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Abstract

In this thesis we develop an adaptive finite element method for pricing
of several path-dependent options including barrier options, lookback op-
tions, and Asian options. The options are priced using the Black-Scholes
PDE-model, and the resulting PDE:s are of parabolic type in one spatial
dimension with different boundary conditions and jump conditions at mon-
itoring dates.

The adaptive finite element method is based on piecewise polynomial
approximations in space and time. We derive a posteriori estimates for the
error in pointwise values of the solution and it’s derivatives, using duality
techniques. The estimates are used to determine suitable local resolution
in space and time. The suggested adaptive finite element method is stable
and gives fast and accurate results. In addition to option prices we also
calculate certain sensitivity measures, or the so called Greeks, and present
a new connection between some of the Greeks and the a posteriori error
analysis.

We also develop an a posteriori error analysis for different SVD based
model reduction techniques, and present a new model reduction technique.
These techniques enables us to reduce the size of the problem, which radi-
cally improves the performance. The a posteriori error estimates are again
derived using duality techniques. The model reduction techniques are tested
on European and Asian options.

Keywords: finite element method, Galerkin, duality, a posteriori error
estimation, adaptivity, option pricing, Greeks, Brownian motion, European
option, barrier option, lookback option, Asian option, average option, POD,
model reduction, balanced truncation
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1 Introduction

The valuation of different types of derivative contracts is very important
in modern financial theory and practice. Exotic options have become very
popular hedging and speculation instruments in recent years. At the same
time a huge amount of literature has been devoted to the pricing and hedging
of such instruments. The performance demands on the valuation process is
usually very high. Many different methods have been applied to attack these
problems. The demand for performance have led some to use approximations
that produce closed form expressions. Others rely on numerical methods
such as binomial and trinomial tree methods. Tree methods are easy to
understand and can be applied to many types of problems, at the same
time they sometimes work less well and they lack error analysis. Another
frequently used method is Finite Difference (FD) method. In this thesis we
use another method, the so called Finite Element (FE) method. The FE
approach has several advantages compared to other numerical techniques
such as finite differences techniques. For example, using the FE method
one receives a solution in the entire domain, not only in isolated nodes as
in FD codes. FE codes can also incorporate different kinds of boundary
conditions in an easy way. Other important advantages of the FE technique
are that it can easily deal with high curvature and irregular shapes of the
computational domain. One of the most important advantages in practice
is that the sensitivity measures, or the so called Greeks, can be calculated
more exactly using the FE method.

Often exotic options have special features that needs to be taken into
account when pricing them. Usually one is able to construct a PDE whose
solution gives the price of the option. Some times one has to impose different
types of restrictions to the solution when solving the PDE. Such as in the
case of the discrete barrier option. In such cases dual techniques are shown
to be especially powerful. In practice one is only interested in the price,
and it’s derivatives, in one or a few points. Using this criteria, the choice of
computational mesh is based on a posteriori estimates of the error in desired
quantities, which we derive using duality techniques. This makes it possible
to calculate an optimal mesh for each type of option, which dramatically
reduces the error without noticeably enhancing the computational effort.
The technique is general and can be applied to many types of options.

The computationally most expensive phase for the FE method usually is
the repeated solving of linear system of equations. Still, for high dimensional
contracts (at least higher than four to five) there are no real alternatives to
Monte Carlo, or Quasi Monte Carlo, simulations where much of the research
is made today. In order to achieve better performance we have studied model
reduction techniques. The goal of model reduction is to obtain a lower-
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dimensional approximation to a high-dimensional dynamical system. There
are two main sets of methods, singular value decomposition (SVD) based
methods, and moment matching methods. Moment matching methods have
been used in finance, but to our knowledge we are the first to try SVD
based methods on option pricing problems. SVD based methods have error
bounds and preserve stability, but moment matching methods have no global
error bounds, and do not automatically preserve stability. In this thesis we
use different model reduction techniques used in fluid and solid dynamics,
such as the proper orthogonal decomposition (POD) method and our own
extension of the POD method, the so called weighted POD method. These
SVD based methods enables us to to reduce the size of the problem, which
radically improves the performance. The principal idea of dimensional model
reduction is to find a small number of generalized co-ordinates in which to
express the dynamics, ideally with some bounds on the truncation error.
In the context of FE models this can be realized by using several linear
combinations of the FE basis functions (modes or generalized coordinates)
instead of the individual basis functions.

1.1 Thesis Objectives

The main objectives of the thesis are to:

• Develop a finite element method for computation of the values, and
different sensitivity measures, of various path-dependent options.

• Develop an a posteriori error analysis for the different studied options
and a framework for creating adaptive meshes.

• Implement the adaptive finite element method using C++, and also
implement and verify the a posteriori error estimates.

• Develop an a posteriori error analysis for different SVD based model
reduction techniques.

• Implement and test different SVD based model reduction techniques
on option pricing problems.

1.2 Main Results

• We develop an adaptive finite element method for computation of the
values, and different sensitivity measures, of European options, Asian
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options, and Lookback options. The European option is used as a ref-
erence, since for the European option we have the exact solution when
studying Black-Scholes equation. The method is implemented using
C++. (Paper I, Paper II, and Paper III)

• We develop an a posteriori error analysis for the different studied op-
tions and a framework for creating adaptive meshes. This is accom-
plished by using dual techniques which are shown to be very powerful.
The derivation is not always straight forward, since the dual equations
can sometimes be complex and difficult to derive. The a posteriori er-
ror estimates are implemented and tested using C++. (Paper I, Paper
II, and Paper III)

• We present a new connection between some of the Greeks and a finite
element based a posteriori error analysis. At the same time we obtain
a new way of calculating two of the Greeks. (Paper IV)

• We develop an a posteriori error analysis for the weighted POD method.
The weighted POD method is an extension of the POD method which
we derive studying the original derivation of the POD method. The
ordinary POD method and the balanced truncation method are just
special cases of the weighted POD method. (Paper V)

• We test the POD method, the balanced truncation, and the weighted
POD method on European and Asian options. (Paper VI)

• We develop a software package with a graphical user interface (GUI)
that gives the user the ability to easily calculate different exotic option
prices and the corresponding Greeks. The software Option Manager is
implemented in C++ with a GUI developed in Matlab’s Guide. The
program features the ability to show the option prices and Greeks
graphically as evolutions in time or as a space-time plot for a specific
time. (Paper VII)

1.3 Future Work

The finite element method has just recently become more popular in mathe-
matical finance and option pricing problems. There are still many interesting
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open problems left to study, some of them that we have touched on during
our work.

• Extend the number of studied options and include other types, for in-
stance American options. Some studies have been done on American
options but are not included in the thesis.

• Use stochastic volatility models and better models for dividends. The
Hobson-Rogers volatility model has been investigated and seems promis-
ing.

• Extend the software to two and three dimensional option pricing prob-
lems. The use of dual techniques are expected to be even more suc-
cessful here. Also model reduction techniques is expected to give much
better payoff in the multidimensional case.

• Study high-dimensional (higher than three) option pricing problems.
This is a rather open problem today.

• If possible it would be nice to be able to connect the a posteriori error
analysis to the choice of inner product in the weighted POD method.

• Study the calculation of Greeks more thoroughly. Compare different
techniques and present numerical results using the connection between
the Greeks and the a posteriori error analysis.

• Improve the C++ code and the software Option Manager.

2 A Brief Introduction to Option Pricing

This section gives a brief introduction to the theory of option pricing. A
short background is presented and the mathematical model is explained,
together with some useful tools for option pricing. For a more detailed
discussion about option pricing we refer to Björk [2], Borell [3], or Wilmott
[15].
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2.1 Background

A contingent claim, or a derivative, is a contract the value of which depends
on the values of other assets. One of the most common derivatives is the
European call option. A European call option on a given stock with strike
price K and maturity date T is the right, but not the obligation, for the
holder of the option to buy one share of the stock at the price K at the time
T . A European put option with strike price K and time of maturity T gives
the holder the right, but not the obligation, to sell one share of the stock
at the price K at maturity. The so called American option differs from the
European option so that the holder can exercise the option at any time prior
to the maturity date. Calls and puts are often called vanilla options.

Stocks and options have a long history. Stocks have existed for at least
750 years. Option contracts were used already during the Middle Ages.
Valuing financial derivatives in a theoretical convincing way has been diffi-
cult throughout history. A very important contribution was given in 1973
when Black and Scholes presented their solution to the valuation of the
European call option, based on the assumption that the stock log-price is
governed by a so called Brownian motion. Their solution was based on
the Itô calculus on Brownian motion. The concept arbitrage, that is risk
free profit, is very central here. The most difficult part in this area is to
understand the price dynamics of the underlying contracts.

Another kind of option is the exotic option with a payoff which does not
just depend on its value on the maturity date, but on the history of the
underlying asset price. There are many different kinds of exotic options.
Some of them are easy to price and analytical pricing formulas exist, but
most of them are more difficult to value. The average option, or the so
called Asian option is an example of an option without a (known) closed
form price formula.

2.2 Underlying Theory

Throughout this section we are working in the time interval 0 ≤ t ≤ T . Let
B(t) denote the price of a risk free asset at time t governed by the equation
B(t) = B(0)ert, where r is the constant interest rate. A common hypothesis
about the behavior of asset prices is that they are given by geometric Brown-
ian motions which implies that the asset prices are log-normally distributed
(see e.g. Duffie [6] or Björk [2]). The price S(t) of an asset at time t, solves
the following stochastic differential equation
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dS(t) = S(t)(µdt+ σdW (t)), (2.1)

S(0) = S0,

where σ is the volatility, µ ∈ R and W (t) is a normalized Wiener process.
Here σ is assumed to be a positive real number. The solution of (2.1) is

S(t) = S(0)e(µ−
σ
2

2
)t+σW (t). (2.2)

Now set

W̃ (t) =
µ− r

σ
t+W (t), (2.3)

and note that
dS(t) = S(t)(rdt+ σdW̃ (t)). (2.4)

According to Cameron-Martin’s theorem there exists another probability
measure than the objective measure P , the risk neutral measure Q, such
that W̃ is a Q-Wiener process. The solution of (2.4) equals

S(t) = S(0)e(r−
σ
2

2
)t+σW̃ (t), (2.5)

and the measures P and Q are equivalent. The existence of the risk neutral
measure Q assures that the market is free of arbitrage possibilities.

Because the Wiener process is not differentiable in the usual sense, the
equation (2.1) is interpreted in the sense of stochastic differential calculus
initiated by K. Itô. The most fundamental tool in stochastic calculus, Itô’s
lemma is given below. But first we state a definition. If the stochastic
process (h(t))0≤t≤T is progressively measurable and

∫ T

0
| h(t) |p dt <∞ almost surely, (2.6)

for some p ∈ [1,∞[, then we say that h belongs to the class Lp
W [0, T ].

Lemma 2.1 (Itô’s lemma). Let the function u(t, x1, . . . , xm) be two times
continuously differentiable in x1, . . . , xm ∈ R and one time continuously
differentiable in t ∈ [0, T ]. Suppose we have m stochastic differentials

dXi(t) = ai(t)dt+

n
∑

k=1

bik(t)dWk(t), (2.7)

dependent on n stochastic independent Wiener Processes W1, . . . ,Wn. Let
Ft = σ(W1(λ), . . . ,Wn(λ), λ ≤ t). Let also the coefficients ai(t), bik(t) fulfil
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ai(t) ∈ L1
W [0, T ], bik(t) ∈ L2

W [0, T ] and so, especially, for fixed t the processes
are Ft-measurable. Let also X(t) = (X1(t), . . . , Xm(t)). Then we have

du(t,X(t)) =
∂u

∂t
(t,X(t))dt +

m
∑

i=1

∂u

∂xi
(t,X(t))dXi(t) (2.8)

+
1

2

m
∑

i,j=1

∂2u

∂xi∂xj
(t,X(t))dXi(t)dXj(t).

Note that

dtdt = 0, dtdWi(t) = 0,

dWi(t)dWi(t) = dt, dWi(t)dWj(t) = 0 if i 6= j.

2.3 Derivation of the Black-Scholes Formula

Let v(t, S(t)) denote the value of the portfolio at time t, with the terminal
condition v(T, S(T )) = g(S(T )), where the function g is piecewise continu-
ous and fulfils

sup
x∈R

(e−C|x||g(ex)|) <∞ (2.9)

for an appropriate constant C > 0. We then say that g ∈ P. Suppose that
the process (v(t, S(t))0≤t≤T is the value process of a self-financing strategy
(

hS(t), hB(t)
)

0≤t≤T
in the stock and the risk free asset, that is

v(t, S(t)) = hS(t)S(t) + hB(t)B(t), (2.10)

dv(t, S(t)) = hS(t)dS(t) + hB(t)dB(t). (2.11)

By applying Ito’s lemma and using (2.11) we get

dv(t, S(t)) = vt(t, S(t))dt + vs(t, S(t))dS(t) +
1

2
vss(t, S(t))(dS(t))2 (2.12)

= hS(t)dS(t) + rhB(t)B(t)dt.

Identifying coefficients in (2.12) yields hS = vs. Rearranging the terms and
using (2.10) we get the famous Black-Scholes differential equation

vt(t, S(t)) +
σ2S(t)2

2
vss(t, S(t)) + rS(t)vs(t, S(t)) − rv(t, S(t)) = 0, (2.13)

t < T, S(t) > 0.
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Together with the terminal condition v(T, S(T )) = g(S(T )), equation (2.13)
has the following solution,

v(t, S(t)) = e−rτE

[

g(se(r−
σ
2

2
)τ+σW (τ)

]

, (2.14)

where s = S(t) and τ = T − t.

Remark 2.1 Observe that (2.14) is independent of the drift coefficient µ.

We thus have the following important result.

Theorem 2.1 Let g ∈ P. A simple European derivate with payoff Y =
g(S(T )) at maturity T has the theoretical value v(t, S(t)) at time t, where

v(t, S(t)) = e−rτE

[

g(se(r−
σ
2

2
)τ+σW (τ))

]

, (2.15)

and τ = T − t.

We can simplify (2.15) using the risk neutral measure Q (see Geman, Karoui
and Rochet [11], for a detailed discussion about changes of probability mea-
sure).

Theorem 2.2 The value v(t, S(t)) is equal to

e−rτEQ[g(S(T )) | Ft].

Proof. According to (2.5) we have S(T ) = S(t)e(r−
σ
2

2
)τ+σ(W̃ (T )−W̃ (t)) and

hence

EQ[g(S(T )) | Ft] = EQ

[

g(S(t)e(r−
σ
2

2
)τ+σ(W̃ (T )−W̃ (t))) | Ft

]

. (2.16)

But since (W̃ (T ) − W̃ (t)) and Ft are stochastic independent and W̃ is a
Q-Brownian motion, the right hand side of (2.16) becomes

E

[

g(se(r−
σ
2

2
)τ+σ(W (T )−W (t)))

]

|s=S(t)

= erτv(t, S(t)),

We now state the famous Black-Scholes formula which gives the value of
a European call option with payoff Y = max(0, S(T ) −K) at maturity T .
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Theorem 2.3 (Black-Scholes formula). A European call option with
maturity date T and strike price K has the value c(t, S(t),K) at time t < T

where

c(t, s,K) = sΦ(d1) −Ke−rτΦ(d2), (2.17)

d1 =
ln s

K
+ (r + σ2

2 )τ

σ
√
τ

and d2 = d1 − σ
√
τ ,

and where Φ is the probability distribution function for a N(0, 1) distributed
stochastic variable.

Proof. Theorem 2.1 gives that

c(t, s,K) = e−rτE

[

max

(

0, se(r−
σ
2

2
)τ−σ

√
τG −K

)]

,

where G ∈ N(0, 1). From this it follows that

c(t, s,K) = e−rτE

[

se(r−
σ
2

2
)τ−σ

√
τG −K; G ≤ ln s

K
+ (r − σ2

2 )τ

σ
√
τ

]

= e−rτ

(

E

[

se(r−
σ
2

2
)τ−σ

√
τG; G ≤ d2

]

−KΦ(d2)

)

.

Here

e−rτE

[

se(r−
σ
2

2
)τ−σ

√
τG; G ≤ d2

]

= s

∫

x≤d2

e
−σ

2

2
τ−σ

√
τx−x

2

2
dx√
2π

= s

∫

x≤d2

e
−(σ

√

τ+x)2

2
dx√
2π

= sΦ(σ
√
τ + d2) = sΦ(d1),

which proves the theorem.

The price of the European put option can be derived in the same manner
as the call price. Alternatively to derive the European put price one can use
the so called call-put parity relation.

Theorem 2.4 (Call-put parity). Let c and p be the value of an European
call and put option respectively. Then we have

p(t, s,K, T ) = Ke−rτ − s+ c(t, s,K, T ). (2.18)

Using Theorems 2.3 and 2.4 we can easily calculate the price of an Eu-
ropean put option, p(t, s, K, T).

p(t, s,K, T ) = Ke−rτ − s+ sΦ(d1) −Ke−rτΦ(d2) (2.19)

= Ke−rτΦ(−d2) − sΦ(−d1).
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2.4 General Derivate Valuation Formula

To be able to handle more complex derivates we extend the previous valu-
ation formula in Theorem 2 to European derivates with payoff X ∈ L2(Q)
and state the following theorem (for a more detailed discussion see Borell
[3]).

Theorem 2.5 A European derivate with payoff X ∈ L2(Q) at maturity T
has the theoretical value

v(t) = e−rτEQ[X | Ft]. (2.20)

Exotic derivatives may give rise to more complex PDE’s than the ordi-
nary European option. For example the Asian option. It can be shown, see
[9], that the price of the Asian option V = S0ū is given as the solution to
the following PDE

ūt +
1

2

(

z − e−γt
)2
σ2ūzz = 0, (2.21)

ū(T, z) = (z −K1)
+.

2.5 Hedging and the Greeks

Hedging is the reduction of the sensitivity of a portfolio to the movement
of an underlying asset by taking opposite positions in different financial
instruments. One simple way to hedge is the so called delta-hedging. With
V (S(t), t) = V (s, t) denoting the value of a portfolio or derivative, using
Itô′s lemma, (2.8), we have that

dV = σs
∂V

∂s
dW +

(

µs
∂V

∂s
+

1

2
σ2s2

∂2V

∂s2
+
∂V

∂t

)

dt. (2.22)

Note that V must at least have one t derivative and two s derivatives. Let
Π be a portfolio consisting of one option and −∆ number of the underlying
assets,

Π = V − ∆s. (2.23)

Then

dΠ = dV − ∆ds, (2.24)

which together with (2.22) and (2.1) gives that

dΠ = σs

(

∂V

∂s
− ∆

)

dW +

(

µs
∂V

∂s
+

1

2
σ2s2

∂2V

∂s2
+
∂V

∂t
− µ∆ds

)

dt.

(2.25)



2.6 Dividends 11

By choosing ∆ = ∂V
∂s

we eliminate the randomness

dΠ =

(

∂V

∂t
+

1

2
σ2s2

∂2V

∂s2

)

dt. (2.26)

Delta hedging is a dynamic hedging strategy, that is, it must be continuously
rebalanced to be a perfect hedge. Transaction costs makes this impossible
in practice. When delta-hedging one eliminates the largest random part of
the portfolio. One can also hedge away smaller effects due to, such as for
instance, the curvature of the portfolio value with respect to the underlying
asset. Then one needs the so called gamma, defined as

Γ =
∂2V

∂s2
. (2.27)

The decay of value in time of a portfolio is represented by the theta, where

Θ = −∂V
∂t
. (2.28)

Sensitivity to volatility called the vega and is defined by

∂V

∂σ
, (2.29)

and sensitivity to interest rate is called rho, defied as

ρ =
∂V

∂r
. (2.30)

The speed is the third derivative of V with regarding to s,

∂3V

∂s3
. (2.31)

2.6 Dividends

Many assets, such as equities, pay out dividends. These dividends affect the
prices of options. There are several ways to model dividends. Dividends may
be deterministic or stochastic, and may be made continuously or at discrete
times. We will consider only deterministic dividends, whose amount and
timing is known prior to the start of the option’s life. This is a reasonable
assumption if the options lifetime is not too long, since many companies have
a similar payment from year to year. There are several ways to incorporate
dividends into the Black-Sholes model. In this section we show how this is
done in the simplest case, when we have a continuous and constant dividend
yield. This is a good model for index options, where the many discrete
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dividends can be approximated by a continuous yield without serious error.
The model is also applicable to options on foreign currencies, though only
for short dated options. For stocks, the dividends are often made at discrete
times, and consequently this model is not suitable for stocks. For stocks the
so called discrete dividend yield model or the fixed dividend model is more
appropriate, see for example [12], [4], or [10]. In [14], Večeř shows how to
include discrete dividend payments, for the path-dependent Asian option,
studied later in this thesis, in a very simple manner.

Suppose that the underlying pays out a dividend D0sdt during the time
dt, where D0 is a constant. The dividend yield is then defined as the ratio of
the dividend payment to the asset price. Thus the dividendD0sdt represents
a continuous constant dividend yield. Arbitrage considerations show that
the asset price must fall the amount of the dividend payment, that is, the
stock price stochastic differential equation (2.1) is modified to

dS(t) = S(t)((µ−D0)dt+ σdW (t)), (2.32)

But as noted before, (2.1), the Black-Scholes equation is independent by the
drift-coefficient µ in the stochastic differential equation. What changes is
that we must now include the change due to dividends in our self-financing
portfolio dynamics (2.11). Since we receive D0Sdt for every asset held and
since we hold hS number of the underlying, the change in value of our self-
financed portfolio now reads

dv(t, S(t)) = hS(t)dS(t) + hSD0S(t)dt+ hB(t)dB(t). (2.33)

The analysis proceeds exactly as before, but with new term arising from the
dividend, and we find that the value of our portfolio solves the following
equation

vt +
σ2S(t)2

2
vss + (r −D0)S(t)vs − rv = 0, t < T, S(t) > 0. (2.34)

We see that using a continuous dividend yield only corresponds to adjusting
one coefficient in the partial differential equation.

3 The Finite Element Method

The finite element method is used for finding approximate solutions of par-
tial differential equations (PDE’s) as well as of integral equations. It was
developed in the 1950’s and 1960’s by engineers, and was mainly used in
structural mechanics, see e.g. [17] for an overview. The finite element
method also has a strong mathematical foundation in functional analysis,
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see [5]. The mathematical foundation provides the tools to derive analyti-
cal error estimates which can be used in a constructive way to improve the
approximative solution.

As a model problem we choose to study the Black-Scholes equation pre-
sented in the previous Section. In order to construct a computational mesh
we introduce a bounded interval Ω = [smin, smax] ⊂ R

+ with boundary
∂Ω = {smin, smax}. We define the usual Hilbert space

H1(Ω) = {v :

∫

Ω
(|∇v|2 + v2)ds <∞}, (3.1)

and let W be the space of functions that are square integrable in time and
belongs to H1(Ω) in space, that is

W = L2
(

[0, T ],H1(Ω)
)

. (3.2)

We also use the notation (u, v) =
∫

Ω uvds, and (u, v)∂Ω = u(smax)v(smax)−
u(smin)v(smin).

3.1 The Weak Form

The first step in formulating a finite element method is to rewrite the equa-
tion on weak form. Multiplying the Black-Scholes equation (2.13) by the
test function v ∈ W and integrating on Ω × [0, T ] we obtain

∫ T

0

(

(ut, v) + (r − ν)
(

sus, v
)

+
σ2

2

(

s2uss, v
)

− r(u, v)
)

dt = 0. (3.3)

Using integration by parts we get

(

s2uss, v
)

=
(

s2us, v
)

∂Ω
− 2

(

sus, v
)

−
(

s2us, vs

)

. (3.4)

Thus equation (3.3) becomes

∫ T

0

(

(ut, v) + (r − ν − σ2)
(

sus, v
)

(3.5)

− σ2

2

(

s2us, vs

)

+
σ2

2

(

s2us, v
)

∂Ω
− r(u, v)

)

dt = 0.

The boundary conditions for the European call option are u(t, 0) = 0 and
u(t, s) ∼ se−ν(T−t) as s → ∞, and for the corresponding put u(t, 0) =
Ke−r(T−t) and u(t, s) ∼ 0 as s → ∞, see for example Wilmott, [16]. For
simplicity of implementation we use the artificial boundary condition uss = 0
on ∂Ω for both the put and the call instead. This boundary condition works
for all contracts if the payoff is at most linear in the underlying (see [16])
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and does not affect the accuracy of the solution. Using equation (2.13) we
can rewrite the boundary condition as

us =
r

s(r − ν)
u− 1

s(r − ν)
ut, (3.6)

and enforce it weakly by inserting identity (3.6) into equation (3.5). We
thus want to solve the problem: find u ∈ W such that







∫ T

0

(

m(ut, v) + a(u, v)
)

dt = 0,

u(T, s) =

{

max(s−K, 0), for a call,
max(K − s, 0), for a put,

(3.7)

for every v ∈ W, where

m(ut, v) = (ut, v) −
σ2

2(r − ν)
(sut, v)∂Ω, (3.8)

and

a(u, v) = (r − ν − σ2)
(

sus, v
)

− σ2

2

(

s2us, vs

)

(3.9)

+
σ2r

2(r − ν)
(su, v)∂Ω − r(u, v).

3.2 Finite Element Approximation

The finite element method is based on solution of the variational problem
(3.7) with W replaced by a finite dimensional function space of piecewise
polynomials in space and time. For background on the finite element method
see for instance [7].

We now partition [0, T ] as 0 = t0 < t1 < t2 < · · · < tN = T , denoting
each time interval by In = (tn−1, tn] and each time step by kn = tn − tn−1.
Similarly we partition Ω as smin = s0 < s1 < s2 < · · · < sJ = smax, denoting
each spatial interval by κj = [sj−1, sj) and the length of each interval by
hj = sj − sj−1.

In space, we let Vp ⊂ H1(Ω) denote the space of piecewise continuous
functions of order p. On each space-time slab Sn = In × Ω, we define

Wq
n = {w(t, s) : w(t, s) =

q
∑

j=0

tjvj(s), vj ∈ Vp, (t, s) ∈ Sn}. (3.10)

Let Wq ⊂ W denote the space of functions defined on [0, T ] × Ω such that
v |Sn

∈ W
q
n for 1 ≤ n ≤ N . For simplicity, we only give details for the con-

tinuous Galerkin method cG(p)-cG(q), (see e.g. [7] or [8]) which is defined
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by the following discrete version of equation (3.7). Find U ∈ Wq such that
for 1 ≤ n ≤ N







∫

In

(

m(Ut, v) + a(U, v)
)

dt = 0 for all v ∈ Wq−1
n ,

U−(tn) = U+(tn), n = N − 1, . . . , 1,
U−(tN ) = uT ,

(3.11)

where U±(tn) = limε→0,ε>0U(tn ± ε). In the cG(1) method the approxima-
tion U of u is continuous piecewise linear in time and space, while the test
functions v are continuous linear in space and piecewise constant in time.
It is also possible to use a discontinuous method in time, we refer to [7], for
details on the resulting discontinuous Galerkin method, cG(p)-dG(q). In
Figure 2 we see a monthly sampled up and out barrier call option calculated
using the cG(1)-dG(1) method.

3.3 Matrix Equations

We now derive the matrix equations for the case p = q = 1. Using the
notation Un = U(tn) and computing the time integral in equation (3.11)
yields the scheme: for 1 ≤ n ≤ N

m(Un − Un−1, v) + kna
(Un + Un−1

2
, v

)

= 0 for all v ∈ W0
n, (3.12)

which is the classical Crank-Nicolson method.
Let {ϕj}J

j=0 be the standard nodal basis of P1 (see Figure 3). Then
Un ∈ P1 can be written as

Un(s) =
J

∑

j=0

ξnjϕj(s), 1 ≤ n ≤ N, (3.13)
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and the test function v can be written as

v(s) =

J
∑

i=0

γniϕi(s), 1 ≤ n ≤ N, (3.14)

for reals ξn0, . . . , ξnJ , γn0, . . . , γnJ .
Let now ξn be the vector of all ξn,j, j = 0, 1, ..., J . If the expressions

above for U and v are inserted into equation (3.12) we receive the matrix
equation

(ξn − ξn−1)M + (ξn + ξn−1)
knA

2
= 0, 1 ≤ n ≤ N, (3.15)

where

M = (ϕj , ϕi) −
σ2

2(r − ν)

(

sϕj , ϕi

)

∂Ω
, 0 ≤ i, j ≤ J, (3.16)

and

A = (r − ν − σ2)A0 −
σ2

2
A1 − rA2, (3.17)
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where

A0 = (sϕj,s, ϕi), A1 = (s2ϕj,s, ϕi,s) −
r

r − ν
(sϕj , ϕi)∂Ω,

A2 = (ϕj , ϕi), 0 ≤ i, j ≤ J. (3.18)

Rearranging the terms in equation (3.15) we get the matrix equation we
need to solve successively backwards in time in order to obtain U0 given UN

ξn−1

(

M − knA

2

)

= ξn

(

M +
knA

2

)

, 1 ≤ n ≤ N. (3.19)

3.4 Error Estimation

There are two classes of finite element error estimates, a priori and a pos-
teriori. The a priori estimate bounds the error e = u− U in terms of data,
u, and h, while a posteriori estimates bounds the error in terms of data, U ,
and h. In this thesis we will only consider a posteriori estimates since they
are computable once you have calculated the solution U . We present such
an estimate here of the Black-Scholes equation

(ψ, e(0, s)) =

∫ T

0

(

m(Ut, φ) + a(U, φ)
)

dt, (3.20)

where φ is the solution to the continuous dual problem for the Black-Scholes
equation, ψ = φ(0, s), and m and a are the previously defined bilinear
forms. These kind of error estimates can be used to create adaptive meshes.
In Figure 4, we see a mesh resulting from using a mesh refinement algorithm
based on a similar error estimate as the one above but in the case of a floating
strike lookback put option with weekly sampling. The use of adapted meshes
gives superior accuracy and performance with less degrees of freedom than
using uniform meshes.
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Figure 4: The resulting mesh using a mesh refinement algorithm, calculated
for a floating strike lookback put option with T = 0.5, σ = 0.1, and r = 0.1,
when ψ = δ1(ξ, ε).

4 Model reduction

Model reduction is the problem of obtaining a lower-dimensional approxi-
mation to a high-dimensional dynamical system. There are two main sets
of methods, SVD based methods, and moment-matching methods. Moment
matching methods have no global error bounds, and do not automatically
preserve stability, whereas SVD based methods have error bounds and pre-
serve stability. For a good survey of model reduction methods, see for ex-
ample [1].

In this thesis we use the finite element method and adopt different SVD
based model reduction techniques used in fluid and solid dynamics, which
enables us to to reduce the size of the problem, which radically improves
the performance. The standard finite element basis is in some sense non-
optimal, the question is what to use instead. As so elegantly described by
[13], “The principal idea of dimensional model reduction is to find a small
number of generalized co-ordinates in which to express the dynamics, ideally
with some bounds on the truncation error”. In the context of FE models this
can be realized by using several linear combinations of the FE basis functions
(modes or generalized coordinates) instead of the individual basis functions.
Many different generalized coordinates functions have been proposed.
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4.1 POD

Here we present one of the simplest model reduction techniques used in the
thesis. The other methods we use are based on the same ideas.

The idea is, given a set of data that lies in the vector space W, to find a
subspace Wr of fixed dimension r such that the error in the projection onto
the subspace is minimized. Suppose we have set of data x(t) ∈ R

n, with
0 ≤ t ≤ T . We then seek a projection Pr : R

n → R
n of fixed rank r, that

minimizes the total error
∫ T

0
‖x(t) − Prx(t)‖2 dt. (4.1)

Now introduce the n× n matrix

R =

∫ T

0
x(t)x(t)∗ dt, (4.2)

where x∗ denotes the transpose of x, and calculate the eigenvalues and eigen-
vectors of R given by

Rηk = λkηk, λ1 ≥ · · · ≥ λn ≥ 0. (4.3)

Since the matrix R is symmetric, positive semidefinite, all the eigenvalues λk

are real and non-negative, and the eigenvectors ηk may be chosen orthonor-
mal. The main result of POD is that the optimal subspace of dimension r

is spanned by {η1, η2, . . . , ηr}, and the optimal projection Pr is given by

Pr =

r
∑

k=1

ηkη
∗
k. (4.4)

The vectors ηk is then used as the new basis and are called POD modes.
These POD modes can then be used to form reduced order methods by
applying Galerkin projection. In the thesis we discuss other ways of choosing
these modes. For example incorporating dual information in the choice of
the modes.

Writing the dynamics of our system as

ẋ = f (x(t)) , (4.5)

we define a new variable xr(t) ∈ span{η1, . . . , ηr} by ẋr(t) = Prf(xr(t)).
Let now

xr(t) =

r
∑

j=1

aj(t)ηj . (4.6)

Substituting this into equation (4.5) and multiplying by η∗k we obtain

ȧk(t) = η∗kxj(r), k = 1, . . . , r, (4.7)

a set of ODEs that describe the dynamics of xr(t).
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5 Summary of Papers

5.1 Paper I

Valuing European, Barrier, and Lookback Options using the Finite Element
Method and Duality Techniques, (submitted)
In this paper we develop an adaptive finite element method for computation
of the values and different sensitivity measures of ordinary European options,
barrier options, and lookback options.

The options are priced using the Black-Scholes PDE-model, and the
resulting PDE:s are of parabolic type in one spatial dimension with different
boundary conditions and jump conditions at monitoring dates. The adaptive
finite element method is based on a posteriori estimates of the error in desired
quantities, which we derive using duality techniques. The a posteriori error
estimates are tested and also verified in the case of the European option.
These estimates are then used to calculate optimal meshes for each type of
option. The use of adapted meshes gives superior accuracy and performance
with less degrees of freedom than using uniform meshes. The suggested
adaptive finite element method is stable and gives fast and accurate results.

5.2 Paper II

Valuing Fixed Strike Lookback Options using the Finite Element Method
and Duality Techniques, (submitted) (with Mats G. Larson)
In this paper is we present an adaptive finite element method for computa-
tion of the values and different sensitivity measures of fixed strike lookback
options.

The fixed strike lookback options are priced using the Black-Scholes
PDE-model, and a method developed by Andreasen. It consists of solv-
ing two coupled PDE:s that are of parabolic type in one spatial dimension
with different boundary conditions and jump conditions at monitoring dates.
The adaptive finite element method is based on a posteriori estimates of the
error in desired quantities, which we derive using duality techniques. The
derivation of the dual equations turns out to be a challenging problem. The
a posteriori error estimates are tested and verified, and are used to calculate
optimal meshes for each type of option. The use of adapted meshes gives
superior accuracy and performance with less degrees of freedom than using
uniform meshes. The suggested adaptive finite element method is stable and
gives fast and accurate results.

5.3 Paper III

Valuing Asian Options using the Finite Element Method and Duality Tech-
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niques, Journal of Computational Finance and Applied Mathematics (2007)
(with Mats G. Larson)
The Asian option is a popular and frequently traded pathdependent option
which pricing problem has been studied a lot using many different tech-
niques. The main objective of this paper is to develop an adaptive finite
element method for computation of the values, and different sensitivity mea-
sures, of the Asian option with both fixed and floating strike. The pricing is
based on Black-Scholes PDE-model and a method developed by Večeř where
the resulting PDE:s are of parabolic type in one spatial dimension and can
be applied to both continuous and discrete Asian options. We propose using
an adaptive finite element method which is based on a posteriori estimates
of the error in desired quantities, which we derive using duality techniques.
The a posteriori error estimates are tested and verified, and are used to cal-
culate optimal meshes for each type of option. The use of adapted meshes
gives superior accuracy and performance with less degrees of freedom than
using uniform meshes. The suggested adaptive finite element method is sta-
ble, gives fast and accurate results, and can be applied to other types of
options as well.

5.4 Paper IV

A Note on the Connection Between the Greeks and A Posteriori Error Anal-
ysis, (submitted) (with Mats G. Larson)
The sensitivity measures, also known as the Greeks, are very important tools
in risk management. In this paper we present a new connection between
some of the Greeks and a finite element based a posteriori error analysis.
This is not only a nice feature of the a posteriori error analysis but it also
gives us an alternative way of calculating the Greeks. The presented error
estimation formula splits the error in parts originating from how good the
numerical approximation is and in parts originating from how well the pa-
rameters are approximated. The study is based on the finite element method
applied to the European option problem, but the technique is general and
can be applied to other option valuation problems as well.

5.5 Paper V

A Posteriori Error Analysis of Weighted POD, (submitted) (with Mats G.
Larson)
Model reduction is the problem of obtaining a lower-dimensional approxi-
mation to a high-dimensional dynamical system. The main objective of this
paper is to develop an a posteriori error analysis for different model reduc-
tion techniques, such as the POD method and extensions of it. Here we use
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the finite element method and adopt different SVD based model reduction
techniques used in fluid and solid dynamics, which enables us to to reduce
the size of the problem, which radically improves the performance. The a
posteriori error estimates are derived using duality techniques.

5.6 Paper VI

Model Reduction in Option Pricing using Weighted POD, (submitted) (with
Mats G. Larson)
The main objective of this paper is apply different model reduction tech-
niques, such as the POD method and a newly developed extension of it,
Weighted POD, to the problem of pricing exotic options. Model reduction
is the problem of obtaining a lower-dimensional approximation to a high-
dimensional dynamical system. Here we use the finite element method and
adopt SVD based model reduction techniques used in fluid and solid dynam-
ics, which enables us to to reduce the size of the problem, which radically
improves the performance. The techniques are tested and compared on Eu-
ropean and Asian options.

5.7 Paper VII

Option Manager: A Software Package for Calculating and Visualizing Ex-
otic Option Prices and Greeks
In this report we present a software project that gives the user the ability to
easily calculate different exotic option prices and the corresponding Greeks
in a graphical user interface (GUI). The software Option Manager is imple-
mented in C++ with a GUI developed in Matlab’s Guide. The program
features the ability to show the option prices and Greeks graphically as evo-
lutions in time or as a space-time plot for a specific time. The valuation
is done using the finite element method, and features dual techniques as
well. The program is also equipped with the availability to calculate error
estimations and show them graphically. This gives the user not just a tool
for calculating prices and Greeks in an easy way, but at the same time it
aids to the understanding with visualization of the prices, Greeks, and error
plots.
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Valuing European, Barrier, and Lookback

Options using the Finite Element Method

and Duality Techniques

Georgios Foufas∗

April 14, 2008

Abstract

The main objective of this paper is to develop an adaptive finite
element method for computation of the values and different sensitivity
measures of ordinary European options, barrier options, and lookback
options.

The options are priced using the Black-Scholes PDE-model, and the
resulting PDE:s are of parabolic type in one spatial dimension with dif-
ferent boundary conditions and jump conditions at monitoring dates.
The adaptive finite element method is based on a posteriori estimates
of the error in desired quantities, which we derive using duality tech-
niques. The a posteriori error estimates are tested and verified, and
are used to calculate optimal meshes for each type of option. The use
of adapted meshes gives superior accuracy and performance with less
degrees of freedom than using uniform meshes. The suggested adaptive
finite element method is stable and gives fast and accurate results.

1 Introduction

The valuation of different types of derivative contracts is very important
in modern financial theory and practice. Exotic options have become very
popular hedging and speculation instruments in recent years. At the same
time a huge amount of literature has been devoted to the pricing and hedging
of such instruments. We now give a short introduction to the different
options studied in this paper.

Vanillas: In 1973 Black and Scholes, [4], presented their solution to the
European call option problem. Their famous partial differential equation can

∗Research Assistant, Department of Mathematics, Chalmers University of Technology,
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1



be used to value several simple options. Ordinary European options, also
referred to as vanillas, are also used to hedge more complex and advanced
options.

Barriers: Several analytical formulas for the different types of barrier op-
tions have appeared in the literature. Most of these analytical results makes
some kind of limiting assumption, which have led many people to apply
numerical methods instead. Most of these numerical methods have been
binomial or trinomial tree methods. But tree-methods in general show poor
convergence when the barrier is close to the initial stock price. Tree methods
may be viewed as some type of explicit finite difference method for solving
a parabolic partial differential equation, as noted by Zvan, Forsyth and Vet-
zal, [30]. Instead they propose using an implicit method which has superior
convergence (when the barrier is close to the region of interest) and stability
properties. Using the same technique they value both continuous and dis-
crete barrier options, with or without American constraints, and with the
possibility of time-varying barriers and discrete dividends. Superior accu-
racy is achieved in fewer time steps. Se Section 3 about barrier options for
a more detailed review of the literature.

Lookbacks: Closed-form solutions for continuous sampled lookback option
prices have been obtained in [10], [17], and [18]. For the discretely sampled
lookback option one has to rely on numerical methods. Most of them are
again based on some binomial method, see for example [2], [3], [8], or [20].
A PDE approach is described in Chapter 12 of [29]. Andreasen, [1], uses a
change of numeraire techniques to obtain option prices as function of time
and a one-dimensional Markovian state variable only, applyable to both
the fixed and the floating strike lookback options, as well as Asian options,
whereas Wilmott, Dewynne, and Howison, [29], uses a two-dimensional state
variable for the lookback with fixed strike. In [31] the same PDE-model as
[29] is used but in a stochastic volatility setting.

New Contributions: The options are priced using the Black-Scholes PDE-
model. The resulting PDE:s are of parabolic type in one spatial dimension
with different boundary conditions and jump conditions at monitoring dates.
All options are priced using an adaptive finite element method allowing
variable resolution in space and time.

In practice one is only interested in the price, and it’s derivatives, in
one or a few points. Using this criteria, the choice of computational mesh
is based on a posteriori estimates of the error in desired quantities, which
we derive using duality techniques. These dual techniques are shown to be
very useful and simple, and allows us to improve the various PDE methods
already existing for different contracts. The presented a posteriori error
estimation formula is tested and verified in the case of the European option.
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It is then used to perform mesh refinements in both time and space for
the other options. This makes it possible to calculate an optimal mesh for
each type of option, which significantly reduces the error without noticeably
enhancing the computational effort.

The duality approach is general and applicable to problems with all kinds
of algebraic constraints. Other exotic options, such as the the fixed strike
lookback option and the Asian option are also studied by the authors, see
[14] and [15]. The suggested adaptive finite element method is stable and
gives fast and accurate results.
Outline: In Section 2 we formulate the finite element method and derive
an a posteriori error estimate for the ordinary European option. Then in
Sections 3 and 4 we extend the framework to barrier options and lookback
options respectively.

2 An Adaptive Finite Element Method for the Eu-

ropean Option

For the ordinary European option there exists an analytical valuation for-
mula. But for other options, such as the discrete barrier option and the
discrete lookback option, studied later in this paper, we have to rely on nu-
merical solutions. In this section we present the finite element method and
develop the a posteriori error estimation framework, for the basic European
option. Later we extend the techniques to the more exotic options.

2.1 Mathematical Background

We consider a continuous time trading economy on a bounded time hori-
zon [0, T ]. Probability is represented by the probability space (ΩT ,FT , P ),
where ΩT = C[0, T ], P is the corresponding Wiener measure, and FT =
σ(W (t); t ≤ T )). For simplicity we consider the standard Black-Scholes set-
ting with a risk free asset and a dividend paying stock. Let B(t) denote the
price of a risk free asset at time t governed by the equation B(t) = B(0)ert,
where r is the constant interest rate. Further we denote by S(t) the value
of an asset at time t. We assume the existence of an equivalent martin-
gale measure Q, under which the discounted stock price e−r(T−t)St is an
Ft-martingale. The existence of the risk neutral measure Q assures that the
market is free of arbitrage possibilities. Under Q the stock price follows the
stochastic differential equation

dS(t) = (r − ν)S(t)dt+ S(t)σdW (t), (2.1)

where r is the constant interest rate, ν is the constant continuous dividend
yield, σ is the volatility, and W (t) is a Q Brownian motion process. Here σ

3



is assumed to be a positive real number. The solution of (2.1) is

S(t) = S(0)e(r−ν−σ
2

2
)t+σW (t). (2.2)

2.2 The Black-Scholes PDE

The value of the ordinary European option, u(t, S(t)) = u(t, s), is given as
the solution to Black-Scholes equation

ut(t, s) +
σ2s2

2
uss(t, s) + (r − ν)sus(t, s) − ru(t, s) = 0, t < T, (2.3)

which is valid for s = S(t) ∈ R
+. In order to construct a computational

mesh we introduce a bounded interval Ω = [smin, smax] ⊂ R
+ with boundary

∂Ω = {smin, smax}. We define the usual Hilbert space

H1(Ω) = {v :

∫

Ω
(|∇v|2 + v2)ds <∞}, (2.4)

and let W be the space of functions that are square integrable in time and
belongs to H1(Ω) in space, that is

W = L2
(

[0, T ],H1(Ω)
)

. (2.5)

We also use the notation (u, v) =
∫

Ω uvds, and (u, v)∂Ω = u(smax)v(smax)−
u(smin)v(smin).

2.3 Variational Formulation

Multiplying the Black-Scholes equation (2.3) by the test function v ∈ W
and integrating on Ω × [0, T ] we obtain

∫ T

0

(

(ut, v) + (r − ν)
(

sus, v
)

+
σ2

2

(

s2uss, v
)

− r(u, v)
)

dt = 0. (2.6)

Using integration by parts we get

(

s2uss, v
)

=
(

s2us, v
)

∂Ω
− 2
(

sus, v
)

−
(

s2us, vs

)

. (2.7)

Thus equation (2.6) becomes

∫ T

0

(

(ut, v) + (r − ν − σ2)
(

sus, v
)

(2.8)

− σ2

2

(

s2us, vs

)

+
σ2

2

(

s2us, v
)

∂Ω
− r(u, v)

)

dt = 0.
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The boundary conditions for the European call option are u(t, 0) = 0 and
u(t, s) ∼ se−ν(T−t) as s → ∞, and for the corresponding put u(t, 0) =
Ke−r(T−t) and u(t, s) ∼ 0 as s → ∞, see for example Wilmott, [29]. For
simplicity of implementation we use the artificial boundary condition uss = 0
on ∂Ω for both the put and the call instead. This boundary condition works
well for all contracts were the payoff is at most linear in the underlying (see
[29]) and does not affect the accuracy of the solution. Using equation (2.3)
we can rewrite the boundary condition as

us =
r

s(r − ν)
u− 1

s(r − ν)
ut, (2.9)

and enforce it weakly by inserting identity (2.9) into equation (2.8). We
thus want to solve the problem: find u ∈ W such that







∫ T

0

(

m(ut, v) + a(u, v)
)

dt = 0,

u(T, s) =

{

max(s−K, 0), for a call,
max(K − s, 0), for a put,

(2.10)

for every v ∈ W, where

m(ut, v) = (ut, v) −
σ2

2(r − ν)
(sut, v)∂Ω, (2.11)

and

a(u, v) = (r − ν − σ2)
(

sus, v
)

− σ2

2

(

s2us, vs

)

(2.12)

+
σ2r

2(r − ν)
(su, v)∂Ω − r(u, v).

2.4 Finite Element Approximation

The finite element method is based on solution of the variational problem
(2.10) with W replaced by a finite dimensional function space of piecewise
polynomials in space and time. For background on the finite element method
see for instance [11].

We now partition [0, T ] as 0 = t0 < t1 < t2 < · · · < tN = T , denoting
each time interval by In = (tn−1, tn] and each time step by kn = tn − tn−1.
Similarly we partition Ω as smin = s0 < s1 < s2 < · · · < sJ = smax, denoting
each spatial interval by κj = [sj−1, sj) and the length of each interval by
hj = sj − sj−1.
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Figure 1: Space-time discretization.

In space, we let Vp ⊂ H1(Ω) denote the space of piecewise continuous
functions of order p. On each space-time slab Sn = In × Ω, we define

Wq
n = {w(t, s) : w(t, s) =

q
∑

j=0

tjvj(s), vj ∈ Vp, (t, s) ∈ Sn}. (2.13)

Let Wq ⊂ W denote the space of functions defined on [0, T ] × Ω such that
v |Sn

∈ W
q
n for 1 ≤ n ≤ N . For simplicity, we only give details for the

continuous Galerkin method cG(p)-cG(q), (see e.g. [11] or [12]) which is
defined by the following discrete version of equation (2.10). Find U ∈ W q

such that for 1 ≤ n ≤ N







∫

In

(

m(Ut, v) + a(U, v)
)

dt = 0 for all v ∈ Wq−1
n ,

U−(tn) = U+(tn), n = N − 1, . . . , 1,
U−(tN ) = uT ,

(2.14)

where U±(tn) = limε→0,ε>0U(tn ± ε). In the cG(1) method the approxima-
tion U of u is continuous piecewise linear in time and space, while the test
functions v are continuous linear in space and piecewise constant in time. It
is also possible to use a discontinuous method in time, we refer to [11], for
details on the resulting discontinuous Galerkin method, cG(p)-dG(q).
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2.5 A Posteriori Error Estimation

2.5.1 Error Representation Formula

Since we are only interested in the solution, and it’s derivatives, in one or a
few points of Ω at time t = 0, we wish to find a mesh tailored for efficient
and accurate solution at the points of interest. In order to find such a mesh
we derive a posteriori error estimates of the error in the points of interest
using duality techniques (see [11] or [12]).

To represent the error in a linear functional, (u−U,ψ), we introduce the
continuous dual problem for the Black-Scholes equation (2.3). Find φ ∈ W
such that

{

−φt + (σ2 + ν − 2r)φ− (r − ν − 2σ2)sφs + σ2

2 s
2φss = 0,

φ(0, s) = ψ.
(2.15)

For simplicity we consider this equation over the whole space interval ne-
glecting boundary conditions. Multiplying with the error e = u − U ∈ W
and integrating in space and time we get

∫ T

0

(

− (φt, e) + (σ2 + ν − 2r)(φ, e) (2.16)

− (r − ν − 2σ2)
(

sφs, e
)

+
σ2

2

(

s2φss, e
)

)

dt = 0.

The functions φ and φs are in principle zero close to s = smin and s = smax

if the domain is large enough. Using integration by parts and neglecting the
boundary terms we get

− (φ(T, s), e(T, s)) + (φ(0, s), e(0, s)) (2.17)

+

∫ T

0

(

(φ, et) + (σ2 + ν − 2r)(φ, e) + (r − ν − 2σ2)
(

sφ, es
)

)

dt

+

∫ T

0

(

(r − ν − 2σ2)(φ, e) − σ2

2

(

s2φs, es
)

− σ2
(

sφs, e
)

)

dt = 0.

Note that integration by parts gives

−σ2
(

sφs, e
)

= σ2
(

sφ, es
)

+ σ2
(

φ, e
)

, (2.18)

using this identity, φ(0, s) = ψ, and e(T ) = 0, we get

(ψ, e(0, s)) = (2.19)

−
∫ T

0

(

(φ, et) − r(φ, e) + (r − ν − σ2)
(

sφ, es
)

− σ2

2

(

s2φs, es
)

)

dt.
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Recalling the earlier defined bilinear forms (2.11) and (2.12), and that we
neglect the boundary terms we can also write

(ψ, e(0, s)) = −
∫ T

0

(

m(et, φ) + a(e, φ)
)

dt. (2.20)

Since e = u−U and u solves equation (2.10) we get the error representation
formula

(ψ, e(0, s)) =

∫ T

0

(

m(Ut, φ) + a(U, φ)
)

dt (2.21)

If we for example are interested in the error at s = sα, we choose ψ = δsα
(s),

and get the error representation formula

e(0, sα) =

∫ T

0

(

m(Ut, φ) + a(U, φ)
)

dt. (2.22)

If one instead is interested in derivatives of the solution, then a different ψ
is chosen, as shown later on.

2.5.2 Estimating the Error

Let π : W → Wq−1 be the L2 projection in time, and let P be a suitable
interpolation operator into Vp in space. Thus πP is an interpolation operator
such that πPφ ∈ Wq−1. Then using Galerkin orthogonality (2.14), we can
replace φ by φ− πPφ = φ− Pφ+ Pφ− πPφ. Equation (2.21) can then be
written as

(ψ, e(0, s)) = −
∫ T

0

(

m(Ut, φ− Pφ) + a(U, φ− Pφ)
)

dt (2.23)

−
∫ T

0

(

m(Ut, Pφ− πPφ) + a(U,Pφ− πPφ)
)

dt

= −
∑

n

∑

j

∫

In

(

Rs
κj

(U), φ − Pφ
)

dt

−
∑

n

∫

In

(

Rt(U), Pφ− πPφ
)

dt,

where

(Rs
κj

(U), φ − Pφ) = − σ2

2
(s2[Us], φ − Pφ)∂κj

(2.24)

+ (Ut + (r − ν)sUs +
σ2

2
s2Uss − rU, φ− Pφ)κj
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is the space residual, and

(Rt(U), Pφ− πPφ) = (Ut + (r− ν)sUs +
σ2

2
s2Uss − rU, Pφ− πPφ) (2.25)

is the time residual. Here we used the notation [Us] to denote the jump in
Us over element interfaces.

Finally, we present an algorithm for calculating the error.

Error Estimation Algorithm:

• Compute an approximation Φ of φ using an enriched finite element
space, for instance higher order approximation.

• Compute PΦ.

• Compute
∫

In

(

Rs
κj

(U), φ−Pφ
)

dt using quadrature in space and time

for each element κj and time step.

• Compute πPΦ.

• Compute
∫

In

(

Rt(U), Pφ − πPφ
)

dt using quadrature in space and

time for each time step.

2.5.3 Examples

Using the error estimation algorithm in the previous section we are able to
calculate the error in desired quantities for different values of the parame-
ters. This makes it possible to identify regions where a fine mesh is necessary.

Example 1. To estimate the error at s = sα we let ψ = δsα
(s) in (2.15).

In order to implement this condition we use the approximation

δsα
(s) ≈ 1

ε
√
π
e−((s−sα)/ε)2 := δsα

(s, ε), (2.26)

where ε is a parameter that controls how well the delta function is approx-
imated. In this example we have used ε = 1. As seen from Figure 2, the
solution to the dual problem differs from zero only within a short interval
of Ω.
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Figure 2: Above on the left, φ, for σ = 0.1, and r = 0.1, when ψ = δ100(s, ε).
Below on the left, φ, for σ = 0.3. On the right, contour plots using 30 levels.
Solutions computed using the cG(2)-dG(1) method with 200 space and time
points.

We now check that the error representation formula really works. By
using the error estimation algorithm in the previous section we can get an
approximation of the functional of the error, that is an approximation of
the right hand side of equation (2.21). This can then be compared to cal-
culating the left hand side of equation (2.21) directly using the real error in
the approximate solution, found by using Black-Scholes formula. The dual
solution is calculated on a finer mesh, and using higher order approxima-
tions. In Figure 3, we see the contributions to error formula (2.21) from each
space-time slab. The dual was calculated using the cG(2)-dG(1) method,
and the primal using the cG(1)-cG(1) method. The dual mesh was thirty
two times finer in each direction. The value of the functional of the error
found by using the error representation formula was in this case 0.2033, in
excellent agreement with the real value, that is the value of the left hand
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side of equation (2.21), which was 0.2030. We also note that the contribu-
tion to the error differs from zero only within a short interval of Ω, just as
the dual solution. This means that we may use a more sparse mesh where
the contribution to the error is small and thus save computation time. The
solution is larger near time t = 0, implying that one should use a finer time
step there. Obviously the result depends on the value of the volatility σ, and
the other parameters, which can be seen from the plot of the dual solution.
We will later see how we can use the error representation formula to derive
an optimal mesh for each problem.

PSfrag replacements
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Figure 3: On the left, the contributions to the error of call option for σ = 0.1,
r = 0.1, and K = 100 when ψ = δ100(s, ε). On the right, contour plot using
30 levels. The dual was computed using the cG(2)-dG(1) method with 400
space and time points, and the primal using the cG(1)-cG(1) method with
20 space and time points.

Example 2. In order to make a good estimation of the derivative of the
solution, which is interesting when calculating the Greek delta, we need to
study a different dual problem. We approximate the derivative using the
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central difference formula

∂u

∂s
≈ u(s+ µ) − u(s− µ)

2µ
:=

∂hu

∂s
. (2.27)

To estimate the error of the derivative of the solution at s = sα, us(sα), we
thus choose

ψ(s) =
δsα

(s− µ) − δsα
(s+ µ)

2µ
(2.28)

≈ δsα
(s− µ, ε) − δsα

(s+ µ, ε)

2µ

in (2.15), for an appropriate choice of µ. The error in our estimation of the
derivative can be split into two parts

(

∂u

∂s
− ∂hU

∂s

)

=

(

∂u

∂s
− ∂hu

∂s

)

+

(

∂hu

∂s
− ∂hU

∂s

)

. (2.29)

The first term corresponds to the error in (2.27), while the second can be
estimated using the a posteriori estimate. Figure 4 shows the dual solution
for this choice of ψ when µ = 1 and ε = 1. Figure 5 shows the contributions
to the error estimation formula from each space-time slab. We see that this
solution is even more centrally oriented than the previous one, implying that
the derivative has a local dependence.
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Figure 4: Above on the left, φ, for σ = 0.1, and r = 0.1, when ψ is chosen
as in example 2. Below on the left, φ, for σ = 0.3. On the right, contour
plots using 30 levels. Solutions computed using the cG(2)-dG(1) method
with 200 space and time points.
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Figure 5: On the left, the contributions to the functional of the error of call
option for σ = 0.1, r = 0.1, and K = 100 when ψ is chosen as in example
2. On the right, contour plot using 30 levels. The dual was computed using
the cG(2)-dG(1) method with 640 space and time points, and the primal
using the cG(1)-cG(1) method with 20 space and time points.

2.6 Adaptive Mesh Refinement

Adaptive mesh refinement may be accomplished in many different ways.
Our goal not is to create the best adaptive method, since adaptivity would
be to slow to use in reality. Rather we wish to create an optimal mesh
in advance for each case, so that when valuing an option we simply use a
suited pre-calculated mesh. This gives superior performance. In this section
we show how these meshes are calculated and what typical meshes look like.

Mesh Refinement Algorithm:

• Compute an approximation U of u using the FE method on a coarse
mesh.
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• Compute the error in desired quantities by using the a posteriori error
estimation algorithm.

• Calculate the time and space averages of the contributions to the error
from each space-time slab. This gives us two vectors, one with time
averages and one with space averages.

• Identify the Q% largest elements in the space average vector, and re-
fine the corresponding time steps by dividing them in half.

• Identify the Q% largest elements in the time average vector, and refine
the corresponding spatial steps by dividing them in half.

• Compute a new FE approximation U on the refined mesh.

• Repeat until minimum mesh size is reached.

In Figure 6, we see a typical mesh resulting from using the mesh refinement
algorithm above. In this case Q was set to 10%. Three successive refine-
ments were made, starting from a sparse mesh with 20 nodes in time and
space. The final mesh has only 27 nodes in each direction, but the error has
decreased by a factor 70. The dual was calculated using a fine mesh with
640 nodes in time and space.
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Figure 6: The resulting mesh using the mesh refinement algorithm, cal-
culated for a call option with σ = 0.1, r = 0.1, and K = 100 when
ψ = δ100(s, ε). The dual was computed using the cG(2)-dG(1)and the primal
using the cG(1)-cG(1) method. Three successive refinements were made.

2.7 The Greeks

In order to hedge our option, we need the sensitivity measures, or the so
called Greeks. The most common one is the so called delta

∆ =
∂u

∂s
. (2.30)

The second derivative is called gamma

Γ =
∂2u

∂s2
. (2.31)

The decay of value in time is represented by the theta, where

Θ = −∂u
∂t
. (2.32)
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Sensitivity to volatility called the vega and is defined by

∂u

∂σ
, (2.33)

and sensitivity to interest rate is called rho, defied as

ρ =
∂u

∂r
. (2.34)

In Figure 7 we see the delta and gamma of a European call at time t = 0.
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Figure 7: The delta (on the left) and gamma (on the right) of a European
call at time t = 0, with σ = 0.1, T = 0.5, K = 100 and r = 0.1.

2.8 Results

We begin by validating our method against the known exact solution for
the European call option. Recalling the previous calculations in Example 1
in Section 2.5.3 we know that the error representation formula works and
is accurate. The value of the functional of the error found by using the
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error representation formula in the test example on the European option
was 0.2033, in excellent agreement with the real value of the functional
found by using Black-Scholes formula, which was 0.2030. Table 1 compares
values of the European call calculated using the cG(1)-cG(1) finite element
method mentioned above, with the analytical value derived by Black-Scholes
formula. We see that the FE method is very stable and has a maximum rel-
ative error of 0.1 percent when 400 time points are used. Figure 8 shows

σ S(0) FE(200) FE(400) Black-Scholes Relative error (%)

90 0.8067 0.8093 0.8101 0.107
0.10 100 5.8478 5.8496 5.8503 0.011

110 14.9287 14.9297 14.9300 0.002

90 3.0487 3.0500 3.0504 0.014
0.20 100 8.2767 8.2775 8.2778 0.003

110 16.0177 16.0184 16.0187 0.002

90 5.5198 5.5206 5.5209 0.005
0.30 100 10.9058 10.9063 10.9065 0.002

110 18.0464 18.0468 18.0469 0.0008

Table 1: The European call calculated using the cG(1)-cG(1) method com-
pared to Black-Scholes analytical value when r = 0.1, q = 0.0, T = 0.5,
K = 100, and t = 0. The number of time and space points is given in paren-
thesis. The relative error is between the FE(400) solution and the analytical
solution.

the finite element solution calculated using a the adapted mesh in the pre-
vious section. The mesh is finer close to time t = 0 and close to the strike
price, but it is not centered around the strike price. In this way the same
accuracy is achieved in less degrees of freedom. The original uniform mesh
has 20 nodes in time and space. By using the error representation formula
the error was calculated to 0.2 for the uniform mesh. The adapted mesh
has only 27 nodes in the spatial direction, but the error has decreased by a
factor 70 to 0.0028.
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Figure 8: The finite element solution U , when σ = 0.1, q = 0.0, K = 100,
and r = 0.10. Computed using the cG(1)-cG(1) method on an adapted mesh
with 27 time and space points.

3 Barrier Options

3.1 Classification

Barrier options are path-dependent options. They have a payoff depending
on whether or not the underlying asset crosses a predetermined level, called
the barrier. There are two main types of barrier option, the knock-out
option and the knock-in option. The knock-out option gives a payoff unless
the underlying asset crosses the barrier during the lifetime of the option.
The knock-in option gives a payoff as long as the barrier is reached before
the expiry. We also separate between up and down options. If the barrier
is above the initial value of the underlying asset, we have an up option,
otherwise we have an down option. For example, the up-and-out call option
with barrier H and strike K gives the usual payoff max(S −K, 0) at expiry
unless the underlying asset crosses the barrier during the lifetime of the
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option, that is unless St ≥ H for some t ≤ T . Thus the up-and-out call
option gives the payoff

max(ST −K, 0)1{maxt∈[0,T ]St<H}, (3.1)

at maturity T . In the same way we conclude that the down-and-out call
option gives the payoff

max(ST −K, 0)1{mint∈[0,T ]St>H}. (3.2)

at maturity T . There are also variants of the barrier options mentioned
above. The barrier could be time-dependent, usually piecewise constant,
or one could allow for early exercise. Another type of barrier option is the
double barrier, with both a lower and an upper barrier. Sometimes a rebate
is paid if the barrier is reached. All of the different types of barrier options
mentioned above exist both with continuous and discrete monitoring of the
barrier. The latter is perhaps the most natural and used one. There are
many other more exotic types of barrier options, such as outside barrier
options where the barrier depends on an other asset, or soft barrier options
which allows the contract to be gradually knocked-in or out, or Parisian
options that have barriers that are triggered only if the underlying asset
has been beyond the barrier for more than a specified time. We refer the
interested reader to [28].

Barrier options are popular options, mainly because they are cheaper
than the corresponding options without barriers. If an investor believes
that it is unlikely that the underlying asset will fall below a certain level,
then it is natural to buy a knock-out option with the barrier at that level.
Barrier options gives investors the opportunity to avoid paying for scenarios
that they believe are unlikely. Off course this also involves a certain risk.

3.2 Review of Literature

The first known literature on the pricing of barrier options dates back to
Merton in 1973, [23], who presented a closed-form solution for the price of
the continuously monitored down-and-out European call. After that several
analytical formulas for the different types of continuous barrier options have
appeared in the literature. Both Rich, [25], and Rubenstein and Reiner,
[27], presented pricing formulas for a variety of standard barrier options in
1991. More exotic barrier options, such as the partial barrier option and
the rainbow barrier option, have also been analytically valued by Heynen
and Kat, [19], and Carr, [7]. Several people have also presented analytical
results on the continuous double barrier option, see [16], [21], and [22].

In general the analytical approach relies on limiting assumptions, for
instance that the monitoring is assumed to be continuous, and if barriers
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change over time they are assumed to change as an exponential function
of time. These limitations have led many to apply numerical methods in-
stead. Most of these numerical methods have been binomial or trinomial
tree methods. The binomial method shows very poor convergence unless
the number of time steps is chosen in such a way as to ensure that the bar-
rier lies on a horizontal layer of nodes in the tree, see [5] and [24]. Ritchken,
[26], applies a trinomial tree method which performs better than the bino-
mial, but it may still need a very large number of time steps if the initial
stock price is close to a barrier (see also [6]). Cheuk and Vorst, [9], improve
Ritchken’s method by incorporating a time-dependent shift in the trinomial
tree, but it still requires a fairly large number of time steps if the barrier lies
close to the initial stock price. Figlewski and Gao, [13], uses an adaptive
mesh in their trinomial tree, which gives them a more flexible and efficient
method. Each of these tree methods may be viewed as some type of explicit
finite difference method for solving a parabolic partial differential equation,
as noted by Zvan, Forsyth and Vetzal, [30]. Instead they propose using an
implicit method which has superior convergence (when the barrier is close
to the region of interest) and stability properties. Using the same technique
they value both continuous and discrete barrier options, with or without
American constraints, and with the possibility of time-varying barriers and
discrete dividends. This is accomplished with superior accuracy in fewer
time steps than the methods mentioned earlier.

3.3 Pricing Barrier Options

For the continuously monitored barrier option there exists various analytical
pricing formulas, but as mentioned in the previous section, for the discretely
monitored barrier option one has to rely on numerical techniques. Therefore
we concentrate on the valuation of discrete barrier options.

Barrier options are only weakly path-dependent, their value depends on
whether the barrier is reached or not, not on any other information about
the path. In an other paper, [15], we study Asian options, which are strongly
path-dependent. For simplicity we only study out-options, in-options can
be handled through an in-out parity argument shown later.

The value of an out barrier option still satisfies the Black-Scholes equa-
tion as long as the underlying has not crossed the barrier. The continuous
barrier option is only to be solved on a partition of R

+, since if the under-
lying asset crosses the barrier the option is worthless. But for the discrete
barrier option we must solve the Black-Scholes equation over the whole of
S ∈ R

+, since the barrier can be crossed between monitoring points and still
not be knocked-in or out.
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3.3.1 Barrier Constraint

For the value of the discretely monitored up-and-out call, u(t, s), with mon-
itoring dates D = {t∗k}K

k=0 ⊂ {tn}N
n=0, where t0 = 0 and tN = T , we have

the barrier constraint

u−(t∗k, sj) = (3.3)

BC(u+(t∗k)) :=

{

0 if sj ≥ h(t∗k)H, j = 0, 1, . . . , J,
u+(t∗k, sj) if sj < h(t∗k)H, j = 0, 1, . . . , J,

where H is the barrier, and h is is a time dependent positive function which
allows the barrier to move in time. The constraint is easily changed to handle
a rebate, we simply set value to the rebate instead of zero if the barrier is
crossed.

3.3.2 The Finite Element Method

Since the pricing partial differential equation is the same as for the ordinary
European option, the finite element method is also same, except that we
apply the barrier constraint at each monitoring date. With the same dis-
cretization as for the European option, we let U(tn) denote the approximate
solution at time step n. Naturally a barrier constraint similar to (3.3) then
holds for U . Thus we arrive at the problem, find U ∈ W q such that for
1 ≤ n ≤ N















∫

In

(

m(Ut, v) + a(U, v)
)

dt = 0 for all v ∈ Wq−1
n

U−(tn) = U+(tn), n = N − 1, . . . , 1 tn /∈ D,
U−(tn) = BC(U+(tn)), tn ∈ D,
U−(tN ) = uT ,

(3.4)

where

m(Ut, v) = (Ut, v) −
σ2

2(r − ν)
(sUt, v)∂Ω, (3.5)

and

a(U, v) = (r − ν − σ2)
(

sUs, v
)

− σ2

2

(

s2Us, vs

)

(3.6)

+
σ2r

2(r − ν)
(sU, v)∂Ω − r(U, v).

Again we use the artificial boundary condition uss = 0 at ∂Ω.
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3.3.3 In Barrier Options

The in barrier option is activated when the barrier is hit. When the barrier is
hit we actually receive another derivative, namely the corresponding vanilla
contract. One therefore refers to the in barrier option as a second-order
contract. When solving for the value of an in barrier option one must first
solve for the value of the vanilla. It therefore takes roughly twice as long
time to calculate the value as for the out option.

If there are no rebates the relationship between in barrier options and
out barrier options is very simple. By considering a portfolio consisting of
one in-option and one out-option with the same barrier, time to maturity
and expiry date, it is obvious from a financial point of view that the value
of the portfolio is equal to the value of the corresponding vanilla option.
This is because only one of the two barrier options can have hit the barrier
at expiry, and the value of that barrier option then equals the value of the
vanilla.

3.4 A Posteriori Error Estimation

3.4.1 Error Representation Formula

We now introduce the continuous dual problem for the barrier option, which
differs from the European option case only in that we now have to include
the barrier constraints. That is, find φ ∈ W














−φt + (σ2 + ν − 2r)φ− (r − ν − 2σ2)sφs + σ2

2 s
2φss = 0,

φ(0, s) = δsα
,

φ+(t∗k) =

{

0 if sj ≥ h(t∗k)H, j = 0, 1, . . . , J,
φ−(t∗k, sj) if sj < h(t∗k)H, j = 0, 1, . . . , J,

t∗k ∈ D.

(3.7)

For simplicity we consider this equation over the whole space interval ne-
glecting boundary conditions. Multiplying with the error e = u − U ∈ W
and integrating over space and time we get

∑

k

∫ t∗
k

t∗
k−1

(

− (φt, e) + (σ2 + ν − 2r)(φ, e) (3.8)

− (r − ν − 2σ2)
(

sφs, e
)

+
σ2

2

(

s2φss, e
)

)

dt = 0.

Just as in the European case we now want to move derivatives from φ to
the error e, using integration by parts. This gives the error representation
formula

e(0, sα) = −
∑

k

∫ t∗
k

t∗
k−1

(m(et, φ) + a(e, φ)) (3.9)
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where the bilinear forms m(ut, v) and a(u, v) are defined exactly as before.
We now prove this formula. The difference from the case of the European
option is that we now have jumps in φ at the monitoring dates, affecting
only the first term in (3.8). Studying this term in detail we see that

−
∑

k

∫ t∗
k

t∗
k−1

(φt, e) dt (3.10)

=
∑

k

(

∫ t∗
k

t∗
k−1

(φ, et) dt− (φ−(t∗k), e
−(t∗k)) + (φ+(t∗k−1), e

+(t∗k−1))

)

=
∑

k

(

∫ t∗
k

t∗
k−1

(φ, et) dt

)

− (φ(T ), e(T )) + (φ(t0), e(t0))

−
∑

k

(

(φ−(t∗k), e
−(t∗k)) − (φ+(t∗k), e

+(t∗k))
)

.

Next we note that

(φ−(t∗k), e
−(t∗k)) − (φ+(t∗k), e

+(t∗k)) (3.11)

=

∫

s<h(t∗
k
)H

(

φ−(t∗k)e
−(t∗k) − φ+(t∗k)e

+(t∗k)
)

ds

+

∫

s≥h(t∗
k
)H

(

φ−(t∗k)e
−(t∗k) − φ+(t∗k)e

+(t∗k)
)

ds = 0,

were the first term on the right is zero since φ+(t∗k) = φ−(t∗k), and e−(t∗k) =
e+(t∗k) for s < h(t∗k)H, and second term is zero since φ+(t∗k) = e−(t∗k) = 0,
for s ≥ h(t∗k)H.

Integrating the other terms in (3.8) we get

∫ t∗
k

t∗
k−1

(

(σ2 + ν − 2r)(φ, e) − (r − ν − 2σ2)
(

sφs, e
)

+
σ2

2

(

s2φss, e
)

)

dt

(3.12)

=

∫ t∗
k

t∗
k−1

(

− r(φ, e) + (r − ν − σ2)
(

sφ, es
)

− σ2

2

(

s2φs, es
)

)

dt

just as for the case of the European option studied before. Now summing
up, considering equations (3.10) and (3.12), we can rewrite (3.8) as

0 = − (φ(T ), e(T )) + (φ(t0), e(t0)) (3.13)

+
∑

k

∫ t∗
k

t∗
k−1

(

(φ, et) − r(φ, e) + (r − ν − σ2)
(

sφ, es
)

− σ2

2

(

s2φs, es
)

dt

)

,
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or equivalently, using that e(T ) = 0 and the boundary condition φ(0, s) =
δsα

, we have the error representation formula

e(0, sα) = −
∑

k

∫ t∗
k

t∗
k−1

(m(et, φ) + a(e, φ)) , (3.14)

where the bilinear forms m(ut, v) and a(u, v) are defined exactly as before.

3.4.2 Examples

Using the same error estimation algorithm as for the European option we
are able to calculate the error in desired quantities for different values of the
parameters. This makes it possible to identify regions where a fine mesh is
necessary.

Looking at the dual solution for some barrier options, Figures 9 and 10,
we see again the same phenomena as for the vanilla option, namely that the
dual is concentrated within a narrow area close to the center of the domain.
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Figure 9: φ for two different values of σ when r = 0.10 and q = 0.0 for the
weekly sampled down-and-out barrier call option with K = 100 and barrier
H = 99.9. Computed with space step 0.1 and time step 0.005, using the
boundary condition φ(0, s) = δ100(s, ε).
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Figure 10: φ for two different values of σ when r = 0.10 and q = 0.0 for
the weekly sampled double barrier call option with K = 100 and barriers
Hlow = 95 and Hhigh = 125. Computed with space 0.5 and time step 0.0025,
using the boundary condition φ(0, s) = δ100(s, ε).

The sampling frequency clearly affects the dual solution, as can easily
be seen from a contour plot of the solution, figure (11). It suggests that one
should be careful near the sampling-dates since the solution changes rapidly
there because of the monitoring constraint.
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Figure 11: φ for the monthly sampled double barrier call option with K =
100 and barriers Hlow = 95 and Hhigh = 125 when σ = 0.2, r = 0.10 and
q = 0.0. Computed with space 0.5 and time step 0.0025, using the boundary
condition φ(0, s) = δ100(s, ε).
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In Figure 12, we see the contributions to the error representation formula
(3.9) from each space-time slab. The dual was calculated using the cG(2)-
dG(1) method, and the primal using the cG(1)-dG(1) method. The dual
mesh was thirty two times finer in each direction. The value of the functional
of the error found by using the error representation formula was in this case
1.96. We also note that the contribution to the error differs from zero only
within a short interval of Ω, just as the dual solution. We now proceed to
calculate adaptive meshes.
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Figure 12: The contributions to the functional of the error for the weekly
sampled double barrier call option with K = 100 and barriers Hlow = 96
and Hhigh = 120 when σ = 0.1, r = 0.10, K = 100, and q = 0.0. The
dual was computed using the cG(2)-dG(1) method with 800 space and time
points, and the primal using the cG(1)-dG(1) method with 25 space and
time points, using the boundary condition φ(0, s) = δ100(s, ε).

3.4.3 Adaptive Mesh Refinement

As in the case of the European option we use the error representation formula
to derive an optimal mesh for each problem. In Figure 13, we see a mesh
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resulting from using the mesh refinement algorithm in the case of a weekly
sampled double barrier option with barriers at s = 96 and s = 120 and strike
price K = 100. In this case Q was set to 15%. Three successive refinements
were made, starting from a sparse mesh with 25 nodes in time and space.
The final mesh has only 37 nodes in each direction, but the functional of
the error has decreased by a factor 5. The dual was calculated using a fine
mesh with 800 nodes in time and space.
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Figure 13: The resulting mesh using the mesh refinement algorithm, calcu-
lated for a weekly sampled double barrier call option with Hlow = 96 and
Hhigh = 120, T = 0.5, σ = 0.1, and r = 0.1, when ψ = δ100(s, ε). The dual
was computed using the cG(2)-dG(1) and the primal using the cG(1)-dG(1)
method. Three successive refinements were made.

3.5 Results

As noted by Zvan, Forsyth, and Vetzal, [30], implicit methods are more
suitable for barrier options. Explicit methods may give raise to spurious
numerical oscillations. We therefore use the discontinuous Galerkin method,
which is more or less implicit.
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As mentioned earlier, tree-methods show very poor convergence when
the barrier lies close to the point of interest. Table 2 compares values of
the down-and-out barrier call, when the barrier is close to the point of
interest, for the finite element method developed in this paper with the
finite difference method in [30]. As shown the methods are in agreement.
As a comparison the value of the the corresponding continuous option is also
given. Note the significant difference in price between the continuous option
and the corresponding discrete option. This difference will be even larger if
sampling rate is reduced.

Continuous Daily Weekly

ZFV 0.16 1.51 3.00
FE not calc. 1.51 3.01

Table 2: The down-and-out barrier call when the barrier level H = 99.9.
ZFV refers to the finite difference solution in [30], and FE refers to the
cG(2)-dG(1) finite element solution. Parameter values are r = 0.10, q = 0.0,
σ = 0.2, T = 0.5, t = 0, K = 100, and S(0) = 100.

Figure 14 shows the finite element solution for a double barrier call option
with weekly monitoring calculated using the adapted mesh in the previous
section.
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Figure 14: The weekly sampled double barrier call computed using the
cG(1)-dG(1) method, on an adaptded mesh with 37 time points and space
points. Parameter values are σ = 0.1, r = 0.1, q = 0.0, T = 0.5, t = 0.0,
K = 100, and Hlow = 96 and Hhigh = 120.

The mesh is finer close to the strike price and towards lower and upper
the barrier. We also note that the mesh is finer close to time t = 0 and
t = T . In this way the same accuracy is achieved in less degrees of freedom.
The original uniform mesh has 25 nodes in time and space. By using the
error representation formula the functional of the error was calculated to
1.96 for the uniform mesh. The adapted mesh has only 37 nodes in the
spatial direction, but the functional of the error has decreased by a factor 5
to 0.40.

In Figure 15 we see the value and the delta of a double barrier call at
time t = 0.
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Figure 15: To the left, the value of an double barrier call, and to the right
the corresponding delta, at time t = 0, with σ = 0.1, T = 1, K = 100, and
r = 0.1.

4 Lookback Options

4.1 Classification

The lookback option has a payoff that depends on the maximum or minimum
of the underlying stock price over some given interval in time. There are
two types of lookback options, the lookback rate option and the lookback
strike option, also known as the fixed strike and the floating strike lookback
option respectively. Both of these options exists as puts and calls. If we
denote the maximum asset price over the time interval 0 ≤ t ≤ T by M , the
lookback strike put option has almost the same payoff as the vanilla put,
but with M replacing the exercise price K, that is

max(M − S(T ), 0). (4.1)
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In the same way the corresponding call option gives almost the same payoff
as the vanilla call, but with M , now being the minimum asset price during
the lifetime of the option, replacing the exercise price K, that is

max(S(T ) −M, 0). (4.2)

Similarly the lookback rate put has almost the same payoff as the vanilla
put, but with M replacing S(T ), i.e

max(K −M, 0), (4.3)

and naturally the corresponding call option then has the payoff

max(M −K, 0), (4.4)

where M is defined as

M =

{

max0≤t≤T (S(t)), for a call
min0≤t≤T (S(t)), for a put.

(4.5)

As for the barrier option there also exists discrete variants of the lookback
options mentioned above. If the maximum (or minimum) is measured at the
discrete times ti, then the updating rule is

Mi =

{

max(S(ti),M(ti−1)), for a call,
min(S(ti),M(ti−1)), for a put.

(4.6)

4.2 Review of Literature

Closed-form solutions have been obtained for continuous sampled lookback
option prices by [10], [17], and [18]. For the discretely sampled lookback
option one has to rely on numerical methods. Most of them are based
on some binomial method, see for example [2], [3], [8], or [20]. A PDE
approach is described by Wilmott, Dewynne and Howison in Chapter 12 of
[29]. They show that the price of lookback options is given as the solution to
the ordinary Black-Scholes equation but with the maximum of the asset price
entering as a parameter, and with different boundary and final conditions.
They also show that for the floating strike lookback option it is possible
to reduce the dimension of the problem by a change of variables, so that
the price is a function of one state-variable and time. The same change of
variables was previously used by Babbs, [2]. Andreasen, [1], uses a change
of numeraire techniques to obtain option prices as function of time and a
one-dimensional Markovian state variable only, for both the fixed and the
floating strike lookback options, as well as Asian options. In [31] the same
PDE-model as [29] is used but in a stochastic volatility setting.
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4.3 Pricing Lookback Options

Lookback options fulfill the dream of every investor, selling at the highest or
buying at the lowest price during the lifetime of the option. Naturally this
makes lookback options expensive. Discrete sampling decreases the value of
the contract and at the same time it is more natural to use. Therefore we
concentrate on discrete lookbacks. For the floating strike lookback option we
will use Wilmott, Dewynne and Howison’s method. For a thorough analysis
of this pricing method we refer to [29]. The fixed strike lookback option is
examined in another paper by Foufas and Larson [14].

4.4 Floating Strike Lookbacks

Consider the discrete floating strike lookback option with monitoring dates
D = {t∗k}K

k=0 ⊂ {tn}N
n=0, where t0 = 0 and tN = T . Discrete sampling

implies that we must have jump conditions across the sampling dates, since
arbitrage considerations show that the realized value of the option cannot
be discontinuous. For the value of discrete lookback option V (S,M, t) we
have the jump condition

V −(S,M, t∗k) =

{

V +(S,max(S,M), t∗k), for a put,
V +(S,min(S,M), t∗k), for a call,

(4.7)

across monitoring dates t∗k ∈ D, where M is defined as

M =

{

maxk(S(t∗k)), for a put,
mink(S(t∗k)), for a call,

(4.8)

As described by [29], M can be written as

M =











limn→∞
(

∫ t

0 f(τ)S(τ)n
)1/n

, for a call,

limn→∞
(

∫ t

0 f(τ)(1/S(τ))n
)−1/n

, for a put,
(4.9)

where

f(t) =
∑

k

δt∗
k
(t), (4.10)

and δ is the delta function.

Following [29], the pricing equation for the value of the lookback option
is just the Black-Scholes partial differential equation. The independent vari-
able M only enters as a parameter in the equation, but it also appears in
the boundary and final conditions.
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For the lookback strike put and call option we can reduce the dimension
of the problem by introducing the similarity transformation (see [29])

ξ = S/M, (4.11)

V (S,M, t) = Mu(ξ, t). (4.12)

The partial differential equation for u(ξ, t) then reads

∂u

∂t
+

1

2
σ2ξ2

∂2u

∂ξ2
+ (r − ν)ξ

∂u

∂ξ
− ru = 0, (4.13)

and the final condition becomes

u(ξ, T ) = uT :=

{

max(ξ − 1), for a call,
max(1 − ξ), for a put.

(4.14)

The jump condition across sampling dates t∗k ∈ D becomes

u−(t∗k) (4.15)

= JC(u+(t∗k)) :=

{

max(ξ, 1)u+(min(ξ, 1), t∗k), for a put,
min(ξ, 1)u+(max(ξ, 1), t∗k), for a call.

The boundary condition at ξ = 0 are, (see [29])

u(0, t) = e−r(T−t), (4.16)

for a put, and
u(0, t) = 0, (4.17)

for a call. Concerning the boundary condition at ξ → ∞ all one can, and
need to, say is that the option value can grow at most linearly with ξ as
ξ → ∞ (see [29]).

4.4.1 The Finite Element Method

Again, we use the same discretization as for the vanilla option, and the
artificial boundary condition uξξ = 0 at ∂Ω = {ξmin, ξmax}. Since the pricing
partial differential equation is the same as for the ordinary European option,
the finite element method is same, except that we have to apply the jump
conditions at each monitoring date. We let U(tn) denote the approximate
solution at time step n, which fulfills jump conditions similar to (4.15). We
thus want to solve the problem, find U ∈ W q such that for 1 ≤ n ≤ N















∫

In

(

m(Ut, v) + a(U, v)
)

dt = 0 for all v ∈ Wq−1
n ,

U−(tn) = U+(tn), n = N − 1, . . . , 1 tn /∈ D,

U−(tn) = JC(U+(tn)), tn ∈ D,

U−(tN ) = uT ,

(4.18)

where m(Ut, v) and a(U, v) are defined exactly as before.
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4.4.2 Error Representation Formula

We now introduce the continuous dual problem for the floating strike look-
back option, which differs only slightly from the barrier option case studied
before. For clarity of exposition we here only give the details for the put
option, the dual problem for the call option is almost the same.















−φt + (σ2 + ν − 2r)φ− (r − ν − 2σ2)ξφξ + σ2

2 ξ
2φξξ = 0,

φ(0, ξ) = δξα
,

φ+(t∗k) =

{

φ−(t∗k), ξ < 1, t∗k ∈ D,

δ1(ξ)
∫

η≥1 φ
−(t∗k)η dη, ξ ≥ 1, t∗k ∈ D.

(4.19)

For simplicity we consider this equation over the whole space interval ne-
glecting boundary conditions. Multiplying with the error e = u − U ∈ W
and integrating in space and time we get

∑

k

∫ t∗
k

t∗
k−1

(

− (φt, e) + (σ2 + ν − 2r)(φ, e) (4.20)

− (r − ν − 2σ2)
(

ξφξ, e
)

+
σ2

2

(

ξ2φξξ, e
)

)

dt = 0.

Moving derivatives from φ to the error e, this equation gives us the error
representation formula

e(0, sα) = −
∑

k

∫ t∗
k

t∗
k−1

(m(et, φ) + a(e, φ)) (4.21)

where the bilinear forms m(ut, v) and a(u, v) are defined exactly as before.
We now present the details deriving this formula. Just as in the case of
the barrier option we have to be extra careful with the first term (φt, e) in
equation (4.20). Studying this term in detail we see that

−
∑

k

∫ t∗
k

t∗
k−1

(φt, e) dt (4.22)

=
∑

k

(

∫ t∗
k

t∗
k−1

(φ, et) dt

)

− (φ(T ), e(T )) + (φ(t0), e(t0))

−
∑

k

(

(φ−(t∗k), e
−(t∗k)) − (φ+(t∗k), e

+(t∗k))
)

.

Expanding the last two terms on the right we obtain

(φ−(t∗k), e
−(t∗k)) − (φ+(t∗k), e

+(t∗k)) (4.23)

=

∫

ξ≥1

(

φ−(t∗k)e
−(t∗k) − φ+(t∗k)e

+(t∗k)
)

dξ,
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since φ+(t∗k) = φ−(t∗k), and e−(t∗k) = e+(t∗k) for ξ < 1, according to the
boundary conditions for φ and U . Using the jump condition for φ we note
that

∫

ξ≥1

(

φ−(t∗k)e
−(t∗k) − φ+(t∗k)e

+(t∗k)
)

dξ (4.24)

=

∫

ξ≥1
φ−(t∗k)e

−(t∗k) dξ −
∫

ξ≥1

(

δ1(ξ)

∫

η≥1
φ−(t∗k)η dη

)

e+(t∗k) dξ

= e−(t∗k, 1)
∫

ξ≥1
φ−(t∗k)ξ dξ − e+(t∗k, 1)

∫

ξ≥1
φ−(t∗k)ξ dξ = 0,

since e−(t∗k, ξ) = ξe−(t∗k, 1) = ξe+(t∗k, 1) for ξ ≥ 1. Finally, moving deriva-
tives from φ to e in equation (4.20) using integration by parts, we arrive at
the same error representation formula as for the European option and the
barrier option studied before

e(0, sα) = −
∑

k

∫ t∗
k

t∗
k−1

(m(et, φ) + a(e, φ)) , (4.25)

where the bilinear forms m(ut, v) and a(u, v) are defined exactly as before.

4.4.3 Examples

Using the same error estimation algorithm as in the previous cases we are
able to calculate the error in desired quantities for different values of the
parameters. This makes it possible to identify regions where a fine mesh is
necessary.

Figures 17 and 16 show dual solutions for the daily and monthly sampled
floating strike lookback put options respectively. In all cases we have used
the boundary condition φ(0, s) = δ1(ξ, ε), where ε = 5000. We see that the
sampling frequency has a significant effect on the dual solution.
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Figure 16: Above on the left, φ, for σ = 0.1, r = 0.1, and q = 0.0 with daily
sampling. Below on the left, φ, for σ = 0.3. On the right, contour plots
using 30 levels. Solutions computed using the cG(2)-dG(1) method with 200
space points and 400 time points.
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Figure 17: Above on the left, φ, for σ = 0.1, r = 0.1, and q = 0.0, with
monthly sampling. Below on the left, φ, for σ = 0.3. On the right, contour
plots using 30 levels. Solutions computed using the cG(2)-dG(1) method
with 200 space and time points.

In Figure 18, we see the contributions to the error representation formula
(4.21) from each space-time slab. The dual was calculated using the cG(2)-
dG(1) method, and the primal using the cG(1)-cG(1) method. The dual
mesh was thirty two times finer in each direction. The value of the functional
of the error found by using the error representation formula was in this case
0.0042. We also note that the contribution to the error differs from zero
only within a short interval of Ω, just as the dual solution. We now proceed
to calculate adaptive meshes.
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Figure 18: The contributions to the functional of the error for the weekly
sampled floating strike lookback put when σ = 0.1, r = 0.10 and q = 0.0.
The dual was computed using the cG(2)-dG(1) method with 800 space and
time points, and the primal using the cG(1)-dG(1) method with 25 space
and time points.

4.4.4 Adaptive Mesh Refinement

As in the case of the European option we use the error representation formula
to derive an optimal mesh for each problem. In Figure 19, we see a mesh
resulting from using the mesh refinement algorithm in the case of a floating
strike lookback put option with weekly sampling. In this case Q was set to
10%. Two successive refinements were made, starting from a sparse mesh
with 25 nodes in time and space. The final mesh has only 30 nodes in each
direction, but the functional of the error has decreased by a factor 14. The
dual was calculated using a fine mesh with 800 nodes in time and space.
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Figure 19: The resulting mesh using the mesh refinement algorithm, calcu-
lated for a floating strike lookback put option with T = 0.5, σ = 0.1, and
r = 0.1, when ψ = δ1(ξ, ε). The dual was computed using the cG(2)-cG(1)
and the primal using the cG(1)-dG(1) method. Two successive refinements
were made.

4.4.5 The Greeks

Using the chain rule and equations (4.12) and (4.12) we can derive expres-
sions for the Greeks in our new variable ξ

∆ =
∂V

∂s
=
∂u

∂ξ
(4.26)

Γ =
∂2V

∂s2
=

1

M

∂2u

∂ξ2
, (4.27)

Θ = −∂V
∂t

= −∂u
∂t
. (4.28)

In Figure 20 we see the delta and gamma of a weekly sampled floating strike
lookback put at time t = 0.
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Figure 20: The delta (on the left) and gamma (on the right) of a weekly
sampled floating strike lookback put at time t = 0, with σ = 0.1, T = 1,
S0 = 100 and r = 0.1.

4.4.6 Results

Table 3 compares the method used in this work with the ones in [29] and
[30], for the discrete floating strike lookback put. All three methods give
fairly the same result. Note that the values given in the table are not prices,
but values of U . To get the option price we use equation (4.12).

Wilmott ZFV(389) FE(400)

ξ = 0.9 0.101 0.10025 0.10035
ξ = 1.0 0.089 0.08885 0.08887
ξ = 1.1 0.095 0.09546 0.09502

Table 3: Comparison of discrete floating strike lookback put option values
when r = 0.1, q = 0.0, σ = 0.2, T = 1.0, and t = 0. The number of nodes in
the ξ direction is given in parenthesis. Wilmott refers to [29], ZFV refers to
[30], and FE refers to the finite element method used in this work. Sampling
was made at times 0.5, 1.5, 2.5, . . . , 10.5, 11.5 months.
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By using the mesh refinement algorithm an adapted mesh was calculated
for the example of the weekly sampled lookback put option, which was finer
close to the center of Ω and towards time t = 0 and t = T . In this way the
same accuracy is achieved in less degrees of freedom. The original uniform
mesh has 25 nodes in time and space. By using the error representation
formula the functional of the error was calculated to 0.0042 for the uniform
mesh. The adapted mesh has only 30 nodes in each direction, but the
functional of the error has decreased by a factor 14 to 0.000305.

Figure 21 shows the value of U for the floating strike lookback put with
monthly sampling.

PSfrag replacements
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Figure 21: The floating strike lookback put option with monthly sampling,
when σ = 0.3, r = 0.1, q = 0.0, T = 0.5, and t = 0. Solution computed
using the cG(1)-cG(1) method with a uniform mesh with 200 space points
and time points.
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Valuing Fixed Strike Lookback Options

using the Finite Element Method and

Duality Techniques
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Abstract

The main objective of this paper is to develop an adaptive finite
element method for computation of the values and different sensitivity
measures of fixed strike lookback options.

The fixed strike lookback options are priced using the Black-Scholes
PDE-model, and a method developed by Andreasen. It consists of
solving two coupled PDE:s that are of parabolic type in one spatial
dimension with different boundary conditions and jump conditions at
monitoring dates. The adaptive finite element method is based on a
posteriori estimates of the error in desired quantities, which we derive
using duality techniques. The a posteriori error estimates are tested
and verified, and are used to calculate optimal meshes for each type
of option. The use of adapted meshes gives superior accuracy and
performance with less degrees of freedom than using uniform meshes.
The suggested adaptive finite element method is stable and gives fast
and accurate results.

1 Introduction

The valuation of different types of derivative contracts is very important
in modern financial theory and practice. Exotic options have become very
popular hedging and speculation instruments in recent years. At the same
time a huge amount of literature has been devoted to the pricing and hedging
of such instruments.
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Closed-form solutions have been obtained for continuous sampled look-
back option prices by [5], [11], and [12]. For the discretely sampled lookback
option one has to rely on numerical methods. Most of them are based on
some binomial method, see for example [2], [3], [4], or [13]. A PDE ap-
proach is described by Wilmott, Dewynne and Howison in Chapter 12 of
[15]. They show that the price of lookback options is given as the solution
to the ordinary Black-Scholes equation but with the maximum of the asset
price entering as a parameter, and with different boundary and final con-
ditions. They also show that for the floating strike lookback option it is
possible to reduce the dimension of the problem by a change of variables, so
that the price is a function of one state-variable and time. The same change
of variables was previously used by Babbs, [2]. Andreasen, [1], uses a change
of numeraire techniques to obtain option prices as function of time and a
one-dimensional Markovian state variable only, for both the fixed and the
floating strike lookback options, as well as Asian options. In [16] the same
PDE-model as [15] is used but in a stochastic volatility setting.
Classification: The lookback option has a payoff that depends on the
maximum or minimum of the underlying stock price over some given interval
in time. There are two types of lookback options, the lookback rate option
and the lookback strike option, also known as the fixed strike and the floating
strike lookback option respectively. Both of these options exists as puts and
calls. If we denote the maximum asset price over the time interval 0 ≤ t ≤ T

by M , the lookback strike put option has almost the same payoff as the
vanilla put, but with M replacing the exercise price K, that is

max(M − S(T ), 0). (1.1)

In the same way the corresponding call option gives almost the same payoff
as the vanilla call, but with M , now being the minimum asset price during
the lifetime of the option, replacing the exercise price K, that is

max(S(T ) −M, 0). (1.2)

Similarly the lookback rate put has almost the same payoff as the vanilla
put, but with M replacing S(T ), i.e

max(K −M, 0), (1.3)

and naturally the corresponding call option then has the payoff

max(M −K, 0), (1.4)

where M is defined as

M =

{

max0≤t≤T (S(t)), for a call
min0≤t≤T (S(t)), for a put.

(1.5)
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As for the barrier option there also exists discrete variants of the lookback
options mentioned above. If the maximum (or minimum) is measured at the
discrete times ti, then the updating rule is

Mi =

{

max(S(ti),M(ti−1)), for a call,
min(S(ti),M(ti−1)), for a put.

(1.6)

New Contributions: The fixed strike lookback options are priced using
the Black-Scholes PDE-model and a method developed by Andreasen [1].
It consists of solving two coupled PDE:s that are of parabolic type in one
spatial dimension with different boundary conditions and jump conditions
at monitoring dates. All pricing is done using an adaptive finite element
method allowing variable resolution in space and time.

In practice one is only interested in the price, and it’s derivatives, in
one or a few points. Using this criteria, the choice of computational mesh
is based on a posteriori estimates of the error in desired quantities, which
we derive using duality techniques. These dual techniques are shown to
be very useful and simple, and allows us to improve the PDE methods
already existing. The presented a posteriori error estimation formula is
tested and verified in the case of the European option. It is then used
to perform mesh refinements in both time and space for the fixed strike
lookback options. This makes it possible to calculate an optimal mesh for
each type of option, which significantly reduces the error without noticeably
enhancing the computational effort.

The duality approach is general and applicable to problems with all kinds
of algebraic constraints. Other exotic options, such as the barrier option,
the floating strike lookback option, and the Asian option are also studied by
the authors, see [9] and [10]. The suggested adaptive finite element method
is stable and gives fast and accurate results.

Outline: In Section 2 we formulate the finite element method and derive
an a posteriori error estimate for the ordinary European option. Then in
Section 3 we derive an error representation formula for the European option,
present and error estimation algorithm, and give some numerical examples.
In Section 4 we perform adaptive mesh refinements for the European option
based on the previous results. In Section 5 we present a pricing technique for
the fixed strike lookback option and apply the finite element method. Section
6 includes a derivation of an a posteriori error representation formula for
the fixed strike lookback option, and gives some examples were it is applied.
Adaptive mesh refinement for the fixed strike lookback option is presented
in Section 7. In Section 8 we present some results, and finally in Section 9
we state some conclusions.
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2 An Adaptive Finite Element Method for the Eu-

ropean Option

For the ordinary European option there exists an analytical valuation for-
mula. But for other options, such as the discrete fixed strike lookback option,
studied later in this paper, we have to rely on numerical solutions. In this
section we present the finite element method and develop the a posteriori
error estimation framework, for the basic European option. Later we extend
the techniques to the fixed strike lookback option.

2.1 Mathematical Background

We consider a continuous time trading economy on a bounded time hori-
zon [0, T ]. Probability is represented by the probability space (ΩT ,FT , P ),
where ΩT = C[0, T ], P is the corresponding Wiener measure, and FT =
σ(W (t); t ≤ T )). For simplicity we consider the standard Black-Scholes set-
ting with a risk free asset and a dividend paying stock. Let B(t) denote the
price of a risk free asset at time t governed by the equation B(t) = B(0)ert,
where r is the constant interest rate. Further we denote by S(t) the value
of an asset at time t. We assume the existence of an equivalent martin-
gale measure Q, under which the discounted stock price e−r(T−t)St is an
Ft-martingale. The existence of the risk neutral measure Q assures that the
market is free of arbitrage possibilities. Under Q the stock price follows the
stochastic differential equation

dS(t) = (r − ν)S(t)dt+ S(t)σdW (t), (2.1)

where r is the constant interest rate, ν is the constant continuous dividend
yield, σ is the volatility, and W (t) is a Q Brownian motion process. Here σ
is assumed to be a positive real number. The solution of (2.1) is

S(t) = S(0)e(r−ν−σ
2

2
)t+σW (t). (2.2)

2.2 The Black-Scholes PDE

The value of the ordinary European option, u(t, S(t)) = u(t, s), is given as
the solution to Black-Scholes equation

ut(t, s) +
σ2s2

2
uss(t, s) + (r − ν)sus(t, s) − ru(t, s) = 0, t < T, (2.3)

which is valid for s = S(t) ∈ R
+. In order to construct a computational

mesh we introduce a bounded interval Ω = [smin, smax] ⊂ R
+ with boundary
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∂Ω = {smin, smax}. We define the usual Hilbert space

H1(Ω) = {v :

∫

Ω
(|∇v|2 + v2)ds <∞}, (2.4)

and let W be the space of functions that are square integrable in time and
belongs to H1(Ω) in space, that is

W = L2
(

[0, T ],H1(Ω)
)

. (2.5)

We also use the notation (u, v) =
∫

Ω uvds, and (u, v)∂Ω = u(smax)v(smax)−
u(smin)v(smin).

2.3 Variational Formulation

Multiplying the Black-Scholes equation (2.3) by the test function v ∈ W
and integrating on Ω × [0, T ] we obtain

∫ T

0

(

(ut, v) + (r − ν)
(

sus, v
)

+
σ2

2

(

s2uss, v
)

− r(u, v)
)

dt = 0. (2.6)

Using integration by parts we get

(

s2uss, v
)

=
(

s2us, v
)

∂Ω
− 2
(

sus, v
)

−
(

s2us, vs

)

. (2.7)

Thus equation (2.6) becomes

∫ T

0

(

(ut, v) + (r − ν − σ2)
(

sus, v
)

(2.8)

− σ2

2

(

s2us, vs

)

+
σ2

2

(

s2us, v
)

∂Ω
− r(u, v)

)

dt = 0.

The boundary conditions for the European call option are u(t, 0) = 0 and
u(t, s) ∼ se−ν(T−t) as s → ∞, and for the corresponding put u(t, 0) =
Ke−r(T−t) and u(t, s) ∼ 0 as s → ∞, see for example Wilmott, [15]. For
simplicity of implementation we use the artificial boundary condition uss = 0
on ∂Ω for both the put and the call instead. This boundary condition works
for all contracts if the payoff is at most linear in the underlying (see [15])
and does not affect the accuracy of the solution. Using equation (2.3) we
can rewrite the boundary condition as

us =
r

s(r − ν)
u− 1

s(r − ν)
ut, (2.9)
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and enforce it weakly by inserting identity (2.9) into equation (2.8). We
thus want to solve the problem: find u ∈ W such that







∫ T

0

(

m(ut, v) + a(u, v)
)

dt = 0,

u(T, s) =

{

max(s−K, 0), for a call,
max(K − s, 0), for a put,

(2.10)

for every v ∈ W, where

m(ut, v) = (ut, v) −
σ2

2(r − ν)
(sut, v)∂Ω, (2.11)

and

a(u, v) = (r − ν − σ2)
(

sus, v
)

− σ2

2

(

s2us, vs

)

(2.12)

+
σ2r

2(r − ν)
(su, v)∂Ω − r(u, v).

2.4 Finite Element Approximation

The finite element method is based on solution of the variational problem
(2.10) with W replaced by a finite dimensional function space of piecewise
polynomials in space and time. For background on the finite element method
see for instance [6].

We now partition [0, T ] as 0 = t0 < t1 < t2 < · · · < tN = T , denoting
each time interval by In = (tn−1, tn] and each time step by kn = tn − tn−1.
Similarly we partition Ω as smin = s0 < s1 < s2 < · · · < sJ = smax, denoting
each spatial interval by κj = [sj−1, sj) and the length of each interval by
hj = sj − sj−1.

In space, we let Vp ⊂ H1(Ω) denote the space of piecewise continuous
functions of order p. On each space-time slab Sn = In × Ω, we define

Wq
n = {w(t, s) : w(t, s) =

q
∑

j=0

tjvj(s), vj ∈ Vp, (t, s) ∈ Sn}. (2.13)

Let Wq ⊂ W denote the space of functions defined on [0, T ] × Ω such that
v |Sn

∈ W
q
n for 1 ≤ n ≤ N . For simplicity, we only give details for the con-

tinuous Galerkin method cG(p)-cG(q), (see e.g. [6] or [7]) which is defined
by the following discrete version of equation (2.10). Find U ∈ W q such that
for 1 ≤ n ≤ N







∫

In

(

m(Ut, v) + a(U, v)
)

dt = 0 for all v ∈ Wq−1
n ,

U−(tn) = U+(tn), n = N − 1, . . . , 1,
U−(tN ) = uT ,

(2.14)
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Figure 1: Space-time discretization.

where U±(tn) = limε→0,ε>0U(tn ± ε). In the cG(1) method the approxima-
tion U of u is continuous piecewise linear in time and space, while the test
functions v are continuous linear in space and piecewise constant in time.
It is also possible to use a discontinuous method in time, we refer to [6], for
details on the resulting discontinuous Galerkin method, cG(p)-dG(q).

3 A Posteriori Error Estimation for the European

Option

3.1 Error Representation Formula

Since we are only interested in the solution, and it’s derivatives, in one or a
few points of Ω at time t = 0, we wish to find a mesh tailored for efficient
and accurate solution at the points of interest. In order to find such a mesh
we derive a posteriori error estimates of the error in the points of interest
using duality techniques (see [6] or [7]).

To represent the error in a linear functional, (u−U,ψ), we introduce the
continuous dual problem for the Black-Scholes equation (2.3). Find φ ∈ W
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such that
{

−φt + (σ2 + ν − 2r)φ− (r − ν − 2σ2)sφs + σ2

2 s
2φss = 0,

φ(0, s) = ψ.
(3.1)

For simplicity we consider this equation over the whole space interval ne-
glecting boundary conditions. Multiplying with the error e = u − U ∈ W
and integrating in space and time we get

∫ T

0

(

− (φt, e) + (σ2 + ν − 2r)(φ, e) (3.2)

− (r − ν − 2σ2)
(

sφs, e
)

+
σ2

2

(

s2φss, e
)

)

dt = 0.

The functions φ and φs are in principle zero close to s = smin and s = smax

if the domain is large enough. Using integration by parts and neglecting the
boundary terms we get

− (φ(T, s), e(T, s)) + (φ(0, s), e(0, s)) (3.3)

+

∫ T

0

(

(φ, et) + (σ2 + ν − 2r)(φ, e) + (r − ν − 2σ2)
(

sφ, es
)

)

dt

+

∫ T

0

(

(r − ν − 2σ2)(φ, e) − σ2

2

(

s2φs, es
)

− σ2
(

sφs, e
)

)

dt = 0.

Note that integration by parts gives

−σ2
(

sφs, e
)

= σ2
(

sφ, es
)

+ σ2
(

φ, e
)

, (3.4)

using this identity, φ(0, s) = ψ, and e(T ) = 0, we get

(ψ, e(0, s)) = (3.5)

−
∫ T

0

(

(φ, et) − r(φ, e) + (r − ν − σ2)
(

sφ, es
)

− σ2

2

(

s2φs, es
)

)

dt.

Recalling the earlier defined bilinear forms (2.11) and (2.12), and that we
neglect the boundary terms we can also write

(ψ, e(0, s)) = −
∫ T

0

(

m(et, φ) + a(e, φ)
)

dt. (3.6)

Since e = u−U and u solves equation (2.10) we get the error representation
formula

(ψ, e(0, s)) =

∫ T

0

(

m(Ut, φ) + a(U, φ)
)

dt (3.7)
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If we for example are interested in the error at s = sα, we choose ψ = δsα
(s),

and get the error representation formula

e(0, sα) =

∫ T

0

(

m(Ut, φ) + a(U, φ)
)

dt. (3.8)

If one instead is interested in derivatives of the solution, then a different ψ
is chosen, as shown later on.

3.2 Estimating the Error

Let π : W → Wq−1 be the L2 projection in time, and let P be a suitable
interpolation operator into Vp in space. Thus πP is an interpolation operator
such that πPφ ∈ Wq−1. Then using Galerkin orthogonality (2.14), we can
replace φ by φ− πPφ = φ − Pφ+ Pφ − πPφ. Equation (3.7) can then be
written as

(ψ, e(0, s)) = −
∫ T

0

(

m(Ut, φ− Pφ) + a(U, φ− Pφ)
)

dt (3.9)

−
∫ T

0

(

m(Ut, Pφ− πPφ) + a(U,Pφ− πPφ)
)

dt

= −
∑

n

∑

j

∫

In

(

Rs
κj

(U), φ − Pφ
)

dt

−
∑

n

∫

In

(

Rt(U), Pφ− πPφ
)

dt,

where

(Rs
κj

(U), φ − Pφ) = −σ
2

2
(s2[Us], φ− Pφ)∂κj

(3.10)

+ (Ut + (r − ν)sUs +
σ2

2
s2Uss − rU, φ− Pφ)κj

is the space residual, and

(Rt(U), Pφ− πPφ) = (Ut + (r− ν)sUs +
σ2

2
s2Uss − rU, Pφ− πPφ) (3.11)

is the time residual. Here we used the notation [Us] to denote the jump in
Us over element interfaces.

Finally, we present an algorithm for calculating the error.
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Error Estimation Algorithm:

• Compute an approximation Φ of φ using an enriched finite element
space, for instance higher order approximation.

• Compute PΦ.

• Compute
∫

In

(

Rs
κj

(U), φ−Pφ
)

dt using quadrature in space and time

for each element κj and time step.

• Compute πPΦ.

• Compute
∫

In

(

Rt(U), Pφ − πPφ
)

dt using quadrature in space and

time for each time step.

3.3 Examples

Using the error estimation algorithm in the previous section we are able to
calculate the error in desired quantities for different values of the parame-
ters. This makes it possible to identify regions where a fine mesh is necessary.

Example 1. To estimate the error at s = sα we let ψ = δsα
(s) in (3.1). In

order to implement this condition we use the approximation

δsα
(s) ≈ 1

ε
√
π
e−((s−sα)/ε)2 := δsα

(s, ε), (3.12)

where ε is a parameter that controls how well the delta function is approx-
imated. In this example we have used ε = 1. As seen from Figure 2, the
solution to the dual problem differs from zero only within a short interval
of Ω.
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Figure 2: Above on the left, φ for a European call option when σ = 0.1,
r = 0.1, and ψ = δ100(s, ε). Below on the left, φ, for σ = 0.3. On the right,
contour plots using 30 levels. Solutions computed using the cG(2)-dG(1)
method with 200 space and time points.

We now check that the error representation formula really works. By
using the error estimation algorithm in the previous section we can get an
approximation of the functional of the error, that is an approximation of
the right hand side of equation (3.7). This can then be compared to cal-
culating the left hand side of equation (3.7) directly using the real error in
the approximate solution, found by using Black-Scholes formula. The dual
solution is calculated on a finer mesh, and using higher order approxima-
tions. In Figure 3, we see the contributions to error formula (3.7) from each
space-time slab. The dual was calculated using the cG(2)-dG(1) method,
and the primal using the cG(1)-cG(1) method. The dual mesh was thirty-
two times finer in each direction. The value of the functional of the error
found by using the error representation formula was in this case 0.2033, in
excellent agreement with the real value, that is the value of the left hand
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side of equation (3.7), which was 0.2030. We also note that the contribution
to the error differs from zero only within a short interval of Ω, just as the
dual solution. This means that we may use a more sparse mesh where the
contribution to the error is small and thus save computation time. The solu-
tion is larger near time t = 0, implying that one should use a finer time step
there. Obviously the result depends on the value of the volatility σ, and the
other parameters, which can be seen from the plot of the dual solution. We
will later see how we can use the error representation formula to derive an
optimal mesh for each problem.

PSfrag replacements
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Figure 3: On the left, the contributions to the error of call option for σ = 0.1,
r = 0.1, and K = 100 when ψ = δ100(s, ε). On the right, contour plot using
30 levels. The dual was computed using the cG(2)-dG(1) method with 400
space and time points, and the primal using the cG(1)-cG(1) method with
20 space and time points.

Example 2. In order to make a good estimation of the derivative of the
solution, which is interesting when calculating the Greek delta, we need to
study a different dual problem. We approximate the derivative using the
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central difference formula

∂u

∂s
≈ u(s+ µ) − u(s− µ)

2µ
:=

∂hu

∂s
. (3.13)

To estimate the error of the derivative of the solution at s = sα, us(sα), we
thus choose

ψ(s) =
δsα

(s− µ) − δsα
(s+ µ)

2µ
(3.14)

≈ δsα
(s− µ, ε) − δsα

(s+ µ, ε)

2µ

in (3.1), for an appropriate choice of µ. The error in our estimation of the
derivative can be split into two parts

(

∂u

∂s
− ∂hU

∂s

)

=

(

∂u

∂s
− ∂hu

∂s

)

+

(

∂hu

∂s
− ∂hU

∂s

)

. (3.15)

The first term corresponds to the error in (3.13), while the second can be
estimated using the a posteriori estimate. Figure 4 shows the dual solution
for this choice of ψ when µ = 1 and ε = 1. Figure 5 shows the contributions
to the error estimation formula from each space-time slab. We see that this
solution is even more centrally oriented than the previous one, implying that
the derivative has a local dependence.
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Figure 4: Above on the left, φ for a European call option with σ = 0.1, and
r = 0.1, when ψ is chosen as in example 2. Below on the left, φ, for σ = 0.3.
On the right, contour plots using 30 levels. Solutions computed using the
cG(2)-dG(1) method with 200 space and time points.
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Figure 5: On the left, the contributions to the functional of the error of
European call option for σ = 0.1, r = 0.1, and K = 100 when ψ is chosen
as in example 2. On the right, contour plot using 30 levels. The dual was
computed using the cG(2)-dG(1) method with 640 space and time points,
and the primal using the cG(1)-cG(1) method with 20 space and time points.

4 Adaptive Mesh Refinement for the European

option

Adaptive mesh refinement may be accomplished in many different ways.
Our goal not is to create the best adaptive method, since adaptivity would
be to slow to use in reality. Rather we wish to create an optimal mesh in
advance for each case, so that when valuing an option we simply use a suited
pre calculated mesh. This gives superior performance. In this section we
show how these meshes are calculated and what typical meshes look like.
Mesh Refinement Algorithm:

• Compute an approximation U of u using the FE method on a coarse
mesh.
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• Compute the error in desired quantities by using the a posteriori error
estimation algorithm.

• Calculate the time and space averages of the contributions to the error
from each space-time slab. This gives us two vectors, one with time
averages and one with space averages.

• Identify the Q% largest elements in the space average vector, and re-
fine the corresponding time steps by dividing them in half.

• Identify the Q% largest elements in the time average vector, and refine
the corresponding spatial steps by dividing them in half.

• Compute a new FE approximation U on the refined mesh.

• Repeat until minimum mesh size is reached.

In Figure 6, we see a typical mesh resulting from using the mesh refinement
algorithm above. In this case Q was set to 10%. Three successive refine-
ments were made, starting from a sparse mesh with 20 nodes in time and
space. The final mesh has only 27 nodes in each direction, but the error has
decreased by a factor 70. The dual was calculated using a fine mesh with
640 nodes in time and space.
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Figure 6: The resulting mesh using the mesh refinement algorithm, calcu-
lated for a European call option with σ = 0.1, r = 0.1, and K = 100 when
ψ = δ100(s, ε). The dual was computed using the cG(2)-dG(1)and the primal
using the cG(1)-cG(1) method. Three successive refinements were made.

5 An Adaptive Finite Element Method for the

Fixed Strike Lookback Option

Lookback options fulfill the dream of every investor, selling at the highest or
buying at the lowest price during the lifetime of the option. Naturally this
makes lookback options expensive. Discrete sampling decreases the value of
the contract and at the same time it is more natural to use. Therefore we
concentrate on discrete fixed strike lookbacks. The floating strike lookback
option is treated in another paper by the authors, [9].

5.1 Pricing Partial Differential Equations

Here we will give a brief presentation of Andreasen’s method for pricing of
the fixed strike lookback option, for further details we refer to [1].
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Consider the discrete fixed strike looback call option with monitoring
dates D = {t∗k}κ

k=0 ⊂ {tn}N
n=0, where t0 = 0 and tN = T . This option gives

the payoff
max(M(T ) −K, 0), (5.1)

where M is defined as

M(t) = sup
1≤k≤m(t)

S(t∗k), (5.2)

where m(t) = sup{1 ≤ k ≤ N : t∗k ≤ t, t∗k ∈ D}, and we use the convention
M(t) = 0 for t = 0. As noted by Andreasen, the evaluation of the price
is a two-step procedure. First, we solve the option price at time t when
M(t) ≥ K. We then solve for the case when M(t) < K by observing that in
this case the option can be considered as a first passage problem of S to the
level K where the reward is equal to the option value in the previous case
where M(t) ≥ K.

Consider first the case M(t) ≥ K. The option price is then given by

V (t) = Et

[

e−r(T−t)(M(T ) −K)+
]

(5.3)

= Et

[

e−r(T−t)(M(T ) −K)
]

. (5.4)

Andreasen then applies the following change of numeraire,

dQ′ =
S(T )

S(t)e(r−q)(T−t)
dQ, (5.5)

where Q is the risk neutral measure. By Girsanov theorem it follows that,
under Q′

W ′(t) = W (t) − σt, (5.6)

and
dS(t)

S(t)
= (r − q + σ2)dt+ σdW ′(t). (5.7)

The option price can then be written as

V (t) = S(t)E ′
t

[

e−q(T−t)M(T )

S(T )

]

− e−r(T−t)K. (5.8)

Define

x(t) =
M(t)

S(t)
, (5.9)

then for each sampling date t∗k ∈ D we have that

x+(t∗k) =

{

1 if x−(t∗k) ≤ 1,
x−(t∗k) if x−(t∗k) > 1.

(5.10)
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Applying Ito’s formula we get

dx(t) = −(r − q)x(t−)dt− σx(t−)dW ′(t) + (1 − x(t−))+dm(t), (5.11)

x(t0) = 1. (5.12)

Now define

f(t) = E′
t

[

e−q(T−t)M(T )

S(T )

]

(5.13)

= E′
t

[

e−q(T−t)x(T )
]

(5.14)

= E′
[

e−q(T−t)x(T ) | x(t)
]

. (5.15)

Then f(t) = f(t, x(t)) is given as the solution to the following partial differ-
ential equation

ft − (r − q)xfx +
1

2
σ2x2fxx − qf = 0, (5.16)

with boundary conditions

f−(t∗k) = BCf (f+(t∗k)) :=

{

f+(t∗k, 1), x ≤ 1, t∗k ∈ D,
f+(t∗k, x), x > 1, t∗k ∈ D,

(5.17)

f+(tN , x) = f(T, x) = x. (5.18)

Thus, for M(t) ≥ K, t > t1, we have

V (t) = S(t)f(t, x(t)) − e−r(T−t)K. (5.19)

Now consider the case when M(t) < K. The first time t∗k > t, with S

larger than K, we get a reward of

V (t∗k) = S(t∗k)f(t∗k, x(t
∗
k))−e−r(T−t∗

k
)K = S(t∗k)f(t∗k, 1)−e−r(T−t∗

k
)K, (5.20)

where the second equality follows since t∗k is the first time M(t) ≤ K. So
for M(t) < K the value of the option is

V (t) = E
[

e−r(τ−t)(S(τ)f(τ, 1) − e−r(T−τ)K)1τ≤tn | S(t)
]

, (5.21)

where
τ = inf{t∗k ∈ D : S(t∗k) ≥ K}. (5.22)

The solution to the first passage problem (5.20) can be found by solving the
corresponding partial differential equation for g = V (t, S(t))

gt + (r − ν)sgs +
1

2
σ2s2gss − rg = 0, (5.23)
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with boundary conditions

g−(t∗k) = BCg(g
+(t∗k)) :=

{

g+(t∗k, s), s < K, t∗k ∈ D,

sf(t∗k, 1) − e−r(T−t∗
k
)K, s ≥ K, t∗k ∈ D,

(5.24)

g+(tN , s) = 0. (5.25)

5.2 The Finite Element Method

Let F denote the approximate finite element solution corresponding to equa-
tion (5.16). As for the European option we use the artificial boundary con-
dition Fss = 0 on ∂Ω. The only difference in equation (5.16) from the
Black-Scholes formula is that the coefficient of F is ν instead of r and the
sign of the second coefficient, so there is only a minor change in the FEM
problem. What differs are the boundary conditions (5.17) and (5.18). Going
through exactly the same calculations as for the European option with the
changes mentioned above we get the FEM problem, find U ∈ W q such that
for 1 ≤ n ≤ N















∫

In

(

mf (Ft, v) + af (F, v)
)

dt = 0 for all v ∈ Wq−1
n

F−(tn) = F+(tn), n = N − 1, . . . , 1 tn /∈ D,

F−(tn) = BCf (F+(tn)), tn ∈ D,

F−(tN ) = fT ,

(5.26)

where

mf (Ft, v) = (Ft, v) +
σ2

2(r − ν)
(sFt, v)∂Ω, (5.27)

and

af (F, v) = − (r − ν + σ2)
(

xFx, v
)

− σ2

2

(

x2Fx, vx

)

(5.28)

− σ2ν

2(r − ν)
(xF, v)∂Ω − ν(F, v).

Similarly we let G denote the approximate finite element solution corre-
sponding to equation (5.23). The finite element problem now reads, find
G ∈ Wq such that for 1 ≤ n ≤ N















∫

In

(

mg(Gt, v) + ag(G, v)
)

dt = 0 for all v ∈ Wq−1
n

G−(tn) = G+(tn), n = N − 1, . . . , 1 tn /∈ D,

G−(tn) = BCg(G
+(tn)), tn ∈ D,

G−(tN ) = gT ,

(5.29)
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where

mg(Gt, v) = (Gt, v) −
σ2

2(r − ν)
(sGt, v)∂Ω, (5.30)

and

ag(G, v) = (r − ν − σ2)
(

sGs, v
)

− σ2

2

(

s2Gs, vs

)

(5.31)

+
σ2r

2(r − ν)
(sG, v)∂Ω − r(G, v).

6 A Posteriori Error estimation for the Fixed Strike

Lookback Option

6.1 Error Representation Formula

Since the primal problem involves a two-step procedure, so does the dual.
We will now examine the dual problems for the two pricing PDE:s for the
fixed strike lookback option. Since one in most cases seeks the value at time
t = 0, we are mainly interested in calculating the approximate solution G

above, since M(0) = 0 < K. Doing so, we have to solve also the equation
for F , but we only need the value of F at one point in space. Keeping this
in mind, we construct the dual problems according to this criteria. If one
is interested in the solution F in more points in space, then one naturally
studies a different dual problem.

We begin by introducing the dual problem to the first passage problem
(5.23) for g. Find φ ∈ W such that















−φt + (σ2 + ν − 2r)φ− (r − ν − 2σ2)sφs + σ2

2 s
2φss = 0,

φ(0, s) = δsα
,

φ+(t∗k) =

{

φ−(t∗k), s < K, t∗k ∈ D,

0, s ≥ K, t∗k ∈ D,

(6.1)

which we for simplicity consider over the whole space interval, neglecting
boundary terms (cf the European problem). Secondly, we introduce the dual
problem to the equation for f , (5.16), which is coupled to the previous dual
problem. Again neglecting boundary terms, we wish to solve the problem:
find ϕ ∈ W such that



















−ϕt + (σ2 + r − 2ν)ϕ + (r − ν + 2σ2)xϕx + σ2

2 x
2ϕxx = 0,

ϕ(t0, x) = ϕ(0, x) = δ1(x)Iφ(0),

ϕ+(t∗k) =

{

δ1(x)
(

∫

η≤1 ϕ
−(t∗k) dη + Iφ(t∗k)

)

, x ≤ 1, t∗k ∈ D.

ϕ−(t∗k), x > 1, t∗k ∈ D,

(6.2)
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where Iφ(t∗k) :=
∫

s≥K
φ−(t∗k, s)s ds. Using these two coupled dual problems

we derive an error representation formula for the solution G, that we are
interested in. We now state this formula and then proceed to derive it. Let
e = g −G and ẽ = f − F , then

e(0, sα) = −
∑

k

∫ t∗
k

t∗
k−1

(

mg(φt, e) + ag(φ, e) +mf (ẽt, ϕ) + af (ẽ, ϕ)
)

(6.3)

where mg, ag, mf , and af are the bilinear forms derived in the previous
section. To prove this formula we begin by studying equation (6.1). Multi-
plying with the error e = g − G ∈ W and integrating over space and time
we get

∑

k

∫ t∗
k

t∗
k−1

(

− (φt, e) + (σ2 + ν − 2r)(φ, e) (6.4)

− (r − ν − 2σ2)
(

sφs, e
)

+
σ2

2

(

s2φss, e
)

)

dt = 0.

Examining the first term (φt, e) in equation (6.4) in detail, we see that

−
∑

k

∫ t∗
k

t∗
k−1

(φt, e) dt (6.5)

=
∑

k

(

∫ t∗
k

t∗
k−1

(φ, et) dt− (φ−(t∗k), e
−(t∗k)) + (φ+(t∗k−1), e

+(t∗k−1))

)

=
∑

k

(

∫ t∗
k

t∗
k−1

(φ, et) dt

)

− (φ(T ), e(T )) + (φ(t0), e(t0))

−
∑

k

(

(φ−(t∗k), e
−(t∗k)) − (φ+(t∗k), e

+(t∗k))
)

.

Expanding the last two terms on the right we get

(φ−(t∗k), e
−(t∗k)) − (φ+(t∗k), e

+(t∗k)) (6.6)

=

∫

s≥K

(

φ−(t∗k)e
−(t∗k) − φ+(t∗k)e

+(t∗k)
)

ds,

since φ+(t∗k) = φ−(t∗k), and e−(t∗k) = e+(t∗k) for s < K, according to the
boundary conditions for φ and G. Using the boundary condition for φ we
see that equation (6.6) equals

∫

s≥K

(

φ−(t∗k, s)e
−(t∗k, s) − φ+(t∗k, s)e

+(t∗k, s)
)

ds (6.7)

=

∫

s≥K

φ−(t∗k, s)e
−(t∗k, s) ds = ẽ−(t∗k, 1)

∫

s≥K

φ−(t∗k, s)s ds,
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where the second equality follows since for s ≥ K it holds that

e−(t∗k, s) = g−(t∗k, s) −G−(t∗k, s) (6.8)

=
(

sf−(t∗k, 1) − e−r(T−t∗
k
)K
)

−
(

sF−(t∗k, 1) − e−r(T−t∗
k
)K
)

= s(f−(t∗k, 1) − F−(t∗k, 1)) := sẽ−(t∗k, 1),

according to the boundary conditions for g and G. Moving derivatives from
φ to e in equation (6.4) using integration by parts and equation (6.5), we
arrive at the error representation formula

e(0, sα) =
∑

k

(

ẽ−(t∗k, 1)
∫

s≥K

φ−(t∗k, s)s ds

)

(6.9)

−
∑

k

∫ t∗
k

t∗
k−1

(

(φ, et) − r(φ, e) + (r − ν − σ2)
(

sφ, es
)

− σ2

2

(

s2φs, es
)

)

dt

=
∑

k

(

ẽ−(t∗k, 1)
∫

s≥K

φ−(t∗k, s)s ds

)

−
∑

k

∫ t∗
k

t∗
k−1

(

mg(φt, e) + ag(φ, e)
)

,

where mg and ag are defined above. We thus need to control over the term

∑

k

(

ẽ−(t∗k, 1)
∫

s≥K

φ−(t∗k, s)s ds

)

=
∑

k

(

ẽ−, δ1

∫

s≥K

φ−(t∗k, s)s ds

)

,

(6.10)
involving the error of f at the point x = 1. We therefore constructed the dual
problem for f , (6.2), with the term δ1

∫

s≥K
φ−(t∗k, s)s ds = δ1Iφ(t∗k) as input

at each monitoring date t∗k ∈ D. Remembering that we neglect boundary
conditions, and multiplying equation (6.2) with the error ẽ = f − F ∈ W
and integrating in space and time we get

∑

k

∫ t∗
k

t∗
k−1

(

− (ϕt, ẽ) + (σ2 + r − 2ν)(ϕ, ẽ) (6.11)

+ (r − ν + 2σ2)
(

xϕx, ẽ
)

+
σ2

2

(

x2ϕxx, ẽ
)

)

dt = 0.

Just as in the previous cases we have to be extra careful with the first term
(ϕt, ẽ). Studying this term in detail we see that

−
∑

k

∫ t∗
k

t∗
k−1

(ϕt, ẽ) dt (6.12)

=
∑

k

(

∫ t∗
k

t∗
k−1

(ϕ, ẽt) dt

)

− (ϕ(T ), ẽ(T )) + (ϕ(t0), ẽ(t0))

−
∑

k

(

(ϕ−(t∗k), ẽ
−(t∗k)) − (ϕ+(t∗k), ẽ

+(t∗k))
)

.
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Examining the last two terms on the right, using the boundary conditions
for ϕ and ẽ we see that

(ϕ−(t∗k), ẽ
−(t∗k)) − (ϕ+(t∗k), ẽ

+(t∗k)) (6.13)

=

∫

x≤1

(

ϕ−(t∗k)ẽ
−(t∗k) − ϕ+(t∗k)ẽ

+(t∗k)
)

dx

+

∫

x>1

(

ϕ−(t∗k)ẽ
−(t∗k) − ϕ+(t∗k)ẽ

+(t∗k)
)

dx

= ẽ−(t∗k, 1)
∫

x≤1
ϕ−(t∗k) dx−

∫

x≤1
δ1(x)

(
∫

η≤1
ϕ−(t∗k) dη + Iφ(t∗k)

)

ẽ+(t∗k) dx

+

∫

x>1

(

ϕ−(t∗k)ẽ
−(t∗k) − ϕ−(t∗k)ẽ

+(t∗k)
)

dx

= ẽ−(t∗k, 1)
∫

x≤1
ϕ−(t∗k) dx− ẽ+(t∗k, 1)

∫

x≤1
ϕ−(t∗k) dx− ẽ+(t∗k, 1)Iφ(t∗k)

= −ẽ−(t∗k, 1)Iφ(t∗k)

Now, using integration by parts, moving derivatives from ϕ to e in equation
(6.11), and using equations (6.12) and (6.13), we get

∑

k

(

ẽ−(t∗k, 1)Iφ(t∗k)
)

(6.14)

= −
∑

k

∫ t∗
k

t∗
k−1

(

(ϕ, et) − ν(ϕ, e) − (r − ν + σ2)
(

xϕ, ex
)

− σ2

2

(

x2ϕx, ex
)

)

dt,

or recalling the notations (5.27) and (5.28) and neglecting the boundary
terms

∑

k

(

ẽ−(t∗k, 1)Iφ(t∗k)
)

= −
∑

k

∫ t∗
k

t∗
k−1

(mf (et, ϕ) + af (e, ϕ)) . (6.15)

Summing up, considering equations (6.9) and (6.15) we have thus proved
the error representation formula for G.

6.2 Examples

Using the same error estimation algorithm as for the European option we
are able to calculate the error in desired quantities for different values of
the parameters. The only difference is that the error representation formula
(6.3) for the solution G consists of two parts, one from the problem for G
and from the problem for F . We calculate the contribution from the two
parts separately. This makes it possible to identify regions where a fine mesh
is necessary.
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In all cases below we have used the boundary conditions ϕ(0, x) =
δ1(x, ε), where ε = 5000, and φ(0, s) = δ1(s, ε), where ε = 1. Figures 7 and
8 show dual solutions for the weekly and monthly sampled floating strike
lookback put options respectively. We see that the sampling frequency has
a significant effect on the dual solution.
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Figure 7: To the left, φ, computed using the cG(2)-dG(1) method, with 400
space points and 200 time points. To the right ϕ, computed using 200 space
and time points. Below, contour plots using 30 levels. In both cases σ = 0.2,
r = 0.05, q = 0.0, and weekly sampling was used.
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Figure 8: To the left, φ, computed using the cG(2)-dG(1) method, with 400
space points and 200 time points. To the right ϕ, computed using 200 space
and time points. Below, contour plots using 30 levels. In both cases σ = 0.3,
r = 0.05, q = 0.0, and monthly sampling was used.

In Figure 9, we see the contributions to the error representation formula
(6.3) from each space-time slab. The dual was calculated using the cG(2)-
dG(1) method, and the primal using the cG(1)-cG(1) method. The dual
mesh was thirty-two times finer in each direction. The value of the functional
of the error found by using the error representation formula was in this case
0.0042. We also note that the contribution to the error differs from zero
only within a short interval of Ω, just as the dual solution. We now proceed
to calculate adaptive meshes.

26



PSfrag replacements

t

ξ

value

Figure 9: The contributions to the functional of the error for the weekly
sampled fixed strike lookback put when σ = 0.1, r = 0.10 and q = 0.0. The
dual was computed using the cG(2)-dG(1) method with 800 space and time
points, and the primal using the cG(1)-dG(1) method with 25 space and
time points.

7 Adaptive Mesh Refinement for the Fixed Strike

Lookback Option

Extending the mesh refinement algorithm used in the case of the European
option to this coupled problem is quite straight forward. The error repre-
sentation formula (6.3) for the solution G consists of two parts, one from the
problem for G and from the problem for F . We apply the mesh refinement
algorithm to the two parts separately. That is, we refine the two meshes
separately.

In Figure 10, we see meshes resulting from using the mesh refinement
algorithm in the case of a fixed strike lookback put option with weekly
sampling. In this case Q was set to 10%. Two successive refinements were
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made on each mesh, starting from a sparse mesh with 25 nodes in time
and space. The final meshes has only 30 nodes in each direction, but the
functional of the error has decreased by a factor 23. The dual was calculated
using a fine mesh with 800 nodes in time and space.
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Figure 10: The resulting meshes using the mesh refinement algorithm, for
a fixed strike lookback option with T = 0.5, σ = 0.1, and r = 0.1, when
ψ = δ1(ξ, ε). To the left the mesh for f and to the right the mesh for g.
The dual was computed using the cG(2)-cG(1) and the primal using the
cG(1)-dG(1) method. Two successive refinements were made.

8 Results

8.1 The European Option

We begin by validating our method against the known exact solution for
the European call option. Recalling the previous calculations in Example
1 in Section 3.3 we know that the error representation formula works and
is accurate. The value of the functional of the error found by using the
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error representation formula in the test example on the European option
was 0.2033, in excellent agreement with the real value of the functional
found by using Black-Scholes formula, which was 0.2030. Table 1 compares
values of the European call calculated using the cG(1)-cG(1) finite element
method mentioned above, with the analytical value derived by Black-Scholes
formula. We see that the FE method is very stable and has a maximum rel-
ative error of 0.1 percent when 400 time points are used. Figure 11 shows

σ S(0) FE(200) FE(400) Black-Scholes Relative error (%)

90 0.8067 0.8093 0.8101 0.107
0.10 100 5.8478 5.8496 5.8503 0.011

110 14.9287 14.9297 14.9300 0.002

90 3.0487 3.0500 3.0504 0.014
0.20 100 8.2767 8.2775 8.2778 0.003

110 16.0177 16.0184 16.0187 0.002

90 5.5198 5.5206 5.5209 0.005
0.30 100 10.9058 10.9063 10.9065 0.002

110 18.0464 18.0468 18.0469 0.0008

Table 1: The European call calculated using the cG(1)-cG(1) method com-
pared to Black-Scholes analytical value when r = 0.1, q = 0.0, T = 0.5,
K = 100, and t = 0. The number of time and space points is given in paren-
thesis. The relative error is between the FE(400) solution and the analytical
solution.

the finite element solution calculated using a the adapted mesh in the pre-
vious section. The mesh is finer close to time t = 0 and close to the strike
price, but it is not centered around the strike price. In this way the same
accuracy is achieved in less degrees of freedom. The original uniform mesh
has 20 nodes in time and space. By using the error representation formula
the error was calculated to 0.2 for the uniform mesh. The adapted mesh
has only 27 nodes in the spatial direction, but the error has decreased by a
factor 70 to 0.0028.
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Figure 11: The finite element solution U , when σ = 0.1, q = 0.0, K = 100,
and r = 0.10. Computed using the cG(1)-cG(1) method on an adapted mesh
with 27 time and space points.

8.2 The Fixed Strike Lookback Option

Table 2 compares values of the discrete fixed strike lookback put option
calculated with the finite difference solution in [1], with the finite element
solution computed in this paper. As a comparison values of the Monte Carlo
solution are given, also these from [1]. The finite element solution developed
here shows sufficient precision already for the sparse mesh, whereas the finite
difference solution needs a much finer mesh. The reason for this is probably
that we choose an individual mesh for each of the two coupled problems.

By using the mesh refinement algorithm an adapted mesh was calculated
for the example of the weekly sampled fixed strike lookback put option. The
meshes for the two coupled problems were both finer close to the center of Ω.
The mesh for f was finer towards time t = 0 and t = T , whereas the mesh
for g was finer close to t = 0. In this way the same accuracy is achieved in
less degrees of freedom. The original uniform mesh has 25 nodes in time and
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space. By using the error representation formula the functional of the error
was calculated to 0.89 for the uniform mesh. The adapted mesh has only 30
nodes in each direction, but the functional of the error has decreased by a
factor 23 to 0.039.

K MC FD(500) FD(100) FE(500) FE(100)

90.0 24.41 24.40 24.27 24.40 24.38
92.5 22.07 22.06 21.93 22.06 22.04
95.0 19.78 19.77 19.64 19.77 19.75
97.5 17.57 17.56 17.43 17.56 17.55
100.0 15.48 15.47 15.34 15.47 15.45
102.5 13.53 13.52 13.39 13.52 13.51
105.0 11.75 11.74 11.62 11.75 11.73
107.5 10.14 10.14 10.03 10.14 10.13
110.0 8.70 8.71 8.62 8.70 8.70

Table 2: The fixed strike lookback put option when when r = 0.05, q = 0.0,
T = 1.0, t = 0.0, and S(0)=100. MC refers to Monte Carlo solution, FD
refers to the finite difference solution in [1], and FE refers to the finite
element solution computed in this paper. The number of time and space
points is given in parenthesis. Sampling is made at times 0.1, 0.2, . . . , 1.0.

Figure 12 shows the value of the monthly sampled lookback put option.

9 Conclusions

The presented a posteriori error estimation formula is verified in the case of
the European option were we have access to an analytical solution. The error
estimation works well for both European and fixed strike lookback options.
The uses of adapted meshes gives superior accuracy and performance than
using uniform meshes. By using individual meshes for the two coupled
equations in the case of the fixed strike lookback option we achieve better
accuracy already for sparse meshes. The technique of using a system of two
coupled dual problems was first presented in [8]. Similarly results has been
exploited by Målqqvist in [14].
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Figure 12: The monthly sampled lookback put option, computed using the
cG(1)-cG(1) method with 200 space and time points. Parameter values are
σ = 0.3, r = 0.05, q = 0.0, T = 0.5, and t = 0.0.
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Valuing Asian Options using the Finite

Element Method and Duality Techniques
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Abstract

The main objective of this paper is to develop an adaptive finite
element method for computation of the values, and different sensitivity
measures, of the Asian option with both fixed and floating strike. The
pricing is based on Black-Scholes PDE-model and a method developed
by Večeř were the resulting PDE:s are of parabolic type in one spatial
dimension and can be applied to both continuous and discrete Asian
options. We propose using an adaptive finite element method which is
based on a posteriori estimates of the error in desired quantities, which
we derive using duality techniques. The a posteriori error estimates are
tested and verified, and are used to calculate optimal meshes for each
type of option. The use of adapted meshes gives superior accuracy and
performance with less degrees of freedom than using uniform meshes.
The suggested adaptive finite element method is stable, gives fast and
accurate results, and can be applied to other types of options as well.

1 Introduction

Background: The Asian option was invented by Phelim P. Boyle and David
Emanuel in 1979, but The Journal of Finance rejected their paper since the
asset was not traded at that time (private communication). Asian options
are securities with payoffs which depend on the average of the underlying
stock price over some time interval. They are commonly traded and are
often relatively inexpensive compared to European calls. Asian options were
introduced partly to avoid a problem common for European options, where
the speculators could drive up the gains from the option by manipulating
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†Professor of Applied Mathematics, Corresponding author, Department of Mathemat-
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the price of the underlying asset near to the maturity date (see Bergman
[5], or Wall Street Journal, Jan. 21, 1982, p. 4). The name Asian option
probably originates from the Tokyo office of Bankers Trust, where it first
was offered (see Nelken [13]).

Previous work: No general analytical price formula is known for the av-
erage rate option, on the other hand several approximations that produce
closed form expressions have appeared, such as Thompson, [16], who pro-
vides tight analytical bounds the price of the Asian option. Geman and Yor
computed the Laplace transform of the Asian option price, but numerical in-
version remains problematic for low volatility and short maturity cases (see
Fu Madan and Wang [9]). Linetski [12], has derived a new integral formula
for the continuous sampled Asian option, which also is slowly convergent for
low volatility cases. Monte Carlo simulation works well, but sometimes it is
computationally expensive.

In general, the price of an Asian option can be found by solving a PDE
in two space dimension as noted by Ingersoll [11]. However this PDE often
gives oscillatory solutions. Ingersoll also notes that a change of variable
gives a one-dimensional PDE for the floating strike Asian option. Rogers
and Shi [14], presented a one-dimensional PDE that can model both fixed
and floating strike Asian options. They also computed lower and upper
bounds for the price of the Asian option, where the lower bound is very
accurate. Their PDE is also difficult to solve numerically, since the diffusion
term is very small. Zvan, Forsyth and Vetzal [20], suggest a method based
on computational fluid dynamics techniques to overcome this difficulty. In
[3] Andreasen applied the Rogers-Shi reduction to the discrete Asian option
with very good results.

Shreve and Večeř [15], shows that the arithmetic Asian option (both with
fixed and floating strike) is a special case of an option on a traded account.
Options on a traded account generalize the concept of many options (pass-
port, European, American and vacation) and the same pricing techniques
can be used to price the Asian option. The resulting PDE:s for the price of
Asian options are of parabolic type with one space-dimension and they are
easy to solve and give fast and accurate results. Foufas applied the Finite
Element (FE) method to this PDE in [8]. Later Večeř [19], presented an even
simpler two-term one-dimensional PDE for the arithmetic Asian option with
general dividends. However, the FE formulation of this equation is almost
the same as the FE formulation of the three term PDE introduced by Shreve
and Večeř. The only difference is one of the coefficients in the FE problem
formulation, see Section 3. Recently Topper [17], applied the FE method
to Večeřs PDE. As pointed out by Topper the FE approach has several ad-
vantages compared to other numerical techniques such as Finite Differences
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(FD) techniques. For example, using the FE method one receives a solution
in the entire domain, not only in isolated nodes as in FD codes. FE codes
can also incorporate different kinds of boundary conditions in an easy way.
Other important advantages of the FE technique are that it can easily deal
with high curvature and irregular shapes of the computational domain. One
of the most important advantages in practice is that the sensitivity measures,
or the so called greeks, can be calculated more exactly using the FE method.

New contributions: The Asian option is priced using the Black-Scholes
PDE-model. The resulting PDE:s are of parabolic type in one spatial dimen-
sion. The numerical computation is made using an adaptive finite element
method allowing variable resolution in space and time. Whereas Topper uses
a commercial FE solver (PDEase2DTM ) with local mesh refinements we use
our own code based on the concept of duality techniques. This technology
has to our knowledge not been used before on this type of problems.

In practice one is only interested in the price, and it’s derivatives, in
one or a few points. Using this criteria, the choice of computational mesh
is based on a posteriori estimates of the error in desired quantities, which
we derive using duality techniques. In contrast to element based indica-
tors dual techniques allow us to estimate the error in user specified goal
quantities expressed by linear functionals which is particularly suitable for
financial applications where we are mainly interested in the solution and its
derivatives in specific points. For an overview of different a posteriori error
estimation techniques we refer to Bangert and Rannacher [4], Ainsworth and
Oden [1], and the references therein.

The dual a posteriori error estimation techniques are shown to be very
useful and simple. The presented a posteriori error estimation formula is
tested and verified in the case of the European option. It is then used to
perform mesh refinements in both time and space for the Asian option. This
makes it possible to calculate an optimal mesh for each type of option, which
dramatically reduces the error without noticeably enhancing the computa-
tional effort. The suggested adaptive finite element method is stable and
gives fast and accurate results. The technique is general and can be ap-
plied to other types of options, such as the floating and fixed strike lookback
options studied in a forthcoming paper by the authors.

Outline: In Section 2 we define different kinds of Asian options and present
a pricing PDE for arithmetic Asian options. In Section 3 we formulate the
adaptive finite element method and derive an a posteriori error estimation.
We also test and verify the a posteriori error estimation formula and give
some examples. In Section 4 we present an adaptive mesh refinement al-
gorithm based on the a posteriori error estimates. Then the sensitivity
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measures, or so called greeks, are presented in Section 5. Finally, in Section
6 we give some numerical results.

2 The Asian Option

2.1 Classification

Different kinds of averages are used, resulting in different types of Asian
options, with different values. The method of sampling is also important. A
continuous sampling may give easier calculations, but in reality the prices
are mostly discretely sampled, and therefore discrete sampling is the most
interesting case. The geometric Asian option with time of maturity T and
strike price K has the payoff

max

(

N
∏

k=1

S(tk)
1/N −K, 0

)

, (2.1)

where 0 < t1 < t2 < · · · < tN = T . For this option one can use the Black-
Scholes framework to determine a closed-form pricing formula. Note that if
N = 1 the option is reduced to a European call.
The average rate call with strike price K and time of maturity T has the
payoff

max

(

1

T

∫ T

0
S(t)dt−K, 0

)

, (2.2)

while the discrete average rate call with strike price K and time of maturity
T has the payoff

max

(

1

N

N
∑

k=1

S(tk) −K, 0

)

, (2.3)

where 0 < t1 < t2 < · · · < tN = T . There are no known closed-form pricing
formulas for average rate options, but a variety of numerical techniques have
been developed to find the corresponding prices.

The average rate call is cheaper than the European call at the writing
date, see Table 1 and Theorem 2.1 in Section 2.4.

There are also variants of the Asian options mentioned above. For a
floating strike Asian option the strike K in (2.2) and (2.3) is replaced by
the spot price S(T ) at maturity. The corresponding options are often called
average strike put and discrete average strike put respectively.
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2.2 Pricing Arithmetic Asian Options

This article mainly focuses on an article written by Večeř [19]. Here we
present a short derivation of a pricing PDE for the arithmetic Asian option
following the exposition in [19]. For simplicity we consider the case with
continuous dividends and continuous sampling. The changes in the case of
general dividends and discrete sampling are small. The details can be found
in [19].

As noted by Večeř the general payoff of the Asian option can be written
as

(S̄T −K1ST −K2)
+ or (K2 −K1ST − S̄T )+, (2.4)

where S̄T = 1
T

∫ T

0 Stdt. Because of the Asian Put-Call parity

e−rTE
[

(S̄T −K1ST −K2)
+
]

− e−rTE
[

(K2 +K1ST − S̄T )+
]

(2.5)

= e−rTE
[

S̄T −K1ST −K2

]

=
1

(r − γ)T
(e−γT − e−rT )S0 −K1e

−γTS0 − e−rTK2, (2.6)

it is enough to compute the value for the Asian option with the payoff
(S̄T −K1ST −K2)

+, that is for the fixed strike Asian call option if we choose
K1 = 0, and for the floating strike Asian put option if choose K2 = 0.

Let the underlying asset evolve under the risk neutral measure according
to the equation

dSt = St((r − γ)dt+ σdWt), (2.7)

where r is the interest rate, γ is a continuous dividend yield, and σ is the
volatility of the underlying asset. Let also

qt =
1

(r − γ)T
(e−γ(T−t) − e−r(T−t)) (2.8)

denote the trading strategy, the number of shares held at time t, and let the
wealth evolve according to the following self-financing strategy

dXt = qtdSt + r(Xt − qtSt)dt+ qtγStdt

= rXtdt+ qt(dSt − rStdt+ γStdt), (2.9)

with the initial wealth

X0 =
1

(r − γ)T
(e−γT − e−rT )S0 − e−rTK2 = q0S0 − e−rTK2. (2.10)
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We then have that

X(T ) = erTX(0) +

∫ T

0
qte

r(T−t) (dSt − rStdt+ γStdt) (2.11)

= erTX(0) + qTST − erT q0S0 +

∫ T

0
er(T−t)St

(

qtγdt− q′tdt
)

=
1

T

∫ T

0
Stdt−K2 = S̄T −K2.

Remark 2.1 By choosing qt = eγ(t−T ) we obtain the ordinary European call
option, which can be seen by examining equation (2.11). This result is used
later on to verify the a posteriori error estimation results, since there exists
an analytical solution to the European option problem.

2.3 A Pricing Partial Differential Equation

Following Večeř we use the change of numeraire technique to reduce the
dimensionality of the problem by introducing the process

Zt =
Xt

eγtSt
. (2.12)

Using Ito’s lemma we get that

dZt = (Zt − e−γT qt)dt− (Zt − e−γT qt)σdWt (2.13)

= −(Zt − e−γT qt)σdW̃t,

where W̃t = −σt+Wt is a Brownian motion under the numeraire measure.
The price of the Asian call option, V (t, St,K1,K2), can at time t = 0 be
represented as

V (0, S0,K1,K2) = e−rTE
[

(XT −K1ST )+
]

= S0Ẽ
[

(ZT −K1)
+
]

. (2.14)

Introducing
ū(0, Z0) = Ẽ

[

(ZT −K1)
+
]

, (2.15)

where

Z0 =
X0

S0
=

1

(r − γ)T
(e−γT − e−rT ) − e−rT K2

S0
, (2.16)

we can write the price of the option as

V (0, S0,K1,K2) = S0ū(0, Z0). (2.17)

It can be shown that ū is the solution to the following partial differential
equation

ūt +
1

2

(

z − e−γt
)2
σ2ūzz = 0, (2.18)

ū(T, z) = (z −K1)
+.
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2.4 Comparison of European and Asian Options

At the writing date, the average rate call is cheaper than the European call
(cf. the Geman and Yor paper [10]). We here present, to our knowledge, a
new and simpler proof of this statement than the one presented in [2].

Theorem 2.1 If ρ(t) ≥ 0 and
∫ T

0 ρ(t)dt = 1, then for any T > 0,

e−rTE

[

(

∫ T

0
S(λ)ρ(λ)dλ −K

)+
| F0

]

< e−rTE

[

(

S(T ) −K
)+

| F0

]

.

Proof. Note that E[X | F0] = E[X] so we omit the σ-algebra F0 in the
following. Note also that

E
[

(

S(T0) −K
)+
]

< E
[

(

S(T ) −K
)+
]

, if T0 < T,

since an American call price is the same as the price of the corresponding
European call when the underlying stock does not pay dividends. Now

E

[

(

∫ T

0
S(λ)ρ(λ)dλ −K

)+
]

= E

[

(

∫ T

0

(

S(λ) −K
)

ρ(λ)dλ
)+
]

≤ E

[
∫ T

0

(

S(λ) −K
)+
ρ(λ)dλ

]

=

∫ T

0
ρ(λ)E

[

(

S(λ) −K
)+
]

dλ

<

∫ T

0
ρ(λ)E

[

(

S(T ) −K
)+
]

dλ =

∫ T

0
ρ(λ)dλE

[

(

S(T ) −K
)+
]

= E
[

(

S(λ) −K
)+
]

,

and the Theorem follows at once.
A more detailed comparison of European and Asian options and their sen-
sitivity measures can be found in [2].

Average rate call European call

K\σ 0.10 0.20 0.30 0.10 0.20 0.30

90 13.73 14.14 15.24 14.63 16.70 19.70
100 5.26 7.04 9.06 6.81 10.45 14.23
110 0.73 2.70 4.86 2.17 6.04 10.02

Table 1: The European call compared to the average rate call for various
strikes Kand volatilities σ when r = 0.05, T = 1 and t = 0.
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3 An Adaptive Finite Element Method for the

Asian Option

Since there probably does not exist a closed form solution to the PDE (2.18),
the price of the Asian option must be obtained numerically. The method
used in this article is the finite element method as presented below.

3.1 Variational Formulation

So far we have studied the pricing PDE for Asian options valid for z ∈ R,
but in order to construct a computational mesh we introduce a bounded
interval Ω = [z0, zJ ] ⊂ R

+ with boundary ∂Ω = {z0, zJ}. We define the
usual Hilbert space

H1(Ω) = {v :

∫

Ω
(|∇v|2 + v2)dz <∞}, (3.1)

and let W be the space of functions that are square integrable in time and
belongs to H1(Ω) in space, that is

W = L2
(

[0, T ],H1(Ω)
)

. (3.2)

We denote by u the solution to (2.18) on Ω subject to the Dirichlet boundary
conditions u(t, z0) = 0 and u(t, zJ ) = zJ on ∂Ω. We also use the notation
(u, v)Ω =

∫

Ω uvdz, and (u, v)∂Ω = u(zJ)v(zJ ) − u(z0)v(z0). Multiplying
equation (2.18) by the test function {v ∈ W : v = 0 on ∂Ω} and integrating
on Ω × [0, T ] we obtain

∫ T

0

(

(ut, v)Ω +
σ2

2

(

(z − e−γtqt)
2uzz, v

)

Ω

)

dt = 0. (3.3)

Using integration by parts we get

(

(z − e−γtqt)
2uzz, v

)

Ω
=
(

(z − e−γtqt)
2uz, v

)

∂Ω
(3.4)

− 2
(

(z − e−γtqt)uz, v
)

Ω
−
(

(z − e−γtqt)
2uz, vz

)

Ω
.

Thus equation (3.3) becomes

∫ T

0

(

(ut, v)Ω − σ2
(

(z − e−γtqt)uz, v
)

Ω

)

dt (3.5)

−
∫ T

0

σ2

2

(

(z − e−γtqt)
2uz, vz

)

Ω
dt = 0,
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since v = 0 on ∂Ω. Introducing the Dirichlet boundary conditions u(t, z0) =
0 and u(t, zJ ) = zJ on ∂Ω (which is also used by Večeř [19]) we get the
following problem: find u ∈ W such that







∫ T

0

(

(ut, v)Ω + aΩ(u,v)

)

dt = 0,

u(T, z) = z+,

u(t, z0) = 0, u(t, zJ) = zJ ,

(3.6)

for every {v ∈ W : v = 0 on ∂Ω}, where

aΩ(u, v) = −σ2
(

(z − e−γtqt)uz, v
)

Ω
− σ2

2

(

(z − e−γtqt)
2uz, vz

)

Ω
. (3.7)

Remark 3.1 The variational formulation of the three term PDE developed
by Shreve and Večeř [15], used to value options on a traded account and
Asian options, is in the case of no dividends (γ = 0) given by the same
expression as above but with the following aΩ(u, v)

aΩ(u, v) = (r + σ2)
(

(q − z)uz , v
)

Ω
− σ2

2

(

(q − z)2uz, vz

)

Ω
. (3.8)

The only difference between this expression and (3.7) is the coefficient in
front of one of the terms. For a derivation we refer to [8].

This means that the finite element problem presented in this paper is
almost exactly the same as the problem received by instead studying the three
term PDE derived by Shreve and Večeř. The two term PDE appears simpler,
but from a variational point of view the two equations are essentially the
same.

3.2 Finite Element Approximation

The finite element method is based on solution of the variational problem
(3.6) with W replaced by a finite dimensional function space of piecewise
polynomials in space and time. For background on the finite element method
see for instance [6].

We now partition [0, T ] as 0 = t0 < t1 < t2 < · · · < tN = T , denoting
each time interval by In = (tn−1, tn] and each time step by kn = tn − tn−1.
Similarly we partition Ω as z0 < z1 < z2 < · · · < zJ , denoting each spatial
interval by κj = [zj−1, zj) and the length of each interval by hj = zj − zj−1.

In space, we let Vp ⊂ H1(Ω) denote the space of piecewise continuous
functions of order p. On each space-time slab Sn = In × Ω, we define

Wq
n = {w(t, z) : w(t, z) =

q
∑

j=0

tjvj(z), vj ∈ Vp, (t, z) ∈ Sn}. (3.9)

9
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Figure 1: Space-time discretization.

Let Wq ⊂ W denote the space of functions defined on [0, T ] × Ω such that
v |Sn

∈ Wq
n for 1 ≤ n ≤ N . For simplicity, we only give details for the con-

tinuous Galerkin method cG(p)-cG(q), (see e.g. [6] or [7]) which is defined
by the following discrete version of equation (3.6). Find U ∈ Wq such that
for 1 ≤ n ≤ N















∫

In

(

(Ut, v)Ω + aΩ(U, v)
)

dt = 0, ∀ {v ∈W 0
n : v = 0 on ∂Ω},

U−(tn) = U+(tn), n = N − 1, . . . , 1,
U−(tN ) = uT ,

U(tn, z0) = 0, U(tn, zJ ) = zJ , n = N − 1, . . . , 1,

(3.10)

where U±(tn) = limε→0,ε>0U(tn ± ε). In the cG(1) method the approxima-
tion U of u is continuous piecewise linear in time and space, while the test
functions v are continuous linear in space and piecewise constant in time.
It is also possible to use a discontinuous method in time, we refer to [6], for
details on the resulting discontinuous Galerkin method, cG(p)-dG(q).

3.3 A Posteriori Error Estimation

3.3.1 Error Representation Formula

Since we are only interested in the solution, and it’s derivatives, in one or a
few points of Ω at time t = 0, we wish to find a mesh tailored for efficient
and accurate solution at the points of interest. In order to find such a mesh
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we derive a posteriori error estimates of the error in the points of interest
using duality techniques (see [6] or [7]).

To represent the error in a linear functional, (u−U,ψ), we introduce the
continuous dual problem for equation (2.18). Find φ ∈ W such that

{

−φt + σ2φ+ 2σ2(z − e−γtqt)φz + σ2

2 (z − e−γtqt)
2φzz = 0,

φ(0, z) = ψ.
(3.11)

For simplicity we consider this equation over the whole space interval, so
we don’t have to consider any boundary conditions. We extend the finite
element solution U outside Ω = [z0, zJ ] by defining











Ū = 0, z ≤ z0,

Ū = U, z0 ≤ z ≤ zJ ,

Ū = z, z ≥ zJ .

(3.12)

Furthermore, we also extend the previous notation and let (u, v) = (u, v)R,
and a(u, v) = aR(u, v) denotes the bilinear forms extended from Ω to R.
Multiplying with the error e = ū− Ū ∈ W and integrating in space and time
we get

∫ T

0

(

− (φt, e) + σ2(φ, e) + 2σ2
(

(z − e−γtqt)φz, e
)

)

dt (3.13)

+

∫ T

0

(σ2

2

(

(z − e−γtqt)
2φzz, e

)

)

dt = 0

Using integration by parts we get

− (φ(T ), e(T )) + (φ(0), e(0)) (3.14)

+

∫ T

0

(

(φ, et) + σ2(φ, e) − 2σ2
(

(z − e−γtqt)φ, ez
)

)

dt

+

∫ T

0

(

− 2σ2(φ, e) − σ2

2

(

(z − e−γtqt)
2φz, ez

)

− σ2
(

(z − e−γtqt)φz, e
)

)

dt = 0.

Note that integration by parts gives

σ2
(

(z − e−γtqt)φz, e
)

= −σ2
(

(z − e−γtqt)φ, ez
)

− σ2
(

φ, e
)

, (3.15)

using this identity, φ(0) = ψ, and e(T ) = 0 we get

(ψ, e(0)) = (3.16)

−
∫ T

0

(

(φ, et) − σ2
(

(z − e−γtqt)φ, ez
)

− σ2

2

(

(z − e−γtqt)
2φz, ez

)

)

dt.
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Recalling the earlier defined bilinear form (3.7) we can also write

(ψ, e(0)) = −
∫ T

0

(

(et, φ) + a(e, φ)
)

dt. (3.17)

Since e = u− U and u solves equation (3.6) we get the error representation
formula

(ψ, e(0)) =

∫ T

0

(

(Ūt, φ) + a(Ū , φ)
)

dt (3.18)

If we for example are interested in the error at z = zα, we choose ψ = δzα
(z),

and get the error representation formula

e(0, zα) =

∫ T

0

(

(Ūt, φ) + a(Ū , φ)
)

dt. (3.19)

If one instead is interested in derivatives of the solution, then a different ψ
is chosen, as shown later on.

3.3.2 Estimating the Error

Let π : W → Wq−1 be the L2 projection in time, and let P be a suitable
interpolation operator into Vp in space. Thus πP is an interpolation operator
such that πPφ ∈ Wq−1. Then using Galerkin orthogonality (3.10), we can
replace φ by φ− πPφ = φ− Pφ+ Pφ− πPφ. Note that Pφ = 0 on R \ Ω.
Equation (3.18) can then be written as

(ψ, e(0)) = −
∫ T

0

(

(Ūt, φ− Pφ) + a(Ū , φ− Pφ)
)

dt (3.20)

−
∫ T

0

(

(Ūt, Pφ− πPφ) + a(Ū , Pφ− πPφ)
)

dt

= −
∑

n

∑

j

∫

In

(

Rs
κj

(Ū), φ − Pφ
)

dt

−
∑

n

∫

In

(

Rt(Ū ), Pφ− πPφ
)

dt−
∑

n

∫

In

(

Rb(Ū ), φ
)

dt,

where

(Rs
κj

(Ū), φ− Pφ) = − σ2

4
((z − e−γtqt)

2[Ūz ], φ− Pφ)∂κj\∂Ω (3.21)

+ (Ūt +
σ2

2
(z − e−γtqt)

2Ūzz, φ− Pφ)κj
,
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is the space residual,

(Rt(Ū), Pφ− πPφ) = (Ūt +
σ2

2
(z − e−γtqt)

2Ūzz, Pφ− πPφ)κj
, (3.22)

is the time residual, and

(Rb(Ū), φ) = −σ
2

2
((z − e−γtqt)

2[Ūz], φ)∂Ω, (3.23)

is the boundary residual accounting for the effect of restricting the computa-
tion from R to the finite interval Ω. Note that the residuals are zero outside
of Ω since u = z and u = 0 satiesfies equation (2.18). Here we used the
notation [Ūz] to denote the jump in Ūz over element interfaces.

Finally, we present an algorithm for calculating the error.

Error estimation algorithm:

• Compute an approximation Φ of φ using an enriched finite element
space, for instance higher order approximation.

• Compute PΦ.

• Compute
∫

In

(

Rs
κj

(U), φ−Pφ
)

dt using quadrature in space and time

for each element κj and time step.

• Compute πPΦ.

• Compute
∫

In

(

Rt(U), Pφ − πPφ
)

dt using quadrature in space and

time for each time step.

3.3.3 Examples

Using the error estimation algorithm in the previous section we are able to
calculate the error in desired quantities for different values of the parame-
ters. This makes it possible to identify regions where a fine mesh is necessary.

Example 1. To estimate the error at z = zα we let ψ = δzα
(z) in (3.11).

In order to implement this condition we use the approximation

δzα
(z) ≈ 1

ε
√
π
e−((z−zα)/ε)2 := δzα

(z, ε), (3.24)
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where ε is a parameter that controls how well the delta function is approx-
imated. In this example we have used ε = 0.0129. As seen from Figure 2,
the solution to the dual problem differs from zero only within a short inter-
val of Ω. We now check that the error representation formula really works

PSfrag replacements

time

z

value

Figure 2: The dual solution φ of an average rate call option. Above on the
left, φ, for ψ = δ0(z, ε) with σ = 0.1 and r = 0.1, and r=0.1. Below on the
left, φ, for σ = 0.3 and r = 0.1. On the right, contour plots using 30 levels.
Solutions computed using the cG(2)-dG(1) method with 200 space and time
points.

by testing it in the case of the European option, were we know the exact
solution. Recall that we get the value of an European call option by letting
q = eγ(t−T ) = 1 in (2.18). By using the error estimation algorithm in the
previous section we can get an approximation of the functional of the error,
that is an approximation of the right hand side of equation (3.18). This
can then be compared to calculating the left hand side of equation (3.18)
directly using the real error in the approximate solution, found by using
Black-Scholes formula and equation (2.17). The dual solution is calculated
on a finer mesh, and using higher order approximations. The primal was
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calculated using the cG(1)-cG(1) method with 640 space and time points,
and the dual using the cG(2)-dG(1) method with 40 space and time points.
The dual mesh was sixteen times finer in each direction. The value of the
functional of the error found by using the error representation formula was
in this case 0.000134, in excellent agreement with the real value, that is the
value of the left hand side of equation (3.18), which was 0.000133.

We now proceed to do the same for the Asian option. By using the error
estimation algorithm in the previous section we can get an approximation
of the functional of the error, that is an approximation of the right hand
side of equation (3.18). The dual solution is calculated on a finer mesh, and
using higher order approximations. In Figure 3, we see the contributions to
error formula (3.18) from each space-time slab. The primal was calculated
using the cG(1)-cG(1) method, and the dual using the cG(2)-dG(1) method.
The dual mesh was sixteen times finer in each direction. The value of the
functional of the error found by using the error representation formula was
in this case 0.0025. We also note that the contribution to the error differs
from zero only within a short interval of Ω, just as the dual solution. This
means that we may use a more sparse mesh where the contribution to the
error is small and thus save computation time. The solution is larger near
time t = 0, implying that one should use a finer time step there. Obviously
the result depends on the value of the volatility σ, and the other parameters,
which can be seen from the plot of the dual solution. We will later see how
we can use the error representation formula to derive an optimal mesh for
each problem.
Example 2. In order to make a good estimation of the derivative of the
solution, which is interesting when calculating the greek delta (see Section
5), we need to study a different dual problem. We approximate the derivative
using the central difference formula

∂u

∂z
≈ u(z + µ) − u(z − µ)

2µ
:=

∂hu

∂z
. (3.25)

To estimate the error of the derivative of the solution at z = zα, uz(zα), we
thus choose

ψ(z) =
δzα

(z − µ) − δzα
(z + µ)

2µ
(3.26)

≈ δzα
(z − µ, ε) − δzα

(z + µ, ε)

2µ

in (3.11), for an appropriate choice of µ. The error in our estimation of the
derivative can be split into two parts

(

∂u

∂z
− ∂hU

∂z

)

=

(

∂u

∂z
− ∂hu

∂z

)

+

(

∂hu

∂z
− ∂hU

∂z

)

. (3.27)
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Figure 3: On the left, the contributions to the error of an average rate call
option for σ = 0.1, and r = 0.1, when ψ = δ0(z, ε). On the right, contour plot
using 30 levels. The dual was computed using the cG(2)-dG(1) method with
640 space and time points, and the primal using the cG(1)-cG(1) method
with 40 space and time points.

The first term corresponds to the error in (3.25), while the second can be
estimated using the a posteriori estimate. Figure 4 shows the dual solution
for this choice of ψ when α = 0, µ = 0.02 and ε = 0.0129. Figure 5
shows the contributions to the error estimation formula from each space-time
slab. The same numerical methods and meshes were used as in the previous
example. We see that this solution also is centrally oriented, implying that
the derivative has a local dependence.

4 Adaptive Mesh Refinement

Adaptive mesh refinement may be accomplished in many different ways.
Our goal not is to create the best adaptive method, since adaptivity would
be to slow to use in reality. Rather we wish to create an optimal mesh
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Figure 4: Above on the left, φ, for σ = 0.1, and r = 0.1, when ψ is chosen
as in example 2. Below on the left, φ, for σ = 0.3. On the right, contour
plots using 30 levels. Solutions computed using the cG(2)-dG(1) method
with 200 space and time points.

in advance for each case, so that when valuing an option we simply use a
suited pre-calculated mesh. This gives superior performance. In this section
we show how these meshes are calculated and what typical meshes look like.

Mesh refinement algorithm:

• Compute an approximation U of u using the FE method on a coarse
mesh.

• Compute the error in desired quantities by using the a posteriori error
estimation algorithm.

• Calculate the time and space averages of the contributions to the error
from each space-time slab. This gives us two vectors, one with time
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Figure 5: The contributions to the functional of the error of an average rate
call option for σ = 0.1, and r = 0.1, when ψ is chosen as in Example 2.
The dual was computed using the cG(2)-dG(1) method with 640 space and
time points, and the primal using the cG(1)-cG(1) method with 20 space
and time points.

averages and one with space averages.

• Identify the Q% largest elements in the space average vector, and re-
fine the corresponding time steps by dividing them in half.

• Identify the Q% largest elements in the time average vector, and refine
the corresponding spatial steps by dividing them in half.

• Compute a new FE approximation U on the refined mesh.

• Repeat until minimum mesh size is reached.
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In Figure 6, we see a typical mesh resulting from using the mesh refinement
algorithm above. In this case Q was set to 10%. Three successive refine-
ments were made, starting from a sparse mesh with 20 nodes in time and
space. The final mesh has only 27 nodes in each direction, but the error has
decreased by a factor 25. The dual was calculated using a fine mesh with
640 nodes in time and space.
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Figure 6: The resulting mesh using the mesh refinement algorithm, cal-
culated for a average rate call option with σ = 0.1, and r = 0.1, when
ψ = δ0(z, ε). The dual was computed using the cG(2)-dG(1)and the primal
using the cG(1)-cG(1) method. Three successive refinements were made.

5 The Greeks

In order to hedge our Asian option, we need the sensitivity measures, or the
so called greeks. Recalling that Z0 = X0

S0
and that dX0

dS0
= q0 according to

equation (2.9), we get by direct calculation

∂Z0

∂S0
=

1

S0
(q0 − Z0). (5.1)
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Using the chain rule, equation (5.1), and that the price of the Asian option
is given in terms of u by the equation

V (0, S0,K1,K2) = S0u
(

0, Z0

)

, (5.2)

we get the three greeks at time t = 0

∆ =
∂V

∂S0
= u+ (q0 − Z0)

∂u

∂Z0
, (5.3)

Γ =
∂2V

∂S2
0

=
1

S0
(q0 − Z0)

2 ∂
2u

∂Z2
0

, (5.4)

Θ = −∂V
∂t

= −∂u
∂t
. (5.5)

In Figure 7 we see the delta of an average rate call at time t = 0 for various
strike prices K.
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Figure 7: The delta of an average rate call at time t = 0, with σ = 0.3,
T = 1, S0 = 100, and r = 0.1.

20



6 Results

The implementation was done in C++ on a Dell Inspiron PC (700MHz).
Many different meshes were used, with both uniform and adapted meshes.
In the following we will use z0 = −1 and zJ = 1, the accuracy is not improved
if a larger interval is used.

We begin by validating our method against the known exact solution for
the European call option. Recalling the previous calculations in Example 1
in Section 3.3.3 we know that the error representation formula works and is
accurate. The value of the functional of the error found by using the error
representation formula in the test example on the European option was
0.000134, in excellent agreement with the real value of the functional found
by using Black-Scholes formula, which was 0.000133. Table 2 compares
values of the European call calculated using the cG(1)-cG(1) finite element
method, with the analytical value derived by Black-Scholes formula. We see
that the FE method is very stable and has a maximum relative error of 0.06
percent when 400 time points are used.

σ K FE(200) FE(400) Black-Scholes Relative error (%)

90 14.6207 14.6268 14.6288 0.0137
0.10 100 6.7972 6.8030 6.8050 0.0294

110 2.1687 2.1726 2.1739 0.0598

90 16.6983 16.6981 16.6994 0.0078
0.20 100 10.4468 10.4496 10.4506 0.0096

110 6.0375 6.0395 6.0401 0.0099

90 19.6932 19.6965 19.6974 0.0046
0.30 100 14.2273 14.2304 14.2313 0.0063

110 10.0148 10.0189 10.0201 0.0120

Table 2: The European call calculated using the FE method with 200 and
400 time points compared to Black-Scholes analytical value when r = 0.05,
T = 1 and t = 0. The relative error is between the FE(400) solution and
the analytical solution.

In Figure 8 we see the average rate call option value calculated using the
adapted mesh from the previous section. The mesh is finer close to the time
t = 0 and in the center of the spatial interval Ω. In this way higher accuracy
is achieved without dramatically increasing the number of space and time
points in the mesh. The original uniform mesh has 20 nodes in time and
space. By using the error representation formula, the functional of the error
was calculated to 0.0025 for the uniform mesh. The adapted mesh has only
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27 nodes in each direction, but the functional of the error has decreased by
a factor 25 to 0.0001.
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Figure 8: An average rate call option with r = 0.10, σ = 0.10, T = 1 and
t = 0. Computed on an adapted mesh with 27 space and time points.

Table 3 compares the results of the method developed in this paper with
the results of Večeř [18], Zvan, Forsyth, and Vetzal [20], and Rogers, and Shi
[14]. To be consistent with their results a uniform mesh with same number
of time and space points (200 space points and 400 time points) was used in
the computation of the finite element results in Table 3. The Monte Carlo
results were obtained from Večeř [18], and the lower and upper bounds are
from Rogers and Shi [14]. The last column gives the value of the greek delta.
As seen from the table all methods are accurate and always give answers
within analytical bounds. The most important difference between them is
the computation time required to receive the results. It takes approximately
0.05 seconds of CPU time to calculate the price using this uniform mesh with
200 space points and 400 time points. Using an adapted mesh instead we
could achieve the same accuracy but with a coarser mesh, and thus speed
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up the calculation significantly.

σ K Foufas Večeř Zvan et al. Monte Carlo Lower Upper ∆

95 11.112 11.112 11.094 11.094 11.094 11.114 0.929
0.05 100 6.810 6.810 6.793 6.795 6.794 6.810 0.925

105 2.754 2.750 2.748 2.745 2.744 2.761 0.764

90 15.416 15.416 15.399 15.399 15.399 15.445 0.928
0.10 100 7.042 7.036 7.030 7.028 7.028 7.066 0.842

110 1.422 1.421 1.410 1.418 1.413 1.451 0.355

90 15.659 15.659 15.643 15.642 15.641 15.748 0.879
0.20 100 8.427 8.424 8.409 8.409 8.408 8.515 0.703

110 3.570 3.568 3.554 3.556 3.554 3.661 0.422

90 16.533 16.533 16.514 16.516 16.512 16.732 0.806
0.30 100 10.231 10.230 10.210 10.210 10.208 10.429 0.644

110 5.750 5.748 5.729 5.731 5.728 5.948 0.451

Table 3: Comparison of results of different methods for the average rate call
with r = 0.15, S0 = 100, T = 1 and t = 0. The Monte Carlo results are from
Večeř [18] and the lower and upper bounds are from Rogers and Shi [14]. ∆
refers to the value of the greek delta, calculated using the FEM method.
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A Note on the Connection Between the

Greeks and A Posteriori Error Analysis

Georgios Foufas∗ Mats G. Larson†

April 14, 2008

Abstract

In this paper we present a new connection between some of the
sensitivity measures, also known as the Greeks, and a finite element
based a posteriori error analysis. This is not only a nice feature of
the a posteriori error analysis but it also gives us an alternative way
of calculating these Greeks. The presented error estimation formula
splits the error in parts originating from how good the numerical ap-
proximation is and in parts originating from how well the parameters
are approximated. The study is based on the finite element method
applied to the European option problem, but the technique is general
and can be applied to other option valuation problems as well.

1 Introduction

The valuation of different types of derivative contracts is very important
in modern financial theory and practice. Not only the option price itself is
important to calculate in a fast a stable manner, but also certain sensitivity
measures, or the so called Greeks. The reason is that these Greeks are used
when hedging the options.

The finite element method is widely used in other fields as a tool for find-
ing approximate solutions to partial differential equations (PDE) as well as
of integral equations. It was developed in the 1950’s and 1960’s by engineers,
and was mainly used in structural mechanics, see e.g. [11] for an overview.
The finite element method also has a strong mathematical foundation in
functional analysis, see [1]. The mathematical foundation provides the tools
to derive analytical error estimates which can be used in a constructive way
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†Professor of Applied Mathematics, Corresponding author, Department of Mathemat-
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to improve the approximative solution. In finance it has not been used
that frequently yet compared to other methods such as the finite difference
method. Recently Topper [8] wrote an excellent book applying the finite
element method to different option pricing problems. As noted by Topper
the finite element method is well suited for calculating the Greeks since it
gives a polynomial approximation in the spatial variables. The derivatives
of polynomials can easily be calculated analytically and as a result very fast.
In [4], [5], and [6] the authors apply an adaptive finite element method to
different option pricing problems. The adaptive finite element method is
based on piecewise polynomial approximations in space and time. The a
posteriori estimates for the error in point wise values of the solution and it’s
derivatives are calculated using duality techniques. The estimates are used
to determine suitable local resolution in space and time. In this paper we
extend the previously developed a posteriori error analysis to include also
changes in the parameters in the partial differential equation. As a bonus
we receive a new way of calculating some of the Greeks.

The remainder of the paper is organized as follows: in Section 2 we give
a very short mathematical background and present the model problem, the
Black-Scholes equation. In Section 3 we introduce the Greeks and discuss
how to calculate them. Then in Section 4 we formulate the finite element
method and apply it to the European option. In Section 5 we derive a new a
posteriori error estimate for the ordinary European option with a connection
to some of the Greeks, and present a new way of calculating these Greeks.
Finally in Section 6 we give some conclusions.

2 Mathematical Background

As a model problem we choose to study the European option and the Black-
Scholes model. This equation can be solved analytically. At the same time
it can be used with minor changes to value other exotic options such as
the barrier option and the lookback option. This makes it suitable as a
model problem for demonstrating our idea. We might as well have chosen
to demonstrate the technique on another option with a different pricing
PDE, such as the Asian option, also studied by the authors [6].

We consider a continuous time trading economy on a bounded time hori-
zon [0, T ]. Probability is represented by the probability space (ΩT ,FT , P ),
where ΩT = C[0, T ], P is the corresponding Wiener measure, and FT =
σ(W (t); t ≤ T )). For simplicity we consider the standard Black-Scholes set-
ting with a risk free asset and a dividend paying stock. Let B(t) denote the
price of a risk free asset at time t governed by the equation B(t) = B(0)ert,
where r is the constant interest rate. Further we denote by S(t) the value
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of an asset at time t. We assume the existence of an equivalent martin-
gale measure Q, under which the discounted stock price e−r(T−t)St is an
Ft-martingale. The existence of the risk neutral measure Q assures that the
market is free of arbitrage possibilities. Under Q the stock price follows the
stochastic differential equation

dS(t) = (r − ν)S(t)dt+ S(t)σdW (t), (2.1)

where r is the constant interest rate, ν is the constant continuous dividend
yield, σ is the volatility, and W (t) is a Q Brownian motion process. Here σ
is assumed to be a positive real number. The solution of (2.1) is

S(t) = S(0)e(r−ν−σ
2

2
)t+σW (t). (2.2)

The value of the ordinary European option, u(t, S(t)) = u(t, s), is given
as the solution to Black-Scholes equation

ut(t, s) +
σ2s2

2
uss(t, s) + (r − ν)sus(t, s) − ru(t, s) = 0, t < T, (2.3)

which is valid for s = S(t) ∈ R
+.

3 The Greeks

The different sensitivity measures of options and other derivatives are com-
monly referred to as Greeks, because they are often denoted by Greek letters.
The Greeks are very important tools in risk management, especially since
they are used for hedging purposes. Each Greek measures a different type
of risk associated with an option position (with the exception of theta). A
portfolio of options can be adjusted according to these Greeks (hedged) to
achieve a desired exposure. Therefore financial market models possessing
the property of easy computation of the Greeks are desirable. In the Black-
Scholes model the Greeks are very easy to calculate and this is one reason
for the model’s continued popularity in the market.

Let V denote the value of an option or an other derivative, and let s
denote the price of the underlying asset. The delta measures the sensitivity
to changes in the price of the underlying asset and is calculated as the
derivative of V regarding to the underlying’s price s,

∆ =
∂V

∂s
. (3.1)

The rate of change of delta is called gamma, defined as

Γ =
∂2V

∂s2
, (3.2)
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and the speed is the third derivative of V with regarding to s,

∂3V

∂s3
. (3.3)

The decay of value in time of a portfolio is represented by the theta, where

Θ = −∂V
∂t
. (3.4)

Sensitivity to volatility is called vega and is defined by

vega =
∂V

∂σ
, (3.5)

and sensitivity to interest rate is called rho, defied as

ρ =
∂V

∂r
. (3.6)

3.1 Calculation of the Greeks

As noted by Topper [8] the finite element method is well suited for calculating
the Greeks since it gives a polynomial approximation in the spatial variables.
The derivatives of polynomials can easily be calculated analytically and
as a result very fast. For this to work the finite element shape functions
must of course be at least of the same order as the order of derivative we
wish to calculate. For example, to calculate the Greek γ we need at least
quadratic shape functions. One can improve the estimates by taking the
Greeks at so called Moan Points, which are points were the derivatives of the
finite element approximation have higher accuracy, see [7]. However, when
calculating the Greeks vega and rho we need to use a different approach
since they involve derivatives with respect to the parameters σ and r, and
not the stock price s. For these we apply a sensitivity analysis approach
described in Section 5.2. As noted by Wilmott the Greeks vega and rho

should be used with care since they for some options lack financial meaning,
see [9].

4 A Finite Element Method for the European Op-

tion

In order to construct a computational mesh we introduce a bounded interval
Ω = [smin, smax] ⊂ R

+ with boundary ∂Ω = {smin, smax}. We define the
usual Hilbert space

H1(Ω) = {v :

∫

Ω
(|∇v|2 + v2)ds <∞}, (4.1)
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and let W be the space of functions that are square integrable in time and
belongs to H1(Ω) in space, that is

W = L2
(

[0, T ],H1(Ω)
)

. (4.2)

We also use the notation (u, v) =
∫

Ω uvds, and (u, v)∂Ω = u(smax)v(smax)−
u(smin)v(smin).

4.1 Variational Formulation

Multiplying the Black-Scholes equation (2.3) by the test function v ∈ W
and integrating on Ω × [0, T ] we obtain

∫ T

0

(

(ut, v) + (r − ν)
(

sus, v
)

+
σ2

2

(

s2uss, v
)

− r(u, v)
)

dt = 0. (4.3)

Using integration by parts we get

(

s2uss, v
)

=
(

s2us, v
)

∂Ω
− 2

(

sus, v
)

−
(

s2us, vs

)

. (4.4)

Thus equation (4.3) becomes

∫ T

0

(

(ut, v) + (r − ν − σ2)
(

sus, v
)

(4.5)

− σ2

2

(

s2us, vs

)

+
σ2

2

(

s2us, v
)

∂Ω
− r(u, v)

)

dt = 0.

The boundary conditions for the European call option are u(t, 0) = 0 and
u(t, s) ∼ se−ν(T−t) as s → ∞, and for the corresponding put u(t, 0) =
Ke−r(T−t) and u(t, s) ∼ 0 as s → ∞, see for example Wilmott, [10]. For
simplicity of implementation we use the artificial boundary condition uss = 0
on ∂Ω for both the put and the call instead. This boundary condition works
for all contracts if the payoff is at most linear in the underlying (see [10])
and does not affect the accuracy of the solution. Using equation (2.3) we
can rewrite the boundary condition as

us =
r

s(r − ν)
u− 1

s(r − ν)
ut, (4.6)

and enforce it weakly by inserting identity (4.6) into equation (4.5). We
thus want to solve the problem: find u ∈ W such that







∫ T

0

(

m(ut, v) + a(u, v)
)

dt = 0,

u(T, s) =

{

max(s−K, 0), for a call,
max(K − s, 0), for a put,

(4.7)
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for every v ∈ W, where

m(ut, v) = (ut, v) −
σ2

2(r − ν)
(sut, v)∂Ω, (4.8)

and

a(u, v) = (r − ν − σ2)
(

sus, v
)

− σ2

2

(

s2us, vs

)

(4.9)

+
σ2r

2(r − ν)
(su, v)∂Ω − r(u, v).

4.2 Finite Element Approximation

The finite element method is based on solution of the variational problem
(4.7) with W replaced by a finite dimensional function space of piecewise
polynomials in space and time. For background on the finite element method
see for instance [2].

We now partition [0, T ] as 0 = t0 < t1 < t2 < · · · < tN = T , denoting
each time interval by In = (tn−1, tn] and each time step by kn = tn − tn−1.
Similarly we partition Ω as smin = s0 < s1 < s2 < · · · < sJ = smax, denoting
each spatial interval by κj = [sj−1, sj) and the length of each interval by
hj = sj − sj−1.

PSfrag replacements

s

Sn

t

tn−1

tn

Ω

Figure 1: Space-time discretization.

In space, we let Vp ⊂ H1(Ω) denote the space of piecewise continuous
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functions of order p. On each space-time slab Sn = In × Ω, we define

Wq
n = {w(t, s) : w(t, s) =

q
∑

j=0

tjvj(s), vj ∈ Vp, (t, s) ∈ Sn}. (4.10)

Let Wq ⊂ W denote the space of functions defined on [0, T ] × Ω such that
v |Sn

∈ W
q
n for 1 ≤ n ≤ N . For simplicity, we only give details for the con-

tinuous Galerkin method cG(p)-cG(q), (see e.g. [2] or [3]) which is defined
by the following discrete version of equation (4.7). Find U ∈ W q such that
for 1 ≤ n ≤ N







∫

In

(

m(Ut, v) + a(U, v)
)

dt = 0 for all v ∈ Wq−1
n ,

U−(tn) = U+(tn), n = N − 1, . . . , 1,
U−(tN ) = uT ,

(4.11)

where U±(tn) = limε→0,ε>0U(tn ± ε). In the cG(1) method the approxima-
tion U of u is continuous piecewise linear in time and space, while the test
functions v are continuous linear in space and piecewise constant in time.
It is also possible to use a discontinuous method in time, we refer to [2], for
details on the resulting discontinuous Galerkin method, cG(p)-dG(q).

5 A Posteriori Error Estimation

5.1 Error Representation Formula

Since we are only interested in the solution, and it’s derivatives, in one or a
few points of Ω at time t = 0, we wish to find a mesh tailored for efficient
and accurate solution at the points of interest. In order to find such a mesh
we derive a posteriori error estimates of the error in the points of interest
using duality techniques (see [2] or [3]).

To represent the error in a linear functional, (u − U,ψ), we introduce
the continuous dual problem for the Black-Scholes equation (2.3). Let now
σ̄ and r̄ represent slightly perturbed versions of σ and r respectively. Find
φ ∈ W such that

{

−φt + (σ̄2 + ν − 2r̄)φ− (r̄ − ν − 2σ̄2)sφs + σ̄2

2 s
2φss = 0,

φ(0, s) = ψ.
(5.1)

For simplicity we consider this equation over the whole space interval ne-
glecting boundary conditions. Multiplying with the error e = u − U ∈ W
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and integrating in space and time we get

∫ T

0

(

− (φt, e) + (σ̄2 + ν − 2r̄)(φ, e) (5.2)

− (r̄ − ν − 2σ̄2)
(

sφs, e
)

+
σ̄2

2

(

s2φss, e
)

)

dt = 0.

The functions φ and φs are in principle zero close to s = smin and s = smax

if the domain is large enough. Using integration by parts and neglecting the
boundary terms we get

− (φ(T, s), e(T, s)) + (φ(0, s), e(0, s)) (5.3)

+

∫ T

0

(

(φ, et) + (σ̄2 + ν − 2r̄)(φ, e) + (r̄ − ν − 2σ̄2)
(

sφ, es
)

)

dt

+

∫ T

0

(

(r̄ − ν − 2σ̄2)(φ, e) − σ̄2

2

(

s2φs, es
)

− σ̄2
(

sφs, e
)

)

dt = 0.

Note that integration by parts gives

−σ̄2
(

sφs, e
)

= σ̄2
(

sφ, es
)

+ σ̄2
(

φ, e
)

, (5.4)

using this identity, φ(0, s) = ψ, and e(T ) = 0, we get

(ψ, e(0, s)) (5.5)

= −
∫ T

0

(

(φ, et) − r̄(φ, e) + (r̄ − ν − σ̄2)
(

sφ, es
)

− σ̄2

2

(

s2φs, es
)

)

dt.

Since e = u− U we can rewrite (5.5) as

(ψ, e(0, s)) (5.6)

= −
∫ T

0

(

(φ, ut) − r(φ, u) + (r − ν − σ2)
(

sφ, us

)

− σ2

2

(

s2φs, us

)

)

dt

+

∫ T

0

(

(φ,Ut) − r̄(φ,U) + (r̄ − ν − σ̄2)
(

sφ, Us

)

− σ̄2

2

(

s2φs, Us

)

)

dt

−
∫ T

0

(

− (r̄ − r)(φ, u) +
(

(r̄ − r) − (σ̄2 − σ2)
)

(sφ, us)
)

dt

−
∫ T

0

(

− (
σ̄2

2
− σ2

2
)(s2φs, us)

)

dt

8



Since u solves equation (4.7) we get

(ψ, e(0, s)) (5.7)

=

∫ T

0

(

(φ,Ut) − r̄(φ,U) + (r̄ − ν − σ̄2)
(

sφ, Us

)

− σ̄2

2

(

s2φs, Us

)

)

dt

+ (r̄ − r)

∫ T

0
((φ, u) − (sφ, us)) dt

+ (σ̄ − σ)

(

(σ̄ + σ)

2

)
∫ T

0

(

2(sφ, us) + (s2φs, us)
)

dt.

Recalling the earlier defined bilinear forms (4.8) and (4.9), and that we
neglect the boundary terms we can also write

(ψ, e(0, s)) =

∫ T

0

(

m(Ut, φ) + a(U, φ)
)

dt (5.8)

+ (r̄ − r)

∫ T

0
((φ, u) − (sφ, us)) dt

+ (σ̄ − σ)

(

(σ̄ + σ)

2

)
∫ T

0

(

2(sφ, us) + (s2φs, us)
)

dt.

In order to simplify the notations we will from now on use the notation e(0)
to denote e(0, s). In the same way φ(0), u(0), ρ(0) and vega(0) will then
naturally stand for φ(0, s), u(0, s), ρ(0, s) and vega(0, s) respectively. We
now want to show that equation (5.8) can be written as the following error
representation formula

(ψ, e(0, s)) =

∫ T

0

(

m(Ut, φ) + a(U, φ)
)

dt (5.9)

+ (r̄ − r)(ψ, ρ(0)) + (σ̄ − σ)(ψ, vega(0)),

that is we want to show that

(ψ, ρ(0)) =

∫ T

0
((φ, u) + (sφ, us)) dt, (5.10)

and that

(ψ, vega(0)) =

(

(σ̄ + σ)

2

)
∫ T

0

(

2(sφ, us) + (s2φs, us)
)

dt, (5.11)

where ρ and vega actually are the ordinary Greeks known as ρ = ∂u
∂r

and

vega = ∂u
∂σ

. This will give us the opportunity to calculate these two Greeks
in a new way using dual information. The proof is given below.
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5.2 Calculating the Greeks using Duality

We begin the proof by re-writing our governing pricing partial differential
equation (2.3) in the form

∂

∂t
+ Lu = 0, (5.12)

where

L =
σ2s2

2

∂2

∂s2
+ (r − ν)s

∂

∂s
− r(.), (5.13)

and u is the solution. Differentiating equation (5.12) with respect to r we
get

∂

∂t

∂u

∂r
+ L∂u

∂r
+
∂L
∂r
u = 0. (5.14)

Multiplying both sides with a testfunction φ, integrating in time and space
we get

∫ T

0

(

∂

∂t

∂u

∂r
+ L∂u

∂r
, φ

)

dt =

∫ T

0

(

−∂L
∂r
u, φ

)

dt. (5.15)

The dual operator to L denoted L∗ is given by (see Section 5)

L∗ =
σ2s2

2

∂2

∂s2
− (r − ν − 2σ2)s

∂

∂s
− (σ2 + ν − 2r)(.). (5.16)

Using integration by parts we can rewrite the left hand side of equation
(5.15) as

[(

∂u

∂r
, φ

)]T

0

−
∫ T

0

(

∂u

∂r
,
∂φ

∂t

)

dt+

∫ T

0

(

∂u

∂r
,L∗φ

)

dt (5.17)

=

(

∂u

∂r
(T ), φ(T )

)

−
(

∂u

∂r
(0), φ(0)

)

+

∫ T

0

(

∂u

∂r
,−∂φ

∂t
+ L∗φ

)

dt

= −
(

∂u

∂r
(0), φ(0)

)

+

∫ T

0

(

∂u

∂r
,−∂φ

∂t
+ L∗φ

)

dt,

where the last equality follows since ∂u
∂r

(T ) = 0. Recalling the dual problem
(5.1)

{

−∂φ
∂t

+ L∗φ = 0,
φ(0) = ψ,

(5.18)

we can now rewrite equation (5.15) as

∫ T

0

(

∂u

∂r
(0), ψ

)

dt = −
∫ T

0

(

∂L
∂r
u, φ

)

dt (5.19)

= −
∫ T

0

(

s
∂u

∂s
− u, φ

)

dt.
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Differentiating equation (5.12) with respect to σ instead of r we can in
the same way as above show that

∫ T

0

(

∂u

∂σ
(0), ψ

)

dt = −
∫ T

0

(

∂L
∂σ

u, φ

)

dt = −
∫ T

0

(

σs2
∂2u

∂s2
, φ

)

dt. (5.20)

Using integration by parts, neglecting boundary terms, we can rewrite equa-
tion (5.20) as

∫ T

0

(

∂u

∂σ
(0), ψ

)

dt = σ

∫ T

0

(

2s
∂u

∂s
, φ

)

dt+ σ

∫ T

0

(

s2
∂u

∂s
,
∂φ

∂s

)

dt. (5.21)

Summing up, we have shown that

(ψ, ρ(0)) = (ψ,
∂u

∂r
(0)) =

∫ T

0
((φ, u) + (sφ, us)) dt, (5.22)

and

(ψ, vega(0)) = (ψ,
∂u

∂σ
(0)) = σ

∫ T

0

(

2(sφ, us) + (s2φs, us)
)

dt, (5.23)

that is (5.10) and (5.11) holds since σ̄+σ
2 ' σ.

5.3 Estimating the Error

If we for example are interested in the error at s = sα, we choose ψ = δsα
(s),

and get the error representation formula

e(0, sα) (5.24)

=

∫ T

0

(

m(Ut, φ) + a(U, φ)
)

dt+ (r̄ − r)ρ(0, sα) + (σ̄ − σ)vega(0, sα)

If one instead is interested in derivatives of the solution, then a different
ψ is chosen. More details about this and how to calculate the error, error
estimation algorithms, and mesh refinement can be found in [4].

6 Conclusions

We have presented a new connection between the a posteriori error analysis
and the Greeks ρ and vega. The presented error representation formula,
equation (5.9), splits the error in three parts, where the first part corresponds
to the discretization error and the second and third parts corresponds to
how well the interest rate and the volatility is estimated correspondingly.
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Looking at the second term on the right hand side in detail we see that it
very naturally includes the derivative of the interest rate, that is the Greek
ρ, and what kind of data we are interested in, that is ψ. The same reasoning
holds for the third term on the right hand side. This gives us the opportunity
to calculate these two Greeks in a new way using dual information. This
new way of calculating these Greeks needs to be implemented and compared
to the traditional way.
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Abstract

In this paper we develop an a posteriori error analysis for different
model reduction techniques, such as the POD method and extensions
of it. We also present a new model reduction technique, the Weighted
POD method. Model reduction is the problem of obtaining a lower-
dimensional approximation to a high-dimensional dynamical system.
Here we use the finite element method and adopt different SVD based
model reduction techniques used in fluid and solid dynamics, which en-
ables us to to reduce the size of the problem, which radically improves
the performance. The a posteriori error estimates are derived using
duality techniques.

1 Introduction

Model reduction is the problem of obtaining a lower-dimensional approxi-
mation to a high-dimensional dynamical system. There are two main sets of
methods, singular value decomposition (SVD) based methods, and moment-
matching methods. Moment matching methods have no global error bounds,
and do not automatically preserve stability, whereas SVD based methods
have error bounds and preserve stability. For a good survey of model reduc-
tion methods, see for example [2].

Here we use the finite element (FE) method and adopt different SVD
based model reduction techniques used in fluid and solid dynamics, which
enables us to to reduce the size of the problem, which radically improves
the performance. The standard FE basis is in some sense non-optimal, the
question is what to use instead. As so elegantly described by [15], “The
principal idea of dimensional model reduction is to find a small number
of generalized co-ordinates in which to express the dynamics, ideally with
some bounds on the truncation error”. In the context of FE models this can
be realized by using several linear combinations of the FE basis functions
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(modes or generalized coordinates) instead of the individual basis functions.
Many different generalized coordinates functions have been proposed, see
for example the solid dynamic articles [1], [19], [18], [24], [11], [10], [4], and
[5], listed in chronological order.

In particular we use the so called proper orthogonal decomposition method,
also known as POD, and extensions thereof, the so called balanced trunca-
tion method, [21], and the new Weighted POD method which is our exten-
sion of the POD method, presented in this paper. POD is closely related to
the use of empirical eigenvector as a set of generalized coordinates. POD,
also known as principal component analysis, or the Karhunen-Loéve expan-
sion, has been used a long time for developing low dimensional models in
fluid dynamics, see for example Lumley 1970, [16], Sirovich 1987, [23], or
Holmes et al. 1996, [9].

The truncation error introduced by using a small number of modes needs
to be investigated. Kline, [13], has given some insight to the linear vibration
problems. A posteriori error estimates of linear vibration problems vibration
are provided by Cabos, [3]. Joo and Wilson described an application of the
Ritz vectors in finite element mesh adaptation for dynamic problems, [12].
The understanding of the truncation error for nonlinear problems is rather
limited compared to the linear case.

For control problems involving general sets of ordinary differential equa-
tions, some related error measures have been developed. In the linear case
these error bounds were derived by Glover, [8], and Enns, [6], and for non-
linear systems error bounds were derived by Wood et al., [25], and Scherpen,
[22].

Recent results on model reduction of finite elements methods can be
found in [15], the same authors have also developed model reduction for
general Lagrangian systems in [14]. In [7] Foufas and Larson apply the
POD method and extensions of it to option pricing problems.

Outline: In Section 2 we present the model problem and derive an a poste-
riori error estimation, and also study the special case of simple eigenfunction
expansion. In Section 3 we present the so called weighted POD method, an
extension of the POD method. We also discuss the different special cases
POD and balanced truncation. Finally, in Section 4 we state some conclu-
sions.

2 Model Reduction

The idea is, given a set of data that lies in the vector space W, to find a
subspace Wr of fixed dimension r such that the error in the projection onto
the subspace is minimized. The subspace can be determined in a number of
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ways, for example by using the weighted POD method described later on.

2.1 Model Problem

We choose to analyze the following simple model problem to demonstrate
the technique and show the basic ideas, find u = u(x, t) such that







u̇(x, t) −Lu(x, t) = f, x ∈ Ω, t ∈ [0, T ],
u(x, 0) = u0,

∇u|∂Ω
= 0,

(2.1)

where Ω ⊂ R, ∂Ω is the boundary of Ω, and L is a simple operator, for
example L = 4. Multiplying this equation, with L = 4, by the test function
v ∈ W and integrating on Ω × [0, T ] we obtain

∫ T

0

(

(u̇, v) − (4u, v)
)

dt =

∫ T

0
(f, v) dt, (2.2)

where we use the notation (u, v) =
∫

Ω uvds. Using integration by parts we
get

∫ T

0

(

(u̇, v) + (∇u,∇v)
)

dt =

∫ T

0
(f, v) dt. (2.3)

2.2 A Posteriori Error Estimation

Let U denote the approximate solution to the model problem (2.3) calcu-
lated as usual with the complete basis, and let U ∗ denote the approximate
solution calculated with the model reduction technique. The error can then
be splitted into two parts, e = (u−U)+(U −U ∗), where the first part is the
usual discretization error, and the second part is the error made by using
the model reduction technique. To represent the error in a linear functional,
(e, ψ), we introduce the continuous dual problem for the model problem
(2.1). Find φ ∈ W such that

{

−φt −L−1φ = 0,
φ(x, T ) = ψ,

(2.4)

where L−1 is the inverse operator of L. For simplicity we here use L = 4.
Multiplying equation (2.4) with the error e ∈ Wr and integrating in space
and time we get

∫ T

0

(

(−φt, e) − (4φ, e)
)

dt = 0. (2.5)

Integrating by parts and using the boundary conditions we get
∫ T

0

(

− (φ(T ), e(T )) + (φ(0), e(0)) + (φ, et) + (∇φ,∇e)
)

dt = 0. (2.6)
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Using the conditions u(0) − U(0) = 0, φ(T ) = ψ we have

(ψ, e(T )) = (φ(0), U(0) − U ∗(0)) +

∫ T

0

(

(φ, et) + (∇φ,∇e)
)

dt (2.7)

Since e = (u − U) + (U − U ∗) and u solves equation (2.3) we get the error
representation formula

(ψ, e(T )) =
(

φ(0), U(0) − U ∗(0)
)

+

∫ T

0
(φ, f) dt (2.8)

−
∫ T

0

(

(φ,U∗
t ) + (∇φ,∇U ∗)

)

dt

=
(

φ(0), U(0) − U ∗(0)
)

−
∫ T

0
(R(U∗), φ) dt,

where the last equality follows by intergration by parts and R(U ∗) = U∗ −
4U∗ − f is the residual.

Let π : W → Wq−1 be the L2 projection in time, and let P be a suitable
interpolation operator into Vp in space, and let Pr be a suitable projection
operator onto the subspace Wr. Thus πP is an interpolation operator such
that πPφ ∈ Wq−1. Then using Galerkin orthogonality, we can replace φ by
φ− πPrPφ = (φ− Pφ) + (Pφ− PrPφ) + (I − π)PrPφ. Equation (2.8) can
then be written as

(ψ, e(T )) =
(

φ(0), U(0) − U ∗(0)
)

+

∫ T

0

(

R(U∗), φ− Pφ
)

dt (2.9)

+

∫ T

0

(

R(U∗), Pφ− PrPφ
)

dt

+

∫ T

0

(

R(U∗), (I − π)PrPφ
)

dt.

2.3 Eigenfunction Expansion

In the case when the operator L is symmetric and f = 0, we can apply
a simple form of model reduction, namely to use a truncated eigenvector
expansion of the operator L as basis. In this case the error representation
formula is simplified.

Let ξj be the eigenvectors, and λj the eigenvalues, of the operator L = 4,
that is

4ξj = λjξj. (2.10)

Note that we can write U ∗ =
∑M

i=1 αiξi, where αi are the coefficients de-
termined by the numerical method, and M is the number of basis func-
tions in the truncated basis. We can then write the residual R(U ∗) as
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R(U∗) =
∑M

i=1(α̇iξi+αiAξi) =
∑M

i=1(α̇i+αiλi)ξi, where A is the matrix cor-
responding to the Laplace operator. Since (Pφ−PrPφ) /∈ span{ξ1, . . . , ξM}
we can rewrite the error representation formula (2.9) as

(ψ, e(T )) =
(

φ(0), U(0) − U ∗(0)
)

+

∫ T

0

(

R(U∗), φ− Pφ
)

dt (2.11)

+

∫ T

0

(

R(U∗), (I − π)PrPφ
)

dt.

3 Weighted POD

We here present the weighted POD method, an extension of the so called
POD method. For a detailed analysis of the POD method we refer to Holmes
et. al. [9] and the references therein.

Suppose we have set of scalar fields {Uk}, each being a function U =
U(x), x ∈ Ω. In the POD method one then assumes that each U belong to
the linear, infinite-dimensional Hilbert space L2([0, 1]), of square integrable
functions with inner product

(f, g) =

∫ 1

0
f(x)g(x) dx. (3.1)

In the weighted POD method we instead use the assumption that each U

belong to a vector space W, with a weighted inner product (f, g)W , with
the only restriction that it must be a bilinear positive definite functional,
possibly involving derivatives of the functions f and g and a weight-function.
It may for example be the Hilbert space H1(Ω), with inner product

(f, g)H1 =

∫

Ω
f(x)g(x) dx +

∫

Ω
∇f(x)∇g(x) dx. (3.2)

Following the exposition in Holmes et. al., we now want to find a basis
{ϕj(x)}∞j=1 for W that is optimal for our data set in the sense that repre-
sentations of the form

UN (x) =
N

∑

j=1

ajϕj(x) (3.3)

describe typical members of {Uk} better than any other representation of
the same dimension in any other basis. Typical refers in this sense to an
average operation. Denote the average operation 〈·〉, which is assumed to
commute with the spatial integration in the inner product. Mathematically
the statement of optimality is that we should choose ϕ to maximize the
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averaged projection of U onto ϕ, suitably normalized

max
ϕ∈W

〈|(U,ϕ)W |2〉
‖ϕ‖2

W
, (3.4)

where | · | denotes the modulus and ‖ · ‖W is the norm defined by

‖f‖W = (f, f)
1
2
W (3.5)

The solution of (3.4) only gives one single function, whereas we are interested
in finding a set of functions, which together provide the desired basis.

As described by Holmes et. al. we instead try to extremize 〈|(U,ϕ)W |2〉
subject to the condition ‖ϕ‖2

W = 1. The corresponding functional for this
variational problem problem is

J [ϕ] = 〈|(U,ϕ)W |2〉 − λ(‖ϕ‖2
W − 1). (3.6)

A necessary condition for extrema is that for all variations ϕ+ δϑ, δ ∈ R

d

dδ
J [ϕ+ δϑ]δ=0 = 0. (3.7)

Using (3.6) we have

d

dδ
J [ϕ+ δϑ]δ=0 (3.8)

=
d

dδ
[〈(U,ϕ + δϑ)W(ϕ+ δϑ, U)W 〉 − λ(ϕ+ δϑ, ϕ+ δϑ)W ]δ=0

= 2[〈(U, ϑ)W (ϕ,U)W 〉 − λ(ϕ, ϑ)W ] = 0.

We thus receive the eigenvalue problem

〈(U, ϑ)W (ϕ,U)W 〉 = λ(ϕ, ϑ)W . (3.9)

The optimal basis is given by the eigenfunctions ϕ, called weighted POD
modes. Discretising in space we expand ϕ and ϑ in a finite element basis,
that is

ϕ =

N
∑

j=1

ξjNj(x), (3.10)

and

ϑ =
N

∑

j=1

µjNj(x), (3.11)
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where Nj is the standard finite element basis function. Inserting into equa-
tion (3.9), we get an N ×N eigenvalue problem

Aξ = λMξ, (3.12)

where element (k, l) of the matrix A is

Akl = 〈(U,Nk)W(Nl, U)W〉, (3.13)

and element (k, l) of the matrix M is

Mkl = (Nl, Nk)W . (3.14)

3.1 Method of Snapshots

Data, U , is often given as snapshots U(tj) at discrete times t1, . . . , tM . In
the method of snapshots, developed by Sirovic [23], we use the snapshots
U(tj) as our basis functions, that is

ϕ =

M
∑

j=1

ξjU(tj), (3.15)

and

ϑ =
M
∑

j=1

µjU(tj). (3.16)

Inserting into equation (3.9), we now get an M × M eigenvalue problem
instead

Aξ = λMξ, (3.17)

where the matrixes M and A have the elements

Mkl = (U(tl), U(tk))W , (3.18)

and

Akl =
1

M

M
∑

i=1

(U(ti), U(tk))W(U(tl), U(ti))W , (3.19)

respectively. Note that we have approximated the time integral in (3.13)
with an average sum. Discretising the snapshots U(tj) in the finite element
basis

U(tj) =

N
∑

n=1

Un
j Nn(x), (3.20)
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we see that the elements of the matrix M can be written as

Mkl = U∗
l WUk, (3.21)

where Uj = [U1
j . . . U

N
j ] and W is the matrix with elements

Wkl = (Nk, Nl)W . (3.22)

In the same way we write the elements of the matrix A as

Akl =
1

M

M
∑

i=1

U∗
i WUkU

∗
l WUi =

1

M
U∗

kW

M
∑

i=1

(UiU
∗
i )WUl, (3.23)

were the last equality follows since W is symmetric. Collecting the snapshot
vectors Uj as columns in a matrix X, that is

X = [U1 . . . Um], (3.24)

we note that
M
∑

i=1

(UiU
∗
i ) = XX∗, (3.25)

and the matrixes M and A can be written as

M = X∗WX, (3.26)

and that

A = X∗WXX∗WX. (3.27)

The eigenvalue problem (3.12) may then be rewritten in matrixform as

X∗WXX∗WXξ = λX∗WXξ, (3.28)

which can be simplified to

X∗WXξ = λξ. (3.29)

Instead of solving equation (3.29) one can solve the corresponding singular
value decomposition (SVD) problem

X∗WXξ = CΣD∗ = [C1C2]

[

Σ1 0
0 0

] [

D∗
1

D∗
2

]

= C1Σ1D
∗
1 , (3.30)

where Σ1 ∈ R
r×r is an invertible diagonal matrix containing the so called

Hankel singular values, r is the rank of X∗WX, and C∗
1C1 = D∗

1D1 = Ir.

8



3.2 Basic POD

The original snapshot POD method is just a special case of the weighted
POD method. If we choose the weight-function w equal to one, and choose
W to be the usual Hilbert space L2, we get the original snapshot POD
method.

In this case the matrix W reduces to the usual finite element mass matrix

mkl = (ϕk, ϕl), (3.31)

and the eigenvalue problem (3.29) now reads

X∗mXξ = λξ. (3.32)

This almost the original snapshot POD eigenvalue problem, studied by for
example Rowley, [21]. The only difference is the lack of the mass matrix m
in the basic POD method

X∗Xξ = λξ. (3.33)

As noted in Rowley [21], POD modes can also be calculated by solving
a SVD of the snapshot-matrix X instead of solving the eigenvalue problem
(3.32). The SVD problem has better roundoff properties although it requires
more computation. This is the technique we use later on in the examples.

3.3 Dual Information

By slightly extending the definition of the inner product, we can incorporate
dual information in the choice of the base. Just as we collected the primal
snapshots in a matrix X, we collect the snapshots of the dual data vectors
φj as columns in a matrix Y , that is

Y = [φ1 . . . φm]. (3.34)

We note that
M
∑

i=1

(φiφ
∗
i ) = Y Y ∗. (3.35)

3.3.1 Balanced Truncation

Balanced truncation is a model reduction method based on dual information
developed by Moore [17]. Rowley [20] developed a snapshot version of it
where one solves the SVD of the matrix Y ∗X

Y ∗X = UΣV ∗ = [U1U2]

[

Σ1 0
0 0

] [

V ∗
1

V ∗
2

]

= U1Σ1V
∗
1 (3.36)
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where Σ1 ∈ R
r×r is invertible, r is the rank of Y ∗X, and U ∗

1U1 = V ∗
1 V1 = Ir.

We will show that by defining the inner product

(f, g)W =

∫

Ω
f(x)Y Y ∗g(x)dx, (3.37)

we actually receive the balanced truncation method. Going through the
calculations in Section 3.1 we see that we still get the same SVD problem
to solve,

X∗WXξ = C1ΣD
∗
1, (3.38)

but with a different W ,
W = Y Y ∗. (3.39)

We note that according to equation (3.36)

(Y ∗X)∗ = X∗Y = (U1Σ1V
∗
1 )∗ = V ∗

1 Σ1U
∗
1 , (3.40)

which gives that

X∗Y Y ∗X = V ∗
1 Σ1U

∗
1U1Σ1V1 = V ∗

1 Σ2
1V1, (3.41)

since U ∗
1U1 = Ir. That is, we get the same problem as equation (3.38) but

with a different scaling of the Hankel singular values.

4 Conclusions

We have presented an extension of the balanced truncation method or the
closely related balanced POD method. The weighted POD method share
the same benefits as the previous methods, but the thought is that it can
be adapted by choice of inner product to different cases. This obviously
needs more attention and study. We also provide an a posteriori error anal-
ysis which to our knowledge has not been presented before. As mentioned
earlier the authors have applied the methods presented in this article to op-
tion pricing problems, see [7]. The methods are there tested and compared
numerically on European and Asian options.
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Abstract

The main objective of this paper is to apply different model re-
duction techniques, such as the POD method and a newly developed
extension of it, Weighted POD, to the problem of pricing exotic op-
tions. Model reduction is a method that seeks to construct a lower-
dimensional approximation to a high-dimensional dynamical system.
In this paper we use the finite element method and adopt SVD based
model reduction techniques used in fluid and solid dynamics, which
enables us to substantially reduce the size of the problem, leading to
a radical improvement of the performance. The techniques are tested
and compared on European and Asian options.

1 Introduction

The market of different types of derivative contracts has grown very fast
in recent years. The importance of calculating prices in a fast and sta-
ble manner has become more and more eminent. Vanilla contracts allow
for fast valuation, and sometimes even analytical formulas exists, but most
exotic contracts and multidimensional contracts are more time consuming
to value. Demands for fast solutions have led many to use different kinds
of analytical formulas based on some limiting assumption. Other methods
such as the finite difference method or the finite element (FE) method can
also be made fast through different kinds of special implementations. The
computationally most expensive phase for these two methods usually is the
repeated solving of linear system of equations. Still, for high dimensional
contracts (at least higher than four to five) there are no real alternatives to
Monte Carlo, or Quasi Monte Carlo, simulations where much of the research
is made today.

Model reduction is the problem of obtaining a lower-dimensional approx-
imation to a high-dimensional dynamical system. There are two main sets
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of methods, SVD based methods, and moment matching methods. Moment
matching methods have been used in finance, but to our knowledge we are
the first to try SVD based methods. SVD based methods have error bounds
and preserve stability, but moment matching methods have no global error
bounds, and do not automatically preserve stability. For a good survey of
model reduction methods, see for example [2].

Here we use the FE method and adopt different singular value decom-
position (SVD) based model reduction techniques used in fluid and solid
dynamics, which enables us to to reduce the size of the problem, which rad-
ically improves the performance. The standard FE basis is in some sense
non-optimal, the question is what to use instead. As so elegantly described
by [20], “The principal idea of dimensional model reduction is to find a
small number of generalized co-ordinates in which to express the dynamics,
ideally with some bounds on the truncation error”. In the context of FE
models this can be realized by using several linear combinations of the FE
basis functions (modes or generalized coordinates) instead of the individual
basis functions. Many different generalized coordinates functions have been
proposed, see for example the solid dynamic articles [1], [23], [22], [30], [16],
[15], [4], and [5], listed in chronological order.

In particular we use the so called proper orthogonal decomposition method,
also known as POD, and extensions thereof, the so called balanced trunca-
tion method [24], and the new Weighted POD method [10]. We apply these
methods to the European and the Asian option pricing problem. For the
European option there exists an analytical solution, but for the Asian option
one has to rely on numerical techniques. The European option is included in
the study only as a reference to the study of the Asian option. POD is closely
related to the use of empirical eigenvector as a set of generalized coordinates.
POD, also known as principal component analysis, or the Karhunen-Loéve
expansion, has been used a long time for developing low dimensional models
in fluid dynamics, see for example Lumley 1970 [21], Sirovich 1987 [26], or
Holmes et al. 1996 [14].

The truncation error introduced by using a small number of modes needs
to be investigated. Kline [18], has given some insight to the linear vibration
problems. A posteriori error estimates of linear vibration problems vibration
are provided by Cabos [3]. Joo and Wilson described an application of the
Ritz vectors in finite element mesh adaptation for dynamic problems, [17].
The understanding of the truncation error for nonlinear problems is rather
limited compared to the linear case.

For control problems involving general sets of ordinary differential equa-
tions, some related error measures have been developed. In the linear case
these error bounds were derived by Glover [13], and Enns [6], and for non-
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linear systems they were derived by Wood et al. [31], and Scherpen [25].

Recent results on model reduction of finite elements methods can be
found in [20], the same authors have also developed model reduction for
general Lagrangian systems in [19].

Outline: In Section 2 we present the FE method and apply it to the Eu-
ropean option problem. Then in Section 3 we apply the FE method to the
Asian option problem. In Section 4 we present the different model reduc-
tion techniques, the POD method, the balanced truncation method, and the
weighted POD method. Then in Section 5 we present some numerical ex-
amples, compare the different techniques, and present a sensitivity analysis.
Finally, in Section 6 we state some conclusions.

2 An Adaptive Finite Element Method for the Eu-

ropean Option

In this section we present the finite element method and apply it to the
basic European option. For a more detailed analysis with a posteriori error
estimates see [11].

2.1 Mathematical Background

We consider a continuous time trading economy on a bounded time hori-
zon [0, T ]. Probability is represented by the probability space (ΩT ,FT , P ),
where ΩT = C[0, T ], P is the corresponding Wiener measure, and FT =
σ(W (t); t ≤ T )). For simplicity we consider the standard Black-Scholes set-
ting with a risk free asset and a dividend paying stock. Let B(t) denote the
price of a risk free asset at time t governed by the equation B(t) = B(0)ert,
where r is the constant interest rate. Further we denote by S(t) the value
of an asset at time t. We assume the existence of an equivalent martin-
gale measure Q, under which the discounted stock price e−r(T−t)St is an
Ft-martingale. The existence of the risk neutral measure Q assures that the
market is free of arbitrage possibilities. Under Q the stock price follows the
stochastic differential equation

dS(t) = (r − ν)S(t)dt + S(t)σdW (t), (2.1)

where r is the constant interest rate, ν is the constant continuous dividend
yield, σ is the volatility, and W (t) is a Q Brownian motion process. Here σ

is assumed to be a positive real number. The solution of (2.1) is

S(t) = S(0)e(r−ν−σ
2

2
)t+σW (t). (2.2)
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2.2 The Black-Scholes PDE

The value of the ordinary European option, u(t, S(t)) = u(t, s), is given as
the solution to Black-Scholes equation

ut(t, s) +
σ2s2

2
uss(t, s) + (r − ν)sus(t, s) − ru(t, s) = 0, t < T, (2.3)

which is valid for s = S(t) ∈ R
+. In order to construct a computational

mesh we introduce a bounded interval Ω = [smin, smax] ⊂ R
+ with boundary

∂Ω = {smin, smax}. We define the usual Hilbert space

H1(Ω) = {v :

∫

Ω
(|∇v|2 + v2)ds < ∞}, (2.4)

and let W be the space of functions that are square integrable in time and
belongs to H1(Ω) in space, that is

W = L2
(

[0, T ],H1(Ω)
)

. (2.5)

We also use the notation (u, v) =
∫

Ω uvds, and (u, v)∂Ω = u(smax)v(smax)−
u(smin)v(smin).

2.3 Variational Formulation

Multiplying the Black-Scholes equation (2.3) by the test function v ∈ W
and integrating on Ω × [0, T ] we obtain

∫ T

0

(

(ut, v) + (r − ν)
(

sus, v
)

+
σ2

2

(

s2uss, v
)

− r(u, v)
)

dt = 0. (2.6)

Using integration by parts we get

(

s2uss, v
)

=
(

s2us, v
)

∂Ω
− 2

(

sus, v
)

−
(

s2us, vs

)

. (2.7)

Thus equation (2.6) becomes

∫ T

0

(

(ut, v) + (r − ν − σ2)
(

sus, v
)

(2.8)

− σ2

2

(

s2us, vs

)

+
σ2

2

(

s2us, v
)

∂Ω
− r(u, v)

)

dt = 0.

The boundary conditions for the European call option are u(t, 0) = 0 and
u(t, s) ∼ se−ν(T−t) as s → ∞, and for the corresponding put u(t, 0) =
Ke−r(T−t) and u(t, s) ∼ 0 as s → ∞, see for example Wilmott, [29]. For
simplicity of implementation we use the artificial boundary condition uss = 0
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on ∂Ω for both the put and the call instead. This boundary condition works
for all contracts if the payoff is at most linear in the underlying (see [29])
and does not affect the accuracy of the solution. Using equation (2.3) we
can rewrite the boundary condition as

us =
r

s(r − ν)
u − 1

s(r − ν)
ut, (2.9)

and enforce it weakly by inserting identity (2.9) into equation (2.8). We
thus want to solve the problem: find u ∈ W such that

{
∫ T

0

(

m(ut, v) + a(u, v)
)

dt = 0,
u(T, s) = max(s − K, 0),

(2.10)

for every v ∈ W, where

m(ut, v) = (ut, v) − σ2

2(r − ν)
(sut, v)∂Ω, (2.11)

and

a(u, v) = (r − ν − σ2)
(

sus, v
)

− σ2

2

(

s2us, vs

)

(2.12)

+
σ2r

2(r − ν)
(su, v)∂Ω − r(u, v).

2.4 Finite Element Approximation

The finite element method is based on solution of the variational problem
(2.10) with W replaced by a finite dimensional function space of piecewise
polynomials in space and time. For background on the finite element method
see for instance [7].

We now partition [0, T ] as 0 = t0 < t1 < t2 < · · · < tN = T , denoting
each time interval by In = (tn−1, tn] and each time step by kn = tn − tn−1.
Similarly we partition Ω as smin = s0 < s1 < s2 < · · · < sJ = smax, denoting
each spatial interval by κj = [sj−1, sj) and the length of each interval by
hj = sj − sj−1.

In space, we let Vp ⊂ H1(Ω) denote the space of piecewise continuous
functions of order p. On each space-time slab Sn = In × Ω, we define

Wq
n = {w(t, s) : w(t, s) =

q
∑

j=0

tjvj(s), vj ∈ Vp, (t, s) ∈ Sn}. (2.13)
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Figure 1: Space-time discretization.

Let Wq ⊂ W denote the space of functions defined on [0, T ] × Ω such that
v |Sn

∈ W
q
n for 1 ≤ n ≤ N . For simplicity, we only give details for the con-

tinuous Galerkin method cG(p)-cG(q), (see e.g. [7] or [8]) which is defined
by the following discrete version of equation (2.10). Find U ∈ W q such that
for 1 ≤ n ≤ N







∫

In

(

m(Ut, v) + a(U, v)
)

dt = 0 for all v ∈ Wq−1
n ,

U−(tn) = U+(tn), n = N − 1, . . . , 1,
U−(tN ) = uT ,

(2.14)

where U±(tn) = limε→0,ε>0 U(tn ± ε). In the cG(1) method the approxima-
tion U of u is continuous piecewise linear in time and space, while the test
functions v are continuous linear in space and piecewise constant in time.
It is also possible to use a discontinuous method in time, we refer to [7], for
details on the resulting discontinuous Galerkin method, cG(p)-dG(q).

2.5 Matrix Equations

We now derive the matrix equations for the case p = q = 1. Using the
notation Un = U(tn) and computing the time integral in equation (2.14)
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yields the scheme: for 1 ≤ n ≤ N

m(Un − Un−1, v) + kna
(Un + Un−1

2
, v

)

= 0 for all v ∈ W0
n, (2.15)

which is the classical Crank-Nicolson method.

Let {ϕj}J
j=0 be the standard nodal basis of P1 (see Figure 2). Then

Un ∈ P1 can be written as

Un(s) =

J
∑

j=0

ξnjϕj(s), 1 ≤ n ≤ N, (2.16)

and the test function v can be written as

v(s) =
J

∑

i=0

γniϕi(s), 1 ≤ n ≤ N, (2.17)

for reals ξn0, . . . , ξnJ , γn0, . . . , γnJ .

PSfrag replacements

s

ϕ0 ϕ1 ϕ2 ϕJ−1 ϕJ

s0 s1 sJ−1 sJ

Figure 2: The hat-functions ϕ in the cG(1) method.

Let now ξn be the vector of all ξn,j, j = 0, 1, ..., J . If the expressions
above for U and v are inserted into equation (2.15) we receive the matrix
equation

(ξn − ξn−1)M + (ξn + ξn−1)
knA

2
= 0, 1 ≤ n ≤ N, (2.18)

where

M = (ϕj , ϕi) −
σ2

2(r − ν)

(

sϕj , ϕi

)

∂Ω
, 0 ≤ i, j ≤ J, (2.19)

and

A = (r − ν − σ2)A0 −
σ2

2
A1 − rA2, (2.20)
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where

A0 = (sϕj,s, ϕi), A1 = (s2ϕj,s, ϕi,s) −
r

r − ν
(sϕj , ϕi)∂Ω,

A2 = (ϕj , ϕi), 0 ≤ i, j ≤ J. (2.21)

Rearranging the terms in equation (2.18) we get the matrix equation we
need to solve successively backwards in time in order to obtain U0 given UN

ξn−1

(

M − knA

2

)

= ξn

(

M +
knA

2

)

, 1 ≤ n ≤ N. (2.22)

3 Asian Options

Here we give a short presentation of the pricing of the Asian option using the
finite element method presented in the previous section. In this paper we
use a method developed by Večeř [28]. For a more thorough study including
adaptivity and a posteriori error estimation see [12] or [9].

3.1 A Pricing Partial Differential Equation

The price of the Asian option, V (t, St, Xt), can be represented as

V (t, St, Xt) = e−r(T−t)E [V (T, ST , XT ) | Ft] , (3.1)

which is the usual expression for the value of a derivate. It can be shown (see
[9]) that (3.1) is the solution to the following partial differential equation

−rv + Vt + rsVs + qrsVx +
σ2s2

2

(

Vss + 2qVsx + q2Vxx

)

= 0. (3.2)

We can use the change of variable

Zt =
Xt

St
, (3.3)

to reduce the dimensionality of (3.2) (see [28] or [9])

{

∂ū
∂t

+ r(qt − z)∂ū
∂z

+ σ2

2 (qt − z)2 ∂2ū
∂z2 = 0,

ū(T, z) = z+,
(3.4)

where qt = µ([t, T ]). The price of the Asian option is then given in terms of
ū by the equation

V (t, St, Xt) = Stū
(

t,
Xt

St

)

. (3.5)
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3.2 Variational Formulation

So far we have studied the pricing PDE for Asian options valid for z ∈ R,
but in order to construct a computational mesh we introduce a bounded
interval Ω = [z0, zJ ] ⊂ R

+ with boundary ∂Ω = {z0, zJ}. Let H1 and W
be defined just as in the European case. We denote by u the solution to
(3.4) on Ω subject to the Dirichlet boundary conditions u(t, z0) = 0 and
u(t, zJ) = zJ on ∂Ω. We also use the notation (u, v)Ω =

∫

Ω uvdz, and
(u, v)∂Ω = u(zJ )v(zJ ) − u(z0)v(z0). Multiplying equation (3.4) by the test
function {v ∈ W : v = 0 on ∂Ω} and integrating on Ω × [0, T ] we obtain

∫ T

0

(

(ut, v)Ω + r
(

(q − z)uz, v
)

Ω
+

σ2

2

(

(q − z)2uzz, v
)

Ω

)

dt = 0. (3.6)

Using integration by parts we get
(

(q − z)2uzz, v
)

Ω
=

(

(q − z)2uz, v
)

∂Ω
+ 2

(

(q − z)uz , v
)

Ω
(3.7)

−
(

(q − z)2uz, vz

)

Ω
.

Thus equation (3.6) becomes
∫ T

0

(

(ut, v)Ω + (r + σ2)
(

(q − z)uz , v
)

Ω
− σ2

2

(

(q − z)2uz, vz

)

Ω

)

dt = 0. (3.8)

since v = 0 on ∂Ω. Introducing the Dirichlet boundary conditions u(t, z0) =
0 and u(t, zJ ) = zJ on ∂Ω (which is also used by Večeř, [28]) we get the
following problem: find u ∈ W such that







∫ T

0

(

(ut, v)Ω + aΩ(u, v)
)

dt = 0,
u(T, z) = z+,

u(t, z0) = 0, u(t, zJ ) = zJ ,

(3.9)

for every {v ∈ W : v = 0 on ∂Ω}, where

aΩ(u, v) = (r + σ2)
(

(q − z)uz , v
)

Ω
− σ2

2

(

(q − z)2uz, vz

)

Ω
. (3.10)

3.3 Finite Element Approximation

Applying the same finite element method as in the case of the European
option we get the following FE problem: find U ∈ W q such that for 1 ≤ n ≤
N















∫

In

(

(Ut, v)Ω + aΩ(U, v)
)

dt = 0 for all {v ∈ W 0
n : v = 0 on ∂Ω}

U−(tn) = U+(tn), n = N − 1, . . . , 1
U−(tN ) = uT

U(tn, z0) = 0, U(tn, zJ ) = zJ , n = N − 1, . . . , 1,
(3.11)

where aΩ is given by (3.10), and U±(tn) = limε→0,ε>0 U(tn ± ε).
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4 Model Reduction Methods

4.1 POD

The idea is, given a set of data that lies in the vector space W, to find
a subspace Wr of fixed dimension r such that the error in the projec-
tion onto the subspace is minimized. Suppose we have set of data x(t) =
{x1, x2, . . . , xn} ∈ R

n, with 0 ≤ t ≤ T , where each scalar field {xk} is a
function xk = xk(z), z ∈ Ω. In the POD method one then assumes that
each xk belong to the linear, infinite-dimensional Hilbert space L2(Ω), of
square integrable functions with inner product

(f, g) =

∫

Ω
f(z)g(z) dz. (4.1)

Following the exposition in Rowley [24] we seek a projection Pr : R
n → R

n

of fixed rank r, that minimizes the total error

∫ T

0
‖x(t) − Prx(t)‖2 dt. (4.2)

Now introduce the n × n matrix

R =

∫ T

0
x(t)x(t)∗ dt, (4.3)

where x∗ denotes the transpose of x, and calculate the eigenvalues and eigen-
vectors of R given by

Rηk = λkηk, λ1 ≥ · · · ≥ λn ≥ 0. (4.4)

Since the matrix R is symmetric, positive semidefinite, all the eigenvalues λk

are real and non-negative, the eigenvectors ηk may be chosen orthonormal.
The main result of POD is that the optimal subspace of dimension r is
spanned by {η1, η2, . . . , ηr}, and the optimal projection Pr is given by

Pr =

r
∑

k=1

ηkη
∗
k. (4.5)

The vectors ηk is then used as the new basis and are called POD modes.

These POD modes can then be used to form reduced order methods by
applying Galerkin projection. Writing the dynamics of our system as

ẋ = f (x(t)) , (4.6)

10



we define a new variable xr(t) ∈ span{η1, . . . , ηr} by ẋr(t) = Prf(xr(t)).
Let now

xr(t) =

r
∑

j=1

aj(t)ηj . (4.7)

Substituting this into equation (4.6) and multiplying by η∗
k we obtain

ȧk(t) = η∗kf(x(r)), k = 1, . . . , r, (4.8)

a set of ODEs that describe the dynamics of xr(t).

4.2 Method of Snapshots for POD

In our case data is typically given at discrete times, even though we now the
solution everywhere in time. According to Sirovich, [26], one can transform
the n × n eigenvalue problem (4.4) into an m × m eigenvalue problem by
exchanging the integral in (4.3) with a sum, using quadrature

R =

m
∑

j=1

x(tj)x(tj)
∗δj , (4.9)

where δj are the quadrature weights. Assembling the data into an n × m

matrix
X = [x(t1)

√

δ1 . . . x(tm)
√

δm] (4.10)

we can write the sum (4.9) as R = XX∗. One then solves the eigenvalue
problem

X∗Xuk = λkuk, uk ∈ R
m. (4.11)

For a more detailed derivation of this equation we refer to the excellent
book [14]. The eigenvectors uk may be chosen to be orthonormal, and
the POD modes are given by ϕk = Xuk/

√
λk. The m × m eigenvalue

problem (4.11) is more efficient than the n × n eigenvalue problem (4.4)
when the number of snapshots m is smaller than the number of states n.
As noted by Rowley [24], the POD modes are optimal at approximating a
given data set, but they are not necessarily the best modes for describing
the dynamics that generated a particular dataset, since low-energy features
may be critically important to the dynamics. Sometimes, adding more POD
modes can actually make dynamical models worse, see [27]. This is part of
the motivation behind balanced truncation, described in the next section.
For a more detailed analysis of POD and balanced truncation we refer to
Rowley and the references therein.

As noted in Rowley, POD modes can also be calculated by solving a
singular value decomposition (SVD) of the snapshot matrix X instead of
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solving the eigenvalue problem (4.11). The SVD problem has better roundoff
properties although it requires more computation. This is the technique we
use later on in the examples.

4.3 Balanced Truncation

Here we give a brief presentation of the balanced truncation method. A more
detailed analysis and an extension of the method (balanced POD) suitable
for large systems can be found in Rowley [24].

Balanced truncation may be viewed as POD with respect to a particular
inner product, or as biorthogonal decomposition, as noted by Rowley. Bal-
anced truncation uses dual information in the choice of the basis. Just as
we collected the primal snapshots in a matrix X, we collect the snapshots
of the dual data vectors φj as columns in a matrix Y , that is

Y = [φ1 . . . φm]. (4.12)

The balancing modes are then computed by forming SVD of the matrix
Y ∗X

Y ∗X = UΣV ∗ = [U1U2]

[

Σ1 0
0 0

] [

V ∗
1

V ∗
2

]

= U1Σ1V
∗
1 (4.13)

where Σ1 ∈ R
r×r is invertible, r is the rank of Y ∗X, and U ∗

1 U1 = V ∗
1 V1 = Ir.

The matrix Σ1 contains the so called Hankel singular values and the columns
of T1 form the balancing transformation, where

T1 = XV1Σ
−1/2
1 . (4.14)

4.4 Weighted POD

Weighted POD is an extension of POD and balanced truncation. In [10]
Foufas and Larson and develop the weighted POD method and present
an a posteriori error analysis for the POD method and the weighted POD
method. Here we just state the method and later on we test it on option
valuation problems.

In the weighted POD method we use the assumption that each U belong
to a vector space W, with a weighted inner product (f, g)W , with the only
restriction that it must be a bilinear positive definite functional, possibly
involving derivatives of the functions f and g and a weight function. It may
for example be the Hilbert space H1(Ω), with inner product

(f, g)H1 =

∫

Ω
f(x)g(x) dx +

∫

Ω
∇f(x)∇g(x) dx. (4.15)
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Using the same technique as Holmes et. al. [14] it is shown in [10] that the
weighted POD problem reduces to solving the following SVD

X∗WXξ = CΣD∗ = [C1C2]

[

Σ1 0
0 0

] [

D∗
1

D∗
2

]

= C1Σ1D
∗
1 , (4.16)

where W is the matrix with elements

Wkl = (ϕk, ϕl)W , (4.17)

Σ1 ∈ R
r×r is an invertible diagonal matrix containing the Hankel singular

values, r is the rank of X∗WX, and C∗
1C1 = D∗

1D1 = Ir. Here ϕ are the
standard finite element basis functions.

As mentioned earlier weighted POD is an extension of POD and balanced
truncation. Actually POD and balanced truncation is received by choosing
W = m and W = Y Y ∗ respectively, where m is the mass matrix.

5 Numerical Examples

Here we apply the different model reduction techniques presented above to
the European option and the Asian option. As mentioned in the introduc-
tion, the European option is used as a reference only. We also present a
sensitivity analysis.

5.1 The European Option

Figure 3 shows the finite element solution for an European option when
σ = 0.3 and r = 0.05, ν = 0, and T = 1. The solution is computed using
the cG(2)-dG(1) method with 200 space and time points.
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Figure 3: The price of an European option when σ = 0.3 and r = 0.05,
ν = 0, and T = 1. Computed using the cG(2)-dG(1) method with 200 space
and time points.

In figure 4 we see the relative error of the reduced order methods when
the finite element solution is regarded as the true solution, that is the relative
error erel is defined as

erel =
‖U − Ured‖

‖U‖ , (5.1)

where U is the ordinary finite element solution, Ured is the reduced or-
der finite element solution, and ‖a‖ denotes the l2 norm of a. We see
that all methods perform well and already after including only a few ba-
sis functions we have a very good solution. We also notice that the balanced
truncation method and the weighted POD method (with the weight-matrix
W = MY Y ∗M∗), which both takes dual information into account in the
choice of the basis, performs slightly better when point wise errors are con-
cerned and slightly worse when we look at the error in the entire domain,
which makes perfect sense.
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Figure 4: The relative error of an European option for the POD (×) solution,
the balanced truncation solution (◦), and the weighted POD solution (�)
with the weight-matrix W = MY Y ∗M∗, when the finite element solution
is the regarded as the true solution. On the left, the error in the point
of interest, that is S = 100, and on the right, the l2 error, where n is the
number of basis functions. The finite element solutions were calculated using
the cG(2)-dG(1) method with 100 space and time points, when σ = 0.3,
r = 0.05, ν = 0, and T = 1.

5.2 The Asian Option

Figure 5 shows the finite element solution for an Asian option when σ = 0.3
and r = 0.05, ν = 0, and T = 1. The solution is computed using the
cG(2)-dG(1) method with 100 space and time points.
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Figure 5: The price of an Asian option when σ = 0.3 and r = 0.05, ν = 0,
and T = 1. Computed using the cG(2)-dG(1) method with 100 space and
time points.

In figure 6 we see the relative error erel, defined by equation (5.1), of
the reduced order methods when the finite element solution is regarded as
the true solution. Just as for the European option, we see that all methods
perform well and already after including only a few basis functions we have
a very good solution. The balanced truncation method and the weighted
POD method (with the weight-matrix W = MY Y ∗M∗) performs slightly
better when point wise errors are concerned and slightly worse when we look
at the error in the entire domain.
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Figure 6: The relative error of an Asian option for the POD (×) solution, and
the balanced truncation solution (◦), and the weighted POD solution (�)
with the weight-matrix W = MY Y ∗M∗, when the finite element solution
is the regarded as the true solution. On the left, the error in the point
of interest, that is S = 100, and on the right, the l2 error, where n is the
number of basis functions. The finite element solutions were calculated using
the cG(2)-dG(1) method with 100 space and time points, when σ = 0.3,
r = 0.05, ν = 0, and T = 1.

5.3 Sensitivity Analysis

As pointed out previously the SVD based model reduction techniques seem
to be working very well. When dealing with option pricing problems there is
always a demand for performance. We do not want to calculate a new basis
each time we price an option. The question is how stable the reduced basis
is for changes in the parameters. If the basis functions are not so sensitive
towards changes in the parameters then we do not need basis functions
for that many different settings of the parameters. The strategy is to in
advance calculate basis functions for a number of different combinations of
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parameter settings. With the computer storage capacities existing today it
is no problem at all to save a great number of basis functions.

In figures 7 and 8 we see how sensitive the balanced truncation method is
for changes in the parameter sigma (σ) for the case of the European option
and the Asian option. That is if we calculate a base using a certain value for
sigma, and then use this base for calculating the price of the same option but
for a slightly different sigma, σ∗b, where b = 0.9, 0.95, 0.99, 1.0, 1.01, 1.05, 1.1.
The figures show the relative error between finite element solution and the
balanced truncation solution calculated for different values of the parameter
sigma but with the same base.
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Figure 7: Relative errors for the European option between the finite element
solution and the balanced truncation solution calculated for different values
of the parameter sigma but using the same modes, where n is the number
of basis functions. The modes were calculated using σ = 0.3. The relative
errors when b = 0.9, 0.95, 0.99 are plotted using (×) at the data points,
and the relative errors when b = 1.1, 1.01, 1.05 are plotted using (◦). As a
reference the error when b = 1.0 is plotted using (�). The finite element
solutions were calculated using the cG(2)-dG(1) method with 100 space and
time points, when σ = 0.3, r = 0.05, ν = 0, and T = 1.
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Figure 8: Relative errors for the Asian option between the finite element
solution and the balanced truncation solution calculated for different values
of the parameter sigma but using the same modes, where n is the number
of basis functions. The modes were calculate using σ = 0.3. The relative
errors when b = 0.9, 0.95, 0.99 are plotted using (×) at the data points,
and the relative errors when b = 1.1, 1.01, 1.05 are plotted using (◦). As a
reference the error when b = 1.0 is plotted using (�). The finite element
solutions were calculated using the cG(2)-dG(1) method with 100 space and
time points, when σ = 0.3, r = 0.05, ν = 0, and T = 1.

6 Conclusions

All methods work well on both European options and Asian options. Al-
ready after including just a few modes in the basis we receive very good
accuracy. The balanced truncation method and the weighted POD method
which both uses dual information performs slightly better when pointwise er-
rors are concerned and slightly worse otherwise. For more complex problems
one would expect even more from the dual methods. POD modes are very
effective at describing a particular dataset, but they are not necessary the
best modes for describing the dynamics that generate a particular dataset,
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since sometimes low energy modes may be more dynamically important than
high energy modes, see [27] or [24]. For the option pricing problems studied
here one can draw the conclusion that all the methods perform well and
could allow a significant speed up of the existing pricing procedures. For
multidimensional problems one would expect that the method is even more
efficient. Of course more testing needs to be done, but the first tests indeed
look very promising. The sensitivity analysis indicates that the calculated
modes are sensitive toward changes in the parameter sigma but not that
much that it makes the methods unusable.
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Option Manager: A Software Package for

Calculating and Visualizing Exotic Option

Prices and Greeks

Georgios Foufas∗

April 14, 2008

Abstract

In this report we present a software project that gives the user
the ability to easily calculate different exotic option prices and the
corresponding Greeks in a graphical user interface (GUI). The software
Option Manager is implemented in C++ with a GUI developed in
Matlab’s Guide. The program features the ability to show option prices
and Greeks graphically as evolutions in time or as a space-time plot
for a specific time. The valuation is done using the finite element
method, and features dual techniques as well. The program is also
equipped with the availability to calculate error estimations and show
them graphically. This gives the user not just a tool for calculating
prices and Greeks in an easy understandable way, but at the same time
it aids to the understanding with visualization of the prices, Greeks,
and error plots.

1 Introduction

The valuation of different types of derivative contracts is very important
in modern financial theory and practice. Not only the option price itself is
important to calculate, but also the sensitivity measures, or the so called
Greeks, are important to be able to calculate in a fast and stable way, since
they are used when hedging the options.

The performance demands on the valuation process is usually very high.
Many different methods have been applied to attack these problems. The
demand for performance have led some to use approximations that produce
closed form expressions. Others rely on numerical methods such as binomial

∗Research Assistant, Department of Mathematics, Chalmers University of Technology,
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and trinomial tree methods. Tree methods are easy to understand and can
be applied to many types of problems, at the same time they sometimes
work less well and they lack error analysis. Another frequently used method
is Finite Difference (FD) method. We use another method, the so called
Finite Element (FE) method.

The FE method is widely used in other fields as a tool for finding approx-
imate solutions to partial differential equations (PDE) as well as of integral
equations. It was developed in the 1950’s and 1960’s by engineers, and was
mainly used in structural mechanics, see e.g. [6] for an overview. The FE
method also has a strong mathematical foundation in functional analysis,
see [1]. The mathematical foundation provides the tools to derive analytical
error estimates which can be used to improve the approximative solution.
The FE method has several advantages compared to the FD method, for
example, using the FE method one receives a solution in the entire domain,
not only in isolated nodes as in FD codes. FE codes can also incorporate
different kinds of boundary conditions in an easy way. Other important ad-
vantages of the FE technique are that it can easily deal with high curvature
and irregular shapes of the computational domain. One of the most impor-
tant advantages in practice is that the sensitivity measures, or the so called
Greeks, can be calculated more exactly using the FE method. In finance
it has not been used that frequently compared to other methods such as
the FD method. Recently Topper [5] wrote an excellent book applying the
FE method to different option pricing problems. Topper uses a commercial
software whereas we have developed our own software, see [3], [2], or [4].

A good program should be flexible and easy to use. At the same time
the performance demands set limitations to what kind of programming lan-
guages that could be used. Flexibility of the code is achieved by program-
ming in the object oriented language C++. We believe that C++ is very
suitable language for developing an object oriented fast code that easily can
be renewed to add new features without rewriting the whole program. At the
same time it is hard to write a graphical user interface (GUI) in C++ that
should be able to plot option prices in two and three dimensions. There-
for we decided to write the valuation code in C++ and develop the GUI
in Matlab’s easy to use Guide, a software package where one can develop
GUI’s in an easy way with the advantage that all the excellent visualization
features in Matlab are available. The different tools needed in a finite ele-
ment software are implemented as classes, which makes them easy to renew
and combine. These classes include grids, vector, matrices, solvers, error
estimators and so on.

Outline: In Section 2 we give a specification to what the software can
do and how it is organized. Then in Section 3 we explain how to use the
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software and show some examples. Finally in Section 4 we provide some
future plans for development of the software.

2 Specification and Organisation

Option Manager is able to calculate option prices and Greeks for different
exotic options. At the moment these options concists of European options,
barrier options, floating and fixed strike lookback options, and Asian op-
tions. The user can easily choose the type of option, different variants, and
sampling frequency in drop-down menus. The parameters and grid specifi-
cation choices are entered in boxes. Then all one has to do is to press the
run button. Figure 1 shows a screen shot of the software’s GUI.

Figure 1: Screen shot of Option Manager.

If one ticks the box error estimation the software also calculates the
solution to the corresponding dual problem to the chosen problem. The
dual problem is used to calculate the error. For more information about a
posteriori error estimation, and dual techniques, concerning option pricing
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problems we refer to [4], [2], and [3].

The option prices, dual solutions, errors, and the Greeks, can be viewed
as a 2D-plot at a certain time or as time-space evolution which makes it
possible to view the solution over the whole space-time domain. This gives
the user not just a tool for calculating prices and Greeks in an easy un-
derstandable way, but at the same time it aids to the understanding with
visualization of the prices, Greeks, and error plots. Also for a user not fa-
miliar with the finite element method this helps in understanding how the
dual techniques works and what role the dual solution plays. The prices and
the Greeks are also presented numerically in boxes at the bottom left corner
at a point of interest in space chosen by the user at time t = 0.

3 A Brief Users Guide

The option manager graphical user interface is divided into five different
panels and one plot window, each with a different function, see Figure 1.
These five panels or groups are named Choice of option and output, Specify

parameters, Specify grid parameters, Run and Visualization, and Results.

3.1 Choice of Option and Output

In this panel one chooses which option that is to be valued by using the
drop-down menus. The choice of option might trigger the appearance of
another drop-down menu. Here the user also enters which type of option
that is to be valued, put or call, and which sampling that is to be used. If
the box error estimation is ticked then the dual solution and the a posteriori
error is also calculated. In Figure 2 we a screenshot of the first panel.
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Figure 2: Screen shot of Option Manager, the first panel in the upper left

corner.

3.2 Choice of Parameters

In this panel the option parameters are set, such as the interest rate, the
volatility, the dividend yield, the strike price, and if necessary the lower
and/or upper barrier level, by entering the values for these into the boxes.
By pressing the tab button one easily switches to the next box after enter-
ing a value. In Figure 3 we the a screenshot showing the panel Choice of

parameters and Specify grid parameters.
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Figure 3: Screen shot of Option Manager, the second and third panel in the

upper right corner.

3.3 Specify Grid Parameters

The grid parameters that are used in the calculation are specified in this
panel by simply entering them into the boxes. One can also upload a data-
sheet with parameters by entering the File menu in the upper left corner
of the window. All parameters are then set automatically acording to the
data-sheet.

3.4 Run and Visualization

When all the previous panels have been attended to one is ready to start the
calculation by pressing the Run button. It might take a while for the solution
to appear in the Results panel and in the graphical window depending on
whether or not error estimation was chosen in the first panel. In the drop
down menu Select data one chooses what type of data that is to be displayed
graphically in the window to the right. The choices are Primal solution, Dual

solution, Error, Gamma, and Delta. The choice is finalized by choosing
which type of visualization that is wanted by pressing either of the buttons
Mesh or Plot of last time step. The Mesh button gives a space time plot over
the evolution of the chosen data. The results are presented in the window in
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the bottom right corner of the GUI. In this panel there are also the two other
buttons, Help and Close. By pressing the Help button a help menu opens,
and by pressing the Close button the program is terminated. In Figure 4
we see a screenshot with an up and out barrier call option.

Figure 4: Screen shot of Option Manager. In the plot window we see the

value of an up and out barrier call option.

3.5 Results

This panel contains the results in number form. The option price and the
Greeks are presented in the boxes at a point of interest in space. The point
is chosen by either entering a numeric value in the box and then pressing
the Update button or by using the slider to the right.

4 Future Developments

There are some obvious improvements of the graphical user interface and
the valuation program. More options needs to be included, also multidimen-
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sional contracts. The visualization feature then also needs to be updated.
For example it would be nice to be able to rotate the figure and to use
the other Matlab tools such as magnify, changes of axes etc. The use of
adapted meshes needs to be incorporated. The program should have some
adapted meshes saved for each option. Also one should be able to compute
an adapted mesh with the program.
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