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Abstract

This thesis consists of four papers. In the first paper we present methods and

explicit formulas for describing simple weight modules over twisted generalized

Weyl algebras. Under certain conditions we obtain a classification of a class of

locally finite simple weight modules from simple modules over tensor products of

noncommutative tori. As an application we describe simple weight modules over

the quantized Weyl algebra of rank two.

In the second paper we derive necessary and sufficient conditions for an am-

biskew polynomial ring to have a Hopf algebra structure of a certain type, gen-

eralizing many known Hopf algebras, for example U(sl2), Uq(sl2) and the en-

veloping algebra of the 3-dimensional Heisenberg Lie algebra. In a torsion-free

case we describe the finite-dimensional simple modules, and prove a generalized

Clebsch-Gordan theorem. We construct a Casimir type operator and prove that

any finite-dimensional weight module is semisimple.

In the third paper we define a notion of unitarizability for weight modules

over a generalized Weyl algebra (of rank one, with commutative coeffiecient ring

R), which is assumed to carry an involution of the form X ∗ = Y , R∗ ⊆ R. We prove

that a weight module V is unitarizable iff it is isomorphic to its finitistic dual V ♯.

Using the classification of weight modules by Drozd, Guzner and Ovsienko, we

prove necessary and sufficient conditions for an indecomposable weight module

to be isomorphic to its finitistic dual, and thus to be unitarizable. Some examples

are given, including Uq(sl2) for q a root of unity.

In the fourth paper, using the language of h-Hopf algebroids, introduced by

Etingof and Varchenko, we construct a dynamical quantum group, Fell(GL(n)),

from Felder’s elliptic solution of the quantum dynamical Yang-Baxter equation

with spectral parameter associated to the Lie algebra sln. We apply the generalized

FRST construction and obtain a bialgebroidFell(M(n)) and study analogues of the

exterior algebra and elliptic minors. We prove that the elliptic determinant it is

grouplike and almost central. Localizing at this determinant and constructing an

antipode we obtain the h-Hopf algebroid Fell(GL(n)).

Keywords: Generalized Weyl algebra, weight module, quantum Weyl algebra, am-

biskew polynomial ring, unitarizable module, Hopf algebra, dynamical quantum group
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Introduction

This work deals with certain algebraic structures such as noncommutative rings,

infinite-dimensional algebras, Hopf algebras and their modules. In the following

we aim to give a brief overview of some of these areas and their interrelations.

Although the subject has a long history, with pioneers such as Noether in the 1920’s,

we will focus on the more recent activities in the field.

A general principle in mathematics is to strive for defining families of objects

with a balance between having good properties and supporting a rich list of exam-

ples. For instance, it is often difficult to generalize facts about commutative rings

to the setting of arbitrary rings, due to the fact that the class of all rings is so vast.

Therefore it is quite natural to consider some smaller family of noncommutative

rings which have nice properties such as being “almost” commutative, and/or sat-

isfying various finitistic conditions. One such class is the Generalized Weyl algebras

to which we now turn.

1 Generalized Weyl algebras of rank one

Definition 1. Let R be a ring, σ be an automorphism of R and t be a central

element of R. The associated generalized Weyl algebra (GWA) of rank (or degree)

one, denoted R(σ, t), is defined as the ring extension of R generated by X and Y

modulo the following relations:

Y X = t, X Y = σ(t), (1a)

X r = σ(r)X , rY = Yσ(r) ∀r ∈ R. (1b)

Thus an arbitrary element in R(σ, t) can be written

N
∑

n=0

rnX n +

M
∑

n=1

snY n (2)

where rn, sn ∈ R. When multiplying two expressions of the form (2), one can use

relations (1) to write the result on this form again. For example we have

(r1X + r2Y 2)r3X = r1σ(r3)X
2 + r2σ

−2(r3)Y t = r1σ(r3)X
2 + r2σ

−2(r3)σ
−1(t)Y

for any r1, r2, r3 ∈ R.

Despite their name, generalized Weyl algebras are not algebras in general, but

merely rings. They were introduced in [B92], and also studied without a name

1



2 INTRODUCTION

in [J93] and under the name hyperbolic ring in [R]. Many different aspects of

these and related rings and their modules have been studied in several papers (see

[B91], [B93], [B96], [BJ], [DGO], [J00], [CM], [CL] and references therein). If

R is Noetherian, then R(σ, t) is also Noetherian. It is very often assumed that R is

commutative. If this is so, and if σ is the identity map, then R(σ, t) is commutative.

An important example of a GWA is the following.

Example 2. The quantum Weyl algebra A
q

1 where q ∈ C\{0} is the algebra with

generators X , Y and defining relation

X Y − qY X = 1. (3)

It is a GWA in the following way. Let R= C[x], let σ : R→ R be the automorphism

defined by σ( f (x)) = f (qx + 1) for any f (x) ∈ R, and let t be the polynomial

p(x) = x ∈ R. Let A = R(σ, t) be the corresponding GWA. Then relations (1a)

imply that Y X = x and X Y = qx + 1 so that (3) holds. From X x = X (Y X ) =

(X Y )X = (qx + 1)X follows that X xk = (qx + 1)kX for any k ∈ Z≥0 and thus,

by linearity, X f (x) = f (qx + 1)X for any polynomial f (x) ∈ R. Analogously,

f (x)Y = Y f (qx+1) for any f (x) ∈ R. This shows that relations (1b) are redundant

and that A is generated by X , Y with the single relation (3). Thus A is isomorphic

to the quantum Weyl algebra A
q

1. If we take q = 1 we get the so called first Weyl

algebra, denoted A1.

Let us discuss some of the classes of GWAs that have been studied.

Example 3. Ambiskew polynomial rings R(B,σ, v, p). Let B be a ring, let σ be an

automorphism of B, v be a central element of B and p be a central unit in B. Let

R(B,σ, v, p) be the ring extension of B generated by x and y subject to the relations

x y − p y x = v, x b = σ(b)x , b y = yσ(b) ∀b ∈ B. (4)

R(B,σ, v, p) is isomorphic to the GWA B[t](σ, t) where t = y x and σ is extended

to B[t] by σ(t) = pt + v. Finite-dimensional simple modules were described in

[J95] for the case when B is a commutative K-algebra. The relation to down-up

algebras (see below) was investigated in [J00]. The quantum Weyl algebra A
q

1 is

an ambiskew polynomial ring: A
q

1 ≃ R(C, Id,1,q).

Example 4. Generalized down-up (GDU) algebras L( f , r, s,γ) were defined in [CS].

Let K be an algebraically closed field, f ∈ K[x], r, s,γ ∈ K with rs 6= 0. Let

L( f , r, s,γ) be the K-algebra generated by d,u,h with relations

dh− rhd + γd = 0, hu− ruh+ γd = 0, du− sud + f (h) = 0. (5)

Ordinary down-up algebras, introduced in [BR] (see also[CM],[KM]) are obtained

as L( f , r, s,γ) with f (x) = x . In [CS] it was shown that all algebras L( f , r, s,γ)

(with rs 6= 0) are Noetherian domains of Gelfand-Kirillov dimension 3. All simple

weight modules (with respect to the subalgebra generated by ud and h) were classi-

fied, including all finite-dimensional simple modules. These algebras are examples

of ambiskew polynomial rings, hence of GWAs.
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Example 5. Rueda’s and Smith’s algebras similar to the enveloping algebra of sl2.

Let A be the C-algebra with generators X , Y, H and relations

HX − X H = X , HY − Y H =−Y, X Y − ςY X = f (H), (6)

where f ∈ C[x] and ς ∈ C,ς 6= 0. These algebras were studied by Rueda [Ru]. If

we assume that ς = 1 we get the class investigated from many points of view by

Smith [S]. If we specialize further and take f (x) = 1

2
x (or, in fact, any f of degree

one) then we get an algebra isomorphic to the enveloping algebra of sl2.

Example 6. Type-A Kleinian singularities. Let a ∈K[x] and let A(a) be the algebra

with generators x , y,h and relations

hx − xh= x , hy − yh=−y, y x = a(h), x y = a(h− 1). (7)

This algebra is isomorphic to the GWA K[h](σ, a(h)) where σ(p(h)) = p(h −

1) ∀p(h) ∈ K[h]. The algebras A(a) have been thoroughly investigated in many

papers, see [H], [B92], [B93], [B91], [BJ]. All simple modules were classified in

[B92]. In [BJ] the important problem of determining when two algebras A(a),A(b)

for a, b ∈ K[x] are isomorphic was solved. For a(x) = x the algebra A(a) is iso-

morphic to the first Weyl algebra A1.

The list of examples could continue: Witten’s seven parameter deformation

of U(sl2), Le Bruyn’s conformal sl2 enveloping algebras, Woronowicz’s deformation

(see [CS], [BO] for further information).

Figure 1 shows the relationship between some of these different classes of Gen-

eralized Weyl algebras of rank one which have been studied in the literature.

To motivate this picture, some notes are in order. Let G , W , S , and R be

the isomorphism classes of generalized down-up algebras, Witten’s deformations,

Smith’s and Rueda’s algebras respectively.

1. W 6⊆ R: W includes the commutative algebra of polynomials in three vari-

ables, but all algebras in R are noncommutative.

2. S ( R: If ς is not a root of unity it is proved in [Ru] that Rueda’s algebra

has trivial center. However in [S] it is shown that all algebras in S have non-

trivial center, a polynomial algebra in one variable Ω (a certain generalized

Casimir element).

3. S ∩ W ( R ∩W : An algebra of the form L(x , 1, s, 1) with s not a root of

unity is in R ∩W . Again it has trivial center and thus is not in S .

4. Type-A Kleinian singularities and A
q

1 are disjoint from G : The quantum Weyl

algebra A
q

1 has Gelfand-Kirillov dimension two (see [GZ] for a general result)

and any type-A Kleinian singularity A(a) has also Gelfand-Kirillov dimension

two (this is mentioned in [BJ], Section 3). But, as shown in [CS], any algebra

in G has Gelfand-Kirillov dimension three (see [CS]).
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Figure 1: Classes of GWAs of rank one.
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5. A quantum Weyl algebra A
q

1 is isomorphic to a type-A Kleinian singularity iff

q = 1: Indeed if A= A
q

1 and q 6= 1 then

A/A[A,A]A≃ K[X , Y ]/
�

(1− q)X Y − 1
�

≃K[X , X−1].

However, for any Type A Kleinian singularity A(a) we have

B/B[B, B]B ≃K[h]/
�

a(h), a(h+ 1)
�

=

¨

K[h], a = 0,

F, a 6= 0,

where F is a finite-dimensional K-algebra.

6. We believe that not all algebras in Witten’s seven-parameter family are gen-

eralized Weyl algebras and that not all Type-A Kleinian singularities are am-

biskew polynomial rings, but have found no proof of this in the literature.

2 Higher rank and twisted generalized Weyl algebras

Higher rank GWAs were introduced in [B92] and are defined as follows.

Definition 7. Let R be a ring and σ = (σ1, . . . ,σn) a set of commuting automor-

phisms of R and t = (t1, . . . , tn) a set of nonzero elements of the center of R such

that σi(t j) = t j ∀i 6= j. The generalized Weyl algebra of rank (or degree) n, denoted

R(σ, t), is the ring extension of R by X1, . . . , Xn, Y1, . . . , Yn modulo the relations

Yi X i = t i , X iYi = σi(t i), i = 1, . . . , n, (8a)

X i r = σi(r)X i , rYi = Yiσi(r), ∀r ∈ R, i = 1, . . . , n, (8b)

[X i , Yj] = 0, ∀i 6= j, (8c)

[Yi , Yj] = [X i , X j] = 0, ∀i, j. (8d)

Example 8. The n:th Weyl algebra, denoted An, is the C-algebra with generators

X1, . . . , Xn, Y1, . . . , Yn and relations

[X i , Yj] = δi j, [X i , X j] = 0, [Yi , Yj] = 0, i, j = 1, . . . , n. (9)

The algebra An is isomorphic to the GWA C[t1, . . . , tn](σ, t)where σi(t j) = t j+δi j.

The definition of the n:th Weyl algebra goes back to the pioneers of quantum

mechanics in the beginning of the last century. It is also one of the most important

examples of an infinite-dimensional simple Noetherian algebra. Despite this fact

there are still many unsolved questions about it.

More generally, any tensor product of rank one GWAs is a higher rank GWA.

Twisted GWAs are certain generalizations of these higher rank GWAs and were

introduced in [MT99] and further studied in [MT02] and [MPT]. Their definition

is more involved but, put simply, it is relation (8d) which is dropped and replaced

by taking the quotient by a certain ideal. Also one does not require that σi(t j) =

t j ∀i 6= j. See the first paper in this thesis for a precise definition.

An important example of a twisted GWA is the following.
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Example 9. Quantized Weyl algebras Aq̄,Λ
n

. Let Λ = (λi j) be an n× n matrix with

nonzero complex entries such that λ ji = λ
−1
i j

. Let q̄ = (q1, . . . ,qn) be an n-tuple

of elements from C\{0,1}. Then n:th quantized Weyl algebra Aq̄,Λ
n

is the C-algebra

with generators x i , yi , i = 1, . . . , n and the following relations for 1≤ i < j ≤ n.

x i x j = qiλi j x j x i , yi y j = λi j y j yi , (10a)

x i y j = λ ji y j x i , x j yi = qiλi j yi x j , (10b)

x i yi − qi yi x i = 1+

i−1
∑

k=1

(qk − 1)yi x i . (10c)

For λi j = q−1/2 ∀i, j and q1 = · · · = qn = q this algebra was introduced in [PW].

Then the relations are the canonical commutation relations for annihilation and

creation operators corresponding to the (essentially unique) first order differential

calculus which is covariant with respect to the quantum group SLq(n).

Further interesting examples of twisted GWAs were given in [MPT]. These

examples are certain algebras related to the Lie algebra gln (so called Mickelsson

step algebras and extended orthogonal Gelfand-Zetlin algebras respectively).

3 Weight modules

3.1 Generalities

Recall that a module over a ring is called simple if it has no nonzero proper sub-

modules, and semisimple if it is isomorphic to a direct sum of simple modules.

Let S be a ring containing a commutative subring R with unit. An S-module V

is called a weight module with respect to R if V is semisimple as an R-module. This

is equivalent to that V can be decomposed as

V =
⊕

m∈Max(R)

V
m

, V
m
=
�

v ∈ V : mv = 0
	

, (11)

where Max(R) denotes the set of maximal ideals of R. The subgroups V
m

are called

weight spaces and the set Supp(V ) = {m ∈ Max(R) : V
m
6= 0} is called the support

of V .

Example 10. Let S be the ring of all 2×2 matrices with entries in a field K and let

R be the subring consisting of diagonal matrices. The ring R is isomorphic to K×K

and its only maximal ideals are

m1 =
��

λ 0
0 0

�

: λ ∈K
	

, m2 =
��

0 0
0 λ

�

: λ ∈K
	

.

Consider the natural two-dimensional S-module V=K2. Its weight spaces are V
m1
=

K ·
�

0
1

�

and V
m2
= K ·
�

1
0

�

. Thus V = V
m1
⊕ V

m2
which shows that V is a weight

module with respect to R.
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Example 11. Let S be a ring and suppose that R = C[x] is a subring of S. The

maximal ideals of R are all ideals of the form mα = (x −α) where α ∈ C. Let V be

an S-module. The subspaces V
mα

are precisely the set of all eigenvectors of x on

V with eigenvalue α. Thus V is a weight module with respect to R iff x act as a

diagonalizable operator on V .

Example 11 shows that weight modules are generalizations of vector spaces

on which a linear operator is diagonalizable. As such, they appear in numerous

context throughout mathematics and physics. Weight modules have many nice

properties, in particular over generalized Weyl algebras.

The following proposition is fundamental in the theory of weight modules.

Proposition 12. Submodules, quotients, and direct sums of weight modules are

weight modules. More precisely, let S be a ring, and R a commutative subring. Then

(i) if V and W are weight S-modules with respect to R, then the S-module V ⊕W

is also a weight module with respect to R and

(V ⊕W)
m
= V

m
⊕W

m
∀m ∈Max(R),

(ii) if V is a weight S-module with respect to R and if W is an S-submodule of V ,

then W is also a weight module with respect to R and

W
m
= (V

m
)∩W ∀m ∈Max(R),

(iii) if V is a weight S-module with respect to R and W is an S-submodule of V , then

the S-module V/W is also a weight module with respect to R and

(V/W )
m
= {v +W : v ∈ V

m
} ∀m ∈Max(R).

Proof. Part (i) is straightforward, and (iii) follows from the following general fact:

If ϕ : V →W is a morphism of S-modules, then ϕ(V
m
)⊆W

m
.

Let us prove part (ii). Let w ∈W be arbitrary. Since W ⊆ V and V is a weight

module, we can decompose w as a sum

w = w1 +w2 + · · ·+ wn

where wi ∈ V
mi

for some maximal ideals mi of R (which we can assume to be

pairwise distinct). The problem is to show that, in fact, each term wi belongs to

W . Indeed, if so, then we have proved that W ⊆
⊕

m∈Max(R)W ∩ (Vm
) and the other

inclusion is trivial. If n = 1 it is trivial. Assume n ≥ 2. Since the mi are mutually

incomparable with respect to inclusion, there exist ri ∈ mi\mn for i = 1,2, . . . , n−1.

Let r = r1r2 · · · rn−1 ∈m1 ∩ · · · ∩mn−1. Since W is an R-module,

W ∋ rw = rw1 + · · ·+ rwn = rwn.

Since mn is maximal, hence prime, we have r /∈ mn. Thus (r) +mn = R so that

sr − 1 ∈ mn for some s ∈ R, which gives wn = srwn ∈ W . Subtracting wn from

w and repeating the above argument, we conclude that all the terms wi indeed

belong to W .
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3.2 Weight modules over generalized Weyl algebras

3.2.1 Rank one

Let A = R(σ, t) be a GWA of rank one, where R is a commutative ring with unit.

By a weight module over A we always mean with respect to the subring R. The

following proposition shows that weight modules are of great relevance for GWAs.

Proposition 13. Let V be an arbitrary A-module. Let V ′ be the sum of all weight

spaces in V:

V ′ =
∑

m∈Max(R)

V
m

. (12)

Then

a) the sum in (12) is direct and V ′ is a submodule of V , and

b) assuming in addition that R is an algebra over an algebraically closed field K

and that V is finite-dimensional, then V ′ is nonzero. Thus if V is simple, then

it is a weight module.

Proof. Taking w = 0 in the proof of Proposition 12 (ii) we see that the sum in (12)

is always direct.

Let m be a maximal ideal in R and suppose v ∈ V is a weight vector of weight

m, i.e. that mv = 0. Then, due to relation (1b), we have σ(m)X v = Xmv = 0,

proving that X v ∈ Vσ(m). Similarly, Y v ∈ Vσ−1(m). Since A is generated by X and Y

and the elements of R it follows that V ′ is a submodule of V . This proves part a).

Assuming the conditions in part b), there exists in V a common eigenvector v

for all operators from R: r v = ξ(r)v for some ξ(r) ∈ K. Thus V
m
6= 0, where m

is the maximal ideal kerξ =
�

r − ξ(r) : r ∈ R
�

. Hence V ′ 6= 0. Therefore, if V is

simple, V = V ′. That is, V is a weight module.

The description of all weight modules over rank one GWAs is rather complete.

In fact, given that one understands the orbits in Max(R) under the action of σ and

that one can describe indecomposable elements in certain skew polynomial rings

associated to R(σ, t), the authors in [DGO] classified all indecomposable weight

modules over a generalized Weyl algebra R(σ, t), where R is a commutative ring.

3.2.2 Higher rank

Going to the higher rank case, things become considerably more complicated. Even

for the n:th Weyl algebra An, the problem of describing all indecomposable weight

(with respect to C[Y1X1, . . . , YnXn] ⊆ An) modules is a so called wild problem (see

[D], [BBF]). This means that the problem contains a classification of all represen-

tations of a free algebra with two or more generators as a subproblem.

Therefore, it is essential to restrict oneself to certain subclasses (tame blocks)

of weight modules which admit a classification. Such tame blocks were described

in [BBF] for An, and in [BB] for more general higher rank GWAs (but over an

algebraically closed field).
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For twisted GWAs, some classes of simple modules were defined and classified

in [MT99], [MPT].

There is also the following useful method proved in [MPT]. Any twisted GWA

is naturally graded by Zn. For m ∈ Max(R), one can consider the maximal graded

subalgebra B
m

which leaves a weight space of weight m invariant. Then there is

a bijective correspondence between simple weight A-modules V with V
m
6= 0 and

simple modules U over the subalgebra B
m

such that mU = 0:

¨

simple weight A-modules V

with V
m
6= 0

«

⇐⇒

¨

simple B
m

-modules U

annihilated by m.

«

Using this method, the problem of describing simple weight modules over a twisted

GWA reduces to describing modules over the subalgebra B
m

which may be easier

in many cases.

4 Hopf algebras

4.1 Definition and examples

Let K be a field. All tensor products below will be over K. Recall that if A is a

K-algebra then A⊗ A is naturally a K-algebra by defining (a⊗ b)(c⊗ d) = ac⊗ bd

for a, b, c, d ∈ A and extending bilinearly.

Definition 14. A Hopf algebra (H,∆,ǫ,S) is a unital K-algebra H together with

a K-algebra homomorphism ∆ : H → H ⊗H (the coproduct),

a K-algebra homomorphism ǫ : H →K (the counit),

a K-algebra antihomomorphism S : H → H (the antipode),

such that, for all x ∈ H,

(∆⊗ IdH)∆(x) = (IdH ⊗∆)∆(x) (coassociativity), (13a)

(ǫ⊗ IdH)∆(x) = 1⊗ x , (IdH ⊗ ǫ)∆(x) = x ⊗ 1, (counit axiom), (13b)

m(S ⊗ IdH)∆(x) =ǫ(x)1= m(IdH ⊗ S)∆(x), (antipode axiom), (13c)

where m : H ⊗ H → H denotes the multiplication map in the algebra H.

Two of the most important examples of Hopf algebras are the following.

Example 15. Let G be a group and let A = K[G] be the corresponding group

algebra over K. Define for all g ∈ G,

∆(g) = g ⊗ g, ǫ(g) = 1, S(g) = g−1, (14)

and extend the three maps K-linearly to all of A. Then (A,∆,ǫ,S) is a Hopf algebra.
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Example 16. Let g be a Lie algebra over K and U = U(g) its universal enveloping

algebra. Recall that U can be constructed as T (g)/I(g) where T (g) is the tensor

algebra on g and I(g) is the ideal in T (g) generated by all elements of the form

x ⊗ y − y ⊗ x − [x , y] for x , y ∈ g. Define

∆(x) = x ⊗ 1+ 1⊗ x , ǫ(x) = 0, S(x) =−x , (15)

for all x ∈ g. By the universal property of the tensor algebra, the map ∆ extends

uniquely to a K-algebra homomorphism ∆ : T (g) → U ⊗ U . One verifies that

its kernel contains the ideal I(g), thereby inducing a K-algebra homomorphism

∆ : U → U ⊗ U . Similarly ǫ induces a homomorphism ǫ : U → K and S an

antihomomorphism S : U → U . Axioms (13) can be verified. Thus (U ,∆,ǫ,S) is a

Hopf algebra.

Example 17. Let G = GL(n) be the group of all invertible n × n matrices with

complex entries. Let H =F (G) be the commutative algebra (with pointwise oper-

ations) of complex-valued functions on G generated by the n2 coordinate functions

ei j : G→ C given by

ei j(g) = gi j

for any matrix g = (gkl)kl ∈ G. Define ∆ : H → H ⊗ H by

∆(a)(g,h) = a(gh) ∀a ∈ H, g,h ∈ G

where we consider H ⊗ H as functions on G × G by (a ⊗ b)(g,h) = a(g)b(h) for

a, b ∈ H, g,h ∈ G. For the coordinate functions we have

∆(ei j) =

n
∑

x=1

ei x ⊗ ex j .

The counit ǫ : H → C and antipode S : H → H are defined by

ǫ(a) = a(I), S(a)(g) = a(g−1),

where I is the identity matrix in G. One can verify that (H,∆,ǫ,S) is a Hopf

algebra.

4.2 Modules over Hopf algebras

Corresponding to each of the maps ∆, ǫ and S in the definition of Hopf algebra,

there is is a module-theoretic construction and to each of the axioms in (13) there

is a corresponding morphism of modules.

A module over a Hopf algebra H is just a module over the underlying algebra.

If V and W are modules over a Hopf algebra H, then their tensor product V ⊗KW

can be given the structure of an H-module in the following natural way

h.(v ⊗ w) = ∆(h)(v⊗ w) =
∑

i

(h′
i
.v)⊗ (h′′

i
.w) (16)
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where ∆(h) =
∑

i h′
i
⊗ h′′

i
. From the coassociativity axiom for ∆ follows that, given

three H-modules U , V,W , the natural vector space isomorphism (U ⊗ V ) ⊗W ≃

U ⊗ (V ⊗W ) is an isomorphism of H-modules.

The counit gives rise to a special one-dimensional module 1H = K defined by

h.λ = ǫ(h)λ (17)

for h ∈ H and λ ∈ 1H . The counit axiom implies that for any H-module V , the

natural isomorphisms V ⊗1H ≃ V ≃ 1H ⊗V of vector spaces are H-module isomor-

phisms.

Finally, the module-theoretic consequence for the antipode is that the dual vec-

tor space V ∗ = Hom(V,K) of an H-module V acquires an H-module structure by

(h.ϕ)(v) = ϕ
�

S(h).v
�

(18)

for any h ∈ H,ϕ ∈ V ∗, v ∈ V . The antipode axiom implies that the natural evalua-

tion maps e : V ∗ ⊗ V → 1H , e′ : V ⊗ V ∗→ 1H are H-module homomorphisms.

4.3 The Clebsch-Gordan formula

Let H be a Hopf algebra. Suppose that any finite-dimensional H-module V is

semisimple, that is, can be decomposed as a direct sum of simple modules

V ≃ V1 ⊕ V2 ⊕ · · · ⊕ Vn.

Given two simple finite-dimensional H-modules V and W , their tensor product

V ⊗W is again a finite-dimensional H-module, as described in Section 4.2. It is

interesting to ask what the decomposition of V ⊗W into a direct sum of simple

H-modules look like.

The answer to this question for the case when H = U(sl2) is given by the clas-

sical Clebsch-Gordan formula, which is important in quantum mechanics. Let V (n),

where n ∈ Z≥0, denote the finite-dimensional simple module over U(sl2)with high-

est weight n (and of dimension n+ 1). Then

V (m)⊗ V (n) ≃ V (m+ n)⊕ V (m+ n− 2)⊕ · · · ⊕ V (m− n) (19)

if m ≥ n. The entries of the matrix of the isomorphism (19) with respect to natu-

ral bases on either side are certain special functions known as the Clebsch-Gordan

coefficients.

5 Quantum groups

5.1 Drinfeld-Jimbo quantum groups

In 1985, Drinfeld and Jimbo independently defined a certain Hopf algebra asso-

ciated to any semi-simple complex finite-dimensional Lie algebra (more generally,

any symmetrizable Kac-Moody algebra). This Hopf algebra is denoted by Uq(g)
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where q is a complex parameter. For q = 1 one essentially recovers the usual

enveloping algebra U(g). Since the representations of U(g) are the same as the

representations of g, which in turn (loosely speaking) are the same as representa-

tions of the Lie group G corresponding to g, one calls the algebra Uq(g) a quantum

group. The reason for the prefix quantum is that quantum mechanics can be viewed

as a deformation of classical mechanics by letting Planck’s constant go to zero.

Already from the beginning quantum groups were intimately connected with

applications in physics, statistical mechanics and integrable models. Since then,

applications has been found in many different areas of mathematics, such as knot

theory and special functions. For example, the q-analogues of the Clebsch-Gordan

coefficients mentioned in Section 4.3 were known before the definition of quantum

groups, as a certain curious family of orthogonal polynomials. Their orthogonality

was later explained using quantum groups.

Let us look at the simplest example.

Example 18. Uq(sl2) is by definition the C-algebra with generators E, F, K±1 and

relations

KK−1 = 1= K−1K , [E, F] =
K − K−1

q− q−1
,

K EK−1 = q2E, K FK−1 = q−2F.

It has a Hopf structure given by

∆(E) = 1⊗ E + E ⊗ K , ∆(F) = K−1⊗ F + F ⊗ 1,

∆(K) = K ⊗ K , ∆(K−1) = K−1⊗ K−1,

ǫ(E) = 0= ǫ(F), ǫ(K) = 1= ǫ(K−1),

S(E) =−EK−1, S(F) =−K F, S(K) = K−1, S(K−1) = K .

The maps ∆,ǫ should be extended multiplicatively to all of Uq(sl2) while S should

be extended to an antihomomorphism and one must verify that the relations above

are preserved.

5.2 The FRST construction

There is another type of quantum groups which are in a certain sense dual to

those in the previous section. Let us briefly describe them. Let R =
�

R
jl

ik

	

1≤i, j,k,l≤n

be a collection of n4 complex numbers. There is an important construction due

to Faddeev-Reshetikhin-Sklyanin-Takhtajan which associates a bialgebra (=Hopf

algebra without antipode), FR, to R in the following way.

Let FR be the associative algebra with generators Li j , 1 ≤ i, j ≤ n, and the

relation

n
∑

x ,y=1

Rx y
ac

Lx b L yd =

n
∑

x ,y=1

Rbd
x y

Lc y Lax ∀a, b, c, d ∈ {1, . . . , n}. (20)
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Relation (20) is called the RLL relation. Give FR the structure of a bialgebra by

defining

∆(Lab) =

n
∑

x=1

Lax ⊗ Lx b, ǫ(Lab) = δab (21)

for a, b = 1, . . . , n.

If we take R
jl

ik
= δi jδkl ∀i, j, k, l, then (20) just says that the Li j should commute

and thus FR is precisely the commutative bialgebra F (M(n)) of all polynomial

functions on the semigroup M(n) of all n× n complex matrices, like in Example 17

but without inverses and antipode. Thus one may view FR as a noncommutative

deformation of the bialgebra F (M(n)).

From relation (20) one can deduce cubic relations in two nontrivial ways. The

relations obtained are

∑

x yuvrs

Rrs
ce

Ruv
as

Rx y
ur

Lx b L yd Lv f =
∑

x yuvrs

Rbd
x y

Rx f
uv

Ry v
rs

Les Lcr Lau

and
∑

x yuvrs

Rur
ac

Rxs
ue

Ry v
rs

Lx b L yd Lv f =
∑

x yuvrs

Rd f
y v

Rbv
xs

Rx y
ur

Les Lcr Lau.

The Yang-Baxter equation is a necessary and sufficient condition for these two rela-

tions to coincide:

∑

urs

Rrs
ce

Ruv
as

Rx y
ur
=
∑

urs

Rur
ac

Rxs
ue

Ry v
rs

∀a, c, e, x , y, v ∈ {1, . . . , n}. (22)

(Another motivation for requiring (22) is that A(R) may then be equipped with a

cobraiding, which turns its category of comodules into a braided tensor category.)

The solutions to this equation are called R-matrices. The Yang-Baxter equation ex-

ists in many different versions and generalities. It may involve a so called spectral

parameter u ∈ C, and/or a dynamical parameter λ ∈ h∗ (dual of a Cartan sub-

algebra). There is also a classification theorem due to Belavin and Drinfel’d [BD]

which says that R-matrices with spectral parameter fall into one of three categories:

rational, trigonometric or elliptic.

6 Summary of papers

6.1 Locally finite simple weight modules over TGWAs

We give a description of a class of simple weight modules over an arbitrary twisted

generalized Weyl algebra. We assume that the weight spaces are finite-dimensional.

The class of modules, defined in the paper, is the modules without so called proper

inner breaks. If the ground ring is finitely generated over an algebraically closed

field we show that the problem reduces to classifying finite-dimensional simple

modules over a tensor product of certain algebras (noncommutative tori) and these

have a well-known structure. The description we obtain generalizes previous work
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in [MT99]. The technique is based on the procedure of induction from the max-

imal graded weight space preserving subalgebra. We apply these methods to the

quantized Weyl algebra Aq̄,Λ
n

of rank n = 2 and classify all simple weight modules

with no proper inner breaks.

6.2 Hopf structures on ambiskew polynomial rings

The algebras U(sl2), Uq(sl2), and the algebra Uq( f (H, K)) from [WJY], are all

examples of ambiskew polynomial rings which carry Hopf algebra structures. Mo-

tivated by this we determine necessary and sufficient conditions for an ambiskew

polynomial ring to have a Hopf algebra structure of a certain form. For those al-

gebras which admit such a Hopf algebra structure, we describe the dimensions of

finite-dimensional simple modules in terms of their highest weights and prove a

generalized Clebsch-Gordan formula. Using this and a Casimir-type operator we

prove that all finite-dimensional weight modules are semi-simple. The existence of

finite-dimensional non-semisimple modules over Uq( f (H, K)) was noted in [WJY].

6.3 Unitarizable weight modules over generalized Weyl alge-

bras

A ∗-algebra A is a C-algebra equipped with an involution ∗, i.e. a map ∗ : A→ A

satisfying

(a+ b)∗ = a∗ + b∗, (λa)∗ = λ̄a∗, (ab)∗ = b∗a∗, (a∗)∗ = a

for all a, b ∈ A, λ ∈ C. A module V over a ∗-algebra A is called unitarizable (with

respect to ∗) if there is an inner product (·, ·) on V such that

(av, w) = (v, a∗w) ∀v, w ∈ V, a ∈ A.

The notion of unitarizability is essential in quantum mechanics as well as rep-

resentation theory of finite and compact groups. One nice property of unitarizable

modules is that they are automatically semisimple.

Unitarizable modules over higher rank and twisted GWAs were studied in [MT01c]

and [MT02] respectively.

Unfortunately there may be many modules over a ∗-algebra which are not uni-

tarizable. However, if we relax the condition of the inner product to allow also

forms which are not necessarily positive definite (but still non-degenerate), then

more modules will be unitarizable in this weaker sense. One looses the semisim-

plicity feature but some properties remain valid.

In [MT01a], the authors prove general results on existence and uniqueness of

indefinite forms on modules over algebras. In [MT01b], and independently in [G],

simple weight modules over a semisimple Lie algebra which are unitarizable with

an indefinite form were classified.

In this paper we define a notion of unitarizability for weight modules over a

generalized Weyl algebra R(σ, t) of rank one, where R is assumed to be a commu-

tative ring. The notion does not require the presence of a ground field. The forms
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are not assumed to be positive definite (for this has no meaning in our setting).

We classify all indecomposable weight modules over R(σ, t) which are unitarizable

with a non-degenerate form. Our method uses the description of weight modules

in [DGO].

6.4 The elliptic dynamical GL(n) as an h-Hopf algebroid

Etingof and Varchenko [EV] have generalized the FRST-construction to the case of

R-matrices depending on a dynamical parameter. The result is not a bialgebra, but

rather a generalization called an h-bialgebroid. Here h is a certain vector space.

When h = {0} one recovers ordinary bialgebras. If an antipode has been assigned

they are called h-Hopf algebroids.

In [KNR] the authors extend this FRST procedure to construct an h-Hopf al-

gebroid from an elliptic R-matrix depending on both a dynamical and a spectral

parameter and used it to reprove certain biorthogonality relations for elliptic hy-

pergeometric series previously obtained by Frenkel and Turaev. Their algebra may

be considered as a deformation of the algebra of functions F (U(2)) on the group

U(2).

In the fourth and final paper we construct an h-Hopf algebroid associated to

GL(n) from an elliptic R-matrix with dynamical and spectral parameter. On the

way we are led to consider analogues of the exterior algebra and minors and their

Laplace expansions. We prove that the left and right versions of the minors coin-

cide and, using the dynamical version of a cobraiding, introduced in [Ro], that the

analogue of the determinant is almost central.

7 Outlook and open problems

7.1 Lie algebras and twisted generalized Weyl algebras

According to [MPT], Yu. Drozd posed the question of finding a construction for a

family of algebras which would include as examples both higher rank generalized

Weyl algebras and universal enveloping algebras of semisimple complex Lie alge-

bras. This question is very interesting, since generalized Weyl algebras of rank one

provide a playground for generalizations and deformations of U(sl2).

The twisted generalized Weyl algebras, introduced in [MT99], was an attempt

to answer this question and are natural since they allow more noncommutativity

than the higher rank GWAs. However, still only indication exists that U(g) really is

a TGWA. In [MT99] some features of the support of a module gave some evidence

and in [MPT] the authors proved that a certain extension of U(gln) is a TGWA.

Recently another candidate for such an algebra has been proposed in [FO],

called Galois orders.

However, the question for TGWA remains. A first step, which we think may

be carried out, would be to associate to each semisimple Lie algebra g a twisted

generalized Weyl algebra T such that (almost) any finite-dimensional module over

U(g) becomes naturally a module over T .
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7.2 Classification of tame blocks in the category of weight mod-

ules over a TGWA

The category of weight modules over a twisted or higher rank GWA splits into a

sum of blocks, which consists of all indecomposable weight modules with support

in a given orbit in Max(R). It is very valuable to have a description of when a given

block is tame or wild, in the sense of [D].

In [BB] the authors classified tame blocks in the category of weight modules

over a certain class of higher rank GWA. To obtain a similar classification for mod-

ules over (some) twisted GWA would be of great value.

7.3 Semisimplicity of the category of weight modules over a

TGWA

In [DGO] a necessary and sufficient criterion was obtained as to when the category

of weight modules over a rank one GWA is semisimple. Finding such a criterion for

twisted GWAs would be very interesting.

7.4 Elliptic Weyl algebra

SL(n) acts naturally as a group of algebra automorphisms on the n:th Weyl alge-

bra An by linear change of variables. This carries over to the quantum situation.

Namely, in [PW] it is proved that the quantum Weyl algebra, which we consider

in Paper I as an example of twisted generalized Weyl algebra (but one should take

all qi ’s to be equal) is a comodule algebra over the deformed function algebra

Fq(SL(n)). This deformed function algebra is a limiting case of the elliptic quan-

tum group considered in Paper IV.

Thus it is natural to ask whether there exists an elliptic dynamical analogue of

the Weyl algebra, which carries a comodule algebra structure over the elliptic dy-

namical GL(n) quantum group, and which perhaps is also an example of a twisted

generalized Weyl algebra. One may be able to proceed as in [GZ] where the au-

thors associate a quantum Weyl algebra to any constant R-matrix satisfying the

Hecke condition.

One should also try to generalize Woronowicz’s theory of differential calculus

covariant under quantum groups to the elliptic dynamical setting, and try to view

the elliptic Weyl algebra as generated by twisted annihilation and creation opera-

tors.

7.5 Selfduality of dynamical quantum groups

In [Ro] a notion of duality for quantum groups associated to dynamical R-matrices

was defined. It was also proved that the dynamical trigonometric SU(2) quantum

group is essentially self-dual. It means that the algebra is simultaneously a defor-

mation of the enveloping algebra U(sl2) and of the function algebra F (SL(2)). It

would be very interesting to prove such a self-duality result for higher rank groups

and also for the elliptic case.
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7.6 Higher genus quantum groups

So far almost all known quantum groups have a spectral parameter which lives on

a Riemann surface of genus 0 or 1. There have been no general results towards

a higher genus theory. Perhaps one approach would be to first investigate the

what the corresponding special functions should be. Indeed, historically, the special

functions corresponding to Uq(g) as well as elliptic quantum groups predated the

definition of the algebras themselves.
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Locally finite simple weight modules over
twisted generalized Weyl algebras

Jonas T. Hartwig

Abstract

We present methods and explicit formulas for describing simple weight
modules over twisted generalized Weyl algebras. When a certain commutative
subalgebra is finitely generated over an algebraically closed field we obtain a
classification of a class of locally finite simple weight modules as those induced
from simple modules over a subalgebra isomorphic to a tensor product of non-
commutative tori. As an application we describe simple weight modules over
the quantized Weyl algebra.

1 Introduction

Bavula defined in [1], [2] the notion of a generalized Weyl algebra (GWA) which
is a class of algebras which include U(sl(2)), Uq(sl(2)), down-up algebras, and the
Weyl algebra, as examples. In addition to various ring theoretic properties, the
simple modules were also described for some GWAs in [2]. In [6] all simple and
indecomposable weight modules of GWAs of rank (or degree) one were classified.

So called higher rank GWAs were defined in [2] and in [3] the authors studied
indecomposable weight modules over certain higher rank GWAs.

In [8], with the goal to enrich the representation theory in the higher rank
case, the authors defined the twisted generalized Weyl algebras (TGWA). This is a
class of algebras which include all higher rank GWAs (if a certain subring R has no
zero divisors) and also many algebras which can be viewed as twisted tensor prod-
ucts of rank one GWAs, for example certain Mickelsson step algebras and extended
Orthogonal Gelfand-Zetlin algebras [7]. Under a technical assumption on the al-
gebra formulated using a biserial graph, some torsion-free simple weight modules
were described in [8]. Simple graded weight modules were studied in [7] using an
analogue of the Shapovalov form.

In this paper we describe a more general class of locally finite simple weight
modules over TGWAs using the well-known technique of considering the maximal
graded subalgebra which preserves the weight spaces. It is known that under quite
general assumptions (see Theorem 18 in [5]) any simple weight module over a
TGWA is a unique quotient of a module which is induced from a simple module
over this subalgebra. Our main results are the description of this subalgebra under
various assumptions (Theorem 4.5 and Theorem 4.8) and the explicit formulas
(Theorem 5.4) of the associated module of the TGWA. In contrast to [8], we do

1
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not assume that the orbits are torsion-free and we allow the modules to have some
inner breaks, as long as they do not have any so called proper inner breaks (see
Definition 3.7). The weight spaces will not in general be one-dimensional in our
case, which was the case in [8], [7].

Moreover, as an application we classify the simple weight modules without
proper inner breaks over a quantized Weyl algebra of rank two (Theorem 6.14).

The paper is organized as follows. In Section 2 the definitions of twisted gen-
eralized Weyl constructions and algebras are given together with some examples.
Weight modules and the subalgebra B(ω) are defined.

In Section 3 we first prove some simple facts and then define the class of simple
weight modules with no proper inner breaks. We also show that this class properly
contains all the modules studied in [8].

Section 4 is devoted to the description of the subalgebra B(ω). When the
ground field is algebraically closed and a certain subalgebra R is finitely gener-
ated, we show that it is isomorphic to a tensor product of noncommutative tori for
which the finite-dimensional irreducible representations are easy to describe.

In Section 5 we specify a basis and give explicit formulas for the irreducible
quotient of the induced module.

Finally, in Section 6 we consider as an example the quantized Weyl algebra
and determine certain important subsets of Zn related to B(ω) and the support
of modules as solutions to some systems of equations. In the rank two case we
describe all simple weight modules with finite-dimensional weight spaces and no
proper inner breaks.

2 Definitions

2.1 The TGWC and TGWA

Fix a positive integer n and set n = {1,2, . . . , n}. Let K be a field, and let R be a
commutative unital K-algebra, σ = (σ1, . . . ,σn) be an n-tuple of pairwise commut-
ing K-automorphisms of R, µ = (µi j)i, j∈n be a matrix with entries from K∗ := K\{0}
and t = (t1, . . . , tn) be an n-tuple of nonzero elements from R. The twisted gener-

alized Weyl construction (TGWC) A′ obtained from the data (R,σ, t ,µ) is the unital
K-algebra generated over R by X i , Yi , (i ∈ n) with the relations

X i r = σi(r)X i, Yi r = σ
−1
i
(r)Yi, for r ∈ R, i ∈ n, (2.1)

YiX i = t i, X i Yi = σi(t i), for i ∈ n, (2.2)

X iYj = µi jYjX i , for i, j ∈ n, i 6= j. (2.3)

From the relations (2.1)–(2.3) follows that A′ carries a Zn-gradation {A′
g
}g∈Zn which

is uniquely defined by requiring

deg X i = ei , deg Yi = −ei, deg r = 0, for i ∈ n, r ∈ R,

where ei = (0, . . . ,
i

1, . . . , 0). The twisted generalized Weyl algebra (TGWA) A =

A(R,σ, t ,µ) of rank n is defined to be A′/I , where I is the sum of all graded two-
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sided ideals of A′ intersecting R trivially. Since I is graded, A inherits a Zn-gradation
{Ag}g∈Zn from A′.

Note that from relations (2.1)–(2.3) follows the identity

X i X j t i = X jX iµ jiσ
−1
j
(t i) (2.4)

which holds for i, j ∈ n, i 6= j. Multiplying (2.4) from the left by µi jYj we obtain

X i

�

t i t j − µi jµ jiσ
−1
i
(t j)σ

−1
j
(t i)
�

= 0 (2.5)

for i, j ∈ n, i 6= j. One can show that the algebra A′, hence A, is nontrivial if one
assumes that t i t j = µi jµ jiσ

−1
i
(t j)σ

−1
j
(t i) for i, j ∈ n, i 6= j. Analogous identities

exist for Yi .

2.2 Examples

Some of the first motivating examples of a generalized Weyl algebra (GWA), i.e. a
TGWC of rank 1, are U(sl(2)), Uq(sl(2)) and of course the Weyl algebra A1. We
refer to [2] for details.

We give some examples of TGWAs of higher rank.

2.2.1 Quantized Weyl algebras

Let Λ = (λi j) be an n× n matrix with nonzero complex entries such that λi j = λ
−1
ji

.
Let q̄ = (q1, . . . ,qn) be an n-tuple of elements of C\{0,1}. The n:th quantized Weyl
algebra Aq̄,Λ

n
is the C-algebra with generators x i , yi , 1≤ i ≤ n, and relations

x i x j = qiλi j x j x i , yi y j = λi j y j yi , (2.6)

x i y j = λ ji y j x i , x j yi = qiλi j yi x j , (2.7)

x i yi − qi yi x i = 1+
i−1
∑

k=1

(qk − 1)yi x i , (2.8)

for 1 ≤ i < j ≤ n. Let R = C[t1, . . . , tn] be the polynomial algebra in n variables
and σi the C-algebra automorphisms defined by

σi(t j) =







t j, j < i,

1+ qi t i +
∑i−1

k=1(qk − 1)tk, j = i,

qi t j, j > i.

(2.9)

One can check that the σi commute. Let µ = (µi j)i, j∈n be defined by µi j = λ ji

and µ ji = qiλi j for i < j. Let also σ = (σ1, . . . ,σn) and t = (t1, . . . , tn). One can
show that the maximal graded ideal of the TGWC A′(R,σ, t ,µ) is generated by the
elements

X i X j − qiλi jX jX i , YiYj − λi jYjYi , 1≤ i < j ≤ n.

Thus Aq̄,Λ
n

is isomorphic to the TGWA A(R,σ, t ,µ) via x i 7→ X i , yi 7→ Yi .
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2.2.2 Qi j-CCR

Let (Qi j)
d
i, j=1 be an d × d matrix with complex entries such that Qi j = Q−1

ji
if i 6= j

and Ad be the algebra generated by elements ai , a∗
i
, 1≤ i ≤ d and relations

a∗
i
ai −Qii ai a

∗
i
= 1, a∗

i
a j =Qi j a ja

∗
i
,

aia j = Q jia jai , a∗
i
a∗

j
=Qi j a

∗
j
a∗

i
,

where 1 ≤ i, j ≤ d and i 6= j. Let R = C[t1, . . . , td] and define the automorphisms
σi of R by σi(t j) = t j if i 6= j and σi(t i) = 1+Qii t i. Let µi j = Q ji for all i, j. Then
Ad is isomorphic to the TGWA A(R, (σ1, . . . ,σn), (t1, . . . , tn),µ).

2.2.3 Mickelsson and OGZ algebras

In both the above examples the generators X i and X j commute up to a multiple of
the ground field. This need not be the case as shown in [7], where it was shown
that Mickelsson step algebras and extended orthogonal Gelfand-Zetlin algebras are
TGWAs.

2.3 Weight modules

Let A be a TGWC or a TGWA. Let Max(R) denote the set of all maximal ideals in R.
A module M over A is called a weight module if

M =⊕
m∈Max(R)Mm

,

where
M

m
= {v ∈ M | mv = 0}.

The support, supp(M), of M is the set of all m ∈ Max(R) such that M
m
6= 0. A

weight module is locally finite if all the weight spaces M
m

, m ∈ supp(M), are finite-
dimensional over the ground field K .

Since the σi are pairwise commuting, the free abelian group Zn acts on R as a
group of K-algebra automorphisms by

g(r) = σ
g1

1 σ
g2

2 . . .σgn

n
(r) (2.10)

for g = (g1, . . . , gn) ∈ Z
n and r ∈ R. Then Zn also acts naturally on Max(R) by

g(m) = {g(r) | r ∈ m}. Note that

X i Mm
⊆ Mσi(m)

and Yi Mm
⊆ Mσ−1

i
(m) (2.11)

for any m ∈Max(R). If a ∈ A is homogeneous of degree g ∈ Zn, then by using (2.1)
and (2.11) repeatedly one obtains the very useful identities

a · r = g(r) · a, r · a = a · (−g)(r), (2.12)

for r ∈ R and
aM

m
⊆ Mg(m) (2.13)

for m ∈Max(R).
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2.4 Subalgebras leaving the weight spaces invariant

Let ω ⊆ Max(R) be an orbit under the action of Zn on Max(R) defined in (2.10).
Let

Zn
ω = Z

n
m
= {g ∈ Zn | g(m) =m} (2.14)

where m is some point inω. Since Zn is abelian, Zn
ω does not depend on the choice

of m from ω. Define
B(ω) =⊕g∈Zn

ω
Ag . (2.15)

Since A is Zn-graded and since Zn
ω is a subgroup of Zn, B(ω) is a subalgebra of A

and R = A0 ⊆ B(ω). Let m ∈ ω and suppose that M is a simple weight A-module
with m ∈ supp(M). Since M is simple we have supp(M) ⊆ ω. Using (2.13) it
follows that B(ω)M

m
⊆ M

m
and by definition M

m
is annihilated by m hence also

by the two-sided ideal (m) in B(ω) generated by m. Thus M
m

is naturally a module
over the algebra

B
m

:= B(ω)/(m). (2.16)

By Proposition 7.2 in [7] (see also Theorem 18 in [5] for a general result), M
m

is a
simple B

m
-module, and any simple B

m
-module occurs as a weight space in a simple

weight A-module. Moreover, two simple weight A-modules M , N are isomorphic if
and only if M

m
and N

m
are isomorphic as B

m
-modules. Therefore we are led to

study the algebra B
m

and simple modules over it.

3 Preliminaries

3.1 Reduced words

Let L = {X i}i∈n ∪ {Yi}i∈n. By a word (a; Z1, . . . , Zk) in A we will mean an element
a in A which is a product of elements from the set L, together with a fixed tuple
(Z1, . . . , Zk) of elements from L such that a = Z1 · . . . · Zk . When referring to a word
we will often write a = Z1 . . . Zk ∈ A to denote the word (a; Z1, . . . , Zk) or just write
a ∈ A, suppressing the fixed representation of a as a product of elements from L.

Set X ∗
i
= Yi and Y ∗

i
= X i . For a word a = Z1 . . . Zk ∈ A we define

a∗ := Z∗
k
· Z∗

k−1 · . . . · Z
∗
1 .

In the special case when µi j = µ ji for all i, j then by (2.1)-(2.3) there is an
anti-involution ∗ on A′ defined by X ∗

i
= Yi , and r∗ = r for r ∈ R. Since I∗ = I this

anti-involution carries over to A.

Definition 3.1. A word Z1 . . . Zk will be called reduced if

Zi 6= Z∗
j

for i, j ∈ k

and
Zi ∈ {X r}r∈n =⇒ Z j ∈ {X r}r∈n ∀ j ≥ i.
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For example Y1Y2Y1X3 is reduced whereas Y1Y2X1 and Y1X2Y3 are not. The
following lemma and corollary explains the importance of the reduced words.

Lemma 3.2. Any word b in A can be written b = a · r = r ′ · a, where a is a reduced

word, and r, r ′ ∈ R.

Proof. If a and r has been found we can take r ′ = (deg a)(r), according to (2.12).
Thus we concentrate on finding a and r. Let b = Z1 . . . Zk be an arbitrary word in A.
We prove the statement by induction on k. If k = 1, then b is necessarily reduced
so take a = b, r = 1. When k > 1, use the induction hypothesis to write

Z1 . . . Zk−1 = Yi1
. . . Yil

X j1
. . . X jm

· r ′,

where 1 ≤ iu, jv ≤ n and iu 6= jv for any u, v. Consider first the case when Zk = Yj

for some j ∈ n. Then

Z1 . . . Zk = Yi1
. . . Yil

X j1
. . . X jm

Yj ·σ j(r
′).

If jv 6= j for v = 1, . . . , m we are done because using relation (2.3) repeatedly we
obtain,

Z1 . . . Zk = Yi1
. . . Yil

YjX j1
. . . X jm

·µσ j(r
′)

for some µ ∈ K∗. Otherwise, let v ∈ {1, . . . , m} be maximal such that jv = j. Then

Z1 . . . Zk = Yi1
. . . Yil

X j1
. . . X jv

YjX jv+1
. . . X jm

µσ j(r
′) =

= Yi1
. . . Yil

X j1
. . . X jv−1

X jv+1
. . . X jm

w(t j)µσ j(r
′)

for some µ ∈ K∗ and some w ∈W . It remains to consider the case Zk = X j for some
j ∈ n. But using that

Yi1
. . . Yil

X j1
. . . X jm

= X j1
. . . X jm

Yi1
. . . Yil

µ

for some µ ∈ K∗, it is clear that this case is analogous.

Corollary 3.3. Each Ag , g ∈W, is generated as a right (and also as a left) R-module

by the reduced words of degree g.

Lemma 3.4. Suppose ∗ defines an anti-involution on A. Let p be a prime ideal of R.

Let g ∈ Zn and let a ∈ Ag . If ba /∈ p for some b ∈ A−g then a∗a /∈ p.

Proof. Since p is prime, and ba ∈ R we have

p 6∋ (ba)2 = (ba)∗ba = a∗b∗ba = a∗a · (−deg a)(b∗b)

so in particular a∗a /∈ p.

Remark 3.5. If we assume a and b to be words in the formulation of Lemma 3.4,
one can easily show that the statement remains true without the restriction on ∗ to
be an anti-involution.
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3.2 Inner breaks and canonical modules

Let A be a TGWC or a TGWA and let M be a simple weight module over A. In [8]
Remark 1 it was noted that the problem of describing simple weight modules over
a TGWC is wild in general. This is a motivation for restricting attention to some
subclass which has nice properties. In [8] the following definition was made.

Definition 3.6. The support of M has no inner breaks if for all m ∈ supp(M),

t i ∈m=⇒ σi(m) /∈ supp(M), and

σi(t i) ∈m =⇒σ−1
i
(m) /∈ supp(M).

We introduce the following property.

Definition 3.7. We say that M has no proper inner breaks if for any m ∈ supp(M)
and any word a with aM

m
6= 0 we have a∗a /∈ m.

Observe that whether or not a∗a ∈ m for a word a does not depend on the
particular representation of a as a product of generators. Note also that to prove
that a simple weight module M has no proper inner breaks, it is sufficient to find
for any m ∈ supp(M) and any word a with aM

m
6= 0 a word b ∈ A of degree −deg a

such that ba /∈ m because then a∗a /∈ m automatically by Remark 3.5. In fact one
can show that a simple weight module M has no proper inner breaks if (and only if)
there exists an m ∈ supp(M) such that for any reduced word a ∈ A with aM

m
6= 0

and aM
m
⊆ M

m
there is a word b of degree −deg a such that ba /∈m. However we

will not use this result.
The choice of terminology in Definition 3.7 is motivated by the following propo-

sition.

Proposition 3.8. If M has no inner breaks, then M has no proper inner breaks either.

Proof. Let m ∈ supp(M) and a = Z1 . . . Zk ∈ A be a word such that aM
m
6= 0. Thus

Zi . . . Zk M
m
6= 0 for i = 1, . . . , k+ 1 so (2.13) implies that

(deg Zi . . . Zk)(m) ∈ supp(M).

If M has no inner breaks, it follows that Z∗
i
Zi /∈ (deg Zi+1 . . . Zk)(m) for i = 1, . . . , k.

Now using (2.12),

a∗a = Z∗
k

. . . Z∗1 Z1 . . . Zk = Z∗
k

. . . Z∗2 Z2 . . . Zk(−deg Z2 . . . Zk)(Z
∗
1 Z1) =

= . . . =
k
∏

i=1

(−deg Zi+1 . . . Zk)(Z
∗
i
Zi) /∈ m. (3.1)

Thus M has no proper inner breaks.

In [8], a simple weight module M was defined to be canonical if for any m,n ∈
supp(M) there is an automorphism σ of R of the form

σ = σ
ǫ1

i1
· . . . ·σǫk

ik
, ǫ j =±1 and 1≤ i j ≤ n, for j = 1, . . . , k,
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such that σ(m) = n and such that for each j = 1, . . . , k,

t i j
/∈ σ

ǫ j+1

i j+1
. . .σǫk

ik
(m) if ǫ j = 1, and (3.2)

σi j
(t i j
) /∈ σ

ǫ j+1

i j+1
. . .σǫk

ik
(m) if ǫ j =−1. (3.3)

This definition can be reformulated as follows.

Proposition 3.9. M is canonical iff for any m,n ∈ supp(M) there is a word a ∈ A

such that aM
m
⊆ M

n
and a∗a /∈m.

Proof. Suppose M is canonical, and let m,n ∈ supp(M). Letσ be as in the definition
of canonical module. Define a = Z1 . . . Zk where Z j = X i j

if ǫ j = 1 and Z j = Yi j

otherwise. Using (2.13) we see that aM
m
⊆ M

n
. Also, (3.2) and (3.3) translates

into
Z∗

j
Z j /∈ (deg Z j+1 . . . Zk)(m)

for j = 1, . . . , k. Using the calculation (3.1) and that m is prime we deduce that
a∗a /∈ m.

Conversely, given a word a = Z1 . . . Zk ∈ A with aM
m
⊆ M

n
and a∗a /∈ m, we

define ǫi = 1 if Zi = X i and ǫi = −1 otherwise. Then from a∗a /∈ m follows that
σ := σǫ1

i1
· . . . ·σǫk

ik
satisfies (3.2) and (3.3) by the same reasoning as above.

Corollary 3.10. If M has no proper inner breaks, then M is canonical.

Proof. We only need to note that since M is a simple weight module there is for
each m,n ∈ supp(M) a word a such that 0 6= aM

m
⊆ M

n
.

Under the assumptions in [8] any canonical module has no inner breaks (see
[8], Proposition 1). However we have the following example of a TGWA A and
a simple weight module M over A which has no proper inner breaks, and thus is
canonical by Corollary 3.10, but nonetheless has an inner break.

Example 3.11. Let R= C[t1, t2] and define the C-algebra automorphisms σ1 and
σ2 of R by σi(t j) = −t j for i, j = 1,2. Let µ = [ 0 1

1 0 ]. Let A′ = A′(R, t ,σ,µ) be
the associated TGWC, where t = (t1, t2),σ = (σ1,σ2). Then one can check that
I = 〈X1X2 + X2X1, Y1Y2 + Y2Y1〉. Let M be a vector space over C with basis {v, w}

and define an A′-module structure on M by letting X1M = Y1M = 0 and

X2v = w, X2w = v,

Y2v = w, Y2w =−v.

It is easy to check that the required relations are satisfied and that I M = 0, hence
M becomes an A-module. Let m= (t1, t2+ 1) and n= (t1, t2− 1). Then

M = M
m
⊕M

n
, where M

m
= Cv, M

n
= Cw

so M is a weight module. Any proper nonzero submodule of M would also be a
weight module by standard results. That no such submodule can exist is easy to
check, so M is simple. One checks that M has no proper inner breaks. But t1 ∈ m

and σ1(m) = n ∈ supp(M) so m is an inner break.
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4 The weight space preserving subalgebra and its ir-

reducible representations

In this section, let A be a TGWC, m ∈Max(R) and let ω be the Zn-orbit of m. Recall
the set Zn

ω defined in (2.14). Define the following subsets of Zn:

G̃
m
= {g ∈ Zn | a∗a /∈ m for some word a ∈ Ag} and G

m
= G̃

m
∩Zn

ω. (4.1)

Let also ϕ
m

: A→ A/(m) denote the canonical projection, where (m) is the two-
sided ideal in A generated by m, and let R

m
= R/m be the residue field of R at

m.

Lemma 4.1. Let g ∈ G̃
m

. Then

ϕ
m
(Ag) = R

m
·ϕ

m
(a) = ϕ

m
(a) · R

m
(4.2)

for any word a ∈ Ag with a∗a /∈m.

Proof. Let b ∈ Ag be any element and a ∈ Ag a word such that a∗a /∈ m, We must
show that there is an r ∈ R such that ϕ

m
(b) = ϕ

m
(r)ϕ

m
(a). Since a∗a /∈ m and m

is maximal, 1− r1a∗a ∈m for some r1 ∈ R. Set r = br1a∗. Then r ∈ R and

b− ra = b(1− r1a∗a) ∈ (m).

The last equality in (4.2) is immediate using (2.12).

The following result was proved in [8] Lemma 8 for simple weight modules
with so called regular support which in particular means that they have no inner
breaks. It is still true in the more general situation when M has no proper inner
breaks. Recall the ideal I from the definition of a T GWA.

Proposition 4.2. Suppose A is a TGWC. If M is a simple weight A-module with no

proper inner breaks, then I M = 0. Hence M is naturally a module over the associated

TGWA A/I .

Proof. Since I is graded and M is a weight modules, it is enough to show that
(I ∩ Ag)Mm

= 0 for any g ∈ Zn and any m ∈ supp(M). Assume that a ∈ I ∩ Ag

and av 6= 0 for some v ∈ M
m

. Then a1v 6= 0 for some word a1 in a. Since M

has no proper inner breaks, a∗1a1 /∈ m so by Lemma 4.1 there is an r ∈ R such
that av = a1r v. Thus 0 6= a∗1a1r v = a∗1av which implies that a∗1a ∈ R\{0}. This
contradicts that a ∈ I .

We fix now for each g ∈ G̃
m

a word ag ∈ Ag such that a∗
g
ag /∈ m. For g = 0 we

choose ag = 1.

Lemma 4.3. For any g ∈ G̃
m

,h ∈ G
m

we have

a) (ag a∗
h
)∗ag a∗

h
/∈ m so in particular g − h ∈ G̃

m
and G

m
is a subgroup of Zn

ω,

b) ϕ
m
(Ag)ϕm

(Ah) = ϕm
(AgAh) = ϕm

(Ag+h),

c) Ag+hM
m
= Ag M

m
.
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Proof. a) We have

(ag a∗
h
)∗ag a∗

h
= aha∗

g
ag a∗

h
= aha∗

h
h(a∗

g
ag). (4.3)

Now a∗
g
ag /∈ m so h(a∗

g
ag) /∈ h(m) =m. And

m 6∋ (a∗
h
ah)

2 = a∗
h
(aha∗

h
)ah = a∗

h
ah · (−h)(aha∗

h
)

so aha∗
h
/∈ h(m) = m. Since m is maximal the right hand side of (4.3) does not

belong to m. Since deg(ag a∗
h
) = g − h we obtain g − h ∈ G̃

m
. If in addition g ∈ G

m

then g − h ∈ Zn
ω also since Zn

ω is a group. Thus g − h ∈ G
m

so G
m

is a subgroup of
Zn
ω

.
b) Since ϕ

m
is a homomorphism, the first equality holds. By part a), −h ∈ G

m

so by part a) again, (ag a∗
−h
)∗ag a∗

−h
/∈m. Hence by Lemma 4.1, we have

ϕ
m
(Ag+h) = R

m
·ϕ

m
(ag a∗

−h
)⊆ ϕ

m
(AgAh).

The reverse inclusion holds since {Ag}g∈Zn is a gradation of A.
c) By part a), g + h= g − (−h) ∈ G̃

m
. Thus by part b),

Ag+hM
m
= ϕ

m
(Ag+h)Mm

= ϕ
m
(AgAh)Mm

= AgAhM
m
⊆ Ag Mh(m) = Ag M

m
.

By part a), the same calculation holds if we replace g by g + h and and h by −h,
which gives the opposite inclusion.

Lemma 4.4. Let g ∈ Zn\G̃
m

. Then Ag M
m
= 0 for any simple weight module M over

A with no proper inner breaks.

Proof. Let a ∈ Ag be any word. Then a∗a ∈ m and hence if M is a simple weight
module over A with no proper inner breaks, aM

m
= 0. Since the words generate

Ag as a left R-module, it follows that Ag M
m
= 0.

4.1 General case

Recall that (m) denotes the two-sided ideal in A generated by m. Since (m) is
a graded ideal in A, there is an induced Zn-gradation of the quotient A/(m) and
ϕ

m
(Ag) = (A/(m))g . Corresponding to the decomposition Zn

ω into the subset G
m

and its complement are two K-subspaces of the algebra B
m
= B(ω)/
�

B(ω)∩ (m)
�

which will be denoted by B(1)
m

and B(0)
m

respectively. In other words, B
m
= B(1)

m
⊕B(0)

m
,

where
B(1)

m
=
⊕

g∈G
m

(A/(m))g and B(0)
m
=
⊕

g∈Zn
ω\Gm

(A/(m))g .

By Lemma 4.3a), G
m

is a subgroup of the free abelian group Zn, hence is free
abelian itself of rank k ≤ n. Let s1, . . . , sk denote a basis for G

m
over Z and let

bi = ϕm
(asi
) for i = 1, . . . , k. Note also that R

m
is an extension field of K and that

Zn
ω acts naturally on R

m
as a group of K-automorphisms. Let {ρ j} j∈J be a basis for

R
m

over K .
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Theorem 4.5. a) B(0)
m

M
m
= 0 for any simple weight module M over A with no proper

inner breaks, and

b) the bi are invertible and as a K-linear space, B(1)
m

has a basis

{ρ j b
l1
1 . . . b

lk
k
| j ∈ J and li ∈ Z for 1≤ i ≤ k} (4.4)

and the following commutation relations hold

biλ= si(λ)bi , i = 1, . . . , k,λ ∈ R
m

, (4.5)

bi b j = λi j b j bi , i, j = 1, . . . , k (4.6)

for some nonzero λi j ∈ R
m

.

Proof. a) Let g ∈ Zn
ω
\G

m
. By Lemma 4.4, Ag M

m
= 0 and thus ϕ

m
(Ag)Mm

= 0.
b) Since si ∈ G

m
, ϕ

m
(a∗

si
)bi ∈ R

m
\{0} and by Lemma 4.3a) with g = 0 and

h = si we have biϕm
(a∗

si
) ∈ R

m
\{0}. So the bi are invertible. The relation (4.5)

follows from (2.12). Next we prove (4.6). From Lemma 4.3a) and Lemma 4.1 we
have ϕ(Asi+s j

) = R
m

bi b j . Switching i and j it follows that (4.6) must hold for some
nonzero λi j ∈ R

m
.

Finally we prove that (4.4) is a basis for B(1)
m

over K . Linear independence is
clear. Let g ∈ G

m
and write g =
∑

i lisi . By repeated use of Lemma 4.3b) we obtain
that

ϕ
m
(Ag) = ϕm

(Asgn(l1)s1
)|l1 | . . .ϕ

m
(Asgn(lk)sk

)|lk |.

For li = 0 the factor should be interpreted as R
m

. By Lemma 4.1,

ϕ
m
(A±si

)l = R
m

b±l
i

for l > 0 so using (4.5) we get

ϕ
m
(Ag) = R

m
b

l1
1 . . . b

lk
k

.

The proof is finished.

4.2 Restricted case

In this subsection we will assume that K is algebraically closed. Moreover we will
assume that the K-algebra inclusion K ,→ R

m
is onto which is the case when R

is finitely generated as a K-algebra by the (weak) Nullstellensatz. Then Zn
ω acts

trivially on R
m

. The structure of B(1)
m

given in Theorem 4.5 is then simplified in the
following way.

Corollary 4.6. Let k = rank G
m

and let bi = ϕm
(asi
) for i = 1, . . . , k where {s1, . . . , sk}

is a Z-basis for G
m

. Then B(1)
m

is the K-algebra with invertible generators b1, . . . , bk

and the relation

bi b j = λi j b j bi , 1≤ i, j ≤ k.
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Using the normal form of a skew-symmetric integral matrix we will now show
that B(1)

m
can be expressed as a tensor product of noncommutative tori. Consider

the matrix (λi j)1≤i, j≤k from (4.6).

Claim 4.7. If B(1)
m

has a nontrivial irreducible finite-dimensional representation, then

all the λi j are roots of unity.

Proof. Indeed, let N be a finite-dimensional simple module over B(1)
m

and let i ∈

{1, . . . , k}. Since K is algebraically closed, bi has an eigenvector 0 6= v ∈ N with
eigenvalue µ, say. Since bi is invertible, µ 6= 0. Let j 6= i and consider the vector
b j v. It is also nonzero, since b j is invertible, and it is an eigenvector of bi with
eigenvalue λi jµ. Repeating the process, we obtain a sequence

µ, λi jµ, λ2
i j
µ, . . .

of eigenvalues of bi . Since N is finite-dimensional, they cannot all be pairwise
distinct, and thus λi j is a root of unity.

For λ ∈ K , let Tλ denote the K-algebra with two invertible generators a and b

satisfying ab = λba. Tλ (or its C∗-analogue) is sometimes referred to as a noncom-
mutative torus.

Theorem 4.8. Let k = rank G
m

. If all the λi j in (4.6) are roots of unity, then there is

a root of unity λ, an integer r with 0≤ r ≤ ⌊k/2⌋ and positive integers pi , i = 1, . . . , r

with 1= p1|p2| . . . |pr such that

B(1)
m
≃ Tλp1 ⊗ Tλp2 ⊗ · · · ⊗ Tλpr ⊗ L

where L is a Laurent polynomial algebra over K in k− 2r variables.

Proof. If k = 1, then B(1)
m
≃ K[b1, b−1

1 ] and r = 0. If k > 1, let p be the smallest
positive integer such that λp

i j
= 1 for all i, j. Using that K is algebraically closed,

we fix a primitive p:th root of unity ǫ ∈ K . Then there are integers θi j such that

λi j = ǫ
θi j

and
θ ji =−θi j . (4.7)

Equation (4.7) means that Θ = (θi j) is a k × k skew-symmetric integer matrix.

Next, consider a change of generators of the algebra B(1)
m

:

bi 7→ b′
i
= b

ui1

1 · · · b
uik

k
(4.8)

Such a change of generators can be done if we are given an invertible k× k integer
matrix U = (ui j). The new commutation relations are

b′
i
b′

j
= b

ui1

1 · · · b
uik

k
b

u j1

1 · · · b
u jk

k
=

= λ
u1iu1 j

11 . . .λ
ukiu1 j

k1 · . . .

·λ
u1iuk j

1k
. . .λ

ukiuk j

kk
· b′

j
b′

i
=

= ǫ
∑

p,q θpqupiuq j b′
j
b′

i
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Hence Θ′ = U TΘU . By Theorem IV.1 in [9] there is a U such that Θ′ has the skew
normal form



























0 θ1

−θ1 0
0 θ2

−θ2 0
.. .

0 θr

−θr 0
0



























where r ≤ ⌊k/2⌋ is the rank of Θ, the θi are nonzero integers, θi |θi+1 and 0 is a
k− 2r by k− 2r zero matrix. Set λ= ǫθ1 and pi = θi/θ1 for i = 1, . . . , r. The claim
follows.

The following result, describing simple modules over the tensor product of non-
commutative tori, is more or less well-known, but we provide a proof for conve-
nience.

Proposition 4.9. Let M be a finite dimensional simple module over

T := Tλ1
⊗ · · · ⊗ Tλr

,

where the λi are roots of unity in K. Then there are simple modules Mi over Tλi
such

that, as T -modules,

M ≃ M1 ⊗ · · · ⊗Mr .

Proof. Denote the generators of Tλi
by ai and bi . We will view Tλi

as subalgebras
of T . Since the elements ai , i = 1, . . . , r commute and M is finite dimensional and
K is algebraically closed, there is a nonzero common eigenvector w ∈ M of the ai:

aiw = µiw, i = 1, . . . , r, (4.9)

where µi ∈ K∗ because ai is invertible. Let ni be the order of λi . Then b
ni

i
acts as a

scalar by Schur’s Lemma. By simplicity of M , any element of M has the form (using
the commutation relations and (4.9))

∑

j∈Zr , 0≤ ji<ni

ρ j b
j1
1 . . . b jr

r
·w, (4.10)

where ρ j ∈ K . This shows that

dimK M ≤ n1 · . . . · nr .

But the terms in (4.10) all belong to different weight spaces with respect to the
commutative subalgebra generated by a1, . . . , ar :

ai · b
j1
1 . . . b jr

r
w = λ

ji
i
µi · b

j1
1 . . . b jr

r
w, i = 1, . . . , r,
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and
(λ

j1
1 µ1, . . . ,λ jr

r
µr) 6= (λ

l1
1 µ1, . . . ,λlr

r
µr)

if j, l ∈ Zr , 0 ≤ ji , li < ni and j 6= l. Hence by standard results they must be linearly
independent. Thus

dimK M = n1 · . . . · nr . (4.11)

Next, set Mi = Tλi
·w. Then Mi = ⊕

ni−1
j=0 K b

j

i
·w and

dimK Mi = ni . (4.12)

Finally, define
ψ : M1 ⊗ . . .⊗Mr → M

by
ψ(w⊗ . . .⊗ w) = w

and by requiring that ψ is a T -module homomorphism. This is possible since M1⊗

. . . ⊗ Mr is generated by w ⊗ . . . ⊗ w as a T -module. Then ψ is surjective, since
M is simple. Also the dimensions on both sides agree, so ψ is an isomorphism of
T -modules.

5 Explicit formulas for the induced modules

In this section we show explicitly how one can obtain simple weight modules with
no proper inner breaks over a TGWA (equivalently over a TGWC by Proposition
4.2) from the structure of its weight spaces as B(ω)-modules.

Since the B(ω)-modules were described in the restricted case in Subsection 4.2,
we obtain in particular a description of all simple weight modules over A with no
proper inner breaks and finite-dimensional weight spaces if R is finitely generated
over an algebraically closed field K .

5.1 A basis for M

Let {vi}i∈I be a basis for M
m

over K . By Lemma 4.3a), G̃
m

is the union of some
cosets in Zn/G

m
. Let S ⊆ Zn be a set of representatives of these cosets. For g ∈ G̃

m
,

choose rg ∈ R such that a′
g

:= rg a∗
g

satisfies ϕ
m
(a′

g
)ϕ

m
(ag) = 1.

Theorem 5.1. The set C = {ag vi | g ∈ S, i ∈ I} is a basis for M over K.

Proof. First we show that C is linearly independent over K . Assume that

∑

g,i

λgiag vi = 0.

Then
∑

i λgi ag vi = 0 for each g since the elements belong to different weight
spaces. Hence 0 = a′

g

∑

i λgi ag vi =
∑

i λgi vi for each g. Since vi is a basis over K ,
all the λgi must be zero.
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Next we prove that C spans M over K . Since M is simple and M
m
6= 0,

M = AM
m
=
∑

g∈Zn

Ag M
m
=
∑

g∈G̃
m

Ag M
m
=
∑

h∈S

∑

g∈h+G
m

Ag M
m
=
∑

h∈S

AhM
m

by Lemma 4.4 and Lemma 4.3c).

Corollary 5.2. supp(M) = {g(m) | g ∈ S} and g(m) 6= h(m) if g,h ∈ S, g 6= h.

Corollary 5.3. dim M = |S| · dim M
m

with natural interpretation of∞.

5.2 The action of A

Our next step is to describe the action of the X i , Yi on the basis C for M . Let
ζ : G̃

m
→ S be the function defined by requiring g − ζ(g) ∈ G

m
.

Theorem 5.4. Let g ∈ S and let v ∈ M
m

. Then

X iag v =

¨

ah · bg,i v if g + ei ∈ G̃
m

,

0 otherwise,

where h= ζ(g + ei) and

bg,i = (−h)(X iag a′
g+ei−h

a′
h
) · ag+ei−h

and

Yi ag v =

¨

ak · cg,i v if g − ei ∈ G̃
m

,

0 otherwise,

where k = ζ(g − ei) and

cg,i = (−k)(Yiag a′
g−ei−k

a′
k
) · ag−ei−k.

Remark 5.5. Note that

deg X iag a′
g+ei−h

a′
h
= deg Yiag a′

g−ei−k
a′

k
= 0

so the action of Zn on these elements is well defined. Thus we see that deg bg,i ∈ G
m

and deg cg,i ∈ G
m

, i.e. that bg,i and cg,i belong to B(ω). Therefore the action of
these elements on a basis element vi of M

m
can be determined if we know the

structure of M
m

as an B(ω)-module. In the restricted case this was described in
Subsection 4.2. Expanding the result in the basis {vi} again and acting by ah or ak

we obtain a linear combination of basis elements from the set C .

Proof. Assume g + ei ∈ G̃
m

. Let h= ζ(g + ei). Then

X i ag v = X i ag a′
g+ei−h

ag+ei−hv =

= (X i ag a′
g+ei−h

a′
h
)ahag+ei−hv =

= ah · (−h)(X iag a′
g+ei−h

a′
h
) · ag+ei−hv.



16 LOCALLY FINITE SIMPLE WEIGHT MODULES OVER TGWAS

If g + ei /∈ G̃
m

, then X i ag v = 0 by Lemma 4.4.

Assume g − ei ∈ G̃
m

. Let k = ζ(g − ei). Then

Yiag v = Yiag a′
g−ei−k

ag−ei−kv =

= (Yiag a′
g−ei−k

a′
k
)akag−ei−k v =

= ak · (−k)(Yiag a′
g−ei−k

a′
k
) · ag−ei−k v.

If g − ei /∈ G̃
m

, then Yiag v = 0 by Lemma 4.4.

Note that we do not need the technical assumptions in the proof of Theorem 1
in [8] under which the exact formulas for simple weight modules were obtained.

6 Application to quantized Weyl algebras

In this final part we will apply the methods developed in the previous sections to
the problem of describing representations of the quantized Weyl algebra, defined
in Section 2.2. As mentioned there, it is naturally a TGWA.

First we find the isotropy group and the set G̃
m

expressed as solution of systems
of linear equations (see Proposition 6.3 and Proposition 6.4). These sets are directly
related to the structure of the subalgebra B(ω) (Theorem 4.5) and the support of
a module (Corollary 5.2).

Then in Section 6.2 we give a complete classification of all locally finite simple
weight modules with no proper inner breaks over a quantized Weyl algebra of rank
two. The parameters q1 and q2 are allowed to be any numbers from C\{0,1}.
Example 6.7 shows that the assumption that the modules have no proper inner
breaks is not superfluous.

6.1 The isotropy group and G̃m

Let R= C[t1, . . . , tn] and fix m= (t1−α1, . . . , tn−αn) ∈Max(R). Let ω be the orbit

of m under the action (2.10) of Zn. Set [k]q =
∑k−1

j=0 qi for k ∈ Z and q ∈ C. Recall
the definition (2.9) of the automorphisms σi of R.

Proposition 6.1. Let (g1, . . . , gn) ∈ Z
n. Then

σ
g1

1 . . .σgn

n
(m) =
�

[g1]q1
+ q

g1

1 t1−α1, [g2]q2

�

1+ (q1− 1)α1

�

+ q
g1

1 q
g2

2 t2−α2, . . .

. . . , [g j]q j

�

1+
j−1
∑

r=1

(qr − 1)αr

�

+ q
g1

1 . . . q
g j

j
t j −α j , . . .

. . . , [gn]qn

�

1+
n−1
∑

r=1

(qr − 1)αr

�

+ q
g1

1 . . . qgn

n
tn −αn

�

.

Proof. Induction.
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For notational brevity we set βi = (qi −1)αi and γi = 1+β1+β2+ . . .+βi . We
also set γ0 = 1. The numbers γi will play an important role in the next statements.
By a j-break we mean an ideal n ∈Max(R) such that t j ∈ n.

Corollary 6.2. For j = 1, . . . , n we have

t j ∈ σ
g1

1 . . .σgn
n
(m)⇐⇒ γ j = q

g j

j
γ j−1.

Thus ω contains a j-break iff γ j = qk
j
γ j−1 for some integer k.

Proof. By Proposition 6.1,
t j ∈ σ

g1

1 . . .σgn

n
(m)

iff

[g j]q j

�

1+
j−1
∑

r=1

(qr − 1)αr

�

= α j .

Multiply both sides with q j − 1 to get

(q
g j

j
− 1)(1+ β1 + . . .+β j−1) = β j.

The next Proposition describes the isotropy subgroup Zn
ω defined in (2.14).

Proposition 6.3. We have

Zn
ω
= {g ∈ Zn | (q

g1

1 . . . q
g j

j
− 1)γ j = 0 ∀ j = 1, . . . , n}. (6.1)

Proof. From Proposition 6.1, σg1

1 . . .σgn
n
(m) =m iff

α1 = [g1]q1
+ q

g1

1 α1

α2 = [g2]q2

�

1+ (q1− 1)α1

�

+ q
g1

1 q
g2

2 α2

...

αn = [gn]qn

�

1+ (q1 − 1)α1 + . . .+ (qn−1 − 1)αn−1

�

+ q
g1

1 . . . qgn

n
αn

Multiply the i:th equation by qi − 1. Then the system can be written

β1 = q
g1

1 − 1+ q
g1

1 β1

β2 = (q
g2

2 − 1)(1+ β1) + q
g1

1 q
g2

2 β2

...

βn = (q
gn

n
− 1)(1+ β1+ . . .+βn−1) + q

g1

1 . . . qgn

n
βn

or equivalently

1+ β1 = q
g1

1 (1+ β1)

1+β1 + β2 = q
g2

2 (1+ β1) + q
g1

1 q
g2

2 β2

...

1+ β1 + . . .+βn = qgn

n
(1+ β1 + . . .+βn−1) + q

g1

1 . . . qgn

n
βn
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Now for i from 1 to n − 1, replace the expression 1 + β1 + . . . + βi in the right
hand side of the i+ 1:th equation by the right hand side of the i:th equation. After
simplification, the claim follows.

Note that it follows from (6.1) that the subgroup

Q = {g ∈ Zn | q
g j

j = 1 for j = 1, . . . , n} (6.2)

of Zn is always contained in Zn
ω for any orbit ω. Moreover Zn

ω = Q if ω (viewed
as a subset of Cn) does not intersect the union of the hyperplanes in Cn defined
by the equations 1+ (q1 − 1)x1 + . . .+ (q j − 1)x j = 0 (1 ≤ j ≤ n). Of course the
group Q can be trivial. This is the case for example when all the q j are positive real
numbers.

Another case of interest is when for any j, q
g1

1 . . . q
g j

j
= 1 implies g1 = . . . =

g j = 0. If for instance the q j are pairwise distinct prime numbers this hold. Then
Zn
ω = {0} unless 1+ β1+ . . .+β j = 0 for all j, i.e. unless ω contains the point

n0 = (t1− (1− q1)
−1, t2, . . . , tn).

So in this very special case we have ω= {n0} and Zn
ω = Z

n.
We now turn to the set G̃

m
defined in (4.1) which can here be described explic-

itly in terms of m in the following way.

Proposition 6.4.

G̃
m
= G̃(1)

m
× . . .× G̃(n)

m
,

where

G̃( j)
m
= {k ≥ 0 | γ j 6= qi

j
γ j−1 ∀i = 0,1, . . . , k− 1}∪

∪ {k < 0 | γ j 6= qi
j
γ j−1 ∀i =−1,−2, . . . , k}.

Proof. From the relations of the algebra follows that the subspace spanned by the
words in Ag is one-dimensional. Thus g ∈ G̃

m
iff

Z−gn

n
. . . Z

−g1

1 Z
g1

1 . . . Z gn

n
/∈m (6.3)

where Zk
i
= X k

i
if k ≥ 0 and Zk

i
= Y−k

i
if k < 0. Since σi(t j) = t j for j < i, (6.3) is

equivalent to
Z−gn

n
Z gn

n
. . . Z

−g1

1 Z
g1

1 /∈ m.

Since m is prime, this holds iff Z
−g j

j
Z

g j

j
/∈ m for each j. If g j = 0 this is true. If

g j > 0 we have

Z
−g j

j
Z

g j

j
= Y

g j

j
X

g j

j
= Y

g j−1

j
X

g j−1

j
σ
−g j+1

j
(t j) = . . . = t jσ

−1
j
(t j) . . .σ

−g j+1

j
(t j),

while if g j < 0

Z
−g j

j
Z

g j

j
= X

−g j

j
Y
−g j

j
= X

−g j−1

j
Y
−g j−1

j
σ
−g j

j
(t j) = . . . = σ j(t j) . . .σ

−g j

j
(t j).
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Since m is prime, g ∈ G̃
m

iff for all j = 1, . . . , n

t j /∈ σ
i
j
(m), i = 0, . . . , g j − 1 if g j ≥ 0,

and
t j /∈ σ

i
j
(m), i =−1,−2 . . . , g j if g j < 0.

The claim now follows from Corollary 6.2.

Corollary 6.5. If {1,α1,α2, . . . ,αn} is linearly independent over Q(q1, . . . ,qn), then

G̃
m
= Zn.

6.2 Description of simple weight modules over rank two algebras

Assume from now on that A is a quantized Weyl algebra of rank two. In this section
we will obtain a list of all locally finite simple weight A-modules with no proper
inner breaks.

We consider first some families of ideals in Max(R). Define for λ ∈ C,

n
(1)
λ
=
�

t1− (1−λ)(1− q1)
−1, t2 −λ(1− q2)

−1�,

n
(2)
λ
=
�

t1− (1− q1)
−1, t2− λ
�

,

and set n0 = n
(1)
0 = n

(2)
0 . The following lemma will be useful.

Lemma 6.6. For λ ∈ C and integers k, l we have

σk
1σ

l
2(n

(1)
λ
) = n

(1)

λq−k
1

, (6.4)

σk
1σ

l
2(n

(2)
λ
) = n

(2)

λq−k
1 q−l

2

. (6.5)

Proof. Follows from Proposition 6.1 or by direct calculation using the definition
(2.9) of the σi .

The following example shows the existence of locally finite simple weight mod-
ules M over A which have some proper inner breaks.

Example 6.7. Assume that q1λ12 is a root of unity of order r. Let M be a vector
space of dimension r and let {v0, v1, . . . , vr−1} be a basis for M . Define an action of
A on M as follows.

X1vk =

¨

vk+1, k < r − 1

v0, k = r − 1
X2vk = (q1λ12)

−kvk

Y1vk =

¨

(1− q1)
−1vk−1, k > 0

(1− q1)
−1vr−1, k = 0

Y2vk = 0

It is easy to check that (2.6)–(2.8) hold so this defines a module over A. It is
immediate that M = M

m
where m = n0 = (t1 − (1− q1)

−1, t2) so M is a weight
module and M is simple by standard arguments. However, recalling Definition 3.7,
M has some proper inner breaks in the sense that m ∈ supp(M), X2M

m
6= 0 but

Y2X2M
m
= 0.
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We will describe the isotropy groups of the different ideals in Max(R). Let
K1 and K2 denote the kernels of the group homomorphisms from Z × Z to the
multiplicative group C\{0} which map (k, l) to qk

1 and qk
1ql

2 respectively. Then
Q = K1 ∩ K2 where Q was defined in (6.2). For m ∈Max(R), recall that Z2

m
= {g ∈

Z2 | g(m) = m}. The following corollary describes the isotropy group Z2
m

of any
m ∈Max(R).

Corollary 6.8. Let λ ∈ C\{0} and n ∈Max(R)\{n(i)µ | µ ∈ C, i = 1,2}. Then we have

the following equalities in the lattice of subgroups of Z2.

Z2
n0
= Z2

ttttttttt

JJJJJJJJJ

Z2

n
(1)
λ

= K1

KKKKKKKKK

Z2

n
(2)
λ

= K2

sssssssss

Z2
n
=Q

Proof. The family of ideals {n(1)
λ
| λ ∈ C} are precisely those for which γ2 = 0. And

{n
(2)
λ
| λ ∈ C} are exactly those such that γ1 = 0. Thus the claim follows from

Proposition 6.3.

Let M be a simple weight A-module with no proper inner breaks and finite
dimensional weight spaces, m = (t1−α1, t2 −α2) ∈ supp M and let ω be the orbit
of m. We consider four main cases separately: m = n0, m = n

(1)
λ

for some λ 6= 0,

m = n
(2)
λ

for some λ 6= 0 and m /∈ {n(i)µ | µ ∈ C, i = 1,2}. Some of these cases will
contain subcases. In each case we will proceed along the following steps, which
also illustrate the procedure for a general TGWA.

1. Find the sets Zn
m

and G̃
m

using Corollary 6.8 and Proposition 6.4. Write down
G

m
= Zn

m
∩ G̃

m
and choose a basis {s1, . . . , sk} for G

m
over Z.

2. For each g ∈ G̃
m

, choose a word ag of degree g such that a∗
g
ag /∈ m.

3. Using Corollary 4.6, describe B(1)
m

and the finite-dimensional simple B(1)
m

-
module M

m
.

4. Choose a set of representatives S for G̃
m
/G

m
. By Theorem 5.1 we know then

a basis C for M .

5. Calculate the action of X i , Yi on the basis using either relations (2.6)–(2.8)
or Theorem 5.4.

We will use the following notation: Zk
j
= X k

j
if k ≥ 0 and Zk

j
= Y−k

j
if k < 0.

Note that the k in Zk
j

should only be regarded as an upper index, not as a power.
The choice of ag in step two above is more or less irrelevant for a quantized Weyl
algebra because each Ag is one-dimensional. Therefore we will always choose ag =

Z
g1

1 Z
g2

2 where g = (g1, g2).
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6.3 The case m= n0

Here α1 = (1−q1)
−1, α2 = 0 so that γ1 = γ2 = 0. By Corollary 6.8 we have Z2

m
= Z2

and from Proposition 6.4 one obtains that G̃
m
= Z× {0}. Thus G

m
= Z× {0} =

Z · s1 with s1 = (1,0). Since G
m

has rank one, Corollary 4.6 implies that B(1)
m

is
isomorphic to the Laurent polynomial algebra C[T, T−1] in one variable. Therefore
M

m
is one-dimensional, say M

m
= Cv0 and b1 = ϕm

(Z1
1 ) = ϕm

(X1), hence X1, acts
in M

m
as some nonzero scalar ρ. And

Y1v0 = ρ
−1Y1X1v0 = ρ

−1(1− q1)
−1v0.

Here S = {(0,0)} and C = {v0} is a basis for M with the following action:

X1v0 = ρv0, X2v0 = 0, (6.6)

Y1v0 = ρ
−1(1− q1)

−1v0, Y2v0 = 0.

That Z±1
2 v0 = 0 follows from Theorem 5.4 since (0,±1) /∈ G̃

m
.

6.4 The case m= n
(1)
λ

, λ 6= 0

Here α1 = (1 − λ)(1− q1)
−1 and α2 = λ(1 − q1)

−1 so γ1 = λ and γ2 = 0. By
Proposition 6.4, G̃(2)

m
= Z and

G̃(1)
m
= {k ≥ 0 | λ 6= qi

1 ∀i = 0,1, . . . , k− 1} ∪ {k < 0 | λ 6= qi
1 ∀i =−1,−2, . . . , k}.

We consider four subcases according to whether ω contains a 1-break or not
and whether q1 is a root of unity or not.

6.4.1 The case m= n
(1)
λ

, λ 6= 0, ω contains a 1-break and q1 is a root of unity

By Corollary 6.2 λ = qk
1 for some k ∈ Z. Let o1 be the order of q1. Then Z2

m
= K1 =

(o1Z)×Z. We can further assume that k ∈ {0,1, . . . , o1 − 1}.
Note that X k

1 M
m
6= 0 because deg X k

1 = (k, 0) ∈ G̃
m

so Y k
1 X k

1 /∈ m. Hence

σk
1(m) ∈ supp(M). By Lemma 6.6, σk

1(m) = n
(1)

qk
1q−k

1

= n
(1)
1 . We can thus change

notation and let m= n
(1)
1 . Then by Proposition 6.4 we have

G̃
m
= {0,−1,−2, . . . ,−o1 + 1} ×Z.

And G
m
= G̃

m
∩Z2

m
= {0}×Z. By Corollary 4.6, B(1)

m
is a Laurent polynomial algebra

in one variable. Thus M
m

is one dimensional with a basis vector, say v0. X2 acts by
some nonzero scalar ρ on v0 and Y2X2v0 = (1− q2)

−1v0. X1 and Y
o1

1 act as zero on
M

m
by Lemma 4.4 because their degrees (1,0) and (−o1, 0) does not belong to G̃

m
.

As a set of representatives for G̃
m
/G

m
we choose

S = {(0,0), (−1,0), (−2,0), . . . , (−o1 + 1,0)}.



22 LOCALLY FINITE SIMPLE WEIGHT MODULES OVER TGWAS

By Corollary 5.2 we obtain that

supp(M) = {n(1)1 ,n(1)
q−1

1

, . . . ,n(1)
q
−o1+1
1

}.

By 5.1, the set

C = {v j := Y
j

1 v0 | j = 0,1, . . . , o1 − 1}

is a basis for M . The following picture shows the support of the module and how
the X i act on it. Since the Yi just act in the opposite direction of the X i we do not
draw their arrows.

•
X1

//

X2

��
•

X1

//

X2

��
• ······

X2

��
•

X1

//

X2

��
•

X2

��

Using Lemma 6.6,

X1v j = X1Y
j

1 v0 = Y
j−1

1 σ
j

1(t1)v0 = [ j]q1
v j−1

and from relations (2.6)–(2.8) follow that

X2v j = q
j

1λ
j

12Y
j

1 X2v0 = ρλ
j

12q
j

1v j ,

Y2v j = λ
j

21Y jY2v0 = (1− q2)
−1ρ−1λ

j

21v j .

Thus the action on the basis {v0, . . . , vo1−1} is

X1v j =

¨

0, j = 0,

[ j]q1
v j−1, 0< j ≤ o1 − 1,

Y1v j =

¨

v j+1, 0≤ j < o1 − 1,

0, j = o1 − 1,

X2v j = ρλ
j

12q
j

1v j ,

Y2v j = (1− q2)
−1ρ−1λ

j

21v j .

(6.7)

6.4.2 The case m = n
(1)
λ

, λ 6= 0, ω contains a 1-break and q1 is not a root of

unity

Now there is a unique integer k ∈ Z such that λ = qk
1. If k ≥ 0, then G̃(1)

m
is the set

of all integers ≤ k while if k < 0, then G̃(1)
m

is all integers ≥ k+ 1.

If k ≥ 0, X k
1 M

m
6= 0 because (k, 0) ∈ G̃

m
so Y k

1 X k
1 /∈ m. Therefore σk

1(m) =

n
(1)
1 ∈ supp(M). We change notation and let m = n

(1)
1 . Then G̃(1)

m
= {. . . ,−2,−1,0}

and G
m
= {0} × Z. We choose S = {(i, 0) | i ≤ 0}. Y2X2 = (1 − q2)

−1 on M
m

so M
m
= Cv0, for a basis vector v0, and X2v0 = ρv0 for some ρ ∈ C∗. The set
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C = {v j := Y
j

1 v0 | j ≤ 0} is a basis for M and we have the following picture of
supp(M).

······ •
X1 //

X2

��
•

X1 //

X2

��
•

X2

��

One easily obtains the following action on the basis {v j | j ≤ 0}:

X1v j =

¨

0, j = 0,

[ j]q1
v j−1, j ≥ 1,

Y1v j = v j+1,

X2v j = ρλ
j

12q
j

1v j ,

Y2v j = (1− q2)
−1ρ−1λ

j

21v j .

(6.8)

The case k < 0 is analogous and yields a lowest weight representation with

m= n
(1)

q−1
1

as its lowest weight. A basis for M is then

C = {v j := X
j

1v0 | j ≥ 0},

where M
m
= Cv0 and the action is given by

X1v j = v j+1,

Y1v j =

¨

0, j = 0,

[− j]q1
v j−1, j > 0,

X2v j = (q1λ12)
− jρv j ,

Y2v j = λ
j

12(1− q2)
−1ρ−1v j .

(6.9)

6.4.3 The case m= n
(1)
λ

, λ 6= 0, ω contains no 1-break and q1 is a root of unity

By Corollary 6.2, λ 6= qk
1 for all k ∈ Z. So by Proposition 6.4, G̃

m
= Z2. G

m
=

(o1Z)×Z and we can choose S = {0,1, . . . , o1 − 1} × {0}. From

X
o1

1 X2 = (q1λ12)
o1 X2X

o1

1 = λ
o1

12X2X
o1

1

and Corollary 4.6 follows that B(1)
m
≃ Tλo1

12
. It can only have finite-dimensional

irreducible representations if λo1

12 is a root of unity. Assuming this, any such rep-
resentation is r-dimensional, where r is the order of λo1

12, and is parametrized by
C∗ ×C∗ ∋ (ρ,µ) with basis

M
m
= Span{v j := X

j

2v0 | j = 0,1, . . . , r − 1},

where X
o1

1 v0 = ρv0 and relations

X
o1

1 v j = λ
o1 j

12 ρv j ,

X2v j =

¨

v j+1, 0≤ j < r − 1,

µv0, j = r − 1.
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Therefore by Theorem 5.1,

M = Span{wi j = X i
1v j | 0≤ i < o1, 0≤ j < r}.

Using the commutation relations and the formulas in Lemma 6.6 we can write
down the action as follows.

X1wi j =

¨

wi+1, j, 0≤ i < o1 − 1,

λ
o1 j

12 ρw0, j , i = o1 − 1,

Y1wi j =

¨

(1−λ)(1− q1)
−1λ
−o1 j

12 ρ−1wo1−1, j , i = 0,

(1−λq−i
1 )(1− q1)

−1wi−1, j, 0< i ≤ o1 − 1,

X2wi j =

¨

q−i
1 λ

i
21wi, j+1, 0≤ j < r − 1,

q−i
1 λ

i
21µwi,0, j = r − 1,

Y2wi j =

¨

λi
12µ
−1λ(1− q2)

−1wi,r−1, j = 0,

λi
12λ(1− q2)

−1wi, j−1, 0< j ≤ r − 1.

(6.10)

The action can be illustrated in the following way.

•
X1 //

X2

��
•

X1 //

X2

��
• ······

X2

��
•

X1 //

X2

��
•

X2

��

X1

dd

6.4.4 The case m = n
(1)
λ

, λ 6= 0, ω contains no 1-break and q1 is not a root of

unity

By Corollary 6.2, λ 6= qk
1 for all k ∈ Z. Now Z2

m
= {0} × Z so G

m
= {0} ×Z. M

m
is

one-dimensional with basis v0, say, and X2 = ρ on M
m

while Y2X2 = λ(1−q2)
−1 6= 0

on M
m

. We choose S = Z×{0}. Then a basis for M is

C = {v j := X
j

1v0 | j ≥ 0} ∪ {v j := ζ jY
− j

1 v0 | j < 0},

where we determine ζ j by requiring that X1v j = v j+1 for all j. Explicitly we have
for j < 0,

ζ j =
(1− q1)

− j

(1−λq
− j

1 )(1− λq
− j−1
1 ) . . . (1−λq1)

.

Using the commutation relations and the formulas in Lemma 6.6 we get the action
on M = Span{v j | j ∈ Z}.

X1v j = v j+1, X2v j = q
− j

1 λ
− j

12ρv j , (6.11)

Y1v j =
1−λq

− j+1
1

1− q1
v j−1, Y2v j = λ

j

12λ(1− q2)
−1ρ−1v j ,
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and a corresponding diagram

······ •
X1 //

X2

��
•

X1 //

X2

��
• ······

X2

��
.

6.5 The case m= n
(2)
λ

, λ 6= 0

Here γ1 = 0 while γ2 = λ(q2−1). By Corollary 6.2, ω does not contain any breaks.
We have G̃

m
= Z2 and G

m
= Z2

m
= K2.

We will need some lemmas in order to proceed.

Lemma 6.9. For k, l ∈ Z we have

Zk
1 Z l

2 = qkl̄
1 λ

kl
12Z l

2Zk
1 , (6.12)

where l̄ =max{0, l}.

Proof. Relations (2.6)–(2.8) can be rewritten in the more compact form

Zk
1 Z l

2 = q
kδl,1

1 λkl
12Z l

2Zk
1 , k, l =±1,

where δl,1 is the Kronecker symbol. After repeated application of this, (6.12) fol-
lows.

By Lemma 6.6 we have for k, l ∈ Z,

σk
1σ

l
2(t1) = (1− q1)

−1 mod m, (6.13)

σk
1σ

l
2(t2) = λqk

1ql
2 mod m. (6.14)

Lemma 6.10. Let k, l ∈ Z and let m = min{|k|, |l|}. Then, as operators on M
m

, we

have

Zk
1 Z l

1 =

¨

Zk+l
1 , kl ≥ 0,

(1− q1)
−mZk+l

1 , kl < 0,
(6.15)

Zk
2 Z l

2 =

(

Zk+l
2 , kl ≥ 0,

λmq
(1−2l+(sgn l)m)m/2
2 Zk+l

2 , kl < 0.
(6.16)

Proof. Direct calculation using (6.13) and (6.14). For example if k > 0 and l < 0
we have

Zk
2 Z l

2 = X k
2 Y−l

2 = X k−1
2 σ2(t2)Y

−l−1
2 =

= X k−1
2 Y−l−1

2 σ−l
2 (t2) = X k−1

2 Y−l−1
2 λq−l

2 = . . . =

= λq−l
2 λq−l−1

2 . . .λq
−l−(m−1)
2 Zk+l

2 =

= λmq
−lm−m(m−1)/2
2 Zk+l

2 .
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Lemma 6.11. Let k, l ∈ Z and let m=min{|k|, |l|}. Then, as operators on M
m

,

Zk
1 Z l

1 = Z l
1Zk

1 , (6.17)

and

Zk
2 Z l

2 = c(k, l)Z l
2Zk

2 , (6.18)

where

c(k, l) =

(

1, kl ≥ 0,

q
(k−l)m−(sgn k−sgn l)m2/2
2 , kl < 0.

(6.19)

Proof. Follows directly from Lemma 6.10.

Lemma 6.12. Let g = (g1, g2) ∈ Z
2 = G̃

m
and set rg = ϕm

(a∗
g
ag)
−1 where ϕ

m
is the

projection R→ R/m = K. Then

rg = (1− q1)
|g1|(λ−1q

(g2−1)/2
2 )|g2| (6.20)

and (ag)
−1 = rg a∗

g
= rg Z

−g2

2 Z
−g1

1 as operators on M
m

.

Proof. We have

a∗
g
ag = (Z

g1

1 Z
g2

2 )
∗Z

g1

1 Z
g2

2 = Z
−g2

2 Z
−g1

1 Z
g1

1 Z
g2

2 = Z
−g1

1 Z
g1

1 Z
−g2

2 Z
g2

2 ,

by Lemma 6.9. Thus by Lemma 6.10,

ϕ
m
(a∗

g
ag) = (1− q1)

−|g1|λ|g2|q
(1−2g2+g2)|g2 |/2
2

which proves the formula. The last statement is immediate.

We consider the three subcases corresponding to the rank of the free abelian
group K2.

6.5.1 The case m= n
(2)
λ

,λ 6= 0, rank K2 = 0

G
m
= K2 = {0} so B(1)

m
= R which is commutative, hence M

m
= Cv0 for some v0,

and S = Z2. Thus C = {ag v0 | g ∈ Z
2} is a basis for M and using Lemma 6.10 and

Lemma 6.9 we obtain that the action of X i is given by

X1ag v0 =

¨

ag+e1
v0, g1 ≥ 0,

(1− q1)
−1ag+e1

v0, g1 < 0,

X2ag v0 =

¨

(q1λ12)
−g1 ag+e2

v0, g2 ≥ 0,

(q1λ12)
−g1λq

−g2

2 ag+e2
v0, g2 < 0.

(6.21)

The action of Yi on the basis is deduced uniquely from

Y1X1ag v0 = (1− q1)
−1ag v0,

Y2X2ag v0 = λq
−g1

1 q
−g2

2 ag v0,
(6.22)

which hold by (6.13) and (6.14).
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6.5.2 The case m= n
(2)
λ

,λ 6= 0, rank K2 = 1

Let (a, b) be a basis element. Since G
m
= K2 which is of rank one, B(1)

m
≃ C[T, T−1]

by Corollary 4.6 so M
m

is one-dimensional. As before we let M
m
= Cv0. Then

Za
1 Z b

2 v0 = ρv0 for some ρ ∈ C∗.
We assume a 6= 0. The case b 6= 0 can be treated similarly. By changing basis,

we can assume that a > 0. Choose S = {0,1, . . . , a − 1} × Z. The corresponding
basis for M is

C = {wi j := X i
1Z

j

2 v0 | 0≤ i ≤ a− 1, j ∈ Z}.

We now aim to apply Theorem 5.4. If 0 ≤ i < a − 1 then clearly X1wi j = wi+1, j .
And

X1wa−1, j = X a
1 Z

j

2v0 ∈ CZ
j−b

2 v0 = Cw0, j−b.

We want to compute the coefficient of w0, j−b. Similarly to the proof of Theorem
5.4 we have, using Lemma 6.12, Lemma 6.9 and (6.16),

X1wa−1, j = Za
1 Z

j

2v0 = (Z
a
1 Z

j

2r(a,b)Z
−b
2 Z−a

1 )Z
a
1 Z b

2 v0 =

= r(a,b)(q1λ12)
jaqa·−b

1 λ−ab
12 Z

j

2Z−b
2 Za

1 Z−a
1 ρv0 =

= (λ−1q
(b−1)/2
2 )|b|q

a( j+−b)

1 λ
a( j−b)

12 ρC0w0, j−b,

where

C0 =

(

1, b ≤ 0,

λmin{ j,b}q
(1+2b−min{ j,b})min{ j,b}/2
2 , b > 0.

Using Lemma 6.9 one easily get the action of X2 on the basis. We conclude that

X1wi j =

(

wi+1, j , 0≤ i < a− 1,

(λ−1q
(b−1)/2
2 )|b|q

a( j+−b)

1 λ
a( j−b)

12 ρC0w0, j−b, i = a− 1,

X2wi j =

¨

q−i
1 λ

i
21wi, j+1, j ≥ 0,

q−i
1 λ

i
21λq

j

2wi, j+1, j < 0.

(6.23)

The action of the Yi is uniquely determined by

Y1X1vi j = (1− q1)
−1vi j ,

Y2X2vi j = λq−i
1 q
− j

2 vi j ,
(6.24)

which hold by (6.13)–(6.14). See Figure 1 for a visual representation.

6.5.3 The case m= n
(2)
λ

,λ 6= 0, rank K2 = 2

Let s1 = a = (a1, a2), s2 = b = (b1, b2) be a basis for G
m
= K2 over Z. We can

assume that a1, b1 ≥ 0 and that d :=
�

�

�

a1 b1
a2 b2

�

�

� > 0.
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||

• //

...
• //

...
• //

...
•

...

}}

• //
��

• //
��

• //
��

•
��

}}

• //
��

• //
��

• //
��

•
��

...
...

...
...

Figure 1: Example of a weight diagram for M when m = n
(2)
λ

, λ 6= 0 and rank K2 =

1. Here a = 4, b =−2. The action of X1 is indicated by→ arrows, while⇒ arrows
are used for X2.

By Corollary 4.6, B(1)
m
≃ Tν for some ν which we will now determine. Using

Lemma 6.9 and Lemma 6.11 we have, as operators on M
m

,

Z
a1

1 Z
a2

2 Z
b1

1 Z
b2

2 = q
−b1a1

1 λ
−b1a2

12 c(a2, b2)Z
b1

1 Z
a1

1 Z
b2

2 Z
a2

2 =

= q
a1 b2−b1a2

1 λ
a1 b2−b1a2

12 c(a2, b2)Z
b1

1 Z
b2

2 Z
a1

1 Z
a2

2 .

We conclude that B(1)
m
≃ Tν where

ν = λd
12q

a1 b2−b1a2

1 c(a2, b2). (6.25)

The function c was defined in (6.19), d = a1 b2−b1a2 and k :=max{0, k} for k ∈ Z.
For M

m
to be finite-dimensional it is thus necessary that this ν is a root of unity.

Assume this and let r denote its order. Then dim M
m
= r. Let

{v0, v1, . . . , vr−1} (6.26)

be a basis such that

Z
a1

1 Z
a2

2 v j = ν
jρv j , (6.27)

Z
b1

1 Z
b2

2 v j =

¨

v j+1, 0≤ j < r − 1,

µv0, j = r − 1,
(6.28)

where ρ,µ ∈ C∗.
The next step is to determine a set S ⊆ G̃

m
= Z2 of representatives for the set

of cosets G̃
m
/G

m
= Z2/K2 which makes it possible to write down the action of the

algebra later. We proceed as follows.
Recall that K2 = Z · (a1, a2)⊕Z · (b1, b2). Let d1 be the smallest positive integer

such that (d1, 0) ∈ K2. We claim that d1 = d/GCD(a2, b2). Indeed d1 must be of the
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form ka1 + l b1 where k, l ∈ Z and ka2 + l b2 = 0 with GCD(k, l) = 1. For such k, l,
k|b2, l|a2 and b2/k = −a2/l =: p > 0. Then GCD(a2/p, b2/p) = 1 which implies
that GCD(a2, b2) = p. Thus d1 = ka1 + l b1 = (b2a1 − a2 b1)/p = d/GCD(a2, b2) as
claimed.

Next, let d2 denote the smallest positive integer such that some K2-translation
of (0, d2) lies on the x-axis, i.e. such that

�

(0, d2) + K2

�

∩Z× {0} 6= ;.

Such an integer exists because if we write GCD(a2, b2) = ka2+ l b2, then

(0, ka2 + l b2)− k(a1, a2)− l(b1, b2) = (−ka1− l b1, 0).

On the other hand if (0, d2) + ka + lb ∈ Z × {0}, i.e. if d2 = ka2 + l b2, then
GCD(a2, b2)|d2. Therefore d2 = GCD(a2, b2).

We also see that for any point in Z2 of the form (x , d2) there is a g ∈ K2 such
that (x , d2) + g ∈ Z× {0}. Also, (d1, 0) ∈ K2 so for any point of the form (d1, y)

there is a g ∈ K2 (namely (−d1, 0)) such that (d1, y) + g ∈ {0} ×Z.
Suppose now that for some k, l ∈ Z,

k(a1, a2) + l(b1, b2) ∈ K2 ∩ {0,1, . . . , d1 − 1} × {0,1, . . . , d2 − 1}.

Then we would have (0, ka2+l b2)−(ka+lb) ∈ Z×{0} and ka2+l b2 ∈ {0,1, . . . , d2−

1} which contradicts the minimality of d2 unless ka2 + l b2 = 0. But in this case
(ka1 + l b1, 0) ∈ K2 which contradicts the minimality of d1 unless ka1 + l b1 = 0.
Hence K2 ∩ {0,1, . . . , d1 − 1} × {0,1, . . . , d2 − 1} = {(0,0)}. We have shown that

S := {0,1, . . . , d1 − 1} × {0,1, . . . , d2 − 1}

is a set of representatives for Z2/K2. In particular we get from Corollary 5.3 that
dim M is finite and

dim M/dim M
m
= |S|= d1d2 = a1 b2 − b1a2.

We fix now integers a′2, b′2 such that

d2 = GCD(a2, b2) = a′2a2 + b′2 b2 (6.29)

and such that −a′2a1 − b′2 b1 ∈ {0,1, . . . , d1 − 1}. This can be done because for any
p ∈ Z, (a′′2 , b′′2 ) := (a′2 + pb2/d2, b′2 − pa2/d2) also satisfies a′′2 a2 + b′′2 b2 = d2 but
now

−a′′2 a1 − b′′2 b1 =−(a
′
2+ pb2/d2)a1− (b

′
2 − pa2/d2)b1 =−a′2a1 − b′2 b1 − pd1.

We set

s =−a′2a1 − b′2 b1. (6.30)
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Figure 2: An example of the action on supp(M)when m= n
(2)
λ

, λ 6= 0 and rank K2 =

2. Here a = (2,−2), b = (3,2), d1 = 5, d2 = 2 and s = 2. The ⇒ arrows indicate
the action of X1 and the→ arrows show the action of X2.

Let (i, j) ∈ S. We have the following reductions in Z2 modulo K2.

(1,0) + (i, j) =

¨

(i+ 1, j), 0≤ i < d1 − 1,

(0, j), i = d1 − 1,

(0,1) + (i, j) =







(i, j+ 1), 0≤ j < d2 − 1,

(i + s, 0), j = d2 − 1, i + s ≤ d1− 1,

(i + s− d1, 0), j = d2 − 1, j+ s > d1 − 1.

From this we can understand how the X i act on the support of M , see Figure 2 for
an example. By Theorem 5.1 the set

C = {wi jk := X i
1X

j

2vk | 0≤ i < d1, 0≤ j < d2, 0≤ k < r}

is a basis for M where vk is the basis (6.26) for M
m

.
If 0≤ i < d1−1 we clearly have X1wi jk = wi+1, j,k. Suppose i = d1−1. Then by

Lemma 6.9,
X1wi jk = X

d1

1 X
j

2vk = q
d1 j

1 λ
d1 j

12 X
j

2X
d1

1 vk.

Thus we must express X
d1

1 in terms of Z
a1

1 Z
a2

2 and Z
b1

1 Z
b2

2 . Since (d1, 0) = b2/d2a−

a2/d2b we have

(Z
a1

1 Z
a2

2 )
b2/d2(Z

b1

1 Z
b2

2 )
−a2/d2 = C−1

1 X
d1

1 (6.31)

as operators on M
m

for some constant C−1
1 which we must calculate.

Lemma 6.13. The constant C1 defined in (6.31) is given by

C−1
1 = r−b2/d2

a
(q
−a1a2

1 λ
−a1a2

12 )
b2
d2
(

b2
d2
−1)/2
· r

a2/d2

b
(q
−b1 b2

1 λ
−b1 b2

12 )
a2
d2
(

a2
d2
+1)/2
·

· q
b1a2a2 b2/d

2
2

1 λ
b1a2

2 b2/d
2
2

12 r−1
(0,−b2a2/d2)

C ′1, (6.32)

where the rg , g ∈ Z2 are given by (6.20),

C ′1 =

¨

(1− q1)
−min{|a1 b2/d2 |,|b1a2/d2 |}, a2 b2 > 0,

1, a2 b2 ≤ 0,

k =max{0, k} for k ∈ Z and d2 = GCD(a2, b2).
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Proof. If b2 ≥ 0 for example, we have by Lemma 6.9

(Z
a1

1 Z
a2

2 )
b2/d2 = q

−a1a2

1 λ
−a1a2

12 · (q
−a1a2

1 λ
−a1a2

12 )2 · . . .

. . . · (q−a1a2

1 λ
−a1a2

12 )b2/d2−1Z
a1 b2/d2

1 Z
a2 b2/d2

2 =

= (q
−a1a2

1 λ
−a1a2

12 )
b2
d2
(

b2
d2
−1)/2

Z
a1 b2/d2

1 Z
a2 b2/d2

2

When b2 < 0 we get a similar calculation where r−b2/d2
a

appears by Lemma 6.12.

(Z
b1

1 Z
b2

2 )
−a2/d2 can analogously be expressed as a multiple of Z

−b1 a2/d2

1 Z
−b2a2/d2

2 . We

then commute Z
a2 b2/d2

2 and Z
−b1 a2/d2

1 using Lemma 6.9. As a last step we use Lemma
6.10 and obtain two more factors.

We conclude that

X1wi jk =

(

wi+1, j,k, i < d1− 1,

q
jd1

1 λ
jd2

12 C1ν
b2/d2 k′′1ρb2/d2µk′1 w0, j,k′′1

, i = d1− 1.

Here
k− a2/d2 = rk′1+ k′′1 with 0≤ k′′1 < r. (6.33)

Next we turn to the description of how X2 acts on the basis C . If 0≤ j < d2− 1
we have X2wi jk = q−i

1 λ
−i
12wi, j+1,k by Lemma 6.9. Suppose j = d2 − 1. Then, as in

the first step of the proof of Theorem 5.4,

X2wi jk = q−i
1 λ
−i
12X i

1X
d2

2 vk = q−i
1 λ
−i
12X i

1(X
d2

2 r(−s,d2)
Z
−d2

2 Z s
1)(Z

−s
1 Z

d2

2 )vk. (6.34)

By (6.16) and (6.20),

X
d2

2 r(−s,d2)
Z
−d2

2 Z s
1 = r(−s,d2)

r−1
(0,−d2)

Z s
1 = (6.35)

= (1− q1)
s(λ−1q

(d2−1)/2
2 )d2(λ−1q

(−d2−1)/2
2 )d2 Z s

1 =

= (1− q1)
s(λ2q2)

−d2 Z s
1.

We must express Z−s
1 Z

d2

2 in the generators of the algebra B(1)
m

in order to calculate
its action on vk.

(Z
a1

1 Z
a2

2 )
a′2(Z

b1

1 Z
b2

2 )
b′2 = C−1

2 Z−s
1 Z

d2

2 , (6.36)

for some C2 ∈ C
∗ since the degree on both sides are equal by (6.29) and (6.30).

Similarly to the proof of Lemma 6.13,

C−1
2 = r

−a′2
a (q

−a1a2

1 λ
−a1a2

12 )a
′
2(a
′
2−1)/2 · r

−b′2
b
(q
−b1 b2

1 λ
−b1 b2

12 )b
′
2(b
′
2−1)/2·

· q
−b1 b′2a2a′2
1 λ−b1 b′2a2a′2 C ′2C ′′2 , (6.37)

and

C ′2 =

¨

1, a′2 b′2 ≥ 0,

(1− q1)
−min{|a1a′2 |,|b1 b′2 |}, a′2 b′2 < 0,

C ′′2 =

(

1, a2a′2 b2 b′2 ≥ 0,

λm′q
(1−2b2 b′2+(sgn b2 b′2)m

′)m′/2
2 , a2a′2 b2 b′2 < 0,
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where m′ =min{|a2a′2|, |b2 b′2|}. Furthermore, letting

b′2 + k = rk′2 + k′′2 , where 0≤ k′′2 < r (6.38)

we have by (6.27)–(6.28),

(Z
a1

1 Z
a2

2 )
a′2(Z

b1

1 Z
b2

2 )
b′2 vk = ν

a′2 k′′2ρa′2µk′2 vk′′2
. (6.39)

If i + s ≤ d1 − 1 we can now write down the action of X2 on wi jk by combining
(6.34)–(6.37), (6.39) to get a multiple of wi+s,0,k′′2

. However if i + s > d1 − 1, we
must reduce further because then (i+ s, 0) /∈ S. Let

k′′2 − a2/d2 = rk′3 + k′′3 , where 0≤ k′′3 < r. (6.40)

Then by the calculations for the action of X
d1

1 on M
m

,

X
d1

1 vk′′2
= X

i+s−d1

1 X
d1

1 vk′′2
= C1µ

k′3νk′′3 b2/d2ρb2/d2 wi+s−d1,0,k′′3
.

Summing up, M has a basis

{wi jk | 0≤ i < d1, 0≤ j < d2, 0≤ k < r}

and X1, X2 act on this basis as follows.

X1wi jk =

(

wi+1, j,k, i < d1 − 1,

q
jd1

1 λ
jd2

12 C1ν
b2/d2k′′1ρb2/d2µk′1 w0, j,k′′1

, i = d1 − 1.

X2wi jk = (q1λ12)
−i ·

·































wi, j+1,k,

if 0≤ j < d2− 1,

(1− q1)
s(λ2q2)

−d2 C2ν
a′2 k′′2ρa′2µk′2 wi+s,0,k′′2

,

if j = d2− 1 and i + s ≤ d1 − 1,

(1− q1)
s(λ2q2)

−d2 C2ν
a′2 k′′2+k′′3 b2/d2ρa′2+b2/d2µk′2+k′3 C1wi+s−d1 ,0,k′′3

,

if j = d2− 1 and i + s > d1 − 1,

(6.41)

where C1 is given by (6.32), C2 by (6.37) and ν by (6.25). The parameters ρ and
µ comes from the action (6.27), (6.28) of B(1)

m
on M

m
and k′

i
, k′′

i
are defined in

(6.33), (6.38) and (6.40).
The action of the Yi is uniquely determined by

Y1X1wi jk = (1− q1)
−1wi jk,

Y2X2wi jk = λq−i
1 q
− j

2 wi jk.
(6.42)

We remark that the case q1 = q2 corresponds to a = (a1, a2) = (1,−1). Then
d2 = 1, d1 = d = |b1 + b2| and s = 1. X1 and X2 will act on the support in the
same direction, cyclically as in Figure 3. The explicit action can be deduced from
the above more general case noting that here k′′2 = k, k′2 = 0 and

k′1 = k′3 =

¨

0, k < r − 1,

1, k = r − 1,
k′′1 = k′′3 =

¨

k, k < r − 1,

0, k = r − 1.
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• // • // • ...... • // •
zz

Figure 3: Weight diagram when m = n
(2)
λ

, λ 6= 0, rank K2 = 2 and q1 = q2.

6.6 The case m 6∈ {n(i)
µ
| µ ∈ C, i = 1, 2}

This is the generic case. We have Z2
m
= Q by Corollary 6.8. Our statements here

generalize without any problem to the case of arbitrary rank.
Assume first that the qi are roots of unity of orders oi (i = 1,2) and that ω does

not contain any 1-breaks or 2-breaks. Then by Corollary 6.2 and Proposition 6.4
we have G̃

m
= Z2. Thus G

m
= (o1Z)× (o2Z). Moreover,

X
o1

1 X
o2

2 = λ
o1o2

12 X
o2

2 X
o1

1

so B(1)
m
≃ Tλo1o2

12
by Corollary 4.6. This algebra has only finite dimensional represen-

tations if λo1o2

12 is a root of unity. Assuming this, let r be the order of λo1o2

12 . Then
there are ρ,µ ∈ C∗ and M

m
has a basis v0, v1, . . . , vr−1 such that

X
o1

1 vi = λ
io1o2

12 ρvi

X
o1

2 vi =

¨

vi+1 0≤ i < p− 1

µv0 i = p− 1

Choose S = {0,1, . . . , o1 − 1} × {0,1, . . . , o2 − 1}. The corresponding basis for M is
C = {wi jk := X i

1X
j

2vk | 0 ≤ i < o1, 0 ≤ j < o2, 0 ≤ k < r}. The following formulas
are easily deduced using (2.6)–(2.8).

X1wi jk =

(

wi+1, j,k, k < o1 − 1,

λ
o1(o2k+ j)

12 ρw0 jk, k = o1 − 1,

X2wi jk = (q1λ12)
−i ·







wi, j+1,l , l < o2 − 1,

wi,0,l+1, l = o2 − 1, i < r − 1,

µwi00, l = o2 − 1, i = r − 1.

(6.43)

The action of Y1, Y2 is determined by

Y1X1wi jk = q−i
1 (α1 − [i]q1

)wi jk,

Y2X2wi jk = q−i
1 q
− j

2 (α2 − [ j]q2
(1+ (q1 − 1)α1))wi jk.

(6.44)

In all other cases one can show using the same argument that dim M
n
= 1 for

all n ∈ supp(M) and that M can be realized in a vector space with basis {wi j}(i, j)∈I ,
where I = I1 × I2 is one of the following sets

Nd1
×Nd2

, Nd1
×Z±, Z±×Nd2

, Z×Z,

Z± ×Z, Z×Z±, Z± ×Z±, Z± ×Z∓,
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where Nd = {0,1, . . . , d − 1}, Z± = {k ∈ Z | ± k ≥ 0} and di is the order of qi if
finite. The action of the generators is given by the following formulas.

X1wi j =







wi+1, j, (i + 1, j) ∈ I ,

ρλ
d1 j

12 w0, j, (i + 1, j) /∈ I , I1 = Nd1
and α1 6= [i]q1

,

0, otherwise,

X2wi j = (q1λ12)
−i ·















wi, j+1, (i, j+ 1) ∈ I ,

µwi,0, (i, j+ 1) /∈ I , I2 = Nd2

and α2 6= [ j]q2
(1+ (q1 − 1)α1),

0, otherwise,

(6.45)

Y1wi j = q−i+1
1 (α1 − [i− 1]q1

)·

·







wi−1, j , (i− 1, j) ∈ I ,

(ρλ
d1 j

12 )
−1wd1−1, j, (i− 1, j) /∈ I , I1 = Nd1

and α1 6= [i− 1]q1
,

0, otherwise,

Y2wi j = λ
−i
12q
− j+1
2 (α2 − [ j− 1]q2

(1+ (q1− 1)α1))·

·















wi, j+1, (i, j+ 1) ∈ I ,

µ−1wi,d2−1, (i, j+ 1) /∈ I , I1 = Nd2

and α2 6= [ j− 1]q2
(1+ (q1− 1)α1),

0, otherwise.

(6.46)

Thus we have proved the following result.

Theorem 6.14. Let A be a quantized Weyl algebra of rank two with arbitrary param-

eters q1,q2 ∈ C\{0,1}. Then any simple weight A-module with no proper inner breaks

is isomorphic to one of the modules defined by formulas (6.6), (6.7), (6.8), (6.9),

(6.10), (6.11), (6.21-6.22), (6.23-6.24), (6.41-6.42), (6.43-6.44) or (6.45-6.46).
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Hopf structures on ambiskew polynomial rings

Jonas T. Hartwig

Abstract

We derive necessary and sufficient conditions for an ambiskew polynomial
ring to have a Hopf algebra structure of a certain type. This construction gen-
eralizes many known Hopf algebras, for example U(sl

2
), Uq(sl2) and the en-

veloping algbra of the 3-dimensional Heisenberg Lie algebra. In a torsion-free
case we describe the finite-dimensional simple modules, in particular their di-
mensions and prove a Clebsch-Gordan decomposition theorem for the tensor
product of two simple modules. We construct a Casimir type operator and
prove that any finite-dimensional weight module is semisimple.

1 Introduction

In [4], the authors define a four parameter deformation of the Heisenberg (oscilla-
tor) Lie algebra W γ

α,β(q) and study its representations. Moreover by requiring this

algebra to be invariant under q → q−1, they define a Hopf algebra structure on
W
γ

α,β(q) generalizing several previous results.

The quantum group Uq(sl2(C)) has by definition the structure of a Hopf alge-
bra. In [10], an extension of this quantum group to an associative algebra denoted
by Uq( f (H, K)) (where f is a Laurent polynomial in two variables) is defined and
finite-dimensional representations are studied. The authors show that under cer-
tain conditions on f , a Hopf algebra structure can be introduced. Among these
Hopf algebras is for example the Drinfeld double D(sl

2
).

All of the mentioned algebras fall (after suitable mathematical formalization
in the case of W γ

α,β(q)) into the class of so called ambiskew polynomial rings (see
Section 2 for the definiton). Motivated by these examples of similar classes of
algebras, all of which can be equipped with Hopf algebra structures, we consider a
certain type of Hopf structures on a class of ambiskew polynomial rings.

In Section 2, we recall some definitions and fix notation. We present the con-
ditions for a certain Hopf structure on an ambiskew polynomial ring in Section 3,
while Section 4 is devoted to examples. In Section 5 we introduce some convenient
notation and state some useful formulas for viewing R as an algebra of functions on
its set of maximal ideals. Finite-dimensional simple modules are studied in Section
6. Those have already been classified in [6], but we focus on describing the dimen-
sions in terms of the highest weights. The main result is stated in Theorem 6.19.
The classical Clebsch-Gordan theorem for U(sl

2
) is generalized in Section 7 to the

present more general setting, using the results of the previous section. Finally, in

1



2 HOPF STRUCTURES ON AMBISKEW POLYNOMIAL RINGS

Section 8 we first construct a kind of Casimir operator and prove that it can be used
to distinguish non-isomorphic simple modules. This is then used to prove that any
weight module is semisimple.

2 Preliminaries

Throughout, K will be an algebraically closed field of characteristic zero. All alge-
bras are associative and unital K-algebras.

By a Hopf structure on an algebra A we mean a triple (∆,ǫ,S) where the coprod-

uct ∆ : A→ A⊗ A is a homomorphism, (A⊗ A is given the tensor product algebra
structure) the counit ǫ : A→ K is a homomorphism, and the antipode S : A→ A is
an anti-homomorphism such that

(Id⊗∆)(∆(x)) = (∆⊗ Id)(∆(x)), (Coassociativity) (2.1)

m
�

(Id⊗ǫ)(∆(x))
�

= x = m
�

(ǫ⊗ Id)(∆(x))
�

, (Counit axiom) (2.2)

m
�

(S ⊗ Id)(∆(x))
�

= ǫ(x) = m
�

(Id⊗S)(∆(x))
�

, (Antipode axiom) (2.3)

for all x ∈ A. Here m : A⊗ A → A denotes the multiplication map of A. A Hopf

algebra is an algebra equipped with a Hopf structure. An element x ∈ A of a Hopf
algebra A is called grouplike if ∆(x) = x ⊗ x and primitive if ∆(x) = x ⊗ 1+ 1⊗ x .
In the former case it follows from the axioms that ǫ(x) = 1, x is invertible and
S(x) = x−1 while in the latter ǫ(x) = 0 and S(x) =−x .

If Vi (i = 1,2) are two modules over a Hopf algebra H, then V1 ⊗ V2 becomes
an H-module in the following way

a(v1 ⊗ v2) =
∑

i

(a′
i
v1)⊗ (a

′′
i

v2) (2.4)

for vi ∈ Vi (i = 1,2) if a ∈ H with ∆(a) =
∑

i a′
i
⊗ a′′

i
. From (2.1) it follows that

if Vi (i = 1,2,3) are modules over H then the natural vector space isomorphism
V1⊗ (V2⊗V3)≃ (V1⊗V2)⊗V3 is an isomorphism of H-modules. From (2.2) follows
that the one-dimensional module Kǫ associated to the representation ǫ of H is a
tensor unit, i.e. Kǫ ⊗ V ≃ V ≃ V ⊗Kǫ as H-modules for any H-module V .

Let R be a finitely generated commutative algebra over K. Let σ be a K-
algebra automorphism of R, h ∈ R and ξ ∈ K\{0}. Then we define the algebra
A= A(R,σ,h,ξ) as the associative K-algebra formed by adjoining to R two symbols
X+, X− subject to the relations

X±a = σ±1(a)X± for a ∈ R, (2.5)

X+X− = h+ ξX−X+. (2.6)

This algebra is called an ambiskew polynomial ring. Its structure and representa-
tions were studied by Jordan [7] (see also references therein).

We recall the definition of a generalized Weyl algebra (GW-algebra) (see [1]
and references therein). If B is a ring, σ an automorphism of B, and t ∈ B a
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central element, then the generalized Weyl algebra B(σ, t) is the ring extension of
B generated by two elements x+, x− subject to the relations

x±a = σ±1(a)x±, for a ∈ B,

x−x+ = t, and x+x− = σ(t).
(2.7)

The relation between these two constructions is the following. Let A= A(R,σ,h,ξ)
be an ambiskew polynomial ring. Denote by R[t] be the polynomial ring in one
variable t with coefficients in R and let us extend the automorphism σ of R to a
K-algebra automorphism of R[t] satisfying

σ(t) = h+ ξt. (2.8)

Then A is isomorphic to the GW-algebra R[t](σ, t).

3 The Hopf structure

Let A= A(R,σ,h,ξ) be an ambiskew polynomial ring and assume that R has been
equipped with a Hopf structure. In this section we will extend the Hopf structure
on R to A. We make the following ansatz, guided by [4] and [10]:

∆(X±) = X± ⊗ r± + l±⊗ X±, (3.1)

ǫ(X±) = 0, (3.2)

S(X±) = s±X±. (3.3)

The elements r±, l± and s± will be assumed to belong to R.

Theorem 3.1. Formulas (3.1)-(3.3) define a Hopf algebra structure on A which ex-

tends that of R iff r±, l±, s± are invertible and

(σ⊗ Id) ◦∆|R =∆ ◦σ|R = (Id⊗σ) ◦∆|R, (3.4a)

S ◦σ|R = σ
−1 ◦ S|R, (3.4b)

∆(h) = h⊗ r+r− + l+l− ⊗ h, (3.5a)

ǫ(h) = 0, (3.5b)

S(h) =−(l+l−r+r−)
−1

h, (3.5c)

r± and l± are grouplike, i.e. ∆(x) = x ⊗ x for x ∈ {r±, l±}, (3.6a)

σ(l±)⊗σ(r∓) = ξl±⊗ r∓, (3.6b)

(s±)
−1 =−l±σ

±1(r±). (3.7)
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Proof. From (2.5)-(2.6) we see that ǫ extends to a homomorphism A→ K satis-
fying (3.2) if and only if (3.5b) holds. Assume for a moment that ∆ extends to a
homomorphism A→ A⊗ A. From (3.1)-(3.2) it follows that ǫ is a counit iff

ǫ(r+) = ǫ(r−) = ǫ(l+) = ǫ(l−) = 1. (3.8)

∆ is coassociative iff (dropping the ±)

(Id⊗∆)(∆(X )) = (∆⊗ Id)(∆(X ))

which is equivalent to

X ⊗∆(r) + l ⊗ X ⊗ r + l ⊗ l ⊗ X = X ⊗ r ⊗ r + l ⊗ X ⊗ r +∆(l)⊗ X ,

or
X ⊗ (∆(r)− r ⊗ r) = (∆(l)− l ⊗ l)⊗ X . (3.9)

From (2.5)-(2.6) follows that A has a Z-gradation defined by requiring that deg r =

0 for r ∈ R, deg X± = ±1. This also induces a Z2-gradation on A⊗ A in a natural
way. The left and right hand sides of equation (3.9) are homogenous of different
Z

2-degrees, namely (±1,0) and (0,±1) respectively. Hence, since homogenous
elements of different degrees must be linearly independent, (3.9) is equivalent to
both sides being zero which holds iff r± and l± are grouplike.
∆ respects (2.5) iff (again dropping ±)

∆(X )∆(a) = ∆(σ(a))∆(X ),

(X ⊗ r + l ⊗ X )∆(a) = ∆(σ(a))(X ⊗ r + l ⊗ X ),

(σ⊗ 1)(∆(a)) · (X ⊗ r) + (1⊗σ)(∆(a)) · (l ⊗ X ) = ∆(σ(a))(X ⊗ r + l ⊗ X ),
�

(σ⊗ 1)(∆(a))−∆(σ(a))
�

· (X ⊗ r) +
�

(1⊗σ)(∆(a))−∆(σ(a))
�

· (l ⊗ X ) = 0.

As before the two terms in the last equation have different Z2-degrees and therefore
must be zero. So ∆ respects (2.5) iff (3.4a) holds.

It is straightforward to check that ∆ respects (2.6) iff

h⊗ r+r−+ l+l− ⊗ h−∆(h)+

+
�

l+ ⊗σ(r−)− ξσ
−1(l+)⊗ r−

�

X− ⊗ X++

+
�

σ(l−)⊗ r+ −ξl− ⊗σ
−1(r+)
�

X+ ⊗ X− = 0. (3.10)

Again these three terms have different degrees so each of them must be zero. Hence
(3.5a) holds. Multiply the second term by X+ ⊗ X− from the right:

�

l+ ⊗σ(r−)− ξσ
−1(l+)⊗ r−
�

t ⊗σ(t) = 0.

Here we use the extension (2.8) of σ to R[t] where t = X−X+. If we apply e1 ⊗ e′1
to this equation, where er (e′

r
) for r ∈ R is the evaluation homomorphism R[t]→ R

which maps t (σ(t)) to r, we get

l+ ⊗σ(r−) = ξσ
−1(l+)⊗ r−.
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Applying σ ⊗ 1 to this we obtain one of the relations in (3.6b). Similarly the
vanishing of the third term in (3.10) implies the other.

Assuming that S is an anti-homomorphism A→ A satisfying (3.3), we obtain
that S is an antipode on A iff

S(X±)r± + S(l±)X± = 0= X±S(r±) + l±S(X±),

which is equivalent to (3.7), using that r± and l± are grouplike. And S extends to
a well-defined anti-homomorphism A→ A iff

S(a)S(X±) = S(X±)S(σ
±1(a)), for a ∈ R, (3.11)

S(X−)S(X+) = S(h) + ξS(X+)S(X−). (3.12)

Using (3.7) and that r±, l± are invertible, (3.11) holds iff (3.4b) holds. And (3.12)
holds iff

0= s−X−s+X+ − S(h)−ξs+X+s−X− =

= s−σ
−1(s+)X−X+ − S(h)− s+ξσ(s−)X+X− =

= −S(h)− s+σ(s−)ξh+

+
�

s−σ
−1(s+)− s+σ(s−)ξ

2�t.

Applying e0 and e1 we obtain

S(h) =−ξs+σ(s−)h,

s−σ
−1(s+) = ξ

2s+σ(s−).

Substituting (3.7) in these equations and using (3.6b), the first is equivalent to
(3.5c), while the other already holds.

4 Examples

Many Hopf algebras known in the literature can be viewed as one defined in the
previous section.

4.1 Heisenberg algebra

Let R = C[c] with c primitive, and σ(c) = c. Choose h = c, ξ = r+ = r− = l+ =

l− = 1. Then A is the universal enveloping algebra U(h3) of the three-dimensional
Heisenberg Lie algebra.

4.2 U(sl2) and its quantizations

4.2.1 U(sl
2
)

Let R = C[H] with Hopf algebra structure ∆(H) = H ⊗ 1 + 1 ⊗ H, ǫ(H) = 0,
S(H) = −H. Define σ(H) = H − 1. Choose h = H, ξ = r+ = r− = l+ = l− = 1.
Then A≃ U(sl

2
) as Hopf algebras.
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4.2.2 Uq(sl2)

Let R = C[K , K−1] with Hopf structure defined by requiring that K is grouplike.

Define σ(K) = q−2K , where q ∈ C,q2 6= 1, and choose h = K−K−1

q−q−1 , ξ = r− = l+ = 1

and r+ = K , l− = K−1. Then the equations in Theorem 3.1 are satisfied giving a
Hopf algebra A which is isomorphic to Uq(sl2).

4.2.3 Ŭq(sl2)

For the definition of this algebra, see for example [9]. Let q ∈ C,q4 6= 1. Let R =

C[K , K−1] with K grouplike. Define σ(K) = q−1K , h= K2−K−2

q−q−1 , ξ= 1, r+ = r− = K ,

l+ = l− = K−1. Then A= A(R,σ,h,ξ) is a Hopf algebra isomorphic to Ŭq(sl2).

4.3 Uq( f (H, K))

Let R = C[H, H−1, K , K−1], σ(H) = q2H, σ(K) = q−2K . Let α ∈ C and M , p, r, s, t,
p′, r ′, s′, t ′ ∈ Z such that M = m− n = m′ − n′ = p + t − r − s, s− t = s′ − t ′ and
p − r = p′ − r ′. Set h = α(KmHn − K−m′H−n′), ξ = 1, r+ = K pH r , l+ = K sH t ,
r− = K−s′H−t ′ , l− = K−p′H−r′ . Then A is the Hopf algebra described in [10],
Theorem 3.3.

4.4

Let R = C[H, K , K−1], σ(H) = H − 2, σ(K) = q−2K , h = K−K−1

q−q−1 , ξ = 1 with H

primitive and K grouplike. Let r− = l+ = 1, r+ = K , l− = K−1. Then (3.4)-(3.7)
hold and A(R,σ,h,ξ) is equipped with a Hopf algebra structure. The relevance of
this example is explained in Remark 6.11

4.5 Down-up algebras

The down-up algebra A(α,β ,γ) where α,β ,γ ∈ C, was defined in [2] and studied
by many authors, see for example [3], [5], [7], [8], and references therein. It is
the algebra generated by u, d and relations

ddu= αdud +βudd + γd,

duu= αudu+ βuud + γu.

In [7] it is proved that if σ is allowed to be any endomorphism, not necessarily
invertible, then any down-up algebra is an ambiskew polynomial ring. Here we
consider the down-up algebra B = A(0,1,1). Thus B is the C-algebra with genera-
tors u, d and relations

d2u = ud2 + d, du2 = u2d + u. (4.1)

Let R = C[h], σ(h) = h+ 1 and ξ = −1. Then B is isomorphic to the ambiskew
polynomial ring A(R,σ,h,ξ) via d 7→ X+ and u 7→ X−.
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One can show that B is isomorphic to the enveloping algebra of the Lie super
algebra osp(1,2) and hence has a graded Hopf structure. A question was raised in
[8] whether there exists a Hopf structure on B. We do not answer this question
here but we show the existence of a Hopf structure on a larger algebra Bq giving
us a formula for the tensor product of weight (in particular finite-dimensional)
modules over B.

Let q ∈ C∗ and fix a value of log q. By qa we always mean ea log q. Let Bq be the
ambiskew polynomial ring Bq = A(R,σ,h,ξ) where R= C[h, w, w−1], σ(h) = h+1,
σ(w) = qw, and ξ= −1.

Theorem 4.1. For any ρ,λ ∈ Z such that qρ−λ = −1 and q2ρ = 1, the algebra Bq

has a Hopf algebra structure given by

∆(X±) = X± ⊗ w±ρ +w±λ ⊗ X±, ǫ(X±) = 0,

S(X±) =−w∓λX±w∓ρ =−qρw∓(ρ+λ)X±,

and

∆(w) = w ⊗w, ǫ(w) = 1, S(w) = w−1,

∆(h) = h⊗ 1+ 1⊗ h, ǫ(h) = 0, S(h) = −h.

Proof. The subalgebra C[h, w, w−1] of Bq has a Hopf structure given by the maps

above. We must verify (3.4)-(3.7) with ξ = −1, r± = w±ρ, l± = w±λ, and s± =

−qρw∓(ρ+λ). This is straightforward.

This gives us a tensor structure on the category of modules over Bq. Next aim
is to show how using the Hopf structure on Bq one can define a tensor structure on
the category of weight modules over B.

In general, if C is a commutative subalgebra of an algebra A, we say that an
A-module V is a weight module with respect to C if

V = ⊕
m∈Max(C)Vm

, V
m
= {v ∈ V |mv = 0},

where Max(C) denotes the set of all maximal ideals of C . When C is finitely gen-
erated this is equivalent to V having a basis in which each c ∈ C acts diagonally.

By weight modules over B (Bq) we mean weight modules with respect to the
subalgebra C[h] (C[h, w, w−1]). We need a simple lemma.

Lemma 4.2. Any finite-dimensional module V over B is a weight module.

Proof. By Proposition 5.3 in [7], any finite-dimensional B-module is semisimple.
Since direct sums of weight modules are weight modules we can assume that V

is simple. Since V is finite-dimensional, the commutative subalgebra C[h] has
a common eigenvector v 6= 0, i.e. mv = 0 for some maximal ideal m of C[h].
Acting on this weight vector by X± produces another weight vector: σ±1(m)X±v =

X±mv = 0. Since B is generated by C[h] and X±, any vector in the B-submodule of
V generated by v is a sum of weight vectors. But V was simple so V =⊕

m
V

m
.
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Let W (B) denote the category of weight B-modules and similarly for Bq.

Theorem 4.3. The category of weight modules over B can be embedded into the

category of weight modules over Bq, i.e. there exist functors

W (B)
E
−→W (Bq)

R
−→W (B)

whose composition is the identity functor. In particular, the category of finite-dimensional

B-modules can be embedded in W (Bq).

Proof. R is given by restriction. It takes weight modules to weight modules. Next
we define E . Let V be a weight module over B and define

wv = qαv for v ∈ V(h−α) and α ∈ C. (4.2)

It is immediate that w commutes with h. Let v ∈ V(h−α) be arbitrary. Then

X+wv = X+qαv = qαX+v.

On the other hand, since hX+v = X+(h − 1)v = (α − 1)X+v which shows that
X+v ∈ V(h−(α−1)), we have

qwX+v = qqα−1X+v = qαX+v.

Thus X+w = qwX+. Similarly X−w = q−1wX− on V . Thus V becomes a module
over Bq. That V is a weight module with respect to C[h, w, w−1] is clear. We define
E (V ) to be the same space V with additional action (4.2). If ϕ : V → W is a
morphism of weight B-modules then ϕ(wv) = wϕ(v) for weight vectors v, since
ϕ(V

m
) ⊆ W

m
for any maximal ideal m of C[h]. But then ϕ(wv) = wϕ(v) for all

v ∈ V since V is a weight module. Thus ϕ is automatically a morphism of Bq-
modules and we set E (ϕ) = ϕ. It is clear that the composition of the functors is
the identity on objects and morphisms.

Note that

E
�

W (B)
�

=
�

V ∈ W (Bq) : Supp(V )⊆ {m= (h−α, w − qα) : α ∈ C}
	

. (4.3)

It is not difficult to see that

E (V1)⊗E (V2) ∈ E
�

W (B)
�

and hence there is a unique V3 ∈ W (B) such that

E (V1)⊗E (V2) = E (V3).

Thus we can define
V1 ⊗ V2 := V3

and this will make W (B) into a tensor category.

Remark 4.4. Our result thatW (B) is a tensor category shows that to disprove that
B has a Hopf structure one cannot only use pure representation theory (of weight
modules).
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4.6 Non Hopf ambiskew polynomial rings

There are many examples of ambiskew polynomial rings which do not have any
Hopf structure. One example is the Weyl algebra W = 〈a, b|ab − ba = 1〉 which
can have no counit ǫ. Indeed, a counit is in particular a homomorphism ǫ : W → C

so we would have 1 = ǫ(1) = ǫ(a)ǫ(b) − ǫ(b)ǫ(a) = 0. Moreover all down-
up algebras are ambiskew polynomial rings (see [7]) and [8] contains necessary
conditions for the existence of a Hopf structure on a down-up algebra in terms
of the parameters α,β ,γ. More precisely, they show that if A = A(α,β ,γ) is a
Noetherian down-up algebra that is a Hopf algebra, then α + β = 1. Moreover
if γ = 0, then (α,β) = (2,−1) and as algebras, A is isomorphic to the universal
enveloping algebra of the three-dimensional Heisenberg Lie algebra, while if γ 6= 0,
then −β is not an nth root of unity for n ≥ 3. It would be of interest to generalize
such a result to a more general class of ambiskew polynomial rings and also to
other GW-algebras.

5 R as functions on a group

From now on we assume that A= A(R,σ,h,ξ) is an algebra of the form defined in
Section 3 and that conditions (3.4)-(3.7) hold so that A becomes a Hopf algebra
with R as a Hopf subalgebra. Let G denote the set of all maximal ideals in R. SinceK
is algebraically closed and R is finitely generated, the inclusion map i

m
: K→ R/m

is onto for any m ∈ G and we let ϕ
m

: R → K denote the composition of the
projection R → R/m and i−1

m
. Thus ϕ

m
(a) is the unique element of K such that

a−ϕ
m
(a) ∈ m. We define the weight sum of m,n ∈ G to be

m+ n := ker(m ◦ (ϕ
m
⊗ϕ

n
) ◦∆|R).

This is the kernel of a K-algebra homomorphisms R→K, hence m+n ∈ G. We will
never use the usual addition of ideals so + should not cause any confusion. Using
that ∆ is coassociative, ǫ is a counit and S is an antipode, one easily deduces that
+ is associative, that 0 := kerǫ is a unit element and S(m) is the inverse of m. Thus
G is a group under +. If R is cocommutative, G is abelian.

Example 5.1. Let R = C[H]. Then G = {(H−α)|α ∈ C}. Give R the Hopf structure
∆(H) = H ⊗ 1+ 1⊗ H, ǫ(H) = 0 and S(H) =−H. Then the operation + will be

(H −α) + (H −β) = (H − (α+ β)),

i.e. the correspondence C ∋ α 7→ (H −α) ∈ G is an additive group isomorphism.
If R = C[K , K−1] then G = {(K − α)|α ∈ C∗}. With the Hopf structure ∆(K) =

K ⊗ K , ǫ(K) = 1 and S(K) = K−1, the operation + will be

(K −α) + (K − β) = (K −αβ)

for α,β 6= 0. Thus G ≃ 〈C∗, ·〉.
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We will often think of elements from R asK-valued functions on G and for x ∈ R

and m ∈ G we will use the notation x(m) for ϕ
m
(x). Note however that different

elements x , y ∈ R can represent the same function. In fact one can check that the
map from R to functions on G is a homomorphism of K-algebras with kernel equal
to the radical Rad(R) := ∩

m∈Gm.
Define a map

ζ : Z→ G, n 7→ n := σn(0). (5.1)

Lemma 5.2. Let m,n ∈ G. Then for any a ∈ R,

σ(a)(m) = a
�

σ−1(m)
�

, (5.2)

a(m+ n) = m ◦ (ϕ
m
⊗ϕ

n
) ◦∆(a) =
∑

(a)

a′(m)a′′(n), (5.3)

m+ 1= σ(m) = 1+m. (5.4)

Thus ζ is a group homomorphism and its image is contained in the center of G.

Proof. Since for any a ∈ R we have

σ(a)(m)− a = σ−1�σ(a)(m)−σ(a)
�

∈ σ−1(m),

(5.2) holds. Similarly,
a(m+ n)− a ∈m+ n

so applying the map m◦ (ϕ
m
⊗ϕ

n
)◦∆ to a(m+n)−a yields zero. This gives (5.3).

Finally we have for any a ∈ m,

σ(a)(m+ 1) = m ◦ (ϕ
m
⊗ϕ1) ◦∆(σ(a)) = m ◦ (ϕ

m
⊗ϕ1) ◦ (1⊗σ)∆(a) =

= m ◦ (ϕ
m
⊗ϕ0) ◦∆(a) = a(m+ 0) = a(m) = 0.

Here we used (5.3) in the first and the fourth equality, (3.4a) in the second and
(5.2) in the third. Thus σ(m) ⊆m+ 1 and then equality holds since both sides are
maximal ideals. The proof of the other equality in (5.4) is symmetric.

Example 5.3. If R = C[K , K−1] with ∆(K) = K ⊗ K ,ǫ(K) = 1,S(K) = K−1 and
σ(K) = q−2K , then kerǫ = (K − 1) so

n= σn(0) = σn((K − 1)) = (q−2nK − 1) = (K − q2n).

From (5.3) follows that if x ∈ R is grouplike, then viewed as a function G→ K

it is a multiplicative homomorphism. Using (5.3) and (3.5a)-(3.5c), the following
formulas are satisfied by h as a function on G.

h(m+ n) = h(m)r(n) + l(m)h(n),

h(0) = 0,

h(−m) =−r−1l−1
h(m),

(5.5)

where r = r+r− and l = l+l−.
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6 Finite-dimensional simple modules

In this section we consider finite-dimensional simple modules over the algebra A.
The main theorem is Theorem 6.19 where we, under the torsion-free assumption
(6.1), characterize the finite-dimensional simple modules of a given dimension in
terms of their highest weights. This result will be used in Section 7 to prove a
Clebsch-Gordan decomposition theorem.

Throughout the rest of the paper we will assume that

σn(m) 6=m for any n ∈ Z\{0} and any m ∈ G. (6.1)

By (5.4), this condition holds iff 1 has infinite order in G.

Remark 6.1. Condition (6.1) does not hold for U(h3). For U(sl
2
), the algebra Bq

in Section 4.5 and the algebra in Section 4.4, condition (6.1) always holds. For the
other examples in Section 4, (6.1) holds iff q is not a root of unity.

6.1 Weight modules, Verma modules and their finite-dimensional

simple quotients

In this section we define weight modules, Verma modules and derive an equation
for the dimensions of the finite-dimensional simple quotients of Verma modules.

Let V be an A-module. We call m ∈ G a weight of V if mv = 0 for some nonzero
v ∈ V . The support of V , denoted Supp(V ), is the set of weights of V . To a weight
m we associate its weight space

V
m
= {v ∈ V : mv = 0}.

Elements of V
m

are called weight vectors of weight m. A module V is a weight module

if V =⊕
m

V
m

. A highest weight vector v ∈ V of weight m is a weight vector of weight
m such that X+v = 0. A module V is called a highest weight module if it is generated
by a highest weight vector. From the defining relations of A it follows that

X±V
m
⊆ Vσ±1(m). (6.2)

Equation (6.2) implies that a highest weight module is a weight module.
Let m ∈ G. The Verma module M(m) is defined as the left A-module A/I(m)

where I(m) is the left ideal AX+ + Am⊆ A. From relations (2.5),(2.6) follows that

{vn := X n
−
+ I(m) : n≥ 0}

is a basis for M(m). It is clear that M(m) is a highest weight module generated by
v0. We also see that the vectors vn (n ≥ 0) are weight vectors of weights σn(m)

respectively. By (6.1) we conclude dim M(m)
m
= 1. Therefore the sum of all its

proper submodules is proper and equals the unique maximal submodule N(m) of
M(m). Thus M(m) has a unique simple quotient L(m). Since it is easy to see that
any highest weight module over A of highest weight m is a quotient of M(m) we
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deduce that L(m) is the unique irreducible highest weight module over A with given
highest weight m ∈ G. We set

G f := {m ∈ G | dim L(m)<∞}.

Proposition 6.2. Any finite-dimensional simple module over A is isomorphic to L(m)

for some m ∈ G f .

Proof. Let V be a finite-dimensional simple A-module. Since K is algebraically
closed, R has a common eigenvector v 6= 0, i.e. there exists n ∈ G such that
nv = 0. From (2.5) it follows that σn(n)(X+)

nv = 0 for any n ≥ 0. By (6.1),
the set {X n

+
v : n ≥ 0} is a set of weight vectors of different weights. Since V is

finite-dimensional it follows that (X+)
nv = 0 for some n > 0. This proves the

existence of a highest weight vector of weight m in V for some weight m. Thus
V = L(m).

Corollary 6.3. Let V be a finite-dimensional weight module over A. Then Supp(V )⊆
G f +Z= {m+ n : m ∈ G f , n ∈ Z}.

Proof. Let m ∈ Supp(V ) and let 0 6= v ∈ V
m

. Then (X+)
nv = 0 for some smallest n>

0. But then (X+)
n−1v is a highest weight vector so its weight σn−1(m) = m+ n− 1

must belong to G f . Thus m=m+ n− 1− n− 1 ∈ G f +Z.

The following lemma was essentially proved in [6], Proposition 2.3, and the
general result was mentioned in [7]. We give a proof for completeness.

Proposition 6.4. The dimension of L(m) is the smallest positive integer n such that

n−1
∑

k=0

ξn−1−k
h(m− k) = 0.

Proof. Let em be a highest weight vector in L(m). Let n> 0 be the smallest positive
integer such that X n

−
em = 0. Then the set spanned by the vectors X

j
−em, 0 ≤ j < n,

is invariant under X−, under R using (2.5), and under X+, using (2.6). Hence it is a
nonzero submodule and so coincides with L(m) since the latter is simple. Therefore
n = dim L(m). Let k > 0. Then X k

−
em = 0 implies that X k

+
X k
−

em = 0. Conversely,

suppose X k
+

X k
−

em = 0. Then X k−1
+

X k
−

em generates a proper submodule and thus is

zero. Repeating this argument we obtain X k
−

em = 0. Hence dim L(m) is the smallest
positive integer n such that X n

+
X n
−

em = 0. Using induction it is easy to deduce the
formulas

X+X n
−
= X n−1
−

�

ξnX−X+ +

n−1
∑

k=0

ξn−1−kσk(h)
�

,

X n
+

X n
−
=

n
∏

m=1

�

ξmX−X+ +

m−1
∑

k=0

ξm−1−kσk(h)
�

. (6.3)
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Applying both sides of this equality to the vector em gives

X n
+

X n
−

em =

n
∏

m=1

m−1
∑

k=0

ξm−1−kσk(h)em. (6.4)

Using that em is a weight vector of weight m and formula (5.2) we have

σk(h)em = σk(h)(m)em = h(m− k)em.

Substituting this into (6.4) we obtain

X n
+

X n
−

em =

n
∏

m=1

m−1
∑

k=0

ξm−1−k
h(m− k)em.

The smallest positive n such that this is zero must be the one such that the last
factor is zero. The claim is proved.

Corollary 6.5. If m,m0 ∈ G where h(m0) = 0, then

dim L(m0+m) = dim L(m) = dim L(m+m0).

Proof. Note that (5.5) implies that h(n+m0) = h(n)r(m0) and h(m0+n) = l(m0)h(n)

for any n ∈ G, recall that r and l are invertible and use Proposition 6.4.

6.2 Dimension and highest weights

The goal in this subsection is to prove Theorem 6.19 which describes in detail the
relationship between the dimension of a finite-dimensional simple module and its
highest weight.

We begin with a few useful lemmas. Recall that r = r+r− and l = l+l−. For
brevity we set r1 = r(1) and l1 = l(1). Since r±, l± are grouplike so are r and l and
thus r1, l1 are nonzero scalars.

Lemma 6.6. We have

a) ξ2r1l1 = 1,

b) h(−k) =−r−k
1 l−k

1 h(k) for any k ∈ Z,

c) for any k ∈ Z and m ∈ G we have

ξk
h(m+ k) + ξ−k

h(m− k) =
�

(ξr1)
k + (ξr1)

−k
�

h(m). (6.5)

Proof. For a), multiply the two equations in (3.6b) and apply the multiplication
map to both sides to obtain

σ(l+ l−r+r−) = ξ
2l+l−r+r−.

Evaluate both sides at 1 to get

1= l r(0) = l r(σ−1(1)) = σ(l r)(1) = ξ2l r(1) = ξ2l1r1.
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Next (5.5) gives for any k ∈ Z,

0= h(k− k) = h(k)r−k
1 + lk

1h(−k),

hence b) follows. Finally, using (5.5) again, we have

ξk
h(m+ k) +ξ−k

h(m− k) = ξk
h(m)rk

1 +ξ
k l(m)h(k)+

+ ξ−k
h(m)r−k

1 +ξ
−k l(m)h(−k) =

= h(m)
�

(ξr1)
k + (ξr1)

−k
�

+

+ l(m)h(k)(ξk −ξ−kr−k
1 l−k

1 ).

In the last equality we used part b). Now the second term in the last expression
vanishes due to part a). Thus c) follows.

In what follows, we will treat the two cases when h(1) = 0 and h(1) 6= 0 sep-
arately. The algebras satisfying the former condition have a representation theory
which reminds one of that of the enveloping algebra U(h3) of the three-dimensional
Heisenberg Lie algebra, while the latter case includes U(sl

2
) and other algebras

with similar structure of representations.

6.2.1 The case h(1) = 0.

If h = 0, then, by Proposition 6.4, any finite-dimensional simple module is one-
dimensional. If h 6= 0 we have the following result.

Proposition 6.7. If h 6= 0 and h(1) = 0, then

ξ2 = r2
1 = 1, σ(h) = r1h, σ(r) = r1r, and σ(l) = r1l. (6.6)

In particular, 〈X+, X−,h〉 is a subalgebra of A with relations

[X+, X−] = h, [h, X±] = 0, if ξ = 1, r1 = 1,

[X+, X−] = h, {h, X±}= 0, if ξ = 1, r1 =−1,

{X+, X−}= h, [h, X±] = 0, if ξ =−1, r1 = 1,

{X+, X−}= h, {h, X±}= 0, if ξ =−1, r1 =−1,

respectively, where {·, ·} denotes anti-commutator.

Proof. Suppose h(1) = 0. Then, by Lemma 6.6b), h(−1) = 0. This means that
h ∈ −1 = σ−1(0) = σ−1(kerǫ). Thus ǫ(σ(h)) = 0. Using (2.2), (3.4a) and (3.5a)
we deduce

σ(h) = m(ǫ⊗ 1)(∆(σ(h))) = m(ǫ⊗ 1)(σ⊗ 1)(∆(h)) =

= m
�

ǫ(σ(h))⊗ r + ǫ(σ(l))⊗ h

�

= ǫ(σ(l))h.

Analogously one proves σ(h) = ǫ(σ(r))h. Hence ǫ(σ(r)) = ǫ(σ(l)). But

ǫ(σ(r)) = σ(r)(kerǫ) = σ(r)(0) = r(−1) = r−1
1
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and similarly for l. So r1 = l1. From Lemma 6.6a) we obtain (ξr1)
2 = 1. Now

S(σ(h)) = S(r−1
1 h) =−r−1

1 h, and σ−1(S(h)) = σ−1(−h) =−r1h,

so (3.4b) implies that r2
1 = 1. A similar calculation as above shows that σ(r) =

r−1
1 r = r1r and σ(l) = l−1

1 l = r1l.

We leave it to the reader to prove the following statement.

Proposition 6.8. All finite-dimensional simple modules over an algebra A(R,σ,h,ξ)
satisfying (6.6) and one of the commutation relations above are either one- or two-

dimensional.

Remark 6.9. The algebra U(h3) is an ambiskew polynomial ring, as shown in
Section 4.1. For this algebra we have h(1) = 0 and ξ= r1 = 1.

6.2.2 The case h(1) 6= 0.

In this section, we consider the more complicated case when h(1) 6= 0. We prove
Theorem 6.19 which describes the dimensions of L(m) in terms of m. The following
two subsets of G will play a vital role:

G0 = {m ∈ G | h(m) = 0}, (6.7)

G1/2 = {m ∈ G | h(m− 1) + ξh(m) = 0}. (6.8)

The reason for this notation is that when A = U(sl
2
) as in Section 4.2.1 then we

have G0 = {(H − 0)} and G1/2 = {(H −
1
2
)}. From (5.5) it is immediate that G0 is a

subgroup of G. By Proposition 6.4 we have

G0 = {m ∈ G | dim L(m) = 1}. (6.9)

The following analogous result holds for G1/2.

Proposition 6.10.

G1/2 = {m ∈ G | dim L(m) = 2}. (6.10)

Proof. If m ∈ G1/2, then by Proposition 6.4, dim L(m) ≤ 2. But if dim L(m) = 1,
then h(m) = 0 so using m ∈ G1/2 we get h(m− 1) = 0 also. Since G0 is a group we
deduce that 1 ∈ G0, i.e. h(1) = 0 which is a contradiction. So dim L(m) = 2. The
converse inclusion is immediate from Proposition 6.4.

Set

N =

¨

order of ξr1 if (ξr1)
2 6= 1 and ξr1 is a root of unity,

∞ otherwise.
(6.11)

Remark 6.11. The algebra A(R,σ,h,ξ) from Section 4.4 satisfies condition (6.1)
while N <∞ iff q is a root of unity. In all the other examples from Section 4 where
(6.1) holds, we also have N =∞.
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We also set

N ′ =







N , if N is odd,

N/2, if N is even,

∞, if N =∞.

The next statement describes the intersection of G0 and G1/2 with Z.

Proposition 6.12. We have

G0 ∩Z=

¨

{0}, if N =∞,

N ′Z, otherwise,
(6.12)

and

G1/2 ∩Z>0 =

(

;, if N =∞,

{n ∈ Z>0 : N
�

�2n− 1}, otherwise.
(6.13)

Remark 6.13. The set G1/2 ∩ Z≤0 can be understood using (6.13) and Lemma

6.16a).

Proof. We first prove (6.12). Let n ∈ Z. The right hand side of (6.12) is invariant
under n 7→ −n. By Lemma 6.6b) so is the left hand side. Moreover since h(0) = 0,
the ideal 0 belongs to both sides of the equality. Thus we can assume n> 0.

Using (5.5) and that r and l, viewed as functions G → K, are multiplicative
homomorphisms it follows by induction that

h(n) = h(1)
n−1
∑

i=0

r i
1ln−1−i

1 .

By Lemma 6.6a), r1/l1 = (ξr1)
2/(ξ2r1l1) = (ξr1)

2, so we can rewrite this as

h(n) = h(1)ln−1
1

n−1
∑

i=0

(ξr1)
2i . (6.14)

If N =∞ and (ξr1)
2 6= 1 then by (6.14) we have n ∈ G0∩Z iff (ξr1)

2n = 1, which is
false. If (ξr1)

2 = 1, then (6.14) implies that n /∈ G0 ∩Z. If N <∞, then (ξr1)
2 6= 1

so by (6.14), h(n) = 0 iff (ξr1)
2n = 1 i.e. iff N

�

�2n. This is equivalent to N ′
�

�n.
Next we prove (6.13). Suppose n ∈ Z>0. By definition, n ∈ G1/2 iff

h(n− 1) +ξh(n) = 0.

Using (6.14) on both terms and dividing by h(1)ξln−1
1 , this is equivalent to

ξ−1l−1
1

n−2
∑

k=0

(ξr1)
2k +

n−1
∑

k=0

(ξr1)
2k = 0.

But ξ−1l−1
1 = ξr1 by Lemma 6.6a) so this can be rewritten as

2n−2
∑

k=0

(ξr1)
k = 0. (6.15)
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Thus (ξr1)
2 6= 1 and multiplying by ξr1−1 we get (ξr1)

2n−1 = 1. Therefore N <∞

and N
�

�2n−1. Conversely, if N <∞ and N
�

�2n−1 then (ξr1)
2 6= 1 and (ξr1)

2n−1 = 1
which implies (6.15). This proves (6.13).

Proposition 6.14. Suppose h(1) 6= 0 and G1/2 6= ;. Then

a) ξr1 6=−1, and

b) G1/2 is a left and right coset of G0 in G.

Proof. Let m1/2 ∈ G1/2. To prove a), suppose that ξr1 =−1. Then

0= h(m1/2− 1) +ξh(m1/2) =

= h(m1/2)r(−1) + l(m1/2)h(−1) + ξh(m1/2) =

= h(m1/2)(r
−1
1 + ξ) + l(m1/2)h(−1) =

=−l(m1/2)r
−1
1 l−1

1 h(1),

where we used Lemma 6.6b) in the last equality. Since l is invertible we deduce
that h(1) = 0 which is a contradiction.

To prove part b), we will show that

G1/2 = G0 +m1/2.

One proves G1/2 = m1/2 + G0 in an analagous way. Let m ∈ G0 be arbitrary. Then
using (5.5) twice,

h(m+m1/2 − 1) + ξh(m+m1/2) = l(m)
�

h(m1/2− 1) +ξh(m1/2)
�

= 0.

Since l is invertible we get m+m1/2 ∈ G1/2.
Conversely, suppose m ∈ G1/2. Then

h(m− 1) +ξh(m) = 0,

h(m1/2− 1) + ξh(m1/2) = 0.

Multiply the first equation by r(−m1/2) and the second by −r(−m1/2)l(−m1/2)l(m)

and add them together. Then we get

�

(h(m)r−1
1 + l(m)h(−1)

�

r(−m1/2)−

r(−m1/2)l(−m1/2)l(m)
�

h(m1/2r−1
1 + l(m1/2)h(−1)

�

+ ξh(m−m1/2) = 0,

or equivalently,

h(m)r−1
1 r(−m1/2)− r(−m1/2)l(−m1/2)l(m)h(m1/2)r

−1
1 + ξh(m−m1/2) = 0.

Using (5.5) this can be written

r−1
1 (1+ξr1)h(m−m1/2) = 0.

Since ξr1 6= −1 by part a), we conclude that h(m−m1/2) = 0. This shows that
m ∈ G0 +m1/2.
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The following lemma will be useful.

Lemma 6.15. Let j ∈ Z. If m0 ∈ G0, then

m0 + j ∈ G0⇐⇒ j ∈ G0, (6.16)

and if h(1) 6= 0 and m1/2 ∈ G1/2, then

m1/2 + j ∈ G1/2⇐⇒ j ∈ G0. (6.17)

Proof. (6.16) is immediate since G0 is a subgroup of G. If j ∈ G0, then m1/2 + j ∈

G1/2 by Proposition 6.14. Conversely, if m1/2 + j ∈ G1/2 then by Proposition 6.14,
G0 ∋m1/2 + j −m1/2 = j.

The next statements will be needed in Section 8.

Lemma 6.16. Suppose h(1) 6= 0 and let m,n ∈ G1/2. Then

a) 1−m ∈ G1/2, and

b) m+ n− 1 ∈ G0.

Proof. Part a) follows from the calculation

h(1−m− 1) + ξh(1−m) =−l(−m)r(−m)h(m)− ξl(1−m)(r(1−m)h(m− 1) =

=−l(−m)r(−m)
�

h(m) + ξr1l1h(m− 1)
�

=

=−l(−m)r(−m)ξ−1�ξh(m)+ h(m− 1)
�

= 0.

For part b), use that dim L(1−n) = 2 by part a), and thus m+n−1=m−(1−n) ∈ G0

by Proposition 6.14b).

The formulas provided by the following technical lemma are the key to proving
our main theorem.

Lemma 6.17. Let m ∈ G and j ∈ Z≥0. If n= 2 j + 1 then

n−1
∑

k=0

ξn−1−k
h(m− k) = r

− j

1 h(m− j)

n−1
∑

k=0

(ξr1)
k (6.18)

and if n= 2 j + 2 then

n−1
∑

k=0

ξn−1−k
h(m− k) = r

− j

1

�

h(m− j− 1) + ξh(m− j)
�

n/2−1
∑

k=0

(ξr1)
2k. (6.19)

Proof. If n= 2 j+1, we make the change of index k 7→ j−k, then factor out ξ j and
apply formula (6.5):

2 j
∑

k=0

ξ2 j−k
h(m− k) =

j
∑

k=− j

ξ j+k
h(m− j+ k) = ξ j

h(m− j)

j
∑

k=− j

(ξr1)
k.
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Factoring out (ξr1)
− j and changing index from k to k− j yields (6.18).

For the n= 2 j+2 case we first split the sum in the left hand side of (6.19) into
two sums corresponding to odd and even k:

j
∑

k=0

ξ2 j−2k
h(m− 2k− 1) +

j
∑

k=0

ξ2 j+1−2k
h(m− 2k)

Then we make the change of summation index k 7→ −k+ j/2 in both sums

ξ j

j/2
∑

k=− j/2

ξ2k
h(m− j− 1+ 2k) + ξ j+1

j/2
∑

k=− j/2

ξ2k
h(m− j + 2k)

and use (6.5) on each of them to get

�

h(m− j− 1) +ξh(m− j)
�

ξ j

j/2
∑

k=− j/2

(ξr1)
2k.

If we factor out (ξr1)
− j and change summation index from k to k− j/2 we obtain

(6.19).

We now come to the main results in this section.

Main Lemma 6.18. Assume that h(1) 6= 0 and let m ∈ G. Then

a) dim L(m)≤ N,

b) if dim L(m) = n < N then m ∈ G i−1
2
+ j where n = 2 j + i, i ∈ {1,2}, j ∈ Z≥0,

and

c) if i ∈ {1,2}, j ∈ Z≥0, 2 j+ i ≤ N and m ∈ G i−1
2

then

dim L(m+ j) = 2 j+ i. (6.20)

d) If N ′ <∞ then dim L(m+ N ′ j) = dim L(m) for any j ∈ Z.

Proof. Part a) is trivial when N = ∞. If N is finite and odd, Proposition 6.4
and (6.18) imply that dim L(m) ≤ N . If N is finite and even, then (ξr1)

N = 1

and (ξr1)
2 6= 1 so
∑N/2−1

k=0 (ξr1)
2k = 0. Hence Proposition 6.4 and (6.19) implies

dim L(m)≤ N in this case as well.
Next we turn to part b). Suppose first that dim L(m) = n = 2 j + 1 < N . Then

by Proposition 6.4 and (6.18) the right hand side of (6.18) is zero. The definition
of N implies that h(m− j) = 0, i.e. m ∈ G0 + j. If instead dim L(m) = 2 j + 2 < N ,
Proposition 6.4 and (6.19) similarly implies that m ∈ G1/2 + j.

To prove (6.20), we proceed by induction on j. For j = 0 it follows from (6.9)
and (6.10). Suppose it holds for j = 0,1, . . . , k − 1, where k > 0 and 2k + i ≤ N .
We first show that dim L(m+ k)≤ 2k+ i. If i = 1 then by (6.18),

2k
∑

l=0

ξ2k−l
h(m+ k− l) = r−k

1 h(m)

2k
∑

l=0

(ξr1)
l = 0
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since m ∈ G0. Similarly, if i = 2, then (6.19) gives

2k+1
∑

l=0

ξ2k+1−l
h(m+ k− l) = r−k

1

�

h(m− 1) +ξh(m)
�

k
∑

l=0

(ξr1)
2l = 0

since m ∈ G1/2 in this case. Thus dim L(m+ j) ≤ 2 j + i by Proposition 6.4. Write

dim L(m+k) = 2k′+i′ where k′ ≥ 0, i′ ∈ {1,2} and assume that 2k′+i′ < 2k+i. By
part b) we have m+k ∈ G i′−1

2

+k′ which implies that dim L(m+k−k′) = i′ by (6.9)

and (6.10). This contradicts the induction hypothesis unless k′ = 0. Assuming
k′ = 0 we get m+ k ∈ G i′−1

2

. If i = i′ then from Lemma 6.15 follows that k ∈ G0.

Since 0 < k < 2k+i

2
≤ N/2 ≤ N ′ this contradicts 6.12. We now show that i 6= i′

is also impossible. If i = 1 and i′ = 2, then m ∈ G0 and m + k ∈ G1/2 so by

Proposition 6.14b), k ∈ G1/2 ∩ Z>0. By (6.13) we get N
�

�2k − 1 which is absurd

because 0< 2k−1 < 2k+1≤ N . If i = 2 and i′ = 1 then m ∈ G1/2 and m+ k ∈ G0.
By Proposition 6.14b) we have −k = m − (m + k) ∈ G1/2. By Lemma 6.16a),

1+ k ∈ G1/2 so (6.13) implies that N
�

�2(1+k)−1= 2k+1. This is impossible since
0 < 2k+ 1< 2k+ 2 ≤ N . We have proved that the assumption 2k′ + i′ < 2k+ i is
false and hence that dim L(m+ k) = 2k+ i, which proves the induction step.

Finally, part d) follows from Corollary 6.5 and Proposition 6.12.

Theorem 6.19. Assume h(1) 6= 0 and let m ∈ G.

• If N =∞, then

dim L(m)<∞⇐⇒ m ∈ (G0 +Z≥0)∪ (G1/2 +Z≥0) (6.21)

and

dim L(m0+ j) = 2 j + 1, for m0 ∈ G0 and j ∈ Z≥0, (6.22)

dim L(m1/2 + j) = 2 j + 2, for m1/2 ∈ G1/2 and j ∈ Z≥0. (6.23)

• If N <∞ and N is even, then

dim L(m)<∞⇐⇒ m ∈ (G0 +Z)∪ (G1/2 +Z) (6.24)

and

dim L(m+ (N/2) j) = dim L(m), for any m ∈ G and j ∈ Z, (6.25)

and for m0 ∈ G0 and m1/2 ∈ G1/2 we have

dim L(m0+ j) = 2 j+ 1, if 0≤ j < N/2, (6.26)

dim L(m1/2+ j) = 2 j + 2, if 0≤ j < N/2. (6.27)
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• If N <∞ and N is odd, then

dim L(m)<∞⇐⇒ m ∈ G0 +Z= G1/2 +Z (6.28)

and

dim L(m+ N j) = dim L(m), for any m ∈ G and j ∈ Z, (6.29)

and for m0 ∈ G0 and m1/2 ∈ G1/2 we have

dim L(m0+ j) =

(

2 j+ 1, if 0≤ j < N+1
2

,

2 j+ 1− N , if N+1
2
≤ j < N,

(6.30)

dim L(m1/2+ j) =

(

2 j + 2, if 0≤ j < N−1
2

,

2 j + 2− N , if N−1
2
≤ j < N.

(6.31)

Proof. When N = ∞, relations (6.21)-(6.23) are immediate from Lemma 6.18b)
and c).

Suppose N is finite and even. The ⇒ implication in (6.24) holds by Lemma
6.18b). And (6.25) follows from (6.12) and Corollary 6.5. Assume that m ∈ (G0 +

Z)∪ (G1/2+Z). Using (6.25) we can assume that m=m′+ j where m′ ∈ G0 ∪ G1/2

and 0≤ j < N/2. Then, if i ∈ {1,2} we have 2 j+ i ≤ N and Lemma 6.18c) implies
(6.26)-(6.27) and therefore dim L(m)<∞ so (6.24) is also proved.

Assume that N is finite and odd. By (6.13) we have (N + 1)/2 ∈ G1/2. Therefore
G0 + Z = G0 + (N + 1)/2+ Z = G1/2 + Z since G1/2 is a right coset of G0 in G by
Proposition 6.14. As before, Lemma 6.18b) implies the⇒ case in (6.28) and (6.29)
holds by virtue of (6.12) and Corollary 6.5. If m ∈ G0+Z we can assume by (6.29)
that m ∈ G0+ j where 0≤ j < N . If j < N+1

2
, then 2 j+1< N +2 so since N is odd

we have 2 j+1≤ N . By Lemma 6.18c) we deduce that dim L(m) = 2 j+1. If instead
j ≥ N+1

2
, then m = (N + 1)/2+m− (N + 1)/2 ∈ G1/2 + k where k = j − N+1

2
so

0≤ k < N−1
2

. Thus 2k+ 2≤ N so Lemma 6.18c) implies that dim L(m) = 2k+ 2=
2 j + 1− N . This proves (6.30) and the ⇐ implication in (6.28). Finally (6.31) is
equivalent to (6.30) in the following sense. Let 0≤ j < N and m1/2 ∈ G1/2. Then

dim L(m1/2+ j) = dim L(m0 + j′),

where j′ = j + (N + 1)/2 and m0 = m1/2 − (N + 1)/2. Now m0 ∈ G0 since G1/2 is a

coset of G0 in G. If 0≤ j < N−1
2

, then N+1
2
≤ j′ < N so by (6.30) we have

dim L(m1/2+ j) = dim L(m0+ j′) = 2 j′ + 1− N = 2 j+ 2.

And if N−1
2
≤ j < N , then 0≤ j′ − N < N+1

2
and hence

dim L(m1/2 + j) = dim L(m0+ j′ − N) = 2( j′− N) + 1= 2 j+ 1− N .

The proof is finished.
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Corollary 6.20. If N =∞ and m ∈ G0 ∪ G1/2, then L(m+ j) is infinite-dimensional

for any j ∈ Z<0.

Proof. If the dimension of L(m+ j) were finite and odd (even), then dim L(m+

j− k) = 1 (2) for some k ≥ 0 by Lemma 6.18b). By Lemma 6.18c), L(m) has then
dimension 2( j − k) + 1 (2( j− k) + 2) and thus j = k which is absurd.

Corollary 6.21. Suppose N = ∞ and let m ∈ G f . Then L(m) is the unique finite-

dimensional quotient of M(m).

Proof. It is enough to prove that the unique maximal proper submodule N(m) of
M(m) is simple. By Theorem 6.19 we can write m= n+ j where n ∈ G0 ∪ G1/2 and
j ∈ Z≥0. From the proof of Proposition 6.4 we have

Supp(L(m)) = {n+ j,n+ j − 1, . . . ,n− j}.

Thus N(m) is a highest weight module of highest weight n− j − 1. So N(m) is a
quotient of M(n− j − 1). But M(n− j − 1) is simple, otherwise it would have a
finite-dimensional simple quotient, i.e. L(n− j − 1) would be finite-dimensional,
contradicting Corollary 6.20. Thus N(m) is also simple.

Remark 6.22. We finish this section by remarking that there exist algebras in the
class studied in this paper which do not have even-dimensional simple modules as
for example the algebra Bq from Section 4.5. Indeed, in this case we have ξr1 =−1
and so N = ∞ by definition. By Proposition 6.14, G1/2 = ; so by Theorem 6.19,
there can exist no even-dimensional simple modules.

7 Tensor products and a Clebsch-Gordan formula

As we have seen in Section 2 the existence of a Hopf structure on an algebra al-
lows one to define tensor product of its representations by (2.4). The aim of this
section is to prove a formula which decomposes the tensor product of two simple
A-modules into a direct sum of simple modules. It generalizes the classical Clebsch-
Gordan formula for modules over U(sl

2
). We will assume that A = A(R,σ,h,ξ) is

an ambiskew polynomial ring and that it carries a Hopf structure of the type con-
sidered in Section 3. We will also assume (6.1) and that N =∞.

Lemma 7.1. Let V and W be two A-modules. Then

V
m
⊗W

n
⊆ (V ⊗W)

m+n
(7.1)

for any m,n ∈ G. Hence if V and W are weight modules, then so is V ⊗W and

Supp(V ⊗W ) = {m+ n : m ∈ Supp(V ),n ∈ Supp(W)}.
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Proof. Let v ∈ V
m

, w ∈W
n
. Then for any r ∈ R,

r(v⊗ w) =
∑

(r)

r ′v ⊗ r ′′w =
∑

(r)

r ′(m)v⊗ r ′′(n)w =

=
∑

(r)

r ′(m)r ′′(n)v ⊗w = r(m+ n)v ⊗ w

by (5.3), proving (7.1). Thus if V,W are weight modules,

V ⊗W = (⊕
m

V
m
)⊗ (⊕

n
W

n
) =⊕

m,nV
m
⊗W

n
=⊕

m

�

⊕
m1+m2=m

V
m1
⊗W

m2

�

.

Theorem 7.2. Let m,n ∈ G f . We have the following isomorphism

L(m)⊗ L(n)≃ L(m+ n)⊕ L(m+ n− 1)⊕ . . .⊕ L(m+ n− s+ 1) (7.2)

where s =min{dim L(m), dim L(n)}.

Proof. Let em, en denote highest weight vectors in L(m), L(n) respectively and set
em

j
:= (X−)

jem for j ∈ Z≥0 and similarly for n. Set V = L(m)⊗ L(n). By Lemma 7.1
we have

V
m+n−k =⊕i+ j=kKem

i
⊗ en

j

for k ∈ Z≥0. Fix 0≤ k ≤ s− 1. We will prove that

dim ker X+|V
m+n−k

= 1. (7.3)

It follows from the calculations in the proof of Proposition 6.4 that when j > 0,
X+em

j
is a nonzero multiple of em

j−1. Let νm

j
denote this multiple. Let

u =

k
∑

i=0

λie
m

i
⊗ en

k−i

be an arbitrary vector in V
m+n−k. Then

X+u =

k
∑

i=0

λi(X+em

i
⊗ r+en

k−i
+ l+em

i
⊗ X+en

k−i
) =

=

k−1
∑

i=0

�

λi+1ν
m

i+1r+(n− k+ i + 1) + λi l+(m− i)νn

k−i

�

em

i
⊗ en

k−1−i
.

Setting

ci = l+(m− i)νn

k−i
,

c′
i
= νm

i
r+(n− k+ i),

the condition for u to be a highest weight vector can hence be written as
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











c0 c′1
c1 c′2

. . .
. . .

ck−1 c′
k

























λ0

λ1
...
λk













= 0. (7.4)

Since r+ and l+ are grouplike, they are invertible and hence ci 6= 0 6= c′
i+1 for any

i = 0,1, . . . , k − 1. Therefore the space of solutions to (7.4) is one-dimensional.
Thus (7.3) is proved.

From the definition of Verma modules, it follows that for k = 0,1, . . . , s − 1,
there is a nonzero A-module morphism

M(m+ n− k)→ L(m)⊗ L(n)

which maps a highest weight vector in M(m+ n− k) to a highest weight vector
in L(m)⊗ L(n) of weight m+ n− k. But L(m)⊗ L(n) is finite-dimensional so this
morphism must factor through L(m+ n− k) by Corollary 6.21. Taking direct sums
of these morphisms we obtain an A-module morphism

ϕ : L(m+ n)⊕ L(m+ n− 1)⊕ . . .⊕ L(m+ n− s+ 1)→ L(m)⊗ L(n).

We claim it is injective. Indeed, the projection of the kernel of ϕ to any term
L(m+ n− i) must be zero, because it is a proper submodule of the simple module
L(m+ n− i).

To conclude we now calculate the dimensions of both sides. Write dim L(m) =

2 j1+i1 and dim L(n) = 2 j2+i2 where j1, j2 ∈ Z≥0 and i1, i2 ∈ {1,2}. By Lemma 6.18b),
dim L(m− j1) = i1 and dim L(n− j2) = i2. First note that

dim L(m− j1 + n− j2) = i1 + i2 − 1.

When i1 = i2 = 1, this is true because G0 is a subgroup of G. When one of i1, i2 is
1 and the other 2, it follows from Proposition 6.14b). And if i1 = i2 = 2, it follows
from Lemma 6.16b) and Theorem 6.19.

From Theorem 6.19 also follows that dim L(m+k) = dim L(m)+2k if dim L(m)<

∞ and k ∈ Z≥0. Hence, recalling that s =min{dim L(m), dim L(n)}, we have

s−1
∑

k=0

dim L(m+ n− k) =

s−1
∑

k=0

dim L(m− j1 + n− j2 + j1 + j2 − k) =

=

s−1
∑

k=0

�

i1 + i2− 1+ 2( j1 + j2 − k)
�

=

= s(i1 + i2 − 1+ 2 j1 + 2 j2)− s(s− 1) =

= s(dim L(m) + dim L(n)− s) =

= dim L(m)dim L(n) = dim
�

L(m)⊗ L(n)
�

.

This completes the proof of the theorem.
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Under some conditions it is possible to introduce a ∗-structure on A. In this
connection it would be interesting to study Clebsch-Gordan coefficients and the
relation with special functions. This will be a subject for future investigation.

8 Casimir operators and semisimplicity

Arguing as in the proof of Lemma 4.2, it is easy to see that any finite-dimensional
semisimple module over A= A(R,σ,h,ξ) is a weight module. In this section we will
prove the converse, that any finite-dimensional weight module over A is semisim-
ple. Note that in general not all finite-dimensional modules over our algebra A are
semisimple. The corresponding example is constructed in [10] for the algebra from
Section 4.3. A necessary and sufficient condition for all finite-dimensional modules
over an ambiskew polynomial ring to be semisimple was given in [7], Theorem
5.1.

In this section we assume that A= A(R,σ,h,ξ) is an ambiskew polynomial ring
with a Hopf structure of the type introduced in Section 3 such that (6.1) holds. We
also assume that N =∞.

Let V be a finite-dimensional weight module over A. We will first treat the case
when Supp(V )⊆m+Z where m ∈ G0 is fixed. Define a linear map

CV : V → V

by requiring

CV v = σ j(t)v, for v ∈ V
m+ j and j ∈ Z.

Here σ denotes the extended automorphism (2.8). More explicitly we have (if
j ≥ 0)

CV v = σ j(t)v =
�

ξ j t +

j−1
∑

k=0

ξkσ j−1−k(h)
�

v = ξ j t v +

j−1
∑

k=0

ξk
h(m+ k+ 1)v

and similarly when j < 0. It is easy to check that CV is a morphism of A-modules.
Hence it is constant on each finite-dimensional simple module V by Schur’s Lemma.
Moreover if ϕ : V →W is a morphism of weight A-modules with support in m+Z,
then ϕCV = CWϕ.

Proposition 8.1. Let j1, j2 ∈ Z≥0. If CL(m+ j1)
= CL(m+ j2)

, then j1 = j2.

Proof. By applying CL(m+ j) to the highest weight vector of L(m+ j), ( j ∈ Z≥0) we
get

CL(m+ j) =

j−1
∑

k=0

ξk
h(m+ k+ 1). (8.1)
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We can assume j1 < j2. By assumption we have

0=
j2−1
∑

k=0

ξk
h(m+ k+ 1)−

j1−1
∑

k=0

ξk
h(m+ k+ 1) =

j2−1
∑

k= j1

ξk
h(m+ k+ 1) =

= ξ j1

j2− j1−1
∑

k=0

ξk
h(m+ j2 − ( j2 − j1) + k+ 1).

By Proposition 6.4 this means that dim L(m+ j2) ≤ j2 − j1. But this contradicts

Theorem 6.19 which says that dim L(m+ j2) = 2 j2 + 1.

Theorem 8.2. Let V be a finite-dimensional weight module over A with support in

G0 +Z. Then V is semisimple.

Proof. We follow the idea of the proof of Proposition 12 in [9], Chapter 3. Writing

V =⊕
m∈G0

�

⊕ j∈Z V
m+ j

�

and noting that⊕ j∈ZVm+ j are submodules, we can reduce to the case when Supp(V )⊆

m+Z for a fixed m ∈ G0.
Let λ1, . . . ,λk be the generalized eigenvalues of the Casimir operator CV , i.e.

the elements of the set

{λ ∈K : ker(CV − λ Id)p 6= 0 for some p > 0}.

Then each generalized eigenspace
∑

p ker(CV − λi Id)p is invariant under A, hence
they are submodules. It suffices to prove that each such submodule is semisimple.
Let V be one of them. Let V1 = {v ∈ V : X+v = 0}. Then V1 is invariant under R and
since V is a weight module, V1 =⊕n∈G(V1 ∩ V

n
). Now if 0 6= v ∈ V1 ∩ V

n
, then v is a

highest weight vector of V and generates a submodule isomorphic to L(n). Hence
if V1 ∩ V

n
6= 0 for more than one n ∈ G, CV will have two different eigenvalues

by Proposition 8.1 which is impossible. Here we used that the restriction of CV

to a submodule W coincides with CW . Hence V1 is contained in a single weight
space, say V

n
. Let v1, . . . , vk be a basis for V1. Then each vi generates a simple

submodule isomorphic to L(n). We will show that the sum of these submodules is
direct. Vectors of different weights are linearly lindependent so it suffices to show
that if

k
∑

i=1

λi(X−)
mvi = 0

then all λi = 0. Assume the sum was nonzero and act by X+ m times. In each step
we get a nonzero result because we have not reached the highest weight n yet. But
then, using (6.3), we have a linear relation among the vk – a contradiction. We
have shown that V contains the direct sum V ′ of k copies of L(n). Now X+ acts
injectively on V/V ′. This is only possible in a torsion-free finite-dimensional weight
A-module if it is 0-dimensional. Thus V is semisimple.
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We now turn to the general case. Assume now that A has an even-dimensional
irreducible representation. By Lemma 6.18b), G1/2 6= ;. We fix m1/2 ∈ G. Then
G1/2 = G0 +m1/2 by Proposition 6.14.

Theorem 8.3. Any finite-dimensional weight module V over A is semisimple.

Proof. By Corollary 6.3 and Theorem 6.19,

Supp(V ) ⊆ (G0 +Z)∪ (G1/2 +Z)

Thus we have a decomposition

V =
�
⊕

m∈G0

V
m+Z

�

⊕
�
⊕

m∈G0

V
m+m1/2+Z

�

where V
n+Z := ⊕ j∈ZVn+ j for n ∈ G are submodules. It remains to prove that a

weight module V with support in m+m1/2 +Z is semisimple. By Lemma 7.1,

Supp
�

V ⊗ L(m1/2)
�

⊆m+m1/2 +m1/2 +Z=m′ +Z

where m′ := m + m1/2 + m1/2 − 1 ∈ G0 by Lemma 6.16b). Hence V ⊗ L(m1/2)

is semisimple by Theorem 8.2. By the Clebsch-Gordan formula (7.2), the tensor
product of two semisimple modules is semisimple again. Therefore V ⊗ L(m1/2)⊗

L(1−m1/2) is semisimple, where dim L(1−m1/2) = 2 by Lemma 6.16a). On the
other hand, by (7.2) again we have

V ⊗ L(m1/2)⊗ L(1−m1/2)≃ V ⊗
�

L(0)⊕ L(m)
�

≃
�

V ⊗ L(0)
�

⊕
�

V ⊗ L(m)
�

.

Finally, it is easy to verify the isomorphism V ≃ V ⊗ L(0), v 7→ v ⊗ e where 0 6=
e ∈ L(0) is fixed. Thus V is isomorphic to a submodule of the semisimple module
V ⊗ L(m1/2)⊗ L(1−m1/2) and is therefore itself semisimple.
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Unitarizable weight modules over generalized
Weyl algebras

Jonas T. Hartwig

Abstract

We define a notion of unitarizability for weight modules over a generalized
Weyl algebra (of rank one, with commutative coeffiecient ring R), which is
assumed to carry an involution of the form X ∗ = Y , R∗ ⊆ R. We prove that a
weight module V is unitarizable iff it is isomorphic to its finitistic dual V ♯. Using
the classification of weight modules by Drozd, Guzner and Ovsienko, we obtain
necessary and sufficient conditions for an indecomposable weight module to be
isomorphic to its finitistic dual, and thus to be unitarizable. Some examples are
given, including Uq(sl2) for q a root of unity.

1 Introduction

For a ∗-algebra A over C and an A-module V , a basic question is whether V is unita-
rizable. That is, can V be equipped with an inner product which is A-admissable, i.e.
(av, w) = (v, a∗w) for a ∈ A, v, w ∈ V? This is so in many well-behaved examples,
like simple finite-dimensional modules over a finite-dimensional group-algebra, but
unfortunately false in general. However, the modules for which this is false might
still be unitarizable in the weaker sense of having an admissable inner product
which is non-degenerate but not necessarily positive definite.

A new feature for this broadened notion of unitarizability is that there may exist
unitarizable indecomposable modules which are not simple.

Such indefinite inner product spaces have been thoroughly studied in the an-
alytical setting of operator algebras, see [KS]. There are also many applications
to areas in physics, for example quantum field theory. See [MS] and references
therein.

On the algebraic side, existence and uniqueness questions of such indefinite
inner products was considered in [MT1] in the general situation of A being a
∗-algebra over an algebraically closed field and M being a finite-dimensional A-
module, or a weight A-module with finite-dimensional weight spaces. Among other
things, it was shown that an A-module M has a non-degenerate admissable form iff
M is isomorphic to its finitistic dual M ♯. A description of all simple weight (with re-
spect to a Cartan subalgebra) modules with finite-dimensional weight spaces over
a complex finite-dimensional semisimple Lie algebra which are unitarizable with a
non-degenerate symmetric form was given in [MT2] and independently in [G].

1



2 UNITARIZABLE WEIGHT MODULES OVER GENERALIZED WEYL ALGEBRAS

In this paper we consider generalized Weyl algebras (GWAs). These are certain
noncommutative rings, first introduced in [B], and studied since in many different
papers (see [BB], [BO], [BL] and references therein). The class contains a wide
range of examples such as ambiskew polynomial rings [J], which includes Noethe-
rian generalized down-up algebras [CS]; U(sl2) and its various deformations and
generalizations (see for example [BO]) as well as the first Weyl algebra and quan-
tum Weyl algebra.

We will consider GWAs of rank one, A = R(σ, t), and assume that R is a com-
mutative ring. For such GWAs, all indecomposable weight modules with finite-
dimensional weight spaces were classified in [DGO], up to indecomposable ele-
ments in a skew polynomial ring over a field. There are five families of modules,
some of them depending on many parameters. It is interesting, therefore, to ask if
some of these modules possess extra structure.

The purpose of this paper is two-fold:

1) To define an appropriate notion of unitarizability for weight modules over
a generalized Weyl algebra equipped with an involution satisfying X ∗ = Y ,
Y ∗ = X , R∗ ⊆ R. See Definition 3.1.

2) To find conditions on the parameters of the indecomposable weight modules
V over a generalized Weyl algebra, which are necessary and sufficient for
the modules to be unitarizable with a non-degenerate admissable form. The
main results here are Theorems 5.2, 5.3, 5.6, 5.8, and 5.13 which completely
answers this question in the case of real orbit ω, i.e. m

∗ = m ∀m ∈ω.

∗-Representations of generalized Weyl algebras (i.e. representations unitariz-
able with a positive definite form) and more general algebras were considered in
[MT3].

After recalling some basic definitions in Section 2, we give in Section 3 the
definition of admissable form and of the finitistic dual V ♯. We prove analogs of
some results from [MT1] such as Proposition 3.18 on the correspondence between
forms and morphisms.

In Section 4 we recall the classification theorem from [DGO]. We have collected
all notation necessary in Section 4.1.

In Section 5 we consider in turn each type of indecomposable weight module
and give necessary and sufficient conditions for the existence of a non-degenerate
admissable form.

We end by considering some examples in Section 6. In particular we obtain in
Section 6.3 conditions for indecomposable non-simple modules over Uq(sl2) (q a
root of unity), to have non-degenerate admissable forms.

2 Setup

Let

• R be a commutative ring with 1,
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• ∗ : R→ R an automorphism of order 1 or 2,

• σ : R→ R an automorphism commuting with ∗, and

• t ∈ R be selfadjoint, i.e. t∗ = t.

Let A = R(σ, t) be the associated generalized Weyl algebra (GWA) [B]. Thus A is
the ring generated by the set R∪{X , Y }, where X , Y are two new symbols, with the
relations that R is a subring of A and

Y X = t, X Y = σ(t), X r = σ(r)X , Y r = σ−1(r)Y ∀r ∈ R. (2.1)

By (2.1), ∗ extends to an involution on A (i.e. (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗,
a∗∗ = a, ∀a, b ∈ A) by requiring

X ∗ = Y, Y ∗ = X .

Relations (2.1) also imply that A is a Z-graded ring A = ⊕n∈ZAn with gradation
given by deg X = 1,deg Y = −1,deg r = 0 ∀r ∈ R. Let Ω be the set of orbits for the
action of σ on the set Max(R) of maximal ideals of R. For ω ∈ Ω we let Rω denote
the direct sum of all the R-modules R/m for m ∈ω:

Rω =
⊕

m∈ω

R/m. (2.2)

The R-module Rω will be used as a subtitute for a ground field, when defining
admissable forms in Section 3.2. The automorphism σ induces isomorphisms
R/m→ R/σ(m), m ∈Max(R), which we also denote by σ. Extending additively, we
get a map σ : Rω → Rω. The automorphism ∗ of R induces a map R/m → R/m∗,
and hence a map Rω→ Rω∗ which will be denoted by conjugation.

Remark 2.1. Let A = R(σ, t) be a GWA and ∗ an anti-involution on A satisfying
R∗ ⊆ R and X ∗ = ǫY , where ǫ ∈ R is invertible. Then, after a change of generators,
we can assume ǫ = 1 and thus that t∗ = t. Indeed, set X1 = X , Y1 = ǫY and
t1 = Y1X1 = ǫ t. Then X1Y1 = XǫY = σ(ǫ)σ(t) = σ(t1). Clearly X1r = σ(r)X1 and
Y1r = σ−1(r)Y1, ∀r ∈ R. Moreover X ∗1 = Y1 so that t∗1 = t1.

Definition 2.2. A module V over a ring, which contains R as a subring, will be
called a weight module if V = ⊕

m∈Max(R)Vm
, where V

m
= {v ∈ V : mv = 0}. The R-

submodules V
m

of V are called weight spaces and elements of V
m

are weight vectors

of weight m. The support of V , denoted Supp(V ), is defined as the set {m ∈Max(R) :
V

m
6= 0}.

3 Admissable forms and the finitistic dual

3.1 Motivation of definition

In section 3.2 we will define an admissable form on a weight A-module V to be
a certain biadditive form on V with values in the R-module Rω. To motivate this
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definition, let us first consider another, at first sight more natural, attempt at a
definiton.

As we will see, a problem appears when ω is finite. Suppose therefore that
ω ∈ Ω is a finite orbit. Let p = |ω|. Let ω ∈ Ω and let V be a weight module over
A with Supp(V ) ⊆ ω. If we choose and fix an element m ∈ ω, we can define a
R/m-vector space structure on V by (r+m)v = σk(r)v if v ∈ Vσk(m) and 0≤ k < p.
Then, for v ∈ Vσk(m) and λ = r +m ∈ R/m,

X pλv = X pσk(r)v = σp+k(r)X pv = σp(λ)X pv.

It would perhaps seem natural to define V to be unitarizable if there is a nonzero
admissable R/m-form on V , i.e. a map G : V × V → R/m satisfying

G is additive in each argument, (3.1a)

G(λv, w) = λG(v, w) for all v, w ∈ V, λ ∈ R/m, (3.1b)

G(av, w) = G(v, a∗w) for all v, w ∈ V, a ∈ A. (3.1c)

However, then, for v, w ∈ V and λ ∈ R/m,

G(X pλv, w) = G(λv, Y pw) = λG(v, Y pw) = λG(X pv, w),

while on the other hand,

G(X pλv, w) = G(σp(λ)X pv, w) = σp(λ)G(X pv, w).

Thus, any weight module V with Supp(V ) ⊆ ω on which X p 6= 0 (or Y p 6= 0 for
analogous reasons) would automatically be excluded from the possibility of being
unitarizable (at least with a non-degenerate form), unless σp : R/m→ R/m is the
identity map for some (hence all) m ∈ω.

Although σp : R/m → R/m is the identity in many important examples (for
example, if R is a finitely generated algebra over an algebraically closed field k

and σ is a k-algebra automorphism, then σp : R/n → R/n is the identity for any
n ∈ Max(R) with σp(n) = n), we feel that this notion of admissable form is too
restrictive.

To remedy this situation we introduce in Section 3.2 a modified definition of
unitarizability which has three advantages. First, no unnecessary restrictions ap-
plies as to which modules can be unitarizable when σp : R/m→ R/m is nontrivial.
Secondly, the definition does not depend on any unnatural choice of maximal ideal
in the orbit. And thirdly, in the special case when σp : R/m → R/m really is the
identity map (and also when the orbit ω is infinite), the definition is equivalent
to the one above in the sense that one form can be obtained from the other in a
bijective manner, as described in Proposition 3.4.

3.2 Admissable forms and unitarizability

Let ω ∈ Ω and V be a weight module over A with Supp(V ) ⊆ω.
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Definition 3.1. An admissable form F on V is a map

F : V × V → Rω

such that

F is additive in each argument, (3.2a)

F(r v, w) = rF(v, w) for all v, w ∈ V, r ∈ R, (3.2b)

F(av, w) = σdeg a
�

F(v, a∗w)
�

for all v, w ∈ V, a ∈ ∪n∈ZAn. (3.2c)

An admissable form F is called non-degenerate if for any nonzero v ∈ V there exist
w1, w2 ∈ V such that F(w1, v) 6= 0 6= F(v, w2).

Definition 3.2. A weight module V over A, whose support is contained in an orbit,
is unitarizable if there exists a nonzero admissable form on V .

Note that, since deg a∗ = −deg a for homogenous a ∈ A, relation (3.2c) is
equivalent to F(v, aw) = σdeg a

�
F(a∗v, w)
�
.

3.3 Relation to admissable R/m-forms

In view of the discussion in Section 3.1 we make the following definition.

Definition 3.3. We callω ∈ Ω torsion trivial if whenever m ∈ω, n ∈ Z andσn(m) =

m then the induced map σn : R/m→ R/m is the identity.

Assume that ω ∈ Ω is torsion trivial. For m1,m2 ∈ ω, say m2 = σ
n(m1), define

σ
m1,m2

= σn : R/m1 → R/m2. Then σ
m1 ,m2

is independent of the choice (if any) of
n, sinceω is torsion trivial. Fix m ∈ω. Let V be a weight A-module with Supp(V )⊆
ω. Give V the structure of an R/m-vector space by (r +m)v = σ

m,σk(m)(r +m)v =

σk(r)v for v ∈ Vσk(m) and r +m ∈ R/m.

Proposition 3.4. When ω is torsion trivial, there is a bijective correspondence be-

tween admissable forms F and admissable R/m-forms G on V .

Proof. Given F , define G by G = π ◦ F , where π : Rω→ R/m is given by

π
�
(λ

n
)
n∈ω

�
=
∑

n∈ω

σ
n,m(λn

).

Since F is biadditive, so is G. To verify (3.1b), let n = σk(m) ∈ ω be arbitrary,
v ∈ Vσk(m), w ∈ V and λ = r +m ∈ R/m. Then, using that F(V

n
, V ) ⊆ R/n, which

follows from (3.2b), we have

G(λv, w) = π(F(σk(r)v, w)) = σ−k
�
σk(r)F(v, w)
�
= rσ−k
�

F(v, w)
�
=

= λG(v, w).

To show (3.1c), let n ∈ω, v ∈ V
n
, a ∈ Ak. Then av ∈ Vσk(n) so

G(av, w) = σσk(n),m

�
F(av, w)
�
= σσk(n),mσ

k
�

F(v, a∗w)
�
= σ

n,m

�
F(v, a∗w)
�
=

= G(v, a∗w).
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This proves that G is an admissable R/m-form on V .
Conversely, given G, define F by

F(v, w) = σ
m,n

�
G(v, w)) for v ∈ V

n
, w ∈ V .

Then F is biadditive. To prove (3.2b), let n = σk(m) ∈ ω, v ∈ V
n
, w ∈ V and r ∈ R.

Put λ= r +m. We have

F(σk(r)v, w) = σk
�
G(σk(r)v, w)
�
= σk
�
G(λv, w)
�
= σk
�
λG(v, w)
�
=

= σk(r)σk
�
G(v, w)
�
= σk(r)F(v, w).

Since r was arbitrary, (3.2b) is proved. It remains to show that F satisfies (3.2c).
Let v ∈ V

n
, a ∈ Ak. Then

F(av, w) = σ
m,σk(n)

�
G(av, w)
�
= σk ◦σ

m,n

�
G(v, a∗w)
�
= σk
�

F(v, a∗w)
�
.

Thus F is an admissable form on V .

3.4 Symmetric and real orbits

Definition 3.5. An orbit ω ∈ Ω is called symmetric if m
∗ ∈ ω for any m ∈ ω, and

real if m
∗ =m for any m ∈ω.

Proposition 3.6. If ω is symmetric but not real, then |ω| is finite, even, |ω| ≥ 4, and

m
∗ = σ|ω|/2(m) for any m ∈ω.

Proof. Since ω is symmetric but not real, there is some n ∈ω such that n
∗ = σN (n)

for some N 6= 0. Then

n= n
∗∗ = σN (n)∗ = σN (n∗) = σ2N (n).

Hence |ω| = p < ∞ and 2N is a multiple of p. Without loss of generality we
can assume 0 < N < p. Then 2N = p is the only possibility. Thus |ω| ≥ 4 and
n
∗ = σ|ω|/2(n). Since any m ∈ ω has the form σk(n), and σ and ∗ commute, it

follows that m
∗ = σ|ω|/2(m) for any m ∈ω.

3.5 Orthogonality of weight spaces

Proposition 3.7. Let ω ∈ Ω and let V be a weight A-module with Supp(V ) ⊆ ω. If

F is an admissable form on V , then F(V
m

, V
n
) = 0 for any m,n ∈ω with m 6= n

∗.

Proof. By (3.2b) and (3.2c),

(m+ n
∗)F(V

m
, V

n
) = F(mV

m
, V

n
) + F(V

m
,nV

n
) = 0.

If m 6= n
∗ then m+ n

∗ = R ∋ 1 so F(V
m

, V
n
) = 0.

Corollary 3.8. Let ω ∈ Ω be an orbit. If there exists a unitarizable weight A-module

V with Supp(V )⊆ω, then ω is symmetric.
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Proof. If V is unitarizable, it has a nonzero admissable form F . Since F is nonzero
and V is a weight module, F(V

m
, V

n
) 6= 0 for some m,n ∈ Supp(V ) ⊆ ω. By

Proposition 3.7, m
∗ = n ∈ ω. If m1 ∈ ω is arbitrary, then m1 = σ

n(m) for some n

and m
∗
1 = σ

n(m)∗ = σn(m∗) = σn(n) ∈ω. This proves that ω is symmetric.

Corollary 3.9. If ω ∈ Ω is real and V is a weight A-module with Supp(V )⊆ω, then

the weight spaces of V are pairwise orthogonal with respect to any admissable form.

Proof. This is immediate from Proposition 3.7.

3.6 The finitistic dual V ♯

Let ω ∈ Ω and V be a weight module over A with Supp(V ) ⊆ ω. Suppose F is an
admissable form on V . Let u ∈ V . Define F̃u : V → Rω by F̃u(v) = F(u, v).

Proposition 3.10. The map F̃u has the following properties:

F̃u(v1 + v2) = F̃u(v1) + F̃u(v2) ∀v1, v2 ∈ V, (3.3a)

F̃u(r v) = r∗ F̃u(v) ∀r ∈ R, v ∈ V, (3.3b)

F̃u(Vm
) = 0 for all but finitely many m ∈ω. (3.3c)

Proof. (3.3a), (3.3b) follow from (3.2a)-(3.2c). For (3.3c), write u =
∑n

i=1 ui ,
where ui ∈ V

mi
. Then if n ∈ω\{m∗1, . . . ,m∗

n
} we get

F̃u(Vn
) = F(u1, V

n
) + · · ·+ F(un, V

n
) = 0

by Proposition 3.7.

Definition 3.11. Let ω ∈ Ω and V be a weight A-module with Supp(V ) ⊆ ω. The
finitistic dual V ♯ of V is the set of all maps ϕ : V → Rω satisfying the properties of
Proposition 3.10, i.e.

ϕ(v1+ v2) = ϕ(v1) +ϕ(v2) ∀v1, v2 ∈ V, (3.4a)

ϕ(r v) = r∗ϕ(v) ∀r ∈ R, v ∈ V, (3.4b)

ϕ(V
m
) = 0 for all but finitely many m ∈ω. (3.4c)

Proposition 3.12. V ♯ carries an A-module structure defined as follows. Let ϕ ∈ V ♯

and r ∈ R. Define rϕ, Xϕ, Yϕ : V → Rω by

(rϕ)(v) = ϕ(r∗v) = rϕ(v), (3.5a)

(Xϕ)(v) = σ
�
ϕ(Y v)
�
, (3.5b)

(Yϕ)(v) = σ−1�ϕ(X v)
�
, (3.5c)

for any v ∈ V .
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Proof. First we must prove that rϕ, Xϕ, Yϕ ∈ V ♯. It is clear that rϕ satisfies
(3.4a),(3.4b),(3.4c) since ϕ does. Also Xϕ and Yϕ satisfies (3.4a),(3.4c). We
show (3.4b) for Xϕ:

(Xϕ)(r v)
(3.5b)
= σ
�
ϕ(Y rv)
�
= σ
�
ϕ(σ−1(r)Y v)
� (3.4b)
= σ
�
σ−1(r)∗
�
σ
�
ϕ(Y v)
�
=

(3.5b)
= r∗(Xϕ)(v).

Analogously, Yϕ satisfies (3.4b).
We must also show that the relations in A are preserved. For any ϕ ∈ V ♯ we

have

(Y Xϕ)(v)
(3.5c)
= σ−1�(Xϕ)(X v)

� (3.5b)
= ϕ(Y X v) = ϕ(t v)

(3.5a)
= (tϕ)(v) ∀v ∈ V

so Y Xϕ = tϕ. Similarly, X Yϕ = σ(t)ϕ for any ϕ ∈ V ♯. Also, for any r ∈ R and
ϕ ∈ V ♯,

(X rϕ)(v)
(3.5b)
= σ
�
(rϕ)(Y v)
� (3.5a)
= σ
�
ϕ(r∗Y v)
�
= σ
�
ϕ(Yσ(r∗)v)
�
=

(3.5b)
= (Xϕ)(σ(r)∗v)

(3.5a)
=
�
σ(r)Xϕ)(v) ∀v ∈ V.

Analogously one proves that Y rϕ = σ−1(r)Yϕ for any r ∈ R,ϕ ∈ V ♯. Thus the
relations of A are preserved, so (3.5a)-(3.5c) extends to an action of A on V ♯.

Proposition 3.13. V ♯ is a weight A-module with

(V ♯)
m
=
�
ϕ ∈ V ♯ : ϕ|V

n

= 0 for all n ∈ω except possibly for n=m
∗
	

(3.6)

=
�
ϕ ∈ V ♯ : ϕ(V )⊆ R/m

	
. (3.7)

Proof. Let ϕ ∈ V ♯. Then mϕ = 0 ⇔ ϕ(m∗v) = 0 ∀v ∈ V ⇔ ϕ|V
n

= 0 for all
n ∈ ω except possibly for n = m

∗, proving (3.6). The second equality holds since
mϕ = 0⇔ mϕ(V ) = 0⇔ ϕ(V ) ⊆ (Rω)m = R/m. Since any ϕ is the sum of its
corestrictions ϕ

m
= π

m
◦ϕ, where π

m
: Rω→ R/m, V ♯ is a weight module.

Proposition 3.14. Let ω ∈ Ω and let V be a weight A-module with Supp(V ) ⊆ ω.

Then Supp(V ♯) = Supp(V )∗ =
�
m
∗ : m ∈ Supp(V )

	
.

Proof. Assume m ∈ Supp(V ♯) and let 0 6= ϕ ∈ (V ♯)
m

. Then, by (3.6), ϕ(v) 6= 0 for
some v ∈ V

m
∗ . This implies that m

∗ ∈ Supp(V ), i.e. m ∈ Supp(V )∗. Conversely, if
m ∈ Supp(V )∗ and 0 6= v ∈ V

m
∗ we can extend v to an R/m∗-basis of V

m
∗ and define

ϕ ∈ V ♯ by requiring that ϕ(V
n
) = 0, n 6= m

∗, ϕ(v) = 1+m and ϕ(w) = 0 for all
other basis vectors w in V

m
∗ . Then, by (3.6), ϕ ∈ (V ♯)

m
so that m ∈ Supp(V ♯).

Proposition 3.15. If dimR/m V
m
< ∞ for all m ∈ Supp(V ) then V ♯♯ and V are

isomorphic as A-modules.

Proof. Define Ψ : V → V ♯♯ by Ψ(v)(ϕ) = ϕ(v) for v ∈ V , ϕ ∈ V ♯. Then

Ψ(X v)(ϕ) = ϕ(X v)
(3.5c)
= σ
�
(Yϕ)(v)
�
= σ
�
Ψ(v)(Yϕ)
� (3.5b)
= (XΨ(v))(ϕ)
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for any v ∈ V,ϕ ∈ V ♯. Similarly, Ψ(Y v) = YΨ(v) and Ψ(r v) = rΨ(v) for any r ∈ R,
proving that Ψ is an A-module homomorphism. Let v ∈ V , v 6= 0 and write v as
a finite sum of weight vectors v

m
6= 0. Then there exists ϕ ∈ (V ♯)

m
∗ such that

ϕ(v) 6= 0, i.e. Ψ(v)(ϕ) 6= 0 so Ψ(v) 6= 0. Thus Ψ is injective. Also, by considering
dual bases, dim V

m
= dim(V ♯)

m
. Since Ψ(V

m
) ⊆ (V ♯♯)

m
we conclude that Ψ is an

isomorphism.

Let ω ∈ Ω. If Ψ : V →W is a homomorphism of weight A-modules with support
in ω, we define Ψ♯ : W ♯→ V ♯ by

�
Ψ♯(ϕ)
�
(v) = ϕ
�
Ψ(v)
�
∀v ∈ V,∀ϕ ∈W ♯ (3.8)

Proposition 3.16. Ψ♯ is also an A-module homomorhpism. Moreover, ♯ is a con-

travariant endofunctor on the category of weight A-modules with support in ω.

Proof. For any v ∈ V,ϕ ∈W ♯, r ∈ R, we have
�
Ψ♯(rϕ)
�
(v) = (rϕ)
�
Ψ(v)
�

by definition of Ψ♯

= ϕ
�

r∗Ψ(v)
�

by A-module structure on W ♯

= ϕ
�
Ψ(r∗v)
�

since Ψ is an A-module morphism

=
�
Ψ♯(ϕ)
�
(r∗v) by definition of Ψ♯

=
�

rΨ♯(ϕ)
�
(v) by A-module structure on V ♯

In the same way one shows that Ψ♯ commutes with the actions of X and Y . That ♯
is a functor is easy to check.

3.7 The bijection between forms and morphisms

Let ω ∈ Ω and V be a weight A-module with Supp(V ) ⊆ ω. Assume F is an
admissable form on V . For u ∈ V , recall that F̃u ∈ V ♯ by Proposition 3.10.

Proposition 3.17. The map F̃ : V → V ♯ defined by u 7→ F̃u is an A-module homomor-

phism.

Proof. For any r ∈ R,u, v ∈ V we have

F̃ru(v) = F(ru, v) = F(u, r∗v) = F̃u(r
∗v) = (r F̃u)(v)

and
F̃X u(v) = F(Xu, v) = σ

�
F(u, Y v)
�
= σ
�

F̃u(Y v)
�
= (X F̃u)(v).

Similarly, F̃Yu = Y F̃u for any u ∈ V . Thus F̃ is an A-module homomorphism.

The following proposition is analogous the corresponding result proved in [MT1]
for finite-dimensional modules over algebras.

Proposition 3.18. The map F 7→ F̃ is an isomorphism of abelian groups between the

space of admissable forms on V and HomA(V, V ♯). Moreover, non-degenerate forms

correspond to isomorphisms.
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Proof. Given Φ ∈ HomA(V, V ♯), define Φ̂ : V × V → R by Φ̂(v, w) = Φ(v)(w). Then
Φ̂ is an admissable form on V and the maps F 7→ F̃ and Φ 7→ Φ̂ are inverses to each
other. If Φ̂(v, w) = 0 ∀w implies that v = 0, then Φ is injective. If Φ̂(v, w) = 0 ∀v

implies that w = 0, then Φ is surjective. This proves the last claim.

3.8 A semi-simplicity condition

Proposition 3.19. Let V be a weight A-module, with Supp(V ) contained in a real

orbit, such that dimR/m V
m
= 1 ∀m ∈ Supp(V ). If V ♯ ≃ V then V is semi-simple.

Proof. If V ♯ ≃ V , then, by Proposition 3.18, V has a non-degenerate admissable
form F . Let U be any submodule of V . Then U is itself a weight module and,
since dimR/m V

m
= 1 for all m ∈ Supp(V ), we have U = ⊕

m∈SV
m

for some subset
S ⊆ Supp(V ). Let U⊥ = {v ∈ V : F(v,u) = 0 ∀u ∈ U}. By the defining properties
of an admissable form (3.1), U⊥ is an A-submodule of V . On the other hand, by
Corollary 3.9 and the non-degeneracy of F , we have F(V

m
, V

n
) = 0 iff m 6= n for

m,n ∈ Supp(V ). Thus U⊥ = ⊕
m∈Supp(V )\S V

m
. This proves that U ⊕ U⊥ = V . Hence,

any submodule has an invariant complement so V is semi-simple.

3.9 Symmetric forms

Recall that the map Rω→ Rω∗ induced by ∗ : R→ R is denoted by conjugation.

Definition 3.20. Letω be a symmetric orbit and F an admissable form on a weight
A-module V with Supp(V ) ⊆ ω. The adjoint form F ♯ : V × V → Rω of F is defined
by

F ♯(v, w) = F(w, v), v, w ∈ V. (3.9)

It is easy to check that F ♯ is also an admissable form on V . If F = F ♯, then F is
called symmetric.

If ω is torsion trivial, we call an admissable Kω-form F symmetric if the corre-
sponding admissable form is symmetric.

Proposition 3.21. Suppose that ω ∈ Ω is symmetric and torsion trivial. Fix m ∈ ω

and put Kω = R/m. Assume that conjugation on Kω is non-trivial, and that the fixed

field under conjugation of Kω is infinite, of characteristic not two.

Let V be a finite-dimensional weight A-module with support in ω. If V has a non-

degenerate admissable Kω-form, then it has a symmetric non-degenerate admissable

Kω-form.

The proof is exactly as in [MT1], but we provide it for convenience.

Proof. Let F : V × V → Kω be a non-degenerate admissable Kω-form on V . Since
conjugation is nontrivial, there is an s ∈ Kω with s = −s. Then F1 = F + F ♯ and
F2 = s(F − F ♯) are both symmetric admissable Kω-forms. Define f ∈ Kω[x] by
f (x) = det(F ′1 + xF ′2). Here F ′

i
denotes the matrix of Fi relative some Kω-linear

basis of V . Since f (s−1) = det(2F ′) 6= 0, f is a nonzero polynomial. Among the
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infinitely many r ∈Kω with r = r, pick one which is not a zero of f . Then F1+ rF2

is a symmetric non-degenerate admissable Kω-form on V .

Remark 3.22. Assume R is a finitely generated algebra over an algebraically closed
field K of characteristic zero and assume that σ is a K-automorphism of R. Let V

be an indecomposable weight module over A with support in a real orbit ω. Call
two K-forms F1, F2 on V are equivalent if there is an automorphism ϕ of V and an
element λ ∈ K,λ 6= 0 such that F1(v, w) = λF2

�
(ϕ(v),ϕ(w)
�

for all v, w ∈ V .
The following statements follow directly from Theorems 2,4 in [MT1].

1) If V is simple and V ≃ V ♯, then there is a unique up to equivalence non-
degenerate admissable K-form on V . If conjugation is nontrivial on K this
form can be chosen to be symmetric, and if conjugation is trivial on K, the
form can be chosen to be symmetric or skew-symmetric.

2) If there is a symmetric non-degenerate admissable K-form on V , then it is
unique up to equivalence.

4 The classification of weight modules

In this section we review the classification of indecomposable weight modules
with finite-dimensional weight spaces over a generalized Weyl algebra, obtained
by Drozd, Guzner and Ovsienko in [DGO].

4.1 Notation

A maximal ideal m of R is called a break if t ∈ m. For ω ∈ Ω, let Bω be the set
of all breaks in ω: Bω = {m ∈ ω : t ∈ m}. Often we put p = |ω|, m = |Bω|. Let
K

m
= R/m. For r ∈ R we define r

m
= r+m ∈ K

m
. For each ω ∈ Ω, fix an m(ω) ∈ω

and put Kω =Km(ω).

If ω ∈ Ω is infinite, it is naturally ordered by defining m < n iff n = σk(m) for
some k > 0.

If |ω| = p < ∞, define a ternary relation on ω by m < m
′ < m

′′ if m
′ =

σi(m),m′′ = σk(m) for some 0 < i < k < p. Let m = |Bω| and define a bijective
corresponence Zm → Bω, i 7→ mi such that i < j < k in Z

m
implies mi < m j < mk

in ω and m0 = m(ω). For m ∈ ω, let j(m) denote the only j ∈ Zm such that
m j−1 < m ≤ m j . Let p1, p2, . . . , pm ∈ Z>0 be minimal such that σp j (m j−1) = m j .
Equivalently, pi is the number of m ∈ωwith j(m) = i. Note that p1+p2+· · ·+pm =

p. Furthermore, we put τ = τω = σ
p. Let Kω[x , x−1;τ] be the skew Laurent

polynomial ring over Kω with automorphism τ: xa = τ(a)x for a ∈ Kω. Similarly,
Kω[x;τk] is the skew polynomial ring over Kω with automorphism τk (k ∈ Z≥0).
An element f of such a skew (Laurent) polynomial ring P is called indecomposable

if the left P-module P/P f is indecomposable. Two elements f , g ∈ P are called
similar if P/P f ≃ P/P g as left P-modules.
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Let D denote the free monoid on two letters x , y . Thus D is the set of words
w = z1z2 · · · zn, where zi ∈ {x , y}, with associative multiplication given by concate-
nation, and neutral element being the empty word ǫ of zero length. A word w is
an m-word if its length n is a multiple of m ∈ Z>0. An m-word is non-periodic if
it is not a power of another m-word. We will let ♯ : D → D, w 7→ w♯, denote the
automorphism given by x ♯ = y , y ♯ = x . We also equip D with a Z-action given by

1.z1z2 · · · zn = z2z3 · · · znz1.

for z1z2 · · · zn ∈ D. Following [DGO], we use the notation w(k) for k.w.
When ω is symmetric, we will denote the map Kω → Kω, which is induced by

the involution ∗ on R, by conjugation a 7→ a.

4.2 The different kinds of modules

4.2.1 Infinite orbit without breaks

Define V (ω), where ω ∈ Ω, |ω| =∞ and Bω = ;, as the space V (ω) = ⊕
m∈ωKm

with A-module structure given by X v = σ(t
m

v) and Y v = σ−1(v) for v ∈ K
m

.

4.2.2 Infinite orbit with breaks

We use an alternative parametrization of these modules, which is more convenient
for our purposes. It is easily seen to be equivalent to that of [DGO]. First we need
some terminology. Recall the order on infinite orbits ω defined in Section 4.1. An
interval S in an infinite orbit ω will be called supportive if it satisfies the following
property: if S contains a minimal element n0, then σ−1(n0) ∈ Bω and if S has a
maximal element n1, then n1 ∈ Bω. Let I(S) be the set of inner breaks of S:

I(S) = {m ∈ S ∩ Bω : σ(m) ∈ S}.

Now let ω ∈ Ω be infinite with Bω 6= ;. Let S ⊆ ω be a supportive interval and let
IX be any subset of I(S). Define V (ω,S, IX ) = ⊕m∈SKm

with, for v ∈K
m

,

X v =





σ(t
m

v), if m /∈ Bω,

σ(v), if m ∈ IX ,

0, otherwise,

Y v =





σ−1(v), if σ−1(m) /∈ Bω,

σ−1(v), if σ−1(m) ∈ I(S)\IX ,

0, otherwise.

(4.1)

Note that if V = V (ω,S, IX ) then S = Supp(V ) and IX = {m ∈ I(S) : X V
m
6= 0}.

4.2.3 Finite orbit without breaks

Given an orbit ω, with |ω| = p < ∞ and Bω = ;, and an indecomposable poly-
nomial f = α0 + α1 x + · · · + ad xd ∈ Kω[x , x−1;τ] with α0 6= 0 6= αd , define
V (ω, f ) =⊕

m∈ω(Km
)d with A-module structure given by defining for v ∈ (K

m
)d
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X v =

¨
σ(t

m
v), if m 6=m(ω),

σ(F f t
m

v), if m=m(ω),
(4.2a)

Y v =

(
σ−1(v), if σ−1(m) 6=m(ω),

F−1
f
σ−1(v), if σ−1(m) =m(ω),

(4.2b)

where

F f =




0 0 0 · · · 0 −α0/αd

1 0 0 · · · 0 −α1/αd

0 1 0 · · · 0 −α2/αd

...
...

...
. . .

...
...

0 0 0 · · · 1 −αd−1/αd




.

4.2.4 Finite orbit with breaks, first kind

Let ω ∈ Ω, |ω| = p <∞ and Bω 6= ;. Let i ∈ Zm and w = z1z2 · · · zn ∈ D. Consider
n+1 symbols e0, e1, . . . , en. For m ∈ω, let V

m
be the vector space overK

m
with basis

consisting of all pairs [m, ek] such that i+k = j(m) in Zm. Put V (ω, i, w) =⊕
m∈ωV

m

and supply it with A-module structure by

X[m, ek] =





σ(t
m
)[σ(m), ek], if m /∈ Bω,

[σ(m), ek+1], if m ∈ Bω and zk+1 = x ,

0, otherwise,

Y [m, ek] =





[σ−1(m), ek], if σ−1(m) /∈ Bω,

[σ−1(m), ek−1], if σ−1(m) ∈ Bω and zk = y ,

0, otherwise.

4.2.5 Finite orbit with breaks, second kind

Define V (ω, w, f ), where ω ∈ Ω, |ω| = p <∞ and |Bω| = m > 0, w = z1z2 · · · zn ∈

D\{ǫ} is a non-periodic m-word, and f = a1 + a2 x + · · ·+ ad xd−1 + xd 6= xd is an
indecomposable element of Kω[x;τn/m] (it should be τn/m and not just τ as stated
in [DGO]), as follows. Consider dn symbols eks (k = 1, . . . , n, s = 1, . . . , d). For
m ∈ω, let V

m
be the vector space over K

m
with basis consisting of all pairs [m, eks]

such that k ≡ j(m) (mod m). Define V (ω, w, f ) = ⊕
m∈ωV

m
and supply it with

A-module structure by
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X[m, eks] =





σ(t
m
)[σ(m), eks], if m /∈ Bω,

[σ(m), ek+1,s], if m ∈ Bω, k < n, zk+1 = x ,

[σ(m), e1,s+1], if m ∈ Bω, k = n, z1 = x , s < d,

−
∑d

r=1σ(ar)[σ(m), e1r], if m ∈ Bω, k = n, z1 = x , s = d,

0, otherwise,

(4.3)

Y [m, eks] =





[σ−1(m), eks], if σ−1(m) /∈ Bω,

[σ−1(m), ek−1,s], if σ−1(m) ∈ Bω, k > 1, zk = y ,

[σ−1(m), en,s−1], if σ−1(m) ∈ Bω, k = 1, z1 = y , s > 1,

−
∑d

r=1 a◦
r
[σ−1(m), enr], if σ−1(m) ∈ Bω, k = 1, z1 = y , s = 1,

0, otherwise.

(4.4)

Here a◦
d+1−r

= τr−1(ar), i.e. a◦
r
= τd−r(ad+1−r). As compared to [DGO], we

changed notation from eks to ek,d+1−s in the case when z1 = y .
The weight diagram of a module of the form V = V (ω, w, f ), where the first let-

ter of w is z1 = x , is illustrated in Figure 1. Each dot •
m

is a one-dimensional (over
R/m) subspace of the weight space V

m
. Arrows going in the right direction corre-

spond to X while left arrows correspond to Y . The diagram •
m

''
•

σ(m)

gg means
that X and Y act bijectively on the corresponding one-dimensional subspaces. We
shall write

•

σ(m)
n

''
•

σn(m)

gg

to denote the weight diagram

•

σ(m)
''
•

σ2(m)

gg
''
•gg ···· •

σn−1(m)
''
•

σn(m)

gg .

The diagram •
m

z
•

σ(m)
where z ∈ {x , y}, means that if z = x then X acts bijec-

tively from •
m

to •
σ(m)

and Y acts as zero on •
σ(m)

while if z = y , then Y is bijective

as a map from •
σ(m)

to •
m

and X acts as zero on •
m

. Often, in weight diagrams each
weight space is depicted as a column of dots. In Figure 1, however, for clarity, each
column is only a subspace of a certain weight space, and each weight is repeated
n/m times horizontally. Recall that, by convention, pm = p0 and mm =m0.



Figure 1: Weight diagram for V (ω, w, f ) when z1 = x .

•

σ(m0)
p1

''
•

e1,1

m1

gg
z2
•

σ(m1)
p2

''
•

e2,1

m2

gg
z3
• ···· •

σ(mm−1)
pm

''
•

em,1

mm

gg
zm+1

·········· •

σ(m0)
p1

''
•

en−m+1,1

m1

gg
zn−m+2

•

σ(m1)
p2

''
•

en−m+2,1

m2

gg
zn−m+3

• ···· •

σ(mm−1)
pm

''
•

en,1

mm

gg

z1=x

yy
• p1

''
•

e1,2

gg
z2
• p2

''
•

e2,2

gg
z3
• ···· • pm

''
•

em,2

gg
zm+1

·········· • p1
''
•

en−m+1,2

gg
zn−m+2

• p2
''
•

en−m+2,2

gg
zn−m+3

• ···· • pm
''
•

en,2

gg

z1=x

��

·
·
·
·
·
·
·

• p1
''
•

e1,d

gg
z2
• p2

''
•

e2,d

gg
z3
• ···· • pm

''
•

em,d

gg
zm+1

·········· • p1
''
•

en−m+1,d

gg
zn−m+2

• p2
''
•

en−m+2,d

gg
zn−m+3

• ···· • pm
''
•
en,d

gg bc`a

gf

z1=x

//
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4.3 The classification theorem

Theorem 4.1 ([DGO], Theorem 5.7).

(i) The A-modules V (ω), V (ω, f ), V (ω,S, IX ), V (ω, i, w), and V (ω, w, f ) are in-

decomposable weight A-modules.

(ii) Every weight A-module V such that dimK
m

V
m
< ∞ whenever m belong to a

finite orbit, decomposes uniquely into a direct sum of modules isomorphic to

those listed in (i).

(iii) The only isomorphisms between the listed modules are the following:

• If f and g are similar in Kω[x , x−1;τ], then

V (ω, f ) ≃ V (ω, g). (4.5)

• If f and g are similar in Kω[x;τn/m], and i ∈ Z, then

V (ω, w, f )≃ V (ω, w(mi),τi(g)), (4.6)

where m = |Bω| and n= |w|.

Remark 4.2. In [DGO], τi is uncorrectly missing from (4.6). In general, if i is not
a multiple of n/m, then f is not similar to τi( f ) in Kω[x;τn/m]. But for g = f ,
one can construct an isomorphism ϕ : V (ω, w(m),τ( f ))→ V (ω, w, f ) determined
by the conditions

1) ϕ
�
[σ(m0), e1,1]
�
= [σ(m0), em+1,1], (4.7)

2) ϕ([m, ek,s]
�
∈

¨
⊕d

r=1Km
[m, ek+m,r] k+m ≤ n,

⊕d
r=1Km

[m, ek+m−n,r] k+m > n.
(4.8)

Remark 4.3. Taking i = n/m in (4.6) we deduce that f is similar τn/m( f ) in
P :=Kω[x;τn/m]. This isomorphism is explicitly given by

ϕ : P/Pτn/m( f )→ P/P f

g + Pτn/m( f ) 7→ g x + P f .

This map is well defined since τn/m( f )x = x f . It is a homomorphism of left P-
modules. Moreover, since f 6= xd and is indecomposable, its constant term is
nonzero. Therefore ϕ is surjective. Since dimensions agree, ϕ is an isomorphism
as claimed.

The following description of the simple weight A-modules was also given.

Theorem 4.4 ([DGO], Theorem 5.8). The weight A-modules V (ω), V (ω, f ) for ir-

reducible f ∈ Kω[x , x−1;τ], V (ω,S,;) for supportive interval S ⊆ ω with I(S) = ;,

V (ω, i,ǫ) and V (ω, w, f ) for irreducible f ∈ Kω[x;τn/m] and w = xm or w = ym

where m = |Bω|, are simple and each simple weight A-module is isomorphic to one

from this list.
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5 Description of indecomposable weight modules

having a non-degenerate admissable form

In this section we consider in turn each of the five types of indecomposable modules
from the DGO classification in Section 4 and determine necessary and sufficient
conditions, in terms of the parameters, for the modules to be isomorphic to their
finitistic dual which, by Proposition 3.18, is equivalent to having a non-degenerate
admissable form. We will only consider the case when Supp(V ) is contained in a
real orbit ω. The case of symmetric nonreal orbit will be left for future studies.

The following lemma will be useful.

Lemma 5.1. If V is indecomposable, then so is V ♯.

Proof. We prove that if V is decomposable, then so is V ♯. Then the result follows
since V ♯♯ ≃ V , by Proposition 3.15. Assume V is decomposable and let i j : U j →

V , j = 1,2, be the inclusions of two submodules U j whose direct sum is V . Let

Wj = ker(i♯
j
) ⊆ V ♯, j = 1,2. Let ϕ ∈ W1 ∩W2. Then i

♯
1(ϕ) = 0 = i

♯
2(ϕ). Thus

ϕ(i j(u)) = 0 ∀u ∈ U j , j = 1,2. Since V = i1(U1) + i2(U2) we deduce ϕ = 0. Hence

W1 ∩W2 = 0. Let ϕ ∈ V ♯ be arbitrary. Then ϕp1 + ϕp2 = ϕ, where p j : V → U j

are the projections. Also i
♯
1(ϕp2)(v) = (ϕp2)(i1(v)) = 0∀v ∈ U1, and similarly

i
♯
2(ϕp1) = 0. This proves that V ♯ =W1 +W2.

5.1 Infinite orbit without breaks

Theorem 5.2. Let V = V (ω), where ω is an infinite real orbit with Bω = ;. Then

V ♯ ≃ V .

Proof. We have Supp(V ) = ω. By the classification theorem, there is only one
indecomposable module whose support is contained in ω. By Lemma 5.1, V ♯ is
indecomposable and by Proposition 3.14, Supp(V ♯) = Supp(V ) = ω. Hence we
conclude that V ♯ ≃ V .

Letω be infinite real, Bω = ;, V = V (ω). We now determine all non-degenerate
admissable forms on V , and their index in the symmetric complex case. Let e0 ∈

V
m(ω), e0 6= 0. Let e

♯
0 ∈ V ♯ be defined by e

♯
0(e0) = 1

m(ω) and e
♯
0(Vm

) = 0 ∀m ∈

ω,m 6= m(ω). Then e
♯
0 spans (V ♯)

m(ω) over Kω so any isomorphism Φ : V → V ♯

must satisfy Φ(e0) = λe
♯
0 for some nonzero λ ∈ Kω. Conversely, it is easy to see

that for any nonzero λ ∈ Kω there exists a unique isomorphism Φλ : V → V ♯

satisfying Φλ(e0) = λe
♯
0. The set {en := X ne0, e−n−1 := Y n+1e0 | n ∈ Z≥0} is a

basis for V over Kω and the corresponding Kω-form Ψλ (which is obtained using
the bijections between HomA(V, V ♯) and admissable forms in Proposition 3.18 and
between admissable forms and Kω-forms in Proposition 3.4) satisfies

Ψλ(en, em) = 0, m 6= n,

Ψλ(en, en) =

¨
tσ−1(t) · · ·σ−n+1(t)λ, n≥ 0,

σ(t)σ2(t) · · ·σ−n(t)λ, n< 0.
(5.1)
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To simplify notation we use here the natural R-module action on Kω. For example
tλ equals the product (t+m(ω))λ in Kω. From the formula (5.1), and that t∗ = t,
we see that the adjoint form Ψ♯

λ
is equal to Ψλ.

In the case when Kω ≃ C and conjugation is ordinary complex conjugation,
we associate to a symmetric form Ψλ, λ ∈ R, a scalar product on V defined by
(ek, el) = sgn
�
Ψλ(ek, el)
�
Ψλ(ek, el). Then Ψλ(v, w) = (J v, w) ∀v, w ∈ V , where

Jek = sgn
�
Ψλ(ek, ek)
�
ek. J is an involution operator in the sense that J2 = IdV

and that it is self-adjoint with respect to the scalar product on V . Therefore, (the
completion of) V together with Ψλ is a Krein space (see [KS]). Let V± = {v ∈ V :
J v =±v}. Then V = V+⊕V−. We claim that any pair (dim V+, dim V−) can occur. In
fact, consider the sequence (in)n∈Z where in = sgn

�
Ψλ(en, en)
�
. Then any sequence

(in)n∈Z ∈ {1,−1}Z can occur. Indeed, let R= C[tn | n ∈ Z] be a polynomial algebra
in infinitely many indeterminates tn. Let t = t0, define t∗

n
= tn, i∗ =−i and extend

∗ to an R-algebra automorphism of R. Let σ(tn) = tn+1 and let m be the maximal
ideal generated by tn − an, n ∈ Z, where an ∈ R are given by an = i−ni−n+1, n ∈ Z.
Let ω be the orbit containing m and set m(ω) =m. The orbit ω is infinite, real, and
Bω = ;. Then the sequence associated to the form Ψi0

on V (ω) equals (in)n∈Z.

5.2 Infinite orbit with breaks

Theorem 5.3. Let V = V (ω,S, IX ), whereω ∈ Ω is infinite and real, |Bω|> 0, S ⊆ω

is a supportive interval, and IX ⊆ I(S). Then V ♯ ≃ V (ω,S, I(S)\IX ). In particular

V has a non-degenerate admissable form iff I(S) = ; which is equivalent to V being

simple.

Proof. If V ♯ ≃ V , then Proposition 3.19 and that V is indecomposable imply that V

must be simple. The converse follows when we prove the more general statement
that V ♯ ≃ V (ω,S, I(S)\IX ).

By Lemma 5.1, V ♯ is indecomposable and by Proposition 3.14 and that ω is
real, Supp(V ♯) = Supp(V ) = S. So by the classification theorem, Theorem 4.1, we
deduce that V ♯ ≃ V (ω,S, J) for some subset J of I(S). It remains to prove that, for
m ∈ I(S), X (V ♯)

m
6= 0 iff X V

m
= 0.

Suppose m ∈ I(S) with X (V ♯)
m
= 0. Let ϕ ∈ (V ♯)

m
be nonzero. Then, by

Proposition 3.13, ϕ|V
n

= 0 if n 6= m and ϕ(v) = 1
m

for some v ∈ V
m

. Let u ∈ Vσ(m)
be nonzero. We have 0 = (Xϕ)(u) = σ

�
ϕ(Yu)
�
. Thus Yu = 0. Thus u = X v for

some nonzero v ∈ V
m

, otherwise V would be decomposable into
�
⊕n≤0 Vσn(m)

�
⊕�

⊕n>0 Vσn(m)

�
. This proves that m ∈ IX , i.e. X V

m
6= 0. The converse is similar.

We conclude that indeed V ♯ ≃ V iff I(S) = ;. By Theorem 4.4, V (ω,S, IX ) is
simple iff I(S) = ;.

Let ω ∈ Ω be real, infinite, |Bω| > 0. In this case ω is torsion trivial and thus
there is a bijection between admissable forms and admissable Kω-forms. We now
determine all possible non-degenerate admissable Kω-forms on V (ω,S,;) where S

is a supportive interval in ω with I(S) = ;.
The subset S ⊆ ω has either a maximal or a minimal element (otherwise it

would contain an inner break). Assume S has a maximal element n1. It is a break
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since S is supportive. We can assume that m(ω) = n1. Let e0 ∈ V
m(ω) be nonzero

and e
♯
0 ∈ (V

♯)
m(ω) be such that e

♯
0(e0) = 1

m(ω). For λ ∈ Kω there is a unique

isomorphism Φλ : V → V ♯ given by Φλ(e0) = λe
♯
0. If S has no minimal element, V

has a basis {e−n := Y ne0 | n≥ 0}. If S has a minimal element n0, then σ−1(n0) ∈ Bω
and V has a basis {e−n := Y ne0 | 0≤ n≤ N−1} where σ−N (m(ω)) = σ−1(n0). The
corresponding Kω-form Ψλ calculated on the basis vectors gives

Φλ(e−n, e−m) = σ(t)σ
2(t) · · ·σn(t)λδn,m (5.2)

for n, m ≥ 0. If S has no maximal element, but a minimal element n0, then
σ−1(n0) ∈ Bω. We choose m(ω) = n0 in this case. Then V has a basis {en :=
X ne0 | n≥ 0} and the corresponding Kω-form Ψλ satisfies

Ψλ(en, em) = tσ−1(t) · · ·σ−n+1(t)λδn,m (5.3)

for n, m ≥ 0. We see that Ψλ is symmetric iff λ= λ.

5.3 Finite orbit without breaks

In this section we fix a finite orbit ω ∈ Ω with Bω = ;. In Theorem 5.6 we will
describe the dual modules V (ω, f )♯ for indecomposable f ∈ Kω[x , x−1;τ]. First
we make some preliminary observations. Let p = |ω| and put P =Kω[x , x−1;τ].

Proposition 5.4. Let B be the subalgebra of A generated by X p, Y p and all r ∈ R. Let

I = Bm(ω)B be the ideal in B generated by m(ω). Then there is a ring isomorphism

ψ : B/I → P

given by

ψ(X p + I) = ξ · x , ψ(Y p + I) = x−1, ψ(r + I) = r
m(ω) for r ∈ R,

where

ξ=
�
σ(t)σ2(t) · · ·σp(t)

�
m(ω). (5.4)

Proof. The map ψ is a well-defined ring homomorphism, using the relations (2.1)
in A. Assume b+ I ∈ B/I is in the kernel of ψ. Since both rings involved, and ψ,
are Z-graded in a natural way, we can assume b = rX pk or b = rY pk, k ≥ 0. We
immediately get k = 0, r ∈ m(ω). So ψ is injective. That ψ is surjective is easy to
see.

Let V = V (ω, f ), where f = α0 + α1 x + · · ·+ αd xd ∈ P, (α0 6= 0,αd 6= 0), is
indecomposable. Since ω is an orbit of length p, we have BV

m(ω) ⊆ V
m(ω). Also

IV
m(ω) = 0. Thus V

m(ω) becomes a module over B/I and, via the isomorphism in
Proposition 5.4, a P-module. The following proposition describes this P-module.

Proposition 5.5.

V
m(ω) ≃ P/P f

as P-modules.
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Proof. Let ei = (0, . . . ,
i

1, . . . , 0) ∈ V
m(ω) = (Kω)

d . By (4.2a), if 1≤ i < d,

X pei = X p−1σ(F f t
m(ω)ei) = σ

p(t
m(ω))X

p−1σ(ei+1) =

= σp(t
m(ω))σ

p−1(tσ(m(ω)))X
p−2σ2(ei+1) = · · · =

= ξ · ei+1.

Thus
(ξ−1X p)ke1 = ek+1 for k = 0,1, . . . , d − 1. (5.5)

Also we have, by (4.2a),

ξ−1X ped =

d−1∑

k=0

τ(−αk/αd)ek+1. (5.6)

Using (5.5) and (5.6) we get

τ( f ).e1 =

d∑

k=0

τ(αk)x
k.e1 =

d∑

k=0

τ(αk)(ξ
−1X p)ke1 =

=

d−1∑

k=0

τ(αk)ek+1 +τ(αd)

d−1∑

k=0

τ(−αk/αd)ek+1 = 0. (5.7)

From (5.5) and that {e1, . . . , ed} generates V
m(ω) as an R-module, we see that the

vector e1 generates V
m(ω) as a P-module. By (5.7), we get an epimorphism of

P-modules

ψ : P/Pτ( f )→ V
m(ω)

h+ Pτ( f ) 7→ h.e1

Since dimKω V
m(ω) = d = dimKω P/Pτ( f ), we deduce that ψ is an isomorphism.

Since f is similar to τ( f ), it follows that V
m(ω) ≃ P/P f .

Now we come to the main result in this section.

Theorem 5.6. Let V = V (ω, f ), where ω is a finite and real orbit with Bω = ; and

f = α0 + α1 x + · · ·+ ad xd ∈ P = Kω[x , x−1;τ], α0 6= 0 6= αd , is indecomposable.

Then

V (ω, f )♯ ≃ V (ω, f ♯)

with

f ♯ =

d∑

k=0

{k}ξ · τ
k(αd−k) · x

k, (5.8)

where

{k}ξ = ξτ(ξ) · · ·τ
k−1(ξ) for k ≥ 0, (5.9)

and

ξ=
�
σ(t)σ2(t) · · ·σp(t)

�
m(ω). (5.10)

In particular, V ≃ V ♯ iff f is similar to f ♯ in P.
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Proof. By Lemma 5.1 and Proposition 3.14, V ♯ is indecomposable and the support
Supp(V ♯) = ω. So by Theorem 4.1, we know that V ♯ ≃ V (ω,h) for some h ∈

P. Then by Proposition 5.5, (V ♯)
m(ω) ≃ P/Ph. Thus, it is enough to prove that

(V ♯)
m(ω) ≃ P/P f ♯ as P-modules, because then h is similar to f ♯ which implies that

V ♯ ≃ V (ω, f ♯) by the isomorphism (4.5).

For this, let ei = (0, . . . ,
i

1, . . . , 0) ∈ V
m(ω) = (Kω)

d , and define e
♯
i
∈ V ♯ by

e
♯

i
(V

n
) = 0 for n ∈ω, n 6=m(ω) and e

♯

i
(ek) = δik ·1m(ω) for i, k = 1, . . . d. Since ω is

real, e
♯

i
∈ (V ♯)

m(ω). By relation (4.2b),

Y pek =

(
ek−1, k > 1,

F−1
f

e1, k = 1.
(5.11)

It is easy to check that

F−1
f

e1 =−α
−1
0 (α1e1+α2e2 + · · ·αd ed). (5.12)

Thus for any i, k = 1, . . . , d,

(X pe
♯

i
)(ek) = τ
�
e
♯

i
(Y pek)
�
=

¨
δi,k−1 · 1m(ω), k > 1,

τ(−αi/α0) · 1m(ω), k = 1,

=
�
e
♯

i+1 − τ(αi/α0) · e
♯
1

�
(ek) (5.13)

with the convention that e
♯

i
= 0 for i > d. Let also αi = 0 for i > d. We claim that

n∑

k=0

τk+1�αn−k/α0

�
· X pke

♯
1 = e

♯
n+1, for all n≥ 0. (5.14)

We prove this by induction on n. For n= 0 it is trivial. Assume that

n−1∑

k=0

τk+1�αn−1−k/α0

�
· X pke

♯
1 = e♯

n

Apply X p to both sides to get

n−1∑

k=0

τk+2�αn−1−k/α0

�
· X p(k+1)e

♯
1 = X pe♯

n

Use that, by (5.13), X pe♯
n
= e

♯
n+1 − τ(αn/α0) · e

♯
1 in the right hand side, add

τ(αn/α0) · e
♯
1 to both sides, and replace k by k − 1 in the sum in the left hand

side to obtain

n∑

k=1

τk+1�αn−k/α0

�
· X pke

♯
1 +τ
�
αn/α0

�
· e
♯
1 = e

♯
n+1.
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This proves (5.14). From (5.14) we see that e
♯
1 generates (V ♯)

m(ω) as a P-module

and that g.e♯1 = 0, where

g =

d∑

k=0

τk+1(αd−k/α0)(ξx)k =

d∑

k=0

ξτ(ξ) · · ·τk−1(ξ) ·τk+1(αd−k/α0)x
k ∈ P.

Thus, as in the proof of Proposition 5.5, (V ♯)
m(ω) ≃ P/P g as P-modules. Moreover,

one verifies that τ−1(ξ) · τ−1(g) · τ−1(ξ)α0 = f ♯. Thus g is similar to f ♯ and we
conclude that (V ♯)

m(ω) ≃ P/P f ♯. This finishes the proof of the theorem.

Remark 5.7. The example in Section 6.3, concerning Uq(sl2), shows that there
exist non-simple indecomposable weight modules which are unitarizable with a
non-degenerate admissable form. This is in contrast to the case of bounded ∗-
representations of ∗-algebras on Hilbert spaces, that is, unitarizable modules with
respect to a positive definite form, where any unitarizable module is semisimple.
The example also shows that not all simple weight modules have a non-degenerate
admissable form.

5.4 Finite orbit with breaks, first kind

Recall that we defined an automorphism of order two of the monoid D by x ♯ = y

and y ♯ = x . For example, (x x y)♯ = y y x .

Theorem 5.8. Let ω be a finite real orbit with m := |Bω| > 0, let j ∈ Zm and let

w ∈ D. Then V (ω, j, w)♯ ≃ V (ω, j, w♯). In particular V (ω, j, w) has a nondegenerate

admissable form iff w = ǫ, the empty word (of length n = 0), which is equivalent to

that V (ω, j, w) is simple.

Proof. Define Φ : V (ω, j, w) → V (ω, j, w♯)♯ by Φ
�
[m, ek]
�
= c

m,k[m, e
♯

k
] where

[m, e
♯

k
] ∈ V (ω, j, w♯)♯ are defined by [m, e

♯

k
]
�
[n, el]
�
= δ

n,mδk,l · 1m
(where 1

m
=

1+m ∈ R/m ⊆ Rω) and the coefficients c
m,k ∈ R/m are nonzero, to be determined

later. Extend Φ to an R-module isomorphism.

Let [m, ek] be a basis vector of V (ω, j, w). Thus j + k ≡ j(m) (mod m). Write
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w = z1 · · · zn. Consider a basis vector of the form [σ(m), el] ∈ V (ω, j, w♯). We have

�
XΦ
�
[m, ek]
���
[σ(m), el]
�
= σ
�

c
m,k[m, e

♯

k
]
�
Y [σ(m), el]
��
=

=





σ
�

c
m,k[m, e

♯

k
]
�
[m, el]
��

, m /∈ Bω,

σ
�

c
m,k[m, e

♯

k
]
�
[m, el−1]
��

, m ∈ Bω and z
♯

l
= y,

0, otherwise

=





σ(c
m,k)δkl · 1σ(m), m /∈ Bω,

σ(c
m,k)δk,l−1 · 1σ(m), m ∈ Bω and zl = x ,

0, otherwise

=





σ(c
m,k)c

−1
σ(m),k

�
Φ
�
[σ(m), ek]
���
[σ(m), el]
�
, m /∈ Bω,

σ(c
m,k)c

−1
σ(m),k+1

�
Φ
�
[σ(m), ek+1]
���
[σ(m), el]
�
, m ∈ Bω and zk+1 = x ,

0, otherwise.

=
�
Φ
�
X[m, ek]
���
[σ(m), el]
�

if c
m,k are chosen in such a way that σ(c

m,k)/cσ(m),k = σ(tm
) when m /∈ Bω and

σ(c
m,k)/cσ(m),k+1 = 1 when m ∈ Bω and zk+1 = x . On other basis vectors [n, el],

n 6= σ(m), both sides are zero:

�
XΦ
�
[m, ek]
���
[n, el]
�
= 0=
�
Φ
�
X[m, ek]
���
[n, el]
�
.

With this choice of coefficients, Φ commutes with the action of X . For the action of
Y , suppose v is a basis vector of V (ω, j, w) which is equal to Xu for some u. Then

Φ(Y v) = Φ(Y Xu) = Φ(tu) = tΦ(u) = Y XΦ(u) = YΦ(Xu) = YΦ(v).

It remains to compare the results of applying ΦY and YΦ on basis vectors which
are not in the image of X . They have the form [σ(m), ek] where m ∈ Bω and zk 6= x ,
i.e. zk = y or k = 0.

�
YΦ
�
[σ(m), ek]
���
[m, el]
�
= σ−1
�

cσ(m),k[σ(m), e
♯

k
]
�
X[m, el]
��
=

=

(
σ−1
�

cσ(m),k[σ(m), e
♯

k
]
�
[σ(m), el+1]
��

, z
♯

l+1 = x ,

0, otherwise

=

¨
σ−1(cσ(m),k)δk,l+1 · 1m

, zl+1 = y,

0, otherwise

=

(
σ−1(cσ(m),k)c

−1
m,k−1

�
Φ
�
[m, ek−1]
���
[m, el]
�
, zk = y,

0, otherwise

=
�
Φ
�
Y [σ(m), ek]
���
[m, el]
�
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if the coefficients are chosen such that σ−1(cσ(m),k)/cm,k−1 = 1 when m ∈ Bω and
zk = y . Choosing the coefficients in this way, which is always possible, Φ becomes
an isomorphism of A-modules.

Example 5.9. Assume that ω ∈ Ω is real and p = |ω| = 7. Pick n ∈ ω. Then ω =
{σ j(n) | j = 0, . . . , 6}. Suppose that Bω = {m0 := σ2(n),m1 := σ4(n),m2 := σ6(n)},
so and m= |Bω|= 3. The following is a weight diagram for V (ω, j, w) where j = 0
and w = z1z2 · · · z10.

•
e0

n ''
•
e0

gg
''
•
e0

m0
gg

z1
•
e1

''
•
e1

m1
gg

z2
•
e2

''
•

e2

m2
gg

z3

•
e3

''
•
e3

gg
''
•
e3

gg
z4
•
e4

''
•
e4

gg
z5
•
e5

''
•

e5
gg

z6

•
e6

''
•
e6

gg
''
•
e6

gg
z7
•
e7

''
•
e7

gg
z8
•
e8

''
•

e8
gg

z9

•
e9

''
•
e9

gg
''
•
e9

gg
z10
•

e10

''
•

e10
gg

With ω as above, there are three modules of the form V (ω, j,ǫ) corresponding
to j = 0,1,2. For example, V (ω, 1,ǫ) is two-dimensional with basis

�
[σ−1(m1), e1],

[m1, e1]
	
.

In general, let j ∈ Zm and V = V (ω, j,ǫ). We determine all non-degenerate
admissable forms on V . V has a basis

{vk := [σ−k(m j), e j] | k = 0,1, . . . , p j − 1},

where p j > 0 is minimal such that σp j (m j−1) = m j. Any A-module isomorphism

V → V ♯ has the form Φλ(v0) = λv
♯
0 for some λ ∈ K

m j
, where v

♯
0 = [m j , e

♯

j
]. The

corresponding admissable form satisfies

cΦλ(vn, vm) = cΦλ(Y nv0, Y nv0)δn,m = σ
−n
�cΦλ(X nY nv0, v0)

�
δn,m =

= σ−n
�
σ(t)σ2(t) · · ·σn(t)λ

�
δn,m (5.15)

for n, m = 0,1, . . . , p j − 1. It is clearly non-degenerate iff λ 6= 0.
Suppose thatω is torsion trivial. Choose m(ω) =m j . Suppose that Kω ≃ C and

that conjugation is usual complex conjugation and assume that λ ∈ R. Let Ψλ be
the associated symmetric C-form as described in Proposition 3.4. We have

Ψλ(vn, vm) =
�
σ(t)σ2(t) · · ·σn(t)

�
m(ω)λδn,m

for n, m = 0,1, . . . , p j − 1. Let us calculate the index (n+, n−), (i.e. n+ (n−) is
the number of positive (negative) eigenvalues) of the form Ψλ. Let a0 = λ and
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ai = σ
i(t) +m(ω) ∈ R, i = 1, . . . , p j − 1. Let 0 ≤ s1 < s2 < · · · < sr ≤ p j − 1 be

the integers i for which ai < 0 and put si = 0 for i ≤ 0 and put si = p j for i > r.
Then one can check that Ψλ has index

�∑
i∈Z(s2i+1 − s2i),

∑
i∈Z(s2i − s2i−1)
�
. For

example, if p j = 7 and sgn(λ, a1, a2, . . . , a6) = (+,+,−,+,+,−,−), then the index
of Ψλ is (2+ 1,3+ 1) = (3,4). All possible indices can occur. This can be seen as
in Section 5.1.

5.5 Finite orbit with breaks, second kind

For r ∈ R and m ∈Max(R), we put r
m
= r +m ∈ R/m for brevity.

Theorem 5.10. Let ω ∈ Ω be a finite real orbit. Let V = V (ω, w, f ) where w =

z1z2 · · · zn is an m-word, and f = a1+ a2 x + · · ·+ ad xd−1+ xd ∈Kω[x;τn/m] is any

element with a1 6= 0. Then V ♯ ≃ V (ω, w♯, g) for some g ∈Kω[x;τn/m].

Proof. For simplicity, we will assume that z1 = x . The proof of the case z1 = y is
similar.

Step 1. We find the action of X and Y on a dual basis in V ♯. Relations (4.3)-
(4.4) for the module V can be written

X[m, eks] =





σ(t
m
) · [σ(m), eks], m /∈ Bω,

[σ(m), ek+1,s], m ∈ Bω, k < n, zk+1 = x ,

0, m ∈ Bω, k < n, zk+1 = y,

[σ(m), e1,s+1], m ∈ Bω, k = n, s < d,

−
∑d

i=1σ(ai) · [σ(m), e1i], m ∈ Bω, k = n, s = d,

(5.16)

Y [m, eks] =





[σ−1(m), eks], σ−1(m) /∈ Bω,

[σ−1(m), ek−1,s], σ−1(m) ∈ Bω, k > 1, zk = y,

0, σ−1(m) ∈ Bω, k > 1, zk = x ,

0, σ−1(m) ∈ Bω, k = 1.

(5.17)

Let �
[m, e

♯

ks
] | s = 1, . . . , d, k = 1, . . . , n, k ≡ j(m) (mod m)

	

be the dual basis in V ♯, defined by requiring (recall that 1
m

denotes 1+m ∈ R/m)

[m, e
♯

ks
]
�
[n, el r]
�
=

¨
1

m
, if m= n, k = l, s = r,

0, otherwise,
(5.18)

and [m, e
♯

ks
] to be additive and [m, e

♯

ks
](r v) = r∗ · [m, e

♯

ks
](v) for any r ∈ R, v ∈ V .

Then the following relations hold for the action of X and Y on this dual basis:

X[m, e
♯

ks
] =





[σ(m), e
♯

ks
], m /∈ Bω,

[σ(m), e
♯

k+1,s], m ∈ Bω, k < n, zk+1 = y,

0, otherwise,

(5.19)
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Y [m, e
♯

ks
] =

=





tσ−1(m) · [σ
−1(m), e

♯

ks
], σ−1(m) /∈ Bω,

[σ−1(m), e
♯

k−1,s], σ−1(m) ∈ Bω, k > 1, zk = x ,

0, σ−1(m) ∈ Bω, k > 1, zk = y,

[σ−1(m), e
♯
n,s−1]− as · [σ

−1(m), e
♯

nd
], σ−1(m) ∈ Bω, k = 1, s > 1,

−a1 · [σ
−1(m), e

♯

nd
], σ−1(m) ∈ Bω, k = 1, s = 1.

(5.20)

Let us prove the first case in (5.20). If σ−1(m) /∈ Bω, then

�
Y [m, e

♯

ks
]
��
[σ−1(m), el r]
�
=

= σ−1
�
[m, e

♯

ks
]
�
X[σ−1(m), el r]
��

by A-module str. of V ♯,

= σ−1
�
[m, e

♯

ks
]
�
σ(t) · [m, el r]
��

by (5.16),

= σ−1
�
σ(t)∗ · [m, e

♯

ks
]
�
[m, el r]
��

by R-antilinearity,

= t ·δklδsr ·σ
−1(1

m
) by (5.18),

= t · [σ−1(m), e
♯

ks
]
�
[σ−1(m), el r]
�

by (5.18).

Furthermore, if n 6= σ−1(m) then

�
Y [m, e

♯

ks
]
��
[n, el r]
�
= σ−1
�
[m, e

♯

ks
]
�
X[n, el r]
��
= 0= t · [σ−1(m), e

♯

ks
]
�
[n, el r]
�

using that X[n, el r] ∈ Vσ(n) and (5.18). This proves that Y [m, e
♯

ks
] = t·[σ−1(m), e

♯

ks
] =

tσ−1(m) · [σ
−1(m), e

♯

ks
] if σ−1(m) /∈ Bω.

For the last two cases in (5.20), let us first note that if σ−1(m) ∈ Bω and
j(σ−1(m))≡ n≡ 0 (mod m) then in fact σ−1(m) =m0. We have

�
Y [σ(m0), e

♯
1s]
��
[m0, el r]
�
=

= σ−1
�
[σ(m0), e

♯
1s]
�
X[m0, el r]
��

by A-module str. of V ♯,

= σ−1
�
[σ(m0), e

♯
1s]
�
[σ(m0), e1,r+1]δlnδr<d −σ(as)[σ(m0), e1s]δlnδrd

��

= δs−1,rδs>1δln1
m0
− asδlnδrd1

m0

=
�
[m0, e

♯
n,s−1]δs>1− as · [m0, e

♯

nd
]
��
[m0, el r]
�
.

The other cases in (5.19),(5.20) are easily checked.
Step 2. We construct a basis [m, fks] for V ♯ such that [m, eks] 7→ [m, fks] is an

isomorphism from V (ω, w♯, g) to V ♯ for some g. We have a decomposition

(V ♯)
m
=
⊕

1≤k≤n,
k≡ j(m) (mod m)

(V ♯)(k)
m

for any m ∈ω, (5.21)

(V ♯)(k)
m
= ⊕d

s=1Km
[m, e

♯

ks
]. (5.22)
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Note that, if k > 1 and z
♯

k
= y then Y : (V ♯)(k)

m
→ (V ♯)

(k−1)
σ−1(m)

is bijective, where

σ−1(m) ∈ Bω is the unique break such that j(m)≡ k (mod m). Indeed this is trivial
since Y [m, e

♯

ks
] = [σ−1(m), e

♯

k−1,s] for s = 1, . . . , d by the second case in (5.20).

Also, Y : (V ♯)(1)
σ(m0)
→ (V ♯)(n)

m0
is bijective by the fourth and fifth case in (5.20), using

the assumption that a1 6= 0.
Put

[σ(m0), f11] = [σ(m0), e
♯
11] (5.23)

and recursively

[m, fks] =





σ(t)−1
m

X[σ−1(m), fks], σ−1(m) /∈ Bω,

X[σ−1(m), fk−1,s], σ−1(m) ∈ Bω, z♯
k
= x(⇒ k > 1),�

Y |
(V ♯)

(k)
m

�−1
[σ−1(m), fk−1,s], σ−1(m) ∈ Bω, k > 1, z♯

k
= y,�

Y
��
(V ♯)

(1)
m

�−1
[σ−1(m), fn,s−1], σ−1(m) ∈ Bω, k = 1.

(5.24)
Induction shows that each [m, fks] is a linear combination of [m, e

♯

kr
] where 1 ≤

r ≤ s and the coefficient of [m, e
♯

ks
] is nonzero. Thus

�
[m, fks]
	d

s=1 is a basis for

(V ♯)(k)
m

.
We prove that there exists a g ∈ Kω[x;τn/m] such that the R-module isomor-

phism ϕ : V (ω, w♯, g) → V ♯ defined by ϕ([m, eks]) = [m, fks] is an A-module iso-
morphism. By (4.3),

ϕ(X[m, eks]) =





ϕ
�
σ(t)σ(m) · [σ(m), eks]

�
, m /∈ Bω,

ϕ
�
[σ(m), ek+1,s]
�
, m ∈ Bω, k < n, z♯

k+1 = x ,

0, otherwise (since z
♯
1 = y),

=





σ(t)σ(m) · [σ(m), fks], m /∈ Bω,

[σ(m), fk+1,s], m ∈ Bω, k < n, z♯
k+1 = x ,

0, otherwise,

(5.25)

while Xϕ
�
[m, eks]
�
= X[m, fks]. By the recursive definition of [m, fks], the vec-

tor X[m, fks] equals the right hand side of (5.25). For example, [σ(m), fks] =

σ(t)−1
σ(m)
· X[m, fks] if m /∈ Bω by the first case in (5.24), which gives X[m, fks] =

σ(t)σ(m) · [σ(m), fks]. Similarly, by (4.4) and the construction of the basis [m, fks],
ϕ
�
Y [m, eks]
�
= Yϕ
�
[m, eks]
�

when k > 1 or s > 1 or m 6= σ(m0). For the last case,

k = s = 1 and m = σ(m0), we know that Y : (V ♯)(1)
σ(m0)
→ (V ♯)(n)

m0
is bijective. Thus,

since
�
[m0, fns]
	d

s=1 is a basis for (V ♯)(n)
m0

,

Yϕ
�
[σ(m0), e11]
�
= Y [σ(m0), f11] =−

d∑

r=1

c◦
r
· [m0, fnr]

for some constants cr ∈ Kω, where we denote c◦
r
= τd−r(cd+1−r). Choose g =

c1 + c2 x + · · ·+ cd xd−1 + xd . Since z
♯
1 = y , relation (4.4) gives that, in V (ω, w♯, g)
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we have Y [σ(m0), e11] =−
∑d

r=1 c◦
r
[m0, enr] and thus

ϕ
�
Y [σ(m0), e11]
�
= ϕ
�
−

d∑

r=1

c◦
r
[m0, enr]
�
=−

d∑

r=1

c◦
r
[m0, fnr].

This finishes the proof that V ♯ ≃ V (ω, w♯, g) for some g.

Corollary 5.11. Letω be a finite real orbit. Let V = V (ω, w, f ) where w = z1z2 · · · zn

is a non-periodic m-word, and f = a1+a2 x+· · ·+ad xd−1+xd 6= xd is indecomposable

in Kω[x;τn/m]. If V ≃ V ♯ then w = w0w
♯
0, where w0 is an m-word.

Proof. Since f is indecomposable and f 6= xd we have a1 6= 0. If V ≃ V ♯ then by
Theorem 5.10, V ≃ V (ω, w♯, g) for some g ∈ Kω[x;τn/m]. Thus by the classifi-
cation in Theorem 4.1 we must have w(lm) = w♯ for some integer l ≥ 0, chosen
minimal. Clearly, lm < n. Since the operation ♯ on the monoid D commutes with
the Z-action, we have

w(lm+ k) = w(k)♯ ∀ k ∈ Z. (5.26)

We claim that 2lm ≤ n. Otherwise lm < n < 2lm and thus 0 < n− lm < lm. Also,
w(n− lm) = w(−lm) = w♯ since w = w(−lm+ lm) = w(−lm)♯ by (5.26) with
k = −lm. Thus the properties of the number n

m
− l contradicts the minimality of l.

Therefore 2lm≤ n as claimed.
Now let k = GCD(2lm, n). Trivially w(n) = w, and by (5.26), w(2lm) =

w(lm)♯ = w. Hence w(k) = w also. But k|n and thus w = (z1z2 · · · zk)
n/k. How-

ever w is non-periodic and thus n = k, forcing n = 2lm so w = w0w
♯
0 where

w0 = z1z2 · · · zlm is an m-word.

Theorem 5.12. Let ω ∈ Ω be a finite real orbit with m := |Bω| > 0. Let w0 ∈ D\{ǫ}

be an m-word and put l = |w0|/m and n= 2|w0|. Let V = V (ω, w0w
♯
0, f ) where f =

α0 +α1 x + · · ·+αd−1 xd−1 +αd xd ∈Kω[x;τn/m] is any element with α0 6= 0 6= αd .

Then V ♯ ≃ V (ω, w0w
♯
0, f ♯), where

f ♯ =

d∑

k=0

{2lk} ·τ(2k+1)l�αd−k

�
· xk. (5.27)

Here {k} is a Pochhammer-type symbol:

{k} = {k}q,τ = qτ(q) · · ·τk−1(q) ∈Kω, k ∈ Z≥0, (5.28)

where q ∈Kω\{0} is given by

q = σp2+p3+···+pm(t1)σ
p3+p4+···+pm(t2) · · ·σ

pm(tm−1)tm, (5.29)

t i =
�
σ(t)σ2(t) · · ·σpi−1(t)

�
mi

for i = 1, . . . , m, (5.30)

where pi ∈ Z>0 are minimal such that σpi (mi−1) =mi , i = 1, . . . , m.
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Combining Corollary 5.11 and Theorem 5.12 we obtain the following.

Theorem 5.13. Let V be any indecomposable weight A-module of the type V (ω, w, f )

with ω real. Thus ω ∈ Ω is a finite real orbit with m := |Bω| > 0, w ∈ D\{ǫ} is a

non-periodic m-word, and f = α0+α1 x+· · ·+αd xd ∈Kω[x;τn/m], αd 6= 0, is an in-

decomposable element not equal to xd . Then V has a non-degenerate admissable form

iff w = w0w
♯
0 for some m-word w0 ∈ D\{ǫ} and f is similar to f ♯ in Kω[x;τn/m],

where f ♯ is given by (5.27).

Remark 5.14. From Theorem 5.12 follows that f ♯♯ is similar to f . This is not
apparent from (5.27) but by comparing the coefficients of f and f ♯♯ one can verify
that

f ♯♯ = {(2d + 1)l} ·τ
n

m
(m+1)( f ) · {l}−1.

Using that τn/m( f ) is similar to f in Kω[x;τn/m] we conclude that indeed f ♯♯ ∼ f .

Proof of Theorem 5.12. Let z1z2 · · · zn = w. It will also be convenient to define z j =

zi when j ≡ i (mod n). Assume for a moment that we have proved (5.27) for the
case z1 = x and suppose that z1 = y . By the shift isomorphism (4.6), which holds
also for decomposable f , we have

V ≃ V (ω, w(−lm),τ−l( f )) = V (ω, w
♯
0w0,τ−l( f )) (5.31)

where τ−l( f ) = τ−l(α0)+τ
−l(α1)x + · · ·+τ

−l(αd)x
d . By the assumption we then

have
V (ω, w

♯
0w0,τ−l( f ))♯ ≃ V (ω, w

♯
0w0, g), (5.32)

where

g =

d∑

k=0

{2lk} ·τ(2k+1)l
�
τ−l
�
αd−k

��
· xk =

d∑

k=0

τ−l
�
τl
�
{2lk}
�
·τ(2k+1)l�αd−k

��
· xk.

Again by (4.6),

V (ω, w
♯
0w0, g) ≃ V (ω, w0w

♯
0,τl(g)). (5.33)

From the formula
τl
�
{2lk}
�
= {l}−1 · {2lk} ·τ2lk

�
{l}
�

we see that τl(g) = {l}−1 · f ♯ · {l} which is similar to f ♯. Combining this fact with
the isomorphisms (5.31)-(5.33) we deduce that V ♯ ≃ V (ω, w, f ♯). Therefore the
case z1 = y follows from the case z1 = x .

Thus we assume for the rest of the proof that z1 = x .

Step 1. Put ak = αk−1/αd for k = 1,2, . . . , d. Let us replace f by
(1/αd) f = a1+ a2 x + · · ·+ ad xd−1 + xd . This does not change the isomorphism
class of the module V . As in the proof of Theorem 5.10, we can construct a basis
[m, fks] for V ♯ such that

ϕ : V (ω, w0w
♯
0, g)→ V ♯ (5.34)

[m, eks] 7→ [m, fks]
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is an A-module isomorphism for some g. We use the decomposition (5.21). We
put also (V ♯)(l)

m
= (V ♯)(k)

m
whenever l ∈ Z, l ≡ k (mod n). By relation (5.20), which

holds in V ♯ since z1 = x , it follows that if 1≤ k ≤ n and zk = y , so that

zlm+k = z
♯

k
= x , then

Y : (V ♯)(lm+k)

σ(mk−1)
→ (V ♯)(lm+k−1)

mk−1

is bijective. For the case k = lm+ 1 it is essential that a1 6= 0. Put

[σ(m0), f11] = [σ(m0), e
♯

lm+1,1] (5.35)

and recursively

[m, fks] =





σ(t)−1
m

X[σ−1(m), fks], σ−1(m) /∈ Bω,

X[σ−1(m), fk−1,s], σ−1(m) ∈ Bω, k > 1, zk = x ,�
Y |
(V ♯)

(k+lm)
m

�−1
[σ−1(m), fk−1,s], σ−1(m) ∈ Bω, zk = y, (k > 1),

X[σ−1(m), f1,s−1], σ−1(m) ∈ Bω, k = 1, (z1 = x).

(5.36)
By induction, [m, fks] ∈ (V

♯)(lm+k)
m

for each m ∈ω, s = 1, . . . , d, k = 1, . . . , n,
k ≡ j(m) (mod m).

Step 2. We will now show that the g such that V (ω, w0w
♯
0, g) ≃ V ♯, is similar to

f ♯, given by (5.27). Define an operator Z : (V ♯)(lm)
m0
→ (V ♯)(lm)

m0
by

Z = Zn · · · Z2Z1, (5.37)

where Zi : (V ♯)(lm+i−1)
mi−1

→ (V ♯)(lm+i)
mi

are given by

Zi =




(t i)
−1X pi , if zi = x ,

(t i)
−1X pi−1
�
Y |
(V ♯)

(lm+i)

σ(mi−1 )

�−1
, if zi = y .

(5.38)

Recall that m0,m1, . . . ,mm−1 are the breaks in ω, ordered such that
mi−1 < mi <mi+1 for 0< i < m− 1. See also the weight diagram in Figure 1. For
an interpretation of the operator Z , see Remark 5.15. It has the following
properties:

Z[m0, e
♯

lm,1] = [m0, fn1], (5.39)

[m0, fns] = Z s−1[m0, fn1], for s = 1,2, . . . , d. (5.40)

Let us prove (5.39). We have Z = Zn · · · Z2Z1. First we prove that

Z1[m0, e
♯

lm,1] = [m1, f11]. (5.41)

Since z1 = x , and using relation (5.19) and that zlm+1 = z
♯
1 = y , we have

Z1[m0, e
♯

lm,1] = (t1)
−1X p1[m0, e

♯

lm
] = (t1)

−1X p1−1[σ(m0), e
♯

lm+1,1].
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By definition (5.30) of t1 and of the vector [σ(m0), f11], this is equal to
�
σ(t)σ2(t) · · ·σp1−1(t)

�−1
m1

X p1−1[σ(m0), f11].

Using that σ(r)σ(m)X v = X r
m

v for any weight vector v of weight m and any r ∈ R,
where r

m
denotes r +m ∈ R/m as usual, the expression can be rearranged into

(recall that σp1(m0) =m1)
�
σ(t)−1

σp1 (m0)
X
��
σ(t)−1

σp1−1(m0)
X
�
· · ·
�
σ(t)−1

σ2(m0)
X
�
[σ(m0), f11].

By the recursive definition, (5.36), this is equal to [σp1(m0), f11] = [m1, f11],
proving (5.41). Similarly one proves that

Zk[mk−1, fk−1,1] = [mk, fk1] for k = 2,3, . . . , n.

Combining this with (5.41), (5.39) is proved.
In the same way one shows that [m0, fns] = Z[m0, fn,s−1] for s = 2,3, . . . , d. Then
(5.40) follows.

Step 3. We have

Z[m0, e
♯

lm,s] =

(
{2l}−1 ·
�
−τl(as+1/a1)[m0, e

♯

lm,1]+ [m0, e
♯

lm,s+1]
�
, if s < d,

−{2l}−1τl(1/a1)[m0, e
♯

lm,1], if s = d.
(5.42)

To prove this, we first prove that if 1≤ k ≤ lm, so that lm+ k− 1< n, then

Zk[mk−1, e
♯

lm+k−1,s] = (tk)
−1[mk, e

♯

lm+k,s] (5.43)

for any 1≤ s ≤ d. Indeed, if zk = x , then

Zk[mk−1, e
♯

lm+k−1,s] =

= (tk)
−1X pk[mk−1, e

♯

lm+k−1,s] by definition of Zk,

= (tk)
−1X pk−1[σ(mk−1), e

♯

lm+k,s] by (5.19), since zlm+k = z
♯

k
= y ,

= (tk)
−1[mk, e

♯

lm+k,s], by first case in (5.19).

We used that σpk (mk−1) =mk in the last step. Similarly, if zk = y , then

Y [σ(mk−1), e
♯

lm+k,s] = [mk−1, e
♯

lm+k−1,s]

by (5.20) since zlm+k = z
♯

k
= x and 1< lm+ k ≤ n. Therefore

�
Y |
(V ♯)

(lm+k)

σ(mk−1)

�−1
[mk−1, e

♯

lm+k−1,s] = [σ(mk−1), e
♯

lm+k,s]

and

Zk[mk−1, e
♯

lm+k−1,s] = (tk)
−1X pk−1�Y

(V ♯)
(lm+k)

σ(mk−1)

�−1
[mk−1, e

♯

lm+k−1,s] =

= (tk)
−1X pk−1[σ(mk−1), e

♯

lm+k,s] =

= (tk)
−1[mk, e

♯

lm+k,s].
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This proves (5.43).
Using (5.43) repeatedly for k = 1,2, . . . , lm while moving the t i ’s to the left, we
have

Zm Zm−1 · · · Z2Z1[m0, e
♯

lm,s] =

= ZmZm−1 · · · Z2 · (t1)
−1[m1, e

♯

lm+1,s] =

= σp2+p3+···+pm(t1)
−1ZmZm−1 · · · Z2[m1, e

♯

lm+1,s] = · · · =

= σp2+p3+···+pm(t1)
−1σp3+p4+···+pm(t2)

−1 · · ·σpm(tm−1)
−1 · (tm)

−1·

· [mm, e
♯

lm+m,s] =

= q−1 · [m0, e
♯

(l+1)m,s
].

Here we use that, from the definition of Zk, Zkλv = σpk (λ)Zkv for λ ∈ R/m and v

a weight vector of weight m, and σ denotes the map R/m→ R/σ(m) induced by
σ. In particular, ZmZm−1 · · · Z1λv = τ(λ)ZmZm−1 · · · Z1v since τ= σp and
p = p1 + p2 + · · · pm. Therefore, using (5.43) as in the above calculation we get

Zlm Zlm−1 · · · Z1[m0, e
♯

lm,s] = Zlm Zlm−1 · · · Zm+1 · q
−1[m0, e

♯

(l+1)m,s
] =

= τl−1(q−1)ZlmZlm−1 · · · Zm+1[m0, e
♯

(l+1)m,s] =

. . .

= τl−1(q−1)τl−2(q−1) · · ·τ(q−1)q−1 · [m0, e
♯

2lm,s] =

= {l}−1 · [m0, e♯
n,s]. (5.44)

It remains to calculate Z2lm Z2lm−1 · · · Zlm+1[m0, e♯
n,s]. To calculate Zlm+1[m0, e♯

n,s]

we need to find, by definition of Zlm+1,
�
Y |
(V ♯)

(1)
σ(m0)

�−1
[m0, e♯

ns
]

because zlm+1 = z
♯
1 = y . By (5.20),

Y [σ(m0), e
♯
1,s+1] = [m0, e♯

n,s]− as+1 · [m0, e
♯

n,d], if s < d, (5.45)

Y [σ(m0), e
♯
1,1] =−a1 · [m0, e

♯

n,d]. (5.46)

Therefore

�
Y |
(V ♯)

(1)
σ(m0)

�−1
[m0, e♯

n,s] =

=

(
[σ(m0), e

♯
1,s+1]−σ(as+1/a1) · [σ(m0), e

♯
1,1], s < d,

−σ(1/a1) · [σ(m0), e
♯
1,1], s = d.

(5.47)

Applying (t1)
−1X p1−1 to both sides of (5.47) we deduce that

Zlm+1[m0, e♯
n,s] = (t1)

−1 ·

(
[m1, e

♯
1,s+1]−σ

p1(as+1/a1) · [m1, e
♯
1,1], s < d,

−σp1(1/a1) · [m1, e
♯
1,1], s = d.

(5.48)
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Similar to relation (5.43) we have the formula

Zlm+k[mk−1, e
♯

k−1,s] = (tk)
−1[mk, e

♯

k,s] for 1< k ≤ lm and 1≤ s ≤ d, (5.49)

which can be proved using (5.19), (5.20). Note that t lm+k = tk by the notational
assumptions on mk and tk. Using (5.49) repeatedly we get

Z(l+1)m Z(l+1)m−1 · · · Zlm+1[m0, e♯
n,s] =

= q−1 ·

(
[m0, e

♯
m,s+1]− τ(as+1/a1) · [m0, e

♯
m,1], s < d,

−τ(1/a1) · [m0, e
♯
m,1], s = d.

(5.50)

Repeating we get

Z2lm Z2lm−1 · · · Zlm+1[m0, e♯
n,s] =

= {l}−1 ·

(
[m0, e

♯

lm,s+1]− τ
l(as+1/a1) · [m0, e

♯

lm,1], s < d,

−τl(1/a1) · [m0, e
♯

lm,1], s = d.
(5.51)

Thus, combining (5.44) and (5.51) we obtain (5.42) as desired.

Step 4. Set bs =−as/a1 for 2≤ s ≤ d and b1 =−1/a1. We claim that for
1≤ s < d, there are constants Cs1, Cs2, . . . , Css ∈Kω such that

[m0, fns] = Cs1τ
3l(bs)[m0, fn1]+ · · ·+ Cs,s−1τ

l+2l(s−1)(b2)[m0, fn,s−1]+

+ Cs,s

�
τl(bs+1)[m0, e

♯

lm,1]+ [m0, e
♯

lm,s+1]
�

(5.52)

We prove this by induction on s. If s = 1 we can take

C11 = {2l}−1 (5.53)

by (5.39) and (5.42). Assume (5.52) holds for some s < d − 1. Then, using (5.40)
and that Zλ = τ2l(λ)Z for any λ ∈ K

m0
, we have

[m0, fn,s+1] = Z[m0, fns] =

= τ2l(Cs1)τ
5l(bs)Z[m0, fn1]+ · · ·+ τ

2l(Cs,s−1)τ
l+2ls(b2)Z[m0, fn,s−1]+

+ τ2l(Cs,s)
�
τ3l(bs+1)Z[m0, e

♯

lm,1] + Z[m0, e
♯

lm,s+1]
�

By (5.39),(5.40) and (5.42) this equals

τ2l(Cs,s)τ
3l(bs+1)[m0, fn1]+

+ τ2l(Cs1)τ
5l(bs)[m0, fn2]+ · · ·+ τ

2l(Cs,s−1)τ
l+2ls(b2)[m0, fn,s]+

+ τ2l(Cs,s){2l}−1 ·
�
τl(bs+2)[m0, e

♯

lm,1] + [m0, e
♯

lm,s+2]
�
.

Thus we seek the solution to the following system of equations

Cs+1,1 = τ
2l(Cs,s), (5.54)

Cs+1,r = τ
2l(Cs,r−1), 2≤ r ≤ s, (5.55)

Cs+1,s+1 = τ
2l(Cs,s){2l}−1. (5.56)
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From (5.56),(5.53) we deduce

Cs,s = {2ls}−1 1≤ s < d. (5.57)

Repeated use of (5.55) gives For 1≤ r < s < d we have

Cs,r = τ
2l(Cs−1,r−1) = · · · = τ

2l(r−1)(Cs−r+1,1) by (5.55)

= τ2l r(Cs−r,s−r) by (5.54)

= {2l r}{2ls}−1 by (5.57).

Substituting this and (5.57) into (5.52) we obtain that, for 1≤ s < d,

[m0, fns] = {2l}{2ls}−1 ·τ3l(bs) · [m0, fn1]+

+ {4l}{2ls}−1 ·τ5l(bs−1) · [m0, fn2]+

· · ·

+ {2l(s− 1)}{2ls}−1 · τl+2l(s−1)(b2) · [m0, fn,s−1]+

+ {2ls}−1�τl(bs+1)[m0, e
♯

lm,1]+ [m0, e
♯

lm,s+1]
�

(5.58)

In particular, taking s = d − 1 and applying Z we have

[m0, fnd] = Z[m0, fn,d−1] =

= {4l}{2ld}−1 · τ5l(bd−1) · [m0, fn2]+

+ {6l}{2ld}−1 ·τ7l(bd−2) · [m0, fn3]+

· · ·

+ {2l(d − 1)}{2ld}−1 ·τl+2l(d−1)(b2) · [m0, fn,d−1]+

+ {2l}{2ld}−1 ·
�
τ3l(bd)[m0, fn1] + {2l}−1τl(b1)[m0, e

♯

lm,1]
�

where we applied (5.42) in the last term. Hence, using that

X[m0, e
♯

lm,1] = [σ(m0), f11] = [σ(m0), e
♯

lm+1,1]

by (5.19) and that zlm+1 = z
♯
1 = y , together with the relation (recall ϕ from

(5.34))

X[m0, fns] = Xϕ
�
[m0, ens]
�
= ϕ
�
X[m0, ens]
�
=

= ϕ
�
[σ(m0), e1,s+1]
�
= [σ(m0), f1,s+1]

holding for s < d, we obtain that

X[m0, fnd] = σ
�
{2ld}−1τl(b1)
�
· [σ(m0), f11]+

+σ
�
{2l}{2ld}−1τ3l(bd)

�
· [σ(m0), f12]+

+σ
�
{4l}{2ld}−1τ5l(bd−1)

�
· [σ(m0), f13]+

· · ·

+σ
�
{2l(d − 1)}{2ld}−1τl+2l(d−1)(b2)

�
· [σ(m0), f1d].
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Resubstituting b1 = −1/a1 =−αd/α0 and bs =−as/a1 =−αs−1/α0 (for s > 1),
we conclude that, in view of the final case in relation (5.16), that the map
V (ω, w0w

♯
0, g)→ V ♯, [m, eks] 7→ [m, fks] will be an A-module isomorphism if g is

given by

{2ld} · g = τl(αd/α0)+

+ {2l} ·τ3l(αd−1/α0) · x+

+ {4l} ·τ5l(αd−2/α0) · x
2+

· · ·

+ {2l(d − 1)} · τl+2l(d−1)(α1/α0) · x
d−1+

+ {2ld} · xd .

Thus {2ld} · g · τl(α0) = f ♯ so g is similar to f ♯. This finishes the proof that
V ♯ ≃ V (ω, w0w

♯
0, f ♯).

Remark 5.15. The indecomposable weight module V = V (ω, w, f ), w = z1 · · · zn,
has the the following characterizing properties:

1) the operator Z = Z(w) : V
m0
→ V

m0
given by Z = Zn · · · Z2Z1 where

Zi =

¨
(t i)
−1X pi , zi = x ,

(t i)
−1X pi−1Y−1, zi = y,

is well-defined and single-valued (since w is non-periodic), and

2) giving V
m0

the structure of a module over Kω[x;τn/m] by

x .v = Zv, v ∈ V
m0

,

there exists a nonzero vector in V
m0

which is annihilated by f .

What we prove in Theorem 5.10 is that Z(w♯) is well-defined on the m0-weight
space of V (ω, w, f )♯, while in Theorem 5.12 we prove that when V = V (ω, w0w

♯
0, f ),

the space (V ♯)
m0

contains a nonzero vector annihilated by a skew polynomial sim-

ilar to f ♯. Therefore V ♯ ≃ V (ω, w0w
♯
0, f ♯).

6 Examples

6.1 Noncommutative type-A Kleinian singularities

Let R = C[H] and σ ∈ AutC(H) be given by σ(H) = H − 1 and t ∈ R be arbitrary.
The generalized Weyl algebra A= R(σ, t) was studied in [B] and [H]. For example,
all simple modules (not only weight modules) were classified in [B]. Let ∗ be the
R-algebra automorphism of R given by i∗ = −i, H∗ = H. Suppose that t∗ = t

i.e. that t = f (H), where the polynomial f has real coefficients. Since any orbit
is infinite, Theorem 5.2 and Theorem 5.3 implies that an indecomposable weight
module with real support has a non-degenerate admissable form iff it is simple.
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6.2 The enveloping algebra of sl2

Let R = C[h, t] and let σ ∈ AutC(R) be given by σ(h) = h− 2, σ(t) = t + h. Then
A= R(σ, t) ≃ U(sl2). Define ∗ ∈ AutR(R) by h∗ = h, t∗ = t, i∗ = −i. Here, as in the
previous example, all orbits are infinite so indecomposable weight modules with
real support are non-degenerately unitarizable iff they are simple.

By induction one checks that σn(t) =−n2+(h+1)n+ t, ∀n ∈ Z. Thus, for any
µ,α ∈ R,

lim
n→±∞

�
σn(t)mod (h−µ, t −α)

	
= lim

n→±∞
−n2 + (µ+ 1)n+α =−∞.

In view of formulas (5.1),(5.2),(5.3), this shows that any non-degenerate symmet-
ric admissable form on an infinite-dimensional simple weight module with real
support is necessarily indefinite.

On the other hand, on a finite-dimensional simple weight module V (N) (with
highest weight N ∈ Z≥0 and of dimension N + 1), the form Ψλ given by (5.2) with
λ > 0 is positive definite because

σn(t)mod (t,h− N) = n(N − n+ 1) > 0

for n= 1,2, . . . , N so that Ψλ(Y
ne0, Y ne0)> 0 for n= 0,1, . . . , N .

6.3 The quantum enveloping algebra of sl2

Let R = C[K , K−1, t] and q ∈ C\{−1,0,1}. Define σ ∈ AutC(R) by σ(K) =

q−2K ,σ(t) = t + K−K−1

q−q−1 . Then R(σ, t) ≃ Uq(sl2). We assume here that q2 is a

root of unity of order p > 1. Let ∗ ∈ AutR(R) be given by K∗ = K−1, i∗ =−i, t∗ = t.
One verifies that σ commutes with ∗ and that σ has order p. All orbits have p

elements and are torsion trivial. Let ω ∈ Ω and m = (K − µ, t − α) ∈ ω. Then ω
is real iff m

∗ = m which holds iff |µ| = 1 and α ∈ R. Assume ω is real and put
m(ω) = m. We identify Kω = R/m with C. The real number

ξ=
�
σ(t)σ2(t) · · ·σp(t)

�
m
=

p−1∏

k=0

�
α+

k∑

i=0

q−2iµ− q2iµ−1

q− q−1

�
(6.1)

is nonzero iff there are no breaks in ω.
Assume that ξ 6= 0 and consider the modules V (ω, f ). Since σp = Id, the skew

Laurent polynomial ring Kω[x , x−1;τ], to which f belongs, is just the ordinary
commutative Laurent polynomial ring P = C[x , x−1]. Similarity in P just means
equality up to multiplication by nonzero homogenous term. Any indecomposable
element in P is similar to f = (x−a)d for some a ∈ C\{0}, d ≥ 1. By Theorem 5.6,
V (ω, f )♯ ≃ V (ω, f ♯) where f ♯ = (ξx)d((ξx)−1−a)d = (1−aξx)d ∼ (x−(aξ)−1)d .
Thus we conclude that V (ω, f ), where ω is a real orbit without breaks containing
(K − µ, t − α) and f = (x − a)d , has a non-degenerate admissable form iff a =

(aξ)−1, that is, iff |a|2 = ξ−1, where ξ is given by (6.1). It would be interesting to
determine the values of α and µ for which ξ is positive so that |a|2 = ξ−1 can hold.
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We only note here that for any fixed µ, the quantity ξ is a polynomial of degree p

in α with positive leading coefficient and thus ξ > 0 if α is sufficiently big.
Assume now that ξ = 0. Then ω has breaks and we can assume α = 0. Recall

that the break m0 =m(ω) =m. For k ≥ 0 we have

σk+1(t) = t +

k∑

i=0

q−2iK − q2iK−1

q− q−1
.

Thus the reduction modulo m0 is

�
σk+1(t)
�

m0
=

k∑

i=0

q−2iµ− q2iµ−1

q− q−1
=
(1− q2(k+1))(1− µ2q−2k)

µq(q− q−1)2
(6.2)

This shows that, for 0≤ k ≤ p− 2,

σ−(k+1)(m0) ∈ Bω⇐⇒ µ
2 = q2k. (6.3)

By (6.3) we have

Bω =

¨
{m0,m1 = σ

−(k+1)(m0)}, if µ2 = q2k where 0≤ k ≤ p− 2,

{m0}, if µ /∈ {±1,±q, . . . ,±qp−2},

Call µ generic if µ /∈ {±1,±q, . . . ,±qp−2} and specific otherwise. If µ is specific, we
let r (0 ≤ r ≤ p− 2) denote the unique integer such that µ2 = q2r . Let m = |Bω|.
By (6.3), m = 1 if µ is generic and m = 2 if µ is specific. Recall the definition of pi

from Section 4.1. For specific µ we have p1 = p− (r + 1) and p2 = r + 1.
By Theorem 5.8, a module of the form V (ω, j, w) has a non-degenerate admiss-

able form iff it is simple, which holds iff w = ǫ, the empty word. If µ is generic
then there is only one such module, V (ω, 0,ǫ). If µ is specific then there are two
such modules, V (ω, 0,ǫ) and V (ω, 1,ǫ).

If V = V (ω, w = z1 · · · zn, f = (x − a)d), then by Theorem 5.13, V has a non-

degenerate admissable form iff w = w0w
♯
0 where w0 is a non-empty m-word (so for

generic µ the word w0 is arbitrary, while for specific µ, it has to be of even length)
and f is similar to f ♯ in C[x]. Let (a; s)i denote the shifted factorial

(a; s)i = (1− a)(1− as) · · · (1− asi−1)

and for j < i let (a; s)
( j)

i
denote (a; s)i but with the factor (1− as j) omitted. By

(5.27) the polynomial f ♯ is given by

f ♯ =

d∑

k=0

Qnkαd−k · x
k = (Qn x)d · f
�
(Qn x)−1
�
= (1−Qnax)d ∼

�
x − (Qna)−1�d ,

where Q is the nonzero real number given by

Q = t1 =
(q2;q2)p−1 · (µ

2;q−2)p−1

(µq(q− q−1)2)p−1
, if µ is generic, (6.4)
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and

Q = σp2(t1)t2 =
(q2;q2)

(r)

p−1 · (µ
2;q−2)

(r)

p−1

(µq(q− q−1)2)p−2
, if µ is specific, µ2 = q2r . (6.5)

We conclude that V = V (ω, w = z1 · · · zn, f = (x−a)d), (ω a real orbit containing a
break m = (t, K − µ)) has a non-degenerate admissable form iff w = w0w

♯
0, where

w0 ∈ D\{ǫ} has even length if µ is specific, and |a|2 = Q−n. Since n is even,
solutions a ∈ C to this equation always exist.

Irreducible representations of Uq(sl2) which are unitarizable with respect to a
positive definite form were described in [V]. This corresponds to the case when all
the factors in (6.1) are nonnegative.

6.4 When R is a field

We note that in the special case when R = K is a field, there is only one orbit ω0

consiting of the zero ideal alone. The orbitω0 is real, and contains a break iff t = 0.
Furthermore, ω0 is torsion trivial iff σ is trivial. An indecomposable weight module
over A= R(σ, t) is then of the form V (ω, f ) if t 6= 0, where f ∈ K[x , x−1;σ] and
V (ω, j, w) or V (ω, w, f ) if t = 0, where f ∈ K[x;σn] (n = |w|). This shows that
any skew polynomial ring can occur.

6.5 An example of a module of the second kind

Let R = C[u, t], σ ∈ AutC(R) defined by σ(u) = 1− u,σ(t) = t. Then the orbits
have the form ωµ,α = {(u− µ, t − α), (u − (1− µ), t − α)}, where µ,α ∈ C. All
orbits are torsion trivial and have two elements, except for ω1/2,α which has only
one element. The orbit ωµ,α contains no breaks if α 6= 0, and all elements of ωµ,0

are breaks. Define ∗ ∈ AutR(R) by u∗ = u, t∗ = t, i∗ = −i. Then ωµ,α is real iff
µ,α ∈ R.

Let ω = ω0,0. Let m(ω) = m0 = (u, t) and σ(m0) = m1 = (u − 1, t). Then
Bω = ω, p = |ω| = 2, m = |Bω| = 2. We identify Kω = R/m(ω) with C. The map
τ is the identity since ω is torsion trivial. Let f = a1 + a2 x + x2 ∈ C[x], a1 6= 0,
let w = x x y y and let V = V (ω, w, f ). The weight module V is decomposable iff f

has distinct roots.

Since σ(m0) = m1 and σ(m1) = m0, the integers p1 and p2 (defined in Section
4.1) both equal one. Thus, recalling definitions (5.29), (5.30) of q, t1, t2, we
have t1 = t2 = 1 and q = 1. By Theorem 5.12, V ♯ ≃ V (ω, w, f ♯) where f ♯ =

1+ a2 x + a1 x2 ∼ 1/a1 + a2/a1 · x + x2. Thus V ≃ V ♯ iff a1 = 1/a1, a2 = a2/a1.

The module V has the following structure. We have V = V
m0
⊕ V

m1
. Since

j(m0) = 0 and j(m1) = 1, V
m0

has a basis {e21, e22, e41, e42} and V
m1

has a basis
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{e11, e12, e31, e32}.

•
e11

m1
// •
e21

m0
•

e31

m1
oo •

e41

m0
oo

X

		
•

e12

// •
e22

•
e32

oo •
e42

oo BC@A
GF

X

//

The module structure on V is given by the following, where s = 1,2:




X e1s = e2s,

X e2s = X e3s = 0,

X e41 = e12,

X e42 =−a1e11− a2e12,





Ye1s = 0,

Ye2s = 0,

Ye3s = e2s,

Ye4s = e3s.

Let us show explicitly that V ♯ ≃ V (ω, w, f ♯). Let {e♯
ks

: 1 ≤ k ≤ 4, s = 1,2} be the

dual basis in V ♯, i.e. e
♯

ks
(ei j) = δkiδs j . Then {e♯2s, e

♯
4s : s = 1,2} is a basis for (V ♯)

m0

and {e♯1s, e
♯
3s : s = 1,2} is a basis for (V ♯)

m1
. For s = 1,2 we have





X e
♯
1s = 0,

X e
♯
2s = e

♯
3s,

X e
♯
3s = e

♯
4s,

X e
♯
4s = 0,





Ye
♯
11 =−a1e

♯
42,

Ye
♯
12 = e

♯
41 − a2e

♯
42,

Ye
♯
2s = e

♯
1s,

Ye
♯
3s = Ye

♯
4s = 0.

Set b1 =−1/a1 and b2 =−a2/a1 and




f11 = e
♯
31,

f21 = e
♯
41,

f31 = b2e
♯
11 + e

♯
12,

f41 = b2e
♯
21 + e

♯
22,





f12 = b2e
♯
31 + e

♯
32,

f22 = b2e
♯
41 + e

♯
42,

f32 = (b1 + b2
2)e

♯
11+ b2e

♯
12,

f42 = (b1 + b2
2)e

♯
21+ b2e

♯
22.

(6.6)

We have X f42 = b1 f11 + b2 f12. Set g(x) = −b1 − b2 x + x2. Then one veri-
fies that V ♯ ≃ V (ω, w, g) via the map fks 7→ eks. Since g ∼ f ♯ we deduce that
V ♯ ≃ V (ω, w, f ♯). Thus, since polynomials in C[x] are similar iff they differ by a
multiplicative scalar, V ≃ V ♯ iff f = g, i.e. iff a1 = 1/a1 and a2 = a2/a1. It is easy
to check that

E := {(a1, a2) ∈ C
2 : a1 = 1/a1, a2 = a2/a1} = {(ζ

2, xζ) : x ∈ R,ζ ∈ C, |ζ| = 1}

and (ζ2
1, x1ζ1) = (ζ

2
2, xζ2) iff (ζ1, x1) =±(ζ2, x2).

If (a1, a2) ∈ E, the non-degenerate admissable C-form bΦ corresponding to the
isomorphism Φ : V → V ♯, Φ(eks) = fks is

bΦ(eks, el r) =
�
Φ(eks)
�
(el r) = fks(el r).
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Using (6.6) and that (e♯
ks
)(el r) = δklδsr , and explicit matrix for bΦ in the basis

{eks} can be written down. As a curious aside we mention that the zero-set of
the determinant of the symmetrized form bΦ + bΦ♯ as a function of z ∈ C\{1} via
a2 = 1− z, a1 = (1− z)/(1− z) is the curve known as the limaçon trisectrix. It
has certain special geometric properties and is parametrized in polar coordinates
by r = 1 + 2cosθ . Thus, for points outside of this curve, bΦ + bΦ♯ is the unique
symmetric non-degenerate admissable form, by Remark 3.22.
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The elliptic GL(n) dynamical quantum group
as an h-Hopf algebroid
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Abstract

Using the language of h-Hopf algebroids which was introduced by Etingof
and Varchenko, we construct a dynamical quantum group, Fell(GL(n)), from
Felder’s elliptic solution of the quantum dynamical Yang-Baxter equation with
spectral parameter associated to the Lie algebra sln. First we apply the general-
ized FRST construction and obtain a bialgebroid Fell(M(n)). Then, analogues
of the exterior algebra and their matrix elements, elliptic minors, are defined
and studied. In particular we define the elliptic determinant and prove that it is
grouplike and almost central. Localizing at this determinant and constructing
an antipode we obtain the h-Hopf algebroid Fell(GL(n)).

1 Introduction

The quantum dynamical Yang-Baxter (QDYB) equation was introduced by Gervais
and Neveu [GN84]. It was realized by Felder [F95] that this equation is equivalent
to the Star-Triangle relation in statistical mechanics. It is a generalization of the
quantum Yang-Baxter equation, involving an extra, so called dynamical, parame-
ter. In [F95] an interesting elliptic solution to the QDYB equation with spectral
parameter was given, adapted from the A(1)

n
solution to the Star-Triangle relation

constructed in [JKMO88]. Felder also defined the concept of a representation of the
corresponding quantum group Eτ,η(g). These representations were further studied
in [FV96] in the case g= sl2.

In [FV97], the authors consider exterior and symmetric powers of the vector
representation of the elliptic quantum group Eτ,η(gln). In particular they obtain
the quantum determinant and mention how to prove that it is central in the so
called operator algebra. This is also proved in [TV01] (appendix B) in more detail
and in [ZSY03] using a different approach.

An algebraic framework for studying dynamical R-matrices was introduced in
[EV98]. There the authors defined the notion of h-bialgebroids and h-Hopf al-
gebroids, a special case of the Hopf algebroids defined by Lu [L96]. They also
show, using a generalized version of the FRST construction, how to associate to
every solution R of the quantum dynamical Yang-Baxter equation (without spec-
tral parameter) an h-bialgebroid. Under some extra condition they get an h-Hopf

1
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algebroid by adjoining formally the matrix elements of the inverse L-matrix. This
correspondence gives a tensor equivalence between the category of representations
of the R-matrix and the category of so called dynamical representations of the h-
bialgebroid.

In this paper we define an h-Hopf algebroid associated to Felder’s elliptic R-
matrix with both dynamical and spectral parameter for g= sln.

This generalizes the spectral elliptic dynamical GL(2) quantum group from
[KNR04] and the non-spectral trigonometric dynamical GL(n) quantum group
from [KN06]. As in [KNR04], this is done by first using the the generalized FRST
construction, modified to also include spectral parameters. In addition to the usual
RLL-relation, residual relations must be added “by hand” to be able to prove that
different expressions for the determinant are equal.

Instead of, as in [EV98], adjoining formally all the matrix elements of the
inverse L-matrix, we want to adjoin only the inverse of the determinant, as in
[KNR04]. Then we express the antipode using this inverse. The main problem is
to find the correct formula for the determinant, to prove that it is central, and to
provide row and column expansion formulas for the determinant in the setting of
h-bialgebroids.

The plan of this paper is as follows. After introducing some notation in Section
2 and the R-matrix in Section 3, we recall the definition of h-bialgebroids and the
generalized FRST construction in Section 4. The relations for the resulting algebra
Fell(M(n)) are written more explicitly in Section 5.

Left and right analogs of the exterior algebra over Cn is defined in Section 6 in
a similar way as in [KN06]. They are certain comodule algebras over Fell(M(n)).

The matrix elements of these corepresentations are generalized minors depend-
ing on a spectral parameter. Their properties are studied in Section 7. In particular
we show that the left and right versions of the minors in fact coincide.

In Section 8 we show that one can define a cobraiding on Fell(M(n)), in the
sense of [R04]. We use this and the the ideas as in [FV97] and [TV01] to prove
that the determinant commutes with the generators for almost all values of the
spectral parameters. This implies that the determinant is central in the operator
algebra as shown in [FV97].

Finally, in Section 9.1 we prove Laplace expansion formulas for the quantum
elliptic minors and define the antipode in Section 9.2.

2 Notation

Let p,q ∈ R, 0 < p,q < 1. We assume p,q are generic in the sense that if paqb = 1
for some a, b ∈ Z, then a = b = 0.

Denote by θ the normalized Jacobi theta function:

θ(z) = θ(z; p) =

∞∏

j=0

(1− zp j)(1− p j+1/z). (2.1)
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It is holomorphic on C× := C\{0} with zero-set {pk : k ∈ Z} and satisfies

θ(z−1) = θ(pz) = −z−1θ(z) (2.2)

and the addition formula

θ(x y, x/y, zw, z/w) = θ(xw, x/w, z y, z/y) + (z/y)θ(xz, x/z, yw, y/w), (2.3)

where we use the notation

θ(z1, . . . , zn) = θ(z1) · · ·θ(zn).

Recall also the Jacobi triple product identity, which can be written

∑

k∈Z

(−z)kp
k(k−1)

2 = θ(z)

∞∏

j=1

(1− p j). (2.4)

It will sometimes be convenient to use the auxiliary function E given by

E : C→ C, E(s) = qsθ(q−2s). (2.5)

Relation (2.2) implies that E(−s) =−E(s).
The set {1,2, . . . , n} will be denoted by [1, n].

3 The R-matrix

Let h be a complex vector space, viewed as an abelian Lie algebra, h∗ its dual
space and V =

⊕
λ∈h∗ Vλ a diagonalizable h-module. A dynamical R-matrix is by

definition a meromorphic function

R : h∗ ×C×→ Endh(V ⊗ V )

satisfying the quantum dynamical Yang-Baxter equation with spectral parameter
(QDYBE):

R(λ,
z2

z3
)(23)R(λ− h2,

z1

z3
)(13)R(λ,

z1

z2
)(12) =

= R(λ− h3,
z1

z2
)(12)R(λ,

z1

z3
)(13)R(λ− h1,

z2

z3
)(23). (3.1)

Equation (3.1) is an equality in the algebra of meromorphic functions h∗ ×C× →

End(V⊗3). Upper indices are leg-numbering notation and h indicates the action of
h. For example,

R(λ− h3,
z1

z2
)(12)(u⊗ v ⊗w) = R(λ−α,

z1

z2
)(u⊗ v)⊗w, if w ∈ Vα.

An R-matrix R is called unitary if

R(λ, z)R(λ, z−1)(21) = IdV⊗V (3.2)
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as meromorphic functions on h∗ ×C× with values in Endh(V ⊗ V ).
In the example we study, h is the Cartan subalgebra of sl(n). Thus h is the

abelian Lie algebra of all traceless diagonal complex n× n matrices. Let V be the
h-module Cn with standard basis e1, . . . , en. Define ω(i) ∈ h∗ (i = 1, . . . , n) by

ω(i)(h) = hi , if h= diag(h1, . . . ,hn) ∈ h.

We have V =
⊕n

i=1 Vω(i) and Vω(i) = Cei . Define

R : h∗ ×C×→ End(V ⊗ V )

by

R(λ, z) =
n∑

i=1

Eii ⊗ Eii +
∑

i 6= j

α(λi j , z)Eii ⊗ E j j +
∑

i 6= j

β(λi j, z)Ei j ⊗ E ji (3.3)

where Ei j ∈ End(V ) are the matrix units, λi j (λ ∈ h∗) is an abbrevation for λ(Eii −

E j j), and

α,β : C×C×→ C

are given by

α(λ, z) = α(λ, z; p,q) =
θ(z)θ(q2(λ+1))

θ(q2z)θ(q2λ)
, (3.4)

β(λ, z) = β(λ, z; p,q) =
θ(q2)θ(q−2λz)

θ(q2z)θ(q−2λ)
. (3.5)

Proposition 3.1. The map R is a unitary R-matrix.

Proof. Since θ is holomorphic on C×, R is meromorphic. From (3.3) we see that

R(λ, z)(ea ⊗ eb) ∈ Cea ⊗ eb +Ceb ⊗ ea

proving that R(λ, z) commutes with the h-action on V ⊗ V .
The definition of R we use is a slight modification of the one from [FV97] as

shown in Lemma 3.2 below. From this it will follow that R satisfies (3.1), (3.2).
This can also be proved directly by extracting the matrix elements of both sides and
using the addition formula (2.3).

Let us recall Felders elliptic R-matrix from [FV97], denoted here by R1. Let h1

be the Cartan subalgebra of gl(n). Define R1 : h∗1 × C → End(V ⊗ V ) as in (3.3)
with α,β replaced by α1,β1 : C2→ C defined as

α1(λ, x) = α1(λ, x;τ,γ) =
θ1(x;τ)θ1(λ+ γ;τ)

θ1(x − γ;τ)θ1(λ;τ)
, (3.6)

β1(λ, x) = β1(λ, x;τ,γ) =−
θ1(x + λ;τ)θ1(γ;τ)

θ1(x − γ;τ)θ1(λ;τ)
. (3.7)
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Here τ,γ ∈ C with Imτ > 0 and θ1 is the first Jacobi theta function

θ1(x;τ) =−
∑

j∈Z+ 1
2

eπi j2τ+2πi j(x+1/2).

As proved in [F95], R1 satisfies the following version of the QDYBE:

R1(λ− γh
3, x1 − x2)

(12)R1(λ, x1 − x3)
(13)R1(λ− γh

1, x2 − x3)
(23) =

= R1(λ, x2 − x3)
(23)R1(λ− γh

2, x1 − x3)
(13)R1(λ, x1 − x2)

(12) (3.8)

and the unitarity condition

R1(λ, x)R21
1 (λ,−x) = IdV⊗V . (3.9)

We can identify h∗ ≃ h∗1/C tr where tr ∈ h∗1 is the trace. Since R1 has the form (3.3),
it is constant, as a function of λ ∈ h∗1, on the cosets modulo C tr. So R1 induces a
map h∗×C→ End(V ⊗ V ), which we also denote by R1, still satisfying (3.8),(3.9).

Lemma 3.2. Let τ,γ ∈ C with Imτ > 0 be such that p = eπiτ, q = eπiγ. Then, as

meromorphic functions of (λ, x) ∈ h∗ ×C,

R1(γλ,−x;τ/2,γ) = R(λ, z; p,q) (3.10)

where z = e2πi x .

Proof. Using the Jacobi triple product identity (2.4) we have

θ1(x;τ/2) = ieπi(τ/2−x)θ(z)

∞∏

j=1

(1− p j)

Substituting this into (3.6) and (3.7) gives α1(γλ,−x;τ/2,γ) = α(λ, z; p,q) and
β1(γλ,−x;τ/2,γ) = β(λ, z; p,q) which proves (3.10).

To finish the proof of Proposition 3.1, replace λ, x i by γλ, −x i in (3.8) and use
(3.10) to obtain (3.1) with zi = e2πi x i , and similarly for the unitarity condition.

We end this section by recording some useful identities. Recall the definitions
of α,β in (3.4),(3.5). It is immediate that

α(λ,q2) = β(−λ,q2). (3.11)

By induction, one generalizes (2.2) to

θ(psz) = (−1)s(ps(s−1)/2zs)−1θ(z), for s ∈ Z. (3.12)

Applying (3.12) to the definitions of α,β we get

α(λ, pkz) = q2kα(λ, z), β(λ, pkz) = q2k(λ+1)β(λ, z), (3.13)
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and, using also θ(z−1) =−z−1θ(z),

lim
z→p−kq−2

q−1θ(q2z)

qθ(q−2z)
α(λ, z) = α(λ, pkq2),

lim
z→p−kq−2

q−1θ(q2z)

qθ(q−2z)
β(λ, z) =−β(−λ, pkq2),

(3.14)

for λ ∈ C, z ∈ C×, and k ∈ Z. By the addition formula (2.3) with (x , y, z, w) =

(z1/2q−λ+1, z1/2qλ−1, z1/2qλ+1, z1/2q−λ−1) we have

α(λ, z)α(−λ, z)− β(λ, z)β(−λ, z) = q2θ(q
−2z)

θ(q2z)
. (3.15)

4 h-Bialgebroids

4.1 Definitions

We recall the some definitions from [EV98]. Let h∗ be a finite-dimensional complex
vector space (for example the dual space of an abelian Lie algebra) and Mh∗ be the
field of meromorphic functions on h∗.

Definition 4.1. An h-algebra is a complex associative algebra A with 1 which is
bigraded over h∗, A =

⊕
α,β∈h∗ Aαβ , and equipped with two algebra embeddings

µl ,µr : Mh∗ → A, called the left and right moment maps, such that

µl( f )a = aµl(Tα f ), µr( f )a = aµr(Tβ f ), for a ∈ Aαβ , f ∈ Mh∗ , (4.1)

where Tα denotes the automorphism (Tα f )(ζ) = f (ζ+ α) of Mh∗ . A morphism of
h-algebras is an algebra homomorphism preserving the bigrading and the moment
maps.

The matrix tensor product Ae⊗B of two h-algebras A, B is the h∗-bigraded vector
space with (Ae⊗B)αβ =

⊕
γ∈h∗(Aαγ ⊗Mh∗

Bγβ ), where ⊗Mh∗
denotes tensor product

over C modulo the relations

µA
r
( f )a⊗ b = a⊗µB

l
( f )b, for all a ∈ A, b ∈ B, f ∈ Mh∗ . (4.2)

The multiplication (a⊗b)(c⊗d) = ac⊗bd for a, c ∈ A and b, d ∈ B and the moment
maps µl( f ) = µ

A
l
( f )⊗ 1 and µr( f ) = 1⊗ µB

r
( f ) make Ae⊗B into an h-algebra.

Example 4.2. Let Dh be the algebra of operators on Mh∗ of the form
∑

i fi Tαi
with

fi ∈ Mh∗ and αi ∈ h∗. It is an h-algebra with bigrading f T−α ∈ (Dh)αα and both
moment maps equal to the natural embedding.

For any h-algebra A, there are canonical isomorphisms A ≃ Ae⊗Dh ≃ Dh
e⊗A

defined by
x ≃ x ⊗ T−β ≃ T−α ⊗ x , for x ∈ Aαβ . (4.3)

Definition 4.3. An h-bialgebroid is an h-algebra A equipped with two h-algebra
morphisms, the comultiplication ∆ : A → Ae⊗A and the counit ǫ : A → Dh such
that (∆⊗ Id) ◦∆ = (Id⊗∆) ◦∆ and (ǫ ⊗ Id) ◦∆ = Id = (Id⊗ ǫ) ◦∆, under the
identifications (4.3).
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4.2 The generalized FRST-construction

Let h be a finite-dimensional abelian Lie algebra, V =
⊕
α∈h∗ Vα a finite-dimensional

diagonalizable h-module and R : h∗ ×C×→ Endh(V ⊗ V ) a meromorphic function.
The generalized FRST-construction attaches to this data an h-bialgebroid AR as fol-
lows. Let {ex}x∈X be a homogeneous basis of V , where X is an index set. The
matrix elements Rab

x y
: h∗ ×C×→ C of R are given by

R(ζ, z)(ea ⊗ eb) =
∑

x ,y∈X

Rab
x y
(ζ, z)ex ⊗ ey . (4.4)

They are meromorphic on h∗ ×C×. Define ω : X → h∗ by ex ∈ Vω(x). Let ÃR be the
complex associative algebra with 1 generated by {Lx y(z) : x , y ∈ X , z ∈ C×} and
two copies of Mh∗ , whose elements are denoted by f (λ) and f (ρ), respectively,
with defining relations f (λ)g(ρ) = g(ρ) f (λ) for f , g ∈ Mh∗ and

f (λ)Lx y(z) = Lx y(z) f (λ+ω(x)), f (ρ)Lx y(z) = Lx y(z) f (ρ+ω(y)), (4.5)

for all x , y ∈ X , z ∈ C× and f ∈ Mh∗ . The bigrading on ÃR is given by Lx y(z) ∈

(ÃR)ω(x),ω(y) for x , y ∈ X , z ∈ C× and f (λ), f (ρ) ∈ (ÃR)00 for f ∈ Mh∗ . The moment
maps are defined by µl( f ) = f (λ), µr( f ) = f (ρ). The counit and comultiplication
are defined by

ǫ(Lab(z)) = δab T−ω(a), ǫ( f (λ)) = ǫ( f (ρ)) = f T0, (4.6)

∆(Lab(z)) =
∑

x∈X

Lax (z)⊗ Lx b(z), (4.7)

∆( f (λ)) = f (λ)⊗ 1, ∆( f (ρ)) = 1⊗ f (ρ). (4.8)

This makes ÃR into an h-bialgebroid.
Consider the ideal in ÃR generated by the RLL-relations
∑

x ,y∈X

Rx y
ac
(λ,

z1

z2
)Lx b(z1)L yd(z2) =

∑

x ,y∈X

Rbd
x y
(ρ,

z1

z2
)Lc y(z2)Lax (z1), (4.9)

where a, b, c, d ∈ X , and z1, z2 ∈ C
×. More precisely, to account for possible singu-

larities of R, we let IR be the ideal in ÃR generated by all relations of the form

∑

x ,y∈X

lim
w→z1/z2

�
ϕ(w)Rx y

ac
(λ, w)
�

Lx b(z1)L yd(z2) =

=
∑

x ,y∈X

lim
w→z1/z2

�
ϕ(w)Rbd

x y
(ρ, w)
�

Lc y(z2)Lax(z1), (4.10)

where a, b, c, d ∈ X , z1, z2 ∈ C
× and ϕ : C× → C is a meromorphic function such

that the limits exist.
We define AR to be ÃR/IR. The bigrading descends to AR because (4.10) is

homogeneous, of bidegree ω(a) +ω(c),ω(b) +ω(d), by the h-invariance of R.
One checks that ∆(IR)⊆ ÃR

e⊗IR+ IR
e⊗ÃR and ǫ(IR) = 0. Thus AR is an h-bialgebroid

with the induced maps.
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4.3 Operator form of the RLL relations

The RLL-relations (4.9) can be understood as follows. Assume Rab
x y
(ζ, z) are de-

fined, as meromorphic functions of ζ ∈ h∗, for any z ∈ C×. Define R(λ, z),R(ρ, z) ∈
End(V ⊗ V ⊗ A) by

R(λ, z)(ea ⊗ eb ⊗ u) =
∑

x ,y∈X

ex ⊗ ey ⊗ Rab
x y
(λ, z)u,

R(ρ, z)(ea ⊗ eb ⊗ u) =
∑

x ,y∈X

ex ⊗ ey ⊗ Rab
x y
(ρ, z)u,

for a, b ∈ X , u ∈ A. Note that the λ and ρ in the left hand side are not variables
but merely indicates which moment map is to be used. For z ∈ C× we also define
L(z) ∈ End(V ⊗ A) by

L(z) =
∑

x ,y∈X

Ex y ⊗ Lx y(z).

Here Ex y are the matrix units in End(V ) and A acts on itself by left multiplication.
The RLL relation (4.9) is equivalent to

R(λ, z1/z2)L
1(z1)L

2(z2) = L
2(z2)L

1(z1)R(ρ+ h1+ h2, z1/z2) (4.11)

in End(V ⊗ V ⊗ A), where L
i(z) = L(z)(i,3) ∈ End(V ⊗ V ⊗ A) for i = 1,2. This can

be seen by acting on eb⊗ ed⊗1 in both sides of (4.11), and collecting and equating
terms of the form ea⊗ ec⊗u. The matrix elements of the R-matrix in the right hand
side can then be moved to the left using that R is h-invariant, and relation (4.5).

5 The algebra Fell(M(n))

Let h be the Cartan subalgebra of sl(n), V = Cn and R be given by (3.3)-(3.5). Ap-
plying the generalized FRST-construction to these data we obtain an h-bialgebroid
which we denote by Fell(M(n)). The generators Li j(z) will be denoted by ei j(z).
ThusFell(M(n)) is the unital associative C-algebra generated by ei j(z), i, j ∈ [1, n],
z ∈ C×, and two copies of Mh∗ , whose elements are denoted by f (λ) and f (ρ) for
f ∈ Mh∗ , subject to the following relations

f (λ)ei j(z) = ei j(z) f (λ+ω(i)), f (ρ)ei j(z) = ei j(z) f (ρ+ω( j)), (5.1)

for all f ∈ Mh∗ , i, j ∈ [1, n] and z ∈ C×, and

n∑

x ,y=1

Rx y
ac
(λ,

z1

z2
)ex b(z1)eyd(z2) =

n∑

x ,y=1

Rbd
x y
(ρ,

z1

z2
)ec y(z2)eax (z1), (5.2)

for all a, b, c, d ∈ [1, n]. More explicitly, from (3.3) we have

Rab
x y
(ζ, z) =





1, a = b = x = y,

α(ζx y , z), a 6= b, x = a, y = b,

β(ζx y , z), a 6= b, x = b, y = a,

0, otherwise,

(5.3)
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which substituted into (5.2) yields four families of relations:

eab(z1)eab(z2) = eab(z2)eab(z1), (5.4a)

eab(z1)ead(z2) = α(ρbd ,
z1

z2
)ead (z2)eab(z1) +β(ρd b ,

z1

z2
)eab(z2)ead(z1), (5.4b)

α(λac ,
z1

z2
)eab(z1)ecb(z2) + β(λac ,

z1

z2
)ecb(z1)eab(z2) = ecb(z2)eab(z1), (5.4c)

α(λac ,
z1

z2
)eab(z1)ecd(z2) +β(λac ,

z1

z2
)ecb(z1)ead(z2) =

= α(ρbd ,
z1

z2
)ecd(z2)eab(z1) + β(ρd b,

z1

z2
)ecb(z2)ead (z1),

(5.4d)

where a, b, c, d ∈ [1, n], a 6= c and b 6= d. Since θ has zeros precisely at pk, k ∈ Z, α
and β have poles at z = q−2pk, k ∈ Z. Thus (5.4b)-(5.4d) are to hold for z1, z2 ∈ C

×

with z1/z2 /∈ {p
kq−2 : k ∈ Z}.

In (4.10), assuming a 6= c, b 6= d, and taking z1 = z, z2 = pkq2z, ϕ(w) =
q−1θ (q2w)

qθ (q−2w)
, and using the limit formulas (3.14), we obtain the relation

α(λac ,q
2)
�
eab(z)ecd(p

kq2z)− q2kλca ecb(z)ead(p
kq2z)
�
=

= α(ρbd ,q2)ecd(p
kq2z)eab(z)− q2kρbdβ(ρbd ,q2)ecb(p

kq2z)ead (z). (5.5)

This identity does not follow from (5.4a)-(5.4d) in an obvious way. It will be called
the residual RLL relation.

Proposition 5.1. Relations (5.4),(5.5) generate the ideal IR. Hence (5.1),(5.4),(5.5)
consitute the defining relations of the algebra Fell(M(n)).

Proof. Assume we have a relation of the form (4.10) and that a limit in one of the
terms, limw→z ϕ(w)R

ab
x y
(λ, w), say, exists and is nonzero. Then one of the following

cases occurs.

1. At w = z, ϕ(w) and Rab
x y
(λ, w) are both regular. If this holds for all terms,

then the relation is just a multiple of one of (5.4a)-(5.4d).

2. At w = z, ϕ(w) has a pole while Rab
x y
(λ, w) is regular. Then Rab

x y
(λ, w) must

vanish identically at w = z. The only case where this is possible is when
x 6= y and Rab

x y
(λ, w) = α(λx y , w) and z = pk. But then there is another term

containing β which is never identically zero for any z, and hence the limit in
that term does not exist.

3. At w = z, ϕ(w) is regular while Rab
x y
(λ, w) has a pole. Since these poles are

simple and occur only when z ∈ q−2pZ, the function ϕ must have a zero of
multiplicity one there. We can assume without loss of generality that ϕ has
the specific form

ϕ(w) =
q−1θ(q2w)

qθ(q−2w)
.
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Then, if a 6= c and b 6= d, (4.10) becomes the residual RLL relation (5.5).

If instead c = a, b 6= d, and we take z1 = z, z2 = pkq2z in (4.10) we get,
using (3.14),

0= α(ρbd , pkq2)ead (p
kq2z)eab(z)− β(ρbd , pkq2)eab(p

kq2z)ead (z),

or, rewritten,

ead(p
kq2z)eab(z) = q2kρbd

E(ρbd − 1)

E(ρbd + 1)
eab(p

kq2z)ead(z).

However this relation is already derivable from (5.4b) as follows. Take z1 =

pkq2z and z2 = z in (5.4b) and multiply both sides by q2kρbd
E(ρbd−1)

E(ρbd+1)
and then

use (5.4b) on the right hand side.

Similarly, if a 6= c, d = b, z1 = z, z2 = pkq2z, ϕ(w) = q−1θ (q2w)

qθ (q−2w)
in (4.10) and

using (3.14) we get

α(λac , pkq2)eab(z)ecb(p
kq2z)− β(λca, pkq2)ecb(z)eab(p

kq2z) = 0,

or,
eab(z)ecb(p

kq2z) = q2kλca ecb(z)eab(p
kq2z).

Similarly to the previous case, this identity follows already from (5.4c).

6 Left and right elliptic exterior algebras

6.1 Corepresentations of h-bialgebroids

We recall the definition of corepresentations of an h-bialgebroid given in [KR01].

Definition 6.1. An h-space V is an h∗-graded vector space over Mh∗ , V =
⊕
α∈h∗ Vα,

where each Vα is Mh∗ -invariant. A morphism of h-spaces is a degree-preserving
Mh∗ -linear map.

Given an h-space V and an h-bialgebroid A, we define Ae⊗V to be the h∗-graded
space with (Ae⊗V )α =

⊕
β∈h∗(Aαβ ⊗Mh∗

Vβ) where ⊗Mh∗
denotes ⊗C modulo the

relations
µr( f )a⊗ v = a⊗ f v,

for f ∈ Mh∗ , a ∈ A, v ∈ V . Ae⊗V becomes an h-space with the Mh∗ -action f (a⊗ v) =

µl( f )a⊗ v. Similarly we define V e⊗A as an h-space by (V e⊗A)β =
⊕
α Vα ⊗Mh∗

Aαβ
where ⊗Mh∗

here means ⊗C modulo the relation v ⊗ µl( f )a = f v ⊗ a, and Mh∗ -
action given by f (v ⊗ a) = v ⊗µr( f )a.

For any h-space V we have isomorphisms Dh
e⊗V ≃ V ≃ V e⊗Dh given by

T−α ⊗ v ≃ v ≃ v ⊗ Tα, for v ∈ Vα, (6.1)

extended to h-space morphisms.
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Definition 6.2. A left corepresentation V of an h-bialgebroid A is an h-space equipped
with an h-space morphism ∆V : V → Ae⊗V such that (∆V ⊗ 1) ◦∆V = (1⊗∆) ◦∆V

and (ǫ⊗ 1) ◦∆V = IdV (under the identification (6.1)).

Definition 6.3. A left h-comodule algebra V over an h-bialgebroid A is a left corep-
resentation ∆V : V → Ae⊗V and in addition a C-algebra such that VαVβ ⊆ Vα+β
and such that ∆V is an algebra morphism, when Ae⊗V is given the natural algebra
structure.

Right corepresentations and comodule algebras are defined analogously.

6.2 The comodule algebras Λ and Λ′.

Let Λ be the unital associative C-algebra generated by vi(z), 1≤ i ≤ n, z ∈ C× and
a copy of Mh∗ embedded as a subalgebra subject to the relations

f (ζ)vi(z) = vi(z) f (ζ+ω(i)), (6.2a)

vi(z)vi(w) = 0, (6.2b)

α(ζk j , z/w)vk(z)v j(w) + β(ζk j, z/w)v j(z)vk(w) = 0, (6.2c)

for i, j, k ∈ [1, n], j 6= k, z, w ∈ C×, z/w /∈ {pkq−2 : k ∈ Z} and f ∈ Mh∗ . We require

also the residual relation of (6.2c) obtained by multiplying by ϕ(z/w) = q−1θ (q2z/w)

qθ (q−2z/w)

and letting z/w→ p−kq−2. After simplification using (3.14), we get

vk(z)v j(p
kq2z) = q2kζ jk v j(z)vk(p

kq2z). (6.2d)

Λ becomes an h-space by

µΛ( f )v = f (ζ)v

and requiring vi(z) ∈ Λω(i) for each i, z.

Proposition 6.4. Λ is a left comodule algebra over Fell(M(n)) with left coaction

∆Λ : Λ→Fell(M(n))e⊗Λ satisfying

∆Λ(vi(z)) =
∑

j

ei j(z)⊗ v j(z),

∆Λ( f (ζ)) = f (λ)⊗ 1.

Proof. We have

∆Λ(vi(z))∆Λ(vi(w)) =
∑

jk

ei j(z)eik(w)⊗ v j(z)vk(w) =

=
∑

j 6=k

�
α(µ jk,

z

w
)eik(w)ei j(z) +β(µk j ,

z

w
)ei j(w)eik(z)
�
⊗ v j(z)vk(w) =

=
∑

j 6=k

ei j(w)eik(z)⊗
�
α(ζk j ,

z

w
)vk(z)v j(w) + β(ζk j,

z

w
)v j(z)vk(w)
�
= 0.

Similarly one proves that (6.2c),(6.2d) are preserved.
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We will use the function E, defined in (2.5).

Proposition 6.5. (i) The following is a complete set of relations for Λ

f (ζ)vi(z) = vi(z) f (ζ+ω(i)), (6.3a)

vk(p
sq2z)v j(z) = −q2sζk j

E(ζk j − 1)

E(ζk j + 1)
v j(p

sq2z)vk(z), ∀s ∈ Z, k 6= j, (6.3b)

vk(z)v j(p
sq2z) = q2sζ jk v j(z)vk(p

sq2z), (6.3c)

vk(z)v j(w) = 0 if z/w /∈ {psq±2|s ∈ Z} or if k = j. (6.3d)

(ii) The set

{vid
(zd) · · · vi1

(z1) : 1≤ i1 < · · · < id ≤ n,
zi+1

zi

∈ pZq±2} (6.4)

is a basis for Λ over Mh∗ .

Proof. (i) Elimination of the v j(z)vk(w)-term in (6.2c) yields

�
α(ζ jk,

z

w
)α(ζk j ,

z

w
)− β(ζk j ,

z

w
)β(ζ jk,

z

w
)
�

vk(z)v j(w) = 0. (6.5)

Combining (6.5), (3.15) and the fact that the θ(z) is zero precisely for z ∈ {pk|k ∈

Z} we deduce that in Λ,

vk(z)v j(w) 6= 0=⇒
z

w
= psq2 for some s ∈ Z. (6.6)

Using (3.13) we obtain from (6.6) and (6.2b),(6.2c) that relations (6.3b),(6.3d)
hold in the left elliptic exterior algebra Λ. Relations (6.3a),(6.3c) are just repeti-
tions of (6.2a),(6.2d).

(ii) It follows from the relations that each monomial in Λ can be uniquely writ-
ten as f (ζ)vid

(zd) · · · vi1
(z1) where 1 ≤ i1 < · · · < id ≤ n and f ∈ Mh∗ . It remains

to show that the set (6.4) is linearly independent over Mh∗ . Assume that a linear
combination of basis elements is zero, and that the sum has minimal number of
terms. By multiplying from the right or left by v j(w) for appropriate j, w we can
assume the sum is of the form

f1(ζ)vid
(z1

d
) · · · vi1

(z1
1) + · · ·+ fr(ζ)vid

(z r
d
) · · · vi1

(z r
1) = 0

for some fixed set {i1, . . . , id}. By the relations, a monomial vid
(zd) · · · vi1

(z1) can

be given the “degree”
∑d

i=1 zi t
i−1 ∈ C[t], where t is an indeterminate. Formally,

consider C(t)⊗Λ, the tensor product (over C) of Λ by the field of rational functions
in t. We identify Λwith its image under Λ ∋ v 7→ 1⊗v ∈ C(t)⊗Λ, and view C(t)⊗Λ
naturally as a vector space over C(t). By relations (6.3a)-(6.3d), there is a C-
algebra automorphism T of C(t)⊗Λ satisfying T (v j(z)) = t v j(z), T ( f (ζ)) = f (ζ)

and T (p⊗ 1) = p⊗ 1. Define

D(vi(z)) = zvi(z), D( f (ζ)) = 0, D(p⊗ 1) = 0,
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for f ∈ Mh∗ , p ∈ C(t) and i ∈ [1, n], z ∈ C× and extend D to a C-linear map
D : C(t)⊗Λ→ C(t)⊗Λ by requiring

D(ab) = D(a)T (b) + aD(b) (6.7)

for a, b ∈ C(t) ⊗ Λ. The point is that the requirement (6.7) respects relations
(6.3a)-(6.3d), making D well defined. Write u j = f j(ζ)vid

(z
j

d
) · · · vi1

(z
j

1). Then one

checks that D(u j) = p j(t)u j, where p j(t) =
∑d

i=1 z
j

i
t i−1. By applying D repeatedly

we get

u1(z
1)+ · · ·+ ur(z

r) = 0,

p1(t)u1(z
1)+ · · ·+ pr(t)ur(z

r) = 0,

...

p1(t)
r−1u1(z

1)+ · · ·+ pr(t)
r−1ur(z

r) = 0.

Inverting the Vandermonde matrix (p j(t)
i−1)i j we obtain u j(z

j) = 0 for each j, i.e.
f j(ζ) = 0 for each j. This proves linear independence of (6.4).

Analogously one defines a right comodule algebra Λ′ with generators w i(z) and
f (ζ) ∈ Mh∗ . The following relations will be used:

wk(z)w j(psq2z) =−q2sζk j w j(z)wk(psq2z), ∀s ∈ Z, k 6= j, (6.8a)

wk(z1)w
j(z2) = 0 if z2/z1 /∈ {p

sq±2|s ∈ Z} or if k = j. (6.8b)

Λ′ has also Mh∗ -basis of the form (6.4). In fact Λ and Λ′ are isomorphic as algebras.

6.3 Action of Sn

From (5.4),(5.5) we see that Sn×Sn acts byC-algebra automorphisms onFell(M(n))

as follows

(σ,τ)( f (λ)) = f (λ ◦ Lσ), (σ,τ)( f (µ)) = f (µ ◦ Lτ),

(σ,τ)(ei j(z)) = eσ(i)τ( j)(z),

where Lσ : h→ h (σ ∈ Sn) is given by permutation of coordinates:

Lσ(diag(h1, . . . ,hn)) = diag(hσ(1), . . . ,hσ(n)).

Also, Sn acts on Λ by C-algebra automorphisms via

σ( f (ζ)) = f (ζ ◦ Lσ), σ(vi(z)) = vσ(i)(z). (6.9)

Similarly we define an Sn action on Λ′.

Lemma 6.6. For each v ∈ Λ, w ∈ Λ′ and any σ,τ ∈ Sn we have

∆Λ(σ(v)) = ((σ,τ)⊗ τ)(∆Λ(v)), (6.10)

∆Λ′(τ(w)) = (σ⊗ (σ,τ))(∆Λ′(w)). (6.11)

Proof. By multiplicativity, it is enough to prove these claims on the generators,
which is easy.
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7 Elliptic quantum minors

7.1 Definition

For I ⊆ [1, n] we set

FI(ζ) =
∏

i, j∈I,i< j

E(ζi j + 1), F I (ζ) =
∏

i, j∈I,i< j

E(ζi j), (7.1)

and define the left and right elliptic sign functions

sgnI(σ;ζ) =
σ(FI(ζ))

Fσ(I)(ζ)
=
∏

i, j∈I,i< j,σ(i)>σ( j)

E(ζσ(i)σ( j)+ 1)

E(ζσ( j)σ(i)+ 1)
, (7.2)

sgnI(σ;ζ) =
Fσ(I)(ζ)

σ(F I (ζ))
=
∏

i, j∈I,i< j,σ(i)>σ( j)

E(ζσ( j)σ(i))

E(ζσ(i)σ( j))
, (7.3)

for σ ∈ Sn. In fact, E(ζi j)/E(ζ ji) =−1 so sgn[1,n](σ;ζ) is just sgn(σ).
We will denote the elements of a subset I ⊆ [1, n] by i1 < i2 < · · · .

Proposition 7.1. Let I ⊆ [1, n], d=#I, σ ∈ Sn and J = σ(I). Then for z ∈ C×,

vσ(id )(q
2(d−1)z) · · · vσ(i1)(z) = sgnI (σ;ζ)v jd

(q2(d−1)z) · · · v j1
(z) (7.4)

and

wσ(i1)(z) · · ·wσ(id )(q2(d−1)z) = sgnI (σ;ζ)w j1(z) · · ·w jd (q2(d−1)z). (7.5)

Proof. We prove (7.4). The proof of (7.5) is analogous. We proceed by induction
on #I = d, the case d = 1 being clear. If d > 1, set I ′ = {i1, . . . , id−1}, J ′ = σ(I ′).
Let 1 ≤ j′1 < · · · < j′

d−1 ≤ n be the elements of J ′. By the induction hypothesis, the
left hand side of (7.4) equals

vσ(id )(q
2(d−1)z) sgnI ′(σ,ζ)v j′

d−1
(q2(d−2)z) · · · v j′1

(z). (7.6)

Now vσ(id )(q
2(d−1)z) commutes with sgnI ′(σ,ζ) since the latter only involves ζi j

with i, j 6= σ(id). Using the commutation relations (6.3b) we obtain

sgnI ′(σ,ζ) ·
∏

j∈J ′, j>σ(id)

E(ζ jσ(id)
+ 1)

E(ζσ(id) j + 1)
· v jd
(q2(d−1)z) · · · v j1

(z). (7.7)

Replace j ∈ J ′ such that j > σ(id) by σ(i) where i ∈ I , i < id ,σ(i) > σ(id).

Introduce the normalized monomials

vI (z) = FI (ζ)
−1vir

(q2(d−1)z)vir−1
(q2(d−2)z) · · · vi1

(z) ∈ Λ, (7.8)

w I (z) = F I (ζ)w i1(z)w i2(q2z) · · ·w id (q2(d−1)z) ∈ Λ′. (7.9)
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Corollary 7.2. Let I ⊆ [1, n]. For any permutation σ ∈ Sn,

σ(vI (z)) = vσ(I)(z), σ(w I (z)) = wσ(I)(z), (7.10)

for any z ∈ C×. In particular vI (z) and w I(z) are fixed by any permutation which

preserves the subset I .

Proof. Let J = σ(I). Then

σ(vI (z)) = σ(FI(ζ)
−1)vσ(id )(q

2(d−1)z) · · · vσ(i1)(z) =

= σ(FI(ζ))
−1 sgnI(σ;ζ)v jd

(q2(d−1)z) · · · v j1
(z) = vσ(I)(z).

The proof for w I(z) is analogous.

Proposition 7.3. For I , J ⊆ [1, n] and z ∈ C×, the left and right elliptic minors,
←−
ξ J

I
(z) and

−→
ξ J

I
(z) respectively, can be defined by

∆Λ(vI (z)) =
∑

J

←−
ξ J

I
(z)⊗ vJ (z), (7.11)

∆Λ′(w
J (z)) =
∑

I

w I(z)⊗
−→
ξ J

I
(z), (7.12)

where the sums are taken over all subsets of [1, n].

If #I 6= #J, then
←−
ξ J

I
(z) = 0 =

−→
ξ J

I
(z) for all z. If #I = #J = d, they are

explicitly given by

←−
ξ J

I
(z) =

=
FJ(ρ)

FI(λ)

∑

τ∈SJ

sgnJ (τ;ρ)

sgnI (σ;λ)
eσ(id )τ( jd)(q

2(d−1)z)eσ(id−1)τ( jd−1)
(q2(d−2)z) · · · eσ(i1)τ( j1)(z)

(7.13)

for any σ ∈ SI , and

−→
ξ J

I
(z) =

F J (ρ)

F I(λ)

∑

σ∈SI

sgnJ (τ;ρ)

sgnI (σ;λ)
eσ(i1)τ( j1)(z)eσ(i2)τ( j2)(q

2z) · · · eσ(id )τ( jd)(q
2(d−1)z)

(7.14)
for any τ ∈ SJ . Moreover,

(σ,τ)(
←−
ξ J

I
(z)) =

←−
ξ
τ(J)

σ(I)
(z) and (σ,τ)(

−→
ξ J

I
(z)) =

−→
ξ
τ(J)

σ(I)
(z) (7.15)

for any (σ,τ) ∈ Sn × Sn and z ∈ C×.

Remark 7.4. In Theorem 7.10 we will prove that, in fact,
←−
ξ J

I
(z) =

−→
ξ J

I
(z).
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Proof. We prove the statements concerning the left elliptic minor
←−
ξ J

I
(z). We have

∆Λ(vI (z)) =
∑

1≤k1,...,kd≤n

FI(λ)
−1ei1k1

(q2(d−1)z) · · · eid kd
(z)⊗ vk1

(q2(d−1)z) · · · vkd
(z) =

=
∑

J ,#J=d

∑

τ∈SJ

FI(λ)
−1ei1τ( j1)

(q2(d−1)z) · · · eidτ( jd)
(z)⊗ vτ( j1)(q

2(d−1)z) · · · vτ( jd )(z) =

=
∑

J ,#J=d



∑

τ∈SJ

τ(FJ(ρ))

FI(λ)
ei1τ( j1)

(q2(d−1)z) · · · eidτ( jd)
(z)


⊗ vJ (z).

Thus (7.11) holds when
←−
ξ J

I
(z) is defined by (7.13) with σ = Id. Then the right

hand side of (7.13) equals (σ, Id)(
←−
ξ J

I
(z)). Thus only (7.15) remains. Using (6.10)

and Corollary 7.2 we have

∆Λ
�
σ(vI (z))
�
= ((σ,τ)⊗ τ)
�
∆Λ(vI (z))
�
=
∑

J

(σ,τ)(
←−
ξ J

I
(z))⊗ vτ(J)(z)).

On the other hand, again by Corollary 7.2,

∆Λ
�
σ(vI (z))
�
= ∆Λ(vσ(I)(z)) =

∑

J

←−
ξ
τ(J)

σ(I)
(z)⊗ vτ(J)(z)),

where we made the substitution J 7→ τ(J). This proves the first equality in (7.15).
The statements concerning the right elliptic minors are proved analogously.

7.2 The Cherednik operator

The goal of this section is to prove Theorem 7.10 stating that the left and right
elliptic minors coincide. We use ideas from Section 3 of [FV97], where the authors
study representations of the elliptic quantum group Er,γ/2(glN ) and associate a lin-
ear operator (product of R-matrices) on V⊗n to each diagram of a certain form,
a kind of braid group representation. Then they consider the operator associated
to the longest permutation, in [ZSY03] called the Cherednik operator. Instead of
working with representations, we proceed inside the h-bialgebroid Fell(M(n)) and
consider certain operators on V⊗n ⊗ Fell(M(n)) depending on n spectral param-
eters. Using the analog of the Cherednik operator we prove an extended RLL-
relation (7.25). Theorem 7.10 then follows by extracting matrix elements from
both sides of this matrix equation.

In this section, we set F = Fell(M(n)). Recall the operators R(λ, z), R(ρ, z)
from Section 4.3. For z ∈ C×, define the following linear operators on V⊗n ⊗F :

R
i j(λ, z) := lim

w→z
θ(q2w)R(λ, w)(i, j,n+1), R

i j(ρ, z) := lim
w→z
θ(q2w)R(ρ, w)(i, j,n+1).

The limits are taken in the sense of taking limits of each matrix element. These
operators are well-defined for any z, since we multiply away the singularities in z

of α and β (3.4),(3.5). Furthermore, due to the RLL relations (4.10) we have

R
12(λ,

z1

z2
)L1(z1)L

2(z2) = L2(z2)L
1(z1)R

12(ρ+ h1 + h2,
z1

z2
) (7.16)
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for any z1, z2 ∈ C
×.

Let En denote the algebra of all functions

F : (C×)n→ End(V⊗n ⊗F ).

The symmetric group Sn acts on En by

σ(F(z)) = (σ⊗ IdF ) ◦ F(σ(z)) ◦ (σ−1 ⊗ IdF ) (7.17)

for F(z) ∈ En and σ ∈ Sn. In the right hand side of (7.17), σ acts on (C×)n by
permuting coordinates, and on V⊗n by permuting the tensor factors. For example
we have

(23)
�
R

12(λ, z1/z2)
�
= R

13(λ, z1/z3).

Consider the skew group algebra En ∗ Sn, defined as the algebra with underlying
space En ⊗CSn, where CSn is the group algebra, with the multiplication

(F(z)⊗σ)(G(z)⊗ τ) = F(z)σ(G(z))⊗στ (7.18)

for σ,τ ∈ Sn, F(z), G(z) ∈ En. Since σ acts on En by automorphisms, En ∗ Sn is
an associative algebra. The constant function z 7→ IdV⊗n⊗F ⊗ (1) is the unit ele-
ment. Let Bn be the monoid (set with unital associative multiplication) generated
by {s1, . . . , sn−1} and relations

sisi+1si = si+1sisi+1 for 1≤ i ≤ n− 2,

sis j = s jsi if |i − j| > 1.

Let σi = (i i + 1) ∈ Sn. We have an epimorphism π : Bn → Sn given by π(si) = σi ,
π(1) = (1). Define

W(1) = IdV⊗n⊗F ⊗ (1),

W(si) = R
i,i+1(λ− h≥i+2, zi/zi+1)⊗σi .

Here and below we use h≥k to denote the expression
∑n

j=k
h j .

Proposition 7.5. W extends to a well-defined map

W : Bn→En ∗ Sn

satisfying W(b1 b2) =W (b1)W(b2) for any b1, b2 ∈ Bn.

Proof. We have to show the relations

W(si)W (si+1)W(si) =W(si+1)W(si)W(si+1), (7.19)

W (si)W (s j) =W(s j)W (si) if |i − j|> 1. (7.20)

Relation (7.19) follows from the QDYBE (3.1). For example, W (si)W (si+1)W (si)

equals

R
i,i+1(λ−h≥i+2,

zi

zi+1
)Ri,i+2(λ−h≥i+3,

zi

zi+2
)Ri+1,i+2(λ−hi−h≥i+3,

zi+1

zi+2
)⊗σiσi+1σi

Relation (7.20) is easy to check, using the h-invariance of R.
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For b ∈ Bn we define Wb(λ, z) ∈ En by

W (b) =Wb(λ, z)⊗π(b). (7.21)

From this and the product rule (7.18) follows that

Wb1 b2
(λ, z) =Wb1

(λ, z) ·π(b1)
�

Wb2
(λ, z)
�

(7.22)

for b1, b2 ∈ Bn. By replacing λ by ρ we get similarly operators Wb(ρ, z).
Recall the operator L(z) from Section 4.3. Define for z ∈ C×, i ∈ [1, n],

L
i(z) = L(z)(i,n+1) ∈ End(V⊗n ⊗F ).

If i, j, k are distinct, then one can check that

R
i j(λ− hk, z)Lk(w) = L

k(w)Ri j(λ, z), (7.23)

R
i j(ρ, z)Lk(w) = L

k(w)Ri j(ρ+ hk, z). (7.24)

Define td ∈ Bn, d ∈ [1, n], recursively by

td =

¨
td−1sd−1sd−2 · · · s1, d > 1

1, d = 1.

Let τd be the image of td in Sn:

τd := π(td) =

�
1 2 · · · d d + 1 · · · n

d d − 1 · · · 1 d + 1 · · · n

�
∈ Sn.

Proposition 7.6. Let 1≤ d ≤ n. For any z = (z1, . . . , zd) ∈ (C
×)d we have

Wtd
(λ, z)L1(z1) · · ·L

d(zd) = L
d(zd) · · ·L

1(z1)Wtd
(ρ+ h≤d , z). (7.25)

Proof. We use induction on d. The case d = 1 is trivial, while d = 2 is the RLL
relation (7.16). If d > 2, write td = td−1ud , where ud = sd−1sd−2 · · · s1. Thus, by
(7.22),

Wtd
(λ, z) =Wtd−1

(λ, z) ·τd−1

�
Wud
(λ, z)
�

. (7.26)

We claim that

τd−1

�
Wud
(λ, z)
�

L1(z1) · · · L
d(zd) =

= Ld(zd)L
1(z1) · · · L

d−1(zd−1)τd−1

�
Wud
(ρ+ h≤d , z)
�

. (7.27)

For notational simplicity, set λ′ = λ− h>d .

Wud
(λ, z) = R

d−1,d(λ′,
zd−1

zd

)Rd−2,d(λ′− hd−1,
zd−2

zd

) · · ·R1,d(λ′ − h[2,d−1],
z1

zd

),

where h[a,b] means
∑

a≤ j≤b h j . Thus

τd−1

�
Wud
(λ, z)
�
= R

1,d(λ′,
z1

zd

)R2,d(λ′− h1,
z2

zd

) · · ·Rd−1,d(λ′− h≤d−2,
zd−1

zd

).

(7.28)
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Using (7.23) and the RLL relation (7.16) repeatedly, we obtain (7.27). Now the
proposition follows by induction on d, using that

Wtd−1
(λ, z)Ld(zd) = Ld(zd)Wtd−1

(λ+ hd , z)

which follows from (7.23).

The operator C(λ, z) :=Wtn
(λ, z) is called the Cherednik operator. For an oper-

ator F(z) ∈ En we define its matrix elements F(z)a1 ,...,an
x1,...,xn

∈ F by

F(z)(ea1
⊗ · · · ⊗ ean

⊗ 1) =
∑

x1,...,xn

ex1
⊗ · · · ⊗ exn

⊗ F(z)a1 ,...,an

x1,...,xn
.

Proposition 7.7. Let

α̃(λ, z) = lim
w→z
θ(q2w)α(λ, w) = θ(z)θ(q2(λ+1))/θ(q2λ). (7.29)

Then

C(λ, z)1,...,n
1,...,n =
∏

i< j

α̃(λi j, zi/z j) =
∏

i< j

qθ(zi/z j) ·
F[1,n](λ)

F [1,n](λ)
.

Proof. The second equality follows from the definition, (7.1), of FI and F I . We
prove by induction on d that Wtd

(λ, z)1,...,n
1,...,n =
∏

i< j≤d α̃(λi j , zi/z j). For d = 2 we

have td = s1 and Ws1
(λ, z)1,...,n

1,...,n = R
12(λ−h>2, z1/z2)

1,...,n
1,...,n = α̃(λ12, z1/z2) as claimed.

For d > 2, using the factorization (7.26) we have

Wtd
(λ, z)1,...,n

1,...,n =
∑

x1,...,xn

Wtd−1
(λ, z)x1,...,xn

1,...,n τd−1(Wud
(λ, z))1,...,n

x1,...,xn
. (7.30)

Since Wtd−1
(λ, z) is a product of operators of the formσ(Rii+1(λ, zi/zi+1))where

1≤ i ≤ d − 2 and σ ∈ Sn, σ( j) = j, j > d − 1, and each of these operators preserve
the subspace spanned by eτ(1) ⊗ · · · ⊗ eτ(d−1) ⊗ ed ⊗ · · · ⊗ en ⊗ a where τ ∈ Sd−1

and a ∈ F , the operator Wtd−1
(λ, z) also preserves this subspace. This means that

Wtd−1
(λ, z)x1,...,xn

1,...,n = 0 unless x j = j for j ≥ d and {x1, . . . , xd−1} = {1, . . . , d − 1}.
Furthermore, by (7.28),

τd−1(Wud
(λ, z))1,...,n

x1,...,xd−1,d,...,n =

=
∑

y2,...,yd−1

R̃
1y2

x1d
(λ,

z1

zd

)R̃2y3
x2 y2
(λ−ω(1),

z2

zd

) · · · R̃d−1,d
xd−1 yd−1

(λ−
∑

k≤d−2

ω(k),
zd−1

zd

).

(7.31)

Here R̃ab
x y
(λ, z) = limw→z θ(q

2w)Rab
x y
(λ, w). Since R̃ab

x y
(λ, z) = 0 unless {x , y} =

{a, b}, we deduce that, when {x1, . . . , xd−1} = {1, . . . , d − 1}, the terms in the sum
(7.31) are zero unless x i = i for all i and y j = d for all j. Substituting into (7.30)
the claim follows by induction.
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Lemma 7.8. Fix 2 ≤ d ≤ n and i < d. Then there are elements b, c ∈ Bn such that

td = si b and td = csi .

Proof. Since t2 = s1 and t3 = s1s2s1 = s2s1s2, the statement clearly holds for d =

2,3. Assuming d > 3, we first prove the existence of b. If i < d−1 then by induction
there is a b′ ∈ Bn such that td−1 = si b

′. Hence td = td−1sd−1 · · · s1 = si b
′sd−1 · · · s1.

Thus we can take b = b′sd−1 · · · s1. If i = d − 1, write td = td−2sd−2 · · · s1sd−1 · · · s1.
Then move each of the d − 1 rightmost factors sd−1, . . . , s1 as far to the left as
possible, using that s jsk = sks j when | j − k|> 1. This gives

td = td−2sd−2sd−1sd−3sd−2sd−4 · · · s2s3s1s2s1.

Then use s js j+1s j = s j+1s js j+1 repeatedly, working from right to left, to obtain

td = td−2sd−1sd−2sd−1sd−3sd−2 · · · s4s2s3s1s2.

Finally, sd−1 can be moved to the left of td−2 since the latter is a product of s j ’s with
j ≤ d − 3.

To prove the existence of c we note that Bn carries an involution ∗ : Bn → Bn

satisfying (a1a2)
∗ = a∗2a∗1 for any a1, a2 ∈ Bn, defined by s∗

j
= s j for j ∈ [1, n] and

1∗ = 1. Thus it suffices to show that t∗
d
= td for any d. This is trivial for d = 2,3.

When d > 3 we have, by induction on d,

t∗
d
= (td−1sd−1 · · · s1)

∗ = s1 · · · sd−1 td−1 =

= s1 · · · sd−1 td−2sd−2 · · · s1 =

= s1 · · · sd−2 td−2sd−1sd−2 · · · s1 = (since sd−1 commutes with td−2)

= t∗
d−1sd−1 · · · s1 = td .

Proposition 7.9. Let w = (z0,q2z0, . . . ,q2(n−1)z0), where z0 6= 0 is arbitrary, and let

σ,τ ∈ Sn. Then

C(λ, w)
τ(1),...,τ(n)
σ(1),...,σ(n) =

sgn[1,n](σ;λ)

sgn[1,n](τ;λ)
C(λ, w)

1,...,n
1,...,n. (7.32)

Proof. First we claim that for all σ,τ ∈ Sn and each i ∈ [1, n],

Wsi
(λ, w)

τ(1),...,τ(n)
σσi(1),...,σσi(n)

= σ(sgn[1,n](σi ;λ))Wsi
(λ, w)

τ(1),...,τ(n)
σ(1),...,σ(n), (7.33)

and

Wsi
(λ, w)

τσi(1),...,τσi(n)

σ(1),...,σ(n)
= τ(sgn[1,n](σi;λ))Wsi

(λ, w)
τ(1),...,τ(n)
σ(1),...,σ(n)

=

=−Wsi
(λ, w)

τ(1),...,τ(n)
σ(1),...,σ(n)

.
(7.34)

Indeed, assume that zi/zi+1 = q−2 and that {a1, . . . , an} = {b1, . . . , bn} = [1, n].
Then Wsi

(λ, z)b1,...,bn
a1 ,...,an

6= 0 iff {ai , ai+1} = {bi , bi+1} in which case

Wsi
(λ, z)b1,...,bn

a1,...,an
=

E(1)E(λaiai+1
+ 1)

E(λbi+1 bi
)

. (7.35)
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From this and the definitions of the sign functions, (7.2)-(7.3), the claims follow.
Next, we prove (7.32) by induction on the sum ℓ of the lengths of σ and τ. If ℓ = 0
it is trivial. Assuming (7.32) holds for (σ,τ) we prove it holds for (σσi ,τ) and
(σ,τσi) where i is arbitrary.

Let i ∈ [1, n]. By Lemma 7.8 we have tn = si b for some b ∈ Bn. We have

Wtn
(λ, w)

τ(1),...,τ(n)
σσi(1),...,σσi(n)

=
�
Wsi
(λ, w)σi

�
Wb(λ, w)
��τ(1),...,τ(n)
σσi(1),...,σσi(n)

=

=
∑

x1,...,xn

Wsi
(λ, w)

x1,...,xn

σσi(1),...,σσi(n)
σi

�
Wb(λ, w)
�τ(1),...,τ(n)

x1,...,xn
.

As in the proof of Proposition 7.7, Wsi
(λ, w)

x1,...,xn

σσi(1),...,σσi(n)
is zero if x1, . . . , xn is not

a permutation of 1, . . . , n. Using (7.33) we obtain

σ(sgn[1,n](σi ;λ))
∑

x1,...,xn

Wsi
(λ, w)

x1,...,xn

σ(1),...,σ(n)
σi

�
Wb(λ, w)
�τ(1),...,τ(n)

x1,...,xn
=

= σ(sgn[1,n](σi;λ))Wtn
(λ, w)

τ(1),...,τ(n)
σ(1),...,σ(n).

Using the induction hypothesis and the relation sgn[1,n](σ;λ)σ(sgn[1,n](σi ;λ)) =
sgn[1,n](σσi ;λ) we obtain (7.32) for (σσi ,τ).

For the other case, let i be arbitrary and set j = τn(i). By Lemma 7.8 there is a
c ∈ Bn such that tn = cs j . Recall the surjective morphism π : Bn → Sn sending si to
σi = (i i + 1). Then σ jπ(c) = π(c)σi . We have

Wtn
(λ, w)

τσi(1),...,τσi(n)

σ(1),...,σ(n) =
�
Wc(λ, w) ·π(c)(Ws j

(λ, w))
�τσi(1),...τσi(n)

σ(1),...,σ(n) =

=
∑

x1,...,xn

Wc(λ, w)
x1,...,xn

σ(1),...,σ(n)
π(c)
�

Ws j
(λ, w)
�τσi(1),...,τσi(n)

x1,...,xn

.

It is easy to check that σ(F(z))b1 ,...,bn
a1 ,...,an

= F(σ(z))
bσ(1),...,bσ(n)
aσ(1),...,aσ(n) for any F(z) ∈ En and

σ ∈ Sn. Define wi by (w1, . . . , wn) = w = (z0,q2z0, . . . ,q2(n−1)z0). Then wi/wi+1 =

q−2 for each i. Set w′ = (wπ(c)(1), . . . , wπ(c)(n)). For each i, wπ(c)(i)/wπ(c)(i+1) =

wτn(i+1)/wτn(i)
= q−2 also. Therefore

Wtn
(λ, w)

τσi(1),...,τσi(n)

σ(1),...,σ(n) =
∑

x1,...,xn

Wc(λ, w)
x1,...,xn

σ(1),...,σ(n)Ws j
(λ, w′)τσiπ(c)(1),...,τσiπ(c)(n)

xπ(c)(1),...,xπ(c)(n)
=

=
∑

x1,...,xn

Wc(λ, w)
x1,...,xn

σ(1),...,σ(n)
Ws j
(λ, w′)

τπ(c)σ j(1),...,τπ(c)σ j(n)

xπ(c)(1),...,xπ(c)(n) =

=
∑

x1,...,xn

Wc(λ, w)
x1,...,xn

σ(1),...,σ(n)(sgnσ j)Ws j
(λ, w′)τπ(c)(1),...,τπ(c)(n)

xπ(c)(1),...,xπ(c)(n)
=

=
∑

x1,...,xn

Wc(λ, w)
x1,...,xn

σ(1),...,σ(n)(−1)π(c)(Ws j
(λ, w)τ(1),...,τ(n)

x1,...,xn
=

=−Wtn
(λ, w)

τ(1),...,τ(n)
σ(1),...,σ(n).

By the induction hypothesis it follows that (7.32) holds for (σ,τσi). This proves
the formula (7.32).
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Theorem 7.10. For any subsets I , J ⊆ [1, n] and z ∈ C×, the left and right elliptic

minors coincide:

←−
ξ J

I
(z) =

−→
ξ J

I
(z).

We denote this common element by ξJ
I
(z).

Proof. If #I 6= #J both sides are zero. Suppose #I = #J = d. By relation (7.15) we
can, after applying a suitable automorphism, assume that I = J = [1, d]. Since the
subalgebra of F generated by ei j(z), i, j ∈ [1, d], z ∈ C× and f (λ), f (ρ) with f ∈

Mh∗
d
⊆ Mh∗ , hd being the Cartan subalgebra of sl(d), is isomorphic to Fell(M(d)),

we can also assume d = n. Identifying the matrix element 1,...,n
1,...,n on both sides of

(7.25) we get

∑

x1,...,xn

C(λ, z)x1,...,xn

1,...,n ex1,1(z1) · · · exn,n(zn) =

=
∑

x1,...,xn

en,xn
(zn) · · · e1,x1

(z1)C(ρ+ h≤n, z)1,...,n
x1,...,xn

.

As in the proof of Proposition 7.7, C(λ, z)x1,...,xn

1,...,n is zero if x1, . . . , xn is not a permu-

tation of 1, . . . , n. Taking z = w = (z0,q2z0, . . . ,q2(n−1)z0) and dividing both sides
by
∏

i< j qθ(wi/w j) =
∏

i< j qθ(q2(i− j)) we get

F[1,n](λ)

F [1,n](λ)

∑

σ∈Sn

sgn[1,n](σ;λ)−1eσ(1)1(z0) · · · eσ(n)n(q
2(n−1)z0) =

=
F[1,n](ρ)

F [1,n](ρ)

∑

τ∈Sn

sgn[1,n](τ;ρ)enτ(n)(q
2(n−1)z0) · · · e1σ(1)(z0)

Multiplying by F [1,n](ρ)

F[1,n](λ)
and comparing with (7.13) and (7.14), we deduce that

−→
ξ
[1,n]
[1,n](z0) =

←−
ξ
[1,n]
[1,n](z0), as desired.

8 The cobraiding and the quantum determinant

8.1 A cobraiding for Fell(M(n))

The following definition was given in [R04].

Definition 8.1. A cobraiding on an h-bialgebroid A is aC-bilinear map 〈·, ·〉 : A×A→
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Dh such that, for any a, b, c ∈ A and f ∈ Mh∗ ,

〈Aαβ ,Aγδ〉 ⊆ (Dh)α+γ,β+δ, (8.1a)

〈µr( f )a, b〉 = 〈a,µl( f )b〉 = f T0 ◦ 〈a, b〉, (8.1b)

〈aµl( f ), b〉 = 〈a, bµr( f )〉 = 〈a, b〉 ◦ f T0, (8.1c)

〈ab, c〉 =
∑

i

〈a, c′
i
〉Tβi
〈b, c′′

i
〉, ∆(c) =
∑

i

c′
i
⊗ c′′

i
, c′′

i
∈ Aβiγ

, (8.1d)

〈a, bc〉 =
∑

i

〈a′′
i
, b〉Tβi

〈a′
i
, c〉, ∆(a) =
∑

i

a′
i
⊗ a′′

i
, a′′

i
∈ Aβiγ

, (8.1e)

〈a, 1〉 = 〈1, a〉 = ǫ(a), (8.1f)
∑

i j

µl

�
〈a′

i
, b′

j
〉1
�
a′′

i
b′′

j
=
∑

i j

µr

�
〈a′′

i
, b′′

j
〉1
�

b′
j
a′

i
. (8.1g)

Proposition 8.2. Let R : h∗ × C× → Endh(V ⊗ V ) be a meromorphic function. Let

AR be the h-bialgebroid associated to R as in Section 4.2. Assume that ϕ : C× → C is

a holomorphic function, not vanishing identically, such that, for each x , y, a, b ∈ X ,

z ∈ C×, the limit limw→z

�
ϕ(w)Rab

x y
(ζ, w)
�

exists and defines a meromorphic function

in Mh∗ . Then the following statements are equivalent:

(i) there exists a cobraiding 〈·, ·〉 : AR× AR→ Dh satisfying

〈Li j(z1), Lkl (z2)〉= lim
w→z1/z2

�
ϕ(w)R

jl

ik
(ζ, w)
�

T−ω(i)−ω(k), (8.2)

(ii) R satisfies the QDYBE (3.1).

Remark 8.3. a) The identity (8.1g) is not necessary when proving that (i) implies
(ii). Without assuming (8.1g), 〈·, ·〉 is a paring on Acop × A. See [R04].

b) Without the factor ϕ(w), the cobraiding is not well-defined if R(ζ, z) has
poles in the z variable. We also remark that the residual relations (4.10) are nec-
essary for (ii) to imply (i).

Proof. The proof is straightforward and is carried out in [N05], Lemma 2.2.5, un-
der the assumption that the R-matrix is regular in the spectral variable.

Corollary 8.4. The h-bialgebroid Fell(M(n)) carries a cobraiding 〈·, ·〉 satisfying

〈ei j(z), ekl(w)〉= R̃
jl

ik
(ζ, z/w)T−ω(i)−ω(k) ∀z, w ∈ C×, i, j ∈ [1, n], (8.3)

where

R̃
jl

ik
(ζ, z) = lim

w→z

�
θ(q2w)R

jl

ik
(ζ, w)
�
. (8.4)

Proof. It suffices to notice that, by (5.3), (3.4),(3.5), R̃ is regular in z, and apply
Proposition 8.2.
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8.2 Properties of the quantum determinant

Let A=Fell(M(n)). When I = J = [1, n] we set

det(z) = ξJ
I
(z) (8.5)

for z ∈ C×, where ξJ
I
(z) is the elliptic minor given in Theorem 7.10. Thus one

possible expression for det(z) is

det(z) =
∑

σ∈Sn

F [1,n](ρ)

σ
�

F [1,n](λ)
� eσ(1)1(z)eσ(2)2(q2z) · · · eσ(n)n(q

2(n−1)z). (8.6)

Theorem 8.5. a) det(z) is a grouplike element of A for each z ∈ C×, i.e.

∆(det(z)) = det(z)⊗ det(z), ǫ(det(z)) = 1.

b) det(z) is almost central in the following sense:

[ei j(z), det(w)] = [ f (λ), det(w)] = [ f (ρ), det(w)] = 0 (8.7)

for all f ∈ Mh∗ , i, j ∈ [1, n] and all z, w ∈ C× such that

z/w /∈ pZ · {q2,q4, . . . ,q2(n−2)}. (8.8)

Proof. Let Λn(z) = Mh∗ vI (z), where I = [1, n]. It is a one-dimensional subcorep-
resentation of the left exterior corepresentation Λ. Its matrix element is det(z),
i.e.

∆(vI(z)) = det(z)⊗ vI (z).

From the coassociativiy and counity axioms for a corepresentation follows that
det(z) is grouplike, proving part a).

Let us prove part b). It follows from the definition that det(z) ∈ A00 and thus it
commutes with f (ρ) and f (λ) for any f ∈ Mh∗ . Applying the cobraiding identity
(8.1g) to a = ei j(z) and b = det(w) and using that det(w) is grouplike we get

n∑

x=1

µl

�
〈ei x(z), det(w)〉1

�
ex j(z)det(w) =

n∑

x=1

µr

�
〈ex j(z), det(w)〉1

�
det(w)ei x(z).

(8.9)
By condition (8.1a), 〈ei x(z), det(w)〉 vanishes unless x = i and similarly in the right
hand side. Hence

µl

�
〈eii(z), det(w)〉1

�
ei j(z)det(w) = µr

�
〈e j j(z), det(w)〉1

�
det(w)ei j(z). (8.10)

It is enough to show that e11(z) commutes with det(w) since we can apply an
automorphism from the Sn × Sn-action on A and use that det(z) is fixed by those,
by relation (7.15). In view of (8.10) it remains to show that 〈e11(z), det(w)〉1 is
nonzero and independent of the dynamical variable ζ ∈ h∗. For this we need a
lemma.
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Lemma 8.6. Let σ ∈ Sn. If σ 6= Id then

〈e11(z), eσ(1)1(w) · · · eσ(n)n(q
2(n−1)w)〉= 0,

while for σ = Id we have

〈e11(z), e11(w) · · · enn(q
2(n−1)w)〉= θ(q2z/w)

n∏

j=2

α̃

�
ζ1 j − 1,

z

q2( j−1)w

�
· T−ω(1),

where α̃(λ, z) was given in (7.29).

Proof. Let σ ∈ Sn. By the property (8.1e) we have

〈e11(z), eσ(1)1(w) · · · eσ(n)n(q
2(n−1)w)〉 =

=

n∑

x=1

〈ex1(z), eσ(1)1(w)〉Tω(x)〈e1x (z), eσ(2)2(q
2w) · · · eσ(n)n(q

2(n−1)w)〉

By (8.1a) it follows that x = σ(1) = 1 if the expression is to be nonzero. Repeating
this argument and moving all the T ’s to the right the claim follows.

Put I = [1, n]. We get

〈e11(z), det(w)〉1= 〈e11(z),
∑

σ∈Sn

F I (ρ)

σ(F I (λ))
eσ(1)1(w) · · · eσ(n)n(q

2(n−1)w)〉1=

=
∑

σ∈Sn

σ(F I (ζ))−1〈e11(z), eσ(1)1(w) · · · eσ(n)n(q
2(n−1)w)〉F I (ζ) =

= F I(ζ)−1θ(q2 z

w
)
∏

1< j

α̃

�
ζ1 j − 1,

z

q2( j−1)w

�
F I(ζ−ω(1))

= θ(q2 z

w
)
∏

1< j

E(ζ1 j − 1)

E(ζ1 j)
α̃(ζ1 j − 1,

z

q2( j−1)w
) =

= qn−1θ(q2 z

w
)θ(

z

q2w
)θ(

z

q4w
) · · ·θ(

z

q2(n−1)w
) (8.11)

using the definitions, (7.29) and (2.5), of α̃ and E respectively. Hence we have
proved that [ei j(z), det(w)] = 0 if z/w /∈ pZ ·{q−2,q2,q4, . . . q2(n−1)}. We must show

that this also holds when z/w ∈ pZ{q−2,q2(n−1)}.
For this we note that relations (5.4),(5.5) imply that there is a C-linear map T :

Fell(M(n)) → Fell(M(n)) such that T (ab) = T (b)T (a) for all a, b ∈ Fell(M(n)),
given by

T
�
ei j(z)
�
= ei j(z

−1), T
�

f (λ)
�
= f (−λ), T
�

f (ρ)
�
= f (−ρ),

for all f ∈ Mh∗ , i, j ∈ [1, n] and z ∈ C×. One verifies that T (det(z)) = det(q−2(n−1)z−1).

Thus if z/w ∈ pZ{q−2,q2(n−1)} we have

T
�
[ei j(z), det(w)]

�
=−[ei j(z

−1), det(q−2(n−1)w−1)] = 0
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by what was proved above, since

z−1/q−2(n−1)w−1 = q2(n−1)w/z ∈ pZ{q2n, 1}.

This finishes the proof.

9 Laplace expansions and the antipode

9.1 Laplace expansions

For subsets I , J ⊆ [1, n] we define Sl(I , J ;ζ),Sr(I , J ;ζ) ∈ Mh∗ by

vI (q
2#Jz)vJ (z) = Sl(I , J ;ζ)vI∪J (z), (9.1)

w I (z)wJ(q2#Iz) = Sr(I , J ;ζ)w I∪J(z). (9.2)

That this is possible follows from the definitions (7.8),(7.9) of vI (z), w I(z) and the
commutation relations (6.3b)-(6.3d), (6.8a)-(6.8b). In particular Sl(I , J ;ζ) = 0 =
Sr(I , J ;ζ) if I ∩ J 6= ;.

Theorem 9.1. (i) Let I1, I2, J ⊆ [1, n] and set I = I1 ∪ I2. Then

Sl(I1, I2;λ)ξJ
I
(z) =
∑

J1∪J2=J

Sl(J1, J2;ρ)ξJ1

I1
(q2#I2z)ξ

J2

I2
(z). (9.3)

(ii) Let J1, J2, I ⊆ [1, n] and set J = J1 ∪ J2. Then

Sr(J1, J2;ρ)ξJ
I
(z) =
∑

I1∪I2=I

Sr(I1, I2;λ)ξJ1

I1
(z)ξ

J2

I2
(q2#J1z). (9.4)

Proof. We have

∆Λ(vI1
(q2#I2 z))∆Λ(vI2

(z)) =
∑

J1,J2

ξ
J1

I1
(q2#I2z)ξ

J2
I2
(z)⊗ vJ1

(q2#I2z)vJ2
(z) =

=
∑

J1,J2

ξ
J1

I1
(q2#I2z)ξ

J2

I2
(z)⊗ Sl(J1, J2;ζ)vJ (z) =

=
∑

J



∑

J1∪J2=J

Sl(J1, J2;ρ)ξJ1

I1
(q2#I2z)ξ

J2

I2
(z)


⊗ vJ (z).

On the other hand,

∆Λ(vI1
(q2#I2 z))∆Λ(vI2

(z)) = ∆Λ(vI1
(q2#I2z)vI2

(z)) =

= ∆Λ(Sl(I1, I2;ζ)vI (z)) =
∑

J

Sl(I1, I2;λ)ξJ
I
(z)⊗ vJ (z).

Equating these expressions proves (9.3) since, by Proposition 6.5, the set {vJ (z) :
J ⊆ [1, n]} is linearly independent over Mh∗ . The second part is completely analo-
gous, using the right comodule algebra Λ′ in place of Λ.
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We need the following lemma, relating the left and right signums Sl(I , J ;ζ) and
Sr(I , J ;ζ), defined in (9.1),(9.2).

Lemma 9.2. Let I , J be two disjoint subsets of [1, n]. Then

Sl(I , J ;ζ+ω(I)) = Sr(J , I ;ζ)−1 (9.5)

where ω(I) =
∑

i∈I ω(i).

Proof. First we claim that, we have the following explicit formulas:

Sl(I , J ;ζ) =
∏

i∈I, j∈J

E(ζ ji + 1), (9.6)

Sr(I , J ;ζ) =
∏

i∈I, j∈J

E(ζi j)
−1. (9.7)

Recall the definition, (7.8), of vI (z). Since E is odd, relation (6.3b) implies that

vi(q
2z)v j(z) =

E(ζ ji + 1)

E(ζi j + 1)
v j(q

2z)vi(z).

Also, FJ(ζ) only involves ζi j with i, j ∈ J so it commutes with any vk(z) with k ∈ I

(since I ∩ J = ;). From these facts we obtain

vI (q
2#Jz)vJ (z) =

FI(ζ)
−1FJ(ζ)

−1

FI∪J(ζ)
−1

∏

i∈I, j∈J
i< j

E(ζ ji + 1)

E(ζi j + 1)
vI∪J (z) =

=
∏

(i, j)∈K
i< j

E(ζi j + 1)
∏

i∈I, j∈J
i< j

E(ζ ji + 1)

E(ζi j + 1)
vI∪J (z) =

=
∏

i∈I, j∈J

E(ζ ji + 1)vI∪J (z),

where K = (I × J)∪ (J× I). This proves (9.6). Similarly one proves (9.7). Now we
have

Sl(J , I ;ζ+ω(J))−1 =
∏

i∈I, j∈J

E((ζ+ω(J))i j + 1)−1 =
∏

i∈I, j∈J

E(ζi j)
−1 = Sr(I , J ;ζ).

Here we used that for any i ∈ I , j ∈ J we have ω(J)(Eii) = 0 and ω(J)(E j j) = 1
and hence (ω(J))i j =−1.

9.2 The antipode

We use the following definition for the antipode, given in [KR01].
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Definition 9.3. An h-Hopf algebroid is an h-bialgebroid A equipped with a C-linear
map S : A→ A, called the antipode, such that

S(µr( f )a) = S(a)µl( f ), S(aµl( f )) = µr( f )S(a), a ∈ A, f ∈ Mh∗ , (9.8)

m ◦ (Id⊗ S) ◦∆(a) = µl(ǫ(a)1), a ∈ A,

m ◦ (S⊗ Id) ◦∆(a) = µr(Tα(ǫ(a)1)), a ∈ Aαβ ,
(9.9)

where m denotes the multiplication and ǫ(a)1 is the result of applying the differ-
ence operator ǫ(a) to the constant function 1 ∈ Mh∗ .

Let Fell(M(n))〈det(z)−1 : z ∈ C×〉 be the algebra obtained from Fell(M(n)) by
adjoining infinitely many indeterminates det(z)−1, z ∈ C×, which do not commute
with each other or with the elements in Fell(M(n)). We define Fell(GL(n)) to be

Fell(M(n))〈det(z)−1 : z ∈ C×〉/J

where J is the ideal generated by the relations det(z)det(z)−1 = 1= det(z)−1 det(z)
for each z ∈ C×. We extend the bigrading of Fell(M(n)) to Fell(M(n))〈det(z)−1 :
z ∈ C×〉 by requiring that det(z)−1 has bidegree 0,0 for each z ∈ C×. Then J is
homogenous and the bigrading descends to Fell(GL(n)). We extend the comulti-
plication and counit by requiring that det(z)−1 is grouplike for each z ∈ C×, i.e.
that

∆(det(z)−1) = det(z)−1 ⊗ det(z)−1, ǫ(det(z)−1) = 1.

Here 1 denotes the identity operator in Dh. One verifies that J is a coideal and that
ǫ(J) = 0, which induces operations ∆,ǫ on Fell(GL(n)). In this way Fell(GL(n))

becomes an h-bialgebroid. This algebra is nontrivial since ǫ(J) = 0 implies that J

is a proper ideal.
For i ∈ [1, n] we set ı̂ = {1, . . . , i − 1, i + 1, . . . , n}.

Theorem 9.4. Fell(GL(n)) is an h-Hopf algebroid with antipode S given by

S( f (λ)) = f (ρ), S( f (ρ)) = f (λ), (9.10)

S(ei j(z)) =
Sr( ̂, { j};λ)

Sr (̂ı, {i};ρ)
det(q−2(n−1)z)−1ξı̂

̂(q
−2(n−1)z), (9.11)

S(det(z)−1) = det(z), (9.12)

for all f ∈ Mh∗ , i, j ∈ [1, n] and z ∈ C×.

Proof. We proceed in steps.

Step 1. Define S on the generators of Fell(M(n)) by (9.10), (9.11). We show that
the antipode axiom (9.9) holds if a is a generator. Indeed for a = f (λ) or a = f (ρ),
f ∈ Mh∗ this is easily checked. Let a = ei j(z). Using the right Laplace expansion

(9.4) with J1 = ı̂, J2 = { j}, I = [1, n] and z replaced by q−2(n−1)z we obtain

n∑

x=1

S(ei x(z))ex j(z) = δi j . (9.13)
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Similarly, using the left Laplace expansion (9.3) with I1 = {i}, I2 = ̂, J = [1, n]

and z replaced by q−2(n−1)z, together with the identity (9.5), we get

n∑

x=1

ei x(z)S(ex j(z)) = δi j , (9.14)

using also the crucial fact that, by Theorem 8.5, ei j(z) commutes in Fell(M(n))

with det(q−2(n−1)z) and hence in Fell(GL(n)) with det(q−2(n−1)z)−1. This proves
that the antipode axiom (9.9) is satisfied for a = ei j(z).

Step 2. We show that S extends to a C-linear map S : Fell(M(n))→ Fell(GL(n))

satisfying S(ab) = S(b)S(a). For this we must verify that S preserves the relations,
(5.1),(5.2), (5.5) of Fell(M(n)). Since S(ei j(z)) ∈ Fell(GL(n))ω( ̂),ω(̂ı) and ω(i) +
ω(̂ı) = 0, we have

S(ei j(z))S( f (λ)) = S(ei j(z)) f (ρ) = f (ρ−ω(̂ı))S(ei j(z)) =

= f (ρ+ω(i))S(ei j(z)) = S
�

f (λ+ω(i))
�
S(ei j(z))

similarly, S(ei j(z))S( f (ρ)) = S
�

f (ρ +ω( j))
�
S(ei j(z)) so relations (5.1) are pre-

served. Next, consider the RLL relation

n∑

x ,y=1

Rx y
ac
(λ,

z1

z2
)ex b(z1)eyd(z2) =

n∑

x ,y=1

Rbd
x y
(ρ,

z1

z2
)ec y(z2)eax(z1). (9.15)

Multiply (9.15) from the left by S(eic(z2)) and from the right by S(edk(z2)), sum
over c, d and use (9.13),(9.14) to obtain

∑

x ,c

Rxk
ac
(λ−ω(ĉ),

z1

z2
)S(eic(z2))ex b(z1) =

∑

x ,d

Rbd
xi
(ρ−ω(̂ı),

z1

z2
)eax (z1)S(edk(z2)).

Then multiply from the left by S(e ja(z1)) and from the right by S(ebl(z1)), sum over
a, b and use (9.13),(9.14) again to get

∑

a,c

Rlk
ac
(λ−ω(â)−ω(ĉ),

z1

z2
)S(e ja(z1))S(eic(z2)) =

=
∑

b,d

Rbd
ji
(ρ−ω( ̂)−ω(̂ı),

z1

z2
)S(edk(z2))S(ebl(z1)). (9.16)

Since S(ei j(z)) ∈ Fell(GL(n)) ̂,̂ı and Rbd
ji
(ρ −ω( ̂) −ω(̂ı), z1

z2
) = Rbd

ji
(ρ −ω( b̂) −

ω(d̂), z1

z2
) by the h-invariance of R, (9.16) can be rewritten

∑

a,c

S(e ja(z1))S(eic(z2))R
lk
ac
(λ,

z1

z2
) =
∑

b,d

S(edk(z2))S(ebl(z1))R
bd
ji
(ρ,

z1

z2
).

This is the result of formally applying S to the RLL-relations, proving that S pre-
serves (5.2). Similarly (5.5) is preserved.
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Step 3. Since, by the above steps, (9.9) holds on the generators of Fell(M(n))

and S(ab) = S(b)S(a) for all a, b ∈ Fell(M(n)), it follows that (9.9) holds for any
a ∈ Fell(M(n)). By taking in particular a = det(z) we get

det(z)S(det(z)) = 1 and S(det(z))det(z) = 1

respectively. Thus, definining S on det(z)−1 by (9.12), the relations det(z)det(z)−1 =

1 = det(z)−1 det(z) are preserved by S. Hence S extends to an anti-multiplicative
C-linear map S : Fell(GL(n)) → Fell(GL(n)) satisfying the antipode axiom (9.9)
on Fell(M(n)) and on det(z)−1. Hence (9.9) holds for any a ∈ Fell(GL(n)).

10 Discussion

We suspect that relations of the form (4.10) are not enough to prove that det(z)
is central and that one may have to add some “higher order” residual relations
for this to be true. However, in a representation of Fell(M(n)) where ei j(z) act
as meromorphic functions of z, the element [ei j(z), det(w)] acts as zero since it
vanishes for (z, w) in a dense subset of C××C×. This essentially means that det(z)
is central in the operator algebra from [FV97]. To define the antipode we only
needed that ei j(z) commutes with det(q−2(n−1)z). This can also be proved using
the Laplace expansions.

Perhaps one could avoid problems with spectral poles and zeros of the R-matrix
by thinking of the algebra as generated by meromorphic sections of a Mh∗⊕h∗ -line
bundle over the elliptic curve C×/{z ∼ pz}. In this direction we found that the
relation ei j(pz) = q2(λi−ρ j)ei j(z) respects the RLL-relation (here h should be the
Cartan subalgebra of gln). This relation should most likely be added to the algebra.

It would be interesting to develop harmonic analysis for the elliptic GL(n) quan-
tum group, similarly to [KR01]. In this context it is valuable to have an abstract
algebra to work with, and not only a collection of representations. For example
the analogue of the Haar measure seems most naturally defined as a certain linear
functional on the algebra.
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