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Observability and identifiability of nonlinear systems with
applications in biology

MILENA ANGUELOVA

Department of Mathematical Sciences

Chalmers University of Technology and Goteborg University

Abstract

This thesis concerns the properties of observability and identifiability of non-
linear systems. It consists of two parts, the first dealing with systems of
ordinary differential equations and the second with delay-differential equa-
tions with discrete time delays.

The first part presents a review of two different approaches to study the
observability of nonlinear ODE-systems found in literature. The differential-
geometric and algebraic approaches both lead to the so-called rank test where
the observability of a control system is determined by calculating the dimen-
sion of the space spanned by gradients of the time-derivatives of its output
functions. We show that for analytic systems affine in the input variables,
the number of time-derivatives of the output that have to be considered in
the rank test is limited by the number of state variables.

Parameter identifiability is a special case of the observability problem. A
case study is presented in which the parameter identifiability of a previously
published kinetic model for the metabolism of S. cerevisiae (baker’s yeast)
has been analysed. The results show that some of the model parameters
cannot be identified from any set of experimental data.

The general features of kinetic models of metabolism are examined and
shown to allow a simplified identifiability analysis, where all sources of struc-
tural unidentifiability are to be found in single reaction rate expressions. We
show how the assumption of an algebraic relation between concentrations in
metabolic models can cause parameters to be unidentifiable.

The second part concerning delay systems begins by an introduction to
the algebraic framework of modules over noncommutative rings. We then
present both previously published and new results on the problem of ob-
servability. New results are shown on the problems of state elimination and
characterisation of the identifiability of time-lag parameters. Their identifia-
bility is determined by the form of the system’s input-output representation.
Linear-algebraic criteria are formulated to decide the identifiability of the
delay parameters which eliminate the need for explicit computation of the
input-output equations. The criteria are applied in the analysis of biological



models from the literature.

Keywords: Observability, identifiability, nonlinear systems, time delay, de-
lay systems, state elimination, metabolism, conservation laws, signalling
pathways.
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Preface

The work described in this thesis has been financed by the National Research
School in Genomics and Bioinformatics under the project title Large Scale
Metabolic Modelling. The work is also related to the more experimentally-
oriented project A metabolome and metabolic modeling approach to func-
tional genomics, also sponsored by the research school. The aim of the latter
has involved the construction of metabolic models for the understanding of
regulation and signal transduction within cells. The analysis of structural
properties of metabolic models is the aim of this work and the properties
that we have investigated are observability and identifiability. The biological
models that we have come across have motivated the study of both ODE and
delay systems and the division of the theoretical results of this thesis into
two parts. Here follows a brief description of the latter.

Part I. Observability and identifiability of nonlinear ODE systems: General
theory and a case study of metabolic models

This part of the thesis concerns the observability and identifiability prob-
lem for nonlinear systems of ordinary differential equations with applications
in the kinetic modelling of metabolism in yeast. It consists of a monograph
and one paper, Paper I, see below. The monograph reviews already published
work before describing some new results and introduces a case study of a ki-
netic model of glycolysis from the literature. Of a particular interest for the
study are enzymatic rate equations and how they are parameterised. This is
discussed further in Paper I, which is briefly introduced in the monograph.

Part II. Observability and identifiability for nonlinear systems of delay-
differential equations with discrete time-delays

This part of the thesis concerns some control problems for nonlinear time-
delay systems, such as observability, identifiability and state elimination and
application of the results to biological models from the literature. It consists
of a monograph and three papers, Paper I, ITI and IV. The monograph intro-
duces a mathematical framework for control based on modules over noncom-
mutative rings before describing both previously published and new results
on the observability problem. A new result on state elimination is shown,
which leads to a characterisation of the identifiability of the delay parame-
ters, the main result of this part of the thesis. The monograph concludes
by an application of the result to a model of genetic regulation from the
literature. Application to other models from systems biology can be found
in Paper III. The theoretical results from Papers II and IV are described in
the monograph part, omitting detailed derivations, for which the reader is
referred to the papers themselves.
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Observability and identifiability of nonlinear
ODE systems

General theory and a case study of metabolic models

Milena Anguelova

ABSTRACT

Observability is a structural property of a control system defined as the
possibility to deduce the state of the system from observing its input-output
behaviour.

We present a review of two different methods to test the observability
of nonlinear control systems found in literature. The differential geometric
and algebraic approaches have been applied to different classes of control
systems. Both methods lead to the so-called rank test where the observability
of a control system is determined by calculating the dimension of the space
spanned by gradients of the time-derivatives of its output functions. It has
been shown previously that for rational systems with n state-variables, only
the first n — 1 time-derivatives have to be considered in the rank test. In this
work, we show that this result applies for a broader class of analytic systems.

The rank test can be used to determine parameter identifiability which
is a special case of the observability problem. A case study is presented in
which the parameter identifiability of a previously published kinetic model
for the metabolism of S. cerevisiae (baker’s yeast) has been analysed. The
results show that some of the model parameters cannot be identified from
any set of experimental data.

The general features of kinetic models of metabolism are examined and
shown to allow a simplified identifiability analysis, where all sources of struc-
tural unidentifiability are to be found in single reaction rate expressions. We
show how the assumption of an algebraic relation between concentrations
in metabolic models can cause parameters to be unidentifiable. A general
method is presented to determine whether a conserved moiety renders a given
rate expression unidentifiable and to reparameterise it into identifiable pa-
rameters.
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Keywords: Nonlinear systems, observability, identifiability, observability
rank condition, metabolic model, kinetic model, metabolism, glycolysis, Sac-
charomyces cerevisiae
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1 INTRODUCTION

1.1 MOTIVATION FOR STUDYING OBSERVABILITY AND
IDENTIFIABILITY

Consider a culture of yeast cells grown in a reactor and the chemical reactions
that take place in their metabolism. Thus far, the possibility to observe what
occurs inside a single cell as far as metabolic fluxes are concerned is very
limited. It is therefore not unnatural to consider the cell as a box where we
see what goes in (nutrients) and what comes out (secreted products), but

not what happens inside.
M@w
products

There is, however, extensive knowledge of the chemistry and biology that
takes place within the cell, and based on that, models are made for the
transformation that occurs inside the box. In preparation for a mathematical
description of the situation, we transform the above picture as follows:

controlled observed
u Unknown state Y

c

We now label the part that can be controlled - for example, the amount
of food given to the cells - u and call it "input”, or "control variable”. The
input often varies with time and is thus a function u(¢). The part that can
be observed over some interval of time - e.g. the different secreted products
the fluxes of which can be measured - is denoted by y(¢) and called "output”.
What happens inside the cell is accounted for in terms of changes in the
concentrations of the different chemical species present with respect to time;
these concentrations are referred to as "state-variables” and denoted by c(?).
We also have a number of parameters that come with the model used for
cellular metabolism, denoted by p. In this first part of the thesis, we assume
that the future concentrations of the chemical species ¢ depend only on their
present concentrations and those of the inputs. Thus, the history of the cell
does not matter and the changes in the concentrations with respect to time
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can be described by ordinary differential equations. The following continuous
“state-space” model can be formulated:

pt) = 0
: fe(t),p, ult)) (1.1)
y(t) = glet),p)

where ¢(t) denotes the time-derivative of the state-variables at time ¢. A
hypothetical setting is assumed where we start feeding an input u(t) to the
cell at time zero when the system is at an unknown state ¢(0) and we observe
the cell’s behaviour in terms of the outputs produced. It is assumed that u
is a function of time that we can choose, and that the values of y and all
its time-derivatives at the starting point (time zero) can be measured. The
variation with time, (¢), will not be explicitly written when it is clear from
the context.

It is often the case that metabolic models contain numerous parameters
with unknown 4n vivo values. Sometimes, for the purpose of simulation, the
latter are approximated by their in vitro values, see for example (Teusink et
al., 2000). Often, however, one is interested in obtaining the values that fit
a given set of experimental data. Thus, the parameters are estimated based
on observing the input-output behaviour of the system. The property of
identifiability is the possibility to define the values of the model parameters
uniquely in terms of known quantities, that is, inputs, outputs and their
time-derivatives.

(o)
—

~
N

1.2 PROBLEM STATEMENT

A generalisation of identifiability is the property of observability. Consider
the following “control system” which generalises the example above:

In this system, x are the state-variables, the inputs are denoted by w and the
outputs by y; all their components are functions of time. Note that parame-
ters can be considered state-variables with time-derivative zero. We have no
knowledge of the initial conditions for the state-variables (or, respectively, of
the parameter values). It is assumed that we have a perfect measurement of
the outputs so that they are known as functions of time in some interval and
all their time-derivatives at time zero can be calculated. The observability
problem consists of investigating whether there exist relations binding the
state-variables to the inputs, outputs and their time-derivatives and thus
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locally defining them uniquely in terms of controllable/measurable quanti-
ties without the need for knowing the initial conditions. If no such relations
exist, the initial state of the system cannot be deduced from observing its
input-output behaviour. In the biological setting above, for instance, this
can mean that there are infinitely many parameter sets that produce exactly
the same output for every input and thus the model parameters cannot be
estimated from any experimental measurements.

Before we define the problem of observability, consider the following ex-
ample of a control system taken from Sedoglavic (2002):

L2

j?l == T
jﬁg - %

z 1.3
.Ciig = ZC1¢9 — U ( )
y = 1

In this system, 1, 2o and x5 are state-variables, # is a parameter, there is a
single input u and a single output y. In the following we use capital letters
to denote initial values of a function and its derivatives, i.e. u((0) = U™,
y(0) = Y for r > 0. By computing time-derivatives of the output at
time zero, we obtain the equations:

X
1 . 2
YO = 4 =22 (1.4)
T
. . 3 _ Z2 2
2 _ ToZ1 — T1T2 o azgxl 1 L2 o Z3 Ty
YO — g = - S (1.5)
1 2 2 3 g

. . . . 3 2 2 .

yv® _  ® _ ft1%2— w3(L120 + 1102)  2Tpdowy — 25307H
- 1 = 2.2 - 6

T1T3 Ty

_ 1700 _ z2 z3 3 .3 _ 22,272
(@0 = U )y — w3(Pas + 2132) B 2wy By — w33w) P
- ) 6 -
L1l xy
o U 3 3z3 373
= - s ==t . (1.6)
T T1T9 T1T9 it it

For this simple example, it is actually possible to explicitly calculate the
initial values of the state-variables and the parameters in terms of the inputs
and outputs and their time-derivatives at time zero as shown in Sedoglavic
(2002):

z, = YOyW :
z; = YOy ((y(l))2 + y(O)Y(2)) (1.9)
((y(l))2 + y(O)y(?))2 + y(O)y(l)(gy(l)y(2) + y(O)Y(3)) — U(O){ )
0 = {1.10

Y (0)
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A given input-output behaviour thus corresponds to a unique state of the
system. In general, we are not going to demand a globally unique state. It
is enough that the equations have a finite number of solutions each defining
a locally unique state. The observability problem concerns the existence of
such relations and not the explicit calculation of the state variables from the
equations. Depending on the theoretical approach, different definitions of
observability can be given, as shown in this report.

1.3 ORGANISATION OF THE REPORT

In this work, a method for investigating the observability of certain classes
of nonlinear control systems is described by using different theoretical points
of view, each of which adds to our understanding of the problem.

Sections 2 and 3 present a survey of the theory on nonlinear observabil-
ity available in the literature. Observability has been dealt with in both a
differential geometrical interpretation, and an algebraical one. The two ap-
proaches are introduced and the results in terms of obtaining an observability
test are described.

Section 4 attempts to answer the following question that arises during
the literature surveys. If the derived observability test is to be applied in
practice, a bound must be introduced for the number of time-derivatives of
the output that have to be considered in obtaining equations for the variables.
Such an upper bound is given for rational systems in Section 3. In Section 4
this bound is shown to apply for analytic systems.

Section 5 describes the identifiability problem as a special case of observ-
ability.

In Section 6 we apply the theory discussed in the preceding sections to a
case study of a kinetic model for the metabolism of Saccharomyces cerevisiae,
also known as bakers yeast. We use an algorithm by Sedoglavic (2002) and
its implementation in Maple which performs an observability /identifiability
test of rational models. We obtain results for the identifiability of the kinetic
model and find the non-identifiable parameters. The results are interpreted
in terms of the biological structure of the model.

The case study in Section 6 leads us to consider whether the special struc-
ture of metabolic models allows for a simplified identifiability test, in which
only individual reaction rate expressions need to be analysed. Assumptions
of conserved moieties of chemical species, often used in kinetic modelling
of metabolism, are shown to lead to unidentifiable rate expressions, and in
turn, to unidentifiable parameters in the models. This is discussed in detail
in Paper I, where we also show how the models can be reparameterised into
identifiable rate expressions.



2 THE DIFFERENTIAL-GEOMETRIC APPROACH TO
NONLINEAR OBSERVABILITY

In this section we present the basics of the theory of nonlinear observability
in a differential-geometric approach that we have gathered from the works
of Hermann and Krener (1977); Krener (1985); Isidori (1995); Sontag (1991)
and Sussmann (1979).

2.1 DEFINITIONS

Throughout this section we will consider control systems affine in the input
variables which is a valid description of many real-world systems. They have
the form:

2(t) = flz(),u(t) = ¢°(x(t) + g(z(t))u(t)
z{y(t) — (2.1)

where u(t) denotes the input, x(¢) the state variables and y(t) the outputs
(measurements). Throughout the text, the time-dependence (¢) will not be
written explicitly where it is understood from the context. We assume that
x € M where M is an open subset of R, v € R™, y € R? and ¢", and the
m columns of g, denoted by ¢* for i = 1,...,m, are analytic vector fields
defined on M. We also have to assume that the system is complete, that
is, for every bounded measurable input u(¢) and every xz° € M there exists
a solution to @(t) = f(z(t),u(t)) such that x(0) = 2° and z(t) € M for all
teR.
Here follow several definitions. Let W denote an open subset of M.

Definition 2.1 A pair of points 2° and ' in M are W-distinguishable if
there ezists a measurable bounded input u(t) defined on the interval [0,T] that
generates solutions x°(t) and x*(t) of © = f(z,u) satisfying x°(0) = z' such
that x'(t) € W for all t € [0, T] and h(x°(t)) # h(z'(t)) for some t € [0,T].
We denote by I(z°, W) all points ' € W that are not W-distinguishable

from 2.

Definition 2.2 The system X is observable at z° € M if 1(2°, M) = 2°.

If a system is observable according to the above definition, it is still possible
that there is an arbitrarily large interval of time in which two points of
M cannot be distinguished form each other. Therefore a local concept is
introduced which guarantees that to distinguish between the points of an
open subset W of M, we do not have to go outside of it, which necessarily
sets a limit to the time interval as well.
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Definition 2.3 The system X is locally observable at 2° € M if for every
open neighborhood W of 2°, I(2°, W) = 2°.

Clearly, local observability implies observability as we can set W in Defini-
tion 2.3 equal to M. On the other hand, since W can be chosen arbitrarily
small, local observability implies that we can distinguish between neighbour-
ing points instantaneously (since the trajectory is bound to be within W,
setting a limit to the time interval).

Remark: In this section "local observability” is a stronger property than
“observability” because it implies that only local information is needed.

Both the definitions above ensure that a point 2° € M can be distin-
guished from every other point in M. For practical purposes though, it is
often enough to be able to distinguish between neighbours in M, which leads
us to the following two concepts:

Definition 2.4 The system X has the distinguishability property at
2% € M if 2° has an open neighborhood V' such that I(z°, M) NV = x°.

In a system having this property, any point 2° can be distinguished from
neighbouring points but there could be arbitrarily large intervals of time
[0, 7] in which the points cannot be distinguished. In order to set a limit on
the time interval, a stronger concept is introduced:

Definition 2.5 The system X has the local distinguishability property
at ¥ € M if 2° has an open neighbourhood V such that for every open
neighbourhood W of 2°, I(z°, W)NV = z°.

Clearly, local observability implies local distinguishability as we can set V
equal to M. Thus, if a system does not have the local distinguishability
property at some z°, it is not locally observable at that point either.

It is the final property of local distinguishability that lends itself to a test.

2.2 THE OBSERVABILITY RANK CONDITION (ORC)

This subsection describes how to determine if a system possesses the local
distinguishability property by the so-called "observability rank condition" as
introduced by Hermann and Krener (1977).
Throughout this subsection, we will use the following simple example of
a control system:
.I.'1 - O
.I.'Q = U— T1T9 (22)
Yy = 1%
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—9001$2 ), g(x1,20) = ( (1) ) and h(zy,x9) =
x129 (according to the notation introduced in the previous subsection) with
p=1m=1,and n = 2.

We now introduce differentiation with respect to time along the system
dynamics. Formally, this is done by so-called Lie-differentiation. The Lie
derivative of a C'*° function ¢ on M by a vector field v on M is

For this system, ¢°(zy, xs) = (

L,(¢)(z) :==<dp,v> . (2.3)

Here <> denotes the scalar product and d¢ the gradient of ¢.

Applying this to our example system, note that ¢°(xy,z5) and g(xq, z)
are vector fields on M and we can calculate the Lie derivative of h(xq,xs)
along them:

Lyo(h)(z1,29) =< dh, ¢° >= (zo ) ( 0 ) = —z21, (2.4)

—T1T2
and
0
Ly(h)(z1,22) =< dh,g >= (22 1) ( 1 ) =T . (2.5)

The flow ®(¢,x) of a vector field v on M is by definition the solution of:

#®(t7) = v(@(t )
{CIJ(O,JU) = x . (2:6)

Observe that we have the following equality:

d

== (p(®(t,2)) . (2.7)

t=0

Ly(9)(x)

The Taylor series of ¢(® (¢, x)) with respect to ¢ are called Lie series:

o(@(t,) = > GLO)) 23)

Let us now link the local distinguishability property to these new concepts.
First of all, as observed in (Sussmann, 1979), if two points 2° and z! in M
are WW-distinguishable by a bounded measurable input, then they must be
W-distinguishable by a piecewise constant input. This is due to uniform
convergence since the outputs depend continuously on the inputs. For a
constant input u, f(x,u) defines a vector field on M and we can define the
flow ®(t, z) and the Lie series expansion of h;(®(t,x)) fori =1,...,p. To see
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how this generalises to piecewise-constant inputs, we follow (Isidori, 1995)

and consider the input such that for : =1,...,m,
ul(t) = u}? te [0>t1)
i (2.9)
ui(t) = w;, teti+---+t,th+---+t), (>2

where ul € R. With no loss of generality, we can assume that t; = --- = t,.
Define the vector fields
6, = ¢° + gu! (2.10)

and denote their corresponding flows by ®.. Under this input, the state
reached at time ¢; + - - - + t; starting from 2" at ¢ = 0 can be expressed as

a(t) =@, o0 ®y (a°) . (2.11)
The corresponding output becomes
yilti 4+ 1) = (P}, 0--- 0 @y (a°)) . (2.12)

This output can be regarded as the value of the mapping

0

F @ (—ee)f —R
(t1,....t)) — hio® o---0® (z°) . (2.13)

If two initial states 2° and ! are such that they produce the same output

for all possible piecewise-constant inputs, then
F™(ty,... ) = F* (t1,....t) (2.14)

for all possible (¢1,...,%) with 0 <t; <eand all i =1,...,p. Thus,

8ZE‘”O alF;_zl
(m)t1:-..:tl:0 — (atl_—”atl)tlz-..:tl:o (215)
Since -
O'FF
(m)n:--:n:o = Lo, -+ Lohi(2") (2.16)
we must have,
Lo+ Lohi(a®) = Lo, Lou(a') (2.17)

Suppose now that there exists an open neighbourhood V of 2° such that all
points in V are distinguishable from z° instantaneously (which is the require-
ment for local distinguishability). Then, there exists a piecewise-constant
input w such that the map from V to the space spanned by the Lie deriva-
tives Lg, -+ - Lgh; is 1 : 1. Let us formally describe the "observation" space
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spanned by the Ly, --- Ly h; which will be denoted by G. It can be shown,
(Isidori, 1995; Sontag, 1991), that

G = spang{ Ly Lyiz -+ Lgir (hy) : >0, 4;=0,...,m, i=1,...,p} .

(2.18)
Since we are interested in the Jacobian of the 1 : 1 map mentioned above,
the space spanned by the gradients of the elements of G is introduced and

denoted by dgG:
dG = spang {dp: ¢ecG} (2.19)

where R, denotes the field of meromorphic functions on M.

It is the dimension of dG which determines the local distinguishability
property. For each € M, let dG(z) be the subspace of the cotangent space
at = obtained by evaluating the elements of dG at z. The rank of dG(z) is
constant in M except at certain singular points, where the rank is smaller
(this property is due to the system being analytic, see for example (Krener,
1985) or Chapter 3 in (Isidori, 1995). Then dimg,dG is defined as the generic
or maximal rank of dG(x), that is, dimg,dG = mazep (dimrdG(z)).

We can now formulate the so-called "observability rank condition" intro-
duced by Hermann and Krener (1977):

Theorem 2.1 The system X has the local distinguishability property for
all © in an open dense set of M if and only if dimg_dG = n.

Let us apply this test to the example system. We observe by inspection
that the space G for this system is spanned by functions of the forms z¥ and
xkz, (the first two Lie derivatives were calculated above). Thus, the space
dG is spanned by one-forms of the type (kz¥™ 0) and (kot~'a, zh).
Therefore we conclude that this example system has the local distinguisha-
bility property almost everywhere except on the line x; = 0.

Consider another example:

[tl = U—=I
Ztg = U— T2 (220)
Yy = T+ T2

For this system, ¢°(z1,z2) = ( — ), h(zy,x9) = ( } ) and h(xi,xs) =

x1+ x2 (according to the previously used notation). The first two Lie deriva-
tives are

Lgo(h)(z1,22) =< dh,¢g" >= (1 1) ( o ) = —x1 — X9 (2.21)
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and

Ly(h)(x1,22) =< dh,g >= (1 1) ( ' ) _9 (2.22)

The space G for this example is spanned by constant functions and the func-
tion x1 + x2. Thus, the space dG is spanned by one-forms of the type (1 1)
and (0 0). Clearly, this space is of dimension 1, which means that the
system does not have the local distinguishability property anywhere.

2.3 FROM PIECEWISE-CONSTANT TO DIFFERENTIABLE IN-
PUTS - A DIFFERENT DEFINITION OF OBSERVATION
SPACE

2.3.1 OBSERVATION SPACE FOR ANALYTIC INPUTS

In the previous section, the observation space was defined in terms of piecewise-
constant inputs to be:

G =spang{Lyiy Lyir -+ Lgir (hy) : >0, i;=0,...,m, i=1,...,p} .
(2.23)
In this subsection it is shown that the observation space can be defined
equally well in terms of analytic inputs. We follow the works of Sontag (1991)
and Krener (1985).
A time-dependent vector field v(t, z) defines a time-dependent flow in a
similar way as in the previous section:

2 T = v xz

Let ®,(t, z) denote the time-dependent flow corresponding to the time-dependent
vector field f(x(t), u(t)), where we now assume that we have a single input u
which is an analytic function of time (the results in this section can be gen-
eralised to apply for vector-valued inputs). Let the initial values of v and its
derivatives be u("(0) = U™ for r > 0 with U") € R. For any non-negative
integer [ and any U = (UY, ..., U=D) € R!, define the functions
dT’
Yrmi(2,U) = 22t gi(@ult, @) (2.25)
t=0

for 1 <i<p, 0<r <Il—1. (Observe that the result of this formula is
actually the Lie derivation defined earlier, where extra terms appear due to
the time dependence of the input. In fact, ¢,,(x,U) = L%h; where we define
Ly=>", fja%j + >0 UMY =55 Applying repeatedly the chain rule, we
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see that the functions v; can be expressed as polynomials in U@ ... U1
with coefficients that are functions of z, (Sontag, 1991).

As in Subsection 2.2, we can again define the Taylor series of g(®, (¢, x))
with respect to t:

R DN L (2.26)

Similarly to Subsection 2.2, where we considered the space spanned by
the coefficients of the Lie series for h;(®, (¢, x)), we now construct the space
spanned by the v;:

G = spang{typsi(z,U): UeR,1>0, i=1,...,p} . (2.27)

Wang and Sontag (1989) proved that G = G. We can illustrate this with the
observable example from Subsection 2.2:

jfl = 0
j?z = U — X179 (228)
Yy = 1%

The time-dependent flow for the time-dependent vector field

f(z,u) = ( 0 ) becomes ®,(t,x) = ( i”lg’g ), where
u,2\ by

U — 12

Q(I)u,l(ta $) =0

at
%(P?L,Q(t? [E) = u<t> - q)uvl(t’ x)q)U"Q (t’ ZE) (229)
(bu71(0, ZL‘) = I
®u72(0, l’) = X2
The first few 1);:s can be calculated as follows:
?/Jl(l’, U) = h(q)u<t7x))|t:0 = (CI)UJ(t?‘x)(I)UvQ(t’ .I'))‘tzo =
= ©,1(0,2)0,2(0,2) = x129
P O(Pu,1 (L, )Py a(t,
1/)2(1‘7(]) — dh( Z(t’w)) — ( 71( x) 72( 'r)) —
t t=0 ot t=0
B 8q>u71<t LL') é@u,g(zﬁ,m) B
= ((I)UQ t I T + (I)u’l(t’x)T)h:O —
= (Pua(t,z) 04 Py (t, z)(u(t) — (I>u71(t,x)(1>u,2(t,x)))lt:0 =
= B,4(0, m)(U(O By 1(0,2)Py2(0,2)) = 2 (UO — zy12,)
d2h(D O*(Dy1(t, 2)Dyo(t,
¢3(I7 U) _ # — ( ,1( )2 ,2( )) —
dt =0 ot =0

= @1 (U(l) — a:l(U(O) — 3:1332)) . (2.30)
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We see now that if the U®:s are free to vary over R, then the space G for
this example is spanned by the functions z¥ and x¥wz, for k > 1, exactly as
the space G that we calculated in Subsection 2.2.

2.3.2 SYMBOLIC NOTATION FOR THE INPUTS

Following (Sontag, 1991), let us now consider the v;:s as formal polyno-
mials in U®, UM ... with coefficients that are functions of z. Denote by
K = RU® UM . ) the field obtained by adjoining the indeterminates
U© U® . toR. Recall that R, is the field of meromorphic functions on
M. Define K, = R, (U©®, UM ..} as the field obtained by adjoining (a finite
number of) the indeterminates U©® UM ... to R,, where K, is seen as a
vector space over K. Let F* be the subspace of IC, spanned by the functions
Y; over K, that is,

F =spane{y; . j>1} . (2.31)

This is now a different definition of the ”observation space”. As before, we
are also interested in the space spanned by the differentials of the elements of
FX. The latter can be seen as polynomial functions of U©®, UM, ... with co-
efficients that are covector fields on M. For the example in Subsection 2.3.1,
the differentials of the 1;:s can be written:

d@[)l = (332 Il)
dpy = (U — 2129 —xi) = (1 0) U + (—2a1 — 1)
dpy = (UO =200, +30fw,  af) =

= (1 0) UM + (—2z, 0) U@ + (3222, z?)

Recall from the previous section that the space dG for this example is spanned

by one-forms of the type (ka%~! 0) and (kattx, z¥). The covector
fields calculated above are clearly of the same form.
Now let
o~ = spang {d; : 1 € Fo (2.32)

Sontag (1991) proved the following result:
Theorem 2.2 For the analytic system (2.1)

dimg,dG = dimg, OF . (2.33)

Thus, the property of local distinguishability can be determined from the
dimension of the space O*. The significance of this result is that u can now
be treated symbolically in calculating the rank. This observation is used in
Section 4 to derive an upper bound for the number of di; that have to be
considered in the rank test.
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3 THE ALGEBRAIC POINT OF VIEW: OBSERV-
ABILITY OF RATIONAL MODELS

This section introduces the algebraic point of view in the treatment of the
observability problem according to the works of Diop and Fliess (1991a,b);
Diop and Wang (1993) and Sedoglavic (2002).

3.1 EXAMPLE

Before we describe the algebraic setting for our general control problem,
consider the following simple example:

I"l = Jfll’% +u
jZQ = I (31)
y = I

We obtain two equations for the state-variables x; and x5 from the output
function and its first Lie derivative where we use the notations u((0) = U()
and y™(0) = Y 7 > 0 for the time derivatives at zero of the input and
output, respectively:

YO = g (3.2)
YO = Lz =222 +0® | (3.3)

By simple algebraic manipulation of these equations, we can obtain the fol-
lowing polynomial equations for each of the variables with coefficients in
U= U UM Jand Y = (YO yd ).

z, = YO (3.4)
YO2 4L p® _y® — o | (3.5)

There are finitely many (two) solutions of these equations for a given set
of inputs and outputs (except on the lines x; = 0 and 2z, = 0). Each
one is locally unique and determines the state of the system completely from
information on the input and output values. (In the terminology of Section 2,
this example system has the local distinguishability property for all x except
for those on the lines 21 = 0 and xo = 0).

This was a very simple example where we could derive (and solve) these
polynomial equations for the variables explicitly. In general, however, the ob-
servability problem concerns the existence of such equations rather than their
explicit calculation. We now review an algebraic formulation of observability
for control systems consisting of polynomial or rational expressions.
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3.2 ALGEBRAIC SETTING
3.2.1 ALGEBRAIC OBSERVABILITY

Consider now "polynomial” control systems of the form:

T = f(x,u)
2{ y = hlx.u) (3.6)
where u stands for the m input variables, f and h are for now vectors of
n and p polynomial functions, respectively (we will make the transition to
rational functions later).

The equations obtained by differentiating the output functions will now
contain polynomial expressions only. This allows us to make a new defini-
tion of observability based on the following rather intuitive idea - the state-
variable x;, ¢ = 1,... n is observable if there exists an algebraic relation that
binds z; to the inputs, outputs and a finite number of their time-derivatives.
If each z; is the solution of a polynomial equation in U and Y, then we know
that a given input-output map corresponds to a locally unique state of the
system. We will now prepare for a formal definition of algebraic observability.

Let R(U,Y) denote the field obtained by adjoining the indeterminates
UZ-(O), Ul-(l),..., i =1,...,m and Yj(o)ﬂfj(l),..., j=1,...,p to R (or any
other field of characteristic zero). Then we can make the following definition
of algebraic observability:

Definition 3.1 z;,i € {1,...,n} is algebraically observable if x; is algebraic
over the field R(U,Y). The system ¥ is algebraically observable if the field
extension R(U,Y) — R(U,Y)(x) is purely algebraic.

3.2.2 DERIVATIONS AND TRANSCENDENCE DEGREE

The transcendence degree of the field extension R(U,Y) — R(U,Y)(z) is
now equal to the number of non-observable state-variables which should be
assumed known (i.e. should have known initial conditions) in order to obtain
an observable system. QOur purpose is now to find a way to calculate this

transcendence degree. For this, the theory of derivations over subfields as
described in (Jacobsson, 1980) and (Lang, 1993) is used.

Definition 3.2 A derivation D of a ring R is a linear map D : R — R such
that

D(a+b) = D(a)+ D(b) (3.7)
D(ab) = aD(b)+ D(a)b (3.8)

fora,be R.
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For example, the partial derivative %, i =1,...,n, is a derivation of the
polynomial ring k[X1,..., X,] over a field k.

Consider now a field F' of characteristic 0 and a finitely-generated field
extension F = F(z) = F(x1,...,x;). Can a derivation D of F' be extended
to a derivation D* of E which coincides with D on F? Consider the ideal
determined by (x) in F[X]| and denoted by I, that is, the set of polynomials
in F[X] vanishing on (x). If such a derivation D* exists and p(X) € I, then
the following must hold:

0= D(0) = D*0 = D*p(x) = p®(z) + Z @

i=1

(3.9)

where p” denotes the polynomial obtained by applying D to all the coefﬁ—
cients of p (which are elements of I') and
evaluated at (x). If the above is true for a set of generators of the 1dea1 I
then it is satisfied by all polynomials in /. This is now a necessary condition
for extending the derivation D to E = F(x). It is also a sufficient condition
as shown in (Jacobsson, 1980) and (Lang, 1993):

Theorem 3.1 Let D be a derivation of a field F. Let (x) = (x1,...,%,)
be a finite family of elements in an extension of F. Lel p,(X) be a set of
generators for the ideal determined by (x) in F[X]. Then, if (w) is any set
of elements of F(x) satisfying the equations

)+ Z 31’& , (3.10)

there is one and only one derivation D* of F(x) coinciding with D on F and
such that D*z; = w;.

Suppose now that the derivation D on F' is the trivial derivation, that is,
Dz = 0 for all x € F. Then, p”(x) = 0 in the equation above and thus,
0=>", g’; 2q;. The w;:s are thus solutions of a homogeneous linear equation
system and there exists a non-trivial derivation D* of E = F(x) only if the
matrix formed by the ap“ :s is not full-ranked.

Let DerpE denote the set of derivations of £ = F(x) that are trivial on
F. DerpFE forms a vector space over E if we define (bD)(z) = b(D(x)) for
b € E. The dimension of this vector space can be calculated as follows, see

(Jacobsson, 1980):

Theorem 3.2 Let E = F(xy,...,z,) and let X = {p1,...,p,} be a finite
set of generators for the ideal of polynomials p in F[X,..., X,] such that
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p(1,...,x,) =0 (this set exists due to Hilbert’s basis theorem). Then:

[DerpE : E] =n —rank(J(p1,...,0q)) (3.11)
where J(p1,...,pq) is the Jacobian matriz
Op1 Op1
a_fl‘l .. %
: : (3.12)
8pq 8pq
8_m1 .. aﬁﬂn

To see how the space DerpFE is related to the transcendence degree of the
field extension F' — E suppose that £ = F(z) and x is algebraic over F
with minimal polynomial p. If D is a derivation of E which is trivial on F,
then 0 = p/(z)Dx and thus Dz = 0 since p'(z) cannot be zero (the field F
has characteristic zero). Therefore D is trivial on E. We have the following
general result Jacobsson (1980):

Theorem 3.3 If E = F(xy,...,x,), then DerpE = 0 if and only if E is
algebraic over F. Moreover, [DerpE : E] is equal to the transcendence degree
of E over F.

3.2.3 RANK CALCULATION

We now have a way of calculating the transcendence degree of F = F(x)
over F' by a rank calculation. Suppose that the transcendence degree is
equal to r > 0 and thus some of the z;:s are not algebraic over F. We
wish to know if element x; is algebraic over F'. Consider the field ex-
tensions F' — F(z;) — E. We can calculate the transcendence degree
of the field extension F(z;) — E by the method described above. Since
E = F(z;)(z1,...,%j-1,Tjt1,-..,Ty), this will involve a calculation of the
rank of the following matrix:

9p1 Op1 Op: Op:
6p1 T 6xj,1 833j+1 T axn
: . : (3.13)
9pq _Opq  Opg_ 9pq
or1 Oxj_1 Orjr1 77 OTn

If the transcendence degree of the field extension F'(z;) — E'is equal to r (i.e.
the above matrix has rank (n — 1) —r), then the variable z; is algebraic over
F. This is due to the fact that if we have the field extensions F — F' — FE,
then (Lang, 1993):

tr.deg.(E/F) = tr.deg.(E/F') + tr.deg.(F'/F) . (3.14)

We thus have a way of classifying all x; as either algebraic over F' or not
by eliminating the ¢:th column in the Jacobian and observing if there is a
change of its rank.
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3.3 THE OBSERVABILITY RANK CONDITION (ORC) FOR
RATIONAL SYSTEMS

3.3.1 THE ORC FOR POLYNOMIAL SYSTEMS

Setting F' = R(U,Y) and E = F(z4,...,x,), we can apply the theory from
Subsection 3.2 to our control problem. We have obtained a method for
testing the observability of polynomial control systems by calculating the
transcendence degree of the field extension R(U,Y) — R(U,Y)(z). In order
to perform the calculations described above, we need to describe the ideal I of
polynomials p in k(U, Y)[X] such that p(z1,...,z,) = 0. Clearly, Y}(O) —gj €
I for all j =1,...,p. Differentiating the j:th output variable with respect to
time at zero we obtain (by Lie-differentiation where the time-dependence of
the inputs is taken into account, as in Section 2.3 of the previous section):

!
09
1 E+1
VO = L= XY e 19
o i=1 Ou;
!
@ _ jy2, _ 9(Lyg;) (k+1)
VP = Lie=) ) U (3.16)
k=0 i=1 i

etc. Clearly Yj(l) — Lyg; and Yj@) — L3g; are elements of R(U,Y)(z) and
polynomials in /. In fact, all such polynomials obtained by Lie-derivation
belong to I. It can be shown that [ is generated by the polynomials Yj(Z)—L;gj
forj=1,...,p,2=20,...,n — 1 by the following argument of Sedoglavic’s
(Sedoglavic, 2002).
We have
R(U) c R(U,Y) C R(U)(x) (3.17)

)

since each Y;.(i is a polynomial function of x with coefficients in R(U). Thus,

as in 3.2.3,

tr.deg.(R(U)(z)/R(U))
= tr.deg.(R(U)(z)/R(U,Y)) + tr.deg.(R(U,Y)/R(U)) , (3.18)

and the transcendence degree of the field extension R(U) — R(U,Y) is
therefore at most n. Thus, for every j = 1,...,p, there exists an algebraic
relation qj(Yj(O), e Yj(”)) = 0 with coefficients in R(U). Thus the polynomial
Yj(n) — L}g; belongs to the ideal generated by the polynomials Yj(i) — Ly,
fori =1,...,n — 1. We therefore conclude that we need only consider the
equations obtained by the first n — 1 Lie-derivatives of the output functions.
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Hence, according to Theorem 3.2, in order to calculate the transcendence
degree of the field extension R(U,Y") — R(U,Y)(x) we have to find the rank
of the following matrix:

B 8L(}91 8119-91 T
o1 t OTn
8L?cgp BL?fgp
ox1 T Oxn
U (3.19)
8L}17191 aL}klgl
ox1 T OxTn
8L}L719p 8L}L719p
| ox1 T Oxn i

If this Jacobian matrix is full-ranked, then the transcendence degree is zero
by Theorems 3.2 and 3.3 and we have an algebraically observable system.
We have arrived at the observability rank condition that was derived for dif-
ferentiable inputs in the differential geometric approach in Subsection 2.3.2,
but this time we have a finite number of Lie derivatives to consider.

If the system is not algebraically observable, we can find the non-observable
variables by removing columns in this matrix and calculating the rank of the
reduced matrices, as described in Subsection 3.2.3.

3.3.2 THE ORC FOR RATIONAL SYSTEMS

We will now generalise this theory to apply for rational systems of type:

Y ’ 3.20
{ y = g(z,u) , (3:20)
where now f; = p;(u,z)/q;(z) for i = 1,...,n and g; = rj(z,u)/s;(z) for
Jj=1,...,p with p;, ¢;,r; and s; polynomial functions.

We observe that just as before, Y;-(l) — Lyg; € R(U,Y)(z) for all i =
0,....,n—1,7=1,...,p, but they are no longer polynomials. However, as

shown by Diop et al. (1993) and Sedoglavic (2002), these rational expressions
can be used in the rank test instead of the polynomials that generate the ideal
I, and therefore we may use the same Jacobian in this case, as for polynomial
systems.

Remark: Observe that the algebraic interpretation has lead us to the
observability rank condition derived for analytic inputs in Subsection 2.3
of the previous section, showing the equivalence of algebraic observability
and local distinguishability, see (Diop et al., 1993). In fact, the ideal I of
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polynomials p in R(U, Y)[X] such that p(xy,...,z,) = 0 is generated by the
same functions that span the space F* defined in Section 2. The rank of the
Jacobian

r 8L5{g1 BL?g1 ]
oz T OTn
8L(}9p aL?vgp
ox1 o OTn
” 1 (3.21)
BL:}_ g1 8L7;_ g1
o0x1 t OTn
oL} 'gm oL} 'gm
L Ox1 Tt OTn 4

is exactly the dimension of the space OF which, as we recall, determines the
local distingushability property according to Theorem 2.2. The result of the
algebraic approach of this section is that we have been able to show that for
rational systems the space OF is generated by a finite number of functions.
In Section 4, we take a different approach to show that this is in fact true
for all analytical systems of the form (2.1).

3.4 SYMMETRY

Suppose now that by applying the rank test above, we find that our control
system is not algebraically observable and that the transcendence degree is
r. This means that DergyyR(U,Y)(x) is not empty and has dimension 7.
The differential-geometric concept that corresponds to derivations is that of
tangent vectors. We can therefore interpret the existence of derivations on
R(U,Y)(x) that are trivial on R(U,Y") as the existence of tangent vectors
to the space of solutions to our control system, such that if we move in
their direction, the output remains the same and we cannot observe that
the system is in a different state. In other words, there are infinitely many
trajectories for the control system that cannot be distinguished from each
other by observing the input-output map.

A derivation therefore generates a family of symmetries for the control
system - symmetries in the variables leaving the inputs and outputs invari-
able. In this section we will show how these can be calculated.

First of all, observe that the partial derivatives a%i form a basis for the
derivations on R(U)(x) that are trivial on R(U) (see Appendix 8.2 for ex-
planation). Among these, we wish to find the ones that are trivial also on
R(U,Y). If v is one of them, recall from Theorems 3.1 and 3.2 that we must



20 3 THE ALGEBRAIC POINT OF VIEW

have:
B 5L9c91 aL?»gl 7
o0z et OTn
8L?fgp aL?c!]p
Ox1 e Oy
I =0 . (3.22)
8L7f17191 BL?7191
Ox1 e Oy
8L7fhlgp 8L}L719p
L ox1 Tt Oxn J

Thus, v belongs to the kernel of the above Jacobian matrix. Suppose that
v = (vy,...,v,), where v; € R(U,Y)(z). Then v is the Lie-derivation
v=>y1", Uia%i which corresponds to a vector field v and a flow ®(p, x) of v
given by (see Section 2):

{a%cp(p,x) = U((I).(p“r)) (3.23)

¢0,z) = =z

The solution of this system of differential equations evaluated at any p > 0
corresponds to a new initial state of the system which cannot be distinguished
from the original one, (x1, ..., z,), by observing the input-output it produces.

We now have a strategy for finding the families of symmetries for our
control system. First, we have to define a basis for the kernel of the Jacobian
matrix. In order to obtain the associated families of symmetries, we have to
solve the system of differential equations that correspond to each element of
the chosen basis. To make the calculations simpler, we can use the obser-
vations from Subsection 3.2.3 to find the non-observable variables. Instead
of calculating the kernel of the Jacobian matrix, we can calculate the kernel
of its maximal singular minor which is obtained when the columns and rows
corresponding to the observable variables are removed. Then, the system
of differential equations to be solved will only involve the non-observable
variables.

We will now apply this to a non-observable example:

[l"fl = T4+ U

Si'g = T3

i3 = 0 (3.24)
i’4 = 0

y = n
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We need to calculate the first three Lie-derivatives of the output function:

Yy = Lixy = xowy + U (3.25)
y@ = L?cxl = L¢(zox4 + u) = 242073 + uWw (3.26)
Y(g) = L:}xl = Lf(l’4$21’3 + U) = X4T3T2x3 + U(2) . (327)

Thus the Jacobian matrix becomes:

1 0 0 0 1 0 0 0
0 x4 0 Lo 0 x4 0 4p)
0 z3x4 ToTa  XoX3 “10 0 Toxy 0 (3.28)
0 23xy 2x9m3wy To73 00 0 O

Clearly, this matrix has rank 3 and the non-observable variables are x5 and
x4 - removing the second or fourth column does not change the rank of the
matrix. We can now eliminate the first and third rows and columns and
consider the kernel of the remaining minor, which is the matrix

$§I4 IQJJ%

{ o ] | (3.29)

0 0

This kernel is generated by the vector (z3, —x4). The derivation Tog. —Tag,-

thus corresponds to the system of differential equations:

Ci)2<p7 l’) = (1)2(p’ ZL’)
Dy(p,x) = —Pulp @)
’ ’ 3.30
@2(0,x) = o2 ( )
®4(0,2) = x4
The solution is:

y(p,z) = wae?

{ Qy(p,x) = x4 " . (3:31)

If we set e? = A, we find that multiplying x5 by A and dividing x4 by it
defines a new state x that is indistinguishable from the original one for any
A. Indeed, we see that performing this procedure does not change the output
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and its Lie-derivatives:

(

l;’l = SEQCI_J4+U:)\.TQSL’4/)\+U:$2£U4+U
Zf'g = J_Zg.fg = i‘gi’g = )\.1'21’3

Zf'g — O

i’4 = O

YO — 7 =2, =Y0O

Yy = Lfifl = XoZ4 + U0 = ToZyg + U0 =y

YO = L35 = Lp(@s%s + u) = TaZp + UV = 247575 + UW =
= jmdmpy+ UM =Y O
YO = L3 = Lp(ZaZaTs + 1) = T32a7s + UP) =

Ig%;&y\l’gl’g + U(Q) = Y(g)
(3.32)
We know from Subsection 3.3.1 that we need not consider any further Lie
derivatives since they depend on the previous ones.
We have now defined a family of symmetries

oz, o, w3, w4} — {1, Ao, T3, 24/ N} (3.33)

of the control system which leaves the input and output invariant.

3.5 SEDOGLAVIC’S ALGORITHM

There is a published algorithm by Sedoglavic (2002) with a Maple implemen-
tation which performs an observability test of rational systems and for non-
identifiable systems, predicts the non-identifiable variables with high proba-
bility. This is done in polynomial time with respect to system complexity.
The algorithm is mainly based on generic rank computation, for details,
see (Sedoglavic, 2002). The symbolic computation of the Jacobian matrix
defined in Subsection 3.3 can be cumbersome for systems with many vari-
ables and parameters and it cannot be done in polynomial time. Instead,
the parameters are specialised on some random integer values, and the in-
puts are specialised on a power series of ¢ with integer coefficients. To limit
the growth of these integers in the process of rank computation, the cal-
culations are done on a finite field F, (p refers to a prime number). The
probabilistic aspects of the algorithm concern the choice of specialisation of
parameters and inputs and also the fact that cancelation of the determinant
of the Jacobian modulo p has to be avoided. The calculation of the rank is
deterministic for observable systems, that is, when the process states that
the system is observable, the answer is correct. For non-observable systems,
the probability of a correct answer depends on the complexity of the system
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and on the prime number p. The predicted non-observable variables can be
further analysed to find a family of symmetries which then can confirm the
test result.

The Maple implementation takes as an input a rational system of dif-
ferential equations where parameters, state-variables and inputs have to be
stated as such, and also a set of outputs has to be defined. The transcendence
degree of the field extension associated to the system is calculated and the
non-observable parameters and state-variables are predicted.

We have used this implementation for our case study in Section 6.
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4 THE FIRST n — 1 DERIVATIVES OF THE OUT-
PUT FUNCTION DETERMINE THE OBSERVABIL-
ITY OF ANALYTIC SYSTEMS WITH n STATE VARI-
ABLES

This section deals with several questions that arise from Sections 2 and 3. The
differential-geometric approach from Section 2 results in the observability
rank test for observability of analytic systems. In this test, the rank of
the linear space containing the gradients of all Lie derivatives of the output
functions must be calculated. Since no bound is given for the number of
Lie derivatives necessary for the calculation, the practical application of the
test to other than the simplest examples is difficult. Such an upper bound
is derived for the case of rational systems in Section 3 using the algebraical
approach. The following questions now arise. Can an upper bound be given
only for rational systems? How do such requirements for the class of the
system arise? In this section, we attempt to extend the upper bound for
the number of time-derivatives of the output function to apply for the class
of analytical systems affine in the input variable that are addressed by the
differential-geometric approach in Section 2. We are going to use the results
by Sontag (1991) described in Subsection 2.3 where the observability rank
condition was defined in terms of differentiable inputs.

Consider once again the example from the introduction, taken from Se-
doglavic (2002):

z2

ry = 1

o

m P —_—

? @2 (4.1)
Tz = x110—u

y = I

Recall that we obtained the following equations for the state-variables and
the parameter from calculating the first three time-derivatives at zero of the
output (see Subsection 1.2):

7"1( ) Y(O) — 2 -0
—yv(@) _ oz _
ro(x1 ) =Y xf . - 0
7’3(:6 w03, Y ) =Y — (G2 — ) - 0
K x2 3
T4(x17l'2,$3, Y(S)) Y( ) — % — % — 33%15 — 931;33 333—512) = 0 .
(4.2)

The problem now is to determine whether these equations are enough to
ensure that a given input-output behaviour corresponds to a locally unique
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state of the system. From the implicit function theorem it follows that the
variables x1, x9, 3 and the parameter 6 can be expressed locally (in the neigh-
bourhood of a given point in the space of solutions of the differential equa-
tions) as functions of U® and Y, Y1) Y®) Y3 if the rank of the following

Jacobian matrix evaluated at that point is equal to four:

o(r1) 9O(r1) 9(r1) 9(r
3$1 89@2 61‘3 00
O(ra A(r2)  9(r2)  I(r2

) )
) 0. 0 00 :

Brs) o(rs) Ors) o(ra) | = (4.3)
Oxo Oxs 00

) O(ra) O(ra) O(ra)

Ox1 Oxo Ox3 00

1 0 0 0
_z3 1 0 0
J?l 9 Tr1
__x3 2 __x3 Z2
22y T oA maz T 53 P 0
w4 925 4 x3 153 0 Lo 3z2 4 % 3 2m3 1
:(:2:051 a:ll xgxﬁl :(:‘1’ :c% xlxg x1x21 x? :c“f :(:1503 T2

Clearly, this matrix has full rank for all values of x1, 29, x5 and 6 and thus
the system has a locally unique state for a given input-output behaviour.

Now the following question arises - if the rank of the above matrix is not
full, can we then conclude that the system is not locally observable without
considering further derivatives of the output function which would produce
new equations? In other words, is the rank of the Jacobian determined by
the first n equations, where n is the total number of state-variables and
parameters? We will now show that this is true for the analytic systems
affine in the input variable that were discussed in Section 2.

Consider again the analytic control system of the form (equation (2.1)):

& = f(z,u) =g¢"x) +g(x)u
z{y ~ b (4.4)

As previously (Section 2), the elements of the n-dimensional vectors ¢° and
g are analytic functions of x and we assume for the moment that we have
a single analytic output h(x) and also a single analytic input u. The n
state-variables x are assumed to occupy an open subset M of R™.

The first two equations obtained by differentiating the output function
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with respect to time at zero are:

YO = Lih(z)=dh- fi_, = dh- (3" +gU) =

= dh-¢" +U"(dh-g) (4.5)
o(dh -
YO = L3h(@) = Ly(dh- ) = (d(dh- 1) - )., + LTy

= d(dh-g° + U (dh - g)) - (¢ + gU) +

L Odh-g° +uldh-g)) o)
ou

= d(dh-¢* +UOdh - g)) - 1° + UOd(dh - ¢ + UO(dh - g)) - g +
+ U(l)(dh - g) =

— d(dh-¢°)- ¢ + U (d(dh-g) - ¢°+ d(dh - ¢°) - g) +
HU®)(d(dh - g)) - 9) + UD(dh - g) . (4.6)

These calculations confirm the result by Sontag (1991) that the first n—1 Lie
derivatives of the output function g(x) for the system (2.1) are polynomial
functions of U®), UM ... UM™=2 with coefficients that are analytic functions
on M. '

Thus we have that Lgf)h € K, forv=20,...,n — 1; recall from Subsec-
tion 2.3 that K, = R, (U@ UW .. .) is the field of meromorphic functions
on M to which we add the indeterminates U@ UM .. and obtain rational
functions of U©® UM ... with coefficients that are meromorphic functions
on M. See also (Sontag, 1991).

Following the notation from example (4.1) above, the first n equations
for the state-variables can now be formulated:

r(z,YO) = yO _p =0 (4.7)
ro(z,u, YY) = Y — Lih =0 (4.8)
(@ u, . u YOy =y =0 (4.9)
Therefore, the Jacobian that we are interested in is:
oh oh
o1 ot OTn
— : : (4.10)
oL} 'h oLy 'h
o1 ot OTn

Since Lgf)h € K, for © = 0,...,n — 1, the elements of this Jacobian also
belong to K,. We will now show that if this Jacobian is not full-ranked,
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that is, the first n gradients of the output function and its Lie derivatives are
linearly dependent over the field IC,, then any further Lie derivative produces
a gradient which is linearly dependent of the first n and we can thus conclude
that the system is not locally observable. Furthermore, if the first ¢ gradients,
where ¢ < n, are linearly-dependent, then no further gradients are necessary
for the calculation of the rank, which becomes < ¢ — 1. In fact, we can
stop Lie differentiating the output function at the first instance of linear
dependence.

Remark: To be able to discuss linear dependence, we have to know that
the gradients of the Lie derivatives produce a linear space over a field (or
a free module over a commutative ring). This was the case for the rational
systems in Section 3 and this is also the case here for analytic systems of the
above type, because the elements of the Jacobian belong to the field /C,.

Theorem 4.1 Let Y be the system

i = fla,u)=g"@)+ gla)u
{y ~ ) (4.11)

where x is a vector of n state-variables occupying an open subset M of R,
¢° and g are n-dimensional vectors of analytic functions on M, the output
h(z) is an analytic function on M and the control variable u is an analytic
function of time. '

If q is an integer such that dLgf)h, 1=20,...,q are linearly dependent over

the field KC,, then the dimension of the space OF = Span,cz{dLgf)h, i >0}
(see Subsection 2.3) is less than or equal to ¢ — 1. If ¢ < n, the system ¥ is
not locally observable.

Proof: Suppose that the first ¢ gradients are linearly dependent and ¢ is
the least such number (it certainly exits as the rank is < n and a single non-
zero vector is linearly independent of itself). Then, there exist coefficients
ki€ Kyt =0,...,9g— 1, not all of them zero, such that

q—1
> kidLih=0 . (4.12)
=0

We can take the Lie derivative of both sides (which are co-vector fields) to
obtain:

q—1 q—1 q—1
0=L;() kidLih) =Y Ly(kidLh) = ((Lgki)dLih + k;Ly(dLyh))
=0 1=0 =0

(4.13)
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We now observe the following fact (which is simply saying that the d and
Ly operators commute even when f depends on a control variable u(t), see
Appendix 8.1 for derivation):

Lg(dLih) = dL{'h (4.14)

for ¢+ > 0.
It follows that

—_

.
0= > ((Lyki)dLih+ kL™ h) . (4.15)

i

I
=)

Recalling the structure of the field Xy, we know that Lk; € K, since

ok; Ok;
Lk; = dk; - 'UW = dk; - (¢° + gU ) + U 4.16
i f+ 5, (9" +9U™) + - : (4.16)
which is clearly a rational function of U® UM, . .. with coefficients that

are meromorphic functions of z. Since we know that k,_; is not zero (we
assumed that ¢ was the least number such that the first ¢ gradients are
linearly dependent), we conclude that dL‘]]ch is linearly dependent on the
preceding gradients.

Using the same calculations we can prove by induction that any further
gradient is linearly dependent on the previous ones which then means that
dL?h, e ,dLj’flh form a basis for the space OF which determines local dis-
tinguishability (by Theorems 2.1 and 2.2) and thus local observability. If
q < n, this space has rank less than n and thus the system is not locally
observable. [

Thus it is enough to consider the first n — 1 Lie derivatives of the output
function in the rank test and also, we can stop calculating further derivatives
of the output function at the first instance of linear dependence among their
gradients.

Remark: We note that in the case of multiple output functions one needs
to calculate n — 1 time-derivatives of each.
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5 PARAMETER IDENTIFIABILITY

In this relatively short section we will present the problem of parameter iden-
tifiability of nonlinear control systems as a special case of the observability
problem.

Identifiability is the possibility to identify the parameters of a control
system from its input-output behaviour. By considering parameters as state-
variables with time derivative zero, one can use the observability rank test
to determine identifiability. The property of local observability is then in-
terpreted as the existence of only finitely many parameter sets that fit the
observed data, each of them locally unique. The use of the rank test for de-
termining the identifiability of nonlinear systems dates back to at least 1978
when Pohjanpalo (1978) used the coefficients of the Taylor series expansion
of the output to determine the parameter identifiability of a class of nonlin-
ear systems applied in the analysis of saturation phenomena in pharmacoki-
netic studies. A more recent example is the work by Xia and Moog (2003)
where different concepts of nonlinear identifiability are studied in an algebraic
framework. They apply the theory to a four-dimensional HIV/AIDS model,
and show that their theoretical results can be used to determine whether
all the parameters in the model are determinable from the measurement of
CD4+ T cells and virus load, and if not, what else has to be measured.
The minimal number of measurements of the variables for the complete de-
termination of all parameters and the best period of time to make such
measurements are calculated. Another example with biological application
is the work by Margaria et al. (2004) where the identifiability of some highly
structured biological models of infectious disease dynamics is analysed both
using the rank method and Sedoglavic’s algorithm, (Sedoglavic, 2002) and
also by the constructive method of characteristic set computation described
by Ollivier (1990); Ljung and Glad (1990) and others. Due to the fact that
its computational complexity is exponential in the number of parameters,
the latter method can only be applied to relatively small control systems.

We will now describe how the observability rank test can be used to
determine parameter identifiability. Consider a physical/chemical /biological
model:

& = f(z,pu)
E{ y = hz,p) , (5:)

where as before, z denote the n state-variables, u the m inputs and y the p
observed quantities. The [ model parameters are denoted by p and f(z, p,u)
and h(x,p) are vectors of analytical functions. We may or may not be given
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a set of initial conditions for the state-variables:
r(0) =2° . (5.2)

In order to be able to use the theory from the previous sections, we observe
that the above model can be represented by the following control system:

po= 0
¢ & o= f(x,p,u) (5.3)
y = h(z,p) |

where x and p can now be considered as the same type of variables. We can
apply the rank test to this system in exactly the same way as discussed in
the previous sections.

Without initial conditions for z, the non-observable variables can be both
in x and in p. Suppose now that we are given a full set of initial conditions
on x:

z(0) =2 . (5.4)

The problem of the observability of the x variables now disappears as the
initial state is already uniquely defined. What is left, is exactly the problem
of identifiability for the parameters - is the set of parameters that realises a
given input-output map unique, at least locally?

This can be determined by the rank test described in the previous chap-
ters. For analytical systems (see Section 4) the rank test amounts to calcu-
lating the rank of the following Jacobian matrix:

r aL(}g1 BL?gl 7
Op1 n op
8L‘}gm 8L(}gm
Op1 T Opy

: : (5.5)
n—1 n—1
6Lf g1 8Lf g9
Op1 I op
8Ln;1 8Ln;1
f 9m f  9m
L Op1 T dpy -

If the rank of this matrix is [, then the model is identifiable. If not, the
non-identifiable parameters can be found using the same procedure we used
earlier for finding non-observable variables, see Subsection 3.2.3.
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6 CASE STUDY: IDENTIFIABILITY ANALYSIS OF
A KINETIC MODEL FOR S. cerevisiae

In this case study, we have investigated the identifiability of a published
model of the metabolic dynamics in S. cerevisiae by Rizzi et al. (1997). We
begin by a short description of the biochemistry of the central metabolic
pathways.

6.1 THE CENTRAL METABOLIC PATHWAYS

Metabolism is the overall network of enzyme-catalysed reactions in a cell.
Its degradative, or energy-releasing phase is called catabolism. The central
catabolic pathways which are more or less universal among organisms consist
of glycolysis, the pentose phosphate pathway and the citric acid cycle. In
glycolysis sugars are degraded to a three-carbon compound called pyruvate.
In the absence of oxygen pyruvate is then reduced to lactate, ethanol or other
fermentation products. In aerobic conditions, it is instead oxidised via the
citric acid cycle in the process of cellular respiration. A simplified scheme of
some of the most important reactions in the central metabolic pathways is
shown in the figure on the next page.

The different species in the boxes are called metabolites. The reactions
marked by arrows are catalysed by enzymes which determine their "reaction
rate” or "flux”, that is, the speed with which the reaction occurs.

Reaction rates are often modelled by using so-called Michaelis-Menten
or Hill kinetics where an equation is derived for the reaction rate based on
a biochemical description of the general way in which enzymatic reactions
occur. For example, a reaction in which a single substrate (reactant) A is
transformed to a single product B under the catalysis of a single enzyme F
has the following rate equation, (Lehninger, 2000):

rmax A
r = m s (61)
where the constants r and K, are specific for this reaction. r™®* is the
maximal rate of the reaction and K, is the substrate concentration at which
the reaction rate is half »™ax,

An enzyme can have several binding sites for the substrate in which case
a so-called Hill equation is used. For the above reaction where we allow n
binding sites for the enzyme, the equation becomes (see for example Chapter
5 in (Stephanopoulos et al., 1998)):

TmaxAn

" Kt A

max

(6.2)
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The central metabolic pathways W cH, GiC
(]
GLUCOSE
THE CRLL Ho H OH
H H
RIBUSP ¢
CHOH (@ [(Fl-o-cH felst=]
deo > 2
The pentose phosphate H#OH d Ho H OH ’
tl'l : HCOH
pathway Clﬂ)_o_“@ e H
Glycolysis
/ \ = ycoly:
PR HYLER (GRS N N YT
“L.‘I" CHOH Hig /O H -
—a—] HCOH é=0
nbon ok Ho
I‘IéDH HéOH ‘
CIH}704® CIH}70)® FEBP

i

[Eo-ch, 0. cH-o-E
k(i N;dH
CHO "
MEenrp GAA e

i hd Gap DHAP
HCOH H?DH . B -
:EE: CH—0—® ‘ ™ ®_°—cn;g:—c<n ®—o_cn‘,—§n-cn‘,on -
th—o—@
FEP
THOA
d=o FBF o n E4F B
HOCH \fl"
HEOH HEUH
H?DH HLDH
CH,—0—F> H—0—Fy YR
! -
CYTORPLASM
0
MITOCHCOMNDRIA T ACCOA
CHCH--Co8
QA4 -ﬁ -
[
éﬂ)—CDD \
K‘ !
e El cn—coo  [SOCIT]
H|ic|H Hp—coo
—Coor
: The citric acid cycle "O_E

I BucCoA 1
TI,I: —5—Cod4 Iflf
o o

These equations can take much more complicated forms depending on the
number of substrates and products and other factors such as reversibility
of the reaction, inhibition and cooperation effects on the enzymes, etc., see
(Lehninger, 2000; Segel, 1975) and (Rizzi et al., 1997) for details.
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6.2 THE MODEL OF METABOLIC DYNAMICS BY RIZZI ET
AL.

We now proceed to describe a mathematical model of the dynamics of the
chemical reactions in the central metabolic pathways formulated by Rizzi et
al. (1997).

The authors propose a kinetic model for the reactions of glycolysis, the
citric acid cycle, the glyoxylate cycle and the respiratory chain in growing
cells of S. cerevisiae. The model aims to predict the short-term changes in
the metabolic states of the cells under in vivo conditions after a change in
the glucose feed rate. A schematic picture adapted from (Rizzi et al., 1997)
describing the metabolites and fluxes included in the model is shown below.

An overview of RizZi's model Glucose feed

THE CELL
co,
[ ame NADH
NAD
. ADP rCADK rc
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ATP Fc ] <
‘ FBP [—ME0) DHAP | BESA I GLYC
."-: ns
co, l""-.
K { ETOH—‘
M rrate ™ rate r P
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ATP  [Mamr e aaiaee NAD
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For each metabolite in the scheme, a mass balance is written where the
change of its concentration in time is expressed accounting for the incoming
and outcoming fluxes as well as the effect of dilution. The following system
of differential equations is obtained for the concentrations of the different
species (see Appendix 8.3 for nomenclature and parameter description):

degre
dt
dcGiye
dt
dci
dt
dcfron
dt
dcgo )
dt

dcg,
dt
deGrc
Cdt
ngGP
Cdt
dclgGP
Cdt
ngBP
Cdt
ngHAP
dt
dchP
dt
ngEP
Cdt
ngYR
Cdt
dchDE

dt

D(C(()}LC — Care) — ?TPERM (6.3)
Cx C e
?TRES,I — DcGiye (6.4)
CX C
?TALDH Dcy (6.5)
X C e
—7apn — Dkron (6.6)
p
Cx VM
?(?Crg% +76pc + aCO2,17’SCYNT,1 + aCOz,QTgYNTQ) +
+S(302 (6.7)
VM CX M
TlgERM - TgK - Mchc (6-9)
7"121( - TFC:GI - TgYNTJ - MCgGP (6.10)
7019(31 - rgFK - NcgﬁP (6.11)
TgFK - TgLDO - :uchP (6-12)
TgLDO - 7"%8 - rlgES,l - MCSHAP (6.13)
c C C C
TALDO T TTIs — TRES,2 — MCGAP (6.14)
70}C{Es,2 - T}C)K - NCgEP (6.15)
Vm
Tng - V_CTI%H - TgDc - TSCYNT,Z - :uchR (6.16)
c c c Vi m e,
Tppc — "ADH — TALDH — V_CTACETYL — HCALDE (6.17)
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dc§
ADP C C c C
Tdt = TgK T Tprk t @ATP1TSYNT,1 T @ATP2TSYNT,2 T TATP —
C C C C c
— 2r'gpKk — TRES,2 — TPk — "TR,ADP — HCADP (6.18)
dc§ V;
ATP __  C C M M C C C
“at  REs2 + Trpg + V. TTRATP + TApKk — THK — TPFK —
c
C C c
— GATP,ITSYNT.1 — MATP — GATP2TSyNT2 — MCaTp  (6.19)
dc§
AMP _  _C e,
“a TADK — MCamP (6.20)
C
deXapn ¢ 4 c e, _.c _.C .
—at TRES,2 T @NADH,2"syNT,2 — TRES,1 — "ADH — TALDH
C c
— "'NADHDH — HCNADH (6.21)
dci}
™ _ M M M M
dt = TarpRr T TATP,T — TTR,ATP — HCATP (6.22)
defspu _ .M M M (6.23)
—a NADH,T — "NADHQR — MCNADH - .

Remark: After comparison with the original version of the model, see
(Baltes, 1996), some minor modifications have been made to the model de-
scription in (Rizzi et al., 1997) due to what appears to be typing errors in
the latter, see (Johansson, 2007).

The fluxes r have rate equations based on Michaelis-Menten, Hill or other
types of enzyme kinetics gathered from the literature or proposed by the
authors. For example, the triosephosphate isomerase reaction converting
dihydroxyacetone phosphate to glyceraldehyde-3-phosphate has the rate ex-
pression

CgHAP — ar
C __ ,.max Keq,6
T'r1s = T'T1S : (6.24)

C
‘gap C
Kpuaps(1 + £525) + Chuap

Most of the fluxes in the model are rational expressions with the exception of
those fluxes where the Hill coefficients are not integers. This fact is important
for the identifiability analysis and will be discussed later.

The above model was evaluated in (Rizzi et al., 1997) on the basis of ex-
perimental observations previously described in (Theobald et al., 1997). The
model predictions were compared to the experimental results and the param-
eters were estimated from the data (Rizzi et al., 1997). We are now going to
use the theory of identifiability to find out whether the kinetic parameters
of this model can be uniquely determined from a perfect set of experimental
data. We must first formulate a control system for the model. For this,
the appropriate set of inputs and outputs must be chosen from the descrip-
tion of the experimental setting in (Theobald et al., 1997). In the latter, a
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methodology was developed where the changes in metabolite concentrations
after a glucose feed pulse (a fast injection of a certain volume of glucose in
the medium, (Theobald et al., 1997), were measured over time. The initial
conditions were the priorly-known values of the metabolite concentrations
under so-called "steady-state growth” - a condition when biomass concentra-
tion (and other factors) has stabilised to a constant value for the culture, see
(Theobald et al., 1997) for details.

In order to translate the information in the above paragraph into math-
ematical language, we include a perfect measurement of all metabolite con-
centrations ¢ (thus including the given initial conditions) in the outputs of
the control system:

P =0
é = fle,p,u)
y e (6.25)

(c(0) = ),

where c is the vector of metabolite concentrations, f is the right-hand side
of the equation array 6.3 and we denote all the model parameters by p.
The initial conditions are in parenthesis as the information they provide is
included in the output set. The input u is assumed to be the glucose feed.

6.3 IDENTIFIABILITY ANALYSIS

We performed an identifiability analysis of the above control system. For
this, Sedoglavic’s implementation (see Subsection 3.5) was used as the model
has around a hundred parameters which makes calculations by hand very
difficult. As the algorithm works only for rational control systems, we ap-
proximated any non-integer values of the Hill coefficients by integers. Of
course, in general, such approximations can have an important effect on the
identifiability of the system. This turns out not to be the case for Rizzi’s
model, as shown in the next section.

Sedoglavic’s algorithm produced the following results - the control system
was not identifiable with transcendence degree 2 and the non-identifiable
parameters were the kinetic parameters in two of the rate expressions - the
expression for the flux TngEs,Q and the one for riL ., which have the following
form:

Cc Cc
KNAD+ An1,7—1 + LO,? KI\ITADJF B"”_l CC na7
T,C — Tmax NAD,7 NAD,7 GAP (6 26)
RES,2 T TRES2 AmMT + Loz B™7 Kaapy + cpp "
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where
C
A = 1 NAD+ ‘NADH
+ KNAD,7 KNADH,7
C N Cc (627)
B = 1+ NAD + K/NADH
NAD 7 NADH,7
and
M _ max C C M
TpDH — TPDHCPerNAm/(KNAD 13Cpy; + Kpyr13cnap+ + (6.28)
KI—Pyr 13KNAD 13 M C M KNAD 13 C M
K CNADH T CpyrCNAD+ T —K PyrCNADH)-
I-NADH,13 I-NADH,13

Observe that the concentrations CS, s and C{, [, are used in the rate equa-
tions although no differential equations are formulated for them in Rizzi’s
model. Instead, these are defined in (Rizzi et al., 1997) as

ClgAD‘*‘ = pl_chDH (6.29)

M M
CNAD+ — D2 —CNADH 6.

where p; and py are known constants.
More results from the identifiability analysis are shown in Appendix 8.4.

6.4 SYMMETRY

The results obtained from the Sedoglavic implementation are probabilistic
- their validity must be ascertained by the actual finding of symmetries in
the model. From the theory described in Section 3, we know that it is
necessary to find two derivations that each of them give rise to a symmetry
in the model. The fact that the non-identifiable parameters can be separated
into two groups, each belonging to a rate equation, suggests the possibility
that the symmetries may be found within each rate expression (since the
kinetic parameters of the fluxes rgEsg and riL, are not used anywhere else
in the model). If this is true, the calculation of the symmetries may be
greatly simplified - the formal procedure from Subsection 3.4 for the 11 non-
identifiable parameters can otherwise be rather cumbersome. In order to
verify this hypothesis, we first used Sedoglavic’s algorithm on our control
system where we added measurements of the fluxes 7’1%35,2 and 3, to the
set of outputs:

p =0
¢ = f(c p,u

(6.31)
Yy = TRESQ

TPDH
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The idea behind this test is that if this system turns out to result in a
transcendence degree of 2 and the same non-identifiable parameters as before,
then there exist two families of symmetries in these parameters that leave
both ¢ and r{yg, and rify invariant (see Subsection 3.4). This means that
the rate expressions for r}C{ESQ and 7AL, themselves have symmetries in their
kinetic parameters.

We tested the above system in the Sedoglavic implementation and found
our hypothesis to be true. The rate expressions for ripg, and rify were
then analysed further to find the symmetries in the parameters. The de-
tailed analysis can be found in Paper . We found the following families of
symmetries (see Subsection 3.4) for rpg o

( TRES,2P1 )
Knap,7(1-A"Y/"M7) 4py
KNAD,7)\_1/n1’7P1
’ -
T%E)S(,Q ) Knap,7(1-A 1/n177)+p11
KNAD 7 (KI/\IADJ_KNAD,?(I_)\_ /n1’7))P1
/ ’ KNAD77(17)\71/n177)+p1
1] AT 4l K (62)
ll\IADHJ Knapn,7(1-X"/"7)4p;
NADH,7 (Kiap.s—Knap 7(1=A"/"17))p;
K/
\ Lo ) Knap,7(1-A"1/"7)+ KixNAD’7 p1
NADH,7
)\LOJ(KI/\]ADJ—KNAD,7(1—)‘_1/n1’7))n1’7
KLT
\ NAD,7 ),
and for rib .
s (M
PDH
KNAD 13 AKNAD 13 + p2(A — 1)
ox:{ Kpyrs — ¢ AMpyRis (6.33)
’ AKNAD,13K1-PYR,13
K pyr3 %_)\)KI_NA(]?\}II%13+>\KNAD(33 .
K NADHI I-NADH,13 NAD,13+p2(A-1
13 \ (1-A)K;_NaDH,13+AKNAD,13  J

We see that the constants p; and p, appear in the symmetries. In fact, it
is exactly the equations (6.29) and (6.30) corresponding to the conserved
moiety assumptions in the model that cause the system to be unidentifiable.
This is discussed in detail in paper I.

We have now verified that the kinetic parameters rggg o, KNap,7, Kiap 75
Kxapn,7, Kxapnr Lo mpbis Knapas, Kpyris, Krnapmas, and Kjopyes
cannot be identified from any experimental data. If parameter estimation
is to be performed on Rizzi’s model, for example by a numerical procedure
where the error between model predictions and experimental results is min-
imised, then one of the parameters in each of the groups rgis,, Knap7,



6.5 General features of kinetic models and identifiability 39

K\ap7s Kxapwr, Kyapnys Lor and rpgf, Knapas, Kpyris, K1 Napms,
K pyr13 must be fixed to a value, while varying the rest of the parame-
ters.

Remark: Using Sedoglavic’s algorithm, we investigated the identifiabil-
ity of this model with other sets of outputs than the ones discussed above
(some of the results are shown in Appendix 8.4). As well as including all
possible outputs - all concentrations c; and all fluxes r;, we also tried to
limit the number of measurements by finding a smaller set of outputs which
produced the same transcendence degree for the system. One such example
is the set C&ryc, Cicy Chron and Cggo,. Measuring these concentrations
should in theory (with perfect error-free measurements) produce the same
information on the parameter values as measuring all concentrations and all
fluxes. Sedoglavic’s algorithm can thus be used in the practical planning of
an experiment for the purpose of parameter estimation.

6.5 GENERAL FEATURES OF KINETIC MODELS AND IDEN-
TIFIABILITY

Kinetic models of metabolism can often be described by the following struc-
ture, see Chapter 8 of the book on metabolic engineering by Stephanopoulos
et al. (1998):

{ ¢ = w+X,vy-rilep) —pe; Yj o, (6.34)

for each metabolite j. The coefficients v;; are the stoichiometric coefficients
associated to each reaction.

In Rizzi’s model, the unidentifiable parameters can be separated into two
groups each associated to a single rate equation. The question is whether
this is true for all non-identifiable kinetic models of the above form. We
will show that this is true when a model is not identifiable from a full-state
measurement, that is, from an output set y = ¢, as in the Rizzi case study.

The first step in the construction of a kinetic model for cellular metabolism
is usually formulating a network of fluxes which, at steady-state, obey Kirch-
hoft’s law at every node. This underlying steady-state model must be such
that the stationary values of all fluxes r; can be calculated uniquely from the
set of linear equations for r obtained at steady-state. Mathematically, this
means that the stoichiometric matrix [v;;] is of full rank.

If we rewrite the first equation in (6.34), we have:

éj — Uy + HC; = ZZ I/Z-jri(c,p,-) . (635)

Since y = ¢, all the quantities on the left-hand side are known, if we assume
that we know the value of the specific growth rate . The matrix [v;] is
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assumed to be of full rank and we thus have unique values of r;(c, p;) com-
pletely determined by a given set of inputs and outputs. This means that if
the system is not identifiable and there exist non-identifiable parameters such
that there is a symmetry in them leaving the inputs and outputs invariant,
then this symmetry will also leave the r;:s invariant. Since each flux r; only
involves the parameters in the subset p; of p, then any symmetry in p leaving
r; invariant must involve only the parameters in p;. In result, a kinetic model
of metabolism of the form (6.34) is not identifiable only if some of the rate
expressions are symmetric in their respective kinetic parameters.

The fact that unidentifiability can in such case be found locally in single
reaction rate expressions can be used to simplify the identifiability analy-
sis for metabolic models. This is discussed in detail in Paper I, where the
simplified analysis is applied to several well-cited kinetic models of glycoly-
sis. The sources of unidentifiable parameters in these models can be traced
to the introduction of conserved moiety assumptions. In Paper I, we de-
velop a general method for determining whether a conserved moiety renders
a rate expression unidentifiable, as well as a method for reparameterisation
into identifiable parameters. The reparameterisation shows which combina-
tions of the original parameters can be uniquely estimated from the data.
We provide all symmetry transformations, which leave the output invariant.
Furthermore, we show that identifiable rate expressions are enough to ensure
identifiability of the entire model, provided that a sufficient set of measure-
ments is available.
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7 DISCUSSION

The subject of this report is the problem of investigating the observability
of nonlinear control systems, a special case of which is the identifiability
problem. We have presented a review of two rather different theoretical
approaches to the problem used in literature - the differential-geometric ap-
proach and the algebraic one. Each of the two approaches leads to a test
for the observability of a class of control systems. The differential-geometric
approach covers analytical control systems of the form

i o= flz,u) = ¢°@) + gx)u
E{ y = hz)

while the algebraic one treats rational systems:

222t

Yy = h(x,u)

Both approaches lead to the so-called observability rank test where the rank
of the space spanned by gradients of the Lie-derivatives of the output func-
tions is calculated. In the algebraic approach there is an upper bound derived
for the number of Lie-derivatives that have to be considered in the test for ra-
tional systems. In Section 4 we derive the same upper bound for the number
of Lie-derivatives of the output functions for the class of analytical systems
affine in the input variables that are considered in the differential-geometric
approach. It remains as future work to investigate the validity of such an
upper bound for other classes of control systems.

The identifiability problem is a special case of observability and we can
thus use the previously derived rank test in the investigation of identifiability.
This has been done in a case study of a dynamic model of the metabolism
of S. cerevisiae. By finding symmetries in the model, we show that certain
model parameters cannot be identified from any set of experimental data.
The results from the treatment of this model are generalised to show how the
special structure of kinetic models of metabolism considerably simplify the
analysis of their identifiability and especially the derivation of symmetries.
We show that using conservation laws in metabolic modelling can have an
effect on the parameter identifiability of the models.



8 APPENDIX
8.1 WHY DO d AND L; COMMUTE WHEN f DEPENDS ON
A CONTROL VARIABLE u?

This appendix contains some calculations that were deferred from Section 4.
Consider a control system of the form:

= f(z,u) = h%z) + h(z)u
E{y — o) (8.1)

where the elements of the n-dimensional vectors h° and h are analytic func-
tions of x and u, where u is the single control variable. Denote, as in Section 2,
the flow corresponding to the time-dependent vector field f(x,u) by ®,(t, x)
which is then an n dimensional vector. Let ¢ (x,u) be an analytic function
of z,u and u’s time derivatives. We will show that:

Lyd = dLpp . (8.2)

Take the i-th element of dL . Tt is:
0 (141)
ox; B ox; ( Z fj Z U ) -

O o
B Zé‘_a:i(fja_xjHZa <8u(l Ut -

B Of; O < | & O\ i
N Zaxlax] Z@x@ac] 835 <8 )U

Now consider the i-th element of the covector L¢diy. By the definition of Lie
derivative we find,

d (aw(%(t,x),u(t)))) d ( ~ 9y acbw-)
dt 8(131 =0 B dt = 8@%]- 8% t=0 N
" d/ o 0%,
- Z E(a% E)xij> o
N~ (d O 0P, ; d 10, o B
a ; (%(acbu,j) o axij o %( axﬁ 10 0D, to) B
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One can now see that the i-th elements of the covectors L;dy and dL ) are
the same, which shows the above equality.

8.2 A BASIS FOR DERIVATIONS ON R(U)(x) THAT ARE
TRIVIAL ON R(U)

This appendix refers to Section 3.4 and is based on pp.371-372 in Lang (1993).

First of all, observe that the z; form a transcendence basis for R(U)(x)
over R(U). The transcendence degree of the field extension is thus n which
is also the dimension of DergR(U)(x). Consider the n derivations D; =
5. Clearly, Diz; = 6;. Let D be a derivation in Derg)R(U)(z) and let
Dz; = w; (a derivation is defined by its action on a set of generators of the
transcendence basis). Then D = )" w;D; and thus the D;:s form a basis for
DergnR(U)(z). Therefore the partial derivatives 8‘2,1_ form a basis for the
derivations on R(U)(z) that are trivial on R(U).

8.3 NOMENCLATURE FOR RIZZI’S MODEL

This appendix refers to Section 6.

For the details of the kinetic model by Rizzi et al we refer to (Rizzi et al.,
1997) but in an attempt to make this report somewhat self-sufficient we here
provide nomenclature for the abbreviations and parameters used in Section 6.

8.3.1 SUPERSCRIPTS

e extracellular
C cytoplasmic
M  mitochondrial



8.3 Nomenclature for Rizzi’s model

8.3.2 SYMBOLS AND ABBREVIATIONS

a; stoichiometric coefficient
Sc  gas supply rate
Vs volume of mitochondria
Ve volume of cytoplasm
D dilution rate
p specific volume
i specific growth rate
cx blomass concentration
marp malntenance coefficient for ATP

8.3.3 METABOLITES

AC
ADP
ALDE
AMP
ATP
DHAP
ETOH
FBP
F6P
GAP
GLC
GLYC
G6P
NAD+/NADH
PEP
PYR

acetic acid

adenosine diphosphate
acetaldehyde

adenosine monophosphate
adenosine triphosphate
dihydroxyacetone phosphate
ethanol

fructose 1,6-bisphosphate
fructose 6-phosphate
glyceraldehyde 3-phosphate
glucose

glycerol

glucose 6-phosphate
nicotinamide adenine dinucleotide
phosphoenol pyruvate
pyruvate

I1I
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8.3.4 ENZYMES AND FLUX INDEXES

ACETYL acetate synthetase
ADH alcohol dehydrogenase
ADK adenylate kinase
ALDH acetaldehyde dehydrogenase
ALDO fructose bisphosphate aldolase
ATP,R ATP formation via respiratory chain
ATP,T ATP formation via the citric acid cycle
HK hexokinase
NADHDH NADH-dehydrogenase
NADHQR NADH-Q-reductase
PDC pyruvate decarboxylase
PDH pyruvate dehydrogenase
PERM hexose transporter
PFK phosphofructo-1-kinase
PGI phosphoglucose isomerase
PK pyruvate kinase
RES,1 combination of glycerol-3-phosphate
dehydrogenase and glycerol-3-phosphatase
RES,2 combination of glyceraldehyde 3-phosphate

SYNT,1;SYNT,2

TIS
TR,ADP and TR,ATP

dehydrogenase and other enzymes

resulting rates for the formation of
monomeric building blocks

triose phosphate isomerase

translocases for ADP and ATP respectively.

8.4 OTHER RESULTS ON THE IDENTIFIABILITY OF RIZZI’S
MODEL

This appendix shows some of the results obtained from the identifiability
analysis of Rizzi’s model. They can be used in choosing a set of measurements
in a hypothetical experiment.

Since the parameters cx and p always appear together as %X one of them
must be known - otherwise it is clear that they will not be identifiable. We
therefore assume that the value of one of them is measured in any hypothet-
ical experiment when we perform the identifiability analysis, although we do
not explicitly write them as outputs. The same applies for the parameters

Vu and Vi appearing in “//—Ig



8.4 Other results on the identifiability of Rizzi’s model \Y

Outputs Transcendence degree
€ (& € €
Caryc €ac CETOH) €CO, 2
€ (& € € max max
Caryc) €Ac: CETon €CO, > TRES,2) T'PDH 0
all ¢;:s 2
o 7C M
all ¢;:s, TRES,2> TPDH 2
all ¢;:s, all 7;:s 2

One conclusion is that measuring cgryc, Cics Cgron and cgo, produces
as much information for the theoretical identification of parameter values as
making all possible measurements altogether.
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Conservation laws and unidentifiability of rate
expressions in biochemical models

M. Anguelova, G. Cedersund, M. Johansson, C.J. Franzén and B. Wennberg

Abstract: New experimental techniques in bioscience provide us with high-quality data allowing
quantitative mathematical modelling. Parameter estimation is often necessary and, in connection
with this, it is important to know whether all parameters can be uniquely estimated from available
data, (i.e. whether the model is identifiable). Dealing essentially with models for metabolism, we
show how the assumption of an algebraic relation between concentrations may cause parameters to
be unidentifiable. If a sufficient data set is available, the problem with unidentifiability arises
locally in individual rate expressions. A general method for reparameterisation to identifiable
rate expressions is provided, together with a Mathematica code to help with the calculations.
The general results are exemplified by four well-cited models for glycolysis.

1 Introduction

Throughout the years, a large number of mathematical
models have been published that describe smaller or larger
parts of the system of chemical reactions in living cells.
Such models usually consist of systems of ordinary differen-
tial equations describing the reaction rates, and algebraic
relations describing, for example conserved moieties.
Models of this kind naturally contain a large number of
parameters that must be determined before the model can
be used for simulation. For example, in a simple reaction
of Michaelis—Menten type, the reaction rate is given by

y

y = max€s

Kyt

where cg denotes the concentration of a substrate, and V.«
and Ky are two parameters. The parameter values may be
known, but in other cases they must be determined
through parameter estimation: by comparing simulated
values for some concentrations with an experimentally
obtained time series, it may be possible to determine a
unique set of parameter values.

On the other hand, infinitely many parameter sets may
produce exactly the same simulated values, and hence
agree equally well with experimental data. The problem
of determining a priori whether the parameters of a model
can be uniquely determined from a given experiment is
part of the general theory of identifiability analysis, and is
the subject matter of this paper.
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More precisely, we consider a family of kinetic models
for cell metabolism, where some of the dynamic mass bal-
ances are replaced by algebraic relations. Although the
results are not restricted to this case, we focus on examples
where the algebraic relations express the conservation of
[NAD"] 4 [NADH]. This is a commonly used assumption
in biochemical modelling and is only valid under short-term
studies. In long-term studies, the synthesis or degradation of
the components must be accounted for. We study three well-
cited models of yeast metabolism as a in detail [1-3]. Some
sets of parameters in these models are unidentifiable as a
result of conserved [NAD™] 4+ [NADH] moiety.

That such assumptions may lead to unidentifiability of par-
ameters in some rate expressions is not new to the mathemat-
ical modelling community. A tool of the trade is to recover an
identifiable rate expression by non-dimensionalisation or
‘divide-through’. However, neither a mathematically stringent
analysis of the reasons for such unidentifiability, nor a general
method for treating the problem seems to have been published.

We provide a mathematical framework to allow for such
unified treatment of a large class of rate expressions, including
the particular examples from [1-3]. Thus, we develop a
general method for determining whether a conserved moiety
may render a rate expression unidentifiable, and a method for
reparameterisation into identifiable parameters. The reparame-
terisation shows which combinations of the original parameters
may be uniquely estimated from the data. We provide all sym-
metry transformations, which leave the output invariant.
Furthermore, we show that identifiable rate expressions are
enough to ensure identifiability of the entire model, provided
that a sufficient set of measurements is available. In other
words, all sources of structural unidentifiability can in such
case be found locally in single reaction rate expression.

The general method is well adapted for implementation
in symbolic programming languages, and we provide a
Mathematica notebook that can be used for analysing a
class of rate expressions, including all rational ones.

2 Identifiability of kinetic models

Kinetic models of metabolism are usually systems of differ-
ential equations, representing mass balances for each

IET Syst. Biol., 2007, 1, (4), pp. 230-237



metabolite j [4]. They can normally be written in the form

dc;
3= 2 VT ) (1)

where ¢; denotes the intracellular concentration of metab-
olite j, and ¢ is the vector containing all such concentrations.
The symbol r; denotes the rate of reaction i, v;; denotes the
stoichiometric coefficient of metabolite j in reaction i and k
denotes the kinetic parameters in the rate expressions of the
model.

The property of structural identifiability guarantees the
uniqueness of the parameters k for a given input—output
structure corresponding to a set of measurements for the
purpose of parameter estimation. This set of measurements
usually consists of some metabolic concentrations and/or
fluxes or combinations of these, denoted by the vector y.
The latter can then be written as a vector-valued function
g of the variables in ¢ and the parameters k. Equation (1)
together with

y=2gl(c, k) 2)

defines the input—output structure.

For realistic situations, sources of unidentifiability can be
an insufficient number of measurements as well as a struc-
tural property of the model, which is independent of the
input—output structure and renders it unidentifiable even
from a perfect data set. In this paper, we focus on the
latter and analyse structural identifiability when a perfect
data set is available. Clearly, if a model is unidentifiable
for such an input—output structure, it will not be identifiable
for any realistic measurement set-ups. On the other hand, it
should be noted that measuring a single (noise free) meta-
bolic flux can be enough for the identification of all the par-
ameters of an identifiable model.

A perfect data set for a model with a full stoichiometric
matrix can be attained by measurements of all metabolic
concentrations, as shown by the following calculation.
Suppose that a model is not identifiable for an input—output
structure of the form

de;
{ i YV rile, k) 3)
y = ¢

that is, there are at least two sets of parameters, k and K,
which produce the same output [the same solution ¢(¥) to
the system of differential equations above with given
initial conditions]. This can be expressed as

dc;
_
§ Vi ric, k) = 3" g Vi ri(c, K) 4

If the underlying steady-state model has a stoichiometric
matrix (the matrix with elements v;;) of full rank, we must
have r; (c, k) = r; (¢, K) for all the rates ;. Thus, measure-
ments of metabolic fluxes cannot be used to distinguish
between the two sets k and K. Consequently, no amount
of additional flux measurements will suffice to make (3)
identifiable. If the stoichiometric matrix is not of full
rank, then the perfect output set must also contain measure-
ments of some metabolic fluxes r;.

If a model is not identifiable from a perfect output set,
then it must contain some over-parameterised rate expres-
sion, i.e. the reason for the unidentifiability can be traced
back to isolated rate expressions. Indeed, since the para-
meter sets kK and K are by assumption different, the
equalities ri(c, k) = ri(c, K) imply that there is at least one
r; with a rate expression that has the same value for different
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combinations of its kinetic parameters. This means that
structural unidentifiability has its source within individual
kinetic expressions.

Consider first a simple example taken from Segel [5]

VmaxCS

" T Ks(1+ (cp/Kp)) + cs

where cg and cp are the concentrations of the substrate and
product respectively. The expression contains three par-
ameters: Vpax, Ks, and Kp. By measuring r(#,), cs (¢,),
and cp (t,) at three different times z,, one finds three
equations for the three unknowns, if the dynamic variables
are varying sufficiently independently, and the problem can
in principle be solved.

However, if there are algebraic constraints, it may be
impossible to find a sufficient number of independent
equations for the unknown rate parameters. In the Segel
example, if ¢g+ cp = a, where a is a constant, then we
obtain

)

= VmaxCS

- Ks(1+ ((a — ¢g)/Kp)) + g

_ Cs

B (]<SI:1 + (a/KP)]/Vmax) + ([l - (KS/KP)]/VmaX)CS

__ 6s

o ky + kyeg ©)
where

< (ECT7) R LT e

It now becomes clear that the original three parameters
Kg, Kp and V. are effectively only two independent
ones. One can find infinitely many combinations of Ksg,
Kp and V., that result in exactly the same rate expression
value. For example, if one multiplies V.« by any constant A
and then adjusts the other two parameters according to the
scheme below, the value of the rate expression does not
change at all

KV = AKg — a(l — A) (8b)

new __ /\KS - a(l - A)
P 1 — A4+ MKs/Kp)

(8¢c)

In other words, there is a one-parameter family of trans-
formations of the set of parameters, which leave the reaction
rate invariant. Consequently, if such a rate equation is
included in a metabolic model, not all of its kinetic par-
ameters will be identifiable from experimental data. In
(6), one can identify only the parameter combinations k;
and k,, and before attempting to fit a model to experimental
data, one should first rewrite the model in an identifiable
form.

We note here that algebraic constraints may be intro-
duced explicitly in the model, or may be hidden in the for-
mulation of (1). When this is the case, the stoichiometric
matrix is not of full rank.

The theory of identifiability is well studied (see for
example [6—14] and the references therein), and tools for
automated identifiability analysis are available. They are
generally based on differential algebraic techniques, and
the computational time grows exponentially with the
number of variables and parameters [9, 11—13]. However,
a probabilistic algorithm that is also useful for large
systems has been constructed by Sedoglavic [14]. The
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methods have been applied to models for yeast glycolysis as
discussed, for example in [15].

There are also published algorithms that efficiently look
for conserved quantities in models of the form (1), a
recent example being [16]. Three of the models used as
examples in this paper are accessible in the JWS Online
database [17], where models can be searched for dependen-
cies for the variables, (i.e. conserved moieties).

A final comment here is that methods for practical iden-
tifiability must also handle noise and other measurement
limitations, and that the actual parameter estimation
usually is based on some kind of maximum likelihood
optimisation [18].

3 Examples

The main biochemical interactions of glycolysis were
characterised over 100 years ago. Some of the earlier mod-
elling attempts occurred in the 1960s [19-21], but these
were mostly minimal models trying to explain, for
example, the temporal oscillations found in 1957 [22].
Since then the models have grown in size and comprehen-
sion, and there have been several attempts at constructing
quantitative models. Examples are found, for instance, in
the work of Rizzi et al. [1], Teusink et al. [2], Hynne
et al. [3] and Lambeth et al. [23].

It is from [1, 2] and [3] that we take examples of reaction
rate expressions which are unidentifiable because of a con-
served pool of, for instance, NADH" NAD * and
ATP + ADP + AMP. If the model parameters are to be
identified, these rate expressions should be reparameterised.

Analysing these models with the method of Sedoglavic
[14] would give a list of unidentifiable parameters.
However, it will become apparent that in these cases the
problem of unidentifiability is located to individual reaction
rate expressions. Therefore, the methods explained in
Section 4 can be used directly on each and every rate
expression and would give all the needed information.

In this section, we discuss the unidentifiable reaction rate
expressions from the models in [1, 2] and [3] and propose a
general form for reparameterisation. For completeness, we
also give examples of similar rate expressions from [23],
where the introduction of a conserved quantity does not
lead to unidentifiability.

For the four models above, all instances of rate
expressions where the variables from a conservation law
appear together have been analysed. The results are stated
below and the details of the treatment are provided in the
supplementary material available online.

3.1 Rizzi model

The first example is a kinetic model of the central metabolic
pathways in Saccharomyces cerevisiae formulated in [1].
The model includes the reactions of glycolysis, the citric
acid cycle, the glyoxylate cycle and the respiratory chain
and a simplified description of biosynthesis in growing
cells. Subcellular localisation of reactions and metabolites
are taken into account by including cytosolic and mitochon-
drial compartments. We refer to [1] for the complete model
description and focus here only on the aspects that are rel-
evant for our analysis.

The concentrations of cytoplasmic and mitochondrial
NAD™ are calculated under the assumption that the total
concentrations of nicotinamide nucleotides are constant in
each compartment. This results in the following equations
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for cytoplasmic and mitochondrial NAD™

c C

CNADT = P1 — CNADH (9a)
M M

CNADT = P2 — CNADH (9b)

where p; and p, denote the constant total concentrations of
nicotinamide nucleotides in the cytoplasm and mitochon-
dria, respectively.

There are two reaction rates in this model that contain
unidentifiable parameters: the pyruvate dehydrogenase
(PDH) reaction, and the lumped reactions (RES2) from gly-
ceraldehyde 3-phosphate to phosphoenolpyruvate; these are
the only two kinetic expressions that contain all variables
from the conserved moieties.

The pyruvate dehydrogenase complex catalyses the reac-
tion

Pyruvate + CoA + NAD' — AcCoA + CO,
+NADH +H" (10)

In the Rizzi model, its rate equation is formulated

max C M
TPDHCPYrENAD*

M

14 =
PDH C M

KNaD,13¢pyr + Kpyr 13¢NAD*

|:(K1Pyr, 13KNAD,13)i| M

c M
X CNADH T CPyrCNAD*
(K;_NaDH,13)

K\ap,i3 c M
+ K w3 |CPyrNaDH
(K;—NaDH,13)

(11

where superscripts C and M refer to cytoplasmic and mito-
chondrial concentrations, respectively. Inserting (9b) into
(11) gives

max

c M
Mo 7pDHCPyr(P2 — CNADH)
PDH —

C ]
(KNaD.136pYR T Kpyr 1302 — ¢NaDH)

(K;—pyr,13KNaD13) | i c M
K CNADH T chr(p2 — CNaDH)
(K;-NaDH,13)

KNAD,I 3 c M

+———"p..C
(KI—NADH713) Pyr“NADH
(12)

After rearranging terms, the right hand side becomes

C M
chr(pZ — CNADH)
(szPYR,B/Vng)]El) + ((KNAD,13 +p2)/er]§)]EI)cgyr
[(Klnyr,BKNAD,B)/ (K;—napm,13)] — KPyr,13 M
+ ymax CNADH

[KNAD,13 /(KlfNADH,B)] -1 C M
+ max CPerNADH
"pDH

(13)

Thus, (11) can be rewritten as

c M
Mo Cpyr(P2 — CNaDH)
PDH = c M c
ky + kel + kscNiapn +KaChy N apH

(14)

The five original parameters are thus combined into four
new parameters, that can be identified. Solving for rpJ},
KNap, 135 Kpyr,135 Ki—Naph,13 and Kj—pyy 13, in terms of &y,
k>, k3 and k4, result in a one parameter family of solutions.

The RES2 reaction is a lumped reaction of the glycolytic

steps from glyceraldehyde 3-phosphate (GAP) to
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phosphoenolpyruvate, with the rate equation
c -1
(enap* /Knap A"

C / n,—1
LC o max + Lo 7(cxap+/Knap,)B™
RES.2 = 'RES2 p -
A7+ Ly B

N7

C
x GAP - (1 5)
K + CC 2,7
GAP,7 GAP
where
C C
C + C
A4 = 1 + NAD + NADH
KNAD,7 KNADH,7
c c (16)
C + C
B = 1 + KT;IAD + K,NADH
NAD,7 NADH,7

This expression differs from the other reaction rates con-
sidered in this paper in that it is not a rational expression.
However, it can be expressed as a (homogeneous) function
including the rational expression 4/B, and therefore this
reaction can be handled in essentially the same way.

The conserved moiety, cg Apt =P1— cSapy appears only
in the first part of the expression, and this can be reparame-
terised in the following way

c c
CNAD* Anu—l_HJO7 ENAD* pn; ;-1
s ’

max  KNAD.7 NAD,7
rRES’Z AMa +LO 73”1,7
ny;—1
(1+kycSapn)
2 _CgADH) 1tk f Z :ADH
s %5 ) C
|:<k3) + (kl k3>cNADH:|
= nyg
(1+kycSanm)
(ke +hepcSap) | 1+ . Z ZADH
a5 005 ) .C
(k) (k) o]
(17)

where we set k; = (Kyap7 +P1)/"REs2> k2 = (Knap7—

1
KNADH,7)/ KNADHJ’” gg’é,z’ k3 = (KNAD,7/ KII\IADJ) L6,7> k4 =
(KT/\IADJ - KTI\IADJ)/ KI/\IADH,7(KI,\IAD,7 +py) andks = (KNAD,7
+p1)/K{\1AD’7 + p,. The original six kinetic parameters in
this part of the rate equation can thus be replaced by the
five independent ones, to k;—ks. The combinations of the
original parameters that they represent are identifiable.

By using the Sedoglavic algorithm [14], it was confirmed
that the assumption of conserved moieties of nicotinamide
nucleotides was the only source of structural unidentifiabil-
ity for the Rizzi model.

3.2 Hynne, Teusink and Lambeth models

The Hynne model, originally presented in [3], describes gly-
colytic oscillations in S. cerevisiae during cultivation in a
continuous stirred tank reactor. Two conserved moieties
are implicitly present in its stoichiometric matrix, one for
the nicotinamide nucleotides and one for the adenine
nucleotides. It is only the first that leads to unidentifiability.
The rate expressions for GAPDH and IpGlyc can both be
reparameterised in fewer parameters, as shown in the
Supplementary material. In the rate expression for the AK
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reaction, all the variables from the adenine nucleotide
moiety appear together, but its kinetic parameters are never-
theless identifiable.

The Teusink model [2] also describes yeast glycolysis,
and just like the Rizzi model, it has two conserved moieties
described by cnapn + cnap+ =p1 and carp + capp +
camp = p». There is no kinetic expression containing all
three adenine nucleotides, and thus the second assumption
does not lead to unidentifiability. However, the three dehy-
drogenase reactions GAPDH, ADH and G3PDH, which
include both cyapy and cnapy in their rate expressions,
were all found to be unidentifiable. The calculation is
carried out in the Supplementary material, where also the
reparametrisation into identifiable parameters is given. For
this model, there are two additional conservation relations
because of equilibrium assumptions for [GraP] and [glycer-
onephosphate] and for the adenine nucleotides. The vari-
ables in the first equilibrium assumption, [GraP] and
[glyceronephosphate], both appear in the ALD reaction
rate expression that was therefore analysed for a potential
source of unidentifiability. By applying the general
method presented in the next section, it was found that the
kinetic parameters in the ALD rate expression were identifi-
able even after introducing the equilibrium assumption.

The last model that has been tested describes muscle
metabolism, and was originally presented by Lambeth
et al. [23]. Tt contains the same conserved moieties as the
previous models implicitly present in the stoichiometric
matrix. The two dehydrogenase reactions included,
GAPDH and LDH, are modelled by reversible kinetic
expressions that include both cyaps and enapnh, and they
could potentially have the reported problem with uniden-
tifiability. So could the PFK and the ADK reactions, as
their rate expressions include all the variables from the
adenine nucleotide moiety. However, by applying the
general method, we were able to see that even after introdu-
cing the conserved moieties, all parameters in these rate
expressions remained identifiable.

4 Unidentifiability as a result of conserved
quantities: a linear algebra formalism

Rate expressions like the ones considered here are often
rational functions of a number of concentrations. What actu-
ally happens in the examples discussed in the previous
section is that the presence of a conserved quantity
reduces the number of independent coefficients in the
rational expression. It is possible to compute an upper
bound of the number of independent (and thus identifiable)
rate parameters in terms of, for example, the number of con-
centrations and the degree of the terms in which they appear
in the rate expression. In this section, we formalise this pro-
cedure, giving a formula for determining cases of uniden-
tifiability and showing how to obtain an identifiable set of
parameters with a known relation to the original parameters.
We also present a method for constructing the group of
transformations of the original parameters that leaves the
rate expression invariant.

4.1 Initial example revisited

To introduce the notation, we first demonstrate the pro-
cedure on the example of (5). Recall that there were three
parameters, V,.x, Kg and Kp, and that these were collected
in a vector k

k= [V

max

Ks K]
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Introduce the following two symbols c¢;, and the following
four symbols a;; and b;;

al():V

€ =Cs €y = Cp, max >

boo =Ky, b]O =1, b01 =7 (18)

With this notation, (5) becomes
,— a19C1
boo + bigey + by,

(19)

This is a rational expression, being the quotient of poly-
nomials in the two variables ¢; and c¢,. Collect the coeffi-
cients in a vector a

T
”:[alo boy  bio bm] (20)

Note that even if ¢; and ¢, were independent, we could only
estimate @ up to a multiplicative factor A, € R\{0}, since
r(a) = r(Aga). Using (18), we could, of course, directly
eliminate A,, but it is convenient to keep it, because it
reveals the essentially linear structure of the coming trans-
formations. At this point, we see that by inserting the
relation ¢ + ¢, = p in (19) we obtain
. Q1)
by +bc

where a, = a,y, by = byy +pby; and b, = by — by;. This
is a rational expression of only one variable, ¢, and with
three coefficients. The relation between the coefficients in
(19) and (21) is linear and is most naturally expressed by

a 100 070
130 =({0 1 0 p b(l)g (22)
b, 0 0 1 -1 by,
which can also be written as
i=Aa. (23)

Note that the linearity of this transformation is not associ-
ated with a property of the underlying dynamical system,
but only of the relation between the coefficients a and a.
There is therefore no approximation associated with this
transformation, as is the case, for example, for a linearisa-
tion of a dynamical system.

The rank of 4 shows the number of coefficients « that are
independently mapped from a. In this example, A4 is of full
(row)rank. However, there is still a common factor that
needs to_be removed. Let the identifiable parameters be
denoted k. By dividing all coefficients a by a;, we obtain
the following identifiable parameters

P [iﬁ 7{2] _ [Ks(l 'iI;(P/Kp))

max

(1 - (Ks/Kp))
|14

max
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Note that this is the same result we obtained in (6) in
Section 2. Finally, we now know that the conservation
law has introduced an unidentifiability since the resulting
number of parameters is less than the original number of
parameters (i.e. 2 < 3).

Equation (24) expresses k as a function of k; we now turn
to the opposite problem, i.e. expressing k as a function of k.
Let a superscript 0 denote a specific estimate, and consider a
specific estimate of the identifiable parameters k°. The first
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step is from £ to a’; in this example it is simply given by

=2 by B =[N Aok Aky]"  (25)

where A, € R\ {0} is an unknown scalar. Going from a to
ao, we use that A4 is of full rank. This means that there is a
vector a°, which satisfies (23), for all estimates @°. One
solution is ay =[a’ b) b 0]"; however, this is not
unique because A has a one-dimensional null-space, ker(A4),
spanned by w, =[0 —p 1 11". The freedom to
choose a multiplicative factor Ay remains, and hence for
any Ay, A} E R,

a=a(lg, ) = Aoa) + \w, (26)

yield a set of coefficients that is consistent with the
estimates @°. To translate all the way to the original
kinetic parameters k, we need to solve (18). In this
example, we can explicitly obtain

Vmax = )\Oa(l] (273)
Kq = Ab0 — Ap (27b)
S 0Y0 1
1= 200+ A, (27¢)
Aobd — A
Kp = %lp. (27d)
1

Note that there is only one real degree of freedom since, for
example, the third of these equations can be used to fix Ag,

re. Ap=(1— )\1)/1;(1), which gives

-0 ,50 ~0 ~0
Viax = (L = Apay /by, Kg=(1—A)by/b; — Ap

Kp = (1/A, = Dby /b, — p, (28)
and finally
Viax = (1 = A)/ky, Kg = (1 = ADky)/ky — Ayp

Kp = ((1/A; — Dky)/ky — p. (29)

Let us now see how all these calculations can be general-
ised, following the same procedure as summarised in this
diagram

r| (30)

back-translation

4.2 Reparameterisation into identifiable
parameters

Consider a reaction rate » depending on N concentrations ¢,
..., cyand m parameters ki, .. ., k,,, and assume that it can
be written as a rational function,

. P(cy,..
_Q(cl,..

ens ki k)
oy koo k)

(€2))

where P and Q are polynomials in the concentrations
Cly -, CN
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Y oa, (32)

> 4b,1m,Nc§', e (33)

A general polynomial P in three concentrations, ¢y, ¢,, and
c3, of second degree would with this notation be written

P =ayy

+ ay00C1 + Ag1oCs + Ago1 €3

2 2 b
T+ y00CT F AgpeCs + AppaC3 + A119C1Co

T+ ap91€1C3 + ag€2C3 (34)

Note that the sum of the indices of a coefficient a,, ..., ry
is equal to the degree of the corresponding term, and that
each coefficient can be a function of the m original kinetic
parameters ki, ..., k,. We denote the transformation,
which gives the coefficients a,q, ..., ry and b,q, ..., ry as
functions of the parameters by I, i.e.

l—‘(kl"" m) ( Pyt " " Floeees rNﬂ"')T (35)

so that I" is a function from the m-dimensional parameter
space to the M-dimensional space of rational coefficients.
We assume here that I" parameterises an m-dimensional
manifold, because otherwise the parameters would be uni-
dentifiable in the original rate expression.

If there is a constant linear combination of the concen-

trations
Z c;=p (36)

one of the concentrations c¢; can be eliminated from the
rational expression. With no loss of generahty, we may
assume that the eliminated concentration is cy. Replacing
all occurrences of ¢y in (31) with

p— Zj< N Q4C;j gives a new rate expression

Fy == senois iy s k) 37)

Ocys- s eygs kl""’ k)

The new set of coefficients a, ,  and b .ry_, are linear

N Ty
combinations of the coeﬂic1ents a, and b r,» because
each monomial containing cy is transformed into a poly-
nomial without ¢y, which is added to those terms of P (or
Q) that do not contain cy. This relation can again be
expressed as

i = Aa (38)

If the matrix A4 is not of full rank, as in the ropy example
from the Teusink model (cf. the Supplementary material),
one can proceed by choosing a set of independent rows
from A.

It follows that the number of identifiable parameters is
given by the rank of (4 — 1), and we have the following for-
mulas for calculating a lower bound on the number of uni-
dentifiable parameters.

1. [dim k] —[rank 4]+ 1 (e.g.3 —3+1=1),0r
2. [dim k] —[dim a]+ [dim ker(4)]+1 (e.g. 3—4
+1+1=1).

The numbers within the parenthesis refer to the example in
Section 1. Since a non-zero number of unidentifiable par-
ameters implies an unidentifiable rate expression, the
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above formulas are a simple way of detecting unidentifiable
rate expressions.

4.3 Back-translation and calculation of the
symmetry families

The first step in the back-translation is from & to @. Consider
a specific estimate k°. Assume, without loss of generality,
that it is the first coefficient a; that was used for the normal-
isation to the identifiable parameters. We then have the fol-
lowing back-translation formula

=& a ...]=/\0[1 (&) ] (39)

where Zzi(I;O) is equal to a single k;) if a; was one of the
non-eliminated rows, and equal to the linear combinations
mentioned above otherwise (these linear combinations
only occur if 4 is of less than full rank).

The next step is to translate from & to a. Let J= dim
ker(4) denotes the dimension of the null space of 4, and
let wy,...,w; be a set of vectors that span the null space.
Let a specific solution of (23) be given by a° (such a sol-
ution always exists). Then the set of all a that are consistent
with k° is spanned by Ay € R{0} and A; € R according to
the following formula

a:)\oa0+/\1w1+~--+)\JwJ (40)

The final step in the back-translation is from a to k. This is
the reversal of the nonlinear mapping I, and it is therefore
difficult to treat in the general case. Nevertheless, in many
cases, explicit solutions should be available through sym-
bolic software packages such as Mathematica and Maple.
However, because of these difficulties, we now also
present a geometrical interpretation of these results, and
an alternative way of calculating the symmetry transform-
ations, i.e. those transformations of k that leave the rate
expression v invariant.

Recall that the funct1on I parameterises an m-dimensional
submanifold of RY (which we denote by I" as well). If we wish
to determine whether a parameter set k° = (£, ..., k) is
uniquely defined or whether there is a family of parameters
k(s) that give the same rate expressmn we compute the
differential T"(k°), and we let u;(k°),. uj(ko) be a set
of vectors so that I"(k%)u, (&%), ..., T" (ko)u (k%) span the
intersection of the range of F(ko) and [{)\a ArERIU
ker(4)]. The number of vectors u(k") is the dimension of
the set of equivalent parameter combinations. With a proper
choice of the vectors u; (in particular, they should be continu-
ous as functions of k), the family of transformations can be
found by solving

dk(s) _
ds

k(0) =

u[k(s)]

The original parameters that are identifiable correspond to
those components that are zero in all vectors u;, i =1, ...,
J. This calculation is similar to the one in [11].
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For the example shown in Section 4.1, the matrix I" is
given by

day, Oday;  Oay,

W 0Kg  0Kp
dboy  0byy  9bgo 10 0
o Woax Ks 0Kp | |0 1 0
T | by by Wby | |00 0
anax 8[<S aI<P 0 1 /KP _KS /KI%

gy b by
Kz 0Ky 0Kp |

max

(41)

and the degree of freedom for the choice of parameters is
also given by the dimension of the intersection of the
range of I with span{ag,wl}. Again this gives a one-
dimensional set, which is spanned by w., = a’ — b,yw,.
The one-dimensional set of parameters that are consistent
with a given set of measurements can be obtained by
solving the ordinary differential equation

d[ Vmax’ KS? KP]T
ds

where w depends on Viay, Ks and Kp, and (l"’)71 can be
computed because w, is in the range of I

The Supplementary material contains a Mathematica
implementation of the calculations both for the identifi-
cation of the identifiable parameters and for the calculation
of the symmetry relations. The Mathematica implemen-
tation includes all the reaction rate expressions that we
have discussed in this paper, but it is also easily extensible
to other problems.

= () 'wy (42)

5 Discussion and conclusions

The problem with unidentifiability as a result of conserved
moieties has been observed before. However, there does not
seem to exist a systematic treatment of the problem, and the
common explanation for the problem does not hold. This
explanation is based on the observation that the insertion
of conserved moieties in rate expressions usually leads to
the situation of one parameter, or combination of par-
ameters, in front of each term. This means that the coeffi-
cients in front of the terms are unidentifiable, but that
does not necessarily imply unidentifiability of the original
parameters. Consider for instance the following rate
expression

e pc
(p2/p1) + Pac

with two parameters, p; and p,, and one concentration, c.
This rate expression has one coefficient in front of each
term, but the parameters are nevertheless identifiable. It is
therefore clear that the situation of coefficients in front of
each term is not sufficient in itself to guarantee unidentifia-
bility of the underlying parameters (i.e. additional con-
ditions are necessary).

On the other hand, the intuitive method of using the coef-
ficients as new identifiable parameters is a valid method.
One coefficient must, however, be removed through div-
ision of both the numerator and denominator, and this
method is therefore sometimes referred to as the ‘divide
through’ method. The ‘divide through’ method is similar
to our method proposed. However, the ‘divide through’
method does not involve an analysis of the transformation
matrix 4, and this has some drawbacks. As is shown in
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the vapy example in the Supplementary material, the analy-
sis of the linear dependencies in 4 allows for fewer identifi-
able parameters than the ‘divide through’ method would
yield. Likewise, it is the analysis of the null-space of A
that allows for easy formulas for the translation back to
the original parameters [e.g. (27)]. There are also other
methods that might be useful when trying to manually
rewrite the expression in identifiable parameters, for
instance, non-dimensionalisation [24]. However, non-
dimensionalisation does not guarantee identifiability in the
resulting expressions.

There are also some frameworks to deal with structural
unidentifiability for the general situation. One such frame-
work is differential algebra. However, many of its
methods are not applicable to realistically large systems.
One exception is the probabilistic algorithm by
Sedoglavic [14]. Advantages with our method compared
with Sedoglavic’s algorithm is that our results are exact
(i.e. not probabilistic), and that we provide a reparametrisa-
tion to identifiable parameters that may be expressed in the
original parameters. A general advantage with our method
compared with all methods based on differential algebra
[11, 14] is that our method is built on a much simpler
theory, something which, e.g. yields a more intuitive under-
standing of the origin of the unidentifiability.

Given all these options, it is also important to discuss how
to proceed in different circumstances. In some cases, the
problem with unidentifiability in the rate expressions may
be left untreated altogether. This is the case if one, for
example, is only interested in whether a given model struc-
ture is capable of explaining the data. One can also disre-
gard identifiability issues if the parameter values are
obtained elsewhere (e.g. from in vitro characterisations),
and the model is used as a pure forward simulation
model. Finally, if one is only interested in the value of the
actual flux, these specific identifiability problems can be
disregarded because the flux is identifiable even though
some of the parameters describing it are not.

There are, on the other hand, also several scenarios where
it is necessary to deal with problems of unidentifiability. If
one would, for example, seek to compare the in vivo with
the in vitro kinetics for a given enzyme, it is necessary to
deal with these issues [18]. Such comparisons are important
tools for the understanding of the general differences
between in vivo and in vitro kinetics, and this is a central
issue for the general understanding of life. Furthermore, if
one wants to determine the quality of various model predic-
tions, that is, how well they are characterised by the avail-
able data, it is also necessary to handle identifiability
problems. For instance, if one wants to analyse the control
coefficients in a model (i.e. the sensitivity of a specific
model output with respect to perturbations in the model’s
parameters), then such an analysis will give different
results depending on which value of the unidentifiability
manifolds one chooses, even though all such choices lead
to an identical agreement with the data. In such situations,
it is therefore more advantageous to characterise the ident-
ifiable core in a model, and only consider the results with
respect to this core [18, 25]. One way to find those par-
ameter combinations that describe this core model is the
intuitive ‘divide through’ method. However, as explained
above our proposed method has advantages both in terms
of yielding fewer parameters and in terms of back-
translation of the result.

In conclusion, this article has presented a new framework
to treat structural unidentifiability in single, rate expressions
caused by conservation relations. The framework provides a
valid explanation of the reasons for the problem, a

IET Syst. Biol., Vol. 1, No. 4, July 2007



straightforward method for the detection of it, and a way to
choose identifiable parameters if an unidentifiability should
be detected. Furthermore, the analysis provides a translation
from the identifiable parameters back to the original
parameters. The ideas are illustrated by the analysis of some
well-cited models of glycolysis, and the proposed method is
easy to use via the provided Mathematica implementation.
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A Detailed derivations from Section 3

A.1 The Hynne model

The Hynne model was originally presented in [3]. It consists of 22 states and
60 parameters. The model describes glycolytic oscillations in Saccharomyces
cerevisiae during cultivation in a continuous stirred tank reactor. There are two
compartments in the model, one for the extracellular metabolites and one for
the intracellular ones. In the intracellular compartment (corresponding to the
total cytosol volume of all the cells) there are two conserved moieties, one for
the nicotinamide nucleotides and one for the adenine nucleotides

CNADH + CNAD+ = D1 (Ala)

CATP + CADP + CAMP = D2 (Alb)

These conserved moieties are not explicitly formulated in the model, but are
implicitly present in the stoichiometric matrix.

There are three reactions that include the inter-conversion of the nicoti-
namides: glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), a lumped re-
action forming glycerol from dihydroxyacetonephosphate (IpGlyc), and the al-
cohol dehydrogenase (ADH). The ADH reaction is formulated as an irreversible
reaction, and only cnyapn appears in the kinetic expression. However, both
GAPDH and IpGlyc have exapu and cyap+ in their kinetic expressions which
were therefore analysed. Both were found to contain unidentifiable parameters
by the criterium presented in Section 4. The reaction rate expressions can be
reparameterised in fewer identifiable parameters as follows:

The first rate expression is

C C
Vam(coapenap+ — SBEGEARL)
TGAPDH 5 c )
GAP CBPG NADT CNADH
Kg(}APKgNAD(l + Kscap + kSBPG)(l + KsnaD + K&NADH)

(A2)

where there are three unidentifiable kinetic parameters, Vg, Ksnap and KgsnaDH,
due to the assumption exapu + cnap+ = p1- These three parameters can be
replaced by two new ones ki and ks to obtain:

CGAP (p - CNADH) - ‘CBP?(:;T;DH (A3)
UGAPDH CGAP CBPG ] ’
Ksaap(1+ £S48 + 229 ) (k1 + kaenapn)
_ Ksnap p1 _ KsnaDp 1 _ 1
where k; = Vam (1 + KSNAD) and ky = Vam (KSNADH KgNAD )
The second reaction rate is
. Vismcpuap
IpGlyc = ’
K KisinapH CNAD+
15DHAP | 1+ (1+ +
CNADH Kistvap
15NADH CNAD+
cpuap | 1+ 14+ >
CNADH Ki5mvAD

(A4)



with five unidentifiable parameters Vis.,,, K1spuap, K1s5inapH, K15i1nap and K158NADH-
It can be rewritten as

_ CDHAPCNADH (A5)
pEe k1 + koenapu + kzcpaaP + kaCDHAPCNADH
where
Kispnap Kisinapn P
kh = 1+ Aba
! Vism ( Ki518nAD (A62)
KispaAP KisinapH
ky = 1-— A6b
? Vism ( Kistvap (A6b)
KisnapH D
ks = 1+ A6e
? Vism ( Kis5mvaD ) (A6c)
1 KisnapH
ks = 1-— A6d
* Vism ( Ki5mvAD (A6d)

In the rate expression for the adenylate kinase (AK) reaction, the three vari-
ables from the second conserved moiety, catp, capp and canmp appear together,
and AK has therefore been analysed for a potential source for unidentifiability.
The rate expression is

2
rak = koarcampcarr — K2arCapp (A7)
which after insertion of cayp = p2 — caTp — capp becomes

rak = kaap(p2 — carp — capp)carp — kaarCipp (A8)
= koaypz — kaasChrp — kaaycappeate — k24rCapp - (A9)
The two kinetic parameters ko4 and ko4, are thus identifiable.

The Sedoglavic algorithm showed in this case that the presence of the con-
served moiety (Ala) was the only source of unidentifiability if all metabolites
can be measured.

In the experimental setup used by Hynne et al. only NADH was measured
with high time resolution. It is therefore interesting to note that even with
y = k[NADH], the conservation law (Ala) is the only source that leads to
structural unidentifiability among the reactions in the cytosol.

A.2 The Teusink model

The Teusink model [2] also describes yeast glycolysis, and just like the Rizzi and
Hynne models, it has two conserved moieties described by (Ala) and (Alb).
Again there is no kinetic expression containing all three adenine nucleotides.
There are three dehydrogenase reactions: GAPDH, ADH, and glycerol-3-phosphate
dehydrogenase (G3PDH). All these reactions involve the inter-conversion of the
cofactors NADT and NADH, and the corresponding rate equations contain both
cnap+ and exapp in the denominator. For this model, there are two addi-
tional conservation relations due to equilibrium assumptions for [GraP] and
[glyceronephosphate] and for the adenine nucleotides. The variables in the first
equilibrium assumption, [GraP] and [glyceronephosphate], both appear in the
ALD reaction rate expression which must therefore be analysed for a potential
source of unidentifiability.



All three dehydrogenase reactions were found to be unidentifiable, due to
the conserved moiety. Here we show this by a direct calculation, but the Math-
ematica code in part B of this supplementary material gives the same result
(except that there are, of course, many ways of reparameterising the expres-
sions in order to obtain an identifiable model). The rate equation for the first
dehydrogenase reaction, GAPDH, is

VinaxtCGAPCNAD+ _ VinaxrCEPGCNADH
_ KcapKnaD Kppc KnADH
TGAPDH = (1+ CGAP + CBPG )(1+ °NAD+ + CNADH) (AlO)
Kgap Kgpc KNAD KNaDH

The constraint cyapn + cnap+ = const = p leads to the parameters Viaxt,
Vinaxr; Knap and Knapy being unidentifiable. These four parameters can be
replaced by three new ones to obtain the following re-parameterisation of the
rate expression

PCGAP — CGAPCNADH — ]W%% (All)
TGA = = .
PDH (1+ R + ﬁ)(kﬁ + ksenapn)
where
K K ‘/Il'l XT
e (A12a)
Vmaxf
KaapKnap(1 + =2
ky = r NVD( KNAD) (AlQb)
maxf
1 1 | KgapKnap
Y e O (A12¢)
NADH NAD maxt

The rate equation for the second dehydrogenase reaction, G3PDH, is:

CDHAPCNADH CGlycerolCNAD+
Vmax(

KpuapKnapn KpuarEKnapuKeq (A13)
(1+ CDHAP CGlycerol )1+ CNADH CNAD+)
Kpuar ' Kalycerol Knapa = Knap

TG3PDH =

The unidentifiable parameters are Vi,ax, Knap and Knyapu. These three uniden-
tifiable parameters can be replaced by two new ones to obtain the following
re-parameterisation of the rate expression:

CDHAPCNADH _ CGlycerol (p - cNADH)
DHAP KpuapKeq (A14)

T'G3PDH = CDHAP CGlycerol
(1 + Kpuap + KGlyccrol )(kl + kchADH)
where
p | KnapH

k = (1 —_— Al5

! ( * KNAD) Vmax ( a)

1 1 K

by = ( ) —NADH (A15D)

Knapn  Knap’ Viax



The rate equation for the last dehydrogenase reaction, ADH, is:

CEtOHCNAD  CACACNADH (A16)
KrionKinap  KrionKinapKeq

TADH,num = Vmax(

_ 14 SNapt cetoHANAD cacaKnapH
TADH,denom — + + + +
Kmnap  KmapKeion  KmnapaKacarp

CNADH CEtOHCNAD+

Kmapn  KinapKeton
enap+cacaKnapu cEtOHCNADHENAD

KmnapKinapaKacarp Kmnap KinapuKEton

CACACNADH CEtOHCNAD+CACA
+ + +
KacatpKmnapr KmwapKiacarpKecon

CEtOHCACACNADH (A17)

Kigton KinapuKacALD

TADH
TADH = _abi,num (A18)
TADH,denom

The unidentifiable parameters are Viyax, Kgton, Kigton, KnaD, KiNnaD, KNADH,
Kinapa, Kacarp, Kiacarp. These nine unidentifiable parameters can be re-
placed by eight new ones to obtain the following re-parameterisation of the rate
expression:

CACACNADH
TADHnum = CEtOH(P — CNADH) — ————— (A19a)
Keqg
TADH,denom = K1 + kacgton + ksenapH + kacaca + KksCEOHCNADH

+kscrroncaca + k7eNADHCACA + KSCEtOHCNADHCACA

(A19b)
where
p | KeionKinap
kk = (1+ A20a
! ( KINAD Vmax ( )
Kxap +p | KeronKinap
ko = A20b
? ( Kmnap Keton ) Vinax ( )
1 1 KrionKmnap
ks = — A20c
° ( Kmnapr  Kmap ) Vinax ( )
K K K K
ey = ( NADH + PIANADH ) EtOHIMINAD (A20d)
KinapaKacatp KinapKinapuKacarp Vinax
K 1 K; K
KmnapKinapuKeton  Kinap Keton Vinax
p
ke = ————— A20f
0 Kiacarp Vimax ( )
ke o= ( 1 _ Knapu )KEtOHKINAD (A20g)
KmnapaKacap KmwapKmnapuKacarp Vinax
ke = 1 _ 1 KeionKinap
KronKinapaKacarp KmwapKiacarp Kecon Vinax
(A20h)

The ALD rate expression containing the variables [GraP] and [glyceronephosphate]
from one of the equillibrium assumptions was analysed using the Mathematica



implementation and found to be identifiable. The details can be seen by running
the Mathematica code for the ALD rate expression.



B Application examples with the general method

B.1 The r py reaction rate from the Teusink model

In this section we consider Teusink’s rate expression for r4pg in the frame-
work of Section 4. This is the same reaction as in equation (A18). By use of
Sedoglavic’s algorithm we learned that nine of the ten parameters are proba-
bly not identifiable, whereas K is, and hence it is essentially enough to study
the denominator of the expression. Below we do not assume any knowledge
about which of the parameters that are identifiable, but rather we consider the
complete expression, and then have 10 parameters:

C1 = NAD+ Cy = ACA C3 — NADH

cy = EtOH k1 = Viax ko = KiNAD

k3 = Kgton ks = Keq ks = KnapH (B1)
ke = KINADH k7 = KacaLD ks = KnaDp

kg = KiacaLD k10 = Kieton

With this notation we may write

k1 _ _k
_ Fsks C1C4 7~ Toghaks ©2€3 (B2)
TAPH = T T e oy Ly Ry ks oo 1oy
ke 1T Koky 72 | Fo 3T kaky 4 T Eakeks 11 2 Krke 293 )
8 =+ PR
Teaks C1€4 + Takehs C3¢4 + Teakoks C162€4 + Frokohy C2€3C4
We next adapt the notation to that of Section 4, and write
- k1 -k _
aipoolr = ,§3k2 ao11o0 = Fakaka boooo = 11
biooo = K bo1oo = kﬁ% boo1o = )
f— 8 — 5 —
booor = 7,15 bi100 = 5% broor = 55 (B3)
b =1 b — ks b =1
0110 k7k(f 0011 kakoks 1101 kakoks
b0111 = Trokekr
to obtain
@1001€1€C4 + AQ110C2C3
TADH = (B4)

boooo + b1oooc1 + boioocz + booiocs + boooica + brioocica + boriocacs +
bioo1cica + boor1czca + bripicicaca + boriicacacy

Introducing the conserved quantity ¢; = p — c3 gives

a001C4 + A110C2€3 + A011C3C4

rApH = = = = = =
booo + broocz + bo1ocs + boo1¢a + biiocacs

“+bigrcacs + boricses + 5111020304
(B5)



The new coeflicients are obtained from the old ones by the transformation

I - @1001
@001 ['p 00 0 00O O O 0O 0 O07] aoo

(}110 0 1 0 0 O 0 0 O 0 00 0 O boooo

do11 -1 00 0 0OO O O OO O O b1000

booo O 01 p 000 O O 0O O O bo100

bioo 0O 00 0 100 p 0 00 0 0 boo1o

boto = 0 00 -1 010 0 0 00 0 O booo1

boo1 0O 00 0 001 0 p 00 0 O bi100

b110 0O 00 0 000 -1 010 0 0 bioo1

bro1 0 00 0 00O OC O 0O0 p O bo110

bous 0 00 0 00O O -1 01 0 0 boo11

| b | 0 00 0 000 0O 0 00 —1 1]/ bun
L bo111

(B6

We write & = Aa for the expression (B6), and as in Section 4, we denote by the
superscript © an estimated set of coefficients. The rank of A is 10. The number
of original kinetic parameters is 10. That means that the counting argument
from Section 4

1. [no of parameters] — [rank A] +1 (e, 10-104+1=1)

indicates that there is a degree of freedom in choosing the kinetic parameters.

Since the matrix A is not of full rank, we need to follow the procedure
described for the general case in Section 4, if we want to obtain the identifiable
parameters. The first row in A can be obtained by multiplying the third row
by —p. Therefore: replace agg; with —pagi; and divide both the numerator and
denominator with @11 in equation (B5). Identifying the resulting coefficients
in the denominator as the new identifiable parameters, gives an expression that
is structurally identical to (A19).

We will end by giving a geometrical picture of the kinetic parameters giving
identical reaction rates. Consider k = (ky,...k10). Each coefficient a € R'3 is a
function of k, and we have

k — ak)elcR (B7)

where T' typically would be a 10-dimensional sub-manifold of R'3. The three
dimensional null space of A is spanned by

wi=[0 0 0 0 0 —p 010100 0]
wo=[0 0 0 —p 0O 0 1 01 0 0 0 0]7 (B8)
ws=[0 0 —p 1 0 1 0000 00 0]
Hence, given a such that a° = Aa°, every a of the form
a = )\oao + A1W1 + )\QWQ + )\3W3 (Bg)

is also a coefficient vector that agrees with the estimated a° (where \g is the
degree of freedom due to the coefficients being determined only up to a constant

)



factor). This is a four-dimensional subset of R'3. The set of kinetic parameters
that agree with the estimated a° is given by

K ={keR'" suchthat a(k)€ span(a’, wi, ws, w3)} (B10)

and if k — a(k) is an injective map, K is at least one-dimensional.

B.2 The RES2-reaction in the Rizzi model

The RES2-reaction rate from the Rizzi model (equation (13, 14) involves the
concentrations of NADT, NADH and GAP. However, for the purpose of this
discussion, it is enough to consider the following part of the expression, involving
only NAD and NADH:

1 An1,7*1 +L07 Bn1,771
, 7

max KNADJ KNAD,7

TRES,2 m m (B11)
, ANt —|—L077B 1,7
where

A 1 CIC\;AD‘F CgADH
- + KNaAD,7 + KNADH,7 (Bl?)

B = 1+ chDJr + cNaDH

o K{ap,7 K{\apn,7

This can be expressed as (we set nq,7 = 7 for notational convenience, and for
the argument here, we assume that 7 is a constant)

-1 “1
Y1 (boo + broct + borc2)” " + 72 (ago + atocr + agica)”

7 , (B13)
(boo + bioct + borc2) + 3 (ago + aroct + apicz)
where
1= C%AD+ C2 = CCNjADH
Y1 = RS/ Knapyr v2 = rRES 2 Lo7/K\ap,, 13 = Lo, (B14)
apo =1 a1o = 1/Knap 7 ap1 = 1/Knapn,7
boo =1 bio =1/K\ap,7 bor = 1/Kyapn,z7

While a rational expression is left invariant by the multiplication of all coeffi-
cients by the same constant, this does not hold here.
Replacing co by p — ¢q gives the new expression

7 (bo + 5101)7771 + 72 (ao + arer)”
(bo + bic1)" + 73 (o + aicr)”
T (1 + 5101)7771 + Y2 (1 + 51101)7771

_ ! , B15
(14 bier)” + 73 (14 arcr)” (B15)
where
b — b1o — bo1 __ a1p —ao1
1= — = —7
1+ pboy 1+ pao: . (B16)
= (1 +p(101>77 S Ty =y (1 4 pag1)”
3=73 | ——— 1= —— 2 =Yoo
1+ pbo1 1+ pbo1 (1 + pbo1)"
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In fact, the actual form of the coefficients may not be very important, but it is
interesting to see that there are only five of them, and hence the six physical
parameters cannot be determined uniquely; the expression is not identifiable.
This example cannot be as easily treated with the Mathematica code as the
other ones.

In the Segel example in Section 4, the linear transformation of the coeffi-
cients have a one-dimensional null-space, which can then be identified with the
degree of freedom in choosing physical parameters. Here the null-space of the
transformation

(V1,725 735 @105 @01, b10, bo1) — (1,72, V3, @1, b1) (B17)

has a two-dimensional null-space. There is, however, still just a one-dimensional
set of kinetic parameters that give identical rate values. This set can be geo-
metrically understood as the intersection of the two-dimensional null-space to
(B17) with the six-dimensional image of the physical parameters in the space
of coefficients (’}/1 » Y2, 73,410, 01, blo, b01).
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C A brief description of the Mathematica im-
plementation

Although the mathematics used in this paper is elementary, the calculations
soon become cumbersome, and some software for symbolic calculation may be
helpful. We have created a very simple Mathematica-notebook of the computa-
tions described in this paper.

The implementation consists of three notebooks, which should be run se-
quentially:

e symmBerData.nb
e symmBerStart.nb

e symmBer.nb

Before starting, the notebook symmBerData.nb should be edited to contain
information about the actual rate equation, as shown in Figure 1. The provided
file contains data for all the rate expressions discussed in the article, and it
should be easy to see how to modify for any rational rate expression. A little
more work is needed to deal with meromorphic rate expressions.

For reasonably large expressions, all calculations are carried out symboli-
cally, and in this case one can normally execute symmBerStart without any
modifications. There are some parameters that can be changed, in particular
with respect to how much of the intermediary results one wishes to see.

Very complicated rate expressions cannot be treated directly without a very
large amount of memory in the computer. Hence part of the calculation can be
carried out in a semi-numerical fashion. This is much faster, but in that case the
present code can only verify that an expression is identifiable. The parameters
that decide whether a full symbolic calculation should be attemted or not, can
also be set in symmBerStart, together with special parameters related to the
semi-numerical computaiton.

After executing the notebook symmBer.nb, the result is presented as shown
in Figure 3.

A remark is in its place here: in terms of which parameters are identifiable,
and the degree of freedom in choosing the unidentifable ones, the results ob-
tained with the Mathematica code agree with the calculations done by hand
and presented in the main part of the paper, and in Supplement B. However,
due to the implentation, the suggested reparametrisations are not necessarily
the same, nor are the corresponding matrices A.

The code works well in the cases we have tried, but of course we cannot
guarantee that there are no cases where it would fail. There is certainly much
space for improvement of the code, both in terms of efficiency and readability.

The Mathematica notbooks are also accessible from the web-page

http://www.math.chalmers.se/ wennberg/Code

We will attempt to keep that code up to date. Also, new versions of the
code will be available from that web page.

12



m Data for the Teusink model -- GAPDH-reaction

ki=Vmaxf kE2=Kgap k3=Knad kd=Vmazr E=Kbpe
k6=Knadh
el =Cgp c2=Caad ci=Cnadh cd4=Chpe

In[2032] =

parlista = {k1, k2, k3, k4, k5, k6]

wvarLista = {cl, €2, €3, cd}

consMoi = {c2 -+ p - c3}

wa = ( (E1/(E2k3)) clc2 - (E4/ (ESED)) c3cd) /
({(1+ cl/kE2+cd/E5) (1+c2/E3+c3/E6))

outfz032= k1, k2, k3, k4, k5, k6!
Ow[2033]= {cl, €2, 3, cd]

Out[2024]= o2 = -3 +p]

cleihl  cieihd

Ot [2035)= ki k2 k5 ki
f1eEL  E%Y (1, EL £2)
ki kS k2 k&

Figure 1: Data input to Mathematica code for analysing the identifiable of a
rate expression.
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=  Results of the analysis

The degres of freedom in choosing parameters:

In[2143]:=
Print [degree0fFreedom]

1

Mote that if this derres of freadom is nagative, the rationsl sxprassion contains mors information than neaded to datermine the parameters anda

solution in tarms of the original parameters sxists only in case of a perfect measurment. In practics the erigial parametars can be usad.
If this dagres is 2qual to zero, then ther= is 2 parfect match. and the original parameters can be used without modification.
If the degree is positive, then there is a family of parametervalues that match the experimental dafa.

The ones of the original parameters that are identifiable are listed here:

In[2144]:=
Print[identifiableParameters]

{k2, k5}
The ones of the original parameters that ars not identifable are listed here:

In[2144]:=

Print[unidentifiableParameters]

[kl, k3, k4, k&l

Here is 2 list of identifisble combinations of the original parameters.

They can potantially b usad as idantifiable paramaters (only displased if the eriginal paramaters are not idantifiable):

In[2146]:= TraditionalForm[identifiableParanetersFulllist]

Out [2 1464 Traditional Form=
KIKIkS kK60 + ) k5 (6 —k3)
2., - = )
L K2 k3t K2 k3 k4 K2 k3 ks

Figure 2: Result from Mathematica code for analysing the identifiable of a rate
expression, partl.
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Finally. in cases when there is a degree of freedom greater than z=ro. we present 2 table with parameters and the vector fields that generats the
symmetrizs. Nots that the identifiable parametars are the ones for which {all) the corresponding fizld componsnts ars zzro .

Inz147]:= If[ degree0fFreedom = 0,
Print [TableForm [Transpose[sinplifiedFields], TakleHeadings - { parlista, {1111 1]

kL ¥l k3

k2 0

k3 k3 (k3+p)
k4 k4 k6

kS 0

ké k6t - k6 p

Harz we prasant a raparameterizsation that attempts to k2ep the original parameters as much as possible. This dzpands on an explicit solution of an
system of nonlinear squations, and may fail to give useful results. N.B. This calculation is not completely reliable. It depends on the possibility for
Mathematica to solve for the old parameters in terms on the new parameters. If the result looks strangs, look in the calculation above,

zome manual touch may be neadad.

Harz is a list of the new parametars.
In[2148]:=
If[degreeOfFreedon > 0, Print[nyParlista]]

{ktl, kt2, kt3, ktd, kts]

The next output deseribes the relation between the old and new paramaters

Inf2149]:=
I1f[degreeOffreedom = 0, TraditionalForm [newTo0ldSubs]]

Ot [214814 Traditional Form=
P } k6kt3 + pht3 Kkt + p) kb ktd + kb kt3 p
(K2~ ltl, b5 = bt 1 - = i SN —}
k6 kes —ked K2 (ktd = kt3 p} ktd — ke kt3

This is the rate expression expressed in the new parameters. Note that one of the original parameters, remains in the expression, and can be chosen
arbitraily. Another comment is that

Inz150]:= Traditional Form [symmetryParaneter]
Traditional Form [newRateBxpression]

|

[ E—
1

Out[21560]4 Traditional Fam=
(8}

Out[2 15614 Traditional Form=
(eI ed kI ktl — el c2 k2 kt2 kt3) (k6 + p)

E2 (ed kel + (el + kelbkt2) (e (ktd - k6 kt3) + (e3 + k) (ktd + kt3 p}}

Figure 3: Result from Mathematica code for analysing the identifiable of a rate
expression, part2.
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Observability and identifiability for nonlinear
systems of delay-differential equations with
discrete time-delays

Milena Anguelova

ABSTRACT

The properties of observability and identifiability for nonlinear systems of
delay-differential equations with discrete time-delays have been analysed.

The property of weak observability for nonlinear delay systems with
known discrete time-delays has previously been characterised in the setting
of modules over noncommutative rings. We show that the observability prob-
lem can be reduced to the analysis of the Jacobian of a system of algebraic
equations, allowing for the application of existing computation algorithms
for rank calculation.

New results are presented on state elimination for delay systems and
characterisation of the identifiability of time-lag parameters. We show the
existence of an input-output representation for systems with multiple dis-
crete time-delays. The form of the input-output equations is shown to de-
cide the identifiability of the time-lag parameters. Their identifiability is not
directly related to the well-characterized identifiability /observability of the
other model parameters/state variables and an independent analysis must
be performed. The values of the time lags can be found directly from the
input-output equations, if these can be obtained explicitly. Linear-algebraic
criteria are formulated to decide the identifiability of the delay parameters
which eliminate the need for explicit computation of the input-output rela-
tions. The criteria are applied in the analysis of biological models from the
literature.

Keywords: Delay systems, nonlinear systems, time-delay model, observabil-
ity, identifiability, time delay, state elimination, input-output representation,
signalling pathways.
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NOTATION

C=c(-
r e R"

u e R™

y € RP

f

h

h)

%2

r,0],R™) the space of continuous functions mapping the interval|-r,0|

into R™ with the topology of uniform convergence

state variables

input/control variables

output

a function describing the time-derivative of the state variables
a function relating the output to the state variables

the j-th time-derivative of h along the system dynamics

a function of initial conditions

Systems with a single time delay

-
o
K

(9, z,u)

K(d]
K(5)
M

time delay

time-shift operator corresponding to 7

the field of meromorphic functions of a finite number of variables from
{o(t — k), u(t —k7),...,uO(t — k1), k1€Z}

a meromorphic function of a finite number of variables from

{2(t — k1), u(t —k7),...,u®(t — k1), klcZ'}

the noncommutative ring of polynomials in § with coefficients from IC
the fraction field for /C(J]

span,c(é]{dﬁ € e}

Systems with multiple time delays

T

K(8)

z(t —1iT)
Zp) (1)

a vector containing all time-delays, (74, ...,7)

time-shift operator corresponding to 7;

ilTl + - +ig7’g

be the field of meromorphic functions of a finite number of variables from
a(t —ir),u(t —ir), ..., uOt —i7), i=(i,...,50), i;,l€ZL"

the noncommutative ring of polynomials in 9; with coefficients from K
the fraction field for /(4]

spang s {d¢ : § € K}
I(t — (ilTl + -+ ’ing))
all the variables of type x(t — 2521 i), 1 € LT, Zﬁ:l i; <1
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1 INTRODUCTION TO TIME-DELAY SYSTEMS

Often, in modelling the dynamics of physical and biological processes, the
future behaviour of a system is assumed to depend only on its present state.
In such cases, a deterministic model of the system can consist of ordinary
or partial differential equations, where knowledge of the state at a discrete
time-point determines the future state of the system. It can be the case,
however, that a more realistic model must include the influence of the past.
To exemplify, we will use the modelling of the JAK-STAT signalling pathway
in the cell from the paper by Timmer et al. (2004).

The JAK-STAT signalling pathway is one of the signalling pathways in
which signals from cell surface receptors binding the hormone erythropoietin
(Epo) are transduced to the nucleus where the respective genes are activated,
see (Timmer et al., 2004) and the references therein. When Epo is bound to
the extracellular part of the receptor, Janus kinase (JAK) at the intracellular,
cytoplasmic domain of the receptor is activated by phosphorylation. This,
in its turn, leads to the phosphorylation of monomeric STAT-5, a member of
the signal transduction- and activator of transcription family of transcription
factors. When monomeric STAT-5 is phosphorylated, it forms dimers which
migrate into the nucleus. There they bind to the promotor region of the
DNA and initiate gene transcription. In the established view, the active role
of STAT-5 ends in the nucleus and it is dedimerised, dephosphorylated and
exported to the cytoplasm for degradation. An alternative suggestion is that
after being dedimerised and dephosphorylated in the nucleus, it reenters the
cytoplasm and is involved into another round of activation. In mathematical
terms, the first alternative is modelled by a system of ordinary differential
equations and is a so-called feed-forward cascade. The second alternative in-
volves a feedback allowing for nuclear-cytoplasmic cycling of STAT-5. With-
out the possibility to measure the components of STAT-5 in the nucleus, one
effective way to model this cycling is to include a time-delay in the state
component for STAT-5 corresponding to the time spent by STAT-5 in the
nucleus and this model displayed a much better fit to measurement data than
the established feed-forward cascade model. Let us look at the two models
in detail.

Denoting the amount of activated Epo-receptors by EpoR 4, unphospho-
rylated monomeric STAT-5 by x1, phosphorylated monomeric STAT-5 by -,
phosphorylated dimeric STAT-5 in the cytoplasm by x5 and phosphorylated
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dimeric STAT-5 in the nucleus by x4, the feed-forward cascade model is:

1(t) = —kiz1(t)EpoRa(t)

io(t) = kiwi(t)EpoRa — kox3(t) (1.1)
T3(t) = —ksws(t) + kow3(t) .
ZE4(t) = k3$3(t>

In the STAT-5 cycling model, equations 1 and 4 are replaced by

1(t) = —kizi1(t)EpoRa(t) + 2kaxs(t — 1)
l’4(t) = k‘3l‘3(t) — k?4l'3(t — T) s

to reflect the assumption that the rate of change in unphosphorylated mono-
meric STAT-5 in the cytoplasm depends also on the reentering of STAT-5
from the nucleus after it has been dedimerised and dephosphorylated. The
latter process is assumed to take time 7 and so it is the amount of phospho-
rylated dimeric STAT-5 in the nucleus at time ¢t — 7 which will be added to
the unphosphorylated monomeric STAT-5 in the cytoplasm at time ¢. It is
clear that in this model, the state of the system at a given moment depends
also on its past state, which then renders it a time-delay system.

Time-delay systems have been used to model a wide range of phenom-
ena in systems biology, including metabolic insulin signaling (Sedaghat et
al., 2002), phosphorylation-dephosphorylation cycles (Srividhya, 2007), the
lac operon (Mahaffy and Savev, 1999), the circadian pacemaker (Lema et
al., 2000; Smolen et al., 1999), gene expression in cultured mammalian cells
(Monk, 2003) and in zebra fish (Lewis, 2003). These delay models usually
contain a number of state variables and parameters with values that are of-
ten unknown and can only be found by estimation from experimental data,
a prerequisite for which are the observability and identifiability properties.
The characterisation of these for time-delay systems is the subject of this
second part of the thesis.



2 BASIC PROPERTIES OF FUNCTIONAL DIFFER-
ENTIAL EQUATIONS

Time-delay systems, or systems of delay differential equations, belong to a
larger class of functional differential equations (FDE). In this section, we
describe some basic properties of this class of equations, following (Hale,
1977) and the overview paper by Richard (2003).

2.1 RETARDED FUNCTIONAL DIFFERENTIAL EQUATIONS

If the rate of change of the state of a system involves the current as well
as the past values of the state, one obtains a so-called system of retarded
functional differential equations. Before describing their general form, we
consider a simple example.

2.1.1 A SIMPLE EXAMPLE

Consider the following simple delay equation, taken from Chapter 0 in (Diek-
mann et al., 1995):
T=-mw/2x(t—1) . (2.1)

Both sin(7/2(t 4+ 1/2)) and cos(mw/2(t + 1/2)) satisfy this equation and they
coincide at ¢ = 0. This means that specifying an initial condition only at
t = 0 does not specify the solution of the system, unlike for ODE-systems.
Instead, one has to specify an initial function on an interval of length 1.

2.1.2 GENERAL FORM

Let » > 0 and C' = C([—r,0],R™) be the space of continuous functions map-
ping the interval [—r, 0] into R™ with the topology of uniform convergence.
Designate the norm of an element ¢ in C by || = sup_,<g<o|e(8)].

Ifo € R,A>0and z € C([o —r,0+ A],R"), then for any t € [0, 0 + A],
define the state x; € C by

() =z(t+6), —r<60<O0. (2.2)

If D is a subset of R x C' and f is a function, f : R x C' — R", then the
following equation is called a retarded functional differential equation (RFDE)
on D:

w(t) = ft,x) (2.3)
A function z is a solution of the above equation on [ — 7,0 + A) if there
are 0 € R and A > 0 such that x € C(jo —r,0+ A),R"), (t,2;) € D and



4 2 BASIC PROPERTIES OF FDE

x(t) satisfies (2.3) for ¢ € [o,0 + A). For given 0 € R, p € C, z(0,¢, f) is a
solution of (2.3) with initial value ¢ at o or simply a solution through (o, )
if there is an A > 0 such that x(o, ¢, f) is a solution of (2.3) on [c —7r, 0+ A)
and z, (0, ¢, f) = ¢.

The above equation form includes ODE systems (r = 0) as well as
differential-difference equations

= f(t,x(t),x(t —m(t),...,x(t —71(t) , O0<7m(t)<ri=1,...,¢

and integro-differential equations

0
sz/ gt,0,x(t+0)ds , 0<m(t)<ri=1,...,¢

T

Systems of differential-difference equations with constant (discrete) time-
delays 7; are our main interest in this thesis.

2.1.3 EXISTENCE, UNIQUENESS AND BACKWARD CONTINUATION

2.1.3.1 EXISTENCE OF SOLUTION

If © is an open subset of R x C' and f is continuous, f € C'(2,R", then
there is a solution of(2.3) through (o, ) € Q.

2.1.3.2 UNIQUENESS

If Q is an open subset of R x C, f € C(Q,R™ and f(t, ) is Lipschitzian
in © in each compact set in €2, then there is a unique solution of (2.3) through
(o,p) € Q.

2.1.3.3 BACKWARD CONTINUATION

We now discuss the question of the existence of the solution to the left of
the initial time-point, the so-called backward continuation of a solution. This
is ensured provided that f(t,) satisfies the so-called atomicity property,
defined as follows: f is atomic at 3 on an open set 2 C R x C if it is
continuous together with its first and second Fréchet derivatives w.r.t. ¢,
and f,, the derivative w.r.t. ¢ is atomic at 3 on (.

If f:Q — R”is atomic at —r on {2, and there is an «,0 < a < r, such
that ¢(6) is continuous for 6 € [—c, 0], then there is an & > 0 and a unique
solution of (2.3) on [0 —r — @, o] through (o, ¢) € .
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2.2 NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

Neutral functional differential equations (NFDE) involve the same highest
derivation order for some components of z(¢) at both time ¢ and past time(s)
t' < t. They can be written

B(t) = f(t, o, &) (2.4)

or, in the form of (Hale, 1977),

D) = f(tm) (25)
where D is continuous and atomic at zero and f is continuous. As shown in
(Hale, 1977), difference equations are also NFDE.

For a given open set 2 C R x C, there exists a solution to (2.5) through
(0,p) € Q. If f is Lipschitzian in ¢ on compact sets of €2, then this solution
is unique.
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3 MATHEMATICAL FRAMEWORK FOR CONTROL
- NONCOMMUTATIVE ALGEBRA

This section presents a mathematical framework for the treatment of con-
trol problems such as observability and identifiability for time-delay systems,
more specifically, for systems of differential-difference equations with con-
stant (discrete) time-delays. It is an algebraic framework based on modules
over noncommutative rings which was introduced by Moog, Castro-Linares,
Velasco-Villa and Méarquez-Martinez (2000), and developed by Marquez-
Martinez, Moog and Velasco-Villa (2000) and Xia, Marquez, Zagalak and
Moog (2002). Some of the theory in these papers, previously formulated
only for systems with commensurate time-delays, will now be generalised to
multiple (noncommensurate) delays in Subsection 3.2.

3.1 SYSTEMS WITH A SINGLE TIME-DELAY

This section contains a review of previously published algebraic framework
and results found in (Cohn, 1985), (Lam, 1999), (Moog et al., 2000), (Marquez-
Martinez et al., 2000) and (Xia et al., 2002) adapted to the present case of
unknown single time-delay.

3.1.1 THE RING K({]

Consider nonlinear time-delay systems with a single constant time-delay of
the form:

$§t>> = ;L”Ext,xt—T;u,u(t—T))

y(t) = x(t t—T1

o) = o), te om0 -1
u(t) = uo( ), tE[ T,O] )

where © € R” denotes the state variables, v € R™ is the input and y €
RP? is the output. Any parameters for the system can be written as state
variables with time-derivative zero. The unknown constant time-delay is
denoted by 7 € [0,7"), T' € R. The entries of f and h are meromorphic in their
arguments (quotients of convergent power series with real coefficients) and
¢ : [-=7,0] — R" is an unknown continuous function of initial conditions. The
set of initial functions for the variables x is denoted by C' := C([—7,0],R™).
A meromorphic function u is called an admissible input if the differential
equation above admits a unique solution. The set of all such input functions
is denoted by Cy .
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Let K be the field of meromorphic functions of a finite number of variables
from {x(t — k7),u(t — k7),...,uD(t —k7), k,l € Z*}. Such functions will
also be denoted ¢(d, z, u).

Let & be the vector space over K given by:

E =span {d: €€ K} . (3.2)

Then £ is the set of linear combinations of a finite number of one-forms from
dx(t — k7),dul (t — kT) with row vector coefficients in K. The time-shift
operator 0 is defined by:

0(§(t) =&t —7), C)ek (3.3)
and
da(t)dé(t) = a(t —1)dé(t — 1), a(t)dé(t) e € . (3.4)
Let KC(d] denote the set of polynomials of the form

a(6] = ap(t) + ar(t)o + - - + a,, (£)0"™ (3.5)

where a;(t) € K. Addition in the noncommutative ring K(d] is defined as
usual while multiplication is given by

Ta+7p 1<Ta,J<Tp

a@b(] = > > a(t)bi(t —ir)s* . (3.6)

k=0 i+j=k

The ring (4] is a (left) integral domain by its definition. It is also Noetherian
which will be shown next, using the suggestion in (Xia et al., 2002) to follow
the proof of the Hilbert Basis Theorem (for example that in Chapter 1 of
(Goodearl et al., 2004)).

Proposition 3.1 (Theorem 1 in (Xia et al., 2002)) K(0] is a Noetherian
ring.

Proof: Let I be a nonzero left ideal of IC(§]. Let J be the set of leading
coefficients of the elements of I, together with 0:

J={rek:ré®4+rsy 6+ troe€l, r44,....,70€K} . (3.7)

We will now verify that J = K. Clearly, 0 € J. For any nonzero r € J, there
exists p € I, such that p has leading coefficient ». Then r~!p is an element
of I with leading coefficient 1, and thus 1 € J and J = K.

Consider the nonzero polynomials in [ with least degree n and choose
one with leading coefficient 1, denoted by p. Set Iy = KC(J]p. We will prove
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that I = I,. First we will show that [, contains all elements of I of degree n.
Let w be an element of I with degree n and let s be its leading coefficient.
Then, sp —w € I and if sp — w is nonzero, it has degree less than n which
is a contradiction. Thus, sp — w = 0 and w € I,. Assume that I, contains
all elements of I with degree less than m for some m > n. Let u be any
element of I with degree m > n and let r be its leading coefficient which can
be assumed to be 1 w.l.o.g. Let v = §™ "p, then v € I, and v has degree m
and leading coefficient 1. Now v — v € I and u — v has degree less than m.
Thus, u — v € Iy and therefore u € I,. Hence, I, contains all elements of I
with degree less than m + 1. By the principle of induction, I = I and [ is
thus a finitely generated left ideal of IC(4].

Therefore, IC(4] is a Noetherian ring. l

Alternatively, we can prove the following more general statement which
will be used later for the multiple-delay case:

Proposition 3.2 If R is a left Noetherian ring, so is R(J].

Proof: The proof is exactly the same as for the usual polynomial ring case,
see for instance (Cox et al., 1997). Nevertheless, we recall it here for com-
pleteness:

For f € R(d], if f = > ,_, axd” with a, not equal to 0, then the degree
of f, degf is n and a, is its leading coefficient. Let I be an ideal in R(J] and
construct a sequence fi, fo,... of elements of I such that f;;; has minimal
degree among elements of I\ J;, where J; is the ideal generated by f1,..., f;.
Let a; be the leading coefficient of f; and consider the chain of ideals

(al) C (&1,(12) C (al,ag,ag) C ...

contained in R. Since R is Noetherian, this chain must terminate for some N.
We will show that [ = (f1,..., fv). Forifnot then, fy.1 € IN(fo, f1,---, fN)
and ayy; = Zfil u;a; for some uq,...,uy € R. Consider g = Zfil u; f;0™
where n; = degfy — degf;. Then degg = degfy.1 and their leading coef-
ficients agree, and so fy;; — ¢ has degree strictly less than degfy.; and
Invi—g€l, fnii—g¢ (fo, f1,---, fn), contradicting the choice of fy..
Thus [ is finitely generated. Since I was an arbitrary ideal in R(d], every
ideal in R[¢) is finitely generated and R(] is therefore Noetherian. W

Another important property of (4] is that it is a left Ore domain, defined
as follows (p.38 in (Cohn, 1985)):

Definition 3.1 A non-zero integral domain R is called a left Ore domain if
it satisfies the left Ore condition: Ra N Rb # 0 for all nonzero a,b € R.
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This property of (] can be checked directly (see (Xia et al., 2002)), but
it also follows from it being a left Noetherian integral domain, see Corollary
8.10 in Chapter 0 of (Cohn, 1985). Let us briefly describe the argument used
there: a left integral domain R that is not a left Ore domain must contain
two non-zero elements a,b that are left incommensurable: Ra N Rb = 0.
Thus, the left ideal Ra + Rb is a free left R-module of rank 2. The elements
ba"(n = 0,1,2,... are left linearly independent, for if > ¢;ba’ = 0, then
by factoring out a we obtain cob + c1ba + - -+ + ¢,.ba” = 0(cy # 0 and thus
cob € Ra N Rb, which is a contradiction. Thus, we obtain free left ideals of
R of countable rank which are not finitely generated (by Lemma 3.1)and R
is therefore not Noetherian.

3.1.2 THE FRACTION FIELD K(J)

Since KC(] is a left Ore domain, it can be embedded in a left field of fractions
(Corollary 8.7 in (Cohn, 1985)), that will be denoted /C(5). Elements of K(J)
are denoted b~ (d]a(d].

To define the operations of addition and multiplication in 1C(5), (Xia et
al., 2002), let S = {(a,b) : a,b € K(§],b # 0 and define an equivalence
relation ~ on S by setting (a,b) ~ (c,d) if b'a = d'c and V'b = d'd. Let
b~1la denote the equivalence class associated to (a,b) , K(d) is then the set of
equivalence classes in S.

Addition is defined by

b la+dte= b)) ' (Va+dc) | (3.8)
where b'b = d'd and multiplication is defined by
b lad e = (a'b) *(dc) (3.9)

where a’'a = d'd.

3.1.3 RANK AND BASIS OF MODULES OVER K ({]

The fact that K(0] is a noncommutative ring makes it necessary to elaborate
on the definitions of rank and basis of modules over it.

For any ring R, an R-module N is said to be free iff it has a basis, i.e. a
set {e; : i € I} C N such that any element of N is a unique finite (left) linear
combination of the e; : s. A basis is a minimal generating set and a maximal
linearly-independent set. The rank of N is the cardinal of the basis, |I|. The
following lemma implies that the rank of a module, if infinite, is uniquely
determined:
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Lemma 3.1 (Generation Lemma, p.2 in (Lam, 1999)) Let R be a ring and
N any R-module. Let {e; : i € I} C N be a minimal generating set of N
where the cardinality |I| is infinite. Then N cannot be generated by fewer
than |I| elements.

Thus, a free module with a basis of infinite cardinality cannot be finitely
generated.

Let ¥R be the direct sum of copies of R indexed by X. Then we have
the isomorphism ¥ R — N which maps (a,) — _ za,. We will say that "R
has unique rank if it is not isomorphic to ™R for any m # n. If N is a free
module of unique rank r then we write rankg N = r.

For a finitely generated free module the rank need not be unique, a trivial
counter example is the zero ring for which ™0 =" 0 for all m, n.

A ring R is said to have the invariant basis property or the invariant basis
number (IBN) if every free left R-module has unique rank. Any non-trivial
Noetherian ring has the IBN (Propositions (1.8) and (1.13) in Lam (1999))
and therefore, by Corollary 3.1 so does the ring /C(4].

We define the following left module over K(4]:

M = spang{d§ : £ € K} (3.10)

where the elements of the ring K(4] act on elements d¢ of the module accord-
ing to (3.4). The module M contains the same elements as £. All bases for a
free submodule N of M have the same cardinality due to the IBN property
of K£(4].

Due to the fact that direct inversion of elements of (] is not possible, we
need to use the concept of closure introduced by Conte and Perdon (1984)
and generalized to the present case in Xia et al. (2002). The closure of a
submodule N in M is the submodule

N ={weM:3a(0] € K], a(d]#0, aldlweN} . (3.11)

For example, dx(t) ¢ spangg{dz(t — 7)} but dz(t) € spang{dz(t — 1)}
since 6(dz(t)) = dx(t — 7) € spang g {dz(t —7)}.

If N coincides with A/, then N is said to be closed in M. The following
result on closure and closedness of modules from Xia et al. (2002) (Lemma
2) will be needed later:

Proposition 3.3 (Lemma 2 in Xia et al. (2002))

1. The closure N' of N in M is the smallest closed submodule of M
containing N;
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2. For any_ﬁm’tely generated submodule N of M, one has rank;c((g]./\f =
rank;c((g]/\/';

3. For a free submodule N' of M, N is the largest submodule of M con-
taining N and having a rank equal to rankgs V.

Proof: We supply our own proof for this proposition.

1. Let P be the smallest closed submodule of M containing N'. Choose
an element v € N’ C P. Since P is closed, it contains IC(0]u. This is true for
all u € N and thus N = K(§]NV C P.

2. Let N be generated by w, ..., w,. Choose an element u € N'. Then
Ja(d] € K(4] such that a(d]u € N and thus a(dlu = byw; + - -+ + bsw, for
some b; € K(d]. Thus, u is linearly dependent on wy, ..., ws. This is true for
all elements in A/ and thus N has the same rank as \.

3. Let P be the largest submodule of M containing A/ and having a
rank equal to rankyN. Let wr be a basis for A/, where I is an index set.
Choose an element u € P, then u must be linearly dependent on w; and
Ja(d],b; € K(6] such that a(dlu = Y, ., byw;. Thus, u € N and therefore
PCN. R

3.1.4 THE POINCARE LEMMA

An element w of M, also called a 1-form, is said to be exact if there exists
a function ¢ € K such that w = d¢. Since any 1l-form w € M is also an
element of &, the following form of Poincaré’s Lemma holds (Lemma 3 in
Marquez-Martinez et al. (2000)):

Lemma 3.2 (Poincaré) (Lemma 3 in Mdrquez-Martinez et al. (2000)) Con-
sider a 1-form w € M. Then there exists a function £(t) € K such that
(locally) w = d&(t) if and only if dw = 0.

3.1.5 DIFFERENTIATION OF FUNCTIONS AND ONE-FORMS

Differentiation with respect to time along the system dynamics for functions
d(x(t —it),u(t—j7),...,u(t—357)),0 <4, <k, 1> 0in K and one-forms
w =Y, kbdx(t —it)+ Y, vidu(t — i) in M is defined in the natural way
(see for example Xia et al. (2002) and Zhang et al. (2006)):

; k 0¢ i ~\ ¢ (r+1) .
¢ = ;m5f+22mu (it —jr) (3.12)

r=0 j=0
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Z/{ dx(t —iT) +Zl/zdu (t —ir) +fo ds'f +
+-j£:L@duf+4 iT) . (3.13)

3.2 SYSTEMS WITH MULTIPLE TIME-DELAYS

In this subsection we review the generalisation of the mathematical frame-
work introduced above to time-delay systems with multiple time-delays as
first introduced by Moog et al. (2000), and developed by Marquez-Martinez
et al. (2000). We extend the results of Xia et al. (2002) from the previous
subsection to the present case of (not necessarily commensurate) multiple
time-delays.

3.2.1 THE RING K(J]

The general form of the nonlinear time-delay systems considered is:

i(t) = flz@),z(t—7),..., 2t —7),uult—7),...,ult — 7))
y(t) = h(z(t),z(t —m),...,z(t— 7))
xz(t) = ¢(t), te [—max;T;,0]
u(t) = we(t), tel[-T,0] ,

(3.14)
where z € R" denotes the state variables, u € R™ is the input and y € R?
is the output. The unknown constant time-delays are denoted by the vector
T=(1m,...,7), 7 €[0,T), T €R. The entries of f and h are meromorphic
in their arguments and ¢ : [—max;(7;),0] — R" is an unknown continuous
function of initial conditions. The set of initial functions for the variables
x is denoted by C := C([-max;(7;),0],R™). A meromorphic input function
u(t) is called an admissible input if the differential equation above admits a
unique solution. The set of all such input functions is denoted by Cj.

Let C be the field of meromorphic functions of a finite number of variables
from {z(t —i7),u(t —i7),..., vVt —ir), ,i=(i1,...,30), ij,l € LT},
where we have denoted iy71 + - - - + iy7¢ by 27.

Let £ be the vector space over K given by

E =spang{dé : £ € K} . (3.15)

Then £ is the set of linear combinations of a finite number of one-forms from
{do(t —i7),du(t — i7),...,du(t — iT)} with row vector coefficients in K.
The time-shift operator d; is defined by

0:,(E) =&t —m), &) ek, (3.16)
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and
di(a(t)dé(t)) = alt — m)dé(t — ),  «(t)dE(t) € € . (3.17)

Let /C(d] denote the set of polynomials in dy, ..., d, with coefficients from .
This set is a noncommutative ring where addition is defined as usual, while
multiplication is defined as follows. Let a(éd] be a polynomial in (6], a(d] =
S, ar0®, where we have denoted 0} ...5)" by 6%, k = (ki,..., k). Order
the different powers k according to the largest ki, then ks, etc. According
to this order, let the highest degree of a(8] be 74, where 4 = (rg1,...,740)
and analogously for another polynomial b(d] in K(d]. Multiplication of a(4]
and b(d] is then given by

a@bE =3 S bt —ir)et (3.18)

We will now show that IC(d] is Noetherian.

Proposition 3.4 (9] is a Noetherian ring.

Proof: We have K(8] = <(K:(51])((52] . .><5g]. The statement follows by

iterative application of Proposition 3.2. B
It follows that /(4] is also a left Ore domain by Corollary 8.10 in Chap-
ter 0 of (Cohn, 1985).

3.2.2 THE FRACTION FIELD K(4)

The left field of fractions, K(d), is defined as in the single time delay case.
Elements of K(d) are denoted b~'(d]a(d].

3.2.3 RANK AND BASIS OF MODULES OVER K (4]

This subsection is a direct repetition of the corresponding one for the single
delay case, Subsection 3.1.3, recounted here for completeness. The ring KC(4],
being Noetherian, has the invariant basis number (IBN). A free left module
over IC(4] thus has uniquely defined rank and all its bases have the same
cardinality.

Define the following left module

M = spangg{d¢ : § € K}, (3.19)

where the elements of the ring (8] act on elements d¢ of the module accord-
ing to (3.17). The module M contains the same elements as £. As in the
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case of single time delay, we need to use the concept of closure. The closure
of a submodule N in M is the submodule

N ={we M:3a(8] =aldy,...,5] € K(&], a(dlwe N}

For example, dz(t) ¢ spanys{dz(t — )} but dz(t) € spangg{dz(t —7:)}
since 6;dz(t) = dx(t — ;) € spangg{dz(t — 7))}

If N coincides with N, then N is said to be closed in M. The result on
closure and closedness of modules from Xia et al. (2002) (Lemma 2) and the
previous section is now generalised to the present case:

Proposition 3.5 1. The closure N of N in M is the smallest closed
submodule of M containing N ;

2. For any finitely generated submodule N of M, one has rankgsN =
rank;c(g]./\f;

3. For a free submodule N' of M, N is the largest submodule of M con-
taining N and having a rank equal to rankys V.

Proof:

1. Let P be the smallest closed submodule of M containing N'. Choose
an element © € N’ C P. Since P is closed, it contains I(8]u. This is true for
all w € N and thus N = K(8]NV C P.

2. Let N be generated by wy, ..., w,, assumed to be linearly-independent
w.l.o.g. Choose an element u € /. Then 3a(8] € K(d] such that a(8lu € N
and thus a(d]lu = bywy + - - - + bsws for some b; € K(§]. Thus, u is linearly
dependent on wy, ..., ws. This is true for all elements in A and thus N has
the same rank as V.

3. Let P be the largest submodule of M containing A/ and having a
rank equal to ranky V. Let w; be a basis for N, where I is an index set.
Choose an element v € P, then u must be linearly dependent on w; and
Ja(8],b; € K(8] such that a(8lu = Y, , byw;. Thus, u € N and therefore
PCN. R

3.2.4 THE POINCARE LEMMA

Just as in the single-delay case, a 1-form w € M is also an element of &
and the following form of Poincaré’s Lemma holds (Lemma 3 in Marquez-
Martinez et al. (2000)):

Lemma 3.3 (Poincaré) Consider a 1-form w € M. Then there erists a
function &(t) € K such that (locally) w = d&(t) if and only if dw = 0.
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3.2.5 DIFFERENTIATION OF FUNCTIONS AND ONE-FORMS

Differentiation with respect to time along the system dynamics for functions
p(x(t—it),ult —j7),...,uD(t—77)) in K and one-forms w = >, kidx(t —
T+, v;dul") (t—j7) in M is defined in the natural way (see for example
Xia et al. (2002) and Zhang et al. (2006)):

h = L i L (r+1) (4 _
¢ = Z 0x(t —iT) O°S+ Z ou (t — j’T)u Dt —j7) (3.20)
w = ZFLdl‘t—%T +Zyﬂdu (t—j7) +

+Zn ds*f + Zujdu 0+ (¢ — jr) (3.21)
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4 (OBSERVABILITY

The literature on the observability of nonlinear time-delay systems appears to
be scarce. For linear delay systems, different definitions of observability are
described and characterised in (Lee and Olbrot, 1981). Most of them are not,
however, directly applicable to nonlinear delay systems. The definitions from
(Lee and Olbrot, 1981) that can be used directly for the present case are the
algebraic ones - observability over the ring of polynomials in § and over the
corresponding field of fractions. These have been characterised for nonlinear
systems by Xia et al. (2002) under the term weak observability which will be
reviewed in Subsection 4.2. Another more intuitive definition of observability,
relating the state to the derivatives of the output and input, and their forward
shifts, is used in connection to observer design in (Marquez-Martinez et al.,
2002), but is not characterised. In this section, we will attempt to relate
the definition in (Xia et al., 2002) to the one in (Marquez-Martinez et al.,
2002) and also to our own geometric definition of observability obtained by
adapting the one for ODE-systems from Part I of this thesis to the present
case of delay systems.

4.1 INTUITIVE DEFINITIONS

Consider once again the general form for a delay system with multiple time-
lags

i(t) = (xt,xt—ﬁ Lzt — 7o), u(t), u(t — 1), ..., u(t — 7))
y(t) = h(z(t), x(t — 7))

z(t) = (1), t E [—max;7;, 0]

u(t) = we(t), te[-T,0]

(4.1)
In this section the time delays 7;, are assumed to be known. The characteri-
sation of observability with unknown time-delays is left to Subsection 6.2.
First, let us attempt a more intuitive definition of observability by adapt-
ing the one for ODE-systems from Part I of this thesis to the present case.
For this purpose, observe that the state is no longer a point in R", but a
function z; corresponding to the past time interval [t — max;7;, t], defined by
z(0) = z(t +60), 0 € [-max;7;,0].

Definition 4.1 Two initial functions ©° and p' in C are U-distinguishable
if there exists a measurable bounded input u(t) defined on the interval [0,T]
that generates solutions z°(t) and z'(t) of * = f(z(t),z(t — 71),...,z(t —
), u,u(t — 1), ..., u(t — 7)) satisfying x'(t) = p'(t), t € [~max;7;,0] such
that xt € U for all t € [0,T] and g(z°(t)) # g(x'(t)) for some t € [0,T]. We



4.2 Weak observability 17

denote by 1(x°,U) all points ' € U that are not U-distinguishable from

20,

Definition 4.2 System (4.1) is observable at ©° € C if 1(©°,C) = .

This definition of observability is close to the definition of identifiability in
(Nakagiri et al., 1995).
A weaker, local version is the following

Definition 4.3 The system (4.1) has the local distinguishability prop-
erty at ©° € C if 2° has an open neighbourhood V such that for every open
neighbourhood U of ©°, 1(0°, U) NV = .

The definition in (Marquez-Martinez et al., 2002) provides a bridge between
the above definition and the more algebraic one in (Xia et al., 2002) reviewed
in the next section:

Definition 4.4 p.448 in (Mdrquez-Martinez et al., 2002)
The system (4.1) is observable if the state x(t) can be expressed as a function
of the deriwatives of the output and the input, and their forward shifts:

z(t) = v(yP(t + i), uV(t + 7)), k1eZ'

Definition 4.4 indicates that the state is uniquely defined by the input and
output and thus implies Definition 4.2.

4.2 WEAK OBSERVABILITY
4.2.1 DEFINITION AND CRITERIA

We review the definition and results on weak observability from (Xia et al.,
2002).

First, we characterise observability over the ring of polynomials K(4].
Define

X = Spanlc(é]{dx}

Vi = spangg{dy,dy,... dy* "} (4.3)
U = spanggidu,di,...} . (4.4)

Then

Vi+U)NnxXCcpr+UNXC-—-C+U)NXC... (4.5)
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is an increasing chain of submodules of X. By the fact that X is a finitely
generated module over the Noetherian ring K(d], and thus Noetherian, this
sequence must terminate. In fact, (Y +U)NX = (Y, +U)NAX for k > n and
ranki(s)(V, +U) N X < n (see (Xia et al., 2002) and (Zhang et al., 2006)).

Denote O = (Y, +U) N X where, as previously, (), +U) is the closure
of Y, +U. The module O is called the polynomial observation submodule
for system (3.14). We can now define observability over k(4] as in (Lee and
Olbrot, 1981):

Definition 4.5 System (4.1) is observable over IC(4] if ranky 5O = n.

We proceed with defining observability over the field of fractions, (d),
which is also called weak observability in (Xia et al., 2002). Define

X = spangg{ds} (4.6)
Ve = spang{dy,dy, ... ,dy =1
U = spang{du,di,...} . (4.8)

Then the corresponding chain of submodules of X
D+UhnXcQh+UNnXcC---C(p+UNXC... (4.9)

must terminate as & is a finitely generated module over the field K(4), and
thus Noetherian. Again, Ve +U)NX = (Y, +U) N X for k > n. Denote
O = (V,+U)NX. O is called the rational observation submodule for system
(4.1).

Definition 4.6 The system is said to be weakly observable if ranky 50 = n.

Observability according to Definition 4.4 clearly implies weak observability
(Definition 4.5) as

z(t) = Yy (¢ +ir),u(t +57))

< |

da; > i 0 Ay > by, g0 6 du?) (4.10)

where a,4;,.4,,bs15,..5, € K. On the other hand, the following system is a
counterexample showing that the reverse is not true:

{i(t) = () (4.11)
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For this system dx € spany s {dy} since dy = (1+0)dx < dz = (1+0)""dy.
However, (1 + 6)~'dy cannot be written as S5 a0 ‘dy for any k € Z*,
a; € K.

Xia et al. (2002) showed that, just as in the linear delay system case (Lee
and Olbrot, 1981), observability over X(d) and over K (4] are equivalent:

Proposition 4.1 (Theorem 3 in (Xia et al., 2002)).
The system is weakly observable if and only if ranky(s)(Vn +U) N X = n.

Furthermore, a variable z; is weakly observable if and only if dx; € (), +U),
i.e. there exists a;(8] € K(4] such that a;(é]dz; € Y, +U.

Whether weak observability is equivalent to the system having the local
distinguishability property almost everywhere, Definition 4.3, is still an open
question. Weak observability for the state-variables z(¢) implies the existence
of a meromorphic function ¢ of z(¢) and its shifts (¢t — ¢7) which is a known
function ¢ of time (as a meromorphic function of y, u and their shifts). The
main difficulty lies in showing that the equation ((z(t), z(t —47)) = o(t) has
a locally unique solution z(¢). The answer to this question is left as future
work.

4.2.2 EXAMPLES

In this subsection we demonstrate how weak observability is analysed on
some simple control systems.

4.2.2.1 SINGLE TIME-DELAY

It should be noted that for the calculations performed in this subsection
(as well as for many other control problems for delay systems), one can use
the symbolic computation algorithm by Garate-Garcia et al. (2006), which
can check the observability of nonlinear systems with known single time delay.
Ezample 1: An observable system

Consider the system

i1(t) = zo(t —7) +23()
i) = m(t—7) (412)
y(t) = ax(t—1)

Taking n—1 time-derivatives of the output function, we obtain the equations

y = o0 (4.13)
gy = 0%x9+ (021)* . (4.14)
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Thus,

Mg} B [g((sxl)a 22} [Zﬁ;} | (4.15)

The above matrix has rank 2 over (0] and thus rankg(Jo +U) N X = 2
and the system is weakly observable. In fact, x1(t) = y(t + 7) and xo =
y(t +27) — 2 (t + 27).

Example 2: An unobservable system
Consider the system

(

To(t) = xo(t—7) (4.16)

y(t) = x(t) + 22(t)
We have the equations

y = 11+ (4.17)

y = dxp+ox+u . (4.18)
Thus,

dy 11 dxy
[dg)—du]_{é 5“@] | (4.19)

The above matrix has rank 1 over (J] and the system is not weakly observ-
able.

4.2.2.2 MULTIPLE TIME-DELAYS
Ezample 1: An observable system
Consider the system

21(t) = 23(t — 1)z (t — 72) + ul(t)
o(t) = x(t —7) (4.20)
y(t) = x(t—m)

Taking n— 1 time-derivatives of the output function, we obtain the equations

y = oam (4.21)
J = (6722)*0105w1 + Sru . (4.22)

Thus,

dy |1 0 dzq (4.23)
dy — d51U o ((5%[1?2)251(52 25%%251521’1(5% d$2 ) ’
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The above matrix has rank 2 over (6] and thus ranky (Vo +U) N X = 2
and the system is weakly observable. In fact,

r1(t) = ylt+m) (4.24)
2() y(t+2m) —u(t+ 1)
2 y(t — 19+ 211))

(4.25)

4.3 OBSERVABILITY ANALYSIS FOR DDE SYSTEMS RE-
DUCES TO THE ANALYSIS OF THE JACOBIAN OF AN
ALGEBRAIC SYSTEM

In this subsection, we show that weak observability for delay systems, as
characterised in Section 4.2, can be checked by analysis of the Jacobian of
a system of algebraic equations derived from the original delay system (as
for ODE-systems), simplifying the problem and allowing for the application
of existing computer algorithms for symbolic rank calculation. Based on
the results in this section, one could potentially use algorithms like the one
by Sedoglavic (2002) to test the observability of large delay systems with
many variables (which is so far difficult to do with the symbolic package by
Garate-Garcia et al. (2006); it is for the moment also limited to one time
delay).

4.3.1 SINGLE TIME-DELAY

Consider once again the system

:v((tg = E$t,$t—7’) u,u(t — 1))

y(t) = ), z(t—7

o) = ¢(t), te |0 (4:26)
u(t) = wue(t), tel[-T,0]

and the np equations for the state-variables obtained by taking n — 1 time-
derivatives of the p output variables:

n(t) = ()=t -7))

w0 = w0, 2t = 1), (= ), u(),

o umA),
ult —(n— D7), ..., u" Dt - (n—1)7))
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up(t) = hy(a(t),z(t 7))

g () = BT ((t) et = 1), (= ), ult),

o o umTI), L
ult —(n—1D7),...,u" Dt - (n—17)) . (4.27)

For the n(n + 1) variables xy(t),...,x1(t —n7),...,2,(t),. .., To(t —nT) 0C-

curring above, we can obtain more relations by taking shifts of the equations

above to obtain a system with ’w equations. For each £k = 1,...,p we

have the @ equations:

ye(t) = hu(x(t), 2(t — 7))
M yn(t) = hp(z(t— (n—1)7),2(t — n7)

y @) = BV (@(t), . (= nr)),ult), ., w2 (),
out—(n—=171),.. ., u" (= (n—1)7))
5y,in_1)(t) = h,gn_l)(m(t —7),...,x(t —n1)),ult —71),... ,u(”_Q)(t —7),
ou(t—(n—=1)71),.. w2 (= (n—1)7))
u () = BO@) ot — 7).t — ) u(t), . a0,
ut —(n—D7),.. 0™ Dt —(n-11) . (4.28)

Gather all sets of equations of the form (4.28) for the different £ = 1,...,p.
Consider the Jacobian matrix for this system of algebraic equations for the
variables xy(t),...,z1(t = n7),...,2,(t),..., x,(t — n7), denoted by J. Let
the matrix J; consist of the columns of J corresponding to dz;, ..., dd"x; and
so J = [Ji|...|Jn)-

We can now formulate the main result in the following proposition:

Proposition 4.2 The variable x; is weakly observable if and only if
ranki[J1| ... [Jici|Jiga] - - | Jn) < rankgedJ . (4.29)
Proof: Denote by S7v7« the set
spang {dy (t = (j, = D7), dul™(t = (Gu = D7)}

fork=1,....p,r=1,....m{<n-1,35,=0,...,J,and j, = 1,...,Jy,
where J,, J, € N.
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If rankg[Jy| ... |Jic1|Jiz1]| .- - |Jn] < rankg[J], then there is a (nonzero)
linear combination of the one-forms dz;(t), ..., dz;(t — nT) which is in ™",
that is,

p n—1n—-1-1 m n—2n—1

ZA dz;(t—j1) = Z Z B]kldyk (t—j7 +Z E]klduk (t—j7)
k=1 1=0 j=0 k=1 =0 j7=0

(4.30)

for some Ay,...,A,+1, Bjr and Eji; € K. Then ;(0]dz; € Y, + U where
a;(6] = Y7y A;67 € K(d]. Thus the variable ; is weakly observable. Sup-
pose now that rankg[J/i|...|Ji—1|Jit1] ... |Jn] = rankg[J] and thus there is
no (nonzero) linear combination of the one-forms dz;(t), ..., dz;(t —n7) that
is in §™". Using this as a starting point, we will prove that x; is not weakly
observable by induction. Suppose that no (nonzero) linear combination of
the one-forms dx;(t),...,dz;(t — N7), N > n is in S¥M for some M > N.
We will show that no linear combination of dz;(t),...,dz;(t — (N + 1)7) is
in SM+LM+1 " For this, suppose that there is such a hnear combination and
thus, there exist Ay, .. AN+1 € K and Bjkl, E]kl € IC, such that

N+1 p n—1 M-I n—2

m M
gkldyk (t jT +Z Z jkldul(j)(t—jT).

=1 [=0 j5=0 k=1 1=0 j=0
(4.31)
Then
N ~ p n—1N-1-1 ~
§=0 k=1 i=0 j=0
m n—2 M _
+ Z Z jkldu,g)(t —J7)+
k=1 1=0 j=0
P n M—1 _
+ Z Bjkldyk)(t —Jj7) —
k=1 1=0 j=N-I
— Anpdri(t— (N+1D1) . (4.32)

Note first that the one-forms dx;(t — j7), 7 =0,..., N +1 and du,(f) (t—g7),
k=1,....m, 1 =0,....n—2,7=0,..., M are linearly independent. The
left-hand side in the above equation does not contain one-forms dx;(t—j7) for
J > N and thus, the right-hand side may not either. From the formulation
of (4.28), we know that the first two sums on the right-hand side may only
contain terms dx;(t — j7) for j < N and the same must be true for the rest
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of the terms, that is,

p
> Biady(t — j7) — Anyrda(t — (N 4+ 1)7) =

§=0 k=1 1=0 j=0
and therefore
N } ~ p n—1N-I ~
S (A - Apdai(t —jr) = > jridyy, (t = J7) +
=0 k=1 1=0 j=0
m n—2 M
+ Z Z(Eykl + Ejr)duy,’ (t — j7) (4.34)

Since the term

Bjdy (t — j7)

on the right-hand side may not contain one-forms du,(f) (t—Mt),k=1,...,m,
[=0,...,n—2 (because M > N), the other term on the right-hand side,

m n—2 M
Z Z Jkl—F ki duk (t—jT)
k=1 =0 j=0

may not either and we thus have

N ~ B p n—1N-1-]
Z(Aj — Aj)dz;(t — jm) = Z Z Bjkldyk (t—j7)+
7=0 k=1 1=0 j:()

m n—2 M-

k=1 (=0 j=0

Clearly, if not all of the coefficients flj — flj are zero, we have a nonzero linear
combination of the one-forms dx;(t),...,dx;(t — N7) which is in S¥M C
SMM  contradicting the assumption. If, instead, they are all zero and thus

p n—1N-1-1 m n—2 M
Z Z Z Bjk;ldy](j) (t — jT) + Z gkl +FE Kl duk (t — jT) =0,
k=

k=1 1=0 3=0 11 j:0
(4.36)

Il
=)
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then,
N+1 p n—1 M-I m n—2 M
ZA dr;(t—j7) = Z Z B]kldyk (t—j7) Z Z 7jkldui(§l)(t_]’7')-

k=1 1=0 j=N—I k=1 1=0 j=0

Taking into account that the term

D n M-I
YT Biudy! (¢ - jr)

k=1 1=0 j=N—I

on the right-hand side does not contain the undelayed one-forms dz; or
duj,j=1,...,m, we have

N+1

M
Z /Nl]dl'z(t—]T) = Z E_'jkldug) (t—]T)
7j=1

(]
Do
Z

U
<
T
T
<
2

I
(]

k=1 I=0 j=N—I k=1 1=0 j=1
(4.38)
The above equation can be written
N ~
0 07 (Ay)da(t — jr)) =
7=0
p n—1 M-1-I
= 5( 5*1(Bjkl)dyk (t—j1)—
k=1 1=0 j=N—1-1
m n—2 M-1
= D> (Ejw)duy (¢ — 7))
k=1 I=0 5=0
I
N ~
> (07 A)dai(t — jr) =
j=0
p n—1 M-1-1 ~
=> > 07N (Byw)dyy (t = jT) —
k=1 =0 j=N—1-1
m n—2 —1 ~
-3 SN E ) dul’ (t — j7), (4.39)
k=1 I=0 j=0

where all 6=*(4,), 6" Y(B;x) and 0~*(E;;) are in K. Thus, we obtain a
contradiction to the assumption in this case as well. By the principle of
induction, we now have that for the one-forms dz;(t), ..., dz;(t— P1), P > n,



26 4 OBSERVABILITY

there can be no nonzero linear combination of them which is in S%© for
Q) > P. Therefore, dz; ¢ V, +U and z; is not weakly observable. This
completes the proof of the proposition.

We conclude this section by observing that for analysing weak observabil-
ity, we need only consider the state-variables and their shifts that occur in
the n — 1 output derivatives (4.27) and these may be a smaller set than the
n(n + 1) variables z1(t),...,x1(t — n7),...,2,(t),...,2,(t — n7) considered
in the general case.

We will now demonstrate the calculations on the two simple examples
from subsection 4.2.2.1 and also show how the analysis can be automated,
allowing for the application of symbolic computation algorithms.

Ezample 1: An observable system
Consider once again the system

i1(t) = ot —7)+23(t)

To(t) = x1(t—7) (4.40)
y(t) = a(t—1)
Taking n — 1 = 1 time-derivative of the output function, we obtain the
equations
y = ox; (4.41)
y = Fxg+ (011)* . (4.42)

For the variables occurring above, we can get one more equation by consid-
ering a shift of the first equation:

Sy = 6%, . (4.43)

We will now rename all x and y,  variables occurring in the equations above
according to the following scheme:

210 ‘*— X1, 211 = 5%1, zZ12 = (521‘1 (444)
290 ‘= X9, Z91 = (SIQ, Z99 = (52.1’2 (445)
and
Yoo ‘=Y, Yo1 =0y (4.46)
Y10 ‘= y . (447)

We therefore have the following algebraic system of 3 equations for the 3
z-variables:
Yoo = Zu (4.48)
Yo = Z12 (4.49)
Yo = 2tz - (4.50)
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Consider the Jacobian J = [Ji|.Jz]. J; consists of the columns of J corre-
sponding to the one-forms dz, ..., dz; occurring in the linear form of the
above algebraic system, and thus J; includes the columns corresponding to
dz11,dz12 and Jy consists of the column corresponding to dzos. We have

dyoo 1 00 dZH
dyOI = 0 10 d212 (451)
dy10 2z;1 0 1 dzao
and
1 00 1 00
0 1 0|~]0T10 (4.52)
2211 01 0 01

We see that the rank of the matrix is 3. If we remove the first 2 columns
corresponding to z11, 212, it becomes 1, and if we remove the second group of
1 column, that for 295, we get rank 2. Thus both x; and x5 are observable.

Ezxample 2: An unobservable system
Consider once again the system

l‘l(t) = $1(t—T)+U(t)
y(t) = a1(t) + 22(t)
We have the equations
y = 1+ T (4.54)
y = O0x1+ 0 +u . (4.55)

Observe that for the variables occurring above, we get one more equation by
taking delays of the equations above

0y = 0wy + 0wy 0%y = 0%x + 6%xy . (4.56)

We change variables as in Example 1

Z210 - — X1 211 = 5I1 zZ19 = 521‘1 (457)
290 :— X2 Z91 = 5.1'2 299 = 52372 458)

and
Yoo =Y Yo =10y (4.59)

Yio: =Y - (4.60)
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We therefore have the following algebraic system of 3 equations for the 4
z-variables

Yoo = Z10t 220 (4.61)
Yor = Zunt 2 (4.62)
Yo = Z11 +2zo91+u . (463)

The Jacobian with respect to the z-variables is given by

Yoo 1010 ZZN
dyor =010 1 dz“ (4.64)
dyio — du 0101 20

dzo

Here the rank of the matrix does not change when we remove groups of
columns corresponding to z;,...,20, ¢ = 1,2. Thus, z; and x, are not
observable.

4.3.2 MULTIPLE TIME-DELAYS

Consider once again the system

i(t) = f(z(t), t—Tl ca(t— 1), uu(t — 7). u(t — 7))
y(t) = h(z(),z(t —7),...,2(t — 7))
z(t) = ¢(t), te|[—max; TZ,O]
u(t) = wue(t), tel[-T,0]
(4.65)

We introduce the following notation: xj;(¢) denotes all the variables of type

l l
w(t =Y i), e, Y iy <i
j=1 j=1

and analogously for v and its derivatives. This notation is found to be useful
after observing that each time-derivative of an output function y; introduces
only one new delay in each state variable and input derivative, a delay chosen
from the 7;:s, ¢ = 0,1, ...,/ where 7y is used for the identity, or zero delay.
With this new notation, the np equations for the state-variables obtained by



4.3 Analysis of an algebraic system 29

taking n — 1 time-derivatives of the p output variables can be written:

n® = o (®)

WO = by ®. g0 .. )
o) : P (g (), g (1), -5 (1)

i) = Aoz (®)

yIE) = D (a8, w8, - uli (). (4.66)

For the n("y) variables x1 (%), . .., %y, (t) occurring above, we can obtain
more relations by taking shifts by the different ; of the equations above to
obtain a system with p>"" | (2) equations. For each k£ = 1,... p we have
the >, (}) equations:

ye(t) = hi(z(t))
§1yk(t)

|
>
ol
—~
=
=
~
~
|
iy
SN—
~—

L
O oPu(t) = hi(rm®), >0, Y ij<n—1
j=1

n— n— n—3
) = T (e () upy (1), ule ) (1))
a2 () = T (@t — ) g (1), -l o) (8 — 7))

n— n—2 n—3
chy/l(C 2) (t) = hé )(x[n,l](t — Ty)s Upn—g) (t — T2), - .. ,u[(nfm)(t =)

w1 = BT (@) ey (1), ul D (@) (4.67)

Consider the Jacobian matrix for the above system of algebraic equations for
the variables 21 (%), ..., %n,n)(t), denoted by J. Let the matrix J; consist of

the columns of J corresponding to dz;, d(6,2;), . ..,d(01 ... 0y x;), 25:1 i; <
n, (these one-forms are also denoted by dz; ,,)(t)) and so J = [Ji]...|J,].
The main result is the same as for systems with a single time-delay (see

the previous subsection):
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Proposition 4.3 The variable x; is weakly observable if and only if
ranki[J1| ... [Jici|Jiga] - - | ) < rankgdJ . (4.68)

The proof of this proposition is an extension of the one for a single time-delay
in the previous subsection. Nevertheless, we present it here in full detail for
completeness:

Proof: Denote

l —
spanyc{dyy |, _y(t), duf ;)\ (), k=1,...,pl <n—1}

by §7v/» where J,, J, € N. As previously, by dy,g{)[j} (t) we mean all one-forms

of type
l l
dyy) (t = isr), i €LY, Y i<
s=1 s=1

and analogously for u and its derivatives.
If rankc[J1]...|Jic1]|Jiv1]- .. |Jn] < rankg[J], then there is a (nonzero)
linear combination of the one-forms dx; ,(t) which is in S™", that is,

i Ajdz;(t —gT) = (4.69)

Js=0

[y

n—1n—1-1 n—2 n—

= Z Z Jkldyk (t—g71) +Z Jklduk (t—g1)

Il
o
<

s

for some A; € K, = (j1,---,7Je), 0 < js < n, Bj and Ej; € K. Then
a;(0]dz; € ¥, +U where a;(0] =37 _ A;87 € K(8]. Thus the variable z; is
weakly observable.

Suppose now that rankg[Ji]|...|Ji—1|Jit1]|...|Jn] = rankg[J] and thus
there is no (nonzero) linear combination of the one-forms dx; [, (t) that is
in §™". Using this as a starting point, we will prove that x; is not weakly
observable by induction. Suppose that no (nonzero) linear combination of
the one-forms dz;n)(t), N > n is in S¥ for some M > N. We will show
that no linear combination of du; y1)(t) is in SM M+ For this, suppose
that there exist flj ek, j=01,-,J0),0<js < N+1and BJkZ,EJkl e,
such that

N+1 p n—1 M-I m n—2 M
ZA dr(t—j1) = Z Z Jkldy,(f)(t—j'r)—f—z Z Jklduk (t—gT).
7s=0 k=1 1=0 js=0 k=1 1=0 js=0

(4.70)
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Then,

N p n—1N-1-]

Z Ajdry(t —jT) = Z Z Z Bjudy, (t — §7) +
o 11=0 js=0
n—2 M

+ ZZZEﬂklduk (t—g7)+

1 1=0 _]s =0

FYS Y Babe-in -

k=1 =0 maxsjs=N—1

- > Apdai(t - jT). (4.71)

maxsjs=N-+1

<
P

|
o
i

3

e
Il

S
,_.

Note first that the one-forms da; v 1(t) and duy )y, (t), k = 1,...,m, | =
0,...,n—2 are linearly independent. The left-hand side in the above equation
does not contain one-forms dx;(t — j) for j = (j1,...,j¢), maxsjs > N and
thus, the right-hand side may not either. From the formulation of (4.67), we
know that the first two sums on the right-hand side may only contain terms
dx;;(t) for j < N and the same must be true for the rest of the terms, that
is,

P n—1
Z Z Bjkldy,(f) (t—g7)— Z Ajdxi(t —g7) =
k=1 [=0 maxsjs=N—I maxsjs=N+1
N m n—2 M B
=D Admilt—gr)+ >3 Y Budu(t=j7)  (472)
j=0 k=1 I=0 j=0
and therefore
N p n—1N—1-I
2:(14J Aj)daz;(t — 5T) Z Z Jkldy() t—g7)+
js=0 k=1 1=0 js=0
m n—2 M B
+Y DD (B + Eya)dwy (t - §7) (4.73)
k=1 =0 js=0
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may not contain one-forms dug)(t —j7r), k=1,....m, 1 =0,...,n—2 for
max,js > M (because M > N). Therefore, the other term on the right-hand
side,

m n—2 M

Z Eju + Egkl)duk (t—g7)

=0 js:(]

i
I

may not either and we thus have

N . - p n—1N-1-1
Z(A] Aj)dxi(t —jr) = Z Z szdyk (t—Jg7)+
js=0 k=1 =0 js=0
m n—2 M-1 B
+)° (Ejp + Eji)du,) (t — j7) (4.74)

Clearly, if not all of the coefficients A; — A; are zero, we have a nonzero
linear combination of the one-forms dx;yj(t) which is in SV < SMM,
contradicting the assumption. If, instead, they are all zero and thus

p n—1N-1-1 m n—2M-1
Z gkldyk (t—g7) —l—ZZZ Eju+E klduk (t—g7)=0,
k=1 1=0 js=0 k=1 1=0 js=0
(4.75)
then,
N+1 p n—1 M-l )
> Agdai(t=3T) = ) Bjudy{(t - jr) -
3s=0 k=1 1=0 maxsjs=N—I
m n—2 M
=200 Bjudu (t — ). (4.76)

n—2 M p n—1

1

Z Z Ejkldu,g (t—37)+ ZZ Z ngld?/k (t—g7)—
k=1 [=0 mingjs=1 k=1 [=0 mingjs=0
2

Z Ejkldug t—jT Z A dZL‘Z )} (477)

k=1 =0 mingjs=0 mingjs=0
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The terms in the square brackets must sum up to zero and thus,

N+1 ~ p n—1
> Ajdui(t—jT) =) > Z BjrdyV(t — j7) —
mingjs=1 k=1 [=0 mingjs=1

m n—2 M

- Z Z Ejkzdu,(f)(t —J7) . (4.78)

N
b1 (D0t oy (Ag)da(t - ) ) =
o0
p n—1M-1-1 R
— 5 ,5£( ST oot o7 (Biw)dy (8 — g) +
k=1 1=0 j.=0
m n—2 M- B
- o7t (Eg)duy) (t — JT)) ,
k=1 1=0 js=0

N
> ot o7 (A da(t — jT) =
js*o
p n—1M-1-1 _
_ ot 07 (B dy (¢ — ) +
k=1 1=0 js=0
m n—2 M-—1 B
-3 570 (B dulV (¢ — Gy (4.79)

where all 6;71... 0, (4;), 67 ...0, (Bji) and 671 ...6, (E;y) are in K.
Thus, we obtain a contradiction to the assumption in this case as well. By
the principle of induction, we now have that for the one-forms dux; p(t),
P > n, there can be no nonzero linear combination of them which is in S@?
for @ > P. Therefore, dx; ¢ ), +U and z; is not weakly observable. This
completes the proof of the proposition. H

We will now demonstrate the calculations on the simple example from
Paragraph 4.2.2.2 and also show how the analysis can be automated, allowing
for the application of symbolic computation algorithms.
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Example 1: An observable system
Consider the system

i = it —T1)r(t—T) +u
[tg = ZL’l(t - TQ) (480)
y(t) = x(t—m)

Taking n time-derivatives of the output function, we obtain the equations
y = oy (4.81)
y = (5%1‘2)251521'1 + 51u . (482)

For the variables occurring above, we can get two more equations by consid-
ering shifts of the first equation:

51y = (5%1'1, 52y = (51(5233'1 . (483)

We will now rename all x and y, y variables occurring in the equations above
according to the following scheme:

Z100) = T1,  21(10) = 01T1,  Z1(2,0) 1= 0121
21(0,1) = 01, 21(0,2) = 53551, 21(1,1) = 010221
22(0,0) += T2, 22(1,0) += 0122, 22(2,0) *= 5%@
<2(0,1) +— 029, 22(0,2) *= 55%7 22(1,1) * = 01022 (4-84)

and

Yo0.0) =Y Yo(r0) = 01y, Yo(,1) 7= 02y
b0 =Y, (4.85)
and analogously for the occurring u-variables.

We therefore have the following algebraic system of 4 equations for the 4
variables z:

Yo(o,0 = 21(1,0)
Yo(1,00 = Z1(2,0)
Yo0,1) = Z1(1,1)
Y1000 = 23(2,0)21(1,1) + ug(1,0) - (4.86)

Consider the Jacobian J = [J;]J2] (J; consists of the columns of J corre-
sponding to dz; of the algebraic system above

dyo(0,0 100 | 0 dz1(1,0)
Yo(1,0) 1010 | 0 d21(2,0)
Yo(0,1) 001 | 0 d21(1,1)
Y1(0,0) — duo(1,0) 00 23(2,0) | 22021011 dza(2,0)

(4.87)
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We see that the rank of the matrix is 4. If we remove the first 3 columns
corresponding to z1(1,0), 21(2,0); 21(1,1), it becomes 1, and if we remove the
second group of 1 column, the one for 23,0 we get rank 3. Thus both
z1 and x4 are observable.

4.4 IDENTIFICATION OF A SIMPLE EXAMPLE SYSTEM

In this subsection we will see how the initial function can be identified from

the output for a simple example system. The calculations also give an indi-

cation of the least amount of time over which the output has to be observed

for the system to be identified, as discussed in Verduyn Lunel (2001). For

this subsection, we will restrict the class of initial functions to analytic ones.
Consider a simple example, taken from Verduyn Lunel (2001):

©(t) = ax(t)+bx(t—1)
y(t) = =(t) (4.88)
z(t) = o(t), tel-1,0]

Let us first verify that this system is weakly observable. Taking the first
two time-derivatives of the output, we obtain the following equations for the
three unknowns:

y = (4.89)
y = ax+bi(x) (4.90)
i = alax +b5(z)) + b(ad(z) + bd*(z)) . (4.91)
Thus,
dy 1 0 0 dx
dy | = | a+bé x d(x) da
djj a® + 2abd + b*6% 2ax + 2b6(x) 206(x) + 2b6%(x) db .
(4.92)
Row elimination over K(0] gives:
10 0 1 00
0 z d(z) ~ 10 x §x)
0 2az +2b6(x) 2b6(z) + 206%(x) 0 0 2(b—a)i(x)

(4.93)
The last matrix is generically of full rank and the system is weakly observable.
We now proceed to the actual identification of the two parameters a and b
and the initial function ¢. Evaluating the output time-derivatives at time 1
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gives
y(1) = a() (494)
(1) = ax(1) 4 bx(0) = ay(1) + by(0) (4.95)
§(1) = az(1) +bx(0) = ay(l) + by(0) . (4.96)

(4.97)

¢ . (4.98)

y(0) = ¢(0) (4.99)
9(0) = ay(0)+ bp(—1) (4.100)
9(0) = ay(0) 4+ bp(—1) (4.101)

which give,
, G+ (0) — qu@)
S0 (1) = L0 — - (4.102)
for 7 > 0. Since ¢ is assumed to be analytic, we have
a Ie=/(t+1)771  alt+1)7y
)= =590+ 3 (5 e PRI 4103
o =0+ 33 (G - o o

and the initial function is uniquely defined, too. The last equality also gives
a relation for a and b:

W) = ¢0) = =530+ 33 (=5~ )70
)
1 &, 1 a, .
b = et o ;<(j—1)!_ﬁ)y()(o) : (4.104)

Observe that the values of the parameters a and b were obtained using values
of the output and its derivatives at time 1. In fact, unless the output is
observed over an interval with length greater than 1, the system cannot be
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identified (see (Verduyn Lunel, 2001) for a more general analysis of linear
systems). To illustrate, fix a® = 8° = 1, ¢°(¢) = 1. Then, y(0) = ©°(0) =1
and y(0) = 2 from (4.89)-(4.91). We will now find another set a',b' and
o' which produces the same output. Equation (4.104) gives

- 1 al =1
r _ 1 7 _ 1 R
b = —a +Z(7(j_ ] j!)2 2a Zj! =
j=1 j=1
= —a'+2—2a'(e—1)=2ec+a'(l—-2e) . (4.105)
We have
1 o ] 1 1 J
) a 2 ( a'(t+1) )
t g _— —_— — ey
a T Z: G — 1 ;1
a2 ot 1/ t+1 2(1 —a') t+1 a'
= _bl+bl( —a'(e _1)):Te + 77 (4.106)

For any value of a', choosing b' and ¢! according to the above equations
will give exactly the same output in the interval [0, 1]. For example, one can
choose a' = 0, b' = 2e and ¢'(t) = ¢’ as in Verduyn Lunel (2001), or a' = 2,
b' =2 —2e and p'(t) = 5.

As an illustration, we have simulated the output for this system for two
different choices of a,b and ¢, see Figure 1.

()

Figure 1: The output y(t) for the choices a® =10° =1, ©° =1 and o' = 2,

' =2 —2e and p'(t) = 5<
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In conclusion, for delay systems, there are lower limits to the interval of
time over which the output has to be observed for the identification of the
state-variables and parameters of an observable/identifiable system. This
lower limit applies even in the theoretical error-free data case, and thus
presents a difference between delay- and ODE systems.
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5 STATE ELIMINATION

5.1 EXISTENCE OF INPUT-OUTPUT REPRESENTATION

In this section we consider the problem of obtaining an input-output rep-

resentation from the state-space form of a time-delay control system. This

problem has been treated for polynomial systems by Forsman et al. (1994).
We will show that for a system of the form

i(t) = flz@),z(t—7),....2x(t —70),u,ult —7),...,u(t — 7))
t) = hzt),z(t —7),....2(t — 7))
t% = ¢(t), te[—max;7;,0]

(
(
(t) = wo(t), te[-T,0] ,

Q

(5.1)
there always exists, at least locally, a set of input-output differential equations
of the form:

F,y,....,y" u,...,u)) =
= F(y(t - 7:07-)7 s 7y(k)(t - ’LkT)7u(t - jOT)v R au(J)(t - le)) = 07

such that any pair (y(¢),u(t)) which solves the original system, also satisfies
(5.2). The function F' is meromorphic in its arguments.

Theorem 5.1 There exists an integer J > 0 and an open dense subset V of
C x Cé“, such that in the neighborhood of any point of V, there exists an
input-output representation of the system of the form (5.2).

Proof: The proof is an adaptation of the proof of Theorem 2.2.1. in Conte
et al. (1999) for the analogous result for ODE-systems.

Let f be an r-dimensional vector with entries f; € K. Let % denote the
r X n matrix with entries

of\ of;
(%)jf k o k) € Kl (5.2)

Denote by s; the least nonnegative integer such that

Ohy, ... W Y) O(hy, ..., W)
aaj 8x

If % = 0 then we define s; = 0. Inductively, for 1 < ¢ < p denote by s; the
least nonnegative integer such that

Ohy,... B Y by R
rank,c((;] ( 15 ! ) ) iy ) 1Y ):

P
Ohy, .. WY gy RS

rank;c(g] = rank;c(g] (5.3)

= rankyg)
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Let
S =(hy,... b\ Ry (5.5)

op
where h; does not appear if s; = 0 (unless all h;:s are constants, at least one
s; will be greater than zero). Then

oS
rank;c(g]a—x:sl+~--+sp:[(§n . (5.6)
If K < n, there exists a set of meromorphic functions ¢, (8, ), ..., g,k (5, x)
a(Saglv'n’gan)

such that rankj s o =n.

For simplicity, introduce the notation

( .i'l = hl
jﬂ _ hgs1—1)
5:51+1 - h2
:Z's1+52 = hé@il) (57)
~, sp—1
Ty qots, = hz(jp )
Tsy+tsp+l — 01
\ 5777/ = gn—K
The one-forms dz;, i =1,...,n now form a basis of X. The definition of
(s4)
s; (equation (5.4)), together with part (3) of Lemma 2, implies that ahgx is
in
Ohy, ... WY kg T
Span,c((;]{ ( ! am . (58)

Thus there exist nonzero polynomials b;(8] € K(6], i = 1,...,p such that
s . .
b;(6] =+ is in

ox
AOhy, ... WY g, R
Spanzc(a]{ & . o )} : (5.9)

Therefore

m J
bi(8)dh!™ + Z Z cjr(8)dul? € spang g {dis, ..., dTsys, ) 5 (5.10)

r=1 j=0
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for some J > 0, where J is the highest derivative of u appearing in the
functions in S and ¢, (8] € K(4].
Hence,

m 2
bi(8)dh{™ +> " ¢ (8]dul) — a;(8)di; =0 | (5.11)

r=1 j=0 j=1

for some a;(d] € K(6]. Since all functions are assumed meromorphic and we
have continuous dependence for the output on the input and initial function,
the above equality holds on an open dense set of C' x C’[‘}H.

The left hand side of equation (5.11), being equal to zero, is a closed one-
form on M. Applying the Poincaré lemma (see subsection 3.2.4), we obtain
functions &;(t) € K such that

m J S1+-+5;
d; = bi(é]dhgsi) + Z cj7r(5]du$j) — Z a;(0]dz;
r=1 j=0 Jj=1

and
fi(éthSi)7j>ua---7u(J)) =0 )

foreacht=1,...,p.

The function & does not depend on Z;, j > s; + -+ + s;, since d§; = 0
would then contain terms dZ;, j > s; + - - -+ s; which is impossible by (5.11)
due to the variables dZ being linearly independent over C(d] by definition.
Thus, we have obtained a relation

E(8, 1) Fy, L Frgy Uy uD) =0 (5.12)
which together with (5.7) produces an input-output equation
S s1—1 s;i—1
gz(éayz( )791,---&9%1 )aylvayz( )7U,...,U(J)):O . (513)

This is true for each 7,1 < i < p resulting in p input-output equations of the
form (5.2). &

5.2 ALTERNATIVE DERIVATION

Here we obtain the same result using an algebraic system derived from the
original delay-differential equations. This has been done for polynomial sys-
tems by Forsman et al. (1994).
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5.2.1 SINGLE DELAY

Similarly to what was done in Section 4.3, consider the (n + 1)p equations
for the state-variables obtained by taking n time-derivatives of the p output
variables.

yt) = ha(z(t),z(t=7)) (5.14)

v\ (1) _ W (w(t), z(t — 1), ... 2t — (n+ 1)7), (5.15)
u(t), ..., u™ V@), .. ut —n7), ..., u"Y(t —nr))

w(t) = hy(a(t),a(t — 7)) (5.16)
y(t) = B (), (t —7),... 2t — (n+ 1)7)), (5.17)

u(t),...,u™ V@), .. ut —n7),. .., u" V(- nr))

For the n(n + 2) variables z1(t),...,z1(t = (n+ 1)7),...,x,(t),..., x,(t —
(n 4+ 1)7) occurring above, we can obtain more relations by taking shifts of

the equations above to obtain a system with pnt1)(nt2) equations. For each

k=1,...,p we have the % equations: :

u() = ha(z(t),2(t — 7)) (5.18)
NMye(t) = hgp(x(t —n7),z(t — (n+1)7) (5.19)
gy = BTV, ot —nr))u(t), . u I, (5.20)

coult—(n=1)T1),... ,u(”_l)(t —(n—1)1))
sy V) = A"Vt —7),. . a(t— (n+1)7)), (5.21)
ut —7),...,u" V=7, ult —nr), . u"I(E = nT))
gy = h"@@), 2t —1),.. . 2t — (n+ 1)7), (5.22)

u(t),...,u™ V@), .. ut —n7),. .., u" Yt —nr))

In equation system (5.18)-(5.23), taking one more shift in y,gl), [=0,...,n
leads to m new variables (one new shift of each z;) but adds n + 1 new
. . . 2
equations for them. By choosing ¢ as the least integer larger than “—="+2

2 Y
and shifting each y,(cl) (t) ¢ — 1 times, we get a set of equations for the n(q+ 2)
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variables x;(t),...,x;(t — (¢ + 1)7), ¢ = 1,...,n which is larger than the
number of unknowns

u(t) = hi(z(t),z(t — 7)) (5.23)
yr(t) = hp(x(t —qr) 2t = (¢+1)7)) (5.24)
y,gn)(t) : h,gn)(x(t), x(t—7),...,x(t—(n+1)71), (5.25)

u(t),...,u™ V@), .. ut —n7),. .., u" V(- nr))

oy = WPt —(g—n)7),. @t = g+ 1)7), (5.26)
u(t— (g —n)71),... ,u("_l)(t —(g—n)71),...,u(t —qr),
.. ,u(”*l)(t —qr))

The number of equations is now (n + 1)(2¢ — n + 2)/2 > n(q + 2) for the
chosen integer q. Thus, there is a linear dependence among the one-forms
dy,il)(t—jT),l =0,...,n,7=0,...,¢ — [ and duz(»l)(t—jT),z' =1,....,m,l =
0,...,n—1,5=0,...,qfor each k. Applying the Poincaré Lemma we obtain
meromorphic functions &, £ = 1,...,p such that

&k(u,y) =0, (5.27)

where u,y denotes all the variables y,(f) (t—7g7),0l=0,...,n,j=0,....k—1
and ugl)(t—jT),i: 1,....mI1=0,....n—1,7=0,...,q for a given k. We
thus obtain p input-output equations for the system (3.1).

5.2.2 MULTIPLE DELAYS

For completeness, we verify that the alternative derivation also works for the
multiple delay case. Consider once again the system

i(t) = flz@),z(t—7),....2x(t —70),u,ult —1),...,u(t — 7))
y(t) h(l’(t),ilj'(t—Tl),...,l'(t—Tg))

z(t) = ¢(t), te[—max;7;,0]

u(t) = we(t), tel[-T,0]

(5.28)
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and the (n+ 1)p equations for the state-variables obtained by taking n time-
derivatives of the p output variables:

yi(t) = h(ap(t)) (5.29)
WW>; h (g (), g (), ufy (1) (5.30)
™ (1) _ R (g (8), gy (), -l (1)) (5.31)
) = ho(a(®) (5.32)
y," (1) - B (@) () gy (1), - up V(@) (5.33)

where, as in Section 4.3, x}; (t) denotes all the variables of type x(t—ijl 5Ti),
i; € LT, Z§=1 t; < 1 and analogously for u,y and their derivatives.

For the n("i}“) variables 1 [,11](f), ..., ¥n 1) (t) occurring above, we
can obtain more relations by taking shifts by the different 9; of the equations

above to obtain a system with p>_ "' (!) equations. For each k = 1,...,p
we have the Z?Jrll ( ) equations

u(t) = h(a(t)
Oys(t) = Pzt —m))
o ofu(t) = hi(zpgg(@), =0, > i <n
j=1
u ) = B (), w8, ule (1) (5.34)
o) = Y (= ) g (=) (- )
5gy(n 2 (t) = h,(:_l) (x[n} (t = 70), up—1)(t = 72), - - ,uE: 1]) (t — 7'4))
?J/E;n)( ) = h](gn) (x[n-‘rl} (t)7 Un] (t)a cee 7“%2}_1)(15))
Starting from the equation system above, for each £k = 1,...,p, taking one

more shift by each 7;, ¢ = 1,...,/ in each y,(cl), [ =0,...,n leads to nf new
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variables (¢ new shifts of each z;) but adds (n + 1)¢ new equations for them.
Clearly, by repeating this procedure enough times, we will get a system with

more equations than unknowns. Hence, for each £ = 1,...,p, we will then
have a relation among the different yl(j)[j] (t),l=0,...,n,j € Nand dugr[)s] (1),
i1=1,....m,r=0,...,n—1, s € N. Each such relation is an input-output

equation for the system (5.28).
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6 IDENTIFIABILITY OF TIME-LAG PARAMETERS

6.1 IDENTIFYING DELAY PARAMETERS FROM EXPLICIT
INPUT-OUTPUT EQUATIONS

In the previous section, it was shown that external input-output represen-
tation exists for time-delay systems with discrete time delays. If the input-
output equations can be obtained explicitly, the time-lags can in some cases
be calculated directly from data of the output and its time-derivatives. In
this section we demonstrate how this can be done on simple examples.

6.1.1 SINGLE DELAY

Ezxample 1:

We start by an example of a simple delay model with a corresponding input-
output structure for the purpose of parameter estimation. The model has
two state variables, z; and x5, two regular parameters k; and ks, and one
time-lag parameter, 7. The controlled input variable is denoted by u and the
measured data by y. Initial conditions have to be defined for the input, ug(t),
and the and state variables, ¢(t). In the case of delay differential equations,
these are functions describing the history of the system at least 7 units back
in time. All parameters and initial conditions for the state variables are
unknown, but we assume that 7 must take values in the interval [0, 7], where
T is known.

t) = kl.’L'Q(t — T) + U(t)

.1'1(

.Tg(t) = kg.TQ(t — T)

y(t) = z(t) (6.1)
x(t) = @), te[-70]

u(t) = we(t), tel-T,0]

By taking time derivatives of the output at a given point in time, we obtain
equations for the state variables and parameters:

yO(t) = kakjwa(t —37) +ii(t)

From the above equations, we can extract an external input-output repre-
sentation of the system, given by the input-output equation

(§(t)—alt)) (G(t—r)—a(t=7)) = (y® () —(t) (§(t—7)~u(t—7)) = 0. (6.5)
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Since the input and output are known functions of time, evaluating the above
equation at a chosen point ¢, in time enables us to calculate the time-lag
parameter 7, for example, by numerically finding the zeros of the function

So(r) = (i(to) — (to)) (ii(to — 7)) —i(to — 7)) —
= (¥ (to) = iilto)) ((to — 7) — u(to — 7))

of 7. Note that t; should be chosen so as to ensure the continuity of all
involved derivatives, in this case ty > 37

As an illustration, we have used the dde23.m differential equation solver in
Matlab (Shampine and Thompson, 2001) to simulate an output for the above
system. We chose k; = —2,ky = —3,01(t) =t + 1,09(t) = > + Lu(t) = ¢
and 7 = 1 and plotted the output of the system (left-hand side) and the
function

&(1) = (4i(6)—u(6)) (ii(6—7) —u(6—7)) — (¥ (6)—ii(6)) (§(6—T) —u(6—7))

for 7 in the interval [0, 2], see Figure 2. As expected, this function takes the
value zero for 7 = 1.

A plot of y(t) A plot of the function EG(T)

50

6000
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3000

2000

y(®

1000

-1000

—-2000

-30 : : : -3000
0

Figure 2: The output y(t) and the function (7).
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Of course, to use this identification procedure, one needs to be able to
measure the output time-derivatives with reasonable accuracy. Methods for
the estimation of output derivatives can be found, for example in (Mboup et
al., 2007).

On the other hand, it can be the case that the input-output equations of
a system do not contain 7 at all. Then there are infinitely many values that
produce the same output and 7 cannot be identified from the available data.
This is demonstrated by the following example:

Ezxample 2:
(t) = a3(t—71)
ia(t) = wa(t)
6.6
W) = () 60
a(t) = @), tel-7.0]
Calculating time-derivatives of the output function as above, we obtain
y(t) = a3(t—7) (6.7)
G(t) = 2zt —1))* . (6.8)

An output equation of lowest degree (of derivation) for the above system is
§(t) — 2y(t) = 0, which does not involve delays of the variables. We can
see that 7 is not identifiable for this example, by observing the following
symmetry involving the functions of initial conditions ¢ and 7. For any
choice of 7, setting

902<t) = et 5 S [_7-7 0] 5

{ i) = e (6.9)
where c is a constant, leads to the solution

{ n(t) = S +e—3 (6.10)

xo(t) = et

for all ¢ > 0. Since y(t) = x1(¢), it is clear that 7 cannot be identified from
the output.

6.1.2 MULTIPLE DELAYS

Ezxample 1:
Consider the system
£l31<t) = —I'Q(t — 7'1)
.Z‘2<t) = l’1<t — 7'2)
n(t) = o) (6.11)
ya(t) = z2(t —72)
.Cl?(t) = Sp(t)7 te [_Ta O]
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We have

’yl(t> = —SL’Q(t - 7'1) (612)
Git) = —zi(t—71 —72) (6.13)

and the explicit input-output equations

ih(t) = —pt—71—1) (6.14)
ya(t) = —u(t—m+mn) | (6.15)

from which we can calculate the values of the two time lags. To illustrate,
we proceed exactly as in Example 1 of the previous subsection by solving
the system numerically for the values 71 = 1, 72 = V2, ¢1(t) = ¢! and
wa(t) = t + 1. We then plot (71 + 7))y, == §1(to) + y1(to — 71 — 72) and
wo (T —71) |ty = y2(to) +91(to — 2 +71) for tg = 4. As expected, the functions
are zero for 1y + 7 = 1++v/2 and 7» — 71 = v/2 — 1 and locally these are the
only roots, see Figure 3.

-1 0 1 2 3 4 -1 -0.5

Figure 3: The functions p1(m1 + 72)|s and ps(72 — 71)|4.
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Globally, there are also other roots for ps(7o — 71) that can be seen in
Figure 3. They can be discarded in this case by analysing the zeros of

. d .
M2(T2 — Tl)|t0 = %(?h(t) + yl(t — T2+ Tl))|to

(and other subsequent time-derivatives of ). The correct value of 5 — 7
must be a zero to all of these functions. In Figure 4 we have plotted the

function

fa(r = )l 1= 5 (a(8) e = 7+ )l

drdit(p,)

Figure 4: The function fia(me — 1) for to = 4.

6.2 LINEAR-ALGEBRAIC CRITERIA

Clearly, it is only feasible to calculate explicit input-output equations for
systems with few variables and parameters. Another method is needed for
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analysis of the identifiability of the delay parameters. For the actual calcu-
lation of their values, we will rely on other existing methods for parameter
estimation, see for example the book by Banks et al. (1989).

In this section, we give a formal definition of the identifiability of the time-
delay parameter(s) and present linear-algebraic criteria to test this property
without explicit calculation of the input-output representation of the system.
The detailed derivations can be found in Paper II for the single delay case
and in Paper IV for the multiple delay case.

6.2.1 THE SINGLE DELAY CASE

Let us consider the case of a single time-delay parameter:

xgtg = ggxgtg, xgt — Ti, u, ugt — TB

Yyit) = z(t),x(t —7),u,u(t — 7

©t) = plt), te|-1.0 (6.16)
u(t) = we(t), tel[-T,0]

6.2.1.1 DEFINITION OF IDENTIFIABILITY

The property of local identifiability of the delay parameter 7 is defined
as follows:

Definition 6.1 The delay parameter T is said to be locally identifiable at 7y €
(0,7T) if there exists an open set W > 19, W C [0,T), such that VY7 € W :
T1 # To, Yo, o1 € C, there existty > 0 and u € Cy such that y(ty, 1, u, 1) #
y(to, o, u, 7o), where y(t, v, u,7) denotes the parameterized output for the
wnatial function ¢, the admissible input v and delay 7. The delay parameter
T is said to be locally identifiable if it is locally identifiable for all o € (0,T).

6.2.1.2 CRITERIA

In this subsection, we show that the local identifiability of 7 in (6.16)
depends on whether it is present in the input-output representation of the
system. The latter can be decided in one of two ways: the first is by the
occurrence of a delayed input variable in the time-derivatives of the output
functions; the second is by a linear-algebraic criterion involving rank calcu-
lation for the set of gradients of the outputs and their time-derivatives over
K and over K(9].

The presence of 7 in the input-output representation of the system can
be defined formally in terms of § (using the definitions from the previous
section, Subsection 5.1):
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Definition 6.2 An input-output equation ¢(5,y,...,yY, u,...,u®) =0 is
said to involve & in an essential way if the meromorphic function ¢(...)

cannot be written as c(8]é(y, ..., yW, u, ..., u®) with c(§] € K(d].
We have the following result:

Theorem 6.1 Given a system of the form (6.16) and the set S defined in
Subsection 5.1, there exists an input-output equation

¢(57y7-"ay(l),U,...,u(k)):0 ,

that involves 0 in an essential way if and only if (i) or (ii) below are satisfied.
@)
i. %#Oforsomelgigp,Oéjgsi,521, 1<r<mand
k >0, i.e. a delayed input-variable u&k) occurs in some of the functions
in {S,h{, . hS

(s1) (sp)
. as,h* Y
1. rank;c(g]% #* rank,gw

The next result connects the essential-way dependence of the input-output
representation of the system on the delay parameter to the identifiability of
the latter:

Theorem 6.2 Given a system of the form (6.16), T is locally identifiable if
and only if there exists an input-output equation ¢(5,y,...,yV, u,...,u®) =
0, that wnwvolves 6 in an essential way. If T is not locally identifiable, system
(6.16) can locally be realised as an ODE-system.

The proofs of Theorem 6.1 and 6.2 can be found in Paper II. There we also
show that if the delay parameter is not identifiable, the input-output equa-
tions for (6.16) locally represent a system of ordinary differential equations.
Recall the notation from Subsection 5.1:

( .il — hl
"Z‘sl = hga_l)
Ts41 = hy
~ so—1
1:814»82 fr— hg 2 ) . (6.17)
~ sp—1
Ofs1+~~»+sp = h](g :
Lsi4-tsp+l = G1
j'n = On-K
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If the delay parameter in system (6.16) is unidentifiable, then the following
ODE-system has the same output as the original system (6.16) (modulo the
output functions h; for which s; = 0, hence the p below; they are, however,

dependent on the rest and thus also the same):

(& =
To = I3
5351 - f1<j)
Tsy+1 = Zs+2
SZ'31+52 = f2<j)
j81+~~~+sp = fp(j;>
1 = I
Y2 = Tgt+1
L U5 = Titsi+tsp

We will now demonstrate this observation on a simple example.

the delay system:

I"l = l’g(t) + l’g(t — 7')
i‘g = ZEQ(t)

y(t) = =t

pr(t) = ¢

We have

y(t) = zo(t) +xo(t — 7
G(t) = wo(t) +ao(t — 1) = 9(t)

and thus, with notation

we get the ODE-system

T1(t) = 22(t)
To(t) = To(1)
gt) = n()
fl(to) = l’l(to)
To(to) = wa(to) + w2t — 7)

(6.18)

Consider

(6.19)

(6.23)
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Observe that the initial values for the equivalent ODE-system must be so-
lutions of the original system. Choosing ¢y, = 1 as a starting point for the
ODE-system, we set #1(1) = e + 1/2 and Z5(1) = e + 1. Figure 5 presents
the outputs y(¢) and g(t) for ¢ such that all involved output-derivatives (Z)
are continuous (¢t > 1).

30 T T
—— original output of the delay system
* output of the ODE-system

0 ! ! ! ! !
0 0.5 1 15 2 2.5 3

Figure 5: The outputs y(t) and §(t) for the delay and ODE-systems, respec-
tively.

6.2.1.3 EXAMPLES AND RELATIONSHIP BETWEEN IDENTIFIABILITY OF
THE TIME-LAG PARAMETER AND OBSERVABILITY

We now give simple examples demonstrating the application of the criteria
developed in the previous section. For each of the examples we also analyse
the observability of the state variables and show that the identifiability of
the delay parameter can be a necessary, but not sufficient condition for the
observability of the variables (and/or parameter identifiability of the regular
model parameters). The already established methods for testing observability
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and identifiability for nonlinear delay systems (see Xia et al. (2002) and
Zhang et al. (2006)) cannot be used to determine the identifiability of the
delay parameter.

Ezxample 1: The full information case.
Consider first a special case of a control system where the output coincides
with the undelayed state vector:

(t) = f(:z:(t),a:(t—r),u,u(t—T))
{y(t) — () . (6.24)

We can immediately obtain n input-output equations by taking the first
time-derivative of each function in the vector y:

y(t) = fy(®),y(t — 7),ut),ult —7)) . (6.25)

Clearly, unless the given control system is a system of ODEs, there is at
least one input-output equation with delays in the variables and the delay
parameter 7 is identifiable.

Example 2: In this example z3 and z, are in fact parameters which we have
incorporated into the general system form used in this work, by setting their
time-derivatives to zero and introducing the equalities dx3 = x3 and dx4 = x4.
In fact, invariance with respect to shift operators must always be introduced
when incorporating parameters in the general form used in this work.

T1(t) = xaxe(t —7) + u(t)
.C(Ig(t) = I4I’2(t-7’)
z3(t) = 0 (6.26)
y(t) = w(t)
We have
g = @bz tu (6.27)
= $3$452$2+u (628)
YO = zsaisir, + i (6.29)
and
1 0 0 0
S, hY) |0 b das 0 (6.30)
Ox T 0 wsxad? wu0%xe x30%79 '
0 x3230° 230319 23740379
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The above matrix has rank 4 over K and rank 3 over (4], and 7 is locally
identifiable by Theorems 6.1 and 6.2. For this simple example, the input-
output equation can be obtained explicitly:

(5 — 0)(65 — 01) — (y® — @) (6y — du) =0 . (6.31)

The system as a whole, however, is not weakly observable as the matrix above
is not of full rank over K(d]. The value of 7 can be obtained by numerically
finding the zeros of the meromorphic function

(§(to)—lto)) (§(to—7)—ilto—7)) = (v (to) =ii(to)) (3 (to—7) —ulto—7)) = 0,

where t; is a fixed time-point. This delay identification procedure is, of
course, sensitive to errors in the computation of the output derivatives.

Example 3: Consider the system

a(t) = a3(t—7)
y(t) = x1(t)
We have
g = (0xy)? (6.33)
j = 20w90x9 = 2(dx5)? (6.34)
and ) .
(s1)
M: 0 26(x2)0 (6.35)
Oz 0 48(22)8

This matrix has rank 2 over both I and /(4] and 7 is not identifiable. This,
in turn, means that the state-variable x5 is not observable. We have the
following symmetry involving 7 and the function of initial conditions 5. For
any choice of 7, setting ¢;(t) = ¢, ¢ € R and ¢(t) = e'*7, ¢t € [—7,0], leads
to the solution z;(t) = 6; +c— 3, xo(t) = €7, Vi > 0. Since y(t) = 21(2),
it is clear that 7 cannot be identified from the output.

6.2.1.4 SIMPLIFICATION OF THE IDENTIFIABILITY CRITERIA

There are some cases when the identifiability of the delay can be decided
without any rank calculations. The obvious one is when there is a delayed
input variable in the time-derivatives of the (independent) output functions.
Then, (i.) in Theorem 6.1 is fulfilled and the time-delay is locally identifiable.
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_Another observation is that if for some output function h; each derivative
h(J) j = 0,...,n contains a state-variable that is delayed compared to the
previous derlvatlve then (zz ) in Theorem 6.1 is fulfilled. The reason is that

,n is a polynomial in § of degree higher

G
than for the j —1-th derlvatlve and rank,ca(s’hgi;’hi]) = j+1. Since the latter
is true for j = 0,...,n and thus also for j = s; (because s; < n— 1), we have
a(S, hiy ..., b S
ranky (5, 789[; i) =5 +1>s5 = rank;c(a]% . (6.36)

Thus, 7 is identifiable by Theorems 6.1 and 6.2. In practice, it is not even
necessary to calculate time-derivatives of the output - one only needs to
trace how the variables are delayed in each derivative, which can be done by
inspection.

6.2.2 THE MULTIPLE-DELAYS CASE

We now consider the case of multiple delays

i(t) = f(z(t) ,x t—7‘1 x(t—n),u,u(t—Tl),...,u(t—Tg))
y(t) = h(a: (1), ,x(t — 7))

z(t) = (1), t E [ rnaxm, O]

u(t) = w(t), te[-T,0]

(6.37)

6.2.2.1 DEFINITION OF IDENTIFIABILITY

Intuitively, the 7;:s are identifiable if any two sets of parameters can be
distinguished by the system’s input-output behaviour. The property of local
identifiability of the delay parameters 7;, ¢ = 1,...,¢ is formally defined as
follows:

Definition 6.3 The delay parameters T = (11,...,7) are said to be locally
identifiable at o € (0,T)¢ if there exists an open set W > 1o, W C [0,T)%,
such that YTy € W : 11 # 7o, Yo, 01 € C, there erist t > 0 and u €
Cy such that y(t,p1,u, T1) # y(t, o, u, 7o), where y(t, o, u,T) denotes the
parameterized output for the initial function ¢, the admissible input u and
delays T.

6.2.2.2 CRITERIA
This section deals with the problem of the identifiability of the time-
delay parameters 7;, i = 1,...,¢ in (6.37). Linear-algebraic criteria are
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formulated, based on the linear form of the input-output equations (5.11)
from the previous section.

The equations (5.11) give

m 0% i s;—1
a;(8)dy™ + 33 "¢ (8)du =N ag(8)dy” (6.38)
r=1j=0 I=1 j=0

With no loss of generality, we assume that the polynomials a;(é] on the
left-hand side of the above equations are irreducible. Let a;(d] = 3, a;, 6%,
cir(8) = S cir 0F and a;y (8] = >, ai;;, 6% Denote all the different
monomials 6% appearing above by A, ..., A;, and the (integer) linear com-
binations of 7q,...,7, that they represent by T,...,T;,. If some of the
terms in a;(d], ¢;, (6] or a;;;(d] is a polynomial in & of degree zero, that
is, the input-output equations contain undelayed variables, then we set A;,
equal to &y, where §, denotes the identity operator, and the corresponding
T is zero. It is the combinations Tj, ..., T}, of 71,..., 7, that determine the
local identifiability of the latter.

Let A;, be the monomial 6* in a;(8] with smallest index k (ordered after
ki,..., ke) - it is either equal to A, or is among the A;q, ..., A;,. The input-
output equations corresponding to (6.38) can locally be written

ny(SZ) = f‘i(Ai_olAib cee 7A;)1Aiqa Y1, - - 7?/%8171)7 ey Yiy e ayi(sz.il)a yrESi)a
u, ..., u) (6.39)

or

g ) = Fi( w), .y @), ut), w0,
YV =T+ Tig)s 0 (8 = Ty + Toy),
U(t—ﬂl‘i‘ﬂ(}),7U(7)(t_ﬂl+ﬂ0),
G- T, + T SOt =Ty + T,
U ( iq T ZO)?"'vyi ( iq + %0)7
w(t —Tig+Tiy)s -,y (t =T+ Ty)) - (6.40)

Consider those of the equations (6.40), for which ig > 1. Evaluated at a fixed
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time point t, > 7', (6.40) gives an equation for T}y,..., T},

y (o) =€( mito), -yl ko), ulte), .., u(ty),
y?lil)(to - El + T%o)v s 7yi(8i)<t0 - T%l + T’io)?
u(ty— T +Tip)y - - -, u (b — Tir + Tiy),
1=V T 4T )ty —T0 + T,
yl (O zq+ ’Lo))"'?yi (0 zq+ 10)7
u(ty — Tig + Tip)y oo uP(tg — Tig + Tp)) . (6.41)

Let the time-point ¢, be chosen large enough to ensure the existence and
continuity of all time-derivatives involved. This can be achieved by choosing
for example ¢y > max;s;T"). Differentiating (6.41) with respect to time gives
new equations for 7;; — T;,,...,T;; — T;, which are independent, since the

one-forms dygj ), j > 0 are linearly independent over K due to iq > 1:

y (o) = (@), yT T @) u(), . u(),
yl(t_tril+,-Ti0)7"'7yi(8i_1)<t_ﬂl+ﬂ07
u(t_Tiil+T1io)7"'7u(’y+j)(t_71il+Eo)7"'7
yl(t_Y}q+ﬂo)a"‘7y7§8i_1)(t_ﬂq—’—ﬂo)a

u(t—ﬂq—i-ﬂo),...,’U,(’Y+j)<t—ﬂq+ﬂo)) (642)

|t0.

Unless ygsiH )(t) is identically zero for some 0 < j < iqg—1, the first iq of these
equations identify T}, — 75, ..., T;, — T}, locally. The following equations can
in some cases be used to analyze global identifiability. The question, then,

is whether the original time delays 71, ..., 7, are identifiable from the integer

linear combinations T3, — T, ..., Tiq — Tj,. Let

(Tn _Tlm- o 7T1q _Tlm- o 7Tp1 _Tp()?' o 7qu — Tpo)tr = M(Tl, e ,Tg)tr s
(6.43)

where M is a (1g+---+pq) x £ integer matrix and v denotes the transpose

of v. We can now formulate the identifiability criteria for 7,...,7, in the

following proposition:

Proposition 6.1 If M is defined by (6.43) and y§si+j)(t) is not identically

equal to zero for any 0 < j <iq—1,i={1,...,p}, then 1q,...,7; are locally
identifiable generically, if and only if rank(M) = .

The proof of this theorem can be found in Paper IV. Setting 7 := {T}; —
Ty Tig — T3}, i = 1,...,p, it is shown that system (6.37) can be rep-
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resented locally as a neutral system with time lags 7. This system is ob-
tained from the input-output equations (6.40) using the notation from Sub-
section 5.1:

( < ~

X1 = X2
IA::Sl—l = ‘/’tisl X
.Z%Sl = fl(jsl(t_%%jvj(t_;’:)7u7""
u u(t —F), ..., u(t —F))
':%314-1 - ':%514‘2
lf's1+82*1 = i,ilefS?
fi's1+sg - f2(i731+32 (t - )7 €, C(Z(t - T)’ u, (644)
o u ot —F), L u (- F
'%Sl'f‘""f'sp = fp(m;sl‘f'""*“gp (t - ;’:)’ :i" ‘%(t o 1:)’ U,
ottt —F), L uD (= F))
(0 = I
@2 = ‘%Sﬂrl
Up = Titsi+tsp
\ j(t) = @(t), te [to — man%j, to]

Any pair (y(t),u(t)) which satisfies the original system (6.37) also satisfies
the above.
We will exemplify by the following system:

i (t) = 23(t—1)
Bo(t) = zi(t — V2)a(t)
y(t) = x1(t) (6.45)
() = @) =¢, tel[-v2,0]
To(t) = o(t) =t+2, te€[—v2,0]
We have
g = (0i(xa)) (6.46)
y = 251(1’2)5152(1’1)51(1‘2):2(51($2))2515Q($1) . (647)

Extracting the input-output equation, we get 4(¢) = 2(5(t))%y(t — 1 — V/2).
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Thus the original system corresponds to a system with only one delay:

%Igt; _ ii(ﬂ( )72 ( V(2))

.%225 - 2.%275%%125—1— 2

i) = m) (049
Bt) = @), te[ty—1—+2t

Plotting the outputs from the two delay systems for ¢ such that all output-
derivatives (%) involved are continuous (¢t > 1 4 v/2), we see that they are
the same:

40 w \
Output from the original system Z‘
*  Output from the single—delay systen

251 b

20 b

15 b

10 b

Figure 6: The outputs y(t) and §(t) for the two-delay and one-delay systems,
respectively.

6.2.2.3 EXAMPLES AND RELATIONSHIP BETWEEN IDENTIFIABILITY OF
THE TIME-LAG PARAMETERS AND OBSERVABILITY

We now give simple examples demonstrating the application of the criteria

developed in the previous section. Similarly to the single time-delay case,

the examples show that the identifiability of the delay parameter can be a
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necessary, but not sufficient condition for the observability of the variables
(and/or parameter identifiability of the regular model parameters).
We start by the example from Subsection 6.1.2:

Ezxample 1:
Zi’l t) = —932(15—71)
.Z'Q(t) = SCl(t—TQ)
Yo(t) = xa(t — 7o)
z t) = @(t% te [_T7 0]
We have
Y1 = —01%9 (6.50)
Gi = —010271 (6.51)
and
dy 1 0
dyl . 0 51 d.ﬁL’l
dyso 0 0
We obtain the following input-output equations in linear form (6.38):
dyl = —5152dy1 (653)
51dy2 = —52dyl = dyQ = —(51_152dyl . (654)

We thus have Al(], AH = (51(52, Agl = (51 and AQQ = (52 and thus, T10 = T10 =
0, T =71+ 72, Toy =T =71, Toe = 7 and

1 1
M=|0 0 (6.55)
1

which is of rank 2. Thus 7; and 7 are identifiable.

Ezxample 2:
x'lgtg = xggt—ﬁ; +u
l"g t = I t— T2 )T
yt) = o) (6.56)
xz(t) = @), te[-T0]
We have
g = (0u(z2))* +u (6.57)

i = 261 (22)0005(x1)0 () + @ = 2(61(22))20102(21) + i (6.58)
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and
dy 1 0 d
dy—du | = 0 201 (2)0; { dml ] (6.59)
dy —du 2(61(1’2))2(5152 461(52(%1)61(1’2)(51 2

Clearly, the above matrix has rank 2 over (4] and so the system is weakly
observable according to the definition in Xia et al. (2002), if 7, and 7 are
known.

However, 7, and 7, are not identifiable. From the last equality we obtain
the (input-)output equation (in linear form (6.38)):

and we see that there are two monomials, Ay and A; = ;62 with corre-
sponding combinations 7y, = 0 and 77 = 71 + 7> of the two time delays.
Thus,

00
w=[00] -
with rank 1, and the time lags are not identifiable.

This can be confirmed by observing that a change in variables z(t) =
x9(t — 1) leads to the following reformulation of the above system:

i(t) = 22(t)
z2(t) = x1(t — (1 +71))z(t) (6.62)
y(t) = n(t)

which involves a single delay equal to the sum of 7, and 7.

6.3 ANALYSIS OF TIME-DELAY MODELS FROM SYSTEMS
BIOLOGY

Delay-differential equations have been used to model a wide range of phenom-
ena in systems biology, including the circadian pacemaker (Lema et al., 2000;
Smolen et al., 1999), the lac operon (Mahaffy and Savev, 1999), metabolic
insulin signaling (Sedaghat et al., 2002), gene expression in cultured mam-
malian cells (Monk, 2003) and in zebrafish (Lewis, 2003), signal transduction
(Timmer et al., 2004) and phosphorylation-dephosphorylation cycles (Sriv-
idhya, 2007).

In Paper III, we apply the criteria developed in Section 6.2 to analyse
the identifiability of the time-lag parameter in the models by Timmer et al.
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(2004) and Monk (2003). The calculations for these systems display the sim-
plifications in the analysis that can be made when testing the identifiability
of a single delay parameter in practice, discussed in Paragraph 6.2.1.4.

In this section, we apply the simplified identifiability criteria to one more
model from systems biology. We analyse the identifiability of the time-lag
parameter in the delay model of genetic regulation for a single transcrip-
tion factor activating its own transcription by Smolen et al. (1999). The
mechanism of macromolecular transport is expected to be important for the
process of genetic regulation. In the paper (Smolen et al., 1999), two different
methods of modelling the transport of macromolecules between the nucleus
and cytoplasm are analysed. The first method assumes diffusive transport
of mRNA and protein, the second assumes active transport for which a time
delay in the model can be used. The latter method was applied to model a
single transcription factor (TF) which when phosphorylated, binds to DNA
sequences known as responsive elements (TF-RE) and activates its own tran-
scription. The transcription factor, TF-A, forms a homodimer that can bind
to TF-REs present in the tf-a gene and increase tf-a transcription. A delay in
the model appears between the transcription of {f~« mRNA and any change
in the level of nuclear TF-A and this delay is due to two time-lags. The first
is the time it takes for the movement of ¢f~a mRNA from the innermost shell
of the nucleus to the outermost shell for translation into TF-A protein. The
second is the time required for the movement of TF-A protein to the nucleus.
The differential equations are

dltf-a mRNA] Ky ;[TF — A2
th = AT AR K k1 altf-a mRNA] + Rpas ”
% ko ¢[tf-a mRNA](t — 7) — ko g[TF — A (6.:63)

where the two state-variables in x = ([TF — A] [{f~a mRNA]) describe the
nuclear concentration of TF-A and the concentration of ¢f-a mRNA, respec-
tively. The 6 parameters p (not counting the delay itself) are the rate con-
stants k;q, ki, © = 1,2, the dissociation constant of dimer from TF-REs
K4 and the constant synthesis rate at negligible dimer concentration, Rpas.
We thus need to take 7 output derivatives to apply the delay identifiability
criteria. Fortunately, we only actually need to observe that in each output
derivative, a new delay appears in one of the variables, according to the
simplified criteria from Paragraph 6.2.1.4.

§ = ko s[tf-a mRNAJ(t — 1) — ko u[TF — A] = AV (5([tf-a mRNA]),...)
i = hP(S([TF — A]), 6([tf-a mRNA]),...)
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y® = KO([6%(tf-a mRNA]),5([TF — A]), 5([tf-a mRNA],...)
y@ = hW(G2([TF — A]), [0*(tf-a mRNA)), §([TF — A)),

d([tf-a mRNA],...) (6.64)
For each 7 > 1, either a[%@A] or 8[tf-aa}§1] QN A is a polynomial in ¢ of degree
S,h,...,h ()

higher than for 7 — 1. This means that ranky X o =9, which is then
greater than rank,c(g]% as the latter is limited by the number of variables
and parameters, eight in this case. Thus, 7 is identifiable.
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7 DISCUSSION AND FUTURE WORK

The second part of this thesis presents both previously published and new
results on the observability and identifiability of systems of nonlinear delay-
differential equations with discrete time-delays. New criteria have been de-
veloped to analyse the identifiability of the time-lag parameters via the input-
output characterisation of the system.

The literature on the observability of nonlinear delay systems is scarce.
The only definitions, to the best of our knowledge, are algebraic ones and
no analysis has yet been made as to how they relate to geometric and more
intuitive definitions. A problem for future work is thus to find relations
between the different concepts in the manner of the paper on linear delay
systems by Lee and Olbrot (1981).

As usual for nonlinear systems, the application of observability and iden-
tifiability criteria becomes increasingly difficult with the size of the models.
For instance, all of the biological delay models we were able to find in the
literature were too complex to be analysed for observability, since the criteria
involve the calculation of as many time-derivatives of the output as the total
number of variables and parameters (minus one). For nonlinear models, this
is practically impossible to do by hand. Symbolic packages exist for nonlin-
ear delay systems which can handle relatively small systems with a single
time delay. For ODE systems, even large nonlinear models can be analysed
efficiently by existing computer algorithms based on symbolic computation,
such as the one by Sedoglavic (2002). The results from this thesis show that
just as for ODE systems, the observability problem for delay systems reduces
to analysis of an algebraic system of equations, and it should be possible to
use similar symbolic computation algorithms even in this case. The same
applies to the analysis of the identifiability of the time-lag parameters. The
development of such algorithms is an important issue left for future work.
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Abstract

The identifiability of the delay parameter for nonlinear systems with a single constant time-delay is analysed. We show the
existence of input-output equations and relate the identifiability of the delay parameter to their form. Explicit criteria based
on rank calculations are formulated. The identifiability of the delay parameter is shown not to be directly related to the
well-characterized identifiability /observability of the other system parameters/states.
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1 Introduction

Observability and parameter identifiability are impor-
tant properties of a system where initial state or param-
eter estimation are concerned. These properties guaran-
tee that the desired quantities can be uniquely deter-
mined from the available data.

For nonlinear systems without time delays, these prop-
erties are well-characterised, see for instance Hermann
and Krener (1977), Pohjanpalo (1978), Vajda, God-
frey and Rabitz (1989), Sontag (1991), Sedoglavic
(2002) and the references therein. The characterization
of observability and identifiability has now been ex-
tended to nonlinear systems with time delays by Xia,
Mérquez, Zagalak and Moog (2002) and Zhang, Xia and
Moog (2006), using an algebraic approach introduced
by Moog, Castro-Linares, Velasco-Villa and Marquez-
Martinez (2000), and developed in Méarquez-Martinez,
Moog and Velasco-Villa (2000). In these works the
time delays themselves are assumed to be known, or
multiples of a unit delay. The identifiability of general
unknown time-delays has been analyzed only for lin-
ear systems (Nakagiri and Yamamoto, 1995; Verduyn

Email addresses: milena@math.chalmers.se (Milena
Anguelova), wennberg@math. chalmers.se (Bernt
Wennberg).

! Corresponding author. Tel. +46-31-7723547. Fax +46-31-
161973.
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Lunell, 2001; Orlov, Belkoura, Richard and Dambrine,
2002; Belkoura and Orlov, 2002).

In this paper, we use the mathematical setting of Moog
et al. (2000), Marquez-Martinez et al. (2000), Xia et al.
(2002) and Zhang et al. (2006) to analyze the identifia-
bility of the time-delay parameter for nonlinear control
systems with a single unknown constant time delay. It
is shown that state elimination produces input-output
relations for the system, the form of which decides the
identifiability of the time-delay. The value of the delay
parameter can be found directly from the input-output
equations, if these can be obtained explicitly. We formu-
late linear-algebraic criteria to check the identifiability
of the delay parameter which eliminate the need for an
explicit calculation of the input-output relations.

We show that the identifiability of the delay parameter
can be a necessary but not sufficient condition for the
observability of the state variables (and identifiability
of the regular parameters in the system). The already
established methods for testing observability and iden-
tifiability for nonlinear delay systems alone (Xia et al.,
2002; Zhang et al., 2006) cannot be used to determine the
identifiability of the time-delay parameter and a prior
analysis is necessary for the latter.

The layout of the paper is as follows: the mathemati-
cal framework is presented in Section 2. The result on
state elimination and existence of input-output relations
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is given in Section 3. In Section 4, explicit criteria for
the identifiability of the delay parameter are described.
These are then applied to examples in Section 5, followed
by the conclusion in Section 6.

2 Notation and preliminary definitions

Consider nonlinear time-delay systems of the form:

z(t) = flzt),z(t —7),u,u(t — 7))

y(t) = h(x(t),z(t —7),u,u(t — 7)) R
x(t) = ¢(t), te[-7,0]

u(t) = ugp(t), te[-T,0]

where x € R"™ denotes the state variables, u € R™
is the input and y € RP is the output. Any param-
eters for the system can be written as state variables
with time-derivative zero. The unknown constant time-
delay is denoted by 7 € [0,T), T € R. The entries of
f and h are meromorphic in their arguments (quotients
of convergent power series with real coefficients) and
¢ : [-7,0] — R™ is an unknown continuous function of
initial conditions. The set of initial functions for the vari-
ables z is denoted by C := C([-7,0],R"). A meromor-
phic function u is called an admissible input if the dif-
ferential equation above admits a unique solution. The
set of all such input functions is denoted by Cy .

One of the objectives of this work is to investigate the
property of local identifiability of the delay parameter
7, which we define as follows:

Definition 1 The delay parameter T is said to be lo-
cally identifiable at 79 € (0,T) if there exists an open
set W > 19, W C [0,T), such that Vry € W : 11 # 70,
Vo, p1 € C, there exist to > 0 and u € Cy such that
y(toa ¥1,U, Tl) 7é y(th ¥o, U, TO): where y(ta ©5 U, T) de-
notes the parameterized output for the initial function ¢,
the admissible input u and delay 7. The delay parameter
T is said to be locally identifiable if it is locally identifiable
for all o € (0,T).

Following the notations and mathematical setting of
Moog et al. (2000), Marquez-Martinez et al. (2000), Xia
et al. (2002) and Zhang et al. (2006), let K be the field
of meromorphic functions of a finite number of variables
from {x(t — k7),u(t — k7),...,uD(t —k7), k,1€Zt}
and let ¢ denote the time-shift operator, §(£(t)) =
E(t—7),&(t) € K. Let £(8] denote the set of polynomials
of the form

a(6] = ao(t) +ar1(t)d+---+ar, (t)0™ (2)

where a;(t) € K. With addition defined as usual and

multiplication given by

Ta+1p 1<T4q,J<Tp

a@b(] = > > atbt—ir)e* . (3)

k=0  it+j=k

K (4] is a noncommutative ring, which is Noetherian and
a left Ore domain. The latter implies that the rank of a
module over K(] is well-defined (Cohn, 1971). Let M
denote the module span5{d¢ : £ € K}. The closure of

a submodule A in M is the submodule N = {w € M :
Ja (8] € K(6], a(d]w € N'}. It is the largest submodule
of M containing N with rank equal to ranki N (Xia
et al., 2002).

Differentiation of functions ¢(x(t — i), u(t — j7),...,
uV(t — j7)),0 < 4,5 < k, 1 > 0in K and one-forms
w =Y, khda(t—iT)+Y,; vidul? (t—iT) in M is defined
in the natural way:

b — Sk ¢ si
¢ = Dm0 Fete=m 0 [+
! k 9 . ;
+2r=025=0 aum((f_j_r)“( (¢~ jr)

, , (4)
W= Y, kkda(t —ir) + Y2, vidul) (t —iT)+
+ 20 Ko f + 30 vidul T (¢ —aT).
Define
X = spani s {dz}
Vi = spangs{dy,dy, ..., dy*F=D} (5)

U = spang @ {du, di, ... }.

Then (Y +U)NX = YV, +U)N X for k > n and
rankis)(Vn +U) N X < n (Xia et al., 2002).

3 State elimination

In this section we consider the problem of obtaining an
input-output representation from the state-space form
of a time-delay control system. This problem has been
treated for polynomial systems in Forsman et al. (1994).
It will be shown that for a system of the form (1) there
always exists, at least locally, a set of input-output delay-
differential equations of the form F'(J,y,u) = 0, where:

F(6,y,u) := F(8,y,...,y"™ u,...,u) =

= F(y,...,y® ... 6 y),...,64y"),

wy 5B (), L, 68 (u)))
(6)
such that any pair (y(t), u(t)) which solves (1), also satis-
fies (6), for ¢ such that all derivatives involved are contin-
uous. The function F' is meromorphic in its arguments.



Theorem 1 Given a system of the form (1), there exist
integers v, 3, k and | and an open dense subset V of
C x C’;}H, such that in the neighborhood of any point
of V, there exists an input-output representation of the
system of the form (6).

Proof: The proof is an adaptation of the proof of The-
orem 2.2.1. in Conte, Moog and Perdon (1999) for the
analogous result for ODE-systems.

Let f be an r-dimensional vector with entries f; € K.
Let denote the r x n matrix with entries

af B
<%>]’,i a

Denote by s; the least nonnegative integer such that

Sl s e k@
e 7

A(ha, .., h )y

O(hy, ..., b))
Ox '

or
(8)
L = 0 then we set s; = 0. Inductively, for 1 <i <p
denote by s; the least nonnegative integer such that

ranky s = ranki s

If o

By REVTY kL RETD
T’a’ﬂk}c((g]a( 1, s 107 ) ) ) s Iy >:

Oz
ahia .. ah’fSSJ)

Ohy, .. WYL

Ox 9)

= ranky s

Let S = (hy,...h{" ™D . hy . BSPTY), where h;

does not appear if s; = 0. Then

08
mnk)g((;]%:sl—i—'~+sp:K§n . (10)

If K < n, there exist meromorphic functions ¢; (9, z),

-5 gn—£ (6, z) such that ranky s S 91 ngn-k)

ox

For simplicity, introduce the notation

T = hl

Za, [

Tsy41 = ha

- sa—1

Lsi+so = hg‘;Q ) : (11)

- -1

Lsittsp = hz(JSP )

Tsypotsy+1 = g1

T = gn-K

The one-forms dz;, i = 1,...,n now form a basis of X.
The definition of s;, (9) implies that for each i

S s 1))}
oz i
(12)
Thus there exist nonzero polynomials b;(d] € K(d], i =
1,...,psuch that

8h’(51’) € span
or panic(s)

{8(/11,...7

on™
bi (9] 6120 € spanis)

{a(hh Cpbe .,thi—D)}

Ox '

' (13)

Therefore  b;(6]dh{™ + Y™, o i ()du) €

spani(s){dT1, . .., dTs, 4 ...y, } for some v > 0, where v

is the highest derivative of v appearing in the functions
in S, and ¢; (6] € K(d]. Hence,

(s5) m Y S1+-+8;
[+ 7 " e (0ldul) — =0

r=1 ;=0 j=1

(14)
for some a;(0] € K(4]. Since all functions are assumed
meromorphic and we have continuous dependence for
the output on the input and initial function, the above
equality holds on an open dense set of C' x C7;*'. The
left hand side of equation (14), being equal to zero,
is a closed one-form on M, and therefore, applying
the Poincaré lemma we obtain functions &) e K

such that d&; = b;(0]dh{*) + " S0 ¢;(O]du) —

ngﬂl a;(6]dz; and &(6 ,hz(- D g, ,uMy =0,
foreachi =1,...,p. The function & does not depend on
zj for j > s1+---+s;, since d§; = 0 would then contain
terms dZ;, j > s; + --- + s; which is impossible by (14)
due to the variables dz being linearly independent over
K (9] by definition. Thus, we have obtained a relation

G5, hED Fy . F gty uM) =0, (15)
which together with (11) produces an input-output
equation

‘ 1 i—1
fi(aayiS)yyl,--.,ygsl )’_._7%(5 )?u

u(’Y)) = 0.
(16)
This is true for each 7,1 < ¢ < p resulting in p 1nput—
output equations where we can set k = max;s; ¢ =
1,...,p, and let [ and (3 correspond to the largest de-
lays —I7 and — (7 of the output and the input variables,

respectively. B

4 Identifiability of the delay parameter

In this section, we show that the local identifiability of
7 in (1) depends on whether it is present in the input-
output representation of the system. The latter can be



decided either by the occurrence of a delayed input vari-
able in the time-derivatives of the output functions or
by a linear-algebraic criterion involving rank calculation
for the set of gradients of the outputs and their time-
derivatives over K and over KC(4].

The presence of 7 in the input-output representation of
the system can be defined formally in terms of 4:

Definition 2 An input-output equation $(6,y, ..., y",
u,...,u®)) =0 is said to involve & in an essential way
if the meromorphic function ¢(...) cannot be written as

c(8]p(y, -,y D u, ..., u)) with (5] € K(3].
We have the following result:

Theorem 2 Given a system of the form (1) and the set
S defined in the previous section, there exists an input-
output equation ¢(8,y, ...,y u u®)) = 0, that in-
volves & in an essential way if and only if (i) or (i) below
are satisfied.

%#Oforsomelgigp,Ogjgsi,
s >1,1 <r < mandk > 0, i.e. a delayed
input-variable ugk) occurs in some of the functions
in {8, h{"™ . hyY;

(s1) (sp)
a(S,h 1) L piP)y
75 rankg 22 _olte ).

1. rank,c((; 5

Proof : From the definition of K and (], we have

LA

rank;c((;]g—i < Tank;cg—i < rankyg

(17)
IS0)
m#oforsome
1<i<p0<j<s,s>1,1<r<mandk>0.
o' (1)
6(k+31 ]>t ST) 7&0

Without loss of generality we can assume that u(rk“l 9)

Assume first that ¢. is true, i.e.
By differentiation one finds that

is the highest derivative of u, appearing in hgs'i). Then
in the equality (14)

S1+-+58;
(8]dn!* >+ch H(Olduf— N a(0ldz; =0
r=13j=0 j=1
(18)

Chkts;—j,r(0] is a polynomial of degree greater or equal
to s > 1 in . Thus, in the corresponding function

&(9, h(si) Z,u,...,u)), such that d¢; = bi(é]dhl(.s") +
D Z] =0 %, r( }dugj) - Z;iﬂ a;(6]dz;, the vari-

able ylFtsi=d)

appears somewhere with a delay st
compared to h(Si and thus § cannot be omitted from

51(57 yESi)7y1’ R 7y(51 1)7 R 7y7,(5i71)’u’ AR ’u(’Y)) = O'

Assume now that éi. is true, that is, rank;c(g]g—i <

(s1) (sp)
rankK;M. If all input-output equations

#(5,y, ..., y( ) ,ut®)) = 0 are equivalent to an
equation @(y, ... ,y(l) u, u(’“)) = 0 without §, then
the p input-output equatlons in the proof of Theorem 1
are equivalent to equations not containing any delays of
the variables:

e ey D g, ) = 0,
(19)

(s1) (sp)

S.h h

for i = 1,. Sy Ty ) T ) <
T

s1+ -+ sy = rank,c((;] 5., which contradicts the as-
surnptlon This completes the first part of the proof.

coy - Therefore ranky

Suppose now that there exists at least one meromor-
phic function ¢ such that ¢(8, %, ...,y",u,...,u®) =0
for some nonnegative integers k and [, where ¢ cannot
be omitted. We will show that 4. or 4. must be true.
Assume the 0pp0$1te Then the equality ranky s ai =

rank;gT and (17) imply that rank;cﬁ =
(1) (p)
rank;gw. Hence, for each i = 1,...,p
on" [ I L))

(ha,...,
Gspan,c{ (P

ox ox

(20)
By assumption, the functionsin S, h{*"), ..., h{™ do not
contain any delayed input-variables, and hence, for each

1=1,...,p we have a relation
m ) s1+-+s;
A+ 3N e pdul® — N aydi; =0, (21)
r=1;=0 j=1

where a;, ¢; » € K. Thus the input-output equations (15)
for such a system are of the form

&Y by, ST

. ,hgsi_l),u,it, e ,u”)) =0,
(22)
without any delays in the variables since a delay in a
variable would mean that some of the a;, ¢;, were poly-
nomials of degree at least one in § which would be a
contradiction. By the Implicit Function Theorem, there
exist meromorphic functions f; such that
WY = Fi(ha, o B0 R,

(3

u,...,uM) =0,
(23)

,p- This implies that for each k; > s;, yfk 2

can be written locally as a function of yi, ... ,ygsl 2

. ,yf‘” Uy, . . ., u?) without any delays in the vari-
ables. Applying this to the equality ¢(6,y,...,y",u

.,u®)) = 0 we obtain

fori=1,...

(5(573/1""7:(;581 1)7"'7y1()sp_1)’u)""u(’)l)):O (24)



for some meromorphic ¢. This, however, contradicts
the linear independence of dhl,...,dhgsrl),...,dhp,

...,dhésﬁ_l) over K(4] and completes the second part
of the proof. B

Theorem 3 Given a system of the form (1), 7 is locally
identifiable if and only if there exists an input-output
equation ¢(8,y, ...,y W, u,...,u®) =0, that involves §
in an essential way. If T is not locally identifiable, system
(1) can locally be realised as an ODE-system.

Proof: Suppose first that there exists an input-output
equation ¢(3,y, ...,y u,...,u®) = 0, that involves J
in an essential way. Since y and u are known (meromor-
phic) functions of time, for a fixed ¢, ¢ is a function of
7 with countably many zeros. Thus, 7 is locally identifi-
able.

Assume there is no input-output equation ¢(6, y, . . ., y,

u, . ..,u®) = 0, that involves § in an essential way. Then
pish

the input-output equations fi(hz(-si), hi,..., e
R ) = 0,0 = 1,...
delayed variables. Thus, locally, each hz(-si') can be writ-
h(sl—l)

,p do not contain

ten as a meromorphic function f; of hq,...,

hgsl*l) ,u?), for generic choices of initial con-

d1t1ons pE C Wlth the notation used in Section 3, we
obtain the following ODE-system for the variables Z;,
t =1,...,81 + --- + s, with the same output as the
original system (1) (modulo the output functions h; for
which s; = 0, hence the p):

I = X2

‘%51 = fl(jj)
Tsi41 == i'91+2
i'81+82 = fQ(j)

(25)

i’S1+~~+sp = fp(f)

71 = I
Y2 = Ty, 41
Yp = Ll4s1+-+sp_1

We will show that 7 in (1) is not locally identifiable by
observing the following symmetry involving the delay
parameter and the function of initial conditions. Fix the
delay parameter to 79 € (0,7") and the initial conditions
to g € C. Let 1y € (0,T), 11 # 70 and choose a differ-
ent continuous function of initial conditions ¢4 () such

that the values of h,(cl)(O) are the same (this can be done
since hg)(t), k=1,....p,1=0,...,s;

volve delayed input-variables; keeping h,(cl) (0) invariant
amounts to choosing a continuous function ¢4 (t) which
fulfills certain equations for ¢;(0) and ¢1(—71)). The
ODE-system above then has the same initial conditions
%;(0),i=1,...,s1+--+sp for both sets of 7 and ¢ and
thus the same solution which coincides with the output
for system (1) (modulo the output functions dependent
on the rest, which will also be the same). Since 7 is ar-
bitrary, 7 is not locally identifiable. H

— 1 do not in-

Remark: For a system of the form (1), if for some output

function h; each derivative hl(-] ), j=0,...,n contains
a state-variable that is delayed compared to the previous
derivative, then . is fulfilled and the delay parameter is
identifiable. In such cases the identifiability of the delay
can be decided without any rank calculations.

5 Examples

In this section we give simple examples demonstrating
the practical calculations and also showing that the iden-
tifiability of the delay parameter can be a necessary,
but not sufficient condition for the observability of the
variables (and/or parameter identifiability of the regu-
lar model parameters).

Example 1: The full information case.
Consider a special case of a control system where the
output coincides with the undelayed state vector:

T)su,u(t — 7))

{(t):f(() ( y Uy . (26)
y(t) = =(t)

We can immediately obtain n input-output equations by
taking the first time-derivative of each function in the
vector y, ¥ = f(y,y(t — 7),u,u(t — 7)). Clearly, unless
the given control system is a system of ODEs, there is
at least one input-output equation with delays in the
variables and the delay parameter 7 is identifiable.

Example 2: In this example z3 and x4 are in fact pa-
rameters which we have incorporated into the general
system form used in this work:

j?l :.Igl‘g(t—T)—Fu

.’bg = x4x2(t — T)

i3 =0 . (27)
g =0
y =1



We have

= 23029 + U
i = z3w40’To + 1 (28)
Y3 = x3230%y + il
and
1 0 0 0
8(S,nle1) 0 xz36 0xo 0
(67;) = . (29)

0 $31'4(52 $4(52$2 £E3(52$2

0 mgxi63 .TZ(SS.TQ 22374032

The above matrix has rank 4 over C and rank 3 over
K (8], and 7 is locally identifiable by Theorems 2 and 3.
For this simple example, the input-output equation can
be obtained explicitly, (ij —)(64 — 61) — (y) — i) (69 —
ou) = 0. The system as a whole, however, is not weakly
observable as the matrix above is not of full-rank over
K(6]. The value of 7 can be obtained by numerically
finding the zeros of the meromorphic function (¢j(tg) —
i(to)) (§i(to — 7) — lto — 7)) — (y® (to) — iilto))(§(to —
T) —u(to — 7)) = 0, where ¢ is a fixed time-point. This
delay identification procedure is, of course, sensitive to
errors in the computation of the output derivatives.

Example 3: Consider the system

i = 23(t—7)

S.CQ = T2 (30)
y =T
We have
. — 6 2
Yy ( 902) (31)
'Ll.j. = 25%251’2 = 2(5%2)2
and
1 0
(s1)
ST — 10 28(20)0 | - (32)

This matrix has rank 2 over both K and (4] and 7 is not
identifiable. This, in turn, means that the state-variable
Zo is not observable. We have the following symmetry
involving 7 and the function of initial conditions 5. For
any choice of 7, setting ¢1(t) = ¢, ¢ € R and po(t) =
e't7,t € [—7,0], leads to the solution z; (t) = gﬁ +c—1,
x2(t) = et ¥t > 0. Since y(t) = x1(t), it is clear that
7 cannot be identified from the output.

6 Conclusions

We have analyzed the identifiability of the time-lag pa-
rameter in nonlinear delay systems. State elimination

yields equations in the inputs and outputs and their
derivatives, the form of which decides the identifiability
of the delay parameter. For simpler models with few vari-
ables and parameters, the input-output equations can be
used directly to identify the value of the time-lag from
measured data. We have formulated linear-algebraic cri-
teria to check the identifiability of the delay parameter
which eliminate the need for an explicit calculation of
the input-output relations.

Work is in progress to extend the results of this paper
to nonlinear systems with multiple time-delays.
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Abstract:

Time-delay models are used increasingly to describe biological systems. The model
parameters, including the time lags, are often unknown and estimated from
experimental data. For parameter estimation to be meaningful, the identifiability
of the parameters must be established.

The identifiability of the time-delay parameters is not directly related to the well-
characterized identifiability of the other model parameters and an independent
analysis must be performed. We have recently shown that the identifiability of
the delay parameter is determined by the form of the external input-output
representation of the system. Explicit criteria have been formulated to analyze the
latter without the need for an explicit computation of the input-output equations.
We apply the developed identifiability criteria to biological delay systems from the
literature, modeling e.g. signal transduction and gene expression, and show that

the criteria are often simplified and easily checkable in practice.

Keywords:

Identifiability, Delay differential equations, Time lag, Signal transduction, Gene

expression.

1. INTRODUCTION

Time lags are often observed in biological systems
and delay differential equations have been used
successfully to model a wide range of phenom-
ena in systems biology, including signal transduc-
tion (Timmer et al., 2004), metabolic insulin sig-
naling (Sedaghat et al., 2002), phosphorylation-
dephosphorylation cycles (Srividhya, 2007), the
lac operon (Mahaffy and Savev, 1999), the cir-
cadian pacemaker (Lema et al., 2000; Smolen et

1 To whom all correspondence should be addressed. E-
mail: milena@math.chalmers.se.

al., 1999), gene expression in cultured mammalian
cells (Monk, 2003) and in zebrafish (Lewis, 2003).
These delay models usually contain a number of
parameters with values that are often unknown
and can only be found by parameter estimation
from experimental data. A prerequisite for param-
eter estimation is the property of identifiability
which guarantees that the desired quantities can
be uniquely determined from the available data.

For systems without time delays there exist sev-
eral methods to analyze identifiability, both from
a differential-geometric (see for instance Hermann
and Krener (1977), Pohjanpalo (1978), Vajda et



al. (1989), Sontag (1991), Isidori (1995), Chappell
et al. (1999) and Saccomani et al. (2001)) and
an algebraic approach (Ollivier (1990), Conte et
al. (1999), Sedoglavic (2002) and the references
therein). Necessary and sufficient conditions have
been formulated with checkable criteria for which
computer algorithms can be used (Margaria et al.,
2001; Saccomani et al., 2001; Sedoglavic, 2002).
The characterization of these identifiability crite-
ria has now been extended to nonlinear systems
with time delays by Zhang et al. (2006), based on
a mathematical framework introduced by Moog et
al. (2000), and developed by Marquez-Martinez et
al. (2000) and Xia et al. (2002). In these works the
time delays themselves are assumed to be known,
or multiples of a unit delay. The identifiability of
general unknown time-delays has been analyzed
for linear systems (Nakagiri et al. (1995), Belkoura
et al. (2000), Verduyn Lunell (2001), Orlov et
al. (2002) and Belkoura et al. (2002)). Recently,
we used the mathematical setting of Moog et al.
(2000), Marquez-Martinez et al. (2000), Xia et
al. (2002) and Zhang et al. (2006) to analyze the
identifiability of time-delay parameters for nonlin-
ear systems with a single unknown constant time
delay in Anguelova and Wennberg (2007).

The assumption of a known time delay may not
be appropriate for many of the above-mentioned
biological systems. In the work of Timmer et al.
(2004) on signal transduction, a nonlinear time
delay model of the JAK-STAT signalling pathway
is shown to give the best agreement with exper-
imental data. In the model, the sojourn time of
STAT-5 (a member of STAT, the signal trans-
duction and activator of transcription, family of
transcription factors) in the nucleus is modeled
by an unknown time delay which is estimated
numerically in Timmer et al. (2004). This mo-
tivated us to apply the methodology developed
in Anguelova and Wennberg (2007) to analyze
the identifiability of delay parameter in the JAK-
STAT model and the other examples from systems
biology given above. It should here be noted that
the identifiability of the delay parameters of a
system is not directly related to the identifiability
of the regular parameters and separate analyses
are necessary.

The identifiability of the delay parameter is de-
cided by the form of the external input-output
representation of the system. The value of the
delay parameter can be found directly from the
input-output equations, if they can be obtained
explicitly. This is, however, very difficult for highly
nonlinear models with many parameters and vari-
ables. In the work cited above, we have formulated
identifiability criteria based on rank calculations,
which eliminate the need for an explicit calcula-
tion of the input-output relations. Once the iden-
tifiability of the delay parameter is established,

its value can be found by parameter estimation
for which many methods exist, based e.g. on least
squares approximation (see the book by Banks et
al. (1989)).

2. MATHEMATICAL FRAMEWORK

In this section we will give a brief and some-
what simplified description of the method to an-
alyze the identifiability of delay parameters for
nonlinear systems, developed in Anguelova and
Wennberg (2007). We refer to the latter for a more
rigorous mathematical treatment.

2.1 Identifying the delay parameter from explicit
input-output equations

To introduce the theory, we start by an example of
a simple delay model with a corresponding input-
output structure for the purpose of parameter
estimation. The model has two state variables, x1
and z,, two regular parameters k; and ko, and
one time-lag parameter, 7. The controlled input
variable is denoted by u and the measured data
by y. Initial conditions have to be defined for the
input, uo(t) and state variables, ¢(t), which in the
case of delay differential equations are functions,
describing the history of the system at least 7
units back in time. All parameters and initial
conditions for the state variables are unknown,
but we assume that 7 must take values in the
interval [0,T), where T is known.

Ezample 1:

Il(t) = kll’g(t — T) —+ U(t)
fEQ(?f) = kQZL’Q(t — T)

y(t) = z1(t) (1)
x(t) = p(t), te[-T,0]
u(t) = uot), te[-T,0]

By taking time derivatives of the output at a given
point in time, we obtain equations for the state
variables and parameters:

y(t) = kiwe(t —7) +u(?)
§(t) = kikazo(t — 27) + u(t) (2)
y(3)(t) = k‘1k§l‘2(t —37) + u(t)

From the above equations, we can extract an ex-
ternal input-output representation of the system,
given by the input-output equation

(§(t) —a(t)(§(t — 7) — it — 7))
—(y () = i) (gt — ) —u(t =7)) =0

Since the input and output are known functions
of time, evaluating the above equation at a cho-
sen point ty in time enables us to calculate the
time-lag parameter 7, for example, by (numeri-
cally) finding the zeros of the function &, (1) =

3)



(§i(to) — i(t0)) (ii(to — 7)) — @(to — ) — (¥ (to) —
i(to))(y(to—7) —u(to —7)). As an illustration, we
have used the dde23.m differential equation solver
in Matlab (Shampine and Thompson , 2001) to
simulate an output for the above system by choos-
ing k1 = —2,ko = =3,01(t) =t + 1,02(t) = t* +
1,u(t) = t and 7 = 1 and plotted the function
€o(T) = (5(6)~(6)) (§(6—7) —u(6—7)—(y® (6)—
(6))(g(6—7)—u(6—7)) for 7 in the interval [0, 2].
As expected, this function takes the value zero for
T=1.

A plot of y(t) A plot of the function &(1)
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Fig. 1. The output y(t) and the function (7).

On the other hand, it can be the case that the
input-output equations of a system do not contain
7 at all. Then there are infinitely many values that
produce the same output and 7 cannot be identi-
fied from the available data. This is demonstrated
by the following example:

Ezxample 2:
abl = .%'g (t — ’7')
j’)g = X2
4
o (4)
‘T(t) = @(t)7 te [_7—7 O]

Calculating time-derivatives of the output func-
tion as above, we obtain

- 2
y=a3(t—71)
", 5
j = 2ra(t ~ 7))’ ®)
An output equation of lowest degree (of deriva-
tion) for the above system is §(t) — 2y(t) = 0,
which does not involve delays of the variables. We
can see that 7 is not identifiable for this example,
by observing the following symmetry involving the
functions of initial conditions ¢ and 7. For any
choice of 7, setting
{ p1(t) =

C
@2(t) — et+‘r )

where c is a constant, leads to the solution

te[-7,0] , (6)
wt) = +te—5  wso . (7
) = 7 = o

Since y(t) = z1(t), it is clear that 7 cannot be
identified from the output.

2.2 Linear-algebraic identifiability criteria

The above way of deciding the identifiability of
the delay parameter is, of course, difficult for
more complicated models with many variables
and parameters, when the explicit input-output
equations cannot be obtained. We have therefore
formulated identifiability criteria based on linear
algebra calculations which can be performed also
for more complex models of the form:

o(t) = f(a(t),z(t —7),u,ult — 7))

y(t) = h(l‘(t), CL’(ﬁ - T)’ U, u(t - T)) (8)
x(t) = o(t), te[-7,0] ’

u(t) = up(t), tel-T,0]

where x € R" denotes the state variables, u €
R™ is the input and y € RP is the output.
The unknown constant time-delay is denoted by
T € [0,T), T € R. The entries of f and h are
meromorphic in their arguments and ¢ : [—7,0] —
R™ is an unknown continuous function of initial
conditions. The set of initial functions for the
variables z is denoted by C := C([-7,0],R"). A
meromorphic function u(t) is called an admissible
input if the differential equation above admits a
unique solution. The set of all such input functions
is denoted by Cy. Observe that the above system
form also allows for model parameters, which can
simply be considered as state variables with time-
derivative zero.

Following the notations and mathematical setting
of Moog et al. (2000), Marquez-Martinez et al.
(2000), Xia et al. (2002) and Zhang et al. (2006),
let K be the field of meromorphic functions of a
finite number of variables from {x(t — k7), u(t —
k7),...,uD(t—k7), k,1 € Z*} and let § denote
the time-shift operator, §(£(t)) = &£(t — 1), &(¢t) €
K. Let k(0] denote the set of polynomials of the
form

(1(6] = (lO(t) + aq (t)(S +-tap, (t)&TQ 7 (9)

where a;(t) € K. With addition defined as usual
and multiplication given by

ro+1p 1<T6,J<Tp

a@b@] = > 3 b (t—ir)s* |, (10)

k=0 i+j=k

K (4] is a noncommutative ring, which is Noethe-
rian and a left Ore domain. The latter implies
that the rank of a module over KC(4] is well-defined
(Cohn, 1971) and that row elimination can be
performed in a matrix consisting of elements from
K(8]. This will be done for the matrix formed by
the gradients of the time-derivatives of the output
functions h;.

Let M denote the module spangs{d§ : § €
K}. Differentiation of functions ¢(x(t — i), u(t —
97, uD(t—471)),0<4i,j <k,1>0in K and
one-forms w = Y7, kL da(t—it)+),; vidu (t—iT)
in M is defined in the natural way:



o 00
‘b:;ax(pméﬂ

l k a¢
+;;o i —m I
G =Y ihdo(t —it)+ Y vdul(t —ir)+
i ij
+> RO+ vidu ( — i),

’ (11)

The following definitions are necessary before we
can state the identifiability criteria. Let f be an
r-dimensional vector with entries f; € K. Let g—i
denote the r x n matrix with entries

<g—£)jyi=;%aé e K(©]. (12)

Denote by s; the least nonnegative integer such
that

A(h, .., h )y

rankis) o

= rankis) Ep

(13)
If % = 0 then we define s; = 0. Inductively,
for 1 < ¢ < p denote by s; the least nonnegative
integer such that

Ohy, ey BY by, RS
ranki(s) (7 L 5 L ):
A(hy,..,h\ .

ox

iy )
(14)

= Tank)g((g]

Let
S = (h17 ey hgs1—1)’ RN hp, R hl(fp_l))

where h; does not appear if s; = 0. Then

S
=s1+--+s,=K<n . (15)

5}
rank;c((;] %

We can now state our identifiability criteria
(Corollary 1 in Anguelova and Wennberg (2007)):

Corollary 1. Given a system of the form (8) and

the set S defined above, 7 is locally identifiable if
and only if at least one of the following is true:
)

1.‘?,?;‘7@)7&0f0r50me1§iﬁp,0§

Ou,.’ (t—sT)

j<s,s>1,1<r<mandk>0,ie a

delayed input-variable ufnk) occurs in some of

the functions in {S, h{"", ... K\

(s1) (sp)
. rankg 28 # rank 23t D)
If 7 is not locally identifiable, system (8) can

locally be realised as an ODE-system.

Put simply, the local identifiability of 7 depends
on the presence or absence of 7 in the input-output
equations for the system (that such equations

d(hy,...,

exist is not trivial, see Anguelova and Wennberg
(2007)). Whether T is present in the i-o equations
is, in its turn, decided either by the occurrence
of a delayed input variable in the time-derivatives
of the output functions or by a linear-algebraic
criterion involving rank calculation for the set of
gradients of the outputs and their time-derivatives
over K and over K(d] (that is, row elimination
without and with 0).

To illustrate the above identifiability criteria, we
return to the examples from the previous subsec-
tion.

Ezxample 1, revisited:

As no delayed input variables occur in the output

derivatives above, we will check whether the sec-

. . o S,h(sl) .
ond criterium, rank,c(g]% #* rank;c% is

fulfilled:

dy
dy — du _
dij—di |~ (16)
dy® — dii
1 0 0 0 dx;

0 k1k262 k2(52$2 k1(52$2 dkl
0 k1k36% k30329 2k1ked3my dks

The above matrix has rank 4 over K and rank
3 over K(d]. Thus, 7 is locally identifiable even
though the system as a whole is not weakly
observable as the matrix above is not of full-rank
over (4] (according to the definitions in Xia et
al. (2002) and Zhang et al. (2006) with a fixed T,
k1 and x5 are not identifiable/observable).

Example 2, revisited:

Performing the same analysis for this example, we
obtain:

dy 1 0 d
dy | = [ 025(x2)8 ( d?) . (18)
dij 0 40(w2)6 2

Clearly, the above matrix has rank 2 over both
K and K(4]. If 7 is known, the system is weakly
observable. However, 7 is not identifiable.

3. APPLICATION TO EXAMPLES OF
BIOLOGICAL SYSTEMS

Example 3: This example is of the biological model
describing the JAK-STAT signalling pathway by
Timmer et al. (2004) that was referred to in the
introduction. The analysis of the identifiability of
the delay parameter reduces to the observation
of a delayed input-variable in the third time-
derivative of one of the outputs. The parameter 7



is identified numerically in Timmer et al. (2004).
The delay-system is given by:

T = —klxlu/k7 + 2k4$3(f — 7')
2152 = k1$1u/k7 — kQI’%

@3 = —ksxs + 0.5kyx2

f4 = k3x3 — k41‘3(t — T)

y1 = ks(x2 + 2x3)

y2 = ke(r1 + z2 + 223)

(19)

where we have denoted the external input k7 EpoR 4
in Timmer et al. (2004) by u in accordance with
the notation in this paper. We have

Uo = 2kg(kgdxs — k3x3) (20)
fjo = 2k (—ksksdxs + 0.5koky(612)% + ka3 —
—0.5kokzx3)
53 = kg (—2kskomokiziu + 2ksk2adky —
—2k3krws + kikrkoxd + 2kakodxok 621 0u —
—2kyk30a3ky + 2kyk3 ko3 —
—kykskrkodx3)/kr
We can now see that du appears in yéB) which is
enough to conclude that 7 is identifiable according
to 4. in Corollary 1 (obviously dy,dys and dijo

are linearly independent as they contain different
parameters).

Example 4: In this example we analyze a gene
expression model for Hesl by Monk (2003). This
time-delay model has two state variables P and M
and six parameters p = (@, Po, 1, fim, Op, fip).

. U
M = — o M
ST ir@E-n/pr M
P = o,M — pu,P (21)
y1 =M
Y2 = P )
We obtain the equations
Um
= Om M 22
NI 6P/ M (22)
g1 =hP(P,SM,P,M,...) (23)
g3 =0 (2P sP,sM, P, M,...) (24)

Y = nP (82M,62P,6P,6M, P, M, ...) (25)

6h(j) 6]7,(‘7)
] 1 1 13 —
For each j > 1, either i~ or =5 is a poly

nomial in & of degree higher than for j — 1. This

®
means that mnk;;cw =9, which is then

greater than ranky s % as the latter is limited
by the number of variables and parameters, eight
in this case. This implies that 7 is identifiable by
Corollary 1.

It can be concluded from Example 4 that if each
derivative of the output functions hy ), j =
0,...,n contains a state-variable that is delayed

compared to the previous function, then the de-
lay parameter is identifiable. In such cases the
identifiability of the delay can be decided with-
out any rank calculations. This applies for ex-
ample to the delay model of the circadian pace-
maker by Lema et al. (2000), the model of the
reduced phosphorylation-dephosphorylation net-
work in Srividhya (2007) and the discrete-delay
models of genetic regulatory systems in Smolen et
al. (1999).

4. CONCLUSIONS

A recently developed method to analyze the iden-
tifiability of the time-lag parameter in nonlinear
delay systems has been applied to biological mod-
els from the literature.

The identifiability of the time-delay parameter is
decided by the form of the external input-output
representation of the system. For simpler models
with few variables and parameters, the input-
output equations can be used directly to iden-
tify the time-lag from measured data. For more
complex models, the formulated linear-algebraic
identifiability criteria can be applied, which often
reduce to a simple book-keeping of the delays
in the input- and state-variables in each of the
output function derivatives.

Work is in progress to extend the method to
nonlinear systems with multiple time-delays.
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Abstract: This paper considers the identifiability of time-lag parameters in nonlin-
ear delay differential equations. Their identifiability is not directly related to the
well-characterized identifiability /observability of the other model parameters/state
variables and an independent analysis must be performed. We show the existence
of input-output relations for nonlinear delay systems with multiple constant time-
delays and relate the identifiability of the delay parameters to their form. The
values of the time lags can be found directly from the input-output equations, if
these can be obtained explicitly. Linear-algebraic criteria are formulated to decide
the identifiability of the delay parameters which eliminate the need for explicit
computation of the input-output relations. Copyright ©2007 IFAC.

Keywords: identifiability, delay differential equations, time lags, state elimination.

1. INTRODUCTION

Observability and parameter identifiability are
important properties of a system where initial
state or parameter estimation are concerned.
These properties guarantee that the desired quan-
tities can be uniquely determined from the avail-
able data.

For nonlinear systems without time delays, these
properties are well-characterised, see for instance
(Hermann and Krener, 1977; Pohjanpalo, 1978;
Vajda et al., 1989; Sedoglavic, 2002) and the ref-
erences therein. The characterization of observ-
ability and identifiability has now been extended
to nonlinear systems with time delays by Xia
et al. (2002) and Zhang et al. (2006), using an
algebraic approach introduced by Moog et al.

1 To whom all correspondence should be addressed. E-
mail: milena@math.chalmers.se.

(2000), and developed by Marquez-Martinez et al.
(2000). In these works the time delays themselves
are assumed to be known, or multiples of a unit
delay. The identifiability of general unknown time-
delays has been analyzed only for linear systems
(Nakagiri et al., 1995; Verduyn Lunell, 2001; Orlov
et al., 2002; Belkoura et al., 2002). Recently, we
used the mathematical setting of (Moog et al.,
2000; Méarquez-Martinez et al., 2000) and (Xia
et al., 2002) to analyze the identifiability of the
time-delay parameter for nonlinear systems with a
single unknown constant time delay in (Anguelova
and Wennberg, 2007).

In this paper we analyze the identifiability of the
time-delay parameters for nonlinear control sys-
tems with several unknown constant time delays.
It is shown that state elimination produces input-
output relations for the system, the form of which
decides the identifiability of the delay parameters.
The values of the delay parameters can be found



directly from the input-output equations, if these
can be obtained explicitly. We formulate linear-
algebraic criteria to check the identifiability of the
delay parameters which eliminate the need for an
explicit calculation of the input-output relations.
We observe that the identifiability of the delay
parameters can be a necessary but not sufficient
condition for the observability of the state vari-
ables (and identifiability of the regular parameters
in the system). The already established methods
for testing weak observability and identifiability
for nonlinear delay systems alone (Xia et al., 2002;
Zhang et al., 2006) cannot be used to determine
the identifiability of the time-delay parameters
and a prior analysis is necessary for the latter.

2. NOTATION AND PRELIMINARY
DEFINITIONS

Consider nonlinear time-delay systems of the
form:

z(t) = flz(t),z(t — 7),u,u(t — 1))

y(t) = h(x(t),x(t - T)) (1)
x(t) = ¢(t), t € [-max;7;,0] ’
u(t) = uo(t), te[-T,0]

where z € R™ denotes the state variables, u € R™
is the input and y € RP is the output. The un-
known constant time-delays are denoted by the
vector 7 = (71,...,70), 7; € [0,T), T € R. The
expression x(t — 7) means the set of variables
{z(t = 7),...,2(t — 7¢)}, and analogously for u.
The entries of f and h are meromorphic in their
arguments and ¢ : [—maz;(7;),0] — R™ is an
unknown continuous function of initial conditions.
The set of initial functions for the variables x is
denoted by C := C([-max;(7;),0],R™). A mero-
morphic input function u(t) is called an admissible
input if the differential equation above admits a
unique solution. The set of all such input functions
is denoted by Cy .

One of the objectives of this work is to investigate
the property of local identifiability of the delay
parameters 7;. Intuitively, 7; are identifiable if
any two sets can be distingushed by the system’s
input-output behaviour. A formal definition is as
follows:

Definition 1. The delay parameters 7 are said to
be locally identifiable at 7o € (0, 7T)* if there exists
an open set W > 1o, W C [0,7T)*, such that ¥y €
W 1 # 70, Yo, p1 € C, there exist t > 0 and
u € Cy such that y(t,p1,u,m1) # y(t, vo,u, 7o),
where y(t, v, u, 7) denotes the parameterized out-
put for the initial function ¢, the admissible input
u and delays T

Following the notations and algebraic setting
of Moog et al. (2000); Marquez-Martinez et al.

(2000); Xia et al. (2002) and Zhang et al. (2006),
let IC be the field of meromorphic functions of a
finite number of variables from {z(t — i7), u(t —
iT), . uD(t—dir), i=(ir,...,00),05,1 € ZT},
where we have denoted iy + - - - +i,74 by é7. Let
K (8] denote the set of polynomials in dy,...,d
with coefficients from K. This set is a noncom-
mutative ring, where addition is defined as usual,
while multiplication is given by

Ta+7p 1<Ta,J<7s

=2 D

k=0 itj=k

a;(t)b;(t—iT)d% | (2)

where we have denoted 0% .. 51” by 6%. The ring
K (8] is Noetherian and a left Ore domain. The
latter implies that the rank of a free module over
K (8] is well-defined (Cohn, 1971). Let M denote
the module spangs{d§ : £ € K}. The closure of a
submodule A in M is the submodule N' = {w €
M : Fa(8] = a(b1,...,0¢] € K(d], a(d]w € N}.
N is the largest submodule of M containing N
and having a rank equal to rankgs N (Xia et al.,
2002).

Differentiation of functions ¢(z(t — i), u(t —
§7),...,u(t — j7)) in K and one-forms w =
S kida(t —aT) + PIF vidu(t — jT) in M is
defined in the natural way (Xia et al., 2002; Zhang
et al., 2006):

N~ 09 s
qﬁi;ax(t—ir)&f—’—
o¢
- Z u(t —j7)"
w= Zli dz(t —iT) —I—Zujdu
+Zﬁ d5’f+ZVJduT+1 —j7) (1)
J,r

G NG

(t—g7)+

Define

X = spany (s {dr} (5)
Vi = spanx s {dy, g, ..., dy"* "V} (6)
U = spanc s {du, di, ...} . (7

Then (Vi +U)NX = (Y, +U)NX for k > n and
rankis)(Yn +U) N X < n (Xia et al., 2002).

3. STATE ELIMINATION

In this section we consider the problem of ob-
taining an input-output representation from the
state-space form of a time-delay control system.
This problem has been treated for polynomial
systems in Forsman et al. (1994). We will show
that for a system of the form (1) there always
exists, at least locally, a set of input-output delay-
differential equations of the form:



®) . u)y) =

F(67y7"'7y y U,

u(t - jOT)a s 7u(J) (t - Jl‘r)) = 07

such that any pair (y(t),u(t)) which solves (1),
also satisfies (8), for ¢ such that all derivatives
involved are continuous. The function F' is mero-
morphic in its arguments.

Theorem 1. Given a system of the form (1), there
exists an integer J > 0 and an open dense subset
V of C x CJ™', such that in the neighborhood
of any point of V, there exists an input-output
representation of the system of the form (8).

Proof: The proof is an adaptation of the proof
of Theorem 2.2.1. in Conte et al. (1999) for the
analogous result for ODE-systems.

Let f be an r-dimensional vector with entries
fi € K. Let % denote the r x n matrix with
entries

B of;
(5), " e x0- o

Denote by s; the least nonnegative integer such
that

A(h, .., h )y

ranki s o

= rank s %

(10)
If % = 0 then we define s; = 0. Inductively,
for 1 < ¢ < p denote by s; the least nonnegative
integer such that

Ahy, ., WY R

rankx el Oz BGH)
By, . BT g0
:rank;c(g]a( L » 1 ! L )

ox

Let S = (hy,...h\" ™Y hS*™Y) where h;
does not appear if s; = 0. Then

oS
rank,c((;]% =s1+--+s,=K<n . (12)

If K < n, there exist meromorphic functions

91(0,),...,9n—k (8, 2) such that

9(5,91,--9n—K) _

rank;c((;] ‘ s n.

For simplicity, introduce the notation

T = h

~ 1—1

T, = hgbl )

Tg, 41 = hy

. (s2-1)

Tgq1+s9 = h2 2 . (]‘3)
~, _ Sp—1

$81+...+5p = h; »=1)

Tsy4-+sp+l = Gl

537), = On—-K

A(h,...,h\)

The one-forms dz;, ¢ = 1,...,n now form a
basis of X. The definition of s; (equation (11))

S o) .
implies that —5-— is in

Ahy, ... Y Rl
spcm;g(,;] o

(14)

Thus there exist nonzero polynomials b;(d] €
(s43)
K], i = 1,...,p such that b;(8]2u" is in
A(ha,..,h P17 pleiTD
SP@”K(J]{ )
S m J j
bi(&)dh{*) + T ST e (8)duy
€ spangs{dzy,...,dTs 4.4, }, for some J >0,
where J is the highest derivative of u appearing
in the functions in S and ¢; (8] € K(4]. Hence,

m Y
bi(8)dh{ )+ 37N ¢ (8)dul) —

— Z aj((S]dij =0 ,

Jj=1

. Therefore,

for some a;(6] € K(d]. Since all functions are
assumed meromorphic and we have continuous
dependence for the output on the input and initial
function, the above equality holds on an open
dense set of C' x Cé“. The left hand side of equa-

. tion (15), being equal to zero, is a closed one-form

on M. Applying the Poincaré lemma, we obtain
functions &;(t) € K such that d¢; = bi(é]dhgsi) +
STy Y0 € (B)duy’) 375 ay(8]dz; and
&(8, hg‘gi),:ﬁ,u,...,u(J)) = 0, for each i =
1,...,p. The function &; does not depend on Z;,
j > s1+--+s;,since d§; = 0 would then contain
terms dz;, j > s1 + --- + s; which is impossible
by (15) due to the variables dZ being linearly
independent over K(8] by definition. Thus, we
have obtained a relation

&0, 0 Fy, . E sty uD) =0
(16)

which together with (13) produces an input-
output equation

gi(dayi&)aylv"‘v ygﬂ_l)?"'vy?i_l)v (17)

u,...,u(J)):O.

This is true for each i,1 < i < p resulting in p
input-output equations of the form (8). B

4. IDENTIFIABILITY OF THE DELAY
PARAMETERS

This section deals with the problem of the iden-
tifiability of the time-delay parameters 7;, i =
1,...,¢in (1). Linear-algebraic criteria are formu-
lated, based on the linear form of the input-output
equations (15) from the previous section.



The equations (15) give

m
a; (8)dy"*) + S eja(d]dud) =
r=1 j=0
7 8171

=3 a0y, (18)

I=1 j=0

With no loss of generality, we assume that the
polynomials a;(d) on the left-hand side of the
above equations are irreducible. Let a;(d] =
Sk 08, ¢ (8] = Ty, 0" and aig;(8] =
Sk it 0. Denote all the different monomials
8% appearing above by A, ..., A,q and the (in-
teger) linear combinations of 71, ..., 7, that they
represent by Ti1,...,T;,. If some of the terms in
a; (6], ¢;r(0] or a;;;(d] is a polynomial in & of
degree zero, that is, the input-output equations
contain undelayed variables, then we set A, equal
to Jp, where &g denotes the identity operator, and
the corresponding T} is zero. It is the combina-
tions Tio,...,T5q of 71,...,7, that determine the
local identifiability of the latter.

Let A;, be the monomial 6" in a;(8] with smallest
index k (ordered after ki,...,k¢) - it is either
equal to Ay or is among the Ajq,..., Ay, The
input-output equations corresponding to (18) can
locally be written

s - _ _ s1—1

y’f ) = fi(AiolAil?" .7A,L-01A7}qay17"' ayg ' )’
s;—1 Si

’y“,yf ),y,f )7'11/;’“(7))

(19)

or

s s s;—1
%<J@{:fx%uynqy§ (@), u(t), ..., uM ()
YV =Ty + T,y (=T + T,

u(t =T +Tiy), ..., ul (t = Ty + T,),
(31’*1) t—T. T. (si) t—T: T:
Y ( ig T ZO)?""yi ( iq T 10)7
u(t —Tig +Tio)y - - M (t = Tig + Tiy)).
(20)
Let
(Tia = Tag, oo Tog = Ty Tyt = Ty 9
...,qu—Tpo)tr:M(Tla”'an)tr )

where M is a (1g + --- + pg) x ¢ integer matrix
and v!" denotes the transpose of v. We can now
formulate the identifiability criteria for 7,..., 7
in the following proposition:

Proposition 1. If M is defined as above (21) and
y{**9)(t) is not identically equal to zero for any
0<j<ig—1,i={1,...,p}, then 7q,..., 7
are locally identifiable generically, if and only if
rank(M) = £.

Proof : Let first rank(M) < ¢, that is, there are
infinitely many 7;:s which give the same linear

combinations 7 := {Tj — Ty,,...,Tiqg — Tip},
i =1,...,p and the input-output equations (20)
cannot be used to identify the 7;:s. We treat the
case ¢ > 2 and refer to Anguelova and Wennberg
(2007) for the case of a single delay. If rank(M) =
0, the proof is analogous to the proof in Anguelova
and Wennberg (2007) and is therefore left out.

We will show that 74, ..., 7, are not locally iden-
tifiable generically by showing that (1) can be
represented locally as a neutral system with time
lags 7. This system is obtained from the input-
output equations (20) using the notation from
Section 3

Z1 = T2

oo =

Zs, = fi(@s,(t —7),2,2(t = T),u,...,
_ u u(t —F), .., w0 (= F))
i’lerl == ‘%314*2

3?'31+52—1 = 3231—!-32

Tsy+s, = f2(j81+82(t_7:) ~"f(t_%)»u7

vt —F), (= F))

i‘81+"'+sp = fp(§s1+"'+sp (t - 7-)a ~aj(t - 7:)3 U,
D ut—F), L u (= F))

(0 =11

52 = ‘%SlJrl

Up = Tigsyttsp

i‘(t) = (ﬁ(t), t e [to — ma:cjf'j,to]

(22)

Any pair (y(t),u(t)) which solves the original sys-
tem (1) also satisfies the above neutral system for
to > max;7; such that all derivatives are con-
tinuous. Thus, the input-output behaviour of the
system does not distinguish the infinitely many
7;:s which give the same linear combinations 7 and
T1,...,Te are not locally identifiable generically.

Suppose now that rank(M) = £. We first observe
that we then must have ¢ > ¢ and we thus have
at least ¢ different A;4:s. Consider those of the
equations (20), for which i¢ > 1. Evaluated at a
fixed time point ¢y > T, (20) gives an equation for
T’ila e ,’Iliq:

u* (o) = € (to), -,y (ko)
u(to), .- -, u('Y)(tO),
y%sl’”(to —Tin+Tyy),- - 7%(51-)@0 =T +Tiy),
’U,(to — T%l + Tio)? e 7’U/(’Y)(t0 — Til + T%O),
(511 to — T LT )t — T 2T
Yq (O zq+ lo)?"'7yz (0 zq+ lo))7
u(tO - T;q + Tio), N au(’Y)(tO - Tiq + Tio))'

(23)

If the time-point ¢( is chosen large enough to en-
sure the existence of all time-derivatives involved



(which can be achieved by choosing for example
to > (max;s;—1)T), then differentiating (23) with
respect to time gives new equations for T}y, . .., Tig
which are independent, since dyl(j ) j > 0 are
linearly independent over K due to iqg > 1:

Y (tg) = —5 (1), (@),
u(t),... (""”Cg

yl(t_Tzl +Tzo)>~~~,y§ ' 1)(75—T¢1 +T;,,
w(t —Tin +Tiy), ..., u Dt =Ty + Ty, ...,
Yt =Tig+Tip)so ooy (= Tig + Ty,
u(t = Tig+ Tiy), -, ulT ) (E = T + T, -

(24)

Unless y(é‘ﬂ )( t) is identically zero for some 0 <

j < q—1, the first ¢ of these equations identify
Tin—Ti,, ..., Tig—T;, locally (the rest can in some
cases be used to analyze global identifiability).
Since rank(M) =4¢, 7;,i = 1,...,{ are generically
defined uniquely by the locally identifiable linear
combinations T;1 — T, ..., T;q — T;, (an obvi-
ous exception is the case of commensurate time-
delays). Thus, all 7;, i« = 1,...,{ are generically
locally identifiable, which completes the proof. B

5. EXAMPLES

In this section we illustrate the theory by sim-
ple examples and show that weak observability
(and/or parameter identifiability for the regular
model parameters) does not necessarily imply
identifiability of the delay parameters, or vice
versa. Thus, the already established methods for
testing observability and identifiability for nonlin-
ear delay systems (Xia et al., 2002; Zhang et al.,
2006) cannot be used to determine the identifia-
bility of the delay parameters.

Example 1:
a‘:lgt; = xggt - n; —|—(u)(t)
i‘gt = I t—TQ l‘gt
y(t) = () (2)
(E(t) = QD(t)v te [_7—7 0}
We have
g = (01(22))* +u
y = 251($2)5152(1’1)51($2) +u= (26)

= 2(51($2))25152($1) +

and
dy (s1)
djj—du | = 2500 [le} -
dij — di v 2
1 0

= 0 261 (LCQ)(Sl [Ellil :|
2((51(.’172))251(52 46162(%1)(51(%2)6 2

(27)

. 9(s,hi*1)
Clearly, the matrix —51— has rank 2 over (]
and so the system is weakly observable according

to the definition in Xia et al. (2002), if 7, and 7
are known. However, 71 and 7, are not identifiable.
The input-output equation in linear form (eq.

(18)) is:
dy —du + 26152(x1)du =
= 2((51 (332))2(51(52dy + 25152(.131)d@,

and we see that there are two monomials, Ag
and Ay = 01d2 with corresponding combinations
To = 0 and 77 = 1 + 72 of the two time-delays.

00
Thus, M = 11
are not identifiable.

(28)

with rank 1, and the time lags

Following the the first part of the proof of Corol-
lary 1, we can use the change of variables 7; =

y = x1, T2 = § = (01(x2))? + u to rewrite the
system as
Z1(t) = Za(t)
To(t) = 2(Z2(t) — u(t))@1(t — T1) + u(t)
y(t) = a1(t)
(29)
Example 2:
@1(t) = —x2(t — 1)
ia(t) = w1(t — 72)
yl(t) 1 (1) (30)
yQ(t) = Jig(t — TQ)
x = o(t), [—T,0]
We have
Y1 = —01T2
i 31
i1 = —010271 (31)
1 0
a(s,h ) b2y 0 6 . i
and ——5——2— = 516, 0 | The input
0 o
output equations in linear form are
dijy = —0102dy:

. _ .. (32
Sidys = —dadin < dys = —6y Sadgy " D

We thus have AIO; A11 = (5162, Agl = 51 and
Aoy = 9 and thus, Tio = Tlo =0,T11 =71 + 79,
11
T20:T21:71,T22:72andM: 00,
—-11
which is of rank 2. Thus 7; and 7 are identifiable.

For this simple example, we can actually calcu-
late the values of the two time lags from the
explicit input-output equations ¢j; = —01d2y1,
Yo = —0; 1623)1. To illustrate, we simulate outputs
for this system with MATLAB’s dde23 function
(Shampine and Thompson, 2001), by setting 7, =
1, 7 =2, p1(t) = e* and po(t) = t + 1. We then
plot pu1(T11 —T1o)lt, = ¥1(to) +y1(to —T11 +T1o)
and po(Toe — To1)l, = y2(to) + v1(to — T2 +
T51) for tg = 4. As expected, the functions are
zero for T11 — T10 =1+ ﬂ?) and T22 — T21 =



A plot of the function ul(Tll—Tm) for !0:4 A plot of the function uZ(TZZ—Tu) for 10:4
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Fig. 1. The functions p1(T11 —Tho)|a and po(Too —
T1)l4.

V/(2) — 1 and locally these are the only roots,
see Fig. 1. Globally, there are also other roots for
p2(Taa — To1) that can be seen in Fig. 1. They
can be discarded in this case by plotting fio(T2s —
To1)lty := 4 (y2(to) + 91(to — Toz + To1))|s, (and
other subsequent time-derivatives) since Too — To;
must be a root for this, too.

6. CONCLUSIONS

We have analyzed the identifiability of the time-
lag parameters in nonlinear systems with multiple
constant time delays.

State elimination is shown to yield an external
input-output representation of the system, the
form of which decides the identifiability of the
delay parameters. For simpler models with few
variables and parameters, the input-output equa-
tions can be used directly to identify the values of
the time-lags from measured data.

We have formulated linear-algebraic criteria to
check the identifiability of the delay parameters
which eliminate the need for an explicit calcula-
tion of the input-output relations.
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