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Abstract

This thesis can be considered as two parts. In the first part a hyperbolic
type integro-differential equation with weakly singular kernel is considered,
which is a model for dynamic fractional order viscoelasticity. In the second
part, the finite element approximation of the linear stochastic wave equation
is studied. The link between these two equations is that they are both
treated as perturbations of the linear wave equation.

Our study in the first part comprises investigating well-posedness of the
model, and the analysis of the finite element approximation of the solution
of the model problem. The equation, with homogeneous mixed Dirichlet
and Neumann boundary conditions, is reformulated as an abstract Cauchy
problem, and existence, uniqueness and regularity are verified in the context
of linear semigroup theory. From a practical viewpoint, the problems with
mixed homogeneous Dirichlet and non-homogeneous Neumann boundary
conditions are of special importance. Therefore, the Galerkin method is
used to prove existence, uniqueness and regularity of the solution of this
type of problem. Then two variants of the continuous Galerkin finite element
method are applied to the model problem. Stability properties of the discrete
and the continuous problem are investigated. These are then used to obtain
optimal order a priori estimates and global a posteriori error estimates. In
a general framework, a space-time cellwise a posteriori error representation
is also presented. The theory is illustrated by an example.

The second part concerns the study of the semidiscrete finite element
approximation of the linear stochastic wave equation with additive noise
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in a semigroup framework. Optimal error estimates for the deterministic
problem are obtained under minimal regularity assumptions. These are
used to prove strong convergence estimates for the stochastic problem. The
theory presented here applies to multi-dimensional domains and correlated
noise. Numerical examples illustrate the theory.

Keywords: finite element method, continuous Galerkin method, linear
viscoelasticity, fractional calculus, fractional order viscoelasticity, weakly
singular kernel, stability, a priori error estimate, a posteriori error estimate,
stochastic wave equation, additive noise, Wiener process, strong conver-
gence.
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1 Introduction

The fractional viscoelastic model, i.e., the linear viscoelastic model with frac-
tional order operators in the constitutive equations, is capable of describing
the behaviour of many viscoelastic matrials by using only a few parameters.
Therefore the fractional order viscoelastic models have attracted consider-
able attention in the last decades.

The finite flement method (FEM) is a numerical technique for finding
approximate solutions of partial differential equations (PDE) as well as of in-
tegral equations. This method originated from the need for solving complex
elasticity and structural analysis problems in civil and aeronautical engi-
neering. The FEM allows detailed visualization of where structures bend
or twist, and indicates the distribution of stresses and displacements. Gen-
erally, FEM is the method of choice in all types of analysis in structural
mechanics, i.e., solving for deformation and stresses in solid bodies or dy-
namics of structures.

This thesis can be considered as two parts. In the first part we study
a hyperbolic type integro-differential equation with weakly singular kernel,
modeling dynamic fractioal order viscoelasticity. Our study in the first part
comprises investigating well-posedness of the model, and the analysis of the
finite element approximation of the solution of the model problem consisting
of implementation, stability, a priori and a posteriori analysis. We have
collected the obtained results in the first three appended papers. The second
part is devoted to studying the finite element approximation of the linear
stochastic wave equation. This resulted in one paper, Paper IV. These two
parts might seem different, but we consider the main subject as studying the
wave problem with two types of perturbations; the first case is a perturbation
with a memory term, similar to the fractional order viscoelasticity model,
and the second case is a perturbation with a noise in the load term, which
is the linear stochastic wave equation.

In the sequel, after providing some basic concepts from fractional cal-
culus, we explain the derivation of the fractional viscoelasticity model, that
is the main model for the first part of this work. Then in §4 we provide
some materials from Paper I and Paper II, where we prove well-posedness of
the model problem. In §5 we use the classical wave equation on a bounded
domain to highlight the main ideas for implementation of the continuous
Galerkin mehtod, and the corresponding analysis. These have been used in
Paper I, Paper III, and Paper IV. We devote §6 to explain the main feature
of the linear stochastic wave equation and the results from Paper IV. We
discuss some works which have been done in the past in §7. Finally we
summerize the appended papers.



2 Fractional calculus

Generalization have always been an interesting subject in mathematics. One
example is the continuous gamma function which interpolates between the
factorials. Another one is the fractional differential /integral operators which
interpolates between integer order differential/integral operators. In fact
analytic continuation of the gamma function for z < 0 plays an important
role when we construct the theory of fractional order differential/integral
operators from the corresponding integer order operators. In the following
we describe the main ideas of these generalizations.

A brief historical overview of the development of fractional calculus is
given by Ross [55]. The text books Oldham and Spanier [48] and Samko et al.
[68] are concerned with the definitions and the properties of fractional order
differential /integral operators. A survey of the many different applications
which have emerged from fractional calculus is given in Podlubny [50].

In contrast to the term “fractional” the fractional order exponent can be
irrational and even complex. However, in this context we take it to be real.

2.1 Gamma function

A comprehensive definition of the the gamma function I'(x) is that provided
by the Euler limit

. NIN?®
) = i e D+ G

but the integral transform definition

I(x) :/ " te7tdt, x>0,
0

is often more useful, altough it is restricted to £ > 0. Integration by parts
then leads to the recurrence relationship I'(x + 1) = zI'(z), that is also a
simple consequence of the Euler definition. Having I'(1) = 1, for a positive
integer n, we have the factorial n! = n(n—1) - - - 2-1. Rewriting the recurrence
relationship as I'(x — 1) = I'(z)/(z — 1), shows that I'(0) is infinite, as is
I'(—1) and the value of gamma function at all negative integers. However,
ratios of gamma functions of negative integers are finite, that is, for positive
integers n < N

NN

= (NN +1) - (mr=2)(n—1) = ()"



The reciprocal 1/I'(z) of the gamma function is single-valued and finite for
all z. The figure below shows a graph of this function described by
1 3;,1/2—.’1:

er, T — oo.

14

In the generalization of the integer order differential/integral operators
we will use the gamma function expression

I'(j—q)
T(-g)T(j +1)

where j is a nonnegative integer and ¢ may takes any value. This can be

)

expressed as a polynomial in ¢, in terms of Stirling numbers S](-m ,

(2.1)

DG-9) (g gmgn

L(—g)T(j +1) J!

m=0

and establishes that (2.1) is finite and single-valued for all finite values of
g and j, see Oldham and Spanier [48]. Though, we will use a binomial
coefficient expression

s il G R ) 22)

We remark that one other way of extension is to split the gamma function
in the form

1 e8]
I'(z) :/ 7 let dt+/ t"le~t dt.
0 1
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The first term can be evaluated by using the series expansion for the ex-
ponential function, and the second integral defines an entire function, see
Podlubny [50]. That is, bringing these together we have

N R
I‘(z)—z X k+z—|—ent1re unction,

and, indeed I'(z) has only simple poles at the points z = —n, n =0, 1, 2, ....

2.2 Fractional differential /integral operators

The first definition that can be offered is the one that is regarded as the
most fundamental definition. That is, it involves the fewest restrictions on
the functions to which it applies and avoid explicit use of the notions of
ordinary derivative and integral. To this end, we first recall a unification
of two notions which are usually presented separately in classical analysis:
derivate of integer order n > 0 and n-fold integral. Using the basic definition
of the nth derivative and the n-fold integrals, that are, respectively, the limit
of difference quotient and the limit of Riemann sum, we have

i) = 5Ly = im (%)‘"i(—w’ (?)f(t )

J=0

o= g = i () S (e

§=0

where n is a nonnegative integer. In general we need to consider a lower
limit a that is a number smaller than ¢, and in that case we would have t_T“
instead. We use a = 0 to ease the notation. Now recalling equation (2.2)
we have a unified definition, for any integer number ¢,

¢ N

. - : .t . I'(7 —
g = i () S ). e

Letting ¢ be an arbitrary number we obtain the Grinwald’s formula of
the fractional order differential/integral operators, that was introduced by
Grinwald (1867) and later extended by Post (1930). A suitable truncation
of the Griinwald’s definition is often used for numerical approximation of
fractional derivatives and integrals, see, e.g., Podlubny [50].

A frequently encountered definition of an integral of fractional order is
via an integral transform called the Riemann-Liouville integral. To motivate
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this definition we recall Cauchy’s formula for repeated integration

tn 1
// f (to)dto -~ dtp_odt,_1

= f(S) B
- (n—1)_/0 (t_s)lfndsa n=1,2---,

with DOf(¢) = f(t). Replacing the integer number n with the real number
« and the discrete factorial (n — 1)! with the continuous gamma function T,
the Riemann-Liouville fractional integral is obtained

1 ¢ s
D) = e /0 ; 7 ﬁ)ia ds, >0, (2.3)
where « is the order of integration. Note that the convolution kernel ﬁl_—a
is singular but integrable.

From the Riemann-Liouville fractional integral (2.3) at least two defi-
nitions of fractional differentiation can be formulated. The most common
definition is the Riemann-Liouville fractional derivative. Formally, the same
definition can be used for fractional differentiation of order a by making the
replacement —a — « in (2.3), that is,

1 ¢ s
Df(t) = (—a) /0 i _fi))Ha ds, oa>0.

The convolution integral above is in general divergent and needs to be in-
terpreted in the sense of its regularization. A convergent expression for the
fractional derivative operator is obtained by splitting the derivative operator
into an integer order derivative and a fractional integral operator. That is
for a > 0,

_n 1 d" ¢ S
D10 = DD 50 = e gy |, =y ]

where n is the integer that satisfies n — 1 < a < n. Another related defini-
tion of fractional differentiation is the so-called Caputo derivative, see, e.g.,
Caputo [13] and Podlubny [50],

1 LD f)(s)
Doz t :Da—nDn 1) = d ,
°f (1) 10 = e | [ i ds
We note that fractional order operators are defined through convolution
integrals and are therefore, unlike integer order derivatives, nonlocal oper-
ators. They depend on all function values from its lower limit ¢ = 0 up to
the evaluation point s = .



Recalling the fact that the Riemann-Liouville definition of the fractional
differential /integral operator is equivalent to the Griinwald’s definition, we
compare briefly the definitions of the fractional derivative by Riemann-
Liouville and Caputo, see Oldham and Spanier [48] and Podlubny [50]. The
Riemann-Liouville derivative of a constant function f(¢t) = ¢, t > 0, f(t) =
0,t < 0is D% = ct—*/I'(1— ) while the Caputo fractional derivative of the
same function is D%c = 0. This shows an unusual property of the Riemann-
Liouville derivative, namely the derivative of a constant is a function of ¢.
Fractional derivatives often appear in fractional differential equations. By
taking the Laplace transform of a fractional derivative it is possible to iden-
tify the initial conditions that should be specified. The Laplace transform
of the Riemann-Liouville derivative and the Caputo derivative are, respec-
tively,

7
L

LID*f®)(s) = s“LIfF(B)](s) = D s*(D*TF1)(07),

i
= o

LIDLf®)](s) = s“LIf(B)(s) = Y s*FH D F)(0%).

k

Il
<]

Here the last terms reveal the initial conditions. For the Riemann-Liouville
definition we obtain initial conditions on integrals of fractional order, while
for the Caputo derivative we obtain initial conditions on the function itself
and its derivatives. The latter conditions are of course easier to interpret
physically. To choose the appropriate Laplace transform formula, it is im-
portant to understand which type of initial conditions must be used.

For the constitutive models of viscoelasticity to be consistent with the
second law of thermodynamics the fractional exponent must be between
zero and one, see Adolfsson et al. [6]. We therefore restrict the exponent to
a € (0,1]. The Riemann-Liouville derivative then takes the form

DOf(t) = ﬁ% [/Ot% ds] . (2.4)

Then a simple rearrangement of the operators, yields the following relation
between the Riemann-Liouville and the Caputo definitions

DJW) = DS + oo, ac (1]

2.3 Mittag-Lefller function

The exponential function, e?, plays an important role in the theory of integer
order differential equations. Its one-parameter generalization, the function



defined by

Eo(z) = kzz;) T+ ak)’

was introduced by Mittag-Leffler (1903, 1904, 1905) and was investigated
by several authors among whom Wiman (1905), Pollard (1948), Humbert
(1953). For a@ > 0, E,(z) is the simplest entire function of order 1/«
Phragmén (1904). The two-parameter function of the Mittag-Leffler type

Bap()=3 =2 050,850,
P L(8+ ak)

that plays an important role in the fractional calculus, was in fact introduced
by Agarwal (1953). It was studied by Humbert and Agarwal (1953), but they
used the same notation and name as for the one-parameter Mittag-LefHer
function, see Podlubny [50] and Bateman [25] for references. It is noted that
Ea = Lig,1 and El’l(z) = €~

The Laplace transform of the Mittag-Leffler function of order a > 0 is

a—1

L(Baat*)) = —, s> la'/".

s —

Indeed, for s > a, using the series expansion of the exponential function we
have

: / teat EOO: a* tok a* k! a*
= e e dt = / e "t dt = E — = E .
— ! | gk+1 k+1
s—a 0 — k! Jo Pt k!'s =

Then similarly for the Mittag-Lefller function we obtain

St k o9 o k
o a stiok a [(ak + 1)
A -y _4 1ok gy —
‘C(E (at )) kZ_O T(ak + 1) /0 € kz—o T(ak + 1) gak+1
gek+1 (Sa)k—}—l s® — g
k=0 k=0

We now bring two definitions which are important in the theory of
integro-differential equations, and therefore in viscoelasticity, see Bateman
[25], Renardy et al. [53], and Widder [68].

Definition 2.1. A function b € C*°(0, 00) is called completely monotone if

k4

-1 t) > k=0,1,....
(~DF2b(0) 20, k=0, 1,



Pollard (1948) proved that the Mittag-Leffler function E,(—z) is com-
pletely monotone for z > 0 if « € [0,1], that is,

—1’C£E —-2)>0, k=01
( )dtk a(=2) >0, =0,1,....

Definition 2.2. A function b € L j,[0,00) is called of positive type if for
all T > 0 and ¢ € C([0,T]),

/0 ' /0 bt — $)o(t)o(s) ds di > 0. (2.5)

The integral above may vanish without having ¢ identically zero. For
example, for an arbitrary continuous function g, let b(¢,s) = g(¢)g(s). Then
we have only to choose () orthogonal to g(t) on (0,7'). A positive definite
function then is a positive type function such that the integral (2.5) can
vanish if and only if ¢ = 0. We recall some important properties of the
positive type functions.

The definition of a positive type function is not easy to check. Therefore,
using the transform techniques one can show that b € L1 (0, 00) is of positive
type if and only if

Re b(iw) = / b(t) cos(wt)dt > 0, VYw € R, (2.6)
0

where b denotes the Laplace transform of b.

Remark 2.1. From the viewpoint of applications to viscoelasticity, it is
useful to know that a sufficient condition for (2.6) to hold is a certain type
of sign conditions. That is, if b € L1(0,00) N C?%(0, 00) and

b d°

(=D)*—5b(t) 20, ¥£>0, k=0,1,2, (2.7)

then b is a positive type function, that is b satisfies (2.6). Consequently, any
completely monotone function b € Ly j,.(0, 00) is of positive type.
We note that the function b(t) = et cos(t), satisfies (2.6) but not (2.7).

Remark 2.2. Assume b is a positive type function (kernel), and A is a
selfadjoint, positive definite operator on a Hilbert space of functions. Let
a(u,v) = (Au,v) be a corresponding bilinear form, for sufficiently smooth
functions u, v, and {(A;, ;) }32, be the corresponding eigenpairs. Then, for
any T > 0 and u € C([O,T]; D(Al/Q)), we have

T pt x T pt
/0 /0 b(t—s)a(u(s),u(t))dsdt:jz_:l)\j /0 /0 bt — s)u;(s)u; (¢) ds dt,

8



where u; = (u, ;). Since each of these integrals is positive by the positive
definiteness of the kernel b, we conclude,

/T/t”(t — s)a(u(s),u(t)) dsdt > 0.
0 JO

3 Fractional order linear viscoelasticity

Linear viscoelasticity in combination with fractional order operators, i.e., the
fractional order viscoelastic model, have attracted considerable attention
in the last decades. The fractional order viscoelastic model is capable of
describing the behaviour of many viscoelastic materials.

A perfectly elastic material does not exist since in reality: inelasticity
is always present. This inelasticity leads to energy dissipation or damping.
Therefore, for a wide class of materials it is not sufficient to use an elastic
constitutive model to capture the mechanical behaviour. In order to replace
extensive experimental tests by numerical simulations there is a need for
an accurate material model. Therefore viscoelastic constitutive models have
frequently been used to simulate the time dependent behaviour of polymeric
materials. The classical linear viscoelastic models that use integer order
time derivatives in the constitutive laws, require an excessive number of
parameters to accurately predict observed material behaviour.

Bagley and Torvik [9] used fractional derivatives to construct stress-
strain relationships for viscoelastic materials. The advantage of this ap-
proach is that very few empirical parameters are required (two elastic con-
stants, one relaxation constant and the fractional order exponent).

When this fractional derivative model of viscoelasticity is incorporated
directly into the structural equations a time differential equation of non-
integer order higher than two is obtained. One consequence of this is that
initial conditions of fractional order higher than one are required. The
problems with initial conditions of fractional order have been discussed by
Enelund and Olsson [24] and also by Bagley [8] and by Beyer and Kempfle
[12]. To avoid the difficulties with fractional order initial conditions some
alternative formulations of the fractional derivative viscoelastic model are
used in structural modeling. The first form, that we will use, is based on
a convolution integral formulation with a singular kernel of Mittag-LefHer
type (see [24], [21] and [4]). The second form involves fractional integral op-
erators rather than fractional derivative operators (see [20]). And the third
form uses internal variables, see [22], [23] and [1].

We recall that a fractional order differential operator is not a local op-
erator, i.e., the derivative depends on the whole history of the function.



This increases the complexity of mathematical analysis and the numerical
computations of fractional order viscoelastic models.

For extensive overviews, analysis of the fractional order viscoelastic mod-
els, the hereditary theory of linear viscoelasticity and the history of linear
viscoelasticity the reader is referred to [1], [6], [19], and [56].

3.1 Convolution integral formulation

Let 0;j, €;; and u; denote, respectively, the usual stress tensor, strain tensor
and displacement vector. We recall that the linear strain tensor is defined

by,

o= )

With the decompositions
_ 1 _ 1
Sij = Oij — 30kk0ij,  €ij = €ij — 3€kkOij;
the constitutive equations are formulated as, see Bagley and Torvik [9],

Sij t) + T{llDtalsij(t) = 2Gooeij(t) + 2G7.1041 Dtaleij(t), (3 1)
O'kk(t) + ’TQazDgzakk(t) = 3K006kk(t) + 3KT§2Dta26kk(t), )
with initial conditions

Sij(0+) = 2G’eij(0+), O'kk(o-i-) == 3K6kk(0+),

meaning that the initial response follows Hooke’s elastic law. Here G, K
are the instantaneous (unrelaxed) moduli, and G, K are the long-time
(relaxed) moduli. Note that we have two relaxation times, 71, 72 > 0, and
fractional orders of differentiation, a1, as € (0,1), where the fractional order
derivative is defined by (2.4). The constitutive equations (3.1) can be solved
for o by means of Laplace transformation, see Enelund and Olsson [24]:

si(t) = 26 (et - S22 [ e spes(o) ),
ok (t) = 3K<6kk(t) - % /Ot fo(t — s)ex(s) dé’),

where
filt) = —%Ea,. (- (Ti)“) (3.2)

10



and E,; is the Mittag-Lefller function of order «;, defined in §2.3. We make
the simplifying assumption (synchronous viscoelasticity):

o= =, T=T1="T2, [f=fi=Ff.

Then we may define a parameter -y, a kernel 3, and the Lamé constants y, A,

GG K- Ku
’Y_ G - K ?

Bt)=7ft), p=G, A=K -3G,

and the constitutive equations become

013(t) = (2pess (1) + Mexr(1)3) — /0 B 5) (2ues () + Aewu(5)5 )

= (o0)lt) — [ 5t = ) (ool (5) .

Note that the viscoelastic part of the model contains only three parameters:

0<y<1l, O0O<a<l 7>0.
The kernel is weakly singular:
~1
=258~ (£)) =r2(2) " m(- ()
~Ct et 0,
and we note the properties

B(t) >0,
Bl = | 8Ot =1(Fal0) = Pa(o0) =7 <1
Various properties (e.g., regularity and convergence) of the memory kernel

function $ have been investigated in Enelund and Olsson [24].
The equations of motion now become:

puigt — oy = fi,  in ),
u; = 0, on I'p,
oiiMj = Gi, on I'y.

Considering also initial values for displacement u and velocity u;, this can

11



be written as
pug(z,t) =V - 09(u; z,t)

t
—I—/5(t—5)V-00(u;x,5)ds=f(x,t) in Qx1I,

u(z,t) = onT'p x I, (3.3)
o(u;z t) n(z) = g(z,t) onT'y x I,

u(z,0) = u’(z) in Q,

uy(z,0) = v°(z) in Q,

which is a Volterra type integro-differential equation.

We should mention that there are also models with exponential kernels,
smooth kernels, which describe polymeric materials, e.g., natural and syn-
thetic rubber. The drawback with this kind of model is that it requires a
large number of exponential kernels to describe the behaviour of the ma-
terials. This is the reason for introducing kernels of Mittag-Lefller type or
fractional operators. In [24] and [6] Enelund and Adolfsson have shown that
the classical viscoelastic model based on exponential kernels can describe
the same viscoelastic behaviour as the fractional model if the number of
kernels tend to infinity.

To motivate the derivation of the dual (adjoint) problem, we denote
Au = =V - 0gg(u) and ui = u, ug = uy = u1. Then the strong form (3.3)
can be written as

A 0 ’u,1,t + 0 —A Ul . 0
0 pl Ut ( fo Bt — s) ds)A 0 up )\ f)’
that lead us to the dual form
(0 ) () (5 o) (2) - (0)
0 pI b2t -A 0 ¢2 0
For a precise discussion see, the appended Paper III.

The two limits of the fractional exponent ¢, that is, a = 0, a = 1
describe two different mechanical behaviour. For the first case a = 0, by
the constitutive equation (3.1), there is no convolution term in the model,
that is, there is no dissipation of energy and therefore no damping. While
for the other limit @ = 1, recalling (3.2) and the fact that E;(t) = et, we

expect strong damping. These are illustrated in the figure below, see also
the appended Paper I.
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4 Well-Posedness of the model problem

The main tools, that we have used to prove existence, uniqueness, and reg-
ularity of the solution of the model problem (3.3), are the theory of semi-
group of linear operators, and the Galerkin method. In the next section
we bring some materials (without proofs) for the semigroup approach to
provide the main idea that have been used in Paper I. For details on the
Galerkin method, that is the main tool for Paper II, we refer to the existing
references, e.g., Evans [27], or Dautray and Lions [17].

4.1 Semigroups of linear operators

Semigroup theory is the abstract study of first-order ordinary differential
equations with values in Banach spaces, driven by linear, but possibly un-
bounded, operators. This approach provides an elegant alternative to some
of the well-posedness theory for evolution equations that is one of the many
applications that the theory has in different branches of analysis (such as
harmonic analysis, approximation theory and many other subjects). In this
section we outline the basics of the theory, without any proof, and present as
well the Lumer-Phillips theorem, which will be used in §2 of the appended
Paper 1.

Troughout this section we let X denote a real Banach space.

For more complete and advanced details of the theory and its application
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to partial differential equations one may refer to Pazy [49] and Evans [27].

4.1.1 Definitions and properties

Definition 4.1. A one parameter family 7'(¢), 0 < ¢ < o0, of bounded linear
operators from the Banach space X to X is a semigroup of bounded linear
operators on X if

(1) T(0) =1, (I is the identity operator on X),
(#)T(t+s)=T(t)T(s), foreveryt,s>0 (the semigroup property).

Definition 4.2. The linear operator A defined by

_ +
Az — Tim T(t)x —x _d T(t)z
t\0 t dt

li—o for z € D(A),

is the (infinitesimal) generator of the semigroup T'(t), where D(A) is the
domain of A defined by

D(A) = {z € X : lim Tz -z

exists} .
)

Definition 4.3. A semigroup 7T'(¢), 0 < ¢ < oo, of bounded linear operators
on X is a strongly continuous semigroup if

limT(t)z =2z Ve X.
N0

A strongly continuous semigroup of bounded linear operators on X will be
called a Cy semigroup. If moreover |T(¢)|| < 1 for ¢t > 0 it is called a Cy
semigroup of contractions.

Lemma 4.1. Let the linear operator A be the generator of a Cy semigroup

T'(t). Then for x € D(A), T(t)z € D(A) and

d
ET(t)w = AT (t)z.

Definition 4.4. For every z € X we define the duality set F(z) C X* by
Pla) = {s": 5" € X" and (") = 2] = 4”2},

where X* denotes the dual of X. And we note that by Hahn-Banach theorem
F(z) # @ for every z € X.

Definition 4.5. A linear operator A is dissipative if for every x € D(A)
there is z* € F(z) such that (Az,z*) < 0.
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Theorem 4.1. Let A be dissipative with R(I — A) = X. If X is reflexive
then D(A) is dense in X, i.e., D(A) = X.

We use the first part of the following theorem in Paper I.

Theorem 4.2. (Lumer-Phillips). Let A be a linear operator with dense
domain D(A) in X.

(a) If A is dissipative and there is a A > 0 such that R(A] — A) = X,
then A is the infinitesimal generator of a C\ semigroup of contractions on
X.

(b) If A is the infinitesimal generator of a Cy semigroup of contractions
on X, then R(AI — A) = X for all A > 0 and A is dissipative. Moreover, for
every € D(A) and every z* € F(z), (Az,z*) <O0.

4.1.2 The abstract Cauchy problem

Let A be a linear operator from D(A) C X into X. Given z € X the abstract
Cauchy problem for A with initial data = consists of finding a solution u(t)
to the initial value problem

d
Eu(t) = Au(t) + f(t), t>0,

u(0) =z,

(4.1)

where f : [0,7) — X. And by a solution we mean an X-valued function
u(t) such that u(t) is continuous for ¢ > 0, continuously differentiable and
u(t) € D(A) for t > 0 and (4.1) is satisfied. Note that since u(t) € D(A)
for ¢t > 0 and u is continuous at ¢ = 0, (4.1) cannot have a solution for

z ¢ D(A).

From Lemma 4.1 it is clear that if A is the (infinitesimal) generator of
a Cy semigroup 7'(t), the abstract Cauchy problem (4.1) when f = 0 has a
solution, namely, u(t) = T'(t)z, for every z € D(A). So T'(t) is called the
operator solution. It can be proved that the solution is unique. We recall a
useful corollary that provides sufficient conditions to have a solution of the
initial value problem (4.1).

Corollary 4.1. Let A be the infinitesimal generator of a Cj semigroup 7'(t).
Let f € L1(0,T; X) be continuous on (0,T). If f(s) € D(A) for 0 < s <T
and Af(s) € L1(0,T; X) then for every z € D(A) the initial value problem
(4.1) has a solution on [0,T).

Definition 4.6. A function u which is differentiable almost everywhere on
[0, T] such that u' € L1(0,T; X) is called a strong solution of (4.1) ifu(0) = z
and u'(t) = Au(t) + f(t) a.e. on [0,T].
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In the following lemmas we find the sufficient assumptions under which
we get a unique strong solution of (4.1).

Corollary 4.2. If A generates a Cy semigroup 7'(¢), f is differentiable a.e.
on [0,7] and f' € L1(0,T;X) then for every x € D(A) the initial value
problem (4.1) has a unique strong solution.

In general, the Lipschitz continuity of f on [0,7] is not sufficient to
assure the existence of a strong solution of (4.1) for z € D(A). However, if
X is reflexive, for instance a Hilbert space, and f is Lipschitz continuous on
[0,T] that is

| £(t1) — f(t2)|| < Clt1 —ta] for t1, ts €[0,T],

then by a classical result f is differentiable a.e. and f' € L1(0,T; X). There-
fore Lemma 4.3 implies the following.

Corollary 4.3. Let X be a reflexive Banach space and A generates a Cy
semigroup 7'(¢t) on X. If f is Lipschitz continuous on [0,7] then for every
z € D(A) the initial value problem (4.1) has a unique strong solution u on
[0,T] given by the variation of constants formula

t

w(t) = T(t)z + / T(t — 5)f(s) ds.

0

4.1.3 Application to partial differential equations

One important application of the theory of linear semigroups is analysing
partial differential equations, e.g., well-posedness and numerical solution. In
order to reformulate a PDE into a first-order ordinary differential equation,
an abstract Cauchy problem, we need to construct suitable spaces and a
suitable linear operator A. It should be noticed in the previous sections
that an important property for a linear operator A is to generate a Cj
semigroup (of contractions) of T'(t). This is what we have done in Paper
I, inspired by Fabiano and Ito [28], to prove well-posedness and regularity
properties.

To make a ready reference for §2 of the appended Paper I, we correspond
the important corollaries and theorems in this draft with the main ones in
Pazy [49] as follows:

here | Theorem 4.1 Theorem 4.2 Corollary 4.1 Corollary 4.2

) ) ) ) )
[49] | Theorem 1.4.6 Theorem 1.4.3 Corollary 4.2.6 Corollary 4.2.10
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5 Deterministic wave equation: numerical method

The model problem in this manuscript, i.e., (3.3), is a hyperbolic type
integro-differential equation, and numerical analysis of such a problem is
inherent from the numerical analysis of the hyperbolic problems. Therefore
we consider the wave equation on a bounded domain, as a typical hyper-
bolic problem, to explain the main ideas of the numerical methods and the
corresponding error analysis, that we applied to the main model (3.3).

In §5.2 part (a) we explain the main idea for the derivation of optimal
order a priori error estimates that require minimal regularity assumptions.
This will be used to prove strong convergence of the semidiscrete finite ele-

ment approximation of the linear stochastic wave equation, see §6 and Paper
IV.

5.1 Wave equation and variational formulations

Let us consider the wave equation

Uh—Au=f in Q x (0,7),
u=20 on 99 x (0,T), (5.1)
uw(0) =u°, 4(0) =+ in Q,
where Q C R%, d = 1, 2, 3, is a polygonal, convex bounded domain. We
denote time derivatives by ’-’ in the sequel.

We recall the Lebesgue space Ly = Lo(2), with the usual Lo-inner prod-
uct (-,-) and Lo-norm || - ||, and the classical Sobolev spaces H®* = H*(Q),
for s a positive integer. We also use Hi = H{ () and its dual H~!. We
let A = —A with domain D(4) = H?> N Hy which is a selfadjoint, positive
definite unbounded operator. We define the Hilbert spaces H! = D(Al/ 2,
for [ € R, with norm

Joll = 1420 =/ (A15,0) = (- Mo, i)?) ™%, o € A

J=1

where {();, ¢;)}32; are the eigenpairs of the operator A. Having the homo-
geneous Dirichlet boundary condition, we recall the elliptic regularity

ull g2 < CllAul|, w e D(A).
We recall the conservation law for the wave equation, that is for ¢ € [0, T,
. 02 012
() 11” + [[u@)[T = [[0°1 + [lu®[I7.
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An alternative representation of the wave equation (5.1) is by a “velocity-
displacement” formulation which is obtained by introducing a new velocity
variable. Using the notation u; = u, us = %, at least two variational forms
can be formulated.

The first variational formulation is: find u = (u1,u9) € V, such that,

B(u,v) = L(v), Yv=(v1,v2) €W, (5.2)
u1(0) = u®, up(0) =, '
where the bilinear form B(-,-) and the linear form £(-) are defined by
T
B(u,v) = / {a(i1,v1) — a(ug,v1) + (2, v2) + a(ur,ve) } dt,
0

L(v) = /0 (f, v3) dt.

The second variational formulation is: find u = (u1,us2) € V, such that,
Au,v) = F(v), Yo = (v,v3) €W, (5.3)

where the bilinear form A(-,-) and the linear form F(-) are defined by

T
A, v) = /0 {(i1,01) — (uz, v1) + (i, v2) + a(ur, v2)} dt,
+ (11(0),v1(0)) + (u2(0),v2(0)),

Flv) = /0 (f,02) dt + (1,01 (0)) + (o°, v2(0)).

Here the function spaces V, W, f), W are appropriately chosen to adjust
the variational formulations, see Eriksson et al. [26], and Bangerth and Ran-
nacher [11]. We note the main differences in the variational formulations
above. In (5.2) the new velocity variable is enforced in the H' sense and
the initial conditions are considered separately. While in (5.3) the velocity
variable is enforced in the Ly sense as well as the initial data.

The first formulation were investigated in the works by Hulbert [36],
Johnson [38], and Li and Wiberg [40]. The second formulation, but without
the weak enforcement of the initial values, and discretizations thereof were
investigated in Hulbert and Hughes [37], Bales and Lasiecka [10], and French
and Peterson [31].

5.2 The continuous Galerkin method

The continuous Galerkin (cG) method is a finite element technique which
provides time discretizations for evolution problems using approximation
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spaces of continuous piecewise polynomial functions. This approach is par-
ticularly appropriate for wave problems as it retains discrete version of the
important energy conservation properties provided by the initial/boundary
value problem being approximated, see French and Schaeffer [30]. Compu-
tations and analyses have shown this is specially useful in the approximation
of solutions to nonlinear wave problems, see, e.g., Glassey [34], Glassey and
Schaeffer [33] or Strauss and Vazquez [64]. Another advantage of the con-
tinuous time Galerkin approach is that ¢cG methods of any desired order of
accuracy are easily formulated. We also note that the ¢cG method follows
the so-called Rothe approach of first discretizing in time and then in space
on each discrete time level. This has the advantage of having the freedom
to choose the spatial mesh differently at each time level.

We review two variant of the ¢cG method in the following, for references
see Eriksson et al. [26] for the first approach and Bangerth and Rannacher
[11] for the second one.

(a): Let 0 =ty <t < -+ <ty <--- <ty =T be any given partition of
the time interval [0,7"]. To each subinterval I,, = (t,—1,t,) of length k,, =
tn —tn—1, wWe associate a triangulation 7," of 2 and the corresponding finite
element space V;" of continuous piecewise linear polynomials that vanish on
the boundary 99 (that is the mesh is adjusted to fit 9Q2). We also define
the spaces, for ¢ =0, 1,

w@ — {UJ3'LU|Q><In —w" € Wr(zq)’ n= 1,...,N},

where,

q
Wé") = {w rw(z,t) = Zwi(m)ti, w; € th}'
i=0

This means that w € W@ may be discontinuous at time levels ¢,, and
w € WO ig piecewise constant in time.
The ¢G method is: find U = (U, Us) € (W(l))2 such that,

B(U,V) = L(V), WYV =W,W)e (W®)?
U1_|,_n—1 = Rh,nUl_,n—D U;,—n—l = Ph,nUQ_,n—l’ (54)
Uf,o(o) = an Uio(o) = UO,
where Ry, Py, are, respectively, the usual elliptic and orthogonal projections.
This means that cG is a Petrov-Galerkin method having different trial and

test function spaces. An important property that is used in the error analysis
is the Galerkin orthogonality

BU-w,V)=0, YVe (W®)? (5.5)
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where u is the solution of the weak formulation (5.2).
When 772"_1 =T, n = 2,...,N, that is, the spatial mesh does not
change between time levels, we conclude the discrete conservation property

1UL(tn)IIT + 1020E8) 17 = UL(0) I + [1U2(0)]%.

We note that when we coarsen the mesh from the time level ¢,,_1 to the
next time level t,, that is 7;L"_1 D 7., we use the projections to handle
the degrees of freedom, by transforming the information from a time level
to the next one. Obviously, in this case U; are discontinuous at ¢t = ¢, _1.
While when 771"_1 C 7.}, that is the spatial mesh is allowed to be refined
or unchanged, then U:n_l =U, 1 (n=1,...,N,i=1,2), and the initial
conditions reduce to Ui (0) = u) = Rp,1u’, U2(0) = v} = Pp1v°. In fact
the initial data Uy (0) = Rp1u’, Us(0) = Pp10° are the natural choice for a
finite element method based on the weak formulation (5.2).

In our analysis (stability of the discrete equation and a priori error anal-
ysis), we consider the case 7;1"_1 C 7, and a slightly more general problem.

That is to find U = (U1, Us) € (W(l))2 such that,

BU,V) = L(V), WV =W,W)e (WO)?

5.6
U1(0) = u), Ua(0) =, (56)

where
L) = /OT (a(fl, Vi) + (f, Vz)) dt.

This means that we consider an extra load term f; for the equation regarding
the velocity variable. Then in an standard way we obtain a stability estimate
of the form

T
TN ling < Cs (Tl +/0 I ) llngdt), — (5.7)

where ||| - |||5,; is a certain discrete norm and depends on [ € R, see Paper I
and Paper IV.
Then we split the error e = U — ¢ in the form

e= (U —mpu) + (mheu —u) = 0+ w, (5.8)

where 7y, is a combination of interpolation and projections, to be chosen
appropriately, depending on the quantity of interest. Since w can be esti-
mated by the classical results from the approximation theory, we need to
estimate #. To this end, using the Galerkin orthogonality (5.5), we show
that 0 satisfies the problem (5.6) with certain functions f1, fo, such that we
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can use the stability estimates (5.7) with suitable choice of [. Then from the
relation (5.8) and estimates of w, from the approximation theory, we obtain
optimal a priori error estimates for the quantity of interest.

We introduced this new technique to obtain optimal order a priori error
estimates with minimal regularity requirement in Paper IV, where we study
discretization in the spatial variable, see Remark 4.6 there for a comparison
with earlier works. We used the same idea for the full discretization of the
fractional order viscoelasticity model (3.3) in Paper I. We note that for a
priori error analysis based on duality argument we do not need the general
problem (5.6).

(b): An important feature of the ¢cG method, as a Rothe approach, is
that we have the freedom to choose the computational mesh differently at
each time level. In the ¢cG method, just presented, the projections are used
to handle changing of the spatial mesh, since the meshes are associated with
the space-time slabs Q x I,,. In the second approach the functions are kept
continuous by means of ‘hanging nodes’.

Let 0 =t < t1 < - < tpo1 < t, < -+ <ty =T be a partition
of the time interval [0,7]. To each discrete time level ¢, we associate a
triangulation T} of 2 and a corresponding finite element space V} consist-
ing of continuous piecewise linear polynomials. For each time subinterval
I, = (tn—1,tn) of length k, = t, — t,_1, we define intermediate triangu-
lation TZL which is composed of mutually finest meshes of the neighboring
meshes T}, Tz_l defined at discrete time levels t,,, t,_1, respectively. Corre-
spondingly, we define the finite element spaces V}! consisting of continuous
piecewise linear polynomials. This construction is used in order to allow
continuity in time of the trial functions when the meshes change with time.
Hence we obtain a decomposition of each slab Q" = Q x I, into space-time
cells K" = K x I,, K € T} (prisms, for example, in case of Q@ C R?). Then,
the trial and the test function spaces for the discrete form are, respectively,

Ve = {U = (U1,Uz) : U continuous in Q x [0,77],
U
Ultn) € (Vi) UG, 1), € (Vi)

(x,t)|1, linear in ¢,

(-
Whi = {V = (V4,V2) : V(-,t) continuous in €,

(

(

(5.9)

V(1) € (V7)?

z,t)|1, piecewise constant in t}

<

We note that global continuity of the trial functions in Vp requires the use
of hanging nodes if the spatial mesh changes across a time level, see Carey
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and Oden [14], and Svensson [65] for numerical aspects of hanging nodes.
The ¢G method is then read: find U € V};, such that,

AU, W) = F(W), YW € Wi (5.10)

To avoid making this manuscript too long, we ignore the details of the
analysis for the ¢G method (5.10). For details on a priori error estimates one
can consult, e.g., Johnson [38] and Eriksson et al. [26] for the main ideas,
and for a posteriori error analysis see Bangerth and Rannacher [11].

We formulated the same ¢G method for the model problem (3.3) in Paper
ITI. The error analysis are based on the duality argument. For a priori error
analysis we follow the main idea of duality based analysis, from Johnson [38].
For a posteriori error analysis we use the general framework presented by
Bangerth and Rannacher [11], where they used the Dual Weighted Residual
method.

6 Stochastic wave equation

In Paper IV we study the finite element approximation of the linear stochas-
tic wave equation driven by additive noise,

du — Audt =dW in D x (0, ),
u=20 on 9D x (0,00), (6.1)
u(-,0) = ugp, 4(-,0) = vy in D,

where D € R? d = 1, 2, 3, is a bounded convex polygonal domain with
boundary 9D, and {W (t)};>¢ is a Lo(D)-valued Wiener process adapted to
a filtered probability space (2, F, P, {F;}+>0) with respect to the normal
filtration {F; }+>0, and we let ug, vy be Fy-measurable random variables. For
examples of stochastic wave equation and their applications see, e.g., Walsh
[66], Chow [15], Allen [7], Martin [44] and references therein.

For a rigorous meaning to the infinite dimensional Wiener process W,
stochastic integral, and the definition of a weak solution of (6.1) we refer to
82 in the appended Paper IV, and references therein.

Here, for simplicity, we set the initial values uy = vg = 0, and we describe
the main feature of the presented work in Paper IV. We use the semigroup
framework of Da Prato and Zabczyk [51] in which the weak solution of (6.1)
is represented as a stochastic convolution

u(t) = /0 A2 gin(sAY/2) AW (s).
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Here, where we have set uy = vg = 0, recalling the linear operator A = —A
with D(A) = H*(D) N H} (D), v(t) = A~'/?sin(tA'/?)f is the solution of

v+ Av =10 in D x (0,0),

6.2
v(0) =0, 9(0) = f inD. (6.2)

Let Q and || - ||us denote, respectively, the covariance operator of W and
the Hilbert Schmidt norm. We show that if, for some 5 > 0,

[AP=DRQY2|us < oo, (6.3)
then we have the spatial regularity of order 3, that is,
E([lu()|3s) < C@)IIAPD2QY? s,

where HP = D(AP/2) and E denotes the expected value of a random vari-
able. In particular, if Tr(Q) < oo (spatially correlated noise), then we
may take 8 = 1. On the other hand if = I (uncorrelated noise), then
B<1/2,d=1.

We discretize (6.1) in the spatial variables with a standard piecewise
linear finite element method, and we show strong convergence estimates in
various norms. In particular, denoting the maximal mesh size by h and the
approximate solution by up, we have,

(B(llun(t) - U(t)||2))1/2 < OR3P APDRQ s, (6.4)
if (6.3) holds for some g € [0, 3].

As a comparison, we recall from Yan [69] that for the stochastic heat
equation, if (6.3) holds for some g € [0, 2], we have the spatial regularity,

1/2
(Ble®)%s)) " < ClA®D2Q s,
and the error estimate
1/2
(E(lun® - u@®?)) ™ < OWP|AC=D2Q12 s,

Here the order of regularity coincide with the order of convergence. We note
that surprisingly the stochastic heat and wave equation have both the same
order of regularity.

The main tools for the proof of (6.4) are the Ité-isometry and error
estimates for the deterministic problem (6.2) with minimal regularity as-
sumptions. One way to obtain optimal order (a priori) error estimate with
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minimum regularity assumptions has already been explained in §5.2 in this
introduction. Having the error estimates

lon () = v(@)]] < C@)R?|If|l 72 (6-5)

lon () = 0@ | < ClIfll -1,

we have, by interpolation,
2
lon () = v@)I| < C(&)h3°|lv]l g2, B € [0,3].

When we specialize to @ = I, d = 1, we must have § < 1/2 and thus the
order of strong convergence is O(h*), a < 1/3. This is in agreement with
Quer-Sardanyons and Sanz-Solé [52], where spatial discretization of (6.1) is
studied for d = 1 and with space-time white noise (Q = I). They used a
standard difference scheme with uniform mesh size h. We note that the order
of convergence is less than the order of regularity which is § < 1/2. However,
it is known that in (6.5) || f|| ;2 can not be replaced by || f|| ;2-. for any small
positive number €, see Paper IV, Remark 4.4. Therefore O(h%), o < 1/3 is
the best that one can expect. The framework, that we present, applies to
multiple dimensions and spatial correlated noise.

7 Earlier works

7.1 Integro-differential equations

A lot of work have been done during the last decades regarding well-posedness
of the fractional order linear viscoelasticity and also several methods have
been investigated to solve these kinds of models numerically. We try to give
just some references to earlier works, but it does not seem to be possible to
give a complete list.

Thomée and McLean [46] have proved the existence, uniqueness and
regularity of the solution of a reformed model of (3.3) by means of Fourier
series. One can also see [18] where Desch and Fasanga have used the context
of analytic semigroups in terms of interpolation spaces. An abstract Volterra
equation, as an abstract model for equations of linear viscoelasticity, has
been studied in Dafermos [16].

For more details on numerical methods such as semidiscretization in time
or space and the relevant methods that have been used, namely discontin-
uous Galerkin approximation as well as first and second-order backward
difference methods in time or continuous Galerkin approximation in space,

we refer to, e.g., [2, [3], [5], [41], [46], [47], [54], [61], and [63].
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Numerical methods for quasistatic viscoelasticity problems, i.e., pii = 0,
have been studied, e.g., in [3] and [62] where basically they have used discon-
tinuous Galerkin approximation in time and continuous Galerkin approxi-
mation in space. A dynamic model for viscoelasticity based on internal
variables has been studied in [54]. A posteriori analysis of temporal fi-
nite element approximation of a parabolic type problem and discontinuous
Galerkin finite element approximation of a quasi-static linear viscoelasticity
problem has been studied, respectively, in [4] and [62]. For more references
one may see [54].

The drawback of the fractional order viscoelastic models is that the whole
strain history must be saved and included in each time step that is due to
the non-locality of the fractional order differential operators. The most com-
monly used algorithms for this integration are based on Lubich convolution
quadrature [42] for fractional order operators. One example of the applica-
tion of this approach to integro-differential equations with a memory term is
in [43]. The Lubich convolution quadrature requires uniformly distributed
time steps or alternatively logarithmically distributed time steps as outlined
in [29]. These are cumbersome restrictions because it is not possible to
use adaptivity and goal oriented error estimation. Some efficient numeri-
cal algorithms to overcome the mentioned problem of Lubich convolution
quadrature can be found in [59] and [60]. Also sparse quadrature as a pos-
sible way to overcome the problem with the growing amount of data, that
has to be stored and used in each time step, has been studied in [2], [3], and
[47]. In this approach variable time steps can be used.

7.2 Evolution stochastic PDEs

An extensive work on stochastic parabolic PDEs, their applications and their
numerical approximation can be found in the literature, see for example, [15],
[32], [35], [39], [51], [66], [70], and and references therein.

For analysis of the stochastic wave equation and the properties we refer to
e.g., [15], [51], [52], [67] for references. However the numerical analysis of the
stochastic wave equation is less studied, see [45], [52], [57], [67], for existing
results. In particular these works do not deal with multiple dimensions or
correlated noise.

8 Summary of the appended papers

8.1 Paperl

The continuous Galerkin method for an integro-differential equation mod-
eling dynamic fractional order wviscoelasticity, IMA Journal of Numerical
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Analysis, to appear (with Stig Larsson).

In this paper, first we consider the model problem (3.3) with homoge-
neous boundary conditions, and we prove existence and uniqueness in the
context of linear semigroup theory. We also study regularity properties as
well, and we observe that the regularity of high order is limited due to the
mixed boundary conditions and singularity of the convolution kernel. We
then formulate a continuous Galerkin method of degree one for the model
problem, and we investigate the stability properties. Using stability esti-
mates, we then prove optimal order a priori error estimates for the displace-
ment and the velocity at the temporal nodal points. This shows that the
error estimates for the semidiscretization in spatial variables are optimal in
Loo(L2) and Lo, (H?) for the displacement and the velocity, respectively. At
the end we illustrate the theory by an example.

8.2 Paper II

Ezistence and uniqueness of the solution of an integro-differential equation
with weakly singular kernel, preprint 2009:16.

The abstract framework presented in Paper I does not admit the mixed
homogeneous Dirichlet and non-homogeneous Neumann boundary condi-
tions. In this paper we consider the model problem (3.3) with mixed ho-
mogeneous Dirichlet and non-homogeneous Neumann boundary conditions.
Then we prove existence and uniqueness of the solution, in the weak sense,
based on the Galerkin method. We then prove regularity estimates and we
discuss the limitations for higher regularity.

8.3 Paper III

A continuous space-time finite element method for an integro-differential
equation modeling dynamic fractional order viscoelasticity, preprint 2009:17.

In this paper, which is based on a weak formulation of the model problem
(3.3), we present a simple proof of stability for the primal and the dual
problems. We then formulate a continuous Galerkin method of degree one,
and we obtain optimal order a priori error estimate by a duality argument.
We also present a posteriori error representation in terms of space-time
cells, such that it can be used for adaptive strategies based on the dual
weighted residual method. We then prove a weighted global a posteriori
error estimate. Due to some restrictions for such weighted global estimate,
we prove a global a posteriori estimate which has less restrictions.
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8.4 Paper IV

Finite element approzimation for the linear stochastic wave equation with
additive noise, preprint 2009:18, (with Mihdly Kovéacs and Stig Larsson).

In this paper we study the semidiscrete finite element approximation

of the linear stochastic wave equation with additive noise in a semigroup
framework. We then obtain optimal error estimates of the deterministic
problem under minimal regularity assumptions. We use these to prove strong
convergence estimates for the stochastic problem. The theory presented here
applies to multi-dimensional domains and spatially correlated noise. We
illustrate the theory by numerical examples.
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THE CONTINUOUS GALERKIN METHOD FOR AN
INTEGRO-DIFFERENTIAL EQUATION MODELING
DYNAMIC FRACTIONAL ORDER VISCOELASTICITY

STIG LARSSON AND FARDIN SAEDPANAH

ABSTRACT. We consider a fractional order integro-differential equation
with a weakly singular convolution kernel. The equation with homoge-
neous mixed Dirichlet and Neumann boundary conditions is reformu-
lated as an abstract Cauchy problem, and well-posedness is verified in
the context of linear semigroup theory. Then we formulate a continu-
ous Galerkin method for the problem, and we prove stability estimates.
These are then used to prove a priori error estimates. The theory is
illustrated by a numerical example.

1. INTRODUCTION

Bagley and Torvik [5] have proved that fractional order operators are
very suitable for modelling viscoelastic materials. The basic equations of
the viscoelastic dynamic problem, with surface loads, can be written in the
strong form,

pii(,1) = V - oo(u; @, 1

+ /tb(t —8)V o1 (u;x,s)ds = f(x,t) in Qx (0,7),
0

(11) wl@i)= onI'p x (0,7),
o(u;x t) n(xz) = g(z,t) onT'y x (0,7),
u(z,0) = u’(x) in Q,
u(x,0) = v0(x) in €,

(throughout this text we use ’-’ to denote '2- 57 ) where u is the displacement

vector, p is the (constant) mass density, f and g represent, respectively, the

Date: April 14, 20009.
1991 Mathematics Subject Classification. 65M60, 45K05.
Key words and phrases. finite element, continuous Galerkin, linear viscoelasticity, frac-
tional calculus, weakly singular kernel, stability, a priori error estimate.
Research supported in part by the Swedish Foundation for Strategic Research through
GMMC, the Gothenburg Mathematical Modelling Centre.
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2 S. LARSSON AND F. SAEDPANAH

volume and surface loads, oy and o are the stresses according to

t
o(t) = oolt) — /0 bt — s)or(s) ds, with
oo(t) = 2upe(t) + Ao Tr(e(t))I, o1(t) = 2u1€(t) + A\'Tr(e(t))1,

where A\g > A1 > 0 and pg > p1 > 0 are elastic constants of Lamé type,
€ is the strain which is defined through the usual linear kinematic relation
€= 1(Vu+ (Vu)?), and b is the convolution kernel

(1.2)

(1.3)
d (0] t a-1 t o o
b(t :——(E —(t a):—(—) B (— i )th e 4y,
0= 4 (Ba~t/m)) = 2(1) " m (- ()
Here 7 > 0 is the relaxation time and Eo(2) = Y 72 P(%kak) is the Mittag-
Leffler function of order a € (0,1), v = Z—; = ﬁ—(l) < 1, so that o1 = vo9

and we define B(t) = yb(t). The convolution kernel is weakly singular and
B € L1(0,00) with [;°S(t) dt = . We introduce the function

(1.4) WFw—AM$®=l%@%,

which is decreasing with £(0) = v, tlim &(t) =0, so that 0 < &(t) <.
— 00

We let Q C R¢, d = 2,3, be a bounded polygonal domain with boundary
I' = T'p UTy, where I'p and T'y are disjoint and meas(I'p) # 0. We
introduce the function spaces H = Ly(Q)¢, Hr, = L2(Ty)%, and V = {v €
HY Q)¢ : v|r,= 0}. We denote the norms in H and Hr, by ||| and
||I||ry » respectively, and we equip V' with the inner product a(-,-) and norm
|v||?, = a(v,v), where (with the usual summation convention)

(1.5)  a(v,w) = /Q(Zuoqj(v)eij(w) + Xo€ii(v)ejj(w)) do, v,weV,

which is a coercive bilinear form on V. Setting Au = —V - o¢(u) with
D(A) = H?(Q)¢ NV such that a(u,v) = (Au,v) for sufficiently smooth
u,v € V, we can write the weak form of the equation of motion as: Find
u(t) € V such that u(0) = u°, 4(0) = v°, and

(1.6)
t
p(u(t), v) + a(u(t), U)—/O B(t — s)a(u(s),v)ds
= (f(t)av) + (g(t)7v)PN’ YweV, te (OaT)a

with (g(¢),v)ry = [;,g(t) - vdS. For more details see [1], [2], [3], [4] and
references therein.
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Defining u; = w and uy = 4 we write (1.6) as: Find wq(t), us(t) € V
such that u(0) = u®, uz(0) = v°, and

(1.7)
a(t1(t),v1) — a(ua(t),v1) =0,

t
p(ta(t), va2) + a(ui(t), ve) — /.‘ B(t — s)a(ui(s),v2)ds
= (f(t),’UQ) + (g(t),’vg)rN, Vvl,vg (S V, t e (O,T).

In the next section, using (1.6) with 'y # &,g = 0 or 'y = &, we
reformulate the problem as an abstract Cauchy problem and prove well-
posedness. We also discuss the regularity and obtain some regularity esti-
mates. In §3 we use (1.7) to formulate a continuous Galerkin method based
on linear polynomials both in time and space. Then in §4 we show stability
estimates for the continuous Galerkin method, and in §5 we use them to
prove a priori error estimates that are optimal in Lo, (L2) and Lo (H?). Fi-
nally, in §6, we illustrate the theory by computing the approximate solutions
of (1.1) in a simple but realistic numerical example.

There is an extensive literature on finite element methods for partial dif-
ferential equations with memory, see, e.g., [1], [7], [8], [9], [10]. The present
work extends previous works, e.g., [2], [3], [15], on quasi-static fractional
order viscoelasticity (pit = 0) to the dynamic case. The paper [4] also deals
with the dynamic case but considers only spatial discretization. A dynamic
model for viscoelasticity based on internal variables is studied in [12]. The
memory term generates a growing amount of data that has to be stored
and used in each time step. This can be dealt with by introducing ”sparse
quadrature” in the convolution term [16]. For a different approach based on
”convolution quadrature”, see [13], [14].

The main result in the present work are derived under rather restrictive
assumptions, 'y = & or I'y # @, g = 0, which guarantee the global regu-
larity needed for the a priori error analysis. Also our results do not admit
adaptive meshes. In general such global regularity is not present, which
calls for adaptive methods based on a posteriori error analysis. We plan to
address these issues in future work.

2. EXISTENCE AND UNIQUENESS

In this section, using the theory of linear operator semigroups, we show
that there is a unique solution of (1.6), with pure Dirichlet boundary con-
dition, that is, I'y = &, or with homogeneous mixed Dirichlet-Neumann
boundary condition, that is, g = 0, I'y # @. The theory presented here
does not admit the term (g,v)r, # 0 in (1.6). We then investigate the
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regularity in the case of homogeneous Dirichlet boundary condition, that is,
'y = &. The techniques are adapted from [6].
We consider the strong form of (1.6), for any fixed T' > 0, that is,

@1 pilt) + Au(t /,Bt—sAu s)ds = f(1), te(0,T),
with the initial conditions
(2.2) u(0) = u® € D(A), u(0) =" e V.

We extend u by u(t) = h(t) for t < 0 with h to be chosen. By adding
- ffoo B(t — s)Ah(s) ds to both sides of (2.1), changing the variables in the
convolution terms and defining w(t, s) = u(t) — u(t — s), we get

(2.3)
pu(t) + yAu(t) /ﬂ JAw(t,s)d /ﬂ JAR(t — s)ds
where ¥ =1—y=1— [ B(s)ds > 0.

2.1. An abstract Cauchy problem. We choose h(t) = u® in (2.3), so
that

(2.4) pir(t) + 7 Au(?) / B(s) Aw(t, s)ds = F(2),

where,

and, in view of (1.4),

(2.5) Ft) = £(t) — €@ Au’.
Then we reformulate (2.4) as an abstract Cauchy problem and prove well-

posedness.
We set v = pu and define the Hilbert spaces

o
W= Lap((0.00: ) = {w: fulfy =p | Blollw(e)lf ds < oc}.
Z=VxHxW
= {2 = (w,0,w) : |2} = Follul} + [0l + w|} < oo}

We also define the linear operator A on Z such that, for z = (u, v, w),

Az:(1 7u+/ Bls)w(s)ds) —v—Dw)
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with domain of definition
mm:{mmeanVﬁuﬁg%@m@@eﬂ@mmpw&,
where

d
Dw = LY with D(D) ={w € W: Dw € W and w(0) = 0}.

Therefore, a solution of (2.1) with (2.2) satisfies the abstract Cauchy prob-
lem

z2(t) =Az(t) + F(t), 0<t<T,
z(0) = 2°,

(2.6)

where F(t) = (0, f(¢), 0) and 2° = (u?, pv?, 0), since
(2.7) w(0,s) = u(0) — u(—s) = u(0) — h(—s) =u’ —u® = 0.

We also note that w(t,0) = u(t) — u(t) = 0, so that w(t, ) € D(D).
A function z which is differentiable a.e. on [0,7] with 2 € Ly((0,7); Z
is called a strong solution of the initial value problem (2.6) if z(0) = 29,

z(t) € D(A), and 2(t) = Az(t) + F(t) a.e. on [0,T].

Lemma 1. Let z = (u,v,w) be a strong solution of (2.6) with 2° =
(u®, pv°, 0). Then u is a solution of (2.1) with initial conditions (2.2).

Proof. For the components of the strong solution z of (2.6), we have

um:lmm € (0,7),

o(t) = —A(7u(t) / Blshw(t. s)ds) + F(1), e (0.T),

1
w(t,s) = —v(t) — Dw(t,s), se€ (0,00),te€ (0,T).
P
The first equation and 2° = (uo, pvl, 0) imply the initial conditions (2.2).
The first and third equations mean that w satisfies the first order PDE

Besides, since w(0,-) = 0 and w(t, ) € D(D) we have the boundary condi-
tions w(0,s) = 0 and w(t,0) = 0. Hence w(t, s) = u(t)—u(t—s), 0 < s <1,
and w(t,s) = u(t) —u’ = u(t) —u(t — s), 0 < t < s. This and the fact that
(2.4) is obtained from the first two equations, imply that u satisfies (2.1)
a.e. on [0,7] by backward calculations from (2.3). O
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Theorem 1. Assume that 'y = @ or I'y # & and g = 0. There is a
unique solution u = u(t) of (2.1)-(2.2) for all u® € D(A) and v° € V, if
f:[0,T] = H is Lipschitz continuous. Moreover, for some C = C(7,p,T),
we have the reqularity estimate

28)  Ju®lv + @l < C (]l + [0°)] + /0 Ifllds), teo,T].

Proof. For any u’ € D(A) and v° € V, we have 20 = (uo,vo,O) €
D(A). We first show that F in (2.6) is differentiable a.e. on [0,7] and
F € Ly([0,T); Z). We then show that the linear operator A is the infini-
tesimal generator of a Cy semigroup e on Z. These prove that there is a
unique strong solution of (2.6) by [11, Corollary 4.2.10], and the proof of
the first part is then complete by Lemma 1. Finally we prove (2.8).

1. By assumption f is Lipschitz continuous on [0,T]. Hence f is differen-
tiable a.e. on [0,7"] and f € L1((0,T); H), since H is a Hilbert space. Since

£(t) = —B(t) by (1.4), from (2.5) we get

F(t) = F(t) + Au®B(2),

which shows that f is differentiable a.e. on [0,T]. Thus F is differentiable
a.e. on [0,T] and F € Li((0,T); Z).

2. We use the Lumer-Philips Theorem [11] to show that A generates a
Cy semigroup of contractions on Z. To this end we first show that A is
dissipative. For z = (u,v,w) € D(A) we have

(Az,2z)7 = Ja(v,u) — 7u+/ B(s ds),v )+<%U—Dw,w)w
— /0 Bls)a(Dw(s),w(s)) ds = ~3p /0 B(s)D[w(s)| ds.

To prove that the last term is non-positive, and hence A is dissipative, we
consider for € > 0,

oo M
| B@Dlw@Ids = Jim [ se)Dlw) ds
= Jim_(F00Iw @O - g1 - [ # Ol a)

M—o0
> —B(e)|lw(e),

because B'(s) < 0 and limp;_0 ﬂ( Mw(M)||2, = 0, since w € W, that is,
JoB(s)llw(s)]|} ds < oo. Since w(e) = [; Dw(s) ds, by the Cauchy-Schwarz
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inequality we have

€ 1 €
lw@l < ([ 10wy is) < [ osds [s@ivwelk
o B(s) 0
and consequently we get
(@) lw(e)]F < / B / B(s)IDw(s)I} ds < e~ ||Dw||w,
since B(€) < B(s) and (u, v, w) € D(A) implies Dw € W. Therefore
. €
(Az,2)7 < lim o |[Dwllfy =0,

and A is dissipative.

Next we show that R(I — . A) = Z. To see this, for arbitrary (¢, v, 80) €
Z we must find a unique (u,v,w) € D(A) such that (I — A)(u,v,w) =
(¢,1,0), that is,

u — %v = ¢,
(2.9) v+ A(’yu + /0 ” B(s)w(s) ds) — 3,

1
w—;v—l—Dwze, w(0) = 0.
From the first and third equations and w(0) = 0 we get

v=plu—¢), w(s) = /0 e”(%v +0(r)) dr.

Substituting these into the second equation of (2.9), we get
plu — @) + A(’?u + /0 B(s) /0 € (u—¢+0(r)dr ds) =1,
and hence
1 oo S
(2.10) u+rkAu=¢ + - 1/} + / B(S)e_s/ e"A(p —0(r)) dr ds),
0 0

where kK = (1 — fo *Sds) > 0. Now we need to show that this
equation has a solution. The weak form is to find w € V such that
b(u,v) =L(v) Yv eV,
with the bilinear form
b(u,v) = (u,v) + ka(u,v) foru,v eV,

and the linear form

1 L[~ s "o —0(r),v)drds
L<v>=<¢,v)+;<¢,v>+;/0 B(s)e /Oea(qs 0(r),v) dr ds.
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Clearly b(-,-) is bounded and coercive on V, and L is bounded on V. There-
fore by the Riesz representation theorem, there is a unique solution, hence
R(I-A)=

Since Z is a Hilbert space, it follows from [11, Theorem 1.4.6], that

D(A) = Z. So we have verified all the hypotheses of the Lumer-Philips
theorem to complete the first part of the proof.
3. The unique strong solution of (2.6), is given by

t
2(t) = €420 —I—/ eU=DAF () ds,
0

and ||e*4||z < 1, since A generates a Cy semigroup of contractions. Therefore
t
lz@)llz < 1I2°]lz + /O 1F ()] z ds.

Since v = pit, 20 = (u’, pv°, 0) and ||F(s)l|z = [|F (s)]| = | £(s) —&(s) Au]l,

we have

(ol + 10+ 0 [ B0l as)
< (Fllell} + pl012) 7 + /0 (17 Il + ECs) 11 Awl]) ds

Consequently, we have the estimate (2.8) with C = C(7,p,T). O

2.2. Regularity. In order to prove higher regularity we specialize to the
homogeneous Dirichlet boundary condition, that is, I'y = &, and assume
that the polygonal domain 2 is convex. This guarantees that we have the
elliptic regularity estimate,

(2.11) |wl g2 < C||Au|, ue€ H*(Q)INV.
We first choose h(t) = u’ + tv° in (2.3), so that

(2.12) pu(t) +FAu(t) / B(s)Aw(t,s)ds = f(t),
where
B u(t) — u(t —s), s € [0,t],
wlt,s) = {u(t) —ul — (t—5)v°, set,o00),

and, in view of (1.4),

(2.13) F() = £() — Ao /t = 5)B(s) ds — £(t) Au®.
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Then differentiating the equation (2.12) in time we get

(2.14) () + 3 Au(t) / 8(s) At (t, ) ds = F(2),

which, with an underline instead of one time derivative, can be written as
(2.15) pin(t) + 7 Au(?) / B(s)Aw(t, ) ds = } (1),

with the initial values

216)  u(0) —u’ =o', @(0) =2’ = (F(0) - Au’),

and

(2.17) F(t) = () = F(2) — () Av® + B(t) Au®

and

u(t) —u(t —s), se€l0,t],
w(ta 3) = . 0
’U,(t)—’U ’ SE[t,OO),
so that w(¢,0) = 0. We note that w is continuous and w(t,-) € D(D) for
t>0.

Then, in the same way as in §2.1 with v = pwu, we can reformulate (2.15)—
(2.16) as the abstract Cauchy problem

£(t)=Az(t)+F1), 0<t<T,

(219) 2(0) = 2°,

where F(t) = (0, z(t), 0) and 2° = (u?, pv°, 0), since

(2.19) w(0,s) = u(0) — v’ =v? — 0% =0.

Lemma 2. Let z = (u,v,w) be a strong solution of (2.18) with z° =

(u®, pv°, 0). Then u(t) =u’+ fo s)ds is a solution of (2.1) with initial
conditions (2.2).

Proof. Clearly u(0) = u® and & = u. Hence 2° = (u’, v°, 0) implies

4(0) = u(0) = u® = v°, so that (2.2) holds. Then since 2(¢) = Az(t) +F(t)
a.e. on [0,T], we have,

a1
H(t) = p_(t)’ te (OaT)a
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The first and the third equation with w(t,0) = 0, w(0, s) = 0 has the unique
solution w(t,s) = u(t) — u(t — s) that implies, by integration with respect
tot, w(t,s) := u(t) —u(t—s) fo 7,8) d7. By the first equation we have
U=u= llj'u so that the second equation is (2.14). The proof is completed
by backward calculation from (2.14). O

In the next theorem we find the circumstances under which there is a
unique solution of (2.1) with more regularity.

Theorem 2. Assume that 'y = @ and that € is a convez polygonal domain.
There is a unique solution u = u(t) of (2.1)~(2.2) if v? € D(A), £(0) —
Aul € V, and f : [0,T) — H is Lipschitz continuous. Moreover, for some
C=C#,p,T), we have the regularity estimate
(2.20)

la(®)[lv + @) + llw(@)]

t .
< C(I1£(0) = Au®| + [[0°) = + /0 |Fllds), teo,T].

Proof. 1. From the assumptions on u, v and £(0) and recalling (2.16) and
(2.19), we have 20 = (u®, pv°, w()) € D(A). We split the load term F in
(2.18) as
F= E1 + Ez,

where

Fi(t)= (0, £,(),0) = (0, F(t) — £(@1)Av°, 0),

Fy(t) = (0, £,(t), 0) = (0, A1) 4u’, 0).
We show that each one of the abstract Cauchy problems, for i =1, 2,
2(t)=Az(t)+ F;(t), 0<t<T,
2(0) = 2°,
has a unique strong solution, and consequently there is a unique strong so-
lution of (2.18). We recall that the linear operator A is an infinitesimal
generator of a Cy-semigroup of contractions e on Z by the proof of Theo-

rem 1.
Considering

(2.21)

v

F1(t) = f(t) + B(t) Av°

and the assumptions on v° and f, F; is differentiable a.e. on [0, 7] and F'; €
Li((0,T); Z). By [11, Corollary 4.2.10], there is a unique strong solution of
(2.21) for i = 1. On the other hand F,(t) is continuous on (0,7T), Fy(t) €
D(A), t € (0,T), and AF, € L, ((0,T); Z), since ((t) is continuous on (0, T')
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and Au® € V. Therefore, by [11, Corollary 4.2.6], there is a unique classical
solution of (2.21) with ¢ = 2. Since any classical solution is a strong solution,
the proof of existence and uniqueness is completed by Lemma, 2.

2. We have the unique strong solution of (2.18), i.e.

t
z(t) =2’ + / =4 F(s) ds,
0

with |||z < 1. Following step 3 of Theorem 1, using (2.11), we get
(2.20). O

3. THE CONTINUOUS GALERKIN METHOD

Recalling the function spaces H = Lo(Q)¢, Hr, = Ly(Ty)% and V =
{v € HY(Q)? : v|r,= 0} (d = 2,3), we provide some definitions which will
be used in the forthcoming discussions.

Let 0=ty <t1 < - <th_1 <ty <--- <ty =T be a partition of the
time interval I = [0,7"]. To each time subinterval I, = (¢,_1,t,) of length
kn = t, —tp_1, we associate a triangulation 7, of Q with piecewise constant
mesh function h,, defined by

(3.1) hn(z) =diam(K), forz € K, K € Ty,

and the corresponding finite element space V;, of vector-valued continuous
piecewise linear polynomials, that vanish on I, (This requires that the mesh
is adjusted to fit I'p.). We also define the spaces, for ¢ =0, 1,

WO = {w s wlox, =w" € W, n=1,...,N},

where,
q
=0

Note that w € W@ may be discontinuous at ¢t = ¢,, and w € W is
piecewise constant in time.

With IP’g denoting the set of all vector-valued polynomials of degree at
most ¢, the orthogonal projections Ry, : V — V,, Ppp : H — V,, and
Prn: Lo (I,)% — ngl(In) are defined, respectively, by

a(Rpnv —v,x) =0, Yv eV, x € Vp,
(32) (Ph,nv - vaX) = Oa Vv € Ha X € Vna
/I(Pk,nv —v)-Ydt=0, Vv € Lg(In)d, P € Pg_l .

Correspondingly, we define Rpv, Pyv and Prv by (Rpv)(t) = Rpav(t),
(Prv)(t) = Phpo(t) for t € I, and Pyv = Pru(vlr,), (n = 1,--+ ,N).
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We also define the orthogonal projections, R, : Lo(I,,V) — W,(Lq_l) and
Py Ly(In, H) — W™ such that
/a(Rnu —u, ) dt =0, Vip e WV we Ly, V),
In
(3.3)
/(Pnu —u,)dt =0, Vep e WV wue Ly, H).

In

Correspondingly, we define R : Lo(I,V) — WO, P : Ly(I, H) —» WO in
the obvious way.
One can easily show that

(3.4) R=RyPr =PirRy, P =PrPr="PrP,

and for u € Wél) , U E Wr(LO)a

(3.5) /1 (wv)dt = / (Penu,v) dt, / a(w, v) dt = /1 a(Pynu, v) dt.

n I’I’L n

We introduce the linear operator A, , : V, — V,, by
a('vra'wn) = (An,r'vra'wn) Vv, €V, wy, € V.

We set A, = A, 5, with discrete norms

[vnlng = |AY 20, = 1/ (vn, ALwy,), v, €V, and [ € R,

and Aj so that Apv|;, = A,v for v € V,,. For later use in our error analysis
we note that Pr,bA = ApRy,.

We define the bilinear and linear forms B: W xW — Rand L: W — R
by

B(u,v) = ﬁ:/l ( — a(ug,v1) + a(ty,v1) + p(dg, vs) + a(ul,'UQ)) dt

- é/ln /Otﬂ(t — s)a(ui(s),va(t))ds dt,

N
Liw) =Y /I (f,w2) + (g, wa)ry dt,

where W is the space of pairs of vector-valued functions u(t) = (u1(t), ua(t))
in V that are piecewise smooth with respect to the temporal mesh. We may
note that (W(@)2 c W for ¢ > 0.

The continuous Galerkin method of degree (1,1) is based on the varia-

tional formulation (1.7) and reads: Find U = (U3, Uy) € (W®)? such that,
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Ul_,ozfu,o, Uiozvo,and, forn=1,..., N,

/ a(U1, Vi) — a(Uz, V1) dt = 0,
Iy

. t
(3.6) /I (p(UQ’Vz)“(UlaV?)—/O Bt — s)a(Ui(s), Va(t)) ds) dt

= /(f,Vz)dt + /(g,Vz)rN dt, Y(W,Va) € (W0)?,

n n

+ _ — + _ —
Ul,n—l - Rh,nUl,n—l ’ UQ,n—l - Ph,nU2,n—1 ’

where Uijfn = lim, g+ Ui(t, + s),% = 1, 2. Hence U € (I/V(l))2 defined in
(3.6) satisfies:

B(U,P,V) = L(PLV), vV e (wh)?,
Ul—fnfl = ’R’ha"Ul_,nfl ’ U2—’,—n71 = ’Ph:nU2_,nfl ’
where P}cV = (Ple,Png).
Since the variational equation (1.7) can be written as: Find u € W such
that
B(u,v) = L(v), YveW,

we may, for later reference, note the Galerkin orthogonality

(3.7) B(U - u,PV) =0, VVe (W)

Considering the fact that functions in Wy(LO) are constant with respect to
time, we can write (3.6) as

_ k _

Aﬂ(Ul,n - Ul-i,»nfl) - %AR(UQ,W, + Ué{:nfl) =0,
k _ _ k

An ((En - 7wn,n)U1,n + (771 - ’Yw:,—,n—l)Ul—',—n—l)

+ p(Uin - U2—i,_n—1) = Hy + by,
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where
by, = kn(Pnf + qu;Ng)a

n—1

= 72 Ky Apy( w;rUfr + wrf,quf,rfl)a

tp AL
Wi // Bt — sy (s)dsdt,  t At—min(ty,1),
In

tr—1
tr A
w;:,_l = /I t Bt — s)pt (s)dsdt,
nY lr—1

and 7, , ¢n , are the linear Lagrange basis functions on I, so that, for
1=1, 2,

From now on we assume, for s1mphc1ty, that 7, 1 C Tp,m=2,..., N,
which means that the spatial mesh is allowed to be refined (or unchanged) at
1. Then V1 C Vu(n =2, ..., N), an = Ui (n=1,...,N,i=

1, 2), and the initial conditions in (3.6) reduce to Uy(-,0) = u) = Ry 1u°
and Us(+,0) = v) = Pp,1v°. In this case U is continuous with respect to .

4. STABILITY ESTIMATES

We consider a modified problem by adding an extra load function, say
f1 = F1(t), to the first equation of (3.6). This kind of problem will occur in
our error analysis below. Moreover, in the error equations the term corre-
sponding to the surface load is zero, i.e., g = 0. In this section we therefore

consider the problem: Find U € (W(l))2 such that, forn =1, ..., N,

/a(Ul,Vl) —a(UQ,Vl)dt:/a(fl,Vl)dt

Iy n

. t
/ (o0 V2) + a7, Va) - /ﬁ(t ~ )a(Ui(s), Va(1)) ds ) di
I, 0
(4.1)
= /(fQ,Vz)dt, V(Vi,Va) € (W),
I,
Uy, Uy continuous at ¢, 1,
Ul(',O) =u2, UQ(-,O) 2’02.
Then U satisfies:
B(U,PV) = L(PV), YV e (Wh)?
(4.2) Ui, Uy continuous at ¢,_1,
Ul(-,O) zug, Uz(',O) :vg,
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where the linear form L : W — R is defined by,

N
Lw) = [ (alfsw0) + (£ w0)) dr
n=1 In
In the next theorem we prove an energy identity for problem (4.1) which
will be used for proving the error estimates in the next section.
Theorem 3. Let U = (U,Us) be a solution of (4.1). Then for any l €
R, T > 0, we have the equality

T
plUa,n iy + ED)| UL 40 + /0 BIUL [} 141 dt

T prt
+/ /ﬁ(t—s)Dt|W1(t,s)|%,l+1dsdt
0 0
(4.3) = plvhli, + [uhlh i

T T

+2/Xpb¢%@yﬁ+2/nghﬁﬁmyﬁ
0 0
T rt

+ 2/ /ﬁ(t — s)a(RFy (), AW (2, 5)) dsdt,
0 JO

where W1 (t,s) = Ui(t) — U1(s) and, recalling (1.4),

t
(4.4) ﬂﬂzﬂﬂ+1—7=1—Aﬂ®M&

with 0 < 1 —v < &(t) < 1. All terms on the left side of (4.3) are non-
negative.

Proof. Throughout the proof we note that U; (i = 1, 2) are continuous,
hence piecewise differentiable with respect to . We organize our proof in 6
steps.

1. Expressing Uz in terms of U;. The first equation of (4.1) may be
written as

/a('Pk,nUg,Vl) dt :/a(Ul —R,f,V1)dt, VV;€ Wéo).
I I

Therefore, we get

(4.5) PyUs =Uy — Rf, e WO,
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2. Using the calculation

/ﬁt—sUl( )ds = Uy(t /ﬁt—s )(U1(t Ul(s))ds

—/m@www

= () ﬂt—sz(ts)d

and recalling the definitions of the P and PFN in (3.3) and the functions
Wi and &, we can write the second equation of (4.1) in the form

T, | ~ t
[ (ot + i, va) + [ 66 = s)a(Wst,), Vatt) ds) at
0 0

T
:/(Pnfz,Vz)dt, v e wO.
0

Choosing Vo = A%Z’PkUQ gives us
T . T~
/ p(Us, A}, PrUs) dt + / Ea(Uy, AL PpUs) dt
0 0
T rt
(4.6) + / / B(t — s)a(Wit, s), AyPyUs(t)) ds dt
0 Jo
T
= / (Pfy, ALU,) dt.
0
We study the three terms in the left side of the above equation.

3. Using Uy € W, by (3.5), we can write the first term of the left side
of (4.6) as

T
/ p(Us, AL PrU,) dt = ﬂ/ (Us, AL U) d / Dy|Us|sy dt
0 0

N
P
= 5 Z(lUQ,nlﬁ,l - |U2,n—1|}ql,l)
n=1

P 2 02
= §<|U2,N|h,z - |”h|h,l)a
where in the last equality we used the continuity of Us.

4. With (4.5), we can write the second term as
N

T 1 . T
/ga(Ul,AmUQ) dt = 52 EDYUL 7 111 dt—/ Ea(Uy, ALRF,) dt
0 0

n=1 In
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Then we integrate by parts in the first term of the right hand side and use
the facts that £(t) = —A(t) and £(0) = 1, to get

T ~
/ Ea (U, AL PRU,) dt
0

= — Z ( |U1 n|hl+1 f(tn—1)|U1,n—1|%,l+1)

1 2 T,
—EZ/IE|U1|%,1+1 dt_/o §a(U1,A§lRf1)dt
n=1 n

1/ 1 (T
= 5 Ew R =) + 5 [ AT e

T
- /O Ea(Rf1, ALUL) di

where we used the continuity of Uj.
5. Consider now the third term in the left hand side of (4.6). Using (4.5)
and the fact that Uy (t) = D;W (¢, s) we have

T rt
/ / ﬂ(t — S)G,(Wl(t, S), A%’PkUZ) ds dt
0 Jo
1Tt i
- EA A 'B(t o S)Dt|W1(t75)|h,l+1d8 dt

- /(; /(;tﬂ(t - S)G(Angl(t, 8), Rfl(t)) ds dt.

The first term on the right hand side is non-negative. To prove this, take
(0 T). Then

// B(t — ) DW(t, 5)[2 1, ds dt

T—¢
:/ U Bl — ) DA, )2 ds
+€
T—e T—e

= ; ﬂ(T_3)|W1(Ta3)|}21,l+1d3_ . 16(6)|W1(3+655)|i,l+1d3

T—e pT i
—/ Bt — ) Wi (t, )21t ds
0 —+e

T—e
z—mq4|ww+ammﬂw,
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where we used the facts that 4(t) < 0 and B (t) > 0 for the last inequality.
Then using Wi(s +¢€,s) =Ui(s+¢€) — fs+€U1 dt we get

S+€

. 2 .
Wals e < ([ 0@haade) < gme 01 (0) g

S

So (4.7) yields

/ / B(t = ) DAW ()11 dsdt > ~(e) amas [0 (0 11

Therefore, for a fixed mesh, we let ¢ — 0 and conclude

T rt
/ /ﬁ(t—s)Dt|W1(t, 2 dsdt > 0.
0 JO

6. Putting the results from steps 3, 4, and 5 into (4.6) completes the proof.
O

Remark 1. In [4] the auxiliary function w(t, s) = u(t) — u(t — s) was used
in the same way as in our §2, to obtain stability estimates for the spatially
semidiscrete finite element method. This does not work here because s —
U, (t)—U, (t—s) does not belong to W) if the temporal mesh is non-uniform.

We use (4.3) to obtain a stability estimate to be used in the error analysis.
To this end, from (4.3), we have

T
plUa,n g+ ED)|ULN 141 < plvblh g + [ublh +2/0 (ALPf,,Us) dt
T
+2/ a(ALRf,,UL) dt

+2/ /Bt—s (ALRE, (8), Wi (1, 5)) ds dt.
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Therefore using (3.4), 1 — v < £(¢) <1 and fg,@(s) ds <, we get
P|U2,N|i,l + (1 - '7)|U1,N|i21,l+1

T
l l
< plvplisy + [uhlh e + 2 /0 (A *PuPu s, A Us) dt
T
+2/ a(APPRy 1, AV UL dt
0
— 8)a (A, “PuRif1(t), A} “Wi(t,s)) dsdt
0 Jo
T
< P|”2\%,l + |U?L|%,l+1 + 2/0 |PrPrfalni|Uz|n, dt
T
"‘2/ [PrRuF1lni+1|Utlpas1 dt
0

T
427 [ PR Olhsin g [ (8 5) o

< olo?2 02 1 U2 4+ ’ d 2
< plvplhy + [uplh i1 + 291&)12}3]4 2|+ ; |PrPrfoln, dt

2

where C' = C(p,~y). Using that, for piecewise linear functions, we have

1 ) T 2
(1= ) maxUi 7+ O / (PR 111 dt)
(0,1 0

maX| Ui | < ma.X| Ui,n |7
[0,77] [0,T]

T T
/IPkf\dts/ 7] dt,
0 0

and that the above inequality holds for arbitrary IV, we conclude in a stan-
dard way

and

|U2,N |t + [U1,n |ni+1

T
< C(W%\h,l + | |h gt +/ (|Rhf1|h,l+1 + |7’h.f2|h,l) dt),
0

with C = C(p, 7).

(4.8)

5. A PRIORI ERROR ESTIMATES

To simplify the notation we denote the Sobolev norms ||-||zi(qy by [|-[|:-
We define the standard interpolant Iyv € W) by

(5.1) Lv(ty,) =v(t,), n=0,1,---, N.
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By standard arguments in approximation theory we see that, for ¢ =0, 1,
T T
(5.2) / | Ixv — v]|; dt < qu+1/ | DI | dt, fori=0,1,2,
0 0

where k = maxi<p<n kn.
We assume the elliptic regularity estimate ||v||e < C||Av||, Vv € D(A),
so that the following error estimates for the Ritz projection (3.2), hold true

(5.3) |IRrv —v|| < Ch%||v|ls, Yve H'NV, s=1,2.

Hence, as in §2.2, we must specialize to the pure Dirichlet boundary condi-
tion and a convex polygonal domain. We note that the energy norm || - ||y
is equinalent to || - |[; on V.

Theorem 4. Assume that I'y = &, Q is a convex polygonal domain, and
Vo1 CVa,n=2,...,N. Let u and U be the solutions of (1.7) and (4.1).
Then, with e =U —u and C = C(p,~y), we have

T
lez,n]l < Ch2(||1,0||2 + [Jugn 2 +/ ||112||2dt)
0
T
40 [ (il + i)
0
T
lewnlly < Ch(llwsxlls + 1%l + / ol it
0
T
+ 0K [ (il + i)
0
T T
lewn|l < Ch2(||u1,N||2 +/ w2 dt) + Ck;2/ (lldaal| + [ 1) dt-
0 0
Proof. We set
(5.4) e=0+n+p=U—7u)+ (ru — Ju) + (Ju — u),

for some suitable operators m and J which will be specified in terms of
the time interpolant Iy in (5.1) and projectors Ry and Pp in (3.2), so that
7u € W) and n and p will correspond to the temporal and spatial errors,
respectively. Due to (5.2)—(5.3) we just need to estimate . To this end,
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using the Galerkin orthogonality (3.7) and the definition of 8, we get

(5.5)
B(0,PyV) = —B(n,PyV) — B(p, PxV)

-/ ol PRVE) —ali, PAVE) — e, PaVa)—almy, PVG) de
n /()T/Otﬁ(t — 8)a(m (s), PeVa(t)) ds dt
+/()Z(PzaPle)—a(blaPle)—P(iJg,Pk%)—a(Pl,Psz) di
4 /OT/Otﬁ(t — s)a(py(s), PVa(t)) ds dt

Z vV e (wh)?.
We consider two different choices of the operators m and J. In order to prove
the first two error estimates we set, for 1 =1, 2,
OZ' = Uz - Ithui, n;, = (Ik - I)Rh’u,’, pP; = (Rh - I)UZ

Integrating by parts in Ey and E3 with respect to time and using (5.1)
we have for both cases

(5.6) Ey=E3=0.
Moreover, by the definitions of 7 and p, we have
E¢=FE; = FEy=FEg = 0.

Therefore,
T
BO.PY) = [ alm Puv)
0
T t
+/ (“( —m+ / B(t — s)n(s)ds, PpVa) — P(Pzakaz)) dt
0 0
= LPV), vVe (WD)

which is of the form (4.2) with f, = n,, fy = Ap(— 171+f0 B(t—s)n,(s) ds)—
pP2-
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Applying the stability inequality (4.8) with [ = 0, and considering the
fact that |-fo, = [|-|| and |-|p,1 = ||-[|1, we have

18,5 +1[01,~ 1

T
SC@%®W+WMWQ+CAW%mMﬁ

T t
+C [ (1Pl + [ Puctn | 8¢ = ym(s)ds|| + plPaball) .
0 0

where 01(0) = 0, since U (0) = Rp,1u’. Since [|Rpv|l1 < Cljvl|1, [|Pro| <
|lv||, Vo € V and AR Ry = PrA, we have

Rrm2llt = [[(Ix — I)Rpuzlli < C||(Ix — Duell1,
IPrArm || = | Anmyll = Ik — 1) ApRpui|l = ||(Ir — I)PrAu||
< |(Ie = 1) Aus|| < Cf|(Ix — Dus |2,

and
/0 THPhAh /0 Bt~ sy (s) ds|| dt < /0 THAh /0 Bt~ sy () ds|| dt
T pt
gc/o /Oﬁ(t—s)H(Ik—I)ul(s)||2dsdt

T
<0y [Nt~ Dl ds.
0

Therefore by 8 = e —n — p, n(t,) = 0 and 61(0) = 0, we get
lez |l < [lpo,nl + Cll62(0)]]

T
+C [ (10 = Dyuall + 10 = Dyl + | (Ra — Dyl
0
lewnlls < llow wlls + C182(0)]

+0A(MQ—nwm+MQ—nmm+mmemmym

which implies the first two estimates by (5.2) and (5.3).
Finally, we choose

01 =U1 — Rpu1, m = Ix—DRpur, p;=(Rp—Du,
0> = Uz — IyPruz, my = Ik — I)Ppuz, py = (Pr—Iuo.
By the definitions of R and P}, in (3.2), this implies
E7 = Eg = Eg = Eyp =0,
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and we still have (5.6). Therefore, (5.5) becomes
T

B(0,PyV) :/ a(ny + pg, PrV1) dt
0
T t
+/ a(_’71+/ Bt — s)ny(s)ds, Py V) dt
0 0
= L(PV), VvV e (W)

which is of the form (4.2) with f; = ny + py, fo = Ap(— 1y + fot,B(t -

s)mi(s)ds).
Again applying the stability inequality (4.8), this time with [ = —1, and
using |-}ng = ||, we have

T
01511 < C [ (IRumol + [Rnol )

T t
4 [ (1Pudumy s+ Pudn [ (¢ s)my(s)dslar) .
0 0

where we used that 6(0) = 0, since U1(0) = Ry 1u’ and U(0) = Pp, 10°.
Then, since

Ramall = (I — I)Prusal|| < [|(Ix — Dusl,
|Rrp2l = [IPh(I — Ra)uzll < (R — Dugl],
PrAn -1 = [AnRu(Ix — Duiln,—1 = [Rp(Ik — T)uln,
< C||(Ix — Dully

and

/OT‘PhAh /Otﬁ(t —s)n(s) ds‘ dt

h,—1

T pt
sc/o /06(t—8)II(Ik—I)ul(S)Illdsdt

T
scw/ (T — Tl i,
0

we conclude

lexnll < llosl
T
4+ [ (10 = Dywall + (Re — Dol + (T ~ D) a,
0

which implies the last estimate by (5.2) and (5.3). O
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6. NUMERICAL EXAMPLE

In this section we illustrate the numerical method by solving a simple
but realistic example for a two dimensional structure, see Figure 1 (a), us-
ing piecewise linear polynomials. This shows that the model captures the
mechanical behaviour of the material.

We consider the initial conditions: u(z,0) = 0m, %(z,0) = O0m/s, the
boundary conditions: w =0 at z =0, g = (0, —1) Pa at z = 1.5 and zero on
the rest of the boundary. The volume load is assumed to be f = 0N/m?.
And the model parameters are: v = 0.5, 7 = 0.25, v = 0.3, E = 5MPa and
p = 7000kg/m>. The deformed mesh at t/7 = 9 for @ = 1/2 is displayed
in Figure 1 (b), with the displacement magnified by the factor 10, and
the computed vertical displacement at the point (1.5,1.5) for different « is
shown in Figure 2. We note that for small o there is less damping, that is
what we expect, since in the limit @ = 0 there is no convolution term in the
model. While at the other limit & = 1 we expect strong damping, since the
kernel 8 with @ = 1 is an exponential function, see (1.3).

We also verify numerically the temporal rate of convergence O(k?) for
ller,n||. In the lack of an explicit solution we compare with a numerical
solution with fine mesh sizes h, k. Here we consider h = 0.0223, knin =
0.0266, o = 1/2, 7 = 1/4. The result is displayed in Figure 3.

Acknowledgment. We would like thank the anonymous referees for
constructive comments that helped us improve the manuscript.
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FIGURE 1. (a) Undeformed mesh. (b) Deformed mesh at
t/T=9for a=1/2.
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x 10"

FIGURE 2. Vertical displacement for different a.
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FiGure 3. Convergence order for time discretization.
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EXISTENCE AND UNIQUENESS OF THE SOLUTION OF
AN INTEGRO-DIFFERENTIAL EQUATION WITH
WEAKLY SINGULAR KERNEL

FARDIN SAEDPANAH

ABSTRACT. A hyperbolic type integro-differential equation with weakly
singular kernel is considered together with mixed homogeneous Dirich-
let and non-homogeneous Neumann bounadry conditions. Existence and
uniqueness of the solution is proved by means of Galerkin method. Reg-
ularity estimates are proved and the limitations of the regularity is dis-
cussed.

1. INTRODUCTION

We study a model problem, which is a hyperbolic type integro-differential
equation with weakly singular kernel. This problem arises as a model for
fractional order viscoelasticity. The fractional order viscoelastic model, that
is, the linear viscoelastic model with fractional order operators in the consti-
tutive equations, is capable of describing the behavior of many viscoelastic
materials by using only a few parameters.

There is an extensive literature regarding well-posedness and numerical
treatment for integro-differential equations, see, e.g., [1], [3], [9], [10], [11],
[12], [13], [14], [15], [16], and [17]. Existence, uniqueness and regularity of
a reformed model has been studied in [12] by means of Fourier series. One
may also see [6], where the theory of analytic semigroups is used in terms of
interpolation spaces. An abstract Volterra equation, as an abstract model
for equations of linear viscoelasticity, has been studied in [4]. In a previous
work [9], well-posedness and regularity of the model problem was studied in
the framework of the semigroup of linear operators. The drawback of the
framework is that this does not admit non-homogeneous Neumann bound-
ary condition. While in practice mixed homogeneous Dirichlet and non-
homogeneous Neumann boundary conditions are of special interest. Here

Date: April 14, 2009.
1991 Mathematics Subject Classification. 656M60, 45K05.
Key words and phrases. integro-differential equation, fractional order viscoelasticity,
Galerkin approximation, weakly singular kernel, regularity, a priori estimate.
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we investigate existence, uniqueness and regularity of the solution of the
problem (2.5) by means of the Galerkin approximation method.

In the sequel, in §2 we describe the construction of the model and we
define a weak (generalized) solution. Then in §3 we study well-posedness,
regularity and limitations for higher regularity.

2. THE MODEL PROBLEM AND WEAK FORMULATION

Let o, € and u; denote, respectively, the usual stress tensor, strain
tensor and displacement vector. We recall that the linear strain tensor is
defined by

S 1(814,@ n 6uj)
Y 2\0z; O/
With the decompositions
Sij = 0ij — 50kk0ij,  €ij = €ij — F€kkDij,

the constitutive equations are formulated in [2] as
$ij(t) + 17 Dy si5(t) = 2Goaoeij(t) + 2GT Dy e;i(t),
ok (t) + 1752 D2 oppe (t) = 3K oo €pr (t) + 3K 752 Dy e (1),
with initial conditions

5i;(04) = 2Ge;(0+), okr(04+) = 3K e (0+),

meaning that the initial response follows Hooke’s elastic law. Here G, K
are the instantaneous (unrelaxed) moduli, and G, K+ are the long-time
(relaxed) moduli. Note that we have two relaxation times, 71,70 > 0, and
fractional orders of differentiation, ay, ae € (0, 1), where the fractional order
derivative is defined by

DEft) = DDy ) f(0) = Ders [ 0= 97 ) as.

The contitutive equations (2.1) can be solved for o by means of Laplace
transformation, [7]:

si5(t) = 2G (e () - % /0 "0yt - s)eij(s) ds).

(2.1)

ou(t) = 3K (exa(t) - % /0 “a(t — $)enls) ds).

where

00 =40 (= (2)"): Bl =X ey

n=0
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and E,, is the Mittag-Leffler function of order ;. We make the simplifying
assumption (synchronous viscoelasticity):

a=a1=0, T=T1=T2, f=f1=f.

Then we may define a parameter «, a kernel 3, and the Lamé constants p,
A,

Y= S =R B =260, =G, A=K 10,

and the constitutive equations become

o1y (1) = (2peif (£) + Aewr(1)035) — /0 it s) (20ei5(5) + Aexr(s)93; ) ds,

= (00)ij(t) — /Otﬁ(t —5)(00)ij(s) ds.
Note that the viscoelastic part of the model contains only three parameters:
O0<y<l, O<a<l, 7>0
The kernel is weakly singular:
ey P0=gE(-(5)) =20 E(-())
~Ct e -0,

and we note the properties

B(t) =0,

= 18] 2y ety = /Oooﬁ(t) dt = W(Ea(o) - Ea(oo)) =y<L

The equations of motion now become, (we denote time derivatives with
7‘a):
pii —oijj = fi  in§,
(2.4) u; =0 on I'p,
oijn; = g on I'y,
where p is the (constant) mass density, and f and ¢ represent, respec-
tively, the volume and the surface loads. We let Q ¢ R?% d = 2,3, be a

bounded polygonal domain with boundary I'pUI'y = 92, I'pNI'y = @ and
meas(I'p) # 0. We set

(Au); = —(2peij(u) + ek (1)dij) ;
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that is, Au = —V - 0p(u), and we write the equations of motion (2.4) in the
form

— | B(t —s)Au(z,s)ds = f(x,t) in Qx (0,7),

0
(2.5) u(x,t) = onTp x (0,7),
o(u;z,t) -n=g(x,t) on 'y x (0,7),
u(z,0) = u’(z) in Q,
u(z,0) = v%(2) in Q.

We introduce the function spaces H = Lo(Q)%, Hr, = L2(I'n)?, and
V ={ve H(Q): v|r,= 0}. We define the bilinear form (with the usual
summation convention)

a(u,v) = /Q(Q,ueij(u)eij(v) + Xeii(u)ejj(v)) dz, Vu,v €V,

which is coercive on V. We denote the norms in H and Hr, by || - || and
|| - [Py, respectively, and we equip V' with the inner product a(-,-) and norm
o2~ a(w, v).

Now we define a weak solution to be a function u = u(x,t) that satisfies

(2.6) uwe Ly((0,7);V), @e La2((0,T);H), e La((0,7);V"),

(2.7) pli(t),v) + a(u(t),v) — /0 B(t — s)a(u(s),v)ds
= (f(t),v)+ (9(t),v)ry, YveV, ae te(0,7T),
(2.8) u(0) =u°, u(0) =",

Here (g(t),v)ry = fFNg(t) -vdS, and (-,-) denotes the pairing of V* and
V. We note that (2.6) implies, by a classical result for Sobolev spaces, that
u € C([0,T]; H), 4w € C(]0,T]; V*) so that the initial conditions (2.8) make
sense for u® € H, v° € V*.

3. EXISTENCE, UNIQUENESS AND REGULARITY

In this section we prove existence and uniqueness as well as regularity
of a weak solution of (2.5) using Galerkin method, in a similar way as for
hyperbolic PDE’s in [8], [5]. To this end, we first introduce the Galerkin
approximation of a weak solution of (2.5) in a classical way, and we obtain a
priori estimates for approximate solutions. These will be used to construct
a weak solution and then we will verify uniqueness as well as regularity.
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We recall (2.2), (2.3) and we define the function

(3.1) )= - /ﬂ ds—/ B(s)ds = vEqa(t),
and it is easy to see that
(32) D) =-B() <0, £0)=7, Jim&H=0, 0<&(n) <y
Besides, £ is a completely monotone function, that is,
(~1)’D(t) >0, te(0,00), j €N,

since the Mittag-Leffler function E,, « € [0, 1] is completely monotone. Con-
sequently, an important property of £, is that it is a positive type kernel,
that is, it is continuous and, for any 7" > 0, satisfies

(3.3) //ft—s Yo(s)dsdt >0, Vo e C(0,T]).

3.1. Galerkin approximations. Let {(});, cpj)};-";l be the eigenpairs of the
weak eigenvalue problem

(3.4) a(p,v) = Ae,v), YveV.

It is known that {cpJ °, can be chosen to be an ON-basis in H and an
orthogonal basis for V
Now, for a fixed positive integer m € N, we seek a function of the form

(35) wn(t) = > d; (0

to satisfy

Pl (), 1) + @t (£), 1) — /0 B(t — 5)a(um(s), o) ds
:(f(t)’(pk)+(g(t)7@k)FNv k=1, e, myt e (O,T),

with initial conditions

(3.6)

m

(3.7) Z u’,05)pj,  Um(0) = Z(Uov‘:oj)@j'

j=1 j=1
Theorem 1. For each m € N, there exists a unique function wu,, of the form
(3.5) satisfying (3.6)—(3.7). Moreover, if u’ € V,o° € H, f € Ly((0,T); H),
g € WE((0,T); H'N), there is a constant C = C(Q,~,p,T) such that,
(3.8)
1wl Lo (0.1);v) + Nt | Lo 0,7y 1) + i || Lo 0,7):v7%)

< C{llellv + 11"+ Mgllws oysmny + 1l zagoryim }-
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Proof. Using (3.5) and the fact that {¢;}52, is an ON-basis for H and a

solution of the eigenvalue problem (3.4), we obtain from (3.6) that,

(3.9)

pdi(t) + Medi (t) = Me(B % di) (1) = fu(6) + gr(t), k=1,...,m, t € (0,T),
where * denotes the convolution, and f(t) = (f(t), ¢x), 9x(t) = (9(t), Yr)ry-
This is a system of second order ODE’s with the initial conditions

(3.10) di(0) = (W’ 1), dx(0) = (1), k=1,....m.

The Laplace transform can be used, for example, to find the unique solution
of the system. Indeed, the Laplace transform of the Mittag-Leffler function

is,
a—1

L(Eq(az®)) = — e,

——rY"

Hence for the kernel [ defined in (2.2) we have,

L(B(1) = =ysL(Ea(=7"")) + 7Ea(0)
(3.11) st s v

T e e YT T e e T (rs)>+1°

Then, taking the Laplace transform of (3.9) we get,
ps” + Ne = ML (B)(5) ) L(dh)(5)
= L(f1)(5) + L(gr)(5) + pdi(0)s + pdy(0),

where the inverse Laplace transform is computable. Therefore, there is a
unique solution for the system (3.9) with the initial conditions (3.10).

Now we prove the a priori estimate (3.8). Since 5(t — s) = Ds{(t — s), by
(3.2), we can write (3.6), after partial integration, as

(3.12) (

pliim(t), 0) + Fa(tm(t). o) + /0 £(t — 5)alii(s), ox) ds

= (f(t), 1) + (9(t), pr)ry
—&(t)a(um(0),0r), k=1,...,m,te (0,T),

where 4 = 1 — . Then multiplying by dj(t) and summing k = 1,...,m, we
have,

t
P (t), o (£)) + Fa(tm (£), tm () +/0 §(t = s)a(tim(s), m(t)) ds

= (1), am(t)) + (9(t), tm () Ty
- é(t)a(um(o)a um(t))a te (Oa T)'
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Then integrating with respect to ¢, we have,

. 2, ~ 2 b . .
plltan ()17 +F ][ um ) [ly + 2/0 /0 §(r = s)alim(s), im(r)) ds dr
= pllm (0% + Flum (0) 13

+2/0(f(r),um(r))dr+2/0(g(r),um(r)>m dr
i /0 £(r)a(tum (0), iy (1)) dr.

Since £ is a positive type kernel, by (3.3), the third term of the left hand
side is non-negative. Then integration by parts in the last two terms at the
right side yields

Pl (O + 7l um ()15

< Pl ()2 + 5 um (O[3 + 2 / (), (r)) dr
2 /0 (G0 () dr + 2(9(8), () — 2(9(0), ()

- 2/ B(r)a(um(0), um(r)) dr
0
— 28(t)a(um(0), um(t)) + 2§(0)a(um(0), um(0)),

that using the Cauchy-Schwarz inequality, the trace theorem, ||8||L, m+) = 7,
and £(0) =y, we obtain

plltem ()1 + Fllum ()7
< pllm ()2 + Fllum (0)7

t 2
+2/C1 g i (0] + €1 ([ 150 r)

t 2
2 .
+ 2Crvace/Ca g [ (1)} + 2CrvaceCa [ 10 )

+ 2CTmce/C3”um(t)H%/ + 2CTmceC3Hg(t)||12“N

+ 2C7race/ Callum(0) ||%/ + 20Tmcec4||g(0)||12“N

+2/Cs||lum(0)[[} + 29*Cs max [[um(r)|i
0<r<t

+2/Colum (0) I + 2C6&> () |um (BT + 27/ um (0)I[5-
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Hence, considering the facts that Crraee = C(), || (0)] < [|0°)|, and
| (0)]|v < [|ul]]y, in a standard way we get,
limll7. o.1).er) + lumll 7o 0myv)
< C{IROIZ + 11 + 91l 0.5y
11 oy + 191, oz }
for some constant C' = C(§2,, p, T). This, and the facts that || f|| ., (0,7);m) <
CI £l Lo((0,7);1r), and by Sobolev’s inequality
HgHLoo(((),T);HFN) < C’|9HW11((O,T);HFN)7
implies
i llZ o,y + lwmll7 . o.myv)
< O + 1% + 195 0.2y mmny T I W0, 2:m0) -

Now we need to find a bound for ii,,. For any fixed v € V with ||v||y <1,
we write v = v! 4+ v2, where v! € span{p; }7";, v? € span({goj}gnzl)L. Then
from (3.6) we obtain,

p<iim(t),11> = p(ﬁm(t)vvl) =

(3.13)

(f(t)’vl) + (g(t)vvl)FN - a(um(t)7 Ul)
t — S)alu S ’U1 S
+ [ (= s)atuas). ) s

that, using the Cuachy-Schwarz inequality and the trace theorem, implies

T T
p [ Wi ®IR-dt < [ {LAONI I+ Crracella®lig o' Iy

@l Iy + [ 86 = o)lm )l oy ds}
This, using ||v!|ly <1 and (3.13), concludes
plliimll7, 0.y < Calll FlILomsm + 1907, 0y )
+ C%THumH%oo((O,T);V)
< O o + 1912, oz,
+ 1017 + 11 + 1913 (0.2 -
Therefore, for some constant C' = C (€, v, p,T),

[ RIS
< OO+ 11 + 191 o ey + 1 ormian -
This and (3.13) imply the estimate (3.8), and the proof is complete. O
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3.2. Existence and uniqueness of the weak solution. Now, we use
Theorem 1 to prove existence and uniqueness of the weak solution of (2.5),
that is, a solution of (2.6)—(2.8).

Theorem 2. Ifu® € V,v° € H, g € WL((0,T); H'V), f € La((0,7); H),
there exists a unique weak solution of (2.5).

Proof. 1. We note that the estimate (3.8) does not depend on m, so we have

[ | oo ((0,7):v) F 1l Lo (0.1):20) + i || Lo 0,7);777)
S K= K(Q,’Y,T,U,'U,f,g).

That is,

{um}ov_; is bounded in Lo ((0,7"); V) C La2((0,T);
(3.14) {tm }ov_; is bounded in Lo ((0,7"); H) C L2((0,T);
{tim }oo_; is bounded in Lo((0,7"); V*).

==

2. First we prove existence. From (3.14) and a classical result in functional
analysis, we conclude that the sequences {um }2°_1, {tm}2_1, {tm}20_, are
weakly precompact. That is there are subsequences of {um }50_1, {tm}3_;,
{i }2°_4, such that,

u—wu in Ly((0,7);V),
(3.15) u —u in L9((0,7); H),

iy — 4 in  Lo((0,7); V™),
where the index [ is a replacement of the label of the subsequences and '—’
denotes weak convergence. Consequently, (2.6) holds true and we need to

verify (2.7) and (2.8). To show (2.7) we fix a positive integer N and we
choose v € C([0,T]; V) of the form

(3.16) v(t) =Y hi(t)e;.
Then we take [ > N and from (3.6) we have
T t
/0 (p(ﬁl,v> +a(u,v) — /0 B(t — s)a(uw(s),v) ds) dt

(3.17) .,
- /0 ((£0) + (9. 0)ry) dt.
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This, by (3.15), implies in the limit,

r t
(3.18) /0 (ot ) + atuv) - /0 B(t — s)a(u(s), v) ds) dt

T
= [ o+ oy ae
Since functions of the form (3.16) are dense in Ly((0,7); V), this equality
then holds for all functions v € Ly((0,7); V'), and further it implies (2.7).
Now, we need to show that u satisfies the initial conditions (2.8). Let

v € C%([0,T]; V) be any function which is zero in a neighborhood of T' (or
simply v(T) = 0(T') = 0). Then by partial integration in (3.17) we have

T t
/O (p(ul,i})—i-a(ul,v)—/oﬂ(t—s)a(ul(s),v) ds) dt
T
- /0 ((F,0) + (g9, 0)ry) dt — p(ur(0), 5(0)) + plin(0), v(0)).

so that, recalling (3.15) and (3.7), in the limit we conclude,
T t
/ <p<u, ¥) + a(u,v) — / B(t — s)a(u(s),v) ds) dt
0 0

T
- /0 ((£20) + (9, 0)r) dE — p(u, 5(0)) + p(e0, 0(0)).

On the other hand integration by parts in (3.18) gives,
T t
/0 (p(u,v) + a(u,v) — /0 B(t — s)a(u(s),v) ds) dt
T
= /O ((f;0) + (g, v)ry) dt = p(u(0),9(0)) + p(v(0),v(0)).

Compairing the last two identities we conclude (2.8), since v(0), v(0) are
arbitrary. Hence u is a weak solution of (2.5).

3. It remains to prove uniqueness. To this end, we show that u = 0 is the
only solution of (2.6)—(2.8) for u’ = v = f = g = 0. Let us fix r € 0,7
and define

,
uw)dw 0<t<r
o) [ o<i<n

0 r<t<T.
We note that

(3.19) v(t) eV, w(r)=0, o(t)=—u(t).
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Then inserting v in (2.7) and integrating with respect to t, we have

(3.20) /0 ol v)dt—i—/ a(u, v dt—//ﬂt—s (5), v(t)) ds dt = 0.

For the last term we obtain

_/(:/Otﬁ(t—s)a( (5), 0(t)) ds dt = //tht—s u(s), o(t)) dt ds

=/&%ﬂMM%Wﬂ®
0

- [ eatuts). o) ds
- [ [t = satu). o0y das
_ / (5), v(s)) ds
//gt—s (b)) dsdt,

where we changed the order of integrals and we used integration by parts,
€(0) =~ from (3.2) and v(r) = 0 from (3.19). Therefore integration by parts
in the first term of (3.20), recalling 4 = 1 — ~, yields

—p/r(uv)dzH-v/ a(u,v dt—l—//ft—s ,u(t))dsdt = 0.

This, using © = —u from (3.19), implies

pllu()I? = pllu(O)* = Fllv ()7 +Fllw O

+2//§t—s u(t)) dsdt = 0.

Consequently, recalling (3.3), v(r) = 0, and u(0) = 0, we have u = 0 a.e.,
and this completes the proof. O

3.3. Regularity. Here we study the regularity of the unique weak solution
of (2.5), that is, a solution of (2.6)—(2.8).

Corollary 1. Ifu® € V,0° € H,g € W} ((0,T); H'V), and f € L2((0,7); H),
then for the unique solution u of (2.6)—(2.8) we have
(

(321)  w€ Loo((0,T);V), 1€ Loo((0,T); H), ii € Ly((0,T);V*).
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Moreover we have the estimate
(3.22)
| 2oo 0,159y + Nl o (0,1 1) + 1]l Lo 0,7+
< C{[u’llv + I1W°] + l9llwa(o.2);m7n) + 11 Lo,y ) }-
Proof. 1t is known that if u,, — u, then

(3.23) lul| < Lm inf |juw,].

Then, recalling (3.15) and the a priori estimates (3.8), we conclude (3.21)
and (3.22). O

It is known from the theory of the elliptic operators, that global higher
spatial regularity can not be obtained with mixed boundary conditions.
Therefore we specialize to the homogeneous Dirichlet boundary condition,
that is I'nv = @, and assume that the polygonal domain 2 is convex. We re-
call the usual Sobolev space H? = H?({2) and we note that here V = H}(Q).
We then use the extension of the operator Au = —V-0g(u) to an abstract op-
erator A with D(A) = H?(Q)¢NV such that a(u,v) = (Au,v) for sufficiently
smooth u,v. We note that, the elliptic regularity holds, that is,

(3.24) ullgz < CllAu|, uwe H*(Q)INV.

Theorem 3. We assume that Ty = @. Ifu® € H? 0 € V, andf €
Ls((0,T); H), then for the unique solution u of (2.6)—(2.8) we have

(3.25) u € Loo((0,T); H?), € Loo((0.T): V),
i € Loo((0,T); H), € Lo((0,T); V).

Moreover we have the estimate

(3.26) 1wl £ o,y m2) + 10l oo (0,1)5v) + 1l 2o (0,10 E) + 1E ] o 0,504
< C{llull g2 + 10Ny + 1f e oy -
Proof. Writing

/ B(t — 5)a(um(s), x) ds = / B(s)a(um(t — 5), k) ds,
0 0

differentiating (3.6) with respect to time, and writing v = 0, we have

(3.27)
Pl (1), k) + a(wy, (8), or) — /0 B(t = s)a(up,(s), ¢r) ds

= (f(t)ﬂ@k:) + ﬂ(t)a(um(o)’@k)a k= 1’ ceey, M, te (O,T),
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with the initial conditions

Uy, = Z(UO’ ©Li5)Pj,
(3.28) 7~
Qm(o) = iy, (0) = Z (f( ) — Aup(0) SOJ)SO
j=1

Then, using 5(t—s) = Ds£(t—s) from (3.2) and partial integration, we have

(i, (1), k) + Fa (W, (), ¢k) /ﬁt—s ©r) ds

= (f(t), ox) + Bt)a(um(0), or)
—&(t)a(u,,(0),0x), k=1,...,m,te (0,T).

Now, multiplying by dj(¢) and summing k =1, ..., m, we have

Pl (), it (1)) + Fa (1 )+ / £t —s) i, (1)) ds

Z(f(t) m (1)) + B(H)a(um(0), iy (1))
— §®)a(wy,(0), 4, (1), t € (0,T).

Integrating over [0, t¢] and partial integration in the last term, we have

I1Z + Al ()15
< )l ()7 + Fl 2, (O)F

+2 [0 0 dr+2/ﬂ (11 (0). i (7))

2/5 (7)) dr

= 26(1)a(w, (0), wy, (1) + 26(0)a(w,(0), wn 0)),

Pl ()
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that using the Cauchy-Schwarz inequality, the trace theorem, |||, r+) = 7,
and £(0) =, we obtain

Pl (N1 + Al (I3
< Pl (0)12 + (1 + ) [l (0) 17
5 to 2
+2/C1 g i (P + €1 ([ 170 r)
2 2 . 2
+2/Callum (0)32 +29°C gmas. i (1)
+2/Calln (O)} + 29°Cy gma, ()
+ 2/ Cal[t, (0) |3 + 29 Cll 1w (8)][7-
This implies, for some constant C,

HQmH%OO((O,T);H) + ”HmH%w((o,T);V)

< C{ |l O + ety (O + N1 (0172 + 1117, 0,050 }-
Then recalling u = 4, the initial data from (3.28), and using

[ (Ol 2 < [1e°llgzz, im0y < 0°]lv,
we have

liim|Z_ 0.1y + 7. 0.0
< C{I Iz + 1017 + 1L O + 112 oy T
We now find a bound for ||u,,(t)|/ 2. We recall the eigenvalue problem

(3.4) with eigenpairs {(Aj,0;)}32;, a(u,v) = (Au,v). Then we multiply
(3.6) by A\kdi(t) and add for k =1, ..., m to obtain

(3.29)

a(Up,, Atp) = (f — pli, Aum) + /tﬂ(t — s)a(um(s), Aupn(t)) ds.
0
This implies

[ Aun(@IP < (17O + pllin (1)) +ell A (1)

A 2
+7 poax || Aum(s)[I%,
that gives us, by elliptic regularity (3.24),

lwmllZ . o1);m2) < C(Hf”%m((o,:r);hr) + HamH%m((O,T);H))
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From this and (3.29) we conclude

i1 Z o o)) + Nl o o0y + Numll o7y
< C{llu’1H2 + ||U0Hv 1A o oy + 112 oy b

that using |[ £l .. (o,);1) < Cllflwi o,r;0)> bY Sobolev inequality, we have

liml7 0,75 + mll7 . o.myvy + MemlT 0.7y 02
< C{”u0||12f{2 + ||UOH%/ + ||f||12/1/11((0,T);H)}
< C{lla®l 72 + 101 + 10 o,my5my -
Finally from (3.27) , similar to the proof of Theorem 1, we obtain

Vil 7, 0.y < CLIUC N2 + WO + 1 o)) -

The last two estimates then, in the limit, imply the desired estimate (3.26),
and the proof is now complete. O

Remark 1. If we continue differentiation in time to investigate more regu-
larity, we obtain from (3.27)

P (1), 9) + ality (), 25) /ﬁt—s o (5), k) ds

= (f(t)aspk) (t)a(um(o)ﬂpk)
+ B(t)a(u,,(0),px), k=1,...,m,te (0,T),

Further the term ((t)a(um(0), o) leads to
B(t)a(um(0), iy, (t)).

But ﬁ is not integrable. Besides, after integration in time, we can not use
partial integration to transfer one time derivative from 3 to i,,(t), since
there is not enough regularity to handle %,,. This means that we can not
get more regularity with weakly singular kernel 5. This also indicates that
with smoother kernel we can get higher regularity in case of homogeneous
Dirichlet boundary condition under the appropriate assumption on the data,
that is, more regularity and compatibility.
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A CONTINUOUS SPACE-TIME FINITE ELEMENT
METHOD FOR AN INTEGRO-DIFFERENTIAL EQUATION
MODELING DYNAMIC FRACTIONAL ORDER
VISCOELASTICITY

FARDIN SAEDPANAH

ABSTRACT. A fractional order integro-differential equation with a weakly
singular kernel is considered. A weak form is formulated, and stability
of the primal and the dual problem is studied. The continuous Galerkin
method of degree one is formulated, and optimal a priori error estimate
is obtained by duality argument. A posteriori error representation based
on space-time cells is presented such that it can be used for adaptive
strategies based on dual weighted residual methods. Some global a pos-
teriori error estimates are also proved.

1. INTRODUCTION

We study an initial-boundary value problem, modeling dynamic fractional
order viscoelasticity of the form (we use -’ to denote the time derivative),

(1.1)
pi(z,t) — V - oo(u; x, t)

—l—/tﬁ(t —8)V -oo(u;z,s)ds = f(x,t) in Qx (0,7),
0

u(z,t) =0 onTp x (0,7),
o(u;z,t) -n = g(z,t) onI'y x (0,7),
u(z,0) = u®(z), a(z,0) ="(x) in Q.

Here u is the displacement vector, p is the (constant) mass density, f and
g represent, respectively, the volume and surface loads. The stress o =
o(u;x,t) is determined by

t
o(t) = oo(t) - /0 Bt — s)o0(s) ds,

Date: April 12, 2009.
1991 Mathematics Subject Classification. 65M60, 45K05.
Key words and phrases. fractional order viscoelasticity, Galerkin approximation,
weakly singular kernel, stability, a priori estimate, a posteriori estimate.
1
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with
Uo(t) = 2,&06(15) + Ao Tr(e(t))I,

where I is the identity operator, ¢ is the strain which is defined by ¢ =
5(Vu + (Vu)T), and po, Ao > 0 are elastic constants of Lamé type. The
kernel is defined by:

d tyo oty —1ta t\«
=5 (- () =2 B (- ()
(1.2) B(e) Tae T Tr\T @ T
~Ct 0,
which means that it is weakly singular with the properties

B(t) =0,

(1.3) o

8y = | 86 dt = (Ea(0) = Bafo0)) =7 < 1,
where vy € (0,1) is a constant and 7 > 0 is the relaxation time. Here E, is
the Mittag-LefHler function of order o € (0,1) and defined by,

o0 n

z
Bo(z) =) T rna)
n=0

There is an extensive literature on theoretical and numerical analysis of
integro-differential equations modeling linear and fractional order viscoelas-
ticity, see, e.g., [1], [7], [8], [9], [10], [12], and [13]. Existence, uniqueness and
regularity of solution of a problem in the form of (1.1) has been studied in
[7], [11]. A posteriori analysis of temporal finite element approximation of
a parabolic type problem and discontinuous Galerkin finite element approx-
imation of a quasi-static (pii &~ 0) linear viscoelasticity problem has been
studied, respectively, in [1] and [13]. The present work extends previous
works, e.g., [1], [2], and [13].

The outline of this paper is as follows. In §2 we define a weak form of (1.1)
and the corresponding dual (adjoint) problem, and we study the stability. In
83 we formulate a continuous Galerkin method of degree one and we obtain
stability estimates. Then in §4 we obtain an optimal a priori error estimate.
We present an a posteriori error representation based on the dual weighted
residual method in §5, and we prove some global a posteriori error estimates.

2. WEAK FORMULATION AND STABILITY

We let Q C R, d = 2,3, be a bounded polygonal domain with boundary
I' = T'pUT'y where I'p and I'y are disjoint and meas(I'p) # 0. We introduce
the function spaces H = Ly(Q)¢, Hry = Lo(I'n)%, and V = {v € HY(Q)? :



CG METHOD FOR A FRACTIONAL ORDER VISCOELASTICITY MODEL 3

v|p,= 0}. We denote the norms in H and Hr by ||-|| and ||-||ry, respectively.
We also define a bilinear form (with the usual summation convention)

(2.1) a(v,w) = /Q(Quoeij(v)eij(w) + Xo€ii(v)ej(w)) do, v,w eV,

which is coercive on V', and we equip V with the inner product a(-,-) and
norm |[v]|} = a(v,v). We define Au = —V - o¢(u), which is a selfadjoint,
positive definite, unbounded linear operator, with D(A) = H2(Q)¢NV, and
we use the norms ||v||s = [|A%/%v||.

We use a “velocity-displacement” formulation of (1.1) which is obtained
by introducing a new velocity variable. Henceforth we use the new variables
up = u, ug = 4 and u = (uq,uz) the pair of vector valued functions. Now
we define the bilinear and linear forms A : V x W — R, A% : W* x V* —
R, F: W —R, J, : W* =R, for 7 € RZ°, by

T
Au, w) = /0 {(ul,wl) — (ug,w1) + p(ug, w2) + a(uy, ws)

_ /0 B(t — s)a(ul(s), wg) ds} dt
+ (u1(0), w1(0)) + p(u2(0), w2(0)),

T T
A (w, z) = / { — (w1, 21) + a(wy, 22) —/t B(s — t)a(wr, z2(s)) ds
— plaws, 22) — (wa, 21)} dt + (wy(T), 21(T)) + p(wa(T), 22(T)),

T
Pl) = [ {0+ oy f e+ (001(0) + (0 0(0)),

T
Iotw) = [ {0 + (wado)fdt + (un(T),T) + plaa(T), ),

where j1, j2 and z{ , zZ represent, respectively, the load terms and the initial
data of the dual (adjoint) problem. In case of 7 = 0, we use the notation
A*, J for short. Here

V=H'((0,T);V) x H ((0,T); H),
Ve = H'((0,T); H) x H'((0,T); V),
W= {w = (wy,wq) 1w € Lg((O,T);H) % Lz((O,T);V),
w; are right continuous in time},
W* = {w = (wy,wy) 1w € Lg((O,T);V) « Lz((O,T);H)7

w; are left continuous in time},

(2.2)
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and we note that YV C W*, V* C W.
The variational formulation analogue to (1.1) is then to find u € V such
that,

(2.3) A(u,w) = F(w), YweW.

Here the definition of the velocity us = w1 is enforced in the Lo sense, and
the initial data are placed in the bilinear form in a weak sense. A variant
is used in [7] where the velocity has been enforced in the H! sense, without
placing the initial data in the bilinear form. We also note that the initial
data are retained by the choice of the function space W, that consists of
right continuous functions with respect to time.

To obtain the dual (adjoint) problem we note that A* is the adjoint form
of A. Indeed, integrating by parts with respect to time in A, then changing
the order of integrals in the convolution term as well as changing the role of
the variables s, t, we have,

(2.4) A, w) = A*(v,w), YveV, weV

Then the variational formulation of the dual problem is to find z € V* such
that,

(2.5) A (w, z) = J(w), Yw e W™,

that is a weak formulation of

T
. , 0 .
pia + Azy — / B(s —t)Azz(s) ds = j1 — 532,
¢

with initial data 27, 2Z, and function j = (j1, jo) that is defined by J(w) =

T, .
fo (w, j)dt.
In the analysis below we use a positive type kernel £&. Indeed, we recall
(1.2), (1.3) and we define the function

(2:6) 0=~ [ Bs)ds = [ 506)ds = 1Eale)
and it is easy to see that
(2.7)  Dik(t) = =p(t) <0, £0) =, [Jim (@) =0, 0<E() <.
Besides, £ is a completely monotone function, that is,
(~1)DI(t) >0, te(0,00), j €N,

since the Mittag-Leffler function E,, « € [0, 1] is completely monotone, see,
e.g., [5]. Consequently, an important property of ¢ is that, it is a positive
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type kernel, that is, it is continuous and, for any T > 0, satisfies

T rt
(2.8) /0 /0 E(t— $)o(t)d(s) dsdt > 0, Vo € C([0,T)).

Theorem 1. Let u be the solution of (2.3) with sufficiently smooth data
u®, 0%, f,g. Then forl € R,T > 0, we have the identity,

T rt
pllus(T) |2 + 3 un (T) 24 +2 /O /0 £(t — s)a(i(s), Ali(t)) dsdt

T
= o1 + (Ll +2 (70, A1) e
(2.9) 0

T
+2/0 (9(8), A" (8))y.  dt

T
i /O B(t)a(u®, Al (1)) dt — 26(T)a(u®, Aus (T)).

where ¥ =1 — ~. Moreover, with U'y = & or 'y # &, g = 0, we have,

T
@10)  ua(Dl+ o (Do < C{s+ s+ [ 17O}

for some C = C(p,v,T). And with Ty # &, g # 0,1 = 0, we have the
estimate,

211) [[ua (T) ||+ [ua (T) ]2
' < C{IC I+ el + 1 o) + N9l o,psrrm -
for some C = C(Q, p,7,T).

Proof. Since u is a solution of (2.3), we obviously have uy = ;. We recall
7 = 1—+, and from (2.7) we have that 3(t —s) = Ds{(t — s), £(0) = ~.
These and partial integration in the convolution term in A, yield

T ¢
Au,w) = /0 {p(ug,wg) + Ja(ui, we) + /0 £t — s)a(u(s), wa) ds

+ §(t)a(u0, wg)} dt + (ul(O), wl(O)) + p(uQ(O), wg(O)).

(2.12)
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Putting this with w = (wy,ws) = (A% uy, Alug) = (Al 1ug, Aldy) in (2.3)
we obtain,

T rt
pllua(T)[? + Afus (T)|2r +2 / / £t — s)a(in(s), Ali (1)) ds dt
T T
= ol O7 + Ay + 2 /0 (F, Ality) dt + 2 /0 (g, Ality)r, dt

T
) / £(t)a(u?, Al (1)) dt.
0
012 012 r l r l
= Dl + A2y + 2 /0 (f, Alin) di + 2 /0 (g, Aliy)r dt

T
- 2/0 6(t)a(u0, Alul(t)) dt — 2§(T)a(u0, Alul(T)) + 2’yHuO||12+1,

where for the last equality we used partial integration and D.£(t) = —f3(t).
This, having 4 = 1 — v, implies the identity (2.9).

Now we prove the stimates (2.10) and (2.11). First, in (2.9), we use (2.8),
integration by parts in the term with the surface load g, and the Cauchy-
Schwarz inequality and conclude,

pllua (DI + Allua (T)IIF 41
< pllo°lIF + (1 + )7

T
+2/C1 mase [in Ol +201( [ 170lat)
T
- 2/0 (9(8), Alur (1)) dt +2(g(T), A'ua (T)) . —2(9(0), A'u®) .

T
2||u® t t) dt
+ 2 o [aa (Ol [ B0

+29/Col|u’ 1y + 29Collun(T) |74

This with I'n = @ or I'n # @, g = 0, considering |||z, ®+) = 7, implies
(2.10). But for the case that the surface load g # 0 (I'n # @), we need to
restrict to [ = 0, due to the trace theorem. That is, in this case with [ =0
and using [Ju1(t)||ry < C()||u1(t)|l1 by the trace theorem, in a standard

way, we have the estimate
[ua (D) + [fur (D) < CLO N+ el + 11z 0,0):0)
19l (ory:rrny + 19l 0,11 }-

This and the fact that |lgll;__(or)nrn) < C”gHWf((o,T);HFN): by Sobolev
inequality, imply (2.11). O



CG METHOD FOR A FRACTIONAL ORDER VISCOELASTICITY MODEL 7

Remark 1. An identity, slightly different from (2.9) has been presented in
[2], by using a function w(t, s) = u(t)—u(t—s) that must belong to a weighted
Lo-space, introduced in [6], see also [7] where the abstract framework by [6]
has been, specifically, applied to this problem. The proof presented here
avoids using function w and seems to be simple and straightforward.

Remark 2. An important property, used here is that the kernel is of positive
type. This means that the technique presented here can be applied to the
problems with positive type kernels. For example, with ¢ = 0, we could
consider problems with positive type kernels and of the form

t
pi + Au — / B(t — s)Bu(s)ds = f,
0
where B is a selfadjoint, positive definite linear operator such that, for some
suitable constant C,
(Bv,w) < C(Av,w), Yv,w € D(A).

For example, with kernel 3 defined in (1.2), we should have 1 — ~C > 0.
Then a similar argument can be applied with [ = 0, and also with [ £ 0
provided B and A be comutative.

Theorem 2. Let z be the solution of the dual problem (2.5) with sufficiently
smooth data le, zzT,jl,jg. Then forl € R, 0 <t < T, we have the identity,

(2.13)
T rT
I ()12 + pAllza(®)]24 + 20 / / £(s — r)a(As(r), 2o(s)) ds dr

T
= LI+ o+ DI I+ 2 [ {(Aldn) + (A )} e

—2p/ BT — r)a(Alzs(r), 21) dr

—2p8(T — t)a (AZZ2( t),23).

where ¥ = 1 — . Moreover, for some constant C = C(p,v,T), we have
stability estimates

(2.14)
T T
Iz @+ 2o @l < CL1T N+ 125 N + / (Wl + Nl ) r}.

Proof. Since z is a solution of (2.5), we obviously have z; = —pZs and, for
t €[0,T), z satisfies

(2.15) Af(w, z) = J(w), Yve W*.
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We recall 4 = 1—+, and from (2.7) we have 5(s—t) = —D&(s—t), £(0) = ~.
Then, by partial integration with respect to time in the convolution term in
Ay, we obtain

(2.16)
T T
A (w, z) = /t { — (w1, 21) + Fa(ws, 22) —/ &(s —r)a(wr, #2(s)) ds
+&(T — r)a(wl, zg(T)) } dr
+ (w1 (1), z1(T)) + p(wa(T), 22(T)).
Putting this with w = (w1, ws) = (Alzy, AT 2) = (—pAliy, ATl2y) in
(2.15) we have

T T
| =3P = 5D+ [ 66 = a(A'n0). 2(9) ds

— p&(T —r)a(A2(r), 23 ) } dr = /tT{(Alzl,jl) + (Al+122,j2)} dr,

that implies
T T ;
1202 + Pl r + 20 / / £(s — r)a(Alza(r), 2a(s)) dsdr
T
NI+ oA IRy +2 [ { (A ) o+ (A" o)
t

T
+ Qp/t (T —r)a(Alzy(r), 23 ) dr.

Now integration by parts in the last term, having D,&{(T —r) = (T — 1) by
(2.7), gives the identity (2.13). Then, using (2.8) in (2.13), similar to the
proof of (2.10), in a standard way, we conclude the inequality (2.14), and
this completes the proof. O

3. THE CONTINUOUS GALERKIN METHOD

Let 0 = tg < t1 < -+ < th1 < t, < --- <ty = T be a partition
of the time interval [0,7]. To each discrete time level ¢, we associate a
triangulation 7," of the polygonal domain 2 with the mesh function,

(3.1) ho(z) = hi = diam(K), z €K, K € T,

and a finite element space V}' consisting of continuous piecewise linear poly-
nomials. For each time subinterval I;, = (t,,—1,t,) of length k, =t,, — ¢, 1,
we define intermediate triangulaion 7, which is composed of mutually finest
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meshes of the neighboring meshes 7", 7;1"_1 defined at discrete time levels
ty, tn_1, respectively. The mesh function h,, is then defined by

(3.2) hn(x) = hg = diam(K), x€ K, K € T,".

Correspondingly, we define the finite element spaces V,f consisting of con-
tinuous piecewise linear polynomials. This construction is used in order to
allow continuity in time of the trial functions when the meshes change with
time. Hence we obtain a decomposition of each time slab Q™ = ) x I, into
space-time cells K" = K x I,, K € ’Z_;L” (prisms, for example, in case of
QC ]RQ). We note the difference between the mesh functions h,, and hy,
and this is important in our a posteriori error analysis. The trial and test
function spaces for the discrete form are, respectively:

Vi = {U = (Uy,Us) : U continuous in Q x [0, 77,
U(z,t)|r, linear in t,
U tn) € (VR U0, € (),
Whi = {V = (V1,V2) : V(-,t) continuous in €,

V(1) € (V)2

(3.3)

V(z,t)|1, plecewise constant in t}.

We note that global continuity of the trail functions in Vpj requires the use
of ‘hanging nodes’ if the spatial mesh changes across a time level t,. We
allow one hanging node per edge or face.

Remark 3. If we do not change the spatial mesh or just refine the spatial
mesh from one time level to the next one, i.e.,

(3.4) virtcv, n=1,...,N,
then we have Vh” =V

In the construction of Vj,;, we have associated the triangulation 7," with
discrete time levels instead of the time slabs €)", and in the interior of time
slabs we let U be from the union of the finite element spaces defined on the
triangulations at the two adjacent time levels. This construction is necessary
to allow for trial functions that are continuous also at the discrete time lev-
eles even if grids change between time steps. Associating triangulation with
time slabs instead of time levels would yield a variant scheme which includes
jump terms due to discontinuity at discrete time leveles, when coarsening
happens. This means that there are extra degrees of freedom that one might
use suitable projections for transfering solution at the time levels ¢, see [7].
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The continuous Galerkin method, based on the variational fomulation
(2.3), is to find U € Vj;, such that,

(3.5) AU W) = F(W), YW € Wi

The Galerkin orthogonality, with « = (u1,uz2) being the exact solution of
(2.3), is then,

(36) A(U —u, W) =0, VW € Wy.

Similarly the continuous Galerkin method, based on the dual variational
formulation (2.5), is to find Z € Vj such that,

(3.7) AW, Z)=JW), VW € Wp.
Then, Z also satisfies, for n =0,1,..., N — 1,
(3.8) A, (W, Z) = J, (W), YW € Wiy

We notice that, rather than using the dual formulation of the discrete prob-
lem (3.5), we formulated the same finite element method for the continuous
dual problem (2.5).

From (3.5) we can recover the time stepping scheme,

/ {(Ul,Wl) - (Ug,Wl)} dt =0,

In

(3.9) /I {p(U2’W2)+a(U17W2)_/05(t_3)a(U1(s),W2(t))d8} dt

:/ {(f,Wa)dt + (g, Wa)ry } dt, VWi, Wa € Wiy,
In
Ui(0) = up,  Us(0) = vp,

for suitable choice of u?l, vg € V,? as approximations of the initial data u°,v°.

Here, as a natural choice, we have
(3.10) W= P, o) = Py
Typical functions U = (Uy,Uz) € Vi, W = (W1, Wa) € Wy, are as follows:

Ui(z,ty) = ZUJQOJ
(3.11) Uiz, )1, = Yn-a(t )U” 1( )+ ¢a (U] (2),

(z,t)|1, = ZWJQ@]
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where m;, is the number of degrees of freedom in 7", {¢}(z)}7"" are the

nodal basis functions for V" defined on triangulation 7,", and 1,(t) is the
nodal basis function defined at time level ¢,,. Hence (3.9) yields

kn

(Up —upt ) - ?(USUFU;A’WQ =

??‘

p(Us = U3~ Wa) + =4 (U} + U, Wa)

2

n tAL
ZaU“%// B(t — s)y_1(s) ds dt
=1 In

ti—1

n tAL
Za UL, Wy) // B(t — s)iy(s)dsdt
=1 In

t1—1
= / {(f,Wa)dt + (g, Wa)ry } dt, VWi, W € Vi,
In
U =), U =),

This implies the discrete linear system,

Mnﬁ{l _ %M”ﬁg — Mn—l,nﬁlnfl + %Mn—l,nﬁngl,

- k - - k -
pM"™UY + (?” — wy )S"UY = pMT O 4 (—3" + Wypo1)S" b

+ 5070w +0+an15’”U’+B"
=1
U =), U9 =1,

where

tAL1 t
sto= [ [ ot smeasar, = [ [ s - s asar
InJtn_1

t/\tl+1
wnl// B(t — s)y(s)dsdt,
InJt—1

B" /{fsoj (9,9 rN}dt> :
M™ = (MZ]L) = ((Soz y Py ))ij’ M = (MZ]L Ln)ij = ((90?71790?))1‘]')
S (Szl]n>1j - ( (‘Pia(p?))mv

and Ul = (U7;)j2y with Uf'; introduced in (3.11).
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We define the orthogonal projections Ry, : V — V), Py, : H — Vi and
P - Ly(I,)* — P4d(1,,), respectively, by

a(Rpnv—v,x) =0, YoeV, xeV,,
(Phpv—v,x) =0, Yve H, x e V',

/(Pk,nv - ’U) “pdt =0, Yve LQ(ITL)dv (VNS Pg<In)7

In

(3.12)

with Pg denoting the set of all vector-valued constant polynomials. Cor-
respondingly, we define Rpv, Ppv and Pyv for t € I, (n = 1,--- | N), by
(Rpv)(t) = Rpnv(t), (Prv)(t) = Prpv(t), and Prv = Py pn(vl1,)-

Remark 4. In the case of assumption (3.4), by Remark 3 and the definition
of the Lo-projection Py, we have V', P,V € Wy, for any V € Vy,.

We introduce the linear operator A, , : V;' — V;" by
a(vp, wy) = (Apyrvr,wy), Yu, € Vi, wy € V)"

We set A,, = A, ,, with discrete norms
ol = [|AY20,]| = \/(vn, ALwy), vp€Vi*andl e R,

and Ay, so that Apv = A,v for v € V;'. We use A}, when it acts on ‘_/h". For
later use in our error analysis we note that Pr,A = A, Ry.

Theorem 3. Let Z be the solution of (3.7) with sufficiently smooth data
Z{,Z;,jl,jz. Further, we assume (3.4). Then for | € R, we have the iden-
tity,

3.13
(3.13) o o
121 ()2, + 0511 Zatn) [2.41 + 29 / / £(s — t)a(AL Za(t), Zo(s)) ds dt

= [12:(T)

hi P+ NN Z2(T)7 11

T T
+2/ (Agzl,PkPhjl)dtw/ (AL Zo P Prja) dt
t t

n n

T (T
—Z/tn/t B(s — t)a( AL Py Phja, Zo(s)) ds dt

T
=) B(T — t)a(A}, Za(t), Zo(T)) dt

- 2p€(T - tn)a(AZZ2(tn)7 ZQ(T))'
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where 4 = 1 — . Moreover, for some constant C = C(p,~,T), we have
stability estimate

(3.14)
1Z1(tn)

ni + 1 Z2(tn) lnie1 < C{IlphleHh,z + | Pr2g lnas1

T
+ [ (1P
tn

Proof. The solution Z of (3.7) also satisfies (3.8), forn = N —1,...,1,0.
Then recalling Remark 4 for the assumption (3.4), we obviously have,

i+ thj2Hh,l+1> dt}.

(3.15) PeZi = —pZs — PpPhja.

Using this in (3.8) and recalling the initial data Z;(T) = Pyzl, i = 1,2, we
obtain

/tT{ — (W, Zy) + a(Wy, Zs) — /tTﬁ(S — t)a(Wl, ZQ(S)) ds} dt

+ (Wi(T), Pzt ) + p(Wa(T), Pr2y )

T
:/t (Wi, 1) dt + (Wi(T), 2]) + p(Wa(T), 23 ).

The terms concerning the initial data are canceled by the definition of the
orthogonal projection Pj. Besides, for the convolution term we recall 5(s —
t) = —D&(s —t) from (2.7) and then partial integration yields,

T /T T T )
—/ / B(s — t)a(Wh, Zs(s)) dsdt = —/ / (s — t)a(Wr, Za(s)) ds dt
tn Jt tn Jt
T
+ {(T—t)a(Wl,Zg(T)) dt
tn
T
- ’y/ CL(Wl, Zg(t)) dt.
tn
These and ¥ = 1 —  imply that the solution Z satisfies,
T . T .
/ {— (Wi, Z1) + Fa(Wh, Zs) —/ £(s — t)a(Wh, Za(s)) ds
tn t

T
+E(T — H)a(Wh, Zo(T)) bt = /t (Wi, P ) dt.
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Now we set W7 = A%PkZl, and we have

T .
/ { — (ALPLZ1, Z1) + Aa(ALPLZy, Zo)
tn
T .
(3.16) _/ (s — t)a(ALPrZy, Za(s)) ds
t

T
+&(T - t)a(Aﬁlkah Z5(T)) } dt = / (A}, P21, Ppjr) dt.
tn

We study the four terms at the left side of the above equation. For the first
term we have

T ) 1 [T
G / —(A@szl,zl)dt:_Z/ Dy|| Z1()]]7, dt
3.17 tn tn

1 1
= 312+ 512 )R

With (3.15) we can write the second term as

T T
7/t a(A}PpZy, Zo) dt = —Pﬁ/t a(A}, 2, Zo) dt
' T
—5 / a( A}, Py Prja, Zo) dt
(3.18) Jin ~
Py P
= N2 1+ DN 2 s

T
—5 / a(AL Py Phia, Zo) dt.
tn
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For the third term in (3.16), by virtue of (3.15) and integration by parts,
we obtain

T T '
—/ / £(s—t)a(A§lPkZ1,Z2(s))dsdt
tn Jt
T T
:,0/ / §(s—t)a(A§LZ2(t),Zg(s)) dsdt
tn Jt
T T
+/t /t 5(5—t)a(A%PkPhjg,Z'g(s))dsdt
T T
(3.19) —) / / £(s — t)a(AL Za(t), Za(s)) ds dt
tn Jt
T T
+/t /t 5(8—t)Q(A2PkPth,Z2(S)) ds dt
T
+ [ &(T — t)a(A,PiPrj2, Z2(T)) dt
tn
T
—’Y/t a (A}, PrPjz, Z2(t)) dt.

Finally, for the last term at the left side of (3.16), we use (3.15) and inte-
gration by parts to have

(3.20)
T T
t T — t)a(A},PrZ1, Zo(T)) dt = —p t E(T — t)a(A}, Zo(t), Zo(T)) dt
T
— | &T —t)a(A,PcPrjz, Zo(T)) dt
T
=7 B(T — t)a (A}, Za(t), Zo(T)) dt

— N Za(T) 7 41
+ p&(T — tn)a( Al Zs(tn), Zo(T))

T
— [ &T - t)a(A}, PrPhja, Zo(T)) dt.
tn

Putting (3.17)-(3.20) in (3.16) we conclude the identity (3.13).
Now we prove the estimate (3.14). We recall, from (2.8), that £ is a
positive type kernel. Then, using the Cauchy-Schwarz inequality in (3.13),
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and |8, @+y =7, &(t) <y, we get

1Z1(t) 51+ P Z2 () 15 140
< N2 5+ oL+ N Z2(T) 5141

T T
- 2/ (A}, Z1, PxPrjr) dt + 2/ (A" Zo, PPrja) dt
tn tn
T rT
9 / / B(s — t)a( AL PyPujs, Zo(s)) ds dt
tn Jt

T
— 2 t B(T — t)a (AL Za(t), Zo(T)) dt

— 20&(T — ty)a(A}, Zo(tn), Zo(T))
< Zu(D)I7; + (L + D Z2(D)I7 141

T 2
+ 0 1230+ /6 ([ 1PeP )

2
-+ C max Z + dt)
2 tn <t<T || 2 h7l 1

T
il + 1/02(/ | PiPri2
t

2 2
+ Gyl Zo(T) g+ 1/Cy mave [ 2ol 11

+ Call Z2(T) 17 11 + 1/Call Za(ta) |17 141
Using that, for piecewise linear functions, we have
(3.21) ma |U] < ma, |Vt
and
T T
(3.22) / |Prfldt < / |f1dt,
0 0
and that the above inequality holds for arbitrary N, in a standard way, we
conclude the estimate inequality (3.14). Now the proof is complete. U

4. A PRIORI ERROR ESTIMATES

We define the standard interpolant I with Izv belong to the space of
continuous piecewise linear polynomials, and

(41> Ikv(tn) = 'U(tn)7 n = ()7 17 ce N.

By standard arguments in approximation theory we see that, for ¢ =0, 1,

T T
(4.2) /||Ikvv||l-dt§0kq“/ DT | dt, fori=0, 1,
0 0



CG METHOD FOR A FRACTIONAL ORDER VISCOELASTICITY MODEL 17

where k = maxj<p<n kp.
We assume the elliptic regularity estimate ||v||2 < C||Av||, Yv € D(A),
so that the following error estimates for the Ritz projection (3.12), hold true

(4.3)

|IRpv — vl < CR%||v|ls, Yve H NV, s=1,2.

Hence we must specialize to the pure Dirichlet boundary condition and a
convex polygonal domain. We note that the energy norm || - ||y is equinalent
to |||y on V.

Theorem 4. Assume that 'y = &, Q is a convex polygonal domain, and
(3.4). Letuw and U be the solutions of (2.3) and (3.5). Then, withe =U —u
and C = C(p,v,T), we have

T
len(T)Il < €2 (11!l + llur ()2 + /0 il )

T
40 [ (el + i) .
0

Proof. We recall Remark 4 for the assumption (3.4). Weset e = U —u =
0 +n + w with

6 =Ui — I Rpui, m = Iy —I)Rpur, w1 = (Rp—1I)ui,

O = Uz — I Pruz, m2 = (I — I)Ppuz, w2 = (Pp— Ius.
Now, putting W = P06 in (3.7) we have

J(Prd) = A" (Pib, Z),

where by definition

T
J(Pb) = / {(Pi01,31) + (Pys, jo) } dt

+ ((Peb)(T), 21) + p((Prb2)(T), 23 ),
and by partial integration
A*(Pil, Z) = A0, PuZ) + ((Pib1)(T), Z1(T)) — (61(T), Z1(T))
+ p((Pr02)(T), Z2(T)) — p(02(T), Zo(T)).

We set j; = jo = 0 and 22 =0, Pyzi = 01(T), and we recall that Z;(T) =
Pzl i = 1,2. Hence using the definition of the orthogonal projection P

7 7
we have

161(T)|1* = A6, P 2),
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that, using # = e — n — w and the Galerkin orthogonality (3.6), implies,

161(T)|I* = —A(n, Pr.Z) — Alw, PrZ)

T
:/ { (M, PrZ1) + (n2, PrZ1) + p(i2, PrZa) — a(ni, PrZ2)

/ﬁt—sa )Png)ds}dt
— (m(0), PxZ1(0)) — p(n2(0), PrZ2(0))

T
+/ { — (W1, PrZ1) + (w2, PrZ1) + p(we, PrZa) — a(wi, PrZ2)
0

+ /Otﬁ(t — s)a(wl(s),Png) ds} dt
- (wl(O),szl(O)) - p(WZ(O)vkaZ(O))

By the definition of ), that indicates the interpolation error, terms including
i, 1;(0) vanish. We also use the definition of w, that indicates the projection
error, and we conclude

T t
|91(T)|2=/0 {(n2,7’k21)—a(m,7’kZ2)+/0 B(t — s)a(m(s), PuZs) ds}dt

T
_/0 (@1, PeZ1) dt — (w1(0), P Z1(0)),

that by the Cauchy-Schwarz inequality implies
T 2
162D < €y s [Pz + 1/ ( /0 Inell dt)
2 T 2
+ Cy Oléltaé)%HPkZzHl—i—l/Cz / 7111 dt)
9 2
+Ca s Pzl +1/0( [ (9 umul)(w )

+C4Or£1ta£xTH73kZ1||2+l/C4</ ol dr)”
+ C5||PrZ1(0)|* + 1/Cs]|wr (0)] 1.

Using (3.21), |8, ®+) = 7, and the stability estimate (3.14) with [ = 0, in
a standard way, we have

100(T) | < C{ Jlwr (0)]] + /0 *(el+ Wl + o) e .
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Recalling 01(T) = e1(T) — wi(T), and stability of the projections Py, Rp
with respect to || - ||, || - |1, respectively, we have

16 (T < C{II(Rh = Dl + [(Ry = Dua (T

T
[ (100 = Dyl T = Dy Ry = Dy ) e .

This completes the proof by (4.2), (4.3). O

5. A POSTERIORI ERROR ESTIMATES

Having certain regularity on the data, i.e., initial data u®,v° and the
force terms f,g, there are still two types of limitation for higher global
regularity of a weak solution of (1.1). One is due to the mixed Dirichlet-
Neumann boundary condition. This type of boundary condition are natural
in practice, and a pure Dirichlet boundary condition can not be realistic in
applications. Other limitation is the singularity of the convolution kernel 5.
This means that even with the pure Dirichlet boundary condition, higher
regularity of a weak solution is limited, see [7], [11], though with smoother
kernels we can get higher regularity. Besides, the stability and a priori error
estimates presented in Theorem 3 and Theorem 4 do not admit adaptive
meshes. These, and other general motivations such as no practical use of a
priori error estimates, call for adaptive meshes based on a posteriori error
analysis.

Here a space-time cellwise error representation is given. The main frame-
work is adapted from [3], and a general linear goal functional J(-) is used.
This error representation can be used for goal-oriented adaptive strategies
based on dual weighted residual method. For more details on dual weighted
residual method and its practical aspects for differential equations, see [3]
and references therein.

Theorem 5. Let u and U be the solutions of (2.3) and (3.5), and J(-) the
linear functional defined in §2. Then, with e = U — u, we have the error
representation

N 6
(5.1) Je)= Y Gox+d. > D e,

KeT? n=1 Ke7r i=1
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where, with zpr, € Whi being an approximation of the dual solution z and
Enkz = zpe — 2 being the error operator,

@07]( = (Ul(O) — uo, Ehkzl(O))K + ,O(UQ(O) — UO, EthQ(O))K,
O ¢ = (U1 — U, Epgz1)kns - O3 i = (pUz — f, Ene22) i
O3 i = (Ths Enk22)orn, O% k= (9n — 9, Enkz2)okn,

== [ Bt ) Buaa(t) @), .

Kn

(5.2)

eg,K = - (gh, /STﬂ(t - S)EthQ(t) dt)a

Kn'

Here K" = K x I, and OK™ = 0K x I, are the space-time cells, and Ty, gn
are defined below, (5.6), (5.7), respectively.

It should be noticed that K™ is not the boundary of K™.

Proof. Using the identity (2.4) and the Galerkin orthogonality (3.6) we have,

J(e) = A"(e,z) = Ale, z) = Ale, Epg2)

(5.3) = A(U, Eppz) — F(Eppz) = R(U; Ep2),

where R(U; ) is the residual of the Galerkin approximation U as a functional
on the solution space V*. Then by the definition of A, F' we have

(5.4)
J(e) = (Ul(O) — uo, Ehkzl (O)) + ,O(UQ(O) — UO, EthQ(O))

T . .
+/0 {(Ul, Engz1) — (U, Epgz1) + p(Us, Epgzo) + a(Ur, Epgz2)
~ /Otﬁ(t — $)a(Us(s), Enpza(t)) ds} dt

[ (f, Enkz2) + (9, Enkz2)ry ¢ dt.
/A }
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Now, by partial integration with respect to the space variable, we obtain

/ Ul,ZQ dt Z/ Z Ul,ZQ Kdt
I

" Keln
== Z/ Z O‘O U1 *n, ZQ) dt
In KGTTL
Z/[ — [oo(U1) - n], 22)
(5.5) i Eeg”
+ Z O'O(Ul)'n,ZQ)E}dt
EES"

/1 Z {(rn, 22)oK + (gh, 22)oxk } dt

" Keln

N
N
Z Z (rh, 22)ocn + (gh, 22) oK }

n=1 KeTn
where E7', &F are, respectively, the sets of the interior edges and the edges

on the Neumann boundary, corresponding to the triangulation ’Th" Here rp,
are the residuals representing the jumps of the normal derivatives og(Uy) - n
and determined by,

(5.6)

, ’ - *%[O’o(Ul) TL] if I' C BK\(?Q,
"7 0 if T c 09,

and gp, is the contribution from the Neumann boundary defined as

(5.7) gMF_{mﬂﬂrn if T ¢ 9K NTy,
0

if I' C 09).
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For the convolution term in (5.4) we first change the order of the time
integrals, then similar to (5.5), we have,

T rt
/0 /Oﬂ(t—s)a(Ul(s),ZQ(t)) ds dt
T pT
:/ / ﬁ(t_s)a(U1(5)7z2(t))dtds

(5.8) - Z/] 1(3)> /STﬁ(t — 5)22(t) dt)K ds

" Keln

:Z > { rh,/ Bt — s)zo(t dt) o

=l KeTpr

gh,/ B(t = s)25(t) dt). Kn}

Now, using (5.5), (5.8) and space-time cellwise representation of the other
terms in (5.4) we conclude the error representation (5.1). O

The error representation (5.1) leads us to the weighted a posteriori esti-
mate,

N 3
(5.9) Je)< Y Roxwor +) D D Rigwl,

KET}? n=1 KeTn i=1

with the residuals and weights defined as

1/2

Ro.x = ([U3(0) — u®[% + 1U2(0) — o°[13) /%,
1/2
woi = (| Enkza (0)% + 1 Enez2(0)I13)

Tk =01 — Uo|lgn, wlk = |Epkallion,

. - 1/2
3= (1002 = FI%en + 20 i3 )

I

g = (uEhmnm+hK||Ehk22||aKn
_ T 2\ /2
+hKH/ ﬁ(t—S)EthQ(t)dtH ) s
s oK™

- - 1/2
2= (A lon — gl + B o3 )

i ) , - T 2 1/2
iac = (e Emzaller + | [ B = s)Buaaya]|) )"



CG METHOD FOR A FRACTIONAL ORDER VISCOELASTICITY MODEL 23

In order to evaluate the a posteriori error representation (5.1) or the a
posteriori estimate (5.9), we need information about the continuous dual
solution z. Such information has to be obtained either through a priori
analysis in form of bounds for z in certain Sobolev norms or through com-
putation by solving the dual problem numerically. In this context we provide
information through a priori analysis and we leave the investigation on the
second case to a latter work.

In the following, the target functional J(-) will be the global La-norm of
the approximation displacement u; = uj(z,t). We first present a weighted
global a posteriori error estimate, using global Lo-projections Py, Py, defined
in (3.12), and error estimates of P, in a weighted Lo-norm.

We recall the weighted global error estimates of the Lo-projection Pp
(3.12), see [4]. First we recall some notation. Let 7 be a given triangulation
with mesh function h, and for any simplex K € 7, pg denote the radius
of the largest ball contained in the closure of K, that is K. A family F of
triangulations 7 is called non-degenerate, if there exsist a constant ¢y such

that we have
hk

Ccop = max max —.
TeF KeT pg

Let Sx = {K' € T : KN K # @} and 67 be a measure for the given
triangulation 7 defined by

o7 = 1 — hi./h%|.
TR e e /i

We define a measure, dr, for a given family F, by

(5.10) oF = 171_12}(57.

We define the error operators Ey, Ep, and Ej by
(5.11) Engv = (PxPr—I)v, Epv= (P, —1v, Ewv=(Pp—1I)v,
and we note that
(5.12) Ew = Ep + ExPy,.

Lemma 1. Assume that the family F of traingulations T be non-degenerate.
Then for sufficiently small §F, there exists a constant C' such that for any
triangulation T € F we have, for all v € H?,

(5.13) |h*Epv|| < C||Vo|, s=1,2, Yo H?
(5.14) W 'VEw| < C||V30|, VYve H?

where V'’ denotes the usual gradient.
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For more details on the practical aspects of 0z, see [4]. B
For the next theorem we recall the mesh functions h,,, h, from (3.1), (3.2),
and we define the notations

hmzn n = min hKa hmar n = max hg.
KeT" KeT”

Theorem 6. Let u be the solutions of (2.3), and U be the solution of (3.5)
with a non-degenerate family Fy, of triangulations T,"", n =0,1,..., N, with
sufficiently small 6, , such that the weighted global error estimates (5.13)
and (5.14) hold. Then, with e = U — u, we have the weighted a posteriori
error estimate

(5.15)
e (T)] < c{uho(m«n — )| + R (U>(0) — )]

N ) .
+3 / {IIna(@2 = U2+ K202 = £

+ (G + Cav) ( > B ”ThH8K> v

KeTy
_ 1/2 _ 1/2
6 X Bidlgn—gli) "+ G (D Bl
Kelpn KeTpn
+ kn|[UL = Us|| + k| Bx AU |

+ anEk/o ﬂ(t — S).Zthl(S) ClSH

w kBl + (Y il IBual) Y atl,

KeT
where

(5.16) Con=h_2 Con = h 2 max h2

man ,m-'mazx,n’

Proof. Let z € V* be the solution of the dual problem (2.5). From the
definition of the Lo projections Py, Py, in (3.12) and the test space Wy in
(3.3) we have PyPpz € Wyy. Therefore, using (5.3) and the error operators
(5.11) we have,

(5.17) J(e) = R(U; Epkz) = R(U; Epz) + R(U; ExPhrz),

where we used (5.12). We study the two terms at the right side of this
equation.
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For the first term we can write,
R(U; Ez) = (U1(0) — u°, Epz1(0)) + p(U2(0) — 2°, Ej,22(0))

N
+ Z/ {(U1 — Us, Ehzl) + (pUQ - f EhZQ)
n=1 In
+ a(Ur, Enza) — (9, Enz2)ry

t
- / B(t — s)a(Ui(s), Enz2) ds} dt.
0

Now by partial integration in space, similar to (5.5), (5.8), we have

(5.18)
R(U; Exz) = Z {(U:(0 —uO,Ehzl(O))K+p(UQ(O)—vo,Eth(O))K}
KeT?
—l—Z/ Z { (U1 = Us, Epzt)  + (pUz — f, Ep22) i
"KET"

+ (rn, Enze)or + (9n — 9, Enz2)ok

_ (Th,/tTﬂ(s — t)Ep2a(s) ds) .
_ (gh, /tTﬁ(s — 1) Epza(s) ds) 8K} dt

2 6
=> Ti+> 11,
=1 =1

We then, for each term, use the Cauchy-Schwarz inequality twice. First on
the local elements K,JK, to obtain local Lo-norms, and then on the sum
over the elements to obtain global norms such that the weighted global error
estimates (5.13), (5.14) can be used. For Z; we have

(5.19) T1 < [[ho(U1(0) = u) [ |lhg " Enz1(0)]| < Cllho(U(0) = u) ||| V21 (0)]],
and in a similar way we have,

(5.20) T, < C|hg(U(0) — v°)[[[[V222(0) .
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For the next term, using the error estimate (5.13), we have,

III_Z/ Z U1 UQ,Ehzl) dt

(5.21) -y [ Wha@r = ) B
n=1"1In

N
< Cuax [V Y- [ (@~ U]
[0,7] /I
and similarly we obtain,
N .
6:2) %< Cmax| V)| Y [ WA - 1)
’ n=1"1In

For 773, we first have,

1/ - /
113<Z [, (X i) (3 wEneay)

In KeTnr KeT

Then by a scaled trace inequality and the weighted global error estimates
(5.13), (5.14), we obtain

> W EIBzlk <C > {ht I Enzalli + R IV ER2| % }
Kelr KeTr

< C{hmlnn

+h2

mzn n

mazx,n "h;2Eh22 HZ
max,thJIVEhZﬂF}
077’ hfnam,n||v222”2'

min sn

These imply the estimate
(5.23)

175 < CmaXHV 22 H Z/ min,n ma:}cn( Z hK ‘ThHaK)

Kety

In a similar way, we have

(5.24)

I7: < O [Vl |IZ / 2P S Fikllan — aly)

KeT"
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Finally we study ZZs and a similar result will hold for ZZg. To this end,
first we note that,

Izs<2 [ (X dkin D)

In KeTpn
1/2
<Z hK H/ B(s —t)Epza(s dsH >
KeT»

Then, using Minkowski’s inequality, the Cuachy-Schwarz inequality, and the
fact that [|8]|1,®+) = 7, we have

KH/ B(s —t)Epza(s )ds

KET”

< > hy / B(s —1)[| Enza(s )Ilax) ds

KeTn
< > kg / B(s —t) ds/ B(s — t)|| Enza(s)|| 35 ds
KET”

<o [ 86 -0 3 W) B s

Kelpr

that using a scaled trace inequality and the error estimates (5.13), (5.14),
we have

KH/ B(s —t)Epza(s dsH

KeTyr

<c/ Bs—1) S (B Baza(s) % + B2 IV Enza(s) % } ds

KET”

- [ 2 2
= CZ/ S_t {hmmn max]Hh EhZQ( )H

j=n tVt; 1

+ h’r_mn n max7j Hh‘]_lthZQ(S)Hz} ds

[ 7 2 2
<O [ Bl Ol b | T2 () P ds

o tvta

2 4

< Cymax|[V7z(s )R 28X g j-
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Hence we obtain,

75 < C r[nax V22 (t)

(5.25) 1/2
X Z / min,n nI<H]a<XN hmaw,j (KZT hKHth@K) dt.
e n
A similar estimate for ZZg holds, that is,
IZs < C'max || V22 (t)|
(0,77
(5.26) Nooroo 1/2
X Z/ hm?n,n max hmam,y( Z hKth”@K) dt.
— JI, n<j<N
n=1 KeTpn

Putting (5.19)-(5.26) in (5.18) we conclude,

R(U; Enz) < Cmax (max | V2z2(1)]), max || V21 ()]
LI (U2(0) =) |+ I(020) )]
N . .
+3 | i@ 1+ ot - )

_ 1/2
+hm%n nhgnaxn< Z h%(HThH%K)
(5.27) KeTpr

_ 1/2
2
+hmznnh$naxn< Z h%(”.gh_gH%K)
KeT

2 2 1/2
+ hmzn n nI<HJa<XN hmam,j (Kz;n hj HThHaK)
S

1/2
+hm§nnngla<Xtham,g< Z h} thH8K> }dt}
== KeT
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Now we study the second term in (5.17), that is,

T
R(U; ExPrz) = R(U; ExPpz) + / {(Prf, ExPnz2) + (Prg, ExPrz2)ry } dt
0

= (U1(0) — u®, ExPr21(0)) + p(U2(0) — v°, ExPp22(0))
N
+ nz::l /[n{(Ul — UQ,EkPth)

+ a(Ur, ExPrza) — /Otﬂ(t — 5)a(Ui(s), ExPrz2) ds
+ (pUz — Pif, ExPrz2) — (Pig, ExPrz2)ry
+ (Exf, ExPrz2) + (Brg, ExPrz2)ry | dt.
Recalling the initial condition U;(0) = Pru;(0), i = 1,2, the first two terms

on the right side vanish. Besides, from the second equation of (3.9) we have,
for W e V),

/1 {p(U2, W) = (Prf, W) — (Prg, W)} dt

:_/1 {Q(PkUl,W)—a(Pk /Otﬁ(t—s)Ul(s) ds,W)}dt.

n

Hence, we conclude

(5.28)

N
R(U; ExPpz) = Z/j {(U1 — Us, ExPpz1)
n=1 n

t
— a(EpUr, ExPhzs) + a(Ek / B(t — s)Us(s) ds, Ekth2>
0
+ (Erf, ExPrz2) + (Exg, EkPhZQ)FN} dt.

For the last term we have,

N
Z/(Ekg,Ekph@)rN dt
n=1"1In

3 -1 2 \/? , \1/2
<3 [ (X miBalie) " ( mulBinaiic)
n=1

m KeT KeT,!
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By a scaled trace inequality and local inverse inequality we have,

Y hklBiPrzlin < C Y {IExPaalli + Wil VEPrzellk }

Kelnr KeT"
<C ) {lIEPralk + | ExPrzlik }
KeTr
= C”EkPhZQHZ
Hence,

N

B 1/2
> [ Bug BPuar it < (3wl IBglic) 1Bl
n=1"""n KeT»

Considering this in (5.28) and using the Cauchy-Schwarz inequality we have

N
R(U; EPrz) < CZ/ {HU1 — Ua|[|| ExPrzall + | Bk ApUn ||| Ex Prz2 |
n=1 In

t
+ Ek/ﬂ(t—s)AhUl(s)ds | ExPp 22|
0

- 1/2
HIBANEPl + (T IBali) 1B P |
KeTy

This, Lo-stability of the Lo-projection Py, and a standard error estimation
of the error operator Ej, conclude

R(U: EyPyz) < Cmax (ma 0 (1) max | 2(0))

N
X Z/J {anUl — Us|| + kn|| Ex AU ||
n=1 n

(5.29) . )
+anEk/0 Bt — 8) AnUs(5) ds|| + k| Erf |

tha( X R Bglec) Y

KeTy

We now set j1 = jo = 24 = 0 and 2 = A=Y2¢(T). Then, putting

(5.27) and (5.29) in (5.17), using the stability estimates (2.14) and a stan-
dard argument, we conclude the a posteriori error estimate (5.15), and this
completes the proof. O

Remark 5. We note that for the error estimate (5.15) there are two types
of restriction on the triangulations; One by (., ¢, n, that measures the
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quasiuniformity of the family of triangulation, and the other by dr,, that
measure the regularity of the family of triangulations in a slightly different
sense. Although maybe not explicitly, but (,, (,,~v and d7, can be related.
In practice we use finitely many triangulations, that means quasiuniformity
holds, though possibly with big (., ¢, ~. This means that we still can use the
a posteriori error estimate (5.15). But when dz, is not sufficiently small, the
error estimate (5.15) does not hold. This calls for using local interpolants
instead of global Ls-projection Pp. In the next theorem we present an a
posteriori error estimate using interpolation, linear in space and constant
in time on each space-time cell. We also note that a possible, but not
neccesserily optimal, way of ignoring these limitations could be using global
error estimates of Py, with global mesh size hj,q,. That is a posteriori error
estimate in the form, with k(t) = k,, for t € I,,,

ler(T)|| < C{Pmaz,0l|U1(0) — u°|| + h2par ol U2(0) — 07|}

max,0

T
+Chmax/ 10y — s dt
0
2 T :
+ Ol [ {100 = 11+ 17l + 1 =l + ey }
T . —
+/ k{”Ul = Uz|| + || ExARUL |
0

+ HEk /Otﬂ(t — 8)ApU(5) dsH + || Exf] + ||Ek9”FN} dt,

~ _ - —1/2 - —1/2
where 7| = hKl maxgg |Thl, Grlx = hK/ lgn|, and g|x = hK/ lgl.

We recall the decomposition of the space-time slab Q" = Q x I, into
cells K" = K x I,, K € 7T;'. Let Iy, be the standard interpolant, such
that Ipgv|gn» be linear in space and constant in time. We define the error
operator Epg by Epgv = (Ipr,—I)v. A variant of the Bramble-Hilbert lemma
then implies the error estimates,
(530) [ Buselicn < (b V70l + Falldl) 7= 1,2
(5.31) IV Epgvllien < C(0ENIV0]l g + Kl VOl )
where K is a patch of space cells suitably chosen around K.

We recall the mesh function h,, from (3.2), and we define the notation

hmaa:,n = IhaX BK-
KeTp

‘We will also use the fact that
(5.32) [0]|&n :/1 [o()|| dt < kn max [|v(t)]-



32 F. SAEDPANAH

Theorem 7. Let u and U be the solutions of (2.3) and (3.5). Then, with
e = U — u, we have the weighted a posteriori error estimate

(5.33)
llex(T)]]

< O{Iho (U1(0) = ) || + 143 (U2(0) = ) |
n=1

N
+ CZI#/Q{Ihn(Ul — Ua)llan + knllU1 — Uzllgn

+ [R5 (pU2 = f)llan + ka ||PU2 — flian

F (X Bl 4 (X Bkllon — ol )

KeTn KeTp
_ 1/2 - 1/2
+kn( 3 hKly\rh||§Kn> +kn< > h[(ngh*QH%K")
KeTn KeTp
_ 1/2 - 1/2
tha( X BaclirlBin) k(X Rllon — ol
KGTh" Ke’j'h"

n 1/2 1/2
+ (B + m)( / (Z( S ARG ) Ol3k) )th>

n\ =1 i
J KeTy

(e = 1) (/ (; (3 0o ) dt) e
+ (Famazn + kn)
( (223 onas Kg; 8 = )0 B 1/?) th> v
+ (Famazn + Fn)
) </f(§h’”<g; hz‘?!<ﬂ*9h>j<t>u%K)”2)2dt> /}

Proof. We write the error representation (5.1) as

(5.34) Z @0K+ZZ Z ezK_IO+ZI

KeT? i=1n=1KeTn
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First we estimate Iy. To this end, recalling O g from (5.2), we use the
Cauchy-Schwarz inequality and the interpolation error estimate (5.30) to
obtain,

Y (U1(0) = u®, Epz1(0) o < D (1U1(0) = || Eniez1(0) | ¢

KeT? KeT?
<C Y I00) ~ e [VA O]l
KeT?
1/2
<CIVa Ol X Hlva©) - Ilk)

KeT?
= C|[Vz1(0) |10 (U1(0) — u®) |-

Similarly we have
S p(U2(0) — o0, Enz2(0) . < ClIV22(0)][[A3(T2(0) — o) .
KeTP
From these two estimates we conclude
Io < Cmax(|[Vz1(0)], [VZ22(0)1)
x {llho (U1(0) = u®) [ + |15 (U2(0) — v*) ||}

For the next term, using the Cauchy-Schwarz inequality and the error
estimate (5.30), we have

(5.35)

N
L<Y Y 0= Usllgen | Bzl cn
n=1 KeTn

N
<C> N N = Uallgen (R V21l g + Fnll 20l )

n=1 KeTn
N o / )
ey (Y h%(HUl—UQH%{n)l 2( 3 \|vzly\§~<n)1 ’
n=1 KEThn Kefj*hn
= ! 2 1/2 .2 1/
+CY k(X IO =Talkn) (Y2 i)
n=1 Kelr Keln

N
= O3 { U@ = U lon V21 n + kallC1 = Uallon 21 ]lon b,

n=1
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that using (5.32) we have

) .
I < Cmax (mae [V (1) mas 1411

(5.36) N o '
x> ky2 {7 (T = U2) |l + kU1 = Ualan }-

n=1

In the same way we obtain

Iy < Cmax  mac[V22(0)]| max | 22(1) )

(5.37) N o .
x> ky2{IR2(pU = f)llan + knllpUz — fllan }.

n=1

Now for I3, we use the Cauchy-Schwarz inequality, a trace inequality, and
the error estimates (5.30), (5.31) to obtain,

N
S_1/2 172
<> Y R lrnlloncr byl | Bzl o
n=1KeT

N
1 _
<c>d M 1P rnlloxcn {| Enwzll o + hicl|V Epgz || n }
n=1 Ke’]_’h’ﬂ

N
<03 ST mPliralloxce

n=1 KeT
x {2051V 22| gn + inll22ll gon + P ||V 22 0 }

1/
—CZ{< > hKHThHaK") 19222/l

n=1 Kelpn

o 1/2
(D2 Bl ) s llor

Kelm

- /
o X Alralien) 19l .

Kelm
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that using (5.32) we have

(5.38)
I3 < C'max (%c 12220, 1220 195 (0))
N B 1/2 _ 1/2
R (3 Felrnlae) 4 k(2 Al
n=1 Kelr KeTr
_ 1/2
(X i)™
KeTr

And similarly
Iy < Cmax (max V2 22(t)||, max || 22(t) ||, max HVZQ(If)H)

0.7] (0.7 0.7]
= 1/2 73 2 \/?
k(3 Felon - ol
n=1 KeTn
(5.39) ~ /
k(Y Bl ol3in)
Kelpr
- /
b 32 o —alfe) "}
Kelpr

Finally we study I5, Ig which include the convolution terms. We find an
estimate for /5 and a similar argument holds for Ig. First, recalling the
definition of ©F j from (5.2), we can write I5 as,

N

I5 = Z 5K = Z/ / ,3 t — S ( h(S),EthQ(t))aK dtds.

n=1 KeT KeTpn

Then we change the order of the time integrals and we obtain,

Is = Z/nz;//\ Bt —s) (h(S),EthQ(t))aKdet

KeTJ

N
= Z/I Z Z ((B*71h)i(t), Enrza(t)) g dt,

where
tAL;

(B xv)i(t) = B(t — s)v(s)ds.

t]'_1
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Now by a trace inequality and then Cauchy-Schwarz inequality in the sum
over the triangles, and further Cuachy-Schwarz inequality in the integral
over I, we have,

15<cz/z S ARG Ol

"i=l keT!
X { | Epez2(t)|| + Pmaz 51|V Engz2 ()] } dt

—cz/ | Eniza () HZ( > A6 s 0l3)  d

=1 KeT]

+cz / IV Enpzalt ||§jhmm,]( > RIBr0lk) a

KE'TJ

= Ci (/I ||Ehk22(t)H2dt)1/2
n=1 n
- (/ (S win <>|r%K)”2)2dt)

]Zl KETJ

1/2

N 5 N\1/2
+c§_jl( |19 Bz at)

(/ (thm( YORTLICETS <>||%K)”2)2dt)1/2.

KeTJ

Since by the error estimate (5.30) we have

/I | Bnza()| dt = / S 1 Bwn®ldi= 3 B (t)%n

Ingezn KeTr
<C Z (M V22| %, + K21 22)1%.,)
KeTy

< C(Bfnaz,n||v222||522" + kq%HZQHS%"))
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and similarly by (5.31)

/1 IV Bnza(8) |2 de = /1 S VB ®di = 3 IV (t)%n

"KeTy KeT
<C Y (hkIIVPal%, + K2Vl %)
Kelpn

< C(hpaznl V2220 + k2 [V 22]1E0).
then, recalling (5.32), we conclude the estimate
(5.40)

I5 < C'max (r[g% I9222(0) | mas 122(0)] max Iv2®1)

N
x { >k (R + k)
n=1
- (/1<Z( S G 0l)” 2>2dt>

=1 ke

1/2

N
+C kY (hmazn + Fn)

n=1

n_ ) 172\ 2 1/2
x ( / (thw( > R0k ) ) dt) }
In N j=1 KeT!

The same estimate holds for Ig with r; be replaced by gp,.

We now set j1 = jo = 24 = 0 and 2{ = A_1/261(T). Then, putting
(5.35)-(5.40), and the counterpart of (5.40) for Is, in (5.1), using the stability
estimates (2.14) and a standard argument, we conclude the a posteriori error
estimate (5.33), and this completes the proof. O

Remark 6. We can compute

Irallorn = (/I ||¢n—1(t)7‘h(tn71)+1!1n(t)rh(tn)H%Kdt)l/2

1/2
n

< B (el + ) )
\/gk}lﬂ(”?“h(tn—l)\az( + [lrn(tn)llor)-

Remark 7. We note that the last a posteriori error estimate presented in
(5.33), does not have the restrictions that were mentioned in Remark 5.

A
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FINITE ELEMENT APPROXIMATION OF THE LINEAR
STOCHASTIC WAVE EQUATION WITH ADDITIVE NOISE

MIHALY KOVACS!, STIG LARSSON"?, AND FARDIN SAEDPANAH

ABSTRACT. Semidiscrete finite element approximation of the linear sto-
chastic wave equation with additive noise is studied in a semigroup
framework. Optimal error estimates for the deterministic problem are
obtained under minimal regularity assumptions. These are used to prove
strong convergence estimates for the stochastic problem. The theory
presented here applies to multi-dimensional domains and spatially cor-
related noise. Numerical examples illustrate the theory.

1. INTRODUCTION

We study the finite element approximation of the linear stochastic wave
equation driven by additive noise,

du — Audt = dW in D x (0,00),
(1.1) u=0 in 9D x (0, 00),
u(-,0) =ug, u(-,0) =vy in D,

where D C R4, d = 1,2,3, is a bounded convex polygonal domain with
boundary 0D, and {W (t) };>¢ is a Ly(D)-valued Wiener process on a filtered
probability space (2, F,P,{F;}s>0) with respect to the normal filtration
{Fi}t>0. We let ug, vy be Fy-measurable random variables.

For introduction to the stochastic wave equation and its applications we
refer to [1], [6], [14], [16], [23] and the references therein.

The stochastic heat equation and its numerical approximation has been
extensively researched in the literature, see, for example, [6], [11], [12], [13],
[23], [25], [26], and the references therein. The numerical analysis of the
stochastic wave equation is less studied, see [15], [18], [20], [24] for existing
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2 M. KOVACS, S. LARSSON, AND F. SAEDPANAH

results. In particular, these works do not deal with multiple dimensions or
correlated noise. This is the purpose of the present work.

We use the semigroup framework of [16] in which the weak solution of
(1.1) is represented as a stochastic convolution

t
u(t) = /0 A2 in((t — 5)AY2) dW (s),

where, for simplicity, we have set the initial values ug = vyp = 0. Here
A = —A with D(A) = H*(D) N H} (D), and v(t) = A~'/?sin(tA'/?)f is the
solution of

v+Av=0, t>0,

v(0) =0, o0(0)=f.

We show that, if () denotes the covariance operator of W, and if

(1.3) IAC=D2Q2 g5 < oo,

(1.2)

for some B > 0, then we have spatial regularity of order S,
1/2
(E(Hu(t)H?qB)) < Ct1/2||A(ﬂ_1)/2Q1/2”Hsa

where H? = D(AP/?). In particular, if Tr(Q) = Q2|2 < oo (spatially
correlated noise), then we may take § = 1. On the other hand if Q@ = I
(uncorrelated noise), then f < 1—d/2, that is, 8 < 1/2, d = 1. See Section 3
for details.

We discretize (1.1) in the spatial variables with a standard piecewise linear
finite element method, and we show strong convergence estimates in various
norms. For example,

1) (B - @) < cOTAI2Q s, pe0.3)

where again ug = vg = 0 and uy(t) is the approximate solution with maximal
meshsize h, see Theorem 5.1.

As a comparison, we recall from [25] that for the stochastic heat equation
we have

1/2 B
(B(lu®I%,) < CIAC-D2Q 25, >0,

(E(lun() - u(t)IIQ))l/2 < CHAPDEQ Y ys, B €0,2].

Here the order of regularity coincides with the order of convergence.
The main tools for the proof of (1.4) are the Itd-isometry (2.5) and er-
ror estimates for the deterministic problem (1.2) with minimal regularity
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assumptions,

(1.5) lon () = v < CER?IIf |l 72

lon (8) — 0@ < ClIfll -1,

and, hence by interpolation, see Corollary 4.3,

lon(t) = v(®)]| < COR| fll e, B € [0,3]-

As mentioned above, when we specialize to Q@ = I, d = 1, we have § < 1/2
and thus the order of strong convergence is O(h®), a < 1/3. This is the same
order as in [18], where spatial semi-discretization of the nonlinear stochastic
wave equation with a standard difference scheme of uniform meshsize h is
considered for d = 1 and with space-time white noise (Q = I). We note
that the order of convergence is less than the order of regularity, which is
f < 1/2. However, it is known that in (1.5), ||f|| ;2 can not be replaced by
| fIl y2— for any € > 0, see [19] and Remark 4.4 below. Therefore, O(h®),
a < 1/3, is the best that one can expect. This explains the discrepancy in
the convergence behavior between the heat and wave equations.

In [24] the leap-frog scheme is applied to the nonlinear stochastic wave
equation in the unbounded domain D = R, and a strong convergence rate
O(h!/?) is proved. The proofs in both [18] and [24] are based on representa-
tion of the exact and approximate solutions by means of Green’s functions.
The difference in convergence rate between the two is explained by the fact
that in R the Green’s functions for the wave equation and the leap-frog
scheme coincide at mesh points, see Remark 5.2 for more details.

In summary we may say that we extend the results of [18] to the finite
element method in multiple dimensions and correlated noise. But we only
consider the linear equation with additive noise. We also explain the dis-
crepancy between [18] and [24]. We plan to address the nonlinear equation
du — Audt = f(u)dt + g(u) dW in future work.

The paper is organized as follows. In Section 2 some preliminaries are
provided and a rigorous meaning to the infinite dimensional Wiener process
{W(t)}+>0 and the stochastic integral are given together with the definition
of a weak solution of (1.1). Existence, uniqueness, and regularity of weak so-
lutions are discussed in Section 3. In Section 4 the finite element method for
the deterministic problem is formulated and analyzed. The results obtained
here are used in Section 5 to derive strong convergence estimates for finite
element approximation of the stochastic equation (1.1). Finally, numerical
experiments are presented in Section 6 in order to illustrate the theory.
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2. PRELIMINARIES

Throughout the paper we use ’-’ to denote the time derivative ’%’, and
C to denote a generic positive constant, not necessarily the same at differ-
ent occurrences. We refer to [16] and [17] for more details on stochastic
integration and for some concepts that we cannot explain here.

Let (U, (-,-)U) and (H, (,°) H) be separable Hilbert spaces with corre-
sponding norms || - || and ||- || . We suppress the subscripts when it causes
no confusion. Let L(U, H) denote the space of bounded linear operators from
U to H, and Lo(U, H) the space of Hilbert-Schmidt operators, endowed with

norm || - ||z, ). That is, T € Lo(U, H) if T € L(U, H) and

112, 0.mr) : §]wmm<w

where {e;}72, is an arbitrary ON-basis in U. If H = U we write L(U) =
L(U,U) and HS = Lo(U,U). It is well known that if S € L(U) and T €
Lo(U,H), then TS € Lo(U, H) and we have the norm inequality

(2.1) TSN 2o,y < T Ml ,m) 1Sl 2y

Let (2, F,P) be a probability space. We define Ly (2, H) to be the space
of H-valued square integrable random variables with norm

ol = B2 = ([ o)l )"

where E stands for expected value. Let @ € L(U) be a selfadjoint, positive
semidefinite operator, with Tr(Q) < oo, where Tr(Q) denotes the trace of
Q. We say that {W(t)};>0 is a U-valued Q- Wiener process with respect to
{Ft}tZO if

(i) W(0) =0,

(ii) W has continuous trajectories (almost surely),
(iii) W has independent increments,
(iv) W(t) —W(s), 0 < s <t isa U valued Gaussian random variable

with zero mean and covariance operator (¢t — s)@,

and
(v) {W(t)}+>0 is adapted to {F;}i>0; that is, W (t) is F; measurable for
all t > 0; -
(vi) the random variable W (t) — W (s) is independent of F; for all fixed
s €10,1].
It is known, see, e.g., [17, Section 2.1], that for a given )-Wiener process
satisfying (i)—(iv) one can always find a normal filtration {F;};>0 so that
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(v)—(vi) holds. Furthermore, W (t) has the orthogonal expansion

(2.2) Z 123 (t)e;,

where {(v;, e])}joo , are the eigenpairs of ) with orthonormal eigenvectors,
and {B;};2; is a sequence of real-valued mutually independent standard
Browman motions. We note that the series in (2.2) converges in Ly(Q,U),
since for £ > 0, we have

IW I, 0.0 = N}jlﬂq@uwz)=§inwﬂﬂ2
:tz_:'yj =tTr(Q) < o

We need only a special case of the It integral where the integrand is
deterministic. If a function ® : [0,00) — L(U, H) is strongly measurable
and

t
2.0 [ 196)Q 2 s ds < o

(2.3)

then the stochastic integral fo s)dW (s) is well defined and It6’s isometry,

s B [owawil, = [1#0

holds.

More generally, if @ € L(U) is a selfadjoint, positive semidefinite operator
with eigenpairs {(v;, ej)}‘;';l, but not trace class, that is, Tr(Q) = oo, then
the series (2.2) does not converge in Lo(f2,U). However, it converges in
a suitably chosen (usually larger) Hilbert space and the stochastic integral
fo ) can still be defined and the isometry (2.5) holds, as long as
(2. 4) is satlsﬁed In this case W is called a cylindrical Wiener process. In
particular, we may have @) = I (the identity operator).

Next we consider the abstract stochastic differential equation

(2.6) dX () = AX(@t)dt + BAW(t), t>0; X(0) = Xo,

and assume that

(al) A: D(A) C H — H is the generator of a strongly continuous semi-
group (Cp-semigroup) of bounded linear operators {E(t)};>0 on H,

(a2) Be L(U,H),

(a3) Xp is an Fy-measurable H-valued random variable.
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An H-valued predictable process { X (t) }+>¢ is called a weak solution of (2.6),
if the trajectories of X are P-a.s. Bochner integrable and, for all n € D(A*)
and all ¢t > 0,

(2.7)

t t
(X(t),n) =(Xo,n)+/ (X (s), A*n) ds+/ (BdW (s),n), P-as.
0 0

3. ABSTRACT FRAMEWORK AND REGULARITY

As in the introduction, let A = —A be the Laplace operator with D(A) =
H?(D) N H{(D) and let U = Ly(D) with the usual inner product (-,-) and
norm ||-||. In order to describe the spatial regularity of functions we introduce
the following spaces and norms. Let

) e 1/2 .
= DA, ol = 1420 = (X w.0)7) 7, aeR ve A
j=1

where {(};, ¢;)}32, are the eigenpairs of A with orthonormal eigenvectors.
Then H* C HP for o > . It is known that H® = U, H' = H}(D), H? =
H?(D) N H}(D) with equivalent norms and that H—? can be identified with
the dual space (H B)* for B > 0, see [22]. We note that the inner product in
H'is (-,-)1 = (V-,V-). We also introduce

(3.1) H* = H*x H* Y [[olllZ = oulla + lleall a€R,

a—1>

and set H = H° = A° x H~! with corresponding norm |[|-|||= [||||/o-
Next we write (1.1) as an abstract stochastic differential equation (2.6).
To this end, we put u; = u, ue = % and note that (1.1) is formally

o[ e[

We therefore define

with

Z2

D(A):{mEH:Am: [—Aa;l

]eﬂzgoxg—l}zﬂlzmxﬁo.

Here A is regarded as an operator H' — H~!. The operator A is the
generator of a strongly continuous semigroup (Cy-semigroup) E(t) = et on
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Cau [ ooy ATV28@)
(3.2) E(t) = = —AY28(1) cw |’

where C(t) = cos(tA'/?) and S(t) = sin(¢tA'/?) are the so-called cosine and
sine operators. For example, using {()\j,qﬁj)}jo-‘;l, the eigenpairs of A, we
have

ATV2S(ty = A7 2sin(tA V)0 = 37 A2 sin(tA ) (v, 65) ¢
j=1

We also note that B € L(U, H) and we let Xy be an Fy-measurable H-valued
random variable to fulfill the assumptions (al)—(a3). We assume that W is
a Q-Wiener process or a cylindrical Wiener process on U. Now (1.1) is set in
the form (2.6), which is given a rigorous meaning by the weak formulation
(2.7). Next we consider the existence, uniqueness, and regularity of the
weak solution. Recall that we write HS = Lo(U, U) for the Hilbert-Schmidt
operators on U.

Theorem 3.1. With the above definitions and if ||AB—1/2Q'/?||us < oo for
some 3 > 0, then (2.6) has a unique weak solution, which is given by the
variation of constants formula,

(3.3) X(t) = E(t)Xo + /0 tE(t —§)BAW(s), t>0.

Moreover,

(3.4)
1X @)l 1a0,m5) < C(IXollza(o,m0) + ¢ 2IAPD2Q 2 s ), ¢ > 0.

Proof. To prove that (3.3) is the unique weak solution it is enough to show
that, for fixed ¢,

t
(3.5 LB Q2 1y 85 < .
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see [16, Theorem 5.4]. Indeed, with {ex};2,, an arbitrary ON-basis in U,
and for any 8 > 0, we have

[ 1B s = [ 3 [E1B 2
o Lo(U,HA) 77 T ] k

t o0
we = [ AR ] + [0 e o
k=1

t
= [N 25 0Q g + A I206Q 2 g

< 2t||A(’B_1)/2Q1/2||HS,

2
H ds
B

where, for the last inequality, we used the fact that the A commutes with
C(s), S(s) and (2.1) together with the boundedness of the cosine and the
sine operators in U. With 8 = 0, this implies (3.5), and therefore it implies
existence and uniqueness of the weak solution. Finally, (3.4) follows from
(3.3), the boundedness of E(t) in H?, the It6 isometry (2.5), and (3.6):

IX @12, .10

<2(IBOXol im0+ | [ B 9)BaW )

;(Q,Hﬂ)>

t
< 2150l 0,0+ [ 1206 BQY2 g 5)-
g

Remark 3.2. The parameter £ in the condition ||AB~1/2Q1/2||zg < co quan-
tifies the spatial correlation of the noise. We highlight three special cases.

o If Q is of trace class, then 8 = 1, because |Q'/?|%s = Tr(Q) < oo.

e If () = I, which corresponds to space-time white noise, then we have
|AB=D/2||ys < oo if and only if d = 1 and § < 1/2. Indeed, the
eigenvalues of A behave asymptotically like \; ~ 324 so that

o

o0
A SF VR DG
j=1 j=1

and the series converges if and only if 8 < 1 — d/2, that is, d = 1,
B <1/2.
e Similarly, if @ =A%, s> 0, then <1+ s—d/2.
Thus, in order to have a positive order of regularity in multiple dimensions
(d > 1) we need correlated noise.
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4. THE FINITE ELEMENT METHOD FOR THE DETERMINISTIC PROBLEM

In this section we first study the spatially semidiscrete finite element
method for the deterministic linear wave equation,

i—Au=f in D x (0, 00),
(4.1) u=0 on 9D x (0,00)
U(,O) = Uo, u(,O) =wvy inD,

where D € R?, d = 1,2,3, is a bounded convex polygonal domain with
boundary 0D. Then we specialize to the homogeneous equation and derive
error estimates which will used to prove strong convergence of the finite
element approximation of the stochastic equation.

4.1. Error estimates for the non-homogeneous problem. Let {7} be
a regular family of triangulations of D with hx = diam(K), h = maxke7, hik,
and denote by V}, the space of piecewise linear continuous functions with re-
spect to 7, which vanish on 8D. Hence, V}, C H}(D) = H*.

The assumption that D is convex and polygonal guarantees that the trian-
gulations can be exacly fitted to 9D and that we have the elliptic regularity
vl g2(py < Cl|[Av|| for v € D(A). We can now quote basic results from the
theory of finite elements. We use the norms || - ||s = || - || -

For the orthogonal projectors Py, : H® — Vj, Ry, : HY — Vj, defined by

(th7X) = (UaX)’ (VRhUa VX) = (V,Ua VX)a VX € Vha

we have the following error estimates:

(4.2) |(Rp — Dv|l, <CR*"||v|s, r=0,1, s=1,2, v € H”,
(4.3) |(Pr = Doll, < Ch o5, 7=-1,0, s=1,2, wveH".
If {7} is a quasi-uniform family, then P} is bounded in H',

(4.4) |Pro|l1 < Cllv]l1, ve€ H'.

Then we have also

(4.5) I(Pr — Do|l1 < CRYolls, s=1,2, veH".

Remark 4.1. We note that the assumption of quasi-uniformity for the valid-
ity of (4.4) can be relaxed, see [4], [5], and [7].

We define a discrete variant of the norm || - ||4:
lvnllna = ||Ah “onll, vh € Vh, @ €R,
where Ay, : V), = Vj, is the discrete Laplace operator defined by
(Apvn, x) = (Vor, Vx), Vx € Vp.
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It is clear that ||vy|/1, = ||Vus| = ||vnll1 and
(4.6) IPafll-1n < fll<1, feHT
follows from the calculation
1 1
~1 A, 2 Prf,vp fi Ay 2oy
18, sl = sup [ Pl g, [ on]
onEVh [|vnl oneVn  llvall
o ] ()
wLEV, ||A2wh|| wLEV), l|lwn |1
fyw
< sup M0y
wern Wl

With u; = u, up = @, the weak form of (4.1) reads: find uy(t), up(t) € H',
such that

(Vi (t), Vor) — (Vug(t), Vor) =0,
(4.7) (ﬂz(t),’l)g) + (V’U,l (t), V’Ug) = (f(t),’l)g),
u1(0) = ug, u2(0) = vg.

Yvi, vo EHl, t>0,

The semidiscrete analogue of (4.7) is then to find w1 (%), up2(t) € Vj, such
that

(Vin,1(t), Vxi) — (Vunp(t), Vxi) =0,
(4.8)  (tn2(t), x2) + (Vun,1(t), Vx2) = (f(t), x2),
up,1(0) = uno, up1(0) = vho,

Vxi,x2 € Vi, t >0,

with initial values up o, vp0 € Vp.

In our error analysis we will use the stability of the slightly more general
problem of finding up,1(t), un2(t) € V}j, such that
(4.9)

(Vin,1(2), Vxa) — (Vuna(t), Vxa) = (V£i(8), Vxa),
(in,2(t), x2) + (Vun(t), Vxe) = (f2(t), x2),
up,1(0) = upp, un,1(0) = vpp,

Vx1:x2 € Vi, >0,

We set x; = Affup;, @ = 1,2, a € R, in (4.9) and conclude in a standard
way that

lun,1 (@) lhat1 + [[un2 @) |ne < C{||uh,o||h,a+1 + [|vn,0lh,a

(4.10) t t
+ [ IR hsr ds+ [ IPafa(o) s},
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Next, we obtain optimal order error estimates in Ly ([0, 00), H®) with
5 =0,1 for up; and s = 0 for upo. The regularity requirement is minimal,
see Remark 4.6.

Theorem 4.2. Let ui,u2 and up 1, up2 be the solutions of (4.7) and (4.8),
respectively, and set e; := up; — u;, 1 = 1,2. Then, for t > 0, we have

ler(®)]l1 < C{|luno — Rauollr + |vno — Ravol }

(4.11) t
+Ch{llur (@) + [ Nia(s)] ds},
0
lea )l < O luno — Ruuoll + om0 — Rivoll}
(4.12) -
+ O { @)+ [ Nia(s)lds},
0
lex ) < O luno — Ratoll + [[vno = Prvoll-1}
(4.13)

o {jun @l + [ Tuas)lads)

Proof. We set
(4.14) e; = 0; + pi = (un; — mu) + (mu; —w;), 1=1,2,

where m; will be chosen as Rj, or P,. By subtraction of (4.7) and (4.8),
recalling Vj, C H', we obtain

(Véi(t), Vxa) — (Vez(t), Vix1)
(é2(t), x2) + (Vei(t), Vxa)

bl

0
0 VXl,XQ EVh, t>0.

bl

Hence,
(V61,Vx1) — (V02,Vx1) = —(Vp1, V1) + (Vpa, V1),
(62,x2) + (V01, Vx2) = —(p2, x2) — (Vp1, Vx2),
First, in order to prove the error estimates (4.11) and (4.12), we set

0i = un; — Rpui, pi= (Rp— Dui, i=1,2.
By the definitions of the operators Ry, Pp, we have
(V61,Vx1) — (Vb2,Vx1) =0,
(02, x2) + (VO1,Vx2) = —(p2, X2);
(

that is, 61,0, satisfy (4.9) with f; = 0, fo = —p2. Therefore, by the stability
inequality (4.10) with a = 0, we obtain

Vx1,x2 € Vj,t > 0.

leaX? € Vha t> Oa

t
101() no + /0 [ Paials)

na +182)llno < C{16:(0)

h,1 + [|62(0)

h,0 dS},



12 M. KOVACS, S. LARSSON, AND F. SAEDPANAH

Recalling (4.14) and that ||v||p0 = [Jvp]| and ||valln1 = ||onll1, vn € Vi, we
have

lex®lix < C{lluno — Ruuoll + oo — Ravol

+ (Rn = s (o) ds + [ (Ra — Dyr 1)}

le2®ll < € lluno — Rutolls + l[on,0 — Rieol
t
+ [ 1R = Dia(s) s + (R = Dyua(t)] .

Using (4.2) we conclude (4.11) and (4.12).
Finally, to prove the error estimates (4.13) we alter the choice of m; in
(4.14) and set

(4.15) 61 = up,1 — Rpur, p1 = (R —Iu,

Then, similarly to the previous case,

(Vé17VX1) - (V927VX1) = (Vp27VX1)7

. leaX? € Vha t> Oa
(62, x2) + (VO1,Vx2) =0,

that is, 61, 62 satisfy (4.9) with fi = pa, fo = 0. Therefore, by the stability
inequality (4.10) with & = —1, we obtain

161(®)]k,0 + 102()lln,—1
< {100l + 10501 + [ 1Rupa(s)lnads )
Using (4.6), (4.14), and
|Rrp2ll = Pr(I — Rp)uzll < [[(Rp — Dual,
we have
lex ()] < C{Huh,o — Rl + [[vn,0 — Prvoll -1
+ /0t||(73h — Dua(s)||ds + [|(Rn — I)Ul(t)H}-

This proves (4.13). O



FEM FOR THE STOCHASTIC WAVE EQUATION 13
4.2. Error estimates for the homogeneous problem. Here we special-
ize to the homogeneous problem
i(t) + Au(t) =0, t>0,
u(0) = ug, 4(0) = vg,

and express the error estimates in terms of the initial values. Differentiating
the equation with respect to ¢, we obtain in a standard way

(4.17) IDFa)1E + IDFu(®) 51 = IvplIa + llugllas-
Here, for k=10, 1, ...,

(4.16)

uy = APy, vy = APy, r =2k,

uh = Arvg, o = A1y, =2k + 1.

We use the notation from Section 3 and we write (4.16) as

s X(t) = AX(1), t>0,
(418) X(0) = Xo,

and we recall that the linear operator A is the generator of a Cy-semigroup
E(t) = e'4 given by (3.2). Therefore the solution is X (t) = E(t)Xy. The
finite element problem is then to find X (t) € V}, x V}, such that

Xp(t) = ApXp(t), t>0,

(4.19)
Xp(0) = Xp 0,
where
. 0 I . uh,l . ’u,h,()
(4.20) An= {—Ah 0] o A= [uh,z]  Ano = [%0] '

Similarly to (3.2), it can be shown that Aj generates a Cy-semigroup Fj(t)
given by

_ 4, _ | Cal?) A, 28 (t)

(4.21) En(t) = e _[—A}ﬂsh(t) hCh(t) ]
with

C(t) = cos(tA)?),  Su(t) = sin(tA}/?).

For example, similarly to the infinite dimensional case, using the eigenpairs
{(Anjs ngh,j)};y:hl of the discrete Laplacian Ay, with N, = dim(V},), we have

Np,
A;lﬂ sin(tA}L/Q)vh = Z /\,:3./2 sin(t)\}b{;)(vh, bh,j)Pnjs  vh € V.
j=1
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We may now formulate a consequence of Theorem 4.2, which will be used
to prove the strong convergence of the finite element approximation of the
stochastic wave equation. Recall |||[v[||2= ||v1]|2 + ||ve||%_; from (3.1).

Corollary 4.3. Denote Xo = [ug, vo]? and

(4.22)  Fu(t)Xo = (Ch(t)Ph — C(t))uo + (A, /> Sh(t)Py — A~25(8)) vy,
(4.23) Gh(t)Xo = (Ch(t)Ri — C(t))uo + (A, /> Sn(t)Ph — A"/2S(t) )y,
(4.24) Gr()Xo = —(A)*Sa(t)Rn — AY25(t))ug + (Cu(t)Ph — C(2))w.

Then we have

(4.25) 1Fn(t)Xoll < C(1 + t)h37)|| Xolll5, t>0, Be€l0,3],
(426)  [|GA(®)Xoli < C(1+t)RTEV||X0llls, t>0, B€[1,3],
427) |G Xoll < C(1+ )RS Xolls, >0, Be[L,4].

Note that F}, and G}, differ only in the choice of initial value: ug p = Prug
and ug p, = Rpup. This is necessary in order to accomodate the lowest order
of initial regularity used (8 =0 and g = 1).

Proof. We begin with the case § = 0 of (4.25). By the stability (4.10) with
a = —1 and its the analogue for the continuous equation, and (4.6), we have

| Fr () Xo| < llun,1 (@) + [Jur(®)]]
< C{IIPruoll + IPnvoll - 1,n + lluoll + llvoll—1}
< C(luoll + llvoll=1) = Cl|IXolllo-

For the case 8 = 3 we use (4.13) with ugp = Phug and vy, = Phvg, and
(4.17),

| £ (t) Xol| = [le (2)]]
< C{IIPr(I — Rp)uoll}

+ (@l + [ (o)l ds)

< Ch*{Jluollz + llwollr + (lluolls + llvoll2) }
< C(1+t)R?[||Xol|3-

The proof is then completed by interpolation between these cases.
For (4.26) we first use (4.10) with « =0,

1GA () Xollr < llun ()1 + lus (@)l
< C{lIRnuolly + [Prvoll + lluoll + [lvoll }
< C(Jluolly + llwoll) = Cl[|Xoll]1-
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Then we use (4.11) with ug j, = Rpug and vy, = Phuy,
|G () Xoll1 = [lex(®)lx

< C{IPat = Rajuolly + Or{Jaa®la+ [ fia(o) s}

< Ch{lluoll2 + llvoll1 + t(l|uolls + llvoll2) }
< C(1 4+ t)R?||| Xolll3-
For (4.27) we apply (4.10) with a =0,
IGH ()Xol < lun2@®)]| + lluz(®)]] < C{IRnuollx + Pavoll + lluoll1 + llvoll }
< C(luolly + llvoll) = Ol Xolll1-

Then we use (4.12) with g, = Rpuo and vo p = Phoy,

. t
G (®Xoll = lea®)]| < OW{Jua)la+ [ ia(o)]a s}

< Ch{luolls + llvoll2 + t(l[uolls + llwolls) } < C(1 + t)A?[|| Xollls.
O

Remark 4.4. The regularity assumption on X, in Corollary 4.3 cannot be
relaxed. This means that ||| X|||s can not be replaced by ||| Xo|||s—. for any
€ > 0. This is shown in the lemma below for the periodic problem

iz, t) — ugg(z,t) =0, (z,t) € R x (0,00),
(4.28) u(z + 2m,t) = u(z, t), (z,t) € R x (0, 00),

’U/(.T,O) = U'O('T)a u(w,O) = ’U()(-’E), zeR

Lemma 4.5. Let u be the solution of (4.28) and uy, its finite element ap-
prozimation. Assume that, for some B > 0, there is a constant C' such that
for all ug € H,, vg € H2' and h > 0,

per? per
2
lu(t) = un(®)]| < Ch3 (Jluollgry + llvoll gaz1), 0.
Then o > B.

Here ngr stands for the subspace of H® consisting of 27-periodic func-
tions.

Proof. The proof is adapted from [19]. We omit the details. O

Remark 4.6. Optimal order Ly ([0, 00), H®) estimates for the finite element
approximation of displacement u = u; and velocity & = ug were first ob-
tained by [10]. However, the regularity requirement for the initial displace-
ment is not minimal in [10]. This was improved in [3], and in [19] it was
shown that the resulting regularity requirement is optimal, see Lemma 4.5
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above. The error estimates (4.12) and (4.13) are in agreement with the
corresponding ones in [3] and [19]. Furthermore, the proof presented here
seems to be more straightforward.

5. THE FINITE ELEMENT METHOD FOR THE STOCHASTIC PROBLEM

We now consider the approximation of the stochastic wave equation. The
spatially discrete analogue of (2.6) is to find Xp(t) = (up,1(t),un2(t)) €

Vi, x V}, such that
(5 1) dXh(t) = AhXh(t) dt+ P,B dW(t), t>0,
' Xn(0) = Xon,

where Ay, is defined in (4.20). Recall that A, generates the Cp-semigroup
Ej(t) = et4» on V}, given by (4.21), and therefore the unique mild solution
of (5.1) is given by

(52) Xh(t) = Eh(t)X(],h + /Ot Eh(t — S)PhB dW(S), i Z 0.

Recall [|[v]|[2= [[o1][3 + [lv]2_ from (3.1).

Theorem 5.1. Let Xy = [ug,vo]” and let X = [uy,us]’ and X = [uhjl,uhyg]T
be given by (3.3) and (5.2), respectively. Then, the following estimates hold
for t > 0, where C(t) is an increasing function.
If ug p, = Phug, vop, = Prvo, and € [0,3], then

(5.3)
Jon () = w1 ()l oy < CORSE {1 Xoll (e + 143D QY2 ).
If ug , = Rpuo, vop = Prvo, and B € [1,3], then
(5.4)
luna () — w1 (B i1y < CORIE DKol sy + IA3EDQY2 s}
If ug, = Rpuo, vo,n = Pruvo, and B € [1,4], then
(5.5)
Jna(®) = us(®)ll 010y < COBSED{Xoll (0,0 + 43P D QY2 frs .
The discrete initial values (ug p, = Rpug, or ug p = Rpuo, and vy p, = Phrvo)
and the regularity of the initial values (Xo € H?) are chosen so that the
corresponding rates of convergence match those of the stochastic convolution

terms. Of course, other choices are possible with different convergence rates
that can be derived from Theorem 4.2.
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Proof. We prove (5.3); the proofs of the other estimates are similar.
In addition to Fj, defined in (4.22) we introduce

(5.6) En(t)f = (A, Su(t)Py — A25(1)) f
and deduce from (4.25) with ug = 0 that
(5.7) IER (@) FIl < 1+ )h5?||fl|5-1.

Then we have
t
’U,h,l(t) — U1 (t) = Fh(t)Xo + / Kh(t — S) dW(S)
0

By Itd’s isometry (2.5),

t
luna(®) = w1 Ol 20,0 < IFa®Xo a0 + | /0 Ki(t — 5) AW (s)|

Lo (Q,U)

t 1/2
= 100l + ([ 1K0Q s ds)
=I1+11I.

From (4.25) it follows that
I? = E(|Fy(t) Xol?) < C(t)h3PE(|||Xo][3)-

Recalling the definition of the Hilbert-Schmidt norm from Section 2, using
an orthonormal basis {e;}$° | in U = HY, we obtain

0
17 =3 [ K@ e P ds.
k=170
Finally, by setting f = Q'/%e;, in (5.7), we conclude that

o0
117 < O(t)ths” Y J1IQ Pexl[f-y = O |AP=1/2Q1 s,
k=1
which completes the proof of (5.3). O

Remark 5.2. Let consider the one dimensional case with space-time white
noise, that is, when d = 1, @ = I. Then 8 < 1/2 (see Remark 3.2) and the
convergence rate in (5.3) is O(h®), @ < 1/3, which is in agreement with [18],
while O(h'/?) was shown for the leap-frog scheme in [24]. The reason why
a higher rate of convergence is obtained in [24] is that the Green’s functions
of the continuous and the discrete equations coincide at the mesh points.

Another example of a numerical scheme where this happens is Galerkin’s
method with

Vi, = span{e™® : |n| < 1/h},
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see [19, Remark 2]. Then instead of (4.25) we would have
12x () Xol| < CH?[[| Xolllg, ¢ >0,
and, under the assumptions of (5.3),

1 (8) = w1 (D) | Ly,vy < CPP {1 X0l 1y (,m8) + IAPD2QH? s}
This yields the optimal order O(h®), a < 1/2, for Q = I.

The error estimates in Theorem 4.2, and therefore in Corollary 4.3 and
Theorem 5.1, can be extended to higher order finite element methods. The
reason is that the error estimates for the elliptic and the orthogonal projec-
tions in (4.2) and (4.3), respectively, as well as the stability inequality (4.10)
hold for higher order finite element spaces V}, consisting of continuous piece-
wise polynomials of order at most k£ > 1. This means that in case of highly
correlated noise, one might expect higher order of strong convergence when
using a higher order finite element method. In this case the counterpart of
Theorem 5.1 reads as follows.

Theorem 5.3. Let X = [ug,vo]” and let X = [uy,us]” and Xj, = [uh,l,uh,z]T
be given by (3.3) and (5.2), respectively, where the finite element spaces V},
consist of continuous piecewise polynomials of order at most k > 1. Then,
the following estimates hold for t > 0, where C(t) is an increasing function.
If ug p, = Phug, vop = Prvo, and B € [0,k + 2], then

s (8) = w () o r0) < COBERE Xl i) + [430DQ 2] s}
If ug p, = Rpuo, vo,n = Phvo, and B € [1,k + 2], then
e (8) — w1 8y
< OOV {||Xo |1, 0,9 + 1477 7DQ s ).
If ug p, = Rpuo, vo,n = Phvo, and B € [1,k + 3|, then
[[un,2(t) — u2 () 1,0, 110)

k+1,5 leg_
< C(t)hi+2 1){||X0||L2(Q,Hﬁ)+||Aé(ﬂ DQV2ys ).

6. NUMERICAL EXPERIMENTS

In this section we demonstrate the order of strong convergence of the
finite element method for the linear stochastic wave equation LSWE (1.1)
by numerical examples. To this end, the backward Euler method is used for
time stepping and some computational analysis on the approximation of the
stochastic convolution is reviewed, see [26].
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6.1. Computational analysis. First recall the matrix form of (5.1),
dup,1(t) 0 I| |una(t) 0
6.1 A ANt + ,
(6.1) [duh,z(t) Ay 0| lupa(t) Py dW (2)
Let 0 =ty <t < --- < tn, = T, be a uniform partition of the time interval
[0, Tx] with time step & = 1/N; and time subintervals I, = (t,_1,t,), n =

1,2, .-+, N;. Then the backward Euler method is formulated as, for n =
]-a 2’ T Nt’

url (U [ o kIl [UP 0
(62) [Ug] [Ugl] = [—kAh 0] [Ug TPy awn|-

Here U € V}, is an approximation of u;(-,t,), i = 1, 2, and [U?, US]T = &,.
We multiply (6.2) by

Ap O

0 I
to take advantage of the resulting skew-symmetric structure, see Subsec-
tion 6.3, and rearrange, to obtain, for n =1, 2, --- | Ny,

(6.3) Ap  —kAR] [UF] _ [Aw O] [OFT] ] O
' kAR I uyl |0 I UQ”_1 Pp AW™| "
For some other ways of approximating the noise and the stochastic integrals

we refer to, for example, [2] and [8].
Recalling the Fourier expansion (2.2) of W, we have, for all x € V,,

(64)  (PalaWnx) = Zv/ AB (e, X Zv;/ ABej, X),

where we truncated the sum to J terms. Recall that {8;(¢ )}J , are mu-
tually independent standard real-valued Brownian motions, and that the
increments in (6.4) are

(6.5) ABY = Bj(tn) — Bj(tn—1) ~ VEN(0,1),
that is, real-valued Gaussian random variables with 0 mean and variance &.
We also note that «; = 1 for the white noise.

Recalling the semidiscrete solution uy, from (5.2), we denote by ui the
semidiscrete solution obtained by using the truncated noise; that is,

66)  wl(t) = Bnt)Xoy +Zv/2/ Bn(t — 3)PaBe; dBy (s).

j=1
The following lemma shows, that under some assumptions on the triangu-
lation and the covariance operator @, it is enough to take J > N, with
Np, = dim(V4) in order to preserve the order of the FEM.
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Lemma 6.1. Let uj and uy be defined by (6.6) and (5.2), respectively.
Assume that A and Q) have a common orthonormal basis of eigenfunctions
{ej};?i1 and that Vy, with dimension Np, is defined on a family of quasi-
uniform triangulations {Tp} of D. Then for J > N}, the following estimates
hold, where C(t) is an increasing function.

If [ABD2Q12 |5 < oo for some B € [0,3], then,
() — w1 (Bl 0, 70y < CORIPIACD2QI2 g
If |[AB-D/2Q12||us < 0o for some B € [1,3], then,
a1 (£) = wn (D)l 1y 0,y < CORTEDAGD2QU2) g,
If [AB-DR2Q12|ls < oo for some B € [1,4], then,
a5 () — un2(#) |y .70y < CERZEDAED2Q12) .

Proof. We prove the second estimate; the others are proved similarly. From
(5.2) and (6.6) it follows that

o0 t
up 1 () —una(t) = Y /0 A28 (t — 5)Phe;j dB;(s).
j=J+1

By Ito’s isometry (2.5), the independence of f3;’s and recalling the error
operator from (5.6), we have

o0 t
50 = s O iy = 2 % [ 1,86 P s

j=J+1
o0 t
<2y / IA=1/25(s)e;]2 ds
j=J+1 70
o0 t
12y o / 1 Kn(s)es |2 ds
j=Js+1 70
=]+ 1II.

Let A; denote the eigenvalues of A corresponding to e;. Then

1A~ Y2 sin(sAY2)e; |2 = sin(sA}/?).
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Thus,

00 ¢
I1=2 Z 7j/0 ||A_1/2sin(sA1/2)ej||%ds

j=J+1
00 t
=2 Z 'yj/ SiDQ(S)\;/2)dS
j=J+1 70
o0 oo 1
<2 Y oy <2y A](ﬂf )(Afflw)
j=J+1 j=J+1
B-1 - (8-1)
—(8— -1 —(8— -
<2770 3T My <o T YAC D22 .
j=J+1

For 11, by (4.26) with ug = 0, vo = e;, we have

o0 t
1< cOi Y [ el ds
j=s+1 70
=COM™ Y lleilfor < COMTHAPTIPQV .
j=J+1

Hence the proof is completed by the fact that, for a quasi-uniform family of
triangulations, we have Nj, ~ h~% and therefore,
-1 —2/d —2/d 2
AL <CT MM < ON, P < CR2.
O

Remark 6.2. In practice @ and A do not have a common orthonormal basis
of eigenfunctions and the eigenfunctions of ) are not known explicitly. In
this case, one has to solve the eigenvalue problem Qu = Au on S}, in order to
represent Pp,W. Computationally this could be very expensive if () is given
by an integral operator. However, if the kernel is smooth then this can be
done more efficiently, see [21]. Furthermore, similarly to the parabolic case
[13], it is enough to keep J < N terms, for suitable J depending on the
kernel, in the expansion of P,W.

6.2. Numerical example. For the numerical experiments, we consider the
LSWE in one spatial dimension,

du — Audt = dW, (z,t) € (0,1) x (0,1),
6.7y  w(0,t) =u(1,t) =0, t € (0,1),

u(z,0) = cos(m(z — 1/2)), u(z,0) =0, z € (0,1).
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Clearly, there is no exact solution available from a numerical viewpoint as
even the solution of the deterministic problem is given as an infinite Fourier
series expansion (see, e.g., [9]). Therefore we take the exact solution to be
a finite element approximation on a very fine mesh with mesh size hegger to
approximate u = u(z,1), using the backward Euler method (6.3) for time
stepping with a small fixed time step k. We note that we chose the time
step k according to k < h?, since the rate of convergence of the fully discrete
(6.3) for the deterministic problem is O(k + h?).
Applying the time stepping (6.3) to (6.7) we obtain the discrete system

(6.8) X" =EX""! 4,

where b = [0,b2]7 and by is computed using (6.4). We note that for the
deterministic problem b = 0, the expected rate of convergence in the Lo-
norm for both the displacement v = uq and the velocity & = ug is 2 by
(4.13) and (4.12), respectively, see Figure 1.

If {)\j}‘;‘;l are the eigenvalues of A, and we set ) = A%, s € R, then

||A(,6_1)/2Q1/2||I2—IS — ||A(ﬂ—s—1)/2||%s _ Z A],/J"fsfl ~ Z]-%(ﬂ_s_l)’
1 :

which is finite if and only if 8 < 1+ s — d/2 with d being the dimension of
the domain D. In our example (6.7), where d = 1, we consider two different
choices for the noise. First, we consider space-time white noise corresponding
to s = 0 and hence 8 < 1/2 and then a correlated noise corresponding
s = —1 and hence S < 3/2. We note that since the eigenfunctions of A
are given as e; = v2sin(jrz), j > 1, (ej,x) can be computed exactly for
X = @i,i = 1,-+, N, with {;} M being a basis in Vj. Thus, in the
case of space-time white noise, we do not expect convergence for the finite
element approximation of velocity up 2 by (5.5), but we expect the rate of
convergence to be 1/3 for displacement up 1 by (5.3). These are confirmed
by Figure 2. In the second case, the expected rate of strong convergence is
1 and 1/3 for displacement and velocity by (5.3) and (5.5), respectively, as
Figure 3 also confirms. We note that we have used a uniform spatial mesh
and therefore with Q = A®, the assumptions of Lemma 6.1 are fulfilled.

6.3. Comments on numerical linear algebra. On each time level the
linear system (6.8) has to be solved. This can simply be done by the back-
slash operator “\” in Matlab, but it can be performed faster if instead we
perform a minimum degree permutation of the coefficeint matrix ¥ and then
use the “LU” factorization of the permuted . The coefficient matrix ¥ in
(6.8) is skew-symmetric, which implies that, in particular, 3;; # 0 if ¥;; # 0.
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This means that the command “symamd” in Matlab can be used. The algo-
rithm for solving the linear system (6.8) is performed in the following steps,
with obvious notations,

(P,XPPX"™
nxn

LluUlan = Plui)

Xn = Ulu\(Llu\(PluB))

P,(EX™! 4+ b)

Il
SN

Xn — Ps_an,
where P, = symamd(%), and [Py, Ly, U] = lu(X") in Matlab. With
hexact = 277 and k = hgxact, the computation time for each realization, that

is, the computation time of generating the Brownian motion, computing the
exact solution and the approximated solutions with mesh sizes h = 27! to
h = 27°, takes approximatly 40 seconds with “\” while it takes 4 seconds
with minimum degree permutation. The reason for this can be seen in Figure
4 and Figure 5, where the structure and the number of nonzero entries in
the “LU” factorization of ¥ and ¥ are shown. An AMD Opteron computer
with 15 Gigabytes RAM memory and 2.2 GHz CPU has been used for these
experiments.

Remark 6.3. One might consider two ways to compute the vector b in (6.8).
Either using matrix-matrix multiplication, that is, we need to generate the
increments (6.5) at once in a big Ny X Nj matrix, or using vector-matrix
multiplications that means we need to generate the increments (6.5) in a loop
and each time in a vector 1 X Nj,. We used the first idea since it is faster and
there was enough memory for the computations. However, the size of the
matrix of the increments, and hence the memory usage, grows considerably
when refining the mesh and taking smaller time steps. For example, with
Nj, =27 and N; = 2, in our experiments 256 Mbytes RAM was needed for
storing the increment matrix, while for Nj, = 28 and N; = 2%, we needed
almost 2 Gbytes. In the latter case we used the second approach, that is
vector matrix multiplications, and the computation time for each realization
took about 6 seconds.
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h =2’7, k=h2, Deterministic problem
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FIGURE 1. Deterministic problem: the order of strong con-
vergence in the Lg-norm is 2 for both the displacement u
(dashed-square) and the velocity 4 (dashed-triangle).
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FiGUrReE 2. LSWE with white noise: the order of strong
convergence in the Lo-norm is 1/3 for the displacement u
(dashed-circle); but there is no convergence for the velocity
4 (dashed-triangle).
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h, =277, k=h?
exact

100 realizations, Correlated noise (Q=/\’1)
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FIGURE 3. LSWE with correlated noise Q = A~ !: the order
of strong convergence in the Ly-norm is 1 for the displacement
u (dashed-circle), and 1/3 for the velocity u (dashed-

triangle).
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FIGURE 4. Structure and number of nonzero elements of LU(X)
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FIGURE 5. Structure and number of nonzero elements of LU(S).
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