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Abstract

We present a method for finding weighted integral representation
formulas for differential forms on a complex manifold X for which there
exists a vector bundle £ — X x X of rank dim X, and a holomorphic
section 7 of E that defines the diagonal of X x X.

The method is applied to Stein manifolds, where we look at some
examples of the uses of weights. Most of our applications, however, are
to compact manifolds, such as Grassmannians, where we find weights
which allow representations of forms with values in any holomorphic
line bundle as well as in the tautological vector bundle and its dual. As
a consequence we obtain some vanishing theorems of the Bott-Borel-
Weil type. We also relate the projection part of our formulas to the
Bergman kernels associated to the line bundles. We treat the special
case of complex projective space P" in some detail, as well as applying
the method to P* x P™.

We also find new integral representations of solutions to division
problems in C" involving matrices of polynomials. We find estimates
of the polynomial degree of the solutions by means of careful degree
estimates of the so-called Hefer forms which are components of the
representations.

Keywords: integral representation, Bochner-Martinelli formula, Grass-
mannians, complex projective space, residue currents, effective Null-
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1. HISTORICAL OVERVIEW OF INTEGRAL REPRESENTATION

To study a function, it is often useful to express it as a sum of simpler
functions. A holomorphic function in one complex variable can always
be expressed locally as a Taylor series, that is, a sum of monomials. We
also have the Cauchy integral formula, which expresses a holomorphic
function as a superposition of simple rational functions,

sy = L [ 20

~ 2 op C—2

bl

if z € D. Note that the kernel is holomorphic in z when ( # z, and
that it works for any domain D. The Cauchy integral formula is an
indispensable tool and is the basis of central theorems in single-variable
complex analysis.

In several complex variables we can still easily expand a holomor-
phic function as a Taylor series, but things are more complicated with
integral formulas. The challenge is, given a particular domain, to con-
struct a kernel for this domain which is holomorphic in z when ¢ # z.
However, this is not possible for all domains.

One obvious generalization of the Cauchy integral formula is the
product formula, which is holomorphic and works for a polydisc. We
find it by simply applying the Cauchy formula one variable at a time.
The Cauchy-Weil kernel is a generalization of the product kernel to
analytic polyhedra, which is used to approximate for example pseudo-
convex domains. Fantappié in 1943 represented a holomorphic function
as a superposition of functions of the type 1/(1 + ( - z). This kernel
is also holomorphic, but only works in lineally convex domains, for
example the ball. As a contrast, we have the Bochner-Martinelli ker-
nel (discovered in 1938 by Martinelli [27] and independently in 1944
by Bochner [12]), which works for all domains but is not holomorphic
anywhere if n > 1.



Proposition 1.1. Let z € C" be fized and let

1 8l¢ — 42
(1) b(g):%%_

The Bochner-Martinelli kernel is
1 > (G —z)dG A (Do dG A dG)™
~ (2mi)e ¢ — 2|2

and it satisfies Ou = [z], where [2] is the current of integration over
{z}.

We can see the last equality in (2) by noting that if 0 falls on the
denominator of s, we will get a factor 9|¢[* Ad|¢|*> = 0. A more general
kernel, the Cauchy-Fantappié-Leray (CFL) kernel, was discovered in
1959 by Leray [25], but in the name he honored Cauchy and Fantappié
as influential mathematicians in the field. Let 6._, denote contraction
with the vector field

2
i Z a A

Proposition 1.2. Let s((,z) be a smooth (1,0)-form on 0D which
satisfies 6¢_,s =1 if z € D. The CFL kernel is ucrr, = s A (0s)" 1,
and we have

¢(Z) = PucrL-

oD
This kernel includes the Bochner-Martinelli kernel as a special case,
choosing s = b. However, the CFL kernel is more flexible, and can
e. g. be used to obtain a holomorphic kernel for a convex domain D,
choosing

__Op
B 5{—28:0’
where D = {(: p(¢) < 0} and dp # 0 on OD.

Example 1. If D is the unit ball, we can take p = |¢|? — 1, which
yields

OIC[2 A (981 )
(P =2~

More generally, we have the following definition.

u=sA(0s)" " =

Definition 1. For a given smooth domain D, a (1,0)-form o((, z) is
called a holomorphic support function if it depends holomorphically on
z in a neighborhood of D when ¢ € 0D, and 6._,0 # 0 when 2z € D.

This has a geometric interpretation: let ( € 0D be fixed. Then
{z : 0¢-,0(C,2) = 0} defines an analytic hypersurface that contains
¢ and does not intersect D. We can set s = 0/d;_,0 and use it in the
construction of the CFL kernel. It is known that not all pseudoconvex
domains admit a holomorphic support function.



In 1969 holomorphic support functions, and thus holomorphic rep-
resentation kernels, for strictly pseudoconvex domains were found by
Henkin [16] and independently by Ramirez [32].

Koppelman [24] rediscovered the CFL kernel in 1967, and shortly
afterwards he introduced formulas to represent forms ¢ of degree (p, q)
in some domain D. To do this, we need to regard z as a variable. If
A ={((,2): (=2} CC} xC} is the diagonal, then to obtain a kernel
for representing ¢, we need to solve

(3) K = [A]a
where [A] is the current of integration over A (cf. solving the equation

Ou = [2] to represent a holomorphic function). Note that d now acts
on both ¢ and z. The reason we need to solve (3) is that

/(/¢ ) »(z) = ¢(C)/\w(Z)/\[A]:/zqs(z)/\zp(z),

where ¢ is an (n — p,n — q) test form, so that

/ 4(¢ 6(2)

holds in the current sense. If K((, z) solves (3), the so-called Koppel-
man formula will hold:

o(z) = aDK/\</>+/DK/\a¢+8z/DK/\¢.

If 0¢ = 0 and the boundary integral vanishes, then we get a solution
to the equation ¢ = Ou in D.

Example 2. Assume that D is a domain where we can find a holo-
morphic support function o. Let

Yol —2)
We can extend s to be defined in D, as shown in e. g. [7], so that
K = s A (0s)" ! solves (3). If ¢ is of bidegree (p,q) with ¢ > 1, we
have

S =

KAgp=0.
aD
This is because K cannot contain any dz; differentials, since ¢ is holo-

morphic in z. So finding holomorphic support functions implies that
we can solve the 0-equation.

In 1982, Andersson and Berndtsson [7] found a method of generating
more flexible kernels, by using so-called weights (we will return to these
later). Berndtsson further developed these in [10] and applied them to
interpolation and division problems. To solve an interpolation problem
is to extend holomorphically a given holomorphic function which origi-
nally is defined only on a subvariety, and to solve a division problem is
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to solve the equation ¢ = f-p, where ¢ is a given holomorphic function,
and f is a given tuple of holomorphic functions. For both interpola-
tion and division problems, explicit solutions can be constructed with
integral formulas in many cases. We will return to division problems
in Section 4.

Another application of integral representations is finding an elemen-
tary solution to the Levi problem, that is, to prove that a strictly
pseudoconvex domain D is also a domain of holomorphy. This ques-
tion was first posed by Levi in 1912, and answered affirmatively by
Oka, Norguet and Bremermann independently in 1953. One can find
a considerably simpler proof than theirs by using integral formulas:
indeed, if @ € D, one can explicitly construct a function f which is
holomorphic in D and singular at a (see for example [33]).

2. A METHOD OF GENERATING KERNELS FOR INTEGRAL
REPRESENTATION IN C"

We will now discuss a method of generating kernels, presented origi-
nally in [1], which gives more general weighted formulas than [7]. This
method is the inspiration for both the method used in Papers I and II,
and the method of solving division problems used in Paper III.

For motivation, we begin with the one-dimensional case where we
want to represent a holomorphic function ¢. Let z be a fixed point. It
is clear that if u((, 2) is a solution to

Ou = [2],

where [z] is the Dirac measure at z considered as a (1, 1)-current, then
one would get an integral representation

o(Qu(C,2) = [ d(Q)Iu(C, 2) = ¢(2),
oD, D¢
by Stokes’ theorem. But we can also note that the kernel of Cauchy’s
integral formula
1 d¢
v= 2mi( — 2

satisfies the equation
5(—zu = 1,

where 0., denotes contraction with the vector field 27i(¢ — 2)(0/09¢).
We now define the operator

ngz = 5(*2 - aa

which will be of central importance. Note that VZ__ = 0. By combining
the two previous equations, we get,

(4) Veu=1-[z].
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To generalize this to several complex variables, we let J._, denote
contraction with the vector field

0
2mi Z(Cj - Zj)a—g,
J

and look for solutions to (4) in C*. Note that the right hand side now
contains one function and one (n,n)-current. Considering the actions
of V¢_,, then, we must have u = uy g+ ug1 +...+Uppn1, Where ug 1
has bidegree (k, k — 1). Equation (4) can then be written as a system
of equations

(5) 5{*2“1,0 = 1, 6szu2,1 — g’U,L() =0 c. gun,n,1 = [Z]

We can construct a solution to (4) which has the Bochner-Martinelli
kernel as its top degree term:

Proposition 2.1. If

— b — 3\k—1
(el Ate D b A (9b)F

where b is defined by (1), then u solves (4).

Proof. We start by showing that u solves (4) outside {¢ = z}. In fact,
one can justify the calculation
b Vb b
Veou=V¢_, = - AV2_b=1,
UV T T Vb (Velb)? ’

where the last equality follows because V2 __ = 0. Alternatively, we can
look at the equations in (5) separately: we have d;_,0b = —06;_,b =
01 = 0, and using this, we get
S¢_aUpi1 — Oug, = 6¢_,(b A (Ob)F) — O(b A (Ob)F~1) = (9b)* — (0b)* = 0.
Obviously also 6, ,b = 1. )

What happens when ¢ = 2?7 Proposition 1.1 tells us that Ou,, ,—; =

[2] in the current sense. To prove the other equations in (5), we have to
use, among other things, that all terms of u are locally integrable. [

One can find other solutions to (4) by using the CFL kernel (see
Proposition 1.2), so that uy;_1 = s A (0s)¥~!. See Proposition 2.2 in
Paper I for a more general statement on how to find other solutions.

From the last equation and Stokes’ theorem, it is clear that we will
have

(6) o) = / Gt

but the purpose of the other terms in u is less clear. Why not just
solve Qu,,, 1 = [z] and ignore the other uy; ;? It turns out that to
get more flexible kernels, we need all the terms in u. To this end, we
define weights.
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Definition 2. A weight with respect to the fixed point z is a smooth
form ¢(¢, z) = goo + - - - + gnn such that V_,g =0 and goo(2,2) = 1.

We can find new kernels by combining « and g:

Proposition 2.2. If g is a weight with respect to z, and u solves (4),
then

6 = [ otunghn+ [ dun

B oD D
if € O(D) and z € D.
Proof. We have

Via(ung) =V uhg=(1-[z])Ag=g—[].
Then O(u A ¢)nn = gnn — [#], and the proposition follows. O
Here are some examples of weights:
Example 3. If g = q10+ - + g n_1, then g =1+ V,_,q is a weight.
Example 4. If g; and g» are weights, then g; A g5 is also a weight.

Example 5. If G(A) is a holomorphic function of one complex variable
such that G(0) = 1, and g is a weight, then it is possible to define a
new weight G(g), since there is a functional calculus for forms of even
degree. If g =1+ V_,q with ¢ a (1,0)-form, then

Glg) = 3 G (Gca) (~00) .

Example 6. Let x be a cut-off function that is 1 in a neighborhood
of z and has compact support in D. If u solves (4), it is easy to see
that ¢ = x — Ox Au is a weight with compact support in D. Note that
this gets rid of the boundary integral in Proposition 2.2, and we get
the representation

¢(Z) = /aX A qbun,n—la

which can be seen as a “smoothed-out” version of the unweighted rep-
resentation formula (6).

Weights are useful for example if our function ¢ behaves badly close
to D. We can then use a weight to compensate for the behavior of ¢:

Example 7. Let ¢ be a holomorphic function in the unit ball B, and
suppose that ¢ grows polynomially at the boundary, that is,

(O <CA -~
close to 0B for some p. If we just use the representation (6), the integral
may not converge. Let

_ O\ " _(1=C=z_5 oK® \7
9= (”Vc—zm> N (1— 7~ %2mi(i - IC\2)> '
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The form g is a weight according to Example 5. Note that we have

R S AVA T AN PRI
9’“”“‘(2m>k(k)<1—<-z) ( |<|2—1) ’

so that gy, vanishes on the boundary if r is large enough. We can use
the representation

62) = | Sun gum+ / .
0B B

If r is large enough, g will compensate for the growth of ¢ close to
the boundary, so that the first integral vanishes and the second one is
convergent. This results in the formula

1—|¢)? = olCr \"
/¢9”"‘0/¢ (1—4 z) (31_5_2) |

We can construct an analogous weight on strictly pseudoconvex do-
mains.

Example 8. Let D = {p < 0} be a strictly pseudoconvex domain with
a strictly plurisubharmonic defining function p. To construct weights
for D, we find a smooth form A((, z) on D, holomorphic in z, such that

2Red¢ .h(C,2) > p(¢) — p(2) +6[¢ — 2,

and then set v((, z) = 6._,h((, 2) — p(¢). In fact, v({, z) will then be
an approximation of the polarization of p. For a weight, we can take

s=(-Veutr/p)7 = (-2+02) ',

which vanishes on 0D if r > 1. We then have the representation
= [ bann= [ ooy @00
D D

If ¢ is a (p, g)-form instead of a function, the kernels discussed in this
section so far will not work. As discussed before, we must instead solve
(3). In Paper I, we give a more detailed presentation of how to find
kernels for Koppelman formulas in C*, based on [1]. We will sketch the
ideas here.

Consider the subbundle E* = Span{d(; — dz1,...,d({, — dz,} of the
cotangent bundle T7((C? x C}). Let E be its dual bundle, and let

(7) n = 2mi Z i)€js

where {e;} is the dual basis to {de — dz;}. Contraction with n will
then act on E*. We can now define our operator V, = 6, — 0, and find
a solution to

(8) Vyu=1~[4],
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since uy, ,—1 will then solve (3). In fact, if we replace d¢; in (1) with
d(; — dz; and let

b
(9) e => bA(Ob)F
then u will solve (8).

Definition 3. A weight is a smooth form g = goo + -+ + gn,n, Where
9r.k takes values in AFE* AAFT |, such that V,g = 0 and go (2, 2) = 1.

If we set K = (u A g)nn—1 and P = g, ,, then they satisfy
oK = [A] -

Note the analogy with Proposition 2.2. Using K and P, we get the
weighted Koppelman formula

(10)  &(2) = K/\¢+/DK/\8¢+8Z/DK/\¢+/DP/\¢

oD
for (p, g)-forms ¢.

Example 9. We can adapt Example 8 to (p, ¢)-forms by letting A((, z)
be a smooth form in E* such that

2Re 6,h(C, 2) 2 p(C) — p(2) +6|¢ — 2|
holds, and then set v((,z) = 6,h((,2) + p({). We can then proceed
analogously and obtain weighted formulas for (p,¢)-forms on strictly
pseudoconvex domains.

3. APPROACHES TO SOLVING THE 0-EQUATION

The equation u = f, where f is a (p, ¢)-form such that df = 0,
is of central importance in complex analysis. We will discuss different
approaches to solving this problem. It is always possible to solve the
0-equation locally - this is the well-known Dolbeault’s lemma. The
question then becomes how to solve it globally in a given domain or
manifold, and obtaining estimates of various norms on u.

In the 1950’s, Kodaira [22]| proved vanishing theorems for positive
line bundles on compact manifolds. A vanishing theorem gives condi-
tions under which cohomology groups are trivial, which means exactly
that all 0-closed forms are O-exact. He used the isomorphism between
cohomology groups and harmonic forms, and what is now called the
Bochner-Kodaira-Nakano identity for (p, ¢)-forms with values in a vec-
tor bundle. In the 1960’s, Kohn and Morrey solved the d-Neumann
problem, which gives a solution to the d-problem on strictly pseudo-
convex domains. However, there is a problem with regularity on the
boundary. Hormander [19] used the Bochner-Kodaira-Nakano identity
in C* to prove existence theorems for the J-equation with weighted
L?-estimates in pseudoconvex domains in C*, and he was able to use
the weights to resolve the problems at the boundary. For an historical
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overview, see [21]. The L?-method of solving the d-equation is still an
active field of research, both on manifolds and on domains in C* with
boundary.

During the 1970’s, integral formulas were first used by Henkin to
solve 0-equations, and the techniques were developed further by for ex-
ample Ovrelid, Kerzman, Grauert and Lieb. This strategy gave explicit
solutions to the O-equations, whose norms could then be estimated.
For example, Henkin used Koppelman formulas together with his and
Ramirez’ result from 1969 to solve the d-equation in strictly pseudo-
convex domains. This paved the way for the Henkin-Skoda theorem
([17], [34]), which provided improved L!-estimates on the boundary for
solutions of the J-equation. This is the first time weights were used,
albeit in an ad hoc way.

We can exemplify the approach in one complex variable. If f €
L*(D) and we want to solve du = f in the unit disc D, the ordinary
Cauchy formula gives the solution

Pl

Unfortunately, u is not in L'(0D). But for the weighted solution

ﬁzg/l—MEfm

7 )pl—C-z (=2

[ a=c [

If we are in a strictly pseudoconvex domain in C", we can use the
weight in Example 9.

The advent of a more systematic approach to weights in the 1980’s,
following [7], allowed the integral formula approach to be used on new
classes of functions, as in the following example:

we have the estimate

Example 10. Let ¢ be a d-closed (0, 1)-form on C* which grows slower
than e*, where v is a convex function. Let u; = 0u/0¢;. We can set

g9 =exp[=V,(2 ) u;(0)(d¢; — dz))),
and it is easy to see that g is a weight in the sense of Definition 3.
If we take D = B(0, R) in the weighted Koppelman formula, and let
R — 00, one can prove that the first integral will vanish and the others
will be convergent, using the growth condition on ¢ and the fact that
u is convex. Since g contains no dZ;, the last integral will vanish, and
we get an explicit solution to the d-problem.

On manifolds, the integral formula approach is not as well developed
as the L? methods. Stein manifolds have been treated mainly in [18]
and [14], and complex projective space in [30] and [9]. As for more
general approaches, there is [8|, where integral formulas are found for
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manifolds X such that there exists a vector bundle £ — X x X of rank
dim(X), and a holomorphic section 7 of F that defines the diagonal of
X x X. This approach is part of the inspiration for Paper I.

4. APPROACHES TO SOLVING DIVISION PROBLEMS

Let f = (f1,..., fm) be a tuple of holomorphic functions. If ¢ is a
given holomorphic function, we can ask whether it is possible to write

¢:fw:f1w1+fm¢m

where v is holomorphic, or equivalently, if ¢ lies in the ideal (f) gener-
ated by fi1,..., fm- This is called the membership problem. Obviously
a necessary condition is that ¢ vanishes on the variety Z = {2z : f; =
-+ = fmn = 0}. Once we find a solution v, we are usually interested in
its properties, such as estimates of norms on ).

One method of solving division problems is to use the Koszul com-
plex, which was first done in this context by Hérmander [20]. The idea
is to begin by finding a current solution, and then modify it by solving
a succession of 0-equations, to obtain a holomorphic solution. In this
method, we view f = ) fief as a section of a trivial vector bundle
E* — C" with holomorphic frame {e}}, with dual bundle E. Regard
the bundle A[T*(C") ® E @ E*], where we can for example take wedge
products of differential forms and sections of E. The Koszul complex
of f is

i O a2 O i
0 — A"F —--- > ANF—F—C—0,

where 0y is contraction with f. We can now reformulate our division
problem, and look for a holomorphic solution to d;1 = ¢. Obviously,
outside Z we can choose u; = Y fie;/| f|? as a smooth solution. Both d;
and 0 extend to currents taking values in sections of A[T*(C")®E®E*],
note also that they anticommute. Since §;0u; = —d§;u; = 0 and the
Koszul complex is pointwise exact outside Z, we can solve d yuy = —0us.
In the same way, we successively solve the equations 6pu; = —Ouy_+
for £k > 2. We now assume that the u; can be extended as currents Uy
over Z such that these equations still hold. In that case, we can solve
the following system of equations:

ow, = U,
5wu—1 = Uu—l + 6fwu

(11) 5102 = U2+6fw3.

and use ¥ = U; + dywy as our holomorphic solution. This method
relies on being able to solve 0-equations, as in the previous section. So
if one wants to estimate the solutions, one has to rely on a succession
of estimates of solutions of the 0-equation.
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There is also a method due to Skoda [35], which is based on Hor-
mander’s L2-methods combined with complex geometry. We will sketch
the idea behind this method. As above, we view v as a section of F,
and look for a solution to d7¢ = ¢. Obviously ¢u; is a smooth so-
lution outside Z, so if we find v satisfying 6;0 = 0 and dv = $du,,
then ¢ = ¢u; — v is a holomorphic solution. This amounts to solving
Ov = ¢0u, in the subbundle Kerd; C E, since §;(¢pdu;) = 0. Loosely
speaking, the problem is that if £ is a trivial bundle to begin with,
then generally Ker d; has negative curvature, and one cannot solve the
0-equation. The remedy is to make sure that the curvature of F is
positive enough, by modifying the metric on F with a factor e¢1°8l/l,
for a large enough c.

One form of Skoda’s result is the following: suppose ¢ satisfies

L= [ JoPis e e < oc
Q

where a > 1, (2 € C" is a plurisubharmonic domain, and ¢ is plurisub-
harmonic in €2. We then have ¢ = f - 1) where

/ 1P| f|7**%e™? < af(a— 1)1
Q

One can also use weighted integral formulas to solve division prob-
lems. The idea is to find a weight that includes the factor f(z). Here
is an example from [10], reformulated to fit our formalism.

Example 11. Berndtsson’s division formula.
Let f = (f1,-.-, fm) be a tuple of holomorphic functions in a strictly
pseudoconvex domain D C C", with no common zeroes, and let ¢ be
another holomorphic function in D. We will construct a holomorphic
Y = (Y1,...,%n) by means of integral formulas, such that f - = ¢.
Let o = (fi/|f% .-, fm/|f|?) and g = min(n + 1, m).

Let A be a tuple of holomorphic (1, 0)-forms h((, z) = (h1,-.., hn),
so-called Hefer forms, such that d._.h; = f;(¢) — f;(z). We can find
such forms by writing

FO) — f(z) = /a (€)= u(w, ) (w),

where u is constructed by means of a holomorphic support function,
and then finding Hefer forms forms for u.
Consider

G =0=Ve(h-0)*=(f(2) 0+ h-do)",

which is a weight depending holomorphically on z. By Proposition 2.2
we have

(12) ¢(Z) = . (b(u A gl)n,n + /; (b(gl)n,n-
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Now, note that we have (h - do)* = 0. In fact, it is clear that every
term in (Oo)"*! vanishes for degree reasons, and since f - o = 1, we
have f-0o = 0, which says that the Jo; are linearly dependent, and so
da1 A ...Nda,, =0 and (h-0c)™ = 0. This implies that f(z) will be
a factor in g;, so that we can write g1 = f(z) - A((, z), and by means
of this we can define our .

If we have no control over the boundary behavior of f, we can use
the use the weight in Example 6 to eliminate the boundary integral
and ensure convergence. If f has polynomial growth at the boundary,
we can use a weight of the type in Example 7.

We can also look at a special case, where D = C* and ¢ and the f;’s
are polynomials. We can then use a weight

- T - - T
b (1w S (1l
T+1¢ T+1cP TP
which will compensate for the polynomial growth of ¢, if r is large
enough, so that the integral over C"* will be convergent.

Example 12. There is an alternative weight due to Andersson (origi-
nally in [2], also see [5]) which can be used to solve division problems.
Andersson’s weight is more amenable to generalizations.

Let f, o, h and p be as in the previous example, and let ¢ be a holo-
morphic function in C". As in the section on the Koszul complex, we
will view f as a section Y fief of a trivial bundle E*, o = 3" fie;/| f|?
as taking values in F, and the Hefer form A as taking values in E*. We
define

p—1
9= 1(2) 3 k(o A (00)").
0
It is not hard to show that g; is a weight, and obviously g¢; contains
a factor f(z). We then get a representation (12). As when we use
Berndtsson’s weight, we can use a second weight, which will depend on
the domain D, to eliminate the boundary integral or compensate for
the behavior of ¢.

5. PAPERS I AND 11

The purpose of Papers I and II is to present a method for finding
integral representation formulas on certain manifolds, and to apply the
method to Grassmannians, complex projective space and Stein mani-
folds.

The idea is to generalize the method for obtaining kernels for rep-
resenting (p, ¢)-forms on C" that we sketched in the end of Section 2.
Note that we cannot in general hope to solve the equation 0K = [A]
on a manifold, since [A] may represent a non-trivial cohomology class.
Instead, we aim to solve

(13) 0K = [A] - P,
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where P is a smooth form. This will give us a Koppelman formula as
in (10).

Let X be a complex manifold of dimension n. To generalize the
method on C", we need to find a replacement for the vector field 7,
so we assume that there exists a vector bundle £ — X x X, of rank
n, and a holomorphic section 7 of E that defines the diagonal A of
X x X. The construction with E and 7 is originally from Berndtsson
[8], and we get the same formulas as he does. However, combining his
construction with the method involving the operator V,, inspired by
[1], will allow us to use weights easily.

In analogy with the C* case, we define our operator

v, =6, -0,

and we note that V, is a superconnection in the sense of Quillen [31].
We will find a u such that

(14) V,u=1-R,

where R is a (0,n)-current with values in A"E* and support on A
(cf. [6]).

We exemplify with the C" case. The section 7 is defined by (7), and
to find u we would set

1 X6 —z)e

Com (-2

and then let u = 3" b A (0b)k. Comparing this to (9), it is clear that u
satisfies (14), and that if we replace the €}’s in R with d(; — dz;’s, we
will get precisely [A]. Of course, in this special case, the e;’s already
are equal to these differentials. In the general case we will instead need
to find a form A taking values in A"F such that R - A = [A] if we use
the natural contraction, which together with (14) will give K and P
which solve (13). We will not go into the details of this here, but A
will actually involve the supercurvature of the operator V,. Moreover,
it turns out that P = ¢,(F), that is, the n:th Chern form of E.

We can also use weights in a similar way as before, and we then get
representations of (p, ¢)-forms taking values in a vector bundle H — X.
A weight g for H is defined as a section g = go o + - - - + gn,n, Where gy
takes values in

(15) Hom (H¢, H,) ® [APE* AT (X x X)),

such that V,g = 0 and gg (2, 2) = Id. Note the similarities to Defini-
tion 3. This will yield a current K and a smooth form P taking values
in Hom (H,, H,), and by means of these we get a weighted Koppelman
formula for (p, ¢)-forms taking values in H.

In Paper II we apply our method to Grassmannians. The Grassman-
nian X = Gr(k, N) is defined as the set of k-dimensional subspaces of
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C", which one can give a natural structure as an k(N — k)-dimensional
manifold.

We need to find a vector bundle E and a section n with the right
properties. To this end, we first define the tautological vector bundle
H, which is a rank k& sub-bundle of the trivial rank N bundle C¥ — X,
such that the fiber of H above p € X is the k-plane in CV corresponding
to the point p. We can also define the quotient bundle F' := CV /H,
which is a holomorphic vector bundle of rank N — k. We let =, :
X¢ x X, = X, be the natural projection, and likewise for 7.. Finally,
we define

E=mF®mn
or in simpler notation, F, ® H}. We can also view £ as Hom (H, F},).
Note that the rank of E is k(N — k).

To define a mapping n : H; — F), defining the diagonal, we start with
a vector v € H, which we can identify with a vector o € CV. We then
let n(v) be the projection of © onto F, = CN /H,. Tt is clear that n(v)
vanishes if and only if H, = H; and thus z = (. Hence, 7 is a global
section of F and vanishes precisely on A. In fact, with appropriately
chosen coordinates and frames, n has the simple form n = ( — z.

We can also find weights for the bundles H, H*, L := det H, and L*
for all k. For each bundle, this gives us K and P with which we can
get weighted Koppelman formulas. In fact, using representation theory
one can prove that all holomorphic line bundles over X are given as
some power of L. We can also identify the form P which is associated
with L with the Bergman kernel for L=*.

A special case of the Grassmannian is the complex projective space
P", and integral representation on P” is treated in Paper I. We define
P" as the set of complex lines through the origin in C**!, so that
P" = Gr(1,n+ 1). In the P" case, H will be a line bundle and thus
H=1L.

Remark 1. There are some differences between the construction on
P" in Paper I and the construction on Grassmannians in Paper II.
The first difference is that in Paper I, everything in P" is expressed
in homogeneous coordinates, while in Paper II, the section 7 and the
weights have both a coordinate-free description and an expression in
local coordinates. A difference in notation is that in Paper II we have
the line bundle L = det H, but this bundle is equal to L~! in Paper I.
The weight ~ ~
z-C (e

a=qoy+ o P + 270 2
from Paper I seemingly takes values in the wrong bundle. In the ter-
minology of Paper I, it is clear that «g takes values in L! ® LC_I =
Hom (L¢, L), as it should, cf. (15), oy ought to take values in L] ®

L' ® (E* ATg,). Asit is, on takes values in L' ® (F* ATg,). But
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since L! ® L;! = C, the section «; takes values in
LI3QF AT =L, L @ (L' @ F* AT ,) =
=L, ® L ® (E*ATy)).

In Paper I, we also apply the general method to line bundles over
P" x P™ and to Stein manifolds. On Stein manifolds we have to modify
it a little, since one cannot in general find a section 7 which is zero
only on the diagonal - it might have other zeroes as well. Following
[18], one can get around this snag by using a weight which damps out
the unwanted singularities in the kernel.

Once we have Koppelman formulas for forms taking values in vector
bundles over a manifold, we can use them to investigate the cohomology
groups of the vector bundles. If X is a compact manifold such as a
Grassmannian, the only obstruction to solving the d-problem is the

integral
/ PA¢=0.
X

By examining for which p and ¢ this integral vanishes, we can get
vanishing theorems for the cohomology groups. In Paper I we do this
for line bundles over P" and P" x P, and in Paper II we do it for line
bundles over Grassmannians.

These vanishing theorems are already known, in fact, for a given
cohomology group H??(Gr(k, N), L") one can determine with an algo-
rithm whether it is trivial or not (see [36]). We do not find all groups
that are trivial, but on the other hand we get explicit solutions to the
0-equation. In P" we prove more cases than for general Grassmannians.

6. PAPER III

In Paper III we use integral representation to solve division problems
involving matrices of polynomials. We first give a background to the
problem.

Let F = (Fy,..., F,) be a tuple of polynomials in C*, and ® another
polynomial in C* which vanishes on the common zero set of F'. Let d; >
dy > +-+ > d,, be the degrees of the F;. By Hilbert’s Nullstellensatz,
there exist ¥ € N and polynomials ¥ = (¥y,...,¥,,) such that

(16) S'=F -V =FY+ .- -+ F,¥,,.
or if F' has no common zeroes in C", we can solve the special case
(17) 1=F-0.

However, this gives us no information on the size of v or the polynomial
degrees of the ¥;. These turn out to depend not only on the d;, but on
the zeroes of F' and the singularity of F' at infinity. Working in P" will
give us better control of what happens at infinity, so we homogenize F',

so that f;(Co, ..., 2n) = ngF(C) is a section of the line bundle O(d;) —
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P", and define Z = {f = 0} C P". If we impose geometric conditions
on Z, we can find ¥ with quite low degrees:

Example 13. Assume that m = n + 1 and that Z = (). In that case,

the classical theorem of Macaulay [26] states that we can solve F'-¥ = 1
with deg F}\I/] S Zdj —n.

Example 14. Assume that Z is discrete and contained in C" and that
® belongs to the ideal (F'). Then by Max No6ther’s theorem [29] there
exists ¥ such that ® = F'- ¥ with deg F;¥; < deg ®.

On the other hand, in the worst case scenarios the degree of ¥ can
be much higher.

Example 15. In [28], Mayr and Meyer construct an F' with m =n+1
such that ¢; — (, € (F'), and show that any ¥ satisfying (; —(, = F- ¥
must have maxdeg ¥; > (d — 2)%"
10k.

A breakthrough in finding an effective version of the Nullstellensatz
in the general case was made by Brownawell [13]|. Assuming that Z C
{Co = 0}, he proved an estimate

(18) ClIfIl = 1Gl™

by algebraic methods, where || f[|* = 37 [F;(¢)[*/|(1+(¢[*)|% and |Gl =
1/(1+¢|?). The constant M depends on the d;. He then used Skoda’s

L2-method to obtain an estimate on the degree of the solution of (17).

As a corollary, he also obtained a result for the general case (16).

Given an estimate (18), instead of using Skoda’s L*-method one can
get precisely the same estimates on ¥ as in [13| by means of the Koszul
complex (see [15]), or get estimates which are slightly less accurate by
looking at an explicit ¥ given by integral formulas.

The optimal result, slightly better than Brownawell’s, was found by
Kollar [23], who used purely algebraic methods. We state one version
of his result here: Let d; = d for all j and p = min(m, n). We can then
solve (16) with v < d* and deg F;¥; < (deg ®+1)d". See [23] for more
details. This result should be compared to Example 15.

As for purely analytic methods, in [3] residue currents on P" are
used to capture the obstructions to solving (16) with v = 1. When
the residue current vanishes, one gets a solution ¥ together with an
estimate of its degree. Explicit solutions are also found by means of
integral representation, though one then loses some precision in the
degree estimates.

In Paper III, we let F' be an r X m matrix of polynomials, and ® an
r-column of polynomials. If we know that

d=F.0,

is solvable, where WU is an m-column of polynomials, we want to find an
explicit ¥ and give an estimate of its degree . This division problem is

, where d = maxdeg F; and n =
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treated in [4] by means of residue currents on P". We will use weighted
integral formulas on P" to find explicit solutions, and our weight will
be a generalization of the weight in Example 12. Now, recall the Hefer
forms which are a component of this weight. A main part of the paper is
dedicated to examining the degrees of generalized Hefer forms h, where
h is a matrix, which will allow us to find estimates of the degree of V.
A major tool for determining the degrees of the Hefer forms is solving
the equation a = 6,_,/, where (¢, 2) is a §;_,-closed (I, 0)-form in C”
with holomorphic polynomials of degree r for coefficients. We show that
one can find a solution § which is a (I — 1,0)-form with holomorphic
polynomials of degree r — 1 for coefficients. If [ = 0 and «(¢) is a
holomorphic polynomial, we can instead solve a(¢) — a(z) = 6.0,
where [ satisfies the same conditions as above.
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WEIGHTED INTEGRAL FORMULAS ON MANIFOLDS

ELIN GOTMARK

ABSTRACT. We present a method of finding weighted Koppelman
formulas for (p,q)-forms on n-dimensional complex manifolds X
which admit a vector bundle of rank n over X x X, such that the
diagonal of X x X has a defining section. We apply the method
to P and find weighted Koppelman formulas for (p, g)-forms with
values in a line bundle over P". As an application, we look at the
cohomology groups of (p, g)-forms over P with values in various
line bundles, and find explicit solutions to the d-equation in some
of the trivial groups. We also look at cohomology groups of (0, q)-
forms over P" x P™ with values in various line bundles. Finally,
we apply our method to developing weighted Koppelman formulas
on Stein manifolds.

CONTENTS
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7. Weighted Koppelman formulas on Stein manifolds
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The Cauchy integral formula provides a decomposition of a holomor-
phic function in one complex variable in simple rational functions, and
is a cornerstone in function theory in one complex variable. The kernel
is holomorphic and works for any domain. In several complex variables
it is harder to find appropriate representations. The simplest multi-
variable analog, the Bochner-Martinelli kernel, is not as useful since
the kernel is not holomorphic. The Cauchy-Fantappie-Leray formula
is a generalization which gives a holomorphic kernel in domains which
admit a holomorphic support function. Henkin and Ramirez in [17],
[23| obtained holomorphic kernels in strictly pseudoconvex domains G
by finding such support functions. Henkin also found solutions to the

1
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0-equation in such domains. This was done by means of a Koppelman
formula, which represents a (p, g)-form ¢ defined in some domain D as
a sum of integrals

o(2) = K/\¢+/DK/\5¢+<§Z/DK/\¢+/DP/\¢,

oD
by means of the current K and the smooth form P. If ¢ is a closed form
and the first and fourth terms of the right hand side of Koppelman’s
formula vanish, we get a solution of the d-problem for ¢. Henkin’s
result paved the way for the Henkin-Skoda theorem (see [18] and [24)),
which provided improved L!-estimates on OG for solutions of the O-
equation by weighting the integral formulas.

Andersson and Berndtsson [7]| found a flexible method of generating
weighted formulas for representing holomorphic functions and solutions
of the 0-equation. It was further developed by Berndtsson [8] to find
solutions to division and interpolation problems. If V' is a regular
analytic subvariety of some domain D in C* and A is holomorphic in
V', then Berndtsson found a kernel K such that

H(z) = /V h(QK(C, 2)

is a holomorphic function which extends h to D. If f = (f1,..., fm)
are holomorphic functions without common zeros, he also found a solu-
tion to the division problem ¢ = f - p for a given holomorphic function
¢. Passare [20] used weighted integral formulas to solve a similar di-
vision problem, where the f;’s do have common zeros, but the zero
sets have a complete intersection. He also proved the duality theorem
for complete intersections (also proved independently by Dickenstein
and Sessa [14]). Since then weighted integral formulas have been used
by a row of authors to obtain qualitative estimates of solutions of the
0-equation and of division and interpolation problems, for example
sharp approximation by polynomials [25], estimates of solutions to the
Bézout equation [5], and explicit versions of the fundamental princi-
ple [11]. More examples and references can be found in the book [6].
More recently, Andersson [4]| introduced a method generalizing |7] and
[8] which is even more flexible and also easier to handle. It allows for
some recently found representations with residue currents, applications
to division and interpolation problems, and also allows for f to be a
matrix of functions.

There have been several attempts to obtain integral formulas on
manifolds. Berndtsson [10] gave a method of obtaining integral kernels
on n-dimensional manifolds X which admit a vector bundle of rank n
over X x X such that the diagonal has a defining section, but did not
consider weighted formulas. Formulas on Stein manifolds were treated
first in Henkin and Leiterer [19], where formulas for (0, ¢)-forms are
found, then in Demailly and Laurent-Thiébaut [13|, where the leading
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term in a kernel for (p, q)-forms is found, in Andersson [1|, which is
a generalization of [7| following Henkin and Leiterer, and finally in
Berndtsson [10] where the method described therein is applied to Stein
manifolds. Formulas on P™ have been considered in [21], where they
were constructed by using known formulas in C*™', and in [9], where
they were constructed directly on P". There is also an example at the
end of Berndtsson [10], where the method of that article is applied to
Pn.

In this article, we begin in Section 2 by developing a method for
generating weighted integral formulas on C", following [2]. Section 3
describes a similar method which can be used on n-dimensional mani-
folds X which admit a vector bundle of rank n over X x X such that
the diagonal has a defining section. It has similar results as the method
described in [10], but with the added benefit of yielding weighted for-
mulas. The method of Section 3 is applied to complex projective space
P™ in Section 4, where we find a Koppelman formula for differential
forms with values in a line bundle over P". In the P" case we get
formulas which coincide with Berndtsson’s formulas in [9] in the case
p = 0, but they are not the same in the general (p, ¢)-case.

As an application, in Section 5 we look at the cohomology groups
of (p,q)-forms over P* with values in various line bundles, and find
which of them are trivial (though we do not find all the trivial groups).
Berndtsson’s formulas in [9] give the same result. The trivial cohomol-
ogy groups of the line bundles over P" are, of course, known before,
but our method gives explicit solutions of the J-equations. In Section
6 we look instead at cohomology groups of (0, ¢)-forms over P x P™
with values in various line bundles. Finally, in Section 7 we apply
the method of Section 3 to finding weighted integral formulas on Stein
manifolds, following [19] but also developing weighted formulas.

2. WEIGHTED KOPPELMAN FORMULAS IN C*

As a model for obtaining representations on manifolds, we present
the C" case in some detail. The material in this section follows the last
section of [2]. The article |2] is mostly concerned with representation of
holomorphic functions, but in the last section a method of constructing
weighted Koppelman formulas in C" is indicated. We expand this
material and give proofs in more detail. We begin with some motivation
from the one-dimensional case:

One way of obtaining a representation formula for a holomorphic
function would be to solve the equation

Ou = 2,

where [z] is the Dirac measure at z considered as a (1, 1)-current, since
then one would get an integral formula by Stokes’ theorem. Less ob-
viously, note that the kernel of Cauchy’s integral formula in C also
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satisfies the equation
(SC_z’LL = 1,

where 0., denotes contraction with the vector field 27i(¢ — 2)0/0¢.
These two can be combined into the equation

(1) Vit = 6y — O)u=1—[z].

To find representation formulas for holomorphic functions in C*, we
look for solutions to equation (1) in C, where d._, is contraction with

2m1 Z 8 Cg

Since the right hand side of (1) contains one form of bidegree (0, 0) and
one of bidegree (n,n), we must in fact have u = uy o+ug1+. . .+ Upn_1,
where uy, ;. has bidegree (k, k—1). We can then write (1) as the system
of equations

(54_ZU1,0 = 1, 5{—.2“1,2 — 5’1141,0 =0 e 511%7”_1 = [Z]

In that case, u, ,_1 will satisfy Ouy,,,_1 = [2] and will give a kernel for
a representation formula. The advantage of this approach is that it
easily allows for weighted integral formulas, as we will see.

To get Koppelman formulas for (p, ¢)-forms, we need to consider z as
a variable and not a constant. If we find u, ,_1 such that Ouy, ,_1 = [A],
where A = {((,2) : ( = z} is the diagonal of C} x C} and [A] is the
current of integration over A, then u,,_; will be the kernel that we
seek. In fact, if we let ¢ be a (p, g)-form, and ¢ an (n — p,n — q) test
form, we have

/(/‘b AW)“* /¢ ) A v ALAL = [ o) A w(e

so that f€¢ ¢) A [A] = ¢(2) in the current sense.

In more detail, then: Let © be a domain in C* and let 7(¢,z) =
2mi(z — (), where (¢, 2) € Q x . Note that n vanishes to the first order
on the diagonal. Consider the subbundle E* = Span{dn,...,dn,} of
the cotangent bundle T7, over 2 x 2. Let E be its dual bundle, and
let 6, be an operation on E*, defined as contraction with the section

(2) Z N4

where {e;} is the dual basis to {dn;}. Note that ¢, anticommutes with

Consider the bundle A(T*(2 x 2) & E*) over Q x Q. An example of
an element of the fiber of this bundle at ({, z) is d(; A dza A dns. We
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define
(3) L™ =P C=(Q x QAPE" A APy (Q x Q).

P

Note that £™ is a subset of the space of sections of A(T*(2 x Q) & E*).
Let £™  be the corresponding space of currents. If f € L™ and g € LF,

curr

then f A g€ L™,
We define the operator

V=V,=6,-0,
which maps £™ to L™*!. We see that V obeys Leibniz’ rule, that is,
(4) V(fAg)=VfAg+ (=1)"fAVy,

if f € L™. Note that V2 = 0, which means that

S S gt %
is a complex. We also have the following useful property: If f is a form
of bidegree (n,n — 1) and D C Q x €, then

(5) aDf=—/DVf.

This follows from Stokes’ theorem and the fact that [, 6,f = 0. The
operator V is defined also for currents, since 0 is defined for currents,
and d, just amounts to multiplying with a smooth function, which is
also defined for a current.

As in the beginning of this section, we want to find a solution to the
equation

(6) Vyu=1-[A].

with v € L] (since the left hand side lies in £ ), so as before, we

have u = w19+ ug1 +. ..+ Uppn_1, Where uy ;1 has degree k£ in E* and
degree k — 1 in T7;.

Proposition 2.1. Let

1 Onf*

and

b b _ _
7 =——=—"=b+bA0b+...bA (OD)""
where we get the right hand side by expanding the fraction in a geomet-
ric series. Then u solves equation (6).
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The crucial step in the proof is showing that d(b A (0b)"71) = [A],
which is common knowledge, since b A (0b)"! is actually the well-
known Bochner-Martinelli kernel.

A form u which satifies V,u = 1 outside A is a good candidate for
solving equation (6). The following proposition gives us a criterion for
when such a v in fact is a solution:

Proposition 2.2. Suppose u € L71(Q x Q\ A) solves V,u =1, and
that |ug| < n|=@*=V. We then have V,u =1 — [A].

Proof. Let upys be the form defined by (7), and let u be a form satis-
fying the conditions in the proposition. We know that V(u A ugpy) =
upy — u pointwise outside A, in light of (4). We want to show that
this also holds in the current sense, i. e.

®) [ V) n o= [(um ) no,

where ¢ is a test form in 2 x €. Using firstly that u A upy; is locally
integrable (since u A ugy = O(|n|~?"?) near A), and secondly (5),
we get

/V(u/\uBM)/\¢=—lim (u Aupy) ANV =

e—0 ‘77|>€

9) = lim(/ uNugy Ao+ V(u/\uBM)/\qb).
[nl=€ [n|>€

e—0

The boundary integral in (9) will converge to zero when € — 0, since
u A ugy = O(|n|72"*2) and Vol({|n| = €} Nsupp(¢)) = O(e>*71). As
for the last integral in (9), we get

lim V(’U//\’U/BM)/\¢:11H1 (UBM—U)/\¢:/(UBM—U,)/\¢,

e—0 ‘n|>€ e—0 ‘7]|>€

since ugy — u is locally integrable, thus V(u A ugy) = upy — u as
currents. It follows that Vu = Vugy since V? = 0, and since ugy
satisfies the equation (6), u must also do so. O

Example 1. If s is a smooth (1,0)-form in ©Q x Q such that [s| < |n|
and |d,s| 2 |n?, we can set u = s/Vs. By Proposition 2.2, u will
satisfy equation (6), and
sA (0s)" !
Upnp—1 = ﬁ
(0y5)

is the classical Cauchy-Fantappie-Leray kernel.

We now introduce weights, which will allow us to get more flexible
integral formulas:
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Definition 1. A form g € £L°(Q x Q) is a weight if goo(z,2) = 1 and
V9 =0.

The form 1 + V(@ is an example of a weight, if Q € £7!. In fact, we
have considerable flexibility when choosing weights: if @ is a (1,0)-
form, ¢ = 1+ V@, and G()) is a holomorphic function such that
G(0) = 1, then it is easy to see that

G(g) =Y _G®(6,Q)(—0Q)*/k!

is also a weight. We can now prove the following representation for-
mula:

Theorem 2.3 (Koppelman’s formula). Assume that D CC Q, ¢ €
Epq(D), and that the current K and the smooth form P solve the equa-
tion
(10) 0K =[A] - P.
We then have
(11)  ¢(2) = K/\¢+/ K/\5¢>+52/ K/\¢+/ PA ¢,

D D D

oD
where the integrals are taken over the ( variable.

Proof. First assume that ¢ has compact support in D, so that the first
integral in (11) vanishes. Take a test form ¢ (z) of bidegree (n—p, n—q)
in 2. Then we have

L(/CK/\&f)-l-gz/CK/\gb-{-/cp/\d))/\w:

- /ZCK/\dqﬁ/\lﬁﬂL(—1)p+q/z€K/\¢/\d¢+/ch/\¢/\¢:

- /zng/\d(gb/\zp)Jr/ZCP/\W\d):

= /z’CdK/\gb/\w—{—/z’c,lf’/\(b/\i/J:/Zﬁb/\%

where we use Stokes’ theorem repeatedly. If ¢ does not have compact
support in D, we can prove the general case e g by replacing ¢ with
Xk®, where xx — xp, and let £ — oo. O

It is easy to obtain K and P which solve (10): If we take g to be a
weight and u to be a solution of (6), then we can solve the equation

Vv =g—[4]

by choosing v = u A g. This means that K = (uA¢)ppn—1 and P = g, ,
will solve (10).
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Example 2. Let

1 Cedp _14C-2 i (-dp
2mil+[¢12 1+(C[2 "2m1+(¢C|¥

then g is a weight for all (¢, z). Take a (p,q)-form ¢(¢) which grows

polynomially as |[¢| — co. If we let K = (uA ¢*)npn_1 and P = (¢*)pn,
then

P(2) = KAo¢+ K A0¢+ 0, KA¢+/ P A 6.
<I=R CI<R CI<R ICI<R

g(g,z)zl—V

If k is large enough, then the weight will compensate for the growth of
¢, so that the boundary integral will go to zero when R — oco. We get
the representation

¢(z):/KA5¢+5z/K/\¢+/P/\¢.

Note that if ¢ in (11) is a closed form and the first and fourth terms of
the right hand side of Koppelman’s formula vanish, we get a solution of
the 0-problem for ¢. Note also that the proof of Koppelman’s formula
works equally well over X x X, where X is any complex manifold,
provided that we can find K and P such that (10) holds. The purpose
of the next section is to find such K and P in a special type of manifold.

3. A METHOD FOR FINDING WEIGHTED KOPPELMAN FORMULAS
ON MANIFOLDS

We will now describe a method which can be used to find integral
formulas on manifolds in certain cases, and which is modelled on the
one in the previous section. The method is similar to one presented in
[10], see Remark 2 at the end of this section for a comparison.

Let X be a complex manifold of dimension n, and let £ — X, x X,
be a vector bundle of rank n, such that we can find a holomorphic
section n of E that defines the diagonal A = {((,2) : ( = 2z} of X x X.
In other words, n must vanish to the first order on A and be non-zero
elsewhere. Let {e;} be a local frame for E, and {e;} the dual local
frame for E*. Contraction with 7 is an operation on E* which we
denote by d,; if n = ) n;e; then

o (Z Jief) = Zmai.

V, =0, — 0.

Choose a Hermitian metric h for F, let Dg be the Chern connection
on E, and Dg- the induced connection on E*. Consider Gg = C*(X x
X, A[T(XxX)OEQE™]). If Aliesin C*°(Xx X, T*(XxX)®ER®FE")),
then we define A as the corresponding element in Gg, arranged with

Set
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the differential form first, then the section of £ and finally the section
of E*. For example, if A =dz; ® e; ® e}, then A =dz; Aey Aej.
To define a derivation D on G, we first let Df = Dg f for a section

f of E, and Dg = D/];/g for a section g of E*. We then extend the
definition by

D(& AN &) = DE N + (—1)88¢ A D&,

where DE; = d§; if & happens to be a differential form, and deg&; is
the total degree of £;. For example, deg (¢ Aej Aef) = deg a+2, where
deg « is the degree of o as a differential form. We let

L™ =D C¥(X x X, A\PE* NPT Ty, (X x X));
P
note that £™ is a subspace of Gg. The operator V will act in a natural
way as V : L™ — L™!, Notice also the analogy with the construction
(3) in C*. As before, if f € L™ and g € L*, then f A g € L™TF. We
also see that V obeys Leibniz’ rule, and that V?> = 0. Let End(FE)
denote the bundle of endomorphisms of E.

Proposition 3.1. If v is a differential form taking values in End(E),
and Dgnqg) is the induced Chern connection on End(E), then

——

Proof. Suppose that v = f®g, where f is a section of E and g a section
of E*. We prove first that

(13) DEnd(E)U =Dpf®g+ f® Dg-g.

In fact, if s takes values in E, we have

(Dgna(gyv).s = Dg((g.5)f)—(9.(Dgs)) f = d(g.s)f+(g9.5) D f—(g.(Dgs)) f =

= (9-5)Def + (Dp-g.5)f = (Dpf ® g+ [ @ Dg-g).s,
which proves (13). We have
Denapyv = Def @9+ f®Dpg=DfANg— fANDg= Dv

which proves (12). If v = a ® f ® g, where « is a differential form, we
would have Dgnapyv = da® f @ g+ (—1)*8*q @ Dgnq(r)(f ® g), so
the result follows by an application of ~. Since any differential form
taking values in End(F) is a sum of such elements, the result follows
by linearity. O

Definition 2. For a form f((,z) on X x X, we define
/f(C,z)/\el/\e’{/\.../\en/\e;:f(C,z).
E

Note that if I is the identity on E, then I = eAe* = ¢; Nej+...+epNep.
It follows that I, = ey AejA...Ae, A€l (with the notation a,, = a™/n!),
so the definition above is independent of the choice of frame.
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Proposition 3.2. If F € Gy then

d/F:/DF.
E E

Proof. If F = f A I, we have d [, F' = df and

/EDF:/ df N1, = f A D(I,)].

[

B
It is obvious that Dgnq(s)l = 0, and by Proposition 3.1 it follows that
DI =0, so we are finished. U

We will now construct integral formulas on X x X. As a first step, we
find a section o of E* such that J,0 = 1 outside A. For reasons that
will become apparent, we choose ¢ to have minimal pointwise norm
with respect to the metric A, which means that o = .. hyi;e;/|n[>.
Close to A, it is obvious that |o| < 1/|n|, and a calculation shows that
we also have |do| < 1/|n/%. Next, we construct a section u with the
property that Vu = 1 — R where R has support on A. We set

__9 _ S 3 \k
(14) B=g = ga/\ (do)*,

note that u € L. By uy 1 we will mean the term in u with degree k
in E* and degree k—1 in T, (X x X). It is easily checked that Vu =1
outside A.

We will need the following lemma:

Lemma 3.3. If © is the Chern curvature tensor of E, then

Dn i©
Vol —+—]=0.
K (2m' * 27r>
Proof. The lemma will follow from the more general statement that if v
takes values in End(F), then 6,0 = —v.n. In fact, let v = f ® g, where
[ is a section of E and g a section of E*; then we have §,(f A g) =

—fAn.g=—(f ®g).n. Now, note that 00 = 0 since D is the Chern
connection. We have

v, (& + ié) __1 [éDn+5né} =—

© On — On] = 0.
omi | 2m o [©n = ©n]

1
2m1
In the calculations we use that 1 is holomorphic and that 900 = © where

0 is the connection matrix of Dg with respect to the frame e. O

The following theorem yields a Koppelman formula by Theorem 2.3:
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Theorem 3.4. Let E — X x X be a vector bundle with a section n
which defines the diagonal A of X x X. We have

=[A] -

where

(15) K= / (Dn 26) and P:/ (_Dn + @> ,
2wy 2w g \2m 27
and u 1is defined by (14).

Note that since Dn contains no e;’s, we have

i. e. the n:th Chern class of F.
Proof. We claim that

el RINCOR

where R is defined by Vu = 1 — R. If this were true, we would have
by Lemma 3.3 and Proposition 3.2

Dnp ©\ [ Dn  i®
a/U/\(Qm ) _/Ea[l”\<27ri+27r)
_ Dy, i©) | _
——/EVu/\<2 +27r>]_
B Dn 0O 1 B
_ _/E(2_m'+ﬂ) +—(2m)n/ER/\(Dn)n_[A] P,

We want to use Proposition 2.2 to prove the claim (16), so we need
to express the left hand side of (16) in local coordinates. Since 7 defines
A, we can choose 7y, ...,n, together with some functions 71, ..., 7, to
form a coordinate system locally in a neighborhood of A. We have

(16)

1
(2mi)™

[ rnwm. =05 [ o n (00 A (D),

(2mi)n

and
/ a A (00)" VA (Dn)y =sA(0s)"F + A,
B

where s = ) 0;dn; and A contains only terms which lack some dn;, i.
e., every term in A will contain at least one 7;. Note that both s and A
are now forms in C". Recall that we have |o| < 1/|n| and |00| < 1/|n/?
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close to A (this is why we chose ¢ to have minimal norm). Thus, by
Theorem 2.2 we know that

dfs A (0s)"~'] = [A],

so it suffices to show that A = 0 in the current sense. But since every
term in A contains at least one 7;, the singularities which come from the
oy’s and do;’s will be alleviated, and in fact we have A = O(|n|~2"+2).
A calculation shows also that dA = O(|n|~2"*1), and it follows that
OA = 0 (also cf the proof of Proposition 2.2). O

It should be obvious from the proof that instead of u = 0/Vo, we can
choose any u such that Vu = 1 outside A and |uy x| < |72
We will obtain more flexible formulas if we use weights:

Definition 3. The section g with values in L, is a weight if Vg = 0
and goo(z,2) = 1.

Theorem 3.4 goes through with essentially the same proof if we take

Dn 0 Dn  i©
17) K= [ ungn| 224+ 22 d P=[gn| 242
(17) /E“ g (27ri+27r) at /Eg <2m'+27r> ’

as shown by the following calculation:

- Dn  i© Dn  i©
K=— k) I P /SR IR N Y
0 /EVW\Q/\(QM' * 27r) /E(g R)/\<27ri * 27r> [A=P,

which follows from the proof of Theorem 3.4 and the properties of
weights. In the next section we will make use of weighted formulas.

Remark 1. If L is a line bundle over X, let L. denote the line bundle
over X; x X, defined by 7~*(L) where 7 : X; x X, — X,. If we want
to find formulas for (p, ¢)-forms ¢(() taking values in some line bundle
L over X, we can use a weight g taking values in L, ® L¢. In fact, then
K and P will also take values in L, ® L7, so that ¢ A K" and ¢ A P take
values in L,. Integrating over ¢, we obtain ¢(z) taking values in L.

Remark 2. To obtain more general formulas, one can find forms K
and P such that

(18) dK =[A]- P

by setting V; = ¢, — D and checking that the corresponding Lemma
3.3 and Theorem 3.4 are still valid. The main difference lies in the fact
that since (V') # 0, we do not have V'u = 1 outside A, but rather

o
A (V)0

(V'o)? (V)'e
A calculation shows that (V')?0 = d,(Dn — S:))’ where J, operates on
sections of E. We have d,(Dn— ©) A (Dn—0)" = §,(Dn—0)"t =0
for degree reasons, so that Theorem 3.4 will still hold with V replaced

Viu=1-



WEIGHTED INTEGRAL FORMULAS ON MANIFOLDS 13

by V’. We can use weights in the same way, if we require that a weight
g has the property V'g = 0 instead of Vg = 0. In this article we are
interested in applications which only require the formulas obtained by
using V.

In [10] Berndtsson obtains P and K satisfying (18) by a different
means, resulting in the same formulas, but without weights. Also note-
worthy is that V' is a superconnection in the sense of Quillen [22], and
our V is the (0, 1)-part of this superconnection. Lemma 3.3 for V' is a
Bianchi identity for the superconnection.

4. WEIGHTED KOPPELMAN FORMULAS ON P"

We will now apply the method of the previous section to X = P".
We let [¢] € P" denote the equivalence class of ( € C**!. In order
to construct the bundle E, we first let F = C*™! x (P, x PT,)) be

the trivial bundle of rank n + 1 over ]P’["C] X ]P’fz]. We next let I’ be the

bundle of rank n over Pf; x P which has the fiber C**1/(¢) at the
point ([C],[z]); F is thus a quotient bundle of F'. If « is a section of
F', we denote its equivalence class in F' with [a]. We will not always
bother with writing out the brackets, since it will usually be clear from

the context whether a section is to be seen as taking values in F' or F.
Let L' denote the tautological line bundle of P", that is,

L7 ={(¢l,&) eP" xC* :¢eC-¢}

We also define L% = (L71)® ! = (L7!)* and LF = (L')®*. Finally,
let E=F® L[lz] — IF’["q X IF’FZ]. Observe that E is thus a subbundle of
E' = F'®L[12]. It follows that E* = F* ®L[;}1, where F* = {£ € (F')*:
¢ - ¢ = 0}. Berndtsson has the same setup in Example 3, page 337 of
[10], but does not develop it as much (cf Remark 2 above).

A remark on notation: we will write a differential form «([(]) on
P" that takes values in L* as a projective form on C**' which is k-
homogeneous. That is, a will satisfy a(A() = a((), where A € C, and
d¢a = 6z = 0, where J; is contraction with the vector field ¢ - 9/0¢
and similarly for §;.

Let {e;} be an orthonormal basis of F'. The section n (cf Section 3)
willbe n = z-e = zpep+. . . z,e,. Note that 1 takes values in (F’)®L[12],
and will thus define an equivalence class in F' ® L[lz] = FE. The section
n defines the diagonal since [n((, ()] = [C - €] = [0], so that 7 vanishes
to the first order on A.

We will now choose a metric on E. On F’ we choose the trivial
metric, which induces the trivial metric also on (F')* and F*. For |w]
taking values in F' = F'/((), the metric induced from F” is ||[w]||rz =
||w—7w||F, where 7 is the orthogonal projection F' — ({). We choose
the metric on E'= F ® L, to be

(19) lo® w]lle = llw—7mwl[F|al/|2]
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for a®[w] € E. We introduce the notation -y := a; Ay +. .. a5 Ay,
where o and v are tuples containing differential forms or sections of a
bundle.

Proposition 4.1. Let w - e be a section of E. The Chern connection
and curvature of E are

(20) DE(w-e)zdw-e—d|2‘.2€/\g_“-w—8log|z|2/\w-e
(21) Op = 00log|z|* A e* -e—éﬂé; ANdC - e,

with respect to the metric (19) and expressed in the frame {e;} for F'.

Proof. We begin with finding Dyp. Let & -e = (w - (/|¢|?)C - e be the
projection of w - e onto (¢ - €). Since the Chern connection Dp on F”

is just d, it is easy to show that Dp|w - €] = [d(w - e — @ - €)]. We have
Dplw-e]=[dw-e—w-e)]=[dw-e— dé"f/\i-w],

since if d does not fall on ¢ in the second term we get something that is
in the zero equivalence class in F'. If w- e is projective to start with, so
will dw - e be, and d( - e is a projective form since §;(d¢-e) =(-e=0
in F.

Since the metric on Ly, in the local frame 2 is [2|*/|2[?, the local

connection matrix will be 0log(|zo|?/[2|*). If £ takes values in L}, we

get
Dy € = [d(€/20) + Dlog(|z0]*/|2[")€/ 20]20 = d€ — Dlog |2[’¢.

It is easy to see that d(£/z0) +01log(|20|%/]2]?)€/ 20 is a projective form,
so d€ — dlog |z|?¢ is also projective. Combining the contributions from

L{lz] and F', we get (20), from which also (21) follows. O

We want to find the solution o to the equation 6,0 = 1, such that
o has minimal norm in E*. It is easy to see that the section z - e*/|z|?
is the minimal solution to d,v = 1 in the bundle (E')* = (F')* ® L.
The projection of z - €*/|z|? onto the subspace E* is

_2‘6*_ ZC 5 6*
P P T

S

Since Z - €*/|z|? is minimal in (F')* ® L[;]l, s must be the minimal
solution in E*.

Finally, we normalize to get o = s/d,s. According to the method of
the previous section, we can then set u = 0/Vo and obtain the forms
P and K which will give us a Koppelman formula (see Theorem 3.4).
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Remark 3. In local coordinates, for example where (g, 2o # 0, we have
Il = 6,5 = CPlal? —1z-¢* _ A+ [¢P)A+[) —[1+2 - (P

! C1%|2[? T+ ¢+ 127 ’
where (' = (¢1/Co, - - -, (/o) and analogously for 2. For the denomi-
nator we locally have (1+[¢’|?)(1+ |2'|*) < C for some constant C. As
for the numerator, we have

A+ A+ ) - [1+72 ()=

= 1+ [P +[ZF+ TP - 1+ 2Relz - (| + 2 - C'FF) =
2~ P+ ICPIP — 7P > |2~ (P

In all, we have d,s > |2/ — ('|*.

To compute integrals of the type (17), we need the following propo-
sition.

Lemma 4.2. Let A < A', where A' is a given vector bundle with a
given metric and A = {£ taking values in A’ : f - & = 0} for a fized
f taking values in (A')*. Let s be the dual section to f, and w be the
orthogonal projection m : G g — G4 induced by the metric on A. If
B' € Gy, and B =B, then

/B: fAsAB.
A

A’

Proof. We can choose a frame for A’ so that ey = s, and then extend it
to an ON frame for A’, so that A = Span(ey,...,e,). If we set e = f,

we have
f/\s/\B'z/ eo/\eé/\vrB'z/B
A A A
and we are done, since the integrals are independent of the frame. [

Note that if F = A ® L, where L is a line bundle, and B € G, then
[z B = [, B. At least, this is true if we interpret the latter integral to
mean that if g is a local frame for L and ¢* a local frame for L*, then
g and ¢* should cancel out. Since there are as many elements from L
as there are from L*, there will be no line bundle elements left.

We will apply Lemma 4.2 with A = F, A’ = F and f = (-e*. We
then have

D 1a C. . e* D 1a
p:/ Dn 0} _ [ Cencee (Dn i©
g \2m 2w B 4K 2 27w

and similarly for K (this makes it easier to write down P and K ex-
plicitly).
By Theorem 3.4, we have

0K = [A] - P.
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(These K and P are also found at the very end of [10].) We will now
modify the method slightly, since in the paper [16] we found formulas
for (0,q)-forms (derived in a slightly different way) which are more
appealing than those we have just found, in that we get better results
when we use them to solve 0-equations. We would thus like to have
formulas for (p, ¢)-forms that coincide with those of [16] in the (0, ¢)-
case.

The bundle F* is actually isomorphic to Tﬁo(P&})a and an explicit
isomorphism is given by 8 = d( - e. In fact, if £ - e* takes values in F™*,
then B(€) = d¢ - £. Since € - ¢ = 0, the contraction of 5(§) with the
vector field ¢ - 8/9¢ will be zero, so B(¢) € T7o(Pf). If ver is a form
with values in A" E*, then it is easy to see that

(22) / Ver N\ ﬁn = Vdc,
E

where we get vge by replacing every instance of e; in v.- with d¢;. For
example, if v« = f((,2)ef A ... A€}, then vy = f((,2)d{o A ... AdG,.
We can use this to construct integral formulas for (0,¢)-forms with

K:/u/\,@n.
E

values in L[_C] , by setting
The formulas we get from this are the same as in [16]. We will now
combine these formulas with the ones in (15):

Theorem 4.3. Let D C P". If ¢(C) is a (p,q)-form with values in

LH“’ and

Dn i@
2 K =
(23) P /U/\ﬂnp <27rz+27r> ’
p

Dn i©
Bo= [on <ﬁ zﬂ> ’
P
with B = d( - €*, we have the Koppelman formula
o([2]) = ¢Kp/\¢+/5Kp/\¢+5m/Kp/\</>+/Pp/\¢,
oD D D D

where the integrals are taken over the [C] variable.

Proof. We have

(24) /6u/\ﬁnp (2%2 ’;?T) =[A],
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where [A] should be integrated against sections of L™ with bide-
gree (p,q). This follows from the proof of Theorem 3.4, since the sin-
gularity at A comes only from u, and is not affected by exchanging

Dy i©
(27ri + 27r)n_p fOI‘ ﬁnfp-

Using (24), we get

Dn 60
dK, = — [ V |uABu_y N | — +—
P /E A Pop <2m'+27r>
P
Dn i©
= — ABppN| =—+—1 =[A]-P,.
[uns., (2m+%) A]- P,
P
The Koppelman formula then follows as in Theorem 2.3. ]

To get formulas for other line bundles, we need to use weights (as
defined in the previous section). We will use the weight
z-C =C-e
CS R
note that the first term in « takes values in L[lz] ® L[_ql, and the second
is a projective form. We then get a Koppelman formula for (p, ¢)-forms
¢ with values in L™ by using

_ Dn i©
oo = funarrnnn (242).
p

Dn i©
Py = [P AB A2+
pr /ea P <2m'+27r>
p

Remark 4. Let ¢ be a (p, ¢)-form. Since we cannot raise « to a neg-
ative power, how can we get a Koppelman formula if ¢ takes values in
L" where r < p — n? In fact, if we look at the proof of the Koppel-
man formula in Proposition 2.3, we see that the roles of ¢ and v are
symmetrical: we could just as well use the proof to get a Koppelman
formula for the (n — p,n — ¢)-form ¢ which takes values in L™", using
the kernels K, , and P,, in Theorem 4.3. This is a concrete realization
of Serre duality, which in our case says that

HPA(P™, L) ~ H" P"4(P*, L"),

We will make use of this dual technique when we look at cohomology
groups in the next section.

Remark 5. In [9] Berndtsson constructs integral formulas for sections
of line bundles over P". These formulas coincide with ours in the case
p = 0, but they are not the same in the general (p, ¢)-case. Nonetheless,
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they do give the same result as our formulas when used to find the triv-
ial cohomology groups of the line bundles of P™ (see the next section).
More precisely, his formulas can also be used to prove Proposition 5.1
below, but no more, at least not in any obvious way.

5. AN APPLICATION: THE COHOMOLOGY OF THE LINE BUNDLES OF
IP)TL

Let D in Theorem 4.3 be the whole of P"; then the boundary integral

will disappear. The only obstruction to solving the J-equation is then

the term containing P,,. We will use our explicit formula for P, , to

look at the cohomology groups of (p, ¢)-forms with values in different
line bundles, and determine which of them are trivial. We have

Dn i©
By = DAl =+ =] A" =
P /Eﬁn P <27r7, 27T>p

- %/\(dg-e)nl,/\(dne—%/\dc-e—

El

dz|? . dC-e* Nd( e z-C  ~C-er\" "7
T T T T ),f(W‘aw) |

We can now prove:

Proposition 5.1. From the formula for P,, just above, it follows that
the cohomology groups HP1(P", L") are trivial in the following cases:

a)g=p#0,n andr #0.

b) q=0,r<pand (r,p) # (0,0).
c)q:n,rzp—nand(r,p)#(o,n).
d)p<gqandr>—(n—p).
e)p>qandr <p.

Unfortunately, these are not all the trivial cohomology groups; instead
of d) and e) we should ideally get that the groups are trivial for ¢ #
0,n,p (cf [12] page 397).

Proof. The general strategy is this: we take a 0-closed form ¢(z) of
given bidegree and with values in a given line bundle, and then try
to show that ¢(z) is exact by means of the Koppelman formula. One
possibility of doing this is proving that f( #(C) A Py, (¢, 2) = 0, which
can be either because the integrand is zero, or because the integrand
is 5¢-exact (since then Stokes’ formula can be applied). Another pos-
sibility is proving that P, , is 0,-exact, since then f C¢ A P, , will be
0,-exact as well.

Proof of a): Let » > 0 and p = ¢ # 0,n; we must then look at
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the term in P,, with bidegree (p,p) in z and (n — p,n —p) in , it is
equal to

(25)

Coenge o () A (L)
o [, A eyt ora () A ()

where C is a constant. We will show that (25) is actually 9,-exact.
The factor in (25) which depends on z is (2 - {)"w?, which is at least a
0,-closed form. Can we write (2-()"w? = 0,9(z), where g is a projective
form? Actually, we have 0,[(C - 2)"0|z|?/|z|* A wP™1] = (2 - {)"w?, but
(C-2)70|2|%/|z|> AwP~! is not a projective form. This can be remedied
by adding a holomorphic term (¢ - z)" (¢ - dz) A w?™!, since then we

can take

ki

9= 2 C- )22

|22
Since (25) is 0,-exact, we have proved a) when r > 0. If —r < 0, by

Remark 4 in the previous section we must look at P, , -, which is again
0,-exact, and then [ ¢(z) A P,_p, = 0 by Stokes’ Theorem.

—(-d2] NPT

Proof of b): Note that here we really want to prove that ¢ = 0,
since ¢ cannot be 0-exact. To prove this we again use the dual case
in Remark 4. We want to show that [ ¢(z) A P,_p,(C,2) = 0, when
#(z) has bidegree (p,0) and takes values in L,”. First assume that
p > 0, then we must look at the term in P,_,, of bidegree (n — p,n)
in z. No term in P,_,, has a higher degree in dz than in dz, so
[ o(z) AN Py_pr(¢,2) = 0. If p = 0, then we must look at the term in
P, , with bidegree (n,n) in z and (0,0) in ¢. The z-dependent factor
of this term is (z - {)"w", which is d,-exact in the same way as in the
proof of a). This proves the case p = 0, —r < 0, but the proof breaks
down when r = 0, where there is a non-trivial cohomology.

Proof of c): First let p < n. There is no term in P,, with bidegree
(p,n) in z, since there are not enough dz’s, so fc d(C) A Ppr(C,2) = 0.
If p = n, we look at the term in P, , with bidegree (n,n) in z and (0, 0)
in ¢. This is dealt with exactly as the case p = 0 in the proof of b).

Proof of d) and e): Let ¢ # 0,n,p. If p < g and r > —(n — p),
we look at the term in P, with bidegree (p, ¢) in z. It is zero, since we
cannot have more dz’s than dz’s, so fc #(C)AP,, = 0. Similarly, ifp > ¢
we use the dual method: the term in P,_,, with bidegree (n—p,n—q)
in z is zero when n—p < n—q and r > —p, again since we cannot have
more dz’s than dz’s. This shows that [ ¢(z) A Po_p, = 0 for r > —p,
where ¢ takes values in L™" and —r < p. O
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6. WEIGHTED KOPPELMAN FORMULAS ON P" x P™

We will now find integral formulas on P* x P™. Let ([¢],[{], [2], [2])
be a point in (P" xP™) x (P™ x P™). The procedure will be quite similar
to that of Section 4, but for simplicity we will limit ourselves to the
case of (0, ¢)-forms. This corresponds to using only £ in the formula
(23). According to formula (22), then, we can construct our kernel
directly, without any need to refer to the bundle E, in the following
way (also see [16]). Let n, = 2miz - a% and n = n¢ + n;. We take d, to
be contraction with 7 and set V = §, — 9. Note that n = 0 on A. Now
set

zdC zC -
= — d
2E TRt %

and then s = s¢ + s;. Observe that d,s is a scalar, which is zero only
on A.

Proposition 6.1. If u = s/Vs, then u satisfies Vu.¢p = (1 — [A]).9,
where ¢ is a form of bidegree (n + m,n + m) which takes values in

L[_C? ® L[_f]m ® Lﬁz] ® Lfg} and contains no d¢;’s or dé;’s.

Proof. The restriction on ¢ is another way of saying that our formu-
las only will work for (0,¢)-forms. The proposition will follow from

Theorem 4.3 if we integrate in P?C] X Pﬁ] and ]P’E’CZ] X ]P’fg] separately. [

5¢

To obtain weighted formulas, let

_zC
I

and let & be the corresponding form in ([C],[Z]). We have Va = V& =
0, so

a + 27100 log ¢ |?,

v(an—l—k A &m-l-l /\u) — Ckn—Hc A &m—H AVu = an—Hc A &m—H _ [A],

where [A] must be integrated against sections of Lﬁ] ® Lfé]. The fol-
lowing theorem follows from Theorem 2.3.

Theorem 6.2. If K = o™ A a™ M Au and P = o™* A &t we get
the Koppelman formula

o) = [ oA AK+ /D 36(1¢), [&) A K +
L@+ /D () A K + /D S((C1, 1) A P

for differential forms ¢([C],[C]) on P™ x P™ with bidegree (0,q) which

take values in LFC] ® Ll[g].
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Now assume that 0¢ = 0. For which ¢, k and [ is ¢ 0-exact? To
show that a particular ¢ is d-exact, we need to show that the term
Jpnpm ®([C]) A P either is zero, or is d-exact. Since P consists of two

factors where one depends only on ¢ and the other only on ¢, we can
write

o) [ s@@ar=[ ([ etc.@na)ran

We get the following theorem:

Proposition 6.3. We look at differential forms ¢([C], [(_,:]) on P x IF’EL]
with bidegree (0, q), which take values in the line bundle LFC] ®Ll[5}' The
cohomology groups H (%) (P xP™, L&]@)Lf@) are trivial in the following
cases:

a)q#0,n,m,n+m
b)g=0andk<0orl<0
c)g=nandl<0ork>-n
d)g=mandk <0orl>-m
e)g=n+mand k> —n orl> —m.

Proof. To determine when (26) is zero, we use Theorem 5.1. Assume
that the form ¢ has bidegree (0,¢;) in ¢ and (0,¢2) in ¢ and ¢; + g2 =
q. If, for some ¢, and k, we know that H(®)(P" LF) is trivial, this
means either that [y 6(11, C)) A (I} 1) = 0 or that f6((c) () A

P([¢], [2]) = .a([2], [{]) for some a([2], [C]). In the first case, it follows
that the expression in (26) is also zero. In the second case, we get

/m ( . 2l [ MM) NG =0, | alle) C]) A Gt =
= 0 [ a1 nam

since the integrand is holomorphicin [Z]. The same holds if H () (P™ L)
is trivial. The conclusion is that H®a+42) (P x P™, L ® Lfg"]) =0 ei-
ther when ¢; and k are such that H(9)(P", L*) = 0, or when ¢, and !
are such that H©®@)(P™ L) = 0.

Now, we really have a sum

6= Y bue

q1+q2=¢q
of terms of the type above. For the cohomology group to be trivial, we
must have [ ¢, 4, AP = 0 for all of them. We know that go = ¢—¢;. If
we have either 0 < g; < nor 0 < g2 < m then [ ¢, 4, AP = 0 according
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to Theorem 5.1. The only ways to avoid this are if ¢ = ¢; = g2 = 0; if
g=¢gi=nand g =0;if g =0and g =g =m orif ¢ =n+ m and
¢1 = n, g = m. Then a) - e) follow from Theorem 5.1. O

7. WEIGHTED KOPPELMAN FORMULAS ON STEIN MANIFOLDS

If X is a Stein manifold it is, in general, impossible to find £ —
X x X and n with the desired properties as described in Section 3.
What is possible is to find a section 7 of a bundle E such that n has
good properties close to A, but then 1 will in general have other zeroes
as well. It turns out that it is possible to work around this and still
construct weighted integral formulas. This section relies on the article
[19] by Henkin and Leiterer, where such an 7 was constructed.

More precisely, let m be the projection from X x X, to X¢, and
E = 7*(T10(X¢)). Let {e;} be a local frame for E. By Section 2.1 in
[19] we have the result

Theorem 7.1. There exists a holomorphic section n of E such that
{n =0} = AUF, where F is closed and ANF = &. Close to A we
have

(27) (¢ 2) =Y [G— 2+ O(¢ — 2*)]es

Moreover, there exists a holomorphic function ¢ such that ¢(z,2z) = 1
and |¢| < |n| on a neighborhood of F.

We define d,, V etc in the same way as in Section 2. Let s € E*
be the section satisfying 6,s = 1 outside A U F' which has pointwise
minimal norm, and define u = s/Vs. If we define

i© . Dn 0
K= /¢ (27Tz %) and P_/E¢ (27rz+27r> ’

where M is large enough that ¢™wu has no singularities on F, then
Theorem 3.4 applies and we have 0K = [A]— P. In this way, we recover
the formula found in Example 2 of [10], except that our approach also
allows for weights. We define weights in the same way as before (note
that ¢ is in fact a weight). If g is a weight, we will get a Koppelman
formula with

(28)

D s D
K:/qﬁMg/\u/\ 77—1-2@ and P:/¢M/\ 77+Z® )
B 2wy, 2w B 2wy 27

Note that since E is a pullback of a bundle on X, the connection and
curvature forms of E depend only on (. Hence P = ¢,(F) is bidegree
(n,n) in ¢, and we have fc P(¢,z) A ¢(C) = 0 except in the case where
¢ has bidegree (0,0). The last term in the Koppelman formula thus
presents no obstruction to solving the d-equation on X.
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Example 3. In [15] there is an example of weighted formulas on Stein
manifolds, which we can reformulate to fit into the present formalism.
Let G C X be a strictly pseudoconvex domain. By Theorem 9 in [15]
we can find a function 1 defined on a neighborhood U of G which
embeds G in a strictly convex set C' C C". If o is the defining function
for C', then p = 0 o0 % is a strictly plurisubharmonic defining function
for G. On U we introduce the weight

3@_((() e\ v -
762 = (1 ™V anip(0) ) -(55-)

_ Q) 5%
v—a—c-n—p(C) and w_aIQWiP(C)

Note that g is holomorphic in z. If Re a is large enough, then g(-, ¢) will
be zero on 0G, since o(0C) = 0. This implies that if f is a holomorphic
function and P is defined by (28), we will have

where

1) = [ #oP
e}
for z € G, by Koppelman’s formula. We also have the estimate

—p(¢) = p(2) +€l¢ — 2" < 2Rew(C, 2) < —p(C) — pl2) + cl¢ — 2I,

where € and ¢ are positive and real. By means of this, we can get
results in strictly pseudoconvex domains G in Stein manifolds similar
to ones which are known in strictly pseudoconvex domains in C*. For
example, one can obtain a direct proof of the Henkin-Skoda theorem
which gives L!-estimates on G for solutions of the d-equation.

Example 4. We can also solve division problems on X. Let D C X
be a domain, and take f(¢) = (f1(C),---, fm(¢)) where f; € O(D).
Assume that f has no common zeroes in D. We want to solve the
division problem ¢ = f -p in D, where ¢ is a given holomorphic
function, by means of integral formulas. We do this by a variant of the
weights used in [8].

By Cartan’s Theorem B, we can find h((, 2) = (h1((, 2), - - -, hn((, 2)),
where h; is a holomorphic section of E*, such that 6,h,(¢, z) = ¢(¢, 2)(fi(¢)—
fi(2)). We set

91(¢,2) = (6= V(h-0(Q))" = (¢f(2) - o + h - 00)",

where o = f/|f|? and p = min(m,n + 1), then g; is a weight. Now,
f(2) is a factor in g, since (h-do)* = 0. In fact, we have (h-0o)"** = 0
for degree reasons, and (h-0o)™ = 0 since f-o = 1 implies f- 0o = 0,
so that 0oy, ..., 00, are linearly dependent.
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By the Koppelman formula we have
v = [ woMK+ [ wetp
oD D

where K and P are defined by (28) using the weight g;. Since f(z) is a
factor in g;, we have 1 (z) = f(z)-p(z), where p(z) will be holomorphic
if D is such that we can find u holomorphic in z (for example if D is
pseudoconvex).

Acknowledgements: The author would like to thank her supervi-
sor Mats Andersson for invaluable help in writing this article.
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KOPPELMAN FORMULAS ON GRASSMANNTIANS

ELIN GOTMARK & HAKAN SAMUELSSON & HENRIK SEPPANEN

ABsTrRACT. We construct Koppelman formulas on Grassmannians for
forms with values in any holomorphic line bundle as well as in the tau-
tological vector bundle and its dual. As a consequence we obtain some
vanishing theorems of the Bott-Borel-Weil type. We also relate the pro-
jection part of our formulas to the Bergman kernels associated to the
line bundles.

1. INTRODUCTION

The Cauchy integral formula in one complex variable is of vast importance
in many respects. It provides a way of representing a holomorphic function as
a superposition of simple rational functions, and gives an explicit solution to
the equation Qu = f. Furthermore, it is an important tool in function theory.
For our purposes it is convenient to note that Cauchy’s formula is equivalent
to the current equation Ou = [z], where u = (27i) 'd(/(¢ — z) is the Cauchy
form, and [#] is the Dirac measure at z considered as a (1,1)-current. This
point of view is well adapted for generating weighted Cauchy formulas. For
instance, by computing 9(((1 — |¢|?)/(1 — 2{))*u) in the current sense, one
obtains (for suitable «) the weighted representation formula

o (1= jg?)!
fle)=2 /{ O e O,

for holomorphic functions on the unit disc with certain limited growth at
the boundary. The integral kernel is the reproducing kernel for a weighted
Bergman space; and this shows that there is a connection between Cauchy
kernels and Bergman kernels. Both these kernels are also intimately linked
with the symmetry of the disc. Recall that the group

SU(1,1) = {( o’ ) € Myn(O)| |af? — B2 = 1}

acts holomorphically and transitively on the unit disc by z + (az+b)/(bz +
a). The stabilizer of the origin is the subgroup

ei@ 0 N
{4 2}
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and hence the disc can be viewed as the homogeneous space SU(1,1)/S*.
The kernels are then invariant under certain actions on functions which are
induced from the natural action on the closed disc. From the point of view
of representation theory, the Bergman kernels are interesting since the corre-
sponding weighted Bergman spaces form a family of unitary representation
spaces for SU(1,1), and moreover, these kernels can be described entirely in
terms of the Lie-theoretic structure of the group. This discussion indicates
two possible directions of generalizations; namely to domains in C"*, and to
complex homogeneous spaces. In the latter case, the class of bounded sym-
metric domains have been studied extensively from the Lie-theoretic point of
view. Hua, [10], computed the Cauchy kernels and Bergman kernels for the
classical domains using the explicit description of their symmetry groups.
Later, more abstract group theoretic machinery has been used to describe
both Bergman kernels (cf. [15]) and the generalized Cauchy-Szeg kernels,
[11]. For compact Hermitian symmetric spaces, Bergman kernels for line
bundles can be described explicitly in terms of the polynomial models for
the spaces of global holomorphic sections, [21].

Complex analysts have mainly been concerned with domains in C*. The
Bochner-Martinelli kernel represents holomorphic functions in any domain
but has the drawback of not being holomorphic, a property which is highly
useful in applications. The Cauchy-Fantappi-Leray kernel is holomorphic
in domains where we can find a holomorphic support function, for example
strictly pseudoconvex domains. More flexibility is afforded by using weighted
formulas, which was first done in [6], and such formulas have been widely
used in applications such as interpolation, division, obtaining estimates for
solutions to the d-equation, etc. See, e.g., [1] and [3] and the references
therein. Some work has also been done on generalizing integral formulas to
complex manifolds, see, e.g., [9], [5], [4]. Of these, the paper [4] by Berndtsson
will be of particular importance for us; see below.

More recently, in [1] was introduced a general method for generating
weighted formulas for domains in C"*, both for holomorphic functions and
(p, q)-forms. For future reference, we will describe this method in the former
case in some detail. First, recall that the Cauchy kernel, u, in one variable
satisfies Qu = [z], but less obviously, we also have d;_,u = 1, where &;_,
denotes contraction with the vector field 27i(¢ — 2)0/9¢. These equations
can be combined into the single equation

1) Ve u=1-[

where V_, is the operator

V(_z = 5§_z - 0.
To generalize this to C", we define é,_, as contraction with
. 0
(2) 2mi (G — Zj)a—g-’
J

and if we construe equation (1) as being in C", the right hand side of (1) now
contains one form of bidegree (0,0) and one of bidegree (n,n), so we must in
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fact have u = w10 +ug1 + ... +uppn—1, where uy ;1 has bidegree (k,k —1).
We can then write the V¢_,-equation (1) as the system of equations

O¢—zu10 = 1, S¢—zu1,2 — Ouyg =0, e Qunp1 = [2]-

In that case, up,—1 will satisfy Qupn,—1 = [2] and will give a kernel for a
representation formula. One advantage of this approach, as opposed to just
solving Qun, n—1 = [z], is that it easily allows for weighted integral formulas.
We define g = goo + -+ + gn,n to be a weight if Vg = 0 and go0(2,2) = 1.
It is easy to see that V(u A g) = g — [A], and this yields a representation
formula

b() = /6 O A g+ /D b

if $ € O(D) and z € D. Note that if g; and go are weights, then g; A go is
also a weight.

In the case of compact manifolds one is naturally led to consider holo-
morphic line bundles and representation formulas for holomorphic sections
as well as smooth bundle-valued forms. In this setting the integral kernels
must be operator valued, and the integrals become superpositions of con-
tributions from all fibres. Our method for achieving this has two crucial
components; the above mentioned V-formalism, and Berndtsson’s method
from [4]. Indeed, Berndtsson gave a method for obtaining integral formulas
for (p, g)-forms on n-dimensional manifolds X which admit a vector bundle
of rank n over X x X such that the diagonal has a defining section 7; and to
get formulas for forms with values in bundles the V-method is well suited.
In fact, by generalizing it to manifolds one realizes that it allows for operator
valued weights. We then need something to substitute for the vector field
(2), and this is where Berndtsson’s assumption comes in: we will use the
section 7 to contract with, and define V, := ¢, — 0. Tt is of independent
interest to note that V,, in fact is a superconnection in the sense of Quillen,
[14]. In the recent article [8] by the first author, this general theory for
integral formulas on manifolds has been developed to a large degree, and
explicit formulas have been constructed on CP" yielding explicit proofs of
vanishing theorems for its line bundles. Such proofs could be of interest also
for representation theoretic purposes. Indeed, in view of the by now firmly
established goal, initiated by the Bott-Borel-Weil theorem and further for-
tified by the conjecture of Langlands, [12], and Schmid’s proof of it, [16],
of wanting to realize representations of Lie groups in Dolbeault cohomology
(or, rather L2-cohomology in the non-compact case), (cf. also [19] and [20]),
it is our hope that explicit integral formulas could give further insight into
the underlying group theory.

In this paper, we extend the method in [8] to the vector bundle setting
and we apply the technique to complex Grassmannians, Gr(k, N). We find
a suitable vector bundle, with a section 5 as above, and natural weights
for the line bundles and for the tautological k-plane bundle. We thus get
Koppelman formulas for (p,q)-forms with values in any holomorphic line
bundle as well as in the tautological bundle and its dual. The construction is
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uniform in the sense that it uses the explicit description of the Picard group
of holomorphic line bundles and reduces the problem to that of finding a
weight for the generator. The generator in turn, is the determinant of the
tautological bundle; by certain algebraic properties of weights, it thus suffices
to construct a weight for the tautological bundle. As an application, we give
explicit proofs of certain vanishing theorems of Bott-Borel-Weil type ! for
the cohomology groups associated with these line bundles. We also relate
the projection part of our Koppelman formulas to Bergman kernels; thus
giving a geometric interpretation of the latter ones.

This paper is organized as follows: In Section 2 we recapture the general
method for finding weighted Koppelman formulas on manifolds from [§].
The only difference is that we allow for forms with values in vector bundles
and state a slightly more general Koppelman formula. The proofs have
been omitted since they are straightforward generalizations of the proofs
in [8]. Section 3 describes some general operations on weights. In Section
4 we construct the ingredients necessary to generate weighted formulas on
Grassmannians according to the general framework. In Section 5 we review
the representation theoretic description of the Picard group and we prove
a certain invariance property for the weights, which will be useful for the
applications. We also prove that the bundle E restricted to the diagonal
is equivalent to the holomorphic cotangent bundle over Gr(k,N). In the
last section, Section 6, we discuss some applications; we obtain vanishing
theorems for the line bundles over Grassmann, and we give a geometric
interpretation of the Bergman kernels associated to the line bundles.

Acknowledgement: We are grateful to Mats Andersson and Genkai
Zhang for rewarding discussions and for valuable comments on preliminary
versions of this paper. We would also like to thank Harald Upmeier for
interesting discussions on the topic of this paper.

2. A GENERAL METHOD FOR FINDING WEIGHTED KOPPELMAN
FORMULAS ON MANIFOLDS

Let X be a complex manifold of dimension n. We want to find Koppelman
formulas for differential forms on X with values in a given vector bundle
H — X. The method described in this section is taken from [8|, except
for the generalization which yields formulas for a general vector bundle H
instead of for a line bundle.

We begin by noting that Stokes’ theorem holds also for sections of vector
bundles, which is easily proved. Let M be any complex manifold, and G —
M a holomorphic Hermitian vector bundle over M. Let Dg+« and Dg be
the Chern connections for G* and G respectively. If u is a differential form
taking values in G* and ¢ is a test form with values in GG, we have

(3) /M Dt A g = (—1)desut! /M A Dao,

IThese are not given in the form including the p-shift which is common in representation
theory.
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where A denotes taking the natural pairing between the factors in G* and
G, and taking the wedge product between the factors which are differential
forms. If u is instead a current, we can take (3) as a definition. In the same
way, we also have

(4) /M Bu A p = (—1)desutl /Mu/\5¢.

Let A be the diagonal in X, x X¢. Let H, denote 7} (H), where 7, is the
projection from X, x X to X, and analogously for H¢. Let go o be a section
of H, ® Hi = Hom(H¢, H;) such that go,0(z, %) = Id for all z. If [A] denotes
the current of integration over the diagonal and w((, z) is a differential form
with values in H; ® H¢, then we let

[Algoo(w) := [A]-((900 ® Id)w),
where Id acts on the differential forms in w, and we take the natural pairing
(H; ® He) x (H, ® H}) — C. Note that this does not depend on which go,o
we choose, since the values on the diagonal are the only ones that matter.
The reason for the subscript on gg ¢ will become apparent later on.

Proposition 1 (Koppelman’s formula). Assume that D C X¢, ¢ € Ep (D, Hy),
and that the current K(z,() and the smooth form P(z,() take values in
H,® H; = Hom(H¢, H,) and solve the equation

(5) 0K = [A]go,o - P.
We then have

(6) ¢(z):/(9DKA¢+/DKA5¢+5Z/DKA¢+/DPA¢’

where the integrals are taken over the  variable.

The proof of this uses (4) but is otherwise just like the usual proof of the
Koppelman formula. Note that if ¢ in (6) is a O-closed form and the first
and fourth terms of the right hand side of Koppelman’s formula vanish, we
get a solution to the d-problem for ¢.

Our purpose now is to find K and P that satisfy (5) in a special type of
manifold. To begin with, we will let H be the trivial line bundle. Assume
that we can find a holomorphic vector bundle E — X, x X of rank n,
such that there exists a holomorphic section n of E that defines the diagonal
A. In other words, 1 must vanish to the first order on A and be non-zero
elsewhere. Let {e;} be a local frame for E, and {e}} the dual local frame
for E*. Contraction with 7 is an operation on E* which we denote by 9d,; if

n = > ne; then

oy (Z aie;‘) = Zmai.

Choose a Hermitian metric A for F, let Dg be the Chern connection on
FE, and Dg~ the induced connection on E*. Consider the bundle

We define the operator
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Ge=AT"(XxX)eE®E"] - X xX
and T'(X x X,Gg), the space of C* sections of Gg (note the change of
notation compared to [8]). If A lies in I'X x X, T*(X x X) ® E ® E*)),
then we define A as the corresponding element in I'(X x X, Gg), arranged
with the differential form first, then the section of F and finally the section
of E*. For example, if A =dz; ® e; ® e], then A= dz1 Nei Nej.
To define a derivation D on I'(X x X,Gg), we first let Df = 13;;7 for a

section f of E, and Dg = Dg~g for a section g of E*. We then extend the
definition by

D(&1 A &) = D& A&y + (—1)3881¢, A DEs,

where D§; = d¢; if & happens to be a differential form, and degé; is the
total degree of &;. For example, deg(aAe; Ae}) = deg o+ 2, where dega is
the degree of « as a differential form. We let

= @PT(X x X, APE* AAPT™T5 (X x X));
P
note that L™ is a subspace of I'(X x X, Gg). The operator V, will act in a
natural way as Vy: L™ — L1 If f € L™ and g € LF, then f Ag € L™FF.
We also see that V,, obeys Leibniz’ rule, and that V,27 =0.

Definition 2. For a form f(z,¢{) on X x X, we define

/f(z,C)/\el/\e’{/\.../\en/\e;zf(z,C).
E

Note that if I is the identity on E, then I=ehe*=e A el+...+e,Nep,.
It follows that I,, = e; A€l A... Ae, Ael (with the notation a, = a™/n!), so
the definition above is independent of the choice of frame. Our derivation D
and [, interact in the following way:

Proposition 3. If F € I'(X x X,Gg) then

d/ /DF

We will now construct integral formulas on X x X. As a first step, we find
a section o of E* such that d,0 = 1 outside A. For reasons that will become
apparent, we choose ¢ to have minimal pointwise norm with respect to the
metric i, which means that o =}, hijijel /In|?. Close to A, it is obvious
that |o| < 1/|n|, and a calculation shows that we also have |0a| < 1/|n/%.
Next, we construct a section u with the property that V,u = 1 — R where
R is a current with support on A. We set

(7) U:%:ZU/\(EU)]C,

n k=0
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and note that u € £L71. By uy 1 we will mean the term in u of degree k
in E* and degree k — 1 in T, (X x X). It is easily checked that Vyu =1
outside A.

The following theorem yields a Koppelman formula by Theorem 1, with
the trivial line bundle as H:

Theorem 4. Let E — X x X be a vector bundle with a section 1 which
defines the diagonal A of X x X. We have

=[A] -

where

i© B Dn 0
® K= [ (zm QW) wnd P—/E<2—m+%)’

and u is defined by (7).
Note that since Dz contains no e;’s, we have
1) 10
P= / Z n—detl——cn(E),
27
i.e., the nth Chern class of . The factor
Dn  i®
omi on
is actually the supercurvature associated with the operator V, if we view

V, as a superconnection in the sense of Quillen, [14]. In fact, we have the
following Bianchi identity:

Dy i©
9 Vol —+—1]=0,
©) ! <2m' * 27r)
for a direct proof see, e.g., [8].
The idea behind the proof of Theorem 4 is that by (9) and Proposition 3

we have
Dn i©) = Dy 0
8/ (2#1 7'(') N /Ea IUA (27rz + 27r>
B Dn i© B
Bl /EV" IUA<27r2+27r>n] N
Dn 0 1

1 = — Dn),,.
(10) /E <2m + 27r>n + (27s)™ /ER/\( M

The left hand term in (10) is P. The rest of the proof consists of proving
that
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1
(1) G LR D) = (4

which is proved by choosing local coordinates on X, and reducing the prob-
lem to the C"-case. For details of the proof, see, e.g., [8].

As explained in the introduction, we will obtain more flexible formulas if
we use weights.

Definition 5. A section g with values in Ly is a weight if V,g = 0 and
g0,0(z,2) = 1.

Theorem 4 goes through with essentially the same proof if we take

Dn  i® Dn i®
= d P =
(12) K, /Eu/\g/\<2 z+27r) an 9 / (2m 27r) )
n

as shown by the following calculation:

_ Dn i©
K, = =
0K, /Vnu/\g/\(2 z+27r>
n

(13) - —[E<9—R)A(%+§> = (8] P,

which follows from the proof of Theorem 4 and the properties of weights.

Finally, we will use weights taking values in Hom(H¢, H,) to construct
Koppelman formulas for differential forms with values in the vector bundle
H — X. We define

Gpn =Hom(He, H,) @ AIT* (X x X) @ E@ E*] - X x X
and
(14) LF == EPT(X x X,Hom(H, H,) ® [A’E* A APP™ I3 (X x X))).
p

We define é, on I'(X x X,Gg g) as Id ® §,), where Id acts on the factors in
Hom(H¢, H,) and 6, on the factors in A[T*(X x X)@® E ® E*]. We also need
to extend the derivation D to I'(X x X,Gg.m). If a1 is a differential form
taking values in Hom(H¢, H,), and ag € I'(X x X,GE), then we define

D(a1 A a2) = Dyom(s,,1,)01 A az + (—1)48%q; A Day,

where Dyom(m,,n,) i the Chern connection on Hom(H¢, H,). It is obvious
that Leibniz’ rule holds for both ¢, and the extended D, with the degree
taken as the total degree in E, E* and T*(X x X).

If F € £Y%, then in analogy with Proposition 3 we have

DHOHI(HC,Hz)/E:F:/EvDF'

It follows that we also have JeF =/ OF.
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Let g € LY be such that V,,g = 0 and go (2, 2) = Id. In that case we can
use g as a weight just as in (12) and get

(15) 5Kg = [A]go,o - Pg

by a calculation similar to (13), and then we get a Koppelman formula by
Theorem 1.

Remark 6. To obtain more general formulas, one can find forms K and P
such that

(16) Dyom(n,1,)Kg = [Algo, — Py

by setting Vf;‘u = 0, — D and checking that the corresponding equation (9)
and Theorem 4 are still valid. See for example [8] for details. This will
give the same formulas as in [4], if H is the trivial line bundle. We can
use weights just as before, if we require that a weight ¢ has the property
Vg“”g = 0 instead of V,g = 0.

3. ALGEBRAIC PROPERTIES OF WEIGHTS

In this section we investigate some general constructions of weights with
the purpose of generating weights for a wide class of derived bundles from
two given vector bundles and weights for these. This method will be useful
later when we focus on line bundles over Grassmannians.

To be more precise, we let H and H' be holomorphic vector bundles over
the complex manifold X and assume that X fulfills the requirements of our
general setup for constructing Koppelman formulas, i.e., X X X admits a
holomorphic vector bundle E with a holomorphic section defining the di-
agonal. Assume also that g € T'(X x X,Gg,g) and ¢’ € T(X x X,Gg m)
are weights for H and H' respectively. We shall see that one can naturally
define weights g® ¢’ and g\ ¢’ (when H = H'), as well as g* for the bundles
H®H', HA H and H* respectively. This generalizes the fact, mentioned in
the introduction, that the product of weights for the trivial bundle is again
a weight.

3.1. Tensor products and exterior products of weights. For operators
A€eH,®H;and BE H, ® (Hé)* the tensor product A ® B defined by

(17) A® B(u®w) = A(u) ® B(v),u € H¢,v € Hg

is a linear operator in Hom(H¢ ® H}, H, ® H;). We can therefore extend
the exterior multiplication on the vector space Gg to a linear map (which
we still denote by ®)

®: (GeH)(z0 ® (Grm)(20) = (GrHEH) (20)
given by

(Aw)®@(BRw')— (AQB)® (wAW),
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for w,w' € (GE)(;,)- This operation defines a natural fiberwise multiplica-
tion on sections.

Lemma 7. The operator V; acts as a graded derivation with respect to the
multiplication, ®, of sections, i.e.,

Vn((A®w)®(B®w')) = V,(AQw)® (B®W)
+H(=1)™(AQw) ® Vy(B W),

where A and B are local smooth sections of H, @ H} and H,® (Hé)* respec-
tively, and w and w' are local smooth sections of Gg.

Proof. We first observe that

Viy(A®w)=-0AQw+ AR V,w,

and likewise for B ® w'. Hence,

Va((A® B) ® (wAwW))

= —-9(A®B)®(wAW)+(A®B)® Vy(wAw)
= —-0A®(BRWAW))+(A®B)® (VywAw) -
A® (OB®wA W)+ (-1)"“(A® B)® (wA V,w')
= (-0AQw+A®V,w)®(BeW')+
(A®w)® (—0B® W + (-1)¥*9“B @V, ')
= Vy)(A®w)®(Bew)+ (-1)™“(AQw)® V,(Bouw).
O

Corollary 8. Given weights g and g' for H and H' respectively, the section

g ®g' € F(X X X, GE,H@H’)
is a weight for H® H'.

We next turn to exterior products of a vector bundle. Recall that when A
and A’ are operators in Hom(H¢, H,), AAA’ is the operator in Hom(A2H¢, A%H,)
given by

ANA (unu)=A(u) ANA (W) — A A A (u).
We can then form the exterior product

N (Gou)(20) @ (Grn)(20) = (G unn)(0)
given by

(Aw)® (A @w)— (ANA)® (wAW).
It induces a natural exterior product on sections of Gg g. Using the Leibniz
identity
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O(ANA)=0ANA"+ ANOA,
the following lemma can be proved in the same manner as Lemma 7.

Lemma 9. The operator V;, acts as a graded derivation with respect to the
exterior multiplication of sections, i.e.,

Va(AQw)A (A" ®uw') = Vy(Adow)A (A @uw')+
(=)™ (A®w) A Vy(A' @ '),
where A and A’ are local smooth sections of H, ® H, and w and w' are local
smooth sections of Gg.

In analogy with Corollary 8, we have

Corollary 10. Given weights g1 and gy for H, the section
g1 N\Ngs € P(X x X, GE,H/\H)
s a weight for H AN H.

3.2. Dual weights. For a local section A®w of the bundle Gg f, we define
the adjoint section

(Auw)" =A"Quw,
where A*(z,(): H; — H; is the standard dual operator to A(z,() given by
composing functionals with A(z,(). The relations

Vp(A*Qw) = —-04A"@w+ A" ®V,w
= —(0A)'uw+(A®V,w)*
= (V4(A®w)"
prove the following lemma.

Lemma 11. Given a weight g for the bundle H, the section ¢* is a weight
for the dual bundle H*.

4. THE NECESSARY CONSTRUCTIONS ON (GRASSMANNIANS

In this section we construct the ingredients necessary to generate weighted
integral formulas on Grassmannians according to the recipe in Section 2. We
start by reviewing some elementary facts and introducing some notation.
Hereafter, X will denote the Grassmannian Gr(k,N) of complex k-planes
in CV. Just as CP", (= Gr(1,n + 1)), has its tautological line bundle, X
has a tautological rank k-vector bundle, which will be denoted by H — X
from now on. We consider H as a subbundle of the trivial rank N-bundle,
CN — X, and the fiber of H above p € X is the k-plane in CV corresponding
to the point p. We will take the standard metric on CN and this gives us
a Hermitian metric on H C CV. From H we get a natural Hermitian line
bundle L = det H, which actually generates the Picard group; see Subsection
5.4. We also get the quotient bundle, F' := CN /H, which is a holomorphic
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vector bundle of rank N —k. As a C*°-bundle, it is isomorphic to the bundle
of orthogonal complements H+ C CN via the mapping ¢: F — H* defined
fiberwise by (v + H,) = v — wg, v, where mp, is the orthogonal projection
from CV onto H,. (If w is a CN-valued form we will, for simplicity, also
write 7y, w for (mg, ® Id)w.) The mapping ¢ and the metric on H+ ¢ CV
gives us a metric on F'.

Let e = (e1,...,en) be the standard basis for CV. The point on X
corresponding to the k-plane Span{ei,...,ex} will be the reference point
and denoted by pg. A local holomorphic chart centered at py can be defined
as follows: Let z be a point in C* := C¥(N—*) and organize z as an (N —k) x k-
matrix, i.e.,

211 s 21k
z= : : e C.
ZN—k,1 " ZN-—kk

Associate to z the point on X corresponding to the k-plane spanned by the
columns of the N x k-matrix

(18) ( ! ) o I = Tixk,

z

with respect to the basis e. This actually gives us an injective map from C"
onto a dense subset U C X. We also get natural local holomorphic frames
for the bundles H, L, and F over this chart. For j = 1,...,k, let b;(2) be the
jth column of (18), i.e., b;(z) = e; + Zi\i_lk Zijek+i- Then by,..., by are k
pointwise linearly independent holomorphic sections of H over U. A natural
holomorphic frame for L is thus [ =k A--- Ahg. Also, for 1 < j < N —k,
let §;(2) be the equivalence class defined by ey; in F = CY /H, in the fiber
over z. Then (f1,...,fnv—x) is a local holomorphic frame for F' over U. The
projection CV — F, expressed in the e-basis for CV and the frame §{ for F,
can then be written as the (N — k) x N-matrix

(19) (=2 I), I=In_pyxn-k):

For reference we note some more explicit expressions: As a mapping CY —
CY expressed in the e-basis we have

_ I * _\—1 *
7TH—(Z>(I‘|‘ZZ) (I z*)
and as a mapping C¥ — H, b

me=T+22) (I 2*).
The mapping ¢: F; — CY looks like

_ —(I + z*2)" 12"
P\ I—2(I+2%2)" 12 )
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We have defined the metric, (-,-)r, on F via ¢ so the Hermitian metric-
matrix, hg, expressed in the frame f satisfies (hr)i; = (@(fi), ©(f;))cn
(with the convention that (v, w)r = v'hpw). Using the explicit expression
for ¢, a computation then gives

hip(z) = (I +22) 7Y,

and so the Chern curvature-matrix of F' is

Op = 0(h' Ohp) = 001og(I + z2*),

where the last expression should be interpreted in the functional calculus
sense. For the bundle H we get

hty =T+ 2"z, and Oy = 80log(I + z*2) 7,

expressed in the frame .

4.1. The bundle F and the section 7. We will construct a holomorphic
vector bundle £ — X, x X of rank n (= k(N —k)) and a global holomorphic
section 7 of it defining the diagonal. Asin Section 2, we let H, and H. denote
the pull-back of the tautological bundle under the projections X, x X, — X,
and X, x X, — X respectively and we define F), similarly. However, for
convenience we will occasionally abuse this notation and also write, e.g.,
H, for the fiber of the bundle H, — X, x X, above a point (z,({). This
ambiguity is (partly) justified since one can identify fibers of H, — X, x X,
above points (z,() for any ¢. This means also that, e.g, {h;(2)} is a local
holomorphic frame for H, — X, x X¢ over U, x X¢.

The bundle E is simply E = F, ® H} and then ¢; := fi(z) ® 3(¢),
1<i<N-k,1<j <k, is aholomorphic frame for E over U XU C X x X.
To define n we start with a vector v € H¢ and via H¢ C (Cév >~ CV we can

identify v with a vector o € CI. We then let n(v) be the projection of & on
F,=CY/H,.

Proposition 12. The section n of E is holomorphic and defines the diagonal
in X x X.

Proof. 1t is clear that n(v) vanishes if and only if v belongs to the fiber
above a point in the diagonal A C X x X. Hence, n is a global section
of Hom(H¢, F,) = E and vanishes precisely on A. In the coordinates and
frames described above, n has the form

n=¢—z
In fact, if v = YF vjh;({) € H¢ then n(v) is the image in F, of Sk vje; +

N— PR N—
S Eh Gjvjenss: By (19) this is equal to Y5705 328 (Gij — zig)viena-
We thus see that 7 is holomorphic and vanishes to the first order on A. O
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4.2. Bundles and weights. The bundle L = det H actually generates the
Picard group of holomorphic line bundles; cf. Section 5.3, and [18]. We will
construct weights for the line bundles L" := L®" — X, and for the vector
bundle H — X. We start by defining two fundamental sections 7y and ~y; of
Hom(H(, H,) and Hom(H¢, H,) ® E* AT (X x X) respectively. For v € H¢
we first identify v with the vector & in the trivial bundle CY — X, x X
via Hy C (Cév =~ CN. We then put yo(v) = 7y, 7. In the b-frames described
above, v is simply the k£ X k-matrix

(20) Y= +2"2) (I +270).
It is a little bit more complicated to describe 7;: Let £ and v be (germs of)

smooth sections of F and H respectively. Since ¥ = F, ® H, 2‘, &(v) defines
naturally a smooth section of F, and hence, ¢(£(v)) is a smooth section of
H} c CY. We then put —1(£ ® v) = mm, (0 p(£(v))), which is a smooth
section of H,®Tg (X x X). We check that vy, so defined actually is tensorial.
Let f be (a germ of) a smooth function. We then get

n(fE®v) = —mm,
= 0(E(v)) ® Of + fOp(£(v)))
= —7n, (e(€(v) ®Of + fn(E @ ).

But 7. (¢(¢(©))) = 0 since 9(€(0)) € HE, and s0 1 (f€ ® v) = f1a(€ ® v).
(One could also note that v (( ®v) = —[7THZ ,0)p(€é(v)), where [rg, 0] is the
commutator.) Hence, 1 defines a section of H, @ 15 (X, X X¢) @ E* Q@ H[ =
Hom(H¢, H,) ® E* ANT1(X x X). A computation in the local coordinates
shows that

(21) th 2) @ b3(¢) ® My,

1,5=1

where M is the k X k-matrix of E*-valued (0, 1)-forms

(22) M =0((I+2"2) '2") ne.
Here, ¢* is the matrix with entries (e;;)*.

Proposition 13. The section G := vy +v1 € LY, (cf. (14)), is a weight for
the tautological bundle H.

Proof. We need to check that vy(z,2) = Id and that V,G = 0. The first
equality is obvious from the definition. For the second one we have to verify
the two equations dyg = nY1 and 0v1 = 0. Let v be a germ of a holomorphic
section of H¢. Via H¢ C CN = CY we may view v as a holomorphic section

of CY and then we can write
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Opy1)(v) = —7mm, (3(p(n(v)))) = —7m, (A(rg.v))
—mp, (0(v — 7p,v)) = O, (1, v)
= m.(70(v))-

Hence, du, (10(v)) = dy71(v) for any germ of holomorphic section v of H.
It follows that Oy = Opy1- Now, let £ be a germ of a holomorphic section of
E. Then £(v) is a germ of a holomorphic section of F,. One can (locally) lift
£(v) to a germ of a holomorphic section, &(v), of CV that projects to &(v).
We then get

un(E®v) = B, (rm,d(p(EW)))) = dn, (11, (E(v) — 7a.E(v)))

~ 0y, (mp, 0(mp,E(v)) = —0% (np,€(v))
- 0.

Hence, 0,1 (¢ ® v) = 0 for any holomorphic ¢ and v, and this finishes the
proof. O

By the algebraic properties of weights established in Section 3 we now get
that g :== G A --- A G (the exterior product of G with itself k times) is a
weight for L. It is easy to check that

'det(I + 2*()

“det(I + 2*2)

in the frame [ for L. Weights for positive powers of L are then obtained
by taking powers of g. By the results at the end of Section 3 we can also
get weights for H* and L™" = (L*)®" from G. If one wants to construct
weights for H* geometrically, as we have done in this section, it is easier to
take Fy ® H} as the bundle E. However, our Koppelman formulas have an

inherent duality and this gives us weighted formulas for forms with values in
H* and L™ from the weighted formulas for H and L".

900 =Y NNy =k

5. REPRESENTATION-THEORETIC INTERPRETATIONS

In this section we describe X and its line bundles in terms of group actions
and representations. The purpose of this is threefold. First of all, this point
of view gives an easy description of the Picard group of X. Secondly, and
more importantly, we prove that the weights we have constructed earlier will
all be invariant under a certain group action; a property which will turn out
be highly useful in the last section with applications to Bergman kernels.
Finally, in this setup, we can fairly easily prove that the restriction of the
bundle F to the diagonal is equivalent to the holomorphic cotangent bundle
I7, of X.

5.1. The Grassmannian as a homogeneous space. The linear action of
the group GL(N, C) on CV induces an action as holomorphic automorphisms
of X, and this action is clearly transitive. Hence, we can describe X as a
homogeneous space X =2 GL(N,C)/P, where
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P::{(gl g)‘detAdetD#O}

is the stabilizer of py. One can also restrict the action to the subgroup
SL(N,C) and still have a transitive group action; this time exhibiting X as
the homogeneous space SL(N,C)/P’, where

~-{( 5

is the stabilizer of pp in SL(N,C). The reason that we mention this real-
ization is that some of the results we refer to later hold only for quotients
of semisimple Lie groups. A third realization is given by restricting the
GL(N,C)-action to the unitary group U(N). The stabilizer of py in this
subgroup is

det Adet D = 1}

{( ‘3 ? )‘Ae U(k), D eU(N—k:)} ~ U(k) x U(N — k),
and hence we have a third description of X as the quotient space U(N)/(U (k) x
U(N —k)).

5.2. The bundles H, F, and E. We recall that a vector bundle V — X is
said to be homogeneous under a group G if G acts on it by bundle automor-
phisms in such a way that the corresponding action on X is transitive. As
a consequence, the stabilizer, G),, of pg in G acts linearly on the fiber V,,,
i.e., V), carries a representation, 7, of Gp,. The vector bundle V can then
be reconstructed from the representation 7 as the set of equivalence classes

G XGpy Vo = G X Vpy[ ~,

where the equivalence relation ~ is defined as (g,v) ~ (g¢’,v’) if and only
if (¢',v") = (gz~',7(z)v) for some x in Gp,. The G-action is then given
by [(¢,v)] EN [(gg’,v)], where the brackets denote the equivalence classes of
the respective pairs. The holomorphic vector bundles are those associated
with holomorphic representations, 7, of Gy, i.e., 7 : Gy = End(Vp,) is a
holomorphic group homomorphism.

Suppose now that H C G is a closed subgroup of G which also acts
transitively on X. Then we can describe X as a quotient H/(H N Gp,) and
form the H-homogeneous vector bundle V¥ := H x HNGyy Vpo- This latter
bundle is in fact equivalent to the former one via the bundle mapping

\I/g H X HN Gy, Voo — G X G, Vios
[(h,0)lg = [(By0)]g,

where the brackets denote the respective equivalence classes.
For our purposes, this means that we can choose to view GL(N,C)-
homogeneous vector bundles as SL(N,C)-homogeneous ones without any
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loss of information as long as the corresponding representations of P’ are re-
strictions of P-representations. The Levi subgroup GL(k,C) @ GL(N —k,C)
is the complexification of U(k) x U(N — k); and hence any holomorphic
P-representation where the standard unipotent subgroup acts trivially is
uniquely determined by its restriction to U (k) x U (N —k). In this case we can
regard the corresponding vector bundle as only being U(N)-homogeneous
without losing any information. In particular, this holds in the case of line
bundles.

The group GL(N,C) acts naturally on the trivial bundle X x CN by
(p,v) > (g(p),gv). The tautological bundle H is invariant under this action,
and is therefore a GL(N,C)-homogeneous vector bundle. We let 7 : P —
End(CF) denote the corresponding representation of P on Hy, = CF, namely

T(g1 g)U:A’U,’UE(Ck.

Since the subbundle H of CV is GL(N, C)-invariant, there is a well-defined
action on the quotient bundle F = CN /H; i.e., F is also a homogeneous
bundle. We can identify the fiber F,, with CV —k_and we let p denote the
corresponding P-representation given by

A B\ _ N—k
p(o D)’U—D’U,’UEC .

The bundle E — X x X is homogeneous under the product group GL(N, C) x
GL(N,C), and the representation of P x P on the fiber (F, ® H{)pqpy) =

Hom(C*,CV—*) is the tensor product representation p ® 7* given by

As B
* -1
p@Tg:r90)% = D ZA, g = ( 04 Dg>’

. Az Bz
Z € Mpy_i(C).

The trivial bundle CV is equipped with the standard Euclidean metric
which is U(N)-invariant; and the tautological bundle H inherits this metric,
thus admitting an isometric action of U(N). Moreover, we recall that the
quotient bundle F' is smoothly equivalent to the orthogonal complement,
H*', to the tautological bundle. It should be pointed out that H=' is not
a holomorphic vector bundle, whereas F' is. Since the metric on F is in-
duced from that on H+, the U(IV)-action on F is also isometric. Moreover,
the bundle F is equipped with a tensor product metric, and therefore the
Cartesian product U(N) x U(N) acts isometrically on E.

The Chern connections and curvatures of the three bundles H, F, and E
are invariant under the respective group actions since they are associated
with invariant metrics. We recall that the invariance of a curvature, ©y, of a
holomorphic homogeneous vector bundle V means the invariance as a section
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of the bundle End(V) ® Ty, with respect to the natural action on sections
of this bundle. Concretely, this means that

O (gp) (u, v)w = gOy(p)(dg ™" (gp)u,dg " (gp)v)g " w,

* *
ue€ T(l,O),gp’ ve T(O,l),gp’ w € Vp.

In particular, it follows that the curvature is determined by its value at a
fixed reference point. We shall return to the Chern curvature of E below,
and give an explicit formula for it at the point py. First, however, we shall
undertake a closer study of the restriction of £ to the diagonal.

The action of the group U(N) on X defines a fibration ¢ : U(N) —
X given by ¢(g) = g(po) which is U(N)-equivariant with respect to left
multiplication, Ly, :  + gz, on the group itself, and the action on X,
ie., g(gr) = g(q(x)) holds for g,z € U(N). Moreover, the right action
Ry : & — xl~! of the subgroup U (k) x U(N —k) on U(N) preserves each fiber
q *(p) for p € X, and yields a diffeomorphism U (k) x U(N — k) = ¢~ *(p).
This equips U (V) with the structure of a principal U(k) x U(N — k)-bundle
over X. Since the right action of U(k) x U(N — k) commutes with left
multiplication, the group U(N) acts equivariantly with respect to the action
of U(k) x U(N — k). Moreover, the embedding of U(N) into My (C) induces
an Riemannian structure on U(N) by restriction of the trace inner product
(A, B) — tr(AB*), and the left multiplication is isometric with respect to
this inner product. For any g € U(NN) with ¢(g) = p, we have an orthogonal
decomposition

(23) Ty(U(N)) =Ty(q ' (p)) @ Tyla ()™,

and this decomposition is invariant under left multiplication. The restriction
of the differential of ¢ to the orthogonal complement T,(¢~*(p))* yields an
isomorphism

dq(9)Ir, (1)~ Tolg ()" = Tyg)(X).

For any p € X we thus have a family of subspaces parametrized by the set
g (p) to which the tangent space at p is isomorphic. We therefore define
an equivalence relation on the tangent bundle T'(U(N)) by

(24) (g,'U) ~ (glavl) iff (glavl) = (Rl(g)ade(g)U)a

for some I € U(k) x U(N —k). By the isometry of the left multiplication, the
orthogonal complement bundle U,T' (¢~} (p))* is a U(NN)-homogeneous vector
bundle. Moreover, for any vector in this subbundle, the whole equivalence
class lies in the subbundle since also the right action is isometric. It follows
that S := Up,T(¢7*(p))t/ ~ is a well-defined U(N)-homogeneous vector
bundle over X. Clearly, S is equivalent to the tangent bundle T'(X), and
thus it inherits a complex structure.

Proposition 14. The restriction of E to the diagonal A(X x X) is equivalent
to the holomorphic cotangent bundle T7 o(X).
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Proof. We prove that E* is equivalent to S. Since S is U(N)-homogeneous, it
is uniquely determined by the corresponding representation of U (k) x U(N —
k) on the fiber Sp,. For the identity element e € U(N), the tangent space
T.(U(N)) is isomorphic to the Lie algebra

u(N) == {X € My (O)|X* = —X},

and the subspaces in the decomposition (23) are explicitly given by

@ e = {(§ o) =vz--z},

@ nae)t = {( 5 §)|Femao}.

For v = ( _%* ? ) € Te(g (po))*, and [ = ( ‘3 10) ) € U(k)xU(N —

k),
aior = (3 5)( 5 2)

0 AB
-DB* 0 '
We can represent the equivalence class of this tangent vector by a tangent
vector at the identity, namely by

dR(1)dLy(e)y = ( e 0 ) ( Agl e )

- ( —(ABOD—l)* AB(?_l )

Hence, we can identify the representation of U(k) x U(N — k) on Sp, with
the representation on My, y(C) given by B — ABD™! i.e., with the repre-
sentation 7 ® p* on Hom(CN~*, C*), which is precisely the U(k) x U(N — k)
representation associated to the restriction of E* to the diagonal. O

Remark 15. In [4], Berndtsson proves that any appropriate bundle E —
X x X has to coincide with the holomorphic cotangent bundle on the di-
agonal. In the case of CP", an independent proof of Proposition 14 can be
found in the book [7] by Demailly; Proposition 15.7 in Chapter V.

By the identification T}, (X) with the subspace T.(¢7*(po))* in (26), we
have an explicit realization of its complexification

Ty (X)C = { ( oo )‘B € Myx £(0),C € MNk,k((C)} .

AT 0
e ) € Tulag~"(po)) = u(k) x
_ZNIN—k

u(N — k). Its adjoint action determines the complex structure, Jp,, at pg by

Consider now the element (
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0 B iNZET, 0 0 B
J, = N
PO\ —B* 0 0 —ikIn_y )7\ —B* 0

B (—(39)* Z(?)

The splitting of T;)% into the the *i-eigenspaces is given by

T(1,0),p0(X) = { ( )‘Y € Mk,N—k(C)} ;

Tonaw®) = {( 5 0)

We recall that the curvature O at the point pg is given by the formula

No @<
co o

VS MN—k,k((C)} .

(27) Or(po) (Y, 2)W = (p& ") ([Y, Z])(W),

where (p ® 7*)" denotes the differentiated representation of the Lie algebra
u(k) x u(N —k) given by (p@7*)"(X) := %(p@T*)(exp tX)|¢=0- The explicit
expression for (27) is

0¥ 2W = (or) (17 4 )
= ZYW-WYZ, We MN—k,k(C)-

5.3. Invariance of weights. In this section we study a natural action of
U(N) on sections of the bundles Hom(Lf, L) ® Gg, and prove that the
corresponding weights are invariant under that action.

Recall that for an action of a group, G, on a vector bundle V — M, a
natural action is induced on the space of sections by

(28) (9)(2) = gs(g™"2),

where the second action on the right hand side refers to the action on the
total space of the bundle. The bundles Hom(L¢, L}) ® Gg are equipped with
the natural U(N) x U(N) actions given as tensor (and exterior) products of
the actions described in the previous section and their duals. In what follows,
we will consider the action of U(N) (embedded as the diagonal subgroup of
U(N) x U(N)) given by restriction. The actions on the respective total
spaces are the obvious ones, and we will therefore use the simple notation
from (28) for such an action.

We let g" := g®" for r > 0 and ¢g" := (g*)®" for r < 0 denote the weight
for the line bundle L".

Proposition 16. The weight g" is a U(N)-invariant section of the vector
bundle Hom(L7, L) ® Gg.
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Proof. Tt clearly suffices to prove that the section G = -yy 41 is an invariant
section of Hom(H, H¢); and for this, we prove that vy and +; are invariant
separately. We now fix an orthonormal basis, {hi,...,hx}, for H,. For any
u € He and | € U(N), we have

k
(170) () = 1y M) = 1) {1 u, 0 ha)l ™ h

1
= 70(”)7

which shows the invariance of 9. We now consider ;, and therefore choose
a local section f of F' near the point z € X. Then, we have

(Im)(f®u) = —lrm,_, (O f)) @1 ")
= —lrm,_, (I7'0p(f)) @1 'u)
= —7mu, (9p(f) ® u)
= n(f®u),

where the third equality is completely analogous to the invariance of 7. This
concludes the proof. O

We now turn our attention to the form Py defined in (12) again.
Corollary 17. The form Py is U(N)-invariant.

Proof. First of all, an argument similar to the proof of Proposition 16 shows
that the section n is U(N)-invariant. Secondly, the Chern connection Dg on
E commutes with the U(N)-action, and hence Dn is also U(N)-invariant.
The curvature © is even U(N) x U(N)-invariant; and hence it follows that

the form gA (2%2 + %) is U(N)-invariant. We now claim that the operator
n

[ 18 U(N)-equivariant. Indeed, the identity section I € End(FE) is obviously
U(N)-invariant, and so is therefore also the section I,, defined in connection
with Definition 2. Hence, [ 5 18 an equivariant operator, and this also finishes
the proof. O

The canonical splitting 7(X x X) = T7(X) @ T7(X) of the cotangent
bundle of X ® X is U(N) x U(N)-invariant, and hence (P,r) can be decom-
posed as

(29) (PT) = Z (PT)p’,p”,q’,q”a

p'+p''=n
d+q"=n

11

where (Pyr)p p g g 1s a section of Hom(H¢, H,) ® AP (TC)* A AP (TCC)*,
i.e., it is of bidegree (p’,q’) in the z-variable, and of bidegree (p”,q") in the
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(-variable according to the splitting. By the invariance of the splitting, we
also have

Corollary 18. The terms (Pyr )y 1 ¢ g in the decomposition (29) are U(N)-
invariant.

Only the term (Pyr)p,0,n,0 which has bidegree (n,n) in the z-variable will
contribute to the integral in the Koppelman formula. Later we will examine
this term more closely.

Corollary 19. The current Ky in (12) is U(N)-invariant.

Proof. Tt clearly suffices to prove that w in (7) is U(N)-invariant; and since
the group action commutes with the d-operator and exterior powers, it only
remains to prove the invariance of ¢. Note that ¢ can be described by the
equation

o(v) = w, veE.
Il
The invariance of o now follows immediately from the invariance of 7 and
from the fact that the action of U(N) preserves the metric. O

5.4. Line bundles on X. In this subsection we recapitulate how the Picard
group of X can be described in terms of holomorphic characters. All of this
is classical theory and well-known, even though the results in their explicit
form can be hard to find in the literature. The reason for including it in
the paper is rather to give an overview for readers who are not familiar with
representation theory of Lie groups.

Suppose now that £ — X is a SL(N,C)-homogenous holomorphic line
bundle. The corresponding P’-representation then amounts to a holomor-
phic character x : P/ — C*. Moreover, it is well-known that all holomorphic
line bundles over X are in fact SL(N,C)-homogeneous (cf. [18]), and hence
the Picard group H!(X,O*) is isomorphic to the multiplicative group of
holomorphic characters of P’.

Suppose now first that x: P — C* is a holomorphic character. (This is
no restriction, as we shall later see that all holomorphic characters of P’ are
restrictions of P-characters.) It is well-known that it is then uniquely deter-
mined by its restriction to the Levi-subgroup GL(k) x GL(N — k) realized

as
A 0
0 D
By restricting to the respective factors, we can uniquely express x as a prod-
uct x = x1X2, where x1 and 3 are characters of GL(k,C) and GL(N —k, C)

respectively. Let x} : gl(k,C) — C denote the differential at the identity of
X1- Then x| annihilates the commutator ideal in the decomposition

det Adet D # O}.

g[(ka C) = 3(9[(k7 C)) D [g[(k’ (C)a g[(k7 (C)]
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of gl(k,C) as the direct sum of the center and the commutator. More specif-
ically, we have the identity

[g!(k,C), gl(k,C)] = sl(k,C),
from which it follows that the normal subgroup SL(k,C) lies in the kernel

of the character x;. Hence, x1 descends to a character, x1, of the quotient
group GL(k,C)/SL(k,C), yielding the commuting diagram

X1

GL(k,C)

|

GL(k,C)/SL(k,C)

C .

Moreover, the quotient group is isomorphic to C* via the mapping gSL(k,C) —
det g, and hence we have the diagram

X1

GL(k,C) (o

-

GL(k,C)/SL(k,C) s C*,

which allows us to identify 1 with a holomorphic character C* — C*. The
latter ones are easily described. Indeed, by holomorphy, any such character is
uniquely determined by its restriction to the totally real subgroup S C C*,
on which it gives a character S* — S'. Hence, it is of the form ¢ ~ ¢™, for
some integer m. The analogous result holds of course for y3. Summing up,
we have thus found that

X ( 61 g ) = det A™ det D™,
for some m,n € Z.

The line bundle corresponding to the choice m = 1,n = 0 is the deter-
minant of the tautological vector bundle. To study the line bundle corre-
sponding to the parameters m = 0,n = 1, we consider it as a SL(N,C)-
homogeneous line bundle, which amounts to restricting the corresponding
character to the subgroup P’ of P. We let x' denote the differential at the
identity of this character. The Lie algebra p’ admits a decomposition

!

p' =30 e [p,p]

as the direct sum of its center and its commutator ideal. These two ideals
are given by
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30) = {( AN RS ) ce c},
v',p'] = {( ’3 g ) trA:trD:O}.

On the group level, we have the commutator subgroup

v-{(3 3)

and the quotient group P’/[P’, P'] has complex dimension one. In fact, an
isomorphism @ : P'/[P', P'| — C* is given by

det A =detD = 1},

(g [P, P')) = det A,
A B
0 D )

If u : P' — C* is a holomorphic character, it factors through the projection
onto the quotient group just as above, yielding a holomorphic character i :
P'/[P', P'] = C*. Using the isomorphism ® above, we obtain the commuting
diagram

for g =

P’ C

| ]

P'/[P', P'j— .

From this, we conclude that ( B ) = det A7, for some j € Z. In par-

0 D
ticular, it follows that u can naturally be extended to a holomorphic charac-
ter P — C*. Moreover, the dual bundle to the determinant of the tautolog-

ical vector bundle corresponds to the P’-character ( 61 11‘3) ) —detA™! =

det D, which can be extended to the P-character ( 61 g ) — det D. It
is easy to see that the GL(N,C)-homogeneous line bundle associated with

this holomorphic character is isomorphic to the determinant of the quotient
bundle F = CN /H.

5.5. The Bott-Borel-Weil theorem. In this subsection we briefly de-
scribe some group representations associated with homogeneous vector bun-
dles.

Suppose now that G is a complex Lie group acting transitively and holo-
morphically on a complex manifold M, so that we can write M = G /T for
some closed subgroup T' C G. Let V — M be a G-homogeneous holomor-
phic vector bundle. Recall that the action of G on V induces the action on
smooth sections given by (28). Since G acts holomorphically on M, there is
a natural action on V-valued (p, ¢)-forms (by taking the pullback composed
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with inversion). Moreover, the action commutes with the d-operator on V,
from which it follows that the action preserves closed forms and exact form;
thus inducing an action on the Dolbeault cohomology groups HP¢(M,V).
In the case when G is a complexification of some semisimple compact Lie
group, Gr, the Bott-Borel-Weil theorem (cf. [2], Theorem. 5.0.1) gives a
realization of all irreducible representations of Gg as H%9(M, L) for some
homogeneous line bundle, £, over M, and also states the vanishing of the
other sheaf cohomology groups associated with £. We shall see examples of
it in the context of the vanishing theorems of the next section.

6. APPLICATIONS

6.1. Vanishing theorems. We would like to find vanishing theorems for
the bundles L" and L™" over X by means of the Koppelman formula. This
will yield explicit solutions to the 0-equation in the cohomology groups which
are trivial.

Let D in Theorem 1 be the whole of X, and let ¢(¢) be a 0-closed form
of bidegree (p, q) taking values in L7, with » > 0. The only obstruction to

solving the 0-equation is then the term f( ?(C) A Py (€, z). We have

Dn i©
P, = NN (=R
(30) g /Eg 4 (27rz' + 27r>

min(kr,n

(kr,n)
- /E D Cig")jg N (DY A(O¢+6,)"
j=1

where (g");,; is the term in g" which has bidegree (0, j) and takes values in
A E*. Note that all the differentials in g are in the z variable; this is because
O¢ commutes with 7y, .

Theorem 20. The cohomology groups HP%(X, L") are trivial in the follow-
ing cases:

a) p£qandr=0.

b) p>q andr > 0.

c)p<gq,rk<qg—p, andr >0.

d) p<qandr<O0.

e) p>q, rtk<p—gq, andr < 0.

Proof. a) If r = 0 we do not need a weight, and in that case

P:/E(g) = ca(B),

or the n:th Chern form of E. It is obvious that P consists of terms with
bidegree (k,k) in z and (n — k,n — k) in ¢, and thus [ ¢ A P = 0 if ¢ has
bidegree (p, q) with p # q.

b) Since the only source of antiholomorphic differentials in ¢ is (:)C, which
is a (1,1)-form, we can never get more d(;:s than d(;:s. This means that
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fg #(¢) A Pyr = 0 if ¢ has bidegree (p, q) where p > g (since then Py would
need to have bidegree (n —p,n — ¢) in ¢ with n — ¢ > n — p).

¢) If #(¢) has bidegree (p,q), then Py needs to have bidegree (p,q) in z.
We can take at most p of the ©,:5. We will then need at least ¢ — p more
dz;:s, and these have to come from the factor g". But ¢" has maximal bide-
gree (0,7k), so if rk < ¢ — p the obstruction will vanish.

d) By duality, if we have a (p,q)-form ¢ taking values in L™ with r < 0,
the obstruction is given by [ ¢(z) A Py-+((, z). This is zero unless there is
a term in Py of bidegree (p,q) in (. By the same argument as in the proof
of b), the obstruction vanishes if g > p.

e) If ¢(z) has bidegree (p, ), then P,-» needs to have bidegree (n —p,n —q)
in z, where n — g > n — p. The rest follows as in the proof of ¢). a

Remark 21. In CP", we can get rid of the obstruction in more cases, either
by proving that Py is 84 -exact (since then Stokes’ theorem can be apphed)
or by proving that it is J,-exact (since then f( ¢ N Py will be 0,-exact as

well). See [8] for details.

Part d) of the above theorem is the special case of the Bott-Borel-Weil
theorem for the parabolic quotient GL(N,C)/P. For r = —1, all vanishing
theorems were proved by le Potier in [13]|. He also proved vanishing theorems
for exterior and symmetric powers of the tautological bundle and its dual.
In [17], Snow gives an algorithm for computing all Dolbeault cohomology
groups for all line bundles over Grassmannians. Implementing the algorithm
in a computer, Snow obtains various vanishing theorems including ours. It is
worth noting that both le Potier and Snow obtain their results by reduction
to the Bott-Borel-Weil theorem.

6.2. Bergman kernels. We will see that the projection part, Py, of our
Koppelman formula for L™ basically is the Bergman kernel associated with
the space of holomorphic sections of L™". We begin by examining Pyr. Recall
that

k

gr:((vo+71)k)®rz(2(l;)% TAA)T = () +
=0

where v§ of course is the kth exterior power of g, is our weight for L™. The
projection kernel in our Koppelman formula for L™ is thus

Dn iOp
P, = Al = 2R
g /Eg (27m'+ 27r)
n
Dn  i® Dn  i®
k\®r T] E ~T 77 E
—= _ R —— /\ - - P
(%) ®/E(2m+ 27r> +/Eg <2m+ 27r)
n n
. -
- Pgr+Pgr
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Let Py and ’Pgr be the parts of Py and Pgor respectivly, which have bidegree
(n,n) in the z-variables. Let us examine Py and Pgr more closely on the set
Z :={po} x X¢. In our local coordinates and frames over U, x Us we have
by (20) that yo = (I + 2*2) (I + 2*¢). On Z intersected with {po} x U,
denoted Z’ below, we thus have vy = I expressed in our frames. According
o (21) and (22), we see that, as a matrix in our frames for H, and H,
v1 = dz* A ¢* on Z'. Moreover, a straightforward computation shows that
the part of Dn, which does not contain any differentials in the (-variables,
equals — Zi’ j dzij A ejj on Z'. Also, the part of O, which does not contain

any differentials in the (-variables, is G)Fz/gdeZ. We thus see that the

building blocks for Py and ’Pgr are independent of ¢ on Z' when expressed
in our frames. Since both Py and ’Pgr take values in a line bundle we must
have Pyr = CP) on Z'. But Z' is dense in Z and so this equality holds
on Z by continuity. Now, by Corollary 18 in Subsection 5.3, it follows that
both P, and Pgr are invariant under the diagonal group in U(N) x U(N)
and since Z intersects each orbit under this group we can conclude that
Pyr = C’Pg'r on all of X x X.

Given any holomorphic section f of L™, r > 0, and any vector v, in the
fiber of L™ above an arbitrary point p, our Koppelman formula now gives

(31)  f(p 'up—/ Pgr(2,p) Nvp A f(2) / (z,p) Nvp A f(2).
It is easy to compute PY. explicitly, and one gets

0 _ (L \n k\er (/“Td*):inmr O )k
Ph = (3)" 007 @ [ (er 8Tau;) = (52)" (05 ® ex-r(Or)"
Moreover, O, is the U(N)-invariant curvature of F}, so it follows that
cn_k(OF,)F is a U(N)-invariant (n,n)-form and hence equal to a constant
times the invariant volume form dV. We have thus obtained

(32) f(p)up=C /X £(2)- () 0,V (2)

for any holomorphic section f of L™". Modulo a multiplicative constant,
one also has that dV = (¢;(L))", and then the above formula assumes the
following form expressed in the frames and coordinates discussed above.

/ iz SZE ﬁicg ((091og det(I + 2*2)))".

We will now describe what will be the Bergman kernel. Let p": L], — L;"
be the antilinear identification induced by the metric, i.e., p"(v) = (-, v)Lr,
and define K;(z,(): Lf — L;" by K.(2,() = p" o (v¥)®". Then one easily
checks that K,(z,() is a fiberwise antilinear map, which depends antiholo-
morphically on (. To show that it actually depends holomorphically on
z we consider the adjoint operator K,(z,{)*: L, — LC_T and the operator
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K, ((,2z): L — LC_T. We know that the latter operator depends antiholo-
morphically on z. Note also that since K,(z,() is fiberwise antilinear, the
adjoint should be defined by (K, (z,()*u).v = u.(K,(z,()v) for u € L}, and
v € L7. It is then straightforward to check that K,(z,()* = Kr((, %), and
so K,(z,()* must depend antiholomorphically on z. It follows that K, (z, ()
depends holomorphically on z. In particular, for any non-zero vector v € Ly,
the mapping z — K,(z,p)v defines a global non-zero holomorphic section of
L~". In fact, these sections generate H°(X, L™") as we now show. Consider
the Bergman space A2 defined as H°(X, L") equipped with the norm

1715 = /X IF15--dV, feH(X,L™).

We claim that, modulo a multiplicative constant, K,(z, () is the Bergman
kernel for A2 i.e., that K,(z,() is the fiberwise antilinear map Lt = L;7,
which depends holomorphically on z and antiholomorphically on ¢, and has
the property that for any f € A? and any vector v € Lt (in the fiber above
¢) one has

F(Q)0 = (f Kl O az = /X (F(2), Ko (2, ()0} e AV (2).

It only remains to verify this last property. But this reproducing property
follows directly from (32) after noting the following equality, which basically
is the definition of K,(z,():

u.((Y9) %) = (u, K, (2, Qv)p-r, forallu € L;", and all v € L¢.

Remark 22. In the case of CP" it is not too hard to compute P, directly
from its definition. For instance, one can first verify in local or homogeneous
coordinates that the part of 71 A Dn which contains no d¢ or d¢ is equal to

—Y ® OF, ® Ido(l)g, cf. Proposition 4.1 and the weight « in [8]. Then, a
straightforward computation shows that Py is equal to

(n + r) (%)"75 ® det(Og,).

n
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1. INTRODUCTION

Let P(z) = (Pi(2),..., Pn(2)) be a tuple of polynomials in C*, and
®(z) another polynomial in C* which vanishes on the zero set Z of
P. By Hilbert’s Nullstellensatz, we can find ¥ € N and polynomials

Q(z) = (Q1(2),...,Qm(2)) such that
=P -Q=PQi+ -+ FuQn.

There has been much research devoted to finding effective versions of
this, i. e. determining bounds on v and the polynomial degrees of the
Qi’s. These degrees depend not only on the degrees of P and &, but
on Z and the singularity of P at infinity.

A breakthrough in the problem of degree estimates came in [6], where
Brownawell found bounds by a combination of algebraic and analytical
methods. The optimal degrees, which are slightly better than Brow-
nawell’s, were found by Kollar in [11], using purely algebraic methods.
There are also classical theorems by M. Néther and Macaulay which
treat simpler cases where one has conditions on the singularity.

In [1], the problem of solving

with degree estimates is treated by means of residue currents on P
based on the Koszul complex. One can then recover the Nother and
Macaulay theorems. In the same article are explicit solutions () con-
structed by means of integral representations; one then has some loss
of precision in the degree estimates.

It is natural to look at generalizations of the division problem (1) to

the case where P is a matrix. More precisely, we let P be a polynomial
1
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mapping C* — Hom(C™,C"), i. e. an r X m matrix P where the entries
are polynomials in n complex variables. Let ® = ($4,...,®,) be an r-
column of polynomials. If we assume that there exists an m-column of
polynomials () such that ® = PQ), we want to find an explicit solution
@ and get an estimate of its degree. We can reduce the case r > 1
to the case r = 1 by means of the Fuhrmann trick 7] (see Remark 1),
however, we will then lose precision in the degree estimates.

The case 7 > 1 is treated in [3], where an estimate of the degree
of the solution is obtained by means of residue currents on P", based
on the Buchsbaum-Rim complex. The aim of this paper is to present
explicit integral representations of @ for » > 1. The paper [2] contains
a method of obtaining explicit solutions to division problems & = PQ)
over open domains X C C", and we will adapt this method so that
we can use it on P". Also, we present careful degree estimates of so-
called Hefer forms, which make it possible to estimate the degree of the
solutions. We will lose some precision in the degree estimates compared
to [3], but in return we get explicit solutions. We also point out that
in principle, explicit solutions can be obtained which satisfy the same
degree estimates as in [3].

2. A DIVISION FORMULA FOR TUPLES OF POLYNOMIALS

Instead of solving the problem & = P(@ in C", we will homogenize
the expression and look at the corresponding problem in P" instead.
Let ¢ = (0, ¢") = (€0, C15---Cn)- Set ¢ = (FD(¢'/ o), where p = deg ®;
the entries of ¢ will then be p-homogeneous holomorphic polynomials
in C**1, and can be interpreted as sections of a line bundle over P"
(more on this later). Assume that deg (P?) < d;, where P7 is number

jin P, and let p(¢) be the matrix with columns p?(¢) = ¢ P7(¢'/¢o).
We will try to solve the division problem ¢ = p- ¢ by means of integral
representation. Generally, this is not always possible, so we will get a
residue term ¢RP as well. When ¢ annihilates the residue RP, we can
solve the division problem. Dehomogenizing ¢ will give a solution to
our original problem.

We will now find integral representation formulas which solve the
division problem in a more general setting, and return to our original
problem in Section 4. Let S = C[zy, ..., z,] be the ring of holomorphic
homogeneous polynomials over C**! with the ordinary grading, and let
S(—k) denote the same ring, but where the grading is given by adding
k to the degree of the polynomial. For example, the constants have

degree k. Assume that we have a graded complex M of modules over
(Cn—|—1

0% Ay I B T o,

where M,, = S(—d}n)ea. ..®S(—dI™) has rank r,,, and basis €1, . - -, €my,, -
We will take dj = 0 for all 7. Since the complex is graded, f,, must
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preserve the degree of elements of M,,. To attain this, we must have

Tm—1 Tm

(2) fa =D flhem 1@ €y,
i=1 j=1

where f¥ is a d°. | — d’ -homogeneous holomorphic polynomial. Let
M = My+-- -+ My. We define f : M — M to be such that fs,, = fm.

Let O(—1) denote the tautological line bundle over P", and if k is
positive we let O(—k) := O(—1)®F and O(k) := (O(—1)*)®*. Note
that sections of O(k) can be seen as k-homogeneous polynomials in
C*!. Our complex over C"*! has an associated complex E over P”,

namely
0= Ey 2% ... 2 p I8 By o,

where .
Ep=Y 0(d,) ® Ly
=1

and the L,,; are trivial line bundles with frames ¢e,,;. We can then write

Tm—1 Tm
fm - fnjlem—l,i ® emja
=1 j=1

where f% is the section of O(d!,_, — d’ ) corresponding to f¥ in (2).
Note that from F, we can obtain a complex E’ of trivial vector bundles
over C", simply by taking the natural trivialization over the coordinate
neighborhood {{y # 0}. We have

(3) 0= By 25 .. By pr By By,

where F,,((") = fm(1,¢’) for ' € C*, and E! is a trivial vector bundle
of rank r,, over C".

We introduce a Zy-grading on E, by writing £ = E* @& E~ where
Et = @ FEy and E~ = @ Eory1, and we say that sections of ET
have even degree and sections of £~ have odd degree. This induces a
grading EndF = (EndFE)" @ (EndE)~ where a mapping f : E — E has
odd degree if it maps ET — E~ and E- — E™, and similarly for even
mappings. We also get an induced grading on currents taking values
in E, that is, D, ,(P", E), by combining the gradings on D, ,(P") and
E, so that a ® ¢ = (—1)48>%89¢ @ o if o is a current and ¢ a section
of E. Similarly, we get an induced grading on D, ,(P", EndE), then 0
is an odd mapping. Since f is odd and holomorphic, it is easy to show
that o f = —f 0 0.

Let Z; be the set where f; does not attain its highest rank, and set
Z = |JZ;. To construct integral formulas, we need to find currents
Uy, with bidegree (0, k — 1) and Ry with bidegree (0, k), with values in
Hom(Ey, Ej), such that if U =), Uy and R =), Ry, then

(4) (f - 5)U = Ig, — R.
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For the reader’s convenience, we indicate the construction here, but
see [5] for details. We first define mappings o; : F; 1 — F; defined
outside Z;, such that f;o; = Id on Imf;, o; vanishes on (Imf;)*, and
Imo; L Kerf;. Now, set u; = 07 and uy = 05,0041 A -+ A 0oy. We
have (f — 0)u = >, (feur — Oux) = fior + Y, (Qug—1 — Oug) = ldg,
outside Z. To extend u over Z, we let U be the analytical continuation
of |f|*u to A = 0, then we get (4). Note that for degree reasons we
necessarily have Uy, = 0 for k£ > p+ 1, where g = min(n, N — 1).

We will need to recall a proposition about representation of holo-
morphic sections of line bundles over P". See for example [8] for more
on this. Let z = (1, 2') be a fixed point, and set

- 0
n = 2m Z Zim—-
e

If we express a projective form in homogeneous coordinates, we can let
contraction with n act on it and get a new projective form. In fact, we
will get an operator

Op : Dpyao(P", O(K)) = Dyo(P", O(k — 1)),

where D; ((P", O(k)) denotes the currents of bidegree (I,0) taking val-
ues in O(k).

Proposition 2.1. Let ¢(¢) be a section of O(p), and let g(¢,z) =
900+ - .-+ Gnn be a current, where gy is of bidegree (k,k) and takes
values in O(p + k). Assume that (5, — d)g = 0 and goo(z,2) = ¢(2).
Then we have

o) = [ (anam)

where _ _

2l S Cd

¢[?  2mi|¢[?

The idea now is to find a weight g that contains f; as a factor, and

then apply Proposition 2.1. As components of the weight, we need
so-called Hefer forms. We define f? : E,, — E,,_; to be the mapping

a=0oy+ o =

Tm—1 Tm

= ST i e 10 ® €.

i=1 j=1

Proposition 2.2. There ezist (k—1,0)-form-valued mappings hk((, 2) :
Ey — Ey, such that ht, =0 for k <1, hl = Ig,, and

5nhl = hgc—lfk - flz+1h§c+1

Moreover, the coefficients of the form (hl)as, that is, the coefficient of
ela ® €}, will take values in O(df — d? + k —1), and can be chosen so

that they are holomorphic polynomials in 2’ of degree df — df —(k=1).
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We will prove this in the next section. Now we can define our weight:
Proposition 2.3. If
9=fiY mUc+ ) MRy = fih'U +h°R,
then goola = Ik, and V,g = 0.

The following proof is identical to the one in Section 5 in [2], except
that our proof will be in P” instead of C*. We include it for the reader’s
convenience.

Proof. By definition, we have
(5) Vg = fl(h'f = f*R*)U — h'OU] + (R°f — f*h")R — h°OR.
Note that one has to check the total degree of h' and h° to get all the
signs correct. Since U = fU — R — Iy, and f? = 0, the right hand
side of (5) is equal to
fE[RYfU — BN(fU — R — Ig,)] + h°(fR — OR) — f*Rh'R.

Furthermore, we have h'lz, = 0 and (f —0)R = (f — 0)(R+ Ig) =
(f=0)2U = 0, so it follows that V,g = 0. We also have gy = f*hiU; =
fol, SO that go,0|A = fU1 = IEO- (]

This is the main result of this section:

Theorem 2.4. Let ¢(() be a section of O(p) ® Ey. Fiz z = (1,2')
and let ®(2') = ¢(1,2'), and Fi(2') = fi(1,2'). If g is defined as in
Proposition 2.3, we have the following decomposition:

®(2') = /C g6 Aot = Fy(2)Q() + /C h°Ré A o™,

where Q(2') =7 Qi(2)er; with
Qi) = / A BU)(C2) A am .
¢

If Rp = 0, the second integral will vanish and we get a solution to
our division problem. Moreover, we get the estimate deg ,F1Q <

Proof. First, we note that
T0
96 ="> (90);€0;,
7=1

and according to Proposition 2.3, (g¢); is a weight of the type needed
to apply Proposition 2.1. Now we need only check the degree in z'.
The term in (g¢); of bidegree (k, k) is (f{hy,,Uk410); (if we disregard
the terms containing R). We must pair this with angka?’k to get

something with full bidegree in z.
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The degree in 2’ of a term in

Z (f8)ia(Pis1)ap Uki) gy dy A el

k7a,’y,ﬂ
is —df + (dff — dfﬂ — k)4 (p+k) = p—d’. We get the estimate
deg F1Q) < maxyp(p — dfﬂ). O

3. CONSTRUCTING HEFER FORMS

In this section we construct Hefer forms for the complexes E and E’,
and investigate their degrees. We first state and prove a more general
theorem, and obtain as a corollary Hefer forms H} with specific degrees
for the complex E' over C*. From the H} we get corresponding Hefer
forms h} for the complex F over P", i. e. we prove Proposition 2.2 in
the previous section.

Let d._, denote contraction with the vector field

N 0
2mi ;(Cj - Zj)a_cj'

Theorem 3.1. Let ¢((,2) be a (I,0)-form with holomorphic polyno-
mials of degree v for coefficients. If I > 0 and 6¢_,¢ = 0, we have
¢ = 0¢c—,, where ¢ is a (I — 1,0)-form with holomorphic polynomials
of degree v — 1 for coefficients. If I = 0, let ¢(¢) be a holomorphic
polynomial. We can then write ¢() — ¢(z) = 0¢—,, where ¢ satisfies
the same conditions as above.

For the proof of Theorem 3.1, we need a lemma:

Lemma 3.2. Let a = (a4, ..., 0p) and 8 = (B4, ..., Bn) be multiindices
and Dy the ball with radius R in C*. We have

(6) logr= / wau‘Jﬁ@|w|2 A (00wt =0
dDg

if a # B and (6) is non-zero and proportional to R+ if o = .
Proof. (of Lemma 3.2) The integral is unchanged if we take the pullback
of the integrand by the function A(w) = (Ajwy, ... \ywy,), where \; € C
and |A| = [(A1,...Ay)| = 1. We have
Tapn = / (Aw)*(Fw)P0| Aw]? A (93| Aw[?)" = X*NTu 5 5.
aDg
It is now clear that I, 5 r =0 if o # 8. A similar calculation gives

Ioor = / (Rw)*(Rw)*0|Rw|? A (00| Rw|?)"~* = R¥+™ [, 1,
oD

which shows that I, ,  is proportional to R2(@1+m). O
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Proof. (of Theorem 3.1) The setup here is the same as in Section 4
in [2]. We view E = T7,(C") as a rank n vector bundle over C"
and let f({) = 2mi(¢ — z) - e*, where z € C" is fixed, be a section of
E* =T o(C"). We can now express the contraction é._, as §; operating
on E. Take a section ¢((,z) of A'E with holomorphic polynomials of
degree r for coefficients. We want to show that ¢ = d¢¢, where 9 is
a section of A'"'E with holomorphic polynomials of degree r — 1 for
coefficients.

Let D C C} be the unit ball. We let A = dw A e*, then 0,,_ch =
2mi(w — () -e* = f(w) — f({), so that h will work as a Hefer form. Let

w-e

" omi((w]— - 2)’

then 670 = 1 if w # z. Set u = > o A (90)F, note that u depends
holomorphically on z. Since u is integrable, we let U be the trivial
extension over z. Moreover, we have (07 — 0)U = 1 — R, where
Ry = 0 for k < n and (3), R, = [z] (this follows, for example, from
Theorem 2.2 in [4]). Let ¢(¢,2) be a section of A'E with [ > 0 which
satisfies 07y = 0. We set

9(w,¢) =850y > F (Upd(w, 2)) + Y SR (R*(w, 2));

a calculation shows that (6,,—¢ —0)g = 0 and go0(¢, () = ¢((, z). Note
that the second sum is actually zero since R A ¢ = 0.
Now define

91(w,¢) = xp — Ixp A =xp—0xpA Y _ sA(ds)

S
Vw_cs

where
. 1 w - dw
C2mi w2 —w- ¢

Note that (y—¢ — 0)g1 = 0 and (g1)0,0(¢,¢) = 1. Also, g; depends
holomorphically on (.

We can now take a current u = w39 + ... + U, 1 that is smooth
outside z and such that (6, ¢ — 0)u = 1 — [2], where [2] denotes the
(n,n)-current point evaluation at z. We have (6, ¢ —9)(uAgA g1) =
gANgL—[Z]NgA g =g A g1 — ¢((, 2)[z], so that O(u A g A g1)nn-1 =
?(¢, 2)[2] = (9Ag1)nn- Stokes’ theorem gives us ¢((, z) = 05)T'¢ where

S

n—l _ T-e)k L90 ok
T$ = /BD e A Beal(d )" A 6] Olul? A BBl "
w1

2mi(1 — w - 2)%(1 — w - {)n—k+1

This is seen by noting that d,0 A s = 0 and that
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First, note that T'¢ is holomorphic in ¢ and z and takes values in A/*'E.
To see that the coefficients are polynomials of degree r — 1, we write

1 >
R D

and similarly for 1/(1 — @ - z). The only place in T'¢ where w’s occur
is in ¢, and according to Lemma 3.2 we need to match those up with
a corresponding number of w’s. These can come either from the factor
w - e, or from the geometric expansions. It is clear that if we start with
a term in ¢(w, z) which is of degree r in w, after we integrate we shall
get a term which is of combined degree r — 1 in { and z. It is easy to
see that the same thing is also true if we start with a term which is of
combined degree r in z and w. The case when ¢(w) takes values in the
trivial bundle is proved in a similar way. O

We will now find Hefer forms for the complex E’ by means of Theo-
rem 3.1.

Proposition 3.3. There exist (k — 1,0)-form-valued mappings H. :
FE, — E;, where the coefficients are holomorphic polynomials in ( and
z, such that H, = 0 for k <, H} = Ig,, and

) bceHY = HL  Fy(Q) — Fra(2) HE™.

Moreover, the polynomial degree of (H!)ap (that is, the coefficient of
ela ® €}5) is df — df — (k = 1).

Proof. The proof will be by induction, and by application of Theorem
3.1. We begin by proving that the right hand side of (7) is d._,-closed.
We have

8¢ (Hp_1Fi(C) = A () H{) =
= (Hy o Fe1(Q) = Fia (2) HiED) Fio(Q) = Fin (2) (HE Fi(Q) = Fraa(2) Hy ) = 0,
since E' is a complex. For k£ = [+1 we must solve 6., H/,, = F11({)—
Fi11(2). We can apply Theorem 3.1 to (H},;)as, and it follows that
(H}.1)ap is a (1, 0)-form whose coefficients are holomorphic polynomials
of degree df* — dl’B 1 — 1. Assume that the proposition holds for H, ! with
k — | =1, and regard the equation

O¢—2(Hy)ap = (Hp1 Fe(C) = Fii (2) Hy)ap =

= Z_(Hllcq)a'y(Fk(O)'yﬂ - Z(E+1(z))a7(HIlc+1)’Yﬂ'

where k—[ = i+1. The right hand side is a form of bidegree (k—I—1,0),
and it is easy to see by examining the sums that the coefficients are
polynomials of degree df* — df — (k—=1-1). It follows from Theorem
3.1 that (H})ap is a form of bidegree (k — [,0) whose coefficients are
holomorphic polynomials of degree df* — df - (k=1). O
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We will now prove Proposition 2.2 by adapting the Hefer forms H}
to the complex £ on P". From now on, we change notation so that
¢=(¢,¢") eC! and 2z = (1,7') € C*L.

Proof. (of Proposition 2.2) The form (H})as has bidegree (k —[,0), so

we have
(Hias = Y ard(()r.
|I|=k—1

We set
(B)as(C, ) = WD 5™ ay(¢' 6o, )¢ 6o
|T|=k—1

It is clear that (h).s is a projective form, since we are multiplying
with a high enough degree of (;, and that it takes values in the right
line bundle. Now, note that

Sy d(Ci/Co) = 2/ Co — /G-

We have
@ —df +(k—1-1)

0 (hh)as = Go N3 (¢, ) (2= /G )y =

|T|=k—1 j€I

d%—dP +(k—1-1)
=G " 8¢t jco—z (Hi)ap (€' /G0, 2') =

— ¢ I L (¢ 60, #) (€ o) = For (ZYVHEC G0, 7)o =
= (h’gc—lfk - fﬁf—lh?_l)aﬂa
so we are finished. O

4. THE BUCHSBAUM-RIM COMPLEX

We will now introduce the Buchsbaum-Rim complex, which is a spe-
cial case of our complex E over P". For more details about this complex
see e. g. [3]. Let P : C* — Hom(C™,C") be a generically surjective
polynomial mapping and Z the set where P is not surjective. The
mapping P will have the role of F} in the complex (3). Assume that
deg (P7) < d;, where P7 is number j in P, and d; > dy > ---. Let p(¢)
be the matrix with columns p?(¢) = ¢ P#(¢" /(o). The mapping p will
have the role of f; in (3). If Ly, ..., L,, are trivial line bundles over P",
with frames ey, ..., e, we can define the rank m bundle

Ei=(0(—d)® L) & ® (O(—dy) ® Ly,).

Let Ey be a trivial vector bundle of rank r, with the frame {¢;}, and
let p;; be the 7:th element in the column p’. We can then view

m T
p= ZZPUQ ® €]

i=1 j=1



10 ELIN GOTMARK

as a mapping from F; to Ey. Contraction with p acts as a mapping
51) : E1 X Eak — (C

Now, note that we can also write p = > p; ® ¢; where p; = Zj Dij€;
is a section of Ej. Let

detp=pi A...Ap, Q€1 A... N€p.

We now get a complex

0= Eprit 2 2B, B, Py B0
over P", where for £ > 2 we have
Ek = Ak+r_1E1 ® Sk_QEa( ® det EE;,

and S'E} is the subbundle of &) E; consisting of symmetric [-tensors
of Ej. By f: E — E we mean the mapping which is either p, det p or
dp, depending on which Ej, we restrict it to. We assume that 7 is odd,
so that 0 odet f = —det f 0 0 and consequently do f = —f o 0. If r is
even, one has to insert changes of sign at some places.

Next, we can construct currents Uy with bidegree (0,k — 1) and Ry
with bidegree (0, k), with values in Hom(Ey, E}), such that (f —0)U =
Ig, — R, or in other words

pU1 = IEO; (detp)U2 - gUl = —Rl, and 5pUk+1 — gUk = —Rk

for k > 2. See [3] for details of the construction.

Now, recall that we want to solve the division problem & = P(Q),
where ® = (®4,...,®,) is an r-column of polynomials of degree p.
The homogenized version of this is ¢ = pg, where ¢ takes values in
O(p) ® Ey, so that we can apply Theorem 2.4. To do that, we have to
determine the df; of the Buchsbaum-Rim complex.

For Ey, we have ry = r and d% = 0 for all j, and for F; we have
rr = m and d{ = —d;. Furthermore, for E; with £k > 2 we have
re = (., m_1)r*%/(k — 2)!, where (, | ,) is the dimension of A¥*"~1E,
and 7572 /(k — 2)! is the dimension of S*=2E}. However, it is only the
factor A¥*"~1E| that contributes with any non-trivial line bundles, and
and so we will not be interested in the factors in S¥?E; @ det Ej. We
then have dy = — >, ;d; where |I| = k4 r — 1, by which we mean
that the coefficient of the basis vector e; in A¥t"~1E; will take values
in O(di) = O(= ey di)-

Recall that fy = 6, : Ex — Ej_1 for k > 2. Let fI7 be the coefficent
of e; ® e, where [I| =k+r—2,|J|=k+r—1and I C J. Then fl’
takes values in

Oldy = di) = O3 _di = Y _di) = O(d;)
i€l i
where {j} = J\ I. In the same way, H! : Ey, — E;, and for k,l > 2,
we have that (H!)!/ is a (k — [)-form whose coefficients take values in
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O(Ziej\[ d; + k — [) and are holomorphic polynomials in z of degree
Yiensdi— (k—1). Also, (H)" =0if I ¢ J.

Theorem 4.1. Let P((') : C* — Hom(C™,C") be a generically sur-
jective polynomial mapping where the columns P? have degree d;, and
O(¢") = (Py,...,9,) a tuple of polynomials with degree p. We have the
following decomposition:

ﬂ&=ﬂﬂmw+/H%mmHﬁ
¢
where Q(2') = Y"1 Qi(2')e; with
Qﬂﬁ)Zh/CJUfUéﬁAcW+ﬂ
¢

If Rp = 0, the second integral will vanish and we get a solution to the
division problem. Moreover, the polynomial degree of PQ is p + dy +
...+ dyir, where = min(n,m —r).
Proof. From Theorem 2.4, we have

deg PQ < max(p — dj).

Since dj, = — >, .;d; with |I| = k 4+ r — 1, the degree is obviously
largest when & is maximal and when we choose I = (dy,...,dg1r—1)-
We recall that Uy, = 0 if £ > p+ 1, where p = min(n, m — r), and the
theorem follows. g

Example 1. If » = 1, the Buchsbaum-Rim complex will simply be
the Koszul complex. To obtain Hefer forms, we first find a (1, 0)-form
h(¢,2') = Y  hije; ® €] taking values in O(1) ® Hom (Ey, Ey), such that
6,h = p — p*. It is then easy to show that kL = (6,)F~! will act as a
Hefer form. We get the decomposition

B(2) = P)QE) + [ ST SRC) Aa,
where Q(2') = Y_1" Qi(2')e; with
()= [ ¢y s, e,
Qi) /< Gt >k HU0(0)

Furthermore, deg PQ < p+d; + - -+ + d,41, where g = min(m — 1, n).

Remark 1. Following Hergoualch [10], who uses an idea of Fuhrmann
[7], we can reduce the case 7 > 1 to the case r = 1, but we will then
lose precision in the degree estimates. If we wish to solve PQ) = ®, as
before, we can instead set p’ = p; A... A p, and solve p'- ¢; = ¢;. Note
that we will then get a solution ¢} taking values in E] = A"E;. Since
the vector space Fj has dimension m' = ('), the previous example
will give deg P'Q; < p+dj +---+d/, ., where y/ = min(("') — 1,n).
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We have d} = d; + -+ + d,, so we can make the estimate deg P'Q)}; <
pA (W +1)(di+ -+ dr).
Now, we can set

q; = (_1)]'(5” e 5pj+16pj71 o 5p1¢1;'-
Note that g; takes values in E; and that p;q; = ¢;. Let ¢ =¢; +---¢,,
then we have PQ = @, with deg PQ < p+ (¢ +1)(dy1 + - - + d,).

Remark 2. It is possible to get a slightly better result than Theo-
rem 4.1 by means of solving successive d-equations in the Buchsbaum-
Rim complex, as is done in [3]. We will sketch this approach. First, we
modify the Buchsbaum-Rim complex by taking tensor products with

O(p):
0= Emrp1 ® O(p) 25 - 2 B 0 0(p) = By ® O(p) — 0,

If ¢ is a section of E;®@O(p) and R/ ¢ = 0, it is clear that v = U solves
V,v = ¢. As in the classical Koszul complex method of solving division
problems, we need to solve a succession of equations Owy, = Vg + Op Wit 1-
The holomorphic solution will then be v; 4 d,w,. In order to solve the
0-equations, we need to assume that

n+r
m<n+r—1 or pZZdj—n,
1

where deg ® < p. With this method, one proves that there exist poly-
nomials @1, ..., @, such that deg PQ < p (Theorem 1.8 in [3]).

Actually, by Proposition 5.1 in [8] we can solve 0-equations for (0, ¢)-
forms taking values in O(l) explicitly. It is thus possible to obtain
explicit solutions with these better degree estimates as well, although
these solutions will be more complicated than the ones from Theo-
rem 4.1, since they will involve u integrations. We do not know if it
is possible to find a weight such that the method in the present article
yields explicit solutions Q)1, ..., Q,, such that deg PQ < p.

Remark 3. In the case of the Buchsbaum-Rim complex we can at

least partially find explicit Hefer forms. As in the example above, we

find h such that 6,h = p—p?, and we let h} = 5',:’1 fork>1>2. We

also have h? = h and

hy =Y (=1 AL AP AR AT A LA ) R A e,
k=1

where h* is the k:th column of A. We refrain from trying to find explicit
expressions for A for £ > 1 and h; for k > 2.

We can get several corollaries to Theorem 4.1, that give conditions
which ensure that R/¢ = 0, and state what the estimate of the degree
is in that case. First, there is a classical theorem by Macaulay [12]
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which says that if r =1, ® = 1 and p?,...,p™ lack common zeroes in
P", then we have the estimate deg P'Q); < ZTH d; — n. By means of
residue currents, one can get a generalization to the case r > 1:

Proposition 4.2. Assume that Z is empty. Then there exists a matrix
Q of polynomials such that PQ = I,, and deg PQ < Y77 d; — n.

This is Corollary 1.9 in [3]. By using integral representations, we can
get instead

Corollary 4.3. Assume that Z is empty. Then Theorem 4.1 yields an
explicit matriz QQ of polynomials such that PQ = I., and deg PQ <

_|_
> dj.
Proof. We first note that necessarily 4 = n since codimZ = m —r + 1.

The result now easily follows by several application of Theorem 4.1
where one chooses the columns of /I, as ®. O

If Z is not empty, we would like some condition which guarantees that
R/¢ = 0. We define the pointwise norm ||¢||?> = det(pp*)|p* (pp*)~ 2.

Corollary 4.4. If
(8) |¢]| < C det(pp*)minmm=r+1),

then Theorem 4.1 yields explicit Q) such that PQ) = ® with deg PQ <
p+di+...+du,, where p =min(n,m —r).

This follows from Proposition 1.3 in |3|, which says that if (8) holds,
then Rf¢ = 0. As for the previous corollary, this is not the optimal
result, which states that there exists a solution () such that deg PQ < p
(see Corollary 1.10 in [3]).

Remark 4. Another possible application for Theorem 2.4 is the Eagon-
Northcott complex. This is used if we want to solve the equation
(detp) - ¢ = ¢, where ¢ is a scalar function. The complex is given by

"'i)EgiEgiEldﬂ(c—)o

where
Ey = A*""'E, @ S*'E} @ det Ej.

We have already solved this equation in Remark 1, but by applying
Theorem 2.4 to the Eagon-Northcott complex we can obtain a sharper
degree estimate. Note that in this division problem we actually have
r = 1 and so we could solve it by means of the Kozsul complex, but we
can improve the degree estimate by choosing a complex that takes ad-
vantage of the fact that our mapping det p is constructed from another

mapping p.
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