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On boundary value problems for intracellular subdiffusion

and signaling pathways, and for geometric flows

Tobias Geback

Department of Mathematical Sciences
Chalmers University of Technology and G6teborg University

Abstract

The main part of this thesis concerns mathematical models for diffusion
of proteins inside cells, including reactions between the proteins. Initially,
such models are applied to describe signaling pathways in yeast cells, and the
properties of the model are studied, especially in relation to models that do not
include diffusion. The results show that it is sometimes necessary to include
diffusion in the model to capture important aspects of the biological system.

The thesis also contains work on the numerical methods used to compute
solutions to the reaction-diffusion equations inside domains. Specifically, the
Immersed Interface Method, which allows efficient numerical solution inside
arbitrary domains using uniform rectangular grids, is applied on Boolean grids,
which give the same accuracy as uniform grids while using fewer grid points.

The third part of the thesis also concerns models for protein diffusion
inside cells, but now describing the phenomenon subdiffusion (or anomalous
diffusion), which has been observed inside cells and manifests itself as a qual-
itatively different, and slower, diffusion behaviour of proteins. The cause of
this phenomenon is the crowdedness of the interior of the cell, where other
proteins and larger structures interfere with the motion of the proteins. In
the thesis, a new mathematical model for anomalous diffusion in the form of
a parabolic pseudo-differential equation is proposed, and a proof of existence
of solutions for boundary value problems representing anomalous diffusion in-
side a cell is given. Experiments using Fluorescence Correlation Spectroscopy
which support the model have also been performed.

Finally, the thesis contains a convergence result for a computational scheme
for approximation of mean curvature flows inside a domain, that is the de-
scription of the motion of surfaces which move at each point with a velocity
depending on the mean curvature at that point. The scheme allows a quite
general dependence on the curvature and concerns the case when the moving
surface is inside a domain and intersects the domain boundary at a right angle.

Keywords: boundary value problems, diffusion-reaction equations, signaling
pathways, anomalous diffusion, pseudo-differential equations, fluorescence cor-
relation spectroscopy, immersed interface method, Boolean grids, mean curva-
ture flow
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Preface

This thesis contains four parts, as listed on the contents page. The first
three parts come in a logical order describing the progress of my Ph.D. project,
which was financed by the National research school in genomics and bioinfor-
matics under the title Spatial dynamic modeling of an intracellular signaling
pathway.

This is also the topic for Part I, where systems of reaction-diffusion partial
differential equations are studied as models for proteins involved in signaling
pathways. These equations show some interesting spatial effects which are not
present in the ordinary differential equation models that are used more often
in this context.

Part II describes work done on the numerical method used to solve the
equations in Part I, namely the Immersed Interface Method (IIM). In this
part, the IIM is implemented on Boolean grids, grids that allow us to use
fewer grid nodes while retaining the same accuracy in the computations, with
the result that we can make faster computations, using less memory.

In Part III, we investigate the phenomenon called subdiffusion, both ex-
perimentally using the Fluorescence Correlation Spectroscopy (FCS) method,
and theoretically and numerically using a parabolic pseudo-differential equa-
tion as a model for subdiffusion. We show that this model fits the experimental
data, and in the attached paper (Paper I) we prove existence and uniqueness
of solutions to boundary value problems for the equation, corresponding to
subdiffusion for proteins inside a cell.

The work presented in Part IV was initiated in my Master’s thesis, and
concerns approximation of mean curvature flows. In the paper (Paper II)
contained in this part, I have proved convergence for a computational scheme
for approximating mean curvature flows, for the case when the flow takes
place inside a domain, with right-angle boundary conditions on the domain
boundary, and the velocity is a non-linear function of the mean curvature of
the moving surface.

Each of the parts contains an abstract and an introduction which describes
the work in more detail.

Since this thesis may attract readers with different background knowledge,
let me indicate what kind of background is needed to read the different parts.
Part T and the first half of Part III are oriented towards biology, and much of it
should be understood by anyone with some basic knowledge in cell biology and
mathematics. Part II is purely mathematical, but not very difficult, while the
two papers in Part IIT and Part IV require a proper background in mathematics
to be fully understood.
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SPATIAL MODELING OF MAPK SIGNALING
PATHWAYS

Tobias Geback

Abstract

MAPK signaling pathways in eukaryotic cells are sequences of enzymatic
reactions that convey a signal from the cellular membrane to the nucleus, in
response to some stimulus. They constitute an often vital signaling system
which enables the cell to react to changes in the environment and to survive
such changes.

We investigate the effects of spatial models for signaling pathways. First,
we add a diffusion term to the Kholodenko model for general MAPK signaling
pathways. This has a large effect on the amplitude of the oscillations that
the model predicts, indicating that such oscillations have a smaller effect in a
model that takes into account the spatial distribution of proteins, compared
to the original space-independent model.

Second, we investigate a simple spatial model for the HOG pathway in
the yeast Saccharomyces cerevisiae. We are able to reproduce the nuclear
relocation of the Hogl protein and also see that diffusion in the model is so
fast that differences in protein concentration throughout the cell are small,
even though reactions are localized only at the membrane.

The calculations are performed in three space dimensions using finite dif-
ferences and the Immersed Interface Method, which is described in part II of
this thesis.
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GLOSSARY

amino acid the 20 different building blocks that make up proteins

differential equation an equation involving derivatives, whose solution is a function of
one or more variables

enzyme protein that speeds up specific reactions in the cell

eukaryotic cell a cell containing a nucleus, as opposed to bacteria

gene a DNA sequence coding for a protein

genome the collection of all the genes of an organism, coded for by DNA

HOG High Osmolarity Glycerol

in vitro experiment performed in an artificial environment, outside the organism

in vivo experiment performed inside a living organism

kinase enzyme whose function is to phosphorylate other enzymes

MAPK Mitogen Activated Protein Kinase

ODE Ordinary Differential Equation; a differential equation in one variable, often time

osmosis the process that strives to even out the concentration of solutes across a mem-
brane

PDE Partial Differential Equation; a differential equation in several variables, such as
space and time

phosphorylation the addition of a phosphate group (POj;) to a protein
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1. INTRODUCTION

The ordinary bakers’ yeast Saccharomyces cerevisiae, which is a unicellular fungus, is a
very widely studied organism among cell biologists. The reasons for this are many. One
is that for a long time there has been a commercial interest for brewers and bakers to
understand the organism in order to maximize its output of alcohol and carbon dioxide.
Another reason is that it is a relatively simple unicellular eukaryotic organism that is easy
to handle in the lab and can be used as a model organism for higher eukaryotic organisms,
such as plant and mammal cells. Nowadays, another reason for studying yeast is that it
is already very well studied, which means that more extensive studies can be performed,
trying to understand more complex processes in the cell. For example, the complete yeast
genome has been sequenced and it contains approximately 6.300 genes (cf. human genome
approx. 30.000 genes) [1]. Furthermore a complete library of gene deletions has been
set up, i.e. for (almost) every single gene, there is a yeast strain available that has this
particular gene deleted from its genome, enabling biologists to easily study the effects of
removing a gene from a cell under different conditions, thus hopefully learning more about
the function of that gene. Also, there are many research groups continually working on
different aspects of the yeast cell, making the amount of data available comparatively large.

Having said that, however, it should be noted that even the simple yeast cell is not at
all understood by the biologists. There are many genes coding for proteins with unknown
function and even if the gene codes for a protein that has a known function, this function
may depend on other proteins and substances, so that the overall behavior is not very
well understood anyway. The cell as a whole is a very complicated system, where proteins,
DNA, RNA, lipids and other molecules work together to define the behavior of the cell. And
although there has been a tremendous increase in knowledge about the cell during the last
decades, only small parts of the complete system are well understood. For example, a single
protein coded for by a single gene may be studied to determine its amino acid sequence,
its three-dimensional structure, its active sites, where it may bind to other proteins, etc.
This gives very valuable information about the protein, but does not tell the whole story,
since questions like “When is it expressed from the DNA?”, “What activates/deactivates
the protein?”, “Where is it located?” and so on, must also be answered to give a complete
picture. The answers to this kind of questions do not depend solely on the protein itself,
but also on other proteins and molecules in the cell, as well as outside stimuli and the
overall “state” of the cell.

The complexity of these questions is the basis for systems biology, which is the research
area that tries to look at larger systems of proteins and cellular functions, often using
mathematical modeling in order to understand the behavior of that particular system.
There is no single definition of systems biology and it is not very fruitful to try to come
up with one, since these “systems” may be very different in character and the methods
applied to study them may also vary accordingly. The philosophy of systems biology is
not without controversies, since there is no long tradition of using mathematical modeling
in cell biology, but there are a few examples where modeling has been successful as a
complement to the experimental data in order to understand the behavior of a cellular
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system (see [8], [12]).

1.1. SIGNALING PATHWAYS

One type of cellular system that is suited for mathematical modeling is signaling pathways.
We will be concerned here with MAPK! pathways. Specifically, we have the High Osmo-
larity Glycerol (HOG) pathway in yeast in mind, but most of what is said here applies to
other pathways as well. See [1, chapter 15] for general information about signaling path-
ways and [4] for a review of the HOG pathway. The signaling in a MAPK pathway starts
at the cellular membrane, where it is activated by some stimulus, such as the presence of a
specific substance (e.g. pheromones) in the environment or a more general environmental
change, such as change in osmotic pressure or oxidative properties of the environment.

This stimulus is sensed in one way or another by receptors or other mechanisms at
the membrane. These sensing mechanisms then convey a signal to another protein by
phosphorylation (i.e. adding a phosphate group to one of the amino acids of the target).
This starts a chain of phosphorylation events, which convey the signal through two or
three steps, where each step consists of the phosphorylation of a target kinase, that is
an enzyme which, once activated by phosphorylation, may phosphorylate other target
proteins. So, as is seen in figure 2.1, the signaling cascade moves from the MAP-kinase-
kinase-kinase (MKKK) which activates the MAP-kinase-kinase (MKK), which activates
the MAP-kinase (MAPK), which in turn moves to the nucleus where it may activate
or deactivate transcription factors that control gene expression. The MAPK may also
have other functions by controlling the activity of enzymes throughout the cytoplasm and
nucleus. Activation of kinases in the chain may require a double phosphorylation of two
amino acids in the protein, which are both performed by the higher-level kinase.

The effect of the signaling pathway is that the cell is able to sense changes in the
environment and convey the information of this change to the nucleus or other inner parts.
There the cell can produce the appropriate response to the stimulus, which is often vital for
the survival of the cell. With the multiple steps in the chain, the cell is able to amplify the
signal and may also increase the steepness of the response, creating a switch-like response so
that the signal is more or less either “on” or “off” [5]. In addition to the activating kinases,
there are also deactivating phosphatases, which remove the phosphate from the enzymes,
thereby deactivating them (a dephosphorylation need not be deactivating, but in this case
it is). Thus, when the stimulus disappears, or the cell has adapted to the new environment,
the signaling pathway switches back off through the action of the phosphatases.

It should also be mentioned that (as always in biology) things are more complicated
than they seem. For example, the osmosensing mechanism is often not very well known
and may include many proteins; the phosphorylation events may take place when the
kinases are organized in scaffolds or large protein complexes; and the cell is full of other
enzymes and molecules which may influence the signaling pathway, producing different
results depending on which state the cell is in. The models we discuss here focus on

'Mitogen Activated Protein Kinase
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the phosphorylation cascade and the movement of the phosphorylated MAPK from the
membrane to the nucleus. They are of course great simplifications, but may hopefully
provide some insight into the reality.

1.2. OUTLINE

In the following sections, we study two spatial models of MAPK signaling pathways. In
section 2, we investigate the effects of diffusion on the oscillations predicted by a model of
a MAPK cascade, including a negative feedback loop. In section 3, we study a model of the
nuclear relocalization of the yeast MAPK Hogl. The two sections are almost independent
and contain separate results and discussion parts.
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2. THE KHOLODENKO MODEL WITH DIFFUSION

2.1. INTRODUCTION

In the year 2000, Boris N. Kholodenko [6] published a model of general mitogen-activated
protein kinase (MAPK) signaling cascades, which was shown to give rise to oscillatory
behavior for a range of parameter values. An essential feature of the model is a negative
feedback loop, meaning that the end product of the pathway inhibits the activating reaction
(see figure 2.1). The model received some attention, since the appearance of oscillations
was a rather unexpected effect which could have interesting implications for the biology of
the cells. However, no oscillations have actually been observed for signaling pathways in
real cells. There could be numerous reasons for this, for example that the abundance of
proteins is measured as the total protein content in a large number of cells, which means
that unsynchronized oscillations will not show up in measurements. But it is perhaps
more probable that the model does not agree well enough with reality, meaning that the
oscillations in MAPK-pathways are artifacts which do not occur in nature. Specifically, the
feedback loop in the model may be a too simple model of the feedback that is known to be
present (since the signaling is turned off after a while). It is also a fact that the signaling
does not take place at one point in space but involves movement of proteins through the
cell. Some of the reactions take place only at the cell membrane, while some may take place
wherever the participating proteins encounter each other. This should have an effect on
the oscillatory behavior, since as proteins at the end of the reaction chain move away from
the membrane, they cannot take part in the feedback, which should then be attenuated.
The purpose of the following sections is to incorporate diffusion of proteins into the model
and study the effect that this has on the oscillations and the behavior of the pathway.
Although the Kholodenko model may not be an accurate model, it is quite convenient to
study an oscillating system, since the oscillations are easily seen and effects on them are
easily detected.

2.2. THE KHOLODENKO MODEL

The structure of the Kholodenko model for MAPK signaling pathways is shown in figure
2.1. The pathway is activated by a stimulus of some kind, which causes the MKKK to be
phosphorylated. This activates the MKKK, which then in turn is able to phosphorylate the
MKK at two different sites. The active double-phosphorylated MKK (MKKPP) may then
activate the MAPK by phosphorylation, again at two sites. In a real cell, the MAPKPP
continues to perform some action, which sooner or later will turn the signaling cascade
off, by some means which are to a large extent unknown (and may differ between different
MAPK pathways). In the Kholodenko model, this is modeled by that the MAPKPP
inhibits the phosphorylation of the MKKK. This is the negative feedback loop, which is
needed in order to create oscillatory behavior.



2.2 THE KHOLODENKO MODEL 5

Figure 2.1: The Kholodenko model. The signaling pathway is activated by some stimulus
which leads to phosphorylation of the MKKK, which in turn phosphorylates the MKK in
two steps. The double-phosphorylated form of MKK then phosphorylates the MAPK, also
in two steps. The end product (MAPKPP) then has the effect of inhibiting the stimulus,
thus forming a negative feedback loop. Here, we also add the additional assumption that
the MKKK is fixed at the cell membrane, while the other proteins are free to diffuse
through the cytoplasm.

The corresponding ordinary differential equations may be written as

dul/dt = V3 — U1

d’U,Q/dt = V1 — V2

du,g/dt = Vg — U3

dugfdt = vz +vs—vg— vg
dus/dt = wv4— vs

due/dt = V10 — VU7

d’LL7/dt = V7 + VU9 — Vg — Vqg

d’LLg/dt = Vg — Vg

where the concentrations of MKKK through MAPKPP are denoted u;, j =1,...,8 with
numbers as in the boxes in figure 2.1, and the fluxes of the reactions are denoted v;, i =
1,...,10 and also numbered as in figure 2.1. The expressions for the fluxes are given in
table 2.1.
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Flux Rate equation Parameter values

v Viw /(U4 (us/Kp)") (K1 +w)) Vi=25 n=1; K;=9; K =10;
Vg Vaua /(Ko + us) Vo =025 Ky =38;
U3 ksusug /(K3 + us) k3 = 0.025; K3 =15;
(2 kyugug/(Kq + ug) ks = 0.025; K4 =15;
5 Vsus /(K5 + us) Vs = 0.75; K5 = 15;
Vg ‘/éU4/(K6 + U4) Ve = 0.75; K¢ = 15;
(A k‘7U5’LL6/(K7 + ’LL7) k}7 = 0025, K7 = 15,
g ksusur/(Kg + ug) ks = 0.025; Kg =15;
Vg Vous/(Kg + us) Vo =0.5; K9 =15;
V10 Viouzr/ (K10 + u7) Vio = 0.5; Ky = 15;

Table 2.1: Fluxes and parameter values in the Kholodenko model. The values are the ones
given in the original article [6].

The output of the model with these parameter values is shown in figure 2.2. We see
the concentrations of MAPK and MAPKPP and note that they oscillate heavily, and that
the oscillations are sustained. The oscillations are present for a range of parameter values,
although the frequency and amplitude may vary.

2.3. ADDING DIFFUSION

We now wish to add spatial movements of proteins to the Kholodenko model. We assume
that the MKKK is fixed at the membrane and that MKK and MAPK may diffuse freely
through the cell cytoplasm. This means that the reactions 1, 2, 3 and 4 take place only
near the membrane, where MKKK is present, while the other reactions take place all over
the cell.

The geometry that we use is a near spherical cell of diameter 9 um in three dimensions
with no inner structure. This is of course a great simplification, but still it is a more
advanced model than the original one, which does not include the space dimension at all.
The size of the cell is the approximate size of a yeast cell, which is a rather small cell
compared to other eukaryotic cells. A diffusion term is added to all the equations for the
MKKs and MAPKSs, yielding the eight equations

dul/dt = V9 — VU1

dUQ/dt = V1 — V2

dU3/dt = dgA'LLg, + vg — U3

dU4/dt = d4A’U,4 —+ v3 + V5 — Vg4 — Vg
dU5/dt = d5AU5 + V4 — Us

dUG/dt = d@AUG “+ v19 — V7

dU7/dt = d7A’U,7 + v7 + vg — Vg — V1o

dus/dt = dgAUg + Vg — Vg

with u; = wu;(z,y,2,t), j = 1,...,8, and A = 9?/9z* + 8?/dy® + 9% /0z* denoting the
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Figure 2.2: Typical behavior of the Kholodenko model. The graph shows the concentration
of MAPK (solid) and MAPKPP (dashed) for times up to 150 minutes. We see the sustained

oscillations in concentration.

Laplacian. The boundary conditions are
n-Vu; =0, j=3,...,8,

where 7 is the outward normal, meaning that there is no flux of molecules across the
cell membrane. The initial values are the same as in the space-independent model, and
constant throughout the cell for ug, . .., us, while for the MAPKKKSs u; and uy those values
are only used near the boundary where the reactions 1 through 4 take place, with initial
concentration zero elsewhere. The parameters d; are the diffusion coefficients, which are
now additional parameters in the model, describing how fast the diffusion of proteins is.
These are known (see e.g. [10]) to be much lower inside the cell than in water (up to 10
times), because the cell is full of obstacles such as the cytoskeleton and other proteins. For
simplicity, we assume that all the diffusion coefficients are equal, i.e. d3 = ... = dg = d.
For globular (near-spherical) proteins in water, the diffusion coefficient may be estimated

from the relation
(2.1)

dee- W3
where W is the molecular weight (see [9]). Fitting of measurement values for medium-sized
proteins tabulated in [2, chapter 7] gives ¢ & 2.7+ 103 if W is measured in Daltons and d in
um?/s. For the MAPK Hogl in yeast, which has a molecular weight of 48.8 kDa, this gives
d = 74 um? /s for free diffusion in water, which we use as a reference value. The equations
for the fluxes are the same as before, i.e. the ones given in table 2.1.
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The equations were solved using the Immersed Interface Method and finite differences
on uniform grids with 54 x 54 x 54 nodes. The method is described in Part IT of this thesis.

2.4. RESULTS

We study the results of the model for two different values of the diffusion coefficient, d,
namely dy = do/10 and d, = dy/1000, with dy = 74 um?/s being the approximate diffusion
coefficient in water for Hogl.

The higher value dg for the diffusion coefficient is so large that the molecules have time
to move around the entire cell faster than the reactions produce any significant changes
in concentration. This means that the proteins will be evenly spread across the cell at
all times. This is seen in figure 2.8 for two of the components in the pathway (MKK and
MAPKPP). The figure shows concentrations for times between 0 and 50 min on a line
through the center of the cell. One sees that the concentration is the same in the center
of the cell as at the edge. One can also see that the oscillations are not as large as for
the original model. This is shown more clearly in figures 2.4 and 2.5, which should be
compared to figure 2.3 for the original model. Here concentrations for all components in
the model are shown. Samples are taken at the membrane (figure 2.4) and at the center
of the cell (figure 2.5). It is clear that the oscillations have a much smaller amplitude now
that we have added diffusion. Furthermore, the oscillations seem to be damped, so that the
amplitude decreases with time. This has been confirmed by running longer simulations,
where the oscillations slowly fade away. The diffusion acts as a damper for the system.

A similar behavior is seen with the lower value d = dj, for the diffusion coefficient (figures
2.6 and 2.7). The oscillations again have a lower amplitude and are again damped. Here,
however, the proteins do not have time to diffuse through the cell before the reactions
produce significant changes in phosphorylation levels. This is seen clearly in figure 2.9,
where again concentrations of MKK and MAPKPP are shown along a line through the
cell center for different times. It is clear that the concentrations are different in the center
and at the membrane. However, the oscillations are present and approximately equal in
period and amplitude in the center and at the membrane, and also approximately equal
to the previous case (with d = dp).

A final example is shown in figure 2.10. There, we show the result of the same model
with slow diffusion (d = df,), but in a larger cell with a diameter of about 90 pm. Now the
phosphorylated proteins do not have time to move very far from the membrane before they
are dephosphorylated. Therefore the oscillations occur only near the membrane, while in
the center all the kinases are in their inactive (unphosphorylated) state. This of course
makes the signaling pathway useless, since its main purpose is to convey the signal of
phosphorylations to the cell nucleus, which it fails to do when distances are large, diffusion
slow and dephosphorylation reactions comparatively fast.

It is clear that what determines the spatial behavior of the system is a combination
of the length scale, the diffusion coefficient and the reaction rate. In order to see this
more clearly, we may make the equations non-dimensional. To illustrate this, we take
the equation for us (MKKPP), but include only reaction term — the dephosphorylation
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At membrane
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Figure 2.4: Concentrations for the eight components in the space-dependent model with
fast diffusion d = dy. The values are taken at the membrane.
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Figure 2.5: Concentrations for the eight components in the space-dependent model with
fast diffusion d = dp. The values are taken at the center of the cell.
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Figure 2.6: Concentrations for the eight components in the space-dependent model with
slow diffusion d = d;,. The values are taken at the membrane.
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Figure 2.7: Concentrations for the eight components in the space-dependent model with
slow diffusion d = d;,. The values are taken at the center of the cell.
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Figure 2.8: Concentrations of MKK (left) and MAPKPP (right) in the model with fast
diffusion d = dy. The values are taken on a line through the center of the cell for times
up to about 50 minutes. The concentrations are almost equal throughout the cell.
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Figure 2.9: Concentrations of MKK (left) and MAPKPP (right) in the model with slow
diffusion d = d. The values are taken on a line through the center of the cell for times up
to about 50 minutes. The concentration gradient is clearly visible.
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Figure 2.10: Again, concentrations of MKK and MAPKPP with slow diffusion d = dj, but
this time in a cell with diameter 90 pm. The values are taken on a line through the center.
Here, the phosphorylated proteins do not have time to diffuse far before the phosphate is
removed, so the whole oscillation takes place at the membrane.

reaction with flow vs. The equation then becomes

Ous Vsus
— =dAu — .
ot “ K5 + us
If we introduce the non-dimensional space variables (£,1,() = h~!(z,y,z), the non-

dimensional time 7 = d/h% -t and the non-dimensional concentration v = us/ug, with
scaling coefficients h, k and ug with dimensions [h] = m, [k] = s and [ug] = M, we get

Ov h2V; v

67_ §V7du0 K5/U0+l/,

with A, denoting the Laplacian in the (,7,{)-variables. The typical size of the diffusion
term is now 1, while the typical size of the reaction term is A\ = h2?V;/(du,). This is
the quantity that determines the influence of the reaction compared to the influence of
diffusion. The values of A for the three examples discussed here are summarized in table
2.2. We see that in the first case A < 1, indicating that reactions are slow compared

Example | b (um) | d (um?/s) | Vs (nM/s) | ug (nM) | A
1 10 7.39 0.75 300 3.38-1072
2 10 0.0739 0.75 300 3.38
3 100 0.0739 0.75 300 3.38-102

Table 2.2: The ratio A for the three examples.

to diffusion, so that molecules have time to travel across the cell before changing their
phosphorylation state. This leads to homogeneous mixing of the diffusing components and
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no concentration gradients are observed. This is exactly what we see in figure 2.8 for the
first example. For the second example, we have A ~ 1 and diffusion and reaction are
comparable, meaning that mixing of components is not complete. Thus we expect to see
some concentration gradients, but also some diffusion of reaction products through the
cell, which is what figure 2.9 shows. Finally, in the third example, A > 1, meaning that
reactions are much faster than diffusion, leading to highly localized reactions with small
exchange of material. This is seen in figure 2.10.

2.5. DISCUSSION

Much could be said about the Kholodenko model and whether oscillations really do occur
in signaling pathways in real cells. One of the weakest points of the model is perhaps that
the stimulus that activates the pathway is assumed to be “on” all the time, only being
inhibited temporarily when the level of MAPKPP is high. This assumes that the cell never
really responds to the signal, which is pretty absurd, since the purpose of the signal is to
cause the cell to respond and adapt to new conditions. Once the cell has adapted, the signal
must cease, or the cell will probably die or at least spend all its energy on useless tasks.
So, it is maybe not so probable that we will observe oscillations in signaling pathways in
real cells.

However, this numerical experiment has shown a number of other things of more general
interest, which are easy to observe because oscillations is an effect that is easily studied.
First, when we include the spatial distribution of proteins, we see that the oscillations
are severely damped compared to the original model, almost independent of the diffusion
coefficient as long as it is not too small. This shows that by neglecting diffusion and
spatial distribution when modeling, one may overlook important aspects and draw false
conclusions about the behavior of the system. Of course, the principal behavior is in
large determined by the space-independent reaction terms, but our simulations show that
the amplitude of the effect may be diminished significantly by the addition of diffusion.
Furthermore, in our examples, the oscillations are not sustained, but seem to diminish
with time, indicating that the system is damped by the diffusion. This is a different type
of behavior than the sustained oscillations and is also an important thing to keep in mind
when doing space-independent modeling of biochemical processes. The reason for this
dependence on diffusion is that the problem is directly space-dependent, since we know
that the first reactions take place only at the membrane, while the proteins at the end of
the chain may move about freely. Thus, purely time-dependent modeling can be expected
to produce errors for all signaling pathways, since these are space-dependent by nature,
while for example space-independent metabolic models may be assumed to be more correct,
since the space-dependence is not so obvious in that case.

There is of course a reason for not using full spatial modeling, in particular three-
dimensional modeling, since the solving of systems of PDEs take so much more time than
solving a system of ODEs. The images shown here are results of simulations that took 10
minutes or more. This should be compared to fractions of a second for solving the space-
independent model. The amount of time needed to solve the space-dependent equations
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makes it impossible to use for example parameter fitting algorithms, since such algorithms
require a large number of simulations with different parameter settings. Therefore, space-
independent ODE models are of great importance, but one should be aware that one is
neglecting something and that it may be worthwhile to see what happens in a space-
dependent model.
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3. SPATIAL MODELING OF THE HOG PATHWAY IN YEAST

3.1. THE HOG PATHWAY

One rather well-studied MAPK signaling pathway is the Hogl-pathway in the yeast Saccha-
romyces cerevisiae, where HOG stands for High Osmolarity Glycerol and the MAP kinase
Hogl is the last enzyme in the signaling chain, whose purpose is to sense that the osmotic
pressure on the cell membrane increases and produce the appropriate response (see [4]).
That is, if solutes (e.g. salt) are added to the solution outside the cell, the process called
osmosis will strive to level out the difference in solute concentration over the membrane by
forcing water to flow out of the cell. This is potentially harmful for the cell, since it then
starts to shrink and if that goes on, the cell can not function anymore and eventually it
will die.

To avoid this sad fate, the cell has to respond in some way to this new environment.
It does so by starting to produce glycerol and accumulating it inside the cell, which evens
out the solute concentrations and thereby prevents water from flowing out of the cell. And
the link between the sensing of osmotic pressure and the response in the form of glycerol
production is the HOG pathway. It is not really well known how the actual sensing of the
change in osmotic pressure takes place, but there are enzymes at the cell membrane that
are somehow activated, which leads to the activation of Hogl through a few intermediate
kinases. The pathway is shown in figure 3.1 with some of its surrounding components.
When Hogl has been activated, it enters the nucleus and once there it affects transcription
of several genes through the transcription factors shown at the bottom of the figure.

A central feature of the signaling pathway is that Hogl enters the nucleus. This can
be viewed in the microscope by genetically adding a Green Fluorescent Protein (GFP) tag
to the Hogl protein, which makes the molecules shine bright green when viewed under
ultraviolet light. This is a powerful method to view the localization of proteins in the
cell and the results look like figure 3.2. One should be aware, however, that the GFP is
a protein of about the same size as Hogl, so that the Hogl-GFP fusion is a much larger
protein than wild-type Hogl, which could affect the kinetics and function of the protein.
Still, the Hogl1-GFP fusion is functional in the sense that it is able to carry out its function
in the signaling pathway.

3.2. THE MODEL

Figure 3.3 shows the model that we are studying here. It is a model of the center part
of the Hogl-pathway, where Hogl itself is involved. The focus is on the transport of
activated Hogl into the nucleus. For simplicity, we assume that the MAPKK Pbs2 sits
at the membrane in its phosphorylated form, ready to phosphorylate Hogl-molecules that
come close to the membrane. This assumes that the upper part of the pathway that is
not included in the model has reached an equilibrium and that phosphorylation of Hogl
can only take place at the membrane, which is believed to be true. There is also a small
amount of spontaneous phosphorylation of Hogl both in the nucleus and in the cytoplasm.
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Plasma
membrane

Nuclear
envelope

Figure 3.1: A schematic diagram showing the essentials of the HOG pathway, including the
two different osmosensing mechanisms at the top, phosphatases on the right, cytoplasmic
targets on the left and nuclear targets (transcription factors) at the bottom. Hogl is seen at
the center of it all and it is indicated that upon osmotic stress, it moves from the cytoplasm
to the nucleus.
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Figure 3.2: Hogl-GFP in wild-type yeast cells, under normal osmotic conditions on the
left and after addition of NaCl on the right. The nuclei can be seen as bright spots in the
right image, indicating that Hogl has entered the nucleus. The positions of the nuclei may
be verified by staining with a special dye (DAPI) (not shown). The images are generated

by Claes Molin.
Membrane

Figure 3.3: The model for the Hogl-pathway. The MAPKK Pbs2 is assumed fixed at the
membrane in its phosphorylated form, meaning that the pathway is constantly active. The
phosphatases Ptp2 and Ptp3 are distributed evenly throughout the nucleus and cytoplasm
respectively. Hogl is free to diffuse through the cell, but at the nuclear membrane, the
transport is regulated. Unphosphorylated Hogl is transported in and out of the nucleus
at equal rates, while phosphorylated Hogl (Hoglp) is transported into the nucleus at a
higher rate than it is transported out.
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Figure 3.4: A cross section of the cell used in the model. The nucleus is shown as the
bright spot.

The two phosphatases in the model, Ptp2 and Ptp3 are assumed to be evenly distributed
in their respective domains, the nucleus and the cytoplasm. They are responsible for
the dephosphorylation of Hogl. The only diffusing components of the model are thus
Hogl and Hoglp, which are free to move in the cytoplasm and in the nucleus, but not
between the two compartments. The transport through the nuclear membrane is regulated
so that unphosphorylated Hogl is transported in and out of the nucleus at equal rates.
Phosphorylated Hogl (Hoglp) is transported out of the nucleus at the same rate, but
transported into the nucleus at a much higher rate. The geometry used for the model
is a simplified three-dimensional cell with an off-center spherical nucleus and a slightly
ellipsoidal cell membrane. No other internal cell structure is included. A cross section of
the model cell is shown in figure 3.4.

The model is of course a very simplified one. We disregard the fact that the phosphory-
lation of Hogl takes place in two steps, so that the active form is double-phosphorylated.
We also ignore the upper part of the pathway, the osmosensing mechanism and the phos-
phorylation of Pbs2. Also, the targets of Hogl are not included in the model and there is
no feedback loop to turn off the signaling pathway. The transport of proteins through the
nuclear membrane is also simplified. Here, we use the assumption that the flux through
the membrane is proportional to the concentration of proteins, which is of course a sim-
plification of the rather complex transport system that shuttles the proteins in and out
of the nucleus. And finally, the inner structure of the cell is not included other than in a
reduction of the diffusion constant because of the obstacles.
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We denote the concentrations of unphosphorylated and phosphorylated Hogl by ug
and up, respectively, the nucleus by €2y, the cytoplasm by Q¢ and the nuclear and plasma
membranes 'y and I'. The model then leads to the following partial differential equations

Oug /ot = dyAug — fo(umg,up), in Qe
Oup/dt = dpAup+ folum,up), in Qg
Oup /ot = dgAug — fn(um,up), in Qu,
Oup/Ot = dpAup+ fn(um,up), in Qu,

dug/on = 0, onI'¢
a’LLp/aTL = 0, on Fc
dHBuH/(')n = U,H’U,(év) - bH’U,(I?), on FN
dpdup/On = apug,N) — bpug)c), on 'y
with
Vebsotunm VPtp3 up
Up, U = - + kspou
folum, ur) Kpyso +ug  Kpyps +up et
Vpipaup
Ug, U = ————— + kgopnun.
fv(um, up) Krps + up spNUH

Here, dg and dp are diffusion constants, which we assume to be equal. The four first
equations are diffusion-reaction equations with one diffusion term and one reaction term,
the two first describe the cytoplasm and the two last the nucleus. The reaction terms
make use of Michaelis-Menten kinetics (see e.g. [2, chapter 4]) for the enzyme reactions,
which is a standard way of modeling such reactions. Next follows boundary conditions at
the plasma membrane, which say that the flux through the membrane is zero, i.e. that no
protein molecules may leave the cell. The two last rows are boundary conditions at the
nuclear membrane, both saying that the flux out through the membrane equals a constant
times the nuclear concentration at the membrane minus a constant times the cytoplasmic
concentration on the outside of the membrane. We also need initial conditions that describe
the concentrations at time t = 0. These are shown in figure 3.5 and are chosen so that the
system is near its equilibrium. Most of the Hogl molecules are in the unphosphorylated
state and are evenly distributed between nucleus and cytoplasm. A small fraction of the
molecules are phosphorylated and these have a higher concentration in the nucleus than
in the cytoplasm.

Table 3.1 shows the parameter values used for the simulations. The diffusion coefficients
are taken to be dy/1000, where dy is the diffusion coefficient of Hogl in water, estimated
from equation (2.1). The reaction coefficients are chosen in the same range as for the
Kholodenko model, but their exact values are quite arbitrarily chosen to get a result which
resembles the in vivo behavior. The parameters a and b describing the efficiency of the
nuclear transport are also rather arbitrarily chosen to get a reasonable result and are not
based on experiments. For comparison, one simulation was also done with faster diffusion
(dH = dp = d0/10)
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dg  0.074pm?/s | dp 0.074pm?/s
am 1dy um/s | ap 1dp pm/s
bH 1 dH ]J.III/S bp 3 dp I.LIH/S
Vpbsg 1.0 IIM/S KPsz 50.0 nM
VPtp3 0.2 IIM/S Kptp3 15.0 nM
Veye 0.2 nM/s Kpyy 15.0 nM
kspe  0.0002 57! | kgn 0.0002 571

Table 3.1: Parameter values

The equations were solved using the Immersed Interface Method and finite differences
on uniform three-dimensional grids with 54 x 54 x 54 nodes. The method is described in
Part II of this thesis. The final simulations shown here, involving some 200 time steps,
took up to 30 minutes to complete on a standard computer.

3.3. RESULTS

Figure 3.5 shows the initial conditions used in the 3D simulations. The images only show
the concentrations in a slice through the center of the cell, but the concentrations are
assumed to be uniform throughout the nucleus and the cytoplasm. The values chosen are
near the equilibrium of the system when the pathway is not activated. The exact values
used are 100 nM for Hogl and 1.5 nM and 3.2 nM for Hoglp in cytoplasm and nucleus
respectively, but changing these values slightly does not alter the behavior of the system
much, so the exact values are not very important.

Then at time ¢ = 0, the signaling is turned on, in this model by activating Pbs2, that
is setting Vppso to a non-zero value. In figure 3.6 we see the simulated response as it would
appear in the fluorescence microscope, namely the total concentration of Hogl ([Hogl] +
[Hoglp]) at the start and the end of the simulation. The simulation ends at 22 minutes when
the concentrations are approaching the steady-state levels with the signal turned on. In a
real cell the level of phosphorylation would again turn down when the cell started to adapt,
but since this adaptation is not included in the model, the concentrations just approach
a steady state with high concentration in the nucleus, mostly containing phosphorylated
Hogl and lower concentrations outside.

To see the time evolution of the system, we show in figure 3.7 concentrations along
a line through the center of the cell for all times and for Hogl and Hoglp separately.
We see that the levels of Hoglp are gradually increasing and that Hoglp is transported
into the nucleus, while unphosphorylated Hogl is moved out of the nucleus as the levels
become lower in the cytoplasm when Hogl is phosphorylated. One also notes that there
are concentration gradients in the cytoplasm, arising from the fact that the diffusion is
not fast enough to even out the concentrations at the same rate that the reactions change
them. The dimensionless parameter A defined in section 2.4 is here

)= h2Vpbsg N (10_5)2 -1.0
T dug  74-10714-100

~ 13.5,
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<l ©

Figure 3.5: Initial conditions for the simulation in 3D, with unphosphorylated Hogl on the
left and phosphorylated Hogl (Hoglp) on the right. The images show a slice through the
center of the cell, with the nucleus visible in the right image. Note the different scales on
the two images.

t=0.0 min i t=22.3 min

H

Figure 3.6: The total Hogl concentration ([Hogl] 4+ [Hoglp]) at the start (left) and end
(right) of simulation. These images are comparable to the ones seen in the fluorescence
microscope. The ragged edges are artifacts arising from the space discretization.
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Figure 3.8: Concentrations of Hogl (left) and Hoglp (right) for slow diffusion, when the
signal is turned off after Hoglp has accumulated in the nucleus. The concentrations return

to their original state.
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Hog1 concentration (nM)
Hoglp concentration (nM)

X (um) 0o time (min) X (um)
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Figure 3.9: Concentrations of Hogl (left) and Hoglp (right) for fast diffusion. Here the
concentration gradient is no longer present and the response is slightly faster than in the
example with slow diffusion.

indicating that reactions are slightly faster than diffusion, which should produce gradients
in the concentration levels.

In figure 3.8, we also show the return to the original state when the signaling pathway
is turned off. Starting at the final levels of the previous simulation, and setting Vpys = 0,
we see that the system returns to its original state with low levels of phosphorylated Hogl
and almost equal concentrations in nucleus and cytoplasm.

Finally, we also show a simulation with a larger diffusion coefficient (dy = dp = dp/10 =
7.4um?/s). The results are shown in figure 3.9. Now, diffusion is fast enough to level out
the concentrations, so that they are uniform in nucleus and cytoplasm, respectively. The
response in the nucleus is also slightly faster than in the slow diffusion simulation.

3.4. DISCUSSION

The results shown above show that it is possible to reproduce in simulations the nuclear
relocation of Hogl that is observed when yeast cells are exposed to osmotic stress. The
model used is a very simple one, including only two diffusing components and only the
final steps of the phosphorylation chain. The results should therefore not be used to draw
far-reaching conclusions about the actual behavior of the cell.

What we see, however, is that only with the small diffusion coefficient dy/1000 do we
observe concentration gradients and interesting spatial effects. This value for the diffusion
coefficient is much smaller than the values observed for similar proteins inside living cells
(up to 10-fold reduction compared to diffusion in water [10]). For the larger diffusion
coefficient dy/10, which is more in agreement with observed values, concentrations are
practically constant in each of the compartments. This indicates that diffusion is fast
compared to the reactions involved, so that full spatial modeling with PDEs might not be
of crucial importance for the simple model with the parameter values used here. However,
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the behavior of the system is very much dependent on the enzyme rates, especially for the
phosphatases Ptp2 and Ptp3. The values for the reaction rates used here are not based
on direct measurements, but are taken to be near the values in the Kholodenko model,
which are based on in vitro measurements for MAP kinases in mammalian cells. Those
values may not be correct for the reactions in our model. So, we can not determine from
our simple model whether the explicit modeling of spatial effects shown here is of crucial
importance. In any case, one must remember that cell signaling is a spatial phenomenon,
so that spatial features should be taken into account, in one way or another. What we
have developed is a method to simulate full spatial models that could be used to compare
the output with results from simpler, less computationally intense methods.

In the end, what decides whether a biological model is good or bad, is if it compares
well with measurements of the real phenomenon in live cells. So, to be certain about what
type of models are needed, one should compare the results to precise measurements. This,
however, is not an easy task. The types of measurements available at present to determine
spatial distributions of proteins inside the cell are fluorescence microscopy experiments,
yielding images such as those in figure 3.2. In order to compare these to the results of the
computations made here, one would like to follow a single cell and take images at intervals
of seconds or less, which is rather hard to do. Furthermore, one would ideally like to be
able to view phosphorylated and unphosphorylated Hogl separately, which is not possible
at present.

One may also discuss if a diffusion PDE is an appropriate model for the transport of
proteins inside the cell. First of all, the number of molecules is relatively small. The esti-
mated number of Hogl molecules in the yeast cell is about 7000 [3], giving a concentration
of around 50 nM. Since the diffusion equation is obtained as the limit when the number
of molecules tend to infinity, it may not be an accurate model. The random fluctuations
arising from the small number of molecules may also influence the reactions. However, as
long as there is no data to compare to, it is hard to decide between models. But it would
be interesting to investigate the differences between a PDE model and a stochastic model
for the signaling pathway.

Another issue related to diffusion is that the cell is full of obstacles, consisting of
organelles, cytoskeleton networks, large protein complexes etc. This makes the assumptions
underlying the diffusion model invalid. It has been shown (see [11], [10], [7]) that these
obstacles do not only cause a reduction in the diffusion coefficient, but may give rise to the
phenomenon called anomalous (sub)diffusion. For anomalous diffusion, the mean square
displacement of the molecules is no longer proportional to time ({z(¢)2) o t), but to some
power a < 1 of time ((z(t)?) o< t*). This may give rise to new interesting phenomena and
is also a subject that would be interesting to study.
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THE IMMERSED INTERFACE METHOD ON
UNIFORM AND BOOLEAN GRIDS

Tobias Geback

Abstract

The Tmmersed Interface Method (ITM) is a method which allows the use
of finite differences in non-rectangular domains by immersing interfaces into a
rectangular domain which is discretized by a uniform grid. The finite differ-
ences near the interface are then corrected using the size and position of the
jumps in the solution and its derivatives across the interface.

The method presented here is the Explicit Jump IIM developed by Wieg-
mann and Bube, but we also present some additional details on how to apply
the method in three dimensions, using Robin boundary conditions and to time-
dependent problems.

We then apply the IIM to Boolean grids. These are grids that use com-
binations of a number of Cartesian grids to achieve greater accuracy of ap-
proximations, while using fewer grid nodes. The use of IIM on such grids
requires some new development of the estimation of jumps on the boundary.
We show numerically that the resulting Boolean IIM gives second order error
convergence with respect to the smallest step size in the grid, meaning that
the required number of nodes needed for a given maximal error is considerably
smaller than on uniform Cartesian grids.
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1. THE IMMERSED INTERFACE METHOD

1.1. INTRODUCTION

The use of finite difference methods for solving partial differential equations has a few
advantages, mainly that they are easy to implement and that they may be easily and
quickly solved using Fast Fourier Transform (FFT) methods. However, using the FFT
requires a uniform grid on a rectangular domain, so it can not be immediately applied to
problems in non-rectangular domains, resulting in longer solution times for such problems.

The immersed interface method overcomes this problem, in that it allows the solution
and its derivatives to be discontinuous along interfaces. This makes it possible to immerse
a boundary into a rectangular grid, let the solution be zero outside the boundary and apply
boundary conditions to the solution along the boundary. The finite differences near the
boundary are then corrected using the jumps in the solution at the boundary, so that the
differences remain valid even though the solution is discontinuous. Therefore, the method
makes it unnecessary to spend time on making grids adapted to the geometry and also
allows the use of FFT-based methods even though the domain is not rectangular.

The ideas behind the immersed interface method were first conceived by Peskin [13] and
used in computations on heart flows, with moving boundaries. The method was further
developed by LeVeque and Li [11], [12] and used with finite differences on Cartesian grids.
Finally, Wiegmann and Bube [16], [15] gave the method a clearer formulation and extended
it to more general problems. They call their method the “explicit jump immersed interface
method” or EJIIM, and that is the method we will be concerned with here.

We will first describe the general idea behind the EJIIM and then proceed to the prob-
lem of implementing the method. This will include treatment of three-dimensional prob-
lems and time-dependent problems, which is not included in the original article. We will
also discuss some additional boundary conditions which were not discussed by Wiegmann
and Bube.

This presentation contains no proofs of convergence or error estimates. Wiegmann and
Bube provide proofs of convergence for the method in one dimension and also in two dimen-
sions for the special case when the jumps at the boundary are known beforehand. Other
proofs or error estimates are not known and here we only confirm numerical convergence.

1.2. EJIIM THEORY

The basic idea of the IIM is that standard finite differences, such as

() = IR =2 LB o (11

are not valid for non-smooth functions, since they are based on Taylor-expansions. How-
ever, they may be corrected using the size and position of the discontinuities in u and its
derivatives. Let us denote the jump in the m:th derivative in v : R — R at a point a € R
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by
[u™)], = lim, w™ (z) — lim ul™(z),
Z—)C! T—a
where, of course, u(® = u.
Following [16], we give two lemmas that contain the essence of the EJIIM. The proofs
are essentially exercises in the use of Taylor expansions and we refer the reader to the
original article [16].

Lemma 1.1 (cf. [16, lemma 1]) Let h > 0 and assume u~ € C'"*}([a — h,a]) and u™ €
C" ([, + h]). Then let

w(z) = { v (z)  forz<o,

ut(z) forz > a.

For z € (& — h, @), we then have

! !
h¥ h
u(z+h) = Zﬁu(k)( +Z (@ + (k)] + O,
k=0 " k=0
and
! (=h)* l
(z) = Z 7 u® (z + h) Z [u(k) + O(h*),
k=0 ' k=0

Using this lemma in the expressions for finite differences on a uniform 1d-grid {z;}
with grid spacing h, we get the next lemma.

Lemma 1.2 (cf. [16, lemma 3]) Let z; < o < z;11 and suppose u € C*([z; — h,a)) N
C*((a, z; + h]), with derivatives estending continuously to c. Then the following approi-
mations hold:

U (75) = “(%“)% 7i1) _ ih zf“ ™, + 0(?), (1.2)
(o) = M S Lo P o], + 0082, (13)
sy = M) 20U o) % Z i), 4 0w, (14
sg () = W) 20 bulm) | L 3 @i O e, L op). (15)
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Ti—2 Ti—1 T Tit1

\3% o . Yj+1
\ﬁi/ﬁ’

Q+

Yj—1

Yj—2

Figure 1.1: Immersed boundary in 2D. The immersed boundary intersects the grid at
points a; = (Za,, Yo, ) and @y = (Za,, Ya,)- Interface intersection points (IIPs) are marked
by ’o” and anchor points are marked by ’e’.

The application of these results to higher dimensions is now straightforward. In the
situation in figure 1.1, for example, the Laplacian at (z;,y;) would be approximated as

U(Zig1, Yy) + u(Tio1, y;) + w(@i, yje1) + ulzi, y-1) — 4u(zi, y;)

Au(fl"ia yj) = h2
3 3 (1.6)
1 (Tit1 = %)™ (m) 1 (Yit1 = Yau)™ . (m) 2
+ 13 2—:0 S (Mo, + 5 Z:O MY [, + O(h).
Here,
(m)]  — p(m)+ _ g m)— - I (m) I T (m)
« ) b) )
U], = 6 (0g) — W () = Tim W™ (@y) — Tim w™ (z,y)
(zy)—ak (zy)—an
(zy)ent (zy)eQ™

with ay = (%o, Ya,), £ = 1,2, which in this case gives a different sign for the jump
compared to the previous definition (for the one-dimensional case), accounting for the plus
signs for the corrections in (1.6), while there is a minus sign in (1.4). This new definition
makes it unnecessary to keep track of coordinate directions at the interface when adding
corrections.
This means that on a uniform grid with an immersed boundary, the discrete Laplacian
may be calculated as
AU+ 90, (1.7)
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where A}, is the standard IV x N finite difference matrix for the Laplacian, U is the vector
of function values at the grid points, ¥ contains the coefficients for the correction terms
from (1.6) and C = ([t]ay, [uM]a,, [uP]4,, - -)T is a vector containing the jumps of u and
its derivatives at the points where the interface intersects the grid. So (1.6) corresponds
to one row of (1.7).

We will now consider the problem of solving the Poisson equation

Au(z) = f() z €O, (1.8)

where Q% is a domain in R? or R®*. We wish to apply boundary conditions of the following
types

](x) = 9(x),
52| = 6o (19)

[g_n] (2) = au* (z) — bu™ (),

for z € 90T, that is Dirichlet, Neumann or Robin boundary conditions.

In order to apply the EJIIM, we let the domain QF be embedded in a rectangular area
discretized by a uniform grid and let Q= denote the domain outside the interface 0Q7F.
Setting f(z) = 0in Q™ and thus u~ = 0, the above boundary conditions become the regular
Dirichlet, Neumann and Robin boundary conditions for u* in Q*. The corresponding linear
system of equations becomes

AU +9C =F.

The problem here is that the jumps C' are unknown, so we need to find an additional
relation that determines these jumps. Some of the jumps are determined by the boundary
conditions at T' = 90", while others must be determined in another way. This is done by
creating an interpolation matrix DT, which, given the function values, estimates the jumps
at the boundary. Thus the entire equation system may be written

AU+ 30 = F,
C =D"U + F, (1.10)

where F) contains function values of the right hand side f and F, contains the known
jumps derived from boundary conditions.

1.3. ESTIMATING JUMPS AT BOUNDARIES

The jumps at the boundary are estimated by Lagrange interpolation, meaning that for
each interface intersection point (IIP), i.e. for each point where the interface intersects the
grid (see figure 1.1), we select a number of grid nodes on one side of the boundary and
calculate the interpolating polynomial of degree d, say. This polynomial and its derivatives
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are then evaluated at the boundary. If we do the same from the other side of the interface,
we may take the difference and get an estimate of the jump at the IIP, given function
values at the grid nodes. The number of grid nodes needed to construct a polynomial of
degree d in n dimensions is ("ji'd).

As an example, let us consider a second order polynomial in two dimensions (i.e. d =

n = 2). We select (3) = 6 grid nodes p; = (z;,y:), i = 1,..., 6 with corresponding function

values uq,...,us and set up the equation system
1Lz oy 22 my yE| [awo Uy
1 2y yo 23 Zayo 5| |awo Uy
1 z3 ys =3 z3ys v3| |ao| _ |us (L11)
1 24 ya = 2ays Uil |G|  |ua '
1 ozs ys 22 m5ys y3| |oun us
1 zg yo x2 zeys YZ| |ao2 Ug

in order to construct the polynomial
Pa(z,y) = ago + 10 + a1y + a202” + a112Y + agzy’.

We wish to solve this system for the coefficients a;i, which leads to the requirement that
the determinant of the 6 x 6-matrix in (1.11) (the so called Vandermonde determinant)
must be non-zero. This in turn leads to restrictions on the choice of the grid nodes p;.
These restrictions were studied by Chui and Lai [2] for arbitrary n and d. They give a
sufficient criterion for selection of nodes so that the Vandermonde determinant is non-zero,
which they call Node Configuration A.

Definition 1.1 (Node Configuration A in R) Any set of distinct points in R satisfies
Node Configuration A in R.

Definition 1.2 (Node Configuration A in R*) Let X} = {z1,...,2n0} be a set of
Np = ("Id) distinct points in R*. f(g satisfies Node Configuration A in R™ if there exist
d+ 1 hyperplanes K',1 = 0,...,d with
TN 4+1y+++y NP c K;L

and

22]\]]@714_1, .. -azNJT” S K]n \ (K;:—l U...u Kg)
for j=0,...,d—1, and such that each set of points

‘Y;L_l = {xN}L_1+1a"'axN]”}a 0 SJ S da

viewed as points in R*™! satisfies Node Configuration A in R*!.

Theorem 1.3 (cf. [2, theorem 4]) If X7, withn > 1 and d > 0, satisfies Node Config-
uration A, then the corresponding Vandermonde determinant is non-zero.
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Figure 1.2: Examples of node configurations in two dimensions. The two on the left satisfy
Node Configuration A, while the one on the right does not.

In the definition we use the convention N”; = 0 for all n. Also note that (N} —
Niy) = N;‘_l, so that the (n — 1)-dimensional hyperplane K7 contains N]’-l_1 points,
which by an orthogonal transformation may be regarded as points in R*~! for which the
node configuration problem could again be posed. Therefore Node Configuration A is well
defined.

The recursive definition of the node configuration may seem hard to interpret in all its
generality, so let us see what it means in our above example with n = 2 and d = 2. In
that case, the hyperplanes become lines, and the definition says that we should be able to
select d+ 1 = 3 lines, such that NJ = (1;2) = 3 points lie on the first one, N} = (141-1) =2
on the second (but not on the first) and Nj = (*°) = 1 on the third. Furthermore the
set of points on each of these lines should satisfy Node Configuration A, which they do
automatically, since they are on one-dimensional sets. Two valid node configurations and
one invalid are shown in figure 1.2.

In three dimensions, the hyperplanes become planes, and for a second order polynomial,
we need to be able to choose 3 planes, containing 6, 3 and 1 nodes respectively, making
(*}?) = 10 nodes in total. And on each of the planes, the nodes should satisfy Node
Configuration A in two dimensions.

1.4. APPLYING BOUNDARY CONDITIONS

Having seen how to create interpolating polynomials, we return to the problem of estimat-
ing the jumps in the vector C in (1.10), i.e. we need to determine the matrix DT and the
vector F5 in the equation

C = DTU + FQ.

Here, we do this in three dimensions, since the two-dimensional problem is presented
in [16], while three-dimensional problems are not treated. In order to determine DT, we
first find all the interface intersection points (IIPs). For each of these points, there is a
coordinate direction X; = z,y or z, which is the direction of the grid line on which the
IIP is located. Along this grid line, there are two anchor points, one on each side of the
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interface, which are the grid nodes closest to the IIP and whose finite difference stencils
are affected by the discontinuity at the ITP (see figure 1.1). We denote these py and p_.
Now, for each IIP ¢, we see from lemma 1.2 that we need to estimate the jumps

[ul; = u¥ () —u™(ay), [ux;]j = uk,(0g) —ux, (), [ux;x;]; = ux,x, (05) — ux,x, ()

in order to get accurate finite difference approximations of order O(h). We will see from
numerical results that it is in fact enough to have O(h) approximations at the boundary
in order to get overall O(h?)-convergence. This behavior is confirmed for all IIM methods
and may be loosely motivated by the fact that the boundary is a lower-dimensional set so
that in three dimensions, for example, the number of points with O(h) errors is O(h™2)
rather than O(h™3). One may also use O(h?) estimates at the boundary. This still gives
overall O(h?) errors for the solution, although the actual errors may be smaller (see [16,
example 1]).

In order to approximate the jumps, we select stencils of grid nodes around each of
the anchor points according to Node Configuration A in the previous section and define
matrices P;4 and P;_ in analogy with the matrix in (1.11), using coordinates relative to
p+ and p_, respectively. We also define restriction matrices R;; and R;_, consisting of
only 1’s and 0’s and serving only to select and reorder the grid nodes used in the stencils.
In this way, we see that P -|-1RJ+U is a vector containing the coefficients of an interpolating
polynomial near a; on the +-side of the interface. Using this we may estimate

u™(a;) Lohg by by (BE)? (hy)? (RI)? Rihy RERE bkt
uf(a) |~ {0 1 0 0 2nf 0 0 hf  hf 0 | PR U,
uf () 00 0 0 2 0 0 0 0 0

where we have set h} = Tq; —Tp,, etc, and with similar expressions for derivatives in other
coordinate directions. Naming the matrix of coefficients on the left Q;,, we may now write

u™(a )
U,;_(O{]‘) 1
0[P 0 1[R, _
Ol Il Al Bleerne o
u; (@)
u, ()

It is now time to incorporate the boundary conditions (1.9) into the equation for C.
This is done by creating a matrix £; and a vector Fj ;. The vector F;; contains the known
jump information derived from the boundary conditions, while the matrix £; defines linear
combinations of estimated function values at «; giving the contributions to the jumps that
have to be estimated from the solution U.

In the case where T is immersed into a rectangular domain and u = 0 outside QF, then
of course u~ = 0 everywhere along with its derivatives, so it is not necessary to estimate
u” (). However, by describing the method in this more general context, it may also be
applied when the interface is an interface between two domains where u is nonzero.
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In the case of Dirichlet boundary conditions, this is very simple. Suppose we have a
boundary condition that says [u] = g(z) on the interface. Then, if for example the grid
intersects the interface in the z-direction at «;, we write

[ul; 000 --00 0 -0 9(;))
[us; | =10 1.0 -+ 0 =1 0 -+ 0| QP'"R,U+| 0 |, (1.13)
[t 001 --0 0 —1 -0 0

where F5 ; is the vector on the right and £; is the leftmost matrix, so that we get

[ul; 9()
[ua; | = £; QP "RU + Foj = | uf(a)) — ug(ay)
[z ut (@) — ug,(a;)

Now setting DT = £;Q;P; 'R, we have
Cj= DU + Fy;. (1.14)

By just stacking the contributions from all TIPs, we arrive at (1.10).

For other boundary conditions, things are more complicated. Consider for example
Neumann conditions, 9u/0n = h(z) on the interface. Then we are interested in derivatives
in the coordinate directions, while the boundary condition is given in the normal direction
of the interface. We define the normal direction through the two angles (6, ¢), 0 <80 <,
0 < ¢ < 2m, as in spherical coordinates and introduce a new Cartesian coordinate system
(&,m,¢) with origin at the IIP, which is oriented so that the &-axis points in the normal
direction, the n-axis is perpendicular to the £-axis and lies in the (z,y)-plane, and the
(-axis is perpendicular to the other two and has positive z-component. This coordinate
transformation yields

[Tug); | [sinf cosp —sing —cos cos]| [[ugl;]
[uy]j| = |sinf@sing cose —cosfsing | |[uy,l; (1.15)
| [22.]; ] | cosf 0 sinf | | [uls]
[[uel;] [ sinfcose  sinfsing cosf] [[u.l;]
[ug];| = —sing cos 0 [uy]; (1.16)
[ [ue] ] | —cosfcosp —cosfsing sinf]| |[u,l];]

By the boundary condition, we know that [ug]; = h(q;), so using (1.15) we get [u,];, [uy];
and [u,]; expressed in h(e;), [u,]; and [u¢];, which, using (1.16) may be expressed in the
quantities u; (a;) —u, (), uy (o) —u, (o) and uf (o) —u, (o ), which we get from (1.12).
Thus, we get for example

[u,]; = sin @ cos ¢ h(a;) + (sin® ¢ + cos? 0 cos? ) (u) (o) — u ()))

+sin ¢ cos ¢ (cos® 0 — 1)(u; (a;) — u, (a;)) — cosd sinf cos ¢ (uf(a;) — u; (),
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where the first term is known and therefore included in F3;, while the coefficients of
the second term are included in £;, so that we get (1.14) once more. The expressions
for [u,]; and [u.]; are derived similarly, while [u]; = u"(q;) — u™(0;) and [ux,x;]; =
u}ij (a) — ux, x; (q) fori=1,2,3.

Finally, we consider Robin boundary conditions, i.e. du/0n = aut — bu~. Using the
above notation, this leads to the expression

uf = ug = au" —bu” =afu] - (b-a)u”,

which gives us
1 b _
[u]; = E“?(aj) + (o = Du(ay)-

Furthermore, we need to impose the implicit condition that ugf = ug, which we impose
by setting h(cy;) = 0 in the Neumann case above. In summary, this leads to the above
expression for [u];, expressions similar to the Neumann case (but with F; = 0) for [ux;];
and the same expressions as before for [ux;x;];-

This way, we construct the sparse matrix DT and the vector F, by stacking the contri-
butions from each ITP. If we have multiple interfaces with different boundary conditions, we
just include the IIPs from all the interfaces and use the corresponding boundary condition
for each IIP according to the above treatment.

Finally, we need to construct the sparse matrix ¥ in (1.10). This matrix contains the
coefficients of the jumps in (1.2) to (1.5), placed at appropriate positions, so that the
corrections affect the corresponding anchor points. Since the corrections are additive, the
W-matrix is easy to construct.

We also remark that it is possible to apply other types of boundary conditions, such as
in composite material problems illustrated in [16], by the same method as shown here.

1.5. SOLVING THE LINEAR SYSTEM

Through the previous sections, we have arrived at the system of equations

AU +9C = Fy,
C = DTU + F,,

which is (1.10). Solving for U in the first equation and inserting this into the second, we
get

U=A'(-9C + F),
(I +D"A'0)C = D"A'Fy + B,

Here, the second equation is a ’small’ system of equations for C' with 3N;7p rows (where
Nirp is the number of IIPs). It may be solved using iterative methods to avoid forming
the matrix on the left explicitly, which would be unfeasibly memory-consuming for three-
dimensional problems, since the matrix is not sparse. We use the BiCGStab method (see
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e.g. [10], [9]) to solve the system and since we then only need to be able to form the matrix-
vector product (I + DTA;I\II)C , our only remaining problem is to apply A;l. Since our
domain is embedded in a rectangular uniform grid, we may use the Fast Fourier Transform
to achieve this efficiently (see e.g. [14, chapter 19]). If N is the total number of grid nodes,
the FFT is applied in O(N log N) operations and this is the most time-consuming part of
each iteration in the BiCGStab algorithm. We have used the library FFTW [5] to get a
fast implementation of the FFT in C.

Having solved for C, all that remains is to compute U from the first equation by
applying A;l once more.

1.6. OTHER EQUATIONS

The immersed interface method may also be applied to other types of equations. First of
all, it is straightforward to apply it to the heat equation

w(z,t) — dAu(z,t) = f(z,1), z€QT, t>0,

with suitable boundary conditions, using for example an implicit Euler scheme in time. In
that case we get

(I/At — dAR)Ups1 — dYChyq = U, /AL + Fr,
Co1 = D"Upi1 + Py,

and

Unir = (I/At — dA) ™ (dUCosy + U /AL + F),
(I — DT(I/At — dA)~1dT)Cryy = DT(I/AL — dA) "N (Fy + U, /At) + F,

where the operator (I/At — dA;)~! may be applied using FFT and the second equation
solved using BiCGStab for each time step.

It is also possible to solve equations in multiple domains with boundary conditions
between the domains or with different coefficients in the equation in different domains.
The technique is exactly as described in the previous sections. See section 1.7 and [16] for
examples.

Other combinations of spatial derivatives than the Laplacian may also be considered,
although they are not discussed here. It should be clear, however, from the discussion
above how the immersed interface method should be applied to these cases.

It is also in principle possible to use the method for moving boundary problems, where
one would like to avoid costly grid generation. It would then, however, be necessary to
compute the matrices DT and ¥ at every time step.

1.7. EXAMPLES

Our first example is solving the Poisson equation inside an ellipsoid £ with half-axes
0.44, 0.3 and 0.3, centered at (0.5,0.5,0.5). The equation we solve is given in spherical
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coordinates as

AU(T, 0, (19) = f(r’ 0, 99)a (’f‘, 0, 99) E€EE,
U(T, g, 90) = g(T, g, ‘10)7 (T, 0, 90) € 0E,

where f(r,0,¢) = —5sin(3p) and g(r,0,¢) = r?sin?fsin(3p), which gives the solution
u(r,0, ) = r?sin?@sin(3p) in E. The solution and the errors are shown in figure 1.3.
We see that this non-trivial problem can be solved with reasonable accuracy, even on the
rather coarse 40 x 40 x 40 grid used here. The solution took less than a second to compute
on a standard computer. The errors are of order O(h?), which is shown more clearly for
another example in section 2.4.3.

The second example shows that more complicated equations and boundary conditions
may be solved using the immersed interface method. We solve the heat equation in two
dimensions. The domain consists of two concentric circular discs, C; and Cs, with C inside
C5. We apply Neumann boundary conditions at dC5 and Robin boundary conditions at
0C1. The problem may be written as

88_1;(-7‘" Y, t) - Au(xaya t) = Oa (x,y) S Cl @] 02, t> 0,
ou
g @t = 0 (7,9) € 0Cs, £ 20,
D ay,t) = 1u(,y) ~ 3(r,0), (r,9) €O, 120,
U(.Z‘, Y, O) = ’U,()(.’L', y), (x,y) e CiuUC,.

Here, uy(z,y) is a bell-shaped function inside C; shown at the top of figure 1.4. uy and u,
are the values of u at dC1, on the outer and inner side of the boundary.

The method used is the one described in section 1.6 with implicit Euler time stepping.
The boundary conditions are implemented as described earlier.

Obviously, the exact solution is not known for this problem, so we have nothing to
compare to. However, the example shows that it is possible to solve multiple boundary,
time-dependent problems with a range of boundary conditions using the immersed interface
method. Here, for simplicity, we have used only circular and elliptical domains, but in the
method itself there are no limitations on the shape of the domain. Further examples are
given by Wiegmann and Bube [16] and in part I of this thesis.
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0.1

0.05

Figure 1.3: EJIIM for the Poisson equation inside an ellipsoid in 3D. The solution was
computed on a 40 x 40 x 40 grid and is shown at the top. Errors compared to the exact
solution are shown at the bottom. Values are shown on selected slices through the domain.
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0.9

0.8

0.16

0.14

Figure 1.4: EJIIM for the heat equation inside two concentric discs. The initial data is
shown at the top and the solution at ¢ = 0.03 below. The domain boundaries are clearly
visible in the second figure.
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2. THE IMMERSED INTERFACE METHOD ON BOOLEAN
GRIDS

2.1. INTRODUCTION

There is a constant desire to make computations as fast and efficient as possible, in order
to be able to solve larger problems with higher accuracy, or just to minimize the time spent
waiting for the computer to carry out the calculations. The Boolean grids presented here
provide one method to make computations faster by using less data, while still obtaining
the same accuracy in the calculations.

The Boolean methods were originally developed in the 1960’s in order to represent
surfaces used in computer-aided design (CAD). They were first used by Coons [3] to cre-
ate interpolatory surfaces, coinciding with prescribed values on the boundary of the unit
square. The theory was then developed in a series of articles by Gordon [7], [6], resulting
in an abstract theory of commutative projectors which is presented here in section 2.2.1.
There is also a book by Delvos [4], where the methods are presented in some detail.

As we will see, it is straightforward to use finite differences on Boolean grids and one may
use FFT-based methods to solve PDEs on such grids, gaining several orders of magnitude
in the number of points needed for a given accuracy. However, just as for uniform grids,
these methods can only be applied to rectangular regions. Therefore it is interesting to
apply the Immersed Interface Method from the previous section to Boolean grids in order
to get a similar decrease in computational time even for problems in irregularly shaped
domains.

The outline of our presentation is as follows. In section 2.2, we present the abstract
theory of Boolean interpolation and construct Boolean grids on which we apply finite
differences and the immersed interface method. In section 2.3, we discuss how to extend
the immersed interface method to work on the Boolean grids and finally, in section 2.4, we
give some numerical examples of the use of Boolean grids for interpolation and equation
solving.

As for the IIM on uniform grids, we do not have any proofs of convergence or error
estimates for the IIM on Boolean grids. We only confirm numerical convergence and
superiority to the uniform ITM.

2.2. BOOLEAN INTERPOLATION
2.2.1. THE ALGEBRAIC THEORY

The following presentation is taken from Gordon [6] and is an abstract algebraic approach
to approximation theory, giving a motivation for the use of Boolean approximations.

We consider a linear space F consisting of functions. On this space, we define M
projectors P, j = 1,..., M, meaning that P; : 7 — ®; is a linear transformation with the
property P;P; = P;. Here ®; is a subspace of F for j =1,..., M.
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A function 7 = P;f € ®; is called the approximation of f € F, and the function f — 7
is called the remainder.

We define multiplication and addition of projectors in the natural way and note that
the associative and distributive rules hold for projectors defined on the same domain F.
Furthermore, we assume that multiplication is commutative, i.e.

PP, =P.P; forallj k=1, .. M.

It is obvious that the product of two commutative projectors, A = P;F, is again a
projector, since AA = A. This is not true, however, for the sum of two projectors, since

Therefore, we introduce the Boolean addition, denoted by @ and defined by
Pj@PkZIDj-FPk—]Dij. (2.1)

It is easy to check that P; @ P is again a projector.
We also need to compare projectors in order to decide which are better than others.
To this end, we introduce the ordering relation < defined by

Pngk(:)Pij:Pj, (22)

that is, if P; < Py, P; removes at least as much of the function f as Py does, or ®; C ®.

Now, we may define the space ¥ as the set of all projectors which can be built up as
combinations of the P, 7 = 1,..., M, under the operations of multiplication and Boolean
addition. The set W is now a distributive lattice under the partial ordering <. This means
that for all projectors A, B,C € ¥, the following properties hold (and are easily checked):

i) reflexivity A<A

it)  anti-symmetry A< Band B< A= A=B

i11)  transitivity A<Band B<(C=ALC

iv)  idempotence @A®A=Aand AA=A

v)  commutativity A@® B=B&® A and AB=BA

vi)  associativity =~ A(BC) = (AB)C and A® (BaC)=(Ae®B)aC

vii) distributivity A(B@®C)=AB® AC and A® (BC)=(A@B)(Ae ()
viii) consistency A<B&AB=A< A®B=B

(2.3)

It is a property of every lattice that any pair {A, B} of elements has both a least upper
bound (denoted sup), that is the least element C' such that C' > A and C > B, and a
greatest lower bound (denoted inf), that is the largest element D such that D < A and
D < B. These are given explicitly by

sup{4,B} = A® B,
inf{A, B} = AB.
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It follows that every finite lattice has a unique mazimal element M € ¥, that is an
element satisfying A < M for all A € ¥, and a unique minimal element £, which satisfies
L < Aforall A€ V. It is easily seen that

M=sup{P}}L, =P &P, & & Py,

It is also interesting to study the range of the projectors in ¥. It is clear that the range
of P; @ Py is ®; @ ®; and that the range of P;P; is ®; N ®;. Thus, the range of M is
the largest space formed from the ®;:s, namely ®; @ --- @ ®,, and the range of L is the
smallest space, &1 N+ NPy

Finally, we introduce the remainder operator or the complement of a projector A,
namely

A =T A,

where I is the identity operator. It is clear that A’ is a projector, and that
AA = AA=0, Ao A =1

Now for each Pj, we set R;j = Pj = I — P; and note that although in general R; ¢ ¥, the
set of combinations of these remainder operators also form a distributive lattice, denoted
U’. Also, if we allow the three operators multiplication, Boolean addition and complement
to work on the projectors, we generate a Boolean algebra, where additionally de Morgan’s
laws hold

(Ao B)' = A'B, (AB))=A"® B'.

Now, the final statement is that given a commutative set of projectors {P]}]]Vil, the
identity operator, I has a mazimal decomposition

I=MoM =M+M=P,@---®Py+ (RiR;-- Ru), (2.4)
and a minimal decomposition
I=Lol' =L+L =PP---Py+ (R1i®---&Ruy). (2.5)

Here, RiR,--- Ry = inf{R;}}’, € ¥ and R, ® --- ® Ry = sup{R;}}Z, € ¥’ as before.
This means that by choosing the algebraically maximal projector M, we minimize the
remainder and vice versa.

2.2.2. BOOLEAN GRIDS

We now wish to apply the abstract results from the previous section to the problem of
creating a grid on which we wish to apply finite difference solvers. This could be done in
many ways, depending on how one defines the projectors Py, ..., Py. Here, we only discuss
the grids that we actually use and the reason for using those will be clear later on.
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First, assume a two-dimensional problem, where we want to approximate the smooth
function f(z,y) on a rectangle Q = [ag,b;] X [ay,b,]. We introduce step sizes hy, =
(by — az)/(N1z — 1) and hyy = (b, — ay)/(N1,, — 1), interpolation points {z;}/y, {yi} iy,
with z; = a; + h1,(i — 1), y; = a, + h1,,(j — 1), and define the interpolating projectors P}
and P, by

1P 1) = Y £ ),

N1,y

[P} fl(z,y) = Zf(x, Y% (y),

where ¢;(z) and ;(y) are piecewise linear hat functions, satisfying ¢;(zx) = &y and
¥;(yx) = djx. Using these two projectors, we may define the algebraically maximal and
minimal projectors as

M., =P, &Py =P} + P, — PP,
L., =P.P,.

We see that the minimal projector £,, is the regular interpolation operator, that interpo-
lates f(z,y) only on the nodes (z;,y;). The maximal projector, however, is different. Tt
interpolates f(z,y) along the lines z = z; and y = y; and since the values at the nodes
(zi,y;) are included both by P, and P}, one occurrence is removed by subtracting P, P, .
Since P! f is piecewise linear in z, we see that P! f approximates f(z,y) to an accuracy
of O(h?,), that is
R.f =(I-P)f =0(h,).

This obviously holds for Py1 too, and we may therefore deduce from (2.4) that the remainder
of the maximal projector M,, is given by

while for the minimal projector the remainder is

Loyf =~ Ly)f = (R, ®R))f = (B, + Ry — RyR,))f = O(h7, + hi,).

We see that the maximal projector has a fourth order error, while the standard interpolation
operator, which is minimal, has a second order error. This can also be easily checked by
using Taylor expansions of f. One then sees that for the maximal operator, the second
order terms are eliminated by subtracting the term P, P, f, so that only fourth and higher
order terms remain.

There is, however, a difference between M,, and L,, in that M,,f is not fully dis-
cretized, since it still has a continuous variable along the lines 2 = z; and y = y;. But
along these lines, we can afford a finer discretization. We introduce new (smaller) step
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Figure 2.1: The two-dimensional Boolean grid with step sizes h; and hy. The grid consists
of three parts, the horizontal lines (Ga1), the vertical lines (G12) and the coarse grid (G11)
consisting of the intersection nodes of these lines. These three are combined as in (2.6)
below to create the Boolean approximation.

sizes hy . and hyy and projectors P? and P, identical to P except for the step size. Since
the error in P2f is of order h%’z, we see that to preserve the O(h%zh%y) error estimate, we
should set

h2,z = hZ,y = hl,zhl,ya

or hy = h? if the step sizes are equal in the two directions. This results in a grid like the
one in figure 2.1. Tt is important to ensure that the nodes for P! form a subset of the nodes
for P?, so that P! and P? commute and that P! < P2,

The resulting projector may be expressed in several ways, which are all equal, as can be
shown by direct calculation using the rules (2.3) and the fact that P} < P2 and P, < P?.
Denoting the resulting projector by P, we have

Pay = PIP? @ P2P! = P2P(P! @ P!) = PP} + P'P? — PIPL. (2.6)

The last form shows the three uniform grids which we must combine in order to get the
Boolean approximation, namely the grids G, with steps hy; and hy y, G2 with steps by,
and hy, and the coarse grid Gy; with steps hy, and hy,. Using the second form of P,,
and de Morgan’s laws, we may also express the remainder as

Ruy = R ® R, ® RyR, = R2 + R, + RR, — RiR, — R, R,
where we again see that the resulting error will be of order O(h% + h}), so that a choice of
hy = h? is optimal.
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There is another way to view the error cancellation property of the Boolean grids, as is
shown by Bungartz et al. [1]. This view is based on an error splitting for the approximation
of the form

ulst —u = e, (hy,) + ey(hy) + R(hg, hy),
where e, only depends on h,, = and y, e, depends only on hy, z and y and |R(h,, hy)| <

¢(hghy)? for some constants ¢ and v independent of z and y. We can now study combina-
tions as the ones above, namely

ety — qahahy | haohy by

for some « > 0. Then, the resulting error is

aheh oy = ey (ahy) + ey(hy) + R(ahg, hy) + ez (hy) + ey (ahy) + R(hy, ahy)
—ez(he) — ey(hy) — R(ha, hy)
=e,(ah,) + e, (ahy) + R(hy, hy).

Now, if e, and e, are the dominating terms and « is small, then we have reduced the
error. For example, if e;(hs) = O(h2), ex(hy) = O(h2) and v = 2 as is the case for the
projections above, and if & = h, = hy, then @*" — u = e,(h2) + e,(h2) + R(h, h) = O(hY),
while u"* —u = e,(h) + ¢,(h) + R(h,h) = O(h?) exactly as above. This idea may be
pursued further, taking combinations of a series of grids to eliminate errors while using as
few points as possible. This combination technique was introduced by Griebel et al. [§]
and is summarized in [1].

Assuming Ny, = N1y = Ny and Ny, = Ny = Ny, the number of nodes used in the
Boolean approximation (2.6) is

Ng = 2N; N, + N? = O(N}),

if we choose N, proportional to N2. This should be compared to the case of a standard
grid, where the number of points needed to achieve the same order of accuracy is

Ng = N? = N = O(N}),

since we must choose N of the same magnitude as IV, in order to get an error of order h3.
We therefore see that by using a Boolean grid, we save one order of magnitude in N7 while
retaining the same accuracy of approximation.

So far for two-dimensional problems. In higher dimensions, one would expect even
greater gains and we will now derive an approximation scheme and show that it is indeed
so. We consider the same problem in three dimensions. As before, given a smooth function
f defined on a box Q = [a,, b,] X [ay, b,] X [a,,b,] € R, we define the projector P} by

(P1(w02) = 3 S0, o),

i=1
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Figure 2.2: The building blocks of Boolean grids in 3D. The maximal grid corresponding
to sz is shown on the left and the intermediate grid of Py, on the right. The maximal
grid is created by using a two-dimensional Boolean grid on each of the sides of the cube
and is a combination of 13 different grids. The intermediate grid is created by discretizing

lines in each coordinate direction, and consists of only four different grids.

where ¢; are hat-functions as before, z; = a; + (i — 1)h1, and hy, = (by — az) /(N — 1).
We similarly define Pyl, P}, h1y, h1,, Ny and N,. It is clear that P} f interpolates f on
the planes £ = z; and that the error introduced by this approximation is O(h%). Now,
to make a full Boolean approximation, we would make an approximation on each of the
planes x = x; using the two-dimensional Boolean grid introduced above, resulting in a
projection for this direction given by

M _ 2 p3 2 p3 1
Pz _(Psz®PzPy)Pz7

where we have introduced the projectors P2 and P2 for a = y, 2, corresponding to the step
sizes hg o and hg ., respectively. Defining ’P;V‘ and ’Pf/‘ similarly and taking the Boolean
sum, we get the final Boolean projector in three dimensions,

P, =Pl oP o P
_ (p2p3 2 p3y pl 2 p3 2 p3y pl 2 p3 2 p3y pl
=P, ® Pl © P& Py @ Pl @ Py, (27)
where we have used the notation Pi% = PiPiPF. This would result in a grid made up of
cubes like the one on the left of figure 2.2. In order to estimate the error of this projection,
we study the remainder operator
RM _ [ pM _ p123 pis2 pa13 pasi p3ia psal

TYZ TYz ryzt leyzt eyzt teyzt teyzt ey 2
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with
R,y = R, ® Ry ® R} = R, + Ry + R} — R,R) — RyR} — R)R} + RR}R]

and so on. Using this in the expression for Rﬁ;}z, and remembering that R, > R/ if
i < j for « = z,y, z, one could in principle write out the full expression for the remainder
using only regular '+’ and ’—’ operations. This expression would include terms of the type
R,R,R!, RZR} and R}, as well as terms which lead to higher order errors. Thus, assuming
for simplicity that the step sizes are equal in all directions (i.e h;z = h;y = h;j, = h; for
j=1,2,3), and using the fact that R} f = O(h3), we see that

RMLF = O(hS + bl + h2),

from which we deduce that it is optimal if A = h§ = hZ, i.e. h3 = h3 = h3. In that case,
we will get an error of order h$, while the number of points used is

Ng = 3N; (2N, N5 — N2) — 3N?N; + N? = O(N?),

while in order to have the same accuracy on a regular grid, we need Ng = N3 = O(N7)
grid nodes, i.e. a difference of 3 in the exponent.

This seems very good indeed, but there is a problem with this approach, which is seen
if we expand (2.7) into an expression containing only regular *+’ and ’—’ operators. Then
we get 13 distinct terms, which is far too many for our purposes, since it requires a lot
of overhead calculations as will be seen in the next section. It may also be a problem to
actually create and use such Boolean grids, since even a fairly large h; will create a very
small h3 and make the number of points needed very large. Therefore, we take a middle
way, reducing the number of terms but paying for this by getting a reduction in accuracy,
although we still maintain a clear advantage over the regular grid.

So, using the same definition of PJ as above, we create the projector

P.y. = P.P,P} ® P;P,P; ® P!P,P, = P} ® P}, ® P,,2, (2.8)
which corresponds to first projecting the function onto lines {z = z;, y = y,}, which are
spaced with the step size hy, then discretizing these lines with step size hy and finally take
the Boolean sum of the three directions. This gives a grid like the one on the right of
figure 2.2. Expanding P,,, using the algebraic rules, we see that

Pyys = PAL 4 pi2l 4 pl1z_ gplll (2.9)

TY2 TYz TY2 TYyz)?

giving us just four terms. The remainder becomes

211 pl121 pli12
Rauy. = RZLRIZLR

TYZ< LYz TY2)
with

R, =R.®OR,®R,=R.+R,+R, - R.R,~ R:R, — R)R, + R.R,R],

TYZ
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which means that R,,. includes terms of the type R; and R, R, as well as higher order
terms. Therefore,

Rzyzf = O(hél1 + hg)a

and we see that a choice of hy = h? gives the optimal O(h{) error. The number of points
used is now
Np = 3NN, — 2N} = O(Ny),

while for a regular grid Ng = N3 = O(N?) for the same accuracy.

2.2.3. APPLICATION TO FINITE DIFFERENCE SOLVERS

It is clear from the previous section that if we can create some approximation method with
second order errors in each direction, we can use the Boolean grids defined there to improve
accuracy, while using fewer grid nodes than in a uniform grid. Specifically, we want to use
these grids for finite difference approximations of derivatives, in particular the Laplacian
in two and three dimensions.

Starting in two dimensions, we therefore define the standard finite difference approxi-
mation of the second derivative in x by

U(CC,'+1, y) - 2'111(501, y) + u(xi*h y)
h? ’

Dg,hu(xia y) =

2

which is second order accurate, that is, the error in the approximation is O(h?). Dj

defined similarly. The discrete Laplacian is then given by

et

Ay gy ) = D3 w(@i y) + Dy w(wi, ;)

Assuming for simplicity that the step sizes are equal in the two directions (h1, = h1y = h
and ho, = ho, = ho), we may then investigate the Boolean approximation of the Laplacian,
which according to (2.6) should be defined as

A}lfl,hzu(za y) = Ahz,hlu(m’ y) + Ahl,hzu(za y) - Ahl;hlu(z’ y)

The accuracy of this approximation is then O(h? + h2), i.e. O(h?) if we choose hy = h2.
It is again easy to see why the errors cancel out. The two first approximations have one
fine direction and one coarse. The derivatives in the coarse direction are canceled by
subtraction of the last term, which is coarse in both directions. It should be emphasized
that the O(h?)-accuracy holds not only on the Boolean grid in figure 2.1, but at any point
inside the domain, as long as we use the Boolean combination of the three components.
That is, having calculated the three contributions A, j u, Ay, p,u and Ay, »,u on the three
grids, we may linearly interpolate on each of these and combine these interpolations by the
Boolean scheme to get the value at any point. These interpolations introduce new error
terms, and the error is in general larger, but the order of the error is the same as before.
In three dimensions, things are very much the same. We use the intermediate scheme
defined by (2.8) on the grid on the right of figure 2.2, which consists of four grids. Three
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Figure 2.3: Comparison of different types of immersed interface methods applied to the
Poisson equation inside a circle in R?, where the solution is a sixth degree polynomial. The
errors for the naive Boolean ITM, where three complete solutions by IIM are combined by
the Boolean scheme, are denoted by 'x’. The errors for IIM on uniform grids are denoted
by 'o’. It is seen clearly that in the naive method, the errors are not eliminated in the way
we want.

grids are fine in one direction and coarse in the other two, while the last grid is coarse in
all directions. Again, using the appropriate Boolean scheme given by (2.9), we set

Afljl,hgu(xa Y, Z) = Ahz,hl,hlu’(xa Y, Z) + Ahl,hz,hlu(l‘a Y, Z)
+ Ahl,hl,hzu(xa Y, Z) - 2Ah1,h1,h1u(xa Y, z)’

to get an O(h? + h2)-approximation.

Solving for example the Poisson equation Au = f using finite differences on Boolean
grids is now straightforward. One simply solves the problem on each of the component grids
and then combines the solutions using the Boolean scheme. This is shown in example 2 in
section 2.4.2.

2.3. AprrLYING IIM TO BOOLEAN GRIDS

Having successfully applied finite differences on the Boolean grids, we now try to implement
the Immersed Interface Method as described in section 1 on these grids in order to cope
with domains that are not rectangular.
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From the previous section, it might be suggested that one could use the Immersed
Interface Method straight away on the component grids and then combine them using the
Boolean scheme to get improved results. This does not work, however, since when we
introduce jumps in the finite differences, the errors no longer behave in the correct way to
be eliminated by the Boolean scheme. This is seen in figure 2.3.

Therefore, we need a slightly more elaborate method. The reason for not getting the
desired elimination of errors is clearly the estimation of the jumps at the boundaries,
since the results in section 2.4.2 show that finite differences work fine on Boolean grids.
So, instead of approximating the jumps on each grid individually, we use the Boolean
interpolation to get the jumps from the solution. That is, we must create a matrix D%
implementing this Boolean interpolation so that

C = DLU + F,

with U = [Uf; U, UL]" containing the solution on the three grids (supposing we are
solving a two-dimensional problem). Here U;; is the solution on the grid created by the
projection Pj:?]l As before, if we intend to solve the Poisson equation, we also have the
equation

AU +9C = Fy.

Here Ay works on the three grids separately and ¥ is divided into three blocks correspond-
ing to the grids. As in the uniform case, we also solve for C' in the equation

(I + DEA'O)C = DEA'F + Fy
and then finally compute the solution U as
U* = BA,;l(—‘I/C + F).

Here B is a Boolean interpolation matrix, combining the three solutions Ui, Us; and Uy,
into the final solution U*, which could be defined on any grid.

The procedure outlined here is our Boolean IIM, resulting in the errors shown in section
2.4.3. The only difference to the uniform IIM described in section 1 is the jump approxi-
mation matrix DL and the interpolation matrix B. The interpolation matrix B uses the
Boolean schemes (2.6) and (2.9) in two and three dimensions respectively, together with
linear interpolation between grid nodes, in order to get the solution U* at the desired
points. The matrix D7 is slightly more complicated and we will now discuss how to form
it.

2.3.1. BOOLEAN APPROXIMATION OF JUMPS

Just as in the IIM on uniform grids, we need to approximate the jumps of the solution and
its derivatives on the boundary, using the values of the solution on the grid nodes. The
boundary conditions are implemented exactly as for the uniform grids (see section 1.4),
so what we need to do here is to create equivalents to matrices Q;, P; and R; in (1.12)



2.3 AprpPLYING IIM TO BOOLEAN GRIDS 25

x >

Figure 2.4: Some IIPs on the Boolean grids. The IIPs are marked with circles and the
anchor points with crosses. In two dimensions, the IIPs are evenly distributed with spacing
ha. At ’A’, the IIP interferes with finite differences both on the fine grid (with step size
hy) and on the coarse grid (with step size h;). Two of the affected finite difference stencils
are indicated by dotted lines. In three dimensions the IIPs are distributed along the edge
of the grid cube, giving rise to a two-dimensional Boolean grid pattern.
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in order to estimate the values of v and its derivatives at the interface intersection points
(TIPs) from both sides of the interface.

So, first of all, we need to find all the TIPs, that is, all the points where the interface
intersects the grid lines and thus interferes with the finite differences. Suppose that we
want to calculate the Laplacian in two dimensions. Then the IIPs are all the points where
the interface intersects the fine grid, as is shown in figure 2.4. That is, we will have as many
IIPs as in the case of a uniform grid. In three dimensions, however, the IIPs are distributed
on the surface in a two-dimensional Boolean grid, meaning that we have much fewer I1Ps
using a Boolean grid than a uniform one, namely O(N;N;) IIPs instead of O(N2). This
also implies that the vector C' will be smaller and thus the entire system of equations will
be smaller.

Having found the IIPs, we assign to each of them two (or more) anchor nodes, on both
sides of the surface. These are the nodes where the finite difference is affected by the jump
in the solution at the IIP. The particular difference taken may be either of size h; or size
ha, as is shown in figure 2.4. From (1.4), we see that this gives rise to corrections to the
regular second order difference D?u given by

%(m) = Diu(w;) + 1 Z (xi;lia)m[u(m)]a +O(h?). (2.10)

Here, « is the location of the IIP, so that x; — « < h, and h may be either h; or hy. The
question now is how well we need to approximate the jumps and how many derivatives
we need. We saw earlier that in the uniform case it is enough to get an approximation of
order O(h) on the boundary in order to get overall O(h?)-convergence, and therefore that
we may ignore the jumps in the third derivative. In the Boolean case, however, it is not
quite clear what we need to do. We want overall O(h2)-convergence, but if we ignore the
jumps in third derivative in (2.10), we will at some points get errors of order O(h;), which
seems to be too large. Fortunately, our numerical results show that it is in fact sufficient
to use jumps in u, v’ and u” and use Boolean interpolation to approximate these to order
O(h3), O(h3) and O(hs,), respectively. From (2.10), we then see that we will get truncation
errors of order O(hy) at some nodes (where h = hy) and O(hs) at others, while the overall
error in the solution will be of order O(h3). The explicit reason that this approach works
is not known.

How this is done is most easily seen from figure 2.5. Suppose we want to approximate
the function values and the two first derivatives in the z-direction at the IIP a; with
coordinates (Z4;,%a;)- We use regular Lagrange interpolation on each of the grids, that is,
given grid nodes with z-coordinates z1,...,z, we set

L

i(z) =Y ulm)pi(z),

=1
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Figure 2.5: Interpolation stencil for jumps at the IIP marked by '«’. The nodes in the G'o;
grid are marked by ’e’, in the G5 grid by 'o’ and in the G;; grid by 'o’.
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To compute derivatives, we just differentiate the basis functions, getting
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and so on. In this way, we may write for each of the three grids

Ly

i) = 303wl w)di(n)diy):

i=1 I=1

Here, @ is of course the projection of u onto the space spanned by the basis functions,
so from the theory of section 2.2 we expect that if we combine the three grids according
to the Boolean sum, we would eliminate the largest errors. Therefore, we choose grid
nodes according to figure 2.5, with (at least) three nodes in the z-direction in order to
approximate second derivatives, and (at least) two nodes in the y-direction in order to
extrapolate the function to the IIP in that direction.

One could also understand the choice of nodes in the following way. What we really
want is a fine (hy) approximation in the z-direction using the grid Gay, which is fine in
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that direction. But since we must extrapolate in the y-direction, we introduce large (hy)
errors in that direction. These are eliminated by subtracting the approximation on the
coarse grid G1q, but this in turn adds large (h1) errors in the z-direction. These are finally
eliminated by adding the approximation on the G5 grid, which does not introduce new
errors in the y-direction.

These principles may be used to approximate any derivative to any order of accuracy, if
one uses enough grid nodes for the approximation. For our purpose it is best to use as few
grid nodes as possible, since the more nodes we use, the more coupled the resulting system
of equations becomes, which makes it harder to solve. Already, the minimal number of 15
nodes shown in figure 2.5 is much more than the six nodes needed on uniform grids. One
should also note, however, that if the IIP lies on one of the coarse grid lines (as point A
in figure 2.4), it is sufficient to use the three nodes on the fine grid Ga1, and the Boolean
combination is then not needed. But, if one would like to solve the Neumann problem, one
would also need y-derivatives, which requires additional nodes in a configuration similar
to the one we have studied here.

Anyway, the final scheme may be expressed in matrix form as

ut(a) Pit 0 0
uf(ej) | =B| 0 P~ 0 | R]T,
() 0 0 Py
where B = [—I I I] performs the Boolean combination, ’Rj consists only of 1’s and 0’s

and just reorders and renumbers nodes, while ’Pij,f performs the Lagrange interpolation to
evaluate @(q;) and its derivatives using the grid Gy.

If we apply the same procedure on the other side of the interface (if necessary) to create
’Pg,f and R, and then create the matrix £; exactly as in section 1.4, we may estimate
jumps at the boundary as

[uu]
[ua]; | = L£;BP;R;U,

[tas]

which should be compared to (1.13). We set D, ; = £;BP;R; and stack the contributions
from all the TIPs to get the matrix D% and the system of equations

Being thus able to approximate the jumps, we may use the method outlined earlier to
apply the Immersed Interface Method on Boolean grids. For problems in three dimensions,
the same procedure is used. There is no need to use a three-dimensional approximation of
the jumps, so we can use the stencil shown in figure 2.5 for three-dimensional problems as
well.
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Figure 2.6: Interpolation errors using a uniform grid (left) and a Boolean grid (right). The
errors are of about the same size, but the uniform grid has 64 x 64 = 4096 nodes, while the
Boolean grid uses 2 x 82 x 8 + 82 = 1088 nodes. Note the patterns of the errors, indicating
the grids on which the original sampling was done.

2.4. EXAMPLES
2.4.1. EXAMPLE 1 BOOLEAN APPROXIMATION

In this example, we illustrate simple Boolean interpolation. A sixth degree polynomial in
two dimensions is sampled on a uniform grid with 64 x 64 nodes and on a Boolean grid with
N; = 8 and N, = 64. Both of these approximations are then linearly interpolated onto a
uniform grid with 127 x 127 nodes. On the Boolean grid, we use the Boolean combination
of the three different grids, while in the uniform case a regular linear interpolation is used.

Figure 2.6 shows the resulting errors. In this case, the errors on the Boolean grid are
slightly larger, but of approximately the same size as on the uniform grid. However, the
number of nodes used in the Boolean grid is 2 x 82 x 8 4+ 82 = 1088, while the uniform grid
uses 64 x 64 = 4096 nodes.

2.4.2. EXAMPLE 2 FINITE DIFFERENCES ON BOOLEAN GRIDS

This example illustrates the use of finite differences on Boolean grids, as explained in
section 2.2.3. The Laplacian is applied to the function f(z) = sin(27z)sin(27y) on the
unit square using finite differences. The exact result is Af(z) = —8n?f(z). Figure 2.7
shows the result on a Boolean grid with N; = 12 and Ny = 12 x 8 = 96. The values on
the Boolean grid are interpolated onto a uniform grid with 96 x 96 nodes and the errors
are calculated on this grid. Note that the structure of the Boolean grid is reflected in the
error image on the right of figure 2.7. This indicates that the errors are smaller on the
Boolean grid than in between grid lines, so that interpolation errors are greater than errors
resulting from finite differences on the grid itself.
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Figure 2.7: Finite differences on a Boolean grid with N; = 12 and Ny = 12 x 8. The
discrete Laplacian was applied to the function f(z) = sin(27z) sin(27y) on a Boolean grid
and then interpolated to a full grid. The result is shown on the left with errors on the
right. The error image shows that the errors are smaller on the Boolean grid than between
grid lines.
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Figure 2.8: Asymptotics for finite difference approximations on two-dimensional uniform
and Boolean grids for the forward Laplacian on the left and the inverse Laplacian on the
right. The graphs are log-log-plots of errors as function of the number of grid nodes. In
both graphs, the slopes of the lines are —1.00 for the uniform grids and —1.34 for the
Boolean grids. The Boolean grids use No = NZ/2 and values of N; range from 24 to 48
nodes.
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Figure 2.9: Error asymptotics for the discrete Laplacian (left) and its inverse (right) applied
using finite differences on uniform and Boolean grids in 3D. The plots are log-log-plots of
the number of grid nodes versus the maximum error and the slopes of the lines are near
the theoretical values of —2/3 for the uniform grids and —1 for the Boolean grids.

Figure 2.8 shows the asymptotics of the same approximation compared to approxi-
mations on a uniform grid. On the left we see a log-log plot of the errors for the discrete
Laplacian applied to f(x) as above, while on the right we see errors for the inverse Laplacian
applied to —872f(z) (so that the exact solution is f(z)), using zero boundary conditions
at the left edge (z = 0) and periodic boundary conditions at the other edges. The Boolean
grids used have values for N; ranging between 24 and 48 and with N, = N2/2. In the left
figure, the slopes of the lines are —1.000 for the uniform grid and —1.339 for the Boolean
grid, while in the right figure, the slopes are —1.000 and —1.344, respectively. This agrees
well with the theoretical values, which state that on a uniform grid, the approximation
should be of order O(h*) = O(N~?), while the number of unknowns is O(N?), giving
the slope —2/2 = —1 in a log-log plot. On the Boolean grid, the number of unknowns
is 2N, Ny + N2 = O(N}) and the accuracy is O(h2) = O(N;?) = O(N;*), since N, is
proportional to N2. This should give a slope of —4/3 in the log-log plot, which agrees very
well with the numerical results.

In the last figure, figure 2.9, the asymptotics for the same problem in the unit cube in
3D is shown. Here f(z) = sin(2nz) sin(27y) sin(27z) with Af(z) = —127%f(x). The figure
shows results for the Laplacian on the left and for the inverse Laplacian on the right. The
Boolean grid is the intermediate grid with four components. N; ranges from 12 to 32 and
N, = N2/4. The slopes of the lines for the uniform grid are both —0.667, which agrees
perfectly with the theoretical value derived from O(h*) = O(N~?) accuracy and O(N?)
unknowns. For the Boolean grid, the slope in the figure is —0.965 for the Laplacian and
—1.011 for its inverse, which agrees with the theoretical value of —1, arising from the fact
that the accuracy is O(h%) = O(N{) and the number of unknowns is 3NZNy+ N7 = O(N{).

The conclusion is that the theory works for standard finite differences and that by
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using Boolean grids, the number of nodes may be reduced while still retaining the same
accuracy. It should be noted that the choices of Ny here are not necessarily optimal. N,
is proportional to N2, which it must be, in order to achieve the correct asymptotics. But
given a specific Ny, it is not clear beforehand which is the optimal N,. There is a limit
where there is no use increasing N, further, because the dominating error terms depend
only on N;j. This limit is problem dependent, since the sizes of the error terms depend on
the magnitude of the derivatives of the solution f. Choosing optimal values of N, for all
N7 will not change the slope of the lines, only the position, that is, it will not change the
asymptotics even if it changes the error values.

2.4.3. EXAMPLE 3 IIM ON BOOLEAN GRIDS

Our final example shows the full immersed interface method on Boolean grids. We solve
the Poisson equation with Dirichlet boundary conditions inside an ellipse £ with center at
(0.5,0.5) and half-axes 0.44 and 0.38, i.e.

Au(x, y) = f(xay)a (I, y) €E,
w(z,y) =9(z,y), (z,y) € OF,

with f(z,y) and g(z, y) chosen so that the solution u(z, y) is a given sixth degree polynomial
(the same as in example 1). The solution and the distribution of errors on one of the
component grids (Gi3) are shown in figure 2.10. The results for different grid sizes are
listed in table 1. |[Eyl|lc denotes the maximum error compared to the exact solution
on the Boolean grid, while ||Ty||o denotes the maximum truncation error, i.e. Ty =
Apug + VCy — Fy, where ug and Cy are the node values and jumps for the exact solution,
respectively. The table also lists approximate computational times.

Ny [my | N | time (s) | [Exlloe | [Tyl
24| 6 7488 < 0.1 5.37e-3 2.51
28 | 7| 11760 0.1 | 3.35e-3 1.49
32| 8 17408 0.2 | 1.76e-3 1.37
36 | 9| 24624 0.3 | 1.35e-3 1.19
40 | 10 | 33600 0.5 | 6.90e-4 1.34
48 | 12 57600 0.9 | 3.94e-4 1.23
56 | 14 | 90944 1.4 | 2.68e-4 1.02
64 | 16 | 135168 2.5 | 1.31e-4 0.86

Table 1: Results for Boolean ITM in two dimensions. ny = No/N; and Ny, = N2(2ny + 1).
See text for details.

The asymptotics of the errors are shown in figure 2.11. There, asymptotics for a
corresponding three-dimensional problem is also shown, that is the Poisson equation inside
an ellipsoid with Dirichlet boundary conditions, whose solution is a sixth degree polynomial.
The corresponding data is shown in table 2. The numerical asymptotics for the errors
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error

Figure 2.10: IIM on a two-dimensional Boolean grid. At the top we see the numerical
solution u(z,y) to the Poisson problem in an ellipse computed on a Boolean grid with
N; =24 and Ny = 24 x 6 = 144. Level curves are drawn below the surface, showing clearly
the ellipse E. The solution is zero outside the domain. At the bottom, we see the errors
compared to the exact solution on the G5 grid with small steps in the y-direction.
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Figure 2.11: Asymptotics of errors for IIM on Boolean grids. Errors for the solution to
the Poisson equation inside an ellipse in 2D on the left and inside an ellipsoid in 3D on
the right. The results on Boolean grids are compared to results for regular IIM on uniform
grids. On the Boolean grids, values of Ny = N2/4 are used throughout. The slopes of
the lines are —1.27 for Boolean grids and —0.97 for uniform grids in 2D, while for the
3D problem they are —0.91 and —0.66, respectively. This should be compared to the
theoretical values, which for O(h?)-convergence are —4/3, —1, —1 and —2/3 in the given
order (see example 2).

Ny | my | N | time (5) | || Ewllo | [Tl
20| 5| 1.28e5 3.1 | 7.74e-3 2.78
24| 6| 2.63ed 7.1 | 3.76e-3 2.49
28 | 7| 4.83e5 13.2 | 2.50e-3 2.19
32| 81 8.19e5 26.6 | 1.37e-3 1.91

Table 2: Results for Boolean IIM in three dimensions. ny = No/N; and Ny, = N7 (3ny+1).
See text for details.

||[Ex]|| agree nicely with the theoretical values for O(h3)-behavior given in the previous
example. As expected, the truncation errors exhibit O(h;)-behavior in both two and three
dimensions, but even though these errors are large, the final errors in the solution are small.
The computational times listed indicate that the time needed to solve the problem grows
slightly faster than the number of unknowns. This is because the number of iterations
needed in the BiCGStab algorithm to solve the linear system of equations is not constant,
but tend to increase slightly with the number of unknowns. (e.g. from 17 to 21 in the 3D
problem).

We conclude that we are able to achieve O(h3) error asymptotics for both two- and
three-dimensional problems on the Boolean grids. We also see from the error plots that
the number of grid nodes needed to get a specific error is much lower for the Boolean grids
than for the uniform ones.
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A MODEL FOR INTRACELLULAR SUBDIFFUSION

Tobias Gebéack

Abstract

This part of the thesis contains Paper I, in which a parabolic pseudo-
differential equation describing subdiffusion (or anomalous diffusion) inside
a cell is introduced and studied. We prove existence of unique solutions to
boundary value problems both with Dirichlet conditions and conditions spec-
ifying the flux at the boundary, corresponding to Neumann problems for the
ordinary diffusion equation. We also show some numerical solutions to our
equation and compare them to the ordinary diffusion case.

The introductory material before the paper provides the motivation for
studying this equation. In particular, we have performed fluorescence correla-
tion spectroscopy (FCS) experiments in fission yeast, and observed anomalous
diffusion inside the cells and showed that our model fits the data. The fitting
of a model to FCS data requires derivation of autocorrelation functions from
the model, and such functions have been derived for two different cases.
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1. INTRODUCTION 1

1. INTRODUCTION

In this part of the thesis, we will discuss the background and motivation for studying the
space-anomalous diffusion equation, which is the topic for the paper that follows. The
main motivation is the observation of so called anomalous diffusion, or subdiffusion, for
proteins inside yeast cells. One useful method for measuring the properties of diffusion
inside cells is Fluorescence Correlation Spectroscopy (FCS), which will be described in the
next section.

After the description of the method, we will go into a description of anomalous diffusion,
which is a type of motion for the molecules in the cell where the classical model for diffusion
is observed to be no longer valid, and the data from FCS experiments call for another
diffusion model. Possible models for anomalous diffusion will also be discussed, in particular
the space-anomalous diffusion equation, which is the one we have investigated further.
Then some necessary tools for analyzing the FCS data will be derived, namely theoretical
autocorrelation functions derived from the diffusion models. Finally, some experimental
results from measurements inside yeast cells of the species Schizosaccharomyces pombe
supporting our model will be shown and discussed.

The FCS experiments were conducted in collaboration with Eva Asp and Per Sunner-
hagen at the Department of Cell and Molecular Biology, Géteborg University, using the
microscope facilities at the SweGene centre for cellular imaging [19].

2. FLUORESCENCE CORRELATION SPECTROSCOPY

2.1. INTRODUCTION

Fluorescence Correlation Spectroscopy (FCS) is a method which enables us to look into
the smallest building blocks of the cell, into the world of proteins and large molecules, and
study their behaviour. It enables us to investigate the motion of these molecules and draw
conclusions about the environment in which they move, by means of mathematical models
and analysis.

As the name indicates, the method is based on fluorescence, and fluorescent molecules
are excited by a highly focused laser beam, which means that the measurements are con-
ducted within a very small volume, where the fluctuations in the fluorescence signal are
recorded and analyzed, as will be described in the next section.

The method was invented already in 1974, by Magde, Elson and Webb [2, 6], but
it is not until recent years that the equipment has been sufficiently enhanced to enable
measurements with high precision on small concentrations and in a small enough volume,
to be able to conduct measurements inside cells. These developments were mainly due to
Rudolf Rigler and coworkers at Karolinska Institute in the 1990’s, where they combined
the FCS technique with the confocal microscope technique.

Even though the method has been vastly improved and simplified through the design
of special purpose microscopes, namely the Zeiss ConfoCor microscopes [5, 25], it is still a
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rather complicated method, and in our own experience, some mathematical understanding
is useful for interpreting the results, making the technique ideal for collaboration between
experimentalists and theoreticians.

In the following sections, we will first go more into details of the FCS method, describing
the measurements, the data, and the analysis and comparison to models for the motion
of molecules. The purpose of this description is just to give enough understanding of the
method so that the reader can appreciate the results in later sections. For a more detailed
introduction, see the compendium by Schwille and Haustein [18], and for a more detailed
and extensive description of the possibilities and limitations of FCS, see the book [14],
edited by Rigler and Elson.

2.2. BASIC PRINCIPLES AND EXPERIMENTAL SETUP

In order to measure the motion of molecules, we need to ’see’ the molecules, which we are
able to do through fluorescence, i.e. the emission of light from the molecules after excitation
by light of higher energy. Therefore, the proteins we wish to study must be tagged with a
fluorescent tag, a part of another protein which is fluorescent by nature (the most common
is GFP — Green Fluorescent Protein, but there are tags with different colours available).
This is achieved by taking the DNA encoding for the protein we are interested in, adding
the DNA encoding for the fluorescent tag right next to it, and inserting the whole DNA
sequence into the yeast cells, where the new DNA is incorporated into the cells’ own DNA,
and the new, fluorescently tagged, proteins are expressed from the DNA using the cells’
machinery for protein construction. The result is that the cells create variants of the
protein that we are interested in which we can actually see, if not by naked eye, so at least
using microscopes and lasers to assist our eyes. Furthermore, the DNA encoding for the
fluorescent proteins is inherited to the next generation of yeast cells, so we will quickly
get a large amount of cells having this new, visible protein. What this may look like in a
microscope is shown in figure 1, where we see fission yeast cells where the MAPKAP-kinase
Mkpl has been labeled with GFP. These methods and manipulations are common tools
for the modern cell biologist, but it is fascinating that it works.

Now then, when we can see the molecules, we wish to conduct measurements. The
basic microscope setup for FCS is shown in figure 2. The basic components are first of all
a laser and a system of lenses, which focus the laser beam to a very small volume (< 1
fl) in the sample. In this volume, the laser light excites the fluorescent molecules, which
then emit light (of longer wavelength). This light is collected by a photon counter with
very high time resolution (12.5 ns), which counts the individual photons coming from the
measurement volume. A typical photon count curve might look like the one in figure 3.
The curve looks like pure noise, but the data really contains a lot of information, including
information about how molecules move in and out of the measurement volume, and about
the excitation of molecules and their fluorescence properties.

In order to extract this information in a more understandable way, the autocorrelation
function of the signal is computed, that is, if we denote the photon count signal by F'(t),
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Figure 1: Yeast cells of the species S. pombe, where the protein Mkpl has been labeled
with GFP and can be seen as shining green in the microscope. Some cells seem shorter
because they are at an angle with the focal plane. The darker spots in the center of the
cells are the nuclei, where the concentration of Mkpl is lower than in the cytoplasm.

we compute
(FOF(t+71)) — (Ft)?  (SF@t)0F(t+71))
(F(1)” (F@)*
where §F(t) = F(t) — (F(t)) and (-) denotes the mean over ¢ € [0,7], where T is the
measurement time, and 7 is a time delay which is varied between approximately 1 us—1 s.
An autocorrelation function computed from an experiment may look like the one in figure 4,
although this is data from a calibration experiment using the fluorescent dye Rhodamine
Green in aqueous solution, so it is a near perfect autocorrelation curve.

The intuition behind the appearance of the autocorrelation function is that for small
time delays 7, the molecules will not have time to move far between times ¢t and ¢t + 7, and
so the fluorescence signal will be almost the same at these two time points, and therefore
the autocorrelation will be high for small 7. For larger 7, though, the molecules will have
time to diffuse out of the measurement volume, and new molecules will have time to come
into the volume, and so the fluorescence at times ¢ and ¢+ 7 will be essentially uncorrelated,
making the autocorrelation function decrease towards zero when 7 gets large. Thus, the
value of 7 for which the slope is maximal gives us a measure of the diffusion speed of
the molecules. For very small 7, we may see other effects, which are more related to the
excitation and fluorescence process itself.

If we wish to get something more useful, such as diffusion constants, out of the au-
tocorrelation curve, we need to derive theoretical autocorrelation curves from models of

G(r) = (2.1)
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Figure 2: Schematic microscope setup for FCS measurements.

diffusion and molecular behaviour and fit them to the data. Such curves will be derived
in the next section. Let us first note, however, that there are other ways to analyze the
raw photon count data to extract more information than what one gets from the autocor-
relation function. Among these are high-order autocorrelation analysis, see [20, 11, 13],
and photon count histogram, see [10], but since we have not used them we will not discuss
them much further.

2.3. THEORETICAL AUTOCORRELATION CURVES

We will now derive the theoretical autocorrelation function for diffusing molecules, which
will show which parameters that influence the appearance of the function, as well as give
us the necessary framework for deriving autocorrelation functions for other models, which
we will do in section 4. The following derivation is essentially taken from [18], although
somewhat simplified.

As before, we denote the fluorescence signal by F(¢), and define

IO =P~ (F0), (PO =7 [ PO

Assuming that the fluctuations in fluorescence arise only from fluctuations in concentration
and fluorescence properties of molecules inside the measurement volume V', essentially
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Figure 3: Photon counts in a typical FCS measurement. The counts are binned in time
intervals of length 20 ms, and plotted for each such interval. Note that the scale on the
vertical axis does not start at zero.

determined by the size of the focal spot of the laser beam, we may write

SF(t) = H/I(X)S(X)5 (0qC(x,1)) dx (2.2)
v

where the following parameters are used:

K overall detection efficiency

I(x) spatial distribution of the excitation energy

S(x) optical transfer function, which describes the spatial collection

efficiency for the emitted photons
o molecular absorption cross-section
q quantum yield

C(x,t) the local particle concentration
In order to simplify this expression, we set n = Iyxogq and W (x) = I(x)/Iy-S(x), where I is
the maximum excitation energy (i.e. the maximum of 7(x)). Now W (x) is a dimensionless
function which describes the spatial distribution of the emitted light, and n is a measure
of the photon count rate per detected molecule per second.
With this new notation, (2.2) becomes

SF(t) = /V W (%) (nC (x, 1)) dx,
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Figure 4: Autocorrelation curve for Rhodamine Green in aqueous solution. Note the
logarithmic scale on the horizontal axis.

and if we insert this expression into the definition of the autocorrelation function (2.1), we
get
[ W)W () (8(nC(x, 1)) 6(nC (¥, t + 1)) ) dx dx’

(S, W (x)(6 (nC(x,1)) ) dx)?

If we assume that the fluorescence properties do not change within the measurement time,
that is 1 is constant, then this expression may be further simplified to

G(r)

_ foL'W(x)W(xl)<5C(X, 0)6C(x/, 7')> dx dx"

G(7) 2
((C) [, W (x) dx)

Now, the spatial distribution W (x) is often approximated by a three-dimensional Gaus-
sian

,2w2+y2

W(x)=e 7 e <, (2.3)

where z is in the axial direction, in which the focal point is broader than in the lateral z-
and y-directions (so zy > ). And furthermore, the autocorrelation term

(6C(x,0)6C (%', 7))



2.3 THEORETICAL AUTOCORRELATION CURVES 7

may be interpreted as the probability that a molecule starting at x at time 0 will be at x’
at time 7, times the concentration. This quantity is given by the fundamental solution ¢
of the equation that describes the motion of the particles, that is

(6C(x,0)6C (%', 7)) = (C) (%, %', 7).

Thus, in general, the autocorrelation function is described by the expression

1 [JWx)W(x)e(x,x',7) dx dx’
() (JW(x) dx)2

where we may as well integrate over the whole space, since W decreases quickly anyway.
Assume now that we are studying ordinary diffusion in three dimensions with a diffusion
constant D, described by the diffusion equation

G(r) =

, (2.4)

0
Eu(x,t) — DAu(x,t) =0, xR}, t>0.
The fundamental solution is then given by
, 1 _lx=x!p? / 3
BX )= pot o X e R

If we insert this into (2.4), and define the effective focal volume Vg to be

Vip = (/") dx)2 — 22,
T W () dx o

we can compute the integrals and get the autocorrelation function for ordinary three-

dimensional diffusion
1 1 1

TVl % firax
D

where S = z/ry and the diffusion time 7p is given by

G(r)

(2.5)

i

=10

In figure 5 the autocorrelation function (2.5) has been plotted for a few different 7p.
Changing 7 only shifts the curve left or right. We note also that for 7 = 0, only the first
factor remains, and Vg (C) is obviously the average number of particles in the effective
volume, so G(0) gives a measure of the concentration of the molecule we are measuring
and the average number of molecules that we conduct our measurements on. When fitting
the curve to experimental data, and in figure 5, we denote the quantity G(0) = (Veg (C)) !
by Cj. It may be noted that if the number of molecules is very large, the amplitude of the
autocorrelation function is very small, and the function is hidden in noise. Therefore, the
main importance of the recent development of the FCS method is that the measurement
volume has been reduced so that the average number of particles is small, thereby increasing
the signal-to-noise ratio.

™D
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Figure 5: The autocorrelation for ordinary three-dimensional diffusion (2.5) plotted for
mp = 30, 100, 500, 2000. Note that increasing 7p only shifts the curve to the right and
that the value of 7p corresponds to the value of 7 where the slope of the curve is maximal.
The other parameter values are Cp =1 and S = 8.

2.4. OTHER PHENOMENA
2.4.1. MULTIPLE SPECIES

When conducting an FCS experiment inside a cell, we can not be sure that the molecule
that is fluorescently tagged is only diffusing by itself. It may bind to other molecules
and form complexes with a distinctly different diffusion behaviour than the molecule by
itself. Therefore we need a theoretical autocorrelation function where we can take this
into account and fit multiple diffusion parameters to the experimental curve. This is done
through the autocorrelation function

130 mi(Ci) Mi(T)
Ver  (3;m:(Cy))°

where the sum is over all fluorescent species, and M;(7) are individual motility terms such
as the one in (2.5) (that is, if molecules are freely diffusing in three dimensions, M;(7) is
the two last factors in this expression). We assume here that the motions of the different
species are uncorrelated.

G(r) =
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Figure 6: An autocorrelation curve for molecules with a triplet state. The parameters used
are Cy = 1, 7p = 5000 ps, Fy, = 0.1, 7, = 20 ps, and S = 8. A large value of 7p was
chosen to show the effect of the triplet state correction. See also figure 12, where the same
function has been fitted to experimental data.

2.4.2. TRIPLET STATES

In the previous derivation, we assumed that the fluorescence properties were constant, i.e.
n was constant. This is not quite true. In the excitation process, the molecules may end
up in a so called triplet state, the transition into which is forbidden by quantum mechanics
and therefore results in a relatively long relaxation time, before the molecule is back in
its ground state again. During this relaxation time, the molecule does not emit any light,
and therefore this phenomenon shows up in the autocorrelation function as an additional
hump for small time delays (around 1 — 20 us), see figure 6.

In order to correct for this behaviour, but avoid complicated computations, one usu-
ally assumes that the triplet state formation occurs on a much faster time-scale than the
diffusional motion, and that the triplet state does not affect the diffusion of the molecules.
In that case, that effect may be approximated by a multiplicative factor X (7), so that

G(T) = X(T)Gdiﬂ‘(T)
where Gair(7) is given by (2.4) and X (1) may be approximated by

11— F,(1—e /™)
N 1 - F, '

This correction is sometimes necessary to achieve a good fit with the experimental curve.

X(r)
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2.4.3. PHOTOBLEACHING

Another phenomenon that has to be considered when conducting FCS experiments is
photobleaching. This effect is caused by the fact that the fluorescent molecules have a
limited lifetime, so that they stop emitting light after a period of repeated excitations.
This has two important effects on the autocorrelation curve. First, if a molecule stops
emitting light while it traverses the measurement volume, the effect is the same as if it
had left the volume. Therefore, the autocorrelation for large 7 decreases, leading to an
over-estimation of the diffusion speed. Second, if we conduct measurements inside a cell,
where the number of fluorescent molecules is very limited, photobleaching will lead to a
notable decrease in the number of fluorescent molecules available for measurement. This
is seen as an overall decrease in fluorescence signal, and also affects the autocorrelation
function, which will not approach zero for large 7, but decrease even further, since there
is a negative correlation for large .

In order to minimize these effects, it is important to use as low laser power as possible,
as this reduces the rate of photobleaching, while ensuring that the signal is still strong
enough to give reliable measurements. One may also try to compensate for the bleaching
by correcting the autocorrelation function, but this is rather difficult and unreliable.

3. ANOMALOUS DIFFUSION

Anomalous diffusion is a phenomenon that has been observed in a large number of envi-
ronments in recent years, when measurement techniques, including FCS, have reached a
level of accuracy where the effect may be observed. Here, we focus on biological systems,
and in particular diffusion inside cells, but the phenomenon has also been observed for for
example charged carriers in amorphous semiconductors, diffusion in percolative and porous
systems, and diffusion in polymeric networks. A list of references may be found in [9]. In
biological cells, anomalous diffusion has been observed by for example Wachsmuth et al.
[21] and Weiss, Nilsson et al. [24, 23, 22|, and we will also see examples later where our
own FCS measurements indicate anomalous diffusion.

There are at least two ways to characterize anomalous diffusion. One is to study moving
particles and observe the mean squared displacement (z%(t)). For Brownian motion, the
stochastic model describing ordinary diffusion, one observes that

(z*(t)) ~ Dt

where D is the diffusion coefficient. But in the situations mentioned above one has observed
instead

(z*(t)) ~ Kt*

for some 3 > 0, and it is this behaviour that is called anomalous diffusion. For g < 1,
one gets subdiffusion (or slow diffusion), while for # > 1 one gets superdiffusion (or fast
diffusion). Both types of anomalous diffusion have been observed, but here we are only
interested in subdiffusion, since it is the type that may occur inside biological cells.
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Another way to describe anomalous diffusion is on the level of differential equations.
The diffusion equation

ou

ot
for a molecule concentration u is derived from two relations. The first is the conservation
law

(z,t) — DAu(z,t) =0 (3.1)

ou

E(z, t)+V-®(x,t) =0, (3.2)
where @ is the flux of molecules, which is derived using Gauss’ divergence theorem, and
expresses the fact that the increase in the amount of molecules inside a test volume is equal
to the net amount of material that flows into the volume (assuming, as we have done here,
that no production takes place). The second relation is Fick’s second law, which states
that

®(z,t) = —DVu(z,1).

This is an experimental result which holds for systems exhibiting Brownian motion, but it
does not hold in the case of anomalous diffusion, and in that case a different relation has
to be derived from experimental data.

Before discussing the resulting equations, we will briefly discuss the possible causes of
subdiffusive behaviour. It is clear that since subdiffusion is slower than ordinary diffusion,
there is some kind of obstruction that causes the subdiffusion. In a series of articles, Saxton
[16, 17] used Monte-Carlo simulations to investigate the effects of physical obstacles and of
molecular binding on the diffusion behaviour. He found that it was possible to get subdiffu-
sive behaviour both in the case where the diffusing molecules were obstructed by obstacles
of certain configurations, and in the case when diffusing molecules were temporarily bound
at predefined sites with varying relaxation time, although not all such configurations lead
to subdiffusion. Another hint is that subdiffusive behaviour is found when studying diffu-
sion on fractals (see [1] and [9]), which indicates that highly obstructed diffusion may lead
to subdiffusion. It is also a fact that the interior of a cell is full of obstacles for a diffusing
molecule the size of a protein. These obstacles may consist of both larger structures (like
organelles) and smaller ones (like molecular complexes), compact ones (like ribosomes) and
web-like ones (like the cytoskeleton), and the diffusing protein may also bind to other large
molecules and structures, in order to perform its tasks in the cellular machinery. It is there-
fore not surprising that a protein diffusing in a cell may exhibit subdiffusive behaviour,
even if the exact reasons for it remain unclear.

We will now discuss two types of pseudo-differential equations that may be used to
model subdiffusion. Let us first remark, though, that there is also a number of stochastic
models which we do not discuss here. For a more complete discussion and a list of references
on this topic, see [9].

3.1. THE TIME-ANOMALOUS DIFFUSION EQUATION

The time-anomalous diffusion equation (or (time-)fractional diffusion equation) may be
derived using a continuous time random walk (CTRW) model (see [9]). In that model,
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one studies a particle performing jumps on a lattice, with a given waiting time probability
distribution w(¢) for the time between two successive jumps, and a jump length probability
distribution A(z) for the length of the jumps. If w(t) has a finite mean (or expected waiting
time), and A(z) has finite variance, one obtains the ordinary diffusion equation (3.1) as a
lowest order approximation. But if the expected waiting time is infinite, that is the waiting
time distribution w(t) has a broad tail with high probability for long waiting times between
jumps, chosen to give the desired behaviour (z2(t)) ~ Kzt?, then the same arguments (see
[9]) give the time-anomalous diffusion equation

1) = o DI K () (33)
with initial condition u(x,0) = uy(x), x € R® and 0 < 8 < 1, and where the so called
Riemann-Liouville operator oD} is defined through

1 boux, t

oDl Pu(x, 1) = %OD;ﬂu(x,t) = &7 ,3)% /0 (t“_( t;)tlﬂ dt'. (3.4)
This operator is called a fractional derivative of order 1 — 3, a name motivated by the
relation

ng_ﬂtp = 71—‘(1 +p) e
T'(p+5)

for any p € R, which is a generalization of integer order derivatives. This implies that when
this operator is applied to a constant, it does not give zero as integer order differentiation
does, but instead (with p = 0)

b
r(8)

A more thorough discussion of the Riemann-Liouville operator and the time-anomalous
diffusion equation (3.3) may be found in [9] and [12]. Here, we just remark that the integral
in (3.4) expresses the fact that the diffusion depends on the concentration at previous times,
or in other words that the system has a memory. This is thought to model that molecules
bind to structures in a cell, and that this is the cause for subdiffusion. But exactly this
property also makes the model somewhat problematic, since it puts time ¢ = 0 in a very
special position, in that the change in concentration u(x, ;) at time #; is influenced by the
solution for all times from ¢ = 0 to ¢t = t1, but not by u(x,t) for ¢ < 0. This means that
the solution to the initial value problem (3.3) depends on what we choose as time t = 0,
and this seems a bit unsatisfactory. The fact that v depends on previous states may be
expressed as the model not having the Markov property, and this is a consequence of the
CTRW model used, and the fact that we want to have (z2(t)) ~ Kzt® with 8 < 1.

1— —
oD 1= 51,

3.2. THE SPACE-ANOMALOUS DIFFUSION EQUATION

Motivated by the above discussion, we seek to find an equation which has the Markov
property, that is has no memory, but still is capable of modeling subdiffusion. For this, we
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introduce the space-anomalous diffusion equation

g—?(x, ) + Ko(—A)%u(x,t) =0, x€R3 t>0,

u(x,0) = ug(x), xeRs

(3.5)

with o > 1 and diffusion parameter K, with dimension m?*s~!. The pseudo-differential
operator (—A)* is defined through the Fourier transform as

(=A)u(x,t) = Z 7 (|E*u(E, 1) -
This equation satisfies the conservation law (3.2) with a flux
O(x,t) = Ko (—A)*"'Vu(x, t)

which is non-local in space, meaning that not just the local behaviour, but the behaviour
of u far away from x, influences the concentration u at x. How to interpret this property is
not quite clear, but it may be noted that when 1 < a < 2, we are somewhere between the
diffusion equation (o = 1) and elasticity equations (o = 2), which indicates that equation
(3.5) describes a situation where molecules interact with each other, so to say pulling at
each other, making the motion slower and different in character compared to ordinary
diffusion.

The space-anomalous diffusion equation (3.5) also has some questionable properties. To
begin with, we may compute the mean squared displacement (z%(¢)) using the fundamental
solution ¢(x,t) to (3.5) (with ug(x) = dp(x), the Dirac delta-function), which is found by
applying the Fourier transform in the x-variable to (3.5). When we do that, we get

(&) + Ko|€[?6(£,4) =0, £, >0,
B(£,0) =50(&) = 1,
which is an ODE in ¢t with solution
(€, 1) = et (3.6)

There is a representation of ¢(x,t) as an infinite sum, but we do not need it here.
Using ¢(&,t), we can compute

>SBI&>

3

(z2(t)) = Z/Rgx?gb(x, t)dx = Z( Vi@ A (1)) = Z o7 ¢(€ t)‘ =0

=0

if @ > 1. From this we see that not only do we not get the relation (z%(t)) ~ Kt® for
some B, but also that ¢(x,t) must be negative somewhere, since otherwise we could not
get zero, and therefore solutions to (3.5) may have negative values, which is of course a
problem if we want the solution u(x,t) to be a concentration. However, when we study
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the equation inside bounded domains, as we will in the paper that follows, we need not
get non-positive solutions since the solution may be everywhere far from zero, and tends
to smooth out with time. And even if we do not get the same time dependence of (z%(t))
as for the time-anomalous diffusion equation, we will see further on that the solutions to
the space-anomalous diffusion equation (3.5) fit well to experimental data — just as well
as solutions to the time-anomalous diffusion equation.

It should also be noted here that the operator (—A)® in (3.5) is not the only possible
choice for a space-anomalous diffusion equation, although it is probably the simplest, which
is why we use it here and in the paper that follows. In fact, the symbol |€]?® in (3.6) could
be exchanged for anything that has desirable properties, and it would be interesting to
investigate if it is possible to find a symbol that gives solutions that fit the experimental
data, while for example giving a positive fundamental solution.

4. NEW AUTOCORRELATION CURVES

4.1. AUTOCORRELATION CURVE FOR SPACE-ANOMALOUS DIFFUSION

In this section, we derive the autocorrelation curve for space-anomalous diffusion, that is
the type of diffusion that is described by equation (3.5).
According to (2.4), we need to compute the integral

jf W (x)W (x')p(x — %', 7) dx’ dx (4.1)

in order to find the autocorrelation function G(7). Here ¢(x, 7) is the fundamental solution
(3.6) to (3.5).
With the use of Parseval’s formula, we may write the integral (4.1) as

1

[ W)W o] ) i = s | W)W (@67 de. (4.2

As before,

2 .2 2
W (x) = exp (_2x A 2Z—> ,

2
7o 2

and we may easily compute
= 3¢z

Wie=" 71

exp (=8¢ 4 € +17)).

where &€ = (&,n,¢). If we insert this into (4.2), set S = zy/rg, Ta = and make the

20
Ta
42K,
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change of variables & = €, we get

34,2

£ o (o)

_ TOzOS J‘J‘fexP < SQ 12 5/2 _ ,'7/2 _ TL|€I|20¢> dé—l dnl dCI

M /6‘524'2/ 7 exp (—1"2 - T+ C’Q)a) dr d¢’
4 R 0 Ta

2
= —WTOIOSM(T)

where we changed to polar coordinates in (£',7') in the last step. The double integral M (7)
will have to be computed numerically, but this can be done quite efficiently as the integrand
is smooth and decays quickly to zero. Finally, to get the autocorrelation function, we also
need to compute the denominator in (2.4), but

(Lorwn) = (55)

so the autocorrelation function for space-anomalous diffusion becomes

1 25 1 2,2 2
G(T) = M 54/ —ri ) T e g g 4,
) = GO = e Lo e rdc.  (43)

It may be noted that for 7 = 0, the integrals may be computed explicitly and we get

1
¢ Verr (C)
just as for the ordinary diffusion case. Also, if we set @ = 1, (4.3) reduces to (2.5) as
expected.
In figure 7, we see the autocorrelation function (4.3) plotted for a number of different «.
Most notably, changing « changes the slope of the autocorrelation function, while changing
the anomalous diffusion time 7, only shifts the curve left or right.

4.2. AUTOCORRELATION CURVE FOR TIME-ANOMALOUS DIFFUSION

As we have seen, time-anomalous diffusion is described by the equation

ou .
E(X’ ) — oD, PKpAu(x,t) =0 x€eR3, t>0 (4.4)
u(x,0) = ug(x) x € R?

with 0 < 8 < 1 and the Riemann-Liouville operator ,D; ” defined in (3.4), and Kj
a diffusion parameter of dimension m2s~?. The fundamental solution of (4.4) may be
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Figure 7: Autocorrelation functions for space-anomalous diffusion, for a = 1.0, 1.25, 1.5,
with 7, = 1000, Cy = 1 and S = 8. Increasing a makes the curve less steep, and for
a = 1.0 we get the ordinary diffusion curve.

described as a so called Fox function [9, 8, 7], which has a rather complicated definition
and can not be computed really efficiently. It is therefore not very practical to insert this
fundamental solution into (2.4) and derive the autocorrelation function to use it for fitting
to experimental curves, since this would be computationally infeasible.

Instead, a more practical approach is usually employed. As mentioned in section 3.1,
solutions to (4.4) have the property that

(2%()) ~ Kgt”.

For this reason, it is argued that we may replace 7/7p in the autocorrelation function for
ordinary diffusion (2.5) with (7/75)?, thus getting
1 1 1
G(r) = (4.5)
Verr (C) (L)ﬂ B
IOREEEIC)

as the autocorrelation for time-anomalous diffusion. Here (15)® = r2/T'5, where ' is a
constant related to the diffusion parameter Kpg.

In [22], Weiss et al claim that they have numerically computed the correct autocorrela-
tion function from the fundamental solution in terms of Fox functions, and compared this
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Figure 8: Autocorrelation functions for the time-anomalous diffusion equation, with § =
0.6, 0.8, 1.0 (solid lines). Lower g gives a less steep curve, and 8 = 1 gives the ordinary
diffusion curve. For reference, an autocorrelation function for the space-anomalous case
(with o = 1.5) has been included (dashed line), and we see that the time-anomalous curves
are not equivalent to the space-anomalous curves. The other parameter values used are
Co=1, 73 =1, =1000, S = 8.

function to the expression for G(7) in (4.5) with good agreement, namely that the when
fitting one of the autocorrelation functions to the other, the exponents 8 differed by less
than 10%, which is within the accuracy of experimental data. So, it seems like (4.5) is
correct enough to be used for fitting with data. In figure 8, we see the autocorrelation
function (4.5) plotted for a few different values of 3, and compared to the space-anomalous
autocorrelation function (4.3).

4.3. AUTOCORRELATION CURVE FOR DIFFUSION INSIDE A CLOSED
DOMAIN

Since we make FCS measurements inside a cell which has a volume comparable to the
measurement volume (the radius of the measurement volume is typically ro ~ 0.15 pm,
and the yeast cells are about 5 — 10 um in diameter), we would expect a slightly different
appearance of the autocorrelation function. To derive the autocorrelation function for this
situation, we obviously need to take the boundary conditions into account. We note that
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the numerator in the autocorrelation function (2.4) is

(W6« W (7)), =(Wu(, 7)),

where ¢ is the fundamental solution for the equation that models the diffusion, and u(x, t)
consequently is the solution to the diffusion equation with initial value ug = W. So what
we want to compute for our situation is <u0, u>2 when u is the solution to a diffusion
equation inside a domain with impenetrable boundary, and with the initial value uy being
a three-dimensional Gaussian as in (2.3).

In order to simplify the calculations, we make everything spherically symmetric. We
let the domain © be a ball of radius R in R®, we let S = 1 in (2.3) (although this is not
true for the experimental setup), and we use a Neumann condition on the boundary, to
model that the molecules may not move across the membrane.

The resulting boundary value problem is

ug(x,t) — DAu(x,t) =0, |x| < Rp,t >0
(x,t) =0 x| = Ro,t >0, (4.6)

Ix[2

u(x,0) = up(x) = (CYe 7 |x| < Ry

for x € R?, where we assume that ry < Rj.

This problem is solved by separation of variables and expansion in eigenfunctions. The
solution to similar problems can be found for example in Folland [3, chapter 6], and what
follows is just an application of this standard method to our problem. We set r = |z| and
make the ansatz u(r,t) = T(t)R(r). Inserting this into the equation, using the expression
for the Laplacian in spherical coordinates, we get the two equations

T'(t) = =N°T(t)
R'(r) =r?R"(r) + 2rR'(r) + \>r*R(r) = 0
where ) is an eigenvalue to be determined. The equation for T' obviously has the solution

T(t) = T(0) exp(—A2t), and the equation for R can be transformed into Bessel’s equation,

which gives the solution
1

NG

where .J;; is the Bessel function of order 1/2, which may be written

[2 .
Jij2(s) = — sins.

Now, we need to determine the eigenvalues A. To do that, we use the boundary condition,
which may now be written R'(Ry) = 0, or

0— d ( 2 sin(Ar))
= s
r T r -

R(T) = Jl/g(AT),

_ \/?)\RO cos(ARy) — sin(ARp)
T VAR2 ’
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which amounts to

)‘RO = tan()\RO) 5

where we only consider positive solutions A, giving us {\¢}ro; = {2x/Ro}re; where 2; are
the positive solutions to tan z = z. The first solution is really A\g = 0, but for this value of
A, the equation for R reduces to

r’R"(r) +2rR'(r) = 0,

with the solution R(r) = A; + Ayr~2. But since we want R to be bounded, we must have
Ay = 0, and we also choose A; = 1, since the solution will be normalized in the end anyway.
The full solution to (4.6) is therefore

oo .
2. Sin Agr
u(r,t) =co + E cpe M ———

=1 \/)\k’f‘ ’
where the coefficients ¢; are given by
<u03Fk>2
k=5 k=0,1,2,...
[1F5l13
with
Fo(r) =1
28111 AT
Fy(r k=1,2,...
) =222

With ug as in (4.6), we compute

Ar R} - o —2r2/r2 2 3rg 2R3/} 3y/mrg 9 Ro
co—( 3 ) 47r/0 e Ordr——4R0 °+8\/_R3Ef(\/_ )

and, for k > 1,

= RO)\k \/7/' 2T2/T281n>\k7' 2d
4R SlIl RO)\k

52 .
7R, 2.2 2, 28in 2
_ e~ 782 /SRO\II TO /2 2 —2R 5/T6 k

\/_ 8R3 ( Zk) WRO Zk
where \I!(T0 2K) = Erf(\/_R0 T"é(’;) + Erf(\/_R" + z"’z’“) and Erf(¢ fo e~ dr is the
error function. Now, if Ry/ry is large (2 10 or so), ¥(z> zk) ~ 2 for small 2k, and for large

2x, the exponential factor in front will dominate, so we may set U(Z2, zx) = 2. Furthermore,
o—2R

3/78 is small compared to the other terms, so we approxunate 1t by zero; and finally,
Erf(\/_RO/ro) ~ 1 for large Ry /7y, yielding

37‘3 —2R2/ 2 7TT‘8’ _ /SRZ
c R ———e <0/ op A —2 0% k=1,2,...
0™ 4R, "~ 42R,
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Figure 9: The autocorrelation curve for ordinary diffusion in a closed domain. The function
(4.7) is plotted for Ry/ry = 10 and (|Q|(C))~* = 0.05, 0.10, 0.15 (solid lines, from bottom
up), and with (| (C))~! = 0.05 and Ry/ry = 9, 11 (dashed lines, from bottom up). The
autocorrelation curve does not approach zero as 7 gets large.

But what we really want to compute is the correlation function G(7) given by (2.4), which
in the current setting amounts to

_ <u(r,T),u0(T)>2 _ 8 - |<u0’Fk>2|2ex —(2)’Dr
G(r) = ©) () dx)2 ~(C) g ; F 2 p( (Ro) Dr).

With the approximate c; above and since

|<’LL0, Fk>2|2

= || Fxll5 ¢} kE=0,1,2,...
||Fk||g ” k||2 Cks s Ly 4,

we get
1

G(1) = OlE) (1+11_2§(Zk+i> exp (%(g—%)z(l+%))> (4.7)

with |Q] = %ﬂRS and 7p = r2/4D. Note that zj, +2; ' = 2/ sin” 2, since tan z; = 2;. The
resulting autocorrelation curve is shown in figure 4.3.



5. FCS IN S. POMBE 21

The most notable fact about this autocorrelation function is that it does not decrease
to zero when 7 is large. Instead, we get

1 1
~ T — 00

402 are) © Vo ’

where Ny is the total number of molecules in the cell. This reflects the fact that in a
small domain, the molecules have the possibility to move out from the measurement volume,
’bounce’ at the domain boundary, and move back into the measurement volume, thereby
giving a contribution to the autocorrelation. In practice, however, such correlations on
long time scales will not be observed, since other effects that affect the molecules, such as
photobleaching and protein degradation, will come into play and decrease the correlation.
But this does not mean that we can not observe any effects due to the small domain, just
that it will not be as easy to distinguish them from other effects.

5  FCS IN S. POMBE

This section describes briefly our FCS measurements done in the yeast species Schizosac-
charomyces pombe, or fission yeast. What the cells look like is shown in figure 1. They are
approximately 10 um long and 3 pum wide. We have conducted measurements on three
proteins involved in a signaling cascade, these are Yapl, Mkpl and Mkp2, and they are all
kinases of moderate size ( 40-70 kDa'!). All three show similar results, but we only show
data for Mkpl here.

The main purpose here is to show that we actually get data that fits the anomalous
diffusion model, and in particular that the space-anomalous diffusion model fits the data
just as well as the time-anomalous model.

5.1. EXPERIMENTAL CONSIDERATIONS

There were some issues to take into consideration when performing FCS measurements
inside the small yeast cells. First of all, the number of molecules inside each cell is limited,
so photobleaching is a problem, as has already been discussed in section 2.4.3. Furthermore,
the yeast cells have a tendency to move around in their medium, and therefore the cells
had to be mixed into an agarose gel and kept at a temperature at which the gel was solid
enough so that the cells could not move during the measurement time. And finally, we
had to try to measure at a good place inside the cell, which is not so easy since we do
not see any internal structure inside the cell (except perhaps the nucleus, as in figure 1).
Sometimes we seemed to hit some larger structure in the cell, and that showed up in the
measurement. Therefore, not all measurements gave nice autocorrelation curves, and what
we show below is one of the curves that fit nicely to the anomalous diffusion model. Tt
should be noted, though, that even if the anomalous diffusion model does not always fit

t1 Da (Dalton) = 1 u = 15 of the mass of a '?C-atom. Proteins vary in size between approximately
2 kDa to 500 kDa
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the data, it does not mean that the ordinary diffusion model fits the data better. It just
means that there are phenomena influencing the correlation curve that are not included in
the models we use, which is not surprising since there is very much going on inside the cell
which we do not know about and can not include in our models, and we have to choose
those measurements where those unwanted phenomena are kept to a minimum.

5.2. RESULTS

Figure 10 shows an autocorrelation curve computed from one of our FCS experiments
on the protein Mkpl tagged with GFP in S. pombe. The measurements lasted for 60
seconds and the laser beam was focused in an area well outside the nucleus, to avoid
the large structures in and near the nucleus. After the measurement it was checked that
the cell had not moved, and that the correlation curve looked reasonable, otherwise the
measurement was discarded for reasons discussed in the previous section. But many curves
gave similar results as the one shown in figure 10, though more experiments would have
to be performed in order to draw proper conclusions about parameter values, which are
seen to vary between individual measurements, and also between the three proteins that
we conducted experiments on.

A standard calibration experiment using the dye Rhodamine Green in water solution
was conducted in order to determine the parameters rq and S in (2.3). Fitting the ordinary
diffusion correlation curve (2.5) to this experimental curve yielded S & 8.3 and 7p ~ 20 ps,
which, using the known diffusion coefficient for Rhodamine Green D ~ 2.8 - 107'° m?/s
[15], yields the approximate radius of the measurement volume ry & 0.15 pm.

The curve fits in figure 10 are made using theoretical autocorrelation functions for
space-anomalous, time-anomalous and single species ordinary diffusion (see sections 4.1,
4.2, 2.3), with an additional factor taking care of the contribution from triplet states, as
in section 2.4.2; and using the value of S from the calibration experiment. The parameter
values achieved in the fitting are shown in table 1.

Space-anomalous Time-anomalous Ordinary
Co 0.22 0.23 0.20
Tas Tg, TD (HS) 731 726 1100
a, B 1.38 0.78 N/A
F, 0.11 0.08 0.18
Tir (HS) 15 9.3 40
K,,T'g, D 3.3-1072% 2.4-1072 5.2-10712

Table 1: Parameter values for the curve fits in figure 10. K, has units m®*s~', T’z has
units m2s~? and D has units m?s~!

The parameter Cy equals G(0) = (Veg (C))™! = ((N))~!, where (N) is the average
number of particles inside the measurement volume during the measurement, which from
our data is approximately 4-5. For a cylinder-shaped cell with base diameter 3 um and
length 10 wm, this gives an estimated total number of molecules inside the cell of about
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1200, which is in the same order of magnitude as estimates for similar proteins in the
closely related species S. cerevisiae [4].

In figure 10 we see that the autocorrelation functions for space-anomalous and time-
anomalous diffusion fit the data rather well, except for small 7 where there is much noise,
and for large 7 where the experimental curve does not approach zero quite as fast as the
theoretical ones. The ordinary diffusion curve, however, does not fit the data at all well
in the region that matters, namely where the autocorrelation curve decreases quickly due
to diffusion of molecules. The misfit is even more clear in figure 11, where we see the
differences between theoretical and experimental curves. It is also clear that the space-
anomalous and time-anomalous curves are almost identical, and we can not say that one is
better than the other. One may also note that the triplet time 7, is larger for the ordinary
diffusion model. This is just another indication of the misfit, since as the diffusion part of
the correlation function can not be fitted, the curve fitting algorithm tries to change 7,
to achieve a better fit for the diffusion part using the triplet part of the function. In fact
there was a limit of 40 us set for 7y, since otherwise it would have been increased even
more to achieve a better fit, using unrealistic parameter values.

For comparison, we also made a measurement on the same proteins, where we took
a number of cells and destroyed their membranes so that the contents of the cells was
mixed in a solution. The autocorrelation curve from this measurement on Mkp1 is shown
in figure 12 and fits very well with an ordinary diffusion autocorrelation function. Here,
we get parameters

Co=042, 71p=215pus, F,=016, 7, =78 s,

giving a diffusion coefficient D ~ 2.6 - 10~ m?2/s, which is nearer the expected diffusion
coefficient for the protein in water, suggesting that in this case the protein is not hindered
much by the obstacles in the solution, and there is no trace of anomalous diffusion.

5.3. DISCUSSION

The results in the previous section indicate a number of properties of the diffusion inside
our cells. First of all, it is clear that inside the cell the ordinary diffusion model does not fit
the data. We need to have a model that changes the slope of the autocorrelation curve, and
both the anomalous diffusion models do this and fit the data well, although not perfectly.
There might be other models that could be made to fit the data, for example one could
use a multi-component ordinary diffusion curve as in section 2.4.1, and this would surely
yield a better fit, since we have more parameters to vary (in fact, this has been tried and
the fit becomes almost as good as for the anomalous diffusion models), but such a model
would imply that the fluorescent protein (Mkpl-GFP) is bound to other proteins so that
it would diffuse both in free form and as part of a larger complex. But the autocorrelation
curve in figure 12 when the cells have been destroyed show no traces of such complexes,
and although this is no proof that they do not exist inside the cell, it speaks in favor of an
anomalous diffusion model compared to a multi-component model. It is evident that the
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protein does bind to other molecules now and then to perform the tasks it is there for (and
this might even be the cause of the anomalous diffusion), but it seems reasonable to believe
that these bindings and complex formations occur on a much shorter time scale, meaning
that they are not stable enough to show up as a second component in the autocorrelation
curve. Therefore, our results indicate (as do the results in [23], [21], and others) that
anomalous diffusion models are relevant models of the motion of proteins inside cells.

It is also clear from figures 10 and 11 that we can not distinguish between the two
anomalous diffusion models and say that one is better than the other, judging only from
the fitting of autocorrelation curves. Other experiments or data analysis is necessary to
distinguish between the two; and the two models are not quite equivalent, not even in terms
of autocorrelation functions, so there is a possibility that one could use FCS experiments
to decide which model to prefer based on experimental data. Furthermore, using only
the autocorrelation curve computed from fluorescence fluctuations, we use only a small
part of the information in the data, and other analysis methods might give complementary
information that could be useful. In fact, as mentioned earlier, there are at least two
attempts at such analysis methods, namely the high-order correlation analysis [20, 11, 13],
where correlation functions are computed for powers of the fluorescence values, that is
(F(t)*F(t + 7)™) with m and k integers larger than 1, and the photon count histogram
(PCH) analysis [10], where histograms over the number of photons counted in a given
(small) time interval are analyzed. The effect of anomalous diffusion on these quantities
has not yet been investigated.

It is also interesting to see that the experimental autocorrelation curve in figure 10 does
not decrease to zero as fast as it should according to the anomalous diffusion models. This
might be an effect due to the fact that we make measurements of diffusion inside a small
domain, which should have similar effects on the autocorrelation curve as we saw in section
4.3.

In conclusion, the experimental data presented above justifies the study of mathemati-
cal models such as the space-anomalous diffusion equation (3.5). In the paper that follows,
we will see how we can define and solve boundary value problems for that equation, corre-
sponding to anomalous diffusion inside a cell.
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Figure 10: Experimental data with fitted theoretical autocorrelation curves for space-
anomalous diffusion (top), time-anomalous diffusion (middle) and ordinary diffusion (bot-
tom), all including a triplet state correction. The two anomalous diffusion models fit the
data well in the central region where the slope that characterizes the diffusion is. The
ordinary diffusion model, however, does not fit in this region, although the misfit might
not appear very large at first glance.
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Figure 11: Errors plots for the curve fits in figure 10. Here it is seen more clearly that
the ordinary diffusion model does not fit as well as the other two in the important region
(~ 102 —10° ps).
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Figure 12: Autocorrelation function for Mkp1-GFP in buffer.

REFERENCES

[1] D. ben-Avraham and S. Havlin. Diffusion and Reactions in Fractals and Disordered
Systems. Cambridge University Press, 2000.

[2] E. Elson and D. Magde. Fluorescence correlation spectroscopy, I: Conceptual basis
and theory. Biopolymers, 13(1):1 27, 1974.

[3] G. B. Folland. Fourier Analysis and Its Applications. Brooks/Cole Publishing Com-
pany, 1992.

[4] S. Ghaemmaghami, W.-K. Huh, K. Bower, R. W. Howson, A. Belle, N. Dephoure,
E. K. O’Shea, and J. S. Weissman. Global analysis of protein expression in yeast.
Nature, 425:737 741, Oct 2003.

[6] T. Jankowski and R. Janka. ConfoCor 2 — the second generation of fluorescence cor-
relation microscopes. In Rigler and Elson [14], chapter 15, pages 331-345.

[6] D. Magde, E. Elson, and W. W. Webb. Fluorescence correlation spectroscopy. II: An
experimental realization. Biopolymers, 13(1):29-61, 1974.

[7] F. Mainardi, Y. Luchko, and G. Pagnini. The fundamental solution of the space-time
fractional diffusion equation. Fract. Calc. Appl. Anal., 4(2):153-192, 2001.



28 REFERENCES

[8] F. Mainardi, G. Pagnini, and R. K. Saxena. Fox h functions in fractional diffusion. J.
Comp. Appl. Math., 178:321 331, 2005.

[9] R. Metzler and J. Klafter. The random walk’s guide to anomalous diffusion: a frac-
tional dynamics approach. Phys. Rep., 339:1-77, 2000.

[10] J. D. Miiller, Y. Chen, and E. Gratton. Photon counting histogram statistics. In
Rigler and Elson [14], chapter 20, pages 410-437.

[11] A. G. Palmer IIT and N. L. Thompson. High-order fluorescence fluctuation analysis
of model protein clusters. Proc. Natl. Acad. Sci. USA, 86(16):6148-52, 1989.

[12] 1. Podlubny. Fractional differential equations, volume 198 of Mathematics in Science
and Engineering. Academic Press Inc., San Diego, CA, 19909.

[13] H. Qian and E. L. Elson. Distribution of molecular aggregation by analysis of fluctu-
ation moments. Proc. Natl. Acac. Sci. USA, 87:5479-83, 1990.

[14] R. Rigler and E. S. Elson, editors. Fluorescence Correlation Spectroscopy : theory and
applications, volume 65 of Springer series in chemical physics. Springer Verlag, 2001.

[15] R. Rigler, Ulo Mets, J. Widengren, and P. Kask. Fluorescence correlation spectroscopy
with high count rate and low background: analysis of translational diffusion. FEur.
Biophys. J., 22(3):169-175, 1993.

[16] M. J. Saxton. Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys
J., 66(2:1):394-401, 1994.

[17] M. J. Saxton. Anomalous diffusion due to binding: a Monte Carlo study. Biophys. J.,
70:1250-62, 1996.

[18] P. Schwille and E. Haustein. Fluorescence correlation spectroscopy - an introduction
to its concepts and applications. Biophysics Textbook Online, 2002.

[19] SweGene, CCI, http://www.swegene.org/cellular_imaging.

[20] N. L. Thompson and J. L. Mitchell. High order autocorrelation in fluorescence corre-
lation spectroscopy. In Rigler and Elson [14], chapter 21, pages 438-458.

[21] M. Wachsmuth, W. Waldeck, and J. Langowski. Anomalous diffusion of fluorescent
probes inside living cell nuclei investigated by spatially-resolved fluorescence correla-
tion spectroscopy. J. Mol. Biol., 298:677—689, 2000.

[22] M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson. Anomalous subdiffusion is a
measure for cytoplasmic crowding in living cells. Biophys. J., 87:3518-24, 2004.

[23] M. Weiss, H. Hashimoto, and T. Nilsson. Anomalous protein diffusion in living cells
as seen by fluorescence correlation spectroscopy. Biophys J., 84(6):4043-52, 2003.



REFERENCES 29

[24] M. Weiss and T. Nilsson. In a mirror dimly: tracing the movements of molecules in
living cells. Trends Cell Biol., 14(5):267 273, 2004.

[25] Zeiss website, http://www.zeiss.com/micro.






BOUNDARY VALUE PROBLEMS FOR A SPACE-ANOMALOUS
DIFFUSION EQUATION

TOBIAS GEBACK*AND ALEXEI HEINTZ*

Abstract. We propose a new equation describing subdiffusion inside a bounded domain in R”.
The equation is a parabolic pseudo-differential equation based on the conservation of mass. We pose
boundary value problems for the equation, both Dirichlet problems and problems specifying the flux
in the normal direction at the boundary, similar to Neumann problems for the ordinary diffusion
equation. We then prove existence and uniqueness results for these problems using Hilbert space
methods and semigroups, and show some numerical results.

1. Introduction. In recent years, experiments have shown that the ordinary
diffusion model does not suffice to describe the motion of particles and molecules in
crowded environments. Such an environment is for example inside a living cell, where
the medium in which the molecules move is so full of other molecules that interact
with the moving molecule that it makes the diffusion behaviour of large molecules (e.g.
proteins) qualitatively different from diffusion in water or solvent. This phenomenon
is called anomalous diffusion or subdiffusion, indicating that it is slower than ordinary
diffusion. It has been observed using Fluorescence Correlation Spectroscopy (FCS)
inside cells from different organisms, see e.g. [18, 19]. This technique measures fluc-
tuations in the fluorescence signal from proteins with a fluorescent tag, and from the
autocorrelation of these fluctuations, information about the diffusion of proteins may
be obtained (see [13] and [11] for an introduction to FCS).

In order to analyze the data acquired using FCS, it is necessary to have a model
giving a theoretical autocorrelation curve that can be fitted to the experimental curve.
There are at least two models that may be fitted to subdiffusion data. The first, and
more widely used, is the time-anomalous diffusion equation,

Ou

5 @1 =D} P KaAu(s, 1) (11)

with 8 < 1, Kz a constant, and the Riemann-Liouville operator OD% P defined by

1 8 [ f@t) '
B ot ), G—t)P dt'. (1.2)

This diffusion equation can be derived using Continuous Time Random Walk (CTRW,
see [9] and [6]), and contains the non-local operator o D; °, which models memory
properties of the physical system studied. A lot of work has been done studying this
equation and operators like (1.2), including work by Mainairdi, Gorenflo, Podlubny,
Lubich and many others, see e.g. [6, 5, 10, 8]. However, these studies do not include
boundary value problems of the type we are interested in. Also, we wish to describe
subdiffusion with a model without memory, since the operator (1.2) gives a special
significance to the time ¢ = 0, and we are faced with the problem of choosing a time
t = 0 before which there is no memory, which seems like an unnatural question for
the situation we wish to model.
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Therefore, in this paper we discuss the space-anomalous diffusion equation

Z—ltb + Ko(—A)*u =0, (1.3)
where K, is a constant and « is a positive real number, implying a non-local pseudo-
differential operator in the space variable, with symbol |£|>* in the Fourier domain.
When a = 1 we get the ordinary diffusion equation, when a < 1 we get superdiffusion
(faster than ordinary diffusion) corresponding to so called Lévy flights (see [9]), and
when a > 1 we get subdiffusion. Qur own experiments with FCS in fission yeast (see
[4]) show that the autocorrelation function derived from this model may be fitted to
data just as well as the time-anomalous autocorrelation function related to (1.1), and
it would require a different analysis of experimental data, and perhaps more accurate
data, to decide between the two models. In our experiments, the observed values of «
were between 1 and 2. Equation (1.3), with a > 1, can not be derived from a CTRW
model and the motivation for (1.3) is instead through its fundamental solution and the
fitting to experimental FCS data. It may be noted, though, that when 1 < a < 2 we
are somewhere between ordinary diffusion (o = 1) and elasticity (a = 2), which may
suggest an interpretation where molecules attach to each other to a certain degree,
producing elastic effects. It should also be noted that one can imagine using other
pseudo-differential operators than (—A)® in (1.3), which perhaps fit the experimental
data even better and have other desirable properties. The approach used in this paper
can be generalized to a larger family of pseudo-differential operators.

The purpose of this paper is to define boundary value problems for the space-
anomalous diffusion equation (1.3), prove existence of solutions to those problems, and
to show some numerical results for them. The problem we have in mind is to describe
anomalous diffusion inside a cell, bounded by membranes, which are impermeable
to the proteins inside, or where the passage of proteins through the membrane is
highly regulated. For ordinary diffusion, this situation is described by Neumann-type
problems

—f - Vu(z) = G(z,u), =z € 0N, (1.4)

in some domain 2 with boundary 02 and outward unit normal 7. The left hand
side of (1.4) is the flux of material perpendicular to the boundary 99, and G is
typically linear in u, or G = 0 if the membrane is impermeable. We therefore wish to
define boundary value problems for equation (1.3), with @ > 1, corresponding to this
situation, and we do this in the next section. Existence and uniqueness of solutions
will be proved for 1 < a < 1+ n/2, where n is the number of space dimensions.
There has been at least two previous attempts to formulate boundary value prob-
lems for pseudo-differential equations such as (1.3). These are the approaches by
Vishik and Eskin [1, 17], and the one initiated by Seeley [14, 15]. The main reason
for not using those approaches is that in our approach, we get a natural definition
of the flux, and therefore natural boundary conditions corresponding to (1.4). Fur-
thermore, the operator we define will give zero when applied to constants, which is
also a desirable property, and which circumvents some of the problems in the Vishik-
Eskin approach. It is possible that there is a formulation equivalent to ours within
the Vishik-Eskin framework, where potentials are added to the domain boundary to
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compensate for the singularities that may appear, but our approach is more straight-
forward and uses simpler Hilbert-space theory and semigroups to define solutions. In
the Seeley-approach, powers are taken of operators with boundary conditions, and this
theory does not allow for the fractional Neumann-type boundary conditions that we
will derive in the next section, so that is not a satisfactory approach for our problem.

It could also be noted that there have been attempts to define boundary value
problems to (1.3) with a < 1 (the Lévy-diffusion case) using variants of the Riemann-
Liouville operator (1.2) for the non-local operator in the space-variable (see [3, 12]).
These approaches are similar to ours in the sense that they modify Fick’s law in a
similar way, at least in one space dimension, but only Dirichlet problems have been
considered, and the extension to higher dimensions is very different.

In the next section, we start out by deriving our variant of equation (1.3) which
allows for weak solutions. This new variant is equivalent to (1.3) if studied in the whole
space, but for the problem inside a domain there are differences. After discussing some
properties of the operator we derive, we prove the existence of unique solutions to the
stationary problem, and then to the time-dependent problem with different boundary
conditions, including the Neumann-type condition. The method used is standard
Hilbert space methods and semi-groups, which are described thoroughly in Showalter
[16], and we will refer to this book throughout this paper although the same results
may be found in other places too. Finally, we discuss the fact that solutions to (1.3)
need not be positive for positive initial conditions, and also show some results of
numerical calculations, illustrating what solutions may look like, including differences
compared to the ordinary diffusion equation.

2. Deriving the equation. To derive our equation, we begin with the conser-
vation of mass, which may be expressed as

du

ot (z,t) + V- &(z,t) = F(x,t), (2.1)

where u(x,t) is the concentration of a substance at a point z € R” at time ¢, ® is
the flux of the substance, and F' is the production of substance (which may be neg-
ative). This is a fundamental relationship, which is derived mathematically through
Gauss’ theorem, and which should hold for any model describing the movement of a
substance.

For ordinary diffusion, the flux ® is determined by Fick’s law,

®(x,t) = —DVu(z,t), (2.2)

with diffusion coefficient D, which is an experimentally motivated law, and can thus
only be assumed to hold in the conditions under which it has been tested. As men-
tioned in the introduction, there are situations in which Fick’s law, and therefore the
ordinary diffusion equation, is not valid, but instead the space-anomalous diffusion
equation (1.3) fits the experimental data. We will therefore modify Fick’s law (2.2)
to get an equation that resembles (1.3).

Based on this, we propose that the flux in (2.1) should be defined as

®(z,t) = —Ko(—A)* ' Vu(z,t), (2.3)
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with anomalous diffusion constant K, > 0 (with units m?®*s~!), which gives the
following new anomalous diffusion equation:

u(z,t) — KoV - (=A)* " 'Vu(z,t) = 0. (2.4)

The operator (—A)?, with non-integer 3, is a non-local pseudo-differential operator,
which is defined in R™ through the Fourier transform as

(=A)Pu = F71(I¢*a(¢))

for suitable u, and so equation (2.4) contains a number of subtleties which will be dis-
cussed below. The definition of the Fourier transform and its inverse used throughout
this paper is

[FW)](€) = / 70 (a) da
171 (@)](z) = / €T a(¢) de,

with the notation & = #(u). The variable £ will be used throughout as the variable
in Fourier space.

It should be noted that if u € L%R") and is smooth enough for the operations to
make sense, then —V - (—=A)*~1Vu = (- A)%u, since

—V - (~8)7 Vu = 7 (—ig - (gPeVie)a) = £ (lga) = (-A)%u.

But when we study the equation inside a domain, and not in the whole space, there
will be a difference.

The formulation where the spatial derivative on u is decomposed into three parts,
V-, (—A)% and V, has some implications. First of all, by first taking the gradient of
u, before applying the pseudo-differential operator, we ensure that the whole operator
applied to a constant gives zero, which is not the case otherwise. This idea is similar
to the so called ’Caputo derivative’ for fractional derivatives in one dimension, defined
by switching the order of integration and differentiation in (1.2), see e.g. [6]. Second,
from the conservation of mass, we have a natural definition of the flux (namely (2.3)),
and thus we may formulate boundary value problems where the boundary conditions
specify the flux in the normal direction at the boundary, similar to the Neumann prob-
lem for the ordinary diffusion equation. Thus, the equations we are mainly interested
in take the form

ug(z,t) — KoV - (—A)* 'Vu(z,t) = F(z,t), (x,t) € Qx (0,T),
—f - Ko(—A)* IVu(z,t) = G(u, z), (z,t) € 092, x(0,T) (2.5)
’U/(.TL',O) = UO(m)a xr € Q.

Here, ) is a bounded domain in R" with smooth boundary, G is linear in u, and
a > 1. Further restrictions will be discussed below. For simplicity, we will set K, = 1
in the following.

As the equation stands here, there are a number of questions that may be asked,
especially regarding how the operator we have introduced acts, and how to define it
properly. In the next section, we will make this clear.
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3. The operator A. Motivated by the discussion in the previous section, we
introduce the operator A, which we write as

Au = =V - (—A)*Vau (3.1)

with e = @ — 1 > 0, and with Q an open, bounded domain in R*. We will assume
u € L%) and discuss further restrictions on u below.

First of all, we have written Vi instead of V, since as the operator (—A)® is
defined through the Fourier transform, the function it is operating on must be defined
in the whole space, while the gradient should only operate inside Q2. Thus, Vo may
be thought of as xqV, where xq is the characteristic function of (2, meaning that
the function is first differentiated inside €2, and then extended to be zero outside {2,
ignoring anything that may happen on the boundary. We can also make a proper
definition in the sense of distributions as follows. We let ¢ = (p1,...,¢,), with
0; € C¥(R™), j =1,...,n, which we will write as ¢ € C(R™). Then, for v € L¥),
Vaq is defined by

(Vav, ) = —(v,V - cp>L2(Q), for all p € C(R™) (3.2)

which defines Vqu as a distribution on R” with compact support (in ), i.e. Vou €
E'(R"). We will use the notation (-,-) to denote a distribution acting on a test
function, while scalar product in L) and LXR") will be denoted by the same
symbol, but with corresponding index, as in the right hand side of (3.2). Of course the
distributional gradient V is also defined by the relation (3.2), but for all ¢ € C§¥(Q?),
which defines Vv € D'(2), a distribution on Q.

We remark that if v € C{Q) and ¢ € C>(R"), then

<ng,cp>=—<v,V-<p>L2(Q):—/UV-cpda::—/ vcp-ﬁdS+/Vv-cpdx.
Q 89 Q

In this sense the difference between Vi and V is a measure on the boundary of Q. In
particular, if v € C3(Q2), then Vv = Vv in & (R") (if Vo is extended by zero outside
) and interpreted as a distribution on R™).

Now, the next step is the definition of (—A)¢. As mentioned earlier, this operator
is defined through the Fourier transform by

(-A)yw =77 (lg*D()) ,

whenever this makes sense, which it clearly does for example if ¢ > —n/2 and w be-
longs to the Schwartz class S(R™) of rapidly decreasing infinitely differentiable func-
tions, since then @ € S(R™) and [£|?**@(£) € LYR™). But it may also be interpreted
in the sense of distributions, i.e. if |¢|**@(£) € S'(R™), since the Fourier transform is
defined for the tempered distributions §’(R™). In the definition of the operator A, we
apply (—A)¢ to each of the components of Vqu.

Finally, we define the divergence as usual, in the sense of distributions, noting
that we are only interested in the result inside €2, although (—A)®*Vqu is defined in
the whole of R™, so the operator of restriction to 2 is implicit in the divergence, which
is indicated by using the symbol V.

By combining these three operators, we get the following definition of the operator
A in the sense of distributions.
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DEFINITION 3.1. Given e > —n/2, the operator A : L) — D'(Q) is defined for
u € LAQ) by

(Au, ) = —(u, V- (—A)*Vy) for all p € CF(2) (3.3)

L2(Q) 2

One of the reasons for factorizing the operator A into three parts, is that it is now
possible to integrate by parts, and if v and v are smooth enough, say u,v € C(Q)
with Au € LX), it holds that

<AuaU>LZ(Q) = 4(_VQ (=A) Vou)vdz

(3.4)
= —/ - ((=A)*Vou)vdS + / (=A)*Vou - Voudz.
a0 Q
But using Parseval’s formula, this last integral over 2 may be written as
1 —
/(—A)EVQU -Vouvdz = — / |€]%¢ Vau - Vu dé
Q 2m)™ Jgn
1 / — —
= EIFVau - [E|F Vau dE 3.5
@ Rnl | €l (3.5)

- / (—A)*/>Vgu - (—A)/>Vau da.

And, furthermore, the boundary integral in (3.4) contains the flux across the
boundary as defined in (2.3), so that if u either satisfies the zero flux Neumann-type
boundary condition

—f- (A Vu(z,t)) = - ®(z,8) = 0

or the Dirichlet condition u = 0 on the boundary, then
(Au,u) = / [(—A)*/2Vqul|? de.
R’n

4. The space H*). Led by the above discussion, we define the space H*2),
a > 1, associated with the operator A4, as the space of all u € L¥Q) for which the
norm

1/2
lallasoy = (Il + 1(=A)>Voulfagm )

with ¢ = a —1 > 0, is finite. Here, we have v = (—A)*/?Vqu in D'(R") for u € L¥Q)
if

(Vo) = =(u, V- (=28)20) oy = = /qu (=A) P du (4.1)
for all ¢ € C§AR™).
The space H§(Q?) is the closure of C§(?) in this norm. We first prove that H*((2)
and HZ(NY) are Hilbert spaces.
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PROPOSITION 4.1. HXQ) and H(Q) are Hilbert spaces.
Proof. Tt is obvious that [|-[|3«) is @ norm with a corresponding scalar product.
It therefore only remains to show that H*Q) is complete. We therefore choose a
Cauchy sequence {uy,} in H*(12), and since L(Q) and L(R") are complete, we know
that there exist u € LX) and v € LYR") such that

U — u in L), and (—A)*/2Vou,, — v in L{R").

We need only show that v = (—A)*/2Vqu in L{R™). We therefore choose ¢ € C$(R™)
and compute

<v,<p> = <v,<p>L2(Rn) = lim <(—A)6/2V9um,<p>L2(Rn)

m—»o0

= lim —<Um, V- (_A)5/2¢>L2(Q) = _<u7v ) (_A)5/2¢>L2(Q)

m—»0o0

= <(_A)E/2VQU’7 <P>

by (4.1), where we note that V - (—A)E/2<,a|Q € L), so the limits are correctly
taken in L?, and thus v = (—=A)*/2Vqu in D'(R"), and therefore in L¥R™).
Finally, #$(Q?) is also a Hilbert space since it is a closed subspace of H¥2). m

We now prove a few useful results about the nature of H¥Q) and H(2).
PROPOSITION 4.2. Ifu € H{Q) ande =a—1> 0, then

[(=A)*Voullp2gny = [(=A)**ul| pgn).-

Proof. Since u € HY(RY), we have Vou = Vu as distributions on R", and therefore

1 . 1 —~
1A Vol aer) = s [ IlEFi€RE R de = o [ e+t de
1

~ @ /R"l(lff)“/ WP dE = [1(=2)*ull )

using Parseval’s formula. [

PROPOSITION 4.3. If u € LAQ), extended with zero outside Q, and (—A)Pu €
LAR™), where Q is a bounded domain and B > 0, then

||u||L2(Q) S c ”(_A)BU,”LZ(Rn)

43 /n
with C = % (Vn|Q| (1 + %)) o , where V,, is the volume of the n-dimensional
unit ball.
Proof. We first note that u € LX) with ||ul|ryq) < |QY/2||ullzxq) by the Holder
inequality, and furthermore that this implies that 4 is continuous with sup |u] <
llull Ly @y, if we extend u by zero outside 2.
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We now apply Parseval’s formula, getting

2 _ 1 ~2 _ 1 ~/eV2 1 N2
ey = gyl = e [, BOP e+ o [ o ae

V.r®
2m)n
< Va|Qr™
- (2

—~~

<

. 1 8
(sup [a])? + @ /mr'ﬂﬁ Q)2 d¢

—~~

1
||U||%2(Q) + m||(—A)BU||%2(Rn)

for any r > 0 and 8 > 0. This implies

—483

mll(=2) ullZ gy,

T
lullfy0) € ——=——=
) 1- Vn|Q| (ﬂ)

and taking infimum over those r that give a positive constant, we get C' as above. =

PROPOSITION 4.4. If Q is bounded and oy > as > 1, then
H Q) C H*(Q) C HY(Q)

with corresponding norm-inequalities. Here, HY(SY) is the standard Sobolev space of
order 1.
Proof. The right inclusion follows from proposition 4.3 applied to Vqu, since if u €
HY(Q), then Vou € LAQ).

The left inclusion follows from taking u € H*(Q), letting e = a2 — 1 and
€1 = a1 — 1, so that €2 < e1, and computing

1 —
_A)E2/2 2 n:_/ 29 24
(=20 Vaullixgs = Gom | 17 Vaul® dg

1 / pen 1 13 o
= — &I°%2 | Vaul|* d€ + / €222 |Vl d¢
(2m)n \g|<1| I IVaul )" ‘§|21| [*2 | Vu|
L[ 1 _
< 2 26, )
= (2m)n /Rnlvgul dé + @) /Rnlél |Voul|? dé

= IVaull7q) + [1(—2)7/*Vaull7 3gm
< C||(—A)51/2V9u||%2(mn)

by proposition 4.3. [

One may well ask the question what u € H* Q) may look like. It is obvious that if
Vau € C§(Q), then u € HY), but are there other possibilities? In particular, since
Vau typically has a jump across the boundary of Q, one may ask what (—A)/2Vqu
looks like in that case. As a partial answer to this, we will see what happens to the
characteristic function of a sphere in R", i.e. investigate (—A)¢/2 X|z|<r(T), T € R,
Now, the Fourier transform of x|;|<g has a decay of O(|¢|K) as |¢| — oo, with K =
min ("T‘H, 2) (which may be checked by computing the Fourier transform explicitly),
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so Z((—A)*2x1z1<r(x)) = O(|¢]*K). If we consider only asymptotic decay, then
for this function to belong to LYR™) in Fourier space, we must have

2e-K)+n-1< -1,

which amounts to ¢ < min (3,2 — 2). Thus, at least for n < 3 and a < 3/2,
functions in H* ) need not have zero derivative at the boundary, which allows for
more interesting solutions to the equations.

5. Stationary problems and Poincaré inequalities. Our aim in this section
is to prove the existence of unique weak solutions in H*(2) to the problem
—Va - (—A)*Vqu = in Q
u=20 on 00

where f € L¥), and § is a bounded, open domain in R* with C'-boundary. Proving
this will give us a number of results which are useful for proving the existence of
solutions to the time-dependent equation (2.5), which we treat in the next section.

The method we use is the standard Hilbert space approach (using in particular
the Lax-Milgram theorem) to define and prove existence of weak solutions. We will
refer to the book by Showalter [16] for the standard theory. Weak solutions are defined
as follows. Formally, we multiply the equation by a function v € H¥2) and integrate
over (2, then integrate by parts as in (3.4) and (3.5) and get

(Au,v) = a(u,v) —/ 7 - ((=A)*Vau) vdS, (5.2)

[219)

where the bilinear form a(u,v) is defined by
a(u,v) = / (=AY ?Vqu - (A ?Voudz  u,v € HYN). (5.3)
Q

We see that if v € HJ(Q), then the boundary integral in (5.2) vanishes, and so we
define u € HS(2) to be a weak solution to (5.1) if

a(u,v) = <f,v>L2(Q), for all v € H{(Q).

Now the Lax-Milgram theorem guarantees the existence of a unique solution u,
provided that we prove that the bilinear form a is coercive on H§(2), i.e. that

a(u) u) Z C||u||’2H°‘(Q)7

for all uw € HZ(S). But this result follows from the Poincaré inequality below, which
in turn follows immediately from the results in the previous section.

PRrOPOSITION 5.1 (Poincaré inequality on H(Q)). If u € HHQ), with a > 1,
then

lullz2e@) < ClI(—A)*?ul|g2(rn).-
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Proof. By propositions 4.2 and 4.3 we have
||(_A)E/2VQU||L2(R") = ||(_A)a/2u”L2(R") > Clull L2

We summarize the preceding discussion in the following corollary.
COROLLARY 5.2. If a > 1, the bilinear form a defined by (5.3) is HS(Q)-coercive,
that is

la(u, u)| > CllullFeq)

for allu € HY(Q), and therefore the Dirichlet problem (5.1) has a unique weak solution
u € HY(Q) for any f € LXQ).

For time-dependent problems we will also be interested in the Neumann-type
problem (2.5), and will therefore need a similar result on H*(Q2), when v need not be
zero on the boundary. In that case, though, we can not expect the Poincaré inequality
to be on the form above, since u € HY2) can assume any value on the boundary, and
therefore we can make the L?-norm as big as we like by adding constants. Therefore,
we introduce the notation

(u)g = ﬁ/ﬂu(m) dz

for the average of u € LYQ) over 2. We then set out to prove a Poincaré inequality
for u — (u)q. The first step is the following theorem on compact imbedding in L%(€2).
PROPOSITION 5.3. The space HX(Y), a > 1, is compactly imbedded in L) if
the boundary 0Q is C'.
Proof. Obviously, H¥Q) C LX), so we only need to show that if {u,,}>°_, is a
bounded sequence in H%(f2), then there is a subsequence {u,, }32, which converges
in LAQ).
But ||| zyq) < Cl|llnee) by proposition 4.4, and since H(Q) is compactly em-
bedded in L%(2) (see e.g. Evans [2, thm 5.7.1]), then so is H*(Q). |

We may now prove the Poincaré inequality on H*2). The proof is adopted from
Evans [2, thm 5.8.1].

THEOREM 5.4 (Poincaré inequality on H*(Q)). Let Q2 be a bounded and connected
domain in R" with C*-boundary and let u € HXQ), o € (1,1 + %). Then there is a
constant C = C(n,a,Q) such that

llu = (Weallpxa) < CIl(=A)"*Vaul| pawn

where e = a — 1, as before.
Proof. We assume that the estimate is false and try to derive a contradiction. In that

case, for each integer k = 1,2,... there is a function uy € H*Q) such that
llur = (ur)ellz) > KlI(=A)7*Voug|| Lxgn.- (5.4)
We set
vy = — = (ur)a

s — (ur)allye)
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for k=1,2,..., so that [[vx||z20) = 1 and (vg)o = 0. Furthermore, (5.4) implies

1
(= A)/2Vqug | 2wy < =

for k = 1,2,..., so that the sequence {v;}%2, is bounded in H*Q). Therefore, by
proposition 5.3, there is a subsequence {vy; }32, and a function v € LX) such that

vk, = v in LXQ) as j = oo.

It follows that [|v][z3q) = 1 and (v)qo = 0. On the other hand, the distributional
gradient Vv = 0 in D'(2). To prove this, choose a test function ¢ € C§(f?) and set
W = (—A)~%/2¢, noting that ¥ € C*(R") N LXR™) if ¢ < n/2. Then,

(Vv, ) = =(v, V- ‘P>L2(Q) == .lim (ve;, V - ‘P>L2(Q)

= — lim <Ukj,V ( s 2¢>L2(Q) = 11m <(—A)6/2VQUkJ,1/J>L2(R"

j—o0
= lim (- )E/2V9vk (z) ¥(z)dz
j—oo Jrn
and since
[ =80V 2) () da| < 11~/ Vin, ey [
< 7”1/)”152@") —0 asj— o0,
J

we have Vv = (. But since 2 is connected, then v must be constant, and since
(v)o = 0 this constant must be zero. This contradicts ||v||z2r») = 1 and proves the
theorem. -

6. Time-dependent problems. We now set out to prove existence of unique
solutions to time-dependent parabolic boundary value problems involving the operator
A. We begin with the Dirichlet problem and then consider Neumann-type problems
with boundary conditions involving the flux (2.3) across the boundary.

6.1. The Dirichlet problem. We consider the equation

ug(z,t) + Au(z,t) =0, (z,t) € Q x (0,00),
u(z,t) =0, (z,t) € 09 x (0, 0), (6.1
u(z,0) = up(z), x €.

We let a(u,v) be the bilinear form defined by (5.3), and study it on H(2), which

corresponds to the homogeneous Dirichlet problem above. Using Riesz’ theorem, we
define the operator A € L(D(A), L%()) by

a(u,v) = (Au,v) u € D(A), v e HJN),

L2 ’
with

D(A) = {u € H5(Q) | la(u,v)| < KullvllLye),v € H(2)}
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The operator A is of course an extension of the operator A, because of (3.4) and (3.5),
where the boundary integral vanishes because v is zero at the boundary.

By corollary 5.2, we know that a(u,v) is coercive on HE(2) (and in fact it is
Ha(Q)-elliptic, that is Re a(u,u) > C||u||3{a(m if u € HYQ)). As is shown in [16,
chapter IV], this implies that D(A) is dense in L¥(2), and —.A generates an analytic
contraction semigroup S(t), ¢ > 0, which gives a unique solution u(t) = S(t)ug €
C([0,00), L)) N C°((0,00), L)) to the abstract initial value problem
! —

{u )+ Au(t)=0 ¢t>0 62)
u(0) = ug

for each ug € L*2). Furthermore, u(t) € D(A™) for t > 0 and every integer m >
1, meaning in particular that u(t) € HE) for each ¢ > 0, so that the boundary
conditions are fulfilled. In this sense we have therefore found a unique weak solution
to the Dirichlet problem for the space-anomalous diffusion equation (6.1). We may
also add a right hand side f(t) : [0,00) — L¥), if it is Holder continuous in ¢, but
then we only get one continuous time-derivative of u(t). In either case, there is a
measurable representative U € L* x [0,7]) for any T > 0, with U(-,t) = u(t) and
O U(-,t) = u'(t) in LX) for t € [0,T.

The inhomogeneous Dirichlet problem u = g on 92 may also be solved if we find
aw € HYN) with w = g on 9N and Aw € LX), because then the equation may
be transformed to a homogeneous Dirichlet problem with right-hand side —Aw and
initial condition ug — w. These results are summarized in the following theorem.

THEOREM 6.1. Let Q be a bounded domain in R® with C'-boundary and let € > 0.
Then the space-anomalous diffusion equation

ut(ta .CL') - Va- (—A)EVQU(.’L',t) = f(.fl?,t), (.Z‘,t) € 0 x (0700)
u(z,t) = g(z), (2,t) € 09 x (0,00)
u(0, ) = uo(z) z€Q

has a unique solution u € LAQ x [0,T]) for any T > 0, if f(-,t) € LX), Vt > 0
and the mapping t — f(-,t) is Hélder continuous, ug € L), and g € LH0Q) with
g = yw for some w € HYQ) with Aw € LAQ), where v is the trace operator.

6.2. The Neumann-type problem. Turning now to the Neumann-type prob-
lem

we(z,t) + Au(z,t) =0, (z,t) € Q x (0,00),
—i - (—A)*Vou(z,t) =0, (z,t) € 00 x (0,00), (6.3)
U(.’E,O) = Uo(l'), T € Q:
we use the same approach as for the Dirichlet problem, but we need a bit more
reasoning, since solutions will not be zero on the boundary and we need to use theorem

5.4 instead of proposition 5.1 to prove coercivity.
We therefore define the quotient spaces

W=L 0)/{ue L Q) |u=c} and V =HXQ)/{ueHXQ)|u=c}
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with norms

lullw = llu — (wallLxe),  llullv = llu = (Wallus),

and let Vg be the closure of C§°(2) in V', or Vo = H§(Q)/{u = ¢}. The norms above
are not the standard norms on the quotient spaces, but it is easy to verify that W,
V, and Vj are Hilbert spaces.

With the bilinear form a(u,v) defined for u,v € V by (5.3), we follow the stan-
dard arguments in sections IV.7 and III.2 in Showalter [16], and define the bounded
operator A; : V — Vj by

[A1u](v) = a(u,v), ueV,veV

and let D; = {u € V | Aju € W}, implying by Riesz’ theorem that if u € D, then
[A1u](v) = (Aru,v),, (since Vo C W =W’ C (Vp)").

Next, we investigate the difference between a(u,v) and [4;u](v) for u € D;. That
is, fix u € D; and study the functional

o(v) = a(u,v) — (A1u,v),,, veV.

Comparing this expression to (5.2), we see that ¢(v) should correspond to the bound-
ary integral, and we will see that this is so. Note first that ¢ € V' and that ¢|V0 =0,
which is what characterizes the range of ¢’ : (V/Vp)' — V', the dual of the quotient
map ¢q : V — V/Vy. This implies that there is a unique F € (V/V;)' such that
Fog=¢in V'

We then let v : V — LX99Q)/{u = c} be the standard trace map modulo constants
(which exists since H%()) C HYQ)) with kernel V; and a range which we denote B.
This induces the bijection 7 : V/Vy — B with Yo g = «, and we can define a norm
on B by [llz = |7~ (-)llv/v,, which makes the dual operator 7' : B — (V/Vy)'
a bijection. Therefore, given the functional F € (V/V,)' above, there is a unique
element § € B’ such that F = 7'(9), or in other words F' = § o5, which implies that
¢ = 0oFoq = 0ovy. We conclude that there exists a linear mapping 0s.11 : D1 = B’
such that for u € Dy,

a(u,v) = (A1u, ), = Bae 1 (W)(Y(v)), veEV (6.4)

which is an extension of the normal flux operator —7 - (—A)°Va|yq-

Now, theorem 5.4 implies that a(u,v) is coercive (and elliptic) on V' if € € (0, %),
and just as for the Dirichlet problem, if we set D(A) = {u € V | |a(u,v)| < Ky||v||lw},
a(u,v) defines an operator A : D(A) — W through

a(u,v) = (Au,v),,, u € D(A), veY,

because of Riesz’ theorem (since V' is dense in W). The operator —A now generates
an analytic semigroup on W, which solves (6.3) for each ug € W, where the solution u
has the same properties as for the Dirichlet problem above. In particular u(t) € D(A)
for all ¢ > 0 and it is easily seen that D(A) C Dy, A = Aj|p 4 since Vg is dense in
W, and thus from (6.4) that

82€+1(u(t)) =0 in BI,
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for all ¢ > 0, and in this sense u fulfills the Neumann-type boundary condition.

With this solution to the Neumann-type problem on the quotient space W in
hand, which for each ¢ > 0 may be interpreted as a function in LX) with mean
zero, it is obvious that we may add constants C to the initial value ug and get the
corresponding solution u + C, since A(u + C') = Au. We may also add a right-hand
side g € LH0N) to the boundary condition and still get the same result. Furthermore,
just as for the Dirichlet problem, we may add a right-hand side f(t) : [0, 00) — L%2)
to the equation if f is Holder continuous in ¢, and again we have a representative U
for the solution u, with U € L*2 x [0, T]) for any ¢ € [0, T].

It is also possible to have Robin type (or mixed) boundary conditions, that is

—n - ((=A)*Vou(z,t)) + b(x)u(z,t) =g(x), €, t>0

with b € L(0N) strictly positive (b > by > 0 a.e.) and g € L(0Q). We then define
the bilinear form as

a(ua U) = <(_A)E/2VQU/, (_A)E/2VQU>Q + <b7ua ’YU>89

For a > 1, this is coercive, because then u € HYf) and proposition IIL.5.C in [16] is
applicable, which says that

/|u|2 dx < 2diam(Q / |yul* dS + (2 diam(9 /|Vu|2d.7:

so coercivity follows directly.

We summarize these results in the following theorem.

THEOREM 6.2. Let Q be a bounded, connected domain in R* with C'-boundary
and € € (0,%). Then the space-anomalous diffusion equation

ut(taw) - Vo - (—A)EVQ’U,(.TL',t) = f(mat)7 (iL‘,t) € x (0700)
u(0,2) = uo(z) x e

has a unique weak solution u € LXQ x [0,T]) for any T > 0, if f(-,t) € L(Q), Vt > 0
and the mapping t — f(-,t) is Hélder continuous, and ug € LX), for each of the
boundary conditions

—n- (—A) Vau(z) = g(z)
—f - (=A)"Vou(z) + b(z)u(z) = g(z),
for © € 09, if g € LX0Q) and b € L>(Q) with b > by > 0 a.e..

7. Non-positivity of solutions. We will now briefly discuss the issue of posi-
tivity of solutions. In general, the solutions to the space-anomalous diffusion equation
(1.3) in the whole of R" are not positive if & > 1, given a positive initial value ug.
This is seen as follows: Let ¢(z,t) be the fundamental solution to (1.3), namely

d(x,t) = F 1 (e‘t‘g‘h) ,
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which is found by taking the Fourier transform of (1.3) and solving the resulting ODE

in ¢ with initial value $(§ ,0) =1=%(d(x)). Next consider the integral
1 " T _ 1 82 ~
Gy (000, 0(6.1)) = ~m 5 (6 1) B

Now, the right hand side may be easily evaluated, and if a > 1 we get zero, so that

/ z2¢(z,t)dzx = 0,

/narfqﬁ(a:,t) dz = (27, ¢(z,t)) =

which implies that ¢(x,t), ¢ > 0 is negative for some z, since it is not everywhere
zero. Thus, the fundamental solution is non-positive, which implies that the solution
to (1.3) is non-positive for many initial conditions.

It would of course be desirable to have positive solutions, since the solution w is
supposed to describe a concentration, and so the space-anomalous diffusion equation
has a weakness when it comes to being a model for subdiffusion. But, on the other
hand, we study the equation inside a domain, where the initial condition may be
sufficiently far away from zero to prevent the solution from ever becoming negative.
Furthermore, the Neumann-type boundary condition implies that the total mass is
constant, and the solution will tend to smooth out with time, decreasing the concen-
tration differences between different locations. Thus, regions with low concentration
will get higher concentration after a while, instead of decreasing below zero, even
though it may decrease during a short time interval. This is seen in the numerical
examples in the next section.

One may also argue that the model we use is not valid for small concentrations,
since then the crowdedness that causes the anomalous behaviour is not present. And
so perhaps a non-linear model with different behaviour when v is small would be
more correct. On the other hand the anomalous behaviour might be caused by other
factors than interactions between molecules of the same species and thus be present
regardless of the concentration.

Finally, it should not come as a surprise that solutions may be non-positive, when
one considers that for 1 < a < 2, we are somewhere between ordinary diffusion and
elasticity, and that in an elastic material we may have propagating waves, so it is
traces of this effect that show up in our equation.

8. Examples. In this section, we will show some numerical solutions to the
space-anomalous diffusion equation inside a ball in R®, with Neumann-type boundary
conditions, and compare the ordinary diffusion case @ = 1 to an anomalous diffusion
case (o = 1.4).

The computations were made using a finite difference approximation of the op-
erator A on a uniform rectangular grid, keeping the scheme as simple as possible in
order to get some numerical results quickly. The approximation matrix was divided
into three parts, corresponding to the three parts of A, as

3
—Vo - (-A)*Vour »_ D;B.D;U,
i=1
where U is a vector with function values at the grid points. D; is a matrix with
finite difference coefficients for approximating the derivative in the x;-direction, using
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central differences inside the domain, and one-sided differences near the boundary in
order to avoid problems with the boundary. The matrix D; also contains the central
difference coefficients away from the boundary, but at the grid points next to the
boundary, it instead contains the i:th component of the normal vector at that point,
so that the equations at these grid points implement the boundary condition

= (=A)*Vou(z) = g(z).

Finally, B. is a finite difference approximation of the operator (—A)®, derived in the
same way as the so called Griinwald-Letnikov approximation [5]

fu(z) =h* > (-1)f (j‘) u(z — jh) = D%u(z) + O(h), (8.1)
j=0

and D? is a fractional derivative of Riemann-Liouville type, as in (1.2). The approx-
imation (8.1) is based on the series expansion

with step size h > 0, where

1-2)* = g(_nﬂ' (‘;) P, e, (8.2)

with z replaced by the shift operator E~", defined by E"u(z) = u(z + h). We
note that A= (I — E~")u(z) = h~'(u(x) — u(xz — h)) is a one-sided finite difference
approximation of the derivative, which motivates that the Griinwald-Letnikov formula
(8.1) approximates a fractional derivative of order a (note that in Fourier-space, the
shift operator E~" becomes the multiplicative factor z = e~%"). It may also be noted
that if a is an integer, the sum becomes finite, and we get standard approximations
of higher order derivatives.

If we instead consider the standard second order approximation of the Laplacian

Apu(z) = u(z + h) — 212(;) +u(x — h)

in one dimension, or in three dimensions

= W (=2I+E"+E~")u(z) = Au(z)+0(h?)

3
Apu(zy, T2, 73) = h ™2 <—6I + Z(Ez_h + Eﬁi))u(xl,mz,mg),

i=1
we can use the same series expansion (8.2) to get

6% _ifa _ - —h\J
(~80)° = 3w -0 () (BL + Bz + BL + Byt + B, + B3’
j=0

6% _ifa I kih—kah pksh—kah ksh—keh

:ﬁz(_G) J(j) EEw} 2h phah—kah ghsh—ke
=0 k=5

o0 o0 oo

— mh nh ph
= > D D cmnsBERER

m=—0o0 N=—00 N=—0C0
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Here, the coeflicients cp, n,p are invariant under permutation and negation of the
indices and

6% = . T(a+1) « 1
= — —6 -y @ 7 — R
emnp=jam 2, (70) T(a—j+1) & k! (8:3)
J:(r_zi_+7§+p |k|=j
‘7 =

where “j += 2” means that j is increased in steps of 2, and the starred sum is taken
over k = (ki,... k) with S p_, ki = j, k1 — ks =m, k3 — ks = n and ks — kg = p,
which may also be written as

j—m-—n—p j—m—n—p—=2a

* 1 2 2 1
k! ; ; d(m + d)la!(n + a)!b!(p + b)!

[k|=4

with d = 3(j —m —n — p — 2a — 2b). It is this approximation that is used in the
matrix B, which becomes a full matrix containing the coefficients ¢y, n,p. These
coefficients should be computed with the infinite sum (8.3), but fortunately the terms
decay rather quickly, so it is enough to take some 50-100 terms in the sum.

If we set Ap,o = 2?21 D;B.D;, and use a backward Euler method for the time-
derivative, the resulting system of equations is

(I/At — Ap o)Up = TU,_1 /AL, k=1,....K (8.4)

where I is a restriction to the interior points, meaning that the boundary condition is
included in (8.4), and Uy is a given vector with the initial condition. The linear system
of equations is solved for Uy at each time-step using the iterative solver BiCGStab
(see e.g. [7]), meaning that we only need to be able to multiply by A o, and this is
done by direct matrix multiplication with the sparse matrices D; and D; and the full
matrix B.. More efficient implementations using the Fast Fourier Transform for B,
will be considered in the future.

We will now show results from computations for the space-anomalous diffusion
equation with homogeneous Neumann-type boundary conditions, as in (6.3). In the
example,  is a ball with radius 0.45 centered at (z,y,z) = (0.5,0.5,0.5), and the
initial condition is uo(z,y,2) = G(p), where p = |(x — 0.7,y — 0.5,z — 0.5))| and
G(p) = 1.2 for p < 0.3, G(p) = 0.2 for p > 0.4 and with a smooth transition between
these two regions. The problem was solved for both a = 1.4 (subdiffusion) and o = 1.0
(ordinary diffusion) in order to see the difference. The parameter K, was set to 1, and
the diffusion coefficient D (in the a = 1 case) was chosen so that the two solutions
are comparable.

In figure 8.1, the solution after a short time (¢ = 10™%) is shown for z = 0.5, for
the two cases. The solutions are still very close to the initial condition, and give an
idea what it looks like. But we can also see differences near the boundary for the
two cases. The ordinary diffusion solution is flatter near the boundary, because of
its Neumann boundary condition, while the subdiffusion solution with its non-local
boundary condition shows a slightly different behaviour.

In figure 8.2, we see the solution for the two values of & and at two different time
points. At the first time point, we see a difference between the two cases in that in
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Numerical solution at z=0.5 and t=10". a=1.4

Fic. 8.1. The numerical solution at z = 0.5 and t = 10~* for subdiffusion (o = 1.4, top) and
ordinary diffusion (a = 1.0, bottom). Note the differences near the boundary.

the subdiffusive case the solution remains high further from the center of the plateau
than in the ordinary diffusion case, so that the solution is a bit more reluctant to
smooth out. Still, at the steepest part, the subdiffusive solution is less steep than the
ordinary diffusion solution. At the second time point, however, the two solutions are
almost identical, and they both tend to become flatter as time passes.

The differences are rather small, but we must remember that we are only looking
at the solution along a line through the center of a three-dimensional volume, so the
differences are larger than they seem. Also, even very small differences could have a
large effect if these diffusion equations include a reaction term in the right hand side,
which is the case if we study a biological system such as in [4, Part I]. This will be
subject to future research.
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Solutions for ordinary and anomalous diffusion for y=z=0.5

1.4 —r— T T T T T T T
a=1.0, t—t1
_ _o=14, t=t,
12r a=1.0, t=t, = 1
_ _a=14, t=t2
ir |
= 0.8 1
N
>
X
> 0.6} .
0.4f .
0.2} E
O L L L L L L L L L

Fic. 8.2. The numerical solution at y = z = 0.5 for t = 104 (black) and t = 3-10~3 (gray),
for subdiffusion (o = 1.4, dashed) and ordinary diffusion (o = 1.0, solid).
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APPROXIMATION OF MEAN CURVATURE FLOWS

Tobias Geback

Abstract

This part of the thesis contains Paper II, in which we prove convergence of
a computational scheme for approximation of generalized mean curvature flows
with right-angle boundary conditions. A mean curvature flow is the evolution
of a surface which at each point moves with a velocity in the normal direction
that depends on the mean curvature of the surface at that point. We study
the case when the velocity is a general non-decreasing function of the mean
curvature, and when the evolution takes place inside a domain, and the surface
intersects the domain boundary at a right angle whenever they intersect.
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1. INTRODUCTION

This part of the thesis concerns mean curvature flows. In short, it is the study of con-
tinuously moving surfaces, where the speed with which they move depend on the mean
curvature of the surface at each point. In the paper that follows this introduction, we prove
convergence of a computational scheme for approximating such mean curvature flows, in
the case when the surface sits inside a bounded domain and intersects the boundary of this
domain at a right angle whenever they intersects. Furthermore, the speed with which the
surface moves may be a rather general increasing function of the mean curvature.

In the following introductory sections, we will describe in more detail what mean cur-
vature flows are and the basics for the approximation scheme that we use. There will also
be a brief introduction to the topic of viscosity solutions, since it is this notion of solutions
that is used for the mean curvature flow equations.

The paper has been submitted, but not yet accepted for publication.

2. MEAN CURVATURE FLOWS

Consider a hypersurface Ty in R*. At each point z € T, assign a velocity v in the
normal direction (see figure 1), so that Ty moves at each point with velocity v(z)n(z),
creating a new hypersurface. Continuing the process, a family {I';};>o is created, where
the hypersurfaces T'; evolve according to the normal velocity v(z,t). If we take v(z,t) = k,
the mean curvature of I'; at z, we get the mean curvature flow. Mean curvature flows
have been studied since the 1970:s, first by parametric methods from differential geometry,
although it was soon clear that for n > 3 these methods ran into problems even for
smooth hypersurfaces Ty, as the mean curvature flow could develop singularities (so that
the curvature is not defined for some z), see figure 2. One method to overcome these
problems, was introduced by Brakke [4], who used varifold theory to define weak notions
of mean curvature flow (see also [7] for a modernization of these results). This method,
however, does not give unique solutions.

Then, following ideas from Osher and Sethian [16], Evans and Spruck [9] developed a
new approach to motion by mean curvature in which the hyper-surface I'y is viewed as a
level set of a continuous function f : R* — R, so that

Do ={z € K" | f(z) = \}

for some A € R. The mean curvature flow is then studied through the PDE

ou . ( Vu .
5= [Vl dlv<m> in R” x (0, 00),
u=7f on R* x {t = 0},

(2.1)

which ensures that the level sets of u evolve according to their mean curvature, at least
as long as Vu # 0, since div(Vu/|Vul) is the divergence of the outward unit normal of
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Figure 1: A surface T with a velocity v assigned in the normal direction at a point z.
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Figure 2: The mean curvature evolution of a dumbbell-shaped surface. The surface devel-
ops a singularity after a finite time and is split into two. The image was produced by R.
Grzibovskis.

the level hyper-surfaces of u, which equals the mean curvature of the hyper-surfaces at
each point z. The PDE (2.1) is nonlinear and degenerate parabolic and has a singularity
for Vu = 0, which makes it rather hard to handle. However, the theory of wiscosity
solutions (see section 4) provides a well-suited tool to handle such equations and to prove
the existence of a unique solution, which was done in [9].

A number of generalizations of this approach have appeared. Existence of a unique
solution to more general level set equations has been established by Chen, Giga and Goto
[5] and for very general cases, including the case we study, where v = g(k) and g is any
non-decreasing, continuous function, by Ishii and Souganidis [15]. The Neumann problem
for the mean curvature equation has also been studied. In this case, the whole evolution
takes place inside a domain 2, whose boundary is intersected at right angles by the level
sets of u, i.e. the surfaces I'. This is the situation that is treated in the article. The
existence of unique solutions in this case was established by Sato [18] for convex 2 and by
Giga and Sato [10] for more general €, but less general dependence on the curvature.
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Curvature flows arise naturally in a range of situations, including fast reaction-slow
diffusion problems (see [17]) and image processing (see [1]).

3. THE CONVOLUTION THRESHOLDING SCHEME

In 1992, Bence, Merriman and Osher [3] presented a scheme for approximation of mean
curvature flows using the level set approach. The basic observation behind this scheme
is that mean curvature flows appear for the reaction fronts in fast reaction-slow diffusion
equations with a bi-stable reaction term described by a double-well potential with wells
of equal depth (see [17]). That is, if a substance diffuses through space, and at the same
time is subject to fast degradation and production configured so that the concentration
quickly becomes either 0 or 1, then there will be a reaction front between the region with
concentration 1 and the region with concentration 0, and this front will move with a normal
velocity proportional to its mean curvature if the reaction is given by the above potential.
But the solution to the reaction-diffusion equation may be approximated by first solving
the diffusion equation for a short time, and then applying the reaction, which amounts
to setting the solution to 1 if it is above a certain threshold (in our case 1), and to 0
if it is below the threshold. And, since the solution to the diffusion equation is given
by convolution with the heat kernel, we get a so called convolution-thresholding scheme,
which in turn can be generalized to use a more general convolution kernel p, for example
the characteristic function of a ball.

The resulting scheme can be described as follows (cf. [12]). First, fix a radially sym-
metric convolution kernel, p : R* — R, and define its contraction pV(z) = h=/2p(z/\/h).
Then, given a set Cy C R™, choose a time-step h and compute the convolution M (xz, h) =

(pV™ % xc,)(x), where ¢, is the characteristic function of Cy. Set
1
Ci={o R | MO ) 2 5 [ V() di)
R™

and continue the process by computing M (z, h) and defining Cy and so on. We then end
up with a sequence {Cy}& of closed sets in R* and if we set

T, =0C;, k=0,1,... K,

we get a sequence {Tx}&X of surfaces which approximate the motion by mean curvature for
the initial surface I'y. The principle is shown in figure 3.

The convergence of this scheme to the true mean curvature flow as h — 0 was proved
using different approaches by Evans [8], Barles and Georgelin [2] and Ishii [12]. General
thresholding schemes were also studied by Ishii, Pires and Souganidis [14]. Later, two
significant generalizations of the scheme have been developed. In 2002, Ishii and Ishii
[13] published an algorithm for mean curvature flow with right-angle boundary conditions,
and about at the same time, Grzibovskis and Heintz [11] developed a scheme for motion
with normal velocity equal to a (nonlinear) non-decreasing function of the mean curva-
ture (which is what we call generalized mean curvature flow). These generalizations are



4 4. VISCOSITY SOLUTIONS

Figure 3: Illustration of the convolution-thresholding scheme. The initial set Cj is bounded
by the solid line. Convolutions are computed for the characteristic function of this set with
the kernel p‘/ﬁ (with support inside the small circle), and the boundary for the new set
C (dashed line) is set where the value of the convolution is equal to half the mass of the
kernel.

described in the paper and it is these two schemes that are combined to give a scheme
for generalized mean curvature flow with right-angle boundary conditions, and the main
result in the paper is the convergence of this scheme as the time step h — 0.

4. VISCOSITY SOLUTIONS

4.1. BACKGROUND

The theory of viscosity solutions was developed during the 1980’s by M.G. Crandall,
L.C. Evans, H. Ishii, P.-L. Lions and others while seeking solutions to the Hamilton-Jacobi
equations. The name viscosity solutions originates from the method of “vanishing viscos-
ity” which was used to solve first-order equations and which was consistent with the new
theory being developed. Now, however, viscosity solutions do not generally have much to
do with viscosity. The theory provides very general existence and uniqueness results and
allows merely continuous functions to be solutions of fully nonlinear second-order equa-
tions. An excellent account of the theory may be found in the “User’s guide to viscosity
solutions” by Crandall, Ishii and Lions [6]. Here, we give a short introduction to the theory
and introduce some concepts which will be used later on.
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4.2. THEORY OF VISCOSITY SOLUTIONS
The theory of viscosity solutions applies to equations of the form
F(z,u,Vu, D’u) =0, (4.1)

where £ € R", u = u(z) is a real-valued function, Vu € R" its gradient and D?u € S(n)
the matrix of second derivatives of u. &(n) is the set of real, symmetric n X n matrices,
which is partially ordered by the relation <, where ¥ < X means £Y¢ < €1X¢ for all
& € R*. We also equip 8(n) with the norm || X|| = max{|X{¢| | £ € R*, |¢| = 1}. Finally,
F:R" xR xR" x §(n) = R is a function, which can take many forms.

For the theory to apply, we require F' to satisfy the monotonicity conditions

F(z,r,p,X) < F(z,s,p,X) ifr <s (4.2)

and
F(z,r,p,X) < F(z,r,p,Y)if Y < X, (4.3)

where r,s € R, z,p € R" and X,Y € S(n). If (4.3) holds, F is said to be degenerate
elliptic and if (4.2) also holds, F' is proper.

Now suppose that F' is proper and that u € C?(R") is a subsolution to F' = 0, i.e.
solves

F(z,u(z), Vu(z), D*u(z)) < 0

for all z € R". Choose a test function ¢ that is also C?, and suppose that u — ¢ has a local
maximum at #. Then we have V(u—¢)(£) = 0 and D?(u—¢)(2) < 0, i.e. Vu(z) = Vip(Z)
and D?u(2) < D?p(%), and by (4.3),

F(&,u(2), Vo(2), D*¢(2)) < F(&,u(z), Vu(z), D*u(£)) < 0.

We have thus replaced the derivatives of u with derivatives of test functions ¢, which we
choose to be well-behaved (i.e. at least C?). One could now try to define an arbitrary
function u to be a weak or generalized subsolution of (4.1) if

F(&,u(), Vo(#), D*p(2)) <0

whenever ¢ is C? and u — ¢ has a local maximum at Z. However, a slightly different
definition proves more useful and we therefore note that since v — ¢ has a maximum at z,
u(z) < u(2) — (Z) + ¢(z) for z near &, so a Taylor expansion of ¢ at % gives
1
u(z) < u(@) + {p,7 — &)+ (X (z ~ 8), 7~ &)+ ollz — ) (4.4
with p = V(2) and X = D?p(%). Also, if (4.4) holds for some (p, X) € R* x S(n)
and u € C?, then p = Vu(z) and D?*u(z) < X, so that if u solves F' < 0, it follows that

F(Z,u(Z),p, X) < 0 whenever (4.4) is true. Letting O C R" be locally compact, u: O — R
and z € O, we therefore define the second-order “superjet” of v at & by

J5Tu(z) = {(p, X) | (4.4) holds as z — #, with z € O}. (4.5)
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Reversing the inequality sign in (4.4) gives us the definition of the “subjet” Jé’_u(:i"), or
equivalently, J5 (i) = —J5" (—u)(&). We also state the definitions of the sets of upper
and lower semicontinuous functions
USC(0) = {u: O = [—00,00) | u™'([~00,a)) is open in O for each a € R} (16)
4.6
LSC(0) = {u: O — (—o00,00] | u* ((a,00]) is open in O for each a € R}
Finally, we are able to define viscosity solutions for the equation (4.1).

Definition 4.1 Let F' be proper and O C R". Then u € USC(O) is a subsolution of
F=0o0n0Oif

F(z,u(z),p, X) <0 for all z € O and (p, X) € J5 u(z). (4.7)
Similarly, u € LSC(O) is a supersolution of F =0 on O if
F(z,u(z),p, X) >0 for all z € O and (p, X) € J3 u(z). (4.8)

Finally, u is a (viscosity) solution of F' = 0 in O if it is both a subsolution and a superso-
lution.

We note that since viscosity solutions are both upper and lower semicontinuous, they
are continuous. Also, in view of the discussion above, it may be noted that

J5tu(@) = {(Ve(z), D*¢(2)) | ¢ € C? and u — ¢ has a local maximum at #},
J5 u(@) = {(Ve(2),D%¢(2)) | ¢ € C? and u — ¢ has a local minimum at 7},

which may be used to facilitate the use of definition 4.1. We also note that the semijets
only depend on the set O if £ € 00, so if that is not the case, we may drop the subscript.
We also need to define the closures of the semijets for z € O as

T35 u(@) = {(p, X) € R" x S(n) | Iax, pr, Xi) € O x R* x S(n) :
(e, Xx) € Jg u(zy) and (g, (@), pr, Xi) = (2, u(z),p, X)}

and note that if u is a subsolution of F' = 0 in O, then F(z,u(z),p, X) < 0 for z € O and

(p,X) € J5 u(z). If F is lower semicontinuous, this remains true if (p, X) € 72;+u(x).
Similar remarks are true for supersolutions and solutions.

4.3. BOUNDARY CONDITIONS

Viscosity solutions also allow precise formulations of boundary conditions. Consider the
boundary value problem

{ F(z,u(z), Vu(z), D?*u(z)) =0, z€Q (4.9)
B(z,u(z), Vu(z)) = 0, x € 09

in an open set 2 C R”, where F' and B are both proper functions. The correct definition
of a viscosity solution of (4.9) is then
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Definition 4.2 A function u € USC(Q) is a subsolution of (4.9) if

F(z,u(@),p, X) <0 zeQ, (pX) € Tg ul@), w10
B(z,u(x),p) A F(z,u(z),p, X) <0 z€09, (p,X) e T2 u(x). '
u € LSC(R) is a supersolution of (4.9) if
F(z,u(x),p,X) >0 e, (p,X Gjﬁ_ux,
(z,u(z), p, X) (p, X) € Jg u(z) (411)

B(z,u(z),p) V F(z,u(z),p,X) >0 z€0Q, (p,X)€ jéfu(a:).
Finally, u is a solution if it is both a subsolution and a supersolution.

Here, a V b = max{a, b} and a A b = min{a, b}, so what the definition basically means
is that on the boundary, either the boundary condition or the equation should hold. That
we can not expect the boundary conditions to hold in a stronger sense is demonstrated by
an example in [6].

4.4. SINGULAR EQUATIONS

Since the equation we are interested in has a singularity for Vu = 0, we need to introduce
a third definition of viscosity solutions.

To start with, given a function u : 2 — R, with  C R", we introduce the upper and
lower semicontinuous relaxations

u'(z) = limsup{u(y) |y € Lz —y| <e}, (4.12)
£—
ui(z) = liII[l) inf{u(y) |y € Q; |z —y| < ¢}, (4.13)
£
which are defined on  and take values in R U {00} and RU {—oc} respectively.

Also, supposing our function F is only defined on a dense subset W of L(Q)=0xRx
R™ x §(n), we may similarly define the relaxations F* and F, on W = L(Q) as

F*(z,u,p, X) = lim sup{F(y,v,4,Y) | (y,0,4,Y) € W, ||(z,u,p, X) = (v, 0,4, V)| <¢},
Fu(x,u,p, X) = lim inf{F(y,v,¢,Y) | (4,0,¢,Y) € W, ||(,u,p, X) = (y,0,0, V)| <&},

where ||(z, u, p, X)|| is just the sum of the norms for each component. Then, we can make
the following definition of viscosity solutions:
Definition 4.3 A function u : Q@ — R is a subsolution of (4.1) if u* < 0o in Q and
F(z,u*(z),p,X) <0 forallz € Q,(p,X) € j?fu*(x),
a supersolution if u, > —oo in Q and
F*(z,u.(z),p, X) > 0 for allz € Q, (p, X) € To u.(),
and a solution if it is both sub- and supersolution.

This definition is adopted from [5], where it is used for proving existence of solutions
of curvature flow equations and similar.
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4.5. COMPARISON

We finally make some comments on the method generally used for proving existence of
viscosity solutions to suitable equations. Such proofs in general consist of three steps. The
first is to establish a comparison result, i.e that if u is a subsolution and v is a supersolution,
then v < v. From this result it follows immediately that if there is a solution, it must be
unique. It also follows that if u is a solution by the definition for singular equations given
above, then u is continuous. Furthermore, the comparison result proves helpful to us in
our proof of convergence in the article that follows.

The second step of a proof of existence is to construct a subsolution and a supersolution.
The third step is to invoke Perron’s method to show that in that case, there exists a solution.
See Crandall, Ishii, Lions [6] for details. For applications of the method, see also the proofs
of existence of solutions to level set equations for mean curvature motion, e.g [5], [10], [18].
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APPROXIMATION OF GENERALIZED MEAN CURVATURE FLOW
WITH RIGHT-ANGLE BOUNDARY CONDITIONS

TOBIAS GEBACK*

Abstract. In this paper, we prove the convergence of a convolution-thresholding scheme for
computing the evolution of surfaces, which move at each point with a velocity equal to an increasing
function of the mean curvature at that point. Furthermore, the entire evolution is assumed to take
place inside a convex domain and wherever the surface intersects the domain boundary, it should do
so at a right angle. We show that the approximations given by the scheme converge to the viscosity
solution of the corresponding level set PDE as the time step tends to zero.

The scheme presented here is a generalization of both the scheme presented by Ishii and Ishii for
regular mean curvature evolution with right-angle boundary conditions, and the scheme by Grzhi-
bovskis and Heintz for the case when the velocity equals an increasing function of the mean curvature,
without boundary conditions. These algorithms are in turn based on the convolution-thresholding
scheme devised by Bence, Merriman and Osher.

Key words. generalized mean curvature flow, right-angle boundary conditions, convolution-
thresholding scheme, viscosity solutions

AMS subject classifications. 35K65, 35K55, 65M12, 53C44

1. Introduction. In this paper, we prove convergence of a convolution-thresh-
olding scheme for generalized mean curvature motion with right-angle boundary con-
ditions. By a generalized mean curvature flow, we mean a family {I';};>¢ of hyper-
surfaces in R", dependent on time ¢, where the surfaces move with a normal velocity
equal to an increasing, continuous function of the mean curvature at each point. By
right-angle boundary conditions we mean the fact that we let the surface evolution
take place inside a domain, and wherever the surface intersects the domain boundary,
it should do so at a right angle.

A number of methods have been suggested for describing mean curvature flows in
order to overcome the problems with singularities that may appear in the flow, even
for smooth initial data (see e.g. [3], [5], [7])- The approach that we will use here is
the level set method, which was introduced by Evans and Spruck [7], following ideas
from Osher and Sethian [13]. The idea is to let the hypersurfaces I'; be level sets of a
continuous function u : R” x [0,00) — R and describe the properties of this function
through an evolution equation, which in the case of ordinary mean curvature flow is

. [ Vu
Uy = |VU| le(W) . (].].)

If u(z, t) solves this equation, then the level sets of u, i.e. I’y = {x € R | u(z,t) = A},
move with a normal velocity equal to the mean curvature of the level set, as long as
the mean curvature is well-defined. Evans and Spruck [7] proved that the evolution
equation (1.1) has a unique viscosity solution (see [4]), which need only be continuous.
This means that a mean curvature flow for a surface may be defined even if the function
u lacks derivatives, so that the mean curvature is not defined everywhere on the level

*Mathematical Sciences, Chalmers University of Technology, S-412 96 Giteborg, Sweden,
tobiasg@math.chalmers.se
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set. The evolution equation that applies to the present case will be discussed in
section 2.

In 1992, Bence, Merriman and Osher [2] presented a convolution-thresholding
scheme for approximating mean curvature flows using the level set approach. The
convergence of this scheme was proved using different approaches by Evans [6], Barles
and Georgelin [1] and Ishii [10]. General thresholding schemes were later studied
by Ishii, Pires and Souganidis [12]. More recently, two significant generalizations of
the original scheme have been developed. In 2002, Ishii and Ishii [11] published a
scheme for mean curvature flow with right-angle boundary conditions, and at about
the same time, Grzhibovskis and Heintz [9] developed a scheme for approximating
motion with normal velocity equal to an increasing, continuous function of the mean
curvature (which is what we here call generalized mean curvature flow), but only for
flows without boundary conditions.

In this paper, we introduce a scheme which extends both these results to the
case of generalized mean curvature flow with right-angle boundary conditions. We
use the same method as Ishii and Ishii [11] to prove that our scheme converges to the
viscosity solution of the level set equation as the time step tends to zero. In order to
understand our scheme, we will first briefly discuss the previous results.

1.1. The BMO-scheme. A (slightly modified) version of the Bence, Merriman
and Osher-scheme (BMO-scheme) can be described as follows (cf. Ishii [10]). First,
fix a radially symmetric convolution kernel, p, and define its contraction p¥*(z) =
h="/?p(x/v/h). Then, given a set Cy C R", choose a time-step h and compute the
convolution M (z,h) = (p¥* * x¢,)(x), where xc, is the characteristic function of
Co. Set

_ 1
Cr={z e R | M (,n) >3 [ p/i(y) dy}
R'n.

and continue the process by computing M (z,h) and defining C2 and so on. We
then end up with a sequence {C} }ren of closed sets in R and we set

Ch=c¢C, ifkh<t<(k+1)h, t>0.

Now, letting h — 0, we obtain a flow of closed subsets in R” whose boundaries
move with a normal velocity equal to a constant times its mean curvature, where the
constant depends only on n and the choice of p.

In the original scheme, M°(z,t) was the solution to the heat equation with initial
data x¢,, which corresponds to the choice of p as the Gauss kernel, and which leads
to motion by (n — 1) times the mean curvature.

1.2. Right-angle boundary conditions. As was already mentioned, the above
scheme was extended by Ishii and Ishii [11] to the case of right-angle boundary con-
ditions. The extension works as follows. Given an open domain Q C R" with C?-
boundary, an initial set Cy, and a convolution kernel p, we define

MOz, h) = / 2Ry — £)xco (4) dy (1.2)
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and set
Cy ={zxeR" | M%(z,h) > /\/_ z) dy},

which is the same as before, except that the integrals are computed over € instead
of R". Defining the sequence {C}ren and CJ! as above and letting h — 0, we get
a flow of sets whose boundaries not only move by a constant times mean curvature
but also intersect the boundary of Q at a right angle, at least in the sense of viscosity
solutions.

1.3. Generalized mean curvature motion. The last extension of the BMO-
scheme we will discuss is the scheme by Grzhibovskis and Heintz [9], that lets the
boundaries of the sets move with a normal velocity v = g(«), where k is the mean
curvature and g : R — R is an increasing, continuous function.

The scheme uses two different radially symmetric convolution kernels, p; and ps
and given a set C' we can define

NE(z,h) = Mcxh / y—2x)dy

/ y—x)xc(y dy—/ — ) dy

for i = 1,2. Now, a crucial part of all the proofs of convergence of these convolution-
thresholding schemes is an expansion of N (z,h) in h of the form

(1.3)

NE (z,h) = a;Vho(z) — biVhe(x) + o(h). (1.4)

with

a;

/ pi(y',0) dy',
Rn—1
1
bi=§/ yipi(y',0) dy'
Rn—1

Clearly, setting Nf (z,h) =0givesv = Z—im+o(\/ﬁ), which corresponds to the original
BMO-scheme.

Now, using two convolution kernels, (1.4) gives us two linear equations for v and
k. Solving these, we get

1 byN; — by V-
_21 12+0(\/E)

v =
Jho d
1 agﬁl—alﬁz ’
pe LeM-ale | op
N A (V)

where d = a;1by — asby is the determinant. Thus, since we want to have v = g(k), we
define

F(Nl,NQ) =0

1 baN; — b1 Ny _ ( 1 aalV; _alN2) (1 5)

—g(n)=ﬁ d ﬁ d
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and a thresholding scheme
Ci1 = {z € R* | F(N{*(z,h), N§* (z,h)) > 0},

for k e N.

In order for this scheme to converge to the actual generalized mean curvature
motion, it turns out that F' must satisfy the condition 0F/ON; > 0, i = 1,2, which
leads to the restrictions

d = a1by —asb; >0,

o<yl (10)
ai as
on g and p;, saying both that g must have bounded derivative both from above and
below, and that given a function g, the convolution kernels must be chosen with some
care to fulfill the inequalities. If one would like to use a function g with unbounded,
zero or non-existent derivative, it is possible to use uniform approximations g, to g
and still get a scheme that converges as h and v tend to zero.

1.4. Outline. The structure of the following sections is as follows. In section 2,
our extension of the scheme is presented in detail and all assumptions stated. In sec-
tion 3, a few crucial lemmas are proved, the most important one being proposition 3.3.
Finally, in section 4, we prove in theorems 4.1 and 4.6 that the scheme converges to
the solution of the level set equation as the time-step tends to zero.

2. The approximation scheme. We now turn to the problem of extending
the scheme for approximating generalized curvature flow to the case of right-angle
boundary conditions and proving its convergence as the time step tends to zero. For
that purpose, let Q be an open, bounded domain in R® with C2-boundary 89. Given
ug € C(Q), we consider the level set equation

%(x,t) — |Vu(z,t)| g(curv(u(z,t))) =0, z€Q, te (0,7)
%(x,t) -0, zedq, te(0,T) (2.1)
u(z,0) = uo(z), €N

for T > 0, where

o Vu@)) 1 - g, (B)ug, (2)
curv(u(z)) = div (|Vu(x)|) = Vu@)] Z (6” - W) Ugiz; () (2.2)

i,j=1

is n — 1 times the mean curvature of the level set of u passing through the point z, n
is the outward unit normal to 2 and ¢ : R — R fulfills the conditions

g€ CR), g(0)=0 (2.3a)
g(z) = O(z) as x — +oo (2.3b)
g is increasing. (2.3¢)

The PDE describes a function whose level sets {z € R" | u(z,t) = A} move with
normal velocity g(curv(u(z,t))) and intersect 99 at a right angle, at least formally.
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The equation is degenerate parabolic and has singularities for Vu = 0, but in spite
of these difficulties, Sato [15] showed that if Q is convex, the equation has a unique
viscosity solution in C(Q x [0,T)) for any T > 0. Furthermore, if g is linear, Giga and
Sato [8] proved that there is a unique viscosity solution even if € is not convex. Since
we are interested in nonlinear functions g, we need the additional assumption that

Q) is convex.

It should be noted, however, that we only use this assumption through the use of the
comparison principle from Sato [15]. So if a proof of existence of unique solutions is
constructed for the case of non-convex 2 for nonlinear g, the proof of convergence of
the scheme will be valid for this case too.

Because of (1.6), the convergence of the scheme also requires that

g€ C'(R) and 3¢1,(& > 0:Vz € R: g'(2) € ({1, ), (2.3d)

which of course implies (2.3b) and (2.3c). But we will then also show how to get around
this problem if we can find uniform approximations g, — g, where g fulfills (2.3a)-
(2.3¢), but has unbounded, zero or non-existent derivative and g, fulfills (2.3a)—(2.3d)
for all v.

To formulate the approximation scheme, we choose non-negative, measurable,
radially symmetric weight functions p; and ps, satisfying the conditions

/ pi(z) dz < o0 (2.4a)

RTL

|60 s <o (2.4b)
Rn—1

supp p; is compact, (2.4c)

as well as the conditions (1.6) depending on g, which we state again for convenience:

d =a1by — azb; > 0,

b b 1.6
0<—+<g' <2, (1.6)
ai as

where

a; = / pi(y',0) dy',
Rn—1

1
bi = 5/ yipi(y',0) dy'.
Rn—1

The assumption (2.3d) ensures that this is possible. Condition (2.4c) is not really
necessary and could be replaced by conditions for rapid decrease of p;, but since the
proofs are much simpler when we assume compact support, we use that assumption.
See [11] for the proof when g is linear including the case when p has non-compact
support.

Inspired by (1.3) and (1.2), we define

N (x,h) =/szﬁ(y—x)><c(y) dy — %/Qp,ﬁ(y—w) dy
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for 4 = 1,2 and a mapping G, that maps subsets of R™ to subsets of R, by
Gr(C) = {z € R* | F(N{ (x,h), N5 (z,h)) > 0} (2.5)

for C C R™ with F defined by (1.5), that is
1 b2N1 - b1N2 1 a2N1 - a1N2
F(Ny,Np) = =21 =012 o = .

(8, ) vh d <\/ﬁ d )

The conditions (2.3d) and (1.6) make F' an increasing function in both arguments. In
order to prove that the mapping G, produces a generalized mean curvature flow as h —
0, we need to connect it to the PDE (2.1). For that purpose, given a function ¢ € C(Q2)
and a real number A, we consider the super-level set {p > A} = {z € R* | p(z) > A}
and set

1
N = N @) = [ 0= oxgen ) dy - 5 [ 0w =) d

- 1
Ni(A) = N#2M (4, h) = / pY™M(y — 2)x o3y () dy — §/R pY ™y — z) dy,

for i=1,2. This notation does not explicitly show the dependence on z, h and ¢, but
that will be clear from the context. Finally, we also define mappings G, Gy : C(Q2) —

C(Q), corresponding to G, by

[Gry](x) = sup{A € R | F(N1(X), N2(N)) > 0} (2.6)

[Grel(z) = sup{A € R | F(N1(}), N2(A)) = 0} (2.7)
for h > 0 and ¢ € C(f). Note that all symbols with tilde (G, N etc.) denote
entities in the case of no boundary conditions, while the same symbols without the
tilde denote the same entity in the domain ).

The main result, theorem 4.1, is now that the repeated application of the map-
pings G, gives us an approximation of the solution to the level set equation (2.1). For
clarity, we state the algorithm explicitly:

ALGORITHM 2.1.

Given Q and g, choose functions py and pa according to the assumptions above.
Choose an initial set Cy.
For each iteration k,
Choose a time-step ty,,
For each point x € Q,
Calculate Nic'“_l(m,tk), i=1,2.
Evaluate the function F(ka‘l(m,tk),Nzc’“‘l(a:,tk)).
If F >0, let x belong to Cj.
End loop
End loop

For efficient implementation of this and other BMO-type schemes, see Ruuth [14]

and Grzhibovskis, Heintz [9].
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3. Properties of G, and G}. In this section, we prove some crucial properties
of the operators G and Gj. We start with the inclusion principle for Gj,.

PRroPOSITION 3.1. Let Gy, be defined by (2.5). Then for all h > 0 and all closed
sets C1,Cy C Q, we have

C1 C Cy = Gr(C1) C Gr(Cs).

Proof. Since the weight functions p; are positive, C; C Cy implies Nic (z,h) <
Nic2 (x,h),i=1,2for all z € Q and h > 0. Since F is increasing in both arguments,
we have F(NC NS') < F(NE?, N$?) and therefore

{F(N{, N;™) > 0} € {F(N, Nj) > 0}

and gh(Cl) C gh(CQ) 0
From this principle, some properties of G, follow. Note that by the definitions of
G}, and Gy, the connection between the two is

[Grel(z) =supfA € R | & € Gn({p > AD)}- (3.1)

PROPOSITION 3.2. For all h > 0 and u,uq,us € C(Q),

|
(iil) if ui(z) < u2(z) for all x € Q, then [Grui](z) < [Grus](z) for all x € Q,
) ||Grur — Grus|| < |lur — uz|| in sup-norm,

)

Proof.
(i) This follows directly from the relation (3.1), since {u > A} = {u+C > X+ C}.
(if) This also follows from (3.1), since {u > A} = {#ou > 6(N\)}, and since 8 is
continuous, it can be moved outside the supremum.
(iii) In order to obtain a contradiction, suppose u; < us in Q and that there is an
zo € Q such that [Grui](zo) > [Gruz](zo)- Set M = [Grui](zo) and Ay =
[GhUg](Z‘o), that is

A1 =sup{A | o € Gh({u1 > A})}, A2 =sup{A | 2o € Gr({u2 > A})}, (3.2)
so that A\; > Az. Then, for every € > 0, since also u; < us,
{ur > A1 —e} C{ua > M —e} C{uz > Ay — ¢},
which by proposition 3.1 implies
Gr({ur > M —€}) C Gp({u2 > A2 —€}).

This in turn implies that A; < A2 by (3.2), which is a contradiction. Therefore
we must have [Grui](z) < [Grusa](z) for all z € Q and we are done.
(iv) Let ug,us € C(Q). It is enough to prove that

1(Ghur — Ghuz) *lloo < [I(u1 — u2)*[loo,
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with (-)* = max{0,-} and (-)~ = —min{0,-}. The result then follows imme-
diately. We prove only the plus-case, since the minus-case follows by the same
argument.

So, aiming for a contradiction, we assume that there is an zy € , such that
[Grui](zo) — [Grua](zo) > |l(ur — u2)*leo = C.
Then, by (i), we get
[Grui](zo) — [Gh(uz + C)](20) = [Grur](zo) — [Ghus](x0) —C >0

But since u; < (ug + C) in €, this contradicts the result in (iii) with u; = ug
and us = us + C.

(v) Fix z € Q, let r; be the radius of the support of p; for i = 1,2 and assume
r1 < r2. We are interested in values of \ for which F'(N1(\), N2(\)) = 0. Since
F is increasing in both variables and F'(0,0) = 0, we must then have N1(\) > 0
and N3(A) < 0 or the other way around. Thus we must have

{u> A} N By(z,7;Vh) # @ and {u > A} N By (x,r:Vh) # By(z,r;Vh)

for i = 1 or 2 or both. The only other possibility would be {u > A} N
B, (z,r1vVh) = @ and {u > A\} N B, (z,72vh) = B, (z,72v/h), but this is impos-
sible since By, (x,r1vh) C By (x,r2Vh).

But then, for any A\; and A2 near where F' = 0, with A\; < Ay, we have

{u > X} N By(z,7:Vh) € {u > A} N By(z,7:Vh)

and therefore N;(\2) < N;(A1) with strict inequality for at least one of N; and
N5. We also have N;(A2) < N;(\1) for the other one and therefore the function
A+ F(Ni(\), Na(A)) is strictly decreasing near the points where it is zero, and
thus

[Gru](z) = sup{\ € R | F(N1(XA), N2(\)) > 0}
=inf{A € R | F(N1()A), N2(N)) < 0}.
O
Finally, the following proposition, which is analogous to lemma 3.1 in [11], is a
crucial part of the proof of our main theorem.
PROPOSITION 3.3. For all p € C?>(Q), z € Q and € > 0, there is a § > 0 such

that
(i) If z € Q and V(z) # 0, then

[Grel(z) < o(x) +h|Ve(2)| glcurv(p(z))) +eh, € Bn(z,6),h € (0,6) (3.3)
and
[Grel(z) > p(z) +h|Ve(2)| glcurv(p(z))) —eh, =z € By(z,6),h € (0,d) (3.4)

(ii) If = € 8Q and O¢/0n(z) > 0, then (3.3) holds for all x € B,(2,6) N Q and
h € (0,0).
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(iii) If z € 092 and dp/On(z) < 0, then (3.4) holds for all z € B,(z,0) N Q and
h € (0,0).

The proof uses the same idea as in [11], namely to compare this case to the problem
without boundary conditions in the whole of R”. The analogue of proposition 3.3 for
that case can be found in a different shape in Grzhibovskis and Heintz [9, lemma 2]
and is stated as lemma 3.4 below. The rest of the proof is mainly concerned with
comparing N;(A) and N;(A\) (with and without boundary conditions). This requires
the rather lengthy proofs of lemmas 3.5 and 3.6. Lemma 3.5 is proved exactly as in
[11, lemma 3.1, case 1] and the proof is therefore not given here. The setup for that
proof is identical to the one in the proof of lemma 3.6, which is given here and which
we need because we have two convolution kernels instead of one.

LEMMA 3.4. (see [9, lemma 2]) Let ¢ € C*(R") and z € R*. If V(z) # 0, then
for each € > 0, there is a § > 0 such that

[Grel(®) < p(x) + h|Ve(2)| gleurv(p(2))) + eh,
[Grel(@) > p(x) + h|Ve(2)| gleurv(p(2))) - eh

for all z € By,(z,0) and h € (0,9).

We are now ready to prove proposition 3.3.

Proof. (of proposition 3.3) As in [11], the main idea behind the proof is to compare
[Gre)(z) to [Gry](z) and use lemma 3.4 to get the desired result.

Let p € C?(Q) and e > 0. If z € Q and Dy(z) # 0, then since supp p; is compact,
there is a 0 > 0, such that for all z € B, (z,d) C @ and h € (0,9), we have

[Grel(x) = [Grel(x).

So proposition 3.3, part (i), follows directly from lemma 3.4. To prove the rest of the
proposition, we assume z € 002 and Op/0n(z) > 0 and prove part (ii), noting that
part (iii) may be proved similarly.

Since ¢ € C%(Q) and 89 is C?, we may extend ¢ so that ¢ € C?(B,(z,rg)) for
some r9 > 0. Using proposition 3.2 (v), we also set

A = [Gry](z) = inf{p € R | F(N1(p), N2(n)) < 0}
and
X = [Ghgl(z) = inf{p € R | F(Ny(1), Na()) < 0}.

Now, we wish to show that there is an ho > 0 such that A < X for each
z € Bp(z,r0) N Q and each h € (0,hg). From the definition of A, we see that
F(N1()\), N2(M\)) = 0 and by the definition (1.5) of F(Ny, N2), we know F(0,0) = 0.

Therefore, if we can show that N;(A\) < 0, ¢ = 1,2, we will immediately have

F(N1(X),Na2(N)) <0 (since F is increasing in both variables) and thus

X =inf{u € R | PV (1), Na()) < 0} < X, (3.5)

The same result will be obtained if we can show that N;(X) < N;()), i = 1,2.
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Yn

Fi1c. 3.1. The sets Qii and Zii in case 1.

To prove that N;(A) < 0 or that N;(X) < N;(X), we first define
Qf ={y € Bu(z,r:Vh) | o(y) < A} NQ,
Qi ={y € Bulw,r:iVh) | 0(y) > N} N1,

for ¢ = 1,2, with 7; = inf{r € R | supp p; C B,(0,7r)}. See figure 3.1. We can then

express N;(\) as
/ —T)X (55 () dy — —/ — ) dy

]. f
—2)dy— = Vi(y —z) d
/ 7y 2/Q.+UQ.—”’ =) dy (36)

(/ w2 b= [ -0 ).

We now consider one p; at a time (i.e. 4 = 1 or 2) and divide the treatment into three
cases (see figures 3.1 and 3.2).
Case 1: {y € Bu(z,miVh) | (y) =X,y € 90} # @
In this case, the computation (3.6) and lemma 3.5 below show that N;(X) < 0
and lemma 3.6 gives N;(A) < N;(X).
Case 2: {y € B, (z,7:Vh) | o(y) = X} cQ
Here, the intersection between the hypersurfaces {¢ = X} and 012 lies outside
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Yn Yn

Fic. 3.2. Case 2 on the left and case 3 on the right.

the ball B,,(z,7;v/h). We then see that Q7 NQ¢ = @ and therefore, continuing
from (3.6), we get

NR) = (/Q_pﬁ(y—w) dy—/Q+pﬁ(y—w) dy)

< % (/{wzi}pzﬁ(y —z)dy — / G o) dy) =N

{p<A}

Case 3: {y € By(z,m:vVh) | o(y) = A} C Q°
In this case, Q; = @ and since p; is positive, we can conclude from (3.6) that
WACYE

Now, we need to see what happens when we have two convolution kernels. Set
r; = inf{r € R | supp p; C B,(0,7)}, i« = 1,2 and assume r; < ro. Then, if case 1
applies to py, it also applies to ps, so that N;(A) < 0 (and N;(A) < N;(A)) for i = 1,2
and therefore A < hy by the argument leading to (3.5). If case 3 applies to p1, then
either case 1 or 3 applies to p=2, but in both cases we have again N,(X) <Qfori=1,2
and A < by Finally, if case 2 applies to p1, then either case 1 or 2 applies to pz. In
both cases, we have N;(A) < N;(A) for i = 1,2 and thus A < X. Therefore, once we
prove lemmas 3.5 and 3.6, the proof is completed. O

All that now remains is to prove the next two lemmas. As mentioned earlier,
lemma 3.5 is proved by Ishii and Ishii [11] for regular mean curvature flow and there
are only very minor differences in our case, so we omit the proof. Besides, the same
setup is used in the proof of lemma 3.6, which we give in detail and which is needed
in our case in view of the discussion following the three cases above, because we have
two convolution kernels.

LemMA 3.5. (cf. [11, lemma 3.1, case 1]) Let r;, Qf and Q; be defined as
above, and assume that z € OQ and Op/On(z) > 0. Then there is an ro¢ > 0
and an hg > 0 such that for all x € B,(z,7¢) and h € (0,ho), it holds that if
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{y € Bu(z,r:Vh) | o(y) = Ny € 0N} # @ (i.e. case 1 applies) then

Ltz [ gl (37)

and thus N;(A) < 0.
LEMMA 3.6. Let r; be defined as above, and assume z € 02 and dp/0n(z) > 0.
Then there is an ro > 0 and an hg > 0 such that for all x € B,(z,79) and h € (0, hg)

it holds that if {y € Bn(z,7:vVh) | o(y) = Ny € 00N} # @ (i.e. case 1 applies), then

N;(X) < N; (V).

Proof. We wish to prove that N;(X) < N;(X), which is the same as
/ pY(y — ) dy—/ pY My — ) dy S/~ pY My — ) dy—/~ pYMy — o) dy,
Qr Qf Qr QF

with QF defined above and

QF = {y € Bu(z,r:Vh) | (y) < A}
Q7 = {y € Bu(z,miVh) | p(y) > A},

so that Qii = @zi N Q. Rewriting this expression once more, we get

/ oYy - x) dy—/ pY My — ) dy >0 (3-8)
z; z}

with

Z# = {y € Bu(z,riVh) N Q° | (y) < X},
Z; = {y € Ba(x,riVh) N Q° | (y) > X}

as is illustrated in figure 3.1.

Given z € 90 with dp/0n(z) > 0, there is an rg > 0 such that ¢ can be extended
to be in C2?(B,(z,70)) (since 9Q is C? and ¢ € C?(Q)). The idea of the proof is now
that for any x € B, (z,70) N, we may approximate the hypersurfaces {p = X(m)}
and 00 by hyperplanes and show that for small h, since dp/d7 > 0, the contribution
from the set denoted W in figure 3.3 is greater than the contributions from the sets
enclosed by dashed lines, within which the two hypersurfaces must lie. But first we
need to introduce some notation.

We take a parameterization ¢ € C?(R"~!) of Q) and choose coordinate system
so that

Yn — 2n = Y(y' = 2') for all y = (y',yn) € Bn(z,10) N 0N,
V(0) =0,
Yn — 2n > (Y — 2') for all y € B,(z,70) N Q,
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F1Gg. 3.3. The plane spanned by (a,—1) and (b,—1), showing the hyperplanes A and B as well
as the position of v and the distance d; .

where V' = (8/0x1,...,0/0x, 1). Taking ro smaller if necessary, we may assume
Vne(y) < =7, [VieW) < K, [V'¢(y' —2)| < e for all y € By(z,m0),

where V,, = 8/90z,, and 7, K >0 are independent of € > 0 and ro.
Now fix € B,(z,79) N Q and a small hg > 0. Let h € (0, hg) and choose a point

Eedinf{p= X} N By (z,7:v/h). We then set

a@»=§§%%, b(E) = V()

and define the hyperplanes A and B by

A={yeR" |((a,~1),y — x) =0},
B={yeR" |((b,-1),y—-§ =0} ={yeR" | ((b,-1),y —z) =c},

with ¢ = ((b, —1),& — ), see figure 3.3. We also note that |a] < K/v and |b| < ¢, so
that

mrmwﬂw«muuy—§>

1
> (39)
if € € (0,e9) with g = v/(2K), which in particular means that A and B are not
perpendicular.

We now need three elementary lemmas with counterparts in [11].
LeEMMA 3.7. (cf. Ishii and Ishii [11, lemma 3.4]) There ezxists a 6 > 0 and a
Cy > 0 independent of © € By(z,0) such that if h € (0,0) and x € B,(z,0), then

X = ()| < Cih.
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Proof. This follows directly from lemma 3.4, using the fact that Vi (z) # 0. O

LEMMA 3.8. There exists a Co > 0, which is independent of x € B, (z,1¢), and
an hy > 0, such that if y € By(x,7;Vh) satisfies o(y) = X, with h € (0,h1), and if
a(z) = V'p(z)/Vap(z), then |y, — zn, — (a(z),y’ — z')| < Cah.

Proof. This follows easily from lemma 3.7, exactly as in [11, lemma 3.6]. O

LEMMA 3.9. ([11, lemma 3.3(1)]) For any r > 0, a,b € R*~! and c € R", with
la| < K1, |b| < e1, and 1K1 < 1, there is a 0 € (0,1), depending only on €1 and K,
such that if

{y € Bx(0,7) | yn = <bayl) +¢ Yn = <aayl)} * 9,

then

]

—— < r
V1+1b2

(Note that the quantity on the left is the orthogonal distance from the hyperplane
{(b,—1),y) = ¢ to the origin).

Proof. This is part 1 of lemma 3.3 in [11]. The proof is given there and is a
straightforward geometrical argument. 0

Now, by lemma 3.8, we have

(@, ~1),y —@)| < Coh,  if p(y) =X, y € Ba(w,r:Vh), (3.10)
and since ¢ € C2(R"~!), we also have
[{(b,—1),y — z) — c| < C3h, for all y € 80 N By (z,7:Vh), (3.11)
for some C5 > 0, independent of z € B, (z,r) and h € (0, hg).

We now restrict our view to the plane spanned by (a,—1) and (b, —1), which is
obviously perpendicular to both A and B. This is the view shown in figure 3.3.

We set
v=2z+ Bi(a,—1) + Ba(b,—1),

with
1+ (a,b) /-, 372
= 1+|a| 1+ [a2)'72 (Czh_ “pip VIR G
1+ a[*)'? )12
B2 = iz \/r?h — C3h?

defined so that v is located as in figure 3.3, that is ((a, —1),v — a:)/(1+ la>)}/? = Csh
and |v — z| = r;v/h. Here, D = (1 + |a|?)(1 + [b]?) — (1 + {(a,b))?. Expanding this
expression, it is easily seen that D > |a — b|?, so that it is zero only when a = b.
Assume for the moment that a # b, so that D # 0 and v is well-defined.
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Now,

(v—2x,(,-1))
T+ bR

_ 1+ {a,b) 1+ {a,b) /2 279
C (4 [aP)2(1+ [p]2)1/2 (C2h_ D'/2 ih = Cah
1 2\1/2(1 2\1/2
+( + |al )Dl(/2+|b| ) /rgh—cgm
D v 1+ (a,b)
= \/T2h — C2h? : Czh.
((1 +lal?)(1 + |b|2)) "i 2 (1+[al2)L/2(1 + [p[2)1/2

Investigating the first term, we see first that 0 < \/r?h — C3h2 < r;v/h if h € (0, ho)
with hg < r?/C2. Using (3.9), we also see that

D _ A+[a)A+PP) - (A +4a,b))? . (1+(a,b)
(1 + |a?)(1 + [0?) (1 + |a?)(1 + [b?) (1 + |a?)(1 + [b?)

1 — 02
Sl aar s St

For the second term, we may now use (3.9) to get the estimate

1+ (a,b)
(1 + [a2)/2(1 + [p]2)1/2

dy =

Csh < %Cgh
Thus,

d1<01r,\/_+ C2h< r,f<mf (3.12)

if he (0, ho) with hy < (7’1(1 - 01)/(302))2
Also, by lemma 3.9, there is a 62 € (0,1) such that |c|/y/1 + [b]2 < far;vh. We
note that

0or;Vh + Csh < 02; Lyi/h < rivh (3.13)

if h € (0,ho) with hg < (r;(1 — 62)/(2C3))?. We therefore set § = max{6; + 1,6, +
1}/2 < 1 and ho < min{(r;(1 — 61)/(3C))?%, (r;(1 — 62)/(2C5))?}.

We are now ready to estimate the integrals over Z* and Z~ in (3.8). Letting
by denote the unit vector in the (a,—1),(b,—1)-plane with {((b,—1),b,) = 0 and
{(a,—1),b1) >0, we define

W= {y € Bn(x,rz\/ﬂ) |

Ti={ye Bn(x/rz'\/ﬂ) |

T, = {y € Bu(z,miVh) |
(see figure 3.3) and note that

zZ" ) ({y € Bn(.'ll',T',\/ﬁ) | <(b7_1)7y —SL’) > C+C3h) <6J_7y_$> > 0}\T1) UWJ
* c ({y € Bn(m,n\/ﬁ) | ((b7_1)7y - .’L') >c— C3h7 <8Lay —.CC) < 0} UTl) \ w.

((a,=1),y — x)| < Coh}

((b,=1),y —z)//T+ b2 > 0rivh, (b ,y —z) < 0}
|
|<(ba _1) - .73) - C| < C3h}
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The definition of § ensures that W # @. From this, it is clear that

/pzﬁ(y—w)dy—/ pY My —z) dy >
VA Z+

2/Wp2/’_‘(y—w)dy—(/T1+/T2)p2/'_‘(y—w)dy

Now, we see from (3.12) and (3.13) that

(3.14)

LYW) = ah™?,

for some a > 0 depending only on 8 and r;, where £" is the n-dimensional Lebesgue
measure. From this we conclude that

/ pY "y — ) dy > Cu,
w

for some Cy > 0, independent of = € B, (z,79), € € (0,£9) and h € (0, hy).

Furthermore, it is clear that £*(T}) < Csh("*1/2 for some C5 > 0 depending
only on Cy, r; and n, and that £™(Ty) < Cgh{"1)/2 for some Cg depending only on
Cs, r; and n. Thus, by changing variables (y — z)/vh — §, we see

(/n +/T2)p;/'7(y—m) dy = (/Tl(h,z)Jr/TZ(h,z))pi(g) dj

LTy (hyz)) < CsVh,  L™(T(h,z)) < CsVh
Tj(h,z) ={(y—z)/Vh |y € Tj}, j =1,2.

Therefore, we conclude that there is an hg > 0 such that if h € (0, hg), then

2/Wp2/ﬁ(y—w)dy—(/T1+/T2)p,ﬁ(y—w)dy20,

for all z € B, (2, ro), which proves N;(X) < N;(}) by (3.14) and the discussion leading
to (3.8).
Finally, we need to cover the case a = b. In this case, we define

W = {y € Bn(.flf,’f'z\/ﬁ) | ((b7 _1)7:’/ - .’L') > max{c+ C3h702h}}7

with W # @ if h is small enough. Then Z— D> W\ Ty and Z* C Ty UTs, and the
same argument holds. O

4. The convergence theorem. In this section, we prove the convergence of
the output of algorithm 2.1 to the viscosity solution of the level set PDE (2.1) as the
time step h tends to zero. The proof is based on the proofs by Ishii and Ishii [11] and
Ishii [10].

We begin by defining the approximations u™ as follows. Given a function f €
C(Q), let u™ € C(Q x [0,T)) be defined for m € Z, by

u™(2,t) =[Gy o (Gn)' f](2), (4.1)
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where h =T /m and | € N is chosen so that {h <t < (I + 1)h. The main convergence
theorem is then the following.

THEOREM 4.1. Choose f € C(Q) and let {u™}>S_, be defined by (4.1). Then
u™ — u locally uniformly on Q x [0,T) as m — oo, where u is the unique viscosity
solution of the PDE

%(m,t) — |Vu(z,t)|g(curv(u(z,t))) =0 z €, te(0,7),
g—g(a@,t)zo z €0, te(0,T),
u(z,0) = f(z) z €,

which exists by theorem 3.12 in Sato [15].
The idea of the proof is to define w(z,t) and u(z,t) by

u(z,t) = gl_% sup{u™(y,s) | m >¢e7", (y,5) € A x [0,T),|z —y| +|s —t| <&},

u(z,t) = glg(l) inf{u™(y,s) | m>e " (y,8) € Ax[0,T), |z —y|+|s —t| <e},
(4.2)

and prove that these are sub- and supersolution respectively of the level set PDE. It
then follows from the comparison result by Sato [15] that if w(z,0) < u(z,0), then
u(x,t) < u(z,t) for (z,t) € Q x [0,T) and thus (since u > u by definition) that
u =u = u is a solution.

First, we state the definition of a viscosity solution to the PDE (2.1) (cf. [15] and
).

DEFINITION 4.2. A function v € C(Q x[0,T)) is a viscosity subsolution of (2.1)
if for any p € C*(Q x [0,T)) such that u — ¢ has a mazimum at (zo,t0) € QA x [0,T),
then

@i (20, t0) — |Vp(o,to)|g(curv(p(zo, o)) <0
if xo € Q and V(xo,t0) # 0 or zg € 0N and dp/07(xo,te) > 0, and
90;5(1‘.05750) S 0

if 0 € Q, Vo(xo,t0) = 0 _and D*p(xo,to) = 0.
Analogously, u € C(Q x [0,T)) is a viscosity supersolution of (2.1) if for any
0 € C%(Q x[0,T)) such that u — ¢ has a minimum at (zg,t9) € Q x [0,T), then

¢ (w0, t0) — [Vep(z0, to)|g (curv(ip(wo, to))) > 0
if xo € Q and V(xo,1t0) # 0 or o € 0N and dp/0h(xo,to) < 0, and
(0, to) > 0

if o € Q, Vo(zo,t0) = 0 and D%p(xg,t9) = 0.
The function u is a viscosity solution if it is both a sub- and a supersolution.
We remark that there is no condition in the case Vo (zo,t9) = 0, D%¢(z0,t0) # 0,
since it follows from the other cases by the argument given by Barles and Georgelin [1,
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A=y — 2

Fi1c. 4.1. The setting in the proof of lemma 4.3.

proposition 2.2], using the hypothesis (2.3b) that g must not grow faster than linearly
towards infinity.

Before we begin with the actual proof of the convergence theorem, we need a few
lemmas.

LEMMA 4.3. For each z € Q, there is a C > 0, a § > 0 and an hg > 0 such that

[Gr(l- —21))](@) < |z = 2* + Ch,
[Gr(=]-=2)](z) 2 |z — 2|* - Ch

for all z € By,(z,0) and h € (0, ho).

Proof. Fix z € €. Since the convolution kernels p; have compact support, there
is an R > 0, such that supppz‘-/ﬁ(- — ) C Byu(z,RVh), i = 1,2, for any z € Q and
any h > 0. Furthermore, there is a § > 0 and an hg > 0 such that if A € (0, hg), then
B, (z,RVh) C Q for any z € B,(z,9).

We fix such R, ho, 6 and an = € B,(z,4). In order to estimate [Gp(| - —z|?)](z),
we need to see which level sets of the function ¢ — |¢ — z|? that may reach =.
Therefore, we investigate the situation in figure 4.1, where y is on the level set
{€ € Q| |€ — 2|2 = A}, which is chosen so that it intersects 0B, (z, Rv/h) on the hy-
perplane {£ € R" | (¢ — z,z — z) = 0}.

Since F'(N1, N») is increasing in both variables and F'(0,0) = 0, we need to have
either N1 > 0 or Ny > 0 in order to get F(N;, N2) > 0. And since in the situation
in figure 4.1, no part of the super-level set {£ € Q | |€ — 2|? > A} is in the left half of
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By (2, RV/h), obviously N;(x,h) < 0,4 =1,2 and thus F(Ny, Na) < 0 so that
s ¢ G{Ee Q] E—2> > A=y -z}
Therefore,
[Gh(- =2))(@) — |z — 2* < |y — 2> — |z — 2> = (RVE)” = R°h

by the Pythagorean theorem, which gives the desired result with C = R2.

A similar argument gives the result for —|z — 2|?. O

LEMMA 4.4. (cf. [11, lemma 4.1]) Let f € C%(Q) in (4.1). If 8f/0n > 0 on 09,
then there is a constant C' > 0 and an M € Z, such that

sup  (u™(z,1) — f(x)) < Ct
z€Q,m>M

for allt € [0,T). If instead Of /01 < 0 on 0N, then

inf (u™(z,t) — f(x)) > —Ct.

z€EQ,m>M

Proof. We assume 0f /0 > 0 on 9 and prove the first inequality. The other
case may be proved similarly.
We prove that there is a C' > 0 and an hg > 0 such that

Grf(z) < f(z) + Ch, for all z € Q,h € (0, hy), (4.3)

which, if M is chosen so that 7'/M < hg, may be iterated to give the desired result.
In order to prove (4.3), we fix z € Q. If Vf(z) # 0, it follows from proposition
3.3 with € = 1 that there is a §; > 0 such that

Grf(x) < f(2) + (IVf(2)lg(curv(f(2))) + 1)h (4.4)

holds for all x € B,,(2,01) N Q and h € (0,6;).
Now suppose that V f(z) = 0. Since we assume 9f/0n > 0 on 012, we then have
z € Q. Since f € C?(0), there is a J, > 0, such that

|f (@) = f(2)| < 1D flloo|a — 2 (4.5)
for all z € B,(2,d2) C Q. Taking C1 = 2||f||lc0/93 + ||D? ||, We then get
f(z) < f(2) + Cilz — 2

for all z € Q. Applying G}, to both sides of this inequality with z fixed, and using in
turn proposition 3.2 (i)-(iii), lemma 4.3 and (4.5), we get

[Grfl(@) < f(2) + CLlGr(I - —2)](2) < f(2) + Ci(lz = 2|* + Cah)
<

(@) + (C1 + 1D flloo) |z — 2[2 + CLCah (4.6)

f
f

for all z € B,,(z,d3) and h € (0, hy) for some h; > 0 and d3 > 0.
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That is, (4.4) and (4.6) imply that for any z € Q and any & > 0, there are C' > 0
and hg > 0 independent of € and a § = d(g) > 0 such that

[Grfl(z) < f(z) + Ch+e (4.7)

for all € B,,(2,d) and h € (0, ho). Since Q is compact, it may be covered by a finite
number of such §-neighborhoods and taking the largest of the C':s and the smallest of
the hg:s, (4.7) holds for all 2 € Q and h € (0, hg). Since ¢ is arbitrary, we get (4.3). O
LEMMA 4.5. (cf. [11, lemma 4.2]) Let f € C(Q) in (4.1). Then u(x,0) =
u(x,0) = f(x) for all x € Q.
Proof. Take a sequence {fi} in C?(Q) satisfying

1 Ofk
k’ on

and define u}* as in (4.1) with f, instead of f.
Then, by lemma 4.4, there are constants C}, such that for each k € Z 4,

> 0 on 99

7k = flloo <

ug' (y,t) — fre(y) < Ct

forally € Qand t € [0,7). Because of proposition 3.2 (iv) and since || fx — f||co < 1/k,
it follows that

1
[u™(y,t) —ui'(y,t)| < z
and thus
2
u™(y,t) — fly) < Cypt + z (4.8)

forally e Q, t € [0,T) and k € Z5.
For any fixed z € ), we may now let m — 00, y — z, t — 0 and finally £k — o0
to conclude by the definition (4.2) of @ that

u(z,0) < f().

Since u(x,0) > f(z) by a similar argument and u(z,0) < u(z,0) by definition, the
result follows. O

We are now ready to prove the main convergence theorem.

Proof. (of theorem 4.1) As already mentioned, the idea of the proof is to show
that u(z,t) (defined by (4.2)) is a subsolution and u(z,t) a supersolution of the level
set PDE (2.1). It then follows from lemma 4.5 and the comparison result by Sato [15]
that u(z,t) < u(z,t) for all (z,t) € Qx[0,T) and thus u = & = u is a viscosity solution
of (2.1). By remark 6.4 in Crandall, Ishii, Lions [4] it also follows that 4™ — u locally
uniformly.

We prove that u(z,t) is a subsolution and note that the proof that u(z,t) is a
supersolution is similar.

So, we fix a function ¢ € C2(Q x [0,T)) and assume that % — ¢ has a strict
maximum at (zg,%o). Since only the local behavior of ¢ is important, we may assume
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that this maximum is global. Also, since all that matters is O¢/dt, Vi and D¢, we
may choose ¢ on the form

p(z,t) = p1(z) + p2(t)

for some functions 1, 2.

According to definition 4.2, in order to show that @ is a subsolution, there are
two distinct cases.

Case 1: 29 € Q and Vy1(xg) # 0, or o € 0N and dp;1 /0i(zg) > 0.

Fix ¢ > 0. Then, setting M = |Vp1(zo)|g(curv(e1(zo))), by proposition 3.3,
there is a 61 > 0 such that

[Grr](z) < @1(x) + Mh +€h (4.9)

for all z € B, (x,d1) and h € (0, &1].
Since (xo,t0) is a strict global maximum point of uw — ¢, by the definition of u
there is an m € Z such that

sup — (u™ —@)(z,t) > sup (u™ = ¢)(z, 1)
Bat1((20.t0).61) (@%(0,1)\Ba+1((z0,t0).61)

and h = T/m < é;. Then, we can choose (§,7) € But1((Zo,%0),01) so that
(U™ = )€, 7) +eh > (u™ — )(z,1) (4.10)

for all (z,t) € 2 x (0,7).

Now choose I € N so that [h < 7 < (I + 1)h. By the definition of u™, we then
have

u™ (@, 7) = [Gron 0 Gru™ (-, (I = 1)h)](x)
for all z € Q. Also, from (4.10) follows that
w™(z, (I = 1)h) < 1(2) + ©2(( = 1)h) +eh + (u™ — 9)(&,7),

which, using proposition 3.2 (i), (iii) and (4.9), gives us

[Gru™(, (I = Dh)]|(z) < [Grer](@) +@2((l = 1)h) +eh + (u™ — ¢)(&,T)

(4.11)
< p1(z) + Mh+2eh + p2((I — 1)h) + (u™ — ) (€, 7)

for all z € B, (z,01). B
In order to get a similar inequality for each z € 2, we note that by proposition
3.2 (iv),

[u™ (2, 8)] < I£]l (4.12)
for all (z,t) € Q x [0,T] and we choose C' > 0 such that

2||f||+||¢1||+2fou$]\¢2|+|M|TSC, (4.13)
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82 € (0,41) and a function ¢, € C*(Q) with 1 = @1 in By (z0,82) N, ¢1 > ¢y in Q
and ¢; > C in B,(%9,d1)° N Q. Then, by proposition 3.3, there is a d3 € (0,d2] such
that

[Gripr](z) < 1 (2) + Mh + h (4.14)
for all z € By (x0,05) and h € (0,33). By (4.12) and (4.13), we note that
[Gru™(-, (I = Dh))(z) = Mh — 2eh — (I = 1)h) — (u™ — @) (§,7) < C,
and thus, using also (4.11) and the definition of vy,
[Gru™ (-, (I = Dh)|(z) = Mh — 2eh — @2((I — 1)h) — (u™ — )(§,7) < tpi(x) (4.15)

for all z € Q.
Now, with m chosen so large that h < d3, we apply G, to both sides of (4.15)
and use (4.14) to get

u™(z,7) = [Gr_in 0 Gpu™(-, (I — 1)h)](z)
<1(z) + M(r —1lh) +e(r —lh) + Mh+ 2¢eh
+2((l = 1)h) + (u™ — ) (§, 7)
<o)+ M —(I-1)h)+2(r—(1—-1)h)
+ p2((l = 1)h) + (u™ — ) (£, 7)

for all x € B,,(xo,3), since h < 7 — (I — 1)h. Specifically for z = £, we get
uw™(&,7) < 1(§) + M(T— (I =1)h) +2¢(T — (I = D)h) + 2 (I = 1)h) + (u™ — ¢) (&, 7),
that is, since p(&,7) = p1(&) + (1),
©2(7) = @2((l = Dh) < (M + 2)(7 — (I — 1)h).
Letting € — 0, so that m — oo, h = 0 and (§,7) — (o, %0), We get

pi(z0,t0) < M = |Vep(xo, to)|g(curv(e(zo, t0))),

which is what we want according to definition 4.2.

Case 2: z9 € Q, V1(x9) = 0 and D?p1(z0) = 0.

We need to prove that ¢}(zg,to) < 0. This follows exactly as in [10, theorem 2.1],
using lemma, 4.3 and proposition 3.2. O

Finally, we show how to get around the assumption (2.3d) that g has bounded
derivative from above and below. The next theorem shows that if g does not have
bounded derivative it is enough to approximate g with functions g, such that g, — g
uniformly as v — 0. We remark that if g has unbounded derivative, the derivative of
g, must obviously tend to infinity when v — 0, which means that in order to fulfill
the inequalities (1.6) restricting the choice of a; and b;, the radius r2 of the support
of the convolution kernel p» must also tend to infinity. In order to get a converging
scheme, the choice of v and the time-step h must be such that rov/h, which is the
radius of the support of the scaled kernel pg/';, is small. The exact choice of v depends
on the exact definition of the approximations g, and the choice of the kernel p-.
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THEOREM 4.6. Let g € C(R) have the properties (2.3a)—(2.3¢) and let {g,},>0
be a family of functions in C(R) that fulfill the assumptions (2.3a)—(2.3d), such that
gv (k) = g(k) as v — 0, uniformly for k € R. Define

ng(l/)Nl - bl(I/)Nz _ (L az(ll)Nl - al(I/)Nz)

Ji o dw) \VE dw) :
[Ghel(z) = sup{A € R | F,,(N1(}A), N2(})) > 0},

with N;, a;, b; and d as in (1.5). Finally, for f € C(Q) define

up (z,t) = [G{_y © (G})' fl(2),

with h=T/m and lh <t < (I +1)h.
Then there is a sequence {Vy }50_; with vy, — 0 as m — oo, such that

FI/(NI)N2) =

up! (x,t) = u(z,t) as m — oo,

Vm

locally uniformly for (z,t) € Q x (0,T), where u(x,t) is the unique viscosity solution
of the level set PDE (2.1).
Proof. Tt follows from remarks 6.3 and 6.4 in [4], that if v, is a subsolution of an
equation F,(Vv, D?v) = 0in a set O for n = 1,2,..., and we define
5(z) = limsup® v, (z) = lim sup{va(y) [ n>j, y €O, ly—a| <j~},  (416)
j—oo

n—oo

then 7 is a subsolution of the equation F(Vv, D?v) = 0, where
F(p, X) =liminf, Fp(p, X)
n— o0

with W dense in R” x S(n), where S(n) is the space of symmetric n X n-matrices.
Furthermore, v,, — v locally uniformly. The equivalent conclusion holds for super-
solutions (with liminf, and limsup* interchanged). There may also be boundary
conditions included in F,, and F (see also section 7.A in [4]).

For the present case, this means that viscosity solutions u,,, of the equations
ut—|Vulgy, (curv(u)) = 0, with Neumann boundary conditions, tend locally uniformly
to the viscosity solution u of the equation u; — |Vu|g(curv(u)) = 0 with Neumann
boundary conditions. This is because

lim inf, |p|g,,,(curv(p, X)) = lim sup™ |p|gy,,(curv(p, X)) = |p|g(curv(p, X)),
m—00 m—00

since g,,, — g uniformly. Here, curv(p, X) is defined as curv(u) (see (2.2)) with
p = Vu and X = D%y, but this notation is chosen to emphasize that the *-limits are
with respect to p and X, and not u.

Furthermore, theorem 4.1 shows that for each fixed v, the approximations u7*
tend to u, locally uniformly. Therefore, we can find a sequence {v,;}5°_; such that
for each compact K C Q x [0,7), it holds that for each ¢ > 0, there is an M € Z
such that

[y (z,t) —u(z,t)| < |up: (@,t) — Uy, (@, 8)| + |uy,, (x,t) —u(z,t)| <e/2+e/2=¢
for all m > M and (z,t) € K. That is, ul*

Vm

— u locally uniformly as m — oco. O
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5. Examples. We conclude with a few examples showing the output of the
scheme. The evolutions have been computed by Alexei Heintz using the code devel-
oped by Richards Grzhibovskis for the case without boundary conditions and adapted
to this new setting. The images in figure 5.1 were generated using the VRweb software
[16].

The first example is shown in figure 5.1 and shows the generalized mean curvature
flow, with v = &3, of a cylinder that has been placed slightly off center inside an
ellipsoid. The intersections with the ellipsoid are to the left and right. First, we
see that the surface becomes bent near the domain interface in order to fulfill the
boundary condition. Then, evolution is faster in the middle and the neck becomes
thinner, until it finally breaks off into two separate surfaces which then approach the
boundary and disappear. Note that the time intervals between sequential images are
not equal.

In figure 5.2, we see the evolution of the same cylinder using the three different
velocities v = k, v = k% and v = k|k|~'/2. This time, we show cross sections of the
surfaces in the symmetry plane, for selected time steps. The differences between the
evolutions for the three velocities are clearly visible, the most remarkable being that
it is only when v = k2 that the surface splits into two. For the other two cases, the
surface does not move fast enough in the middle to split there, but instead releases
first from t/he boundary. There is also a clear difference between the cases v = k and
v = k|| 71/
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F1g. 5.2. Cross sections in the symmetry plane for the evolution of a cylinder using three
different velocity assignments. Note that the time steps are not equal in the three images.



