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Abstract

Bilinear Hankel forms of higher weights on weighted Bergman spaces
on the unit ball of C¢ were introduced by Peetre. They form irreducible
components in the tensor product of weighted Bergman spaces under
the action of the Mdobius group. Each Hankel form corresponds to
a vector-valued holomorphic function, called the symbol of the form.
In this thesis we characterize bounded, compact and Schatten-von
Neumann S, (1 < p < co) Hankel forms in terms of the membership
of the symbols in certain Besov spaces. We also present partial results
for Hankel forms of higher weights on Hardy spaces.

The study of the Schatten-von Neumann properties is closely related
to the boundedness of certain matrix-valued Bergman-type projections
onto Hilbert spaces of vector-valued holomorphic functions. We estab-
lish some LP-boundedness criteria for a general class of projections on
bounded symmetric domains of type I. We prove also similar results for
the orthogonal projections onto Hilbert spaces of nearly holomorphic
functions on the unit ball of C.
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HANKEL FORMS OF HIGHER WEIGHTS AND
MATRIX-VALUED BERGMAN-TYPE PROJECTIONS

MARCUS SUNDHALL

INTRODUCTION

In the first three papers we study the Schatten-von Neumann proper-
ties for bilinear Hankel forms of higher weights on weighted Bergman
spaces and Hardy spaces on the unit ball of C¢. Closely related to the
study of Schatten-von Neumann properties is the question of bound-
edness of matrix-valued Bergman-type projections, and this will be
treated in paper [iv] along with the Bergman-type projections onto
spaces of nearly holomorphic functions.

1. HANKEL OPERATORS ON HARDY SPACES ON THE UNIT CIRCLE

The Hardy space H?(T) on the unit circle T = {z € C: |z| = 1}
consists of functions f in L?(T) such that f(n) = 0 for n < 0, where
f(n) is the nth Fourier coefficient of f. It is a closed subspace of L?(T)
so there exists an orthogonal projection P of L*(T) onto H*(T). The
Szego projection P is connected to the Hilbert transform H (defined
on smooth functions) via

(1) P=H+,
where
@) e =t [ T dotw,

and do is the normalized Lebesgue measure on T; see equation (1.14)
in [Peb]. Let M; denote the multiplication operator ¢ — fg. Then
the Hankel operator mapping H?(T) into H?(T)* is defined by

(3) Hy = (I - P)M;P,

where f € L*(T) is called the symbol of Hy, and we have the following
identity on L?(T);

(4) [M;, P] = M;P — Ple = H;— H;.
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Also, given the Toeplitz operator Ty = PM;P, then T} = PM¢P so
that

(5) [T}, Ty) = PM;y(I — P)*M;P = H;Hy,

on L?(T). Hence,

(6) tw (7, 7)) = tr (H3Hy) = ||Hj3,

where || - ||s, is the Hilbert-Schmidt norm. Naturally, one would like

to study the operator theoretic properties of H; such as boundedness,
compactness, finite rank, and Schatten-von Neumann properties, try-
ing to understand the noncommutativity of M; with P and T} with
T respectively.

The symbols of the Hankel operators studied in this thesis are holo-
morphic, and, under the orthogonal basis {2"} of the Hardy space,
the Hankel operator with the symbol f(z) = Y 7 a,z" is given by
the matrix (se [Peb])

Gy aip Qg
a; Gz as
(7) Gz a3 a4

Matrices of the form (7) were studied by Hankel around 1860, and
later Kronecker characterized the Hankel matrices of finite rank. The
Hardy space provides a natural setup for the study of the Hankel
matrix.

2. SCHATTEN-VON NEUMANN HANKEL OPERATORS ON H?(T)

To introduce linear operators of Schatten-von Neumann class, we
define the singular numbers of 7' : H; — H, as

(8) sn(T) =inf {||T — K|| : rank(K) <n},

where H; and H, are Hilbert spaces and n > 0. If T is compact,
these singular numbers are equal to the eigenvalues of |T| = (T*T)"/?
(counted with multiplicities). We denote by S, the ideal of operators
for which {s,(T") }n>0 € ?, 0 < p < 00; see [S], and remark that S is
the class of bounded operators.
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2.1. Hankel operators on Hardy spaces of class S,. An overview
of the theory of Hankel operators on Hardy spaces can be found in the
book [Pe5]; see also [Pel], [Pe2], [Pe3], and [Ped]. The boundedness
property of the Hankel operators H; has been settled in the middle
of the last century, and it is characterized by the membership of the
symbols in the BMOA space. A refinement of this statement is given
in terms of the singular numbers, which was done by Krein et al., and
it relates the eigenvalues of |H;| = (H;H})'/? to the approximation of
f by rational functions (see Section 4.1 in [Pe5]). More precisely, for
a given Hankel operator Hy one can find another Hankel operator H,
of rank at most n such that

(9) sn(Hy) = [|Hy — H| -

By Kronecker’s theorem, g is a rational function of degree at most n.
Hence, by Theorem 4.1.2 in [Pe5], if f € L*°(T), then there exists a
function g € L*°(T) such that (I — P)g is a rational function, of degree
at most n, with

(10) sn (Hy) = [If = glloo -
Also, by Theorem 1.1.3 in [Pe5], if f € L*°(T), then
(11) [Hllse = inf {||f = glloc : g € H*},

where H* is the subspace of holomorphic functions in L*(T), Thus
the Schatten-von Neumann S, property becomes a very interesting
problem in that it places the classical approximation theory in the
setup of functional analysis and operator theory. In the particular
case Sy one may define an isometry from the Dirichlet space into the
Hilbert-Schmidt class S, since, for holomorphic symbols f,

(12) e (H3Hp) = | Hfl3, = c / L) dm(z):;

by, for instance, Theorem 3.1 in [AFP]. It was proved by Peller that a
Hankel operator Hy isin S, if and only if f is in a certain Besov space.
The result has found many applications in approximation theory, and
in the resolvent of the Halmos problem on similarity of polynomially
bounded operators [Pe3], [Pe5], [AC].

In 1982, Rochberg presented analogous results for Hankel operators
on the Hardy spaces H?(R) on the real line; see [R1]. Rochberg consid-
ered the Schatten-von Neumann classes Sp, p > 1. Semmes extended
this characterization to the case 0 < p < 1 in [Se].
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2.2. Hankel forms on Hardy spaces. Later, we will generalize
Hankel forms to a larger class of bilinear forms on Hardy and Bergman
spaces. Now, consider the bilinear form on H?(T);

(13) H(T) x HA(T) 5 (g1, g2) — / F@01(2)92(2) do(2)

Given the Hankel operator in (3) we may define a bilinear form on
H*(T) by

HZ(T) X H2(T) 2 (91:92) — <Hf(gl)7g2>L2(T) ’

which differ from (13) by a form of rank one.

3. HANKEL FORMS AND OPERATORS ON WEIGHTED BERGMAN
SPACES ON THE UNIT DISK

The study of Schatten-von Neumann class Hankel operators on
weighted Bergman spaces were initiated by Arazy, Fisher, Janson,
Peetre, Rochberg et al. (see e.g. [AFP], [JPR] and [R2]).

3.1. Weighted Bergman spaces. Let dm denote the Lebesgue mea-
sure on the unit disk D = {z € C : |z| < 1}, then the space of
holomorphic functions in L?(dm) is a closed subspace L?(dm), called
the Bergman space. We can extend this definition to the so-called
weighted Bergman spaces L2(d,) where di,(2) = ¢, (1 —|z[*)*"2dm(z)
is defined for v > 1 and ¢, is a normalization constant.

3.2. Big and small Hankel operators. As in the case of the Hardy
space, there exists an orthogonal projection P, from L?(di,) onto the
space L2(dv,), called the Bergman projection; see [HKZ]. We will also
consider the space L2(d.,) of antiholomorphic functions in L?(ds,),
where P, is the corresponding projection. Now we can define the
big and the small Hankel operators. The big Hankel operator, H £y 18
mapping L2(du,) into L2(d,)* by H;(g) = (I—P)(fg), and the small
Hankel operator, Hy, is mapping L2(dv,) into L2(du,) by H(g9) =
P(fg). In both cases, the symbol f is holomorphic. The bilinear
Hankel form on a weighted Bergman space is defined by

1) Hilens) = [ 2@0ETE de),

B
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where the symbol f is holomorphic. Actually, the small Hankel op-
erators correspond to the bilinear Hankel forms. Namely, making an
appropriate choice of 3, we can see that

(15) Hy(g1,92) = {91, Ps(fg2)), ,

where (-, -), is the inner product of LZ(dv,).
More generally, with the form H; one can associate the operator Ay
defined by

(16) H (g1, 92) = (91, Ar(92))w

as in [JPR]. Notice that A; is an antilinear operator on LZ(dv,).
To get a linear operator one combines A; with a conjugation, i.e.,

one instead considers the operator Af : g = As(g). We say that
the bilinear Hankel form H; is of Schatten-von Neumann class S,

0 < p < oo, if and only if A : L2(di,) — L?(du,) is of class S,,.

Given a big Hankel operator, H 7, and a small Hankel operator, Hy,
H;— P,H; has rank (at most) one; see [J]. As a consequence, if the big
Hankel operator is bounded, compact or of class S, then so is the small
Hankel operator. In 1985, Rochberg characterized the small Hankel
operators on weighted Bergman spaces in terms of the membership
of the symbols in certain Besov spaces, see [R2]. Janson later proved
that these characterizations can be reduced to results by Peller and
Semmes; see [J]. For the big Hankel operators, similar results was
proved by Arazy, Fisher and Peetre in [AFP], Janson, Peetre and
Rochberg in [JPR] and Janson in [J]. The study of Schatten-von
Neumann properties for big Hankel operators is different from the one
for small Hankel operators in one major way; for big Hankel operators
we get a so-called cut-off, i.e., for p small enough the big Hankel
operators are in the class S, if and only if their symbols are constants
(and thus the big Hankel operators are zero).

4. MOBIUS INVARIANCE OF HANKEL FORMS

There is a natural action, m,, on weighted Bergman and Hardy
spaces of the automorphism group G = Aut(D). Namely, ifg: D — D
is biholomorphic (g bijective, g and ¢! holomorphic), then we define

(17) (m (g7 ) (w) = fg(w)) - ¢'(w)"/?,
with the appropriate convention concerning the ambiguity of the def-
inition of power (which we clarify in Remark 3.1 in paper [i]). Then
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7,(g) acts unitarily on L?(ds,) for v > 1 and m,(g) acts unitarily on
H?(T). Also,

(18) Hy (m,(9) f1,m0(9) f2) = Hro(9)7 (J1, f2) -

The question then arises of classifying all bilinear forms with such
invariance. Now, consider the tensor product L2(dv,)® L2(dw,) viewed
as the space of Hilbert-Schmidt (S;) bilinear forms on L2(de,) with
kernels F'(z,w). The group G acts on the tensor product by

(19) (m®m) (g VF(z,w) = F(g(2),9(w)) - ¢'(2)"7* - ¢'(w)"/.
Under this action, the tensor product decomposes as

(20) L%(du,) ® L2(du,) ~ @L (deavtas)

see [JP]. The intertwining projection map, called the transvectant,
(21) 7; : Lg(dbu) ® Li(dbu) — LZ(dl’2u+2s)

is given, up to a multiplicative constant, by

~ (s I @S E)
@) The =3 (;) ,
g k @)k (V) s—k
where (v)y =v(v+1)---(v+k — 1) is the Pochammer symbol. Ac-
tually, the bilinear forms corresponding to s = 0 are the Hankel forms
(small Hankel operators). One may then define the higher order Han-
kel forms (of weight s) as

(23) Hf(flafZ) = <7;(f1;f2)’f>2u+23 .

Janson, Peetre and Zhang established the S, criteria for bilinear Han-
kel forms of higher weights in [JP] and in [Z2] respectively. Rosengren
generalized the results to the multilinear case in [Ro].

5. HANKEL FORMS ON THE UNIT BALL

Arazy, Fisher, Janson, Peetre, Rochberg and Wallstén (see [AFJP],
[JPR] and [W]) studied the Hankel operators on weighted Bergman
spaces on the unit ball of C%; see e.g. [JPR] where a theory of Hankel
operators on weighted Bergman spaces on a general domain is estab-
lished. Feldman and Rochberg [FeldR] and Zhang [Z1] studied Hankel
operators on Hardy spaces on the unit ball, and a characterization for
the small Hankel operators on Hardy spaces is given in [FeldR].
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5.1. Hankel forms on weighted Bergman spaces. In [P1] Peetre
defined the transvectant in several variables to get Hankel forms of
higher weights in the case of the unit ball of C?. Later, Peetre gen-
eralized these invariant Hankel forms to certain symmetric domains;
see [P2]. In 2004 Peng and Zhang [PZ] gave an irreducible decom-
position of the tensor product of weighted Bergman spaces (Hardy
spaces included) on bounded symmetric domains, classifying all the
invariant Hankel forms. In this paper an exact formula similar to (22)
was presented. Especially, in the case of the unit ball, the spaces of
Hankel forms of higher weights form irreducible components in the
tensor product of weighted Bergman spaces under the action of the
Mébius group. The main objective of papers [i] and [ii] is the study of
S, criteria for bilinear Hankel forms of higher weights on a weighted
Bergman space on the unit ball of C¢. Combining the results in paper
[i] with the results in paper [ii] we get a full characterization of S, Han-
kel forms of higher weights on weighted Bergman spaces, 1 < p < oo.
The main idea is to first establish the boundedness and trace class
S, criteria, since then we get the S, class criteria for 1 < p < o0
by interpolation. To find the interpolation spaces we have to prove
certain duality results on Besov spaces of vector-valued holomorphic
functions; see also Section 6 below. The Hilbert and Banach spaces of
vector-valued functions appearing in paper [i] and paper [ii] are closely
related to the quotients of function modules studied by Ferguson and
Rochberg in [FergR].

5.2. Hankel forms on Hardy spaces. In the same way as for the
case of weighted Bergman spaces, Hankel forms of higher weights can
be defined on Hardy spaces on the unit ball, which we focus on in
paper [iii]. In the case of weight zero we give a full characterization
for the S, Hankel forms in terms of their membership for the symbols
to be in certain Besov spaces, 1 < p < oo, results which can be
deduced from [Z1]. Also, we find a necessary condition for the Hankel
forms to be bounded, in terms of a certain Carleson measure property
for the symbols. In the case of higher weights the problem becomes
somewhat more complicated. We establish a sufficient condition for
the Hankel forms to be of trace class &;. However, a boundedness
criterion seems to be harder to find. The transvectant does not act on
Hardy spaces in the same way as it does on weighted Bergman spaces,
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as we can see in Example 3.5 in paper [iii]. Generalizing the Hilbert-
Schmidt criterion from paper [i] to include also the Hardy case, we get
sufficient criteria for Hankel forms of higher weights on Hardy spaces
to be of Schatten-von Neumann class S,, 1 <p < 2.

6. MATRIX-VALUED BERGMAN-TYPE PROJECTIONS

When studying the Schatten-von Neumann properties of the Han-
kel forms in papers [i| and [ii], one needs to work with some types
of matrix-valued Bergman projections. Basically, a matrix-valued
Bergman type projection is given by a matrix-valued kernel consisting
of the classical Bergman kernel multiplied with a tensor product of
the inverse of the Bergman operator. More explicitly, in the case of
the unit ball of C?, a matrix-valued Bergman-type kernel is given, for
a certain nonzero constant c, by

(24) K, (z,w) =c(1 = (z,w)) " ©° B'(z,w) *

where v > d, s nonnegative integer and where ®°B!(z, w) ! is given by
the following: Let z € B and identify the tangent space T, (B) with C¢.
Then the Bergman metric (see [FK1]) at z is given by (B(z,2) "1u,v)
where u,v € C?, and where the Bergman operator B(z,w) acting on
C? (see [L], [Hua] or [HLZ] for the definition of the Bergman operator
on the unit ball of C? or, generally, on bounded symmetric domains)
is given by

B(z,w) = (1—{z,w))(I{ — z Q@ w"),

where z @ w* is the rank one operator given by (z ® w*)(v) = (v, w)z
for v € C¢. Then B'(z,z) is the dual action on the dual space (C%)’
and ®°B?(z, z) is the induced action on ®*(C?)’.

In paper [i] we find LP-boundedness criteria for these matrix-valued
Bergman-type projections, and these results are generalized (in some
weaker version) in paper [iv] to bounded symmetric domains of type I,
i.e., to spaces of m x n-matrices with the matrix norm less than 1. An
essential tool used in these papers is the Forelli-Rudin type estimate
[Ru), [FK2), [EZ.

The Hilbert spaces generated by the kernels given by (24) consist of
holomorphic functions on the unit ball of C? with values in symmetric
tensor products of cotangent spaces. One might instead be interested
in such Hilbert spaces when the functions take values in tensor prod-
ucts of tangent spaces. Such Bergman-type spaces are studied in paper
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[iv] and are closely related to spaces of nearly holomorphic functions
in the sense of Shimura; see [Shl] and [Sh2]. More concretely, in the
case of the unit ball of C?, the spaces of nearly holomorphic functions
can be viewed as images of L?(dy,) under certain orthogonal projec-
tions [Z3], where duqo(z) = (1—|2]?)*dm(z), > —1. For certain non-
negative integers [, the operators D' are intertwining operators from
spaces of nearly holomorphic functions onto vector-valued Bergman-
type spaces, where D = B(z,z)0 is the invariant Cauchy-Riemann

operator, and we have the following diagram (see [PZ] and [EP]);
L2(dpte) N C®(B) —2 L2 (B,0'CY, dpe) N C= (B, 0'CY)

lPI J,PV,I
Y
Al2 (d:ua) L> Li (]B’ QICd’ d:ua)
where P is the orthogonal projection from L?(du,) onto the discrete
part A?(du,) of nearly holomorphic functions, P,; (v =a+d+1) is
the orthogonal projection from L%(B, ®'C?, du,) onto its holomorphic

subspace and the L?-norm (invariant under the action of the Mdbius
group) is given by

I/

a2 = ( /B (0'B(z,2) 7' f(2), £(2)) dua(z>)1/2 :

In paper [iv] we find necessary and sufficient conditions for the orthog-
onal projections P, to be LP-bounded, namely if and only if

a+1 a+1
at1-1 PSS
and we prove that also the Bergman-type projections P,; are L*-
bounded if condition (25) is satisfied. (In both cases we restrict « to
satisfy a > 21 — 1.)

In the same way as for the case of the unit ball of C¢, one can relate
spaces of nearly holomorphic functions with vector-valued Bergman-
type spaces, via powers of the Cauchy-Riemann operator, on bounded
symmetric domains; see [Z4]. But here we do not yet have explicit for-
mulas for the orthogonal projections onto the spaces of nearly holomor-
phic functions as we do have in the case of the unit ball of C¢; see [Z3].
However, a sufficient criterion for the corresponding Bergman-type
projections to be LP-bounded can be found in paper [iv].

(25)
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7. A SMALL SELECTION OF OPEN PROBLEMS

The ball case. The transvectant behaves quite differently in the
Hardy case compared to the Bergman case. Therefore some new tech-
niques are needed to be able to prove boundedness and compactness
properties for bilinear Hankel forms of higher weights on Hardy spaces.
Naturally, one would also like to find the Schatten-von Neumann S,
properties for bilinear Hankel forms of higher weights on Hardy spaces,
for the case 2 < p < o0.

Also, a Kronecker theorem for Hankel forms of higher weights on
weighted Bergman spaces might be interesting to find; see [R3].

Bounded symmetric domains. Hankel forms of higher weights can
be defined on bounded symmetric domains; see [P2] and [PZ]. The
Hilbert-Schmidt Hankel forms have been characterized (see [PZ]) in
terms of the membership for the symbols in certain Hilbert spaces of
vector-valued holomorphic functions. To find their S, characteriza-
tion, we need further results about expansion of reproducing kernels
and Besov space characterization of Bergman spaces. The Hilbert
spaces of vector-valued functions are often of considerable interest in
the theory of Hankel operators and forms and in the analysis of sym-
metric spaces; see [DZ1] and [DZ2].

Multilinear Hankel forms. Schatten-von Neumann properties of
multilinear Hankel forms of higher weights on weighted Bergman spaces
have been studied in [Ro] in the one dimensional case. Naturally one
would like to generalize these results to the several variable case.

Nearly holomorphic functions. The spaces of nearly holomorphic
functions studied in the paper [iv] can also be defined on bounded
symmetric domains; see [Z4]. Here one would like to find a formula
for the reproducing kernels for these spaces; see [FK1]. It would also
be interesting to generalize the results of paper [iv] to general bounded
symmetric domains.

REFERENCES

[AC] A. Aleman, O. Constantin, Hankel operators on Bergman spaces and simi-
larity to contractions, Int. Math. Res. Not. 2004, no. 35, 1785-1801.

[AFJP] J. Arazy, S. D. Fisher, S. Janson, J. Peetre, Membership of Hankel oper-
ators on the ball in unitary ideals, J. London Math. Soc. (2), 43 (1991), no.
3, 485-508.



HANKEL FORMS OF HIGHER WEIGHTS 11

[AFP] J. Arazy, S. D. Fisher and J. Peetre, Hankel operators on weighted Bergman
spaces, Amer. J. Math. 110 (1988), 989-1054.

[EP] M. Englis, J. Peetre, Covariant Cauchy-Riemann operators and higher Lapla-
cians on Kdhler manifolds, J. Reine Angew. Math., 478 (1996), 17-56.

[EZ] M. Englis, G. Zhang, On the Faraut-Kordnyi hypergeometric functions in
rank two, Ann. Inst. Fourier (Grenoble), 54 (2004), no. 6, 1855-1875 (2005).

[FK1] J. Faraut and A. Koranyi, Analysis on symmetric cones, Clarendon Press,
1994.

[FK2] J. Faraut, A. Koranyi, Function spaces and reproducing kernels on bounded
symmetric domains, J. Funct. Anal., 88 (1990), no. 1, 64-89.

[FeldR] M. Feldman, R. Rochberg, Singular value estimates for commutators and
Hankel operators on the unit ball and the Heisenberg group, Analysis and par-
tial differential equations, 121-159, Lecture Notes in Pure and Appl. Math.,
122, Dekker, New York, 1990.

[FergR] S. Ferguson and R. Rochberg, Higher order Hilbert-Schmidt Hankel forms
and tensors of analytic kernels, Math. Scand., 96 (2005), no. 1, 117-146.

[Hua] L. K. Hua, Harmonic analysis of functions of several complex variables,
Peking, 1958; Russian translation Moscow 1959.

[HKZ] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces,
Springer-Verlag, New York-Berlin-Heidelberg, 2000.

[HLZ] S. Hwang, Y. Liu and G. Zhang, Hilbert spaces of tensor-valued holomorphic
functions on the unit ball of C™, Pacific J. Math., 214 (2004), no. 2, 303-322.

[J] S. Janson, Hankel operators between weighted Bergman spaces, Ark. Mat., 26
(1988), 205-219.

[JP] S. Janson and J. Peetre, A new generalization of Hankel operators (the case
of higher weights), Math. Nachr., 132 (1987), 313-328.

[JPR] S. Janson, J. Peetre and R. Rochberg, Hankel forms and the Fock space,
Revista Mat. Iberoamer., 3 (1986), 61-138.

[L] O. Loos, Bounded symmetric domains and Jordan pairs, The University of
California at Irvine, 1977.

[AZ1] B. Orsted, G. Zhang, Reproducing kernels and composition series for spaces
of vector-valued holomorphic functions on tube domains, J. Funct. Anal., 124
(1994), no. 1, 181-204.

[@Z2] B. Qrsted, G. Zhang, Reproducing kernels and composition series for spaces
of vector-valued holomorphic functions, Pacific J. Math., 171 (1995), no. 2,
493-510.

[P1] J. Peetre, Hankel kernels of higher weight for the ball, Nagoya Math. J., 130
(1993), 183-192.

[P2] J. Peetre, Hankel forms of arbitrary weight over a symmetric domain via the
transvectant, Rocky Mountain J. Math., 24 (1994), no. 3, 1065-1085.

[PZ] J. Peetre, G. Zhang, Invariant Cauchy-Riemann operators and realization
of relative discrete series of line bundles over the unit ball of C*, Michigan
Math. J., 45 (1998), 387-397.

[Pel] V. V. Peller, Nuclearity of Hankel operators, LOMI Preprints E-I-79,
Leningrad, (1979).



12 MARCUS SUNDHALL

[Pe2] V. V. Peller, Smooth Hankel operators and their applications (the ideals Sp,
Besov classes, and random processes), Dokl. Akad. Nauk SSSR, 252 (1980),
43-48. English transl.: Soviet Math. Dokl., 21, (1980), 683-688.

[Pe3] V. V. Peller, Hankel operators of class S, and their applications (rational
approzimation, Gaussian processes, the problem of magjorizing operators),
Mat. Sbornik, 41 (1980), 538-581. English transl.: Math. USSR Sbornik,
41 (1982), 443-479.

[Ped] V. V. Peller, Vectorial Hankel operators, commutators and related opera-
tors of the Schatten-von Neumann class 7yp, Integral Eq. Operator Theory, 5
(1982), no. 2, 244-272.

[Pe5] V. V. Peller, Hankel operators and their applications, Springer-Verlag, 2002.

[PZ] L. Peng and G. Zhang, Tensor product of holomorphic representations and
bilinear differential operators, J. Funct. Anal., 210 (2004), no. 1, 171-192.

[R1] R. Rochberg, Trace ideal criteria for Hankel operators and commutators,
Indiana Univ. Math. J., 31 (1982), no. 6, 913-925.

[R2] R. Rochberg, Decomposition theorems for Bergman spaces and their appli-
cations, QOperators and function theory (Proceedings, Lancaster, 1984), 225—
277, Reidel, Dordrecht, (1985).

[R3] R. Rochberg, A Kronecker theorem for higher order Hankel forms, Proc.
Amer. Math. Soc., 123 (1995), no. 10, 3113-3118.

[Ro] H. Rosengren, Multilinear Hankel forms of higher order and orthogonal poly-
nomials, Math. Scand., 82 (1998), 53-88.

[Ru] W. Rudin, Function theory in the unit ball of C", Springer-Verlag, 1980.

[Se] S. Semmes, Trace ideal criteria for Hankel operators, and applications to
Besov spaces, Integral Eq. Operator Theory, 7 (1984), no. 2, 241-281.

[Shl] G. Shimura, On a class of nearly holomorphic automorphic forms, Ann.
Math., 123-2 (1986), 347-406.

[Sh2] G. Shimura, Nearly holomorphic functions on hermitian symmetric spaces,
Math. Ann., 278 (1987), 1-28.

[S] B. Simon, Trace ideals and their applications, Cambridge University Press,
Cambridge-London-New York-Melbourne, 1979.

[W] R. Wallstén, Hankel operators between weighted Bergman spaces in the ball,
Ark. Mat., 28 (1990), no. 1, 183-192.

[Z1] G. Zhang, Hankel operators on Hardy spaces and Schatten classes. A Chi-
nese summary appears in Chinese Ann. Math. Ser. A, 12 (1991), no. 3, 522.
Chinese Ann. Math. Ser. B, 12 (1991), no. 3, 282-294.

[Z2] G.Zhang, Tensor products of weighted Bergman spaces and invariant Ha-plitz
operators, Math. Scand., 71 (1992), no. 1, 85-95.

[Z3] G. Zhang, A weighted Plancherel formula. II. The case of the ball, Studia
Math., 102 (1992), no. 2, 103-120

[Z4] G. Zhang, Nearly holomorphic functions and relative discrete series of
weighted L?-spaces on bounded symmetric domains, J. Math. Kyoto Univ.
(JMKYAZ), 42-2 (2002), 207-221.

[Zh] K. Zhu, Operator theory in function spaces, Marcel Dekker, Inc., New York,
1990.



Paper I






SCHATTEN-VON NEUMANN PROPERTIES OF
BILINEAR HANKEL FORMS OF HIGHER WEIGHTS

MARCUS SUNDHALL

ABSTRACT. Bilinear Hankel forms of higher weights on weighted
Bergman spaces on the unit ball of C? were introduced by Peetre.
Each Hankel form corresponds to a vector-valued holomorphic
function, called the symbol of the form. In this paper we char-
acterize bounded, compact and Schatten-von Neumann S, class
(2 < p < o0) Hankel forms in terms of the membership of the
symbols in certain Besov spaces.

1. INTRODUCTION AND MAIN RESULTS

1.1. Introduction. Hankel operators on the unit disk have been stud-
ied extensively and have found many applications, see [Pel], [Zh]
and [JPR]. One of the central problems is to study the characteri-
zation of their Schatten-von Neumann properties. We recall briefly
the definition of Hankel operators on a Hardy space on the unit disc.
Consider the Hardy space H?(T) C L*(T) of holomorphic functions,
where T'= {z € C : |z| = 1}. Let P : L*(T) — H?(T) be the Szegd
projection. The Hankel operator H ¢ with holomorphic symbol f is
defined by ﬁfg = (I — P)(fg), g € H*(T). It can also be viewed (up
to a rank one operator) as a bilinear form H; on H?*(T'), namely

Hilgr2) = | 1(2)91(2)92(2) dor(z) .

Their Schatten-von Neumann properties were studied first by Peller,
see [Pe2]. It is proved there that H; is of Schatten-von Neumann class
if and only if f is in a certain Besov space. The corresponding prob-
lem for Hankel forms on a Bergman space has been studied in [JPR]
and [R2]. It was realized later that the Hilbert-Schmidt Hankel forms
on a weighted Bergman space can be viewed as the first irreducible

Date: August 13, 2006.
2000 Mathematics Subject Classification. 32A25, 32A36, 32A37, 47B32, 47B35.
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component in the irreducible decomposition of the tensor product of
two copies of the Bergman spaces, and subsequently Janson and Pee-
tre [JP] introduced the Hankel forms of higher weights on Bergman
spaces on the unit disc; see also [Ro|] where multilinear Hankel forms
are studied.

A natural problem is to consider Hankel forms on the unit ball in
C?. In [P1] Peetre introduced Hankel forms on the unit ball. As in
the case of the unit disk, the spaces of Hankel forms of higher weights
are explicit characterizations of irreducible components in the tensor
product of Bergman spaces under the M&bius group, see [JP], [P1]
and [PZ]. However their Schatten-von Neumann properties have not
been studied so far. In this paper we will address this problem.

The Hilbert and Banach spaces of symbols appearing in this paper
are closely related to the quotients of function modules studied in
[FR], and the expansion of the reproducing kernels of some similar
spaces have been studied in [HLZ]. It is interesting to consider those
problems in our context.

The paper is arranged in the following manner. In Section 1 we
introduce the Hankel forms and state the main results in the form
of three theorems. Section 2 consists of preliminary results. Section
3 is devoted to certain Banach spaces of vector-valued holomorphic
functions. Section 4 gives an equivalent description for certain Besov
spaces. The proofs of Theorem 1.1(a) and Theorem 1.1(b) are given in
Section 5 and Section 6 respectively. The proof of Theorem 1.2 is given
in Section 6. In Section 7 we prove some LP-boundedness properties
of certain Bergman-type projections, which are used in Section 8 to
prove Theorem 1.3.

1.2. Notation. Let H; and H, be Hilbert spaces and let T': H; — H,
be a linear operator. Define the singular numbers

s$n(T) = inf {||T — K|| : rank(K) <n},

n > 0. If T is compact, these singular numbers are equal to the
eigenvalues of |T| = (T*T)"? (counted with multiplicities). We denote
by S, the ideal of operators for which {s,(T)},>0 € I?, 0 < p < o0,
see [S]. We remark that S is the class of bounded operators. (The
compact operators correspond to ¢y, not to (*.)

Let dm denote the Lebesgue measure on the unit ball B C C? and
let di(z) be the measure (1 — |22)7%tdm(z). For d < v < oo let
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du,(z) be the measure c, (1 — |z|?)” di(z), where ¢, is chosen such that

/Bdbu(Z) =1,

i.e., ¢, = [(v)/(mT'(v — d)). The closed subspace of all holomorphic
functions in L?(di,) is denoted by L2(di,) and is called a weighted
Bergman space. Note that the space LZ(dt,) has a reproducing kernel
K,(w) = (1 — (w,z))"", that is,

1) f(2) = (f.K.), = / £ () Ko@) diy (w)

where f € L%(di,) and z € B.
Denote by B(z,w) the Bergman operator on V = C?¢ as in [L],
namely

(2) B(z,w) = (1= (z,w))(I -z @ w"),

where z ® w* stands for the rank one operator given by (z ® w*)(v) =
(v,w)z. Viewed as a matrix acting on column vectors it is

(3) B(z,w) = (1 — {(z,w))(I — zw"),

where w' is the transpose of w. B(z,w) is holomorphic in z and
antiholomorphic in w.

The Bergman metric at z € B, when we identify the tangent space
with V', is (B(z, z)"tu,v) for u,v € V. We note that

(@) Blzyw)™ = (1= (2 w) (1~ (2 w))] + 2 @ w")

Let B'(z,w) denote the dual of B(z,w) acting on the dual space V'
of V. When acting on a vector v' € V' it is

(5) B (z,w)v' = (1 — (z,w))v'(I — zw") .

Actually we may identify B*(z,w) with (1 — (z, w))(I — wz").

For a nonnegative integer s, let ®°V’ be the tensor product of s
factors V' and let @V’ = C. The space ®°V' is equipped with a
natural Hermitian inner product induced by that of V', so that

<U1®"'®U5aw1®"‘®ws> = H(Ujawj>

j=1

where v, w; € V', j=1,...,s.
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Let {u1,...,uq} CV'. Denote by v!' ©@u? @ ---© vl the sum

i)
%ZW(UN@"'®U1®"'®Ud®"'®ud)
meS 11 factors 1q factors

where i1 +...+ig =35, 5 = S;/(S;, x-+-xS;,), Ss is the permutation
group acting on the tensor by permutating the factors in the tensor
and S;,, ..., 95;, are the subgroups permutating the first ¢;, the second
19, . the last 14 elements respectively.

Let {el, ...,eq} be a basis for V'. Denote by ®*V' the subspace of
symmetric tensors of length s

{ Z Vel @eR @ - @ed 1 i=(i,...,ig) EN' | v, €C }
i1+ tig=s

Also, denote by ®°B*(z, z) the operator on ®°*V"' induced by the action

of B'(z,z) on V', where @°B!(z,2) = I.

1.3. Hankel forms and main results. The transvectant 7; defined
on L?(d,) ® L?(du,) (introduced in [P1], see also [P2] and [PZ]) is
given by

(6) T(f.9)(2) = (2) (_1)s_k3 f(2) ® 0 *g(2)

p @) (V) s—k

where

Z Ojy -+ 05, (2) dzj, @ -+ @ dzj, € OV

J1--Js=1

and (v), =v(v+1)---(v+k—1), (v)o = 1, is the Pochammer symbol.
The Hankel bilinear form of weight s, Hy., on L2(du,) ® L2(du,) is
defined by

(7) Hi(f,9) /<® B'(2,2)T,(f,9)(2), F(2)) dis(2)

where F' : B — ®°V’ is holomorphic. We call F' the symbol of the
corresponding Hankel form. We remark that

1 (,0) = [ FE9FE) dut).
This is the classical Hankel form studied in [JPR].
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With the form H}, one can associate the operator A} defined by

Hy(f,9) = (f, Ar9),

as in [JPR]. Notice that A% is an anti-linear operator on L2(d,). To
get a linear operator one combines A} with a conjugation, i.e., one
instead considers the operator Z; : g — A%g. We say that Hj is
of Schatten-von Neumann class Sp, for 0 < p < oo, if and only if
Ap 2 L2(du,) — L2(du,) is of class S,.

Finally we present the main results, of this paper, in the form of
three theorems where we let s be a nonnegative integer.

Theorem 1.1. Let F : B — ©*V' be a holomorphic function.
(a) Hj is bounded if and only if

sup ((1 - [2*) @ B!(z,2)F(2), F(2)) < +o0,

z2€B
(b) H§ is compact if and only if
((1 12/ ®° B'(2,2)F(2),F(z)) -0 as |z| /1.
Theorem 1.2. Hj, is of Hilbert-Schmidt class Sy if and only if

/( 2P @ Bl(z,2)F(2), F(2)) du(z) < +o0.
Theorem 1.3. H}, is of class S, for 2 < p < oo, if and only if

/< —[2]*)* ®° B'(2,2)F(2), F(z)>p/2 di(z) < +00.

2. PRELIMINARIES

2.1. G = Aut(B): The automorphisms of B. We shall need some

results on the group G = Aut(B) of biholomorphic mappings of B.
Let P, be the orthogonal projection of C¢ into Cz and let Q, =

I — P,. Put s, = (1 —[z|?)"/? and define a linear fractional mapping

v, on B by

z— P,w — s,Q,w

8 L(w) =

® pelw) =

If g € G and g(z) = 0, then there is a unique unitary operator U :

C? — C? such that

g=Uyp,.
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Sometimes g(z) will be written as gz. Define the complex Jacobian,
Jy, by Jy(w) = det(¢'(w)). Then we have Jy(w) = detU - J,_ (w).
Lemma 2.1 gives the differential of the Mdobius transformations. It
can be proved by similar computations as in the proof of Theorem
2.2.2 in [Ru].

Lemma 2.1. Let @, be the linear fractional mapping (8) on B. Then
' (w) = —52P, — 5,Q, + s,({w, 2) —w ® z*)
o (1= (w,2))? |
By computating the determinant of ¢/,(w) we get the next proposi-

tion. It is a refinement of Theorem 2.2.6 in [Ru|, which we state as a
corollary.

Proposition 2.2. Let ¢, be the linear fractional mapping (8) on B.

Then -
Jotw) =0 (=75 )

Corollary 2.3. Let g € G. Then the real Jacobian Jg 4 of g is
1— ‘Z|2 d+1
_ 2 _ _
JR:Q(w) - ‘Jg(w)‘ (‘1 - (w,z>|2)

We need also the Forelli-Rudin estimate (see Proposition 1.4.10
in [Rul).

Lemma 2.4. Let v > a > d. Then

M o(w — |z2)"(—a)
é|1—<z,w>|vd( ) < O(1— |20

2.2. Some elementary properties of the Bergman operator.
Let ¢ € G. Combining Proposition IX.1.1 with Proposition IX.2.6
in [FK] we get

B(z,w)™" = (dg(w))" B(gz, gw)~"dg(2) .
This yields
9) B'(gz, gw) = (dg(w)")" B*(z,w)dg(2)".

Now we consider another property of the Bergman operator. It
holds that

(10) B'(z,2) = (1= |2/")Qz + (1 = [2*)*P.
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Thus
(11) (1= [2P)°T < B'(2,2) < (1= |2]*)];

in particular B'(z,z) is a positive operator. Actually ®°B!(z,z) is
positive on ®°V'. To prove this we need an elementary observation.

Lemma 2.5. Let H, and Hy be Hilbert spaces. Let A and B be positive
operators on Hy and Hy respectively. Then the operator A ® B is
positive on the induced Hilbert space Hi @ Hs.

Remark 2.6. Since B'(z,z) is positive on V' we have now that
®°B!(z, z) is positive for s = 0,1,2,- - -

2.3. The norm of 2® in the Bergman space L?(d.,). Denote by
a = (a1, s, ...,04) the ordered d-tuples of nonnegative integers «;
and denote |a| = oy + - - - + ay. Then the polynomials {z*} forms an
orthogonal basis for L?(dt,) and

041!&2! Tt a/d!

(12) [J272 = [ Je s () =
B (¥)ial

where (V) =v(v+1)---(v+|af = 1) =T (v + |af)/T(v), (v)o =1,
is the Pochammer symbol.

2.4. Some remarks on boundedness, compactness and S,. Con-
sider the bilinear Hankel form Hj with symbol F'. First observe that
the operator norm of the corresponding operator A; equals
|Hpl| = sup  |Hg(f,9)l.
|£lle=llgllv=1

If A, is compact and {g,}2%, C L2(dv,), with ||ga|l, = 1, gn — 0
weakly as n — oo, then there is a sequence {c, }°°, of positive numbers
such that

[Hp(f, 9n)| < cnl 1]

for all n. Also ¢, — 0 as n — oco. On the other hand, if {4,}2, is
a sequence of compact bilinear forms on L2(di,) ® L2(du,) such that
A, — Hj in operator norm, then Hj is compact. Also Hj is of
Hilbert-Schmidt class S» if and only if

1HE 5, = ZZIH €as€p)]” < 00

la[=0B|=0
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where e, = 2%/||2%||,. In addition, if A is a bilinear form on L?(ds,) ®
L%(du,) of Schatten-von Neumann class S,, 1 < p < oo, then A is
compact.

3. THE BANACH SPACE HY |

Let LV, for 1 < p < oo, be the space of measurable functions

S :B — ®*V' such that

vsp = (/1}3 <(1 — 2P ®° Bt(Z,Z)S(Z),S(Z)>p/2 dL(Z)) v < 00.

Then L7 is a Banach space. The closed subspace of holomorphic
functions in L? _ is denoted by H? ..

15

3.1. Transformation properties of Hj. Define an action 7, of G
on L2(du,) by

(13) T g€G, fw)— flg T w) (Jg_l(w))”/(d+1) )

Remark 3.1. Let z € B. Then R(1 — (w, 2)) > (1 — |2]) > 0 for all
w € B so that (1 — (w, 2))® can be defined as a holomorphic function
in w for any real . Thus for any g € G, writing ¢ = Uy, where
U € U(d) and ¢, is the linear fractional mapping (8), we let, according
to Proposition 2.2,

(g1 ()7 = (~1*(1 = )2 aet )74 - (1 = (w, 2))
which then defines a holomorphic function in w.

Actually 7, : ¢ — m,(g) is a projective unitary representation on

L;(duv,), that s ||, (9) f[|, = || f||, and 7, (9192) = C(g1, g2)m, (g1) 7 (92)
for some constant C(gy, g2). This yields the following equality of two

operator norms
(14) [1HF (m(9) (), o (9) () || = [| HE||-
Define an action 7,,, on M, by
(15)
Tust g €G, S(z) = (& (dg(2)") Slg™2) (T (2)) 4
Then
(16) Hp(my(g9)f1,m0(9) f2) = H3(f1, f2)
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where S(z) = 7, 5(97")F(z), by Lemma 3.2 below. Define an action
m,(-) ® m,(-) on Lﬁ(db,,) &® Lz(dl,,,) by

(17) mem: g€ G, (fi(w), fo(wr))
— filg™ wy) f2(g™ wo) (Jg—l(wl))u/(d+1) (Jg—l(wg))y/(d+1) ‘

The following invariance property of the transvectant is proved in [P1],
see also [PZ].

Lemma 3.2. Let m,, and 7,(-) ® m,(-) be the representations given
by (15) and (17) respectively. Let g € G. Then

Ts (m.(9) @ m,(9)) (f1, f2) = m,s(9) T (f1, f2) -

Remark 3.3. It follows from Theorem 4.1 that 7, takes values in
H. . In fact, Theorem 4.1 shows that 7, : L7(dw,) ® L2(dw,) — H,
is a bounded bilinear form.

Remark 3.4. As a consequence of Lemma 3.2 we have (16), namely

1:((ml9) 8 7(0) (1 1)

(
= (Ts (m(9) @ m(9)) (f1, f2), Fy 0
= (Ms(9)Ts(f1, f2), F), 5
= < (flaf2) 7Tus( )F>,,,S’2
which gives the result if we observe that S =, (g *)F.
3.2. Reproducing kernel of the space #,,.

Lemma 3.5. The reproducing kernel of H?
stant,

v.s 1S, up to a nonzero con-

K, s(z,w) = (1 - (z,w))"* ®° (Bt(zaw))_l

Namely, for any f € H2, and any v € O°V' it holds that

v,s

(f(2),0) = Ky (- 2)0)u,s,2
= /< — [w]*)* ®° B (w,w)f(w), K, (w, 2)v) di(w).

Proof. For any v € ®*V' we prove that f — (f(z),v) is a bounded
functional on #H;, .. It follows then by Riesz lemma that there exists a
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function R(z,w) : @*V' — @V’ such that (f(z),v) = (f, R(-, 2)v), s 2-
Let f € M2, and let z € B. Since z — || f(2)|| is subharmonic then

IF () < Cd,r,u/ [1f (w)]l deay (w)

z+rB
so by Jensen’s inequality

1F()I1” < Cé,r,u/ 1f (w)|I* dezy (w)
z+rB

if z+7rB C B. On the other hand, there is a constant d, > 0 such
that d,I < ®°B'(w,w) for all w € z + rB. Hence

IF&)I” < Dd,r,u/ (1= 21" ®° B'(w,w) f(w), f(w)) di(w)

z+rB

so that f — (f(z),v) is bounded. Then the reproducing property at
z = ( reads as

<f(0)’ U> = <f()’ R('7 0)7))1/,5,2-

On the other hand, the space of ®*V’'-valued polynomials is dense in

H;, and (p(-),v)y,s2 = 0 for all homogeneous polynomials of degree

> 1. Thus if
F(2) =) fu(2)
m=0

where f,, are homogeneous polynomials of degree m, then

<f()’ v)l/,s,2 = <f0()’ U)u,s,2 = <f(0); U)u,s,2 = Cl<f(0), U) .
Therefore

(FO) R 000 = (£(0),0) = 5 (), Vs

so that R(-,0) = cI with ¢ # 0. Next we prove that R(z,w) transforms
under G as follows

(18) R(gz, gw) = (®°dg(2)") " R(z,w) (®° (dg(w)")")
(g2 (T, (w)

where g € G. Indeed, for all F' € Hf’s

()0 = [ (0 PP @ B'w,u)F(w), Rw, 20 (o)

-1

>—2u/(d+1)
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from which it follows that for all f € L2(du,)

(19) <Jg(z)Q”/(dH)®5dg(z)tf(gz),v> = /B(Hs(w),R(w,z)w du(w),

where Hy(w) = (1 — |w|?)? ®* Bt(w, w)J,(w)*/) @ dg(w)! f(gw).
On the other hand, it follows from (9) that

<f<gz>, (%@)"“" & (dg(20)° >

- [ (& 8w

R(w, g2) (Jg(z)>2u/(d+1) ( ) > dugy, (w
029

N / <®5Bt(gw,gw)f(gw)aR(gw’gz) (% (Z>)2y/(d+l * (dg(z )) >

Coy

S[CAT G

N /B <Hs(w), ®"dg(w)'R(gw, 92) ®" (dg(2)")" v>

(T2 (T, (w)

2w/(d+1)
) de(w) .

Comparing this with (19) we get (18). Now both R(z,w)/c and
K, s(z,w) satisfy the same transformation rule (18) and are identity

operator at z = 0. Thus they are the same for all z,w € B. This
completes the proof of the lemma. O

4. THE BESOV SPACE B,

Let s =1,2,3,... and define
B, s = { f : B — C holomorphic ,

[ (@B 62720 10)) dufe) < oo}
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The space B, ; is called a Besov space. It is a Hilbert space, equipped
with the inner product (-,), s given by

(£, 905 = F0)9(0) + - +((0“ ") (0), (8" Vg) (0)) +
+ /B<®5Bt(z,z)asf(z),8sg(z)> di,(2).

Actually B, ; = L2(du,), namely they are equal as sets and their norms
are equivalent, as is shown below.

Theorem 4.1. There exist constants C, s, D, s > 0 such that

CU,s : ||f||v < ||f||U,s < Du,s : ||f||u
for all holomorphic f : B — C.

We need first some elementary lemmas.

Lemma 4.2. Let f,, and f,, be homogeneous holomorphic polynomials
of degree m and n respectively, with m # n. Then (fm, fa), , = 0.

Proof. Let 0 < # < 2m. Then e # 1. Since fn is a homogeneous
polynomial of degree m we have f,,(e?z) = e™?f, (z). Given m and
n with m # n, it is enough to prove that

(20) <fma f’n)y,s = ei(m_n)e <fm: fn)u,s

The case s = 0 follows directly from the homogeneity. Now consider
the case s = 1. It is easy to see that B'(z,2) = B'(e "z, %2). By
the chain rule and homogeneity it follows that

(0fm)(”w) = &0 fin (")) (w) = €D (D fyn) (w)
so that the equation (20) holds for s = 1. The cases s = 2,3,...

now follow in the same way if we first notice that (0°fn)(e?w) =
e m=9)9(9s f,,)(w). This completes the proof. O

We recall now a result from Rudin (Theorem 12.2.8 in [Ru]). Con-
sider the space P,, of all homogeneous holomorphic polynomials of
degree m on B with the natural group action of the unitary group
U(d):

(mgf)(2) = f(9™"2), [E€Pm, gel(d).
Then (P, m,) is a unitary irreducible representation of U(d). As a
consequence of Schur’s lemma (Theorem 1.10 in [BD]) we have the
following lemma.
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Lemma 4.3. Let m be a nonnegative integer. Then there exists a
positive constant C, s, such that

HmeI/,S = Cu,s,m : ||fm||u
for all f, € Ppy. .

Remark 4.4. Actually, this lemma is a special case of the result in
exercise 1.16.7 in [BD].

Now we can prove the norm-equivalence of B, s and L2(ds,).

Proof of Theorem 4.1. Tt is enough to prove the theorem for f with

f(0)=---=0"1f(0) = 0. Write f =>_°_ fn, where f,, € P,,. By
Lemma 4.2 we have that {f,,}2°_, is an orthogonal set in both L2(ds,)

and B, ;. Also, by Lemma 4.3 we have || f||s,s = Cu,s,m * || fm ||, where
Cy,s,m does not depended on f,, of degree m. We compute C, ;,, and
prove that there exist positive constants C, s and D, ; such that

(21) Cu,s < CI/,S,m < DI/,S

for all m. We may assume that m > s. Take f,,(2) = 2*. We shall
calculate

Il = [ (8B 200 12,0 F(2)) i)
First observe that
(®°B'(2,2)0" fm(2), 0" fm(2))
= (®°B'(z,2) (0}2]") ®° dz1, (0 2]") ®° dz1)
= (B'(2,2)(8;20")dz, (827 dz) - (BY(2, 2)dz, dz )™

['(m+1)2
I'(m—s+1)?

(1= [2)°(1 = |21[?)% ]2 2™,
We have

c, / 211 — (20 2) (1 — 22 duz)
B

- /| Aoy
21|1<1

. 1—|z12 = [Z12) T4 Ldm(2") | dm(z
(/|\/—|( al? - 2P <>)<)
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and

/| | m(l — |Z1‘2 . |ZI|2)V+S_d_1dm(Z') — C,Ij . (1 . |Zl‘2)u+s_2-
< —|21

Since

/| » 21 201 — |212)* (1 = |21 2)* 2 dm(z1)
21|1<

:C,,.F(m—s+1)1“(1/+2s—1)

Fm+s+v)

we get
L(m+1)T(v +2s — 1)
'm—s+1DI'(m+s+v)’

| fm
On the other hand

2 _
u,s_a'/'

o _ D(im+1I'(v)
[ fmlls = “TTm+tv)
so that
o fmllZs T+ +2s - D(m+v)

S fwllp T Tm—s+1)0(m+ s+ 1)) |
For m > s we have
F(m+1)C(m+v) m(m—1)---(m—s+1)
F'm—-—s+1)I'(m+s+v) (m+s+v—1)---(m+v)
(=) (=)

L+ =) - 1+ 3)

so that

=) (1o L(m+1)0(m +v)
e T Q) (14 2) ST st Dl s )

So (21) follows by putting

_ Jay by T(v+25-1)
Cor ™ \/ rw)

and

 Ja,-T(v+25—1)
I core
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5. BOUNDEDNESS

5.1. The Banach space H,. Denote by L7, the space of functions
F :B — ©*V' such that

1F |50 = sup (1 — |2?)* @ B(z, 2) F(2), F(2))"/* < 00
z€B
If we write ||F||,,5,00 = Sup,cp ||S(2)||w where
IS@lw = || (1 = 1) & B'(z,2) " F(2)|

and W = ©°*V’, then L;?, is a Banach space since it is easy to see that,
if S, :B—->W satlsﬁes

Z sup ||, (2)||w < 00

nleB

then there is a S : B — W with sup,. ||S(2)||w < oo such that

- Z Sn(2)

The closed subspace of holomorphic functions in L}?

[e's)
Hu,s

—0 as N — .
w

sup
z€B

is denoted by

S

5.2. Proof of Theorem 1.1(a).

Proof of sufficiency. The Hankel form in (7) can be written as a sum
of certain integrals, we estimate each one, as follows,

/B (1= 22> @ B(z,2)8" f(2) ® 8" *g(2), F(2)) du(z)| <
172 du,(2)

Cy

- / (8 B! (2, 2)0* f(2) ® 0"*g(2), 0* () ® 9 *g(2))
and

<®SBt(z, 2)0F f(2) ® 0° *g(2), 0" f(2) ® 0° *g >
<®kBt(z,z)8kf(z) z> <®5 *Bt(z, 2)6 F9(2),0°Fg(2 )>
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so that
| / — P 0 Bl(z, 200t () © (), F(2)) dif2)
N Es,00 - vk vs [ F 500 - | fI]w - Vgl
where the last inequality follows from Theorem 4.1. O

For notational convenience we denote
(u,v), = (®°B'(z,2z)u,v)
where u,v € ®°V’, and it defines an inner product on @*V".

Proof of necessity. Let v € @*V'. By Lemma 3.5 we have

= c/< — [w*)* ®° B (w,w)F(w),v) di(w)
We may write
U:Z/Uieil @...@efid
li|=s
where i = (i1,...,1q) and v; € C. Take

w)=Zwil---wfj-vi and g(w)=1.
il=

Then f,g € L%(dw,). By (6),
Ts(f, 9)(w)

2\ ) )o
where
Zas Zs' v; e @ezd—s'v
so that _'
(f,9)(w) 0.
Hence
(22) (FO). ) = EW2 - 5 Hi ()
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so that

(23)  [(F(0),0)]" < Cusl

Hy[PIAIZNgI < CusllHEIP o]

Define
S(w) = (M () F) (w) = (&° ¢ (w)) F(i:(w)) (Jo (w)) ™/
Then S : B — ®°V"' is holomorphic. Also by equations (14) and (16)
|1Hs|| = [[HR|| < oo,
so by (23) with F replaced by S
(24) (S(0),0)* < CHEIP[l0]* = ClI |||l

Now
S(0) = (®°¢,(0)") F(2) (J,. (0)/1) .

Since —¢',(0)* = s2P; + 5,Q, > 0 then (—¢(0)")* = B'(z,z) and by

the uniqueness of positive square root Bf(z,2)'/? = —¢ (0)!. Thus
(®th(Z, Z))I/Q _ ®th(z’ 2)1/2
= (-1)"®" ¢,(0)".
Hence
5(0) = p(1 = o) (&°B'(2,2)) " F(2),

where |p| = 1, so that (24) becomes

2

‘<F(z), (®°B'(z, z))l/2 v>

< ClHP (@B 2) o (1= 1)

Observe that
<F(z), (®°B'(z, z))l/2 v> = <F(z), (®°B'(z, z))_1/211>

so the result follows from Riesz lemma, for the inner product (-,-),. O

¥4
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6. COMPACTNESS AND HILBERT-SCHMIDT PROPERTIES

6.1. Compactness. In this subsection we prove Theorem 1.1(b).

Remark 6.1. Let {e1,...,eq} be a basis for V'. Then we can write
F(z) = Z Fi(2) el @0l
i1 4etig=s
where i = (i1,...,74) and F; : B — C are holomorphic. Also

Fi(z) =90 (2)

where pg,? are homogeneous holomorphic polynomials of degree m.

To prove the sufficiency of Theorem 1.1(b) we need the following
result.

Lemma 6.2. Let F': B — ©*V' be holomorphic with the property
(1 =1[e[)" @ B'(2,2)F(2), F(2)) = 0 if || /1.

Let € > 0 be given. Then there exists a number r' with 0 < r' <1 and
a natural number N such that

|1F' = Py llvs00 <€
where
N . .
Py(z) = Z ZP%)(T'Z) el @ Qe
|i|=s m=0
Remark 6.3. Remember that we have already defined
1Fllsoo = sup (1 = [2[)* &" B'(z,2)F(2), F(2))""”
z€B

for holomorphic F' : B — @*V'.

Remark 6.4. Let H; and H, be Hilbert spaces and let A, B; : H; —
H, and Ay, By : H, — H, be positive operators. Then

(25)

(A1—B1)®(As+Bs)+(A14+B1)®(A2—Bs) =2 (A1 ® Ao — B1 @ By) .
Thus it follows from (25) that
(26) A > B , Ay >By, — A ®A; > B ®B,.
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Proof of Lemma 6.2. Let € > 0 be given. Then there exists 0 < ry < 1
such that

'roi1|lzl|)<1 ((1—|2")* ®° B'(z,2)F(z2),F(z)) < ;—Z
Define F,(z) = F(rz) where 0 < r < 1. Since P,; = P; then
Bi(rz,rz) = (1 — r*|z|))(I — r*|2]*P,;) > B'(z,2)
for all 0 < r < 1. By (26) it then follows that
®°*Bt(rz,rz) > ®°B'(z, 2)

for all 0 < r < 1. Hence,

((1=[2[)* ®" B'(2,2) Fi(2), Fy ()
<{(1—|rz[*)* ® BY(rz,rz)F(rz), F(rz)) .

Then it follows from the inequalities

(®"B'(2,2) (F(2) — F(2)), F(2) — Fo(2))
<{(®°B'(z,2)F(2), F(2)) + (®°B"(2, 2)F,(z), F,(2))
+2 |<®5Bt(z, 2)F(2), Fr(z)ﬂ

and

(&*B'(z,2)F(2), Fr(2))]
< (®°B(z,2)F(2), F(2)) " (2°B!(2,2) F,(2), Fo(2))"/*

that, if 1 >r > =2rg/(1+ 1) and Ry = (1 +19)/2,
sup (L= [2*)* @ B'(2,2) (F(2) = F:(2)), F(2) = F;(2)) < %,

Ro<|z|<1
since, if ry <r <1,

sup <(1 —[2*)* ®* B'(2,2)F(rz), F(TZ)>
Ro<|z|<1
< sup  ((1—|rz[*)” @ B'(rz,rz)F(rz), F(rz))
Ror<|rz|<T
2
< sup ((1—1rz[")” ®° B'(rz,rz)F(rz), F(rz)) < —
ro<|rz|<l 32
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As F, — F uniformly, » — 1, on every compact subset of B, there is
a number ro such that if 7y < r < 1, then

82

sup <F(Z) - Fr(z)aF(Z) - Fr(z)> <<
J2|< o 8
Since B'(z,2) < (1 — |2|*)I < I then (26) yields ®°B'(z,2) < ®°I so
that if ro < r < 1, then
sup ((1—|2*)* ®° B'(z,2) (F(2) — F:(2)) , F(2) — F:(2))

[2|<Ro

< sup (F(z) — F.(2),F(z) — Fr(?)) < %

" J2I<Ro

Hence for max(ry,72) < r < 1 it holds that

||F - FT z,s,oo
< Sup (1= [2/)* ®° B'(2,2) (F(2) — F:(2)) , F(2) = Fy(2)) +
W ((1=12[)* ®° B'(2,2) (F(2) = F;(2)), F(2) = Fr(2)) < % :

Now, take 7' such that max(ry,re) < ' < 1. Actually, then the sum
D jil=s > o Py (r'z)el* ®---©el converges uniformly to Fy/(z) on B.

Hence there exists a natural number N such that

,8,00

2
£
| Fv — Py, o < sup (Fu(2) — Py (2), Fri(2) — Pyn(2)) < 1
zZE

where Py(z) = 32, _; SV Py (r'z) el ©®---®eX. This yields
1 = Pllvs.c0 < [1F" = Forllvs,co + 17 = Prlluso <€

which completes the proof of the lemma. 0
Now we can prove the sufficiency of Theorem 1.1(b).

Proof of sufficiency. Let € > 0 be given. Then, by Lemma 6.2, there
is a Py such that ||F' — Py||,s,00 < €. Then the bilinear Hankel form
H} p, = Hj — Hp_ with F'— Py is bounded. In fact, the operator
norm || - || satisfies

|H — Hp, || < C|F — Py

If we can prove that Hp_ is compact then we are done. Actually we
shall find that Hf,  is of Hilbert-Schmidt class S; and thus especially

|b,5,00 < Ce.
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compact. By construction (see Lemma 6.2) Py is a linear combination
of terms 27 €” = 27 e]' ®- - -®e)¢ so it is enough to prove that H®, €

27 eY
S,. Consider

H, (2%, 2°)

27 eY
= /]B <®5Bt(w, w)To(2%, 2°)(w),w e ®---® e;’d> dig, (w) .
First we observe that
<®th(w, w)T; (2%, 2°) (w),w el ®--- O e}d>
is a linear combination of terms
(27)
< & B(w,w) (3 - 3) (w®) (8 - 3) () 1 ®uz @ - ® s,

w7’v1®v2®---®vs>

where u1 ® -+ ® us; and v; ® - -+ ® v, contains iy + jx copies and
copies of e, respectively. We may assume that oy > i and B > ji
for k =1,2,...d. Denote i = (i1,...,1q) and j = (j1,...,Jq). Then
the term (27) equals

S
Cij(1 = [w) w0 TT ((tm, vm) = (thm, ) (@, V1)) -
m=1
But this term yields a nonzero integral only for those o and g with
la+ B] < |7'| +s. In fact, this proves that the form H?,  has finite
rank. Thus

PNE
|| Z ‘ 27 ev Z i )|
Horalls, = [2*{IZ 112712
with a finite sum. Hence H,:’Y'e’Y € 82 so that Hp = € S,. O

Now we prove the necessity of Theorem 1.1(b).

Proof of the necessity. Let F' be a symbol such that H}, is compact.
Since ®*V' is a finite dimensional Hilbert space we need only to prove
that (un,v) — 0 as n — oo where

tn = (1= |20[2)% @ B (20, 2)) " F(2n)
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and |z,| 1 asn — oo, for any v € ®*V’. As in the proof of the
necessity of Theorem 1.1(a) we write

v = E vie Oex @---O ey
li]=

and let . .
flw) = Zw? cewy v, and g(w)=1.
lil=

So for any symbol S we have
(5(0),v)| = Cus|H3(f, 9)

by the same arguments as for (22) in the proof of the necessity of
Theorem 1.1(a). Let

S(w) = s (9:,) F) () @° ¢, () F (s, (w)) (J, (w)) ™Y
so that
(28) S(0) = ®°¢., (0)'F(z) (., (0))/ .
By Proposition 2.2,
oo (0) = (=1)(1 = |2 and B (2, 20)"* = ¢, (0)'
so that
(29) [(S(0),v)| = [{un, )|
On the other hand
H§(f,9) = H} (f 0 @a, - J/ K, )

where
v/(d+1) (1 = [z )"

ke (w) = (g0 ¢2,)(w) (Jo., (w) =p 77—y PI=1,

Usin () (1= (w2
so that &, (w) — 0 weakly as n — oo and ||k, ||, = 1. Since HE is
compact then there is a sequence {c,}5%, of positive numbers such
that ¢, — 0 and

|Hp:(h, k)| < callhll

for all b € L2(du,). Let h = fop, - Jo/“"Y =1, (¢, ) f which yields
125 =[£I

Then
[(Un, )| < Cyseal flln < CII/,SCHHU”
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so that (u,,v) — 0 as n — oo, which, combined with the equali-
ties (28) and (29), implies that
<(1 —|za)? ®° B (21, 20) F(20), F (2n > —0 as |z, /1.
O

6.2. Hilbert-Schmidt properties. In this subsection we prove The-
orem 1.2. Denote by ’Hf/,s the space of all holomorphic functions
F : B — ©°V' such that the corresponding bilinear Hankel form on
L%(dv,) ® L2(dv,)

Hi(f,9) /<®SBt 2,2)T,(f, 9)(2), F(2)) dia(2)

is of Hilbert-Schmidt class S;. By Lemma 6.5, it is a Hilbert space
with an inner product (F,S), , = (Hp, H3)s, where

<HF7HS Z Z HF emeﬂ (emeﬁ)

|a[=0B|=0
and e, = 2%/||z%|],-

Lemma 6.5. The space H., . is a Hilbert space.

v,s

Proof. Let {F,};2, be a Cauchy sequence in H,, .. Then {H} }2°, is
Cauchy in operator norm so that {F},}2° ; is Cauchy in || -||,,s,00- Then
there is a F' € H}5, such that F, — Fin || - ||, 5,00 Thus Hp — Hj
in operator norm. On the other hand, the space of all blhnear forms
of Hilbert-Schmidt class S, is a Hilbert space so that H;, — H € S,
in || - ||s,- Then Hj — H in operator norm so that H = H}. Thus
FeH,, and F, — F in H,,. O

We now shall see that H',,!s = ’Hg,s, namely they are equal as sets and
the norms are equivalent, as is shown below. Actually, Theorem 1.2
is a direct consequence of Theorem 6.6.

Theorem 6.6. There is a constant C, s > 0 such that
1 Fl,,,s =
for all holomorphic F : B — @°V'.

To prove Theorem 6.6 we need some lemmas.

Lemma 6.7. Let {e1,...,eq} be an orthonormal basis for V'. Then

the spaces H',, and H?, contains the element ef = e; @ -+ - R e;.

v,s v,s
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Proof. Clearly e§ € M. The fact that ef € H; , follows from (27),
letting v =0and v, =s-6; for j=1,...,d. O

Lemma 6.8. The action 7, defined in (15), is unitary on both H,,
and H; .

Proof. Clearly, m, s is unitary on ’H?,,S. That ,, is also unitary on
H,, , follows from Lemma 3.2 and the fact that m,, defined in (13), is
unitary on L2(du,). O

2

v.s 18 trreducible with respect to the action

Lemma 6.9. The space H
Ty, defined in (15).

Proof. Let Hg be an invariant closed subspace of H2 , under the action
mvs(9), g € G, and assume that h € H, for some h # 0. We may
assume, by replacing h by an action of 7, ;(¢g) on h if necessary, that
h(0) # 0. We need to prove

Take such an f € #2,. Since e : z — e is in G and
Ho 2 (Wy,s(e’w)h) (z) = (eied)Qu/(d+1) e p(ef2)

then h(ewz) € Hy. Hence, by the mean value property,
2T
h(0) = / h(e2) do € Hy .
0

Then we have found a nonzero element in ®*V' which is also contained
in Hy. Then v € H, for any v € @*V’ (by Theorem 12.2.8 in [Ru]).
Then [7, s(¢w)v] (2) = ¢ K(2,w)v is in Hy, for any v € ©°V’, where
K (-,w) is the reproducing kernel for #, ; and c is a nonzero constant.
Hence

fLK(-,wwv
so that
fw)=0 foral weB
by the reproducing property. This proves (30). O

Now we can prove Theorem 6.6.

Proof of Theorem 6.6. As a consequence of Theorem VI.23 in [RS] we
can make the following identification of the space Sy(L2(du,), L2(dv,))
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of Hilbert-Schmidt bilinear forms on L2(ds,) with the tensor product,
that is,

Sy (L2(dey), L2(dv,)) = L2(de,) ® L2(du,) .

Moreover L2(di,) ® L2(de,) can be decomposed into irreducible sub-
spaces 7:[,,,5 of Hankel forms of weight s with an intertwining operator
T :H2, — Hy,, (see [PZ]). Also, H} defined in (7) is a Hankel form
of weight s and by Lemma 6.7 there is a nonzero element in #H?2 | which
yields a nonzero element in #,, . Thus

r 2
Hu,s - HI/,S

whose norms are the same up to a constant, by Corollary 8.13 in [K].
4

7. MATRIX-VALUED BERGMAN-TYPE PROJECTIONS

To prove Theorem 1.3 we need certain interpolation results for the
spaces ‘HY ., which will then be derived from certain LP-boundedness
properties of some matrix-valued Bergman projections. The results in
this section might be of independent interests. We refer to Zhu [Zh]
for the study of boundedness property of scalar Bergman projections.

We start with a technical lemma.

Lemma 7.1. Let s be a positive integer. Then

[ (B, (8w, )™ Bz, 2)2)

(1= )21 = [
1w, 2)]

< G- o]

for allw,z € B and v € V.

Proof. First we shall prove the lemma for s = 1 by using the following
identities (see (10) and (4)):

Bt(z,z)l/2 = $,(s,P; + Qz) where s,=(1- |,z\2)1/2

and

Bt(w,2)"t = (1 — (w,2))2 ((1 —(w, N +2® w*).
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Note that
B (w,w)Y?BY(w, z) ' B!(z, z)*/?
= 8u5S,(1 — (w, 2)) (5w Ps + Qo) (5. Ps + Q)+
5082 (1 — (w, 2)) 2(5uPs + Qu) (2@ W) (s, P; + Q3) .
Thus, by the inequality
(1= [z*) (A —[w[*)
11— (w, 2)?
it is enough to show that
(31)  |[(swPp + Qa)(Z@ W) (s, P; + Q2)|| < CJ1 —(w, 2)|.
To this end, we may assume |z| > 1/2 and |w| > 1/2. Expand the
product (-)(-)(-) as a sum of four terms. First we note that
(32) |50 Ps(Z @ 0*)s, Ps|| < suws, < |1 —(w, 2)|.

There are three parts left to consider. Let v € V'. The first part to
estimate is

Swa(Z X TI)*)QZU = Su <U,fu—] _ <T;rj>2> <'|Z,l:)/l|12]>w ‘

We use Cauchy-Schwarz’ inequality. Note that
2

<1 forall z,weB,

) [P [Pl — [z w)
|[? |22

Thus the inequalities 1 — |w|? < 2|1 — (2, w)| and |w| > 1/2 yield the
estimation

(33) 50 P (z © w*)Qzvl| < 16[1 — (2, w)|[|v]]

Since

Q@(Z ® U_)*)SZPZ = (Szpz(w ® Z*)Qu—))*
we have an estimation of the second part
(34) 1Qa (2 ® ") Pzo| < 161 — (2, w)l[v] -

Finally consider

Qu(Z®@W*)Qzv = <v,w _ & w>z> (z <w’z>w> .

|[?  Jwp?

The same estimates as above yield
(35) 1Qu(z ® w)Qzv|| < 8[1 = (2, w)||v]|.



SCHATTEN-VON NEUMANN HANKEL FORMS OF HIGHER WEIGHTS 27

Thus the four estimations (32), (33), (34) and (35) yields (31). We
have proved the lemma for s = 1. Now, consider the case where
s=2,3,...and let

Ay, = Bt (w, w)"? (B'(w, 2)) " B!(z,2)"/?

and
SZ S’LU

by = — 2%
1= (2 w)|
We have proved that

A Ay, < CP T
so that
(®°Aw,)* ®° Ay, =®° (A}, Ay,) <Ot @ T
which proves the lemma. 0

Theorem 7.2. Let oo > d and let P, : L., — H_, be the orthogonal
projection operator. If max{(a—d)/(2v+s/2—d),1} < p < oo,
then

L1858 2Rt ) (1= 15 i)

<C / @ B (w, w)/2f(w) [” (1 = [w)® du(w).

Remark 7.3. By Lemma 3.5 the orthogonal projection operator P, ,
such that for any f € L,Zj,s and any v € ©®°V' we have that

(36) (Posf(2),v)
= C/E (1= |wf)* ®° B'(w,w) f(w), K, (w,z)v) di(w)

where .
Ky s(w,2) =®° (B (w,2))  (1—(w,2))™,
is well-defined.

Proof of Theorem 7.2. The formula (36) can be rewritten as

Puof (2) = ¢ [ Kol 2)" @ B, 0) ()1~ [ ).
B
Now let
(1= [o2)/2(1 = w2y

Tz w) = 1= (2, w) o+
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By the equality K, ;(w, 2)* = K, s(z,w) and Lemma 7.1 it follows that

|®° B (2,2)' /*Ps f (2) |
gc/ 2 w) || ®° B (w, w) 2 £ (w)]| (1 — |w]?)* du(w)
B

We claim that there exists a real number ¢ such that

(37) /ET(Z’w)(1 — [w)? (1 = |w[*)* du(w) < M(1 - |2*)"
and

(38) /ET(Z,w)(l — [2)P(1 = |2]%)* do(z) < M(1 = [w]*)”

holds for some constant M, where ¢ is given by 1 = 1/p +1/q. Ac-
cepting temporarily the claim, using Hélder’s inequality and (37),

H®5Bt(z,z)1/2P,,,sf(z)||
1/q
< of [T - upra - upraw) s
1/p
T(z,w)(1 — |w|*) # H®5Bt w, w) 1/2f H — |w|?)® (w))

(

(/BT(z,w)(l — [w]?)~?* ||®° B! (w, w) "2 f (w)|" (1 — [w]?)® (w))l/p_

AR

OMMa(1 — |22)t x

Thus, by Fubini-Tonelli’s theorem and (38), we have that

/H®th z, %) 1/QP,,sf H — 2> du(z)

< i [y ([ 1w -
|®*B" (w, w)2f(w)]]" (1 — [w[*)* de(w )>(1 22" duz)
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_ cpMp/q/u ~ [wf2)P || B (w, w) 2 (w) | (1 — |w[2)?
B

(Au—vmwnamu—vm%mn)mw>
< C”Mp/ |®°B*(w, w) )2 g H — w®)*du(z),

namely our theorem.
Now we go back to (37) and (38) which, by Lemma 2.4, holds if

d—2v—s/2 s
39 — <t < =
(39) ; %
and
(40) d—s/?—a<t<2y+s/2—a

b b
respectively. Actually, by simple computations,

(d—2y—s/2’i)ﬂ(d—s/2—a’ 2y+s/2-a> oy

q 2q p p
if max {(a —d)/(2v+s/2 —d),1} < p < 0. O
Corollary 7.4. If1 < p < oo, then
Puing = H’Ijs’

namely P, : Li” — HP

D s 1s bounded.

8. APPLICATION OF THE BOUNDEDNESS OF P,

8.1. Some interpolation results. In this subsection we use the com-
plex interpolation method of Banach spaces to prove Theorem 8.2,
which we will use to prove Theorem 1.3 in subsection 8.2.

The spaces A; = Lis-l-L,‘jf’s and A, = 7{2 +H°° are Banach spaces
with the norms

nﬂm=m@w

i = 1,2, respectively, by Lemma 2.3.1 in [BL]. Denote by F; = F(A;),
1 = 1,2, the space of all functions with values in A;, which are bounded
and continuous on the strip

S={2€eC:0<Rz<1}

:F=F2+FOOE.AZ},
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and holomorphic on the open strip
So={2z€C:0< Rz < 1}

and moreover, the functions ¢ — f(j + it) are continuous functions
from the real line such that f(it) € L7, (resp. H_,) and f(14it) € L,
(resp. H;%,), which tends to zero as [t| — co. Then F;, i = 1,2, are
Banach spaces with the same norm

1l = max (SUPIIf(it)

sup [l (1 + z't>||u,s,oo) ,

by Lemma 4.1.1 in [BL]. Now let 0 < § < 1 and denote by (L
and (7{33, 7-l°°) the space of all S € A; such that

v L2 )

(6]

ISl = nt {11 50) = 5. 7 € 7 < o0
1 =1, 2, respectively.
Lemma 8.1. If2 < p < oo, then

P, (L}, L)

v,8)

= (Mo H2%)

(1-2/p] (1-2/p] ’

’H,Q,s,’HOO) [1-2/p] s bounded.

Proof. As a direct consequence of Lemma 7.1 we have that P, :
Ly, — M5, is bounded. Indeed, for any f € L7,

|®°B(z,2)"* P, f (2)]|

namely P, : (L2

v,8)

L) ey =

— |w|? )2u+s/2

=y

"LU| u+s/2
/ T s 2)

scaqdﬁvw®ywmw di(w)

< O |27

< Ol fllus00(l — ‘Z|
where the last inequality follows from Lemma 2.4. Hence, the result
follows from Riesz-Thorin’s interpolation theorem. U

If we claim that
(41) (L2,

v,8)

L)oo = M

then we have the following theorem.

2<p<oo,
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Theorem 8.2. If 2 < p < 0o, then

— 2 00
%g,s - (%u,s’ %V,S)[

1-2/p]

Proof. If 2 < p < oo, then by the identity (41) we have that

18, = (L3, L

V87 V,s)[1—2/p] .
Thus, by Corollary 7.4 and Lemma 8.1, if 2 < p < oo then

HY =P, s, =P, (L2 Lfs)

v,s?

(a2
[1-2/p] — (H"’S’H%)[l—?/p] )

0

The identity (41) can be proved by slightly modifying Theorem 5.1.1
in [BL] using

(42) || F[ly,s,p = sup { ‘/B (1= [2[))" ® B'(2,2)F(2), S(2)) du(2)| :

|u,s,q = 1}

where 1/p 4+ 1/g = 1. Indeed, to prove (42) let F' : B — ©°V' be
measurable. Then

S bounded with compact support , ||S

1/2

H=(1-|P)*&* B'(,-)" " F:B— oV

is measurable and we may write H = (Hy, ..., Hy), where dim (®*V’) =
N. For 1 < j < N we can find bounded functions & with compact
support in B such that [b2| ' |H,|. Let

82; — |bZL| . eiA'rgHj )

Then s/ are bounded with compact support and

Hj-sh=|Hj|- b}

Let s, = (s{,...,sY) and put

ta(2) = (1 = |2)% @ B'(2,2)) *sn(2).
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Then t, : B — ®*V’ is measurable and

(43) (1= 2P) © B'(z2)tn(2), tn(2))
= Y_si(2) - sh(a) = DI (2)

=1

<.

N N
< STIH(2)] - i(2) = Y Hj(2) - sh(2)
7j=1
= {((1—|2»)* @ B'(2,2)F(2),ta(2)) -
Now, let
1— |22 @° B! (2, 2)tn(2), ta(2)) 9727 1, (2)
N
Then S, : B — ®@*V’ is measurable, ||S,|,,s, = 1 and
/< 2P @ BY(z,2)S(2), tal2)) di(2)
so by (43)

||F||I/,s,p < lim|f¢, ||Vsp

= hm/ ((1—2]*)* ®° B'(2,2)Sn(2), ta(2)) du(2)
lim / (1= [2P) & B!(z,2)Sa(2), F(2)) du(z)

Su(2) = ((

38D

IN

IN

where

— |2]*)* ®° B'(z, z)F(z),S(z)>dL(z)

—sup{

S bounded with compact support , ||S||,,s,q = 1} :

On the other hand
/ (1= 2PV ® B'(z,2)F(2), 5(2)) de(2)

which proves (42). The rest is almost the same as in [BL] loc. cit.,
only replacing the usual absolute value |g(z)| of scalar functions g(z)

<[ Fllv,s

38,4
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by the norm ||S(2)|l, = || (1 = [2|2)* ®° B(z,2))"/* 5(2)|| of vector-
valued functions S(z), also E(z) = (f(z), g(2)) by

H(z) = (1—|2[)% ®° B'(z,2)F(2),S(z) ) du(z) .
X )

8.2. Schatten-von Neumann properties. In this subsection we
prove Theorem 1.3.

Proof of sufficiency of Theorem 1.3. By Theorem 1.2 and Theorem 1.1
the operator F' — H}, is bounded from #_ into S and from H?,
into Sy respectively. Then it follows from Theorem 8.2 and Riesz-
Thorin interpolation theorem that F' — Hj, is bounded from HY  into

(82, Soo)[1—2/p) if 2 < p < 00. By Theorem 2.10 in [S] we have that
Sp = (S5 Soo)1-2/2] 5

so that the operator F' — Hp is bounded from HY ; into S, if p satisfies
2 <p<oo. ]

The necessity of Theorem 1.3 is a direct consequence of Lemma 8.6
below. This Lemma states some boundedness properties for an op-
erator 7, closely related to the transvectant defined in (6) viewed as
an operator from bilinear forms to vector-valued holomorphic func-
tions, see also [FR] and [PZ]. We need to construct 7;,. Let A €
Swo (L2(duy), L2(dv,)). Then there is a conjugate linear operator 7T :
L2(du,) — L?(du,) such that

AK,, K,) = (K,,TKy), = (Ky,,T"K,), = T*K,(w) .
Also,

Af,9) = (, Tg)y = / ()T @) dun (2)
- / FTG K, duy ()
- / F) T, g), dun(2)

= //T )g(w) du,(2)du, (w) .
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Define G(z,w) = Ga(z,w) = A(K,, K,,). Then G(z,w) is holomor-
phic in z and in w and

0= [ [ et du:)dt).

Now, define
(44) T,(4)(2) = (T.G) (2, 2)
where
i k s—k
(T:G) (2, w (s) o . O ®3 G(z, w).
—\k (W)k(V)s—k
Remark 8.3. If G(z,w f(2)g(w) where f,g € L2(d,) then we

have that T,(G)(z,2) = T5(f, g9)(2) where T5(f,g)(z) is the transvec-
tant defined in (6).

Lemma 8.4. Let T; be defined on Seo as in (44). Then T, : Soo — He,
s bounded.

Proof. Let A € Sy. Let G(z,w) = G4(z,w). First we note that
(7sG)(z,w) is a linear combination of terms
RTFG(zw) = Y 0L0JA(K,, K,) dz ® dw;
|T|=k,|J|=s—k
where i1, i € {1,...,d}, I = (il,...,ik), dzy = dZ,'l ® ®d22k
and 0! = 9;,0;, - - - 0;,. By the identity

0y -+ 0,05, - -+ 0j,_,A(K,, K,)) = A(E,, Ey)

where

E.(Q) = (Meer(Q)(1—(¢2) ", er(¢) = Gy =+ Giyy

Ey(Q) = )sres(Q)(1 — (¢, w)) Tk, er(C) =Gy oy s
it follows that

(0£057%G) (0,0) = Wk(W)sk Y Aler,es)dzr @ duwy .

\I|=k,|J|=s—k
Since A is bounded then
(45) (00, *@) (0,0)|| < C|lA]l.
Let z € B and define a bilinear form A, on L?(ds,) such that
Az(f; g) = A (ﬂ—l/ (902) fa Ty (QOz) g) ’
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where ¢, is the linear fractional mapping (8) and 7, is the action (13).
Then it holds that ||A,|| = ||A|| and by the same transformation
property as in Lemma 3.2, see also [PZ], it follows that 7~;(Az) =
Tu.s(0.)Ts(A). Hence, replacing A by A, in (45) yields

and
To(A:)(0) = (m,s(soz)ﬁ(A)) (0) = @°L(0)!T5(A)(2)J,. (0)2/(+D
so that

T(A4)0)| < Clla.l = )4

& Bz 91Ty - oy

This proves the lemma. U

Lemma 8.5. Let T, be defined on Sy as in (44). Then T, : S — HE,
s bounded.

Proof. By Theorem 6.6 it follows that o : H,, — S, o(F) = Hj},
defines an isometry. Thus ¢* : S — 7-[,2/,3 is a partial isometry and

therefore bounded. We claim that ¢* = 7;, which actually follows by
an identification. Indeed let A be a bilinear form of finite rank. We
shall prove that o*(A) = 7;(A), which gives the general case. Let H§,
be a Hilbert-Schmidt Hankel form. Then

S S
(Hp, A E Hi(e;,€5) ez,e])

3,j=1

where {e;}}*, is an orthonormal set in H2 . Since

Hi(e;, €5) /<® B'(z,2)T,(ei, €;)(2), F(2)) dia(z

then

N
> Hilese))Aless ;)

/]B<® Bt z A Z ez,€] (6i,€j),F(Z)> deu(Z).

,j=1
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On the other hand
(Hp, A)g, = (0(F), A)g, = (0" (A), F)

Thus, it remains to prove that

V,8,2 °

(46) 7~; Z Ts(ei e5)( (ez, €j) -

3,j=1

Since A(f,g) =0if f or g is in span{ey, ..., ex}* and since {¢; ® ;}
is an orthonormal set in S,, where €; ® éj(f, 9) = (f,ei),(g,€ej)v, then

A= ZAQ@@])SeZ@e] ZAeZ,eJ)eZ@)eJ

1,J=1 i,5=1
Hence
e — N S —
Gz,w) = A(K,, K,) = Y Ales, €5) e5(2)e;(w)

ij=1

so that

7;(14)(3) Z Alei, €5)Ts(ei, €5)(2)

i,j=1

which proves (46). O

Lemma 8.6. Let T, be defined on S, asin (44), 2 < p < co. Then
T.:S, — M2, is bounded and T,(Hy) = F if Hy € S,

Proof. 1t follows from Lemma 8.4, Lemma 8.5 and Riesz-Thorin’s in-

terpolation theorem that 7; : S, — H?P ; is bounded for 2 < p < oo.
Also, T;(Hy) = F if Hy € S,. Now define F,(z) = F(rz) for
0 <7 <1 Then Hj € S, so that T;(Hy) = F,. Since H} is
compact then F, — F in K%, by the necessity of Theorem 1.1(b)
and the proof of Lemma 6.2. On one hand F, — F pointwise. On
the other hand, by Theorem 1.1(a) and Lemma 8.4, it follows that

To(Hg ) — Ty(Hg). Thus T;(Hy) = F if Hy € S,. O

V,S
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TRACE CLASS CRITERIA FOR BILINEAR HANKEL
FORMS OF HIGHER WEIGHTS

MARCUS SUNDHALL

ABSTRACT. In this paper we give a complete characterization of
higher weight Hankel forms, on the unit ball of C?, of Schatten-
von Neumann class Sp, 1 < p < oco. For this purpose we give an
atomic decomposition for certain Besov-type spaces. The main
result is then obtained by combining the decomposition and our
earlier results [Su].

1. INTRODUCTION

Hankel operators on the unit disk have been studied extensively,
see [Pe2] for a systematic treatment. One of the main topics is to
study Schatten-von Neumann properties of Hankel operators, see [Pel]
and [Pe2]. In [JP] Janson and Peetre introduced Hankel forms of
higher weights on the unit disk. Their Schatten-von Neumann prop-
erties were studied in [Ro] and [Z].

In [P1] Peetre introduced Hankel forms of higher weights on the unit
ball of C¢. Their Schatten-von Neumann, S,, properties were studied
in [Su] for 2 < p < co. See also [FR] for a different approach.

The results for 2 < p < oo in [Su] were proved by using interpolation
between Sy and Sy, (bounded operators) and boundedness of certain
matrix-valued Bergman-type projections, but the case of 1 < p < 2
was left open there.

In this paper we extend the results in [Su] to 1 < p < oco. For this
purpose we study the atomic decomposition for some Besov spaces of
vector-valued holomorphic functions, see Section 4, which then gives
the & properties. Our results follow by interpolation and we get a full
characterization for 1 < p < oo. Some of the proofs in this paper are

Date: August 13, 2006.
2000 Mathematics Subject Classification. 32A25, 32A36, 32A37, 47B32, 47B35.
1
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based on techniques used in [Su] and will therefore be given briefly.
The reader is referred to that article for more details.

The paper is organized as follows. In Section 2 we recall briefly
some notation and we prove Theorem 2.1, generalizing the result for
p = 21in [Su]. Section 3 is devoted to duality relations for the spaces of
symbols. In Section 4 we give an atomic decomposition for a certain
space of symbols, which will be used in Section 5 to prove the S
criterion.

2. PRELIMINARIES

2.1. The Banach space H,’j,s for 1 < p < oo. Let dm denote the
Lebesgue measure on the unit ball B C C% and let di(z) be the measure
(1 — 1z ~%'dm(z). For d < v < oo let du,(2) = ¢, (1 — |2]?)” du(2),
where ¢, is chosen such that

/leLV(Z) =1.

The closed subspace of all holomorphic functions in L?(ds, ) is denoted
by L2(d,) and is called a weighted Bergman space. Note that the
space L2(du,) has a reproducing kernel K,(w) = (1 — (w, 2))™, that
is,

(1) f(z) = /f K,(w)du,(w), feLdy), z€B.

Denote by B(z,w) the Bergman operator on V = C? as in [L],
namely

(2) B(z,w) = (1—(z,w))(I—z®w*),
where z ® w* stands for the rank one operator given by (z @ w*)(v) =
(v, w)z.

The Bergman metric at z € B, when we identify the tangent space
with V', is (B(z, z) " u,v) for u,v € V. We note that

() Blow) ™= (1 (zw) (1 - (s, w) [+ 2@ w’).
Let B'(z,w) denote the dual of B(z,w) acting on the dual space V'
of V. When acting on a vector v' € V' it is

(4) Bt (z,w)v' = (1 — (z,w))v'(I — zw").

For a nonnegative integer s, let ®°*V' be the tensor product of s
copies of V' and let V' = C. The space ®°V’ is equipped with a
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natural Hermitian inner product induced by that of V’'. Denote by
©*V' the subspace of symmetric tensors of length s and denote by
®°*B'(z, z) the operator on ®*V" induced by the action of B'(z, z) on
V', where ®°B!(z, z) = I. Recall, generally, that if A acts on V', ®°A4
acts on ®°V' by

(@°A) (u1 Qua ® - R uy) = (Aur) @ (Aug) ® -+ - ® (Ausy) .
For example, in the case s = 2 the operator ®?B!(z, z) becomes
1— 22U -T®A,-A,QQI+A4,0A,),

where A, = z® z*. Let L}, = L? (B, ®*V") be the space of functions
G : B — ©°*V' such that

1/p
|G llv,s = (/B (1= |2 @° B'(2,2)G(2), G(2))""* db(Z)) < o0,

where 1 < p < oo, and let L% be the space of functions G : B — ©°V”
such that

1Gll 00 = sup (1 = |2)* & B'(2,2)G(2), G(2)) " < 0.
2€B

Let H? ; be the closed subspace of all holomorphic functions in L} ,
1 <p< oo

Also, we need the group G of biholomorphic mappings of B. Let P,
be the orthogonal projection of C¢ onto Cz and let Q, = I — P,. Put
s, = (1 — |2/?)"/? and define a linear fractional mapping ¢, on B by
(see [Ru])

®) o) = T

If g € G and g(z) = 0, then there is a unique unitary operator U :
C¢ — C¢ such that

g=Uep..
Define the complex Jacobian J, by J,(w) = det(¢'(w)). Now, let

2o € B. Then by arguments in Remark 3.1 in [Su] it follows that there
is a constant ¢ with |c| = 1 such that

(1 — J20/%)”
(1 = (w, z))*
The next theorem gives the reproducing properties for HY ..

©) Ty 1)/ = .
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Theorem 2.1. Let 1 < p < co. There s a nonzero constant ¢ such
that, for any G € HE . and any v € OV,

v,s

(G(2),v) = c/ (®°B'(w, w)G(w), K, 4(w, 2)v) (1 — |w[*)* du(w),
B
where
K, s(w,2)=(1—(w,2))* & B'(w,2)".
The proof of this theorem is given at the end of this subsection.

Remark 2.2. Consider H7, C L2 .. According to Lemma 3.5 in [Su]

the orthogonal projection operator P, , of Lg,s onto Hﬁ,s, is given by

(1) P,G(z) = C/B(l — W) K, 4(2,w) @ B'(w,w)G(w) du(w).

Namely, for any G € L7, and any v € ©°V" it follows that

(P,sG(2),v) = C/B (®° B (w,w)G(w), K, s(w,z)v) (1 — |w|*)* di(w).

The orthogonal projection operator has the following boundedness
property.

Proposition 2.3. If 1 <p < oo, then P, : L} , — HY . 1s bounded.

V,8

Proof. The case 1 < p < oo is just Corollary 7.4 in [Su]. Now, consider
the case p = 1. Let F' € L, ,. Then it follows from Theorem 2.1 above
and Lemma 7.1 in [Su] that

|®° B (=, 2)'2P, F(z) |

< C, /B T(z,w) ||@°B'(w,w) *F(w)|| (1 = |w[*)* di(w),

where

(1= [21%)°2(1 = |w[*)*’2

T(zw) = =127, e
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Thus, by Fubini-Tonelli’s theorem and Proposition 1.4.10 in [Ru] it
follows that

v,s

< ¢, / |®° B! (1w, w) 2F (w) | (1 = [w[2)>

: (/BT(z, w)(1 - |z\2)”dt(2)> di(w)

;[ Nlo B! w,w) P )| (1 = [0} difw) = CYlF e
B
U

Note that it is proved in [Sul, using the complex interpolation
method of Banach spaces, that H2 . = (M, Ho%,)j1—2/p) if 2 < p < 00;
see Theorem 8.2 in [Su|. However, Proposition 2.3 allows us to use
the same proof as in [Su| to get the following result.

Corollary 2.4. If 1 < p < o0, then
HY = (’His,%‘x’)

1-1/p] *

Now we go back to Theorem 2.1. First we need a proposition and
a lemma.

Proposition 2.5. Let s be a nonnegative integer and let v > d, 2v >
o > d. Then there is a constant Cy > 0 such that

(1= 22 | Kyl 2) ©° B!z, )20, < Cullol
for all z € B and all v € O°V'.

Proof. Let v € ®*V’. It follows from Lemma 7.1 in [Su] and Proposi-
tion 1.4.10 in [Ru] that

1Ks( 2) @ B'(2,2) /0]l a5,

_ twwl/Q tw, 2 ltzzl/Qv w|?) w
[ (B2 w2 8,2 o L

(1 - |ZI ) /2(L = Jw[?)e+e/ a2
Csllv II/ di(w) < Cy(1 = [2)* ||| .

’U} Z> |2u—|—s

IN

g
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Lemma 2.6. Let z € B. Then there is a constant Cs > 0 such that,
for any v € @V and any 1 < p < oo, it follows that

(1= [2*) Ko (-, 2) @ B(2,2) 0], < Cyllo]l -
Proof. Let T, = (1 — |2[%)" K, +(-, 2) ®* B!(2, z)'/2. By Proposition 2.5
and by Lemma 7.1 in [Su] it follows that ||T,v||,s1 < Cs|lv| and

IT.0]|vs.00 < Ch|v|| respectively, for all v € @*V’. Thus the result
follows from Riesz-Thorin’s interpolation theorem. U

Now we can prove Theorem 2.1.

Proof of Theorem 2.1. Let G € HP ., 1 < p < oo. Then it follows

V,8)

from Lemma 2.6 that, for all v € ®*V’,

/B‘<®SBt(w’w)G(w)aKu,s(w;Z)U>‘ dbzy(w)
< ”G |u,s,p||Ku,s(‘,Z)U

|u,s,q < 00.

In particular, if z = 0, then
/ (@* B! (w, w)G(w), v)| (1 — [w])* de(w) < oo
B

By the mean-value property for holomorphic functions and rotation
invariance for integration,

/B<(1 ) @° BY(w, w)G(w),v) difw) = ¢{G(0), ),

where ¢’ # 0 only depends on d, v and s. Hence, there exists a nonzero
constant c such that, for all G € H? | and all v € ©°V’,

(8) <G(0)a U) = C<G7 U)u,s,? 5
where (-,-),s2 is the ’Hf,s—pairing. Now, define an isometry 7,5 on

H;, by

Tust 9€G, S(2) = (& (dg7(2))") S(g712) (Jy ()™

3

as in [Su]. Let z; € B. For notational convenience we prove the
reproducing property only for s = 1; the case for general s is identically
the same. On the one hand,

9) (T (£)G) (0),v) = (G la0), Ty 0 (g, (0)1) 0 -
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By equation (6), (1—|zo[?) /2 < |J,, (w)] < (1—]2[*) %' on B, so
Tu1($2)G € Hy,,. However, using equation (8) above for m,1(p;,)G
and the transformation properties

B (2(w), 92(2)) = ¢y (w) B(w, 2) (¢, (2))"
(see Equation (9) in [Su]) and

Ku1 (90(w), 020(2)) = Ty, ()0, (2)

-1 "

(¢ (w)") " K(w, 2) (¢ (2)")7)
(see equation (9) in [Su] and Theorem 2.2.5 in [Ru]), the left-hand side
in equation (9) above is

<G(ZO)’ U’) = C<G, KV,S(': ZO)U>I/,S,2 )

where u = J,,_ (O)QV/(dH) (¢, (0)")" v. Since v is arbitrary, then so is
u € @*V', which proves the theorem. O

20

2.2. Hankel forms of higher weights. Let H; and H, be Hilbert
spaces and let T': Hy — H, be a linear operator. Define the singular
numbers s,(7) = inf{||T — K|| : rank(K) < n}, n > 0. If T is
compact, these singular numbers are equal to the eigenvalues of |T| =
(T*T)"* (counted with multiplicities). We denote by S, the ideal of
operators for which {s,(T")}n>0 € 1", 0 < p < o0; see [S].

The transvectant 7; on L2(di,) ® L2(de,) (introduced in [P1]; see
also [P2], [PZ] and [Su]) is defined by

(10)  To(f.9)(z) = (Z) (_1)5_k8 f((i)),i;i_kg(Z) ’

k=0

-1

where

d
asf(Z) = Z ajl .- 'ajsf(Z) del - des e oV’
J1...Js=1
and (v), =v(v+1)---(v+k—1), (v)g = 1, is the Pochammer symbol.

Lemma 2.7. There is a constant Cs > 0 such that
1 Ts(fs Dlvsx < Csllfllllgll
for all f,g € L2(du,).

First we need a lemma, which actually is a consequence of Theorem
4.1 in [Su], but we give an independent and easier proof.
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Lemma 2.8. There is a constant C, s > 0 such that

/B<®53t<z, 2)0°f(2), 0 [(2)) (1 = |2*)” du(z) < Cusllf s

for all f € L%(du,).
Proof. First,

8 f(z) = cu(y)S/B (1]0—(12,33);3“ (1= w?)” du(w) |

so that

||® Bt z z 1/285 H
(2, 2)1/2
<c.. [1) ”B 2O\ ey duw).

11— (z,w)|"ts

We can estimate
|B!(z, 2) 20| = s. (|Is.Peol® + ||Qew||?)
= s (lwf - [(z,w)[?)""?
< V25,1 = (z,w) V2.
Hence,

& B2 20 ()] < €L [ TCw) £@)](1 = ) dw).

where

(1|22
e = T

Now, the result follows by exactly the same arguments as in the proof
of Theorem 7.2 in [Su] (where we let t = —(v — d)/4). O

Proof of Lemma 2.7. The transvectant is a linear combination of terms
Ok f(2)®0° *g(z) so we need only to estimate ||0* f(2) ®0° *g(z)
for 0 < k < s. First we observe that

||®5Bt(z Z)I/Qka( ) as—k ( )H
_ ||®kBt 2, Z)l/?ak: H H®s k:Bt(z 2)1/283 k ( )H ]
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Thus by Hélder’s inequality and Lemma 2.8 it follows that

/]BH®th(Z,z)1/28kf ) ® 0 kg H —12*)" du(2)

g

The Hankel bilinear form H on L2(di,) ® L2(dv,) is defined by

(1) Hi(f.9) = [ (BT (.96 F) din(2)

where F' : B — ©°*V’ is holomorphic. We call F' the symbol of the
corresponding Hankel form. We remark that

HY(/,9) / £(2)9(2)F ) din ()

This is the classical Hankel form studied in [JPR].
With the form H}, one can associate the operator A} defined by

Hp(f,9) = (f, Ar9),

as in [JPR]. Notice that A% is an anti-linear operator on L2(d,). To
get a linear operator one combines Aj with a conjugation, i.e., one
instead considers the operator Z : g — A%g. We say that H 5 is
of Schatten-von Neumann class Sp, for 0 < p < o0, if and only if

Ap 2 L2(du,) — L2(du,) is of class S,.

3. DuALITY OF HE,

In this section we determine the dual space (H?,)* of HL , where

v,87
1<p<oo.

Lemma 3.1. Let 1 <p<oo. If® € (Lﬁ’s)*, then there is a function
G € LY, such that

v,s

QI>(F)=/B<®SB’5(Z,Z)F(Z),G(ZD(1—IZ\Q)Z“dL(Z)

and ||®|| = ||G|l|v,s,q where 1/qg+1/p=1.
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Proof. Define A(z) = (1—|2|?)*®°*B(z, 2)"/? and (M F)(z) = A(2)F(z).
Then M, is an isometry from L  onto LP = {F: B =V : ||F||, < oo}

where
7= ([ IreIr ch(z))l/p |

Consider © = ®M;'. Then O is a bounded linear functional on L?
and O(AF) = ®(F'). Then we can find a function H € L7 such that

B(F) = / (AF)(2), H(2)) di(z)

with [|©]| = ||H||- Let G = M;'H. Then G € L?, and

O(F) = [B (®°B'(2,2)F(2),G(2)) (1 — |2*)* du(2)..

Also [|®]| = ||G]|v.s.4- -

Theorem 3.2. For 1 < p < oo we have (HY,)* = HI,, under the

integral pairing ”
(F.G),a = [ (B 2)F(2),G ) (1 2% dila),
B

FeM,, GeHl,, where1/p+1/q= 1. Namely, for any bounded
linear functional ® : HY ; — C there is a function G € H} ; such that

O(F) = (F,G)y s for all F € HP, with ’

V,8
CllGllv,sq < [Pl < (IGllv,s.q -

Proof. By Hélder’s inequality, every function G € H{ ; defines a bounded
linear functional ® on HY  under the above integral pairing with
1] < (|G llv,s.0-

Conversely, let ® € (’H{j,s)*. By the Hahn-Banach theorem we can
extend ® to a bounded linear functional ® on L? . such that ®(F) =
®(F) for all F € HE, with ||®|| = ||®||. By Lemma 3.1 there is a
function H € L] such that

S

V,8

(12) (f(F) = /B <®th(z, 2)F(2), H(z)> (1— |2 du(z)
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for all F € L} , with |®|| = ||H]||, s, However, Theorem 2.1 implies

that, for any F' € HP

V,s?

F(z) = (P,sF)(z) = c/(1—|w|2)2”K,,,s(w, 2)*@* B (w, w)F (w) di(w) .
B

Substituting this into formula (12) and using Fubini-Tonelli’s theorem
we get that

B(F) = &(F) = /B (®° B (w,w)F(w), (PosH)(w)) (1 — [w2)?” du(w).

Let G = P, H. By Proposition 2.3, ||P, sH||vs,q < C'||H]||s,s,4- Then
GeHl,, ®(F)=(F,G),s2forall F € H  and C||Gl|,5, < [|®]]. O

V,87

4. ATOMIC DECOMPOSITION OF H

Following [JPR], we denote by /' (B, ®* V") the space of all functions
a:B — ©°V', with support in {2;}32, C B, such that
lalls =) lla(z;)ll < oo-
7j=1
Also, denote by [ (B, ®*V’) the space of all functions a : B — @V’
such that
lallie = sup [la(z)]| < oco.
z€B

Then it is elementary that
(13) > (B,0"V) = (I (B,0V)",

under the pairing
(a,0) = (a(z), b(z;))
j=1

where a € I' (B, ®°V') with support {z;}32, C Band b € I* (B, ©°V").

Namely, for any bounded linear functional @ : [* (B, ©@*V’) — C there

is a function b in [* (B, ®*V’) such that ®(a) = (a,b)’ for all a €

I' (B, ®*V') with ||®]| = ||b]|see-

Theorem 4.1. It follows that F € ’Hi,s if and only if there is a se-

quence {z;}32, C B and a sequence {a;}32, € I' (B, ®°V") such that
F(w) =) (1 —|2[*) K, (w, 2)) ®° B'(2,2)"*a; .

i=1
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Proof. By Proposition 2.5, for any v € ®*V' and any z € B,
1Kol 2) ®° B'(2,2)" 20|, < Call = [2*) |0l
Thus, the operator T : I' (B, ©°V') — H,, , defined by

(Ta)(w) =Y (1|2 Kos(w, 2) @ B'(2,2)"*a;
j=1
is bounded, where a; = a(z;) and the support of a is {2;}32,. We
need to prove that 7" is onto. Consider T* : (#.,)" — (I' (B,@°V"))",
T*(®)(a) = ®(Ta), which is bounded, where & € (H,ljs)* and a €
I' (B, ®*V"). By Theorem 3.2, for any ® € (”H,l,s)* there is a G € H}?,
such that ®(F) = (F,G), s for all F € H} < ||®| <
|Gllvss.00- Now, let a € I (B, 0* V") with support {z;}32, C B. By the
reproducing property in Theorem 2.1 it follows that
T*(®)(a) = @(Ta)
= <T0, G),,S 2

= CZ<% — |2|*)” ® B'(25,2;)G(z;)) -

Hence, by (13) and Theorem 3.2 it follows that

(19 <17 Bl
=sup ||(1 - |2[*)” ®° B'(z,2)G(2)| =

z€B
On the one hand, (14) yields that ker 7* = {0} and consequently the
range of T is dense in #H, .. On the other hand, (14) yields that the
range of T™ is closed and so is the range of T" by the Closed Range
Theorem. 4

> ||@]] .

5. TRACE CLASS &
We consider now the trace class property of Hy in (11).

Theorem 5.1. The Hankel form Hj, is of trace class Sy if and only
if FeH,,

Combining the results in [Su] we have now a complete characteri-
zation of the Schatten-von Neumann class Hankel forms.
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Theorem 5.2. The Hankel form Hj is of Schatten-von Neumann
class Sy if and only if F e HP ., 1 <p < oco.

V,87

Proof of Theorem 5.2. It follows from Lemma 5.5 below and Theorem
1.1(a) in [Su] that the operator I' : F' — H}, is bounded from #,, , into
S; and from H}?, into Su, respectively. Since S, = (81, Seo)[1-1/y) if
1 < p < oo, then it follows by Riesz-Thorin’s interpolation theorem
and Corollary 2.4 that I" is bounded from #H? ; into S, if 1 < p < occ.
On the other hand, it follows from Lemma 5.6 below and Theorem

1.1(a) in [Su] that 7;, defined in (16), is bounded from S; into H, , and
from Sy into H}7;, respectively. Again, by interpolation 7, is bounded
from S, into HY , if 1 < p < oco. Also, if Hp € S, for 1 < p < oo, then

Ts(H}) = F, which follows by the same arguments as in the proof of
Lemma 8.6 in [Su]. O

The proof of Theorem 5.1 will be divided into a few lemmas. We
will first show in Lemma 5.3 that every Hy, is of trace class & if F'is in
’H,ﬂ,s and then in Lemma 5.4 that 7—[,3,3 can be continuously embedded
into H}7,. Using these results we prove, in Lemma 5.5, that F' — H}, is
bounded from 7-[,1,,5 into S;. Finally, in Lemma 5.6 we find a bounded

mapping 7, from the trace class S; into H,,, such that T.(H) =F.
Lemma 5.3. If F € 'H,is, then Hj € ;.
Proof. Let F € H, .. By Theorem 4.1, F = 37>, F; where

Fj(w) = (1= [2[*) Ko s (w, ) ©° B (25, %)),
for some {z;}52, C B and some {a;}52, € I' (B, ©*V’). We claim that
(15) rank Hy < M; forall j =1,2,3,...,

where M, depends only on s and d. Accepting temporarily the claim
and using Theorem 1.1(a) in [Su| we get that

o0 o
IH s, <Y NH s, < MY | Hj s
7j=1

i=1

o o
< MY NFilliseo < MY Nl
i=1 i=1
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Now we go back to claim (15). By Lemma 2.7, T;(f, g) € H,,, for all
f,g € L2(dv,). Thus, by the reproducing property in Theorem 2.1,

H; (f,9) = ¢(To(£,9)(2), (1 = |2*)” ®° B'(z,2)a;) .
Fix zp € B. Then T4(f, g)(20) is a sum of finitely many rank one forms

where the number M, of summands depends only on s and d. To see
this, we consider f(zy) = (f, K,,)v- Since

akf(zo) & 8s—kg(zo) = <fa ﬁKz0>U ® <95WK20>U )

then (f,g) — 0°%f(2) ® 0%g(2) is a rank one form. Thus, the
bilinear form (f,g9) — 7s(f,9)(20) has rank at most M, and so has
Hg.. 0

J

Lemma 5.4. The operator 7 : ’H,f’s — H®,, Z(F) = F, is bounded.

V,87

Proof. First, let F € M, . Then H} € S by Lemma 5.3. Hence
H} € Sy, so by Theorem 1.1(a) in [Su] it follows that F' € H%,. Thus
7 is well-defined.

Now, assume that F;, — F'in H, , and that Z(F,) — G in H;5,. We
shall prove that Z(F) = G. On the one hand, since F;, = F in H,, ,

then there is a subsequence Z(F,,;) converging pointwise to Z(F'). On

the other hand, since Z(F,) — G in H%,, then Z(F,;) — G pointwise.

Thus Z(F') = G and the operator 7 is bounded by the Closed Graph
Theorem. O

Lemma 5.5. The operator T': H,,, — 81, I'(F) = H, is bounded.

Proof. The operator I' is well defined by Lemma 5.3. We use the
Closed Graph Theorem. Assume that F, — F in ’H,{,s and that
['(F,) — B in &. We shall prove that Hj, = B. On one hand,
by Theorem 1.1(a) in [Su] and Lemma 5.4 it follows that

1HE,—rllsse < CllFn = Fllysoo < C'llFr = Fllus
so that Hy, — Hj in Sy. On the other hand,

IT(Fn) = Bllse < |IT(F) = Blls,

so that Hf, — B in Sw. Thus H}, = B so that I" has the closed graph
property. Hence, I' is bounded. O

We recall the transvectant T : Seo (L2(ds,), L?(du,)) — A(B x B)
defined in [Su] (see also [FR] and [PZ]), where A,(Bx B) consists of all
holomorphic functions G : B x B — ©*V'. We recall further that the
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transvectant 75 in (10) can be defined for any holomorphic function
G(z,w) on B x B, namely

7.6 (e = Y (7) (ay O G,

2\ RO
For bounded bilinear forms A on L2(dw,), we define
(16) T.(A)(2) = (T,G) (2, 2) ,

where G(z,w) = A(K,, Ky).

Lemma 5.6. The operator Ty : S; — H,,, defined in (16) is bounded.
Also, T,(HS) = F if Hy € Sy.

Proof. First, let B € & be of rank one. Then there exists ¢, €
L%(dv,) such that

B(f,9) = (f,0)u(9, 0)v

for all f,g € L3(d,). Then ||Blls, = [Igll.ll¢ll, and Ti(B)(2) =
Ts(9,0)(2), so by Lemma 2.7 it follows that

(17) 1Ts(B)llvsx < Cslldllullells < CillBlls, -

In general, if B € §; we can write B = ) >° | B,, rank B,, = 1 such
that

N
IBYlsi = > IBalls, = [I1Blls, » as N = oo,
n=1
where BY = 3" B,. By (17) the sequence {7;(BY)}52, is Cauchy
and hence converges to some G in H,, .. Now, since BY — B in Sy
it follows by Lemma 8.4 in [Su] that 7;(B") — 7;(B) in %, Hence
7.(B) = G so that (17) holds for any B € S;.

Also, if HS € Sy, then T,(H3) = F. (As in the proof of Theorem 5.2
we refer to the proof of Lemma 8.6 in [Su].) O
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BILINEAR HANKEL FORMS OF HIGHER WEIGHTS
ON HARDY SPACES

MARCUS SUNDHALL

ABSTRACT. In this paper we study bilinear Hankel forms of higher
weights on Hardy spaces in several dimensions (see [Sul] and [Su2]
for Hankel forms of higher weights on weighted Bergman spaces).
For the case of weight zero we get a full characterization of S,
class Hankel forms, 1 < p < o0, in terms of the membership for
the symbols to be in certain Besov spaces. Also, in this case, if a
Hankel form is bounded, then the symbol satisfies a certain Car-
leson measure criterion. For the case of higher weights, we find
sufficient criteria for Hankel forms to be in class S,, 1 <p < 2.

1. INTRODUCTION

Schatten-von Neumann class Hankel forms of higher weights on
Bergman spaces are characterized in [Sul| and [Su2]. In the same
way, as for the case of Bergman spaces, Hankel forms of higher weights
on a Hardy space are explicit characterizations of irreducible compo-
nents in the tensor product of Hardy spaces under the Mébius group,
see [PZ].

In this paper we use the same notations as in [Sul] and [Su2]. Now,
let OB be the boundary of the unit ball B of C¢. We denote by Hj
the bilinear Hankel forms of weight s on the Hardy space H?(OB) if

() Hilh,9) =
[ (8" 50, F@) (1= ) dm(a).

where 7 is the transvectant given by

V(s GO f(2) ©0°kg(z
Tiroe =3 (7)o HgTE s

Date: August 13, 2006.
2000 Mathematics Subject Classification. 32A25, 32A35, 32A37, 47B35.
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and (d)y = d(d+1)---(d+ k — 1) is the Pochammer symbol. The
tensor-valued holomorphic function F' is called the symbol correspond-
ing to the Hankel form Hj. In fact, this is the limiting case v = d of
(7) in [Sul].

In Section 2 we establish the Schatten-von Neumann class criteria
for bilinear Hankel forms of weight zero. In this case we get a full
characterization of S, class Hankel forms, 1 < p < 0o, in terms of the
membership for the symbols in certain Besov spaces. Also a sufficient
criterion for boundedness, in terms of Carleson measures, is presented
there. The main theorems in Section 2 are Theorem 2.5 and Theo-
rem 2.16. In section 3 we study the case of higher weight. Here a
new difficulty appears. The transvectant does not behave in the same
way as for the case of Bergman spaces, see Example 3.5. Therefore
we cannot generalize the techniques used in [Sul] to find boundedness
and compactness criteria, but we establish sufficient criteria for Hankel
forms of nonzero weight to be of class S,, 1 < p < 2; see Theorem 3.9.

Notation. If || - ||; and || - |2 are two equivalent norms on a vector
space X, then we write ||z||; = ||z||2, x € X. Also, for two functions
f and g we write f < g if there is a constant C' > 0, independent of
the variables in questions, such that C'f(z) < g(z).

Acknowledgements. I thank Edgar Tchoundja for many fruitful
discussions on the relationship between symbols, and on Carleson mea-
sures.

2. HANKEL FORMS OF WEIGHT ZERO

To find the Schatten-von Neumann class Hankel forms of weight
zero on Hardy spaces we shall rewrite H% in terms of the small Hankel
operators studied in [Z]. The problem then boils down to finding the
relationship between the corresponding symbols.

The Hankel form, Hg, in [Z] is given by

(2) Ho(f,9)= | Gw)f(w)g(w)do(w),

OB
where do is the normalized Lebesgue measure on 0B. By the repro-
ducing property on the Hardy space H?(0B) we have the following
relationship between F' and G.
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Lemma 2.1. Let HY be given by (1) and Hg by (2). Then H% = Hg,
iof and only if

(3) (R + d)aG(w) = ca(d)aF (w),
where cq 1s a normalization constant for dm on B.

Proof. Let f,g € H*(0B). Using the reproducing property of fg and
Fubini-Tonelli’s theorem,

/B F@g(DFG(1 — |2 dm(z)

— [ swigtw) [FOUZ Bt aot).

oB
Hence HY% = Hg if and only if
F(z)(1 = |2)*"

4 G(w) = / dm(z) .
“ W= A=
Apply the radial differentiation R,

(RG)(w)

N Ry FCCLC U e

ow; (1 —(w, z))%+!

_ _d/BF(Z)(l_ 2[4 dm(z)+d/ F(z)(1 = |z[*)* dm(z)

(1= (w,2)) 5 (1= (w,z))™

so that

()Gl = | T

(L (w, et 2

Repeating this procedure,
_ F(z)(1 = [z
(et )aG) = @ |

Hence, by the reproducing property on the Bergman space L2(dm),
equation (4) can be reformulated into

(5) (R + d)aG(w) = ca(d)aF (w)

where c,4 is a normalization constant for dm on B. On the other hand,
if F(w) = (R + d)4G(w)/cq(d)q then equation (4) holds by symmetry

dm(z) .
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of (R+a), a > 0, w.r.t. the inner product

/B () a(2) (1 — |2[2)* dim(z)
]

Remark 2.2. For convenience we denote D = R + 1. Then D is
symmetric w.r.t. the inner product

(hss o = [ (@)1~ [22) dm(2)
B
where o/ > —1 and hy, hy : B — C are holomorphic.

2.1. Schatten-von Neumann class S, Hankel forms. In this sub-
section we present sufficient and necessary conditions for Hankel forms
of weight zero to be in Schatten-von Neumann class Sy, 1 < p < oo
(see Theorem 2.5) and the following lemmas are useful in the proof
this theorem.

Lemma 2.3. Let ay,---ag,by,--- ,0p >0, > —1and 1 < p < o0.
Then

[(B+ak) - (R+a1)flla,p = (R4 bg) - - (B +b1) flla,p
for all holomorphic f : B — C, where || f|

Proof. This result follows using the same arguments as in the proof of
Theorem 5.3 in [BB]. O

Lemma 2.4. Ifa > —1 and 1 < p < o0, then
(B+a+d+1)N)O0 =[P, = 1fl,

for all holomorphic f : B — C.

Proof. It 3 > 0, then

a,p = ||f||Lp((1—\Z\2)°‘dm(z))-

3 (@40 (7)) O =

and hence the result follows by using the same arguments as in the
proof of Theorem 2.19 in [Zhul]. O

Theorem 2.5. The Hankel form HY is of Schatten-von Neumann
class Sy, for 1 < p < oo, if and only

PO =1 Pl = ([ [P0 - 127 |db<z))”p<oo.
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Also, HY is of trace class Sy if and only if DF € L'(dm).

Remark 2.6. The measure di(z) = (1 — [2]?)~¢tY) dm(z) is a Mobius
invariant measure on B.

To prove the theorem we use Theorem 1 in [Z] (see also Theorem C
in [FeldR]) given below.

Theorem 2.7. Let « > —1 and 1 < p < oo. Then the Hankel form
Hg, defined by (2), is of Schatten-von Neumann class S, if and only

if
Y @G Q=1 Py gy < oo

|a|=d+1

Proof of Theorem 2.5. We shall make use of the fact that H% = Hg if
and only if F' and G satisfies equation (3), which follows by Lemma 2.1.
Then DF(z) = cqD(R+d)sG(2). In view of Theorem 2.7, it is enough
to prove that, for 1 < p < oo,

©) 1FOE =1 By = [OFO) A= B

and that, for 1 < p < oo,

@ [O*GO) A= 1P | aia
~ 3 @GO~ Py | pgay + D2 10°G) O]

laj=d+1 la<d

since then it will follow by Lemma 2.3 that

(FAOICIE Y o |
~ OFO) A =1 P
~ [(D*G0) =1 P
S @ GE) =1V iy + D 10°G) (0)] -

la]=d+1 al<d

12

Actually, (6) is a direct consequence of Lemma 2.3 and Lemma 2.4,
and (7) is a consequence of Theorem 5.3 in [BB]. O
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2.2. Bounded Hankel forms. In this subsection we present a nec-
essary condition for Hankel forms of weight zero to be bounded; see
Theorem 2.16. First we need some preliminaries, which basically can
be found in [Zhul]. We also remark that equivalence in Lemma 2.12
holds in the one dimensional case, due to Corollary 15 in [Zhu2].

Definition 2.8 (See [Zhul]). Let ¢ € OB and r > 0 and let

Q) ={z€B:d(z() <r}
where d(z,¢) = |1 — (2,¢)|'/? is the non-isotropic metric on 0B. A

positive Borel measure p in B is called a Carleson measure if there
exists a constant C' > 0 such that

w(Qr(¢)) < CT%?
for all ( € 9B and r > 0.

Lemma 2.9 (Theorem 5.4 in [Zhul]). A positive Borel measure p in
B is Carleson if and only if

sup/P(z,w) du(w) < 0o,
z€B JB
where

(1—1z)¢
P(Z,’LU):W, Z,’LUE]B.

Lemma 2.10 (Theorem 5.9 in [Zhul]). A positive Borel measure
in B is Carleson if and only if there exists a constant C > 0 such that

/B P du() < Cllf oo

for all f € H*(OB).

Lemma 2.11 (Theorem 50 in [ZhZh]). Let u be a positive Borel mea-
sure in B. Then the following conditions are equivalent

(a) There is a constant C' > 0 such that

JIRDEau) < Ol
for all f € H?*(OB).
(b) There is a constant C > 0 such that

w@r(¢) < Cr2?,
for all € OB and r > 0.
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Lemma 2.12. Let o > —1. For any holomorphic function g : B — C,
if dui(2) = |g(2)]?(1 — |2|)*dm(z) is a Carleson measure then so is
dps(z) = |Rg(2)[*(1 — |2[*)*+* dm(z).

Proof. If du, is a Carleson measure, then there is a constant C' > 0
such that

/ (1- |Z\2)2 dui(z) < 47“4/ dpi(z) < 4Cr2(d+2),
Q<) (0)

for all ¢ € B and r > 0, so that (1 — |2|?)2du,(2) satisfies the condition
(b) in Lemma 2.11. Hence there is a constant C; > 0 such that

® / (RADPA — 2P dus(2) < Cull oo

for all f € H%(0B). By Theorem 2.16 in [Zhul] (used on fg, assuming,
without loss of generality, that f(0) = 0) and by the inequality (8),

([rerane) "
(RGN = 22+ dm() -+
(/ )
(/ (RA@PQ - [2)? du1(Z))1/2

(/ ) dm (2) ) T G|l < Csllf 1o

for all f € H?(0B), so that dpus is Carleson by Lemma 2.10. O

Definition 2.13 (See [Zhul]). Let BMOA denote the space of func-
tions f € H?(0B) such that

1o = 1£0)+ sup / F(€)=Foren > do(€) < oo,
Q(¢,r)

Q(C, r)
where, for any ¢ € 8IB and r >0,

Q¢ r)={¢€dB:|1— (&' <1},

and

1
fatcn = Giery / RCLG)
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Lemma 2.14 (Theorem 5.3 in [Zhul]). A function f € H?*(OB) be-
longs to BMOA if and only if

sup | [f(0:=(¢)) = f(2)[* do(¢) < o0,

z€B

where ¢, is the linear fractional map given by (8) in [Sul].

Lemma 2.15. If f is in BMOA, then |f(2)|*dm(z) is a Carleson
measure on B.

Proof. If f is in BMOA, then there is a constant C' > 0 such that

sup /B Pz, w)|f(w) — F(0)2 dm(w)

z€B

< C-sup /6 P OIF(©) = [0 do()

2€B

= C-sup 6B|f(90z(€))—f(2)|2d0(€) < oo,

z€B

by Lemma 2.14. Then | f(w)— f(0)|*> dm(w) is Carleson by Lemma 2.9,
so that | f(w)|? dm(w) is Carleson. O

Theorem 2.16. If the Hankel form HY is bounded, then
[F(2)2(1 = [2*)*" dm(2)
is a Carleson measure on B.

Proof. The classical Hankel form (small Hankel operator) Hg on the
Hardy space H?(0B), as in [Z], is bounded if and only if G € BMOA
and by Theorem 5.14 in [Zhul],
G € BMOA <= |(RG)(2)]*(1 — |z*) dm(z) is Carleson.
Now, H% = Hg if and only if the equation (3) holds. Hence, if HY is
bounded, then |(RG)(2)*(1 — |z|?) dm(z) is a Carleson measure and,
since G is in BMOA, then |((R+d)G)(2)|*(1—|z|?) dm(z) is a Carleson
measure by Lemma 2.15. Using Lemma 2.12,
(R(R+d)G)(2)]*(1 — |2[*)** ' is Carleson,
and hence |((R+d+1)(R+d)G)(2)|]*(1 — |2|*)??~1 dm(z) is Carleson.
Repeating this procedure we get that
(R4 d)4G)(2)[2(1 — |2*)** 1 dm(z) is Carleson.
By equation (3), the proof is complete. O
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3. THE CASE s =1,2,3,---

In this section we study the class S, properties, 1 < p < 2, for
the case s > 1. Denote by Hﬁ,s the space of holomorphic functions
F :B — ©°V' such that ||F||4s, < 0o where

m(z 1/p
nﬂmw=(A«wﬂwxwv»F@V”a—vmwa£ﬁ%§g) |

This space is a well-defined Banach space if 1 < p < 0o. Also, denote
by Mg, the space of holomorphic functions such that

=sup ||(1 - |2[*)* ®* B(z,2)Y?F(z (2)]| <
2€B

3.1. Results about H?  for v > d. In [Sul] and in [Su2] there are
several results about er for s =0,1,2,--- and v > d. Now, if we
consider s =1,2,---,i.e., s # 0, then we can use the same arguments
as in [Sul] and [Su2] to generahze results about H?  for v > d to
v > d, where 1 < p < oo. Hence, the results below will be stated
without proofs. The reader is referred to [Sul] and [Su2] for more
details.

Lemma 3.1. Let v > d and let s be a positive integer. Then the

reproducing kernel of 7'[,,5 1S, up to a nonzero constant c, given by

Ko, 2) = (1= {1, 2)) " Bl(w, )"
Namely, for any v € ®°V' and any F € H?
(F@)0) = cfF Kl

= o [ (8B ) (), Ko, o) (1 ol difw).

Let H,, ; be the space of holomorphic functions F': B — ©*V"’ such
that the corresponding bilinear Hankel form on H?(0B) ® H 2(8]11%)
defined by (1), is of Hilbert-Schmidt class Sp. The norm on H,,  is
given by [|F|[} ; = [|H||s,-

V,87

Theorem 3.2. Let v > d and let s be a nonnegative integer. Then
there is a constant C, s > 0 such that

I —
||F||u,s - CVaS
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Theorem 3.3. Let v > d and let s be a positive integer. If 1 < p < 2,
then

HE = (M, Ho ) i2(—1/p)) -

Theorem 3.4. Let v > d and let s be a positive integer. Then F' €
'H}i,s if and only if there is a function a € I1(B, ©*V') with support in
{2}, CB, a; = a(z;), with 3772 [la;|| < oo such that

(9) = 31— |5 Kas(w, %) @ B'(2,2)a; .
j=1

3.2. The transvectant. If we were able to prove that 75(f, g) € ’H}i,s,
for positive s, that is generalize the analogous result for the case of
Bergman spaces (see Lemma 2.7 in [Su2]), then boundedness proper-
ties and compactness properties would follow in the same way as for
the case of Bergman spaces; see [Sul]. But, unfortunately, we can find

f,9 € H*(OB) such that ||75(f, g)lla,s,1 = oo

Example 3.5. This example is based on the proof of Theorem II
in [Ru]. First consider the case when s =1 and d = 1. Let

;k and g¢(z)=1.

Then f,g € H?(OD) and since the series f(z) is lacunary then

it = / ()| dm(z) =

This is a consequence of a result about lacunary series by Zygmund;
see [Ru]. Namely, if ngy1/np > A for some A > 1, and if h(z) =
Y pe cr2™ satisfies

| —

I7:(f, 9)

1
/ W (re?)| dr < oo
0

for some 6, then Y, |cx| < oo.
In the general case, d > 1 and s = 1,2,---, we just change f into

fa=3 g



HANKEL FORMS OF HIGHER WEIGHTS ON HARDY SPACES 11

and still let g(z) = 1. Then

T olaes = [ a2 = o) 2L ) dmie
s—1 af
> [a= k|52 ) dmie).

By Theorem 2.17 in [Zhul] there is a constant C' > 0 such that

Ja=krr |5Ee e = e [ |2

and the right hand side of the inequality above is infinite, as we can
see in the initial case (s =1, d = 1).

dm(z)

But, what we can prove is the following Lemma.

Lemma 3.6. Let s be a nonnegative integer and let € > 0. Then there
18 a constant C. > 0 such that

[ 18 B .2 P T 9@l (= 2 dm() < O [l - gl

Proof. Tt follows by exactly the same arguments as in the proof of
Theorem 4.1 in [Sul] that, for k # 0,

k pt k k dm(z) ) ,
(10) (/ (8B (2,200 11,041 () |\>> < Cusell

This yields the result, since 7;(f,g) is a linear combination of terms
O f(z) ® 9° *g(z) and by Holder’s inequality

H@SBt(', )I/Qakf() (9 857kg(-)||L1((1—\z\2)—1dm) < Cd,s : ”.f”H2 : ||g||H2
if £ # 0 and, for £ =0,

e85z 2) =20 )] (1 = 1)~ am(e)

Cas - 1 flla2 - (/B 19(2)|2(1 — |2|?)7! dm(z)) 12

< G \fllee - Mgl -

IN

N
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3.3. Class S, Hankel forms for 1 <p < 2.

Theorem 3.7. Let s be a positive integer. If F' € 7{‘11,8, then the
corresponding Hankel form Hj, is of class S;.

Proof. Let F € H,. Then, by Theorem 3.4 we can write

= ZFj(w)

where Fj(w) = (1 — |2;2)?Ky(w, z;) ®° B'(z;,2;)"?a;. As a conse-
quence of Lemma 7.1 in [Sul],

(1) | = sup || &° B'(w,w)'?Fy(w)|| < 2°(1 = |2[*) |la ]| -
By Lemma 3.6 and (11) it then follows that
[ & B w7, 9w, Exw)] (0 P dm(w)

IE I [ 6B . w) 2T, g) )| 1 = fol?)** dimu)

IN

< Ca- (1= Mlagll - [1£llm2 - gl < o0
Hence, by the reproducing property,
Hy,(f,9) = (T(f,9)(2), (1 = |2[*)? ©° B'(z,2)"/%q;) .

The bilinear form (f, g) = 7T5(f, g)(2;) is a sum of finitely many rank
one forms where the number of summands M, only depends on s. We
see this by writing f(z;) = ¢(f, K, ) i>, where K (w) = (1—(w, 2;)) ™%,
so that

0" F f(z)) ® 0%g(z;) = (f,0°F K, ) > ® (g, F K., )
Hence

1HEllsi < VM - [[He s,

for all j =1,2,--- so by Theorem 3.2 it follows that
[HElls, < Z 1HE llse < VM, =Y 1 HE lls, = C - Y |1 Fillagz
j=1 j=1

and

1B, = ¢ llagl?
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by the reproducing property. Thus

o0
|Hrlls, < C"- ) llagl| < oo

j=1
This completes the proof. 0
Corollary 3.8. The map I : 7-[(1175 — Sy, ['(F) = H}, is bounded.

Proof. This follows immediately from the last inequality in the proof
of the theorem above and from the fact that ||F| 41 is equivalent to

(12)  [|Flnc = inf { S llajll : {a;}2, defines F by (9)} .
7j=1

We need to prove that ||F'||4s,1 is equivalent to ||F||ins. If we let B be
the Banach space of holomorphic F' : B — ®*V’ such that || F|[ins < 00,
then the bijection I : #jy, — B, F = F, is bounded. Hence, by the

Open Mapping Theorem [ : B — 7-[(1175 is also bounded, and thus we
get equivalent norms. O

Theorem 3.9. Let s be a positive integer and let 1 < p < 2. Then
I':Hy, — S, [(F)= Hy, is bounded.

Proof. By Corollary 3.8 and by Theorem 3.2 it follows that I" : ’Hfi,s —
S; is bounded for 7 = 1,2 respectively. Then the theorem follows by
interpolation and Theorem 3.3. O
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LP-BOUNDEDNESS FOR ORTHOGONAL
PROJECTIONS ONTO SPACES OF NEARLY
HOLOMORPHIC FUNCTIONS AND OF
VECTOR-VALUED HOLOMORPHIC FUNCTIONS

MARCUS SUNDHALL

ABSTRACT. In this paper we establish LP-boundedness criteria
for orthogonal projections from L?(du,) onto the discrete parts
in the irreducible decomposition of L?(dus) under the action of
the Mobius group, where duq(2) = (1 — |2[2)*dm(z), a > —1,
and dm is the Lebesgue measure on the unit ball, B, of C?. These
spaces can be realized as kernels of the power D!*! of the invari-
ant Cauchy-Riemann operator D = B(z,2)0 (where B(z,z)™! is
the Bergman metric) and are therefore spaces of nearly holomor-
phic functions in the sense of Shimura. The operators D! are
intertwining operators from these spaces of nearly holomorphic
functions into certain vector-valued Bergman-type spaces of holo-
morphic functions in B. The orthogonal projections onto these
spaces are given by matrix-valued Bergman-type kernels, and we
study their LP-boundedness properties for bounded symmetric do-
mains of type I

1. INTRODUCTION

Let B be the unit ball of C¢ with the Lebesgue measure dm. Con-
sider the weighted L?-space L?(dpu,), where duq(z) = (1—|2]?)*dm(z),
« > —1. The Mobius group of biholomorphic mappings of B acts on
L?(dj,) as unitary (projective) representations. A weighted Plancherel
formula was established by Peetre, Peng and Zhang in [PPZ] and
Zhang [Z1], giving an explicit decomposition of the representation.
There are continuous and disctrete parts in the decomposition. The
discrete parts can be viewed as images of L?(du,) under certain or-
thogonal projections. These spaces can be realized (see [Z2]) as the
kernels of powers, D™t! of the invariant Cauchy-Riemann operator

Date: August 13, 2006.
2000 Mathematics Subject Classification. 32A25, 32A36, 32A37, 47B32.
1
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D = B(z,2)0, where B(z,z)~! is the Bergman metric) and are there-
fore spaces of nearly holomorphic functions in the sense of Shimura
(see [Sh1] and [Sh2]). Actually, for a certain k, the operators D!,
[ =0,1,...,k, are intertwining operators from the spaces of nearly
holomorphic functions onto certain Bergman spaces of vector-valued
holomorphic functions on B (see [PZ] and [EP]). We have the following
diagram;

L2(dpe) N C=(B) —2 L? (B,0'CY, dp,) N C> (B, ©'CY)

lPl lpu,l

Y
A2(dpy) AN L2 (B, ®'CY, dpy)
where P, is the orthogonal projection from L?(du,) onto the discrete
part A?(du,) of nearly holomorphic functions, P, ; (v = a+d+1) is
the orthogonal projection from L%(B, ®'C?, du,) onto its holomorphic
subspace and the L?-norm (invariant under the action of the Mdbius
group) is given by
1/2

o = [ (8B 27 1), 52) dua®))

where ®!B(z,2)7! is the action on ®'C? induced by the action of
B(z,z)7! on C%. This can be generalized into the setting of bounded
symmetric domains [Z2].

The main objective of this paper is to establish the LP-boundedness
criteria for the orthogonal projections P, onto the spaces of nearly holo-
morphic functions (Section 2) and also for the related Bergman-type
projections P, ; onto the Bergman spaces of vector-valued holomor-
phic functions (Section 3) for the unit ball of C¢; the problem makes
also sense for general bounded symmetric domains, and we study the
Bergman-type projections, P, ;, for bounded symmetric domains of
type L

More concretely, if &« > 2l —1 then, on one hand, Theorem 2.1 states
that P, is LP-bounded if and only if

(1) o+1 <p< a+1

at+1-1 P>
On the other hand, Theorem 3.6 states that P,; is LP-bounded if
condition (1) is satisfied.

I/
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To find LP-boundedness criteria for P, we use concrete formulas,
which can be found in [Z1]. In the more general setting of bounded
symmetric domains we do not yet have such formulas. However, the
generalizations of P, ; to bounded symmetric domains of type I is stud-
ied in Section 3. In this section, a sufficient conditions for these pro-
jections to be LP-bounded is presented. Actually, this is a weak gener-
alization of the corresponding result for the case of the unit ball of C¢,
weaker since the Forelli-Rudin type estimate is different in the general
case (see [FK2| and [EZ]). The Bergman-type projections mentioned
above are closely related to vector-valued Bergman-type projections
studied in [Sul]. A weak generalization of the LP-boundedness criteria
for these projections is presented in Section 3.

Acknowledgements. I thank Henrik Seppéanen for many illuminat-
ing discussions on bounded symmetric domains.

2. THE PROJECTION OPERATORS ONTO NEARLY HOLOMORPHIC
FUNCTIONS

2.1. The action of the Mobius group. Let B be the unit ball of
C?, and let G = Aut(B) be the group of holomorphic bijections on
B with holomorphic inverse. An element g € G, g(z) = 0, can be
decomposed as ¢ = Uy, where U : C¢ — C? is a unitary map and
¢, is a linear fractional map, taking 0 to z, see [Ru]. The complex
Jacobian J,_ (w) is given in [Sul] by

_ |o[2) @)/
o) = (-1

where (-, -) is the scalar product on C¢. Since G acts transitively on
B (see [Ru]) we get J,(w) for any g € G in this way. Hence, we can
define an action, m,, of G on L?(du,) by

(2) (m(9) ) (w) = fg7 (w)) - Ty-1 (w) /),

where v = a+d+1, and where we use the same convention as in [Sul]
concerning the ambiguity of the definition of power. Then 7, is a
unitary projective representation of G.
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2.3. An LP-boundedness criterion. The orthogonal projection op-
erators from L?(du,) onto the discrete parts of the irreducible decom-
position under the action (2) of L?(du,) are given explicitly in [Z1] by
P,forl=0,1,--- ,k=[(ae+1)/2] (o is not an odd integer), where

(3)  Pf) = (. K- / F ) Koz, ) dpta(u0)
and
Ki(z,w) =¢ 1

1- (z, w))a+diL X

: l—a—l)(l) = w Y
> E (1 (1—\z\2)(1—\w|2>)’

=0

where ¢; is a normalization constant and (d), = d(d+1) - - - (d+n—1) is
the Pochammer symbol. In the next theorem we present necessary and

sufficient conditions on 1 < p < oo to make the projection operators
P, bounded on LP(dp,).

Theorem 2.1. Ifl € {0,1,2,--- |k}, k =[(a+1)/2] (« is not an odd
integer), then the orthogonal projection operator P;, defined in (3), is
bounded on LP(du,) if and only if
a+1 <p< a+1
at+1-1 P57
when 1l #0, and 1 < p < oo when | = 0.

Proof. The case | = 0 is classical (see for instance Theorem 2.11
in [Zhu]). Assume now [ # 0. We can write the reproducing ker-
nel K; as

Kl(za w) = hl—l(zv ’U)) + Cl,Tl(Z, ’UJ)

where

Ti(z,w) = (1= [z~ 1 = w71 — (w, 2))* |

(1 = (2, w))e ttatl

First we observe that there is a constant C > 0 such that

(1 —[*) "0 = Jw)
|Ki(z,w)| < C - 11— (2, w)|eti+d-2 =C - Ti(z,w).
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Hence,

Pf(2)| < C / Ty(2, w)| f (w)| dpa(w).

We claim that there are real numbers M > 0 and ¢ such that the
inequalities

(4) /BTz(ZW)(l — |2 )" dpa(z) < M(1 — [w]?)P*
and
(5) /IBETI(Z’ w)(1 = [w[*)" dpa(w) < M(1 — [2]*)*

hold for ¢ with 1/q + 1/p = 1. If the claim is true then P, is bounded
on LP(due), by Schur’s test (see [HKZ]). By the same arguments as
in the proof of Theorem 7.2 in [Sul] it follows that the claim is true if

a—+1 < <a+1
at1—1 P71

Now we consider the cases when 1 < p < (a+1)/(a+1—1) or
(a+ 1)/l < p < oco. Actually, for duality reasons we need only to
consider the case when (o + 1)/l < p < oco. Let € > 0 and define x.
to be the characteristic function on B, = {z € C?: |z| < ¢}. Ifa is a
positive real number, then

(= =3 Gt

k=0

By binomial expansion and orthogonality,

/ (1 (1<_<u)])<fzg)-id+1 (1 = [w[*)* 7 dm(w)
i <) —]+d+1 / (2, w)[% (1 = |w[2)2 7 dm(w)

=0

forall 7 =0,1,2,---,1. Clearly we can find a constant D; such that

(6) (X, i1 (5 2))al < Dy(1 = [2[3) 712
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Also,

(1) Kxe; Ta(+ 2))al =

(1—|2%)~ /Be(l—\w|2)a_ldm(w) (1 — zl: <i> (o= ;d_’_ L) 52i> .

=1

Thus by (6) and (7), if we choose € to be small enough and K < 1
large enough, there is a positive constant Cj such that

[(Xes Ki(, 2))al 2 [(Xe, &T0 (-, 2))al = Xes a0 2))al > Cil1 — [27)
if K < |z|] < 1. Hence,
) [ o Kl Dl dnaa) = € [ (1= o) ()
B K<|z|<1
and the integral on the right side of the inequality (8) is infinite if
p>(a+1)/I. 0
3. BERGMAN SPACES OF VECTOR-VALUED HOLOMORPHIC

FUNCTIONS

3.1. Bounded symmetric domains of type I. Let D be a type [
bounded symmetric domain, i.e., D = {Z € M,,,(C) : ZZ* < I,,,}
and let dm(Z) be the Lebesgue measure on D. By Theorem 4.3.1
in [H], the Bergman kernel is given by

(9) k(Z,W) =c-h(Z,W)~m+n)
where c is a certain nonzero constant, and where
hMZ,W) =det(I — ZW™).
If g : D — D is biholomorphic, then, by Theorem 2.10 in [FK1],
(10)  k(Z,W) = det(dg(2)) - k(g(Z), g(W)) - det(dg(W))

where dg(Z) : T, (D) — Tyz)(D) is the differential map.
The Bergman operator defined for Z,W € D is given in [L] by

B(Z,W)X = (I — ZWHX(I - W*Z),
for matrices X € M,, ,,(C). By Lemma 2.11 in [L],
(11) B(9(2), 9(W)) = dg(Z)B(Z,W)dg(W)".
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3.2. Values in tensor products of a tangent space. Consider
the measure duo(Z) = h(Z, Z)*dm(Z), for @ > 2s — 1, and the corre-
sponding L?-space L?(D,®*V, du,) where V. = M,, ,,(C) (so that we
can identify a tangent space on D with V) and ®*V is the induced
symmetric tensor product for s copies of V' where s is a nonnegative
integer. The functions in L?(D, ®*V, du,) are tensor-valued and the
L?-norm is given by

1l = ( [ @Bz 12).12) dua(Z))m ,

where (X,Y) = tr(XY™). The reproducing kernel is up to a constant
(12) K, (Z,W)=WMZ,W) " B(Z,W)
where v = a4+m+n. This can be proved by using the transformation

properties (10) and (11) of h(Z,W) and B(Z,W) respectively (see
e.g. [Sul] for the case of the unit ball and [DZ] for similar results).

Lemma 3.1. Let s be a nonnegative integer. Then there is a constant
Cs > 0 such that

l©* (B(2,2)7*B(2,W)B(W, W)~ X |
h(zZ, W)

<
< Oz, 2y (v, w)

Xl

for all X € My, m(C)°.

Proof. The case s = 0 is trivial, so first we prove the case s = 1. If
X € Mpm(C), then

B(Z,2)"\*X = (I-2z)"2X(I-7"Z)"'/?
= W(Z,Z) " (adj(I — ZZ*))'? X (adj(I — Z*2))"/* ,
where adj(A) is the adjoint of the matrix A. Thus, if W = 0, then
IB(Z,2)"*X|| < C-hZ,2)7" - || X]|.

Now, let g be a biholomorphic map on D such that g(0) = W and

g~ = g. On one hand,

1B(g'(2),91(2))*X|| < C-h(g (2),9 " (2)) I X]|
On the other hand, by (10),
—1 —1 _ _ h(VVa W)h(Z: Z)
h(g (Z),g (Z))—h(g(Z),g(Z))— |h(Z,W)|2
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Hence

|h(Z, W)?
1(Z, Z)h(W, W)
Let Y = dg(0)*B(W,W)~*/2X. Then we can replace X by Y in the
inequality (13). Also |Y|| = || X]|, so if we let Zy = g~'(Z) then
by (11),

(13) Blg '(2),9 "(2)) "*X| < C- -1l

|B(Z, 2) “*B(2,W)B(W, W) 2X "
— |B(2,2) YVdg(Z)Y ||’
tr (B(Z,2)""2dg(Z,)YY*dg(Z,)* B(Z, Z)"'1?)
= tr(dg(Zo)*B(Z,7) ‘dg(Zy)YY™)
= tr(B(Zo, Zo)"'YY")
2 ALY 2
< & (s gmarm) I

Hence, the lemma is proved for the case s = 1. Now, consider the case
where s = 2,3, ... and let

Ayw = B(Z, Z)~Y?B(Z,W)B(W, W)~/

and
|WZ, W)
tZ,W = .
hZ, Z)h(W, W)
We have proved that
Ay wAzw < CPywl

so that
(@ Azw)" @ Azw = ®° (A*Z,WAZ,W) < CQStQZfW ®° I
which proves the lemma. O
As a special case we get the following lemma.

Lemma 3.2. If D = B, then for any nonnegative integer s, there is
a constant Cy > 0 such that
11— (z,w)|**

5 2,2) " ?B(z,w)B(w,w) Y*) z x
H® (B(’ ) B(a )B( ) ) ) HSCS(1—|Z|2)5(1—|UJ|2)5” ||a

for all x € V.
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As a special case of Theorem 4.1 in [FK2] we have the following
lemma.

Lemma 3.3. Let B —1 > o > —1. Then there is a constant C > 0
such that

m(Z) < C-h(W, W)=,

/ ‘h Z W ‘ﬁ+m+n

Remark 3.4. There is an orthogonal projection P, 5, from the Hilbert
space L?(D, ®*V, du,) into its holomorphic subspace, such that for any
f € L*(D,®°V,du,) and any X € ®*V we have that

(14) (P.f(2),X)
= c [ (@ BOVIW)F(W), KW, 2)X) dpa(1V).

Theorem 3.5. Let o > 2s and let P, be the orthogonal projection
operator, where v =a+m+n. If

a+ 2 <p< a+ 2
a+i—s PSsr1
then P, s is bounded on L*(D,®°V,d,).

Proof. The formula (14) can be rewritten as
Paf(2) = [ KoulW.2)" & BOV.W) £ (V) disa (V).
D
Let
W2z, 2)"*h(W, W)~*
(2, W2

By the equality K, (W, Z)* = K, s(Z,W) and Lemma 3.1 it follows
that

|®°B(Z,Z)"'?P,f(Z)|

T(Z,W) =

<C [ T(2.W) & BOV.W) 2 £W) | dua(IV).

Now by Lemma 3.3, using the same techniques as in the proof of
Theorem 7.2 in [Sul], it follows that there exists a real number ¢ and
a constant M > 0 such that

/ﬂzwwzmmwmmngmmw
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and
/ T(Z, WYh(W, W)+ dm(W) < M - h(Z, Z)"
D

where 1/p + 1/q = 1. Namely, there exists such ¢ if p and « satisfies
the condition
a+2 <p< a+2
a+1-—s P= +1°

So, with this condition for p and « it follows by Schur’s test that

/D |©°B(2,2)7 P, f(2)| dua(2)
<¢C /D @ BOW, W)~ 2 f(W)||” dpa(W) .

0

Theorem 3.6. Let o > 25—1 and let P, ; be the orthogonal projection
wherev=a+d+1, i.e. D=B. If s #0 and

a+1 < <a+1
a+1l-—s p s

then P, s is bounded on LP(B, ®°V,du,). If s =0, then P, is bounded
on LP(B,®°V, du,) for any 1 < p < oo.

Proof. The case s = 0 is classical (see for instance Theorem 2.11
in [Zhu]). Assume now s # 0. By similar arguments as in the proof of
Theorem 3.5, using Lemma 3.2, we get that

Bz, 2) P ()] < € [ Tew) |00 Blw,w) 21 (w)] dia)

where

(1= l2) (1 — [w]’)~*

T = G

Again, following the proof of Theorem 3.5, using Proposition 1.4.10
in [Ru] instead of Lemma 3.3, we get the desired result. O
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3.3. Values in tensor products of a cotangent space. Once we
have studied the LP-boundedness for Bergman-type projections onto
Bergman spaces with functions with values in symmetric tensor prod-
ucts of a tangent space, it is natural to do so even for the case of
cotangent spaces. These Bergman-type projections are closely related
to the Bergman-type projections studied in [Sul] and [Su2].

Let D be the type I bounded symmetric domain given in the previ-
ous subsection. Most notation are the same as in the previous subsec-
tion, only @ > —1 and L?*(D, ®*V, dp,) is replaced by L?(D, ®°V", dj,)
with norm

11z = ( [ (@ B2 21 5(2). 1(2) dua(Z)>1/2 ,

where B(Z, Z)" is the dual action of B(Z, Z) acting on the dual space
V'. Also B(Z,Z)" may be identified with B*(Z, Z) where

BY(Z, W)X = (I — ZW*)'X(I - W*2)t,

for matrices X € M,,,,,(C) and where ¢ is the transpose of a matrix.
The reproducing kernel for L?(D, ®*V’, du,) is given, up to a nonzero
constant, by

K, (Z,W)=WZ W) " &° BY(Z, W) 1,

where again v = a+m-+n. The orthogonal projection, P, , in question

from L?(D,®*V", du,) onto its holomorphic subspace, is defined in the
following way. For any f € L?(D,®°V’',du,) and any X € @V’ we
have that

(15) (PL,f(2),X)
= ¢ [ (@B IW W), KL, (W, 2)X) daW).

Hence, if we can find a result similar to Lemma 3.1 then we can use
the same arguments as in the proof of Theorem 3.5 to find criteria for
the projections P, , to be bounded on LP(D, ©°V', du,).

Lemma 3.7. Let s be a nonnegative integer. Then
|@* (BY(Z,2)'?B"(z,W)"'B' (W, W)"*) X|| < |IX],
for all X € My, ,(C)*.
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Proof. By the definition of the Bergman operator it follows that
(16) |B(Z, 2)"*X|| < | X]|

Actually, if D is not the unit ball of C? then we can find Z € D
such that B'(Z,Z)X = X for all X € M,,,,(C) and therefore (16) is
actually the best estimate we can get in the general case. Now, given
W € D, choose g as in the proof of Lemma 3.1. Then

| B (Zo, Zo)2X || < X1,
if g(Zy) = Z. Since
(dg(Z0)") ™" : Ty (D) — Ty(D)'
is an isometry then

| Bz, 27 (ag(ze) 7 x| < X1

Hence
|B' (2, Z2)"*B"(Z, W) 'B"(W, W)X |
_ HBt(Z, Z)1? (dg(ZO)t)_lYH <.
where Y = ((dg(0)"))"'BY (W, W)'2X. Also, ||Y| = || X|| which

follows in the same way as in the proof of Lemma 3.1. Thus, the
lemma is proved for the case when s = 1 and the proof of the general
case is done in exactly the same way as in the proof of Lemma 3.1. [

As we could see in the proof of the lemma above we need to treat the
particular case D = B separately. The following lemma can be proved
by using the same techniques as in the proof of Lemma 3.1 and in
Lemma 3.7. However, the same result can also be found in [Sul].

Lemma 3.8 (Lemma 7.1in [Sul]). If D = B, then for any nonnegative
integer s, there is a constant Cs > 0 such that
||®5 (B'(z, 2)Y2 B (z,w) " Bt (w, w)l/Q) xH
(1= [2[*)*2(1 — Jw[*)**
11— (z,w)*

< Cs

Il

for all x € V.

Now we can get the desired boundedness condition. This result is
a weaker generalization of Theorem 7.2 in [Sul].



PROJECTIONS ONTO NEARLY HOLOMORPHIC FUNCTIONS 13

Theorem 3.9. Let a > 0 and let P, be the orthogonal projection
operator, where v = o +m +n. If

o+ 2

a+1

then P, . is bounded on LP(D,®*V', du,).

V,8

<p<a+2,

Proof. The result follows by exactly the same arguments as we used
to prove Theorem 3.5. O
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