed in section 5.4 once wy has been
constructed. O

The Laplacian on F}, '(X) taken with respect to the scaled metrics
will be denoted by A®) and the corresponding formal adjoint of 0 will be
denoted by 5*(k). The Laplacian on X, taken with respect to the model
metrics will be denoted by Ay. Because of the convergence property of
the metrics above it is not hard to check that

(53) A(k) = A() + Ska,
where Dy, is a second order partial differential operator with bounded
variable coefficients on F'(Xj) and ¢ is a sequence tending to zero
with k. Next, given a (0, ¢)—form oy, on X, with values in L*, define the
scaled form o®) on F_'(X}) by

o .= Fray,.
Then
(5.4) F; |ak\2 = ‘a(k)|2,

where the norm of oy is the one induced by the metrics kwy, and k¢
and the norm of the scaled form (¥ is taken with respect to the scaled
metrics Fjkwy and F}k¢. This is a direct consequence of the definitions.
Moreover, the next lemma gives the transformation of the Laplacian.

Lemma 5.2. The following relation between the Laplacians holds:
(5.5) AP ®) = (Apay,)®).
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Proof. Since the Laplacian is naturally defined with respect to any given
metric it is invariant under pull-back, proving the lemma. U

In the following, all norms over F,C_I(Xk) will be taken with respect
to the model metrics wy and ¢o. The point is that these norms anyway
coincide, asymptotically in k£, with the norms defined with respect to the
scaled metrics used above, by the following lemma.

Lemma 5.3. We have that uniformly on F;'(X})
(k)
!

|t

Fylog] ~
lowllx, ~

k)HFk*l(Xk)

Moreover,for any sequence 01 of wi— orthonormal bases of direction forms
in A%(X), at Fy,(z), there is a bases of wy— orthonormal direction forms
at x, such that the following asymptotic equality holds, when k tends to
mfinity:

Fy ~ agf)

o
k.01
for each indez I.

Proof. The lemma follows immediately from 5.4 and the convergence of
the metrics in the previous lemma. [l

Now we can prove the following lemma that makes precise the state-
ment that, in the large £ limit, harmonic forms a4 are harmonic with
respect to the model metrics and the model domain on a small scale
close to the boundary of X.

Lemma 5.4. Suppose that the boundary of X satisfies condition Z(q)
(see remark 1.2). For each k, suppose that o®) is a 0—closed smooth

(0,g)—form on F;'(Xy) such that 7 a®) = 0 and that o® satisfies
0— Neumann boundary conditions on F,;l((?X). Identify o®) with a form
in L*(C") by extending with zero. Then there is a constant Cg indepen-

dent of k such that

sup ‘a(k)f < CRHa(

MNoerr
DA (X). Do)

Moreover, if the sequence of norms Ha( 15 bounded, then there

k) ||2
HF—l(X
k k)
s a subsequence of {oz(k)} which converges uniformly with all derivatives

on any compactly included set in Xy to a smooth form [, where B is in
H*9(Xy). The convergence is uniform on D () F; ' (Xy).

Proof. Fix a k and consider the intersection of the polydisc Dg of radius R
with F, '(X}). It is well-known that the Laplace operator A®) acting on
(0, ¢)— forms is sub-elliptic close to a point z in the boundary satisfying
the condition Z(q) (see [14]). In particular, sub-elliptic estimates give
for any smooth form 5*) satisfying d—Neumann boundary conditions on
F;'(8X) that

2 2 2
(5.6) HB(’“)HDR’ < Ck,R(HB(k)HDm + HA(k)B(k)HD2R,m)’

m—1 —
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where the subscript m indicates a Sobolev norm with m derivatives in
L? and where the norms are taken over F, '(X) with respect to the
scaled metrics. The k—dependence of the constants Cy g comes from the
boundary F}'(0X) and the scaled metrics Fykwy and Fyk¢. However,
thanks to the convergence of the metrics in lemma 5.1 one can check that
the dependence is uniform in k. Hence, applying the subelliptic estimates
5.6 to a*) we get

(5.7) ||a( <Ckg ||a(

k)||2 k)||2
HDRQF,;I(X),m = HDQRQF,;I(X)

and the continuous injection L?! < C° [ > n, provided by the Sobolev

embedding theorem, proves the first statement in the lemma. To prove

the second statement assume that Ha(’“)HQ 1
F(X)

k. Take a sequence of sets K,, compactly included in X, exhausting Xy
when n tends to infinity. Then the estimate 5.6 (applied to polydiscs of
increasing radii) shows that

(5.8) o

is uniformly bounded in

<

9 ium < C

n M

Since this holds for any m > 1, Rellich’s compactness theorem yields, for
each n, a subsequence of {a(’“)}, which converges in all Sobolev spaces
L*'(K,) for I > 0 for a fixed n. The compact embedding L?! < C?, k >
n + %p, shows that the sequence converges in all C?(K,). Choosing a
diagonal sequence with respect to £ and n, yields convergence on any
compactly included set K. Finally, we will prove that the limit form
is in H(Xp). First observe that by weak compactness we may assume
that the sequence 1x,a¥) tends to 8 weakly in L?(C"), where 1x, is the
characteristic function of X, and f is extended by zero to all of C". In
particular, the form £ is weakly O-closed in X,. To prove that 3 is in
H (X)) it will now be enough to show that

(5.9) (8,0m)x, = 0

for any form n in X, that is smooth up to the boundary and with a
relatively compact support in X,. Indeed, it is well-known that § then
is in the kernel of the Hilbert adjoint of the densely defined operator 0.
Moreover, the regularity theory then shows that § is smooth up to the
boundary, where it satisfies 0—Neumann boundary conditions (actually
this is shown using sub-elliptic estimates as in 5.6) [19, 14]. To see that
5.9 holds, we write the left hand side, using the weak convergence of
1x,a®) as

(510) hlzn(a(k)a 577))(0 = h]gn(a(k)’ 5n)XoﬂFk_l(X)'

Extending 1 to a smooth form on some neighborhood of X in C* we
may now write this as a scalar product, with respect to the scaled met-
rics, over F '(X), thanks to the convergence in lemma 5.1 of the scaled
metrics and the scaled defining function. Since, a!®) is assumed to satisfy
0—Neumann-boundary conditions on F},'(0X) and be in the kernel of
the formal adjoint of 0, taken with respect to the scaled metrics, this
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means that the right hand side of 5.10 vanishes. This proves 5.9 and
finishes the proof of the lemma. O

The following proposition will give the boundary contribution to the
holomorphic Morse inequalities in theorem 2.1.

Proposition 5.5. Let

. k
Iy :=lim sup/ BY wy,
k —p<Rk—1

Then

1
limsup I < (—1)q(—)"/ / (O©+tL)p1 NOpAdt
R 217 Jox JT(),.

where T(q) .z = {t > 0: index(© + tL) = qalong T*(9X),}.

Proof. We may assume that the boundary of X satisfies condition Z(q)
(compare remark 1.2). Using the expression 2.1 for the metric wy, the
volume form (wy), may be written as ax(p) ™" (wr)n_1 A 2i0p A dp. Hence,
I can be expressed as

0
limsup/ (Wr)n—1 /\Zin/ ar(p) Bk dp
k ax ~R/k

Now, fix a point in the boundary of X and take local coordinates as in
the beginning of the section. To make the argument cleaner we will first
assume that the restriction of p to the ray close to the boundary where
z and the real part of w vanish, coincides with v. Then, after a change
of variables, the inner integral along the ray in the first region becomes

(5.11) 1/k /0 ax(v/k) " BY* (v/k)dv.

Moreover, by the scaling properties of the metrics kwj, in lemma 5.1 we
have the uniform convergence

kag(v/k) — a(v).
on the segment [0, R] (see also section 5.4). Thus,

R
Ir = lim sup/ (Wr)n-1 A 2i8p/ a(v) B (v/k)dv.
ko Jox 0

Let us now show that
(512) (Z) Bg(,k(o’“)/k) Bg(O(O,’LU)
(i) BY(0,iv/k) < Ck
We first prove (i). According to the extremal property 3.4 it is enough
to show that

(5.13) 5%, (0,0/k) S S%, 4((0, v)

for any sequence of direction forms 6 at (0,iv/k) as in lemma 5.3. Given
this, the bound 5.12 is obtained after summing over the base elements
0. To prove 5.13 we have to estimate

N
<
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|k 0, (0,30 /[,
where o is a normalized harmonic form with values in L* that is extremal
at (0,4v/k) in the direction 6. Moreover, it is clearly enough to estimate
some subsequence of ay. By lemma 5.3 it is equivalent to estimate

2
‘aék) (0,1iv)

b

where the scaled form o) is defined on F '(X}) and extended by zero
to all of Xy. Note that, according to lemma 5.3 the norms of the sequence
of scaled forms o¥) are asymptotically less than one:

(514) sy ~ Nl < 1,

since the global norm of ¢y is equal to one. Hence, by lemma 5.4 there
is a subsequence o!¥s) that converges uniformly to 3 with all derivatives
on the segment 0 < v < R in X, and where the limit form g is in
H%4( Xy, ¢o) and its norm is less than one (by 5.14). This means that

, 2
ko 0, 10/ R)” ~ aff(0,30)| ~ |89(0,i0)

Since the limit form ( is a contender for the model extremal function

%0.0(0), this proves 5.13, and hence we obtain (i). To show (i), just
observe that lemma 5.4 says that there is a constant C'r such that there
is a uniform estimate

a®(0,iv)[* < Ch,

By the extremal characterization 3.4 of BL* this proves (ii). Now using
5.21 and Fatou’s lemma to interchange the limits, /r may be estimated
by

(5.15) | ([ B0,

in terms of the model metric wy on Xg. By theorem 4.5 this equals

(L) /8 ) /T (@00 4 108p0)ocs N O

This finishes the proof of the proposition under the simplifying assump-
tion that the restriction of p to the ray introduced above, coincides with
the restriction of ». In general this is only true up to terms of order
O |(z,w)|*, given the expression 5.1. To handle the general case one
writes the integral 5.11 as

(5.16) 1/k / ax BL dv,

Iy,

)
2T

where I is the inverse image under Fj of the ray. Clearly, I tends to the
segment [0, R] in X, obtained by keeping all variables except v equal to
zero. Moreover, since the sequence a*i) above converges uniformly with
all derivatives on Dg () F}, ' (X}) it forms an equicontinous family, so the



HOLOMORPHIC MORSE INEQUALITIES ON MANIFOLDS WITH BOUNDARY 23

same argument as above gives that 5.16 may be estimated by 5.15. This
finishes the proof of the proposition. O

5.2. The second and third region. Let us first consider the second
region, i.e. where —1/k'/? < p < —R/k. Given a k, consider a fixed
point (0,iv) = (0,4k~*), where 1/2 < s < 1. Any point in the second
region may be written in this way. Let (2, w') be coordinates on the unit
polydisc D. Define the following holomorphic map from the unit polydisc
D to a neighborhood of the fixed point:

1
Fk,s(z',w') — (k'_l/ZZI, k% 4+ 5k—.sywl)

so that

Xk:,s = Fk,s(D)7
is a neighborhood of the fixed point, staying away from the boundary of
X. On D we will use the scaled metrics Fy ;kwy and kF) k¢ that have
bounded derivatives and are comparable to flat metrics in the following
sense:
Clwgp < Fikwy < Cuwg

(5.17) Fikg| < C

where wg is the Euclidean metric. Note that the scaling property of wy
is equivalent to

(5.18) C~'kp® < ax(p) < Chp?

These properties will be verified in section 5.4 once wy is defined. The
Laplacian on D taken with respect to the scaled metrics will be denoted
by A%») and the Laplacian on X, taken with respect to the model metrics
will be denoted by Ay. Next, given a (0, ¢)—form «; on X with values
in L*, define the scaled form o) on D by

a(k’s) = F,:‘,sak.
Using 5.17 one can see that the following equivalence of norms holds:

C_1|oz(’“’3)L2 < l?’,;“75|cyk|2 < C‘a(k’s)

CTHa® [, < llewlly, < €l

| 2

(5.19)

In the following, all norms over F,c_s1 (Xk,s) will be taken with respect to
the Euclidean metric wg and the trivial fiber metric.

Proposition 5.6. Let
Il :=lim sup/ ngk(wk)n
k Rk—l<—p<k—1/2

Then
li}zn Il =0.
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Proof. Fix a k and a point (0,iv) = (0,ik~°), where s is in [1/2, 1[. From
the scaling properties 5.18 of wy it follows that at the point (0,7k~*%)
wp < CkEDym,
Next, observe that
(5.20) B (0,ik*) < C
Accepting this for the moment, it follows that
BY*(0,iv)w) < Ck v 2™,

since we have assumed that v = £7°. Hence, the integral in I/ may be
estimated by

—Rk™!
/ Ck1 / v 2dv = Ck (R 'k — k'/?)
X —

k—1/2
which tends to CR™! when k tends to infinity. This proves that IIp
tends to zero when R tends to infinity, which proves the proposition,
given 5.20.
Finally, let us prove the claim 5.20. For a given k consider the point
(0,ik~%) as above. As in the proof of the previous proposition we have
to prove the estimate

(5.21) o (0,k°)|* < C,

where o, is a normalized harmonic section with values in L* that is
extremal at (0,7k~%). By the equivalence of norms 5.19, it is equivalent
to prove

a=0)[* < €,

where the scaled form o(#*) is defined on D. Note that, according to 5.19
s) 112

(5.22) [a®2)||) ~ [loxl%, < C,

since the global norm of «y is equal to 1. Moreover, a simple modification
of lemma 5.2 gives

A(k,s)a(k,s) =0
on D. Since A% is an elliptic operator on the polydisc D, inner elliptic
estimates (i.e. Garding’s inequality) and the Sobolev embedding theorem
can be used as in [4] to get

a®)" < C [l

where the constant C' is independent of £ and s thanks to the equivalence

5.17 of the metrics. Using 5.22, we obtain the claim 5.21. O
Let us now consider the third region where —¢ < p < —k~'/2.

Proposition 5.7. Let

II, = / B (wi)n
k—1/2<—p<e

Then
I1I, = O(e).
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Proof. We just have to observe that

(5.23) k"B%F < O,

when p < —k~'/2. This follows from inner elliptic estimates as in the

proof of the previous proposition, now using s = 1/2 (compare [4]). O

5.3. End of the proof of theorem 2.1 (the weak Morse inequali-
ties). First observe that
(5.24)

1 _ _
| s G [ [ d@deo0p nop+ole)
0<—p<e 2m 0X JT(q)

Indeed, for a fixed R we may write the limit of integrals above as the
sum Ig + [Ig + I11.. Letting R tend to infinity and using the previous
three propositions we get the estimate above. Moreover, we have that

(5.25) / BY S / (09¢)",

where X, denotes the set where —p is larger than e. This follows from
the estimates

B%w, < (21)”(—1)01X(q)(35¢)n and B%* < C in X,,
T
proved in [4] (compare 5.23 for the uniform estimate). Finally, writing
dimc H%4(X, L) as the sum of the integrals in 5.24 and 5.25 and letting
€ tend to zero, yields the dimension bound in theorem 2.1 for the space
of harmonic forms. By the Hodge theorem we are then done.

5.4. The sequence of metrics w;. In this section the metrics w;, will
be defined and their scaling properties, that were used above, will be
verified. Recall that we have to define a sequence of smooth functions ay,
such that the metrics

wr = wr + ax(p)~'2i0p A Op,

have the scaling properties of lemma 5.1 in the first region and satisfy 5.17
in the second region. First observe that the tangential part wr clearly
scales the right way, i.e. that F}kwr tends to %85|z|2. Indeed, since
the coordinates (z,w) are orthonormal at 0 the forms wr and %65\2\2
coincide at 0. Since %85 \z|2 is invariant under F}'k the convergence then
follows immediately. We now consider the normal part of wy and show
how to define the functions a,. Consider first the piecewise smooth func-
tions ap where ay is defined as R?/k in the first region, as kp?, in the
second region and as 1 in the third region and on the rest of X. Then
it is not hard to check that a; satisfies our demands, except at the two
middle boundaries between the three regions. We will now construct ay

. . ~ . . ~ ~2 ~ .
as a regularization of ai. To this end we write a; = kb, , where by is
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defined by
Rk, —p < Rk™!
—p, RET'<—p< kT2
/{71/2, —p < k71/2

in the three regions. It will be enough to regularize the sequence of contin-
uous piecewise linear functions b,y. Decompose b, as a sum of continuous
piecewise linear functions

R~ k

~ 1 ~
bi(—p) = Ebl’k(_ﬁp) + sz,k(—kmp),

where Zl,k is determined by linearly interpolating between
bie(0) =1 big(l) =1 bie(kY?/R) =0 bis(o0) =0
and Zg,k is determined by
Bop(0) =0 byg(REY2) =0 byg(l) =1 byp(oo) =1

Now consider the function by obtained by replacing 51,k and gg,k with the
continuous piecewise linear functions b; and by, where b; is determined
by
and by is determined by

b2(0) =0 bey(1)=1 b(oo)=1.

Finally, we smooth the corners of the two functions b; and by. Let us
now show that the sequence of regularized functions by, scales in the right
way. In the first region we have to prove that lemma 5.1 is valid, which
is equivalent to showing that there is a function by such that

with all derivatives, for ¢ such that 0 < ¢ < Rlnk. From the definition we
have that

(5.27) kbi(t/k) = Rby(t/R) + 1,

which is even independent of k, so 5.26 is trivial then. Next, consider
the second region. To show that 5.17 holds we have to show that,
for parameters s such that 1/2 < s < 1, the t—dependent functions
k*bi(1/k* + t/2k*) (where |t| < 1) are uniformly bounded from above
and below by positive constants and have uniformly bounded deriva-
tives. First observe that in the second region the sequence of functions
may be written as

ks—1/2b2(1/k1/2—5 + t/2k1/2_s),

and it is not hard to see that it is bounded from above and below by
positive constants, independently of s and k. Moreover, differentiating
with respect to ¢ shows that all derivatives are bounded, independently
of s and k. All in all this means that we have constructed a sequence of
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metrics wy with the right scaling properties. In particular, 5.27 shows
that the factor a=!(pg) in the model metric wy 5.2 satisfies

Cr'(1=po)™? <a™'(po) < Cr(1l —po)~?

for some constant C'r depending on R.

Part 2. The strong Morse inequalities and sharp examples
6. THE STRONG MORSE INEQUALITIES

We will assume that the boundary of X satisfies condition Z(q) (com-
pare remark 1.2) and use the same notation as in section 1. Let yuy be a
sequence tending to zero. Denote by ’Hg’zk (X) the space spanned by the
(0, ¢)—eigen forms of the Laplacian A, with eigenvalues bounded by 1.
The forms are assumed to satisfy 0—Neumann boundary conditions and
they will be called low energy forms. Since we have assumed that con-
dition Z(q) holds, this space is finite dimensional for each k£ [14|. Recall
that the Laplacian is defined with respect to the metric kwy, so that the
eigen values corresponding to py are multiplied with £ if the metric wy
is used instead.

We will first show that the weak holomorphic Morse inequalities are
equalities for the space ’H%Zk (X) of low energy forms. When X has no
boundary this yields strong Morse inequalities for the truncated Euler
characteristics of the Dolbeault complex with values in L*. However,
when X has a boundary one has to assume that the boundary of X has
either concave or convexity properties to ensure that the corresponding
cohomology groups are finite dimensional, in order to obtain strong Morse
inequalities.

The Bergman form for the space H%Zk (X) defined as in section 3 will
be denoted by BL, . By L7 (X) we will denote the Sobolev space with
m derivatives in L?(X) and a subscript m on a norm will indicate the
corresponding Sobolev norm. The essential part in proving that we now
get equality in the weak Morse inequalities is to show that the estimate
on the Bergman form 5.12 in the proof of proposition 5.5 becomes an
asymptotic equality, when considering low energy forms. The rest of the
argument is more or less as before.

Let us first prove the upper bound, i.e. that the low energy Bergman
form ]B%'imc is asymptotically bounded by the model harmonic Bergman
form.

Proposition 6.1. We have that
B! (0,iv/k) < Bx,,0(0,v)

<tik,0k
and the sequence B%uk(O, iv/k) is uniformly bounded in the first region.
Proof. Let oy be a sequence of normalized forms, such that o is an

extremal for the Hilbert space ’H%Zk (X) at the point (0,iv/k) in the di-
rection . In the following all norms will be taken over F, '(X). Observe
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that by the invariance property in lemma 5.2 of the Laplacian, the scaled
form o¥) satisfies

(6.1) [(A®)a®|[* < 427 — 0
for all positive integers p. Let us now show that
(6.2) |A®a®|* 0

for all non-negative integers m. First observe that (A®))Pa(*) satisfies
0—Neumann boundary conditions for all p. Indeed, by definition all forms
in the space H<,, (Xo) satisfy 0—Neumann boundary conditions and
since A preserves this space, the forms (A)Poy, also satisfy —Neumann
boundary conditions for all p. By the scaling of the Laplacian this means
that the forms (A®))?a(*) satisfy d—Neumann boundary conditions with
respect to the scaled metrics. Now applying the subelliptic estimates 5.6
to forms of the type (A®))Pa(*) one gets , using induction, that
m+1

|A®a®||, <037 [[(a®pa®]f.
7j=1

Combining this with 6.1 proves 6.2. Now the rest of the argument pro-
ceeds almost word for word as in the proof of the claim 5.12 in the proof
of proposition 5.5. The point is that the limit form S will still be in
H(X,), thanks to 6.1. O

Let us now show how to get the corresponding reverse bound for ]B‘g’;k.
We will have use for the following lemma.

Lemma 6.2. Suppose that (3 is a normalized extremal form for H*4(Xo, ¢o)
at the point (0,ivg) in the direction 6. Then

(6.3) 189(0, ivg)|” = %/ By (2, 2)e™b(t) " dt.

T(q)

with notation as in lemma 4.4. Moreover, B is in L2 (X,) for all m.

Proof. Let xy be the point (0,7v) in X,. Since S is extremal we have,
according to section 3, that |8y(0,ivo)|> = Bx,(0,ivo), which in turn
gives 6.3 according to lemma 4.4. To prove that 3 is in L2 (X;) for all
m, we write [ as
Bz, w) = Bi(z)e"dt,
T(q)

in terms of its Fourier transform as in section 4. Recall that we have
assumed that condition Z(g) holds on the boundary of X, so that T'(q)
is finite. Using proposition 4.3 we can write

o' 2
‘ =A4r /
Xo T(q)

_817

olw p

where 87 denotes the complex partial derivatives taken with respect to
zjand z; for ¢ and j in the multi index set I and J, respectively. Since, by
assumption, (3 is in L?(Xj) the integral converges for [ = 0 with I and J

IJ 5 2 21
9TB(2)|, #otyat,
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empty. Now it is enough to show that 3, is in L2 (C*, i+ ¢) for all t and
positive integers m. To this end we will use the following generalization
of 3.3:

(6.4) K ()" = 16(y) [ By ()

if § is an extremal form at the point z, in the direction § (compare
[5]). By lemma 4.4 the Fourier transform of K, evaluated at ¢ is pro-
portional to K, g where K, g, is the Bergman kernel form for the space
HO4(C* L, tp+¢) at the point z (and x = (z,w)) in the direction 6. In [4]
it was essentially shown that K, g is in L2 (C*, {1 + ¢) (more precisely:
the property was shown to hold for the corresponding extremal form).
Hence, the same thing holds for B}, according to 6.4, which finishes the
proof of the lemma. O

Now we can construct a sequence «y of approximate extremals for the
space H<y, x(X) of low energy forms.

Lemma 6.3. For any point zoy = (0,ivy/k) and direction form 6 in the
first region there is a sequence {ax} and direction forms Oysuch that oy
is in QY(X, L¥) and

(4) |ak,gk(0,ivo/k)|22 ~ Bx, (0, i)
(i) loklly ~ 1

(v41) H(a+a )al H ~ 0

(iv) (Aag, ar)x < O [low|”

where Oy is a sequence, independent of xg i, tending to zero, when k tends

to infinity. Moreover, oy, satisfies 0— Neumann boundary conditions on
OX N F, '(D), where D is a polydisc in C" centered at 0.

Proof. Consider a sequence of points zg ; that can be written as (0, ivy/k)
in local coordinates as in section 5.1. Let us first construct a form oy
with the properties (7) to (iv). It is defined by

o = (Fk_l)*(Xkﬁ)

where xx(z,w) = x(2/Ink,w/Ink) for x a smooth function in C* that
is equal to one on the polydisc D of radius one centered at 0, vanishing
outside the polydisc of radius two and where [ is the extremal form at the
point (0,vp) in the direction # from the previous lemma. The definition
of oy, is made so that
a® = XkP

We have used the fact that the form [ extends naturally as a smooth
form to the domain X with defining function py — §, to make sure that
oy, is defined on all of X. The extension is obtained by writing 3 in terms
of its Fourier transform with respect to ¢ as in the proof of the previous
lemma:

Bew) = | B
q
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In fact, the right hand side is defined for all w since we have assumed
that condition Z(g) holds on the boundary so that T'(g) is finite. Note
that the L2, —norm of 8 over X; tends to the L2 —norm of 8 over X,
when § tends to zero, as can be seen from the analog of proposition
4.3 on the domain Xj;. Indeed, the dependence on § only appears in the
definition of b(t), where the upper integration limit is shifted to 4. Now
the statements (i) and (ii) follow from the corresponding statements in
the previous lemma. To see that (i7i) holds, first observe that

5*(’6) — 5*0 + EkD’

where D is a first order differential operator with bounded coefficients
on the ball By, (0) and ¢ is a sequence tending to zero. Indeed, this is
a simple modification of the statement 5.3. Moreover, by construction

0+ 5*0)5 = 0. Hence, Leibniz rule gives
= =k
|@+3 )| < 611, + lldxl 81

The first term tends to zero since 8 is in L?(Xp) and the second terms
tends to zero, since it can be dominated by the “tail” of a convergent
integral. The estimates for m > 1 are proved in a similar way (compare
[4]). Finally, to prove (iv) observe that by the scaling property 5.5 for
the Laplacian

(Aag, ) x = H(g-l-g*)akHi = H(E—i—g*(k))a(k)H :

By (ii), the norm of ||ox||% tends to one and the norm in the right hand
side above can be estimated as above. To see that d; can be taken to be
independent of the point z 4 in the first region, one just observes that the
constants in the estimates depend continuously on the eigenvalues of the
curvature forms (compare [4]). Finally, consider a polydisc D in C"* with
small radius. We will perturb oy, slightly so that it satisfies 9—Neumann
boundary conditions on X () F; '(D) while preserving the properties
(i) to (iv). Recall that a form d—closed form 7 satisfies —Neumann
boundary conditions on 90X if

(6.5) 9p e =0,

where dp is the fiber-wise adjoint of the operator obtained by wedging
with the form 0p, and where the adjoint is taken with respect to the
metric wy on X. Equivalently,

3/€p(k)*77(k) =0,

where the adjoint is taken with respect to the scaled metrics. By con-
struction we have that a*) is d—closed on F}'(D) and

(6.6) 9po o) = 0,
where now the adjoint is taken with respect to the model metrics. Let

u® = —F(kp®Bkp® P
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and let a® = o®) + yu¥) where y is the cut-off function defined above.
Then, using that p vanishes on X, we get that the —closed form a®*)
satisfies the scaled 0—Neumann boundary conditions, i.e. the relation 6.5
on 0X. Moreover, using that kp*) converges to p with all derivatives on
a fixed polydisc centered at 0 (lemma 5.1) and 6.6 one can check that u(*)
tends to zero with all derivatives in Xj. Finally, since xu® is supported
on a bounded set in X and converges to zero with all derivatives it is
not hard to see that oy also satisfies the properties (i) to (iv), where

e~

ar == F " (a®) O

By projecting the sequence «, of approximate extremals, from the
previous lemma, on the space of low energy forms we will now obtain the

following lower bound on B , .

Proposition 6.4. There is a sequence y tending to zero such that
lin}cinqu (0,7v/k) > Bx,(0,v),.

<wg,Ok
Proof. The proof is a simple modification of the proof of proposition 5.3
in [4]. Let {ay} be the sequence that the previous lemma provides and
decompose it with respect to the orthogonal decomposition Q%9( X, L¥) =

L (X L*)oHL,, (X, L*), induced by the spectral decomposition of the
subelliptic operator A [14]:

Q= Q1+ Qo

First, we prove that

(6.7) lim ‘ag’“)(o, )| =o.

‘2
Since aék) = o) — agk) the form agc) satisfies d—Neumann boundary
conditions on the intersection of the polydisc D with F; '(9X), using

lemma 6.3. Subelliptic estimates as in the proof of lemma 6.1 then show
that

(6.8) ‘aék)(O)r < C(() QDﬂFkl(aX),m>

for some large integer m. To see that the first term in the right hand side
(k) ‘2

2
off

+ H(A(k))agk)

DNOF, (X)

tends to zero, we first estimate ‘ Qs with [lag % using the

DO F,(X)
norm localization in lemma 5.3. Next, by the spectral decomposition of
Ak .

1 1 Ok
lonells < — (Apaog, o)y < — (Apog, on) x < — [loully
Mk Mk Mk

using property (iv) in the previous lemma in the last step. By property
(1) in the same lemma ||ox||% is asymptotically 1, which shows that the

first term in 6.8 tends to zero if the sequence py is chosen as 5,1/ 2, for
example. To see that the second term tends to zero as well, we estimate

|@®)al?| <[la®)a®||, + [a®)al] .
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The first term in the right hand side tends to zero by (i) in the previous
lemma and so does the second term, using 6.2 (that holds for any scaled
sequence of forms in H%, (X, L*)). This finishes the proof of the claim
6.7. Finally,

.. . 2
hmklnfB%uk(O,w/k)gk > |eu,k(0)]5,

and
lln}clnf |Olk’1,9k (0)‘2 2 BXO,H(Oa U) + 0,

when k tends to infinity, using 6.7 and (%) in the previous lemma. O

Now we can prove that the Morse inequalities are essentially equalities
for the space ’H%’Zk (X, L¥) of low-energy forms. But first recall that

7-[%’7% (X, L*) depend on a large parameter R, since the metrics w;, depend

on R.

Theorem 6.5. Suppose that X is is a compact complex manifold with
boundary satisfying condition Z(q). Then there is a sequence py, tending
to zero such that the limit of k=™ dim ’Hg’zk (X, L*) when k tends to infinity
18 equal to

1
(=D =)"™( @n+/ / (O +tL)n 1 AOpAdt) + g
X JT(q)p,z

2 X(q)

where the sequence eg tends to zero when R tends to infinity.

Proof. The proof is completely analogous to the proof of theorem 2.1. In
the first region one just replaces the claim 5.12 in the proof of proposition
5.5 by the asymptotic equality for BZ, (0,4v/k)g, obtained by combing
the propositions 6.1 and 6.4. Moreover, a simple modification of the proof
of proposition 6.1 shows that there is no contribution from the integrals
over the second and third region, when R tends to infinity, as before.
Finally, the convergence on the inner part of X was shown in (|4]). O

Recall that the Dolbeault cohomology group H%?(X, L*) is isomor-
phic to the space of harmonic forms, which is a subspace of 'H‘;gk (X, LF).
Hence, the previous theorem is stronger than the weak Morse inequalities
for the dimensions h?(L*) of H%4(X, L¥) (theorem 2.1). When X has no
boundary Demailly showed that, by combining a version of theorem 6.5
with some homological algebra, one gets strong Morse inequalities for the
Dolbeault cohomology groups. These are inequalities for an alternating
sum of all h*(L¥F) when the degree i varies between 0 and a fixed degree
q |9]. In fact, a variation of the homological algebra argument yields in-
equalities for alternating sums when the degree ¢ varies between a fixed
degree ¢ and the complex dimension n of X (the two versions are related
by Serre duality). However, when X has a boundary one has to impose
certain curvature conditions on 0X to obtain strong Morse inequalities
from theorem 6.5 . Indeed, to apply the theorem one has to assume that
0X satisfies condition Z(7) for all degrees i in the corresponding range. In
particular the corresponding dimensions will then be finite dimensional
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so that the alternating sum makes sense. Now, to state the strong holo-
morphic Morse inequalities for a manifold with boundary, recall that the
boundary of a compact complex manifold is called ¢g—convex if the Levi
form £ has at least n — g positive eigenvalues along T'°(0X) and it is
called g—concave if the Levi form has at least n — ¢ negative eigenvalues
along TH9(0X) (i.e 0X is g—convex “from the inside” precisely when it is
g—concave “from the outside”). We will denote by X (> ¢) the union of all
sets X (i) with ¢ > ¢ and T'(> ¢q),, is defined similarly. The sets X (< q)
and T(< ¢q),, are defined by putting i < ¢ in the previous definitions.
Finally, we set

1
Iy, := (—)"(/ O, + / / (©+tL)y—1 ANOp A dt)
- 21" Jx(zg) 0x JT(>0)p.a

and define I<,_;_, similarly.

Theorem 6.6. Suppose that X is an n—dimensional compact manifold
with boundary. If the boundary is strongly q— convex, then

ETY (=1)TRI(LF) < Tsgk™ + o(k™).
1=q

If X has strongly q—concave boundary, then

n—1—q

S (D)W (LF) < Icp1-gk™ + o(k").

i=0

Proof. First note that if 0X is g—convex, then 0X satisfies condition
Z (1) for i such that n — ¢ < 7 < n. Similarly, if X is g—concave, then
0X satisfies condition Z (%) for ¢ such that 0 < i <n — ¢ — 1. The proof
then follows from theorem 6.5 and the homological algebra argument in
[9],[10]. See also [7] and [21]. O

6.1. Strong Morse inequalities on open manifolds. One can also
define g—convexity and g¢—concavity on open manifolds following An-
dreotti and Grauert [2]. First, one says that a function p is ¢g—convex if
i00p has at least n — q + 1 positive eigen values. Next, an open mani-
fold Y is said to be g—convex if it has an exhaustion function p that is
g—convex outside some compact subset K of Y. The point is that the
regular sublevel sets of p are then g—convex considered as compact man-
ifolds with boundary. The extra positive eigen value occurring in the
definition of g—convexity for an open manifold is needed to make sure
that 100p still has at least n — ¢ positive eigen values along a regular
level surface of p. Finally, an open manifold Y is said to be g—concave if
it has an exhaustion function p such that —p is ¢—convex outside some
compact subset K of Y.

Now, by remark 1.3 theorem 6.6 extends to any g—convex open man-
ifold Y with a line bundle L if one uses the usual Dolbeault cohomology
H%*(Y, L¥) (or equivalently the sheaf cohomology H*(Y, O(L¥)) and the
curvature integrals are taken over a regular level surface of p in the com-
plement of the compact set K. However, for a ¢—concave open manifold
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Y one only gets the corresponding result if n — ¢ — 1 is replaced with
n — q — 2. Indeed, by remark 1.3 one has to make sure that condition
Z(i+ 1) holds for the highest degree i occurring in the alternating sum.
In this form the g—convex case and ¢—concave case was obtained by
Bouche [7] and Marinescu [21], respectively, under the assumption that
the curvature of the line bundle L is adapted to the curvature of the
boundary of X in a certain way. Comparing with theorem 6.6 their as-
sumptions imply that the boundary integral vanishes. There is also a
very recent preprint [22] of Marinescu where strong Morse inequalities
on a g—concave manifold with an arbitrary line bundle L are obtained.
However, the corresponding boundary term is not as precise as the one
in theorem 6.6 and in section 7 we will show that theorem 6.6 is sharp.

Note that since the curvature integrals are taken over any regular
level surface of p in Y one expects that I(> ¢) and I(< n — 1 — q) are
independent of the level surface. This is indeed the case (see remark 7.4).

6.2. Application to the volume of semi-positive line bundles.
Now assume that X is a strongly pseudoconcave manifold X with a semi-
positive line bundle L (i.e the Levi form £ is negative along T'°(0X) and
the curvature form of L is semi-positive in X ). The case of pseudoconcave
surfaces has been recently studied in [18][12], by different methods. When
the dimension of X is at least three, the strong Morse inequalities give a
lower bound on the dimension of the space of holomorphic sections with
values in L¥. Namely, h°(L¥) is asymptotically bounded from below by

(6.9) (%)"(/X(O) ®n+/ax /T(<1)(@+tﬁ)n_1/\8p/\dt)k”+h1(Lk)+0(k")

In particular, if the curvatures are such that the coefficient in front of
k™ is positive, then the dimension of H°(X, L¥) grows as k™. In other
words, the line bundle L is big then. For example, this happens when the
curvature forms are conformally equivalent along the complex tangential
directions, i.e. if there is a function f on 0X such that

(6.10) L=-fO

when restricted to T71%(0X) @ T%!(0X). In fact, by multiplying the orig-
inal p by f~! we may and will assume that f = 1. The lower bound
6.9 combined with the upper bound from the weak Morse inequalities
(theorem 2.1) then gives the following corollary.

Corollary 6.7. Suppose that X s a strongly pseudoconcave manifold
X of dimension n > 3 with a semi-positive line bundle L. Then if the
curvature forms are conformally equivalent at the boundary

RO(LE) = k(o) /X Ot / (i00p)ns Ni0p) + olh").

When L is positive, the conformal equivalence in the previous corollary
says that the symplectic structure on X determined by L is compatible
with the contact structure of 0X determined by the complex structure,
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in a strong sense (compare [12]) and the conclusion of the corollary may
be expressed by the formula

(6.11) Vol(L) =Vol(X) + %Vol(aX)

in terms of the symplectic and contact volume of X and 0X, respec-
tively (where the volume of a line bundle L is defined as the lim sup
of (2m)"k~"h°(L*) [20]). The factor 1 in the formula is related to the
fact that if (X, da) is a 2n—dimensional real symplectic manifold with
boundary, such that « is a contact form for 0.X, then, by Stokes theo-
rem, the contact volume of 90X, divided by n is equal to the symplectic
volume of X, . In fact, this is how we will show that 6.11 is compatible
with hole filling in section 7.1.

7. SHARP EXAMPLES AND HOLE FILLING

In this section we will show that the leading constant in the Morse
inequalities 2.1 is sharp. When X is a compact manifold without bound-
ary, this is well-known. Indeed, let X be the n—dimensional flat complex
torus C"/Z™ + iZ™ and consider the hermitian holomorphic line bundle
L, over T" determined by the constant curvature form

n .
) N
0= Zl Sidzi A dz,
where ); are given non-zero integers [16]. Then one can show (see the
remark at the end of the section) that

1
(71) Bq(x) = ﬁlX(q) |detw®| ;

where 1x(4) is identically equal to one if exactly g of the eigenvalues A;
are negative and equal to zero otherwise. This shows that the leading
constant in the Morse inequalities on a compact manifold is sharp.

Let us now return to the case of a manifold with boundary. We let
X be the manifold obtained as the total space of the unit disc bundle in
the dual of the line bundle L, (where L, is defined as above) over the
torus 7™ !, where y; are n — 1 given non-zero integers. Next, we define
a hermitian holomorphic line bundle over X. Denote by 7 the natural
projection from X onto the torus 7" . Then the pulled back line bundle
7*Ly is a line bundle over X. The construction is summarized by the
following commuting diagram

’ﬂ'*L,\ L)\
\’ \’

X <= L — Tt

Let h be the positive real-valued function on X, defined as the restriction
to X of the squared fiber norm on Lj,. Then p := In A is a defining function
for X close to the boundary and we define a hermitian metric w on X by

W= %65|z|2 + %h‘lah A Oh
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extended smoothly to the base 7"~! of X. The following local description
of the situation is useful. The part of X that lies over a fundamental do-
main of 7"~! can be represented in local holomorphic coordinates (z,w),
where w is the fiber coordinate, as the set of all (z,w) such that

n—1
h(z,w) = |w|’ exp(+2ui z”) <1
i=1

and the fiber metric ¢ for the line bundle 7*L) over X may be written
as

n—1
d(zw) =Y Nzl
=1

The proof of the following proposition is very similar to the proof of
theorem 4.5, but instead of Fourier transforms we will use Fourier series,
since the R— symmetry is replaced by an S'— symmetry (the model
domain X in section 4 is the universal cover of X defined above).

Theorem 7.1. Let J(q) be the set of all integers j such that the form
00¢ + jOOp has exactly q negative eigenvalues. Then

1 — — .1 .
e _ 1 . : 1. j
(7.2) B% = (%) .Z det,,(i(00¢ + j09p)) 5 (7 + DI,
i€J(q)
In particular, the dimension of H*(X,w*L,) is given by
i _
(73) o [ 3 @00+ 301 0
T Joax ,
jed(q)
and the limit of the dimensions of H*(X, (7*Ly)*) divided by k™ is
(7.4) (=) / / (00¢ + t0dp)n—1 A Op A dt
20 Jox 1 (0

Proof. First note that if a; is a form on 7"! with values in Lf; ® Ly,

then
a(z,w) = Zaj(z)wj
Jj20

defines a global form on X with values in 7* L. The proof of proposition
4.1 can be adapted to the present situation to show that any form « in
H™(X, ¢) is of this form with a; in H>(T""', L/ ® Ly). Actually, since
X is a fiber bundle over T ! with compact fibers one can also give a
somewhat simpler proof. For example, to show that « is tangential one
solves the 0— equation along the fibers of closed discs in order to replace
the normal part ay with an exact form. Then using the assumption the
a is coclosed one shows that the exact form must vanish. The details are

omitted. We now have the following analog of proposition 4.3 for any «
in H%(X, ¢)

(15)  (oa) =27 Y (e a0)bs, by = /0 (r2)irdr = 1/2(j + 1)

J
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in terms of the induced norms. To see this, one proceed as in the proof
of proposition 4.3, now using the Taylor expansion of «. Writing ¥(z) =
Z;;l 1| 2| and restricting z to the fundamental region of 7" we get
that (o, «) is given by

\w\ <e=¥(2)

Now using Parceval’s formula for Fourier series in the integration over 6
this can be written as

e—W)(%aé 12*)n_1e¥@rdrde.

e—¥(2)/2

j v# 0

Finally, the change of variables ' = e¥(¥)/2 in the integral over r gives
a factor e 7¥(®) and the upper integration limit becomes 1. This proves
7.5.

As in the proof of theorem 4.5 we infer that Bx may be expanded as

Bx ZB )bt

where B; is the Bergman function of the space H*(T""', L} ® Ly).
According to 7.1, we have that
1
Bj(z) = (27r)n 16;.7(0) ‘det i(00¢ +338,0))|

where J(q) = {j : index(9d¢ + jOIp) = g}and where the sequence d; s,
is equal to 1 if j € J(¢q) and zero otherwise. Thus, 7.2 is obtained.
Integrating 7.2 over X gives

/wan_ / ZB aa| BE / de/ )irdrb;t.
Tn— 1 )

The integral over the radial coordinate r is cancelled by bj’1 and we may
write the resulting integral as

1 ') — —
— Biwn,_1 Nidp = (— "/ 00¢ + jOOp)n—1 N\ Op
"y S B ni0p = () T -

Hence, 7.3 is obtained. Finally, applying the formula 7.3 to the line
bundle (7*Ly)*¥ = 7*(L}) shows, since the curvature form of 7*(L}) is
equal to k00¢, that

-n g,k _ Ln a l a n—ll
e [ B, = () /axg(aamkaap) A

where the sum is over all integers j such that 00¢ + %85p has exactly ¢
negative eigenvalues. Observe that the sum is a Riemann sum and when
k tends to infinity we obtain 7.4. O
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Note that since the line bundle 7*L, over X is flat in the fiber direc-
tion the integral over X in 1.2 vanishes. Hence, the theorem above shows
that the holomorphic Morse inequalities are sharp. The most interesting
case covered by the theorem above is when the line bundle 7*L, (simply
denoted by L) over X is semi-positive, and positive along the tangen-
tial directions, and X is strongly pseudoconcave. This happens precisely
when all )\; are positive and all y; are negative. Then, for n > 3, the the-
orem above shows that the dimension of H%!(X, L*) grows as k™ unless
the curvature of L is a multiple of the Levi curvature of the boundary,
i.e. unless A\ and p are parallel as vectors. This is in contrast to the
case of a manifold without boundary, where the corresponding growth is
of the order o(k") for a semi-positive line bundle. Note that the bundle
L above always admits a metric of positive curvature. Indeed, the fiber
metric ¢ + eh on L can be seen to have positive curvature, if the positive
number ¢ is taken sufficiently small. However, if A\ and p are not parallel
as vectors, there is no metric of positive curvature which is conformally
equivalent to the Levi curvature at the boundary. This follows from the
weak holomorphic Morse inequalities, theorem 2.1, since the growth of
the dimensions of H%!(X, L¥) would be of the order o(k™) then.

Remark 7.2. To get examples of open manifold Y as described in remark
1.3 one may take the total space of the line bundle L7} over T 1 as
defined in the beginning of the section. Then p is an exhaustion func-
tion, exhausting L}, by disc bundles. Furthermore, to get examples of
manifolds with boundary X where the index of the Levi curvature form
is non-constant one may take X to be an annulus bundle in L}. Such
a manifold is neither g—convex or g—concave for any ¢. Theorem 7.1
extends to such manifolds X if one uses Laurent expansions of sections
instead of Taylor expansions. A concrete example is given by the hyper
plane bundle O(1) over P*~!. Then the corresponding annulus bundle
is biholomorphic to a spherical shell in C"*, i.e. all z in C* such that
r < |z| < r' for some given numbers r and r’. It has one pseudoconvex
and one pseudoconcave boundary component.

Finally, a remark about the proof of formula 7.1.

Remark 7.3. To prove formula 7.1 one can for example reduce the prob-
lem to holomorphic sections, i.e. when ¢ = 0 (compare [4]). One
could also use symmetry to first show that the Bergman kernel is con-
stant and then compute the dimension of H?(T™, L)) by standard meth-
ods. To compute the dimension one writes the line bundle L) as L, =
T IM @mi LM ® ... @7 LM using projections on the factors of T, where
L is the classical line bundle over the elliptic curve T = C/Z + 4Z, such
that H°(C/Z + iZ, L) is generated by the Riemann theta function [16].
Now, using Kunneth’s theorem one gets that H%(T", L)) is isomorphic
to the direct sum of all tensor products of the form

HY (T, L) @--- @ H'(T", LY) @ H(T", LYe+1) @ - - - @ HO(T", L*»).
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Observe that this product vanishes unless the index I = (i, ..., 4,) is such
that the first ¢ indices are negative while the others are positive. Indeed,
first observe that if m is a positive integer, the dimension of H*(T*, L—™)
vanishes, since L~™ is a negative line bundle. Next, by Serre duality
HY(T', L™) = H°(T',L™™), since the canonical line bundle on 7% is
trivial. So the dimension of H*(T!, L™) vanishes as well. In particular,
the dimension of H%(T™, L)) vanishes unless exactly ¢ of the numbers
A; are negative, i.e. unless the index of the curvature of L, is equal to
g. Finally, if the index is equal to g, then, using that H°(T", L) is one-
dimensional, combined with Serre duality and Kunneth’s formula again,
one gets that the dimension of H°(T", L=1) is equal to the absolute value
of the product of all eigenvalues \;. This proves 7.1.

7.1. Relation to hole filling and contact geometry. Consider a
compact strongly pseudoconcave manifold X with a semi-positive line
bundle L. We will say that the pair (X, L) may be filled if there is a
compact complex manifold X , without boundary, with a semi-positive
line bundle L such that there is a holomorphic line bundle injection of
L into L. 2 The simplest situation is as follows. Start with a compact
complex manifold X with a positive line bundle L (by the Kodaira em-
bedding theorem X is then automatically a projective variety [16]). We
then obtain a pseudoconcave manifold X by making a small hole in X in
the following way. Consider a small neighborhood of a fixed point z in X ,
holomorphically equivalent to a ball in C"*, where L is holomorphically
trivial and let ¢ be the local fiber metric. We may assume that ¢(z) =0
and that ¢ is non-negative close to x. Then for a sufficiently small € the
set where ¢ is strictly less than € is a strongly pseudoconvex domain of
X and its complement is then a strongly pseudoconcave manifold that

we take to be our manifold X. We let L be the restriction of L to X. A
defining function of the boundary of X can be obtained as p = —¢. Now,

since L is a positive line bundle it is well-known that

lim k™" dimg HY(X,LF) = (zi)"i / (004"

7w n!Jx
In fact, this holds for any semi-positive line bundle, as can be seen

by combining Demailly’s holomorphic Morse inequalities 1.1 with the
Riemann-Roch theorem (this was first proved by different methods in

[26])-

On the other hand we have by Harthog’s phenomena (assuming that
n > 2), that H°(X, L¥) is isomorphic to H°(X, L*). So decomposing the
integral above with respect to

(7.6) X=x||x

2By a theorem of Rossi [23], the pair (X, L) may always be filled if L is trivial close
to the boundary and the dimension of X is at least 3.
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and using Stokes theorem gives that
(7.7)

' 1 — 1 —

lim k™" dime HO(X, L¥) = (—)"(— / (00¢), — — / (009)™"' A 09)
k 2 n! X 8X

Let us now compare the boundary integral above with the curvature

integral in the holomorphic Morse inequalities 1.2. Since p = —¢ this

integral equals

1 9, A\n—1

e /{)XX[OJ](Q 1086)™ A D6 A dt,
which coincides with the boundary integral in 7.7 since fol(l — )" ldt =
1/n. This shows that the holomorphic Morse inequalities, theorem 6.5 are
sharp for the line bundle L over X. To show that the Morse inequalities
are sharp as soon as a pair (X, L) may be filled by a Stein manifold it
is useful to reformulate the boundary term in 1.2 in terms of the contact
geometry of the boundary 0.X.

Let us first recall some basic notions of contact geometry ([3]). The
distribution 7%°(0X) can be obtained as ker(—i0p) and since, by as-
sumption, the restriction of d(—idp) is non-degenerate it defines a so
called contact distribution and 0X is hence called a contact manifold.
By duality 7%°(0X) determines a real line bundle in the real cotangent
bundle 7%(0X) that can be globally trivialized by the form —i0p. Denote
by X, the associated fiber bundle over 90X of “positive” rays and denote
by « the tautological one form on 7*(0X), so that da is the standard
symplectic form on 7*(0X). The pair (X, da) is called the symplectifi-
cation of the contact manifold 0X in the literature [3]. More concretely,

X, ={t(—idp;) : z € 0X,t > 0},

i.e. X isisomorphicto dX x [0, co[ and o = —itdp so that da = i(td0p+
O0p A dt). The boundary integral in 1.2 may now be compactly written as

/ (© + da)y,,
X+(a)

where X (¢) denotes the part of X, where the pushdown of da to 0X has
exactly ¢ negative eigenvalues along the contact distribution 7%°(9X).
Let us now assume that X is strongly pseudoconcave and that (X, L)

is filled by (X, L) (abusing notation slightly). We will also assume that

the strongly pseudoconvex manifold Y, in X, obtained as the closure of
the complement of X in X, has a defining function that we write as —p
which is plurisubharmonic on Y. We may assume that the set of critical
points of —p on Y is finite and to simplify the notation in the argument
we assume that there is exactly one critical point xg in Y and we assume
that p(x¢) =1 (the general argument is the same). For a regular value ¢
of p we let X, (0), be the subset of the symplectification of p~!(c) defined
as above, thinking of p~!(c) as a strictly pseudoconcave boundary. Now
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consider the following manifold with boundary:

X0= J X0

c€[0,1—¢]

More concretely, X.(0) can be identified with a subset of the positive
closed cone in T*(Y, C) determined by dp :

{t(=idp;) : z €Y,t > 0}.

Hence, X.(0) is a fiber bundle over a subset of ¥ and when € tends to
zero, the base of X.(0) tends to Y. Note that the fibers of A.(0) are a
finite number of intervals and the induced function ¢ on X, is uniformly
bounded with respect to ¢ (i.e. the “height” of the fiber is uniformly
bounded). Indeed, we have assumed that i90p is strictly negative. This
forces © +ti00p to be negative on all of Y for all ¢ larger then some fixed
number ty. In particular such a ¢ is not in 7,(0) for any z in Y, i.e. not in
any fiber of X.(0). Now observe that the form © + da on X (0) extends
to a closed form in X.(0) and the restriction of the form to Y coincides
with ©. Let us now integrate the form (© + da),, over the boundary of
X-(0). The boundary can be written as

ox () =x,UJ| U ax:00) ] Jx:0)-.

c€]0,1—¢|

Since the form is closed, the integral over 0(X.(0)) vanishes according to
Stokes theorem, giving

0:/ (®+da)n—/®n+0+0(s)
X 4(0) Y

where the zero contribution comes from the fact that the form (© + da),,
vanishes along (UCE]O,I—s[a(X+(O)C)) — Y. The term O(e) comes from

the integral (of a uniformly bounded function) over the “cylinder” X, (0).
around the point zy. Finally, by letting € tend to zero we see that the
Morse inequalities for L over X are sharp in this situation as well.

Remark 7.4. The preceding argument also shows that if p is a function
on an open manifold Y with regular values ¢ and ¢’ (where ¢ is less than

), then
/ (@—i—da)n:/ @n+/ (O + da),
X+(i)c pil]cacl] X+(Z)

for all 7 such that i > g, if p is g—convex on p~']c, ¢/]. In other words, the

right hand sides in the weak Morse inequalities for p=(< ¢) and p=1(< ¢)
coincide. The analogous statement also holds in the g—concave case.
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