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Sweden
Telephone +46 (0)31 772 1000
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COMPUTATIONAL CHARACTERIZATION OF

MIXING IN FLOWS

ERIK D. SVENSSON

Department of Mathematical Sciences
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Abstract

The major theme of this thesis is mathematical aspects of fluid mixing
in the case when diffusion is negligible, which is commonly refered to as
’mixing by stirring’ or ’mixing by chaotic advection’ in the engineering
literature. In this case the mixing is driven by a velocity field and is
characterized by the flow generated by the velocity field. We propose a
general methodology that can be used to characterize mixing in flows.

In this work we assume that the velocity field is modeled by the in-
compressible Stokes equations but in principle we can choose to use any
other fluid model. We derive pointwise a posteriori error estimates for
finite element approximations of the Stokes equations and investigate the
flow generated by the velocity field by computing a large number of orbits
in the flow. We demonstrate that the computed orbits are close to exact
orbits by deriving a shadowing error estimate. Principal to this estimate
is that we compute the orbits and the velocity field sufficiently accurately.

On the basis of notions from dynamical systems theory we devise a
tractable mixing measure that resolves the mixing process both in space
and time. We provide an error estimate for computed mixing measures
which relies on the error estimate for the computed orbits.

Finally, we discuss a few additional computational issues. (1) We suggest
an optimal search algorithm that given a query point can locate the n-
simplex in a finite element triangulation that contains the query point.
(2) We analyse and discuss finite element multigrid methods for quadratic
finite elements and for adaptively refined triangulations.

Key Words: mixing, hyperbolicity, shadowing, finite elements, flow simu-
lation, a priori error estimates, Stokes equations, point location, multigrid,
refinements
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Göteborg, April 2006
Erik Svensson

vii





COMPUTATIONAL CHARACTERIZATION OF MIXING

IN FLOWS

ERIK D. SVENSSON

Contents

1. Introduction 1
1.1. Dynamical systems approach 2
1.2. Convection versus diffusion 3
1.3. Mixing in micro fluid systems 5
2. Outline of the thesis 6
2.1. Stokes flow 8
2.2. Finite time shadowing 10
2.3. Search in triangulations 13
2.4. Multigrid solvers 13
3. Concluding remarks 14
References 15

1. Introduction

Let Ω be a domain in Rn for n = 2, 3 and let c0(x) : Ω → R be a positive
function. We think of mixing as a relaxation process c(x, t) : Ω → R for
t > 0 such that c(x, 0) = c0 and

(1.1) ‖c(x, t) − c0‖L∞(Ω) → 0 as t → ∞,

where

c0 = |Ω|−1

∫

Ω

c0(x) dx.

In practice c(x, t) could be the concentration of a chemical compound
that we wish to distribute uniformly in Ω, for example, in order to mix

1
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with one or several other miscible compounds in Ω. We model this process
by the convection-diffusion equation which is in dimensionless form

(1.2)

∂tc + u · ∇c − Pe−1 ∆c = 0 in [0, T ] × Ω,

∇c · ν = 0 in [0, T ] × ∂Ω,

c(x, 0) = c0(x) in Ω,

where ν is the outward normal to ∂Ω, u is an incompressible velocity field
such that u · ν = 0 on ∂Ω and

(1.3) Pe =
UL

D

is the Péclet number for characteristic velocity and length scales U and L

and the diffusion constant D.
Solving (1.2) it is important to recognize the Péclet number and dis-

criminate between three different regimes.

(1) For Pe ≪ 1 the problem is diffusion-dominated.
(2) For Pe ∼ 1 the problem involves both convection and diffusion.
(3) For Pe ≫ 1 the problem is convection-dominated.

In this thesis we only consider the case when Pe ≫ 1, in fact, we assume
that Pe is so large that the diffusion is negligible and thus in stead of the
convection-diffusion equation (1.2) we consider the transport equation

(1.4)

∂tc + u · ∇c = 0 in [0, T ] × Ω,

∇c · ν = 0 in [0, T ] × ∂Ω,

c(x, 0) = c0(x) in Ω.

It is now apparent to ask what properties the velocity field u must have
in order to make c(x, t) mixing. As we shall see, this problem could be
formulated within the realm of dynamical systems theory where we also
will find a more precise answer to the question.

In the engineering literature mixing in the case Pe ≫ 1 is commonly
refereed to as mixing by chaotic advection and for further references we
refer to the survey articles [2, 3, 34] or the book [33].

1.1. Dynamical systems approach. We do not solve the transport equa-
tion (1.4) because it seems to be too involved, for example, if c0 is discon-
tinuous and u is sufficiently irregular it will be technically difficult to accu-
rately evolve c0 in time. Instead we consider the flow [0, t] × Ω ∋ (t, x) 7→
g(t, x) ∈ Ω generated by a sufficiently smooth velocity field u, describing
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the motion of fluid particles in Ω as solutions to the system of ordinary
differential equations

(1.5) ∂tg(t, x) = u(g(t, x)), t > 0; g(0, x) = x.

Now (1.4) and (1.5) are equivalent and c(t, x) = c0 ◦ g(t, x), or formally
c(t, x) defines the Koopman operator associated to the semigroup of trans-
formations {St}t>0 corresponding to the flow (1.5) [27, p. 210].

Thus instead of trying to solve (1.4) we compute numerically a limited
number of orbits gk(t, xj) for j = 1, 2, . . . , J , xj ∈ Ω, and where k denotes
the step in a time discretization.

We remark that there is a similar correspondence between the convection-
diffusion equation (1.2) and (1.5) with an additional stochastic term on the
right hand side of (1.5). Hence for large and moderate Péclet numbers (1.2)
will be difficult to solve for the same reasons as (1.4) is and we may instead
consider a stochastic flow.

Let µ be a measure that is preserved in the flow, that is, for every open
set A ⊆ Ω, µ(g(t, A)) = µ(A). Then the flow g(t, x) is called mixing if for
every open set A,B ⊆ Ω

(1.6) µ(A ∩ g(t, B)) →
µ(A)µ(B)

µ(Ω)
as t → ∞,

see fore example [13, 40]. Interpreting this definition it may be instructive
to instead consider the limit µ(A∩ g(t, B))/µ(A) → µ(B)/µ(Ω) as t → ∞

and thus the relative amount of A ∩ g(t, B) in A should go to the relative
amount of B in Ω measured with µ.

Related to mixing is the decay of correlations between open sets A,B ⊆

Ω defined by

(1.7) Ct(A,B) = µ(A ∩ g(t, B)) −
µ(A)µ(B)

µ(Ω)
,

see for example [7, 40]. Its asymptotic behavior indicates whether the
mapping is mixing and also the rate at which mixing occurs. The decay
may be exponential Ct(A,B) ∼ e

−αt or polynomial Ct(A,B) ∼ t
−α for

some α > 0.

1.2. Convection versus diffusion. In order to get a feeling for mixing
in general we now consider (1.2) for Pe ≪ 1 and Pe ≫ 1 and estimate a
finite time such that ‖c(x, t) − c0‖∞ in (1.1) supposedly is small. We call
this the mixing time.
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For Pe ≪ 1 the convection is negligible and c(x, t) will mix in time for
any initial data c0(x) due to diffusion. We consider the system mixed when

the mean-square displacement,
√

Dt, of a diffusing non-interacting point
mass (a molecule or particle) equals L and thus we obtain the relation

(1.8) tm = L
2
/D.

For Pe ≫ 1 the diffusion is negligible but instead we assume that the
velocity field u is mixing and that the flow is dynamically unstable in
the sense that small perturbations of size ℓ will grow exponentially as
ℓ exp(σt) for some σ > 0. We choose ℓ = (τD)1/2, where τ = L/U is
the characteristic time for the flow and consider the system mixed when
ℓ exp(σt) = L which implies that

(1.9) tm = 1/(2σ) ln(Pe).

where we used ℓ/L = (D/LU)1/2 = Pe−1/2.

Example 1.1. We consider the mixing of a dilute water/particle dispersion
with pure water, that is, let A ⊂ Ω contain the water/particle dispersion
and Ω \ A contain water at time t = 0. We suppose the particles diffuse
with diffusion constant given by the Einstein relation

(1.10) D =
kBT

6πηa

,

where kB is the Boltzmann constant, T is the temperature, η is the viscosity
of water, and a is the particle size. Now for

kB = 1.38 × 10−23 [J/K],

T = 298 [K],

η = 1.04 × 10−3 [Ns/m2],

and a in the range [10−10
, 10−5] [m] we plot the mixing time by diffusion

(1.8) for various L in Figure 1.1, that is, in the absence of convection.
Suppose next there is a velocity field in Ω generating a flow that is

mixing, cf. Section 1.1. The velocity field is characterized by the Reynolds

number

(1.11) Re =
UL

µ

where µ = η/ρ is the kinematic viscosity and ρ is the density. Notice that
Pe = Re µ/D and hence with the Einstein relation (1.10) we rewrite (1.9)
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as

tm = 1/(2σ) ln

(
Re

6πη
2

kBTρ

a

)
.

Now for
Re = 1,

ρ = 103 [kg/m3],

and for the other parameters as above, we plot the mixing time by convec-
tion for various σ in Figure 1.1, that is, in the absence of diffusion. We note
that the dependence on the Reynolds number is logarithmic and hence the
actual choice of Re is not so important. However the choice we made,
Re = 1, reflect that there is no turbulence in the velocity field. Examining
Figure 1.1 we note that there are regimes where mixing by diffusion is very
slow, tm > 103 [s], whereas the mixing by convection is faster, tm > 1 [s],
this is the regime we particularly is interested in for this work.

1.3. Mixing in micro fluid systems. Mixing as outlined in the sections
above, and also from the practical point of view, has recently be revived,
spurred by the development of microfluidics, see the book [23] for a general
reference and the review articles [20, 30] on mixing in microfluid systems,
where ”micro” refers to length scales L . 1 [µm].

Significant for many micro fluid systems is the combination of small
Reynolds numbers Re . 10 (possibly ≪ 10) and large Péclet numbers
Pe & 100. As a consequence it is difficult to mix fluids in these systems.
For small Reynolds numbers there is no turbulence and we cannot rely on
inertial effects for mixing, and for large Péclet numbers convective effects
dominate over diffusive effects and mixing by diffusion is a relatively slow
process, see the discussion in Section 1.2.

Consider for example stationary flow in channels with characteristic
length scale L, the diameter (width) of the channel, and characteristic
velocity U , the maximum velocity in the flow along the channel. The ob-
jective is to mix two miscible fluids A and B that enter in a Y-junction,
Figure 1.2. If L and U are sufficiently small and the channel walls are
smooth, then a parabolic velocity profile is maintained along the channel.
There will be little mixing and only due to diffusion. This has been demon-
strated in several papers, for example, in [21, 22, 26] and we illustrate it
in Figure 1.2.

One possible way to enhance the mixing in these situations is to force
convection in the cross section by modifying the geometry of the boundary
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diffusion convection

a [m]
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σ = 1
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100
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Figure 1.1: Mixing time, tm, of a dilute water-particle dispersion as a function
of particle size a. The left y-axis shows the mixing time by diffusion based
on the estimate (1.8) for L = (10−7, 10−5, 10−3) [m] and where we assumed
the diffusion coefficient is given by the Einstein relation (1.10). The right
y-axis shows the mixing time by convection based on the estimate (1.9) for
σ = (1, 10, 100) [s−1] and where we assumed Re = 1.

∂Ω. This was proposed and experimentally studied in [38] in channels
like the ones depicted in Figures 2.1 and 2.2, and with velocity profiles
as in Figures 2.3 and 2.4, where the velocity field is given by the Stokes
equations as described in Section 2.1 below.

2. Outline of the thesis

The goal of this thesis is to computationally characterize mixing in the
context outlined above. Ideally, this implies that, for all open sets A ⊂ Ω,
we need to

(1) solve (1.5) for every x ∈ A,
(2) compute the decay of correlations (1.7).

However, in practice we can not expect to solve (1.5) for every x ∈ A

and all open sets A ⊂ Ω and compte (1.7) for all open sets A,B ⊂ Ω.
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A

B

mixing by diffusion

mixing by convection

U

U L

Figure 1.2: Miscible fluids A and B enter the channel in a Y-junction. (top)
In microfluidics the characteristic length L and the characteristic velocity U ,
are both typically small. Inertial effects are weak and if the channel walls are
smooth the two fluids will flow along next to each other. There will be little
mixing and only due to diffusion. (bottom) Introducing convection in the
channel cross section may enhance mixing.

Therefore we must make some approximations and set up some additional
framework.

We assume that u is sufficiently smooth and incompressible, that is,

∇ · u(x) = 0 ∀x ∈ Ω.

Let ν be the outward normal to ∂Ω, the boundary to Ω. We assume that
ν(x) · u(x) = 0 for x ∈ ∂Ω, that is, there is no flow through ∂Ω. Imposing
some additional constraints on Ω and u, we distinguish two types of flows.

(1) The flow g(t, x) is said to be confined if Ω is bounded.

Let Γ ⊂ Ω with dim Γ = n − 1 such that ∂Γ ⊂ ∂Ω and Γ + mr ∈ Ω for
some r ∈ Rn and any integer m.

(2) The flow g(t, x) is said to be space periodic if u|Γ = u|Γ+mr and
νΓ(x) · u(x) ≤ 0 for x ∈ Γ, where νΓ is the normal to Γ

We now describe the procedure in the context of confined flows for which
the volume measure |·| will be the appropriate measure.

Instead of considering all open sets A ⊂ Ω we consider a partition
{Ai}

N
i=1 of Ω and

(1) compute a limited number of orbits gk(t, xj) to (1.5) for xj ∈ Ai

and j = 1, . . . ,M ,
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(2) for all A,B in the partition compute the approximate decay of
correlations as explained in Paper I and defined by

(2.1) C
M
k,t(A,B) = |B|M−2

M∑

i=1

det(∇gk(t, xi))
M∑

j=1

χA(gk(t, xj)) − |A||B|

where χA is the characteristic function for A.

Moreover, in many situations we may not even know u a priori in a
closed form but it will rather be defined from a model, for example, a
partial differential equation, and we will have to use approximate data uh

for u, where h denotes the space discretization.
Finally, in order to validate the entire approach we provide error bounds

for the approximate correlation sequence in the sense that

(2.2) |CM
k,t(A,B) − Ct(A, B̃)| ≤ ε

(
|∂A| + |A||∂B|

)
+ RM ,

where B̃ a set close to B and RM is a residual from the approximation of
|A ∩ T

t
B| by quadrature and ε is a parameter depending on estimates of:

(1) the error in the computed velocity field

eu = uh − u,

(2) the error in the computed orbits

e = gk(t, x) − g(t, y),

where x ∈ B is probably not equal to y ∈ B̃, but still we may
obtain a small e due to a shadowing argument.

The overall methodology described above is more carefully discussed in
Paper I and the error estimates for eu and e are outlined in the section
below.

2.1. Stokes flow. Modeling the velocity field we only consider the Stokes
equations, see [18, 37] for general mathematical introductions. Let Ω ⊂

Rn, n = 2, 3, be a polyhedral domain and consider the Dirichlet Stokes
problem in dimensionless form

(2.3)

−∆u + ∇p = f in Ω,

∇ · u = g in Ω,

u = 0 on ∂Ω,
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where u = (u1, . . . , un) is the unknown velocity field, p is the unknown
pressure, f = (f1, . . . , fn) is an external body force and g is a function
describing the compressibility of the flow, for incompressible flows g = 0.

2.1.1. A posteriori error estimates. Let T be a regular triangulation of Ω
and for T ∈ T set hT = diam (T ) and hmin = minT∈T hT . Let (uh, ph) be
a conforming finite element solution to (2.3) and define the residual in the
momentum equation (me) by

Rme := f + ∆uh −∇ph

and the residual in compressibility constraint (cc) by

Rcc := g −∇ · uh.

In Paper II, which is inspired by [14, 31], we prove that provided the
data f and g are sufficiently smooth there is a constant C such that

(2.4) ‖uh − u‖L∞(Ω) ≤ C|log hmin|
αn

η + C1h
β
min,

where α2 = 2, α3 = 4/3 and

η = max
T∈T

(
h

2
T‖Rme‖∞,T +

1

2
‖[∂νuh]‖∞,∂T\∂Ω + hT‖Rcc‖∞,T

)
,

where [∂νuh] denotes the jump across ∂T in the normal derivative, ∂νuh =
ν · ∇uh, where ν denotes the outward normal to ∂T , and where β could
be chosen arbitrary large.

We note that the estimate above is asymptotic in the sense that the
constant C is bounded but not explicitly known, and thus the error goes
to zero as hT goes to zero.

2.1.2. Periodic Stokes flows. In the actual mixing experiments we consider
a model problem inspired by [38] where laminar fluid mixing was experi-
mentally studied in small channels. Let Ω ⊂ R3, be a polyhedral domain
with periodic boundaries ΓA and ΓB, as in Figures 2.1 and 2.2, and con-
sider the following Stokes problem with periodic boundary conditions in
dimensionless form

(2.5)

−∆u + ∇p = 0 in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω \ (ΓA ∪ ΓB),

u|ΓA
= u|ΓB

,

p|ΓA
= p|ΓB

+ Rp,
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where Rp is a constant modeling the pressure drop.

θ

w

h

αh
βℓ

ℓ

ΓA ΓB

x
y

z

flow

Figure 2.1: Three juxtaposed Ridge Domains. The shaded planes ΓA and ΓB

are periodic boundaries.

θ

w

h

αh
βℓ

ℓ

p

ΓA ΓB

x
y

z

flow

Figure 2.2: Three juxtaposed Herringbone Domains. The shaded planes ΓA

and ΓB are periodic boundaries.

We refer to the domains in Figures 2.1 and 2.2 as the Ridge Domain
and the Herringbone Domain, respectively, where the names are quoted
from [38]. Accurate solutions to (2.3) in the two domains are computed by
a finite element method, see for example [9, 11, 17] for general texts and
[18, 29] for Stokes equations. We use Taylor-Hood P2P1 finite elements on
fine triangulations and illustrate the solutions in Figure 2.3 and 2.4.

2.2. Finite time shadowing. Given a dynamical system (1.5) and a
number Tol > 0, we may ask if there in practice is a threshold time T such
that we can compute orbits gk(t, x) with error ‖gk(t, x)−g(t, x)‖ ≤ Tol for
all t ∈ [0, T ] and a fixed x ∈ Ω, that is, such that the error is uniformly
bounded on [0, T ].

In the present case accurate predictions of this kind are inherently dif-
ficult since mixing is only obtained if u is sufficiently irregular meaning
that the flow generated by u will have to be sufficiently hyperbolic, which
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a

y

z

0 1
0

0.5

b

y

z

U
x

0

1

0

0.5

0

1

Figure 2.3: Velocity field for (2.3) solved in the Ridge Domain, Figure 2.1, at
x = 0.0. (a) The y and z components of the velocity field. (b) The x component
of the velocity field.

a

y

z

0 1
0

0.3

b

y

z

U
x

0

1

0

0.3

0
1

Figure 2.4: Velocity field for (2.3) solved in the Herringbone Domain, Figure
2.2, at x = 0.0. (a) The y and z components of the velocity field. (b) The x

component of the velocity field.

loosely speaking involves that the flow has to have enough contractive and
expensive directions, see [24, 40] for a more precise statement of hyperbol-
icity. Such systems are dynamically unstable, sensitive to perturbations,
which renders the computation delicate. The error will probably grow at
a exponential rate and we will only be able to compute accurate orbits
gk(t, x) for relatively small time intervals.

However, if the system is sufficiently hyperbolic we may argue by shad-
owing, that is, provided gk(t, x) is computed accurately enough there is an
exact orbit g(t, y) such that ‖gk(t, x) − g(t, y)‖ is small for t ∈ [0, T ] and
where T is relatively large [10, 12, 39]. Moreover approximating u with uh
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in (1.5) and if eu is small we may arrive to the similar conclusion, which
is proved in Paper III.

We solve (1.5) by the finite element method, see for example [16]. Par-
tition [0, T ] into intervals [ti−1, ti] for i = 1, 2, . . . , N , and set ki = ti−1− ti,
and let k = k(t) be piecewise constant function defined by k|[ti−1,ti] = ki.

Define the residual to the finite element solution

R(gk) := uh(gk) − ∂tgk.

Set

rN(uh, ρ) := ρh
−1−n/p
min ‖∇uh‖Lp(Ω) + max

T∈T
‖[∇uh]‖L∞(∂T\∂Ω),

and

(2.6) rE(eu) := h
−n/p
min ‖∇eu‖Lp(Ω).

for some 1 ≤ p ≤ ∞ depending of what kind of estimates we have for uh,
and set

Bρ := {e ∈ C
1([0, T ]) : ‖e‖L∞([0,T ]) ≤ ρ}.

Let S1(T ) and S2(T ) be stability factors obtained by solving an appro-
priate dual problem and let ρ, uh and gk be such that

(2.7)
CS2(T )rE(eu) ≤ 1/4,

CS2(T )rN(uh, ρ) ≤ 1/4,

and suppose

S1(T )‖kq+1
R(gk)‖L∞([0,T ]) ≤

1

4
ρ,

S2(T )‖eu‖L∞(Ω) ≤
1

4
ρ.

Then the numerical solution gk(t, x) is shadowed by an exact solution
g(t, y) and the error e(t) = gk(t, x) − g(t, y) is bounded from above for
all t ∈ [0, T ] by

(2.8) |e(t)| ≤ S1(T )‖kq+1
R(gk)‖L∞([0,T ]) + S2(T )‖ef‖L∞(Ω) ≤ ρ.

We note that S1,2(T ) will be relatively small provided the flow (1.5) is
sufficiently hyperbolic.

Example 2.1. As a concrete example we consider the Lorenz system

∂tg = (σ(g2 − g1), ρg1 − g2 − g1g3, g1g2 − βg3), t > 0;

g(0) = (1, 0, 0); for (σ, ρ, β) = (10, 28, 8/3).



13

In [28] this problem was solved accurately in the sense that the error
‖gk(t, g(0)) − g(t, g(0))‖ is small up to T = 50, which is predicted to be
the threshold beyond which the error becomes too large to be represented
with double precision arithmetics (in the same work the threshold T = 100
is predicted for quadruple precision).

This result should be compared to [12] where the same problem is solved
accurately up to T = 9×106 in the sense that ‖gk(t, g(0))−u(t, y)‖ is small
for t ∈ [0, T ], that is, very close to the computed orbit gk(t, g(0)) there is
an exact orbit g(t, y).

This example obviously suggests that long time error control for prob-
lems that are dynamically unstable will fail with the first method, but
could possibly be archived with the last method, provided the structure of
the problem is sufficiently ’hyperbolic-like’.

2.3. Search in triangulations. Working with finite element methods in
practice we may face the problem to locate which n-simplex in the trian-
gulation contains a given point. In the present work we need to perform
such search when solving (1.5) with finite element data in the right hand
side. A simple search will require O(N) operation if N is the number of
n-simplices in the triangulation and thus if we for some reason must solve
this problem many times we would like do the search more efficiently.

In Paper IV we discuss the implementation of a binary search algorithm
that will solve the search problem in an optimal way, that is, with O(N)
preprocessing time, O(N log N) storage and O(log N) search time [25].

2.4. Multigrid solvers. Finite element multigrid methods solve linear
systems of equations arising from finite element approximations to linear
elliptic partial differential equations with the number of operations pro-
portional to the number of unknowns, see [8, 19, 36] for comprehensive
introductions. We say that the multigrid method has optimal complexity
or scales optimally.

However, it is important to note that this rather general statement is
really implicitly assuming that the finite element basis functions are linear
and that the triangulations are quasi-uniform. Side-stepping these require-
ments the convergence rate of the multigrid solver may deteriorate but the
accuracy of uh may be improved. For example, higher degree finite element
approximation are appealing for use on problems that are sufficiently regu-
lar since the error u−uh may converge as O(hq+1) where q is the degree of
the approximation. Moreover, adaptively refined triangulations (violating
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the quasi-uniformity) may give better approximations on problems with
less regularity.

In Paper V we demonstrate that the multigrid method in practice also
works well for second degree finite element approximations of problem
with both full regularity and less than full regularity. We compare two
different finite element approximations, the Lagrange approximation and
the hierarchical approximation proposed in [5] and [4]. We use the general
theory outlined in [8] to indicate how the point Gauss-Seidel smoother
deteriorates as a function of the dimension n of the problem and the degree
of the approximation q.

In Paper VI we consider the practical aspects implementing the method
on adaptively refined triangulations for conforming linear and quadratic
finite elements in two and three dimensions.

We choose to use a refinement method that renders the finite element
spaces nested and thus the formulation of the multigrid method is straight-
forward with well defined projection operators on the finite element spaces,
in contrast to the situation when the finite elements spaces are non-nested
[8, 35]. Moreover, this choice is also motivated by the fact that the re-
finement algorithm becomes simple compared to the rather involved re-
finement algorithm proposed in [6], which also renders the finite element
spaces non-nested.

The refined triangulations are irregular [15] in the sense that there will
be ’hanging’ nodes and the construction of conforming finite element spaces
is a non-trivial task that in practice requires flexible data structures to be
implemented. This and the even more general aspects of hp-refinements
has already be considered in [1, 15, 32]. We reformulate these results using
concepts from modern finite element theory.

3. Concluding remarks

In this thesis we have computationally characterize mixing in flows in the
sense that we now in principle quite generally should be able to analyze
mixing. Principal to the work is to compute the velocity field u by the
finite element method and provide error bound to the computed solution.
We note that estimate (2.4) is asymptotic in character, that is, there is
an unknown but bounded constant in the right hand side and we can only
deduce that the error goes to zero as h → 0. It may be possible to obtain
other error estimates with better control on the constant in the right hand
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side but then we must probably measure the error in some other weaker
norm than the maximum-norm.

Better control on error in the velocity field will impact and improve
the other estimates: the shadowing estimate (2.8) and the estimate of the
computed mixing measure (2.2). Thus, error control in the velocity field
is a key issue.

We remark that ideally we should have solved the Stokes problems (2.5)
adaptively with the techniques outlined in Paper V and VI. However we
did not manage to completely finish this part of the work.
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Paper I





COMPUTATIONAL CHARACTERIZATION OF MIXING

IN INCOMPRESSIBLE FLOWS

ERIK D. SVENSSON

Abstract. We propose a computational methodology for character-
izing fluid mixing in incompressible flows. Principal to the methodol-
ogy is the definition of a mixing measure that will resolve the mixing
process both in space and time. We propose a mixing measure based
on rigorous notions, mixing and decay of correlation in the flow, known
from dynamical systems theory. We analyse the error when the mix-
ing measure is computed numerically and obtain an upper error bound
for the mixing measure that in principle could be used for rigorous
computational characterization of the mixing process.

1. Introduction

In order to mixing miscible fluids on a time scale where diffusion is neg-
ligible the fluids will have to be displaced by means of a velocity field that
is sufficiently irregular. In the engineering literature such process is com-
monly refereed to mixing by chaotic advection and for further references
we refer to the survey articles [1, 2, 21] or the book [20]. The problem has
recently undergone a revival spurred by the development of microfluidics,
see the book [15] for a general reference and the review articles [14, 19] on
mixing in micro fluid systems.

We consider mixing as a relaxation process going from an unmixed state
to a homogeneous (mixed) state and in order to characterize this relaxation
we will need a measure that describes the mixing process in space and
time. For example, the mixing could be nonuniform in space and we may
be interested in resolving these spatial variations; or a process may be
mixing although at a slow rate, too slow to be useful in an engineering
application. There seems to be no consensus on what mixing measure to
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use. The mixing measures suggested in the literature vary and are often
heuristical, cf. [3, 12, 20].

In dynamical systems theory mixing has a precise meaning, see for ex-
ample [16, 26] or the survey article [25]. Related to mixing in this context
is the decay of correlations in the flow which we use as a mixing measure in
this work. Since the decay of correlations in the flow, cf. (1.6) and (1.7), in
principle is numerically intractable we propose a computable approxima-
tion and analyze the error in this approximation. Moreover, we consider
a situation where the velocity field generating the mixing process is not
known a priori in closed form but rather given by computed data from
some model, e.g., the Stokes equations or possibly the Navier-Stokes equa-
tions or some other fluid model. This aspect is also included in the error
analysis. The error bound provided for the mixing measure can in prin-
ciple be used for a rigorous computational characterization of the mixing
process so that the total error is controlled and made small.

1.1. Assumptions. Let Ω ⊂ Rd for d = 2, 3 be an open set containing
some fluids. We assume that the fluids are moved by a sufficiently smooth
velocity field f : Ω → Rd so that f generates a flow [0, t] × Ω ∋ (t, x) 7→

u(t, x) ∈ Rd. The flow describes the motion of the fluid particles in Ω and
is given by the solution to the system of ordinary differential equations

(1.1) ∂tu(t, x) = f(u(t, x)), t > 0; u(0, x) = x.

We also assume that f is incompressible in the sense that

(1.2) ∇ · f(x) = 0 ∀x ∈ Ω.

Let ν be the outward unit normal to ∂Ω. We assume that ν(x) ·f(x) = 0
for x ∈ ∂Ω, that is, there is no flow through the boundary ∂Ω. Imposing
some additional constraints on Ω and f we distinguish two types of flows.

(1) The flow u(t, x) is said to be confined if Ω is bounded.

Let Γ ⊂ Ω with dim Γ = d − 1 such that ∂Γ ⊂ ∂Ω and Γ + mr ∈ Ω for
some r ∈ Rd and any integer m, see Figure 1.1.

(2) The flow u(t, x) is said to be space-periodic if f |Γ = f |Γ+mr and
νΓ(x) · f(x) ≤ 0 for x ∈ Γ, where νΓ is the unit normal to Γ.

1.2. Considerations. We ask to what extent the mixing process can be
computationally characterized in the sense that computed predictions are
accurate. Suppose we compute a mixing measure, of our choice, that re-
flects the amount of mixing in Ω generated by f . Then we also would like



3

Γ
Γ + r

∂Ω

r

νΓ

Figure 1.1: Space-periodic domain.

to estimate the error in the computed measure and recursively compute
the mixing measure more accurately. Accurate predictions of this kind
are inherently difficult since mixing requires that f is sufficiently irregu-
lar meaning that the flow generated by f must be hyperbolic-like which
loosely involves that the flow has to have enough contractive and expan-
sive directions, see [16, 26] for a more precise statement of hyperbolicity.
Such systems are dynamically unstable, sensitive to perturbations, which
renders the computation delicate.

In practice we will not know the flow u(t, x) a priori in a closed form
and in order to study the properties of the flow we may instead analyze a
limited number of numerically computed orbits uk(t, xj) for j = 1, 2, . . . , J ,
where k denotes the time step. Moreover, in many situations we may not
even know f a priori in a closed form but it will rather be defined from
a model, for example, a partial differential equation, and we will have
to use numerically computed data fh for f where h denotes the space
discretization. Now let uk(t, xj) be a computed orbit to (1.1) with right
hand side f = fh. Then the error

(1.3) e(t, x) := uk(t, xj) − u(t, x),

will depend on the discretization error associated with the numerical method
used to compute uk(t, xj) and the error in the velocity field ef := fh − f .
Since (1.1) probably is dynamically unstable we will only be able to com-
pute uk(t, xj) with small e(t, x) for a rather small time. However, if the
system is hyperbolic-like we may argue by shadowing, that is, provided
uk(t, xj) is computed accurately enough and provided ef is small enough
there is an exact orbit u(t, y) with an other initial value y such that
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‖uk(t, xj) − u(t, y)‖ is small for t ∈ [0, T ] [7, 8, 24]. The overall idea is
to use this kind of argument in order to control the error in a computed
mixing measure.

1.3. Notions from dynamical systems theory. Within the realm of
dynamical systems theory mixing has a precise meaning. For a probability
space (X,M, µ) a measure preserving bijective mapping T : (X,M, µ) →
(X,M, µ) is called mixing if, for discrete time systems

(1.4) ∀A,B ∈ M µ(A ∩ T
n
B) → µ(A)µ(B) as n → ∞,

or for continuous time systems T
t : (X,M, µ) → (X,M, µ)

(1.5) ∀A,B ∈ M µ(A ∩ T
t
B) → µ(A)µ(B) as t → ∞.

We remark that T is measure preserving if for every A ∈ M, µ(T−1
A) ∈ M

and µ(T−1(A)) = µ(A), see for example [9, 26].
Mixing is also defined for measure preserving maps that are only sur-

jective but then we must replace µ(A ∩ T
n
B) by µ(T−n(A) ∩ B) in the

definition, and likewise for the continuous case, [9, 26].
Related to mixing is the decay of correlations between the sets A,B ∈ M

defined by

(1.6) Cn(A,B) = µ(A ∩ T
n
B) − µ(A)µ(B)

for discrete time systems, and

(1.7) Ct(A,B) = µ(A ∩ T
t
B) − µ(A)µ(B)

for continuous time systems, see for example [4, 26]. The asymptotic be-
havior of the decay of correlations indicates whether the mapping is mixing
or not and we may also have an estimate of the rate of mixing. The decay
is exponential if Cn(A,B) ∼ e

−αn, or polynomial if Cn(A,B) ∼ n
−α, for

some α > 0, and likewise for Ct(A,B).

1.4. Computability. In practice some of the notions in Section 1.3 are
too general and numerically intractable. We will have to approximate
M, which in our case is a Borel σ-algebra on X = Ω. It seems natural
to replace M by a family of partitions {Uh}h>0 where Uh is the class of a
finite number of disjoint sets Ui such that

⋃
i(Ui) = Ω and where h denotes

the size of the largest set in U , that is, h = maxi diam(Ui). In principle
any type of partition will suffice although if Ω is a polyhedral domain
it is convenient to let {Uh}h>0 = {Th}h>0 be a family of quasi-uniform
triangulations, see for example [11].
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The size h will determine the resolution of the approximation and could,
for example, be motivated by some physical length scale, i.e., set h ∼

(τD)1/2 which is the mean-square displacement of a diffusing non-interacting
point mass, and where τ is a typical diffusion time scale and D is the dif-
fusion constant.

In order to investigate whether a mapping is mixing we may consider
the decay of correlations Cn(A,B) (or Ct(A,B)) for A,B ∈ Uh and for
some finite n. We will have to evaluate the measure µ(A ∩ T

n
B) (or

µ(A ∩ T
t
B)) which is inherently difficult since the mapping is probably

dynamically unstable and even though B may have a simple geometry
T

n
B will be severely deformed. It is reasonable to assume that we only

know T
n
xj for a finite number of xj ∈ B, j = 1, . . . ,M . It then seems

viable to evaluate µ(A ∩ T
n
B) by a simple Monte Carlo method. We will

discuss this kind of implementation in more detail in the sections below
where the measure µ is chosen explicitly.

1.4.1. Monte Carlo integration. For further reference we now briefly re-
call the Monte Carlo method, see for example [17]. Consider integrable
functions f and g on ω ∈ M such that g ≥ 0 and∫

ω

g(x) dx = 1,

and independent random variables {xj}
M
j=1 that are g(x) dx distributed on

ω. Then

(1.8)

∫

ω

f(x)g(x) dx =
1

M

M∑

j=1

f(xj) + RM(σ),

where RM(σ) is a residual that must be interpreted statistically in the

sense that RM is normally distributed with standard deviation σ/

√
M ,

where

σ
2 =

∫

ω

f(x)2
dx −

(∫

ω

f(x) dx

)2

is the variance. In practice we may estimate this variance by the empirical
variance

σ̂
2 =

1

M − 1

M∑

j=1

(f(xj) − f̄)2

where f̄ is the mean of {f(xj)}
M
j=1.
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In the sequel we will use f = χA, the characteristic function defined by

(1.9) χA(x) =

{
1, if x ∈ A,

0, if x 6∈ A.

1.5. Error analysis. We compute approximate orbits uk(t, xj) to (1.1)
for t ∈ [0, T ] and xj ∈ B, j = 1, . . . ,M by a continuous finite element
method. This involves partitioning [0, T ] into intervals Ii = [ti−1, ti] with
0 = t0 < t1 < . . . < tN = T and ki = ti − ti−1. Let Pq(Ii) denote the
polynomials of degree less or equal to q on Ii and set

Vq([0, T ]) := {v ∈ C
0([0, T ]) : v|Ii

∈ Pq(Ii) for i = 1 . . . N}

Wq([0, T ]) := {v ∈ C
0(

N⋃

i=1

(ti−1, ti)) : v|Ii
∈ Pq(Ii) for i = 1 . . . N}

which is the finite element spaces of continuous and discontinuous piecewise
polynomials of degree q.

For q ≥ 1 we now obtain the finite element formulation to (1.1) with f =
fh, an approximate velocity field. Find uk ∈ Vq([0, T ])n with uk(t, 0) = xj

such that

(1.10)

∫ T

0

(∂tuk − fh(uk)) · v dt = 0 ∀v ∈ Wq−1([0, T ])n
.

This is the continuous Galerkin method of degree q, referred to as the
cG(q) method in [10, p. 210].

There are q+1 points in the interval Ii, where the piecewise polynomials
are evaluated, referred to as local nodes. In the same way there are N(q +
1) − 1 points in the interval [0, T ] referred to as global nodes.

We now assume that uk(t, xj) is computed sufficiently accurately and
that ef is sufficiently small. A precise statement of this can be found
in [10] for general finite element approximations and particularly in the
present situation in [24]. The condition requiring uk(t, xj) to be computed
sufficiently accurately can be translated to uk(t, xj) being a pseudo orbit

cf. [16, 22]. We will use this notion in the sequel and in addition, when it
is not explicitly stated, we always assume that ef is sufficiently small.

If Ω is hyperbolic-like for (1.1) then every pseudo orbit uk(t, xj) will be
shadowed by an exact orbit u(t, yj) at least for some finite time t ∈ [0, T ],
cf. [7, 8, 22, 24]. This implies that ‖uk(t, xj)−u(t, yj)‖ can be made small
for t ∈ [0, T ].
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Now for every pseudo orbit uk(t, xj) for t ∈ [0, T ] and xj ∈ B, j =
1, . . . ,M , we thus assume that there is a shadow orbit u(t, yj) such that

(1.11) ‖uk(t, xj) − u(t, yj)‖ ≤ εj,

for some small number εj and we set

(1.12) ε = max
j

εj.

By setting t = 0 in (1.11) we note that

(1.13) yj ∈ B̃ :=
⋃

x∈B

B(x, ε),

where B(x, ε) is the ball or radius ε about x.

2. Mixing in confined incompressible flows

Let u(t, x) be a confined incompressible flow as defined in Section 1.1.
For an open set A ⊆ Ω we define the measure as the volume of A normalized
with the volume of Ω

(2.1) µ(A) = c
−1
0

∫

A

dx = c
−1
0 |A|.

where

c0 =

∫

Ω

dx = |Ω|,

is the volume of Ω. Then (Ω,M, µ) is a probability space.
Now set T

t(·) = u(t, ·). Since u is a flow and f is incompressible T is
bijective and measure preserving, i.e., |A| = |T t

A| for every A ∈ M or, in
other words, we say that T

t preserves volume. Hence mixing according to
(1.5) and the decay of correlations (1.7) is well defined in this case.

2.1. Computational characterization. Set T
t
k(x) = uk(t, x) and let

uk(t, xj) for t ∈ [0, T ] and xj ∈ B ⊆ Ω be pseudo orbits. Approximate M

with a partition Uh as defined in Section 1.4.
In order to approximately compute (1.7) we let {xj}

M
j=1 be independent

random variables uniformly distributed on B. Now {T t
k(xj)}

M
j=1 will be

independent random variables T
t
k(x) dx distributed on T

t
kB and we com-

pute |A ∩ T
t
kB| by the Monte Carlo method. Set f(x) = χA(x) and
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g(x) = |T t
kB|−1 in (1.8) to obtain

|A ∩ T
t
kB| =

∫

T t
k
B

χA(x) dx ≈ |T t
kB|M−1

M∑

j=1

χA(T t
kxj).

It may seem tempting to set |T t
kB| = |B| but since T

t
k in general is not

measure preserving we cannot do so. Instead we evaluate |T t
kB| by Monte

Carlo integration and by a change of variables we obtain

|T t
kB| =

∫

T t
k
B

dx =

∫

B

|det(∇T
t
kx)| dx ≈ |B|M−1

M∑

j=1

|det(∇T
t
kxj)|,

where we note that |det(∇T
t
kx)| = 1 if is T

t
k is measure preserving, i.e., if

fh is incompressible [6, p. 10].
Hence, we define the following approximation to the decay of correlation

(1.7) for A,B ∈ Uh

(2.2) C
M
k,t(A,B) = |B|M−2

M∑

i=1

|det(∇T
t
kxi)|

M∑

j=1

χA(T t
kxj) − |A||B|.

A

A

B

T
t
kB

ε

∂Aε

Figure 2.1: (left) A, B ⊂ Ω at t = 0. (right) Intersection A ∩ T t
kB and the

ε-shell ∂Aε inside A.

2.2. Error analysis. As outlined in Section 1.5 we assume that to every
pseudo orbit uk(t, xj) there is an exact orbit u(t, yj) such that (1.11) is

satisfied and that ε in (1.12) is small. Then for A,B ∈ Uh and B̃ as
defined in (1.13) we argue that

∣∣|A ∩ T
t
kB| − |A ∩ T

t
B̃|
∣∣ ≤ |∂Aε ∩ T

t
kB| ≤ ε|∂A|
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where ∂Aε is the ε-shell inside A as in Figure 2.1 and |∂Aε ∩ T
t
kB| is the

measure of the points T
t
kx ∈ T

t
kB such that dist (T t

kx, ∂A) ≤ ε. In the
same way ∣∣|B| − |B̃|

∣∣ ≤ ε|∂B|,

and hence we may estimate
∣∣|A ∩ T

t
kB| − |A||B| − Ct(A, B̃)

∣∣ ≤ ε

(
|∂A| + |A||∂B|

)
.

Now with the estimate above and for A,B ∈ Uh and B̃ as defined in
(1.13) we estimate the error in the approximate correlation sequence (2.2)

(2.3)
∣∣
C

M
k,t(A,B) − Ct(A, B̃)

∣∣ ≤ ε

(
|∂A| + |A||∂B|

)
+ R,

where R must be interpreted statistically as explained in Section 1.4.1.

3. Mixing in periodic channel flows

Let u(t, x) be a space periodic incompressible flow as defined in Section
1.1. For an open set A ⊆ Γ we define the measure as the flow through A

normalized with the flow trough Γ

(3.1) µ(A) = c
−1
0

∫

A

f · νΓ dx,

where

c0 =

∫

Γ

f · νΓ dx,

is the total flow through Γ. Then (Γ,M, µ) is a probability space.
Now for u(0, x) ∈ Γ let t be such that u(t, x) ∈ Γ + r and let T : Γ → Γ

be the mapping defined by T (x) := u(t, x) − r. We note that since u

is a flow and f is incompressible T is bijective and measure preserving.
Iterating T

n(x) = T ◦T
n−1(x) with T

0(x) = x we obtain the Poincaré map
for which mixing according to (1.4) and the decay of correlations (1.6) is
well posed.

3.1. Computational characterization. We need to define an approxi-
mate measure based on fh instead of f . For an open set A ⊆ Γ set

(3.2) µh(A) = c
−1
h0

∫

A

fh · νΓ dx,

where

ch0 =

∫

Γ

fh · νΓ dx.
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Set Tk(x) = uk(t, x) − r as in the previous section and let uk(t, xj) for
t ∈ [0, T ] and xj ∈ B ⊆ Γ be pseudo orbits. Approximate M by a partition
Uh of Γ as defined in Section 1.4.

In order to approximately compute (1.6) we let {xj}
M
j=1 be independent

random variables fh(x) · νΓ dx distributed on B. Now {T n
k xj}

M
j=1 will be

independent random variables fh(T
n
k x) · νΓ dx distributed on T

n
k B and we

compute µh(A∩T
n
k B) by the Monte Carlo method. Set f(x) = χA(x) and

g(x) = µh(T
n
k B)−1 in (1.8) and we obtain

µh(A ∩ T
n
k B) =

∫

T n
k

B

χA(x)fh · νΓ dx ≈ µh(T
n
k B)M−1

M∑

j=1

χA(T n
k xj).

Since T
n
k in general is not µh measure preserving we cannot set µh(T

n
k B) =

µh(B). Instead we evaluate µh(T
n
k B) by Monte Carlo integration and by

a change of variables we obtain

∫

T n
k

B

fh · νΓ dx =

∫

B

fh · νΓ|det(∇T
n
k x)| dx ≈ µh(B)M−1

M∑

j=1

|det(∇T
n
k xj)|,

where we note that |det(∇T
n
k x)| = 1 if fh is incompressible [6, p. 10].

Hence we define the following approximation to the correlation sequence
(1.7) for A,B ∈ Uh

(3.3)

C
M
k,n(A,B) = µh(B)M−2

M∑

i=1

|det(∇T
n
k xi)|

M∑

j=1

χA(T n
k xj) − µh(A)µh(B).

3.2. Error analysis. As outlined in Section 1.5 we assume that to every
pseudo orbit uk(t, xj) there is an exact orbit u(t, yj) such that (1.11) is

satisfied and that ε in (1.12) is small. Then for A,B ∈ Uh and B̃ as
defined in (1.13) we argue in the same way as we did in Section 2.2 and
obtain

|µ(A ∩ T
n
k B) − µ(A)µ(B) − Cn(A, B̃)| ≤ ε

(
µ(∂A) + µ(A)µ(∂B)

)
.

In order to make the connection to the approximate correlation function
(3.3) we first note that for any A ∈ Uh

|µh(A) − µ(A)| =

∫

A

(fh − f) · νΓ dx ≤ |A|ef ,
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and thus we arrive at the following estimate. For A,B ∈ Uh and B̃ as
defined in (1.13)

(3.4) |CM
k,n(A,B) − Cn(A,B)| ≤ ε

(
µ(∂A) + µ(A)µ(∂B)

)
+ Cef + R,

where the constant C = C(A,B) and where R must be interpreted statis-
tically as explained in Section 1.4.1.

4. Numerical experiments

We only consider two examples of space periodic flows.
Inspired by [23] where laminar fluid mixing was experimentally stud-

ied in small channels we set up the following model. Let Ω ⊂ R3, be a
polyhedral domain with periodic boundaries ΓA and ΓB, see Figures 4.1
and 4.2, and consider the Dirichlet Stokes problem with periodic boundary
conditions in dimensionless form

(4.1)

−∆U + ∇P = 0 in Ω,

∇ · U = 0 in Ω,

U = 0 on ∂Ω \ (ΓA ∪ ΓB),

U |ΓA
= U |ΓB

,

P |ΓA
= P |ΓB

+ RP ,

where U = (U1, U2, U3) is the unknown velocity field, P is the unknown
pressure and RP is a constant modelling the pressure drop.

θ

w

h

αh
βℓ

ℓ

ΓA ΓB

C

x
y

z

flow

Figure 4.1: Three juxtaposed Ridge Domains. The shaded planes ΓA and
ΓB are periodic boundaries. We choose the following values for the parameters:
ℓ = w = 1, h = 0.3, θ = 45◦, α = 2/3, β = 0.5, and the length of the domain is
= 1.

From [5] and [18] we know that U ∈ W
2,4/3(Ω)3 ∩ W

1,3
0 and thus U is

continuous although not Lipschitz continuous. There will be singularities
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θ

w

h

αh
βℓ

ℓ

p

ΓA ΓB

x
y

z

flow

Figure 4.2: Three juxtaposed Herringbone Domains. The shaded planes
ΓA and ΓB are periodic boundaries. We choose the following values for the
parameters: ℓ = 2/3, w = 1, h = 1/5, θ = 45◦, α = 2/3, β = 9/16, p = 2/3, and
the length of the domain is = 14/9.

in ∇U and P along the edges and vertices of Ω. However, if we let Ω′ ⊂

Ω such that dist(Ω′
, ∂Ω) is not too small, then we may argue that U is

Lipschitz continuous in Ω′ by an interior estimate as in for example [13,
Theorem 4.2, p. 209]. Thus when we compute orbits using f = U (or in
practice f = Uh) in (1.1) we only consider orbits that are not too close to
∂Ω.

We refer to the domains in Figures 4.1 and 4.2 as the Ridge Domain
and the Herringbone Domain respectively, the names are quoted from [23].
Accurate solutions Uh to (4.1) in the two domains are computed by a finite
element method, Hood-Taylor P2P1 on fine triangulations. We illustrate
the solutions in Figure 4.3 and 4.4.

a

y

z

0 1
0

0.5

b

y

z

U
x

0

1

0

0.5

0

1

Figure 4.3: Velocity field for (4.1) solved in the Ridge Domain, Figure 4.1, at
x = 0.0. (a) The y and z components of the velocity field. (b) The x component
of the velocity field.
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a

y

z

0 1
0

0.3

b

y

z

U
x

0

1

0

0.3

0
1

Figure 4.4: Velocity field for (4.1) solved in the Herringbone Domain, Figure
4.2, at x = 0.0. (a) The y and z components of the velocity field. (b) The x

component of the velocity field.

4.1. Decay of correlations and Poincaré sections. We identify ΓA

and ΓB in (4.1) with Γ as defined in Section 1.1. Since Γ is a polygon we
partition it into a regular triangulation T0.

In order to examine the approximate decay of correlations (3.3) we
choose one B ∈ TS and three A = Ai ∈ Ti, i = 0, 1, 2 such that A2 ⊂

A1 ⊂ A0 and where T1,2 are defined by uniformly refining T0 two and four
times, thus diam (A0) > diam (A1) > diam (A2). In this case TS is part of
the triangulation use to solve (4.1) and hence is not commensurate with
T0, this is not important for the conclusions. We illustrate T0 and Ai and
B in Figures 4.5 and 4.6 and the triangles Ai and B are explicitly specified
in Tables 4.1 and 4.2.

We may think of this numerical experiment as modelling a mixing process
where one fluid flowing through B is supposed to mix with another fluid
flowing through Γ \ B. The approximate decay of correlation will reflect
the amount of mixing in Ai as a function of the number of iterates n,
and diam (Ai) will reflect the length scale on which we resolve the mixing
process, cf., the discussion in Section 1.4.

As outlined in Section 3.1 we let xj ∈ B for j = 1, . . . ,M be Uh(x) dx

distributed random variables for a relatively large number M = 80964 for
the Ridge Domain and M = 73445 for the Herringbone Domain. We com-
pute orbits to (1.1) for these initial points using the simple cG(1) method
described in Section 1.5, with f = Uh where Uh now is the computed solu-
tion to (4.1) . The time steps ki for i = 1, 2, . . . , N are chosen adaptively
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Ai

B

y

z

0 1
0

0.5

Figure 4.5: Partition of Γ for the Ridge Domain in terms of a triangulation
T0. Shaded triangles illustrate B and Ai, i = 0, 1, 2, where A1,2 are defined by
refining A0 two and four times, respectively, picking the central triangle.

so that the local residual is less than a relatively small tolerance, for more
details see [10].

Table 4.1: Ai and B for the Ridge Domain where a0, a1 and a2 denote the
(x, y)-coordinates of vertices.

a0 a1 a2

B (0.499997, 0.474672) (0.499994, 0.449343) (0.515248, 0.458255)
A0 (0.381751, 0.344022) (0.250000, 0.500000) (0.166667, 0.320676)
A1 (0.262104, 0.416175) (0.241271, 0.371343) (0.295042, 0.377180)
A2 (0.259922, 0.384010) (0.273365, 0.385470) (0.265131, 0.395218)

We remark that a complete characterization of the decay of correlations
(1.6) involves examining all combinations of A,B ∈ Ti,s. Such general
analysis would be computationally challenging since the amount of work
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Ai
B

y

z

0 1
0

0.5

Figure 4.6: Partition of Γ for the Herringbone Domain in terms of a triangula-
tion T0. Shaded triangles illustrate B and Ai, i = 0, 1, 2, where A1,2 are defined
by refining A0 two and four times, respectively, picking the central triangle.

Table 4.2: Ai and B for the Herringbone Domain where a0, a1 and a2 denote
the (x, y)-coordinates of vertices.

a0 a1 a2

B (0.502007, 0.510363) (0.495657, 0.295325) (0.510363, 0.295325)
A0 (0.209104, 0.333333) (0.127166, 0.235331) (0.264605, 0.224165)
A1 (0.182010, 0.257040) (0.216370, 0.254248) (0.202495, 0.281541)
A2 (0.204311, 0.261769) (0.200842, 0.268592) (0.195721, 0.262467)

grows quadratically in the number of triangles in Ti,s. A general charac-
terization of this kind is beyond the scope of this work.

Instead of the complete characterization of the decay of correlation we
plot the Poincaré sections for orbits starting in B see Figures 4.7 and 4.8.
This will give qualitative information of the mixing in the entire domain
Γ and from such plots we may readily identify regions with either poor or
good mixing.
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n = 2 n = 5

n = 8 n = 11

n = 15 n = 21

Figure 4.7: Poincaré sections for the flow in the Ridge Domain. 80964 orbits
starting in B are included in the data.

Finally, we plot the correlation sequence in Figure 4.9 and normalized
the data in the following way,

(4.2) Ĉ
N
k,n =

∣∣∣∣∣
C

N
k,n

µ(A)µ(B)

∣∣∣∣∣.
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n = 2 n = 3

n = 4 n = 5

n = 7 n = 11

Figure 4.8: Poincaré sections for the flow in the Herringbone Domain. 73445
orbits starting in B are included in the data.

4.2. Discussion. We stress that the treatment of the examples in this
section are not meant to be exhaustive in characterizing the mixing prop-
erties of Ridge Domain and Herringbone Domain. We rather meant to
indicate how the proposed mixing measure works in practice. The overall
impression from the Poincaré mapping, Figures 4.7 and 4.8, are in qual-
itative agreement with the experiments in [23]. However the correlation
sequences in Figure 4.9 are not obviously interpreted, the simulations must
for example be run over larger time intervals in order to see whether the
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Ridge with A1

n

Ĉ
N k
,n

1 50 100

0.1

1

Herringbone with A1

n

Ĉ
N k
,n

1 50 100

0.1

1

Ridge with A2

n

Ĉ
N k
,n

1 50 100

0.1

1

Herringbone with A2

n

Ĉ
N k
,n

1 50 100

0.1

1

Ridge with A3

n

Ĉ
N k
,n

1 50 100

0.1

1

Herringbone with A3

n

Ĉ
N k
,n

1 50 100

0.1

1

Figure 4.9: The correlation sequence for the Ridge Domain and Herringbone
Domain and three differen target sets Ai.
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decay rate is exponential. Although when we increase the resolution, de-
creasing the size of Ai, we can see a clear difference between the Ridge
Domain and the Herringbone Domain as to when the decay of correlations
start.

5. Conclusions

We have outlined a methodology for computationally characterizing fluid
mixing in incompressible flows. This methodology could in principle be
used for rigorous computational characterization of fluid mixing in the
sense that error in the mixing measure is controlled and made small. We
have not attempt to achieve this during the course of this work.

However, we remark that in order to obtain such results we will have
to control all kinds of errors: the error in the computed velocity field
ef = fh − f , the error in the computed orbits uk(t, x), and the error in
computed mixing measure. Of these the most difficult to control is the
error in the computed velocity field ef . We note that this type of error
control is a vital research field and is rather involved to implement.



20 ERIK D. SVENSSON

References

[1] H. Aref, Stochastic particle motion in laminar flows, Phys. Fluids A 3 (1991),
1009–1016.

[2] , The development of chaotic advection, Phys. Fluids 14 (2002), 1315–1325.
[3] J. Aubin, D.F. Fletcher, and C. Xuereb, Design of micromixers using cfd modelling,

Chem. Eng. Sci. 60 (2005), 2503–2516.
[4] C. Bonatti, L. J. Dı́az, and M. Viana, Dynamics Beyond Uniform Hyperbolicity,

Springer-Verlag, 2005.
[5] R. M. Brown and Z. Shen, Estimates for the Stokes operator in Lipschitz domains,

Indiana Univ. Math. J. 44 (1995), 1183–1206.
[6] A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics,

second ed., Springer-Verlag, 1990.
[7] S-N. Chow and E. S. Van Vleck, A shadowing lemma approach to global error

analysis for initial value ODEs, SIAM J. Sci. Comput. 15 (1994), 959–976.
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POINTWISE A POSTERIORI ERROR ESTIMATES FOR

THE STOKES EQUATIONS IN POLYHEDRAL DOMAINS

ERIK D. SVENSSON AND STIG LARSSON

Abstract. We derive pointwise a posteriori residual-based error es-
timates for finite element solutions to the Stokes equations in polyhe-
dral domains. The estimates relies on the regularity of the of Stokes
equations and provide an upper bound for the pointwise error in the
velocity field on polyhedral domains. Whereas the estimates provide
upper bounds for the pointwise error in the gradient of the velocity
field and the pressure only for a restricted class of polyhedral domains,
convex polyhedral domains in R2, and polyhedral domains with angles
at edges < 3π/4 in R3. In the cause of this study we also derive Lq a
posteriori error estimates, generalizing well known L2 estimates.

1. Introduction

Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain and consider the Dirichlet
Stokes problem in dimensionless form

(1.1)

−∆u + ∇p = f in Ω,

∇ · u = g in Ω,

u = 0 on ∂Ω,

where u = (u1, . . . , un) is the unknown velocity field, p the unknown pres-
sure, f = (f1, . . . , fn) is an external body force and g is a function pre-
scribing the compressibility of the flow, for incompressible flows g = 0.

The purpose of this paper is to establish residual-based pointwise a
posteriori error estimates for conforming finite element approximations

Date: April 18, 2006.
2000 Mathematics Subject Classification. 65N15, 65N30, 76D07.
Key words and phrases. a posteriori, pointwise error estimates, maximum norm,

Stokes equations.
1
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(uh, ph) to the Stokes problem (1.1). Only requiring that the finite el-
ement mesh is regular, allowing adaptively refined meshes, we obtain a
number of error estimates.

(1) For polyhedral domains we derive pointwise error estimates for the
velocity field

‖uh − u‖L∞(Ω) ≤ E1(uh, ph, f, g, Ω, T ).

(2) For convex polyhedral domains in R2, and for polyhedral domains
in R3 with angles at edges < 3π/4 we derive pointwise error esti-
mates for the gradient of the velocity field

‖∇(uh − u)‖L∞(Ω) ≤ E2(uh, ph, f, g, Ω, T )

(3) For polyhedral domain as specified in Item 2 above we derive point-
wise error estimates for the pressure

‖ph − p‖L∞(Ω) ≤ E3(uh, ph, f, g, Ω, T ).

(4) For polyhedral domains and for q ∈ [2n/(n+1), 2n/(n−1)] we also
derive the following L

q-estimate

‖∇(uh − u)‖Lq(Ω) + ‖ph − p‖Lq(Ω) ≤ E4(uh, ph, f, g, Ω, T ).

The right hand sides E1,2,3,4 in the estimates above are functions derived
from the residuals, depending on the finite element solution, the data, the
domain and the triangulation.

The first estimate in Item 1 relies on the fact that, for sufficiently regular
data, the velocity field is Hölder continuous in polyhedral domains. Simi-
larly, the pointwise estimates for the gradient of the velocity field, Item 2,
and the pressure, Item 3, require continuity. This is generally not obtained
in polyhedral domains without imposing extra constraints, convexity for
polyhedral domains in R2 and a minimum inner angle condition, < 3π/4
at edges, for polyhedral domains in R3 [13]. We note that estimating
the gradient of the velocity field is somewhat more involved since ∇uh is
discontinuous at the (n − 1)-faces of the triangulation.

The fourth estimate in Item 4 relies on L
q-regularity estimates stated in

[3] for Lipschitz domains and also in [13] for polyhedral domains. It is a
straightforward generalization of the L

2-based estimates in [19].
The techniques used to prove the pointwise error estimate is inspired

by [14], where an a posteriori residual-based pointwise error estimate was
derived for Poisson’s equation in two dimensions, later this analysis was
also done in three dimensions [4]. We remark that the gradient of the



3

solution was not considered in these studies. The pointwise a priori error
analysis for the Stokes problem was worked out in two dimensions for con-
vex domains and quasiuniform triangulations [5], and in three dimensions
for polyhedral domains with the similar type of constraints as mentioned
above and for quasiuniform triangulations [10].

1.1. Assumptions and notation. We only consider functions defined on
bounded domains ω ⊆ Ω ⊂ Rn, n = 2, 3, with measure denoted by |ω|, and
where Ω is associated with the Stokes problem (1.1) and the dual problem
(1.4).

Let {ei}
n
i=1 denote the canonical unit vectors, e1 = (1, 0) and e2 = (0, 1)

for n = 2 and e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1) for n = 3.
We denote the i:th partial derivative by

Di :=
∂

∂xi

, i = 1, . . . , n,

and the gradient by

∇ := (D1, . . . , Dn),

and the matrix of second order derivatives

∇2 := (DiDj)
n
i,j=1.

We use standard notation for spaces of smooth functions, for exam-
ple, C

m(ω), C
∞
0 (ω) and C

m,γ(ω), and for Lebesgue and Sobolev spaces,

L
q(ω) = W

0,q(ω), W
k,q(ω) and W

k,q
0 (ω), see for example [1]. For u ∈ L

q(ω)
or u ∈ W

k,q(ω) we use the following notation for the norm

‖u‖Lq(ω) = ‖u‖q,ω and ‖u‖W q,k(ω) = ‖u‖q,k,ω,

and likewise for the corresponding seminorms |u|q,k,ω.
When q = 2 L

q(ω) = L
2(ω) becomes a Hilbert space and we denote the

scalar product by

(u, v)ω :=

∫

ω

uv dx.

For u ∈ W
1,q
0 (ω) or for u ∈ W

1,q(ω) with
∫

ω0

u dx = 0 for some non

empty ω0 ⊂ ω, the norm is equivalent to the seminorm, ‖u‖1,q,ω ≈ |u|1,q,ω,
see for example [18, Lemma 1.1.1–2, pp. 43–44]. We will use this equiva-
lence without further notice throughout this work.
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We denote the dual exponent to q by q
′ = q/(q − 1) and the dual space

to W
k,q
0 (ω) by W

−k,q′(ω) with the dual norm

(1.2) ‖u‖−k,q′,ω := sup
ϕ∈C∞

0
(ω)

|〈u, ϕ〉|

‖ϕ‖k,q,ω

,

where 〈·, ·〉 denotes the duality pairing.
Generally, for a vector space V we denote its dual space by V

′ with dual
norm

‖u‖V ′ := sup
ϕ∈V

|〈u, ϕ〉|

‖ϕ‖V

,

for example, W
k,q
0 (ω)′ := W

−k,q′(ω).
When ω = Ω we sometimes write L

q instead of L
q(Ω) and ‖·‖q instead

of ‖·‖q,Ω and likewise for Sobolev spaces and their norms and the L
2 scalar

product.
We use the quotient space W

k,q
/R with the norm

‖v‖W k,q/R := inf
c∈R

‖v + c‖k,q.

For vector fields

Ω ∋ x 7→ u(x) = (u1(x), . . . , un(x)) ∈ Rn

we set

∇u := (Diuj)
n
i,j=1,

∇2
u := (DiDjuk)

n
i,j,k=1,

and for u = (u1, . . . , un) ∈ W
k,q(Ω)n we use the Sobolev (Lebesgue) norm

‖u‖k,q :=

(
n∑

i=1

‖ui‖
q
k,q

)1/q

,

and the corresponding seminorms, the maximum norms

‖u‖∞ := max
i

‖ui‖∞,

‖∇u‖∞ := max
i,j

‖Diuj‖∞,

and the scalar product

(u, v) =
n∑

i=1

(ui, vi).
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We also use the product spaces W1,q := W
1,q
0 (Ω)n × L

q(Ω)/R with the
norm

‖(u, p)‖W1,q := ‖u‖1,q + ‖p‖Lq/R,

and W2,q := (W 2,q(Ω)n × W
1,q(Ω)) ∩ W1,s where s = nq/(n − q), see

Theorem 1.3, with the norm

‖(u, p)‖W2,q := ‖u‖2,q + ‖p‖W 1,q/R.

Finally, throughout this work we use C or Ci, i = 1, 2, . . ., to denote
various constants, not necessarily with the same value from time to time.

1.2. Weak formulation. We follow the standard notation, cf. [11, 19],
and define the bilinear form

L((u, p), (φ, λ)) := a(u, φ) + b(φ, p) − b(u, λ),

for test functions (φ, λ) and where

a(u, φ) :=

∫

Ω

n∑

i,j=1

∂ui

∂xj

∂φi

∂xj

dx and b(φ, p) := −

∫

Ω

(∇ · φ)p dx.

For data f ∈ W
−1,q and g ∈ L

q such that
∫

Ω
g dx = 0 and for 2n/(n +

1) < q < 2n/(n− 1) there is a unique weak solution to (1.1), see Theorem
1.1 for a more precise statement. The weak formulation of (1.1) now reads.
Find (u, p) ∈ W1,q(Ω) such that

(1.3) L((u, p), (φ, λ)) = 〈f, φ〉 + (g, λ) ∀(φ, λ) ∈ W1,q′(Ω),

where 〈·, ·〉 denotes the appropriate duality pairing.
The dual problem to (1.1) is

(1.4)

−∆ũ −∇p̃ = f̃ in Ω,

−∇ · ũ = g̃ in Ω,

ũ = 0 on ∂Ω,

where f̃ ∈ W
−1,q′ and g̃ ∈ L

q′ such that
∫

Ω
g̃ dx = 0 and for 2n/(n +

1) < q
′

< 2n/(n − 1). The corresponding weak formulation is. Find
(ũ, p̃) ∈ W1,q′(Ω) such that

(1.5) L((φ, λ), (ũ, p̃)) = 〈φ, f̃〉 + (λ, g̃) ∀(φ, λ) ∈ W1,q(Ω).
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1.3. Existence and regularity in non-smooth domains. For any do-
main Ω ⊂ Rn, n = 2, 3, and data f ∈ W

−1,2(Ω)n and g ∈ L
2(Ω) such

that
∫
Ω

g dx = 0, it is well known that there exists a unique weak solu-

tion (u, p) ∈ W
1,2
0 (Ω)n × L

2(Ω)/R to (1.1), see for example [18, Chaper
3] and references therein. For sufficiently regular domains and data there
are several extensions such that (u, p) ∈ W

1,q
0 (Ω)n ×L

q(Ω)/R, see Remark
1.1 below. In Theorem 1.1 we quote one example of such an extension
where the Stokes problem is formulated on Lipschitz domains. This is a
slight modification of [3, Theorem 2.9] where it was provided with g = 0.
However the case g 6= 0 is readily included.

Theorem 1.1. Let Ω ⊂ Rn, n = 2, 3, be a bounded Lipschitz domain.

There exist ε > 0 such that if (3+ε)/(2+ε) < q < 3+ε and f ∈ W
−1,q(Ω)n

and g ∈ L
q(Ω) with

∫
Ω

g dx = 0, then there exist a unique weak solution

(u, p) ∈ W
1,q
0 (Ω)n ×L

q(Ω)/R to (1.1). Moreover, the solution satisfies the

inequality

(1.6) ‖u‖1,q + ‖p‖Lq/R ≤ C

(
‖f‖−1,q + ‖g‖q

)
,

for some C = C(n, q, Ω).

Proof. For g = 0 this is [3, Theorem 2.9]. For g 6= 0 we use the method of
subtracting the divergence, see for example [18, Theorem 1.4.1, p. 114], to
handle the non-homogenous compressibility constraint.

For Ω and g as stated there exists v ∈ W
1,q
0 (Ω)n such that

(1.7) ∇ · v = g and ‖v‖1,q ≤ C‖g‖q,

see, for example, [18, Lemma 2.1.1, p. 68]. Taking w = u − v we see that
(1.1) is equivalent to

−∆w + ∇p = f + ∆v, ∇ · w = 0, in Ω,

and w|∂Ω = 0. Now [3, Theorem 2.9] implies that there exist a unique
pair (w, p) ∈ W

1,q
0 (Ω)n × L

q(Ω)/R satisfying the above equations and the
inequality

‖w‖1,q + ‖p‖Lq/R ≤ C‖f + ∆v‖−1,q,

for some C = C(n, q, Ω).
Thus, (u, p) ∈ W

1,q
0 (Ω)n ×L

q(Ω)/R is a unique solution to (1.1) and the
estimate above implies that

‖u‖1,q + ‖p‖Lq/R ≤ C

(
‖f‖−1,q + ‖v‖1,q + ‖∆v‖−1,q

)
.
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The inequality (1.6) now follows from the estimate in (1.7) and the fact
that ‖∆v‖−1,q ≤ ‖v‖1,q. �

Remark 1.1. (1) For n = 2 the results of the theorem actually holds with
(4 + ε)/(3 + ε) < q < 4 + ε. This is provided in the same way as for
n = 3 [17]. (2) For polyhedral domains a similar theorem was established
in [13], in particular, for convex polyhedral domains the result holds with
1 < q < ∞. (3) For C

1-domains there is a similar theorem again with
1 < q < ∞, see for example [8].

As a consequence of Theorem 1.1 and Remark 1.1 we obtain the following
inf-sup like estimate.

Corollary 1.2. For q and Ω as in Theorem 1.1 we have

(1.8) ‖(u, p)‖W1,q ≤ C sup
(φ,λ)∈W1,q′

|L((u, p), (φ, λ))|

‖(φ, λ)‖W1,q′

∀(u, p) ∈ W1,q(Ω),

where C = C(n, q
′
, Ω).

Proof. Let (φi, λi) be the solutions to the following problems

−∆φ1 −∇λ1 = f̃ , ∇ · φ1 = 0, in Ω; φ1|∂Ω = 0,

−∆φ2 −∇λ2 = 0, ∇ · φ2 = g̃ − g̃0, in Ω; φ2|∂Ω = 0,

where f̃ ∈ W
−1,q′(Ω)n and g̃ ∈ L

q′(Ω) with the mean g̃0 = |Ω|−1
∫
Ω

g̃ dx.
With Theorem 1.1 applied to the above problems and with (1.5) we get

(1.9)

sup
(φ,λ)∈W1,q′

|L((u, p), (φ, λ))|

‖(φ, λ)‖W1,q′

≥
1

2

(
|L((u, p), (φ1, λ1))|

‖(φ1, λ1)‖W1,q′

+
|L((u, p), (φ2, λ2))|

‖(φ2, λ2)‖W1,q′

)

≥ C

(
|〈u, f̃〉|

‖f̃‖−1,q′
+

|(p, g̃ − g̃0)|

‖g̃ − g̃0‖q′

)

Since W
1,q and L

q are reflexive for 1 < q < ∞ we get

sup
f̃∈W−1,q′ (Ω)n

|〈u, f̃〉|

‖f̃‖−1,q′
= ‖u‖1,q,
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and since (p, g̃ − g̃0) = (p − p0, g̃), where p0 = |Ω|−1
∫
Ω

p dx, we have

sup
g̃∈Lq′ (Ω)

|(p, g̃ − g̃0)|

‖g̃ − g̃0‖q′
≥

1

2
inf
c∈R

sup
g̃∈Lq′ (Ω)

|(p + c, g̃)|

‖g̃‖q′
=

1

2
‖p‖Lq/R,

where we also used the estimate ‖g̃ − g̃0‖q′ ≤ 2‖g̃‖q′ .

Now since (1.9) is valid for any f̃ ∈ W
−1,q′(Ω)n and for any g̃ ∈ L

q′(Ω)

we may take the supremum with respect to f̃ and g̃, which together with
the last two estimates above completes the proof. �

The next theorem concerns the W
2,q(Ω)n × W

1,q(Ω)-regularity of the
solution to (1.1) in polyhedral domains. The theorem is due to [13], for a
review see [12], although it is formulated somewhat differently here.

Theorem 1.3. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain and let

1 < q ≤ 4/3. Suppose f ∈ L
q(Ω)n and g ∈ W

1,q(Ω) such that
∫

Ω
g dx = 0.

Then there exist a unique weak solution (u, p) ∈ W
1,s
0 (Ω)n × L

s(Ω)/R to

(1.1) for s = nq/(n− q) such that (u, p) ∈ W
2,q(Ω)n ×W

1,q(Ω). Moreover,

the solution satisfies the inequality

(1.10) ‖u‖2,q + ‖p‖W 1,q/R ≤ C

(
‖f‖q + |g|1,q

)
,

for some C = C(n, q, Ω).

Proof. By virtue of Theorem 1.1 and Remark 1.1 we obtain the existence,
since by Sobolev’s imbedding theorem we have L

q ⊂ W
−1,s and W

1,q ⊂ L
s

for s = nq/(n − q), 1 < q ≤ 4/3 and we readily check that 2 ≤ s ≤ 4 for
n = 2 and (3 + ε)/(2 + ε) < s < 3 + ε for n = 3 and any ε > 0.

The regularity (u, p) ∈ W
2,q(Ω)n × W

1,q(Ω) follows from [13, Theorem
5.3] which is also true provided (u, p) ∈ W

1,s
0 (Ω)n × L

s(Ω)/R [15]. The
estimate (1.10) is then as consequence of the open mapping theorem, see
for example [6, Corollary 5.11, p. 162]. �

Remark 1.2. (1) For n = 2 and if the maximum inner angle in the poly-
hedral domain is less than π − δ for some δ > 0, then the result can be
extended to hold with 1 < q ≤ 2 + ε for some ε > 0 [15] and cf. [13,
§5.5]. (2) For n = 3 and if the maximum inner angle at the edges in the
polyhedral domain is less than 3π/4 − δ for some δ > 0, then the result
can be extended to hold with 1 < q ≤ 3 + ε for some ε > 0 [15] and cf.

[13, §5.5]. (3) For C
1-domains there is a similar theorem with 1 < q < ∞,

see for example [8]. In cases (1) and (2) the existence is also true since for
convex domains Theorem 1.1 is modified as in Remark 1.1.
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We now state a corollary where we assume that we have the higher
regularity in Remark 1.2.

Corollary 1.4. Suppose that the solution (ũ, p̃) to (1.4) with data as in

Theorem 1.3 belongs to W
2,q′(Ω)n × W

1,q′(Ω) for some q
′
> n. Then the

solution (u, p) to (1.1) satisfies

(1.11) ‖u‖q + ‖p‖W 1,q′ (Ω)′/R ≤ C

(
‖f‖−2,q + ‖g‖W 1,q′(Ω)′

)
,

for some C = C(n, q
′
, Ω) and where 1/q +1/q′ = 1 and W

1,q′(Ω)′/R is the

dual space to W
1,q′(Ω)/R.

Proof. We use the same technique as in the proof of Corollary 1.2. With
(1.3) we estimate

‖f‖−2,q + ‖g‖W 1,q′(Ω)′ = sup
φ∈C∞

0
(Ω)n

|〈f, φ〉|

‖φ‖2,q′
+ sup

λ∈W 1,q′/R

|〈g, λ〉|

‖λ‖W 1,q′/R

≥ sup
(φ,λ)∈W2,q′

|L((u, p), (φ, λ))|

‖(φ, λ)‖W2,q′

.

Let (φi, λi) be the solutions to the following problems

−∆φ1 −∇λ1 = f̃ , ∇ · φ1 = 0, in Ω; φ1|∂Ω = 0,

−∆φ2 −∇λ2 = 0, ∇ · φ2 = g̃ − g̃0, in Ω; φ2|∂Ω = 0,

where f̃ ∈ L
q′(Ω)n and g̃ ∈ W

1,q′(Ω) with the mean g̃0 = |Ω|−1
∫
Ω

g̃ dx.

We assumed that (φi, λi) ∈ W
2,q′(Ω)n × W

1,q′(Ω) and thus we estimate

(1.12)

sup
(φ,λ)∈W2,q′

|L((u, p), (φ, λ))|

‖(φ, λ)‖W2,q′

≥
1

2

(
|L((u, p), (φ1, λ1))|

‖(φ1, λ1)‖W2,q′

+
|L((u, p), (φ2, λ2))|

‖(φ2, λ2)‖W2,q′

)

≥ C

(
|(u, f̃)|

‖f̃‖q′
+

|〈p, g̃ − g̃0〉|

|g̃|1,q′

)
,

for some C = C(n, q
′
, Ω).

Since L
q and W

1,q′(Ω)′ are reflexive for 1 < q < ∞ we get

sup
f̃∈Lq′ (Ω)n

|〈u, f̃〉|

‖f̃‖q′
= ‖u‖q,
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and since (p, g̃ − g̃0) = (p − p0, g̃), where p0 = |Ω|−1
∫
Ω

p dx, we have

sup
g̃∈W 1,q′ (Ω)

|〈p, g̃ − g̃0〉|

|g̃|1,q′
≥ inf

c∈R

sup
g̃∈W 1,q′ (Ω)

|〈p + c, g̃〉|

‖g̃‖1,q′
= ‖p‖W 1,q′ (Ω)′/R.

Now since (1.12) is valid for any f̃ ∈ L
q′(Ω)n and any g̃ ∈ W

1,q′(Ω) we

may take the supremum with respect to f̃ and g̃, which together with the
last two estimates above completes the proof. �

1.4. Finite element formulation. Let {T }h>0 denote a family of regular
triangulations of Ω and let hT denote the diameter of an n-simplex T ∈ T

and set hmin = minT∈Th
hT .

We only consider conforming finite element spaces, Xh ⊂ W
1,q
0 (Ω)n for

the velocity and, Mh/R ⊂ L
q(Ω)/R for the pressure and define the prod-

uct space Wh = Xh × Mh/R. From (1.3) we obtain the finite element
formulation. Find (uh, ph) ∈ Wh such that

(1.13) L((uh, ph), (φh, λh)) = 〈f, φh〉 + (g, λh) ∀(φh, λh) ∈ Wh.

As usual we also require that Wh satisfies the inf-sup condition [11], that
is,

(1.14) ‖(uh, ph)‖W1,2 ≤ C sup
(φh,λh)∈Wh

|L((uh, ph), (φh, λh))|

‖(φh, λh)‖W1,2

,

for all (uh, ph) ∈ Wh, which implies that (1.13) is well posed.
We particularly have in mind the family of Taylor-Hood finite elements,

see fore example [11], which satisfy the above requirement.
We recall a few standard results from interpolation theory, see for ex-

ample [16]. Let ST denote the union of all simplices adjacent to T and
let IXh

and IMh
denote interpolation operators IXh

: W
m,q
0 (Ω)n → Xh

and IMh
: W

m−1,q(Ω)/R → Mh/R. For integers ℓ = 0, 1, m = 1, . . ., and
(φ, λ) ∈ W

m,q(ST )n × W
m−1,q(ST )/R, we have

(1.15) ‖∇ℓ(φ − IXh
φ)‖q,T ≤ Ch

m−ℓ
T |φ|m,q,ST

,

and

(1.16) ‖λ − IMh
λ‖Lq(T )/R ≤ Ch

m−1
T |λ|W m−1,q(ST )/R.

On the boundary, ∂T , we use the trace inequality [8, Theorem 3.3, p. 43]
and scale it appropriately, i.e., for w ∈ W

1,q(T ) we obtain the estimate

‖w‖q,∂T ≤ C

(
h
−1/q
T ‖w‖q,T + h

1−1/q
T |w|1,q,T

)
,
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and hence

(1.17) ‖φ − IXh
φ‖q,∂T ≤ Ch

m−1/q
T |φ|m,q,ST

.

We also use inverse estimates, see for example [2, Theorem 4.5.3, p. 111].
For any T ∈ T , let V be a finite dimensional subspace of W

k,q(T ) ∩

W
m,s(T ), where 1 ≤ q ≤ ∞ and 1 ≤ s ≤ ∞ and 0 ≤ m ≤ k. Then there

exist a constant C such that for all v ∈ V

(1.18) ‖v‖k,q,T ≤ Ch
m−k+n/q−n/s
T ‖v‖m,s,T .

2. Error analysis

We consider the error in the finite element solution to (1.13),

eu := uh − u and ep := ph − p,

and note that (eu, ep) ∈ W1,q, since the finite elements are conforming.
Define the residual in the momentum equation (me) by

(2.1) Rme := f + ∆uh −∇ph ∈ W
−1,q(Ω)n

,

and the residual in the compressibility constraint (cc) by

(2.2) Rcc := g −∇ · uh ∈ L
q(Ω),

where we note that
∫
Ω

Rcc dx = 0.
In weak form the residual becomes

(2.3) R((uh, ph), (φ, λ)) := 〈f, φ〉 + (g, λ) − L((uh, ph), (φ, λ)),

for all (φ, λ) ∈ W1,q′ .
From (1.3) we obtain the identity

(2.4) L((eu, ep), (φ, λ)) = R((uh, ph), (φ, λ)) ∀(φ, λ) ∈ W1,q′

and from (1.13) and it follows

(2.5) R((uh, ph), (φh, λh)) = 0 ∀(φh, λh) ∈ Wh,

which is the classical Galerkin orthogonality.
Inspired by [7, Lemma 3.1] we now provide the following lemma.

Lemma 2.1. For q ∈ [1,∞], and m = 1, 2, there is a constant C such

that

|R((uh, ph), (φ, λ))| ≤ Cηm,q

(
|φ|m,q′ + |λ|W m−1,q′/R

)
,
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for all (φ, λ) ∈ Wm,q′ where

ηm,q =





(∑
T∈T η

q
m,q,T

)1/q

for q ∈ [1,∞),

maxT∈T ηm,∞,T for q = ∞,

with

ηm,q,T = h
m
T ‖Rme‖q,T +

1

2
h

m−1/q′

T ‖[∂νuh]‖q,∂T\∂Ω + h
m−1
T ‖Rcc‖q,T .

Here [∂νuh] denotes the jump across ∂T in the normal derivative, ∂νuh =
ν · ∇uh, where ν denotes the outward normal to ∂T .

Proof. By (2.5) and by integration by parts

R((uh, ph), (φ, λ)) = R((uh, ph), (φ − IXh
φ, λ − IMh

λ))

=
∑

T∈T

(
(f + ∆uh −∇ph, φ − IXh

φ)T

+
1

2
([∂νuh], φ − IXh

φ)∂T\∂Ω

+ (g −∇ · uh, λ − IMh
λ)T

)
.

Since
∫

Ω
(g −∇ · uh) dx = 0, we have

(g −∇ · uh, λ − IMh
λ)T = inf

c∈R

(g −∇ · uh, λ − IMh
λ + c)T

and hence by Hölder’s inequality,

(2.6)

|R((uh, ph), (φ, λ))|

≤
∑

T∈T

(
‖f + ∆uh −∇ph‖q,T‖φ − IXh

φ‖q′,T

+
1

2
‖[∂νuh]‖q,∂T\∂Ω‖φ − IXh

φ‖q′,∂T\∂Ω

+ ‖g −∇ · uh‖Lq(T )‖λ − IMh
λ‖Lq′ (T )/R

)
.
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Thus, with the interpolation estimates (1.15)–(1.17) in (2.6) we get

(2.7)

|R((uh, ph), (φ, λ))|

≤ C

∑

T∈T

(
h

m
T

(
‖f + ∆uh −∇ph‖q,ST

+
1

2
h

1/q′

T ‖[∂nuh]‖q,∂T\∂Ω|φ|m,q′,ST

+ h
m−1
T ‖g −∇ · uh‖Lq(T )|λ|W m−1,q′(ST )/R

)
.

Finally, we conclude the proof by using Hölder’s inequality for sums and
the notation in (2.1) and (2.2). �

Let (ũ, p̃) be the solution to the dual problem (1.5). By choosing (φ, λ) =
(ũ, p̃) in (2.4) we get

L((eu, ep), (ũ, p̃)) = R((uh, ph), (ũ, p̃)),

and by choosing (φ, λ) = (eu, ep) in (1.5) we obtain

L((eu, ep), (ũ, p̃)) = 〈eu, f̃〉 + (ep, g̃).

Thus

(2.8) 〈eu, f̃〉 + (ep, g̃) = R((uh, ph), (ũ, p̃)).

In order to proceed in the error analysis we need to choose the data in the
dual problem in a certain way. Let δ = δx0,ρ/2 ∈ C

∞
0 (Ω) be a regularization

of the Dirac distribution at x0 ∈ Ω, that is, let

(2.9) supp(δ) ⊂ B(x0; ρ/2),

∫

Rn

δ dx = 1, 0 ≤ δ ≤ Cρ
−n

,

where B(x0; ρ/2) denotes the ball with center in x0 and radius ρ/2 chosen
such that

(2.10) ρ ≤ h
σ
min,

where σ > 0 will be specified in the proofs of Lemmas 2.2–2.4 below. For
q ∈ [1,∞] it follows that

(2.11) |δ|k,q ≤ Cρ
−n(1−1/q)−k

.
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In the remainder of this section we state and prove three lemmas pro-
viding estimates of the following kind

‖eu‖∞ . |(eui
, δx0,ρ/2)|,

‖∇eu‖∞ . |(eu, Diδx0,ρ/2ej)|,

‖ep‖∞ . |(ep, δx0,ρ/2)|,

where eui
denotes the i:th component of eu and where ej is the j:th unit

vector. We stress that x0 may be different in the there estimates. With
these estimates we will be able to make a connection to the estimate in
Lemma 2.1, which in turn is crucial for the final pointwise error analysis.

In order to obtain these estimates we will have to assume that eu and ep

are continuous. This will be the case for eu provided the data is sufficient
regular due to Theorem 1.1, whereas for ep we also have to impose further
constraints on the domain Ω, see Remark 1.2. We note that ∇eu is not
continuous since ∇uh is discontinuous. However, with the same assump-
tions as for ep we derive an estimate that includes jump terms of the same
type as in the right hand side of the estimate in Lemma 2.1.

Lemma 2.2. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain and let x0 ∈ Ω
and i be such that ‖eu‖∞ = |eui

(x0)|. Then for data to (1.1) as in Theorem

1.1 and for some q > n there is a constant C such that

‖eu‖∞ ≤ |(eui
, δ)| + Ch

β
min

(
‖f‖−1,q + ‖g‖q

)
,

where δ = δx0,ρ/2 is the regularized Dirac distribution (2.9) and β may be

chosen arbitrarily large.

We note that the lemma is meaningful since due to Theorem 1.1 and
Remark 1.1 there is q > n such that eu ∈ W

1,q
0 (Ω)n.

Proof. By Sobolev’s imbedding theorem, see [1, p. 98], W
1,q
0 (Ω)n ⊂ C

0,γ(Ω)n

for some γ such that 0 < γ ≤ 1 − n/q. Consequently, by the mean value
theorem there is x1 ∈ B(x0, ρ/2) ∩ Ω such that (eui

, δ) = eui
(x1) and thus

‖eu‖∞ ≤ |(eui
, δ)| + |eui

(x0) − eui
(x1)|.

We estimate the last term in the right hand side above. By Sobolev’s
inequality

|eui
(x0) − eui

(x1)| ≤ Cρ
γ‖eui

‖C0,γ(B(x0,ρ/2)∩Ω) ≤ Cρ
γ‖eu‖1,q.

By the triangle inequality,

‖eu‖1,q ≤ ‖u‖1,q + ‖uh‖1,q,
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and by Theorem 1.1,

‖u‖1,q ≤ C

(
‖f‖−1,q + ‖g‖q

)
,

and by the inverse estimate (1.18) and the inf-sup condition (1.14),

‖uh‖1,q ≤ Ch
n(1/q−1/2)
min ‖uh‖1,2 ≤ Ch

n(1/q−1/2)
min

(
‖f‖−1,q + ‖g‖q

)
.

Thus, with (2.10) we obtain

|eui
(x0) − eui

(x1)| ≤ Ch
β
min

(
‖f‖−1,q + ‖g‖q

)
,

where β = γσ + n(1/q − 1/2) may be chosen arbitrarily large by taking σ

large. �

Lemma 2.3. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain such that

the solution to (1.1) with data as in Theorem 1.3 is continuous in the

sense that (u, p) ∈ W2,q, for q > n. Let x0 ∈ Ω, i and j be such that

‖∇eu‖∞ = |Dieuj
(x0)|. Then there are constants C1,2 such that

‖∇eu‖∞ ≤ |(eu, Diδej)| + C1h
β
min

(
‖f‖q + |g|1,q

)

+ C2 max
T∈T

‖[∂νuh]‖∞,∂T\∂Ω,

where δ = δx0,ρ/2 is the regularized Dirac distribution (2.9), β may be

chosen arbitrarily large, and [∂νuh] is the jump as described in Lemma 2.1.

We note that the lemma is meaningful since with additional constraints
on the domain Ω as in Remark 1.2 there is q > n such that u ∈ W

2,q(Ω)n

so that u ∈ W
1,∞(Ω)n. Note also that ∇uh is discontinuous across ∂T for

T ∈ T which need to be taken into account proving Lemma 2.3. However,
∇uh is continuous in the interior of each T ∈ T .

Proof. The idea of the proof is the same as for Lemma 2.2. Let

BT =
⋃

{T ∈ T : T ∩ B(x0, ρ/2) 6= ∅},

where we for simplicity assume that BT is convex and note that card(BT ) ≤
C due to the regularity in the triangulation.

By the mean value theorem there are xT ∈ B(x0, ρ/2) ∩ T for T ∈ BT

such that

(Dieuj
, δ) =

∑

T∈BT

(Dieuj
, δ)B(x0,ρ/2)∩T =

∑

T∈BT

Dieuj
(xT )

∫

B(x0,ρ/2)∩T

δ dx,
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where
∫
B(x0,ρ/2)∩T

δ dx < 1 and thus

(2.12) ‖∇eu‖∞ ≤ |(eu, Diδej)| +
∑

T∈BT

|Dieuj
(x0) − Dieuj

(xT )|,

since by integration by parts (Dieuj
, δ) = −(eu, Diδej).

We estimate the terms in sum above. For T ∈ BT consider the line from
x0 to xT and for Tℓ ∈ BT suppose this line intersect m + 1 n-simplices
Tℓ and m boundaries ∂Tℓ at points xℓ for ℓ = 1, . . . ,m. Note that m is
bounded from above since card(BT ) ≤ C. Let x

−
ℓ and x

+
ℓ be the limits at

xℓ going from x0 and xT respectively. Set x
+
0 = x0 and x

−
m+1 = xT . We

estimate

(2.13)

|Dieuj
(x0) − Dieuj

(xT )| ≤
m∑

ℓ=0

|Dieuj
(x+

ℓ ) − Dieuj
(x−

ℓ+1)|

+
m∑

ℓ=1

|Dieuj
(x−

ℓ ) − Dieuj
(x+

ℓ )|.

For each term in the first sum above we may now proceed as in the proof
of Lemma 2.2. By Sobolev’s and the triangle inequality we get

|Dieuj
(x+

ℓ ) − Dieuj
(x−

ℓ+1)| ≤Cρ
γ‖Dieuj

‖C0,γ(B(x0,ρ/2)∩Tℓ)

≤Cρ
γ‖eu‖2,q,Tℓ

≤Cρ
γ
(
‖u‖2,q + ‖uh‖2,q,Tℓ

)
.

By Theorem 1.3 we have

‖u‖2,q ≤ C

(
‖f‖q + |g|1,q

)
,

and by the inverse estimate (1.18) and the inf-sup condition (1.14)

‖uh‖2,q,Tℓ
≤ Ch

−1+n(1/q−1/2)
Tℓ

‖uh‖1,2,Tℓ
≤ Ch

−1+n(1/q−1/2)
min

(
‖f‖−1,q + ‖g‖q

)
,

since q > n.
Thus, with (2.10) and for Tℓ ∈ BT we obtain the uniform estimate

(2.14) |Djeui
(x+

ℓ ) − Djeui
(x−

ℓ )| ≤ Ch
β
min

(
‖f‖q + |g|1,q

)
,

where β = γσ−1+n(1/q−1/2) may be chosen arbitrarily large by taking
σ large.
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As for the terms in the second sum in (2.13) and for Tℓ ∈ BT we use the
following uniform estimate

(2.15) |Djeui
(x−

ℓ ) − Djeui
(x+

ℓ )| ≤ max
T∈T

‖[∂νuh]‖∞,∂T\∂Ω.

Finally, (2.13) – (2.15) in (2.12) concludes the proof. �

Lemma 2.4. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain such that the

solution to (1.1) with data as in Theorem 1.3 is continuous in the sense

that (u, p) ∈ W2,q, for some q > n. Let ep be such that
∫
Ω

ep dx = 0 and

let x0 ∈ Ω be such that ‖ep‖∞ = |ep(x0)|. Then there is a constant C such

that

‖ep‖∞ ≤ |(ep, δ)| + Ch
β
min

(
‖f‖q + |g|1,q

)
,

where δ = δx0,ρ/2 is the regularized Dirac distribution (2.9) and β may be

chosen arbitrarily large.

We note that the lemma is meaningful since with additional constraints
on the domain Ω as in Remark 1.2 there is q > n such that ep ∈ W

1,q(Ω)
so that ep ∈ L

∞(Ω).

Proof. The idea of the proof is the same as for Lemma 2.2. By assumption
p ∈ W

1,q(Ω) for q > n and hence it follows by Sobolev’s imbedding theorem
that ep is continuous. Consequently, by the mean value theorem there is
x1 ∈ B(x0, ρ/2) ∩ Ω such that (ep, δ) = ep(x1) and thus

‖ep‖∞ ≤ |(ep, δ)| + |ep(x0) − ep(x1)|.

We estimate the last term above. By Sobolev’s inequality

|ep(x0) − ep(x1)| ≤ Cρ
γ‖ep‖C0,γ(B(x0,ρ/2)∩Ω) ≤ Cρ

γ‖ep‖1,q.

By the triangle inequality

‖ep‖1,q ≤ ‖p‖1,q + ‖ph‖1,q,

and Theorem 1.3

‖p‖1,q ≤ C

(
‖f‖q + |g|1,q

)
,

and by the inverse estimate and the inf-sup condition (1.14)

‖ph‖1,q ≤ Ch
−1+n(1/q−1/2)
min ‖ph‖2 ≤ Ch

−1+n(1/q−1/2)
min

(
‖f‖−1,q + ‖g‖q

)
.

Thus with (2.10) we obtain

|ep(x0) − ep(x1)| ≤ Ch
β
min

(
‖f‖q + |g|1,q

)
,
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where β = γσ−1+n(1/q−1/2) may be chosen arbitrarily large by taking
σ large. �

3. A priori estimates of the dual solution

We consider the dual problem (1.4) for specific choices of data so that
we may estimate the scaling of the constants in (1.6) and (1.10) as q ↓ 1.

For (1.6) we will consider (f̃ , g̃) = (Diδej, 0) or (f̃ , g̃) = (0, δ − |Ω|−1) and

for (1.10) we will consider (f̃ , g̃) = (δei, 0), where δ is the regularized Dirac
distribution (2.11). We proceed as in [14, Theorem 3.1] and [4, Lemma
2.2]. The analysis relies on the explicit knowledge of how the constant in
Sobolev’s inequality scales as q ↓ 1, which can be estimated by using the
the best constant in the Sobolev inequality, where the dependence on the
dimension n and the exponent q appear explicitly. We quote Sobolev’s
inequality from [9, Theorem 7.10, p. 155]. Let ω be a bounded domain in
Rn, n = 2, 3. Then there is a constant C such that for any v ∈ W

1,s
0 (ω)d,

d = 1, . . . , n, and for 1 ≤ s < n

(3.1) ‖v‖ns/(n−s),ω ≤ C|v|1,s,ω,

where C = C(n, s) scales like

(3.2) C ≤ γ

(
n

s − 1

n − s

)1−1/s

,

and where γ = γ(n, s) < ∞ as s ↑ n.
In the analysis below we will find it useful to have (3.1) and (3.2)

formulated somewhat differently. By rearranging the exponents in (3.1)
and estimating the constant (3.2) accordingly we conclude that, for any

v ∈ W
1,nr/(n+r)
0 (ω)d and for n/(n − 1) ≤ r < ∞,

(3.3) ‖v‖r,ω ≤ Cr
1−1/n|v|1,nr/(n+r),ω.

The following lemma is a consequence of (3.3).

Lemma 3.1. Let ω ⊂ Rn, n = 2, 3, be a bounded domain. Then there is

a constant C such that, if v ∈ L
q(ω)d, d = 1, . . . , n,

(3.4) ‖∇k−1
v‖−k,q̃,ω ≤ C(q − 1)−1+1/n‖v‖q,ω,

for q̃ = nq/(n − q) and 1 < q ≤ n.
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Proof. By integration by parts and with Hölder’s inequality in the defini-
tion of the dual norm (1.2) we estimate

(3.5)

‖∇k−1
v‖−k,q̃,ω = sup

ϕ∈C∞

0
(ω)d

|〈v,∇k−1
ϕ〉|

‖ϕ‖k,q̃′,ω

≤ ‖v‖q,ω sup
ϕ∈C∞

0
(ω)n

|ϕ|k−1,q′,ω

‖ϕ‖k,q̃′,ω

.

Since 1 < q ≤ n implies n/(n − 1) ≤ q
′

< ∞, we may use Sobolev’s
inequality (3.3) to estimate,

(3.6) |ϕ|k−1,q′,ω ≤ Cq
′1−1/n|ϕ|k,q̃′,ω,

because nq
′
/(n + q

′) = q̃
′. Thus, inserting (3.6) in (3.5) concludes the

proof. �

As in [14, 4] we introduce a dyadic partition of Ω. Let dj = 2j
ρ for

j ∈ N and d−1 = 0. Define the partition of Ω,

(3.7) Aj = {x ∈ Ω : dj−1 ≤ |x − x0| ≤ dj},

and the supersets to Aj,

(3.8) Bj = {x ∈ Ω : 2−1
dj−1 ≤ |x − x0| ≤ 2dj}.

From this definition we get the simple estimate

(3.9) |Bj| ≤ Cd
n
j = C2jn

ρ
n
.

Moreover, let ηj ∈ C
∞
0 (Bj) be a mollifier such that, ηj = 1 in a neigh-

borhood of Aj and such that for s ∈ [1,∞],

(3.10) |ηj|k,s,Bj
≤ Cd

n/s−k
j .

Generalizing the last estimate in [14, Proof of Theorem 3.1] we get. For
a > 1 and as q ↓ 1 we have,

(3.11)
∞∑

j=0

2−ja(1−1/q) =
1

1 − 2−a(1−1/q)
≤

C

q − 1
.

Finally, we recall the following two generalizations of Hölder’s inequality.
Let 1 ≤ q ≤ ∞, q ≤ r ≤ ∞ and q ≤ s ≤ ∞ such that

1

q

=
1

r

+
1

s
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and let u ∈ L
r(ω) and v ∈ L

s(ω). Then uv ∈ L
q(ω) and

(3.12) ‖uv‖q,ω ≤ ‖u‖r,ω‖v‖s,ω.

In the second generalization we estimate the duality pairing. For a vector
space V let u ∈ V

′ and v ∈ V . Then

(3.13) |〈u, v〉| ≤ ‖u‖V ′‖v‖V .

In particular, when u ∈ W
−k,q(ω) and v ∈ W

k,q′

0 (ω) we get

(3.14) |〈u, v〉| ≤ ‖u‖−k,q,ω‖v‖k,q′,ω.

3.1. W1,q-estimates as q ↓ 1. In the following theorem we assume that
we have the higher regularity in Remark 1.2.

Theorem 3.2. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain such that

the solution to (1.4) with data as in Theorem 1.3 is continuous in the

sense that (ũ, p̃) ∈ W2,q for some q > n. Then for 1 < q < 2 there is a

constant C such that the solution (ũ, p̃) to (1.4) with (f̃ , g̃) = (Diδej, 0) or

(f̃ , g̃) = (0, δ − |Ω|−1) satisfies the inequality

‖ũ‖1,q + ‖p̃‖Lq/R ≤ C(q − 1)−2+1/n
ρ
−n(1−1/q)

.

Proof. Let Aj, Bj and ηj be as in (3.7)–(3.10). Choose a fixed value q̃ =
n/(n − 1). Let p̄ = p̃ + c for a fixed c ∈ R. By Hölder’s inequality

(3.15)

‖ũ‖1,q + ‖p̃‖Lq/R ≤

∞∑

j=0

(
‖ũ‖1,q,Aj

+ ‖p̄‖q,Aj

)

≤

∞∑

j=0

(
‖ηjũ‖1,q,Bj

+ ‖ηj p̄‖q,Bj

)

≤

∞∑

j=0

|Bj|
1/q−1/q̃

(
‖ηjũ‖1,q̃,Bj

+ ‖ηj p̄‖q̃,Bj

)
.

Notice that ηjũ and ηj p̄ satisfy (1.4) in Ω with right hand side f̃ = f̃j =

∆(ηjũ) + ∇(ηj p̄) and g̃ = g̃j = ∇ · (ηjũ), where f̃j and g̃j vanish outside
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Bj. Hence, for each term in (3.15) we can apply Theorem 1.1,

(3.16)

‖ηjũ‖1,q̃,Bj
+ ‖ηj p̄‖q̃,Bj

= ‖ηjũ‖1,q̃,Ω + ‖ηj p̄‖q̃,Ω

≤ C

(
‖∆(ηjũ) + ∇(ηj p̄)‖−1,q̃,Bj

+ ‖∇ · (ηjũ)‖q̃,Bj

)

≤ C

(
‖ηj(∆ũ + ∇p̄) + 2∇ηj · ∇ũ + ∆ηjũ + ∇ηj p̄‖−1,q̃,Bj

+ ‖∇ηj · ũ + ηj∇ · ũ‖q̃,Bj

)

≤ C

(
‖ηj f̃‖−1,q̃,Bj

+ ‖ηj g̃‖q̃,Bj
+ ‖∇ηj p̄‖−1,q̃,Bj

+ ‖∇ηj · ũ‖q̃,Bj
+ ‖2∇ηj · ∇ũ + ∆ηjũ‖−1,q̃,Bj

)
,

where C = C(n, q̃, Ω).
We estimate the right hand side of (3.16) in a few steps. By integration

by parts

‖2∇ηj ·∇ũ+∆ηjũ‖−1,q̃,Bj
≤ ‖∇ηj ·∇ũ‖−1,q̃,Bj

+ sup
ϕ∈C∞

0
(Bj)n

(∇ηj, ũ · ∇ϕ)Bj

‖ϕ‖1,q̃′,Bj

.

Since (∇ηj p̄, ϕ) ≤ ‖p̄‖W 1,n(Bj)′|∇ηj · ϕ|1,n,Bj
, notice that the dual expo-

nent to q̃ is q̃
′ = n,

‖∇ηj p̃‖−1,q̃,Bj
≤ ‖p̄‖W 1,n(Bj)′ sup

ϕ∈C∞

0
(Bj)n

|∇ηj · ϕ|1,n,Bj

‖ϕ‖1,n,Bj

,

and since (∇ηj · ∇ũ, ϕ) = −(ũ,∇(∇ηj · ϕ)),

‖∇ηj · ∇ũ‖−1,q̃,Bj
≤ ‖ũ‖q̃,Bj

sup
ϕ∈C∞

0
(Bj)n

|∇ηj · ϕ|1,n,Bj

‖ϕ‖1,n,Bj

.

Now by Hölder’s inequality

|∇ηj · ϕ|1,n,Bj
≤ |ηj|1,∞,Bj

|ϕ|1,n,Bj
+ ‖∇2

ηjϕ‖n,Bj
,

and moreover by (3.12) with s such that 1/n = 1/s + 1/q′, (3.3), and
Hölder’s inequality

(3.17)

‖∇2
ηjϕ‖n,Bj

≤|ηj|2,s,Bj
‖ϕ‖q′,Bj

≤C(q′)−1+1/n|ηj|2,s,Bj
|ϕ|1,nq′/(n+q′),Bj

≤C|Bj|
1−1/q(q − 1)−1+1/n|ηj|2,s,Bj

|ϕ|1,n,Bj
.

Finally, by Hölder’s inequality

‖∇ηj · ũ‖q̃,Bj
+ sup

ϕ∈C∞

0
(Bj)n

(∇ηj, ũ · ∇ϕ)

‖ϕ‖1,q̃′,Bj

≤ 2|ηj|1,∞,Bj
‖ũ‖q̃,Bj

.
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Thus, with the above estimates in (3.16) we obtain

(3.18)

‖ηjũ‖1,q̃,Bj
+ ‖ηj p̄‖Lq̃(Bj)/R ≤ CI‖ηj f̃‖−1,q̃,Bj

+ CII‖ηj g̃‖q̃,Bj

+ CIII

(
|ηj|1,∞,Bj

+ |Bj|
1−1/q(q − 1)−1+1/n|ηj|2,s,Bj

)

×
(
‖ũ‖q̃,Bj

+ ‖p̄‖W 1,n(Bj)′
)

= Ij + IIj + IIIj.

With (3.18) we now estimate (3.15) in three steps. Recall (3.9) that will
repeatedly be used in the estimates below.

I. For data f̃ = Diδeℓ and by integration by parts we obtain by the same
argument as in (3.17) and with the same exponents

‖ηjDiδeℓ‖−1,q̃,Bj
≤ C‖δ‖q̃,Bj

sup
ϕ∈C∞

0
(Bj)n

|ηjϕ|1,n,Bj

‖ϕ‖1,n,Bj

≤ C‖δ‖q̃,Bj

(
‖ηj‖∞,Bj

+ |Bj|
1−1/q(q − 1)−1+1/n|ηj|1,s,Bj

)
.

Since supp(δ) ∩ Bj = ∅ for j ≥ 1 and with (2.11) and for ρ sufficiently
small

(3.19)

∞∑

j=0

|Bj|
1/q−1/q̃

Ij ≤ Cρ
n(1/q−1/q̃)(q − 1)−1+1/n‖δ‖q̃

≤ Cρ
−n(1−1/q)(q − 1)−1+1/n

,

where we used n/q−n/q̃−n(1−1/q̃)+n(1−1/q)+n/s−1 = −n(1−1/q).

II. For data g̃ = δ − |Ω|−1 and since supp(δ) ∩ Bj = ∅ for j ≥ 1 and with
(3.1) and (2.11)

(3.20)

∞∑

j=0

|Bj|
1/q−1/q̃

IIj ≤ Cρ
n/q−n/q̃‖∇δ‖1 ≤ Cρ

−n(1−1/q)
,

where we used n/q − n/q̃ − 1 = −n(1 − 1/q).

III. By Hölder’s inequality and since q < 2

|Bj|
1/q−1/q̃

IIIj ≤ Cd
n/q−n/q̃
j

(
|ηj|1,∞,Bj

+ d
n(1−1/q)
j (q − 1)−1+1/n|ηj|2,s,Bj

)

×
(
‖ũ‖q̃,Bj

+ ‖p̄‖W 1,n(Bj)′
)

≤ Cd
−n(1−1/q)
j

(
1 + (q − 1)−1+1/n

)(
‖ũ‖q̃,Bj

+ ‖p̄‖W 1,n(Bj)′
)

≤ Cd
−n(1−1/q)
j (q − 1)−1+1/n

(
‖ũ‖q̃,Bj

+ ‖p̄‖W 1,n(Bj)′
)
,
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where we used n/q − n/q̃ − 1 = −n(1 − 1/q) and n/q − n/q̃ + n − n/q +
n/s − 2 = −n(1 − 1/q).

Adding all the terms and by Hölder’s inequality in the sum with expo-
nent q̃, with conjugate exponent q̃

′ = n, estimating the geometric sum as
in (3.11) and by Corollary 1.4

(3.21)

∞∑

j=0

|Bj|
1/q−1/q̃

IIIj ≤ C(q − 1)−1+1/n

(
∞∑

j=0

d
−n2(1−1/q)
j

)1/n

×

(
∞∑

j=0

(
‖ũ‖q̃,Bj

+ ‖p̄‖W 1,n(Bj)′
)q̃
)1/q̃

≤ Cρ
−n(1−1/q)(q − 1)−1

(
‖ũ‖q̃ + ‖p̃‖W 1,n(Ω)′/R

)

≤ Cρ
−n(1−1/q)(q − 1)−1

(
‖f̃‖−2,q̃ + ‖g̃‖W 1,n(Ω)′

)
,

since p̄ = p + c for arbitrary c ∈ R we may take the infimum over all c.
For f̃ = Diδej and since ‖Diδej‖−2,q̃ ≤ C‖Diδej‖−2,nq/(n−q) we obtain

by Lemma 3.1,

(3.22) ‖Diδej‖−2,q̃ ≤ C(q − 1)−1+1/n‖δ‖q ≤ Cρ
−n(1−1/n)(q − 1)−1+1/q

,

For g̃ = δ − |Ω|−1 we note that (δ − |Ω|−1
, ϕ) = (δ, ϕ − ϕ0) where

ϕ0 = |Ω|−1
∫
Ω

ϕ dx. Using Sobolev’s inequality as in the proof of Lemma
3.1

(3.23) ‖δ − |Ω|−1‖W 1,n(Ω)′ ≤ Cρ
−n(1−1/n)(q − 1)−1+1/n

.

Collecting the results in (3.19)–(3.23) concludes the proof. �

Corollary 3.3. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain such that

the solution to (1.4) with data as in Theorem 1.3 is continuous in the sense

that (ũ, p̃) ∈ W2,q for some q > n. Then there is a constant C such that the

solution, (ũ, p̃) to (1.4) with (f̃ , g̃) = (Diδej, 0) or (f̃ , g̃) = (0, δ − |Ω|−1)
satisfies the inequality,

‖ũ‖1,1 + ‖p̃‖L1/R ≤ C|log ρ|2−1/n
.

Proof. By Hölder’s inequality,

‖ũ‖1,1 + ‖p̃‖L1/R ≤ |Ω|1/q′
(
‖ũ‖1,q + ‖p̃‖Lq/R

)
.

Thus, with Theorem 3.2, taking q − 1 = 1/| log ρ|, we finish the proof. �
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3.2. W2,q-estimates as q ↓ 1.

Theorem 3.4. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain. Then for

q ∈ (1, 4/3] there is a constant C such that the solution (ũ, p̃) to (1.4) with

(f̃ , g̃) = (δei, 0) satisfies the inequality

‖ũ‖2,q + ‖p̃‖W 1,q/R ≤ C(q − 1)−αn
ρ
−2(n+1)(1−1/q)

where α2 = 2, α3 = 4/3.

Proof. We proceed as in the proof of Theorem 1.1. Let Aj, Bj and ηj be
as in (3.7)–(3.10). Let p̄ = p̃ + c for a fixed c ∈ R. Choose a fixed value
q0 ∈ (1, 4/3]. Then for 1 < q < q0 by Hölder’s inequality

(3.24)

‖ũ‖2,q + ‖p̃‖W 1,q/R ≤

∞∑

j=0

(
‖ũ‖2,q,Aj

+ ‖p̄‖1,q,Aj

)

≤

∞∑

j=0

(
‖ηjũ‖2,q,Bj

+ ‖ηj p̄‖1,q,Bj

)

≤

∞∑

j=0

|Bj|
1/q−1/q0

(
‖ηjũ‖2,q0,Bj

+ ‖ηj p̄‖1,q0,Bj

)
.

We note that ηjũ and ηj p̄ satisfy (1.4) in Ω with f̃ = f̃j = ∆(ηjũ)+∇(ηj p̄)

and g̃ = g̃j = ∇ · (ηjũ), where f̃j and g̃j vanish outside Bj for each j.
Hence, for each term in (3.24) we can apply Theorem 1.3,

(3.25)

‖ηjũ‖2,q0,Bj
+ ‖ηj p̄‖1,q0,Bj

= ‖ηjũ‖2,q0,Ω + ‖ηj p̄‖1,q0,Ω

≤ C

(
‖∆(ηjũ) + ∇(ηj p̄)‖q0,Bj

+ |∇ · (ηjũ)|1,q0,Bj

)

≤ C

(
‖ηj(∆ũ + ∇p̄) + 2∇ηj · ∇ũ + ∆ηjũ + ∇ηj p̄‖q0,Bj

+ |∇ηj · ũ + ηj∇ · ũ|1,q0,Bj

)

≤ CI‖ηjδei‖q0,Bj
+ CII‖∇

2
ηjũ‖q0,Bj

+ CIII

(
‖∇ηj · ∇ũ‖q0,Bj

+ ‖∇ηj p̄‖q0,Bj

)

= Ij + IIj + IIIj,

where C = C(n, q0, Ω) and with −∆ũ−∇p̄ = δei and ∇· ũ = 0, and where
we also used |∇ηj · ũ|1,q0,Bj

≤ ‖∇2
ηjũ‖q0,Bj

+ ‖∇ηj · ∇ũ‖q0,Bj
.

With (3.25) we now estimate (3.24) in three steps. Recall (3.9) that will
repeatedly be used in the estimates below.
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I. Since supp(δ) ∩ Bj = ∅ for j ≥ 1 and with (2.11)

(3.26)
∞∑

j=0

|Bj|
1/q−1/q0

Ij ≤ Cρ
n/q−n/q0‖δ‖q0

≤ Cρ
−n(1−1/q)

.

II. By Hölder’s inequality with exponent q̃ = q/(q − 2/n) and s such that
1/q0 = 1/s + 1/q̃ and with (3.10)

|Bj|
1/q−1/q0

IIj ≤ Cd
n/q−n/q0

j |ηj|2,s,Bj
‖ũ‖q̃,Bj

≤ Cd
−(n+2)(1−1/q)
j ‖ũ‖q̃,Bj

,

where we used n/q − n/q0 + n/s − 2 = −(n + 2)(1 − 1/q).
Adding all the terms and by Hölder’s inequality in the sum with expo-

nent q̃, with conjugate exponent q̃
′ = nq/2, and estimating the geometric

sum as in (3.11)

(3.27)

∞∑

j=0

|Bj|
1/q−1/q0

IIj

≤ C

(
∞∑

j=0

d
−(n+2)(1−1/q)nq/2
j

)2/nq( ∞∑

j=0

‖ũ‖
q̃
q̃,Bj

)1/q̃

≤ Cρ
−(n+2)(1−1/q)(q − 1)−2/nq‖ũ‖q̃.

With (3.3), Hölder’s inequality (nq̃/(n + q̃) ≤ nq/(n − q)), Theorem 1.1,
Lemma 3.1 and (2.11)

(3.28)

‖ũ‖q̃ ≤Cq̃
1−1/n‖ũ‖1,nq̃/(n+q̃)

≤Cq̃
1−1/n‖δ‖−1,nq/(n−q)

≤Cq̃
1−1/n(1 − q)−1+1/n‖δ‖q

≤Cρ
−n(1−1/q)(q − 2/n)−1+1/n(1 − q)−1+1/n

,

where we remark that

2n/(n + 1) ≤ nq/(n − q) ≤ 2n/(n − 1),

for n = 2, 3 and 1 < q < 4/3 and thus we may use Theorem 1.1.
Collecting the estimates in (3.27) and (3.28) we obtain

(3.29)
∞∑

j=0

|Bj|
1/q−1/q0

IIj ≤ Cρ
−2(n+1)(1−1/q)(q − 2/n)−1+1/n(q − 1)−1−1/n

.
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III. By Hölder’s inequality with exponent q̃ = n/(n − 1) and s such that
1/q0 = 1/s + 1/q̃

|Bj|
1/q−1/q0

IIIj ≤ Cd
n/q−n/q0

j |ηj|1,s,Bj

(
‖ũ‖1,q̃,Bj

+ ‖p̄‖q̃,Bj

)

≤ Cd
−n(1−1/q)
j

(
‖ũ‖1,q̃,Bj

+ ‖p̄‖q̃,Bj

)
,

where we used n/q − n/q0 + n/s − 1 = −n(1 − 1/q).
Adding all the terms and by Hölder’s inequality in the sum with expo-

nent q̃, with conjugate exponent q̃
′ = n, and estimating the geometric sum

as in (3.11)

(3.30)

∞∑

j=0

|Bj|
1/q−1/q0

IIIj

≤ C

(
∞∑

j=0

d
−n2(1−1/q)
j

)1/n( ∞∑

j=0

(
‖ũ‖1,q̃,Bj

+ ‖p̄‖Lq̃(Bj)

)q̃
)1/q̃

≤ Cρ
−n(1−1/q)(q − 1)−1/n

(
‖ũ‖1,q̃ + ‖p̃‖Lq̃/R

)
,

since p̄ = p + c for arbitrary c ∈ R we may take the infimum of all c.
With Theorem 1.1, Hölder’s inequality (q̃ ≤ nq/(n − q)), Lemma 3.1

and (2.11)

(3.31)

‖ũ‖1,q̃ + ‖p̃‖Lq̃/R ≤C‖δ‖−1,q̃

≤C(1 − q)−1+1/n‖δ‖q

≤Cρ
−n(1−1/q)(1 − q)−1+1/n

,

where Theorem 1.1 is applicable in analogy to the remark at (3.28).
Collecting the estimates in (3.30) and (3.31) we obtain

(3.32)
∞∑

j=0

|Bj|
1/q−1/q0

IIIj ≤ Cρ
−2n(1−1/q)(q − 1)−1

.

Finally adding (3.26), (3.29) and (3.32) concludes the proof. �

Corollary 3.5. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain. Then there

is a constant C such that the solution, (ũ, p̃) to (1.4) with f̃ = δei and

g̃ = 0 satisfies the inequality,

‖ũ‖2,1 + ‖p̃‖W 1,1/R ≤ C| log ρ|αn
,

with αn as in Theorem 3.4.
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Proof. See the proof of Corollary 3.3. �

4. Main results

We now make a precise statement of the main results and begin with
the pointwise error estimate of the velocity field.

Theorem 4.1. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain. Suppose

the data to (1.1) is as in Theorem 1.1 for some q > n. Then the error eu

in the finite element solution to (1.13) satisfies

‖eu‖∞ ≤ C| log hmin|
αn

η2,∞ + C1h
β
min,

where α2 = 2, α3 = 4/3 and with η2,∞ as in Lemma 2.1 and where β can

be chosen arbitrarily large.

Proof. Let x0 ∈ Ω and i be such that ‖eu‖L∞ = |eui
(x0)| and let (ũ, p̃) be

the solution to (1.4) with data f̃ = δei and g̃ = 0. With Lemma 2.2, the
identity (2.8), Lemma 2.1 with q = ∞, and Corollary 3.5, we obtain

‖eu‖∞ ≤ (eu, δei) + C1h
β
min

(
‖f‖−1,q + ‖g‖q

)

≤ |R((uh, ph), (ũ, p̃))| + C1h
β
min

≤ Cη2,∞

(
‖ũ‖2,1 + ‖p̃‖W 1,1/R

)
+ C1h

β
min

≤ C| log ρ|αn
η2,∞ + C1h

β
min.

Choosing ρ = h
σ
min for σ sufficiently large such that β becomes large as in

Lemma 2.2 concludes the proof. �

For the gradient of the velocity field and the pressure we only ob-
tain pointwise error estimates on a restricted class of polyhedral domains,
namely convex domains when n = 2 and under an inner angle condition
when n = 3, see Remark 1.2.

Theorem 4.2. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain such that the

solution to (1.1) with data as in Theorem 1.3 is continuous in the sense

that (u, p) ∈ W2,q for some q > n. Then the error ∇eu in the finite element

solution to (1.13) satisfies

‖∇eu‖∞ ≤ C| log hmin|
2−1/n

η1,∞ + C1h
β
min,

with η1,∞ as in Lemma 2.1 and where β can be chosen arbitrarily large.
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Proof. Let x0 ∈ Ω, i and j be such that ‖∇eu‖∞ = |Dieuj
(x0)| and let

(ũ, p̃) be the solution to (1.4) with data f̃ = Diδej and g̃ = 0. With
Lemma 2.3, the identity (2.8), Lemma 2.1 with q = ∞, and Corollary 3.3,
we obtain

‖∇eu‖∞ ≤ (eu, Diδej) + C1h
β
min

(
‖f‖q + |g|1,q

)
+ C2 max

T∈T
‖[∂νuh]‖∞,∂T\∂Ω

≤ |R((uh, ph), (ũ, p̃))| + C1h
β
min + C2 max

T∈T
‖[∂νuh]‖∞,∂T\∂Ω

≤ Cη1,∞

(
‖ũ‖1,1 + ‖p̃‖L1/R

)
+ C1h

β
min + C2 max

T∈T
‖[∂νuh]‖∞,∂T\∂Ω

≤ C| log ρ|2−1/n
η1,∞ + C1h

β
min.

Note that the jump term [∂νuh] from Lemma 2.3 is incorporated into the
error estimator η1,∞ in Lemma 2.1.

Choosing ρ = h
σ
min for σ sufficiently large such that β becomes large as

in Lemma 2.3 concludes the proof. �

Theorem 4.3. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain such that the

solution to (1.1) with data as in Theorem 1.3 is continuous in the sense

that (u, p) ∈ W2,q for some q > n. Then the error ep in the finite element

solution to (1.13) satisfies

‖ep‖∞ ≤ C| log hmin|
2−1/n

η1,∞ + C1h
β
min,

with η1,∞ as in Lemma 2.1 and where β can be chosen arbitrarily large.

Proof. Let x0 ∈ Ω be such that |ep(x0)| = ‖ep‖L∞ and let (ũ, p̃) be the

solution to (1.4) with data f̃ = 0 and g̃ = δ − |Ω|−1. With Lemma 2.4,
the identity (2.8) and choosing ep such that

∫
Ω

ep dx = 0, Lemma 2.1 with
q = ∞, and Corollary 3.3, we obtain

‖ep‖∞ ≤ (ep, δ) + C1h
β
min

(
‖f‖q + |g|1,q

)

≤ |R((uh, ph), (ũ, p̃))| + C1h
β
min

≤ Cη1,∞

(
‖ũ‖1,1 + ‖p̃‖L1/R

)
+ C1h

β
min

≤ C| log ρ|2−1/n
η1,∞ + C1h

β
min.

Choosing ρ = h
σ
min for σ sufficiently large, such that β becomes large as in

Lemma 2.4 concludes the proof. �

Finally we obtain L
q-estimates of the velocity gradient and the pressure.
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Theorem 4.4. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain. Suppose the

data to (1.1) is as in Theorem 1.1 for some 2n/(n + 1) ≤ q ≤ 2n/(n− 1).
Then the error (eu, ep) in the finite element solution to (1.13) satisfies

‖eu‖1,q + ‖ep‖Lq/R ≤ Cη1,q,

where η1,q is as in lemma 2.1.

Proof. With Corollary 1.2, the identity (2.4), and Lemma 2.1 we get

‖(eu, ep)‖Wq ≤ C sup
(φ,λ)∈Wq′

|L((eu, ep), (φ, λ))|

‖(φ, λ)‖Wq′

= C sup
(φ,λ)∈Wq′

|R((uh, uh), (φ, λ))|

‖(φ, λ)‖Wq′

≤ Cη1,q sup
(φ,λ)∈Wq′

‖φ‖1,q′ + ‖λ‖Lq′/R

‖(φ, λ)‖Wq′

≤ Cη1,q.

�
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COMPUTATIONAL CHARACTERIZATION OF FLOWS

WITH SOME HYPERBOLICITY

ERIK D. SVENSSON

Abstract. Studying flows in general we do not know if the flow is
hyperbolic in a strict sense. Instead we vaguely assume that the flow is
dominated by contractions and expansions and say that flow have some
hyperbolicity. We compare a posteriori and shadowing error estimates
for computed orbits in flows with some hyperbolicity. Principal to the
estimates are the stability factors which we estimate in two examples
for orbits generated by velocity fields modelled by the Stokes equations
and computed by a finite element method.

1. Introduction

We consider domains Ω ⊆ R3 and Lipschitz continuous vector fields
Ω ∋ x 7→ f(x) ∈ R3 so that the dynamical system

(1.1) ∂tu(t, x) = f(u(t, x)), t > 0; u(0, x) = x,

defines a flow (t, x) 7→ u(t, x) ∈ Ω describing the motion of a fluid particle
starting at x and moving in the velocity field f .

Generally we can not find a closed expression for the flow and in order to
study the properties of the flow we may instead analyse a limited number
of numerically computed of orbits uk(t, xi) for i = 1, 2, . . . , I, where k refers
to the time discretization. For a reliable analysis we will have to control
the error

(1.2) e(t, x) := uk(t, xi) − u(t, x),

and make is small. From now on we consider a fixed x and set e(t) = e(t, x).
We are lead to the following classic question. Given a dynamical system
(1.1) and a number Tol > 0, is there a threshold time T so that ‖e(t)‖ ≤ Tol
for all t ∈ [0, T ], i.e., so the error is uniformly bounded on [0, T ]?

Date: April 19, 2006.
2000 Mathematics Subject Classification. 37A25, 37C50, 76M10.
Key words and phrases. shadowing, finite elements, flow simulation.
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For dynamical systems that are dynamically unstable, that is, sensitive
to perturbations, we anticipate that the error will grow, possibly at an
exponential rate, and we will only expect to be able to compute uk(t, xi)
with a small error for small T . However, if Ω is uniformly hyperbolic for
(1.1) and uk(t, xi) is computed with sufficient accuracy there is a shadow
orbit u(t, y) such that ‖uk(t, xi) − u(t, y)‖ < Tol for arbitrary t [16].

However, in practice we probably do not know if Ω is uniformly hyper-
bolic for (1.1) and also this requirement seems to be too strong and mainly
of theoretical interest. If we instead alleviate on the uniform hyperbolicity
and require Ω to have some hyperbolicity meaning that the flow is dom-
inated by contractions and expansions in a less strict sense we may still
obtain shadowing results similar to the aforementioned. In this case we
will expect the shadowing to hold for finite but large t, see for example
[5, 11, 12, 19] and the book [16].

As a concrete example we consider the Lorenz system

∂tu = (σ(u2 − u1), ρu1 − u2 − u1u3, u1u2 − βu3), t > 0;

u(0) = (1, 0, 0); for (σ, ρ, β) = (10, 28, 8/3).

In [14] this problem was solved accurately, in the sense that ‖e(T )‖ is
small, up to T = 50 which is predicted to be the threshold beyond which
‖e(T )‖ becomes too large to be represented with double precision arith-
metics (from the same work T = 100 for quadruple precision is predicted).

This result should be compared to [5] where the same problem is solved
accurately up to T = 9 × 106 in the sense that ‖uk(t, u(0)) − u(t, y)‖ is
small for t ∈ [0, T ], that is, very close to the computed orbit uk(t, u(0))
there is an exact orbit u(t, y).

This example obviously suggest that long time error control for problems
that are dynamically unstable will fail with the first method but could
possibly be archived with the last method, provided the structure of the
problem is sufficiently hyperbolic-like.

1.1. About this work. In this work we consider the case when the vec-
tor field f is not given in closed form but rather defined by a model, e.g.,
a partial differential equation, and approximated by computed numerical
data fh, where h refers to the space discretization. We solve (1.1) numer-
ically with fh as right hand side and estimate the error (1.2), where we
now also have to take the error in the velocity field

(1.3) ef := fh − f
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into account.
We assume that uk and fh are finite element approximations obtained by

solving appropriate finite element problems, which depend on the choice
of finite element method and the type of model defining f .

Provided ef is small enough and that we solve uk accurately enough we
have the following a posterior error estimate, see for example [6],

(1.4) sup
t∈[0,T ]

‖e(t)‖ ≤ S(T )E(fh, f, x),

where S(T ) is a stability factor and E(fh, f, x) is a function depending
on the data and made small as ef is made small and is uk solved more
accurately. The dependence on initial data for a particular problem will
be reflected in the stability factor and for dynamically unstable problems
this factor may grow exponentially in T , rendering the estimate useless
after some rather small time.

If we in addition to the requirements on ef and uk made for the estimate
above also require that the flow (1.1) is sufficient hyperbolic then we have
the following shadowing error estimate, see for example [5],

(1.5) sup
t∈[0,T ]

‖uk(t, x) − u(t, y)‖ ≤ S̃(T )E1(fh, f, x),

where u(t, y) is an exact solution to (1.1) with different initial data, S̃(T )
a stability factor and E(fh, f, x) is the same function as in the a posteriori
estimate above. Depending on the contractive and expansive directions in
the flow the stability factor may be subject to a mild growth over time
and the estimate will be valid for a rather large time.

In the present work we derive the finite time shadowing error estimate
(1.5). The overall idea is from [5] but now expressed using a finite element

framework. This work also differs in the way we estimate S̃(T ) and that
we use numeric data fh in the right hand side to (1.1). We also remark
that the overall framework in this paper has been inspired by [13] where
shadowing was considered in a more abstract setting, for parabolic partial
differential equations.

Finally, we describe a numerical experiment where we obtain fh as the
solution to a Stokes flow and with this data we compute and compare

S(T ) and S̃(T ) in (1.4) and (1.5). The experiment is inspired by the
experimental work [18] on a micro fluid mixing devise.



4 ERIK D. SVENSSON

2. Notation and preliminaries

For real valued functions u, v ∈ R3 we denote their scalar product by
u · v = u1v1 + u2v2 + u3v3.

For matrixes A and linear operators L we denote their transpose and
adjoint by A

∗ and L
∗. We let I denote the identity matrix or identity

operator.
We will use ‖·‖ to denote the appropriate matrix and vector norms.
We only consider bounded domains ω ⊆ Ω ⊂ R3 with measure denoted

by |ω|, and where Ω is associated with the flow (1.1).
We will denote piecewise smooth functions by C

m and use standard
notation for Sobolev spaces W k,q(ω) and W k,q

0 (ω).
For vector fields

Ω ∋ x 7→ f(x) = (f1(x), . . . , fn(x)) ∈ Rn

we set

∇u := (Diuj)
n
i,j=1,

where

Di :=
∂

∂xi

i = 1, . . . , n,

denote the i:th partial derivative.
Finally, throughout this work we will use C or Ci, i = 1, 2, . . ., to denote

various constants, not necessarily taking the same value from time to time.

2.1. Hyperbolic sets. A compact set ω ⊂ Ω is said, see for example [17,
p. 8], to be uniformly hyperbolic for the flow u(t, x) if there is a continuous
decomposition

(2.1) R3 = E
0(x) ⊕ E

s(x) ⊕ E
u(x) ∀x ∈ ω,

and constants c > 0 and 0 < λ < 1 < µ such that for each x ∈ ω,

(1) E0(x) is the one-dimensional subspace generated by f(x);
(2) ∇u(t, x)Es(x) = E

s(u(t, x)) and ∇u(t, x)Eu(x) = E
u(u(t, x));

(3) ‖∇u(t, x)ξ‖ ≤ cλ
t‖ξ‖ for all ξ ∈ E

s(x) and t ≥ 0;
(4) ‖(∇u(t, x))−1

ξ‖ ≤ cµ
−t‖ξ‖ for all ξ ∈ E

u(x) and t ≥ 0.

We remark that u(t, x) is called an Anosov flow if Ω is uniformly hyperbolic
for u(t, x).

The requirements in this definition are rather strong and there are many
examples of dynamical systems with non-trivial and interesting properties
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that do not meet these requirements [20]. We therefore relax this re-
quirement and instead vaguely think of the flow as being dominated by
contractive and expansive direction in a less strict sense. An example of
one such relaxation is the notion of nonuniform hyperbolicity, where loosely
speaking, ”for every” in the definition is replace by ”for almost all”, see for
example [1, 20]. We will not discuss and specify this in more detail. Instead
we consider an example that to some extent motivates the reasoning.

Example 2.1. Suppose f is incompressible, that is,

∇ · f(x) = 0 ∀x ∈ Ω.

Then for every open set A ⊂ Ω the volume of A is preserved in the flow
(1.1), that is,

|A| = |u(t, A)| for t > 0

see for example [4, p. 10].
Now for a small ball B(x, ε) at x ∈ Ω and with radios ε and for small t

we consider the deformation of the ball in the flow, B(x, ε) → u(t, B(x, ε)).
Since the volume of the ball is preserved and since the flow leaves the ball
unchanged in the direction of the flow we are left with two possibilities
(1) the ball is contracted and expanded in some directions such that the
volume is unchanged and (2) the ball is unchanged.

Consequently, it seems reasonable to assume that in large parts of Ω
there is a splitting (2.1). If we assume that the case where the ball is not
deformed only happen in isolated points then the splitting (2.1) will exist
for almost all x ∈ ω but now E

s and Eu must not be continuous.

2.2. Finite element approximation. The finite element formulation of
(1.1) is derived from the following variational formulation of (1.1). Find
u ∈ C

1([0, T ])3 with u(0, x) = x such that

(2.2)

∫ T

0

(
∂tu− f(u)

)
· v dt = 0 ∀v ∈ C

1([0, T ])3
.

As the functions u and v are replaced by piecewise polynomials we obtain
the Galerkin finite element approximation.

For simplicity we only consider continuous finite elements although this
work is readily generalized to discontinuous finite elements. Partition [0, T ]
into intervals Ii = [ti−1, ti] for i = 1, 2, . . . , N such that 0 = t0 < t1 < . . . <

tN = T and set ki = ti−1 − ti. Let Pq(Ii) denote the polynomials of degree
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less or equal to q on Ii and set

Vq([0, T ]) := {v ∈ C
0([0, T ]) : v|Ii

∈ Pq(Ii), for i = 1 . . . N}

Wq([0, T ]) := {v ∈ C
0(

N⋃

i=1

(ti−1, ti)) : v|Ii
∈ Pq(Ii), for i = 1 . . . N}

which is the finite element spaces of continuous and discontinuous piecewise
polynomials of degree q.

For q ≥ 1 and from (2.2) we obtain the finite element formulation. Find
uk ∈ Vq([0, T ])d with uk(0, xi) = xi such that

(2.3)

∫ T

0

(∂tuk − f(uk)) · v dt = 0 ∀v ∈Wq−1([0, T ])3
,

where we note that now v ∈ Wq−1([0, T ])3. This is the continuous Galerkin
method of order q, referred to as the cG(q) method in [7, p. 210].

There are q+1 points in the interval Ii, where the piecewise polynomials
are evaluated, referred to as local nodes. In the same way there are N(q+
1) − 1 points in the interval [0, T ] referred to as global nodes.

We recall the following interpolation estimate, see for example [7, Theo-
rem 5.1, p. 79]. For a smooth function v on Ii let Ii,qv ∈ Pq(Ii) interpolate
v at the local nodes. Then Ii,qv satisfies

‖Ii,qv − v‖L∞(Ii) ≤ C‖k
q+1
i D

q+1
v‖L∞(Ii).

In the same way, for a smooth function v on [0, T ], let Iqv ∈ Wq([0, T ])
interpolate v at the global nodes. For a global estimate we let k = k(t)
denote the piecewise constant function so that k|Ii

= ki. Then

(2.4) ‖Iqv − v‖L∞([0,T ]) ≤ C‖kq+1
D

q+1
v‖L∞([0,T ]).

Finally we recall the following inverse estimate. Let T be a finite element
triangulation of Ω and set hT = diam (T ) for all T ∈ T . For any T ∈ T ,
let V be a finite-dimensional subspace of W k,q(T ) ∩Wm,s(T ), where 1 ≤

q ≤ ∞, 1 ≤ s ≤ ∞ and 0 ≤ m ≤ k. Then there exists a constant C such
that for all v ∈ V

(2.5) ‖v‖W k,q(T ) ≤ Ch
m−k+n/q−n/s
T ‖v‖W m,s(T ),

see for example [2, Theorem 4.5.3, p. 111].
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2.3. Linearization. Let ū ∈ C
0([0, T ])3 and rewrite (1.1) by linearization

around ū

(2.6) ∂tu(t, x) + A(t)u = F (t, u),

where we define the linear part of f ,

(2.7) A(t) := −∇f(ū(t))

and the nonlinear part,

(2.8) F (t, u) := f(u) + A(t)u.

Let L(t, s) for 0 ≤ s ≤ t ≤ T be the solution operator to the linearized
homogeneous problem

(2.9) ∂tu+ A(t)u = 0, t > s; u(s, x) = x.

Thus, u(t, x) = L(t, s)x is the solution of (2.9). We note that L(t, s)
satisfies the following properties: L(s, s) = I and L(t, r)L(r, s) = L(t, s)
for 0 ≤ s ≤ r ≤ t ≤ T . Consequently we may regard L(t, s) as the inverse
to L(s, t).

For t ∈ [0, T ] we consider the following weak formulation of (2.9). Find
u ∈ C

1([s, t])3 with u(s, x) = x such that

(2.10)

∫ t

s

(∂τu+ A(τ)u) · v dτ = 0 ∀v ∈ C
1([s, t])3

.

We also introduce the dual problem to (2.10). Find ϕ ∈ C
1([s, t])3 with

ϕ(t, ψ) = ψ such that

(2.11)

∫ t

s

φ · (−∂τϕ+ A
∗(τ)ϕ) dτ = 0 ∀φ ∈ C

1([s, t])3
,

which is the weak formulation of the following problem,

(2.12) −∂sϕ+ A
∗(s)ϕ = 0, s < t; ϕ(t, ψ) = ψ.

Let K(s, t) denote the solution operator to (2.12), that is, ϕ(s) = K(s, t)ψ.
Note that K(s, t) = L

∗(t, s) since, by integration by parts in (2.11),
∫ t

s

(∂τφ+ A(τ)φ) · ϕ dτ = φ(s+) · ϕ(s+) − φ(t−) · ϕ(t−),

and thus, with φ = u in the above identity and v = ϕ in (2.10) we get

0 =

∫ t

s

(∂τu+ A(τ)u) · ϕ dτ = x ·K(s, t)ψ − L(t, s)x · ψ.
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Finally, we consider (1.1) with f(x) replaced by fh(x) and linearize
around ū ∈ C

0([0, T ])3:

(2.13) ∂tu(t, x) + Ah(t)u = Fh(t, u),

where we define the linear part of fh,

(2.14) Ah(t) := −∇fh(ū)

and the nonlinear part,

(2.15) Fh(t, u) := fh(u) + Ah(t)u.

Let Lh(t, s) for 0 ≤ s ≤ t ≤ T be the solution operator the the linearized
homogeneous problem

(2.16) ∂tu+ Ah(t)u = 0, t > s; u(s, x) = x.

Thus, u(t, x) = Lh(t, s)x is the solution to (2.16). In analogy to (2.9)
there is a weak form and a dual problem to (2.16) with solution operator
L
∗
h(t, s).

2.4. Exponential dichotomies. If Ω is uniformly hyperbolic for u(t, x)
then the following definition is meaningful, cf. [13].

Definition 2.1. The solution operator L(t, s) is said to have an exponen-
tial dichotomy in the interval [0, T ] if there are projections P (t), t ∈ [0, T ]
and constants M ≥ 1, β > 0 such that, for 0 ≤ s ≤ t ≤ T ,

(1) L(t, s)P (s) = P (t)L(t, s);
(2) ‖L(t, s)P (s)‖ ≤Me

−β(t−s);
(3) ‖L(s, t)(I − P (t))‖ ≤Me

−β(t−s).

The range R(P (t)) is called the stable subspace and the complementary
space R(I−P (t)) = N (P (t)) (the null space of P (t)) is called the unstable
subspace.

If L(t, s) has an exponential dichotomy on the interval [0, T ] then for
sufficiently smooth f the following boundary value problem is well posed,

(2.17)
∂tϕ+ A(t)ϕ = f(t), t ∈ (0, T ),

P (0)ϕ(0) = ϕ0, (I − P (T ))ϕ(T ) = ϕT ,

where ϕ0 ∈ R(P (0)) and ϕT ∈ R(I − P (T )).
The solution is given by

(2.18) ϕ(t) = G(t, 0)ϕ0 −G(t, T )ϕT +

∫ T

0

G(t, s)f(s) ds,
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where G(t, s) is the operator

(2.19) G(t, s) =

{
L(t, s)P (s), 0 ≤ s ≤ t,

−L(t, s)(I − P (s)), t < s ≤ T.

This is readily verified by the following calculations. By Duhamel’s prin-
ciple on the interval (0, t)

ϕ(t) = L(t, 0)ϕ0 +

∫ t

0

L(t, s)f(s) ds,

and by Property 1 in Definition 2.1,

P (t)ϕ(t) = L(t, 0)P (0)ϕ0 +

∫ t

0

L(t, s)P (s)f(s) ds.

In the same way on the interval (t, T )

(I − P (T ))ϕ(T ) = L(T, t)(I − P (t))ϕ(t) +

∫ T

t

L(T, s)(I − P (s))f(s) ds.

By applying the operator L(t, T ) and rearranging the terms,

(I − P (t))ϕ(t) = L(t, T )(I − P (T ))ϕ(T ) −

∫ T

t

L(t, s)(I − P (s))f(s) ds,

since L(t, T )L(T, s) = L(t, s) for s ≤ T ≤ t. The above result now follows
by considering

ϕ(t) = P (t)ϕ(t) + (I − P (t))ϕ(t).

We also see that the solution satisfies the estimate

(2.20) sup
t∈[0,T ]

‖ϕ(t)‖ ≤M

(
‖ϕ0‖ + ‖ϕT‖ + 2β−1 sup

t∈[0,T ]

‖f(t)‖
)
,

which follows from Property 2 and 3 in Definition 2.1 and the estimates

‖ϕ(t)‖ ≤ ‖G(t, 0)‖ ‖ϕ0‖ + ‖G(t, T )‖ ‖ϕT‖ + sup
t∈[0,T ]

|f(t)|

∫ T

0

|G(t, s)| ds,

and ∫ T

0

|G(t, s)| ds ≤

∫ T

0

e
−β|t−s|

ds ≤
2M

β

.

Note that with f(t) = −ψδ(t− τ) for some ψ ∈ Rn and τ ∈ [0, T ], where
δ is the Dirac distribution, we obtain the estimate

(2.21) sup
t∈[0,T ]

‖ϕ(t)‖ ≤M max{‖ϕ0‖, ‖ϕT‖, ‖ψ‖}.
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3. Error analysis

Subtracting (2.3) from (2.2) we obtain the weak representation of the
error e := uk(t, xi) − u(t, x). Find e ∈ C

1([0, T ])3 with e(0, x) = xi − x

such that

(3.1)

∫ T

0

∂te · v dt =

∫ T

0

(f(u) − ∂tuh) · v dt ∀v ∈ C
1([0, T ])3

.

With Ah(t) as in (2.14) we linearize around uk and let

f(u) − ∂tuk = ef (u) + Ah(t)e+ η(uk, u) +R(uk),

where we define the error in the computed velocity field,

(3.2) ef (u) := f(u) − fh(u),

the non-linear part,

(3.3) η(uk, u) := fh(u) − fh(uk) + Ah(t)e

and the residual to (2.3),

(3.4) R(uk) := fh(uk) − ∂tuk.

We note that the residual is orthogonal to functions in the finite element
space Wq−1([0, T ])3 in the following sense,

(3.5)

∫ T

0

R(uk) · v dt = 0 ∀v ∈ Wq−1([0, T ])3
.

We rewrite (3.1) according to the linearization above. Find e ∈ C
1([0, T ])3

with e(0, x) = xi − x such that

(3.6)

∫ T

0

(∂te+ Ah(t)e) · v dt =

∫ T

0

(ef (u) + η(uk, u) +R(uk)) · v dt,

for all v ∈ C
1([0, T ])3.

The following lemma will be useful characterizing the function η(·, ·).
Note that ∇fh is discontinuous across ∂T \ ∂Ω for T ∈ T .

Lemma 3.1. Let u, v, w ∈ Ω and suppose the convex hull K of {u, v, w} is

contained in Ω. Then a finite element function fh : Ω ∋ x 7→ fh(x) ∈ R3
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satisfies

‖fh(u) − fh(v) + ∇fh(w)(u− v)‖

≤ C‖u− v‖
(
h
−1−n/p
min

(
‖u− w‖ + ‖v − w‖

)
‖∇fh‖Lp(Ω)

+ max
T∈T

‖[∇fh]‖L∞(∂T\∂Ω)

)
,

for some 1 ≤ p ≤ ∞ and where the constant C depends on card(K ∩ T )2

and the constant in (2.5), and [·] denotes the jump across ∂T .

We remark that the exponent p in practice is determined by available
error estimates.

Proof. Consider the line l : [0, 1] ∋ s 7→ su+ (1 − s)v ∈ Rn and let

lT =
⋃

T∈T

T ∩ l 6= ∅.

From the identity

fh(u) − fh(v) −∇fh(w)(u− v)

=

∫ 1

0

(
∇fh(su+ (1 − s)v) −∇fh(w)

)
(u− v) ds,

and by the mean value theorem there are points ξT ∈ T for T ∈ lT such
that

∫ 1

0

∇fh(su+ (1 − s)v) ds =
∑

T∈lT

∫

l∩T

∇fh(su+ (1 − s)v) ds

=
∑

T∈lT

∇fh(ξT )

∫

l∩T

ds.

Hence, since
∫

l∩T
ds < 1

‖fh(u) − fh(v) −∇fh(w)(u− v)‖ ≤ ‖u− v‖
∑

T∈lT

‖∇(fh(ξT ) − fh(w))‖

For each point ξT consider the line between ξT and w. Suppose this line
crosses mT boundaries ∂T for T ∈ T at points ξT,i for i = 1, . . . ,mT . Let
ξ
−
T,i and ξ+

T,i be the limits at ξT,i going from ξT and w respectively, and set
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ξ
+
T,0 = ξT and ξ−T,mT +1 = w. Estimate the terms in the sum above

‖∇(fh(ξT ) − fh(w))‖ ≤

mT∑

i=0

‖∇(fh(ξ
+
T,i) − fh(ξ

−
T,i+1))‖ +

mT∑

i=1

‖[∇fh(ξT,i)]‖,

where [∇fh(ξT,i)] = ∇(fh(ξ
−
T,i) − fh(ξ

+
T,i)) denotes the jump at ξT,i.

By the mean value theorem and an inverse estimate

‖∇(fh(ξ
+
T,i) − fh(ξ

−
T,i+1))‖ ≤

(
‖u− v‖ + ‖v − w‖

)
‖∇2

fh‖L∞(T )

≤ Ch
−1−n/p
min

(
‖u− w‖ + ‖v − w‖

)
‖∇fh‖Lp(Ω),

since ‖ξ+
T,i − ξ

−
T,i+1‖ ≤ ‖ξT − w‖ ≤ ‖u− v‖ + ‖v − w‖.

For the jump terms we estimate

‖[∇fh(ξT,i)]‖ ≤ max
T∈T

‖[∇fh]‖L∞(∂T\∂Ω).

Collecting the estimates above concludes the proof. �

For fixed uk we consider η = η(uk, uk − e) and ef = ef (uk − e) as a
functions of e. Set

(3.7)

N0,T (e, v) :=

∫ T

0

η(uk, uk − e) · v dt,

E0,T (e, v) :=

∫ T

0

ef (uk − e) · v dt,

R0,T (uk, v) :=

∫ T

0

R(uk) · v dt,

and estimate N0,T , E0,T and R0,T . Let

(3.8) Bρ := {e ∈ C
1([0, T ]) : ‖e‖L∞([0,T ]) ≤ ρ}.

With u = uk − e and v = w = uk in Lemma 3.1 we get

(3.9) ‖N0,T (e, v)‖ ≤ C‖v‖L1([0,T ])rN(fh, ρ)ρ for e ∈ Bρ

where we defined

(3.10) rN(fh, ρ) := ρh
−1−n/p
min ‖∇fh‖Lp(Ω) + max

T∈T
‖[∇fh]‖L∞(∂T\∂Ω).

Now N0,T is Lipschitz continuous, that is,

(3.11) ‖N0,T (e1, v)−N0,T (e2, v)‖ ≤ C‖v‖L1([0,T ])rN(fh, ρ)‖e1−e2‖L∞([0,T ]),

for e1, e2 ∈ Bρ and where rN(fh, ρ) is as in (3.10).
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To see this, suppose e1, e2 ∈ Bρ. By Hölder’s inequality,

|N0,T (e1, v) −N0,T (e2, v)|

≤ ‖η(uk, uk − e1) − η(uk, uk − e2)‖L∞([0,T ])‖v‖L1([0,T ]),

where

η(uk, uk − e1) − η(uk, uk − e2)

= fh(uk − e1) − fh(uk − e2) −∇fh(uk)(e1 − e2).

With u = uk − e1, v = uk − e2 and w = uk in Lemma 3.1, (3.11) follows.
As for E0,T we will use the uniform estimate

(3.12) E0,T (e, v) ≤ C‖ef‖L∞(Ω)‖v‖L1([0,T ]).

We also note by taking u = uk − e1, v = uk − e2 and w = 0 in Lemma
3.1 that E0,T is Lipschitz continuous, that is,

(3.13) ‖E0,T (e1, v) − E0,T (e2, v)‖ ≤ C‖v‖L1([0,T ])rE(ef )‖e1 − e2‖L∞([0,T ]),

for e1, e2 ∈ Bρ and where rE(ef ) is defined by

(3.14) rE(ef ) := h
−n/p
min ‖∇ef‖Lp(Ω).

Finally, due to the Galerkin orthogonality (3.5) we may add Iq−1v

∫ T

0

R(uk) · v dt =

∫ T

0

R(uk) · (v − Iq−1v) dt,

and hence by (2.4)

(3.15) R0,T (uk, v) ≤ C‖kq
R(uk)‖L∞([0,T ])‖D

q
v‖L1([0,T ]).

3.1. A posteriori error analysis. Consider the dual problem to (3.6).
Find ϕ ∈ C

1([0, T ])3 with ϕ(T, x) = ϕT such that

(3.16)

∫ T

0

φ · (−∂tϕ+ A
∗
h(t)ϕ) dt = 0 ∀φ ∈ C

1([0, T ])3
.

With v = ϕ in (3.6) and φ = e in (3.16) subtracting the equations we
get ∫ T

0

∂t(e · ϕ) dt =

∫ T

0

(ef (u) + η(uk, u) +R(uk)) · ϕdt,

or with the notation in (3.7) we get

(3.17) e(T ) · ϕT = e(0) · ϕ(0) +R0,T (uk, ϕ) + E0,T (e, ϕ) +N0,T (e, ϕ),
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which is a fixed point problem in e that admits a unique solution provided
N0,T and E0,T has sufficiently small Lipschitz constants.

Estimating the right hand side in (3.17) we use Cauchy’s inequality for
the fist term and for the remaining terms we use the estimates (3.15),
(3.12) and (3.9). As is usual we define the stability factors

(3.18)

S0(T ) := ‖ϕ(0)‖,

S1(T ) := ‖Dq
ϕ‖L1([0,T ]),

S2(T ) := ‖ϕ‖L1([0,T ]).

We remark that the stability factor mentioned in (1.4) now is S(T ) =
max {S0, S1, S2}.

Theorem 3.2 (A priori error estimate). Let ρ, fh and uk be such that

(3.19)

S0(T ) ≤ 1/6,

CS2(T )rE(ef ) ≤ 1/6,

CS2(T )rN(fh, ρ) ≤ 1/6,

where C is as in Lemma 3.1, rN(fh, ρ) and rE(ef ) as in (3.10) and (3.14),
and suppose

(3.20)

e(0) · ϕ(0) ≤ S0(T )‖e(0)‖ ≤
1

6
ρ,

R0,T (uk, ϕ) ≤ CS1(T )‖kq
R(uk)‖L∞([0,T ]) ≤

1

6
ρ,

E0,T (u, ϕ) ≤ S2(T )‖ef‖L∞(Ω) ≤
1

6
ρ.

Then the error e(T ) = uk(T ) − u(T ) is bounded from above by

(3.21)
e(T ) · ϕT ≤S0(T )‖e(0)‖ + S1(T )‖kq

R(uk)‖L∞([0,T ])

+ S2(T )‖ef‖L∞(Ω) ≤ ρ.

Proof. From (3.11), (3.13) and (3.19) it follows that (3.17) is a contraction
mapping on Bρ. From (3.19) and (3.20) we also see that the mapping is
into Bρ. Therefore there is a unique solution e ∈ Bρ to (3.17) that satisfies
(3.21). �

We note that

‖ϕ(T )‖ ≤ ‖ϕ(0)‖ + ‖A∗
h‖L∞([0,T ])

∫ T

0

‖ϕ(s)‖ ds,
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and by Gronwall’s lemma, see for example [8, p. 625] we estimate

‖ϕ(T )‖ ≤ ‖ϕ(0)‖
(
1 + T‖A∗

h‖L∞([0,T ])e
T‖A∗

h
‖L∞([0,T ])

)
.

For flows that are dynamically unstable we do not expect any better esti-
mates than this. Thus (3.19) and (3.20) will be very difficult or impossible
to achieve in these situations.

3.2. Shadowing. In this section we assume that L(t, s) has an exponential
dichotomy on the interval [0, T ]. We note the connection between L(t, s)
and Lh(t, s) provided in the following roughness result. From [16, Lemma
7.4, p.133] we know that if L(t, s) has an exponential dichotomy on [0, T ]
and if

‖Ah(t) − A(t)‖ ≤ δ ≤ δ0(M,β).

Then Lh(t, s) also has an exponential dichotomy on [0, T ] with constants
Mh, βh and projection Ph(t) satisfying

0 < βh < β and ‖Ph(t) − P (t)‖ ≤ Cδ,

where Mh, βh and C are constants only depending on M and β.
We now assume that Lh(t, s) has an exponential dichotomy on the in-

terval [0, T ] in the sense given in the paragraph above. It then follows
that L∗

h(s, t) also has an exponential dichotomy on [0, T ] with projection
I − P

∗
h (t) and constants Mh and βh. By taking the adjoint in Property 1

of Definition 2.1 and subtracting the identity we get

(I − P
∗
h (s))L∗

h(t, s) = L
∗(t, s)(I − P

∗
h (t)),

and multiplying from left and right with L
∗
h(s, t) and L

∗
h(s, t) we obtain

Property 1 for L∗
h(s, t)

L
∗
h(s, t)(I − P

∗
h (s)) = (I − P

∗
h (t))L∗

h(s, t).

The other properties now follow using the identity above.
Consider the following boundary value problem related to (2.17)

(3.22)
− ∂sϕ+ A

∗
h(s)ϕ = −ψδ(s− t), s ∈ ([0, T ]);

(I − P
∗
h (0))ϕ(0) = 0, P

∗
h (T )ϕ(T ) = 0,

where ψ ∈ R3 and δ is the Dirac delta distribution and thus the solution
ϕ(s) will have a jump −ψ = ϕ(t)+ − ϕ(t)− at time s = t.

This problem is also well posed by the same arguments as for (2.17) and
the solution is

ϕ(s, t) = −G∗
h(s, t)ψ,
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where we explicitly added t as an argument in the solution and where
G

∗
h(s, t) now is the Green operator

(3.23) G
∗
h(s, t) =

{
(I − P

∗
h (t))L∗

h(s, t), 0 ≤ t ≤ s,

−P ∗
h (t)L∗

h(s, t), s < t ≤ T.

In weak form (3.22) reads. Find ϕ ∈ C
1([0, t))3 ∪ C1((t, T ])3 :

(3.24)

∫ T

0

φ · (−∂sϕ+ A
∗
h(s)ϕ) ds = φ(t) · ψ ∀φ ∈ C

1([0, T ])3
,

and by integration by parts

(3.25) φ(t) · ψ =

∫ T

0

(∂sφ+ Ah(s)φ) · ϕ ds+ φ(T ) · ϕ(T ) − φ(0) · ϕ(0),

where we stress that ϕ(0) and ϕ(T ) are not equal to zero, in fact only
(I −P

∗
h (0))ϕ(0) = 0 and P ∗

h (T )ϕ(T ) = 0 (P ∗
h (0)ϕ(0) and (I −P

∗
h (T ))ϕ(T )

are determined by the differential equation).
Suppose e(t) = uk(t, xi) − u(t, y) ∈ Bρ, where Bρ is the ball (3.8), and

such that Ph(0)e(0) = 0 and (I − Ph(T )e(T ) = 0 which implies that

e(T ) · ϕ(T ) = e(T ) · (I − P
∗
h (T ))ϕ(T ) = (I − Ph(T ))e(T ) · ϕ(T ) = 0,

and likewise e(0) · ϕ(0) = 0.
Taking φ = e in (3.25) and with (3.6) and (3.7) we get

(3.26) e(t) · ψ = R0,T (uk, ϕ) + E0,T (u, ϕ) +N0,T (u, ϕ),

which is a fixed point problem with a similar right hand side as in (3.17)
although the problem defining ϕ is not the same in this case. Note that
the right hand side does not have any derivative in ϕ and hence is well
defined even when ϕ is discontinuous as in the present case.

Estimating the right hand side in (3.26) we use Cauchy’s inequality
for the fist two terms and for the remaining terms we use the estimates
(3.15) (with care), (3.12) and (3.9), now tanking into account that ϕ is
discontinuous at s = t. As is usual we define the stability factors

(3.27)

S̃1(T ) := sup
t∈[0,T ]

max
{
‖Dq

ϕ(·, t)‖L1([0,t)), ‖D
q
ϕ(·, t)‖L1((t,T ])

}

S̃2(T ) := sup
t∈[0,T ]

‖ϕ(·, t)‖L1([0,T ]),

where now ϕ is the solution to the boundary value problem (3.22). We

remark that the stability factor in (1.5) now is S̃(T ) = max {S̃1, S̃2}.
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Theorem 3.3 (Shadowing). Let ρ, fh and uk be such that

(3.28)
CS̃2(T )rE(ef ) ≤ 1/4,

CS̃2(T )rN(fh, ρ) ≤ 1/4,

where C is as in Lemma 3.1, rN(fh, ρ) and rE(ef ) as in (3.10) and (3.14),
and suppose

(3.29)
R0,T (uk, ϕ) ≤ CS̃1(T )‖kq

R(uk)‖L∞([0,T ]) ≤
1

4
ρ,

E0,T (u, ϕ) ≤ S̃2(T )‖ef‖L∞(Ω) ≤
1

4
ρ.

Then the numerical solution uk(t, xi) is shadowed by an exact solution

u(t, yi) and the error e(t) = uk(t, xi) − u(t, yi) is bounded from above for

all t ∈ [0, T ]

(3.30) |e(t)| ≤ S̃1(T )‖kq
R(uk)‖L∞([0,T ]) + S̃2(T )‖ef‖L∞(Ω) ≤ ρ.

Proof. Set ψ = 1. From (3.11), (3.13) and (3.28) it follows that (3.26) is
a contraction mapping on Bρ. From (3.28) and (3.29) we also see that the
mapping is into Bρ. Therefore there is a unique solution e ∈ Bρ to (3.26)
that satisfies (3.30) and we get u(t, yi) = uk(t, xi) − e(t). �

We note that provided L∗
h(s, t) has an exponential dichotomy ϕ will stay

bounded by (2.21) and in contrast to the error estimate (3.21) the estimate
in this case (3.30) will remain valid for large T . However we must show
that L∗

h(s, t) has an exponential dichotomy or by some means estimate
ϕ(t, ·). We discuss this matter in the next section.

3.3. Finite time shadowing. In this section we discuss the finite time
shadowing results from [5]. We first assume that L(t, s) has an exponential
dichotomy as described in Sections 2.4 and 3.2.

We consider the boundary value problem (3.22) and the solution oper-
ator (3.23). From now on set ψ = 1.

Partition [0, T ] into M sub intervals [Tm, Tm+1] for m = 0, 1, . . . ,M − 1
and where T0 = 0 and TM = T . Let Lm = L(Tm+1, Tm) be a sequence of
operators and set

Lmn = Lm−1 · · ·Ln, m > n, and Lmm = I.

If we choose s = Tm and t = Tn in (3.23) we get

(3.31) ϕ(Tm, Tn) = −G∗
mn,



18 ERIK D. SVENSSON

where

G∗
mn =

{
(I − P

∗(Tn))L∗
mn, 0 ≤ n ≤ m,

−P ∗(Tn)L∗
mn, m < n ≤M.

This is the solution to the recurrence problem cf. [13, Section 3.2]

(3.32)
− δm+1,n = ϕm+1 − L

∗
mϕm, m = 0, . . . ,M − 1;

(I − P
∗(0))ϕ0 = 0, P

∗(TM)ϕM = 0,

for n ∈ [0,M − 1] and where δm,n = 1 if m = n and δm,n = 0 if m 6= n.

Let f̂ = f/‖f‖ denote the normalization of f . Choose one (3×2) matrix
Z0 such that the (3 × 3) matrix

(
f̂h(u(0, x)) Z0

)

is orthonormal and by QR-factorization define recursively form = 0, 1, . . . ,M−

1
(
f̂h(u(Tm+1, x)) L

∗
mZm

)
=

(
f̂h(u(Tm+1, x)) Zm+1

) (
· · · · · ·

0 Am

)
,

where

(3.33) Am :=

(
am bm

0 cm

)
= Z

∗
m+1L

∗
mZm

is upper triangular and with positive diagonal entries as long as matrix
on the left hand side has full rank [10, Theorem 5.2.2, p. 217]. Note that
Z

∗
mZm = I.
Set ϕm = Zmφm and transform (3.32)

(3.34)
− δm+1,nZ

∗
m+1 = φm+1 − Amφm, m = 0, . . . ,M − 1;

Z
∗
0(I − P

∗(0))Z0φ0 = 0, Z
∗
MP

∗(T )ZMφM = 0.

In most situations we do not know the projections P (0) and P (T ).
Nevertheless we may solve (3.34) by taking a good guess. With φm =
(φm,1, φm,2) and (3.33) we rewrite (3.34)

(3.35)
φm+1,1 = amφm,1 + bmφm,2 + δm+1,nzm+1,1,

φm+1,2 = cmφm,2 + δm+1,nzm+1,2,

where zm+1,i is the sum of the i:th row in Z∗
m+1.

Considering the sequences {am}
M
m=0 and {cm}

M
m=0 we distinguish six dif-

ferent cases and solve (3.35) accordingly. Set a =
∏M

m=0 am and c =∏M
m=0 cm.
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(1) If a > 1.0 and c < 1.0. Set φ0,2 = 0 and solve the second equation
forwards obtaining φm,2, and set φm,1 = 0, substitute φm,2 into the
first equation and solve backwards obtaining φm,1.

(2) If a < 1.0 and c > 1.0. Set φ0,2 = 0 and solve the second equation
backwards obtaining φm,2, and set φm,1 = 0, substitute φm,2 into
the first equation and solve forwards obtaining φm,1.

(3) If a < 1.0 and c < 1.0 and a > c. Do as in the first case.
(4) If a < 1.0 and c < 1.0 and a < c. Do as in the second case.
(5) If a > 1.0 and c > 1.0 and a > c. Do as in the first case.
(6) If a > 1.0 and c > 1.0 and a < c. Do as in the second case.

Cases (1) and (2) are considered as ideal and imply that ‖φ‖ is small. The
remanding cases are not ideal and the solution may blow up and ‖φ‖ may
be large.

Since we only guess the projections we may expect to mix the stable and
unstable subspaces when solving according to the steps above. The com-
puted solution will serve as an estimate for the true solution and hopefully
this solution will be small or have a mild growth over time.

3.3.1. Computing S̃i(T ), i = 2, 3, in practice. We now substitute L∗(s, t)
by L

∗
h(s, t) in the analysis above and compute the norm to {φm}

M
m=0 in

(3.35) in two different ways.
Case I . In the first case we solveM−2 problems (3.35) for n = 1, 2, . . . ,M−

2 and compute the norms from this set of solutions. The amount of work
for this procedure will scale like O(M2).
Case II . In the second case we proceed as proposed in [5]. Instead of (3.35)
we consider

(3.36)
ηm+1,1 = amηm,1 ∓ |bm|ηm,2 ∓ |zn,1|,

ηm+1,2 = cmηm,2 ± |zm,2|,

where the ∓ and ± depend on whether we solve according to case (1) or
(2) as described above. This procedure will imply that |φm,1| ≤ ηm,1 and
|φm,2| ≤ ηm,2. The amount of work for this procedure will scale like O(M).

4. Finite time shadowing in Stokes flow

Inspired by [18] where laminar fluid mixing was experimentally stud-
ied in small channels we set up the following model. Let Ω ⊂ R3, be a
polyhedral domain with periodic boundaries ΓA and ΓB, see Figures 4.1
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and 4.2, and consider the Dirichlet Stokes problem with periodic boundary
conditions in dimensionless form

(4.1)

−∆U + ∇P = 0 in Ω,

∇ · U = 0 in Ω,

U = 0 on ∂Ω \ (ΓA ∪ ΓB),

U |ΓA
= U |ΓB

,

P |ΓA
= P |ΓB

+R,

where U = (U1, U2, U3) is the unknown velocity field, P the unknown
pressure and R is a constant modelling the pressure drop.

θ

w

h

αh
βℓ

ℓ

ΓA ΓB

C

x
y

z

flow

Figure 4.1: Three juxtaposed Ridge Domains. The shaded planes ΓA and
ΓB are periodic boundaries. We choose the following values for the parameters:
ℓ = w = 1, h = 0.3, θ = 45◦, α = 2/3, β = 0.5, and the length of the unit cell is
= 1.

θ

w

h

αh
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flow

Figure 4.2: Three juxtaposed Herringbone Domains. The shaded planes
ΓA and ΓB are periodic boundaries. We choose the following values for the
parameters: ℓ = 2/3, w = 1, h = 1/5, θ = 45◦, α = 2/3, β = 9/16, p = 2/3, and
the length of the unit cell is = 14/9.
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From [3] and [15] we know that U ∈ W
2,4/3(Ω)3 ∩W

1,3
0 and thus U is

continuous although not Lipschitz continuous. There will be singularities
in ∇U and P along the edges and vertices of Ω. However, if we let Ω′ ⊂

Ω such that dist(Ω′
, ∂Ω) is not too small, then we may argue that U is

Lipschitz continuous in Ω′ by an interior estimate as in for example [9,
Theorem 4.2, p. 209]. Thus when we compute orbits using f = U (or in
practice f = Uh) in (1.1) we only consider orbits that are not too close to
∂Ω.

We refer to the domains in Figures 4.1 and 4.2 as Ridge and Herringbone
respectively, the names are from [18]. Accurate solutions to (4.1) in the
two domains are computed by a finite element method, Hood-Taylor P2P1

on fine triangulations. We illustrate the solutions in Figures 4.3 and 4.4.

a

y

z

0 1
0

0.5
b
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1

0

0.5
0

1

Figure 4.3: Velocity field for (4.1) solved in the Ridge Domain, Figure 4.1, at
x = 0.0. (a) The y and z components of the velocity field. (b) The x component
of the velocity field.

We compute orbits to (1.1) using the simple cG(1) method described in
Section 2.2, with f = Uh where Uh now is the computed solution to (4.1) .
The time steps ki for i = 1, 2, . . . , N is chosen adaptively so that the local
residual is less than a small tolerance, for more details see [7]. We plot two
typical orbits in Figure 4.5 for the Ridge Domain and in Figure 4.6 for the
Herringbone Domain.

The dual problem (3.16) is solved by the same means but with time steps
ki for i = 1, 2, . . . , 2N − 1 obtained by refining the partition of [0, T ] used
for computing the orbits to (1.1). As ϕT we choose either of the canonical
unit vectors, e.g., (1, 0, 0). The stability factors Si(T ) for i = 1, 2, 3 are
then readily computed, see Figure 4.7.
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Figure 4.4: Velocity field for (4.1) solved in the Herringbone domain, Figure
4.2, at x = 0.0. (a) The y and z components of the velocity field. (b) The x

component of the velocity field.
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Figure 4.5: Computed orbit for x = (0, 1/2, 9/20) in the velocity field Uh

computed on the Ridge Domain. (a) Three dimensional plot. (b) Projection
on the xy-plane.

We compute the projection matrices Sm as explained in Section 3.3 by
approximating the action of L∗

m using the same method and the same time
steps as for the dual problem (3.16). The recurrence problem is solved in
the two different ways as described in Section 3.3, and depicted in Figures
4.8 and 4.9.



23

a

xy

x

0
20

40

0.0

1.0

0.3

b

x

y

0.0 0.5 1.0

0.1

0.3

Figure 4.6: Computed orbit for x = (0, 1/2, 1/3) in the velocity field Uh com-
puted on the Herringbone Domain. (a) Three dimensional plot. (b) Projection
on the xy-plane.
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Figure 4.7: (◦, +, ⋄) = (S0, S1, S2) Stability factors (3.18) for orbits in Figures
4.5 and 4.6.

5. Discussion

We have derived a shadowing error estimate (1.5) for computed orbits
uk(t, xi) to (1.1) with f replaced by a finite elements approximation fh.

Principal to the error estimate is the stability factors S̃1(t) and S̃2(t) which
for sufficiently hyperbolic problems do not grow at any considerable rate
as a function of the time t, in contrast to the stability factors Si for the a
posteriori error estimate where the stability factor grow at an exponential
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Figure 4.8: (◦, +) = (S̃1, S̃2) Stability factors (3.27) for orbit in Figure 4.5
computed as suggested in Section 3.3.1 (a) Case I (b) Case II.
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Figure 4.9: (◦, +) = (S̃1, S̃2) Stability factors (3.27) for the orbit in Figure 4.6
computed as suggested in Section 3.3.1 (a) Case I (b) Case II.

rate. We demonstrate this for orbits generated from the finite element
velocity field modelled by the Stokes equations on two different domains,
the Ridge Domain and the Herringbone Domain.

We note that there is an quite large difference in the way we choose to

estimate the stability factors S̃1(t) and S̃2(t), either as in Case I or as in
Case II as explained in Section 3.3.1, see Figures 4.8 and 4.9.

It is fare to say that the shadowing error estimate (1.5) is not rigorous as
long as we do not control all constants in the estimate. At this stage we are
not able to completely control the error in the finite element approximation
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fh. We only can provide asymptotic error estimates of ef , that is, there is
an unknown but bounded constant in the right hand side of the estimate
and we can only deduce that the error goes to zero as h→ 0.
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[18] A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezic, H.A. Stone, and G.M. White-

sides, Chaotic mixer for microchannels, Science 295 (2002), 647 – 51.
[19] E. S. Van Vleck, Numerical shadowing using componentwise bounds and a sharper

fixed point result, SIAM J. Sci. Comput. 22 (2000), 787–801.



26 ERIK D. SVENSSON

[20] L-S. Young, Developments in chaotic dynamics, Notices Amer. Math. Soc. 45
(1998), 1318–1328.

Department of Mathematical Sciences, Chalmers University of Tech-

nology, SE-412 96 Göteborg, Sweden
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OPTIMAL SEARCH IN FINITE ELEMENT

TRIANGULATIONS USING BINARY TREES

ERIK D. SVENSSON

Abstract. We propose a simple algorithm that, given the set S of
all n-simplices, n = 2, 3, in a finite element triangulation and a query
point p ∈ Rn will find one n-simplex or Rn\S containing p in O(log N)
search time, where N is the number of n-simplices in the triangulation.
The algorithm requires O(N log N) preprocessing time and O(N) stor-
age. We apply the algorithm on two finite element triangulations and
demonstrate that the search time is of the same order as the time to
evaluate the barycentric coordinates of one n-simplex, which we regard
a relevant time scale in many finite element applications.

1. Introduction

Given the set S of all n-simplices, n = 2, 3, in a finite element trian-
gulation and a query point p ∈ Rn we pose the following search problem:
Does any n-simplex in S contain p? This problem relates to two funda-
mental problems in computational geometry: the planar subdivision search

problem, that is, given a planar subdivision in R2 with a number of line
segments, determine which region in subdivision contains p; or the post-

office problem, that is, given a set of points, find the point that is closest to
p, see [6] and references there in. There are many solutions and suggestions
how to solve the subdivision search problem, for example [5, 4, 2, 7, 6].
With N denoting the number of n-simplices in S we characterize, cf. [4],
a solution or algorithm to the posed search problem by: (1) preprocessing

time -the time to construct search structures, (2) space -the storage used
by the method, (3) search time -the time required to locate the region or
point in S. It is possible to solve the search problem in an optimal way,

Date: April 18, 2006.
2000 Mathematics Subject Classification. 68U05.
Key words and phrases. computational geometry, point location, finite element, post-

processing.
1
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that is, with O(N) preprocessing time, O(N) space and O(log N) search
time [4, 6]. However, these methods are often considered too complicated
[2] and although the search time scales linearly the constant in the linear
dependence, the query constant, may be large [6].

In this work we propose a simple algorithm to solve the posed search
problem that is characterized as optimal in search time and space and
requires O(N log N) preprocessing time.

2. Preliminaries

We first introduce a few concepts used in finite element practice and
theory, see for example [1].

Let Ai for i = 1, . . . , n+ 1 be scalars not all equal to zero. A hyperplane

π is subspace of Rn such that

(2.1) π =
{

x ∈ Rn :
n∑

i=1

Aixi + An+1 = 0
}

An n-simplex in Rn is the convex hull T of n + 1 points a1, . . . , an+1,
called vertices, not all contained in a hyperplane, that is, for n = 0, . . . , 3:
a point, a line segment, a triangle, or a tetrahedron. For 0 ≤ m ≤ n, an
m-face of the n-simplex T is an m-simplex whose vertices are also vertices
of T .

Let Ω ⊂ Rn be a polyhedral domain. A triangulation T is a partition
of Ω into n-simplices T such that no vertex of any simplex lies in the
interior of any m-face, for 1 < m < n. A family of triangulations {Th}h>0

is said to be shape-regular if there is a γ > 0 such that hT /ρT ≤ γ for
all T ∈

⋃
h Th, where hT = maxT∈Th

diam (T ) and ρT = sup{diam(S) :
S is a ball contained in T}.

An n-rectangle is a set of the form

(2.2) R =
n∏

i=1

[ai, bi] = {x = (x1, . . . , xn) : ai ≤ xi ≤ bi, 1 ≤ i ≤ n}.

Again, let S be the set of all n-simplices, n = 2, 3, in a finite element
triangulation T and set card(S) := N , that is, we use the cardinal number
to count the number of n-simplices in S.

In the complexity analysis we use a parameter N to measure the size
of the search problem. We may interchangeably take N as the number of
m-simplices, 0 ≤ m ≤ n, in the triangulation. In R2 this is solely due
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to the Euler relations whereas in R3 we will have to impose additional
constraints on the triangulation.

Consider a triangulation T , where we now assume that Ω and ∂Ω are
simply connected which will only influence the Euler relations that we
will use. Let Ni for m = 0, . . . , n be the number of m-simplices in the the
triangulation and let N

∂
m for m = 0, . . . , n−1 be the number of m-simplices

on the boundary of the triangulation.
We first consider n = 2. By counting the edges and triangles in the

triangulation we get the identity 2N1 −N
∂
1 = 3N2 and since 0 ≤ N

∂
1 ≤ N1

we may estimate
3

2
N2 ≤ N1 ≤ 3N2,

which shows that the number of edges and triangles are interchangeable.
Inserting this into the Euler relation for triangulations in R2, see for ex-
ample [3],

N0 − N1 + N2 = 1,

we get

1 +
1

2
N2 ≤ N0 ≤ 1 + 2N2,

which shows that the number of vertices and triangles are interchangeable.
Consider next n = 3. By counting the faces and tetrahedra in the

triangulation we get the identity

(2.3) 2N2 − N
∂
2 = 4N3

and since 0 ≤ N
∂
2 ≤ N2 we may estimate

2N3 ≤ N2 ≤ 4N3,

which shows that the number of faces and tetrahedra are interchangeable.
By counting the edges and tetrahedra in the triangulation we obtain∑N1

i=1 ai = 6N3, where ai = card({T ∈ T : Ei ∩ T = Ei}) is the number of
tetrahedra neighboring the edge Ei. Hence

(2.4) āN1 = 6N3,

where ā = N
−1
1

∑N1

i=1 ai is the average of {ai}
N1

i=1, which shows that the
number of edges and tetrahedra are interchangeable.

Also by counting the edges and faces on the boundary we get the identity
2N∂

1 = 3N∂
2 which together with the Euler relation on the boundary N

∂
0 −
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N
∂
1 + N

∂
2 = 2 implies that N

∂
2 = 2(N∂

0 − 2) and with (2.3) we get the
identity

(2.5) 2N2 = 4N3 + 2(N∂
0 − 2).

Inserting (2.4) and (2.5) into the Euler relation for triangulations in R3

N0 − N1 + N2 − N3 = 1,

we get

N0 + N
∂
0 =

(6

ā

− 1
)
N3,

and since 0 ≤ N
∂
0 ≤ N0 we may estimate

1

2

(6

ā

− 1
)
N3 +

3

2
≤ N0 ≤

(6

ā

− 1
)
N3 + 3,

which shows that the number of vertices and tetrahedra are interchange-
able.

Notice that we will have to impose ā < 6 in order to have a use full
estimate. This is often true in practice since the triangulation is generated
with a shape-regularity constraint. We also remark that we may try to use
the uniform estimate

N1 min
i=1,...,N1

ai ≤

N1∑

i=1

ai ≤ N1 max
i=1,...,N1

ai,

in the analysis above but in practice this will often be useless since instead
of imposing ā < 6 we will have to impose maxi=1,...,N1

ai < 6 which is
not likely to be true in practice –there are always a few edges where the
condition fails. The mean value ā is a milder condition better suited in
this situation.

In conclusion, we just showed that provided ā < 6, we could use either
N = Ni, for i = 0, . . . , n in the complexity analysis. We will use this fact
without further notice throughout this work.

Finally, we will use the notion binary tree denoting a data structure
devised for fast data searching [8]. The binary tree contains a number of
items called nodes of the tree. Each node contains data and zero or two
links connecting to other nodes in the tree. The first node in the tree is
called the root. A connected set of nodes of the tree is called a subtree

and a node that has no connections to other nodes is called a leaf. See the
illustrations in Figure 2.1. The height of the tree is equal to the maximal
number of nodes connecting the root and any leaf.
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datadatadata

data

data

leaves

root

subtree

Figure 2.1: Binary tree.

3. Binary search in triangulations

We devise a binary tree that will be used to find the n-simplex containing
the query point p, or no n-simplex if p is not in Ω. Each node in the tree will
contain numbers Ai for i = 1, . . . , n + 1 representing a hyperplane π, and
the subtrees negSubtree and posSubtree, also binary trees that are parts
of the entire tree. The hyperplanes will partition Rn into negative and
positive sides that will be used to sort the n-simplices in the triangulation
at preprocessing. As a result of this sorting, every leaf will contain a set of
n-simplices Sl where ideally Sl is such that card (Sl) = 1 or at least close
to 1.

Given a query point p we use the search Algorithm 1 to find 0 or 1 n-
simplex in the triangulation containing the point, 0 meaning that p is out-
side the Ω. In the algorithm we use a generic algorithm inSimplex(T, p)

to test whether T contains p and we refer to Algorithms 4 or 5 in the
Appendix for details.

In the sections below we describe two algorithms for constructing the
binary tree. Both algorithms however suffer from different deficiencies and
it is only after combining them in a new one we obtain an algorithm that
will be useful in practice.

3.1. Partitioning along xi-hyperplanes. Let R be the smallest n-rectangle
containing Ω. For ai and bi as in (2.2), defining the n-rectangle, set
a = (a1, . . . , an) and

dx = (dx1, . . . , dxn) = (b1 − a1, . . . , bn − an).
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Algorithm 1: findSimplex(point p, binary tree binaryTree)

Input: point p, binary tree binaryTree

Output: n-simplex T or 0 (no n-simplex)

if no subtrees then /* at a leaf */

forall T ∈ Sl do /* linear search */

if inSimplex(T, p) then /* see Algorithm 4 or 5 */
return T

return 0 /* no n-simplex was found */

else /* choose a subtree */

if
∑n

i Aipi + An+1 < 0 then
return findSimplex(p, negSubtree)

else
return findSimplex(p, posSubtree)

Find the largest side of R, and set i = argmaxi=1,...,n(dxi) and let π denote
the hyperplane with Ai = 1 and An+1 = −ai − dxi/2 (Aj = 0 for j 6= i

and j < n + 1). Partition R along the hyper plane π into to n-rectangles
R− and R+. Sort the n-simplices T ∈ S, where we recall that S is the
set of all n-simplices in the triangulation, now also contained in R. Add
T to S− if T ∩ R− 6= ∅ and add T to S+ if T ∩ R+ 6= ∅. Repeat this
procedure recursively for the pairs (R−, S−) and (R+, S+) until card (S) <

2 or card (S) = card (S−) or card (S) = card (S+). We summarize this
procedure in Algorithm 2.

The height of the tree is ∼ log N and each recursive step in the pre-
processing requires sorting ∼ N n-simplices. Hence, the preprocessing
time for the binary tree is O(N log N).

The search time will require O(log N) operations, but the query constant
will be rather large since at the leafs a linear search is preformed. The
number of simplices in Sl will be roughly bounded by the number of n-
simplices neighboring a node in the triangulation, in practice this is ∼ 10
for n = 2 and ∼ 40 for n = 3. This will slow down the search and due to
this Algorithm 2 is not a good choice in practice.

3.2. Partitioning along (n − 1)-faces. Recall that S is the set of all
n-simplices in T and that Nn−1 is the number of (n − 1)-faces in the
triangulation. Let πi for i = 1, . . . , Nn−1 be the hyperplanes defined by the
(n− 1)-faces in the triangulation. Denote the halfspaces on opposite sides
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Algorithm 2: binaryTreeRectangular(S, a, dx)

Input: a set S of n-simplices, a and dx defining an n-rectangle R

Output: binary tree data structure
Data: the binaryTreeRectangular contain numbers Ai for

i = 1, . . . , n + 1 representing the hyperplane π, subtrees
negSubtree and posSubtree, and a set Sl of n-simplices.

Ai = 0 for i = 1, . . . , n + 1 /* initialization */

if card (S) < 2 then /* if leaf */
Sl = S

return this binaryTreeRectangular

else
i = argmaxi=1,...,n(dxi)
dxi = dxi/2
Ai = 1
An+1 = −ai − dxi

forall T ∈ S do /* sort simplices */

if
∑n

i=1 Aiaj + An+1 < 0 for one vertex aj ∈ T then
add T to S−

if
∑n

i=1 Aiaj + An+1 > 0 for one vertex aj ∈ T then
add T to S+

if card (S) > card (S−) and card (S) > card (S+) then /* new

subtrees */
negSubtree = binaryTreeRectangular(S−, a, dx)
ai = ai + dxi

posSubtree = binaryTreeRectangular(S+, a, dx)
else /* leaf */

Sl = S

return this binaryTreeRectangular

of πi by Rn
i,− and Rn

i,+. Now sort the simplices T ∈ S and add T to Si,−

if T ∩ Rn
i,− 6= ∅ and add T to Si,+ if T ∩ Rn

i,+ 6= ∅. Choose one of these
hyperplanes π = πi such that

i = argmaxi=1,...,Nn−1

{
card (Si,−)/card (Si,+) if card (Si,−) < card (Si,+),

card (Si,+)/card (Si,−) otherwise,

and set S− = Si,− and S+ = Si,+. Repeat the procedure recursively for S−

and S+ until card (S) < 2 or card (S) = card (S−) or card (S) = card (S+).
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This procedure creates a binary tree and we summarize it in Algorithm 3.

The height of the tree is ∼ log N and each recursive step in the pre-
processing requires sorting ∼ N

2
n-simplices. Hence, the preprocessing

time for the binary tree is O(N2 log N), which is far from optimal.
The search time will require O(log N) operations and the query constant

will be rather good. Also, in this situation, a linear search is performed
at the leafs. However, in this case the number of simplices in Sl will be
small, mostly 1 and with small and rare variations. We have not made any
attempts to give a rigorous upper bound for the number of simplices in Sl.

Due to the scaling of the preprocessing time this algorithm is not a good
choice in practice, at least not for large triangulations.

3.3. binaryTreeRectangular and binaryTreeFace combined. We no-
tice that the deficiencies in Algorithms 2 and 3 are complementary, small
preprocessing time and large search time for Algorithm 2 but large pre-
processing time and small search time for Algorithm 3. In other words it
seems desirable to combine the algorithms in such way that only the favor-
able characteristics of the algorithms remain and cancel the deficiencies.
The idea is to let Algorithm 3 continue where Algorithm 2 is terminated.
We input S = Sl from Algorithm 2 into Algorithm 3 and let it refine the
tree further. In this way we will gain a binary tree with good query con-
stant since the card(Sl) after Algorithm 3 has terminated will be small,
and since Algorithm 3 is only applied on small sets S from Algorithm 2 it
will not have major impact on the total preprocessing time.

If we assume that there are ∼ N different leaves in the tree after Al-
gorithm 2 has terminated and that each such leaf holds M n-simplices
then the total preprocessing time will be the preprocessing time for Al-
gorithm 2 plus the preprocessing time for Algorithm 3 applied on N sets
each holding M n-simplices, that is, the total preprocessing time will scale
like O(N log N + NM

2 log M) which is close to O(N log N) for small M

and large N .
Note that we may also try to apply Algorithm 3 on a smaller set Ss ⊂ S

(S outputted from Algorithm 2), chosen by some means, which will im-
prove the preprocessing time at the expense of the search time. For exam-
ple we may take Ss to be the n-simplex whose barycenter is closest to the
center of mass of all barycenters of all n-simplices in S. Then card (Ss) = 1
and the total complexity will be O(N log N). This will alter card (Sl) at the
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final leafs, when Algorithm 3 has terminated, and card (Sl) will be larger
but still relatively small when compared to binaryTreeRectangular.

4. Numerical examples

We now consider two triangulations, one in R2, Figure 4.1, and the other
in R3, Figure 4.2. We build the search structure proposed in Section 3.3
and measure: the preprocessing time and the average search time for 106

randomly chosen query points as function of number of nodes N in the
triangulations as we perform 4 and 3 uniform refinements in the R2 and
R3 triangulations, respectively.

The preprocessing time is normalized with the preprocessing time for
the triangulations at start and the search time is normalized with the time
it takes evaluating the barycentric coordinates for one n-simplex, see the
Appendix where we account for the implementation used. The motivation
for the normalization of the search time is to find a time scale appropri-
ate for finite element applications. For example, it is often necessary to
evaluate the barycentric coordinates when post-processing finite element
data.

In Figures 4.3 and 4.4 we visualize the search process in the two dimen-
sional triangulation. We search for a query point contained in the shaded
triangle in Figure 4.3 and marked with the bullet • in Figure 4.4. We also
plot the the hyperplanes π (lines) used to partition the triangles in the
triangulation. After 12 levels in the binary tree the triangle containing the
query point could be identified. There are 9 layers from Algorithm 2 and
3 layers from Algorithm 3.

Finally we plot the results from the measurements in Figures 4.5 and
4.6, where we also make a least square data fit to the appropriate scaling,
O(N log N) for the preprocessing time and O(log N) for the search.
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Figure 4.1: A two-dimensional triangulation with 940 nodes and 1572 trian-
gles.

Figure 4.2: A three-dimensional triangulation with 578 nodes and 1567 tetra-
hedra.
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Algorithm 3: binaryTreeFace(S)

Input: a set S of n-simplices
Output: binary tree data structure
Data: the binaryTreeFace contain numbers Ai for i = 1, . . . , n + 1

representing the hyperplane π, subtrees negSubtree and
posSubtree, and a set Sl of n-simplices.

Ai = 0 for i = 1, . . . , n + 1 /* initialize */

if card (S) < 2 then /* if leaf */
Sl = S

return this binaryTreeFace

else

r = 0.0 /* parameter do decide the best partition */

/* Let πi with scalars Bi be the hyper planes defined

by the Nn−1 (n − 1)-faces in S. */

forall πi do

forall T ∈ S do /* sort simplices */

if
∑n

i=1 Biaj + Bn+1 < 0 for one vertex aj ∈ T then
add T to Si,−

if
∑n

i=1 Biaj + Bn+1 > 0 for one vertex aj ∈ T then
add T to Si,+

if card (Si,−) ≤ card (Si,+) and r < card (Si,−)/card (Si,+) then
r = card (Si,−)/card (Si,+)
S− = Si,− and S+ = Si,+

Ai = Bi for i = 1, . . . , n + 1
else if card (Si,+) < card (Si,−) and r < card (Si,+)/card (Si,−)
then

r = card (Si,+)/card (Si,−)
S− = Si,− and S+ = Si,+

Ai = Bi for i = 1, . . . , n + 1
if card (S) > card (S−) and card (S) > card (S+) then /* new

subtrees */
negSubtree = binaryTreeFace(S−)
posSubtree = binaryTreeFace(S+)

else /* leaf */
Sl = S

return this binaryTreeFace
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Figure 4.3: Search process using the binary tree with Algorithm 2. We are
searching for a query point contained in the shaded triangle in the rear leg of the
tiger. The horizontal and vertical lines are the hyperplanes π used to partition
the triangles in the triangulation.

Figure 4.4: The query point is marked with the bullet •. (left) Search in
the tree with Algorithm 2, zoom in. The set of shaded triangles is the set Sl in
the leaf from Algorithm 2. (right) Search in the tree with Algorithm 3. The
algorithm terminates with one triangle in the final leaf.
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Figure 4.5: (Two-dimensional triangulation) Data from applying the algo-
rithm in Section 3.3 to the triangulation in Figure 4.1. The dashed lines are
least square fits. (left) Average search time for 106 randomly chosen query
points. The time is normalized with the time to evaluate the barycentric co-
ordinates for one triangle, which is a characteristic time scale in finite element
post-processing. (right) Preprocessing time normalized with the preprocessing
time of the triangulation at start.
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Figure 4.6: (Three-dimensional triangulation) Data from applying the algo-
rithm in Section 3.3 to the triangulation in Figure 4.2. The dashed lines are
least square fits. (left) Average search time for 106 randomly chosen query
points. The time is normalized with the time to evaluate the barycentric coor-
dinates for one tetrahedron, which is a characteristic time scale in finite element
post-processing. (right) Preprocessing time normalized with the preprocessing
time of the triangulation at start.
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Appendix A. Various simple algorithms for n-simplices

In this appendix we give account for various simple algorithms or mere
implementations of mathematical notions that we have used throughout
this work on n-simplices with vertices in ai = (xi, yi) for i = 1, . . . , 3
(triangles) or ai = (xi, yi, zi) for i = 1, . . . , 4 (tetrahedra) as in Figure A.1.
We represents barycentric coordinates λ with the (n+1)×(n+1) matrices
M. For x ∈ Rn we then get the barycentric coordinate as λ = Mx.

a1

a2

a3

a1

a2

a3

a4

Figure A.1: n-simplices. (left) A triangle with vertices a1, a2 and a3. (right)
A tetrahedron with vertices a1, a2, a3 and a4.

A.1. Triangles, n = 2.

A.1.1. Volume. We compute the signed volume as the vector product
V (a1, a2, a3) = ((a2 − a1) × (a3 − a1))/2 which in terms of the vertices
is

V (a1, a2, a3) =
1

2

(
(x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1)

)
,

and the volume is |V (a1, a2, a3)|.

A.1.2. Barycentric coordinates. The matrix M is the inverse to



x1 x2 x3

y1 y2 y3

1 1 1


 ,
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cf. [1], and we get

M = V (T )−1




y2 − y3 x3 − x2 x2y3 − x3y2

y3 − y1 x1 − x3 x3y1 − x1y3

y1 − y2 x2 − x1 x1y2 − x2y1


 ,

A.1.3. Point in a triangle. In order to test whether a point p is contained
in a triangle T we test if p and a3 are on the same side of the line trough
a1 and a2, and likewise for the other two vertices, cf. [6, Code 1.6, p. 29].

Algorithm 4: inTriangle(T, p)

Input: triangle T , point p

Output: true (p ∈ T ) or false (p 6∈ T )

v = V (a1, a2, a3)
if v ∗ V (a1, a2, p) < 0.0 then

return false

if v ∗ V (a3, a1, p) < 0.0 then
return false

if v ∗ V (a2, a3, p) < 0.0 then
return false

return true

A.2. Tetrahedra, n = 3.

A.2.1. Volume. We compute the signed volume as the vector triple product
V (a1, a2, a3, a4) = (a2 −a1) · ((a3 −a1)× (a4 −a1))/6 which in terms of the
vertices is

V (a1, a2, a3, a4) =
1

6

(
− (x4 − x1)(y3 − y1)(z2 − z1)

+ (x3 − x1)(y4 − y1)(z2 − z1)

+ (x4 − x1)(y2 − y1)(z3 − z1)

− (x2 − x1)(y4 − y1)(z3 − z1)

− (x3 − x1)(y2 − y1)(z4 − z1)

+ (x2 − x1)(y3 − y1)(z4 − z1)
)
,

and the volume is |V (a1, a2, a3, a4)|.
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A.2.2. Barycentric coordinates. The matrix M is the inverse to



x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

1 1 1 1


 ,

cf. [1], and we get

M = V (T )−1




| | | |

M1 M2 M3 M4

| | | |


 ,

where

M1 =




y4(z3 − z2) + y3(z2 − z4) + y2(z4 − z3)
y4(z1 − z3) + y1(z3 − z4) + y3(z4 − z1)
y4(z2 − z1) + y2(z1 − z4) + y1(z4 − z2)
y3(z1 − z2) + y1(z2 − z3) + y2(z3 − z1)


 ,

M2 =




x4(z2 − z3) + x2(z3 − z4) + x3(z4 − z2)
x4(z3 − z1) + x3(z1 − z4) + x1(z4 − z3)
x4(z1 − z2) + x1(z2 − z4) + x2(z4 − z1)
x3(z2 − z1) + x2(z1 − z3) + x1(z3 − z2)


 ,

M3 =




x4(y3 − y2) + x3(y2 − y4) + x2(y4 − y3)
x4(y1 − y3) + x1(y3 − y4) + x3(y4 − y1)
x4(y2 − y1) + x2(y1 − y4) + x1(y4 − y2)
x3(y1 − y2) + x1(y2 − y3) + x2(y3 − y1)


 ,

M4 =




x4(y2z3 − y3z2) + x3(y4z2 − y2z4) + x2(y3z4 − y4z3)
x4(y3z1 − y1z3) + x3(y1z4 − y4z1) + x1(y4z3 − y3z4)
x4(y1z2 − y2z1) + x2(y4z1 − y1z4) + x1(y2z4 − y4z2)
x3(y2z1 − y1z2) + x2(y1z3 − y3z1) + x1(y3z2 − y2z3)


 ,

A.2.3. Point in a tetrahedron. In order to test whether a point p is con-
tained in a tetrahedron T we test if p and a4 are on the same side of the
plane trough a1, a2 and a3, and likewise for the other three vertices, cf. [6,
Code 1.6, p. 29].
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Algorithm 5: inTetrahedron(T, p)

Input: tetrahedron T , point p

Output: true (p ∈ T ) or false (p 6∈ T )

v = V (a1, a2, a3, a4)
if v ∗ V (a1, a2, a3, p) < 0.0 then

return false

if v ∗ V (a1, a4, a2, p) < 0.0 then
return false

if v ∗ V (a1, a3, a4, p) < 0.0 then
return false

if v ∗ V (a2, a4, a3, p) < 0.0 then
return false

return true
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MULTIGRID FOR QUADRATIC FINITE ELEMENTS

ERIK D. SVENSSON

Abstract. We investigate the convergence rate of the finite element
multigrid method applied on quadratic finite element approximations
for problems with full and less than full regularity.

1. Introduction

The finite element multigrid method solves linear systems of equations
arising from finite element approximations to linear elliptic partial differ-
ential equations with a number of operations proportional to the number
of unknowns. We say that the multigrid method has optimal complexity or
scales optimally. The method is founded on solid theoretical results which
are reviewed in for example [7, 13, 21]. However, it is important to note
that this rather general statement is really limited to linear finite element
approximations. For higher degree finite element approximations the con-
vergence rate of the multigrid method may deteriorate see, for example,
[16] and for the similar problem for the algebraic multigrid method [14].

On the other hand, for sufficiently smooth problems and for finite el-
ement approximations of degree q > 1 we may achieve O(hq+1) conver-
gence in the error u− uh, measured in some suitable norm, where h is the
mesh size and, u and uh are the exact and the finite element solutions,
respectively. This is appealing and motivate us to study multigrid solvers
for higher degree approximations. Moreover, there are situations that for
other reasons require higher degree approximations, for example, solving
saddle point problems such as the Stokes equations using the Hood-Taylor
finite elements.

In this work we demonstrate that the multigrid method in practice also
works well for quadratic finite element approximations of problems with
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Key words and phrases. multigrid, finite elements.
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2 ERIK D. SVENSSON

both full regularity and less than full regularity. We compare two differ-
ent finite element approximations, the Lagrange approximation and the
quadratic hierarchical approximation studied in [2], originally suggested in
[3]. We use the general theory outlined in [7] to indicate how the point
Gauss-Seidel smoother deteriorates as a function of the dimension n of the
problem and the degree q of the approximation.

We found only a few references in the literature on multigrid methods
for higher degree finite elements. For example in the monograph [7] a gen-
eral theory is presented although only linear finite elements are considered
explicitly.

1.1. Preliminaries. We assume the underlying problem is a second order
linear elliptic equation on a polyhedral domain Ω ⊂ Rn for n = 2, 3. Let
a(·, ·) : V × V → R be a continuous symmetric V -elliptic bilinear form,
and let f(·) : V → R be a continuous linear form. We pose the problem
in general form and consider the variational formulation

(1.1) u ∈ V : a(u, v) = f(v) ∀v ∈ V,

where we assume that V ⊂ H
1(Ω) is a Hilbert space such that (1.1) is

well-posed.
For any measurable set ω ⊆ Rn, n = 2, 3, let |ω| denoted its measure.

We will use standard notation for the Lebesgue and Sobolev spaces with
corresponding norms

‖·‖L2(ω) = ‖·‖0,ω and ‖·‖Hs(ω) = ‖·‖s,ω,

and when ω = Ω, and it is clear from the context, we will simplify the
notation and write

‖·‖0,Ω = ‖·‖0 and ‖·‖s,Ω = ‖·‖s,

and likewise for the L
2(ω) scalar product

(u, v)ω =

∫

ω

uv dx,

see, for example, [1] for more details.
We also use the norm defined by

|||v||| = a(v, v)1/2 ∀v ∈ V.

For vectors ṽ = (ṽ1, . . . , ṽN) ∈ RN we will use the Euclidean norm
denoted by ‖ṽ‖ = (ṽ2

1 + ṽ
2
2 + . . . + ṽ

2
N)1/2.
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Finally, throughout this work we will use C and ci to denote various
constants, not necessarily taking the same values from time to time.

1.2. Finite elements. We will use the notion finite element to denote the
triplets (T,P ,N ) where T ⊂ Ω is a non-empty Lipschitz continuous set, P
is a finite dimensional space of functions on T and N = {N1, N2, . . . , Nmq

}

is a basis for P ′, the set of nodal variables [8, 9].
As for T we only consider n-simplices with vertices ai ∈ Rn for i =

1, . . . , n + 1 and n = 2, 3 as in Figure 1.1 and 1.2a. We set hT = diam(T ).
Let Pq to denote the space of polynomials of degree ≤ q and note that

(1.2) dimPq =

(
n + q

q

)
= card(N ) = mq,

where we use the cardinal number to count the number of elements in a
set.

Let Lq(T ) denote the principal lattice of order q on T with mq lattice
points [9, Theorem 6.1, p. 70], that is,

Lq(T ) =
{

x =
n+1∑

i=1

ξiai :
n+1∑

i=1

ξi = 1, ξi ∈
{

0,
1

q

, . . . ,

q − 1

q

, 1
}}

For example, L1(T ) = {ai}
n+1
i=1 is the set of vertices of the n-simplex T ,

and L2(T ) = {ai}
n+1
i=1 ∪ {aij = (ai + aj)/2 : 1 ≤ i < j ≤ n + 1}, see Figures

1.1 and 1.2a.
We use the common practice and refer to points in Lq(T ) as local nodes.
In order to express Pq we use barycentric coordinates on T , that is,

the functions λi ∈ P1 such that λi(aj) = δij for aj ∈ L1(T ) and i, j =
1, . . . , n + 1, see, for example [11].

Given a basis {N1, N2, . . . , Nmq
} to P ′

q we choose a basis {ϕ1, ϕ2, . . . , ϕmq
}

to Pq so that Ni(ϕj) = δij for i, j = 1, . . . ,mq.

Let (T̂ , P̂ , N̂ ) denote the reference finite element where T̂ is either the
triangle with vertices in (0, 0), (1, 0), (0, 1) or the tetrahedron with vertices
in (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1). We will assume that all finite elements
(T,P ,N ) are equivalent to the reference finite element. Thus, there is an
invertible affine mapping

(1.3) F : Rn ∋ x 7−→ F (x) = Bx + b ∈ Rn

such that F (T̂ ) = T , F
∗P̂ = P and F∗N̂ = N where F

∗ and F∗ denote
the pull-back and push-forward operators, see [8].
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1.2.1. Lagrange finite elements. We recall the definition of the standard
Lagrange finite element which determines a finite element space of con-
tinuous piecewise polynomials of degree q ≥ 1. In terms of the triplet
(T,P ,N ), P = Pq with basis functions ϕi ∈ Pq for i = 1, . . . ,mq such
that ϕi(xj) = δij and the nodal variables are defined by Nj(v) = v(xj) for
xj ∈ Lq(T ) and v ∈ C

0. For example: if q = 1, ϕi = λi, and if q = 2,
ϕi = λi(2λi − 1) for i = 1, . . . , n+1, and ϕij = 4λiλj for 1 ≤ i < j ≤ n+1
denoting the last n + 2, . . . ,m2 basis functions.

1.2.2. Higher degree hierarchical finite elements. We consider the higher
degree hierarchical finite element which determines a finite element spaces
of continuous piecewise polynomials of degree q ≥ 2 as outlined in [2]. In
terms of the triplet (T,P ,N ), P = P1⊕Bq where Bq is the space of polyno-
mials of degree > 1 and ≤ q, that is, excluding the linear polynomials. For
example: if q = 2, we choose ϕi = λi for i = 1, . . . , n + 1, and ϕij = 4λiλj

for 1 ≤ i < j ≤ n + 1 denoting the last n + 2, . . . ,mq basis functions, and
the nodal variables are defined by Ni(v) = v(ai) for i = 1, . . . , n + 1, and

Nij(v) = v(aij) −
1

2
(v(ai) + v(aj)) for 1 ≤ i < j ≤ n + 1.

1.3. The finite element multigrid method. We use the notation and
framework presented in [7]. Let T1 be a triangulation and define Tk for
k = 2, . . . , K recursively by subdividing all n-simplices in Tk−1. Trian-
gles are subdivided into four congruent sub-triangles connecting the edge
midpoints as in Figure 1.1. Tetrahedra are subdivided into eight sub-
tetrahedra by the regular refinement algorithm proposed in [5] and as
depicted in Figure 1.2. We remark that the all sub-tetrahedra are not
congruent but on repeating the process the sub-tetrahedra will remain
shape-regular [5]. Hence the family of triangulations {Tk}

K
k=1 will be quasi-

uniform.
Set h1 = maxT∈T1

hT . It follows that hk = 2−k+1
h1 for k = 1, . . . , K,

and for convenience we set h = hK , and recall that the family {Tk} is
quasi-uniform [9] if there is a constant β > 0 such that

(1.4)
h

hT

≤ β ∀T ∈
⋃

k

Tk,
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and if there is a constant γ > 0 such that

(1.5)
hT

ρT

≤ γ ∀T ∈
⋃

k

Tk,

where ρT = sup{diam(S) : S is a ball contained in T}. A family of trian-
gulations satisfying (1.5) is said to be regular.

a1

a2

a3

a12

a13

a23

Figure 1.1: Regular triangle refinement. Original and refined triangles.

(a)

(b)

a1

a2

a3

a4

a12

a13

a14

a23

a24

a34

Figure 1.2: Regular tetrahedron refinement due to [5]. (a) Original and
refined tetrahedron. (b) The interior octahedron is divided in one out of three
ways as specified in [5].
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In the usual way we define the piecewise continuous finite element spaces
Vk on Ω by the finite elements (T,PT ,NT )T∈Tk

with local basis functions
{ϕ1,T , . . . , ϕmq ,T} and node variables NT = {N1,T , N2,T , . . . , Nmq ,T}.

Let {φ1, . . . , φMk
} be a basis for Vk with

(1.6) dim Vk := Mk = card {Lq(T ) : T ∈ Tk},

so that φi has support in Si for i = 1, . . . ,Mk and where

(1.7) Si :=
⋃

{T ∈ Tk : xi ∈ T},

for the global nodes {xi}
Mk

i=1 = {Lq(T ) : T ∈ Tk}.
For T ∈ Tk let IT be an index set of the local nodes in the finite ele-

ment (T,PT ,NT ), for example, IT = {1, 2, 3, 12, 13, 23} for the quadratic
Lagrange finite element in two dimensions. Let ij : IT → {1, . . . ,Mk} be
the injective map that maps the local index j to the corresponding global
index ij. We express the global basis functions in terms of the local finite
element base functions. For i = 1, . . . ,Mk and with j so that ij = i

(1.8) φi

∣∣
T
=

{
ϕj,T if T ∈ Si,

0 if T /∈ Si.

Hence Vk ∋ v =
∑Mk

i=1 ṽiφi, where (ṽ1, . . . , ṽMk
) = ṽ ∈ RMk is the coordi-

nate vector with respect to the basis {φ1, . . . , φMk
}.

Now {Vk}
K
k=1 is a nested sequence of finite element spaces, that is,

V1 ⊂ V2 ⊂ · · · ⊂ VK ⊂ V.

From equation (1.1) we obtain the finite element equations on the K:th
level

(1.9) u ∈ VK : a(u, v) = (f, v) ∀v ∈ VK ,

where we assume that f ∈ VK is a finite element approximation to the
linear form f(·) in equation (1.1).

In order to describe the multigrid method we will need the following
auxiliary operators. For k = 1, . . . , K let Ak : Vk → Vk be defined by

(Akv, φ) = a(v, φ) ∀φ ∈ Vk,

and the projectors Pk−1 : Vk → Vk−1 and Qk−1 : Vk → Vk−1 defined by

a(Pk−1v, φ) = a(v, φ) ∀φ ∈ Vk−1,
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and
(Qk−1v, φ) = (v, φ) ∀φ ∈ Vk−1.

We will also need a generic smoother Rk : Vk → Vk for k = 1, . . . , K and
denote by R

t
k the adjoint of Rk with respect to (·, ·).

By the coercivity of a(·, ·) and the inverse inequality we obtain lower
and upper bounds to the eigenvalues of Ak,

(1.10) c1‖v‖
2
0 ≤ (Akv, v) = a(v, v) ≤ c2h

−2
k ‖v‖2

0 ∀v ∈ Vk,

that is, the largest eigenvalue λk of Ak is bounded by c2h
−2
k .

We consider the V-cycle multigrid algorithm. Given initial data u
0 ∈ VK

the algorithm generates a sequence that approximates u, the solution to
(1.9), by

(1.11) u
m+1 = MgK(um

, f) m = 0, 1, . . . ,

where MgK(·, ·) : VK × VK → VK is defined by the following algorithm [7].

Algorithm 1: Mgk(v, f)

Input: multigrid level k, initial value v = u
0 as in (1.11) and right

hand side f .
Output: u

1 in (1.11).

if k = 1 then

return A
−1
0 f /* exact solution */

else

v
′ = v + R

t
ℓ(f − Akv) /* presmoothing */

v
′′ = v

′ + Mgk−1(0, Qk−1(f − Akv
′)) /* error correction */

return v
′′ + Rk(f − Akv

′′) /* postsmoothing */

If there exists ω > 0 independent of K such that

(1.12) ωλ
−1
k ‖v‖2

0 ≤ (Rkv, v) ∀ v ∈ Vk, k = 1, . . . , K,

where Rk = Rk + R
t
k −R

t
kAkRk is the symmetrized smoother, and if there

is a constant CP independent of K, such that

(1.13) ‖(I − Pk−1)v‖
2
0 ≤ CP λ

−1
k (Akv, v) ∀ v ∈ Vk, k = 1, . . . , K,

then Algorithm 1 converges [6, 7] in the following way

(1.14) |||u − u
m||| ≤

(
CP

CP + ω

)m

|||u − u
0|||.
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We note that the convergence deteriorates when ω ↓ 0, and in order to
achieve good convergence rates it will be fundamental to understand the
properties of the smoother and try to make ω as large as possible. Below we
will estimate ω for n = 2, 3, and q = 1, 2, and for different finite elements.
This estimate qualitatively explains the poor performance of Algorithm 1
applied to finite element equations based on higher degree basis functions.

We now consider the case when Rk is the point Gauss-Seidel smoother.
Decompose the space Vk into subspaces V

i
k spanned by the basis functions

φi, for i = 1, . . . ,Mk, that is,

(1.15) Vk = V
1
k ⊕ · · · ⊕ V

Mk

k .

Let κ be the interaction matrix reflecting the coupling between the sub-
spaces V

i
k and defined by

κij =

{
0 if (Akvi, vj) = 0,

1 otherwise,
for vi ∈ V

i
k and vj ∈ V

j
k .

If there is a positive number C1, independent of k, such that

(1.16) ‖κ‖2 ≤ ‖κ‖∞ ≤ C1,

where ‖·‖ denotes the appropriate matrix norm, and if there is a positive
constant C2, independent of k, such that

(1.17)

Mk∑

i=1

‖vi‖
2
0 ≤ C2‖v‖

2
0 for v ∈ Vk and vi ∈ V

i
k ,

then (1.12) holds with

(1.18) ω = (C2C
2
1)−1

,

see [7, Theorem 82, p. 277 ] for a more general statement.

1.3.1. Estimating C1. We note that C1 is the maximal number of indices
j such that (Akvi, vj) 6= 0 for i, j = 1, . . . ,Mq. It is bounded by

(1.19) C1 ≤ max
1≤i≤Mk

card {Lq(T ) : T ∈ Si},

where we used the notation in (1.6) and (1.7). The number of global nodes
in Si and hence C1 will differ quit significantly as n and q varies, see Figure
1.3.
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Figure 1.3: Examples of Si from the triangulations depicted in Figure 2.1.
(left) For n = 2 there are 5 triangles, 6 nodes and 10 edges. (right) For n = 3
there are 24 tetrahedra, 15 nodes and 50 edges.

1.3.2. Estimating C2. Since Vk is finite dimensional the norms ‖v‖0 and
‖ṽ‖ are equivalent in Vk. In other words we have the following estimates

(1.20) α1‖v‖
2
0 ≤ ch

n
k‖ṽ‖

2 ≤ α2‖v‖
2
0 ∀v ∈ Vk,

for some constants c, α1 and α2 that we will estimate below in the case the
family of triangulations {Tk}

K
k=1 is quasi-uniform. With (1.20) we readily

verify (1.17) since

Mk∑

i=1

‖vi‖
2
0 ≤ ch

n
kα

−1
1

Mk∑

i=1

ṽ
2
i ≤

α2

α1

‖v‖2
0,

and thus C2 = α2/α1.
In order to derive (1.20) we first derive a similar, but local, estimate.

For any T ∈ Tk we have v|T =
∑mq

j=1 ṽijϕj,T and since all finite elements
on T ∈ Tk are affine equivalent to the reference finite elements we get, by
a change of variables,

(1.21) ‖v‖2
0,T = (v, v)T = |det B

−1|

mq∑

j,ℓ=1

(ṽij ϕ̂j,T , ṽiℓϕ̂ℓ,T )bT ,
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where |det B
−1| = |T̂ |/|T | and with B as in (1.3).

Let µ and µ denote the smallest and largest eigenvalues to the symmetric
and positive definite matrix

(1.22) [MbT ]jℓ = |T̂ |(ϕ̂j,bT , ϕ̂ℓ, bT )bT for j, ℓ = 1, . . . ,mq,

and estimate (1.21)

|T |µ

mq∑

j=1

ṽ
2
ij
≤

mq∑

j,ℓ=1

(ṽij ϕ̂j,bT , ṽiℓϕ̂ℓ, bT )bT ≤ |T |µ

mq∑

j=1

ṽ
2
ij

∀ṽij ∈ R.

Since the triangulation is quasi-uniform

hk

βγ

≤
hT

γ

≤ ρT ≤ c
−1/n|T |1/n and c

−1/n|T |1/n ≤ hT ≤ hk,

where c
n = π/(2n), we get

(βγ)−n
µ

mq∑

j=1

ṽ
2
ij
≤

mq∑

j,ℓ=1

ch
−n
k (ṽijϕj,T , ṽiℓϕℓ,T )T ≤ µ

mq∑

j=1

ṽ
2
ij

∀ṽij ∈ R

Let σi = card(Si), that is, σi is the number of n-simplices the global
node xi intersect, and set

σ = min
1≤i≤Mk

σi and σ = max
1≤i≤Mk

σi.

Now (1.20) follows from the local estimate above by summing over all
T ∈ Tk and taking into account that one node xi could appear in several
n-simplices which is reflected in the parameter σi. Thus

(βγ)−n
σ µ‖ṽ‖2 ≤ ch

−n
k ‖v‖2

0 ≤ σ µ‖ṽ‖2
,

or

(σ µ)−1‖v‖2
0 ≤ ch

n
k‖ṽ‖

2 ≤ (βγ)n(σ µ)−1‖v‖2
0 ∀v ∈ Vk,

where we now identify the constants in (1.20)

α1 = (σ µ)−1 and α2 = (βγ)n(σ µ)−1
,

and hence

(1.23) C2 = (βγ)n σ µ

σ µ

.

We note the relatively strong dependence of C2 on β and γ. This implies
that the point Gauss-Seidel smoother will deteriorate: (1) if the family of
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triangulations {Tk}
K
k=1 is not quasi-uniform, β increases with k, for exam-

ple, when Tk is adaptively refined, or (2) if the {Tk}
K
k=1 is not regular, γ

increases with k, for example, if the refinement algorithm does not preserve
the shape-regularity (1.5).

2. Numerical experiments

In matrix form (1.9) becomes

Aũ = F ,

where A denote the matrix [A]ij = (AKφi, φj) for i = 1, . . . ,Mq and ũ ∈

RMq denote the coordinate vector with respect to the finite element basis
and F = (F1, . . . ,FMq

) where Fi = (f, φi). We solve this linear system
using the V-cycle Algorithm 1 with ũ

0 = 0 and iterate m = 1, 2, . . . until
the relative residual

Res :=
‖F −Aũ

m‖

‖F‖

is less than a specified tolerance ’Tol’. In this work we use the Tol = 10−6.
Note that the relative tolerance times a constant is always greater than
‖u − u

m‖1,Ω where u is the finite element solution we are approximating,
cf. [11, Proposition 9.19, p. 393].

By the work we mean the number of arithmetic operations required for
Algorithm 1 to converge or equally we measure the ’Time’ for the algorithm
to converge.

In order to examine the optimality of the algorithm we measure the
’Time’ for different number of degrees of freedom, ’Dof’, and solve the
least square problem

Time = a(Dof)b

for the parameters a, b.
Below we exhibit three different numerical experiments that will elu-

cidate the theory outline in the sections above. We use the point Gauss-
Seidel smoother in all experiments and we vary n = 2, 3 and q = 1, 2 for the
Lagrange finite element. For q = 2 also we compare with the hierarchical
finite element in Section 1.2.2.

The experiments are:

• In the first experiment we consider triangulations of the n-unit cube
in Figure 2.1 and estimate ω appearing in the convergence estimate
(1.14).
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• In the second experiment we solve the Poisson equation using the
V-cycle multigrid Algorithm 1 and examine the optimality in case
of problems with: (1) full regularity and (2) less than full regularly.

• In the third experiment we use the multigrid solver to precondition
a Stokes solver and examine the optimality of the Stokes solver for
problems with less than full regularity.

2.1. Estimating w for the point Gauss-Seidel smoother. In order
to indicate how ω in (1.14) varies as a function of n = 2, 3 and q = 1, 2
and the type of finite element, Lagrange or hierarchical, we estimate C1

and C2 for triangulations of the n-unit cube in Figure 2.1 and compute ω

from (1.18).

(a)

(b)

Figure 2.1: Triangulations T0 of the n-unit cube. (a) n = 2. (b) n = 3.

We summarize the results in Table 2.1 and give account for the estimates
of C1 and C2 in the subsequent sections.

2.1.1. Estimating C1. We estimate C1 by (1.19) for the triangulations in
Figure 2.1. When q = 1 we count the number of vertices and when q = 2
we count the number of vertices and edges for every Si. We summarize
the results in Table 2.2.

2.1.2. Estimating C2. We estimate C2 by (1.23) for the triangulations in
Figure 2.1. The parameter in (1.23) are computed and the data is gathered
in Tables 2.3 and 2.4 and finally we obtain C2 in Table 2.5.
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Table 2.1: ω in (1.14) computed for the triangulations in Figure 2.1. h

denote hierarchical finite elements and the remaining data are for Lagrange
finite elements.

(n, q) (2, 1) (2, 2) (2, 2h) (3, 1) (3, 2) (3, 2h)

ω
−1 1.0 · 104 3.3 · 105 1.1 · 106 9.0 · 107 1.3 · 1010 4.6 · 1010

Table 2.2: The maximum number of n-simplices, vertices and edges in Si for
i = 1, . . . , Mq with respect to i and C1 for the triangulations in Figure 2.1.

max no. of: n-simplices vertices edges vertices+edges

n = 2 8 8 14 22

n = 3 40 23 82 105

(n, q): (2,1) (2,2) (3,1) (3,2)

C1 8 22 23 105

Table 2.3: Parameters in (1.23) only depending on n and for the triangulations
in Figure 2.1.

β γ σ σ

n = 2 2.0 1.6 2 8

n = 3 4.3 3.5 4 40

3. The Poisson equation

We consider the following Poisson equation with mixed Dirichlet-Neumann
boundary conditions on bounded polyhedral domains Ω ⊂ Rn for n = 2, 3,

−∆u = f in Ω, u = g on ∂ΩD, and ν · ∇u = 0 on ∂ΩN ,

where the boundary is partitioned so that ∂ΩD∪∂ΩN = ∂Ω, g is a constant,
ν is the outward normal to the boundary and we assume f ∈ H

−1(Ω) and
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Table 2.4: Parameters in (1.23) and for the triangulations in Figure 2.1.
h denote hierarchical finite elements and the remaining data are for Lagrange
finite elements.

(n, q) (2, 1) (2, 2) (2, 2h) (3, 1) (3, 2) (3, 2h)

µ 0.083 0.021 0.011 0.050 0.007 0.004

µ 0.333 0.357 0.678 0.250 0.261 0.494

µ/µ 4 17 62 5 36 128

Table 2.5: C2 for the triangulations in Figure 2.1. h denote hierarchical finite
elements and the remaining data are for Lagrange finite elements.

(n, q) (2, 1) (2, 2) (2, 2h) (3, 1) (3, 2) (3, 2h)

C2 164 696 2.5 · 103 1.7 · 105 1.2 · 106 4.2 · 106

thus the problem is a well posed. Let

V = {u ∈ H
1(Ω) : u = 0 on ∂ΩD}.

Now the bilinear and linear forms in Section 1.1 are

a(u, v) =

∫

Ω

∇u · ∇v dx,

and

f(v) =

∫

Ω

fv dx.

With ug ∈ H
1(Ω) denoting the extension of g, the weak formulation to the

above Poisson problem follows as usual and reads, find u ∈ H
1(Ω) such

that

(3.1)
u = ug + φ, φ ∈ V,

a(φ, v) = f(v) − a(ug, v) ∀v ∈ V.

3.0.3. Model problem I —full regularity. In this case we let Ω = [0, 1]n be
the n-unit cube depicted in Figure 2.1. Set f = nπ

2
∏n

i=1 sin(πxi), g = 0
and ∂ΩN = ∅. Since Ω is convex the solution u ∈ H

2(Ω) ∩ H
1
0 (Ω), that is
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full regularity. We note that (1.13) will be satisfied also for higher degree
finite elements which could be inferred from the usual duality argument.

Let w ∈ H
2(Ω) ∩ H

1
0 (Ω) be the solution to the dual problem

w ∈ H
1
0 (Ω) a(w, φ) = (g, φ) ∀φ ∈ H

1
0 (Ω),

where w satisfies the regularity estimate

‖w‖2 ≤ C‖g‖0,

and where we have the error estimate

‖(I − Pk−1)w‖1 ≤ Chk−1‖w‖2

Thus, for v ∈ H
2(Ω) ∩ H

1
0 (Ω) and taking g = (I − Pk−1)v and φ =

(I − Pk−1)v and due to the Galerkin orthogonality and with the above
estimates

‖(I − Pk−1)v‖
2
0 = a(w, (I − Pk−1)v)

= a((I − Pk−1)w, (I − Pk−1)v)

≤ C‖(I − Pk−1)w‖1‖(I − Pk−1)v‖1

≤ Chk−1‖w‖2‖(I − Pk−1)v‖1

≤ Chk−1‖(I − Pk−1)v‖0‖v‖1

and (1.13) follows since hk−1 ≤ Cλ
−1/2
k−1 which follows from (1.10).

We solve the problem for different finite element approximations with
the V-cycle multigrid Algorithm 1 and for K = 6, n = 2 and K = 3,
n = 3. The results from these experiments are summarized in Figure 3.1
and Tables 3.1 and 3.2.

3.0.4. Model problem II —less than full regularity. In this case we let Ω be
the L-shaped domain with one reentrant edge, Ω = {(x, y) ∈ [0, 2]2\[1, 2]×
[0, 1]} for n = 2 and Ω = {(x, y, z) ∈ [0, 2]2× [0, 0.5]\ [1, 2]× [0, 1]× [0, 0.5]}
for n = 3, see Figure 3.2. Let ∂ΩD = ∂ΩD0

∪ ∂ΩD1
where ∂ΩD0

= {(x, y) :
x = 1, y ∈ [1, 2]} and ∂ΩD1

= {(x, y) : x ∈ [0, 1], y = 0} for n = 2 and
∂ΩD0

= {(x, y, z) : x = 2, (y, z) ∈ [1, 2] × [0, 0.5]} and ∂ΩD1
= {(x, y, z) :

(x, z) ∈ [0, 1] × [0, 0.5], y = 0} for n = 3. Set f = 0, g = 0 on ∂ΩD0

and g = 1 on ∂ΩD1
. Since Ω is non-convex we u ∈ H

1+α(Ω) ∩ H
1
0 (Ω)

for 0 < α ≤ 1, that is, less than full regularity. The analysis above will
not immediately apply, however it is possible to generalize the analysis to
include this case [7].
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Figure 3.1: Convergence time ’Time’ for the V-cycle multigrid Algorithm 1
as a function of ’Dof’ and for different finite elements and the triangulations in
Figure 2.1. h denote hierarchical finite elements and the remaining data are for
Lagrange finite elements (a) n = 2 (b) n = 3.

(a) (b)

Figure 3.2: Triangulations T0 of the L-shaped domain. (a) n = 2. (b) n = 3

We solve the problem for different finite element approximations with
the V-cycle multigrid Algorithm 1 and for K = 6, n = 2 and K = 3,
n = 3. The results from these experiments are summarized in Figure 3.3
and Tables 3.1 and 3.2.

3.1. Stokes equations with less than full regularity. Let Ω be a the
polyhedral domains illustrated in Figures 3.4 and 3.5 which we refer to as
the Ridge Domain and the Herringbone Domain, respectively. Consider
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Table 3.1: Convergence data for the V-cycle multigrid algorithm 1 applied to
Model Problem I and II for n = 2 and the finite elements in Section 1.2.

Model problem I, (n, q) = (2, 1)
a = 5.4 · 10−3, b = 0.91

k Dof m Res
1 249 4 3.3 · 10−8

2 945 4 1.0 · 10−7

3 3681 4 1.6 · 10−7

4 14529 4 2.2 · 10−7

5 57729 4 2.5 · 10−7

6 230145 4 2.8 · 10−7

Model problem I, (n, q) = (2, 2)
a = 2.0 · 10−3, b = 1.07

k Dof m Res
1 249 4 2.1 · 10−7

2 945 4 6.6 · 10−7

3 3681 4 9.3 · 10−7

4 14529 5 4.6 · 10−8

5 57729 5 5.0 · 10−8

6 230145 5 5.2 · 10−8

Model problem I, (n, q) = (2, 2h)
a = 2.5 · 10−3, b = 1.03

k Dof m Res
1 249 4 8.0 · 10−8

2 945 4 2.3 · 10−7

3 3681 4 3.0 · 10−7

4 14529 4 3.3 · 10−7

5 57729 4 3.4 · 10−7

6 230145 4 4.4 · 10−7

Model problem II, (n, q) = (2, 1)
a = 2.5 · 10−3, b = 1.03

k Dof m Res
1 817 4 1.4 · 10−8

2 3169 4 1.1 · 10−7

3 12481 4 4.0 · 10−7

4 49534 4 9.5 · 10−7

5 197377 5 4.6 · 10−8

6 787969 5 8.5 · 10−8

Model problem II, (n, q) = (2, 2)
a = 3.0 · 10−3, b = 0.99

k Dof m Res
1 817 4 3.1 · 10−7

2 3669 5 4.8 · 10−8

3 12481 5 1.3 · 10−7

4 49534 5 2.5 · 10−7

5 197377 5 4.3 · 10−7

6 787969 5 6.6 · 10−7

Model problem II, (n, q) = (2, 2h)
a = 1.2 · 10−3, b = 1.06

k Dof m Res
1 817 4 4.4 · 10−7

2 3169 5 2.8 · 10−8

3 12481 5 4.0 · 10−8

4 49534 5 5.7 · 10−8

5 197377 5 7.8 · 10−8

6 787969 5 1.1 · 10−7
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Figure 3.3: Convergence time ’Time’ for the V-cycle multigrid Algorithm 1
as a function of ’Dof’ and for different finite elements and the triangulations in
Figure 3.2. h denote hierarchical finite elements and the remaining data are for
Lagrange finite elements (a) n = 2 (b) n = 3..

the periodic Stokes problem in dimensionless form

(3.2)

−∆u + ∇p = 0 in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω \ (ΓA ∪ ΓB),

u|ΓA
= u|ΓB

,

p|ΓA
= p|ΓB

+ R,

where u is the unknown velocity field, p is the unknown pressure and R is
a constant modelling the pressure drop. We note the this model is inspired
by [22] where fluid mixing in micro channels was studied experimentally.

Let

V = {u ∈ H
1(Ω)3 : u = 0 on ∂Ω \ (ΓA ∪ ΓB) and u|ΓA

= u|ΓB
}.

and W = L
2(Ω)/R.

Then following the standard procedure, see for example [12, 18], we
obtain the weak formulation. Find (u, p) ∈ V × W such that

(3.3) a(u, φ) + b(φ, p) − b(u, λ) = Rl(v) ∀ (φ, λ) ∈ V × W,
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Table 3.2: Convergence data for the V-cycle multigrid algorithm 1 applied to
Model Problem I and II for n = 3 and the finite elements in Section 1.2.

Model problem I, (n, q) = (3, 1)
a = 7.1 · 10−5, b = 1.07

k Dof m Res
1 7377 4 2.1 · 10−7

2 50713 5 2.1 · 10−7

3 432961 6 7.8 · 10−7

Model problem I, (n, q) = (3, 2)
a = 9.4 · 10−5, b = 1.13

k Dof m Res
1 7377 4 5.0 · 10−8

2 50713 5 2.1 · 10−7

3 432961 7 3.6 · 10−7

Model problem I, (n, q) = (3, 2h)
a = 3.0 · 10−4, b = 1.04

k Dof m Res
1 7377 6 4.5 · 10−7

2 50713 6 9.3 · 10−7

3 432961 7 8.7 · 10−7

Model problem II, (n, q) = (3, 1)
a = 1.4 · 10−4, b = 1.0

k Dof m Res
1 7005 4 1.2 · 10−7

2 50713 5 9.6 · 10−8

3 393617 6 1.3 · 10−7

Model problem II, (n, q) = (3, 2)
a = 4.5 · 10−4, b = 0.96

k Dof m Res
1 7005 4 1.9 · 10−7

2 51433 5 8.0 · 10−8

3 393617 5 4.4 · 10−7

Model problem II, (n, q) = (3, 2h)
a = 2.8 · 10−4, b = 1.04

k Dof m Res
1 7005 6 5.0 · 10−7

2 51433 7 2.9 · 10−7

3 393617 7 2.6 · 10−7

where

a(u, φ) =

∫

Ω

n∑

i,j=1

∂ui

∂xj

∂φi

∂xj

dx,

b(φ, p) = −

∫

Ω

(∇ · φ)p dx,

l(v) =

∫

ΓA

v · ν dS.
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Figure 3.4: Three juxtaposed Ridge Domains. The shaded planes ΓA and
ΓB are periodic boundaries. We choose the following values for the parameters:
ℓ = w = 1, h = 0.3, θ = 45◦, α = 2/3, β = 0.5, and the length of the unit cell is
= 1.
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Figure 3.5: Three juxtaposed Herringbone Domains. The shaded planes
ΓA and ΓB are periodic boundaries. We choose the following values for the
parameters: ℓ = 2/3, w = 1, h = 1/5, θ = 45◦, α = 2/3, β = 9/16, p = 2/3, and
the length of the unit cell is = 14/9.

We discretize (3.3) using the P2P1 Taylor-Hood finite elements and ob-
tain the saddle point problem

(3.4)

(
A B

T

B 0

) (
uh

ph

)
=

(
lh

0

)
,

for matrices A, B and where T denotes the transpose. There are many plau-
sible way to solve this problem approximately, by some iterative scheme,
see the survey paper [4]. In this work we use the method proposed in
[10, 17], for solving the stationary Navier-Stokes equations. The method
is optimal and is based on the observation that the matrix

(
A B

T

0 BA
−1

B
T

)−1 (
A B

T

B 0

)
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has at most three eigenvalues [19, 15]. Thus, a Krylov method applied to
the preconditioned system will converge to the exact solution in less than
four iterations.

In practice the matrix in the (2,2) position of the preconditioning block
matrix, BA

−1
B

T (the Schur complement), is not readily inverted but since
BA

−1
B

T is spectrally equivalent to the pressure mass matrix (or Gram
matrix) Mp we substitute BA

−1
B

T by Mp. Hence we precondition (3.4)
with

(
A B

T

0 Mp

)−1

,

and consequently a Krylov solver will now converge in a relatively small
number of iterates almost independent of the size of the problem. The
method is optimal.

In this work we use a flexible GMRES algorithm [20] to solve (3.4).
In the preconditioning we approximate A

−1 by two cycles of the V-cycle
Algorithm 1 with five point Gauss-Seidle smoothing iterations on each level
and M

−1
p is approximated by a few iterations with the flexible GMRES

method preconditioned by five iterations of the point Gauss-Seidle solver.
We note that since the saddle point problem is symmetric we could have
used a MINRES Krylov solver instead.

In Table 3.3 we summarize the data from the experiments and note that
the solver is almost optimal.

Table 3.3: Convergence data for the Stokes solver with V-cycle multigrid
preconditioning.

Ridge Domain

levels dof m Res
0 23654 24 6.4 · 10−7

1 166599 27 7.8 · 10−7

2 1245487 27 1.0 · 10−6

3 9621069 28 9.6 · 10−7

Herringbone Domain

levels dof m res
0 32999 33 8.6 · 10−7

1 232448 37 8.6 · 10−7

2 1736817 39 8.4 · 10−7
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4. Discussion

We have demonstrated that the finite element multigrid method in prac-
tice works well for quadratic finite elements. Comparing the method ap-
plied to quadratic Lagrange finite element and the quadratic hierarchical
finite element showed a convergence in favor of the Lagrange approxima-
tion. The estimates of ω seem to be overestimates. However, the estimates
are probably qualitatively correct.

Appendix A. Eigenvalues to MbT
We give account for the calculation of the eigenvalues to the matrix

MbT = (ϕ̂j,bT , ϕ̂ℓ, bT )bT for j, ℓ = 1, . . . ,mq,

for n = 2, 3 and Lagrange finite elements of degree q = 1, 2 and for q = 2
and the hierarchical base functions in Section 1.2.2. Note that we have
omitted the factor |T̂ | = 1/(2(n − 1)) in (1.22) since in the end we are
interested in the ratio µ/µ of the largest to smallest eigenvalues.

We recall and use the following relation [9, eq. (25.14), p. 187]
∫

T

λ
m1

1,T λ
m2

2,T · · ·λ
mn+1

n+1,T dx = |T |
m1!m2! · · ·mn+1!n!

(m1 + m2 + . . . + mn+1 + n)!

where mj are positive integers.

q = 1 and n = 2 Lagrange.

MT = 1/12




2 1 1
1 2 1
1 1 2


 ,

with µ = 1/24 and µ = 1/6, µ/µ = 4.

q = 1 and n = 3 Lagrange.

MT = 1/20




2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2


 ,

with µ = 1/12 and µ = 1/4, µ/µ = 5.



23

q = 2 and n = 2 Lagrange.

MT = 1/180




6 −1 −1 0 −4 0
−1 6 −1 0 0 −4
−1 −1 6 −4 0 0
0 0 −4 32 16 16
−4 0 0 16 32 16
0 −4 0 16 16 32




,

with µ = (17 −
√

229/90) ≈ 0.021 and µ = (17 +
√

229)/90 ≈ 0.357,
µ/µ ≈ 17.

q = 2h and n = 2 hierarchical.

MT = 1/180




0 30 30 48 24 48
30 60 30 48 48 24
30 30 60 24 48 48
48 48 24 64 32 32
24 48 48 32 64 32
48 24 48 32 32 64




,

with µ = (31 −
√

901/90) ≈ 0.011 and µ = (31 +
√

901)/90 ≈ 0.678,
µ/µ ≈ 62.

q = 2 and n = 3 Lagrange.

MT = 1/420




6 1 1 1 −4 −6 −4 −4 −6 −6
1 6 1 1 −4 −4 −6 −6 −4 −6
1 1 6 1 −6 −4 −4 −6 −6 −4
1 1 1 6 −6 −6 −6 −4 −4 −4
−4 −4 −6 −6 32 16 16 16 16 8
−6 −4 −4 −6 16 32 16 8 16 16
−4 −6 −4 −6 16 16 32 16 8 16
−4 −6 −6 −4 16 8 16 32 16 16
−6 −4 −6 −4 16 16 8 16 32 16
−6 −6 −4 −4 8 16 16 16 16 32




,

with µ = (113−5
√

457/840) ≈ 0.007 and µ = (113+5
√

457/840) ≈ 0.261,
µ/µ ≈ 36.
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q = 2h and n = 3 hierarchical.

MT = 1/420




42 21 21 21 28 14 28 28 14 14
21 42 21 21 28 28 14 14 28 14
21 21 42 21 14 28 28 14 14 28
21 21 21 42 14 14 14 28 28 28
28 28 14 14 32 16 16 16 16 8
14 28 28 14 16 32 16 8 16 16
28 14 28 14 16 16 32 16 8 16
28 14 14 28 16 8 16 32 16 16
14 28 14 28 16 16 8 16 32 16
14 14 28 28 8 16 16 16 16 32




,

with µ = (209 −
√

42337/840) ≈ 0.004 and µ = (209 +
√

42337/840) ≈

0.494, µ/µ ≈ 128.
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Paper VI





MULTIGRID METHODS ON ADAPTIVELY REFINED

TRIANGULATIONS: PRACTICAL CONSIDERATIONS

ERIK D. SVENSSON

Abstract. We outline the implementation of the finite element multi-
grid method on adaptively refined triangulations for Lagrange and hi-
erarchical finite elements of degree ≤ 2 in two and three dimensions.
Refining the triangulations we relax the requirement that no vertex of
any n-simplex lies in the interior of an edge of another n-simplex. As
a result the refinements are easy to implement and the finite element
spaces can be made nested, which simplifies the multigrid implementa-
tion. The refined triangulations may however contain ’hanging’ nodes
which must be taken into account in order to make the finite element
spaces conforming. We modify the finite elements accordingly in these
situations.

1. Introduction

The finite element multigrid method is theoretically well established as
outlined in for example [4, 10, 14]. In this work we consider the practical
aspects implementing the method on adaptively refined triangulations for
conforming linear and quadratic finite elements in two and three dimen-
sions.

We choose to use a refinement method that produce triangulations on
which we can define nested finite element spaces and thus makes the formu-
lation of the multigrid method straight forward with well defined projection
operators on the finite element spaces. This is in contrast to the situation
when the finite elements spaces are non-nested [4, 13]. Moreover this choice
is also motivated by the fact that the refinement algorithm becomes sim-
ple compared to the rather involved refinement algorithm proposed in [3],
which also renders the finite element spaces non-nested.

Date: April 18, 2006.
2000 Mathematics Subject Classification. 65N55, 65N30, 65N50.
Key words and phrases. multigrid, finite elements, refinement.
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The refined triangulations are irregular [8] in the sense that there will be
’hanging’ nodes and the construction of conforming finite element spaces is
a non-trivial task that in practice requires implementation of flexible data
structures. This and the even more general aspect of hp refinements has
already be considered in [1, 8, 12]. We partially reformulate these results
using concepts from modern finite element theory.

1.1. Preliminaries. We assume that the underlying problem is second
order linear elliptic on a polyhedral domain Ω ⊂ Rn for n = 2, 3. Let
a(·, ·) : V × V → R be a continuous, symmetric and V -elliptic bilinear
form, and let f(·) : V → R be a continuous linear form. We pose the
problem as the variational formulation

(1.1) u ∈ V : a(u, v) = f(v) ∀v ∈ V,

where we assume that V ⊂ H
1(Ω) is a Hilbert space such that (1.1) is

well-posed.
We will use standard notation for the Lebesgue and Sobolev spaces and

for any measurable set ω ⊆ Rn, n = 2, 3, we let

(u, v)ω =

∫

ω

uv dx,

denote the L
2(ω) scalar product.

For vectors ṽ = (ṽ1, . . . , ṽN) ∈ RN we will use the Euclidean norm
denoted by ‖ṽ‖ = (ṽ2

1 + ṽ
2
2 + . . . + ṽ

2
N)1/2.

Finally, throughout this work we will use C and ci to denote various
constants, not necessarily taking the same value from time to time.

1.2. Finite elements. We will use the notion finite element to denote the
triplet (T,P ,N ) where T ⊂ Ω is a non empty Lipschitz continuous set, P
is a finite dimensional space of functions on T and N = {N1, N2, . . . , Nmq

}

is a base for P ′, the set of nodal variables [5, 6].

Remark 1.1. For a d-dimensional vector space P and for a subset {N1, N2,

. . . , Nd} of P ′ the following two statements are equivalent [5, Lemma 3.1.4,
p. 70].

(1) {N1, N2, . . . , Nd} is a basis for P ′.
(2) If v ∈ P with Niv = 0 for i = 1, . . . , d, then v = 0.

We use this to verify that a given triplet (T,P ,N ) is a finite element.
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As for T we only consider n-simplices with vertices ai ∈ Rn for i =
1, . . . , n + 1 and n = 2, 3 as in Figure 2.1 and 2.2a. We set hT = diam(T ).

Let Pq denote the space of polynomials of degree ≤ q and note that

(1.2) dim(Pq) =

(
n + q

q

)
= card(N ) = mq,

where we use the cardinal number to count the number of elements in a
set.

Let Lq(T ) denote the principal lattice of order q on T with mq lattice
points [6, Theorem 6.1, p. 70], that is,

Lq(T ) =
{

x =
n+1∑

i=1

ξiai :
n+1∑

i=1

ξi = 1, ξi ∈
{

0,
1

q

, . . . ,

q − 1

q

, 1
}}

.

For example, L1(T ) = {ai}
n+1
i=1 is the vertices in the n-simplex T and

L2(T ) = {ai}
n+1
i=1 ∪ {aij = (ai + aj)/2 : 1 ≤ i < j ≤ n + 1}, see Figures 2.1

and 2.2a.
We use the common practice and refer to points in Lq(T ) as local nodes.
In order to express Pq on T we use barycentric coordinates, that is,

λi ∈ P1 on T such that λi(xj) = δij for xj ∈ L1(T ) and i, j = 1, . . . , n + 1,
see for example [9].

Given a basis to {ϕ1, . . . , ϕmq
} to Pq we choose the nodal variables such

that Ni(ϕj) = δij for i, j = 1, . . . ,mq.

1.2.1. Lagrange finite elements. We recall the definition of the standard
Lagrange finite element which determine a finite element space of con-
tinuous piecewise polynomials of degree q ≥ 1. In terms of the triplet
(T,P ,N ), P = Pq with basis functions ϕi ∈ Pq for i = 1, . . . ,mq such
that ϕi(xj) = δij and the nodal variables are defined by Nj(v) = v(xj) for
xj ∈ Lq(T ) and v ∈ C

0(T ). For example: if q = 1, ϕi = λi, and if q = 2,
ϕi = λi(2λi − 1) for i = 1, . . . , n + 1 and ϕij = 4λiλj for 1 ≤ i < j ≤ n + 1
denoting the last n + 2, . . . ,m2 basis functions.

It is easily verified by Remark 1.1 that the triplet (T,P ,N ) is a finite
element.

1.2.2. Higher degree hierarchical finite elements. We consider the higher
degree hierarchical finite element which determine a finite element spaces
of continuous piecewise polynomials of degree q ≥ 2 as outlined in [2].
In terms of the triplet (T,P ,N ), P = P1 ⊕ Bq, where Bq is the space of
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polynomials of degree > 1 and ≤ q, that is, excluding the linear functions.
For example, if q = 2, we choose the basis functions ϕi = λi for i =
1, . . . , n + 1 and ϕij = 4λiλj for 1 ≤ i < j ≤ n + 1 denoting the last
n+2, . . . ,mq basis functions and the nodal variables are defined by Ni(v) =
v(ai) for i = 1, . . . , n + 1 and

Nij(v) = v(aij) −
1

2
(v(ai) + v(aj)) for 1 ≤ i < j ≤ n + 1.

In order to show that the triplet (T,P ,N ) is a finite element we take

(1.3) P2 ∋ v =
n+1∑

i=1

ṽiϕi +
n+1∑

i,j=1
i<j

ṽijϕij,

for constants ṽi, ṽij ∈ R. Then for i = 1, . . . , n + 1,

Ni(v) = 0 ⇒ ṽi = 0

and for 1 ≤ i < j ≤ n + 1

Nij(v) = 0 ⇒
1

2
ṽi +

1

2
ṽj + ṽij −

1

2
(ṽi + ṽj) = ṽij = 0.

Thus v = 0 and from Remark 1.1 we conclude that {Ni}
n+1
i=1 ∪ {Nij : 1 ≤

i < j ≤ n + 1} is a basis for P ′ and (T,P ,N ) is a finite element.

1.3. The finite element multigrid method. We use the notation and
framework outlined in [4]. Let T1 be a triangulation and define Tℓ for
ℓ = 2, . . . , L recursively by subdividing all n-simplices in Tℓ−1 as described
in Section 2.1 below. We remark that all sub-tetrahedra are not congruent
but on repeating the process the sub-tetrahedra will remain shape regular
[3]. We note that since the n-simplices in Tℓ stay shape regular, the family
of triangulations {Tℓ}

L
ℓ=1 will be quasi-uniform.

In the usual way we define the piecewise continuous finite element spaces
Vℓ on Ω by the finite elements (T,PT ,NT )T∈Tℓ

with local basis functions
{ϕ1,T , . . . , ϕmq ,T} and node variables NT = {N1,T , N2,T , . . . , Nmq ,T}.

Let {φ1, . . . , φMℓ
} be a basis to Vℓ, the global basis, with

(1.4) dim(Vℓ) := Mℓ = card({Lq(T ) : T ∈ Tℓ}),

and such that φi has support in Si for i = 1, . . . ,Mℓ where

(1.5) Si :=
⋃

{T ∈ Tℓ : xi ∈ T},

for the global nodes {xi}
Mℓ

i=1 = {Lq(T ) : T ∈ Tℓ}.
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For T ∈ Tℓ let IT be an index set of the local nodes in the finite ele-
ment (T,PT ,NT ), for example, IT = {1, 2, 3, 12, 13, 23} for the quadratic
Lagrange finite element in two dimensions. Let ij : IT → [1,Mℓ] be the
injective map that maps the local index j to the corresponding global in-
dex ij. We express the global basis functions in terms of the local finite
element basis functions. For i = 1, . . . ,Mℓ and with j so that ij = i

(1.6) φi

∣∣
T
=

{
ϕj,T if T ∈ Si,

0 if T /∈ Si.

Now {Vℓ}
L
ℓ=1 is a nested sequence of finite element spaces, that is,

(1.7) V1 ⊂ V2 ⊂ · · · ⊂ VL ⊂ V.

From equation (1.1) we obtain the finite element equation on the L:th
level

(1.8) u ∈ VL : a(u, v) = (f, v) ∀v ∈ VL,

where we assume that f ∈ VL is a finite element approximation to the
linear form f(·) in equation (1.1).

In order to describe the multigrid method we will need the following
auxiliary operators. For ℓ = 1, . . . , L let Aℓ : Vℓ → Vℓ be defined by

(Aℓv, φ) = a(v, φ) ∀φ ∈ Vℓ,

and let the projectors Pℓ−1 : Vℓ → Vℓ−1 and Qℓ−1 : Vℓ → Vℓ−1 be defined
by

a(Pℓ−1v, φ) = a(v, φ) ∀φ ∈ Vℓ−1,

and

(Qℓ−1v, φ) = (v, φ) ∀φ ∈ Vℓ−1.

We will also need a generic smoother Rℓ : Vℓ → Vℓ for ℓ = 1, . . . , L and
denote by R

t
ℓ the adjoint of Rℓ with respect to (·, ·).

We consider the V-cycle multigrid algorithm. Given initial data u
0 ∈

VL the algorithm generates a sequence approximating u, the solution to
equation (1.8), by

(1.9) u
m+1 = VMGL(um

, f) m = 0, 1, . . . ,

where VMGL(·, ·) : VL × VL → VL is defined by the following Algorithm 1
[4].
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Algorithm 1: VMGℓ(v, f)

Input: multigrid level ℓ, initial value v = u
0 as in (1.9) and right

hand side f .
Output: u

1 in (1.9).

if ℓ = 0 then

return A
−1
0 f /* exact solution */

else

v
′ = v + R

t
ℓ(f − Aℓv) /* presmoothing */

v
′′ = v

′ + VMGℓ−1(0, Qℓ−1(f − Aℓv
′)) /* error correction */

return v
′′ + Rℓ(f − Aℓv

′′) /* postsmoothing */

2. Irregular notions

We now relax one of the requirements in the definition of the triangu-
lation, namely, the property that no vertex of any n-simplex lies in the

interior of an edge or face of another n-simplex [5]. As for conforming
finite element spaces we then will have to modify the finite elements ac-
cordingly.

2.1. Irregular triangulations. Inspired by [8] we say that a 1-irregular

triangulation is a partition of Ω into n-simplices such that at the most
one vertex lies in the interior of any edge of all the n-simplices in the
partition. Moreover, we say that a vertex is an irregular vertex if it lies in
the interior of another edge and that an n-simplex is an irregular n-simplex

if it contains irregular vertices.
We note that the definition is readily generalized to m-irregular trian-

gulation, for m ≥ 1, but we will not consider this type of triangulation in
this work. When we in the sequel sometimes write irregular we thus means
1-irregular.

For an irregular n-simplex there may be one or several local nodes in
Lq(T ) that do not represent true degrees of freedom, since the nodal vari-
ables in these points will be evaluated in other, possibly global, nodes in
such way that the finite element space is made conforming. In the liter-
ature this kind of nodes are called hanging, constrained or slaved, in this
work we call them hanging nodes, see Figures 3.1 and 3.2.

Now let Tℓ be an 1-irregular triangulation and suppose S is a subset
of n-simplices T ∈ Tℓ that we want to refine, for example, S could be
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the set of n-simplices where an error estimator is larger than a certain
threshold. In order to refine Tℓ we need to check the consistency of S, that
is, the refined triangulation Tℓ+1 must also be a 1-irregular triangulation
and for this reason we cannot refine irregular n-simplices. We must check
and modify S by adding n-simplices intersecting irregular vertices. Since
some of the added n-simplices may also be irregular we must repeat the
checking on the added n-simplices recursively. We describe this procedure
in Algorithm 2.

Algorithm 2: CheckConsistency(T ,S)

Input: a 1-irregular triangulation T and a set S of n-simplices
T ∈ T .

Output: S, possibly modified.

Snew = ∅

forall irregular T ∈ S do

forall irregular vertices ai ∈ T do

forall T
′ ∈ T such that ai ∈ T

′ do
Snew = Snew ∪ {T ′}

if Snew 6= ∅ then
CheckConsistency(T ,Snew)

S = S ∪ Snew

a1

a2

a3

a12

a13

a23

Figure 2.1: Regular triangle refinement. Original and refined triangles.

When we have checked the consistency of S we proceed with the refine-
ment of all T ∈ S and hence create the refined triangulation Tℓ+1. We
use the regular refinement algorithm from [3], where the two-dimensional
case is trivial but included here for completeness. For any n-simplex let
aij = (ai + aj)/2 for 1 ≤ i < j ≤ n + 1 denote the midpoint of the
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(a)

(b)

a1

a2

a3

a4

a12

a13

a14

a23

a24

a34

Figure 2.2: Regular tetrahedron refinement due to [3]. (a) Original and
refined tetrahedron. (b) The interior octahedron is divided in one out of three
ways as specified in [3].

edge connecting the vertices ai and aj. Now triangles are subdivided into
four congruent subtriangles connecting the edge midpoints as in Figure
2.1 and as described in Algorithm 3. Tetrahedra are subdivided into eight
subtetrahedra as depicted in Figure 2.2 and as described in Algorithm 4.
We remark that all subtetrahedra are not congruent but on repeating the
procedure the subtetrahedra will stay shape-regular [3].

Algorithm 3: RegularRefinement2D(T )

Input: a triangle T .
Output: 4 subtriangles Ti ⊂ T for i = 1, . . . , 4 such that

⋃
i Ti = T .

divide T = {a1, a2, a3} into 4 subtriangles

T1 = {a1, a12, a13}, T2 = {a2, a23, a12},

T3 = {a3, a13, a23}, T4 = {a12, a23, a13}.
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Algorithm 4: RegularRefinement3D(T )

Input: a tetrahedron T .
Output: 8 tetrahedra Ti ⊂ T for i = 1, . . . , 8 such that

⋃
i Ti = T .

divide T = {a1, a2, a3, a4} into 8 subtetrahedra

T1 = {a1, a12, a13, a14}, T2 = {a12, a2, a23, a24},

T3 = {a13, a23, a3, a34}, T4 = {a14, a24, a34, a4},

T5 = {a12, a13, a14, a24}, T6 = {a12, a23, a23, a24},

T7 = {a13, a14, a24, a34}, T2 = {a13, a23, a34, a34}.

2.2. Irregular finite elements. In order to construct a conforming finite
element space from the finite elements (T,PT ,NT )T∈Tℓ

where Tℓ is a 1-
irregular triangulation we need to define a new type of finite elements on
irregular n-simplices.

We say that a finite element is a q-irregular finite element if we evaluate
one or more of the nodal variables Ni at points xj ∈ Lq(T ) ± p where
p = ai−aj such that the line between ai and aj is an edge in T . For irregular
n-simplices we define q-irregular finite elements so that the generated finite
element space becomes conforming. We describe this in a few examples
below.

2.2.1. 1-irregular Lagrange finite elements. In R2 there are finite elements
with 1–3 hanging nodes as in Figure 2.3. The basis functions are as defined
in Sections 1.2.1 but the nodal variables are slightly different. We consider
the finite element in the case of one hanging node, the other cases are
defined in the same way. The nodal variables are defined by

(2.1) Ni(v) = v(ai), i = 1, 2,

and

(2.2) N3(v) =
1

2
(v(a2) + v(a4)),

where a4 = 2a3 − a2 and N3 is eliminated as a global degree of freedom.
In order to show that the triplet (T,P1,N ) is a finite element we take

P1 ∋ v =
∑3

i=1 ṽiϕi for constants ṽi ∈ R. Then for i = 1, 2,

Ni(v) = 0 ⇒ ṽi = 0
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(a) (b) (c)

1

2

3

4

Figure 2.3: Three types of finite elements for the 1-irregular Lagrange finite
elements in R2. • denotes a regular node and ◦ denotes a hanging node. (a)
One hanging node. (b) Two hanging nodes. (c) Three hanging nodes.

and

N3(v) = 0 ⇒ 1/2(ṽ2 − ṽ2 + 2ṽ3) = ṽ3 = 0.

Thus v = 0 and from Remark 1.1 we conclude that {Ni}
3
i=1 is a basis for

P ′
1 and (T,P1,N ) is a finite element. Note that this construction of N

guarantees that the global finite element functions are conforming.
In R3 there are finite elements with 1–4 hanging nodes and the treatment

is analogous to the R2 case. In the case of one hanging node as in Figure
2.4 the nodal variables are defined by

(2.3) Ni(v) = v(ai), i = 1, 2, 3,

and

(2.4) N4(v) =
1

2
(v(a2) + v(a5)),

where a5 = 2a4 − a2, and it follows that (T,P1,N ) is a finite element.

2.2.2. 2-irregular hierarchical finite elements. In R2 there are finite ele-
ments with 1–2 hanging nodes as in Figure 2.5, note that the hanging
nodes now are on the the edges instead of in the vertices as for the 1-
irregular Lagrange finite elements. The basis functions are as defined in
Subsection 1.2.2 but the nodal variables are slightly different. We consider
the finite element in the case of one hanging node, the other case is defined
in the same way. The nodal variables are defined by

(2.5) Ni(v) = v(ai), i = 1, 2, 3,
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1

2

3

4

5

Figure 2.4: One hanging node for the 1-irregular Lagrange finite elements in
R3. • denotes a regular node and ◦ denotes a hanging node.

and

(2.6)

N12(v) = v(a12) −
1

2
(v(a1) + v(a2)),

N13(v) = v(a13) −
1

2
(v(a1) + v(a3)),

N23(v) =
1

4
v(a3) −

1

8
(v(a2) + v(a4)),

where a4 = 2a3 − a2.

(a) (b)

1

2

3

4

12

13

23

Figure 2.5: Two types of finite elements for the 2-irregular hierarchical finite
element in R2. • denotes a regular node and ◦ denotes a hanging node. (a)
One hanging node. (b) Two hanging nodes.
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In order to show that the triplet (T,P2,N ) is a finite element we take v

as in (1.3). Then for i = 1, 2, 3

Ni(v) = 0 ⇒ ṽi = 0

and

N12(v) = 0 ⇒
1

2
ṽ1 +

1

2
ṽ2 + ṽ12 −

1

2
(ṽ1 + ṽ2) = ṽ12 = 0,

N13(v) = 0 ⇒
1

2
ṽ1 +

1

2
ṽ3 + ṽ13 −

1

2
(ṽ1 + ṽ3) = ṽ13 = 0,

N23(v) = 0 ⇒
1

4
ṽ3 −

1

8
(ṽ2 − ṽ2 + 2ṽ3 − 8ṽ23) = ṽ23 = 0.

Thus v = 0 and from Remark 1.1 we conclude that {Ni}
3
i=1 ∪ {Nij : 1 ≤

i < j ≤ 3} is a basis for P ′
2 and (T,P2,N ) is a finite element.

In R3 it is a bit more involved to maintain the continuity. There are
tetrahedra with 1–5 hanging nodes. The basis functions are as defined in
Sections 1.2.2 but the nodal variables are slightly different. We consider
the finite element in the case of three hanging node as in Figure 2.6. The
first nodal variables are defined by

Ni(v) = v(ai), i = 1, 2, 3, 4,

and

N12(v) = v(a12) −
1

2
(v(a1) + v(a2)),

N13(v) = v(a13) −
1

2
(v(a1) + v(a3)),

N14(v) = v(a14) −
1

2
(v(a1) + v(a4)),

N23(v) =
1

4
v(a3) −

1

8
(v(a2) + v(a5)),

N24(v) =
1

4
v(a4) −

1

8
(v(a2) + v(a6)),

N34(v) =
1

4
v(a7) −

1

8
(v(a5) + v(a6)),

where

a5 = 2a3 − a2, a6 = 2a4 − a2, a7 = a3 + a4 − a2.
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1

2

3

4

5

6

7

12

13

14

23

24

34

Figure 2.6: Three hanging nodes for the 2-irregular hierarchical finite element
in R3. • denotes a regular node and ◦ denotes a hanging node.

In order to show that the triplet (T,P2,N ) is a finite element we take v

as in (1.3). Then for i = 1, 2, 3, 4

Ni(v) = 0 ⇒ ṽi = 0

and

N12(v) = 0 ⇒
1

2
ṽ1 +

1

2
ṽ2 + ṽ12 −

1

2
(ṽ1 + ṽ2) = ṽ12 = 0,

N13(v) = 0 ⇒
1

2
ṽ1 +

1

2
ṽ3 + ṽ13 −

1

2
(ṽ1 + ṽ3) = ṽ13 = 0,

N14(v) = 0 ⇒
1

2
ṽ1 +

1

2
ṽ4 + ṽ14 −

1

2
(ṽ1 + ṽ4) = ṽ14 = 0,

N23(v) = 0 ⇒
1

4
ṽ3 −

1

8
(ṽ2 − ṽ2 − 2ṽ3 − 8ṽ23) = ṽ23 = 0,

N24(v) = 0 ⇒
1

4
ṽ4 −

1

8
(ṽ2 − ṽ2 − 2ṽ4 − 8ṽ24) = ṽ24 = 0,

N34(v) = 0 ⇒
1

4
(−ṽ2 + ṽ3 + ṽ4 − 4ṽ23 − 4ṽ24 + 4ṽ34),

−
1

8
(−2ṽ2 + 2ṽ3 + 2ṽ4 − 8ṽ23 − 8ṽ24) = ṽ34 = 0.
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Thus v = 0 and from Remark 1.1 we conclude that {Ni}
4
i=1 ∪ {Nij : 1 ≤

i < j ≤ 4} is a basis for P ′
2 and (T,P2,N ) is a finite element.

2.3. Finite element approximations on 1-irregular triangulations.

Let Tℓ be a 1-irregular triangulation. We define continuous finite ele-
ment spaces Vℓ on Ω by the finite elements (T,PT ,NT )T∈Tℓ

as in Sec-
tion 1.3, although we now use the 1 or 2-irregular finite elements defined
in Section 2.2. Note that the index set IT also changes, for example,
IT = {1, 2, 3, 12, 13, 4} for the second order hierarchical finite element in
two dimensions, Figure 2.5a.

With

Vℓ ∋ u =

Mℓ∑

i=1

ũiφi,

where (ũ1, . . . , ũMℓ
) ∈ RMℓ is the coordinate vector with respect to the

basis {φ1, . . . , φMℓ
} and taking v = φj we express (1.8), now with u, v ∈ Vℓ,

as

(2.7)

Mℓ∑

i=1

ũia(φi, φj) = f(φj) for j = 1, . . . ,Mℓ.

Locally on each T ∈ Tℓ we have

φi|T =
∑

k∈IT

Nk,T (φi)ϕk,T ,

and hence (2.7) is equivalent to

(2.8)

Mℓ∑

i=1

∑

T∈Si

∑

k,l∈IT

ũiNk,T (φi)a(ϕk,T , ϕl,T )Nl,T (φj)

=
∑

T∈Si

∑

l∈IT

Nl,T (φj)f(ϕl,T ) for j = 1, . . . ,Mℓ,

where we identify a(ϕk,T , ϕl,T ) as a local stiffness matrix and f(ϕl,T ) as the
local load vector.

The rather involved formula (2.8) in fact expresses the distribution map-
ping defined in [1, 12], which is useful in practice implementing finite el-
ement problems. We note that assembling the stiffness matrix and load
vector we only need to know a few things for each T ∈ Tℓ: (1) where to put
the elements from the local stiffness matrix and load vector into the global
stiffness matrix and load vector, and (2) the weights Nk,T (φi) on the local
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elements. We represent this information in a set of arrays holding three
numbers, (i, k,Nk,T (φi))T∈Tℓ

, where i is a global index, k is a local index
on T and Nk,T (φi) is a weight, and likewise for (j, l, Nl,T (φj))T∈Tℓ

. More
precisely we define the representation

(2.9) Rep(T ) = {(i, k,Nk,T (φi)) : i ∈ ik′ , k, k
′ ∈ IT , Nk,T (φi) 6= 0}.

Thus, provided the finite elements (T,PT ,MℓT )T∈Tℓ
are well defined we

express the finite element problem as in (2.8) and use the representation
(2.9) for assembling the problem in practice.

We remark that when Vℓ ∋ f =
∑Mℓ

i=1 f̃iφi and (2.8) becomes

(2.10)

Mℓ∑

i=1

∑

T∈Si

∑

k,l∈IT

ũiNk,T (φi)a(ϕk,T , ϕl,T )Nl,T (φj)

=
∑

T∈Si

∑

k,l∈IT

f̃iNk,T (φi)(ϕk,T , ϕl,T )Nl,T (φj) for j = 1, . . . ,Mℓ.

where we identify (ϕk,T , ϕl,T ) as the local mass matrix.
In the next four sections we explicitly compute Rep(T ) for the finite

elements in Sections 1.2 and 2.2.

2.3.1. Lagrange finite elements. In this case since Nk(v) = v(xk) for xk ∈

Lq(T ) and k ∈ IT as defined in Section 1.2.1, the representation (2.9) is
particularly simple:

Rep(T ) =




ik

k

1


 ∀ k ∈ IT ,

which probably anyone that have implemented the Lagrange finite elements
recognizes.

2.3.2. Higher degree hierarchical finite elements. We evaluate (2.9) for the
quadratic hierarchical finite element in two dimensions. With Nk(·) and
IT as defined in Section 1.2.2 we get

Rep(T ) =



i1 i2 i3 i12 i13 i23 i1 i1 i2 i2 i3 i3

1 2 3 12 13 23 12 13 12 23 13 23
1 1 1 1 1 1 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2


 .

The three-dimensional case is analogous.
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2.3.3. 1-irregular Lagrange finite elements. We evaluate (2.9) for the 1-
irregular finite element in two dimensions. With Nk(·) for xk ∈ L1(T ) and
IT as defined in Section 2.2.1 we get

Rep(T ) =




i1 i2 i2 i4

1 2 3 3
1 1 1/2 1/2


 ,

The three-dimensional case is analogous.

2.3.4. 2-irregular hierarchical finite elements. We evaluate (2.9) for the 2-
irregular finite element in two dimensions. With Nk(·) and IT as defined
in Section 2.2.2 we get

Rep(T ) =



i1 i2 i3 i12 i13 i1 i1 i2 i3 i3 i2 i4

1 2 3 12 13 12 13 12 13 23 23 23
1 1 1 1 1 −1/2 −1/2 −1/2 −1/2 1/4 −1/8 −1/8


 .

The three-dimensional case is analogous.

2.4. Multigrid on 1-irregular triangulations. We need to find the
projection Qℓ−1 : Vℓ → Vℓ−1 as defined in Section 1.3. Since Vℓ−1 ⊂ Vℓ we

can express the basis functions in Vℓ−1, {φ
ℓ−1
i }

Mℓ−1

i=1 , in terms of the base

functions in Vℓ, {φ
ℓ
i}

Mℓ

i=1. Hence, with the definition of Qℓ−1,

(Qℓ−1vℓ, φ
ℓ−1
i ) = (vℓ, φ

ℓ−1
i ) =

∑

j=Jℓ
i

α
ℓ
ij(vℓ, φ

ℓ
j),

for vℓ ∈ Vℓ and where J
ℓ
i := {j : supp (φℓ

j) ∩ S
ℓ−1
i 6= ∅}.

We use the nodal variables to express α
ℓ
ij

α
ℓ
ij = N

ℓ
k,T (φℓ−1

i ),

for all T ∈ Tℓ such that T ∩ S
ℓ−1
i 6= ∅ and for all k ∈ IT where jk = j is

the local to global mapping defined in Section 1.3.

3. Numerical experiments

In matrix form (1.8) becomes

Aũ = F ,

where A denotes the matrix [A]ij = (ALφi, φj) for i = 1, . . . ,Mℓ and
ũ ∈ RMℓ denotes the coordinate vector with respect to the finite element
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basis and F = (F1, . . . ,FMℓ
) where Fi = (f, φi). We solve this linear

system using the V-cycle Algorithm 1 with five iterations of a point Gauss-
Seidel smoother. With ũ

0 = 0 we iterate m = 1, 2, . . . until the relative
residual

Res :=
‖F −Aũ

m‖

‖F‖

is less than a specified tolerance ’Tol’ set to 10−6 in this work. Note that
the relative tolerance times a constant is always greater than ‖u − u

m‖1,Ω

where u ∈ VL is the finite element solution we are approximating, cf. [9,
Proposition 9.19, p. 393].

3.1. The Poisson equation. We consider the following Poisson equation
with mixed Dirichlet-Neumann boundary conditions on bounded polyhe-
dral domains Ω ⊂ Rn for n = 2, 3,

−∆u = f in Ω, u = g on ∂ΩD, and ν · ∇u = 0 on ∂ΩN ,

where the boundary is partitioned such that ∂ΩD ∪ ∂ΩN = ∂Ω, g is a
constant, ν is the outward normal to the boundary and we assume f ∈

H
−1(Ω) and thus the problem is a well posed. Let

V = {u ∈ H
1(Ω) : u = 0 on ∂ΩD}.

Now the bilinear and linear forms in Section 1.1 are

a(u, v) =

∫

Ω

∇u · ∇v dx,

and

f(v) =

∫

Ω

fv dx.

With ug denoting the extension of g to H
1(Ω), the weak formulation to the

above Poisson problem follows as usual and reads: find u ∈ H
1(Ω) such

that

(3.1)
u = ug + φ, φ ∈ V,

a(φ, v) = f(v) − a(ug, v) ∀v ∈ V.

We use the maximum norm error estimator derived in [7, 11] to adap-
tively refine the triangulations. For the solution u to (1.8) and T ∈ Tℓ we
compute

ηT = hT‖f + ∆u‖L∞(T ) +
1

2
‖[∂νT

u]‖L∞(∂T\∂Ω),
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where [∂νT
u] denotes the jump across ∂T in the normal derivative, ∂νT

u =
νT · ∇u where νT denotes the outward normal to ∂T .

We define Tℓ+1 by refining those T ∈ Tℓ where

ηT > ηT + s,

where ηT is the mean and s is the standard deviation of ηT .

3.1.1. Model problem. In this case we let Ω be the L-shaped domain with
one re-entrant edge, Ω = {(x, y) ∈ [0, 2]2 \ [1, 2] × [0, 1]} for n = 2 and
Ω = {(x, y, z) ∈ [0, 2]2 × [0, 0.5] \ [1, 2] × [0, 1] × [0, 0.5]} for n = 3, see
Figure 3.1 and 3.2.

Let ∂ΩD = ∂ΩD0
∪ ∂ΩD1

where ∂ΩD0
= {(x, y) : x = 1, y ∈ [1, 2]} and

∂ΩD1
= {(x, y) : x ∈ [0, 1], y = 0} for n = 2 and ∂ΩD0

= {(x, y, z) : x =
2, (y, z) ∈ [1, 2]×[0, 0.5]} and ∂ΩD1

= {(x, y, z) : (x, z) ∈ [0, 1]×[0, 0.5], y =
0} for n = 3. Set f = 0, g = 0 on ∂ΩD0

and g = 1 on ∂ΩD1
.

We solve the problem for different finite element approximations and
refine the triangulations eight times. The results from these experiments
are summarized in and Tables 3.1 and 3.2.

Table 3.1: Convergence data for the V-cycle multigrid Algorithm 1 applied
to the Model Problem for n = 2 and the finite elements in Section 2.2.

Lagrange (n, q) = (2, 1)

ℓ M1 m Res
1 272 2 1.3 · 10−7

2 368 2 8.3 · 10−8

3 524 2 7.1 · 10−8

4 767 3 2.2 · 10−7

5 1072 2 3.9 · 10−8

6 1642 2 2.5 · 10−8

7 2415 3 3.0 · 10−8

8 3577 3 5.7 · 10−7

Hierarchical (n, q) = (2, 2)

ℓ M2 m Res
1 299 2 1.2 · 10−7

2 459 2 2.7 · 10−8

3 644 2 2.0 · 10−8

4 890 2 4.3 · 10−8

5 1447 3 3.1 · 10−8

6 2066 3 2.7 · 10−7

7 3158 3 2.4 · 10−7

8 4546 4 3.8 · 10−8

4. Conclusions

We outlined a methodology for implementing the finite element multigrid
method on adaptively refined triangulations for various finite elements,
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ℓ = 0 ℓ = 2

ℓ = 4 ℓ = 6

Figure 3.1: Adaptively refined triangulations Tℓ of the L-shaped domain in
two dimensions.

Lagrange q = 1, 2 and hierarchical q = 2 for n = 2, 3. In a few numerical
experiments we demonstrated that the methodology works in practice by
solving a number of problems in two and three dimensions.
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ℓ = 0 ℓ = 2

ℓ = 4 ℓ = 6

Figure 3.2: Adaptively refined triangulations Tℓ of the L-shaped domain in
three dimensions.

Table 3.2: Convergence data for the V-cycle multigrid Algorithm 1 applied
to Model Problem for n = 3 and the Lagrange finite element in Section 2.2.1.

Lagrange (n, q) = (3, 1)

ℓ M1 m Res
1 1382 2 9.8 · 10−9

2 3207 2 1.2 · 10−7

3 5378 2 1.8 · 10−7

4 11542 2 5.2 · 10−7

5 24185 2 4.4 · 10−7

6 46834 3 2.7 · 10−7

7 106711 3 2.9 · 10−7

8 225353 3 2.3 · 10−7
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