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Abstract

We study the branching laws when representations given by the ana-
lytic continuation of the scalar holomorphic discrete series for a semisim-
ple Hermitian Lie group, G, are restricted to a symmetric subgroup.
The symmetric subgroups we consider are the fixed point groups for
the lifts to G' of antiholomorphic involutions on the corresponding
bounded symmetric domain G/K. We prove a general theorem stat-
ing that a multiplicity free direct integral decomposition always exists.
Explicit decomposition theorems are given for some of the given rep-
resentations for three of the four types of classical bounded symmetric
domains. The methods that are used include explicit intertwining
operators and the spectral decomposition of an associated Casimir
operator.

We also consider the quaternionic discrete series for the group Sp(1,1).
A generalised Szegé map is used to compute highest weight vectors
for K-types in a homogeneous vector bundle model.
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BRANCHING LAWS FOR HOLOMORPHIC
REPRESENTATIONS AND THE QUATERNIONIC
DISCRETE SERIES FOR Sp(1,1)

HENRIK SEPPANEN

INTRODUCTION

In this introduction we give an overview of the framework in which
the representations we study take place. Since three of the papers are
directly related to bounded symmetric domains, also the major part
of this introduction is concerned with these. We briefly describe their
geometry and the trivialisations of certain line bundles defined over
them. Also, this gives a background to some representations defined
by continuation in a parameter describing these line bundles. After
this general framework we consider the restrictions to some symmetric
subgroups that define totally real submanifolds. In this context, we
give brief introductions to Papers I —I11 that treat the decompositions
of restrictions to subgroups, or the branching law. Following this, we
put a so-called multiplicity-free property of the decompositions in a
natural geometric and complex analytical context by presenting some
recent results by T. Kobayashi ([19], [20]) on representations related to
holomorphic vector bundles and certain types of actions of Lie groups
on complex manifolds.

The remaining part of this introduction treats the quaternionic dis-
crete series. Here we present the results of Paper IV and relate it to
previous work by Gross and Wallach ([9]). We end the introduction
by posing some open problems. These are divided into branching laws
and quaternionic representations.

0.1. Bounded symmetric domains. In the present thesis we are
interested in representations realised on Hilbert spaces of holomorphic
functions on bounded symmetric domains. These are bounded open
domains, &, in some C" with the property that for every z € D there
exists an automorphism (i.e. biholomorphic mapping on ), s,, of
period 2 having z as an isolated fixed point. A bounded domain, &, is

circled (with respect to 0) if 0 € & and €z € 2 for every z € & and
1
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real #. One can prove that every bounded symmetric domain in C"
is biholomorphically equivalent to a bounded symmetric and circled
domain which is unique up to a linear isomorphism of C".

Since each s, preserves the Bergman metric, it follows that it the
geodesic symmetry around z, and that the Bergman metric is com-
plete. Hence any two points in & can be joined by a geodesic, and
reflection in the midpoint of this geodesic interchanges the two points.
In particular, it follows that the group of automorphisms of & acts
transitively on &, and hence we can write

(1) 9=~ GJK,

i.e.,, 9 is biholomorphically equivalent to a homogeneous space G/ K,
where G is a Lie group and K is a closed subgroup. In fact, G can be
chosen as the connected component containing the identity element
in the group Aut(%) of automorphism of 2, and K is the isotropy
subgroup of the origin in G, i.e.,

(2) K :={g € G|g(0) = 0}.

The Lie theoretic description of bounded symmetric domains allows
a classification of them. The classification reduces to a classification
of irreducible bounded symmetric domains, i.e., those which are not
equivalent to Cartesian products of bounded symmetric domains. The
result is that any irreducible bounded symmetric domains belongs to
one of six classes. Firstly, there are the four classical domains

Ly : 92 = {Ze M, (O|l, —2"Z >0}

II,: 9 = {Z€M,,O)|l, -—2"Z>0,7Z=7"
III, : 9 = {ZeMyuO|l,-2*Z>0,Z=-2"}
1V, : 9 = {zeC'1-2]z2+]|(z,2)]> >0,z < 1},

(z,2) =21 + -+ 22)

Secondly, there are two exceptional domains in dimensions 16 and 27,
respectively. In this thesis we shall only be concerned with the classical
domains. It should be pointed out that the list of classical domains
is not a disjoint list of irreducible domains. For instance, there is an
isomorphism IV, = I'Vy x IV}, showing that the domain V5 is not
even irreducible. Moreover, there are some isomorphism between the
irreducible ones. Except for IV5, all the other classical domains are
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irreducible, and every irreducible classical bounded symmetric domain
is isomorphic to one of those listed. A complete list of all existing
isomorphisms between the classical domains listed above can be found
in Loos ([21]).

0.1.1. Harish-Chandra realisation. We shall now briefly describe how
the bounded symmetric domains are obtained when the starting point
is the Lie theoretic one. For a thorough treatment, we refer to Helga-
son [10] and to Knapp [15].

Suppose that G is a simple, connected noncompact Lie group with
finite centre, and that K is a maximal compact subgroup with non-
discrete centre. Then there exists a Cartan involution 6 : G — G,
such that its differential at the identity (which we also denote #) is an
involution of the Lie algebra g, admitting a decomposition

(3) g=tayp,

into the +1 eigenspaces for , where the subspace £ equals the Lie al-
gebra of K. It can be proved that the centre, ¢, of £ is one dimensional
and that the centraliser in g of ¢, Z;(c), equals the centraliser in £ of c,
Zi(c). As a consequence, any maximal abelian subalgebra of € is also
a maximal abelian subalgebra of g. We now fix a choice t C ¢ of such
a subalgebra. Let g€ := g ®g C be the complexification of g, and let
£C and p* denote the complexifications of € and p respectively. Then
we have the direct sum decomposition

(4) g“ =t“ o

and £¢ C £© is a maximal abelian subalgebra of g°.
There exists an element Z; € ¢ such that we have a decomposition

(5) c“=ptotCarp,

where p* denotes the +i-eigenspace for ad(Zy).
These subspace are abelian Lie subalgebras of p¢. Moreover, the
relations

(6) [ pT] Cpt 65 p 1 Cp,ptp ] CE€
hold.
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Let GC be a simply connected Lie group ! with Lie algebra g©, and
let P*, K€, and P~ denote the connected subgroups with Lie algebras
pt, €€, and p~ respectively. Then the exponential maps exp : p* —
P* are diffeomorphic homomorphisms of abelian groups.

On a group level, we have the following analogue of (5).

Theorem 1 (Harish-Chandra decomposition). The multiplication map
(7) Pt x K€ x P~ = G, (p,k,q) — pkq

1s injective, holomorphic and reqular with open image. Moreover, there
exists a bounded open subset 9 C p* such that with Q := exp 9 C P+

(8) GQ C QK°P~.

Moreover, G/K has a complex structure such that the action ¢'K N
99'K of G is holomorphic. In fact, the map g — log(g)y, where
()4 denotes the PT-component, descends to a G-equivariant diffeo-
morphism between G/K and &, and G acts holomorphically on 2 by
9(2) == log(gexp z)+.

The complex structure Jy at the tangent space of the identity coset,
T.xk(G/K) = p, is of the form

(9) J() = ad(Z0)|p p—=p.
(cf. [15], Thm 7.117.).
For g € G,z € 9, we denote the K®-component of gexpz. The

map J : G x 2 — KC is called the automorphic factor. It satisfies the
cocycle condition

(10) J (9192, 2) = J(91, g22)J (2, 2)-
The diffeomorphism G/K = 2 gives a global trivialisation
(11) T(G/K)~ 9 x p*

of the tangent bundle. For g € G and z € 2, the differential dg(z) is
given by (cf. [31])

(12) dg(z)v = Ad(J(g, 2))v.

IThe simple connectivity is not really necessary here, rather it singles out a
canonical choice of complexification since it gives the universal covering of any
other choice. In the case that G is a linear algebraic group, GC can also be
naturally chosen as a linear algebraic group. This will be the case in the next
example.
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Example 2.

= {( a jo) ) 1A € U(n), D € U(m), det(A) det (D) = 1},

where the sizes of the blocks are determined by A being n x n, and

J = ( IO" _(}m ) Moreover,

(13) G = SL(n+m,C)

can be chosen as a linear algebraic group. On the level of Lie algebras
we have

g© = slin+m,C) ={Z € My m(C)|Trace Z = 0},
© = {(61 109 |TraceA+TraceB:0},

Zy = mﬁﬂ(%l_é%),
p+::{<8‘§)M6A%M©},

= {(20)1Zemmo)}

The PTKCP~-decomposition is given by

A B\ (I, BD'! A—BD'C 0 I 0
¢ D) \ 0o I, 0 D D'C I, )

So, for
0 7 I, 7
(14) z = (0 0)6@, exp(z):(o Im)EQ,
A B
g = (C D)ESU(n,m),
o) = (A AZ+B
IR = \ ¢ cz+D )
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and the logarithm of the P*-component is
0 (AZ+B)(CZ+ D)*!
0 0

Z as in (14) defines a biholomorphic equivalence between the domain

I,,., and the subset 2 C p* in the Harish-Chandra decomposition. In

particular, it follows that the fractional linear action

A B
C D

gives a description of the type I, ,, domain as the homogeneous space
SU(n,m)/S(U(n) x U(m)). Note that as a special case we have the
description SU(1,1)/U(1) of the unit disc.

. The identification z <+ 7, with z and

ZHMAZ+&KZ+DYHZ€%9:( )ESWmm)

0.2. Homogeneous vector bundles. Most of the representations
that we consider in this thesis are defined on spaces of sections of
homogeneous vector bundles. We therefore give a brief introduction
to this topic here. Examples will be given in the following section that
treats weighted Bergman spaces.

Definition 3. Let G/K be a homogeneous space. We fix the point
0 := eK as a reference point.

A vector bundle ¥V — G/K is said to be homogeneous if G acts on
it by bundle automorphisms.

This means that for each z € G/K there is a linear mapping
(15) Gz Vo = Vs
In particular, the fibre V, is the representation space for a representa-
tion of K.

Conversely, if 7 is a representation of K on a finite dimensional
vector space V', we define the equivalence relation
(16)  (g,v) ~ (gk™", 7(k)v) V(g,v) e GxV,Vk e K
on the Cartesian product G x K. We let [(g, v)] denote the equivalence
class of the pair (g,v)], and and we let
(17) G xxV :={[(g,v)][(g,v) € G x V}

be the set of equivalence classes. Then G x gV carries the structure of
a smooth vector bundle over G/K when equipped with the projection

p:GxgV —=G/K,
p([(g,v)]) = gK.
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The continuous sections of this bundle can be identified with the set
(18)  C(G,7):={f € C(G,V)|f(gk™") = (k) f(9)}-
Indeed, if f € C(G, 7), the mapping

sp:GIK — G xgV,

sy(9K) = [(9, f(9))]

defines a continuous section. On the other hand, for a section s, we
can write

(19) s(9K) = [(9, f5(9))]

for a unique function f : G — V. This is well defined with respect
to the equivalence relation (16) if and only if f; satisfies the property
(18). The mappings s — f; and f — s; are the inverses of each other,
and this characterises the space of continuous sections.

0.3. Weighted Bergman spaces. We now let 2 = (G/K be a bounded
symmetric domain of complex dimension n. The differential action of
K on the tangent space T.x(G/K) is equivalent to the representa-
tion Ad, of K. Taking exterior powers of the dual version of this
isomorphism, we obtain an isomorphism between the representations

A d*(eK) and §, where A d*(eK) is the representation on the top
power in the exterior algebra AT}, and the latter representation is
defined as

(20) 5(k) == det(Ad3 (k).

The smoothly induced representation Ind% (8) is defined on the space

of smooth sections in the homogeneous vector bundle G'x g A (p)<,

which can be identified with the space of sections in the complex deter-
minant bundle. We can also form the analogous construction, starting
with the representation S™(0), i.e., with the mth symmetric tensor of

0 on the corresponding vector space S™ (7\ (p*)‘c>. The homogeneous

vector bundle G'x g A (p*)€ is then isomorphic to the mth symmetric
power of the determinant bundle. Since the isomorphism of vector
bundles is G-equivariant, the induced action on sections is equivalent
with the action as pullbacks on top-forms and their symmetric tensor
powers.

The biholomorphic equivalence G/K = 9 realising the symmet-
ric space G/K as a bounded open domain in p*, together with the
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description of the group action in this model, can be used to define
a global trivialisation of the aforementioned vector bundles. Indeed,
for any holomorphic representation, o, of K€ on a finite dimensional

complex vector space, V7, we can define an isomorphism of vector
bundles

(21) Yo : GXg VS =D xV°
¢o([(9,0)]) = (9(0),(J (g, 0))0).

An action of G as vector bundle autmorphisms of 2 x V? is defined
by the requirement that ¢, be G-equivariant; namely

(22) (9)=(2,v) = (9(2),(J (g, 2))v).

If F:G— V?is a K-equivariant function corresponding to a section
of the bundle G x g V7, it defines a function f: ¥ — V7 by

(23) flg-0)=0(J(9,0))F(g).

By the K-equivariance of F', this is indeed well-defined. The action of
G on the space of sections then translates to an action on V?-valued
functions by

(24) 9f(z) =0(J(g7",2)) " fg™"2).

In particular, when o = Ad(k)*|, we get a trivialisation of the cotan-
gent bundle. Taking o to be the nth exterior power of Ad(k)*|,, (21)
gives a trivialisation of the determinant bundle. The action of G' on
sections now corresponds to the action

(25)  gf(2) ==det(dg™'(2))f(g7"2) = J-1(2)f (g7 "%)

on complex valued functions on &. Analogously, the action of G
on sections in the mth symmetric power of the determinant bundle
corresponds to the action

(26) 9f(z) = T (2)" (g ')
on complex valued functions in the trivialised picture.
For a fixed K-invariant inner product, (, ), on V7, we define an
Hermitian metric on V7 := G xg V7 by
(27) ha(u,v) = ((g7")ou, (97 )20)ks w0 €V,

where z = gK and (¢7'), denotes the fibre map V7 — V§ & V°
associated with ¢g~!. For a fixed choice, ¢, of G-invariant measure on
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G/K we define L?(Ind% (o)) as the Hilbert space completion of the
space

(28) {s e '(G/K,V?)| h,(s,s)di(z) < oo} :

G/K

In view of (22), the norm on V“-valued functions is given by

(29) (. ) = /@ lo(I(g™", 2)) F()|Pdaz).

The holomorphic functions in L?(Ind% (¢)) form a closed subspace

B*(0) = {f € 0(2,V7)| /@ lo(T(g™" 2) f (2)|I*de(z) < 00}-

Since G acts holomorphically on & x V? and the Hermitian met-
ric is G-invariant, it follows that B%(o) is a G-invariant subspace of
L*(Ind%(c)) and that the action (26) defines a unitary representa-
tion of G. We temporarily denote this representation by O(Ind%(c)).
When o = S™(J) for some m, these representation spaces are the
weighted Bergman spaces. For each z € &, the evaluation functional

(30) ev,: f— f(z) eV =C
is a bounded linear functional on B%(S™(8)). Hence, B?(S™(8)) admits
a reproducing kernel, i.e., a function

K:9x9 —C

which is holomorphic in the first argument, antiholomorphic in the
second one, such that K(-,w) € B*(S™()) and

(31) f(z)=(f,K(,2), feB(S™()),2€ 2.

It follows by a theorem by S. Kobayashi (cf. [17]) that all the repre-

sentations
O(Ind%(S™(6))) are irreducible.

0.4. Analytic continuation of the scalar holomorphic discrete
series. The spaces B%(S™(d)) from the previous section all have re-
producing kernels of the form h(z,w) ™% where h is a polynomial,
holomorphic in z and anti-holomorphic in w, and ¢; is a constant re-
lated to the Lie algebra g (cf. [7]). The set of all positive real v for
which the kernel function

(32) h(z,w)™
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is positive definite is called the Wallach set. 1t is given by
33)  W={(a/2)jl0<j <r—1}U((a/2)(r - 1),00),

where a is a constant related to the root system for g©, and r is the
rank of g¢. For v € W, h(z,w)™" is the reproducing kernel for a
Hilbert space, 7%, of holomorphic functions on &, and one defines an
irreducible (projective) representation, m,, of G by

(34) m,(f)(2) = (det dg™(2))"/ f(g7"2).

These (projective) representations constitute the analytic continua-
tions of the scalar holomorphic discrete series.

This was proved by Wallach (cf. [37]), who worked algebraically
with highest weight modules for the universal enveloping algebra U (g®)
of g, and independently by Rossi and Vergne (|30]) who used more
analytic techniques.

Rossi and Vergne were able to realise all the spaces corresponding to
the discrete points in the Wallach set as L?-spaces of functions defined
on some boundary orbits on a convex symmetric cone 2. The number r
in fact coincides with the so called rank for the cone, and this number
also counts the number of orbits on the boundary of the cone under the
automorphism group of the cone. The smallest nonzero discrete point
in the Wallach set corresponds to the minimal representation. By the
Rossi-Vergne characterisation, it is realised on a space of functions on
the set of elements of minimal rank on the boundary of some cone.
This is the model we use for the minimal representation in paper 11,
where we construct an even more explicit realisation.

0.5. The branching rule. Assume that (7, H) is an irreducible uni-
tary representation of a Lie group G. If H C G is a closed subgroup,
the restriction, 7y, of m to H need not be irreducible. One might
therefore be interested in the decomposition

WHE/AJd,u(O')

H

2Actually, this holds only for the tube domains. In general, each point in the
orbit parametrises a Fock-space and one considers functions of two variables such
that the Fock-norm in one variable (taken pointwise) is a square integrable function
of the other variable.
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of my into a direct integral of irreducible representations. Here H
denotes the unitary dual of H, and p is some positive Borel mea-
sure on H. The decomposition of this restriction is called a branching
rule for the pair (G, H). A famous classical example of this is the
Clebsch-Gordan decomposition for the restriction of the tensor prod-
uct of two irreducible SU(2)-representations (which is a representation
of SU(2) x SU(2)) to the diagonal subgroup. For an introduction to
the general theory for compact connected Lie groups, we refer to [15].
When the groups G and H are noncompact, there is yet no general
theory.

Since the work by Howe ([11]) and by Kashiwara-Vergne ([13]), the
study of branching rules for singular and minimal representations on
spaces of holomorphic functions on bounded symmetric domains has
been an active area of research. In [12|, Jakobsen and Vergne studied
the restriction to the diagonal subgroup of two holomorphic represen-
tations. More recently, Peng and Zhang ([29]) studied the correspond-
ing decomposition for the tensor product of arbitrary (projective) rep-
resentations in the analytic continuation of the scalar holomorphic
discrete series. Zhang also studied the restriction to the diagonal of a
minimal representation in this family tensored with its own anti-linear
dual ([40]).

In this thesis we are concerned with the following situation. Let ¥ =
G/K be a bounded symmetric domain. Let 7 : ¥ — 2 be an anti-
holomorphic involutive diffeomorphism which lifts to an involution of
the group G by g — 7g7~!. The fixed point group

H:=G ={geGlrgr ' =g}
then acts transitively on the fixed point set
X ={z€ D|1(z) = 2},

and if we define L := H N K, we have the identification & = H/L.
The manifold 2" is then a totally real submanifold of &, and so the
restriction of holomorphic function on & of 2 is injective. It is there-
fore of interest to restrict (projective) representations of G on spaces
of holomorphic functions on & to the subgroup H and find the ir-
reducible decomposition. This problem has been studied recently by
Davidson, Olafsson, and Zhang ([6]), Neretin ([22], [23], van Dijk and
Pevzner ([35]), and Zhang ([39], [40], [41]). More specifically, in this
thesis we restrict the (projective) representations 7, from the previous
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section to symmetric subgroups and find explicit Plancherel measures
for the direct integral decompositions. We now briefly describe the
contents of the first three papers that are concerned with this branch-
ing problem.

Paper I: In this paper, ¥ C C" is the bounded domain of type
IV, also known as the Lie ball. The involution 7 is the standard
coordinatewise conjugation, and the corresponding real submanifold,
Z, is the real n-dimensional unit ball. In terms of Lie groups, G =
SO(2,n), H= SO(1,n). We consider representations m, for arbitrary
v in the Wallach set and find the branching rule for the restrictions
to H. An explicit intertwining unitary operator is defined using a
power series expansion for the spherical eigenfunctions of the Casimir
operator associated with ,|y. The restriction of the decomposing
unitary operator to the subspace % of L-invariants is mapped onto
an L? space with an orthonormal basis given by certain continuous
dual Hahn polynomials. The restriction of the minimal representation
is proven to be irreducible by realising it as a Hilbert space of functions
on the unit sphere S™ with explicitly given inner product.

Also, in this paper we prove the following general decomposition
theorem.

Theorem 4. Let m be a unitary representation of the semisimple Lie
group H on a Hilbert space, 7. Suppose further that L is a maximal
compact subgroup and that the representation has a cyclic L-invariant
vector. Then m can be decomposed as a multiplicity-free direct integral
of irreducible representations,

(35) . e /A madp(V),

where A is a subset of the set of positive definite spherical functions
on H and for X € A,y is the corresponding unitary spherical repre-
sentation.

The idea of the proof is to use representation theory for C*-algebras.

An important point to be made here is that we obtain the multiplicity-
freeness directly from the construction; we obtain a decomposition on
the L'(H)-level which is multiplicity-free. Hence also the derived de-
composition for the group representation is multiplicity-free. We will
return to this issue in the section “Recent advancements”.
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Paper II: In this paper we treat the branching rules for the pairs
(Sp(n,R), GL(n,R)) and (SU(n,n), GL(n,C)) and for the respective
minimal representations. The corresponding bounded symmetric do-
mains are those of type 11, and I,, respectively. In the first case,
an antiholomorphic involution, 7, is furnished by conjugating with
respect to the real form given by the set of real symmetric matri-
ces. In the second case, we consider the conjugation with respect
to the Hermitian n x n-matrices. Both domains are tube domains,
and the groups GL(n,R) and GL(n,C) are the autmorphism groups
for the associated symimetric cones consisting of the positive definite
real symmetric matrices and the positive definite Hermitian matrices
respectively. We give explicit realisations for the models of the min-
imal representations as L2-spaces on boundary orbits for the cones.
Also, the spherical representations occurring in Theorem 4 are given
explicit realisations admitting the construction of intertwining opera-
tors as (the “analytic continuations of”) integral operators. Inversion
formulas and Plancherel theorems are proved.

The proof of the surjectivity of the intertwining operators relies on
uniqueness properties coming from the construction of the intertwining
operator of Theorem 4.

Paper III: In this paper, we consider the minimal representation
for the group SU(n,m) (n > m) and find the branching law for the
pair (SU(n,m),SO(n,m)). We find it by considering the spectral
decomposition for the associated Casimir operator. By the construc-
tion in Theorem 4, it suffices to consider the subspace of L-invariants,
which is invariant under the Casimir operator. We prove that the
Casimir operator acts on this subspace as a Jacobi operator and iden-
tify the matrix elements. Thereby, we are able to find unitary operator
intertwining the Casimir operator with a multiplication operator on
an L%-space for which certain continuous dual Hahn polynomials fur-
nish an orthonormal basis. The corresponding Plancherel measure is
shown to have point masses precisely when n —m > 2. In this case,
we construct a Hilbert space of (equivalence classes of) functions on
the real Stiefel manifold given by the real part of the Shilov bound-
ary of 4. This Hilbert space carries a natural unitary representation
of SO(n,m). We identify it with a parabolically induced representa-
tion and construct an intertwining operator that embeds it unitarily
into the representation space for the minimal representation. Finally,
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we identify it with a certain point in the set of point masses for the
Plancherel measure.

Also in this paper, the surjectivity of the intertwining operator relies
on uniqueness properties in the proof of Theorem (4).

0.6. Recent advancements on decomposition. We recall the dis-
cussion of
multiplicity-freeness following Theorem 4.

On the other hand, all the representations defined as restrictions
to symmetric subgroups that we have considered in this thesis can
be seen to be multiplicity-free, given that one knows that a direct
integral decomposition exists. This follows from a recent theorem by
Kobayashi. The theorem assumes some geometric conditions on the
action of a Lie group on a holomorphic vector bundle over a complex
manifold. We shall now give some background to these conditions,
state the theorem, and then see how it fits into the framework of the
present thesis.

Definition 5. Let M be a connected complex manifold with a com-
plex structure J, H a Lie group acting holomorphically on M. We say
that the action of H is visible if there exists an H-invariant non-empty
open subset D C M, and a totally real submanifold, S C M such that
(i) SNH-z#0, for every z € D,

(i1) J,T,(S) CT,(H - z), for every z € S (J-transversality).

A stronger condition on the group action is provided in the following
definition.

Definition 6. The action of H is strongly visible if there exists an
H-invariant open subset D C M, a submanifold, S, of D, and an anti-
holomorphic diffeomorphism, o, of D satisfying the three conditions
(i), SNH -z #0, for every z € D,

(17) ols=1id,

(174) o preserves each H-orbit in D.

Also, an important aspect is the compatibility of twisting the H-
action by ¢ with the automorphism of H, i.e., if the action of H on
D given by z N o(ho~!(z)) can be realised by composing the given
action by a group automorphism. More precisely, the definition is as
follows.
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Definition 7. The strongly visible action of H has a compatible au-
tomorphism if there exists an automorphism ¢ € Aut(H) such that

5(h)z = o(ho™'(2)),z € D.

Kobayashi’s theorem on propagation of the multiplicity free prop-
erty deals with unitary representations of a Lie group, H, that can be
realised in the space of holomorphic sections of a vector bundle, i.e.,
that there is an H-equivariant continuous embedding H — O(M, V),
where H denotes the representation space, and V — M is a Hermitian
holomorphic H-equivariant vector bundle. We are now ready to state
the theorem.

Theorem 8 (T. Kobayashi). Let ¥V — M be a holomorphic, Hermit-
tan vector bundle over the connected complexr manifold M. Assume
that the Lie group H acts by isometric automorphism of the bundle
such that the following three conditions are satisfied:

(1) The action on the base space is strongly visible and with a compat-
ible automorphism of the group H (see Def. 7).
(17) The representation of the isotropy group, H,, of z on the fibre V,
1s multiplicity-free for any z € S.
We write its decomposition into irreducibles as

n(z)

V, = Q_?VZ@.

(133) The diffeomorphism o lifts to an anti-holomorphic endomorphism
(which we also denote by o) of V such that

(36) o, (VD) =V 1<i<n(z),z€S8.

Then, any unitary representation of H which is realised in O(M,V)
s multiplicity-free.

The representations we are interested in decomposing in this thesis
are all given as restrictions of representations of a semisimple group G
to the fixed point group, G7, of an involution. The involution 7 comes
from an anti-holomorphic involutive diffeomorphism (which we also
denote by 7) of the bounded symmetric domain, 2, by 7(g9) = 7g7~".
Kobayashi has proved that in this setting the action of H = G" on ¥
is always strongly visible (cf. [20]). In fact, the submanifold S can be
taken as exp a-0, and the diffeomorphism ¢ can be constructed directly
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on the group level from 7 by o := 76, where 0 is the Cartan involution
of G. The diffeomorphism o on Z is then of the form o(¢9K) = 0(9) K
and hence the compatibility condition (Def. 7) follows by definition.
Finally, since our vector bundles are trivial, ¢ automatically lifts to an
antiholomorphic endomorphism of 2 x C by setting (z,v) — (0(z), ).

0.7. Quaternionic discrete series. The representations on weighted
Bergman spaces that we have discussed all have the common feature
that they belong to the discrete series for G, namely, if (7, ) denotes
one of these representations, then the function

My : G — C,
Muw(9) = (T(9)u,v)

is in L*(Q) for all u,v € H. In general, discrete series representations
cannot be realised as spaces of holomorphic sections of holomorphic
vector bundles. However, if GG is a connected linear semi-simple group
with a compact Cartan subgroup 7' C G, the quotient space G/T is a
complex Kiahler manifold. Any discrete series representation of G' can
be realised as the space HP(G/T, L) of square integrable harmonic
(0,p) forms with values in a holomorphic line bundle, £ over G/T.
This was proved by Schmid in a series of papers ([32], [33], [34]) ending
with [34].

In [9], Gross and Wallach considered representations of simple Lie
groups G with maximal compact subgroup K such that the associated
symmetric space G/ K has a G-equivariant quaternionic structure (cf.
[38]). This amounts to the group K containing a normal subgroup
isomorphic to SU(2). In fact, there is an isomorphism K = SU(2) x M
for a subgroup M C K, and by setting L := U(1) x M, the associated
homogeneous space G /L is fibred over G/K with fibres diffeomorphic
to P1(C). The quaternionic discrete series representations are then
realised on the sheaf cohomology groups H'(G/L, L), where L —
G/L is a holomorphic line bundle. In this model they are able to
classify all the K-types occurring in each of the obtained discrete
series representations. Moreover, they consider the continuation of
the discrete series and characterise the unitarisability of the underlying
(g, K)-modules.

Paper IV:
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In this paper we work with another model for discrete series given
by Schmid in his thesis ([32]) . If 7 is a quaternionic discrete series rep-
resentation realised on the cohomology group H(G/L, L), and 7 is its
minimal K-type, then the Schmid D-operator acts on the sections of
the homogeneous vector bundle G X ¢V, — G/K where V; is some vec-
tor space on which the K-type is unitarily realised. The Hilbert space
kerDNL?*(G, 7) then furnishes another realisation of the representation
7. We consider the special case when G = Sp(1,1). In this case the
symmetric space G/K can be embedded into the bounded symmetric
domain SU(2,2)/S(U(2) x U(2)) consisting of complex 2 x 2-matrices
of norm less than one. The restriction of the Harish-Chandra embed-
ding to G/K then yields a global trivialisation of the vector bundle
G X i V. In this model we compute the restrictions to the submanifold
A-03 of the highest weight vectors for the occurring K-types. This is
carried out by using the Szeg6 map defined by Knapp and Wallach in
[16] which exhibits any discrete series representation as a quotient of
a nonunitary principal series representations. The K-types are deter-
mined on the level of the principal series representation, and then the
Szeg6 map is applied to compute the above mentioned restrictions.

These functions turn out to be fibrewise highest weight vectors with
a hypergeometric function as a coefficient. Similar functions have
been studied by Castro and Griinbaum in [5]. As we already saw in
the descriptions of papers I and 111, hypergeometric functions occur
frequently in representation theory. For an example outside the theory
of Lie groups, we refer to [27], where they play a role in the context
of Hecke algebras.

0.8. Open problems.

0.8.1. Branching laws. In this thesis we have only considered represen-
tations in the scalar holomorphic discrete series and its analytic con-
tinuation. The restriction to a symmetric subgroup also makes sense if
we consider holomorphic sections of vector bundles over the symmetric
space G/K, or, in the trivialisation, vector valued holomorphic func-
tions. Related spaces of functions have been consider by other people.
For instance, in [28], Pedon considers spaces of harmonic (p, ¢)-forms
over the complex unit ball. In the context of restricting holomorphic

3 4 is associated with a particular Iwasawa decomposition G = NAK.
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sections to a real form, there is an operator constructed by Olafs-
son and Qrsted, the generalised Segal-Bargmann transform, that maps
holomorphic square integrable sections in G X V' H-equivariantly into
a dense subspace of the Hilbert space L?(Ind} (01)) (cf.[25]). An ac-
count of this can also be found in Olafssons lecture notes [24]. It is in-
teresting in this context that Camporesi has proved a generalisation of
Helgasons Plancherel formula for L2(H/L) to the space L*(Ind¥ (5,))
for a general symmetric space H/L of the noncompact type (cf. [3],
[4]). It would therefore be interesting to study the branching law for
the pair (G, H) for some suitable vector valued holomorphic represen-
tations.

0.8.2. Quaternionic discrete series. In Paper IV we considered only
discrete series. In general, Gross and Wallach in [9] gave a criterion for
the existence of a continuation of the quaternionic discrete series. Also,
they classified the unitarisability of the underlying (g, K)-modules.
Their proof uses Vogan’s method of unitarising the derived functor
modules constructed by cohomological induction (cf. [36]).

It would be a challenging problem to realise these Hilbert spaces
analytically with an explicit inner product. A related problem is to
understand the reproducing kernels for the discrete series represen-
tations by some geometric and/or algebraic construction and to see
whether they admit an analytic continuation in some parameter, as is
the case for the holomorphic discrete series.
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BRANCHING OF SOME HOLOMORPHIC
REPRESENTATIONS OF SO(2,N)

HENRIK SEPPANEN

ABSTRACT. In this paper we consider the analytic continuation
of the weighted Bergman spaces on the Lie ball

2 = 80(2,n)/S(0(2) x O(n))

and the corresponding holomorphic unitary (projective) represen-
tations of SO(2,n) on these spaces. These representations are
known to be irreducible. Our aim is to decompose them under the
subgroup SO(1,7n) which acts as the isometry group of a totally
real submanifold 2 of 2. We give a proof of a general decomposi-
tion theorem for certain unitary representations of semisimple Lie
groups. In the particular case we are concerned with, we find an
explicit formula for the Plancherel measure of the decomposition
as the orthogonalising measure for certain hypergeometric poly-
nomials. Moreover, we construct an explicit generalised Fourier
transform that plays the role of the intertwining operator for the
decomposition. We prove an inversion formula and a Plancherel
formula for this transform. Finally we construct explicit realisa-
tions of the discrete part appearing in the decomposition and also
for the minimal representation in this family.

INTRODUCTION

One of the main problems in the representation theory of Lie groups
and harmonic analysis on Lie groups is to decompose some interest-
ing representations of a Lie group G under a subgroup H C G. This
decomposition is also called the branching rule. Among other things,
this has led to the discovery of new interesting representations. An
exposition of the general theory for compact connected Lie groups,
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Bounded symmetric domains, Lie groups, Lie algebras,
unitary representations, spherical functions, hypergeometric functions, intertwin-

ing operator.
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including the classical results for U(n) and SO(n) (by Weyl and Mur-
naghan respectively), can be found in [12].

Since the work by R. Howe [7] and M. Kashiwara and M. Vergne (cf
[10]), it has turned out to be fruitful to study the branching of singular
and minimal holomorphic representations of a Lie group acting on
a function space of holomorphic functions on a bounded symmetric
domain. In [9], Jakobsen and Vergne study the restriction of the tensor
product of two holomorphic representations to the diagonal subgroup.

In this paper we will study the branching of the analytic con-
tinuation of the scalar holomorphic discrete series of SO(2,n) un-
der the subgroup H = SOqy(1,n). The subgroup H here is realised
as the isometry group of a totally real submanifold of the Lie ball
SO(2,n)/S(0(2) x O(n)). The branching for a general Lie group G
of Hermitian type under a symmetric subgroup H has been studied
recently by Neretin ([19], [18]), Zhang (|28],[30],[29]) and by van Dijk
and Pevzner [25]. In [14], Kobayashi and Orsted studied the branching
for some minimal representations. The branching rule for regular pa-
rameter and for some minimal representations is now well understood.
However, the problem of finding the branching rule for non-discrete,
non-regular parameter is a difficult one, and there is still no complete
theory for the general case.

We find the branching rule for arbitrary scalar parameter v in the
Wallach set of SO(2,n). It turns out that for small parameters v
there appears a discrete part in the decomposition. We discover here
an intertwining operator realising the corresponding representation. It
should be mentioned that for large parameter (in this case v > n — 1)
the corresponding branching problem has been solved by Zhang in [28§]
for arbitrary bounded symmetric domains.

The paper is organised as follows. In Section 1 we describe the ge-
ometry of the Lie ball. In Section 2 we recall some facts about general
bounded symmetric domains and Jordan triple systems. In Section 3
we establish some facts about the real part of the Lie ball. In Section
4 we consider a family of function spaces and corresponding unitary
representations. Section 5 is devoted to branching theorems and to
finding the Plancherel measure. In Sections 6 and 7 we find realisa-
tions of the representations corresponding to the discrete part in the
decomposition and to the minimal point in the Wallach set respec-
tively.
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1. THE LIE BALL AS A SYMMETRIC SPACE
S0y(2,m)/S0O(2) x SO(n)

In this paper we study representations on function spaces on the
domain

(1) D ={z€C"|l —2(z,2) +|22')* > 0, |z] < 1}.

We will only be concerned with the case n > 2. (If n = 1 it is the
unit disk, U, and if n =2, ¥ = U x U). In this section we describe
2 as the quotient of SOy(2,n) by SO(2) x SO(n)) by studying a
holomorphically equivalent model on which we have a natural group
action induced by the linear action on a submanifold of a Grassmanian
manifold. Consider R"*? = R? R" equipped with the non-degenerate
bilinear form

(l"|y) = T1Y1 + ToY2 — T3Y3 — ... — Tpt2Ynt2,

where the coordinates are with respect to the standard basis e, - - - , €,49.
Let SO(2,n) be the group of all linear transformations on R"™? that
preserve this form and have determinant 1, i.e.,

SO(2,n) = {g € GL(2 + n,R)|(gz|gy) = (z]y),z,y € R**" detg =1}

Let g(;’n) denote the set of all two-dimensional subspaces of R? @& R"
on which (-|-) is positive definite. Clearly R? @ {0} is one of these
subspaces. It will be the reference point in Q(;,n) and we will denote it
by Vi. The group SO(2,n) acts naturally on this set and the action is
transitive. In fact, the connected component of the identity, SOy (2, n)
acts transitively. We will let G denote this group.

We denote by K the stabilizer subroup of V4, i.e.,

(2) K ={g € Glg(Vo) = Vo}.
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Any element g € G can be identified with a (2 + n) x (2 4+ n)- matrix
of the form

(3 (6 3)

where A is a 2 x 2-matrix. With this identification, K clearly corre-
sponds to the matrices

A 0

0 D)’

where A and D are orthogonal 2 X 2- and n X n-matrices with deermi-
nant one respectively, i.e., K = SO(2) x SO(n). The space g(“;m) can
be realised as the unit ball in M,,»(R) with the operator norm. Indeed,
let V € g(g,n). If v=v +vy €V, then v; = 0 implies that v, = 0,
i.e., the projection v — v; is an injective mapping. This means that
there is a real n x 2 matrix Z with Z!Z < I,, such that

(4) V={(v® Zv)|lv € R*}.

Conversely, if Z € M,»(R) satisfies Z'Z < I,, then (4) defines an
element in g(;’n).

Using (3) to identify g with a matrix and letting V' correspond to
the matrix Z, then clearly

gV = {(Av+BZv & Cv+ DZv)lv € R*)}
= {v®&(C+DZ)(A+ BZ) 'v)jve R},
In other words, we have a G-action on the set
M ={Z € M (R)|Z'Z < I}
given by

Z— (C+DZ)(A+BZ)™*,
This exhibits M as a symmetric space.
M= G/K.
Moreover, we identify the matrix Z = (XY') with the vector X +3Y
in C" in order to obtain an almost complex structure on M. With

respect to this almost complex structure, the action of G is in fact
holomorphic. Moreover we have the following result by Hua (see [8]).



BRANCHING OF SOME HOLOMORPHIC REPRESENTATIONS OF SO(2,N) 5

Theorem 1. The mapping

¢
_ _ A+l i(z2t—1) [ 2
71LZHZ_?((%”A —i(ﬁt—1)> z )]

where zz' = 22 + --- + 22, is a holomorphic diffeomorphism of the
bounded domain

D ={z€C"|1 —2(z2)+|2"]* > 0,|2| < 1}
onto M.

We will call this mapping the Hua transform. It allows us to describe
9 as a symmetric space

9 =M =G/K.

2. BOUNDED SYMMETRIC DOMAINS AND JORDAN PAIRS

In this section we review briefly some general theory on bounded
symmetric domains and Jordan pairs. All proofs are omitted. For a
more detailed account we refer to Loos ([15]) and to Faraut-Koranyi
([2])-

Let D be a bounded open domain in C* and H?(D) be the Hilbert
space of all square integrable holomorphic functions on D,

H*(D) = {f, f holomorphic on D |/ |f(2)]2dm(z) < oo},
D

where m is the 2n-dimensional Lebesgue measure. It is a closed sub-
space of L?(D). For every w € D, the evaluation functional f — f(w)
is continuous, hence H#?(D) has a reproducing kernel K(z,w), holo-
morphic in z and antiholomorphic in w such that

flw) = /D F (&) K (s wydm(2).

K(z,w) is called the Bergman kernel. It has the transformation prop-
erty

-1

(5) K(p(2), p(w)) = Jop(2) "K(z,w)Jy(w)
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for any biholomorphic mapping ¢ on D with complex Jacobian J,(z) =
det dp(z). Hereafter biholomorphic mappings will be referred to as au-
tomorphisms. The formula

(6) hz(u’v) = au&vlogK(Z’ Z)

defines a Hermitian metric, called the Bergman metric. It is invariant
under automorphisms and its real part is a Riemannian metric on D.

A bounded domain D is called symmetric if, for each z € D there is
an involutive automorphism s, with z as an isolated fixed point. Since
the group of automorphisms, Aut(D) preserves the Bergman metric,
s, coincides with the local geodesic symmetry around z. Hence D is
a Hermitian symmetric space.

A domain D is called circled (with respect to 0) if 0 € D and
ez € D for every z € D and real ¢.

Every bounded symmetric domain is holomorphically isomorphic
with a bounded symmetric and circled domain. It is unique up to
linear isomorphisms.

From now on D denotes a circled bounded symmetric domain. G is
the identity component of Aut(D), K is the isotropy group of 0 in G.
The Lie algebra g will be considered as a Lie algebra of holomorphic
vector fields on D, i.e., vector fields X on D such that X f is holomor-
phic if f is. The symmetry s,z — —z around the origin induces an
invoulution on G by g — sgs~! and, by differentiating, an involution
Ad(s) of g. We have the Cartan decomposition

g=todp

into the +1-eigenspaces.
For every v € C", let &, be the unique vector field in p that takes
the value v at the origin. Then

(7) §u(2) =v - Q2)v

where Q(z) : V — V is a complex linear mapping and Q : V —
Hom(V, V) is a homogeneous quadratic polynomial. Hence Q(z,2) =
Q(z +2) — Q(z) — Q(z) : V — V is bilinear and symmetric in 2 and
z. For z,y,z € V, we define

(8) {272} = D(2,9)z = Q(z, 2)T

Thus {zyz} is complex bilinear and symmetric in 2 and z and complex
antilinear in y, and D(z,7) is the endomorphism z — {zyz} of V.
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The pair (V, { }) is called a Jordan triple system. This Jordan triple
system is positive in the sense that if v € V,v # 0 and Q(v)v = \v for
some A € C, then A is positive. We introduce the endomorphisms

(9) B(z,y) = I — D(z,9) + Q(z)Q(7)

of V for z,y € V, where Q(7)z = Q(y)Z. We summarise some results
in the following proposition.

Proposition 2. a) The Lie algebra g satisfies the relations

(10) [gmfv] = D(uaﬂ)_D(U’E)
(11) [laé‘u] = é-lu

foru,veV oandl et
b) The Bergman kernel k(z,y) of D is

(12) m(D)~! det B(z,y)™*
¢) The Bergman metric at 0 is
(13) ho(u,v) = trD(u,v),
and at an arbitrary point z € D
(14) h,(u,v) = ho(B(z, 2) ‘u,v)
d) The triple product { } is given by
(15) ho({vvw}, y) = 0,050,051log K (2, 2)| =0
We define odd powers of an element x € V' by
ot =1z, 2 =Q(2)7,- - ,2”" = Q(x)r2L.

An element x € V is said to be tripotent if 23 = z, i.e., if {zZx} =
2z. Two tripotents ¢ and e are called orthogonal if D(c,e) = 0. In
this case D(c,¢) and D(e,€) commute and e + ¢ is a tripotent.

Every £ € V can be written uniquely

$:A101+"'+)\n0n,

where the c; are pairwise orthogonal nonzero tripotents which are real
linear combinations of odd powers of z, and the )\; satisfy

D<M << A\
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This expression for z is called its spectral decomposition and the \;
the eigenvalues of x. Moreover, the domain D can be realised as the
unit ball in V' with the spectral norm

[[z]] = max [Ail,
where the \; are the eigenvalues of z, i.e.,
D ={z e Vl|z| <1}

Let f(t) be an odd complex valued function of the real variable ¢,
defined for |t| < p. For every z € V with |z| < p we define f(z) € V
by

(16) f@)=fA)a+ -+ f(Aa)en,

where x = Ajc1 + - - - + A\, ¢, is the spectral resolution of x. This func-
tional calculus is used in expressing the action on D of the elements
exp&, in G:

(17)  exp&(2) = u + B(u,u)?B(z, —u) (2 + Q(2)7)
and

(18) d(exp&,)(2) = B(u,u)*B(z, —u) !,
where u = tanh v, for v € C* and z € D.

3. THE REAL PART OF THE LIE BALL
We consider the non-degenerate quadratic form
(19) qz) =2+ +22

on V = C". In the following we will often denote ¢(z,w) by (z,w).
Defining Q(z)y = q(x,y)x — q(x)y, where q(z,y) = q(z +y) — q(z) —
q(y), we get a Jordan triple system. The Lie ball 2 = {z € C*|1 —
2(z, z) + |22'|* > 0,]z] < 1} is the open unit ball in this Jordan triple
system. An easy computation shows the following identity.

D(z,9)z =20 _ =e)z + 20 a¥e)z — 20D ze2r)y
k=1 k=1 k=1

Recalling that B(x,y) = I — D(z,%)+Q(z)Q(Y). The Bergman kernel
of 7 is

(20) K(z,w) = (1 —2{z,w) + (22") (ww?)) ™.
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We will hereafter denote it by h(z,w)~™. Consider the real form R"
in C". Observe that
X =9 mR"

is the unit ball of R*. On £ we have a simple expression for the
Bergman metric:

(21) B(z,z)=(1—|z) [,z € X .
The submanifold 2 is a totally real form of & in the sense that

This implies that every holomorphic function on & that vanishes on
Z is identically zero. We define the subgroup H as the identity
component of

{h € Glh(z) e Z'ifx € Z'}

We will denote H (K by L.

Using the fact that the real form R” is a sub-triple system of C",
one can show that 2" is a totally geodesic submanifold of Z (cf Loos
[15]). Hence we can describe 2" as a symmetric space

2 = H/L

We now study the image of 2~ in the M,,5(R)- model of the Lie ball.
For computational convenience, we now work with the transposes of
these matrices. The defining equation of the Hua-transform can be
written as

(22) % < Zﬁ E fﬁfét__lf) ) 4= ( : )

In the coordinates (z1, ..., z,) of z, this identity takes the form
1

(23) 2 = 5( (22" + e +i(z2" = ).

This gives

(24) 4z2' = (22")2(X +iY)(X +iY)' + 2(X X' + Y X") 22!

(25) +(X —iY)(X — Y)Y,

which is a quadratic equation in zz! with unique solution
(26) 272"
22— (XX'4+YY) - 2/(1 - XXY)(1-YY!) — (YX!)?
(X +dY)(X +4Y)t '
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From (23) we see that if z is real, then y; = 0 for all £. On the other
hand, if Y = 0, then (26) shows that z2" is real and therefore z is
real by (23). Hence the image of the real part 2~ C 2 under the
Hua-transform is the set

(27) H(Z) ={Z=(X0)|X € Mn(R),|X]| <1},

since for an element Z = (X 0), the condition that Z'Z < I, is clearly
equivalent with |X| < 1.

Recall that the real n-dimensional unit ball can be described as a
symmetric space SOy(1,n)/SO(n) by a procedure analogous to the
one in the first section. One first considers all lines in R"*" on which
the quadratic form z7 —23—---—22 | is positive definite and identifies
these lines with all real n x 1-matrices with norm less than one. If we
write elements g € SO(1,n) as matrices of the form

a — b —
|
(28) g = c D ’
|
the action is given by
(29) X (c+DX)(a+bX)™".

The group SO(1,n) can be embedded into SO(2,n). Indeed, the
equality

a 0 — b — ad 0 — ¥ -
01 — 0 -— o1 - 0 -—
| |

¢ 0 0 D'
| |

-
- ('\\_

ad' +bcd 0 — ab +0bD'
0 1 - 0 -
= | |
ca' + D 0 ch + DD’
| |
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shows that we can define an injective homomorphism 6 : SO(1,n) —
SO(2,n) by

— 0 — O
>

This subgroup acts on H(Z') as
(X0) = ((c+ DX)(a+bX)""0)

and the action is transitive. Suppose now that h € SO(2,n) preserves
H(Z). Let p = h(0). We can choose a g € SOy(1,n) such that
g(0) = p (here we identify g with 6(g)). Then g='h(0) = 0 and hence
we can write it in block form as

1, (L 0
with D € SO(n). This is an element in §(SO(1,n)) and hence h €
6(SO(1,n)). We have now proved the following theorem.

Theorem 3. The Hua transform H : 9 — M maps the real part Z
diffeomorphically onto

(30) H(Z) ={Z = (X0)[X € Mn(R), | X[ <1}

by x +— 1+2\—ﬁ\2 Moreover, the induced group homomorphism h +—

HhH" is an isomorphism between the groups H and SOy(1,n)

Remark. The model H(Z") of SOy(1,n)/SO(n) is the real part of
the complex n-dimensional unit ball SU(1,n)/SU(n) with fractional-
linear group action. It is therefore equipped with a Riemannian metric
given by the restriction of the Bergman metric of the complex unit
ball. If z € H(Z ),z # 0, we decompose R* = Rz @ (Rz):. We let
v = v; + v, be the corresponding decomposition of a tangent vector
v at z. In this model, the Riemannian metric at z is (cf [21])

00 = e - oy
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We recall from equation (21) that if x € X, then the Riemannian

metric at x is

1 o

h = ———.
0 = o Ty

The Hua transform thus induces an isometry (up to a constant) of the
real n-dimensional unit ball equipped with two different Riemannian
structures.

3.1. Iwasawa decomposition of . The Cartan decomposition g =
€ @ p induces a decomposition h = [P q. We let

a=RE

be the one-dimensional subspace of q, where e = e; denotes the first
standard basis vector and the corresponding vector field &, is defined
in (7).

Proposition 4. The Lie algebra § has rank one, and the roots with
respect to the abelian subalgebra a of q are {a, —a}, where a(&) = 2.
The corresponding posive root space 18

o = {& + %(D(e, v) — D(v,e))|v € Res & --- ® Re, }

Proof. This is known in a general context, but we give here an ele-
mentary proof.

Take u and v in R" and assume that [£,,&,] = 0. Then, for any
x € R* we have

D(u,v)x = D(v,u)x.
A simple calculation shows that this amounts to
(u, z)v = (v, 2)u,

which can only hold for all real z if u = v.

Thus a is a maximal abelian subalgebra in q. The vector e is a
maximal tripotent in the Jordan triple system corresponding to Z.
Suppose that [£.,& + 1] = a(&)(& + ). Identifying the ¢- and I-
components yields

(31) D(e,v) — D(v,e) = a(&)l
(32) _§le = O‘(é-e)g'u
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From (32) it follows that le = —a(&)v and, thus, applying both sides
of (31) to e gives

D(e,v)e — D(v,e)e = —a(&,)?v,
ie.,

D(e,e)v — D(e,v)e = a(é.)*v,
An easy computation gives
4v — 4(e,v)e = a(&,)?v.

Hence e is orthogonal to v and a(&,)? = 4. The rest follows immedi-

ately. O

We shall fix the positive root o. Elements in ag are of the form
Aa and will hereafter be identified with the complex numbers A. In
particular, the half sum of the positive roots (with multiplicities), p,
will be identified with the number (n —1)/2.

3.2. The Cayley transform. The Cayley transform is a biholomor-
phic mapping from a bounded symmetric domain onto a Siegel domain.
We describe it for the domain & and use it to express the spherical
functions on £ in terms of the spherical functions on the unbounded
domain. We fix the maximal tripotent e. Then C" equipped with the
bilininear mapping

(33) (2 0) > 20w = %{zew}

is a complex Jordan algebra. Observe that since e is a tripotent, it is
a unity for this multiplication. The Cayley transform is the mapping
c: C" — C" defined by

(34) c(z) =(e+2)o(e—2)7",

where (e — z)~! denotes the inverse of (e — z) with respect to the
Jordan product.

Proposition 5. The Cayley transform is given by the formula

1— 2zt 27
35 = ,
(35) (2) 1—22 + (zzt)26 Tz 221 + (z2%)?

forz = (21,2') = z1e+2' € 9. Moreover, it maps Z onto the halfspace
{(z1,...,2,} € R"|z; > 0}.
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Proof. We first find the inverse for an element x. Suppose therefore
that e = 3 {zez} = 1 D(z, )z, ie.,

e=(z,e)z+ (z,e)x — (x,2)e = 212 + 210 — (T, 2)e
Identifying coordinates gives
1=2x121 — (2, 2)
0=z + 22
These equations have the solution

2 = z1/(z,x)
2 = =2 /(x,2).

1'in the definition of ¢, we

If we apply this to the expression (e — z)~
get

1—2 2

C—ay+ () -zl + (2. 2)
Now the formula (35) follows by an easy computation. Moreover, we

observe that the inverse transform is given by
1

(e—2)""'=

w— (w—e)o(w+e) =—c(—w).

Hence both ¢ and ¢! preserve R” and therefore
() =c(2)[R".
We now determine ¢(%Z").
From ([15]) we know that (since e is a maximal tripotent)
(36) c(9)={u+ivlue AT v e A},
where A is the real Jordan algebra
{z € VIQ(e)Z = 2}

and AT is the positive cone {z o z|z € A} in A. By a simple compu-
tation we see that

A =Re @ Ries & --- D Rie,.

Since we have the identities
z+ Q(e)Z = 2u,
z—Q(e)z = 2iv

and



BRANCHING OF SOME HOLOMORPHIC REPRESENTATIONS OF SO(2,N)15

we get, expressions for v and v:
2u=1(214+71,20— 29,20 — Zn)
200 = (21 — 71,22+ Z2,-- -, 2n + Zn)
The condition that x = u +4v be in the image of 2 thus implies that
u = (x1,0,...,0),
iv=1(0,29,...,2,).
Moreover we require that
u=wow = 2ww — (w,w)e,

for some
wW = c1€ + cotey + -+ - + cule,.
This yields

(1,...,0) = (¢ + -+ 2, icica, - . . ic1Cy).
Hence
cf:ajl,cQ:---:cn:O,
and thus
u+iv = (3, Ta, ..., Tn).
This proves the claim. O

Recall the expression for the spherical functions on a symmetric
space of noncompact type (cf [6] Thm 4.3)

QO)\(h) — / €(i)\+p)A(lh)dl,
L

where A(lh) is the (logarithm) of the A part of [h in the Iwasawa
decomposition H = NAL. The integrand in this formula is called
the Harish-Chandra e-function. For the above Siegel domain it has
the form ey(w) = (wy)**? (cf [24]). Hence we have the following
corollary.

Corollary 6. The spherical function ¢y on & = H/L is

@ ww= [ () w0

where o is the O(n)-invariant probability measure on S™'.
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4. A FAMILY OF UNITARY REPRESENTATIONS OF (&

4.1. The function spaces .#,. The Bergman space H?(2) has the
reproducing kernel A(z, w)~". This means in particular that the func-
tion h(z,w)™™ is positive definite in the sense that

Z aia_jh(zi, Zj)in Z 0,
1,j=1
for all z1,...,2, € Z and aq,...,q, € C. It has been proved by Wal-

lach (|26]) and Rossi-Vergne (|20]) that h(z,w)™" is positive definite
precisely when v in the set

{0,(n = 2)/23 [ ((n - 2)/2,00)

This set will also be referred as the Wallach set (cf [3]). For v in the
Wallach set above, h(z,w)™” is the reproducing kernel of a Hilbert
space of holomorphic functions on &. We will call this space %%, and
the reproducing kernel K, (z,w). The mapping g — 7,(g), where

m(9)f(2) = Jg-1(2)" f(g ')

defines a unitary projective representation of G on #,. Indeed, com-
parison with the Bergman kernel shows that h(z, w)™" transforms un-
der automorphisms according to the rule

v

(38) h(gz, gw)™ = Jg(2)"m hiz, w) ™" Jg(w) "
Recall that for functions f; and f> of the form

2) =Y oK, (z,w), fa(2) =) BeK,(z,w}),

k=1 k=1

the inner product is defined as

(39) fl,f2 Za’tﬁ] wza )

Equation (38) implies that

(40) K, (g '2,w) = Jp-1(2) » K, (2, gw) Jy—1 (w) "
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Hence we have the following two equalities

v

m(9)f1(2) =) g1 (w) " K, (2, gwy)

1(0)f2(2) = 3 BTy () " Koz, guy).

k=1

The unitarity
<7Tu(g)f1a ﬂ-ll(g)f2>ll = <f1a f2>l/

now follows by an application of the transformation rule (38) in the
definition (39). Since functions of the form above are dense in 7%, it
follows that each m,(g) is a unitary operator and it is easy to see that
g — m,(g) is a projective homomorphism of groups. In fact, 7, is an
irreducible projective representation, cf |2].

4.2. Fock-Fischer spaces. It can be shown that for v > (n—2)/2 all
holomorphic polynomials are in .7, and that polynomials of different
homogeneous degree are orthogonal. In this context, the spaces .7, are
closely linked with the Fock-Fischer space, %, which we will now de-
scribe. The basis vector e is a maximal tripotent which is decomposed
into minimal tripotents as e; = 1(1,4,0,...,0)+%(1, —4,0,...,0). (We
omit the easy computations.) In order to expand the reproducing ker-
nel K, into a power series consistent with the treatment in [2], we
need to introduce a new norm on C" so that the minimal tripotents
have norm 1, i.e., the Euclidean norm multiplied with /2. Then

{fi, -, fu} = {%(ﬁ,...,%en}

is an orthonormal basis with respect to this new norm. We write points
2 €D asz=uwfi+ -+ wyfn For polynomials p(w) = )" a,w?,
we define

pr(w) =) daw®.

The Fock-Fischer inner product is now defined as

(p,9) 7 = p(9)(q")|w=o,
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where p(0) is the differential operator aa%, for p as above. The
Fock-Fischer space, .%, is the completion of the space of polynomials.
It is easy to see that polynomials of different homogeneous degree
are orthogonal in .#. Moreover, the representation of SO(n) on P™,
the polynomials of homogeneous degree m, can be decomposed into
irreducible subspaces as

(41) @ Epnor ® C(ww")¥,

m—2k>0

where E; are the spherical harmonic polynomials of degree i (cf [23]).
This is a special case of the general Hua-Schmid decomposition (cf
[2])-The following relation holds between the Fock-Fischer norm and
the J#,-norm on the space E,, o ® Clww?)* (cf [2]).

S
(42 Pl = 5 6 2y

for p € E;y_op @ C(ww?)*. We have the following decomposition of .7,
under K:

Proposition 7. (Faraut-Koranyi, [2]) a) If v > 252, then
(43) Hlk =P Y. Ema @ C22")",
m—2k>0

where E,, o is the space of spherical harmonic polynomials of degree
m — 2k. Moreover, we have the following expansion of the kernel
function:

) B = 5 Wk (9= "57) Konos ()

2
m—2k>0

where Ky, k) ts the reproducing kernel for the subspace Ep_op ®
C(zz')* with the Fock-Fischer norm. The series converges in norm

and uniformly on compact sets of 9 x 9.
b) If v =152, then

We will later need the norm of (z2*)* in 77,
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Proposition 8.

INICE k! (g)k
(46) ||(ZZ ) ||I/ - (V)k (I/ _ anQ)k

Proof. A straightforward computation shows that

0? 9
(@ bt @)(zf 4 2 = (2%k(k — 1) + n2k) (22 + - -+ 22)FT
1 n

Proceeding inductively, we obtain
o ”\* e _ T
<8—zf++8—zz> (21+"'+Zn) = HZ](Q(]—I)-Fﬂ)

- n(),

The Fock-Fischer norm is computed in the w-coordinates w; = v/2z;,
SO

(Z,Zt)k — ka(wwt)k

and
0 8 \" 0 8 \*
ozt +z) =2 G o)
Hence
I 1% =k (5)
and an application of Prop. 7 gives the result. 0

5. BRANCHING OF 7, UNDER THE SUBGROUP H

5.1. A decomposition theorem. Recall the irreducible (projective)
representations 7, from the previous section. Our main objective is to
decompose these into irreducible representations under the subgroup
H. The fact that 2" is a totally real form is reflected in the restrictions
of the representations 7, to H.

Proposition 9. The constant function 1 is in F, and is an L-invariant
cyclic vector for the representation m, : H — U ().
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Proof. First note that
K,(z,h0) = Jy(h '2)"/"K,(h'2,0)J,(0)/"
Jn(0) = Iy (2)" /K, (h™'2, 0)
= Ju(0)¥/"m, (h)1(2)

Suppose now that the function f € .7, is orthogonal to the linear
span of the elements 7,(h)1, h € H. By the above identity we have

Since H acts transitively on 2", f is zero on Z . Hence it is identically
Zero. 4

We want decompose the representation of H into a direct integral
of irreducible representations. For the definition of a direct integral
over a measurable field of Hilbert spaces we refer to Naimark ([17]).
The following general decomposition theorem is stated in several ref-
erences (e.g. [19]), but the author has not been able to find a proof
of it in the literature. A proof for abelian groups can be found in
[17]. The proof we present below is based on the Gelfand-Naimark
representation theory for C*-algebras.

Theorem 10. Let 7 be a unitary representation of the semisimple Lie
group H on a Hilbert space, €. Suppose further that L is a mazimal
compact subgroup and that the representation has a cyclic L-invariant
vector. Then 7 can be decomposed as a multiplicity-free direct integral
of irreducible representations,

(47) W%’/Amd,u()\),

where A is a subset of the set of positive definite spherical functions
on H and for X € A,y is the corresponding unitary spherical repre-
sentation.

Proof. We consider the Banach space L'(H). This is a Banach x-
algebra with multiplication defined as the convolution

(f + 9)(x) = /H F@)a(y"2)dy



BRANCHING OF SOME HOLOMORPHIC REPRESENTATIONS OF SO(2,N)21

and involution defined by

fr(z) = fz™h).
Recall that the representation 7 extends to a representation of the
Banach algebra L'(H) by

fo /H (@) (z)dz.

We will also denote this mapping of L'(H) into () (the set of
bounded linear operators on ) by 7. This representation will also
be cyclic as the following argument shows. Denote by £ the L-invariant
cyclic unit vector for H. Vectors of the form

m(f)(m(h)§ + -+ 7(hn)E),

where { f.} is an approximate identity on H, will then be dense in J#.
Moreover the identity

T(f)(m(h)€ + -+ 7(ha)§) = W((Rh;l Tt Rhgl)f)f,

holds for f € L'(H) and hy,...,h, € H. (Here R,f denotes the
right-translation of the argument of f; f — f(-h). We similarly
define Lj, f.) Hence vectors of the form 7 (f)¢, where f € L'(H), form
a dense subset in 7.

The function ® defined as

(48) @ :7(f) = (n(f)E,8)

extends to a state on the C*-algebra ¢ generated by «(L'(H)) and
the identity operator. It is a well-known fact from the theory of C*-
algebras that the norm-decreasing positive functionals form a convex
and weak*-compact set (cf [16]). For a C*-algebra with identity, the
extreme points of this set are the pure states. Therefore, ® can be
expressed as

(49) ¢ = / m
X

where X is the set of pure states and pu is a regular Borel measure
on X (cf [22], Thm. 3.28). We recall the Gelfand-Naimark-Segal
construction of a cyclic representation of a C*-algebra associated with
a given state (cf [16]). In this duality, the irreducible representations
correspond to the pure states. So each ¢, in (49) parametrises an
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irreducible representation of 7(L'(H)) on some Hilbert space H, with
a m(L'(H))-cyclic unit vector &,.

Herafter we will, by an abuse of notation, write ®(f) for ®(n(f))
and correspondingly for the functionals ¢,.

We define a unitary operator 7" : ¢ — f + Hzdp that intertwines
the actions of & by

(50) T:7m(f) = {mo(f)&a}, f € L'(H).

To see that this is well-defined, suppose that 7(f)¢ = 0. Then we
have

(51) (m(£)E,m(£)E) = (m(f* + [)€,£) =0
(52) O(f*x f)=0

By (49) we have

(53) B(f* 5 f) = / (7o (F* % f)Ems Exbaddps = 0.

H

Therefore 7,(f)&, = 0 for almost every x and hence T is well defined
on a dense set of vectors. Note that (53) also shows that 7 is isometric
on this set and it therefore extends to an isometry of # into [, H,dpu.

Consider now the subalgebra, L'(H)#, consisting of all L*-functions
that are left- and right L-invariant, i.e.,

Llf:le:f:

for all  in L. This is a commutative Banach *-algebra (cf [6], Ch. IV).
We know that ¢, o : L'(H)# — C is a homomorphism of algebras
and is therefore of the form (cf [6], Ch. IV)

(54) oalf) = /H F(R)ga(h)dh, f € L' (HY*,

where ¢, is a bounded spherical function. In fact, this formula holds
for all L'-functions on H, as the following argument shows.
Since £ is L-invariant, the identity

m(f)€ = m(Rif)E

holds for all L*-functions f and I € L. Applying T to both sides of this
equality (and using the fact that both L'(H) and L are separable),
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we see that

(55) Tu(f)&e = Mo (Rif)&s

holds for all f € L*(H) and I € L outside some set of measure zero

with respect to u. We now choose an approximation of the identity

{ne} on H, and by replacing it with { [, n.(l - {")dl} if necessary, we

may assume that it is invariant under the conjugate action of L.
Consider now @, defined by

e(f) = (m(f)m(n)€, m(ne)§)-

We define the functionals ¢, . analogously for all x € X. Clearly
®.(f) = ©(f) as € — 0 and therefore

lim or.e(f) = @a(f)

holds for all L!'-functions f outside some set of measure zero with
respect to pu. (Again we use the separability of L'(H).) Using the
L-conjugacy invariance of 7. and (55), a simple calculation shows that

(Pw,e(f) - roc,e(f#)a

where
( ) // ( 1 2) 10642,

and by letting e tend to zero we get
¢o(f) = pu(f7)

for almost every xz. Hence
oal) = [ ).
H
for f € L'(H).

Since ¢, also preserves the involution x*, it is a positive linear func-
tional, i.e.,

(56) /H F(h)da(h)dh > 0,

for every f € L'(H), such that f = g * g*, for some g € L'(H). The
proof of the following lemma can be found in [4], p.85.

Lemma 11. Suppose that ¢ is a bounded spherical function such that
[y [(R)p(R)dh >0 for all f € L'(H) of the form f = g g* for some
g € L'(H). Then ¢ is positive definite.
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Since every positive definite spherical function defines an irreducible,
unitary, spherical representation of H, it also gives rise to a represen-
tation L'(H). Its restriction to the subspace of L-invariant vectors,
E, will be L'(H)#-invariant and one-dimensional (cf [6], Ch. IV). If
the state ¢, corresponds to the spherical function ¢,, we denote by
(74, H;) both the representations of H and of L'(H) that it induces.
Corresponding to this cyclic representation of L'(H) with cyclic unit
vector ¢,, we have that the state f — (m(f) bz, Pz ) 18

(T Nertrls = [ JONm(0)6c,0n)och
= [ 1006, 6)n
= [ reunan
= [ roysman

Therefore this representation of L'(H) is unitarily equivalent to the
one given by the Gelfand-Naimark-Segal correspondence, i.e., we can
regard the representation as coming from a representation of the group
H.
The operator T' clearly intertwines the group representations 7 and
f x Tzdp. The only thing that remains is to prove that 7' is surjective.
Suppose that ¢ = {c,} is orthogonal to T'(w(L'(H)), i.e.,

We observe that the restriction of 7" to the space S#” of L-invariant
vectors intertwines the representations of w(L'(H)¥) on s’ and
fm E.du. The mapping

m(f) = (&= @a(f))

is the Gelfand transform that realises the commutative C*-algebra
generated by w(L!(H)*) and the identity operator as the algebra,
C(X), of continuous functions on X. Continuous functions of the
form ¥(z) = @,(f"), where f¥ € L'(H)* are dense in C(X). For
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such ¥ we have

/X (o () )0 () A = /X (o (F * F¥)ews ca)adp
=0

From this we can conclude that (using once more the separability of
L'(H)#) for all x outside a set of u-measure zero, the equality

(T2(f)Ees Co)a =0

holds for all f € L'(H)#. Since the vectors &, are L'(H)#-cyclic, we
can conclude that ¢ = 0 and this finishes the proof. 0

Remark. The measure y in the above theorem is called the Plancherel
measure for the representation 7.

5.2. Extension and expansion of the spherical functions. Con-
sider the mapping R : 74, — C*(Z") defined by

(Rf)(z) = h(z,2)"*f(z),x € Z

(see [28]). When v > n — 1, R is in fact an H-intertwining operator
onto a dense subspace of L?(2, di) (where d is the H-invariant mea-
sure on Z°) and the principal series representation gives the desired
decomposition of 7, into irreducible spherical representations. This is
a heuristic motivation for studying the functions R~'¢,, where () is
a spherical function on 2 .

Theorem 12. Let v > (n—2)/2. The function R~'¢x(z) is holomor-
phic on 9 and has the power series expansion

R px(z Zpk

where ey (z) is the normalisation of the function z — (22%)* in the
H,-norm, and the coefficients py(X) are polynomials of degree 2k of A
and satisfy the orthogonality relation a) If v > an; then

k

2

1 [T +iNT(EE +iNT (v — 25 +4))
2 Jo
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b) If v < 251, then
1 oo
2 Jo
Iy -2 (n—1-v)(2-v)

TS (=)
- FGDF(y—n;2>Hm@b

Proof. Recall the root space decomposition for h. Let {, ) denote the
inner product on ac that is dual to the restriction of the Killing form
to a. Let ag denote a/ (e, ).

In this setting the spherical function ¢, is determined by the formula
(cf |6], Ch. IV, exercise 8)

(57) ox(exp(t€.)0) = o Fi(d, b, ¢'; — sinh(a(t&,))?),

where
1/1 . 1/n-—-1
ad = 3 <§ma + Moy + (2)\,040)) =3 < 5 +M> :
1/1 . 1 /n-1 .
b o= 3 <§ma + Moq — (z)\,ao)> =3 ( 5 zA) ,
gL\ L]
© 7 g\gMaT M0 “o\ 2 /)

Letting = exp(t&.)0 = tanht, (57) takes the form
t

_ ror g, XIT

(58) QD,\(.T)— 2F1(a’b’0’1_$xt)

By Euler’s formula (cf [5]) we have
zat ,

oa(z) = oF1 ('Y, ﬁ) =(1—a2")? F(d, ¢ -V, c;2z")
-z

For the function R~1¢, we thus get the expression

(59) R'oa(z) = (1 — 22) "9 L Fi(d, ¢ =V, ¢; 22)
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Expanding (59) into a power series yields

60) Rer Z Z (v—a) - l ;l)l(d _ bl)l(zzt)m,

|
m=0 [=0 (CI)

noticing that |22!| < 1 for 2 € 2. Next, we use the following simple

identities:
(v—a)m _ (v—a)n

—d = =
VDot = gm0y - (@ +m D)
m!
=N = -
Substitution of these in (60) yields
(61) R_ISOA( )

y—am (' =b")(—m), N
_Z Z I/—CL l-(m—)l)) (ZZ) .

The inner sum in (61) can be recogmsed as a hypergeometric function,
i.e., we have

i (C,)(a')z(c' —U)i(=m)  _ Fo(d =Y~ — (v — d +m— 1):1).

— ()(=(v—a"+m—1))
Now we use Thomae’s transformation rule (cf |5]) for the function 3 Fj:
sFy(d',d =0, —m;d,—(v —ad' +m —1);1)
(—v—d+m—-1)—(d =V))m
(—(v—d+m-1))p,
x sE(d—-d,d=b,—ml1+(d=b)+wv—-ad+m-1)—m;1)

We finally obtain the following expression:

R QO)\ chuk

where
(v =2 144X 1—4) n n—2
Cnwk(A) = T3FQ(—/€, 5 g9 §aV T 9 ;1)
Recall the continuous dual Hahn polynomials (cf [27])
(62) Sp(z%a,b,¢) = (a+ b)r(a +c)x

X3Fy(—k,a+iz,a —iz;a+b,a + ¢; 1)
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We can thus write

= (v=52), Ay 1 n—1 n—2
R—l — 2 S - 2; - v — t\k
#e) kz_% (2)e(v — ”T‘Q)kk! \G)yp v ) &)
(e
= puk
Z T, Zzt )l
For the orthogonahty relation in the claim, we refer to |27]. O

5.3. Principal and complementary series representations. In
this section we let 1 (=p,,) be the finite measure on the real line that
orthogonalises the coefficients py(A) in (57). Let A, be its support. As
we saw above, i can, depending on the value of v, either be absolutely
continuous with respect to Lebesgue measure or have a point mass at
A=1i(v—(n—1)/2), i.e., we either have

Ay = (0,00) [ J{i(v — (n = 1)/2)}, v € (n = 2)/2, (n - 1)/2)
or
A, =(0,00),v>(n—1)/2.

We will now construct explicit realisations for the spherical represen-
tations ), corresponding to the points A € A, on Hilbert spaces H,.
For A in the continuous part in A, the underlying space H, will be
L?(S™ 1) and for the discrete point i(v — (n — 1)/2), Hy will be a
Sobolev space.

We will hereafter suppress the index v and simply denote the support

of u by A.

Lemma 13. If g € H, then g transforms the surface measure, o, on

Sm1 gs
do(g¢) = J,(Q)"F do(n).

Proof. Clearly it suffices to prove the statement for automorphisms of
the form

g=exp&,,v eR".

Moreover we can assume that ( = e;, since any ( € S™! can be
written as le;, where [ € L, and

exp &, (ler) = (exp&l)(er) = (U exp&l)(er) = (lo-1(exp &,))(er)
= lexp (Ad(I™")&,)(e1) = lexp & -1,(e1).
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Consider now the tangent space of R” at e;. We have an orthogonal
decomposition

T, (R*) =T, (S™") ® Re;.
At ge; we have the corresponding decomposition
Tyer R") = Tye, (S™) @ Ry
Since H preserves S™ !,
dg(er) Te, (S"77) = Te, (S™71),

and by completing e; and ge; to orthonormal bases for their respective
tangent spaces, dg(e;) corresponds to a matrix of the form

c 0
| % * x
Vo*x ok %
| % * *
Hence
(63) Jg(el) = CJg\Sn—1 (61)7
where
(64) c= (d9(€1)€1, 961)-
We next determine this constant c.
We have

c = (dg(ei)e1, ger) = li_lg(dg(rel)reh greq).
For fixed r < 1 we have
exp&y(rer) = u+ Blu,u)?B(re,, —u) " (re; + Q(re1)u)
= u+dg(re))(re; + Q(re))u),

and

(65) iren) = (=)

where v = tanh v. Since Q(re;)u = 2(u,re;)re; — u, we get

(66) (dg(rei)res, g(rer))
= (142(u,rer))|dg(rer)rei|* + (dg(rei)res, v — dg(rei)u)
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For any z € Z(\R" and v, w € R", the identity

h
(7 (dg(e)o, ) = "2 v, dy() )
can be established using the transformation properties of the function
h and the operator B. Applying (67) in the cases z = rej, v = req,
and w = dg(re;)re; and
w = u — dg(re;)u, repectively, yields

h(g(T€1),g(T€1))T2

(68) (dg(rei)rei,dg(rei)rer) =

h(rei,re;)
and
(69) (dg(rei)rer,u — dg(rer)u)
_ h(g(re1), g(rer)) .
= e re) (rei,dg(re;) “u — u).

The expressions above and an elementary computation shows that
(66) can be written as

(70) (dg(rei)res, g(rer))
_ h(g(rei),g(re1)) o 1+ 2(u,re;) + |ul?
h(rei,rer) 1— |ul?

By the transformation rule for the Bergman kernel
h(g(rer),g(re)) = |J,(rer)|*"h(res,rey).

So,
] 1+ 2(u,req) + |ul?
_ 2/n,.2 ’
c = lim [Jy(re,)""r 1— Juf?
h(ey, —u)
_ 2/n ’
- |Jg(€1)| h(u,u)l/Q'

Comparing with the expression (65), we have determined the constant
c=J,(er)"",
and this finishes the proof. O

For A in the continuous part of A, the corresponding representation
is a principal series representation described by the following propo-
sition. (We will hereafter follow Helgason and in this context denote
S"~! by B. The measure o will be denoted by db.)
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Proposition 14. For any real number A, the map h — 75(h), where
mA(h)F(B) = Ty () (D)
defines a unitary representation of H on L*(B).

Proof. We have
[ 3@ PP = [ ) |70 P
B

_ / Ju(B) £ (0) 20 (8) "5 db

S ALCED

where the last equality follows by lemma 13. 0

It is well known that the representations 7, above are unitarily
equivalent to the canonical spherical representations associated with
the corresponding functionals A on ac (cf [11], ch. 7).

In order to realise the representation 7 for A = i(v — (n—1)/2), we
consider the following Hilbert spaces.

Definition 15. For 22 < o < %1, let %, be the Hilbert space

n—=1
2
completion of the C*®-functions on S™~! with respect to the norm

e = [ [ HQT@EC do(Odata)

Using the action of H on S"~!, we can define a unitary representa-
tion of H on %, of the form

0o : [ Ip-1 ()P f(h 1), h € H,
where 8 = —a + (n — 1) /n. The unitarity follows from

/Sn / () F(h™ ) Tumr P F (R ) K (C, ) dor(€)dor ()
/Sn 1 /S FQOTn(m) P F ) K (hC, ) Jn(C) ™ Jn(m) = dor(Q)der(m)
B / / Jn(Q) P70 Ty ()P (O F K (C,m)do(Q)do(n).

In fact, this representation is irreducible (cf [1]). We denote this repre-
sentation by o,. One can prove that for a = v/nand A = v—(n—1)/2,
0, and T, are unitarily equivalent.
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Recall the expression in Cor. 6 for the spherical functions. In this
setting we write it as

o) =/B€>\,b($)db,

exp(z) = (%> irtp

by Cor. 6. For fixed 2 € 2 and A € A, R 'ey,(2) is a function
in L?(B). Moreover, 7,(H) makes sense as a group of mappings on
O(2), the set of holomorphic functions on 2. We have a relationship
between these representations.

where

Lemma 16. For every g € H and \ € A,

(71) T, (9)TA(9)R exps(2) = R Texs(2).
Correspondingly, for X € b, we have the relation
(72) WV(X)R_le)\,b(Z) = —T,\(X)R_le)\,b(Z).

The proof is straightforward by applying the transformation rules
for the function h(z, w).

5.4. The Fourier-Helgason transform. The purpose of this section
is to construct an H-intertwining unitary operator between the Hilbert

spaces 7, and [, Hxdp.
Any holomorphic function, f, on & has a power series expansion

(73) F(2) =) fa®,

where f, = %(0). We can collect the powers of equal homogeneous

degree together and write
(74) f(2) =" fil(2),
k

where fj is of homogeneous degree k. We now consider the mapping
(), :Px0O(2)—C

defined as

(75) (f,9) =D _{f, k)0

k
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Observe that the definition makes sense since every polynomial is or-
thogonal to all but finitely many g.

Definition 17. If f is a polynomial in 7, its generalised Fourier-
Helgason transform is the function f on A X B defined by

(76) FONB) = (f, R eap)s

Proposition 18. (i)If the polynomial f is in Y, then f is L-
invariant and

1712 = / 1712,

where || - ||x is the norm on H,, and the Fourier-Helgason transform
extends to an isometry from FL onto L*(A, dp).
(ii) The inversion formula for L-invariant polynomials

(77) f(2) = / FOVR oa(2)du(N)

holds. Moreover, the above formula holds for arbitrary L-invariant
functions, when restricted to the submanifold Z .

Proof. Writing
Rile)‘,b = an(/\, b)Za = Ze)"b’k
o k

and

Boa() = 3 ez = 3 pelVen(2),

we see that the coefficients and polynomials of homogeneous degree &
are related by

(78) calN) = /B ca(\ B)db

(79) Pr(N)ex(2) :/e/\,b,k(z)db

B
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respectively. Therefore we have

FON0) = D (freanih
= > / m, (1) fdl, exp k)
— Z(f,/w,,(zl)eA,b,kdl)u
- 31, / a(D)erprdl),

= (f’ R_IQD)\)V'

This proves the L-invariance. Moreover, we have
(f, R on)y Zpk (f,ex)w
Hence

/A 1FIRdu =3 [(F exl? = 112
k

This proves the first part of the claim.

To prove the inversion formula, we now let f be an L-invariant
polynomial and x be a point in 2 [|R". Since we have an estimate of
the form

(80) IR 'oa(z)] < (1 - |2[*) 720 (),

where C' is some function of z, independently of )\, the integral

/A FOVR o (2)dpu(N)
makes sense for real z. We then have

[ FOR @) - > [ (e R oa@)au)
= e [ S0 0esen()

= f(a).
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Now let f € 2% be arbitrary. We choose a sequence of polynomials
fn € FEF such that

f=1lim f,.

Since the evaluation functionals are continuous, we have
f(2) = lim fu(z) = lim | fa(A)R "ea()du()
n—oo A

for every real point z. By Jensen’s inequality and (80)

/A (FO) = FO)R Yoa(@)du(N)

SM(A)/A|f()‘) — faN)PC@) (1 = |z[*) ™ du(A).
Hence
f(z) = /A FO)R Yox(z)du()N).

Thus the inversion formula holds for real points, . To see that the
formula holds for arbitrary points when f is a polynomial, we note
that both the left hand- and the right hand side of the formula define
holomorphic functions on &. Since they agree on the totally real form
Z, they are equal. O

Theorem 19 (The Plancherel Theorem). For v > (n — 2)/2, the
Fourier-Helgason transform is a unitary isomorphism from the H-
modules F, onto the H-module fA Hydp, i.e.,

(Wu(h)f) ()" b) = T)\(h)f()" b),
for h € H, and

112 = / 1712

Proof. We divide the proof into three steps:
(1) We prove that the Fourier-Helgason transform intertwines the ac-
tion of the Lie algebra of H.
(17) We use (i) to prove that the norm is preserved.
(#4i) We conclude that the group actions are intertwined from (i) and
(47).

We will see that these properties actually imply that the Fourier-
Helgason transform is surjective.
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Consider now the corresponding representations of the Lie algebra
h. These will also be denoted by m, and 7, respectively. Moreover
they extend naturally to representations of the universal enveloping
algebra, 4(h), of b.

Let X € h. If f is a polynomial in 5%, then differentiation of the

mapping
t = Joxpix (2)"/" f((exptX)z)

at t = 0 shows that 7, (X)f is also a polynomial, and

T‘-U(X)f()\’b) = Z(WU(X)fae)\,b,k>y

k

= Z(f, —mu(X)expr)v

k

= Z(fa Ta(X)expr)v

%
(f7 T)\(X)R_lez\,b)u
= T(X)(f, R "exp)s,

which proves (7).

To prove the second step, we recall that the adjoint representation
of L on h extends to an action on () as homomorphisms of an asso-
ciative algebra. The L-invariant elements in (h) form a subalgebra,
$U(h)L. We let p denote the projection

X / Ad() X dl
L

of U(h) onto $U(h)E. This action of L connects the representations of
H and $(h) according to the following identity:

(O, (X)m, (1Y) = m, (Ad(1)X),

forl € L and X € (h).

Since the vector 1 € JZ, is cyclic for the representation of H, it is
also cyclic for the representation of $4(h). Hence it suffices to prove
that the norm is preserved for elements of the form 7,(X)1, where
X € 4(h). In the following equalities, we temporarily let 7 denote the
direct integral of the representations 7, and analogously we let ()
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denote the direct integral of the corresponding inner products.

(m, (X)L, m (X)), = (m(X)'m(X)L,1),
= (-m(X?)1,1),
Since the vector 1 is L-invariant, the last expression equals (—m, (p(X?))1, 1),

and by proposition (18), we have

—~—

(=m0 (P(X2)1,1), = (—, (p(X2)1, T).
By (i), the expression on the right-hand side equals (—7(p(X N1, 1),
and since 1 is L-invariant, we have
(~r(p(X*)1, 1) = (~r(X*)L1).

Thus (74) is proved.
To prove (ii7), we recall the following equalities (on the respective
dense spaces of analytic vectors):

m,(exp(X)) = e™X)

ma(exp(X)) = e,
From this and the facts that H is connected and that the Fourier-
Helgason transform is bounded operator, we immediately see that (iii)

holds.
To see that the operator is surjective, note that by (i7) and (47)

(LD = [ (BIO) IO )adn
A
for f € L*(H)¥, i.e., we can write the positive functional

f=Am ()L, 1),

as an integral of pure states with respect to some measure. By unique-
ness, it is the measure in Theorem 10. Since the Fourier-Helgason
transform intertwines the group action, it is the intertwining operator
constructed in Theorem 10. Thus it is surjective. O

Theorem 20 (The Inversion Formula). If f is a polynomial in €,
then

(81) f@=AAﬂ%WW%MWWW-
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Proof. Take h € H. Define

£19) = [ mOmmrE
L
This is a radial function, and we have that

(82) f1(0) = Jn-1(0)= f(h710).

Prop. 18 gives

(83) £1(0) = / ALV R a2 du(N).
Moreover

)= (F R = ( / m (Om () fdl, R 0y),

= (m/(h)f, R_l@/\)u-
(84)

By Thm. 19 we have

(ﬂ-l/(h)faRil(p)\)U = f:ln—l/ )R 90)\)
= f/ﬂ',, R eM,db)

= f/ﬂ',, R 6)\bdb)
= (f:/B;T)\(h)R e)\,bdb)u

= (f / Tuet ()52 R ey oy db),.-
B

The integrand above has a power series expansion where the coeffi-
cients are functions of b. If we integrate, we obtain a holomorphic
functions for which the coefficients in the power series expansion are
obtained by integrating the aforementioned coefficients over B. Hence
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we can proceed as follows.

(f,/ Jh—l(b)i/\_’j_ER_le)\!h—lbdb)y = Jh—l(b)_iiﬁ_ (f,R_le)\!h—lb),,db
B

Juor(b) 2 F(A, b Lb)db

Tt (hb) =5 F(\, b)J (b) "5 db

~ ix+p

FOLB)Ju(b) 5" db.

o

(85) —

It is easy to see that

iAtp

(86) Ju(d) 7" = Ty (0)n R ey 5(h10),

and so combining (82), (83) and (85) finally yields

(87) f(h10) = /A /B F(\ DR Yexs(h10)dbdp.

Thus the inversion formula holds for real points, hence for all points
by the same argument as in the proof of Prop. 18. O

6. REALISATION OF THE DISCRETE PART OF THE DECOMPOSITION

We recall the earlier defined complementary series representations.
The following theorem states that o,/, is the representation corre-
sponding to the singular point in the decomposition theorem.

Theorem 21. The operator T, defined by the formula
(T,f)(z) = s QK. (2,¢)do(C)

is a unitary H-intertwining operator from 6,;, onto an irreducible
H-submodule of F,.

Proof. First of all we note that 7, maps functions in &, , to holomor-
phic functions on Z and thus 7, has a meaning on the range of 7.
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We start by showing that 7, is formally intertwining. We have
n—1 o
T @) = [ BalQ) T f O K, (2 Odo(C)
Sn—

= /Sn_1 Jh(g)V/n—nT_lf(C)Ku(z, hC)Jh(C)nT_ldO'(C)
B /s T(Q)m F(Q K (2, Q) T (h'2) # Jn(¢) #dor(()

= Jpi(2)n F(OK,(h 'z, ()do(C),

Sn—l
i.e.,
T,,J,,/n = 7T,,T,,.
The next step is to prove that the constant function 1 is mapped into
£, and that its norm is preserved. Note that for « = v/n, K(z,{)* =
K,(z,(¢), and by Prop. 7 we have an expansion

Ku(ca 61) = Z Cm,k(y)K(m—k‘,k)(Cael)a
m—2k>0

where the coefficients ¢, () are given explicitly. Now, since K, (¢, €1)
is SO(n — 1)-invariant and the action of SO(n — 1) is linear, each
K(m,1)(C, e1) must also be SO(n—1)-invariant. Hence, K (¢, €1) can
be assumed to be ¢,, 2 (¢)(C¢H)*, where ¢,, o is the unique element
in E,,_o; that assumes the value 1 in e;. Therefore

(88) K(¢,n)*da(C)

Sn—l

_ / K, (C, ley)dl / K, (172C, e)dl
) = 3 ) / (€00 b (7€)l

m—2k>0 L
© = Y e [ dnnlt O
m—2k>0 L

Since SO (n) acts irreducibly on E,,_s; and the function [} ¢p_oc (I 2)dl
is an SO(n)-invariant element in E,, o it must be identically zero un-
less m — 2k = 0. Since

1, = [, [ Koot
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the computation above implies that

I, = /Z V(Y o (0)

l/ — —Z)k
= 2 Czkk z:% ” zzt ”2
o) _ S,

On the other hand, the equalities (88)-(90) also show that

(v ="k, pn
m(%) =)

_ n— 2) )1/2 (Zzt)k
R (€221 P

, we see that 7,1 € 7, and that |||y, =

M2

T,1(2)

=~
Il
<)

(92)

OM8

If we compare (91) and (92

|I1]|,- Recall that
y/n @ E Sn 1

and that the representation of f on the algebraic sum @, E,,(S" ')
is irreducible. Hence

@ Em(Sn_l) = SpanC{Ou/n(Xl) . Ou/n(Xk)1|Xz € [): 1 S l S k}

~—"

Since T, interwines the representations of f, we have that =, is an
irreducible representation of § on the space T, (6D,, En(S"™')) C 7.
By Schur’s lemma ([13], ch.4)

(T.f,1.9)0 = c{f,9)%,,r

for some real constant c¢. Putting, f and g equal to the constant
function 1 and applying, we see that ¢ = 1. Therefore, T, extends to
a unitary operator

T, : Gom — To(EP Em(S"1))

and we have proved the theorem. O



42 HENRIK SEPPANEN

7. REALISATION OF THE MINIMAL REPRESENTATION M(n—2)/2

In this section we show that the representation m(,_g)/2 of H is
irreducible by realising it as a complementary series representation.

We recall the space 4/, from the previous section and the corre-
sponding operator 7.

Theorem 22. T{, 32 is a unitary H-intertwining operator from 6,2 2n
onto Hn_2)/2-

Proof. Recall that

(93) Cn—2)/n = @ Ep,(S™71)

m

and that the sum is a decomposition into SO(n)-irreducible subspaces.
If we let Pg_)/n denote the set of all finite sums in (93), on—2)/n
defines a representation of [ on P,_3)/,. The polynomial (¢; +i(2)™ is
a highest weight vector in E,, for this representation. Moreover, the
power series expansion of K, )/, shows that T(,,_3)/3 is a polynomial
in E,,. Since T(,,_9)/ intertwines the [-actions, T(, _2y/2(((1 +12)™) is
a hlghest weight vector space for 7(,_9)2([), i.e.,

(94) (Ttn—2)/2(C1 +1¢2)™)(2) = Cpu(z +i2)™

for some constant C,,,. We now determine C,,,. Choose z = w%(l, —1,0,...,0),
where w is a complex number with |w| < 1. In this case zz' =
0, (2 +i2)™ = w™. We now compute (T(,_2)/2((C1 +i(2)™)(2).

Gt K(an)/n(Z, C) (Cl + 2-<-2)m

B /s( w(Cr = i62)) TG+ i) do ()

This integral only depends on the first two coordinates and can hence
be converted to an integral over the unit disk, U (cf [21] Prop 1.4.4).

[0 =06 = i) G i) Q)

()
()

[ (= gy gm0 im0
U
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We have the power series expansion
= (n—2
1 — we)-m-2/2 — L
(1~ wl) ; ) (0

Recall that (1 — w()~™/2 is the reproducing kernel for the weighted
Bergman space 4, /2(U), defined as

Ao (U) = {f € OU H / FOPA — 1¢2)"92dm(¢) < oo},

Polynomials of different degree are orthogonal in %, »(U) and hence
we have

/U (1 — wl) 2nem (1 — (¢ )2 dm(C)

- [> ( 2) (01 = [¢P)™ D 2din(C)

- / Z(n_2>( ) (EQmem (1= ¢ 2 dm(¢)

where the last equality follows from the reproducing property in 72, 2(U).
Summing up, we have

n—2
272

From this and the intertwining of the [-action, it follows that

(96) T(n,g)/Q (@ Em(Sn1)> C @Em

To compute the norm of T(,_2)/2(p) where p € E,(S" '), we first fix
r < 1 and consider the polynomial T{,_)/2(p(rz)). By definition

(95) (Ttn—2)/2(C1 +1¢2)™)(2) = (21 +iz0)™

T(n—2)/2 (p) (7‘2) = KV(’I'Z, C)p(g)dg(g)

Sn—l

(97) = Ky (2, 7Q)p(¢)do(C)-

Sn—1
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The norm is given by

o) IE= [ [ pOP@RLAC o Qe (n).

Finally, we let » — 1 and obtain

Tonelle = [ [ oORRAC )do(C)doto)

From this and the orthogonality of the spaces E}, it follows that
T(n—2)/2 maps (P,, En(S™") isometrically onto (6D,, Em). Hence it

extends to a unitary operator from ¢(,_2)/2, onto %”(n_Q) /2 O
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TUBE DOMAINS AND RESTRICTIONS OF MINIMAL
REPRESENTATIONS

HENRIK SEPPANEN

ABSTRACT. In this paper we study the restrictions of the minimal
representation in the analytic continuation of the scalar holomor-
phic discrete series from Sp(n, R) to GL(n,R), and from SU(n,n)
to GL(n, C) respectively. We work with the realisations of the rep-
resentation spaces as L2-spaces on the boundary orbits of rank one
of the corresponding cones, and give explicit integral operators
that play the role of the intertwining operators for the decom-
position. We prove inversion formulas for dense subspaces and
use them to prove the Plancherel theorem for the respective de-
composition. The Plancherel measure turns out to be absolutely
continuous with respect to the Lebesgue measure in both cases.

1. INTRODUCTION

The unitary representations obtained by continuation of the scalar
holomorphic discrete series of a hermitian Lie group, GG, were classi-
fied by Wallach in [10], and independently by Rossi and Vergne ([5]).
The classification amounts to membership in the Wallach set for the
linear functionals on the compact Cartan subalgebra that extend the
family of weights parametrising the weighted Bergman spaces on the
symmetric space G/ K.

These unitary representations can all be realised on Hilbert spaces
of holomorphic functions on the corresponding bounded symmetric
domain ¥ = G/K. However, in this model the unitary structure
cannot be described in a uniform way even though the corresponding
reproducing kernels can. In any case, the restriction to any totally
real submanifold defines an injective mapping. Therefore it is natural
to consider an antiholomorphic involution 7 : ¥ — % that lifts to an

1991 Mathematics Subject Classification. 22E45, 32M15, 33C45, 43A85.
Key words and phrases. Lie groups, unitary representations, branching law, real
bounded symmetric domains.
1



2 HENRIK SEPPANEN

involutive automorphism (which we also denote by 7) of the group G.
Letting H = G7 denote the fixed point group, and L = K N H, the
space 2 := H/L is a totally real submanifold. The decomposition
of the restriction to H of the unitary representations obtained by an-
alytic continuation, or more generally, the restriction of holomorphic
representations to symmetric subgroups, has lately been an area of
intensive research. Among those who have studied this problem we
find, for example, Davidson, Olafsson, and Zhang ([1]), van Dijk and
Pevzner ([9]), Zhang ([11], [12], [13]), and the author ([7], [8]). How-
ever, there does not yet seem to be any uniform way of dealing with
this problem. For regular parameter, the Segal-Bargmann transform
provides a unitary equivalence between the restriction to the group H
and the left regular representation of H on the space L*(H/L) and in
this case the decomposition is determined explicitly by the Helgason
Fourier transform for the symmetric space H/L. Otherwise, the re-
sults obtained so far depend on particular features of the special cases.
In [12]|, Zhang decomposes the restriction to the diagonal subgroup of
the tensor product of a minimal representation and its dual by find-
ing the spectral decomposition for the Casimir operator. The same
method is used in [8], where the author determines the restriction of
the minimal representation for SU(n,m) to the subgroup SO(n,m).
It should be noted that this approach identifies the representations oc-
curring in the decomposition and determines the Plancherel measure
explicitly, but it does not provide an intertwining operator. In [7], the
author determines the restriction from SO(2,n) to SO(1,n) for gen-
eral parameter in the Wallach set and gives an intertwining operator.
This was possible thanks to an explicit power series expansion for the
spherical functions on the group SO(1,n).

In this paper we consider the minimal representations for the groups
Sp(n,R) and SU(n,n) and restrict to the automorphism groups for
the cones associated with the respective tube domains. We use the
model in [5] that realises the representations as L?-spaces on the or-
bits of rank one elements on the boundaries of the respective cones.
The intertwining operators are given explicitly as integral transforms
! The two cases we deal with are identical in principle. However,
the proofs are rather technical when it comes to parameters, so we

1or, rather, as analytic continuations of operators defined as integral transforms
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chose to avoid a uniform presentation to increase the readability. In-
stead we present two parallel cases where the solutions follow the same
guideline.

The paper is organised as follows. Section 2 contains preliminaries
for the two cases separately. In section 3 we describe the constituents
in the decomposition for the restriction from Sp(n,R), construct an
intertwining operator and prove the Plancherel theorem. Section 4 is
the analogue of section 3 for the group SU(n,n).

Acknowledgement: The author is grateful to his advisor Professor
Genkai Zhang for illuminating discussions on the topic of this paper.

2. PRELIMINARIES

2.1. Type II,. Let V be the real vector space of symmetric n x n-
matrices. The complexification, V¢ = V @ iV, of V consists of all
complex symmetric n X n matrices. Consider the bounded symmetric
domain

(1) 9 ={Z eV I-2Z7Z>0}.
The group

G = Sp(n,R) = {geSU(n,n)mt( _01 5)9: ( _01 é)}

acts transitively on & by

(2) Zw— (AZ+B)(CZ+ D)™,

where

®) i=(&5)

consists of the n x n blocks A, B, C' and D. The isotropy group of 0 is

(@) k={(y §)uevm},

and hence

(5) 9~ G/K.
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Let
Q={X eV|X > 0}.
Then 2 is a symmetric cone in V' with automorphism group GL(n, R)
acting as
X & gX gt
In fact
Q= GL(n,R)/O(n).
Moreover, the boundary of (2 is partitioned into n orbits under GL(n, R),
00 = U Q0
where Q0 is the set of positive semidefinite matrices of rank i. Each
orbit carries a quasi-invariant measure, u;, transforming in the fashion
g = | det g['p;
under the action of GL(n,R).
The Cayley transform

c(2)=UI-2)IT+2)"
maps Z biholomorphically onto the tube domain
To:={Z=U+iV e VU € Q}.
Let 7 denote the conjugation with respect to V, i.e.,
T(u+iv) = u — .
The set, Z of fixed points of 7in 2, VN is a totally real and totally
geodesic real submanifold of &, and the Cayley transform restricts to
a diffeomorphism
Z Q.
In particular, £ is a homogeneous space
2 2 HJ/L,
where H =2 GL(n,R) and L = O(n). Consider now the isomorphism
U :GL(n,R) —» R" x SL(n,R)
given by
g+ (det(g), det(g)™""g)

with inverse U~! given by

(\R) s AU,
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The differential of ¥ at the identity element gives an isomorphism of
Lie algebras

gl(n,R) = R & sl(n, R).

We will denote the SL(n,R)-factor in H by H', and correspondingly
we let b’ denote sl(n, R).

The minimal representation in the analytic continuation of the scalar
holomorphic discrete series of G can be defined as a Hilbert space of
functions, 71/, on Tg. This space has the reproducing kernel

(6) Kijo(z,w) = det(z — w*) /2,

By (an analytic continuation of) a Laplace transform, it is unitarily
and G-equivariantly equivalent to the the Hilbert space L?(Q™), ;)
(cf. [5]). Another proof of this can be found in [2]. We will now give
an even more explicit model for this representation space. Consider
therefore the mapping

n:R*\ {0} = QW,
defined by
n(z) = za’.

Here we identify R™ with the space of all n x 1 real matrices. It is
straigthforward to check that 7 is surjective and that

n(@) =nly) & z = +y,
and hence we have a bijection
oW = (R*\ {0})/ £1,

where the right hand side denotes the set of orbits under the linear
action of the two-element group generated by the endomorphism —1.
Moreover, the action of GL(n,R) is covered by the linear action on
R™ \ {0} so that we have the following commuting diagram.

R\ {0} —= R"\{0}

d "

Qu  XeeXdo o o
The measure y,; is the pushforward under n of the Lebesgue measure
on R"\ {0}. Hence, the minimal representation can be realised in the
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Hilbert space of even square-integrable functions on R™ \ {0}. In this
picture we have the formula

(7) £ deth (f o h')
for the group action on functions. Obviously this Hilbert space con-

tains L-invariant functions, i.e., the representation is spherical. There-
fore, by [7], there exists a direct integral decomposition

L2((R"\ {0})/ £1) = / Hadv,

where A is some parameter set, the H, are canonical representation
spaces for irreducible spherical unitary representations of H', and v
is some positive measure on A, called the Plancherel measure for the
minimal representation.

2.2. Type I,,. Let V be the real vector space of Hermitian n x n-
matrices. The complexification, V¢ = V @ iV, of V consists of all
complex n x n matrices. Consider the bounded symmetric domain

P ={Z eV I-2Z>0}.

The group
G = SU(n,n)
acts on Z by
Zw— (AZ+B)(CZ+ D),
where

(A B
9=\c b
consists of the n x n blocks A, B,C and D. We have the description
9= G/K.

of & as a homogeneous space, where

K = SU(n) x U(n) = {( fg 2 ) 1A, D € U(n),det(A)det(D) = 1} .

The symmetric cone
Q={XeV|X >0}
in V has automorphism group GL(n,C) acting as
X & gXg,
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and
Q= GL(n,C)/U(n).
The boundary of 2 partitions into GL(n, C) orbits as
00 = U, Q0

where Q) is the set of positive semidefinite matrices of rank i. Each
orbit carries a quasi-invariant measure, u;, transforming in the fashion

g* i = | det g p;
under the action of GL(n,C). The Cayley transform
c(2)=UI-2)IT+2)"
maps % biholomorphically onto the tube domain
To:={Z=U+iV e VU € Q}.
Let 7 denote the conjugation with respect to V/, i.e.,
T(u +iv) = u — .

The set, 2 of fixed points of 7 in 2, VN is a totally real submanifold
of 2 and the Cayley transform restricts to a diffeomorphism

Z =Q.
In particular, 2 is a homogeneous space
2 =2 H/L,

where H 2 GL(n,C) and L 2 U(n).

The minimal representation in the analytic continuation of the scalar
holomorphic discrete series of G is a Hilbert space, .74, of functions
on T with reproducing kernel

Ki(z,w) :=det(z —w*) .
Another realisation is furnished by the Hilbert space L?(Q™M), u1) (cf.

151, 121)-

To give an explicit realisation, we now consider the mapping
n:C"\ {0} —» QW
defined by
n(z) = zz".
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Here we identify C* with the space of all n x 1 complex matrices. It
is straigthforward to check that 7 is surjective and that

n(z) = n(w) & z = e,

for some real #, and hence we have a bijection
00 o~ C*/U(1).

The action of GL(n,C) is covered by the linear action on C" so that
we have the following commuting diagram.

c\ {0} —= C"\{0}

al K
Qm  Z29Z9. 6)

The measure p; is the pushforward under 7 of the Lebesgue measure
on C"\ {0}. Hence, the minimal representation can be realised in the
Hilbert space of U(1)-invariant square-integrable functions on C". In
this picture, we have the formula

(8) F s detgh® (f o h*),

for the group action on functions, where the subscript on the deter-
minant means the determinant of ~ as an R-linear operator on R*".

3. THE BRANCHING RULE: TYPE [1,

3.1. Some parabolically induced representations. In the follow-

ing, we will consider some parabolically induced representations of
H' = SL(n,R).
Let ag = Re, where

e — n—1 0
N 0 “in-1 ’

where I,,_; denotes the identity matrix of size (n — 1) x (n — 1). The
maximal parabolic subalgebra, q,, determined by ay has a decompo-
sition

Jo = Ny © My D ag D ny,
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where

O €Ty --- Tpo1

no == . |$1’...,$n_1 E R ;
Do 0

o (08 ) wento )

0 0 0

B ;. 0 -+ 0

n, = : _— 0 ‘xl,...,.fn,lER
Tp—1 0 0

Here the subspace my is defined by the property
Z;,/(ao) = dag © my,
and

ne = {Xeb| [HX]=alH)X, VHEa)},
o = {Xeb| [HX]=—-a(H)X, VHEa)

are the generalised root spaces, where the root o € a,* is determined
by

ale) = n.

We let py denote the half sum of the positive roots counted with mul-
tiplicity, i.e.,

_n—l

Po = 5 .

On the group level we have the corresponding decomposition

QO = M()A()No,



10 HENRIK SEPPANEN

_ e’ 0 s n—1 __
Ay = {(0 qIn1>|s,q€R,eq —1}
1
v = (s

where

]8[)|M€GL(n—1,R)},
1 x1 x4 Ty 1
01 0 0
Ny, = 0 0 1 0 T1,..., 0,1 ER
20 0
00 0 1

Consider now the representation 1 ® exp i) ® 1 of the group
Qo = MoAoNp.
The induced representation
(9) 7y == Ind{) (1 ® exp(iX + po) ® 1)

has a noncompact realisation in the Hilbert space L?(Ny, dn) (cf. [4]).
We have

(10) m(h) f(n) = ef(i)‘“’(’)(l"gaO(h’lﬁ))f(n—O(h—lﬁ))’

The decomposition b’ = n, & m, & a, ® ny gives a corresponding
decomposition

H' = NyMyAoNy,

by which we mean that the equality holds outside a set of strictly lower
dimension. The factorisation of a group element with respect to this
decomposition is not unique, but the Ag-component is. For h € H’',
we let ag(h) denote this component. The mapping exp : ay — Ay is a
diffeomorphic homomorphism of abelian groups. We let log : Ag — aq
denote its inverse. The representation 7, is then given by

(1) ma(h)f(m) = e PHllos®™0) f(ag(n-n).
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For arbitrary h € H',w € Ny, a factorisation of h7 can be given by
a b 1 0
c d z I,
b
(s ) it )
C L —
e In1 0 |a+bz|'/"(d— (fli—bg) b)
bt
X |a . bm‘ q 1 1 a+bx .
0 |a+bx|_ /n= In—l 0 In—l

In view of this, and identifying L?(Ny,dn) with L*(R*!, dz), we
obtain the following explicit formula for the induced representation:

(ra(h)f) (&) = |az + b] 4712 f ( - ‘“) ,

a—+ bx
a b
Whereh—(c d)'

3.2. An intertwining operator. Let m, be the one-dimensional
representation

ma(c)z == |c[MTPoz
of R*. Recalling the isomorphism
¥:GL(n,R) - R* x SL(n,R)
from the previous section, we can now form the representation
(12) Ty 1= My @ Ty
of GL(n,R). We let H, denote the associated representation space.
We now consider an operator, 7', mapping a C§°((R™ \ {0})/ £ 1)-

function, f, to a function Tf : C x R*~! — R which is meromorphic
in the first variable. The function

(13) Tf(zn) = - @)z, (1,m)|~ =+ Ddz
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is well defined as a function of z and 7 when Imz—n/2 > —1. For such
z, a change of variables, followed by an integration by parts, yields

f@) [z, (1,m))| D da
R~

1
B |77|2)”+"/2( (m+n/2)+1)
/ / Og AT )W), |-snim+1 g,y .y,
R2—1 Jy1<0 Y1
(14 P )“‘*"/2( (zz+n/2) 1)
/ / \ ||y dys . dy,,
R=1 Jy1>0 Y1

where g is some orthogonal transformation such that

(1,m) = g(I(1,m)]e1).

By repeated integration by parts we get the identity

(14) Tf(zmn)
1

(1 + [n?)i=tn2I0E, (= (iz + n/2) + j)

8k o .
X / / WWH_WM/Z)MCZMC@& - dyn
R7—1 Jy1<0 Y1

1) 1
+(-1) 1+ ‘n‘Z)iz+n/2H§:1(—(iZ +n/2) + j)

OF(fo :
> / / (fa ,.cg) (y) |y1|—(zz+n/2)+kdy1dy2 o dyn
R2—1 Jy1>0 n

Therefore, T f(z,7n) can be continued to a meromorphic function with
poles at z = i(n/2 — j), for j = 1,2,.... In particular, Tf(A,n) is
a well defined real analytic function for real A\ (except possibly for
A =0). We write T) f(n) for T f(\,n).

Proposition 1. For f € C((R*\{0})/£1) and X € R, the functions
Tof is in L*(R™1).
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Proof. For A € R, choose the natural number & > n/2 in (14). The
function

(15) aa—y{c(f oh),  heOm)

constitute a uniformly bounded family in the supremum-norm. Hence,
we have an estimate

(16) ITof(m)] < CA)(L+ [nf?) A/,

and this proves the claim. O

In what follows, we will state and prove properties for the func-
tions T) f for arbitrary real A\ although the proofs will use the defining
integral (13) which makes sense only when Imz > n/2 — 1. The
idea is then that both sides in the stated equalities are meromorphic
functions, so by the uniqueness theorem for meromorphic functions it
suffices to perform the calculations when the defining integral makes
sense. All integral equalities should therefore be thought of as ana-
lytic continuations of the corresponding equalities when the integrals
are convergent.

Proposition 2. The operator
Ty : CP(R™/{£1}) — H.a,

given by

(17) Txf(n) = - f (@) |z, (1, )72 de

18 H-equivariant.
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Proof. Take g € H and write ¢ = (h, where ( is a diagonal matrix

and A has determinant 1. Moreover we write h~! = ( CCL 2 ) Then
Ty(g9f)(n)
= Flg'z) (w1, 2), (1, m))|" /2 det gd
Rn

= | f@(z,2), g7 (1) P ds
R™
IC|AF2 [ f(2)|(a+ bp)ay + (2, ¢+ dn)| "2 dg
Rn

— |C|i)\—|—n/2 f(x)|a+ bn|—(i)\+n/2)
Rn™

x[{(@1, "), (L, (¢ + dn)(a+bn) =) [~ de
= m(9)Thf(n).
O
If f is L-invariant, then 7}, f is an L-invariant function in the repre-
sentation space H,. By the Cartan-Helgason theorem ([3]), the sub-
space of L-invariants is at most one dimensional. In fact, it is spanned

by the function 7+~ (1 + |p|*)~A"/2/2_ Thus, we can define a func-
tion f by

(18) Tof(n) = F)(L+ [pf?) A/,

The plan is now to prove an inversion formula and a Plancherel
theorem. The following lemma will be very useful in the sequel.

Lemma 3. Let f € C(R* \ {0})*. Then the function f can be
written in the form

['(—(2iA+ (n — 2))/2)
[(1/2)T((—2iA + n)/4)
where A is the Mellin transform.

FO) =277 M (r = 72 f(rer)) V),

Proof. We start by observing that, since f has compact support out-
side the origin, the Mellin transform above admits an entire extension
by the Paley-Wiener theorem. It thus suffices to prove the statement
for A € i(n/2 — 1,00) by the uniqueness of an analytic continuation.
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By the L-invariance of f and of the Lebesgue measure, we have

(19) @)l (1m) [ dg.

= [ 5@ [ lgm () dgda,
n SO(n)
Consider now the function

(20)  R(z,y):= / [(gz,y)| " Ddg,  z,y e R
SO(n)

It is SO(n)-invariant in each variable separately, and it is homogeneous
of degree —(iA 4+ n/2). Hence,

(21) R(z,y) = le_(m”/”lyl_(i”n/”/ [(ger, ex)| "D dg.
SO(n)

The integral on the right hand side can be expressed as an integral

over the sphere S"~!. Indeed, the fibration

(22) p:SO(n) — S™ ' p(g) = ges

defines a measure o on S™ ! as the pushforward of the normalised
Haar measure on SO(n), i.e., o is defined as an SO(n)-invariant linear
functional on C'(S™!) by the equation

@) [ FE)do(e) = / L fB)ds feoE)

Sn—l
By choosing f as a constant function in the above equality, we see
that o is the normalised surface measure on S"~!. Applying (23) to
the equality (21), we get

(24) R(z,y) = |z| /2 |y| - (Ate/D / (o X do Q).
Sn—1

The last integrand depends only on one variable, and hence we can
apply the “Functions of fewer variables’-theorem (cf. [6]) and replace
the integral by an integral over the unit interval on the real line. This
yields

/ G o (()
S’n—l

2l'(n/2) ' 2\ %52 (iAn/2)
T 2Ty J, 07 e
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By performing the change of variables s = 1 — t2, we obtain

2I'(n/2) ' _ 2\ 253 —(irtn/2)
Ty J, 01T e

['(n/2) ' n-1_y s —2dtn=2) g s
r(1/2>r((n—1>/2>/0 s =) d

_ ['(n/2) ﬁ(n—l _2M+(n—2))
['(1/2)l((n—1)/2) 2 7 4
L'(n/2)T(=(2iA + (n —2))/2)

L(1/2)T((-2iA+n)/4)

and hence
—iA1/2) g () = (n/2)F( (22'/\+(n—2))/2)
5)

Inserting (24) (with y = (1,7)) and ( into (19) gives
f(@)[{z, (1,m))|" Dy

_ “ ivtny2)/2 L (/2)L (= (202 + (n — 2))/2)
= (L [y T(1/2)T((=2i\ + n)/4)

x [ f(x)|z|" 2 dz.
R

Finally, we use polar coordinates to compute the integral on the right
hand side. Then

27Tn/2

> n/ —i)\ﬁ
sy, e

and hence the lemma is proved. 0
Theorem 4 (Inversion formula). If f € CP(R™\ {0}, then
f(re n/2 / e ( (2@)\ +(n— 2))/2)d)\'
Proof. By the previous lemma, we can write
(26) M (= 2 f(rer)) () == FND(N).

By the assumptions on f, the inverse Mellin transform is defined for
the left hand side since it is in L', and the inversion formula for the

f@)al~ O 2dy =
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Mellin transform yields

(27) P2 f (rey) = / FOb()r1dn,

CPA/2) [z iaenje T((=2iA+n)/4)
flred) = 5 /Rf“)r /r((—(2m+(n—2))/2)dA'

g

Remark. Note that this is a somewhat peculiar looking “Inversion for-
mula”. It does not express the function f as a weighted superposition
of some canonical functions with respect to the Plancherel measure for
the given representation. This will become clear by the next theorem.
The reason that we prove it is rather because it serves as a means for
proving the Plancherel theorem.

Theorem 5 (Plancherel theorem). For all f € C(R™ \ {0})L we
have

. r(1/2) T((-2ix+n)/4) |
2d — / )\ 2

o T = [ PO Sme FC@int - 2)/2)

Proof. We introduce some temporary notation and write the inversion

formula in the simplified form

f(re;) = /]R FOYrA/26(0)dA.

dA.

By the inversion formula we then have

[t@Pie = [ 1@ [ Tkl aminds
= /R fN . F(@)|z|"2 "2 dzd(N)d.

By the proof of Lemma 3, the inner integral can be seen to be equal
to f(A)¢()\), and hence

LT [ sl > masatian = [ 1F)Ple)Par,

and this concludes the proof. O
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Theorem 6. The operator T extends to a unitary H-intertwining op-
erator

(28) U LR\ {0})/ £1) - / Hadu(),

where [ is the measure determined by the identity

D(1/2)  D((=2i\+n)/4)
/Rf(A)d“ /f 27172 T((— (20X + (n — 2))/2)

Proof. By Prop. 2 and Thm. 5, there exists a unique H-intertwining
extension U : L*((R*\ {0})/+1) — [, #xdu(A) of T. The only thing
that remains to prove is the surjectivity of U.

This follows immediately from the proof of Theorem 9 in [7]. Indeed,
by the H-equivariance of the operator U the action of the commutative
Banach algebra L'(H)# of left and right L-invariant L!-functions on
H is intertwined. On each subspace HY, a function f € L'(H)¥
acts as a scalar operator, f(\). If we let vy denote the canonical L-
invariant vector associated with the spherical representation on H,,
and w € L*((R* \ {0})/ £ 1) denote an L-invariant vector in the
minimal K-type, then the positive functional ® on L'(H)# given by
®(f) = (n(f)w,w) can be written as the integral

(29) B(f) = /R or(H)dp(N)

where ¢, is the multiplicative functional f +— (f(A)vx, va)x. The sur-
jectivity now follows from the proof of Theorem 9 in [7| by uniqueness
of such an integral decomposition of ®. 0

2

dA.

4. THE BRANCHING RULE: TYPE [,
We consider the diffeomorphism
U :GL(n,C) — C* x SL(n,C)
given by
g+ (det(g), det(9)~'/"g),

where we have chosen the branch of the nth-root multifunction de-
termined by the root of unity with the least argument (i.e. in polar
coordinates (re?)l/m ;= ri/mei®/m)  The mapping ¥ has inverse

L (M h) = A7,
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In this case, however, ¥ is not a group homomorphism since the chosen
branch of the multifunction is not multiplicative. Instead ¥ is mul-
tiplicative up to scalar multiples of modulus one. We shall see later
that we can still use this diffeomorphism to construct representations
of GL(n,C) from representations of SL(n,C) and C* respectively.

4.1. Some parabolically induced representations of SL(n,C).

Let ayp = Re, where
[ n—1 0
e= 0 I, )

Consider the maximal parabolic subalgebra, q,, determined by ay,
with decomposition

qo:n_o@mo@ao@no,

where

0 21 PR anl
0 0

n, = L 0 |Zl,...,Zn_1€(C ,
0 0 --- 0

my — {(8 ]8[)|M€5[(n—1,([1)},
0 0 --- 0

B 2 0 -+ 0

n, = . . . O ‘Zla"'azn—lec
Zol 0 -+ 0

Here the subspace my is defined by the property
Zy (ag) = ag @ my,
and
ng = {Xey|[HX]=aH)X, VH € ap},
np = {Xey|[HX]=—-alH)X, VH € ay}

are the generalised root spaces, where the root a € a,* is determined
by
ale) = n.
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We let py denote the half sum of the positive roots counted with mul-
tiplicity, i.e.,

po=(n—1)a.
On the group level we have the corresponding decomposition
Qo = Mo Ay Ny,
where
Ay = e 0 s, e Reqg" =1
0 — 0 qln—l $,4 ,€ 4 -
10
My, = 0 M M € GL(n—-1,C) 3,
1 21 R 't Rp—1
o1 0 -+ 0
NO = 00 L. 0 |zl,...,zn_1EC
00 .0
00 0 -+ 1
Consider now the representation 1 ® exp i) ® 1 of the group

Qo = MpAoNp.
We realise the induced representation
(30) Ty 1= Indg;(l ® exp(iX + po) ® 1)

in the Hilbert space L2(N, dn).
The decomposition on the group level

H' = NyMyAoNy,
gives that for h € H'.m € Ny, hn can be factorised as

a b 1 0
c d z Inq
a+bz
= ( c-I-ldz 0 ) ( |ain| X )
stz [ 0 Ja+ba|/m 1 (d — (£42) b)

o [ o+ 0 1 b
0 la 4 bz| 7Y™, 0 I,, /)"

Hence, by identifying L2(Ny, dn) with L2(C*~!, dm(z)), where dm/(z)
is the Lebesgue measure on C", we obtain the following formula for
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the action of H' on functions in the representation space:

_ (ixtn) ¢ [ CH A2

P (:) = las + 07O (S,
a b

where h = ( . d>'

4.2. An intertwining operator. Recalling the diffeomorphism

U :GL(n,C) — C* x SL(n,C)

from the previous section, we can now form the representation
my ® Indg;(l ® exp(id + po) ® 1),

where my(c) = |c[***, of C* x SL(n,C). This will in fact give a
representation of GL(n,C). Indeed, suppose that we have g1, g, €
GL(n,C). We can write

g1 = )\}/nhl,
and
92 = )\;/nhzg
with A, Ay € C* and hq, hy € SL(n,C). Then
9192 = ()\1)\2)1/nf()\1, A2)hihs,
where (A1, A\2)| = 1 and hence the mapping

(31) m:igrHmy® Indg;(l ® exp(id + pg) ® 1) o ¥(g)

defines a unitary representation of GL(n,C). We let H, denote the
corresponding representation space.
For f € C°(C"), we define the function Tf : C x C*! — C by

Ti(\ ) = /@n F(2)] (e (1, 7)| "+ (2),

where the right hand side is to be interpreted using analytic contin-
uation in the variable A as in the previous section (eq.(13) and the
following discussion). We have the following analog of Prop. 1.

Proposition 7. For f € C((C*\{0})/£1) and A € R, the functions
Tnf is in L*>(C*1).
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The proof is the same as that of Prop. 1.

All the following integral equalities where the variable A occurs are
to be thought of as analytic continuations of the corresponding equal-
ities involving convergent integrals. We write 7y f for the function
n—=Tf(An).

Proposition 8. The operator
(32) Ty : G ((C* \{0})/U(1)) — Ha
18 H-equivariant.

Proof. Take g € H and write g = (h, where ( is a diagonal matrix

and h has determinant 1. Moreover we write h~! = Ccl 2 ) Then

To(of)(n) = / £(5°2) (20, 2), (1, m)) 40| det g* [2dm(2)
- / F@) (1, 2, 97 (L m)) P dim(z)
= Cnf(x)|(a+bn)zl+<z e+ dn)| " dim(2)

¢ [ f(z)]a + by| ™)
Cn

% [{(z1,2'), (1, (¢ + dn) (a + bn) 1) [~ 2dm )
= m(g)Ta(f)(n)-
O

For an L-invariant function f, the function n — T'f(\,7n) is L-
invariant by the above proposition. The Cartan-Helgason theorem
(|3]) therefore allows us to define the function f by

T(\n) = f()\)(l + |77|2)—(i)\+n)/2'

Lemma 9. Let f € CP(C" \ {0})X. Then the function f can be
written in the form

: P
(33) f(A) = 4m"——— M (r = 1 f(ren)) (3),
r (—f +n— 1)

where M is the Mellin transform.
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Proof. The proof is almost identical to that of Lemma 3. We assume
that A is purely imaginary with big enough imaginary part. Then

(34) F(@)[{z, (1,m) | AT dm(2)
Ccr

- [ 1o o gz (L) dgm(z),

The inner integral can be written as
@ [ e O

_ / £(2) / (g2, (1, 7))+ dg
Ccn SU(n)
— |2 (1 1 |2y @2 / G P do(c).
S2n71

The integrand on the right hand side depends only on one variable,
and hence we can apply [6], Prop. 1.4.4. This yields

(36) [l s

n—1

=P [ = Py 2lal (),
U

™

where U is the unit disc in C. The last integral can be written as

(37) n—1

/ (1= |22z~ dim(2)
U

1
= 2m(n— 1)/ (1 — )= D=1yt m=2))/2-1 gy
0

= 2m(n—1)8(n—1,—( A+ (n —2))/2)
r <_z’)\+(;1—2))

F(—W—i—n—l).

= 27
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Using (35), (36), and (37), the identity (34) can be rewritten in the
form

.Lf@WﬂWM“WWM@

r (_ i/\—l—(;z—Z) )

F(—Wﬁ—n—l)

2zl dm(2).
XLJUH dm(z)

Using polar coordinates, the integral on the right is given by

cr f(2)|z|*(i)\+n)dm(z) - % /ooo T"f(rel)TMg,

and this proves the statement. 0

— 47rn(1+|,'7|2)—(i)\+n)/2

Since f has compact support outside the origin, the right hand
side admits an extension to an entire function by the Paley-Wiener
theorem.

Theorem 10 (Inversion formula). If f € C°(C™ \ {0})E, then
1 oy i [ A+N—2
f(rep) = ey /Rf(/\)r ( 5 >n1 dA,

where (-) denotes the Pochhammer symbol defined as
(t)() = 1,
(e = tt+1)---(t+k—1), ke N
Proof. The identity
I'(z+k)
(m)k - F($)

shows that the statement of Lemma 9 can be written in the form

n 1 IN+n—2 ~
3) e = (- ) i
7 2 nei
The inversion formula for the Mellin transform then yields the identity

f(rer) = ! /R(_anﬂ) FO)F™dA.
n—1

47




TUBE DOMAINS AND RESTRICTIONS OF MINIMAL REPRESENTATIONS25

Theorem 11 (Plancherel theorem). For all f € C(C™ \ {0})*"

have
M+n—2
2 n—1

[ o= (&) [y

Proof. For simplicity, we write the inversion formula in the form

f(rei) = /R FO)rFA"p(N)dA

By the inversion formula we then have

[ r@kan) = [ 1) [ Tl atiame:
= [T [ s namatio

By the proof of Lemma 9, the inner integral can be seen to be equal
to f(A)¢o(N), and hence

LTO [ @l ran)atan = [ IFQ)F6)P

and this concludes the proof. 0

2

dA.

By the same argument that we used to prove Theorem 6, we have
the following branching law.

Theorem 12. The operator T extends to a unitary H-intertwining
operator

(39) U L2((C\ {0})/U(1)) - / Hadu(N),

where 1 1s the measure determined by the identity

[ r0vautn = (ﬁ) [ \(—%)

Remark. The ideas in this paper could probably be extended to the
case of the type 111, bounded symmetric domain consisting of complex
antisymmetric n X n matrices by realising the corresponding minimal
representation as the Hilbert space

L*((H" \ {0})/Sp(1)) and proceeding in an analogous way.

2

dA.
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BRANCHING LAWS FOR MINIMAL HOLOMORPHIC
REPRESENTATIONS

HENRIK SEPPANEN

ABSTRACT. In this paper we study the branching law for the
restriction from SU(n,m) to SO(n,m) of the minimal represen-
tation in the analytic continuation of the scalar holomorphic dis-
crete series. We identify the the group decomposition with the
spectral decomposition of the action of the Casimir operator on
the subspace of S(O(n) x O(m))-invariants. The Plancherel mea-
sure of the decomposition defines an L2-space of functions, for
which certain continuous dual Hahn polynomials furnish an or-
thonormal basis. It turns out that the measure has point masses
precisely when n—m > 2. Under these conditions we construct an
irreducible representation of SO(n,m), identify it with a parabol-
ically induced representation, and construct a unitary embedding
into the representation space for the minimal representation of
SU(n,m).

1. INTRODUCTION

One of the most important problems in harmonic analysis and in
representation theory is that of decomposing group representations
into irreducible ones. When the given representation arises as the
restriction of an irreducible representation of a bigger group, the de-
composition is referred to as a branching law. One of the most famous
examples of this is the Clebsch-Gordan decomposition for the restric-
tion of the tensor product of two irreducible SU(2)-representations
(which is a representation of SU(2) x SU(2)) to the diagonal subgroup.
For an introduction to the general theory for compact connected Lie
groups, we refer to [11].

Since the work by Howe (|7]) and by Kashiwara-Vergne (|9]), the
study of branching rules for singular and minimal representations on

1991 Mathematics Subject Classification. 22E45, 32M15, 33C45, 43A85.
Key words and phrases. Unitary representations, Lie groups, branching law,
bounded symmetric domains, real bounded symmetric domains.
1
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spaces of holomorphic functions on bounded symmetric domains has
been an active area of research. In [8], Jakobsen and Vergne studied
the restriction to the diagonal subgroup of two holomorphic represen-
tations. More recently, Peng and Zhang (|22]) studied the correspond-
ing decomposition for the tensor product of arbitrary (projective) rep-
resentations in the analytic continuation of the scalar holomorphic
discrete series. Zhang also studied the restriction to the diagonal of a
minimal representation in this family tensored with its own anti-linear
dual ([33]).

The restriction of the representations given by the analytic con-
tinuation of the scalar holomorphic discrete series to symmetric sub-
groups (fixed point groups for involutions) has been studied recently
by Neretin (18], [17]), Davidson, Olafsson, and Zhang (|2]), Zhang
([32], [34]), van Dijk and Pevzner (|30]) and by the author ([28]).

All the above mentioned decompositions have the common feature
that they are multiplicity free. This general result follows from a
recent theorem by Kobayashi ([13]), where some geometric conditions
are given for the action of a Lie group as isometric automorphisms
of a Hermitian holomorphic vector bundle over a connected complex
manifold to guarantee the multiplicity-freeness in the decomposition of
any Hilbert space of holomorphic sections of the bundle. The action
of a symmetric subgroup on the trivial line bundle over a bounded
symmetric domain then satisfies these conditions (cf. [14]).

In this paper we study the branching rule for the restriction from
G := SU(n,m) to H := SO(n,m) of the minimal representation in
the analytic continuation of the scalar holomorphic discrete series.
We consider the the subspace of L := S(O(n) x O(m))-invariants and
study the spectral decomposition for the action of Casimir element of
the Lie algebra of H. The diagonalisation gives a unitary isomorphism
between the subspace of L-invariants and an L?-space with a Hilbert
basis given by certain continuous dual Hahn polynomials. The main
theorem is Theorem 9, where the decomposition on the group level is
identified with this spectral decomposition. The Plancherel measure
turns out to have point masses precisely when n —m > 2. The second
half of the paper is devoted to the realisation of the representation
associated with one of these points and the unitary embedding into
the representation space for the minimal representation. The main
theorem of the second half is Theorem 21.
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The paper is organised as follows. In Section 2 we begin with some
preliminaries on the structure of the Lie algebra g, the group action,
and the minimal representation. In Section 3 we construct an or-
thonormal basis for the subspace of L-invariants. In Section 4 we
compute the action of the Casimir elements on the L-invariants and
find its diagonalisation. We also state the branching theorem. In Sec-
tion 5 we construct an irreducible representation of the group H (for
n —m > 2, i.e., when point masses occur in the Plancherel measure),
identify it with a parabolically induced representation, and finally we
construct a unitary embedding that realises one of the discrete points
in the spectrum.

Acknowledgement: The author would like to thank his advisor
Professor Genkai Zhang for support and for many valuable suggestions
during the preparation of this paper.

2. PRELIMINARIES
Let 2 be the bounded symmetric domain of type I,,(n > m) , i.e.,
(1) 9P :={z € Mpu(C)|I, — zz" > 0}.

Here M,,,(C) denotes the complex vector space of n X m matrices.
We let G be the group SU(n,m), i.e., the group of all complex (n +
m) X (n+m) matrices of determinant one preserving the sesquilinear
form (-, -}, on C*"*™ given by

(2)(”, U)n,m = wvy + -+ UpUy — un—l—lﬁn—l—l — = un—l—mﬂn—l—m-
The group G acts holomorphically on & by
(3) g(z) = (Az+ B)(Cz+ D)™,

C D
n X n. The isotropy group of the origin is

K = S(U(n) x U(m))
_ {(ég)pMﬂWmDEWMAmMNMDﬁﬂ}

and hence

(4) 2~ G/K.

if g = ( A B > is a block matrix determined by the size of A being
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2.1. Harish-Chandra decomposition. Let # denote the Cartan in-
volution g — (g*)~' on G. We use the same letter to denote its differ-
ential f : g — g at the identity. Here, we have identified T,(G) with
g. Let

(5) g=top

be the decomposition into the +1 eigenspaces of # respectively. In
terms of matrices,

6) ¢ = {(6‘ g)|A*:—A,D*:—D,tr(A)+tr(D):0},

o = {(5 7))}

where the size A is n X n.
The Lie algebra g has a compact Cartan subalgebra t C €, where

'(isl O --- 0 --- 0 \ )
o s, 0 - 0 sit; €R
B =31 0 -« 0 it - 0 |Ios+ryu=0(
\\ 0 --- 0 0 --- itm/ )

Its complexification, t© (the set of complex diagonal traceless matri-
ces), is a Cartan subalgebra of the complexification g& = sl(n+m, C),
where

(9) g“ =tCopC.

We let E;; denote the matrix with 1 at the entry corresponding to the
ith row and the jth column and zeros elsewhere. By EJ; we mean the
dual linear functional, i.e., E};(2) = 2 for z € My, (C). Moreover,
we define an ordered basis {F}} for t© by
(10) Fy:=E;—FE ;;1,j=1...,n+m—1,

< - <Foyma-

The root system, A(g®, t%) is given by
C (Cy __ * * .o . .
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We denote the root Ej; — E7; by a;;. We define a system of positive
roots, AT, by the ordering (10). Then

(12) AT = {aylj > i},

and we let A~ denote the complement so that A = AT U A~. For
a root, a, we let g* stand for the corresponding root space. Then
g%i = CE;;. For a root space, g%, we either have g* C € or g C p©.
In the first case, we call the corresponding root compact, and in the
second case we call it non-compact. We denote the sets of compact
and non-compact roots by Ay and A, respectively. Finally, we let A
and Aj denote the set of non-compact positive roots and the set of
non-compact negative roots respectively. We set

(13) pto= )%

+
acAy

(14) pTo= > g%

aEAg

These subspace are abelian Lie subalgebras of p©. Moreover, the rela-
tions

(15) (€, pT] Cpt [ p7 ] Cp,[pt,p7] CEC

hold. We let KC, P, and P~ denote the connected Lie subgroups
of the complexification of G, G®, with Lie algebras £, p*, and p~
respectively. The exponential mapping exp : p* — P¥ is a diffeomor-
phic isomorphism of abelian groups. As subspaces of the Lie algebra
g = sl(n +m) we have the matrix realisations

(16) = {(0 5 ) Mm@},
(17) p = {(2 8>|z6an(C)}.

The Lie algebra g© can be decomposed as
(18) ‘“=ptattep.
On a group level, the multiplication map

(19) Pt x K€ x P~ = G, (p, k,q) — pkq
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is injective, holomorphic and regular with open image containing GP*.
In fact, identifying the domain & with the subset

{( 8 g ) |z € @} C p* and letting

I, =z
Q::exp@:{( 0 Lﬂ)\ze@},

there is an inclusion

(20) GPt C QK°P~.

For g € G, we let (9)4,(g)o, and (g)_ denote its P*, K¢, and P~
factors respectively. The action of ¢ on & defined by

(21) 9(z) = log((gexp z)4)

then coincides with the action (3). In fact, for g = ( é g >, the

Harish-Chandra factorisation is given by

A B

(22) (C D)
(I, BD"'\ ( A-BD™C 0 I, 0
“\o I, 0 pJ)\p'c r,)

For g as above, and exp z = < Ié’ IZ >,

(A Az+B
(23) 98sz_(0 Cz+D)’

and hence

(24) (gexpz); = < I(;l (AZ+B)§SZ+D)_1 )

by (22).

We also use the Harish-Chandra decomposition to describe the dif-
ferentials dg(z) for group elements g at points z. We identify all
tangent spaces T,(2) with p™ (= M,,,(C)). Then dg(z) : p™ — pT is
given by the mapping

(25) dg(z) = Ad((gexp 2)o) o+
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(cf. |26]). In the explicit terms given by (22), this mapping is given
by

dg(2)Y = (A— (A2 + B)(C2+ D) 'C)YD, Y € Myn(C).

2.2. Strongly orthogonal roots. We recall that two roots, o and
B, are strongly orthogonal if neither o + 3, nor a — 3 is a root. We
define a maximal set of strongly orthogonal noncompact roots, I', in-
ductively by choosing 7,1 as the smallest noncompact root strongly
orthogonal to each of the members {71, ...,7:} already chosen. When
the ordering of the roots in given as in (10), we get

(26) I'= {’Yl""afym}’ Vi :E;j_E;—Fnj—l—n'

We now let E, denote the elementary matrix that spans the root
space g?. Then the real vector space

(27) a:= ER:R(EW —0E,,)

is a maximal abelian subspace of p. We set

(28) E;:=E, —0E,,.

2.3. Shilov boundary. Let O(Z) denote the set of holomorphic func-
tions on Z, and let O(Z) denote the subset consisting of those which
have continuous extensions to the boundary. The Shilov boundary of

2 is the set
S={z€V|l,—2z"2=0}.
It has the property that

(29) sup | f(2)| = Sup f(2)], f € O(2),
2€9 z€

and it is minimal with respect to this property, i.e., no proper subset
of § has the property. The set § can also be described as the set of all
rank m partial isometries from C™ to C*. The group K = U(n)xU(m)
acts transitively on S by

(9, h)(2) = gzh "
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To find the isotropy group of the fixed element z, := ( 16" ), let
(9,h) € U(n) x U(m) and write g in the form
(A B
g - C D )
where A is of size m x m. Then
Bl — A B Rt [ An?
gt =\ D o )= \cnt )

So, the equality gzoh™' = 2y holds if and only if A = h and C = 0.
Since g is unitary, the last condition implies that also B = 0 and hence
the isotropy group is

Ky :=(U(n) x U(m)),, = {(g,h) eU(n) xU(m)|lg = < 8 10) )}
Thus we have the description
S=K/Ky= (U(n) xU(m))/U(n —m) x U(m)

of the Shilov boundary as a homogeneous space.
In the sequel, we will often be concerned with the submanifold Sa

of S, where
( ( £1 )
0 - &n .
(30) Sa =14 2z = 0 - 0 €Sl&,...,émeS ;.
\ \ 0 -0 ) J
& -+ 0
Also, we let diag({) denote the m x m-matrix | : . o |. The
0 - &
identity

(31) 2z = ( diaﬁ@ ) - ( diag(é) Iﬁm ) ( Iﬁn )

identifies the matrices in the submanifold So with certain cosets in
K/K,.
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2.4. The real form % . Consider the mapping 7 : Z — & defined
by

(32) 7(2) =7,

where the conjugation is entrywise. It is an antiholomorphic involutive
diffeomorphism of . We let 2" denote the set of fixed points of 7,
ie.,

(33) X ={z € Y|r(z) = z}.

Moreover, 7 defines an involution, which we also denote by 7, of G
given by

(34) 7(9) = g7 L.
We let H denote the set of fixed points, i.e.,
(35) H=G"={g€eGl|r(g) =g}

Clearly, H = SO(n,m), i.e., the elements in G with real entries. The
group H acts transitively on 2", and the isotropy group of 0 in H is
L := HN K. Hence

(36) 2 =2 HJ/L.

2.5. Minimal representation .77. We recall that the Bergman ker-
nel of & is given by

(37) K(z,w) = det(I,, — zw*)~("*m),

It has the transformation property

(38) K (g7, gw) = J,(2) " K (z,w) Ty (w)

where J,(z) denotes the complex Jacobian of g at z. We let h(z,w)
denote the function

(39) h(z,w) = det(I, — zw*).
Then, for real v, the kernel
(40) ()™

is positive definite if and only if v belongs to the Wallach set, W.
Here,

(41) W={0,1,...,m -1} J(m - 1,00)
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(cf. [3]). The kernel h(-,-)™" satisfies the transformation rule

(42)  h(gzgw) ™" = Jy(2) T h(z,w) T (w) T

For v € W, we denote the Hilbert space defined by the kernel A(-,-)™"
by #%,. A projective representation, m,, of G is defined on 7, by

(43) T, (9)f(2) = Jg-1(2) w7 fg7"2).
We will be concerned with the so called minimal representation, i.e,
with the representation 7, on the space .74.

3. THE L-INVARIANTS

For any v € W, let

H, = D PE

k:=—(k1v1++km¥m)

be the decomposition into K-types. Here I' = {71,...,7m} is the
maximal strongly orthogonal set in A; with ordering vy < -+ < ¥,
defined in the previous section, and

(44) ki > -2 kn, ki €N,

and PE is a representation space for the K-representation of highest
weight that is realised inside the space of homogeneous polynomials of
degree |k| = ki + -+ ks on pT. When v = 1, the weights occurring
in this sum are all of the form

(45) k= —ky

(cf. [3]). Taking L-invariants, we have

A" = PrPH”.

k

The data (K, L,7) defines a Riemannian symmetric pair, and hence
(VE)L is at most one dimensional by the Cartan-Helgason theorem (cf.
[6], Ch. IV, Lemma 3.6.).

We recall the compact Cartan subalgebra t C € in (8). We let t
denote the Cartan subalgebra of u(n) @ u(m) consisting of all diag-
onal imaginary matrices, i.e., matrices of the form (8) but without
the requirement that the trace be zero. Then we have an orthogonal
decomposition

(46) t=tot"
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given by the Killing form.

Any linear functional I € t* extends uniquely to a functional on ¢
which annihilates the orthogonal complement t+. We will denote these
extensions by the same letter [. Therefore, any dominant integral
weight on t parametrises an irreducible representation of u(n) @ u(m)
in which t* acts trivially. When X\ = k = kv, is a K-type occurring
in 74, we denote the underlying representation space for u(n) @ u(m)
by V*. Moreover, the Cartan subalgebra { is the sum

t=t1 &t

of the corresponding subalgebras of u(n) and u(m) respectively. The
restrictions of A to t; and t; respectively define integral weights, hence
they parametrise irreducible representations of the Lie algebras u(n)
and u(m) respectively. We denote the corresponding representation
spaces by V» and V). In what follows, A will always denote the
extension to u(n) @ u(m) of a weight of the form k in (45). We will
use the explicit realisations

(47) VA =6,

where the right hand side denotes the symmetric tensor product de-
fined as a quotient of the k-fold tensor product of C*. In the following,
for a multiindex o = (g, -+ , ) € N, we let

(48) la] = a4+ ay,

(49) al = ol

For any choice of orthonormal basis {ey,...,e,} for C*, the set
(50) {e* ==el" - egrlla] =k}

k

furnishes a basis for © C". We fix an K-invariant inner product, |- || 7,
k

L'on ® C" by the normalisation

(51) letll = k.

Observe that we have suppressed both the indices £ and n here. For
n fixed, the norm in fact equals the restriction of the norm defined
on all polynomial functions on C" (we use the natural identification
e® <> 2% of symmetric tensor power with polynomial functions)

(52) {p, )k = p(9)(¢")(0),
IThis is often called the Fock-Fischer inner product (cf. [3]).
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where p(0) is the differential operator defined by substituting % for
J
e; in p, and for ¢ =) a,2%, ¢* is defined as

(53) (Z e 2%)* = Z Gg2”.

The suppressing of the index n will not cause any confusion in what
follows. Finally, on the dual space V. we have the corresponding basis

(54) {(e) = (en)™ -+~ (en)*[laf = K},

where {e],...,e:} is the dual basis to {ei, ..., e,} with respect to the
standard inner product on C*. We also let ||-|| = denote the K-invariant
norm on V., normalised by

(55) 1(eD)* |1 = kL.
Lemma 1. For any choice of orthonormal basis {ei,..., ey} for C™
and extension {e1,...,€m,€mi1,--- €} to an orthonormal basis for

C", the vector

=Y fa® fLEVER (V)

a€EN™
lal=k

where f, = (af)—al/z and f; = (ff!’;—&, s Ky-invariant.
Proof. We recall the identification of the isotropic subgroup of the
fixed element zy with U(n — m) x U(m). From this it is clear that
it suffices to prove that the vector 1y € Vo ® (V2)* C V2@ (V) is
invariant under the restriction of the representation of U(m) x U(m)
to the diagonal subgroup.

The vector space V,} @ (V.2)* is naturally isomorphic to End(V)}),
the isomorphism being given by (u®v*)(y) = v*(y)u. Then, if y € V2
is the linear combination y = Zg cafs,

D fa® faly) = cslfs fadfs = y;

a,B
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i.e., 1) corresponds to the identity operator. Moreover, for the action
of u(m) on the tensor product V.2 @ (V2)*, we have
X(wev)(y) = Xuev)(y)+ (ue Xv')(y)
= v(y)Xu+ (Xv")(y)u
= v(y)Xu+ (y, Xv)
= v(y)Xu— (Xy,v)
(X, u®v*](y),

u
u

where X € u(m),u € V;),v* € (V)% ie., the action as derivations
of the tensor product corresponds to the commutator action on the
endomorphisms. In particular, X¢y = 0 for all X in u(m). This proves
the lemma. O

Since the vectors in the representation space V* are holomorphic
polynomials, they are determined by their restrictions to the Shilov
boundary S.

In the sequel, we use the Fock inner product to define an antilinear
identification of V) with (V))* by

v v, vi(w) = (w,v)F, w e V.

We let (-, -) denote the inner product on the tensor product V.*® (V.})*
induced by the Fock inner products on the factors.

Proposition 2. The operator Ty : V) @ (V))* — V* defined by
Ti(u®v*)(2) = ((g9, ), u @ V%),

where z = (g,h)Ky € S, is a C-antilinear isomorphism of U(n) X

U(m)-representations.

Proof. We first observe that the left hand side is well defined as a
function of z by the invariance of ).

The root system A(u(n) @ u(m), t) is the union of the root systems
A(u(n),t) and A(u(m), t2). Fix choices of positive roots AT (u(n), 1),
and AT (u(m), t3) respectively. We define a system of positive roots in
A(u(n) @ u(m), t) by

AT (u(n) @ u(m), 1) := At (u(n), t,) U A* (u(m), ).

Let uy € V) be a lowest weight-vector, and vy € V) be a highest
weight-vector. Then uy ® v is a lowest weight-vector in V) ® (V,))*.
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For H = (Hy, Hs) € t; ® t; we have

@y (ux ® 05)) (exp tH - )1

dt
d
= %((exp tH1g, exp tHoh)iy, ux ® v3)i=o
d *
= I ({(g, h)ex, (exp —tHy,exp —tHy)(uy ® v3))),—o

= (g, h)en, A(=H1)ur ® 03)
+((g, h)tx, ux @ A(—Ha)vy)
= AH)T)\(u) ® v})(2).
Thus T)(uy ® v}) is a vector of weight .

Any root vector in u(n) @ u(m) lies in either of the components.
Take therefore a positive root vector E + iF € u(n)®. Then

(B +4iF, 0)(Tx(ux ® v}))(2)

d
= — (((exptEg, h)ir, ux ® v})),—0

dt
d .
‘H% ({(exptFg, h)ix, uxr @ v3)),—0
= ((g,h)ex, (=(E = iF)uy ® vy))
= 0,

since F —iF' is a negative root vector. Similarly one shows that the
positive root vectors in u(m) annihilate T)(u) ® v}). The function
T (u)r®vj}) on the Shilov boundary naturally extends to a holomorphic
polynomial on 2 which belongs to . Hence Ty(u) ® v}) can be
written as finite sum of highest weight-vectors from the K-types of
¢ . But it is a vector of weight A, and so by the multiplicity-freeness
of the K-type decomposition, T)(u) ® v}) is a highest weight-vector
in VA, O

Lemma 3. The space (V)T is nonzero if and only if X = —2kvy, for
k € N. In this case, it is one-dimensional with a basis vector v, where

(50 o= () eme”,

BeNm

1B|=k
where z¢ is the matriz defined in (30).
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Proof. We use the isomorphism from the proposition above. Then the
first statement is obvious, since for any A = —jv;, the representation
space V* is isomorphic to the space of all polynomials of homogeneous
degree j on C", and the corresponding statement holds for V). Assume
therefore that A = —2k;.

Clearly, the vector (€2 + --- +€2)* @ ((e})? + --- + (€},)?)* is an
L-invariant vector in V» @ (VA)*. We compute its image under T)
when restricted to the matrices in Sa.

Ta((e] + --+el) @ ((e])”+ -+ (e,))")(2)
= ((ge, Im)en, (€7 + -+ e2) @ ((e1)* + -+ + (e,)")")
= O € fa@fi @+ +e) @ () +--+ (e,))")

= D & fa (el + -+ e) WS () + -+ (€)")").

Since the symmetric tensor (e2+: - -+€2)* has the monomial expansion

(4 +e2) =) (g>€2ﬁ,

|8/=k
we get the equality

T+t o (e 4+ @) = X (5 ) e
|B1=k
U

Theorem 4. The polynomials @y, of degree 2k, for k € N, given by

1 k>
or(ze) = 1/2 172 (281)€*°
: 4kE! (%)k/ (g)k/ Iﬁzgk ( b )

constitute an orthonormal basis for the subspace, 6L, of L-invariants.

Proof. The only thing that is left to prove is the normalisation part of
the statement, i.e., we need to compute the norms of the polynomials

V-

Using the antilinear isomorphism 7}, we can introduce an inner
product

<" >’)\ = <T;1"T;1'>’
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where the the right hand side denotes the conjugate of the inner prod-
uct on the tensor product induced by the Fock inner products on the
factors, on V*. By Schur’s lemma, the equality
- 117 = Call - Il

holds on V* for some complex constant Cy. To compute this constant,
we compare the norms of the lowest weight-vector u)®uv} and the high-
est weigh-vector T (u) ® v}) in their respective representation spaces.
Let {e1,...,en} and {ej,...,e,} denote the standard orthonormal

bases for C* and C™ respectively. Then uy ® v} = e?* ® (e2¥)*, and

let* ® (e1*)]| = (2k)L.

Moreover, the normalised lowest weight-vector % maps to
o (€ ® ()™
A (2k)! ’
where
2k @ (e1)2k
T 1 1 — 2%
() ) = 4
= pll(zé)a

where py; is the highest weight vector given by pi;(2) = 2?F. Since

lp11ll 7 = +/(2k)!, we see that C) = /(2k)!.
The norm of (e?+---+e2)*®(((e})*+- - -+ (e},)?) is straightforward
to compute. In fact,

2 21k (12 w2 sA2kN2 — 2 (M n
e -+ D + -+ () = 0 (5) (5),
Finally, we have the equality

2 _ 1 2
(57) -1l = @H 7

(cf. [3]) relating the .7 -norm to the Fock-Fischer norm on the K-type
2k = —2k~,, and this ends the proof. O

4. THE ACTION OF THE CASIMIR ELEMENT ON THE L-INVARIANTS

We consider the representation of the universal enveloping algebra
U(H®) defined for all X € b by

(58) For Lma(expiX)fleco
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for f in the dense subspace, £, of analytic vectors, and extended
to a homomorphism U(h*) — End(J4>). We will denote this repre-
sentation too by m;. We recall that the Casimir element, C € U(h®) is
given by

(59) C=X{+-+X;, -V - =Y

q 7
where {X;,7i=1,...,dimq} and {Y;,i =1,...,diml} are any orthog-
onal bases for g and [ respectively with respect to the Killing form,
B(-,-), on b such that

B(XZ,XZ) = 1, ’l,:]_,,dlmq,
BY.,Y) = -1, i=1,...,diml
Consider now the left regular representation, [, of H on C*°(H/L),

i.e., l(h)f(z) = f(h'z). We define an operator R, : 74 — C*°(H/L)
by

(60) Ry f(z) = h(z, )" f(x).

This is the generalised Segal-Bargmann transform due to Olafsson and
Orsted (cf. |21]). A nice introduction to this transform in a more gen-
eral context can also be found in Olafssons overview paper [20]. The
following lemma is an immediate consequence of the transformation
rule (42).

Lemma 5. The operator Ry : 74 — C*(H/L) is H-equivariant.

Moreover, the Casimir element acts on C*°(H/L) as the Laplace-
Beltrami operator, £, for the symmetric space H/L. We recall the
"polar coordinate map" (cf. |5], Ch.IX)

(61) é:L/M x A* — (H/L),

(IM,a) — laL
Here (H/L)' := H'/L, where H' is the set of regular elements in H,
and AT = expa™, where
(62) at ={tiE1+ -+ tnEnlt; > 0,i=1,...,m}.
The map ¢ is a diffeomorphism onto an open dense set in H/L. Hence,
any f € C*°(H/L)" is uniquely determined by its restriction to the
submanifold AT -0 =¥ ({eM} x AT). In fact, the restriction mapping

f = fla+.o defines an isomorphism between the spaces C*°(H/L)*
and C®(A*-0)Ne(@/Z(®)  The space C®(H/L)" is invariant under the
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Laplace-Beltrami operator. Recall that the radial part of the Laplace-
Beltrami operator is a differential operator, AL, on the submanifold
AT -0 with the property that the diagram

C®(H/L) —£— C*(H/L)

! Lo

C®(AT-0) —2£5 C=(A4F-0)

where the vertical arrows denote the restriction map, commutes.

Moreover, the functions in 4 are determined by their restrictions
to the real submanifold H/L, and the L-invariant functions are de-
termined by their restrictions to A* - 0. By Lemma 5 and the above
discussion, we have the following commuting diagram.

71(C)

" "
O (At - 0) 2L coo (gt )

where, again, the vertical arrows denote the restriction maps.

In what follows, we will compute the action of the operator R; 'ALR;
on the subspace J4L.

The radial part of the Laplace-Beltrami operator of H/L is given
by (cf.[6], Ch. II, Prop. 3.9)

LE o , 0
VESY oz + > coth(ti £ 1) (5 -+ 5-)
7j=1

m>izj>1 Ot 9t
+(n—m) i co‘cht-i
=1 "ot

The coordinates t; are related to the Euclidean coordinates z; by x; =
tanht;, i.e.,

(63) AT 0={(z1,..., 2m)|0 <21 <39 <00 <y < 1}
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In the coordinates z;, the operator 4Ry "ALR; := 4L" has the expres-
sion

d 0
ALt = Z(—(l—x?)—x?—%i(l—x?)axi+(1—$?)23—x3>

(1—23)(1 -3 0 0

m>i>j>1 i J

The following lemma is proved by a straightforward calculation. A
proof for a similar decomposition can be found in [33].

Lemma 6. The operator 4R1_1A[,R1 can be written as a sum of three
operators, L_, Ly and L that lower, keep and, respectively, raise the
degrees of the polynomials . In fact,

(0 n-m 9 1 %) 0
- = FYs T 2 3 \Tia- — %z |>
£ Z ((%2 i T 8:131-) * Z z? — x? (x ow; 833]-)
i=1 t m>i>j>1 ¢ J
Ly = —mn+ i (-4 —(n— m))acZi - 2:628—2
— o; * 0x?
z? + 2 0 0
-2 Z - (xj x; ) ,
mos1 Li T T 0z Oz;

Proposition 7. The operator L' acts on the (unnormalised) orthog-
onal system {ir} as the Jacobi operator

LY = Aptbp_1 + Bry, + Cribgy1,
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where

(64) A, = 4k*+ (4(m —2) +2(n — m))k?
+((m? — 4m + 4) + (n — m)(m — 2))k?,
s n+m mn
By, = -2k — 5 k—T,
1

Ck = Z

Proof. 1t follows from the above lemma that the operator is a Jacobi
operator. In order to identify the coefficients Ay, By, and C, we eval-
uate the polynomials at points (z,0) := (x1,0,...,0). Then we have

0 0?
T s L ()
1

= (24 8k +2k(2k — 1)) (2k)!1 22+ 2
4k% + 6k + 2
T 2k+2)(2k+1) ¥r1((21,0))

= ¢k+1(($1,0));

whence Cj, = 1.

9 Ie]
. . . Tide; ~%ibay
We now investigate the action of the operators —4——= that occur

i

in £_ and in £y. For ¢ and j fixed, we write the symmetric polynomial
1y, as a sum (suppressing here the indices &, 7 and j in order to increase
readability)

Yy = Z De.a(T) (x?“x?d + xfdxic),
¢>d>0

where the p. 4 are symmetric polynomials in the variables other than
z; and z;. The operator then acts on the second factor of each term,
and

a9 a
371'6— —xj—
T; ox;
12 - J ($$cl‘2-d+$2d$2-c)
J t )

e = ) ) 25

2
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Evaluating the right hand side at (x1,0) (whence z; = 0) yields zero
unless d = 0, in which case we get 20:16;(671). Therefore,

L (- ai) () ((21,0)

.’E—.’E

= 3 a1, 0)) 262 (21,0))

We now consider two separate cases.
(1) If j = 1, then evaluating the polynomial p.o at a point (z,0)
yields zero unless it is a constant polynomial, i.e., unless ¢ = k.
In this case, pxo = (2k)!.

(2) If j # 1, then evaluating pc,02cx§(c_1) at (x1,0) gives zero unless
¢ =1, in which case we get the value

L)Y (2(k — 1))121522

2p1,0(1,0) =2 ((k 1)
= 4k*(2(k — 1))+ 2,
Hence, we have

>t (g e ) 0(@00)

x
m>i>j>1 "t J

= (m — 1)2k(2k)1z%~2 + ( m; 1 > AK*(2(k — 1))!a252,

From this, we conclude that

L ((21,0))
= 2 ((m — 1)2k(2k)122 2 4 ( m2 L > 4k2(2(k 1)! 2“) xk2

+ (2k(2k — 1)(2k)! + (m — 1)4k*(2(k — 1))!) =7
+ ((n — m)2k(2k)! + 4(m — 1)(n — m)k*(2(k — 1))! ) x2k—2
+(4(m? — 4m + 4) + 4(n — m)(m — 2))(2(k — 1))122*2,

and hence

Ay = 4k*+ (4(m —2) +2(n — m))k?
+((m?* — 4m +4) + (n — m)(m — 2))k>.
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Similarly, we see that
Lovr((21,0)) = (—mn+ (—(n —m) — 4)2k — 4k(2k — 1))(2k) !z
—2(m — 1)2k(2k)!z2*
= (=8k*>+ (—4(m — 1) — 2(n — m) — )k — mn)y((x1,0)),
and hence the value of Bj. O
Theorem 8. The Hilbert space 74" is isometrically isomorphic to the
Hilbert space L?(3, 1), where

— 1 —
R R

z:«mmnma%— + <0},

and [ 1s the measure defined by

(65) /fdu——/ ‘ (a+iz)l b(;;;;c) (C+m)2f(:c)da:+

F(a+c)T(c+b)I'(b—c)'(a—c) " (2¢)j(c+1)j(c+b)j(c+a), i
I(—20) 2; @5l —b+De—atn), Y

x f(=(c+3)?),
where the constants a,b, and c are given by
m—1 n—m

66 =
(66) a 5T
1 n—m
b = =
2+ 4
. = l_n—m
2 4

Under the isomorphism, the operator L' corresponds to the multipli-
cation operator f — —(a® + z?)f.

Proof. We recall the continuous dual Hahn polynomials, Si(2?; a, b, c),
(cf. [16]) defined by

2. B . o
(67) Sk(z*;a,b,c) -, Fg( k,a+ix,a —ix |1>

(a+b)r(a+c)p a+ba+c
Here, (-) denotes the Pochhammer symbol defined as
(t)o = 1,

e = tt+1)---(t+k—1), ke N,
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Suppressing the parameters and denoting the left hand side above by
Sy (x?), these polynomials satisfy the recurrence relation

(68)—(a? + xQ)S’k(xQ) = A;cgk_l(acQ) + B,'Cgk(acQ) + C]Icgk+1(x2),

where the recursion constants A}, By, and C}, are given by

(69) A, = k(k+b+c—1),
(70) C, = (k+a+b)(k+a+c),
(71) B, = —(A,+C).

Under a renormalisation of the form
Si(2?, a,b,¢) = apSk(2?, a, b, ¢) = Si(2?, a,b,c)?,

where «y is some sequence of complex numbers, the corresponding
polynomials S%; will also satisfy a recurrence relation of the type in
(68), with constants, A}, By, Cf, given by

72 A = LIyl
( ) k Qo1 k>
(73) Bl(cl = Bk’
(74) ce =
(07N

From this we can see that the product A} ,C; = Ag ,Cy is invariant.

Consider now the continuous dual Hahn polynomials with Si(z?; a, b, c),
with the parameters a, b, ¢ from (66). These polynomials satisfy the
orthogonality relation (cf. [16])

j;/m‘na+mﬂﬂwwmr@+am2
27 ['(2ix)
F(a+c¢)T'(c+b)I'(b—c)l'(a—c)
* I'(—2¢)
(20)j(c+1)j(c+b)ilct+a);, .\
X2 et emat D), )

Sp(x?;a,b, ¢)S)(z% a,b, c)dx

JEN
c+3<0

XSk(_(C + j)2; a, ba C)Sl(_(c + j)Q; a, ba C)
(75) =T(k+a+bT(k+a+ )T (k + b+ )kl

By a straightforward computation one sees that the corresponding
constants A, By, and C}, are related to the Jacobi constants Ay, By,
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and Cy in (65) by
Ap1Cr = A Ch,
Bk == B]IC

We can thus use (74) to define a sequence «y, recursively in such a way
that the resulting polynomials Sy satisfy the recurrence relation

(76)—(a® + 22) S (2%) = ApS2 |(2?) + BpSe(2?) + C’kS',?H(x?)

with the same Jacobi constants as the operator 4L'. More precisely,
we set

M e (@) "
(78) Qg1 = i (k + %) (k + g) - Q-

Then oy, = (D(2)I(2)) Y2 4k (%)k (%)k, and hence, by (75), we have
Gap2, — g2k (L1)2 (@) (E)

(79) 15215 = *wy(5) (5),

(80) = [lenllt.

Therefore, the operator Ty : 4" — L*(X, du) defined by

(81) Toyr = 5S¢

is a unitary operator which diagonalises the restriction of the operator

L' to HE. 0

Theorem 9. For each x € X3, there exists a Hilbert space S, and an
irreducible unitary spherical representation, w,, of H on €, such that

(1) If v, € £, is the canonical spherical vector, then there is an
isometric embedding of Hilbert spaces L*(X, p) C [, A du(z)
given by

f —> Sf,

where s¢(z) = f(z)v,.
(2) The operator Ty extends uniquely to an H-intertwining unitary
operator

8 T~ ([ maduto), [ Hudn(o))
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Proof. The Banach algebra L'(H) equipped with convolution as mul-
tiplication carries the structure of a Banach *-algebra when the in-
volution * is defined as f*(h) = f (h~1). The representation m; of H
induces a representation of L'(H) by

(83) / F By (i

If L}(H)# denotes the subalgebra of left and right L-invariant L!-
functions, the closed C*-algebra generated by m(L'(H)*) and the
identity operator is a commutative C*-algebra. Moreover, the Casimir
operator 71 (C) commutes with all the operators 7, (f) for f € L'(H)*.
Hence, (by [1],Vol. I, Thm 1, p. 77), the diagonalisation of the Casimir
operator yields a simultaneous diagonalisation of the whole commuta-
tive algebra m (L'(H)*).

For f € L'(H)#, we let the function f : ¥ — C be the multiplier
corresponding to the operator Tmry(f)T~ : L*(3, p) — L*(X, ). For
each x € X, we let A\, denote the multiplicative functional

(84) Ao(f) = f(2),
which clearly is bounded almost everywhere with respect to pu. The
equality

(2 () 20, 01 = / No(f)dp(a)

>
holds for f € LY(H)#, i.e., the positive functional

(85) Qo(f) := (m1(f)wo, o)1, f € L' (H)*

is expressed as an integral of characters.

By [28] (Thm. 10) there exists a direct integral decomposition into
unitary spherical irreducible representations of the form (82), and it
expresses the functional ®; as an integral of characters against the
corresponding measure. This measure is supported on the characters
given by positive definite spherical functions. By [25] (Thm. 11.32),
such an integral expression for bounded positive functionals is unique,
and hence every character A, can be expressed by a positive definite
spherical function ¢, as

f= /H F(1)ba(h)dh

The rest now follows from the proof of Thm. 10 in [28].
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5. A SUBREPRESENTATION OF T |g

Recall that the boundary 0% is the disjoint union of m G-orbits.
More specifically, for j = 1,...,m, let e; denote the n X m matrix
with 1 at position (7, j) and all other entries zero. Then

02 =|JGler+-- +e,)
r=1

and the inclusion
G(€1+"'+€7«+1) g G(€1+"'+€7«)

holds for r = 1,...,m — 1. The Shilov boundary is the G-orbit of the
rank m partial isometry e; + - - - + e,,. It is also the K-orbit of this
element. We consider now the "real part", Y, of the Shilov boundary,
ie.,

(86) Y := 8N Mun(R).

Then Y is the homogeneous space H/P,, where P, is the maximal
parabolic subgroup defined by the one dimensional subalgebra
ap =R(E, +---+ Ep)

of a (cf. (28)). We let Py = MyAyN, be the Langlands decomposition.
Then Y can also be described as a homogeneous space Y = L/LN M.
Consider the one dimensional representation with character

(87) [ |det Ady i, (D]
of L N My. The induced representation Ind},, (| det Ad&[lmmob is re-

alised on the space of sections of the density bundle of Y = L/LN M.
The representation (87) is in fact trivial, and this allows us to define
an L-invariant section, w, by

(88) w(l(L N MO)) = le(LmMO)w(),

where wy # 0 € D(Teznnry)) is arbitrary, where D(T, 1)) denotes
the vector space of densities on T,1nr,)- The section w then corre-
sponds to a constant function F,, : L — C. In the usual way, we
will sometimes identify w with the measure it defines by integration
against continuous functions. We then use measure theoretic notation
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and write [, ¢ dw for [, pw. Moreover, we choose wy in (88) so that
this measure is normalised.

Using the identification [/l N my =~ h/po, the representation (87)
extends to the representation Jy of py given by

(89) 50(7710&0710) = |det(Adh/p0 (m0a0n0)71|.

Clearly, 8o (moaong) = €*1°8%) where py denotes the half sum of the
restricted roots. The action of H as pullbacks (actually, the inverse
mapping composed with pullback) on densities is equivalent to the left
action defined by the representation Indllll0 (0g). For the extension of
the function F,, to a Py equivariant function H — C (which we still
denote by F,), we then have

(90) Fw(komoa()no) = 6_2p0(10ga0)Fw(1€0) = G_ZPO(IOgGO)Fw(G).

From this, it follows that

(91) R*w(l(L N M) = e 2pollos Aokl (1(L N My)).

The action of H on Y can either be described on the coset space H/ P,
in terms of the Langlands decomposition for P, or in terms of the
geometric action on the boundary of & defined by the Harish-Chandra
decomposition. The next proposition expresses the transformation of

w under H in terms of the latter description.

Lemma 10. The density w transforms under the action of H as

n—1

(92) W w(v) = Jy(v) G w(v).

Proof. The idea of the proof is to use the (non-unique) factorisation
H = LMyAyNy of H. We prove that the group N, fixes the reference
point e; + - - -+ e, and acts with Jacobian equal to one on the tangent
space at e; + - - - + e,,, and the group elements in M, have Jacobian
equal to one at e; + - - - + e,,. By the chain rule for differentiation, it
then suffices to prove the statement for all group elements in A,.

In the Langlands decomposition p i, = m @ a @ n for the minimal
parabolic subgroup, the subalgebra n is generated by the restricted
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root spaces

—q 0 g .
B b = L= [ 000 ) omab,
m>j>i>1 —q 0 ¢
u—u 0 utut
@ beropy = (Xu= 0 0 0 |u is upper triang.
m>j>i>1 v+ut 0 ul—u
m 0 Zt 0
@ hE; = X,=| —2 0 =z ;
j=1 0 280

where the matrices are written in blocks in such a way that the block-
rows are of height m, n—m, and m respectively, and the block-columns
are of width m,n — m, and m respectively.

In the Langlands decomposition my & ag @ ng, the centraliser, my of
ao is the direct sum

my =meo @ [JE;—E;,

m>j>i>1

and

m

(93) ny = @ be:tn; ® @ b

m>j>i>1 j=1

The matrices X, and X, commute, so in order to prove that the ele-
ments in Ny have Jacobian equal to one at e; + - - - + e,,, it suffices to
consider elements of the form

1-¢ 0 ¢
exp X, = 0 1 0 ,
—q 0 1+g¢q
2tz t t
expX, = —z 1 z
ZtZ ZtZ

separately.

b
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We have
1—q O q 1 01
exp X, exp(e; +---+e,) = 0 1 0 010
—q 0 1+4g¢ 0 01
1—qg 0 1
= 0 10
—-q 01
) ) .. A B C
If we write this matrix in the block form c D) then the K™-

component in the Harish-Chandra decomposition is given by

(A—BD—lc 0 )

0 D )~ nim
and hence
(94) JeXqu(€1+"‘+€m) =1.
Next, we consider the action of exp X,. We have
t
_ % t 1
expX,exp(e; + -+ +ey) = -z 10
2zt
2
Here, the K®-component is given by
1 00
KCexp X,exple; +---+en)=| -2 1 0
0 01

The complex differential of exp X, at e; + - - - + e, is then the linear
mapping

(95) deXsz(€1+"'+em)Y: ( i (1) >Yv

where we have identified the tangent spaces with p™ = M,,,(C).
Clearly, the determinant of this mapping is

(96) det(i ?)m:L

Consider now the subgroup M. Its Lie algebra my is reductive with
Cartan involution given by the restriction of # and the corresponding
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decomposition is
my :moﬂ[®m0ﬂq.

The abelian subalgebra a is included in mg N ¢, and therefore (cf. [10],
Prop. 7.29)

(97) moNg= U Ad(1)a.
leMoNL

We now investigate the Jacobians of arbitrary group elements in A.
FOI' H = tlEl + - +tmEm,

A(cosht) 0 Af(sinht)
expH = 0 1 0 ,
A(sinh¢) 0 A(cosht)

where A(cosht) denotes the m x m diagonal matrix with entries
coshty,...,cosht,,, and the other blocks are analogously defined. Then

exp(ti By + - -+t En) expler + - - + )
A(cosht) 0 A(cosht + sinht)

= 0 1 0
A(sinht) 0 A(cosht+ sinht)

The K®-component is

K (exp(t1Fy + -+ tmBEp) expler + - -+ €))
Alef) 0 1
- o 1 0 |,
0 0 A()

so the differential d(exp(t1E1 + -+ + tmEn))(e1 + -+ + ep) is the

mapping

Vi (AN

Yy Y2A(e) )7
where Y] is the upper m x m block of the n x m matrix in the tangent
space. Counting the multiplicities of the eigenvalues e %, we see that
(98) Jexp(t1E1+---+tmEm)(el RS em) — e~ (tm) Tt

If we write a as the orthogonal sum a = ay @ (ag)* (with respect to
the Killing form), then (ag) consists of those t;E; + -+ + t,, B, in a
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for which 377", ¢; = 0. From the identities (94), (96), (97), and (98)
we can thus conclude that

(99) Jler +- - +em) = Jagmyler + - +em).
On the other hand, by (93),
(100) 200(t(Ey + -+ En))))
= QWIS + m(n —m)t =m(n — 1)t,
SO
(101) =200 (H(B1+-++Enm))

n—1

= (Jexp(t(Br+-tEm)) (€1 + -+ €m) ) n¥m.

0

In what follows, we will define a Hilbert space of functions on the
manifold Y. Hilbert spaces of a similar kind were also considered by
Neretin and Olshanski in [19]. One difference is that their spaces were
not defined using a limit procedure (see the next definition below).

We begin by introducing some notation. For a continuous function,
f,onY and r € (0,1), we define the function F, : Y — C by

(102) F.(u) = /Y f()det(I, — ruv®) tdw(v).

We construct the Hilbert space by requiring that the following space
of functions be dense.

Definition 11. Let %, denote the set of all continuous functions
f Y — C such that the limit function

F(u) := 11_{1% F,(u)
exists in the supremum norm.

On %, we define a sesquilinear form ( , )g by

(103) (f. 9)e = /Y £ (0) Gl ().

By the Dominated Convergence Theorem, we have

108 [ Gl
:li_r)x%/yf(u)/yﬁdet(ln—ruvt)_ldw(v)dw(u),
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and hence the form ( , )¢, is positive semidefinite. Let N denote
the space of functions of norm zero, i.e.,
(105) N ={f € @[}, [ =0}

Then the quotient space /N together with the induced sesquilinear
form, ( , ), is a pre-Hilbert space. We define € to be the Hilbert

—~—

space completion of %y with respect to ( , )g,. We denote the inner
product on € by {( , )¢.

Proposition 12. The action 7 of H on %y given by
(106) T(h)f(n) == Jo () F(h '),

where = n”;i,

descends to a unitary representation of H on €.

Proof. Tt suffices to prove that the dense subspace %y/N of € is H-
invariant and that the action is unitary on %,/N . For this, it clearly
suffices to prove that the space %, is H-invariant, and that H preserves
the sesquilinear form ( , )¢, since then the subspace N is also H-
invariant.

Consider first the mapping f +— F' in Definition 11. We write K;
for the reproducing kernel. For h € H, we then have

/Y P (h) f (0) K (ru, v)deo(v) = /Y Tn(h )P F () K (s, 0)dw (o)

- / Jn(') Pt aEw f (o) K (rug, ' )dw(v'),
Y

by the transformation property for the measure w. By the transfor-
mation rule for the reproducing kernel K;, we have

/ T(0') P F (o) Ky (run, b e (o)
Y

:/ Ju(h ) "mm f () K (B ru, o) dw(v').
Y
Therefore,

lim [ 7(h)f(v) Ky (ru,v)dw(v) = Jy(h~ u) wim F(h ),

r—1 v

where the convergence is uniform in u, so 6; is H-invariant.
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Next, take f,g € €. Then, (7(h)f,7(h)g)%, is given by
W ro)a = [ W0 0 I ) =GR

— [ 1) G d(w)
(s

Y
) g)%”o,

where the second equality follows from the transformation property of
w. U

The next proposition gives a sufficient condition for the Hilbert
space % to be nonzero.

Proposition 13. The (equivalence class modulo N of the) constant
function 1 belongs to the pre-Hilbert space €3/ N if and only if n—m >
2.

Proof. Recall that the reproducing kernel has a series expansion
o
det(l, — zw*)™! = Zk!Kk(z,w),
k=0
where Ki(z,w) is the reproducing kernel with respect to the Fock-
Fischer norm for the K-type indexed by k. The functions

zH/ng(z,v)dw
Y

are then L-invariant vectors in the K-type 2k and hence differ from
the L-invariants v, by some constants depending on k. We determine
these by computing the integrals for a suitable choice of z.

Before we begin with the computations, consider the fibration

p:Y = 8" p(v) = v(er).

For u € S" !, the fibre p~!(u) can be identified with the set of all rank
m — 1 partial isometries from R™ to (Ru)t. Moreover, p is equivariant
with respect to the actions of O(n) on Y and S"'. Hence the equality

107 do = opd
(107 [ gao=[ topas,

where o denotes the normalised rotation invariant measure on S™~!,
holds for all f € C(S™71).
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Choose now z = Aej, where 0 < A < 1. Since zv! is a matrix of
rank one, det(l, — zv*)™' = (1 — tr(zv?))~'. Hence

/Y(l —tr(zv')) tdw = /Y(l — Avy) tdw = /Y(l — Ap(v)1) " tdw.
By (107), we have

/}/(1 — Ap(v)1) Ldw :/ (1 — Aur) " Ldo ().

Sn—1
Moreover,
/ (1= duy) ‘do(u) = Z)\j/ Wdo(u).
Sn—1 j:O Sn—1

The integrands on the right hand side depend only on the first coor-
dinate, and hence the integrals can be written as integrals over the
open interval (—1,1) in R (cf. [24] 1.4.4.). In fact,

j _ I'(n/2) ' 2\(n—2)/2—1,,j
..., o) = e Ty |0

This integral is zero for odd j, and for j = 2k, we have

1 2 2 r( 2k+ )
Therefore,
o0 m)T 2k+1
/ (1= Auy) Hdo(u) = Z (%M; A2k
Sn—l 0 B}

From this, it follows that for an arbitrary z € &, we have the expansion

(108) d t(I, — 20") " dw(v)

S

Since the functions v, are L-invariant, they are constant on the set
{rulu € Y,0 < r < 1}. This value equals

(109) Ui (ru) = 1% (u) = r24kg] (%) .

k

S~

r(%)n%“)
JT(2k + 1)

1ﬁk(z)
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Suppose now that |r — 7’| < e. By (108) and (109),

/YKl(ruvdw(v /Klruv (v)

and hence we have the estimate

/Klruvdw /Klruvdw)_

F F 2k+1
> B ()
Applying Sterling’s formula to the kth term on the right hand side
yields

(110)

(111)

INCOINC —m
(22k) ( 2 ) 4k]€' (@) :O( -5 )

)F(%)F(Qk +1) 27k

Hence, the sum in (110) converges if and only if n—m > 2. In this case,

the corresponding net { fy Ky (r, v)dw}r is Cauchy in the supremum
norm, and hence converges uniformly. g

rc

2

Lemma 14. Consider the representation 7 in (106). On the space
of continuous functions on Y, it is equivalent to the representation
Ind3(1 ® (i\ + p) ® 1), where P is the minimal parabolic subgroup
defined by the mazimal abelian subspace a C p, and X € (a)* is
defined as

(112) @l = A,
(113) —(@A+ D)y = 0.

In fact, when the continuous functions on Y are identified with right
LN My-invariant functions on L, we can extend them to functions on
H in such a way that the two representations are equal in this setting.

Proof. By (101), we can rewrite the action of H in (106) as
2(n—

(114) r(h)f(z) = e wt Polos Ala™D) p (o5~ 1)),
where

g ' =r(g7'2)mo(g ) Ag (g7 2)no (g7 ) € LMyAyNy.
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We now let A € (a©)* be defined by the requirements (112) and (113).
By (113), —(¢XA + p) has to annihilate all the restricted root spaces
be:—p;, and hence be of the form ¢(Ef + - - -+ Ey,) for some constant
c. By (100) it follows that ¢ = —m(n — 2).
Consider now the parabolically induced representation

IndZ (1 ® exp(iX + p) ® 1)

acting on on continuous functions on H. By definition, this repre-
sentation is defined on the space of continuous functions f : H — C
having the P-equivariant property

(115) f(zman) = e 1O +P)loga) £ (g,
The action of H is given by
(116) Fils e @nAGBTD) £ (40(h7 1)),

On the other hand, the restriction of the representation 7 to the
space of continuous functions on Y coincides with the H-action defined
by the parabolically induced representation Indg0 (exp). Since P C P,
and

(117) e~ (AFp)log A(z)) — o—(ix+p)(log Ao(z))

it follows that

(118) () f(z) = e~ (AA0oBART) £ (4~ 1y),

where f is the extension of a continuous function on Y to a Fp-
equivariant function on H. This finishes the proof. U

Proposition 15. The operator T : €y — O(2) defined by

Tf(z) = /Y F(v) det (I, — 201~ duw(v)

18 H-equivariant.
Proof. We have

T(r(h)f)(z) = /YJh(h_lv)ﬂf(h_lv)Kl(z,v)dw
_ /Y Tn(s)P 5% £(5) Ky (2, hs)dw

= Ju(h o) /Y Tn(s)P T RE i f(5) Ky (b2, s)dw
= m(h)(Tf)(2).
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0

Corollary 16. The function T'1 is a joint eigenfunction for all oper-
ators m(Z), Z € Z(U(H%)). In particular, it is an eigenfunction for
the Casimir operator, m (C), with eigenvalue —@.

Proof. By Lemma 14, we can identify the extension of constant func-
tion 1 on Y to a function on H with the Harish-Chandra e-function
ex : H — C given by

(119) ex(h) = e {OFP)log Alh)

Moreover, the representation Indj: (1®exp(iA+p)®1) has infinitesimal
character 1A+ p (cf. [10], Ch. VIII). The value of the Casimir element

is —(iA + p)(C) = —((\A) + (p, p)) = =™2=2) (¢f. [11], Ch. V). O

4

Proposition 17. The function (T1)(z) = [, det(I, — zv") " dw(v)
belongs to F,.

Proof. We rewrite the series expansion in (108) using the orthonormal
basis {¢y}, i.e.,

(120) /YKl(z, v)dw(v) = Zakgak(z),

1/2 1/2

LT R(S),, (3) :

h =22 272k 2 22k By Sterling’s f 1

where oy Ok TT) y Sterling’s formula

(121) ol = Ok~ (=m)/2y,

and hence the series ), o2 converges if and only if n —m > 2. O

The operator 7' maps the H-span (the set of all finite linear com-
binations ¢;7(h1)1 + - -+ en7(h1)1, h; € H,¢c; € C) of the function 1
into .7#. We introduce the temporary notation H - 1 to denote this
subspace. Moreover, we let Ny := N NH - 1.

Proposition 18. The equality

(122) <Tfa Tf>1 = <fa f>(€0
holds for f € H - 1.
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Proof. For f € H-1 and r € (0,1), consider the function 7 f(r-). We
have

(123) Tf(rz) = /Yf(v)Kl(rz,v)dw(v)
(124) = /Yf(v)Kl(z,rv)dw(v).

The square of the s -norm is then given by

ITp(r)|? = / / FOTME (7€, rn)dw(C)deo(n).

These norms are uniformly bounded in 7, and hence there is a conver-
gent sequence {7 f(rg-)}x with respect to the 4 -norm. Since point
evaluation functionals are continuous, we also have pointwise conver-
gence, and hence this limit function is T'f. Therefore,

ITAIF = Jim | Tf ()7

— lim / / F(O T K (r2C, m)deo(€) des ()

r—1

= |Ifll%-
U

We let T denote the restriction of the operator 7' to the subspace
H - 1. Then, we have the following corollary.

Corollary 19. For the operator Ty : H - 1 — J4,
(125) ker T1 = NH-l-

The operator T} then descends to an operator U; : H - 1/Ng.1 —
J4. Now let H denote the Hilbert space completion of the space
H - 1/Ng.1. We keep the letter 7 to denote the representation of H
of this space (in reality, the representation we mean is derived from
T by first restricting, then descending to a quotient, and, finally, by
extending uniquely to a Hilbert space completion).

Proposition 20. The representation 7 of H on H is irreducible.

Proof. The representation 7 is H-cyclic with a spherical (L-invariant)
vector. Hence, there exists a unitary, H-equivariant direct integral
decomposition

(126) S H - / Hadp(N),
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where A is a subset of the bounded spherical functions (or rather, the
functionals on a that parametrise them), y is some measure on A, and
‘H, is the canonical spherical unitary representation corresponding to
the spherical function ¢,. For each A, we let v) denote the canonical
spherical vector in H,.

Suppose now that 7 is not irreducible, i.e., the set A is not a single-
ton set. Then, we can choose two disjoint open subsets €2,y of A.
We define vectors s; and s, in the Hilbert space f A Hadp by

81()\) _ { Uy, if\ € Ql :

03, otherwise
] wy, if A € Q9
s2(A) = { 0y, otherwise

The vectors S~'s; and S~'s, are then linearly independent spherical
vectors in ‘H. But, clearly, the only spherical vectors in H are the
(cosets modulo NVg.; of the) constant functions; a contradiction. [

We are now ready to state a subrepresentation theorem. The proof
follows from Prop. 18, the above corollary, and Cor. 16.

Theorem 21. The operator U, can be extended to an isometric H-
intertwining operator

(127) U:H— 4.

Its image is isomorphic to the spherical unitary representation corre-
sponding to the discrete point {2 (% — ";m)} i the spectral decompo-
sition for the Casimir operator m(C).
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QUATERNIONIC DISCRETE SERIES FOR Sp(1,1)

HENRIK SEPPANEN

ABSTRACT. In this paper we study the analytic realisation of
the discrete series representations for the group G = Sp(1,1)
as a subspace of the space of square integrable sections in a
homogeneous vector bundle over the symmetric space G/K :=
Sp(1,1)/(Sp(1) x Sp(1)). We use the Szegd map to give expres-
sions for the restrictions of the K-types occurring in the represen-
tation spaces to the submanifold AK/K.

1. INTRODUCTION

In [2|, Gross and Wallach considered representations of simple Lie
groups G with maximal compact subgroup K such that the associated
symmetric space G/ K has a G-equivariant quaternionic structure (cf.
[11]). This amounts to the group K containing a normal subgroup
isomorphic to SU(2). In fact, there is an isomorphism K = SU(2)x M
for a subgroup M C K, and by setting L := U(1) x M, the associated
homogeneous space G/L is fibred over G/K with fibres diffeomorphic
to P!(C). The quaternionic discrete series representations are then
realised on the Dolbeault cohomology groups H'(G/L, L), where £ —
G/L is a holomorphic line bundle. In this model they are able to
classify all the K-types occurring in each of the obtained discrete
series representations. Moreover, they consider the continuation of
the discrete series and characterise the unitarisability of the underlying
(g, K)-modules.

In this paper we consider another model of the quaternionic discrete
series. If 7 is a quaternionic discrete series representation realised on
the cohomology group H'(G/L, L), and 7 is its minimal K-type, then
the Schmid D-operator acts on the sections of the homogeneous vec-
tor bundle G x g V; — G/K where V, is some vector space on which
the K-type is unitarily realised. The Hilbert space kerD N L?(G,7)

Key words and phrases. Lie groups, discrete series representation, quaternionic
symmetric space, Szegd map.
1
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then furnishes another realisation of the representation 7. We con-
sider the special case when G = Sp(1,1). In this case the symmetric
space G/K can be embedded into the bounded symmetric domain
SU(2,2)/S(U(2) xU(2)) consisting of complex 2 x 2-matrices of norm
less than one. The restriction of the Harish-Chandra embedding to
G/K then yields a global trivialisation of the vector bundle G x i V.
In this model we compute the restrictions to the submanifold A-0 ! of
the highest weight vectors for the occurring K-types. These functions
turn out to be fibrewise highest weight vectors with a hypergeometric
function as a coefficient. Similar functions have been studied by Cas-
tro and Griinbaum in [1]. Hypergeometric functions occur frequently
in representation theory, not only for Lie groups. For example, in [8],
they play a role in the context of Hecke algebras.

We compute the K-types by using the Szegé map defined by Knapp
and Wallach in [6] which exhibits any discrete series representation as
a quotient of a nonunitary principal series representations. The K-
types are determined on the level of the principal series representation,
and then the Szeg6é map is applied to compute the above mentioned
restrictions.

The paper is organised as follows. In section 2 we explicitly state
some results from the structure theory of the Lie group Sp(1,1) that
will be needed. In section 3 we describe the models for the discrete
series in the general context of induced representations, and also give
an explicit global trivialisation. Section 4 describes the Szegd map by
Knapp and Wallach, and we also compute K-types on the level of a
nonunitary principal series representation. In section 5 we compute
the images of the K-types under the Szegd map and trivialise them
to yield vector valued functions. The main theorem of this paper is
Theorem 8 of this section.

2. PRELIMINARIES

2.1. The quaternion algebra. The quaternion algebra, H, is a four-
dimensional associative algebra over R with generators i, j, k satisfying

14 is associated with a particular Iwasawa decomposition G = NAK.
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the relations
2= =k2=—1
1j =k,jk =14,ki = j and
ji = —ij,1k = —ki, kj = —jk.
Moreover, H is equipped with an involution, %, given by
(a+bi+cj+dk) =a—bi—cj—dk,a,b,c,deR

The Euclidean norm on the vector space R* ~ H can be expressed in
terms of this involution by

[(a,b,c,d)|* = a® +b° +c* +d* = (a+bi+cj+dk)*(a+bi+cj+dk).

It follows immediately that the quaternions of norm one, Sp(1), form a
group. The algebra H can be embedded as a subalgebra of the algebra,
M,(C), of 2 x 2 complex matrices by

(1) v H — My(C),
where

) ) a+bi c+di
(2) L(a-i-bl-f-C]-l-dk):(_(c_di) a—bi)'

In particular, the generators 1,1, j, k are embedded as

= (1) 0=(4 %)= g )um=(2 )

The embedding ¢ also satisfies the relation

e a=bi —e—di\ _( atbi ctdi\
(atbitcj+dk)*) = ( —(—c+di) a+bi ) N ( —(c—di) a—bi ) ’

50 ¢ is a homomorphism of involutive algebras. We observe that, letting
z=a+bi,w=c+di,

L(H):{< _Zw ;’>|z,wec}

and moreover, we have the identity

a2+b2+02+d2=|Z|2+|w|2=det< _Zw ;’)
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In particular,

sp) = { (55 )1k 4wk =1f = sU@),

2.2. The group Sp(1,1). The real vector space H? = R* is also
equipped with the structure of an H-module by

(3) (Od, (hl, hg)) — (Olhl, O!hg), «, hl, hy € H.

If we identify H? with the set of 2 x 1 matrices over H, there is a
natural H-linear action of the matrix group GL(2,H) on H? given by

g (b b} () (80,

Consider the real vector space H? equipped with the nondegenerate
indefinite Hermitian form

(5) ()1t ((hay ho), (R, By)) > e (BY)™ = ho ()™
Recall that the group Sp(1,1) is defined as
(6) Sp(la 1) = {g € GL(Q,H)th, ghl>1,1 = <h’ h,>1,1}7

where h = (hy, hy), h' := (h{, h}). The condition that the form (, ),
be preserved can be reformulated as

(7) 9" Jg=1J,
. (a b\ _[a ¢ (1 0
where ¢g* = c d = o ) and J = 0 -1}

The embedding (1) induces an embedding (which we also denote by
the same symbol)

(8) L My(H) — M,(C)
by
o (19)-(0 )

This embedding is a homomorphism of algebras with involution. Ap-
plying it to the identity (7) reveals that the image of Sp(1,1) is a
subgroup of the group

(10) SU(2,2) = {gEM4(C)|g*jg=j,detg:1},

= I, 0
e (B,
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2.3. The symmetric space B;(H) = Sp(1,1)/(Sp(1) x Sp(1)). Let
B;(H) denote the unit ball

(11) B,(H) :={h € H| |h| < 1}

in H. The group G := Sp(1,1) acts transitively on B;(H) by the
fractional linear action

(12) g(h) := (ah +b)(ch +d)",

a b

The isotropic subgroup for the origin is

(13) K = G0:{< 8 2) EG}%’Sp(l)xSp(l),
and hence we have the description
(14) Bi(H) 2 G/K

of B;(H) as a homogeneous space. Moreover, from eq. (7) it fol-
lows immediately that the group G is invariant under the the Cartan
involution

(15) 0(g) == (9"

and hence the space G/K is equipped with the family of reflections
{UgK}gKeG/K given by

(16) o (zK) = g0(g7'2)K

which furnish G/K with the structure of a Riemannian symmetric
space of the noncompact type. In particular, for any h € B (H), there
is a unique geodesic joining 0 and h. We let ¢}, denote the reflection in
the midpoint, my, of this geodesic. The isometry ¢, € G is uniquely
characterised by the properties

(17) en(mn) = h,
(18) den(mp) = —ldg,, (5@
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We let Sp(1); and Sp(1), denote the “upper” and “lower” subgroups

of K given by
0
Sp(1) = {(8 1)€K},

Sp(1), = {(é 2>6K}.

For k = ( 0 2) € K, we will write k = (a,d) := (ki, k2). The

group Sp(1); = SU(2) is then a normal subgroup of K. We will write
(19) n: K — K/Sp(l); = SU(2)

for the natural projection onto the quotient group.

The group K acts on the tangent space Ty(B1(H)) by the differen-
tials at 0 of the actions on B;(H). By the restriction to the subgroup
Sp(1); we have a representation of SU(2) on Ty(B;(H)). We can de-
fine an SU(2)-representation, uy, on the tangent space 1, (B;(H)) for
any h by the formula

(20) (D) 1= dign(0) o di(0) o digy (h)v,
v € Tp(B1(H)), 1 € Sp(1);.

The family {114} re s, ) of SU(2)-representations amounts to an action
of SU(2) as gauge transformations of the tangent bundle 7'(B;(H)).
It is, however, not invariant under the action of G as automorphisms
of the bundle. Indeed, if we define,for h € B;(H), g € G,

(21) Kgp i= go;(}l)gaph €K,
then
(22) pony(Ddg(h)v = dg(h) pn(k gy lkig 1),

where the element K,;,lllng’h belongs to the subgroup Sp(1); since it is
normalised by K. Hence the principal fibre bundle over B; (H) defined
by the family {us}hen, @ is G-equivariant, though not elementwise.
This shows that the symmetric space has a quaternionic structure
and is a quaternionic symmetric space in the sense defined by Wolf

(cf. [11]).



QUATERNIONIC DISCRETE SERIES FOR Sp(1,1) 7

2.4. Harish-Chandra realisation. We consider again the embed-
ding ¢ defined in eq. (8). If we set

G = SU(22),
K = S(UQ) xU©)
= {( ’6‘ ]Oj ) € SU(2,2)|A € U(2), D € U(2), det(A) det(D) = 1},

¢ induces an embedding of pairs (G, K) < (G', K') and hence descends
to an embedding

(23) G/K — G'/K'

of the corresponding symmetric spaces. We will write SU(2); and
SU(2), for the images ¢(Sp(1);) and ¢(Sp(1)3) respectively.

The Hermitian symmetric space G'/K' is by the Harish-Chandra
realisation holomorphically, and G-equivariantly, equivalent to the
bounded symmetric domain of type [

(24) G'/K'=2 9 :={Z e My(C)|I, — Z*Z > 0}.

The action of G’ on & is given by

(25) 9(Z) = (AZ + B)(CZ + D)%,

if g = é IB; is a block matrix with blocks of size 2 x 2. The

symmetric space G/K is thus embedded into & as the subset
D= {Ze My(C)|I, — Z°Z > 0,7 = ( _Zw ;’ ) Zw € (C} :

and the action is given by

(26)¢(9)(¢(h) = (e(a)e(h) + 1(b)) (u(c)e(h) + o(d)) " = u(g(h)),

where g(h) is the action defined in (12).

For any Z € &, the tangent space T%(2) is identified with the
complex vector space Ms(C) and the differentials at 0 of the K” actions
are given by

(27)dk(0)Z = AZD™Y, 7 € My(C), k = ( o) ) €K'
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2.5. Cartan subalgebra and root system. Recall the Cartan in-
volution @ on G (15). Its differential at the identity determines a
decomposition of g into the +1-eigenspaces € and p respectively,

(28) g=top,

where

t = {(%( 3)|X,Ye]I-]I,X*:—X,Y*:—Y,trX+trY:0},

(8 )

Let t C € denote the subalgebra (realised as complex matrices)

si 0 0 0
0 —s2 0 O

(29) =31 o o s o |Ister
0 0 0 —t

It has a basis { Hy, Hy}, where

iooo\
0 —i 00
00 00)
0000\
000 0
(31) H = 1004 0 |
000 —i)

Let g© be the complexification of g, and £¢ and p* denote the complex-
ifications of € and p respectively. The Cartan decomposition induces
the decomposition

(32) g“ =t"op".

The complexification t© C €€ is a compact Cartan subalgebra of g°.
Let A denote the set of roots, and for « € A, we let g* denote the
corresponding root space. Then, for each a € A either the inclusion
g® C €€ or the inclusion g* C p© holds. In the first case, we call
the root compact, and in the second case we call it non-compact.

Let A¢, and A, denote the set of compact roots and the set of non-
compact roots respectively. We order the roots by letting the ordered
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basis {—v/—1H;, —/—1H3} for the real vector space /—1t* define a

lexicographic ordering. We let A denote the set of positive compact

roots, and we let Aj denote the set of positive non-compact roots.
The roots are given by

(33) Ay = {+2v-1H;, £2v/—-1H,},
(34) Ay = {&V-1(H] + H;3), +V-1(H — H3)}.
In terms of quaternionic matrices, the corresponding root spaces are

i Fv/—1k O
(35) BﬂﬁHl*:C<j:F 0);

(36) Y+o/—TH; = 0 jT \/_k >

and

(
s - (5 1)(5 1)
(13)=(%3)

respectively.

According to the lexicographic ordering on v/—1t* determined by the
ordered basis {—v/—1H;,—+/—1H,}, the positive noncompact roots

are

(39) oy = —v—1H{ ++v—1H;,

(40) ay =—v—1H] —V/—1H],

and a; < ay. Moreover, oy + g = —24/—1H7, i.e., the sum is a root.
Hence {a;} is a maximal sequence of strongly orthogonal positive

noncompact roots. We let B(-,-) denote the Killing form on g. We
use it to identify g* with g* according to

(41) a(X):=B(X,H,),a€g", X € g".

Via this identification, the Killing form induces a bilinear form on g*
by

(38) 9+y—(H;-H}) ~ C

(42) (o, B) := B(H,, Hp).

For a € A, we select a root vector E, € g, in such a way that
2

(43) B(E,,E_,) =

(o, @)
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2.6. Iwasawa decomposition. Consider the maximal abelian sub-
space

(44) mzm@,uugz{<£ %)ueR}
of p. The Iwasawa decomposition of g with respect to a is given by
g=ndadt
The corresponding global decomposition is
G = NAK,

where, written as quaternionic matrices

N = eH ¢" =—q,,
{< g 1—q)‘q ! q}
cosht sinht
4 = {(sinht cosht)‘tER}'
Remark. One can just as well use an Iwasawa decomposition G =
KAN, the correpondence between these two decompositions being
(nak)™* = k7'a"'n"'. In the sequel will see that it is sometimes

convenient use this other decomposition as a means for finding the
components in our decomposition.

In the sequel we will need the explicit formulas for the NAK-
factorisation

(45) g9 =n(g)a(g)x(g)
of an element g € Sp(1,1).

Lemma 1. For g =

o

2 ), and loga(g) = t(Ea, + E_a,), €' and
k(g) are given by
(1 _ ‘bd_1|2)1/2

1 —bd|

K(g) = g(aacd2b>'

Proof. The proof is by straightforward computation. We prove only
the second statement.

et
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The identity

a b\ _ [(1+q —gq cosht sinht up 0
c d ) g 1l-—gq sinh¢ cosht 0 1w
is equivalent to
a b
c d
(cosht + g(cosht — sinht))u; (sinht + ¢(sinh¢ — cosh t))us
(sinht + g(cosht — sinht))u; (cosht + ¢(sinht — cosht))us

Hence

a—c = € ‘U

3. QUATERNIONIC DISCRETE SERIES REPRESENTATIONS

3.1. Generalities. The Cartan decomposition (28) decomposes g into
two invariant subspaces for the adjoint action of K. Moreover, we have
the isomorphism of K-representations

(46) Adge 2 Ad,.

We extend Ad, to a complex linear representation of K on the space

(8/6)° = p©.
Consider now the surjective mapping

(47) p:G— G/K,p(g) = gK.
The differential at the origin
(48) dp(e) : g — T.x(G/K)

intertwines the adjoint action of K on g with the differential action
on the tangent space T.x(G/K). The kernel of dp(e) is ¢ and as
K-representations we thus have the isomorphism

(49) Ad; = (dK (o))",

where the right hand side denotes the complex linear dual to the rep-
resentation given by the complexified actions of the tangent maps at
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the origin. Using the quotient mapping induced by (48) and the real-
isation of the differential action of K at the tangent space Ty(%), we
obtain the formula

(50) Ad;(k)Z = (A1) ZD".

Here Z € My(C) = T3 (2) = (To(D)%)*, and k = ( 61 107 € K
SU(2) x SU(2). The restriction, Ady[sy(z),, to the subgroup SU(2),

is then given by
(51) Ady|su), (k) Z = (A™HiZ.

If we let {E;;}, i, = 1,2 denote the standard basis for the complex
vector space (i.e., E;; has 1 at the position on the ith row and jth
column and zeros elsewhere), then clearly the subspace

(52) V := CEy; ® CEy 2 C?

spanned by the basis elements in the first column is SU(2);-invariant.
Likewise, the subspace spanned by the basis elements of the second
column is invariant. We now let 7 denote the representation given
by restricting the K-representation Ad;| su(2); to the subspace V', and
let 7, denote the kth symmetric tensor power of the representation 7.
Then clearly, the natural identification of 7, with a representation of
SU(2) is equivalent to the standard representation of SU(2) on the
space of polynomial functions p(z, w) on C? of homogeneous degree k,
i.e., we have

(63) T(lh, la)p(z, w) ==

p
where [; 1 = ( —ab g ) € SU(2). We let V;, denote the representa-

tion space for 7,. The (smoothly) induced representation Ind%(7;) is
then defined on the space

C2(G,m) = {f € C*(G,V;))If(g1™") = (D) f(g9) Vg € GVl € K},

i.e., on the space of smooth sections on the G-homogeneous vector
bundle

(54) V¥ - G/K =G xg V,, = G/K.
We fix the K-invariant inner product on (, ), on V;, given by

(55) {p, @)x = p(0)(q")(0),
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where p(0) is the differential operator defined by substituting a% for
z, and % for w in the polynomial function p(z, w), and

k k
(Z a; 2wk ) = Z a; 2wk ).
j=1 j=1
We use this inner product to define an Hermitian metric on V¥ by

(56) hz(u,v) == {(g V) zu, (g 1) 20k, u,v € Vi,

where Z = gK and (¢g7'); denotes the fibre map V& — V& =V
associated with ¢g~!. For a fixed choice, ¢, of G-invariant measure on
G/K we define L?>(Ind%(r;)) as the Hilbert space completion of the
space

(57) {5 e I'(G/K,V")| hz(s,s)du(Z) < oo} .

G/K

The tensor product representation 7, ® Ad(K)|,c decomposes into K-
types according to

(58) Tk ® Ad(K)|pC = Z mIBﬂ-ﬂ_k\/leik,

BEAy

where mg € {0,1}, and mg_; /=7p; is the irreducible representation of

K with highest weight 3 —k+/—1H7. Let 7, be the subrepresentation
of the tensor product given by

(59) o= Y MpTy_pyims
N

and let V.~ be the subspace of V, ® pC on which 7, operates. Let
P:V, ® ¢ — V. be the orthogonal projection. Define the space
C*(G, 7, ) in analogy with (54). We recall that the Schmid D operator
is a differential operator mapping the space C*°(G, 73,) into C*°(G, 7;,)
and is defined as

(60) Df(g) = 3" P(Xif(g) © X0,
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where {X;} is any orthonormal basis for p*, and X;f denotes left
invariant differentiation, i.e.,

d
Xflg) = @f(g exp(tX))|i=0, X € p,
Zf(g) = Xflg)+iY(g),Z=X +iY €p".

The subspace ker D N L?(Ind% (7)) is then invariant under the left
action of G’ and defines an irreducible representation of G belonging to
the quaternionic discrete series. We let H; denote this representation
space. By [2], it belongs to the discrete series for & > 1.

Remark. The model we use to describe the Hilbert space H; can be
used to realise any discrete series representation by induction from K
to G of the minimal K-type for any pair (G, K) where G is semisimple
and K is maximal compact (cf. [5]). By [2], for £ > 1, 7 occurs
as a minimal K-type for some discrete series representation of G =
Sp(1,1).

3.2. Global trivialisation. Let us for a while view the representa-
tion space H;, as a space of sections of the vector bundle V¥ — G/K.
We recall the diffeomorphism G/K = D given by gK +— g - 0. This
lifts to a global trivialisation, ®, of the bundle V¥ — G/K given by

(61) @ : G xxg V™ =D xV,, ®((g,v)]) := (9-0,7%(J(g,0))v),

where J(g, Z) denotes the KC-component of g exp Z - the automorphic
factor of g at Z (cf. [9]).

If F: G — V™ is a function in C*(G, 73), its trivialised counterpart
is the function f : D — V,, given by

(62) flg-0) ==7(J(g,0))F(9g).
In the trivialised picture, the group G acts on functions on D by
(63) 9f(Z) =m(J(g7", Z))" fg™'2).
More explicitly, if g ! = ( é g ) (considered as a matrix in SU(2, 2)),
then
Jg~'Z) = ( A= (AZ+ B%(CZJF by-e g ) € SL(4,0Q),
and

9f(Z) =& (A — (AZ + B)(CZ + D)"'C)f((AZ + B)(CZ + D)™).
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The action of SU(2) on the vector space V;, is here naturally extended
to an action of SL(2,C) by the formula (53).

In the trivialised picture, the norm (57) can also be described ex-
plicitly.

Proposition 2. Let k > 1. In the realisation of the Hilbert space Hy
as a space of Vi, -valued functions on D, the norm (57) is given by

(64) [[f[lx ==/B(H)(1—\Q|2)k<f(q),f(q)>k(1—IQ\Q)4dm(Q)-

Proof. For Z = gK, a fibre map (¢7')z : V;, — V;, is given by

(65) (97 1)zv =7(J(g,0)) 'v.
_( coshtl, sinhtl, . -
If g = ( sinhtl, coshtl, ), the automorphic factor J(g,0) is given
by (cf.[5] )
(66) J(g,0)

[ cosht 'L, 0 _{ (1 —tanh®#)'/2L, 0
N 0 coshtl, | 0 coshtl, |~

A general point Z € D can be described as Z = kgK for g as above.
The cocycle condition

(67) J(kg,0) = J(k, 90)J(g,0)
then implies that

[ k(1 —tanh®¢)'/21, 0
(68)  J(kg,0) = ( 0 kycoshtl, |’

if k£ = (k1, ko) € SU(2) x SU(2). Hence, for £k =1
hz(u,v) = tr((ki(1 — tanh® )2 1) u((k1 (1 — tanh? t)1/2]2)tv)*)
= tr((I— ZZ")'w") .

For arbitrary k, we have
k
(69) hz(u,v) = tr <® (I, — ZZ*)tUU*> :

By analogous considerations, it follows that the invariant measure is
given by

di(Z) = det(I, — Z*Z) 2dm(Z),
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where dm(Z) denotes the Lebesgue measure. Hence, we obtain the
formula

(70) /D & (I — 22°)£(2), £(Z))wdet(T — Z°Z) 2dm(2)

for the norm (57). In quaternionic notation, this translates into the
statement of the proposition. ]

4. PRINCIPAL SERIES REPRESENTATIONS AND THE SZEGO MAP

In this section we will consider a realisation of the discrete series
representation L2(IndK%(7;,)) as a quotient of a certain nonunitary
principal series representation. We first state the theorem, and then we
investigate how the given principal series representation decomposes
into K-types. From now on we fix the number k£ and simply write 7
for 7.

Recall the maximal abelian subspace a of p and consider the para-
bolic subgroup

P=MAN
of GG, where

M:ZK(A)={<3 2>|ueSU(2)},

and A and N are the ones that occur in the Iwasawa decomposition.
Let o be the restriction of the representation 7 to the subgroup M.
Then, clearly, the subspace defined by the M-span of the 7-highest
weight-vector equals V, and the representation ¢ is also irreducible.
We will hereafter denote this representation space by V7. Recall the
identification of V7 with a space of homogeneous polynomials. We
thus adopt a somewhat abusive notation and write z° for the high-
est weight-vector. Let v € a* be a real-valued linear functional and
consider the representation

(71) oc®exp(v)®1

of P. The induced representation Ind%(o ® exp(v) ® 1) is defined on
the set of continuous functions f : G — V, having the P-equivariant

property
(72) flgman) = e 5o (m) " £(g).
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The action of G on this space is given by left translation,
IndZ (0 ® exp(v) ® 1)(f)(2) := Ly f(z) = fg™'2).

Consider now the smoothly induced representation Ind%; () which op-
erates on the space, C*°(K, o), of all smooth functions f : K — V,
having the M-equivariance property

(73) f(km) = o(m)™" f (k)

with K-action given by left translation. The Iwasawa decomposition
G = KAN shows that, a fortiori, G = KMAN (although this fac-
torisation is not unique). Given a linear functional v € a*, we can
therefore extend any such function on K to a function on G by setting

f(kman) = e85 (m) "1 f(k), for g = kman.

The equivariance property (73) of f guarantees that this is indeed
well-defined even though the factorisation of g is not. The extended
function f has the P-equivariance property (72). In fact, this exten-
sion procedure defines a bijection between the representation spaces
of the representations Ind%;(¢) and Ind%(o ® exp(v) ® 1). There is a
natural pre-Hilbert space structure on this representation space given
by

112 = /K £ (k)| 2,

where || - ||, denotes the inner product on V, and dk is the Haar mea-
sure on K. The completion of the space of M-equivariant smooth
functions K — V,, with respect to this sesquilinear form can be identi-
fied with the space of all square-integrable V- valued functions having
the property (73). We will denote the K-representation on this space
by L?(Ind%;(c)). By the extension procedure using v described above,
this completion can be extended to the space of all P-equivariant
V,-valued functions on G such that the restriction to K is square-
integrable.
We now state the theorem by Knapp and Wallach.

Theorem 3 (|6], Thm. 6.1). The Szegbé mapping with parameters T
and v given by

(4)  S()) = /K £198900) 1 (1 (1) 1) £ (1)l
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carries the the space C*(K, o) into C*°(G,7) Nker D, provided that
v and 7 are related by the formula
2(—]6\/ —1Hf + nioq, O!1>

(75) V(Ey +FE o) = (o, o)

Y

where
ny = |{y € Afla(y) = g and oy + v € A}|.

In this case ny = 1, since the root as is the only one satisfying the
above condition. Moreover, an easy calculation gives that

(76) Ea=%<<(1)(1)>+<—018)>

Hence, the condition (75) takes the form

(77) ,,((? é>>:k+2.

Hereafter, we will make the identification

(78) v=Fk+2

of the functional with a natural number. We now proceed with a more
detailed study of the representation L?(Indk(o)).

Lemma 4. The representation L?(Ind% (0)) is K-equivalent to
L2(K/M)® V.

Proof. Let f be a continuous function from K to V, having the prop-
erty of M-equivariance

f(km) =o(m)™ ' f(k),k € K,m € M.
Then the function 5
f(k) == 7(k)f (k)
is clearly right M-invariant and hence we can define the function F' :
K/M — V, by

F(kM) = f(k).
This is obviously well-defined. By choosing a basis {e;} for V,, we can
write

F(kM) = X,;F;(kM)e;
for some complex-valued functions F;. We now define a mapping

T : L*(Ind (o)) = LA (K/M) ® V,
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by
To see that this mapping is a bijection, note that any vector in the

Hilbert space L?(K/M) ® V, can be uniquely expressed in the form
Y;G; ®ej. We can thus define a mapping

S: L*(K/M)®V, — L*(Inds (c))
by
S(3;Gj @ e;) (k) := (k) 7' 9, (kM)e;
and it is easy to see that S is the inverse of T'.
It remains now only to prove the K-equivariance. Pick therefore
any element
Y;G; ® e; from the Hilbert space on the right hand side. We have
k(5G; ® ¢j) = £;Gj 0 Ly @ o(k)e;.

If we denote the matrix coefficients of o(k) with respect to the basis
{e;} by o(k)ij, we have

and hence
Y;Gjo L1 @0(k)ej = X; ;G o Ly-1 ® a(k)ije;.
Applying S to the above expression yields
S(2:,Gj o Ly-1 @ a(k)ije) (K') = o(k) 78G5k k' M)o(k)ije;
oK"Y o (k)X;G (k71K M)e,
S(X,G; ®e;) o Ly-1(k").
O

We shall now examine the left action of K on the L*(K/M)-factor
in the tensor product more closely. In particular, we are interested
in a certain K-invariant subspace defined by a subclass of the K-
types occurring in L?(K/M). We recall the identification of the K-
representation 7; with a standard representation of SU(2). We there-
fore let 7; also denote the corresponding SU(2)-representation, and
we let V; denote the associated vector space of polynomials. Any ir-
reducible representation of K = SU(2) x SU(2) is isomorphic to a
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tensor product of irreducible SU(2)-representations, i.e., it is realised
on a space

(79) ViV,

for some 7, 7 € N. With the fixed ordering of the roots, the polynomial
function (z,w) — 27 is a highest weight vector in V, and the polyno-
mial function (z,w) — w’ is a lowest weight vector. We will use the
abusive notation where they are denoted by 2z’ and w’ respectively.

Proposition 5. The algebraic sum

(80) W=V @V,

jeN

of K -types is a subspace of L*>(Ind, (o). The highest weight vector for
the K-type V' ® V,.j is given by the function

(81) fi(k) = (rj o m(k)2?, w?); T(k) 27
Proof. For

we have

A | o duuyt(uh)t 0 uhug 0
kkM_( 0 u’ng)M - ( 0 I 0 ubug M
uhuguy H(uh) ™t 0
( 0 )M

and this shows that the left action of K = SU(2)xSU(2) on L?(SU(2))-
functions is equivalent to the action Ly1 ® Ry:

(Lg-1 ® Ry)(g,h) f(1) = f(g~'1h)

Then, by the Peter-Weyl Theorem, L*(K/M) decomposes into K-
types according to

(82) L*(K/M)~ @ (V;eV)).

FE€SU2)
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Tensoring with V, gives the sequence of K-isomorphisms

PK/M)®V, ~ P V;eV))eV,

FESU2)

P vyev)el,

F€SU®)

P vievev,).

J€SU®)

12

12

Moreover, each term (V; ® V) has a Clebsch-Gordan-decomposition
(V}®Va) = (Vo-l-j@"')

and therefore each term V;®V,; will constitute a K-type in L?(K/M)®

V,. Such a K-type has a highest weight-vector (w’)* ® z°7/. Using

first the embedding into V' ® (V; ® V;,) and then the K-isomorphism

given by Lemma 4, we see that highest weight-vector corresponds to
the M-equivariant function

(83) fi(k) = (rjom (k) w’); o (k)™ 27

5. REALISATION OF K-TYPES

By |2], the only K-types occurring in the quaternionic discrete series
for Sp(1,1) are the ones that form the subspace W in Proposition 5.
In this section we compute their realisations as V,-valued functions on
B;(H) when restricted to the submanifold

(84) A-0={teH|-1<t<1}
of B;(H). For s € R, we let

coshs sinhs
(85) s = ( sinhs coshs

) € Sp(1,1).

Then as -0 = tanhs € A-0. We start by computing the Szeg6 images
of the f; when restricted to points a;.

Each of the standard SU(2)-representations, Vy, can be naturally
extended to a representation of GL(2,C) by
(86) prpogt,  p€Vag€GL2C).

This action of GL(2,C) will occur frequently in the sequel.
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Lemma 6. The Szego transform of the highest weight-vector f; is
given by

Sfi(as) = (coshs)™
X / (det(1 — Itanh s))~“Ft0/2(r, (1" 1) 29 wi); o(1 — I tanh s)2°dl
SU(2)

when restricted to the A-component in the decomposition G = NAK.

Proof. Take

k = <u1 0 ) and
0 U9
_ coshs sinhs
r= sinhs coshs |-
Then

uycoshs wysinhs
kx = . ,
ugsinh s wuy cosh s

and Lemma 1 gives that

— v/2
el/(log H(kz)) _ (1 - |U1U2 ! tanh 5‘2)
|1 — uyuy* tanh 5|2 ’
- 1/2
K(kz) = (1 — |U1u2_1tanh 5\2)
|1 — uqu, ' tanh s|?
% ( uy cosh s — ug sinh s 0 )

0 Ug cosh s — uy sinh s

Hence

1 — |uyu, ' tanh s|?

—0
) o(uy cosh s — uysinh s) !

r(k(lz)) "t = (

|1 — ujuy* tanh 5|2
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and we get
_ (v—0)/2
1 — |uu; ' tanh s|? PR
Sfilas) = Tjom(k™)2, w?);
f]( S) /]; (|1—u1u21tanhs\2 < J ( ) >]
x(u; cosh s — uysinh s) o (u1)2° dk
L ltanhsP O\ 002 o
= / ( | i ’ ) (rjom(k 1), w’);
x \ |1 — uju; " tanh s|?
x o (cosh s — uj tuy sinh s) 127 dk
= (cosh s)_”/ 11— uyuy " tanh 5|7 (o m(k™") 27, w’);
K
xo(1 — uy tug tanh s) ™' 27 dk.
Using the identities
1 — uy 'uy tanh
(1 — u7'ug tanh s) ™t = u_21 U1 Pana s
|1 — uy uy tanh s|?
and
|1 — uyuy* tanh s| = [u7' (1 — wyu; P tanh s)uy | = |1 — u; 'uy tanh s|

in the above equality yields

Sfi(as) = (coshs)™
X / 1 — uytuy tanh 5|7 (7 0 m(k™H) 22, wl),
K
xo (1 — uytu; tanh 5)2°dk.

We observe that the integrand is right M-invariant. In fact,

(cosh s)_”/ 11— uyuy ! tanh s| =) (15 0 (k1) 27 wd),
K
xo (1 — uj 'u; tanh s)2° dk
= (cosh s)_”/ 11— 7(k71) 7 tanh s| =) (75 0 w(kTH) 27, wl),
K

xo(1 —m(k™)~! tanh 5)2° dk.

23
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Therefore, it can be written as an integral over the coset space K/M =~
SU(2), i.e.,

Sf;(as) = (coshs)™
X / 11— 17" tanh s| =) (7;(1) 27, w?); o(1 — 17" tanh s)27dl.
SU(2)

Making the change of variables [ — [~!, and using the invariance of
the Haar measure on SU(2) under this map, yields

Sfi(as) = (coshs)™
X / 11— Itanh |~ (r;(171) 27, w); o(1 — I tanh 5)27dl,
SU(2)

and this finishes the proof. O

5.1. Highest weight-vectors for K-types. The polynomial func-
tions py, ;, defined by

Py s (2, W) 1= 21w,

for which l;+1; = N form a basis for V. Occasionally we will however
use the somewhat ambiguous notation z*w" when there is no risk for
misinterpretation

We write ( = tanh s and consider the action of (1 — ¢l) on the basis
vector py, ;,- We have

(87) (1 = CDpuy i (2, w)
l l
=(e-or (), (e-om(2),
where the subscripts denote the projection functions
(zwh =2 (zw)=w

onto the first and second coordinate respectively.
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The Binomial theorem gives the following expression for the first
factor above:

(-7 (2)),

=det(1—¢l)™ i ( éll )zjl(_c)lljl (ll < 5] ))l:—jl

Jj1=0
I
=l j1 ! 1—J1
= det(1 - 1) g ( B ) (=" Ipy (2, w),

and the second factor has a similar expression. Substituting these into
(87) yields the double sum

(88) (1 - Cl)pll,lz (Zv w) = det(l - Cl)_a

I I

! l 1+le—j1—72) ,91,,,J2
X Z Z ( ]11 ) < ]z ) (_C)(l TmIm) iy lpl1—j1,l2—j2(zaw)'

51=0 ja=0
Denote the normalisation of the basis vector p, ; by e, ;. Then
prs = (rls!) e,
and the term Ip;,_j, 1,—;, in (89) can be written as the sum
(89) It it o = (r1s!)'/?
x> Ml b= il — o 7, 8)ers.

r+s=li+la—j1—j2

In what follows, we will use an expression for the first factor in the
integrand in Lemma 6 as a series of SU(2)-characters. The following
result can be found in [4].

Lemma 7. The function | — (det(1 — [tanhs)™* has the character
eTpansion

(det(1 — I tanh s) ™
= ZZ ()\ — 1_)i+j+1 (A - 1) (j + 1) (tanh 5)%+7y,

(+7+1)0 4l

(A =1); :
= Z ﬂ(tanh s) oFy (A + 4, A — 1;5 + 2; tanh? S)X;j-
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Proposition 8. The function Sf; has the following expression when
restricted to A.

_ 2\ 732 . o 41 (20) 141 ]! j+2i
Sf;(as) = (1 — tanh?s) ;( . >(—1)J m(tanhs)ﬂ

xoF1 (20 + 1+ j 41,2037 4+ 4+ 2;tanh? 5)2°.

Proof. In the defining integral

Sf;(as) = (coshs)™ /S v (det(1—¢0))~ V(717N 27, w?) o (1—C1) 2% dl

we already have a character expansion for the factor (det(1 — (1))~
Therefore, it suffices to determine the expansion of

(r;(I7H2% )0 (1 = ¢l)2°

into matrix coefficients. As a special case of (89) we have

(1 = (l)pgo = det(1 = (1)~° Za: ( j ) (—C)U_izilpa—z',m
i=0
and the special case of (90) is
po—ip = ((0 — 2 Uz:i<7—0—i(l)ea—i,0; €ro—ior)o—iCro—i—r-
r=0
To sum up, we have
(1 = CDpop(z,w) =det(1 —¢l)~°
<3 (7)o S (D600 Erngs Yo
i=0 r=0

Xer,o’—i—r(Z7 w)
The integrand is thus a linear combination of terms of the form
(90) <Tj(l71)zja wj>j <T0—i(l)60'—i,0’ 6r,a—i—r>a—i-

It is easy to see (using the formula (53)) that the identity

(91) (Y27, w?); = (D)1 (127, w?);
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holds, and using this identity in (90), the resulting terms are matrix
coefficients for the tensor product representation 7; ® 7,_;. In fact,

(92) <Tj (Z)Zja wj>j<7—0—i(l)e<r—i,0; er,a—i—r)a—i
( 1
(e —i)lrl(c —i—r)!

We recall the Clebsch-Gordan decomposition for the tensor product
V; ® V,_;. There is an isometric diag(SU(2) x SU(2))-intertwining
operator

1/2
) (5307 ) () (F7), WS W), 5 01

¢I‘/}®Vg_i—)‘/}+g_i@"'

which is of the form

P = Djro—i D " ® Da(j—(o—i)

where each term is an intertwining partial isometry and the sum is or-
thogonal, i.e., the terms have mutually orthogonal kernels. The vector
27 ® 277" is a weight vector of weight —(j + o — i)v/—1H; and hence
it maps to a highest weight vector in the summand Vj,_;. Therefore
only the term corresponding to this summand in the orthogonal ex-
pansion of the inner product (92) is nonzero. To be more precise, we
use the isometry ¢ to write the matrix coefficient (92) as the sum

(93) ((¢(1; @ To—i) ()(# @ 277%), p(w’ @ 2"w” 7))
= Z<¢j+a—i—zs (1;@To—i) (1) (27 ®277"), Pjro—i—2s(W R2"W ")) o—i—s-

Since

. . /2
: » o =)\ to—i
j+o0—1 j o—1 l J o = ) j a—il Ite z’
o-i(r © 70O @) = (T ) o)
the sum (93) is equal to its first term
J'(G_Z)' j+o—i r  j+o—i—r
mmw—i(l)z’* VAW

Moreover, since we are integrating against characters, only the term
corresponding to r = j + o — ¢ will contribute. Hence we have the
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equality
(94)

— (1 — tanh? ”T“U g _a—z’_jj!(a_i)!a
$hia) = (-t ) 3 () O e

* / (det(1 = ¢0) "Ny i (1277, 27H0 ) il
SU(2)

So, by using the character expansion (90) and the Schur orthogonality
relations for matrix coefficients, we get the following expression for
the above integral with the index ¢ fixed.

/S et ) (1) Al

— (20-)3'4-0*1%1 (tanh 8)j+0’—i

(j+o0—1)!
x2F (20 +1+j+0 —1i,20;j +0 — i+ 2;tanh’s)
y (j+o—1)! .
j+o—i+1
So, substitution of this into the sum (94) and reversing the order of
summation yields

a .
o+2 . 20') ; 1]' . .
Sfi(as) = (1—tanh?s)“3" T ) (=1 W%t h s)7*2%
f](as) ( an 8) zz:(; 2 ( ) (‘7_*_2_1_1)'( an S)
X9 F1(20 + 1+ 5 41,20;7 + 4+ 2; tanh? 5)2°.
O

We now return to the language of section 3, so that o corresponds
to the natural number k. We can now state the main theorem on the
K-types.

Theorem 9. For k > 1, the highest weight vector for the K-type
Vi@ Vi is the function F; : D — V., whose restriction to A-0 s
given by

Fi(t) = (1-¢%) Z ( g ) (_1)j+iwtﬂ_%

I\ (j+i+1)!
XoF (2K 4+ 145 +1,2k; § + 14 + 2;1%) 2%



Proof. Letting t = tanh s =
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cosh s sinhs

sinhs coshs |~ 0, and applying the

trivialisation mapping (61), together with (66), to the functions S f;

in

10.

11.

Proposition 8 immediately gives the result. O
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