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Abstract

The main purpose of this thesis is to use modern goal-oriented adap-
tive finite element techniques in order to improve the numerical simulation
of tribology. Two novel adaptive finite element methods for the Reynolds
thin film model, and Stokes model including cavitation are presented and
their different strategies are compared. The algorithms are inspired by an
analogy with the obstacle problem and the cavitation problem that we con-
sider is written as a variational inequality considering in the formulation
the fact that the lubricant cannot stand negative stresses induced by sub-
atmospheric pressure. A posteriori error estimates and adaptive algorithms
are derived, and numerical examples illustrating the theory are supplied.

The cavitation problem and calculations is introduced and put into his-
torical and modern perspective. Modern thoughts and techniques around
the oil-pocket idea in sheet metal forming are presented. The influence of oil
pockets on the contact regime is assessed, and in particular the likely effect
of oil-pocket-induced cavitation in order to produce lift, is discussed. The
ultimate goal with the numerical simulation is to be able to optimize the
surface structure so as to take advantage of cavitation effects in the lubricant.

Keywords: Tribology, Reynolds equation, Stokes equation, cavitation,
FEM, adaptivity, variational inequality, penalty formulation, error estima-
tion, residual, duality.
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Introduction and summary of the thesis

The main purpose of this thesis is to use modern goal-oriented adaptive
finite element techniques in order to improve the numerical simulation of
tribology. A novel algorithm based on an analogy with the obstacle prob-
lem is presented. The cavitation problem that we consider is written as a
variational inequality, considering the fact that the lubricant cannot stand
negative stresses induced by sub-atmospheric pressure.

An outline of the Summary is as follows. A short historical background
is given in Section 1. The cavitation problem and calculations is introduced
and put into historical and modern perspective in Sections 2 and in Section 3
is sheet metal forming introduced together with problems involved. Modern
thoughts and techniques around the oil-pocket idea in sheet metal forming
are presented in Section 4. Section 5 address the issue of the newborn
rapidly growing field of ”Virtual Tribology” and the goal-oriented adaptive
finite element methods that are developed in this thesis. An overview of
computational modeling, especially finite element methods, is given i Section
6. In Section 7 we present the different models investigated, strong, and
variational forms in harmony with solution strategies for the finite element
formulations. Some computational aspects are discussed in Section 8. A
more direct summary of the appended papers is given in Section 9 followed
by future trend and ideas in Section 10.

1 Introduction to Tribology

1.1 Historical background

The science of Tribology (Greek tribos: rubbing) concentrates on Contact
Mechanics of Moving Interfaces that generally involve energy dissipation.
It encompasses historically the science fields of Adhesion, Friction, Lubri-
cation and Wear. Today it extends over the scientific fields of physics,
chemistry, solid mechanics, fluid mechanics, heat transfer, materials science
and lubricant rheology [4, 10, 19, 25].

Friction is the resistance to motion whenever one solid body moves over
another. It is one of the oldest problems in physics and is of great practical
importance in many industrial operations. More than 400 000 years ago,
our ancestors used friction when they chipped stone tools. Friction was
essential when the Neanderthals by 200 000 B.C. succeeded in generating
fire by rubbing wood on wood and by striking together flint stones. Early
civilizations, like the Sumerian and Egyptian, discovered the usefulness of
lubricants in improving the performance in facilitating transport by sleds.
Figure 1 shows a painting from the tomb of Tehuti-Hetep at El-Beshed dated
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Figure 1: Transportation in the old days of an Egyptian colossus.

at about 1880 B.C., where the Egyptian method of moving stone statues is
illustrated. The painting shows that the statue is moved by means of a
sled, without the aid of rollers or levers. A most interesting detail in the
painting is a man standing and pouring lubricant from a jar onto the ground
immediately in front of the sled.

Leonardo da Vinci (1452-1519) can be named as the father of modern
tribology. He studied an incredible manifold of tribological subtopics such
as: friction, wear, bearing materials, plain bearings, lubrication systems,
gears, screw-jacks, and rolling-element bearings. 150 years before Amon-
tons’ Laws of Friction were introduced, he had already recorded them in his
manuscripts. Hidden or lost for centuries, Leonardo da Vinci’s manuscripts
were read in Spain a quarter of a millennium later. To the pioneers in tribol-
ogy one counts besides Leonardo da Vinci also Guillaume Amontons (1663-
1705), John Theophilius Desanguliers (1683-1744), Leonard Euler (1707-
1783), and Charles-Augustin Coulomb (1736-1806). These pioneers brought
tribology to a standard, and its laws still apply to many engineering prob-
lems today. Some of their findings are summarized in the following three
laws:

1. The force of friction is directly proportional to the applied load. (Amon-
tons 1st Law)

2. The force of friction is independent of the apparent area of contact.
(Amontons 2nd Law)

3. Kinetic friction is independent of the sliding velocity. (Coulomb’s Law)

These three laws were attributed to dry friction only, as it has been well
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known since ancient times that lubrication modifies the tribological proper-
ties significantly. However, it took quite a long time until lubrication was
studied pragmatically and lubricants were not just listed such as a ”cook-
ing formula”. It was Osborne Reynolds around 1880 [31], who recognized
the hydrodynamic nature of lubrication, and introduced a theory of fluid-
film lubrication. Still today, Reynolds steady state equation of fluid film
lubrication

F ∝ Uµ

H

is valid for hydrodynamic lubrication of thick films (> 10−6m) where the
frictional drag force F is proportional to both the sliding velocity U , the bulk
fluid viscosity µ and inversely proportional to the film lubricant thickness H.
The hydrodynamic theory breaks down below a critical thickness threshold
that is expressed in the Stribeck curve [36].

In the twentieth century the theories of dry friction and lubricated fric-
tion were further developed. Solid-like behavior of lubricants in the ultra
thin film regime (< 10−6m) led to theory of Boundary Lubrication, which
was proposed by W.B. Hardy (1919). The adhesion concept of friction for
dry friction, already proposed by Desanguliers, was applied with great suc-
cess by Bowden and Tabor [5] to metal-metal interfaces.

Adhesion is a term relating to the force required to separate two bod-
ies in contact with each other. Desanguliers (1734) proposed adhesion as
an element in the friction process, a hypothesis which appeared to con-
tradict experiments because of the independence of friction on the contact
area (Amontons 2nd Law). Therefore the tribologists rejected Desanguliers’
proposal and devoted their attention to a more geometrical hypothesis of
friction, the interlocking theory of mechanical asperities. The contradiction
between the adhesive issue and Amontons 2nd Law cleared up by the intro-
duction of the concept of the real area of contact. The real area of contact
is made up of a large number of small regions of contact, in the literature
called asperities or junctions of contact, where atom-to-atom contact takes
place. Bowden and Tabor showed that the force of static friction between
two sliding surfaces is strongly dependent on the real area of contact. A very
important outcome of their work, which led to the asperity contact theory
of friction, is their detailed discussion about adhesive wear. In contrast to
abrasive wear which applies to the form of wear arising when a hard, rough
surface slides against a softer surface, in adhesive wear, asperity junctions
plastically deform above a critical shear strength, which depends on the ad-
hesive forces of the two surfaces in contact. Assuming during a frictional
sliding process a fully plastic flow situation of all asperities, friction is found
to change linearly with the applied load as demanded by Amontons 1st Law.

Bowden and Tabor investigated friction also from the perspective of a
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Figure 2: Reynolds channel.

purely elastic sliding process. They used a simplified single asperity model of
contact based on the Hertzian elastic theory, and found a non-linear friction-
load dependence (F ∝ L2/3), which clearly contradicted Amontons 1st Law
and the experiments conducted at that time. It was Archard [3], who rec-
ognized that there was no contradiction between an elastic single asperity
model and Amontons 1st law that is based on a contact that involves many
asperities. Instead of assuming a constant number of asperities as Bowden
and Tabor did, Archard assumed a load dependent number of asperities.
With this assumption the controversy between the elastic multiple asper-
ity hypothesis and Amontons 1st Law could be resolved. Greenwood and
Williamson [20] further improved the method with a Gaussian and exponen-
tial distributions of asperities. With the birth of the atomic force microscope
(AFM) and friction force microscope (FFM) Bowden and Tabor’s single as-
perity elastic theory (F ∝ L2/3) could be experimentally verified.

1.2 Reynolds equation

The first mathematical approach to tribology was undertaken by Leonard
Euler with a geometrical resistance theory of ”dry” friction - the Interlocking
Asperity Theory. Euler’s theory provides us with the two well known terms
for static and dynamic friction. The static friction coefficient is provided by
the tangent of the asperity angle, while the dynamic friction coefficient is
reduced by the kinetic term. But the true workhorse for many of years is
of course the Reynolds equation. It has been used successfully to determine
the pressure distribution in the fluid film for a wide range of applications
from bearings, seals to sheet metal forming processes.

In the spirit of Figure 2, where a typical channel is furnished with the
x-axis oriented as the relative surface velocity U and z-axis upwards, he
made the following assumptions:

1. Body forces are neglected, i.e. there are no extra fields of forces acting
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on the fluid.

2. The pressure is constant through the thickness of the film.

3. The curvature of surfaces is large compared with film thickness. Sur-
face velocities need not be considered as varying in direction.

4. There is no slip at the boundaries.

5. The lubricant is Newtonian, i.e. stress is proportional to rate of shear.

6. The flow is laminar.

7. Fluid inertia is neglected.

8. The viscosity is constant through the film thickness.

With these assumptions considered, Reynolds derived the well known
equation as usually quoted

∂

∂x

(
H3 ∂p

∂x

)
+

∂

∂y

(
H3 ∂p

∂y

)
= 6µU

∂H

∂x
, (1.1)

or
∇ · (H3∇p) = 6µU

∂H

∂x
. (1.2)

2 Cavitation

Cavitation is the disruption of what would otherwise be a continuous liq-
uid phase by the presence of a gas or vapor or both. The phenomenon has
been examined by scientists and engineers for a century or more. The in-
vestigations according to sheet metal forming considering cavitation are by
all means limited, so this review concentrates on cavitation in bearings and
seals. This is really no limitation due to similarities in the physical layout
of the models. There have been many studies outside the field of lubrica-
tion. Most of these have been concerned with aqueous systems, and the
erosive damage to surfaces bounding a cavitating flow has received much
attention. Components that have proved vulnerable to cavitation erosion
damage include pump impellers, valves, marine propellers, pipes and cylin-
der liners. Another nontribological problem that has attracted attention in
recent times is the oscillation of a hydrofoil, which may be induced by cav-
itation. In his classical paper identifying the mechanism of hydrodynamic
pressure generation in lubricating films, Reynolds [31] and later Rayleigh
[30] clearly recognized the possible influence of cavitation on bearing be-
havior. The formation of cavities and their disposition affects the pressure
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generated in a continuous thin film and hence the integrated quantities such
as the load capacity of bearings. Work by tribologists in the last century has
resulted in the development of cavitation models that to some extent makes
it possible to predict the performance of liquid-film bearings with acceptable
engineering accuracy for the majority of applications. However it is true to
say that the physical understanding of cavitation is still not satisfactory.

Two basic forms of cavitation in lubricating films are recognized: gaseous
and vaporous.

2.1 Gaseous cavitation

The most common way in which gas (air) cavities arise in a lubricant is
due to ventilation from the surrounding atmosphere whenever sub-ambient
pressures occur. However, the emission of dissolved gases from solution when
the liquid pressure falls below the saturation pressure is another apparent
mechanism by which gas cavities may be formed. Typically mineral oils
contain dissolved air with a saturation pressure near to atmospheric resulting
in gas release. While in many regards ventilation and gas release result in
similar behavior in lubricant films, indeed no distinction is usually made in
analytical work.

The growth of air bubbles trapped between asperities or in pre-fabricated
oil-pockets on the surface is another way in which gas cavities can be in-
duced, although little attention has been given to this possibility until re-
cently, Figure 3.

2.2 Vaporous cavitation

If the pressure in a lubricant falls to its vapor pressure, i.e. phase change,
it may boil at ambient temperature. Vapor-filled cavities will be formed
and these may later collapse, causing cavitation erosion. The occurrence of
vaporous cavitation is normally restricted to situations in which the loading
is dynamic.

2.3 Cavitation boundary conditions

In this section the historically most important cavitation boundary condi-
tions will be presented. For a more elaborate discussion and motivation of
their behavior see [11, 12] and the references given therein. Consider the
converging-diverging channel in Figure 4.

The conditions at the outlet boundary have a great influence on the shape
of the pressure distribution and the clue to correct boundary conditions lies
in the continuity of the flow. A direct application of Reynolds equation
with p(±∞) = 0 gives an anti-symmetrical pressure distribution. This case
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Figure 3: Asperity cavitation effect.
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Figure 4: Comparison of classical boundary conditions.
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is now bearing the name after the inventor Sommerfeld [34]. Obviously, this
profile will not produce any lift. Now lubricating fluids cannot stand large
and continuous negative pressures without cavitation. The simplest way of
taking cavitation into consideration is simply to apply the fact that the liquid
is unable to sustain negative pressures, i.e. assume atmospheric pressure in
the region in which pressures otherwise would be sub-atmospheric. This
is called the half-Sommerfeld or Gümbel [21] boundary conditions. Various
objections were raised to the half-Sommerfeld, the most serious one concerns
the unnatural discontinuity in the pressure gradient on the border between
the two phases. The cure was introduced by Swift [37] and Stieber [35].
They added the condition that also dp

dx = 0 on the internal boundary now
located at any desired position. This is also recognized in the literature
as the Reynolds or continuity boundary conditions. As a result of this the
positive part of the pressure distribution will be a bit amplified and the
extreme point is also transferred slightly downstream compared with the
half-Sommerfeld analysis. The experimentally observed occurrence of a sub-
cavity pressure loop in bearings lead to the idea that flow separation might
be playing a role in film rupture. A technique taking this into account was
introduced by Floberg [16, 17, 18]. He assumed a no net flow into the cavity
and suggested boundary conditions on film rupture which defines the shape
of a single cavity. His model incorporates the possibility for a liquid with
a capability to sustain a known sub-atmospheric pressure. The ideas were
further investigated by Taylor [38]. A comparison of pressure distributions
resulting from the first three boundary conditions can be seen in Figure 4.

An obvious and very serious drawback of these attempts is of course
that the cavitation region must be known or dictated a priori. This state of
affairs will be taken further in a following section.

3 Sheet metal forming

In metal forming, a piece of material is plastically deformed between tools
to obtain the desired product. A special class of metal forming concerns
the case where the thickness of the piece of material is small compared to
the other dimensions; sheet metal forming. Sheet metal forming is a widely
used production process and makes a good deal of the worldwide total steel
and aluminum production. It is characterized by a stress state in which the
component normal to the sheet plane is generally much smaller than the
stresses in the sheet plane. A commonly used sheet metal forming process
is the deep drawing process, Figure 5.

An initially flat or pre-shaped sheet material, the blank, is clamped
between the die and the blankholder. The blankholder is loaded by a
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Figure 5: Deep drawing sheet metal forming.

9



blankholder force, which is necessary to prevent wrinkling and to control
the material flow into the die cavity. Then the punch is pushed into the
die cavity, simultaneously transferring the specific shape of the punch and
the die to the blank. During the forming stage the material is drawn out of
the blankholder die region, whereas the material is subjected to compressive
and tensile stresses during forming. When a very high blankholder force is
applied, the deep drawing process becomes a stretching process. In stretch
forming the material is fixed under the blankholder, leading to thickness re-
duction in the remaining part of the blank in which the stresses are tensile in
almost all directions. Stretch forming is used mainly to produce large shal-
low parts that must be subjected to sufficient straining to improve the flex
resistance. To conclude, the material flow into the die cavity is controlled by
the blankholder, a restraining force is created by friction between the tools
and the blank. The friction conditions during forming are influenced by the
lubricant, the presence of coatings on the blank, surface roughness of the
tools and the blank, blankholder pressure and process speed.

The deep drawing process is frequently used in the automotive industry
to manufacture products with even more complicated shapes and curva-
tures. Nowadays, the automotive industry favors light construction princi-
ples, leading to the usage of light materials (aluminum and sandwich lam-
inates), tailored blanks and the usage of new production processes such as
hydroforming.

The deep drawing process is applied with the intention of manufacturing
a product with a desired shape and no failures. The final product shape after
deep drawing is defined by the tools, the blank and the process parameters.
An incorrect design of the tools and blank shape or an incorrect choice of
material and process parameters can yield a product with a deviating shape
or with failures. A deviating shape is caused by elastic springback after
forming and retracting the tools. The most frequent types of failure are
wrinkling, necking (and subsequently tearing), scratching and orange peel,
Figure 6.

Wrinkling may occur in areas with high compressive strains, necking
may occur in areas with high tensile strains, scratching is caused by defects
of the tool surface and orange peel may occur after excessive deformations,
depending on the grain size of the material. The deformation patterns of the
sheet material are influenced by the material properties and the friction con-
ditions. Generally, sheet material behaves anisotropically which means that
the material shows a different deformation behavior in different directions
because of the rolling process. An example of anisotropy is the development
of ears in cylindrical cup drawing.
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Figure 6: Frequent failures applied to sheet metal forming.

Figure 7: Two surfaces with different statistical properties.

4 Sheet metal forming and oil-pockets

There seems to be two basic approaches to the problem of a lubricated rough
surface sliding against a smoother surface. In Figure 7 two such manufac-
tured rough surfaces with different statistical properties are exemplified.

The first is to consider the effect of the asperities themselves. As the
surfaces are in relative motion, the lubricant pressure increases upstream
of an asperity and decreases downstream. The changes of pressure should
normally cancel each other out. But if the downstream pressure drops below
the cavitation pressure, the resulting cavitation will raise the local pressure
to the ambient one. There will then no longer be enough negative pressure
to cancel out the positive pressure and the net result will be to generate a
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Figure 8: Textured surface.

lifting force. The more cavitation, the greater the lift and consequently the
lower the friction [22, 2]. This is apparently the mechanism which enables
rotary lip seals to function [32].

The second approach, which is addressed here, is to consider the effect of
holes, pits or oil pockets, which may exist on the rough surfaces. The use of
textured surfaces, Figure 8, producing oil-pockets, in order to improve the
performance and quality of products that has experienced lubricated highly
loaded contacts during fabrication is a new and promising development being
studied by several research groups, both at universities and in industry,
[27, 14, 15, 39].

The use of textured surfaces may improve the load carrying capacity
and reduce friction in two ways: by induced cavitation upstream in the
oil-pockets providing lift themselves, Figure 3, and also by acting as a reser-
voir of lubricant which will leak out around their boundaries to minimize
direct metallic contact in the surrounding region. The former mechanism
requires rapid relative translation of the surfaces and so would be expected
to dominate in tribological environments characterized by high-speed mo-
tion. The latter mechanism would be expected to dominate in environments
of low translation speeds such as drawing. In situations where translation
speed varies with time or location, for instance reciprocating sliding or gear
meshing, the relative importance of the two mechanisms is likely to vary.
Reynolds, as described in [19], first established the existence of lift due to
cavitation in a journal bearing. The onset of cavitation delays and increases
the maximum pressure, which decays asymptotically to zero downstream of
the axis of symmetry, thus giving rise to a net separating force, Figure 3.
The adaptive finite element methods presented in this thesis gives a very
similar pressure distribution, confirming that in principle an oil pocket will

12



U

pr
po

p f

(a) MPHDL, a backward flow of the lubricant.

U

pr po p f

(b) MPHSL, a forward flow of the lubricant.

Figure 9: Oil-pocket leakage mechanisms.

produce lift by cavitation. The other way in which the presence of oil pock-
ets can reduce friction is by acting as a reservoir to trap lubricant which can
subsequently be released under the squeezing action of loads to maintain a
lubricant film between the contacting surfaces [26]. With applied pressure,
higher sliding speed and hydrodynamic shear stress exerted by the lubricant.

Apparently, oil pockets reduce friction in lubricated contact by two mech-
anisms, lift and leakage. The relative importance of these two mechanisms
in any given application has still to be established. The optimum friction
reduction by lift appears to depend on a combination of oil pocket size,
depth-to-diameter ratio and distribution. Friction reduction by leakage in-
volves two lubrication mechanisms termed MPHDL and MPHSL, Figure
9. Micro Plasto Hydro Dynamic Lubrication (MPHDL), if the lubricant is
squeezed out backwards from the oil pocket, is induced by hydrodynamic
pressure caused by the relative movement between sheet and die. The mech-
anism is initiated when the hydrodynamic pressure p0 in the pocket exceeds
the pressure pr in the rear of the pocket. A forward flow of the lubricant,
Micro Plasto Hydro Static Lubrication (MPHSL), occurs when the hydro-
static pressure p0 exceeds the die pressure pf in front of the pocket. The
prerequisite for MPHSL occurs when the pocket moves towards an area with
lower die pressure. The two lubricant mechanisms are affected by reduction,
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drawing speed, lubricant viscosity, die angle and back tension, pocket vol-
ume and shape.

5 Virtual tribology

Without extensive knowledge of the influences of all control variables on the
deep drawing process it is hardly possible to design the tools adequately
and make a proper choice of blank material and lubricant to manufacture a
product with the desired shape and performance using a minimum of power
during the process. As a result, after the first design of the tools and choice
of blank material and lubricant, an extensive and time consuming trial and
error process is started to determine the proper tool design and all other
variables, leading to the desired product. This trial and error process can
yield an unnecessary number of deep drawing strokes, or may even require
redesigning the expensive tools. To reduce this waste of time and cost,
computer simulation can be used to replace the experimental trial and error
process modeling by a virtual one and by extension optimize it.

The prime objective of an analysis is to assist in the design of a product.
To design or select the tools and the equipment, such design essentially
consists of:

• predicting the material flow,

• determining whether it is possible to form the part without surface or
internal defects,

• predicting the forces and stresses necessary to execute the forming
operation.

In the past a number of methods of analysis have been developed and
applied to various forming processes. These methods have been useful in
qualitatively predicting forming loads, overall geometry changes of the de-
formed blank and material flow and in determining approximate optimum
process conditions. However, a more accurate determination of the effects of
various process parameters on the deep drawing process has become possible
only recently, when the finite element method entered the arena.

Rapid developments in computer hardware make the finite element anal-
ysis of complex deformation responses increasingly applicable. The finite
element method is used worldwide to simulate the deep drawing process
and has become a reliable numerical simulation technology. For an accurate
simulation of a real life deep drawing process an accurate numerical descrip-
tion of the tools is necessary, as well as an accurate description of material
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behavior, contact behavior and other process variables. The numerical de-
scription of the tools is provided by CAD packages which are generally used
by tool designers. The finite element method adapts favorably to the com-
plicated surfaces generated. The description of material behavior, contact
behavior and other process variables evolved from rather simple models in
the earlier days to more and more sophisticated models nowadays. This
evolution is due to the elaborate work of researchers working in the field of
metal forming and is shown in authoritative conferences concerning sheet
metal forming. Developments have been made in the field of finite element
types, mesh adaptivity, material laws, failure criteria, wrinkling and surface
defects, springback, contact algorithms, friction, simulation of new processes
(for example hydroforming), optimization and process design.

The conventional finite element codes are based on implicit time in-
tegration. This involves repeated solutions of large systems of equations.
Furthermore, equilibrium must be fulfilled after each incremental step. As
a result, implicit codes are computational time and memory consuming.
Hence, a new class of finite element codes based on explicit time integration
was developed, resulting in a drastic decrease of computational time. In an
explicit code no system of equations needs to be solved and static equilib-
rium is not checked after each incremental step, as the algorithm assumes
an inertia dominated process. The explicit procedure is conditionally stable
with a critical time step, which is proportional to the smallest element in the
mesh. However, in most sheet metal forming processes inertia effects can
be neglected. In order to apply the explicit algorithms in these processes, it
is necessary to assume artificially high velocities and accelerations or arti-
ficially high mass density, which seems rather unrealistic. The competition
between implicit and explicit finite element codes is still in full swing.

Currently, the accuracy and reliability of numerical simulations of sheet
metal forming processes do not yet satisfy the industrial requirements. One
of the limitations of numerical simulations is still the high computational
time for complex deep drawing parts, despite the development of iterative
solvers, fast contact algorithms and the ever ongoing progress in computer
hardware.

Today, industries such as the automotive and aerospace industry re-
quire the solution of highly complex problems concerning three-dimensional
geometries, non linear material behavior, contact conditions and large de-
formations. Consequently, the numerical simulation of these types of prob-
lems is potentially very expensive, even when simplifying assumptions such
as membrane kinematics are made. Despite the high computer power avail-
able, it is desired that a computation can be performed overnight. Hence, the
computational costs, including computation time and time to prepare and
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analyze the finite element model, must be minimized while still maintain-
ing the desired accuracy. This goal can be achieved by adaptive remeshing;
the initial finite element mesh can be changed in a specific way during the
simulation. Adaptive remeshing has two major advantages. First, the com-
putational costs can be reduced by starting the simulation with a relatively
coarse mesh. Remeshing at specific parts in the mesh can take place when
these coarse elements are no longer able to accurately describe the geometry
or the rapid variation in state variables, and this is usually the case in the
final stage of the forming process. Second, when large deformations develop,
the initial mesh can be highly distorted, so that the numerical simulation
becomes unstable or crashes. To prevent a high mesh distortion, adaptive
remeshing can be applied to enhance the element mesh during simulation.

Globally, the adaptive remeshing procedure can be divided into three
phases. First, some measure of the accuracy of the finite element approxi-
mation is required. This is accomplished via a so called goal-oriented error
estimator which ranks the elements according to their contribution to the
total error. Consequently, the elements to be refined are a predefined sub-
set of the mostly needed elements indicated by the error estimator. The
refinement process needs to take several specific requirements into consid-
eration, for instance, the underlying geometry. Finally, a procedure for the
transfer of state variables and boundary conditions from the old mesh to
the new mesh concludes the remeshing. As a result, adaptive finite element
techniques can successfully be applied in simulations of the deep drawing
process, significantly decreasing the required CPU time for an accurate sim-
ulation.

However, another limitation is the lack of detailed knowledge of material
physics such as material behavior at large deformations, high deformation
rates and contact behavior. Therefore extensive research in the field of sheet
metal forming is and will be necessary to decrease the existing gap between
the real life deep drawing process and the predictions obtained from deep
drawing simulations. Friction behavior has up today been poorly modeled by
the Coulumb’s law. In order to accurately represent and effectively study
and optimize the influence of rough or textured surfaces on the squeezed
lubricant behavior, a more in-depth study is necessary and sophisticated
mathematical models has to be developed.

Using sophisticated goal-oriented adaptive finite element techniques in
harmony with modern computer hardware in order to improve the numerical
simulation of tribological scenes is natural and very promising and opens
up for the newborn rapidly growing field of ”Virtual Tribology” and the
possibility to take the analysis into the 21st century. The thesis at hand
follows that path.
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Figure 10: A simplified view of the physical simulation process, reproduced
to illustrate modeling terminology.

6 Computational modeling

Computational modeling can be defined as the process of building abstract
mathematical models from physical ones in order to simulate or mimic their
behavior in a computer. This process is of great importance in all activities
dependent on fast an reliable decision support. It may range from weather
forecast, development of next generation mobile phone or car, to medical
diagnostics and scheduling of transport systems.

The basic steps are discussed in more generality in what follows. The
process, pretty hard to describe correctly and thoroughly, is schematized in
Figure 10, which is a merged simplification, but serves well for an overview
and to illustrate terminology. The three key simulation steps shown are:
idealization, discretization and solution. Each step is a source of errors.
Therefor is a companion reverse bottom up identification and control of the
errors introduced of great importance.

6.1 Idealization

Idealization passes from the physical system to a mathematical model. This
is the most important and perhaps most crucial step in engineering practice,
because it cannot be automated. It must be done by a human, who possess
interdisciplinary skills, experience and familiarity with mathematics as well
practical problems and a clear idea of the goal to be reached.

The word model has the traditional meaning of a scaled copy or repre-
sentation of an object. In this context we are more likely heading towards
a model furnished in mathematical clothes and that should be implemented
in a computer. Note that a model is built to simulate certain aspects of
the behavior of a system, not the system itself. To predict everything, in all
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physical scales, you must deal with the actual system. A model abstracts as-
pects of interest to the modeler. This means that the same physical system
can give birth to different models depending on the questions we are likely
to present to the model. For instance, models for weather forecasts differ a
lot if it happens to be for a week, next day, or the next minute! This is a
very important aspect. Different models also give the range of applicability
for a particular model. This must be clearly documented so that misuse can
be avoided.

Why is the mathematical model an abstraction of reality? Engineering
systems tend to be highly complex. For simulation purposes it is necessary
to reduce that complexity to manageable proportions. This is achieved by
filtering out physical details that are not relevant to the analysis process.
Mathematical modeling is actually an abstraction tool by which complexity
can be controlled. It also has the advantage of handling extremely idealized
cases that are not reachable in practical experiments, such as ”things going
to zero or infinity” and of course taking care of dangerous experiments.
Consequently, picking a mathematical model is equivalent to choosing an
information filter.

6.2 Discretization and solution

Mathematical modeling is a simplifying step. But models of physical sys-
tems are not necessarily simple to solve. They often involve coupled partial
differential equations in space and time subject to boundary and/or inter-
face conditions. Such models have an infinite number of degrees of freedom.
We then talk about a continuous model.

At this point one faces the choice of going for analytical or numerical so-
lutions. Analytical solutions, also called closed form solutions, are perhaps
more intellectually satisfying, particularly if they apply to a wide class of
problems, so that particular instances may be obtained by substituting the
values of free parameters. Unfortunately they tend to be restricted to regular
geometries, not that sophisticated models and simple boundary conditions.
Moreover some closed-form solutions, expressed as a bunch of elementary
functions or infinite series solutions, may have to be numerically evaluated
anyway to be useful. Almost every interesting problem faced by an engineer
tend to fall outside this scope, and for more elaborate models, numerical
simulation in a computer is the only way out. Here is where finite element
methods enter the scene. To make numerical simulations practical it is nec-
essary to reduce the number of degrees of freedom to a finite number. This
reduction is called discretization. The product of the discretization process
is the discrete model. Discretization can proceed in spatial dimensions as
well as in the time domain. The discretized model usually ends up in a
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system of linear equations that naturally is handed over to a computer to
be solved. The dimension of that system is equal to the finite number of
degrees of freedom. The computer work needed depends heavily on that
number. A solid treatment of the modeling steps should keep track of the
different errors introduced, and a bottom up identification is of most value.
For example, the solution error originates from the fact that we have round
off problems when we apply fixed-point arithmetics in the computer. De-
pending on the numerical algorithms used they can be more or less severe.
The discretization error is the discrepancy that appears when the discrete
solution is substituted in the mathematical model. The continuification and
realization, are far more difficult, elaborate, and expensive to evaluate, be-
cause model validation requires access to and comparison with experimental
results. These may be either scarce, or unavailable in the case of a new
product in the design stage.

Intuitively one might suspect that the accuracy of the discrete model
solution would improve as the number of degrees of freedom is increased,
and that the discretization error goes to zero as that number goes to infinity.
This loosely worded statement describes the convergence requirement of
discrete approximations. One of the key goals of approximation theory is to
make the statement as precise as it can be expected from the mathematical
point of view.

6.3 The finite element method

The finite element method (FEM) is the most popular and dominant dis-
cretization technique in computational engineering. It can be interpreted
from either a physical or mathematical point of view. We start with the
former.

The basic concept in the physical FEM is the subdivision of the mathe-
matical model into disjoint (non-overlapping) components of simple geome-
try called finite elements or elements for short. The response of each element
is expressed in terms of a finite number of degrees of freedom characterized
as the value of an unknown function, or functions, at a set of nodal points
on the element. The response of the mathematical model is then considered
to be approximated by that of the discrete model obtained by connecting
or assembling the collection of all elements. So FEM actually follows the
process of ”divide and conquer” and as an almost perfect analogy we may
think of the Danish building blocks Lego of building complex shapes out of
simple standardized blocks. Even if we allow the bricks to be skewed we
have to live with ”broken horizons” when it comes to follow smooth curves
or surfaces in a CAD model, Figure 11. This can to some extent be cured
by using smaller elements, we are talking of coarse and fine mesh.
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Figure 11: Coarse mesh of familiar animal.

For illustrating FEM from the mathematical point of view, we start from
a general setting. Seek a solution u to the, often partial, differential equation

L(u) = f in Ω, (6.1)

together with suitable boundary conditions. In almost all practical situa-
tions we are forced to use some numerical procedure in order to find an
approximate solution uh that mimics the true solution u with an error that
we can control. We prefer to seek uh in a rather simple setting, namely as
a continuous piecewise polynomial of low order where the ”piecewisery” is
understood to coincide with the disjoint element subdivision. We say that
uh resides in a function space Vh spanned by such functions. The reason
for using polynomial, is the ease with which we can add, subtract, multiply,
differentiate and integrate them. They are closed under these operations.
The order is usually kept low, first or second, and then rely on adaptivity
to zoom in with smaller elements were needed. This is called an h-method.
The reverse path is to keep element size constant and increase the degree of
the polynomial approximation in order to keep track of sharp gradients in
geometry, solution field or other properties in the model, a p-method, Figure
12.

Thus, we have local support and they form an almost orthogonal basis
in the element. We call uh primary variable and let it have support at nodes
and then interpolate in the elements. As uh does not solve our equation at
hand, we project the residual

R(uh) := L(uh)− f,

onto the space spanned by the basis of Vh. To this end, we may say that
FEM is a nice joint venture between two classical mathematical branches,
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Figure 12: Approximation of given curved entity using either h-method or
p-method.

namely interpolation and minimization, in this case of an energy functional
(a least squares method). It is enough to check orthogonality for the residual
R(uh) against each of the basis functions in the space Vh that spans uh∫

Ω
(L(uh)− f)v dΩ = 0, ∀v ∈ Vh. (6.2)

The space in which we seek our solution uh is called trial space and the one
we are testing orthogonality against the test space. These linear spaces, that
usually are the same, should be complete, i.e. every Cauchy sequence should
converge to some point in the space, and it should be equipped with a norm
generated by an inner product, with which we can measure ”distance” or
”closeness” between functions. We also require the functions, or derivatives
of them, that reside in the space to be square integrable. So, we end up
in a Hilbert space or a Sobolev space respectively. The actual demands on
the space is clear after that (6.2) has been integrated by parts (divergence
theorem in higher dimensions) in order to lower the regularity requirements
for the functions in Vh. Apply this to the L part in left hand side of (6.2)∫

Ω
L(uh)v dΩ =

∫
Γ
(F (v)G(uh)− F (uh)G∗(v)) dΓ−

∫
Ω
uhL

∗(v)v dΩ, (6.3)

we end up in the weak form. Here F and G are differential operators whose
form follows naturally from integration by parts. The L∗ is called the adjoint
of L. If L∗ = L the L is self-adjoint and positive definite. In this case
is G∗ = G also. The F (uh) are called essential, or Dirichlet, boundary
conditions and G(uh) are the natural, or Neumann, boundary conditions.
When L∗ = L,F (uh) is prescribed along the boundary ΓD, and G(uh) is
prescribed on ΓN , where Γ = ΓD ∪ΓN ,ΓD ∩ΓN = ∅. We prefer to call (6.3)
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Figure 13: Adaptive refinement according to region of interest.

the Galerkin finite element method. Some times the phrase weighted residual
method (WRM) is used. If (6.1) originates from a variational formulation
we are on solid ground when it comes to questions concerning uniqueness of
uh and error control. However (WRM) gives the same solution uh even if a
variational form does not exist, or does, but not to our knowledge.

The soul of FEM is now manifested by the fact that the integration can
be carried out element-wise and gathered together, in the so called assembly
phase ∫

Ω
(L(uh)− f)v dΩ =

⊕∫
Ωe

(L(uh)− f)v dΩe. (6.4)

All the element manipulation, such as derivation and integration, is carried
out in a standardized parameter space and mapped to physical space. As
elements only ”talk” to neighboring elements via common nodes the assem-
bly phase eventually forms a set of linear equations for the unknown nodal
values of the primary variable uh. For self-adjoint problems this system is
symmetric.

The functional analysis machinery behind the formulation also gives us
a strict way of estimate and keeping track of the error in each element,
measured in some abstract norm ‖u − uh‖. This error is usually bounded
by the geometric size of the element. Thus, we have an indicator which tells
us where elements should be marked for subdivision in the next adaptivity
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Figure 14: Reynolds channel.

step, Figure 13. This process continues until an overall desired accuracy has
been achieved.

Solve −−−−→ Estimatex y
Refine ←−−−− Mark

To summarize, an adaptive finite element method should consists of a se-
quence of successive loops until satisfaction. The process should terminate
according to given stopping criteria, they may for instance be: a maximum
bound on the number of refinement levels, number of degrees of freedom
in the approximation, the memory usage, the time of the computation, the
total size of the residual, or a combination of them.

For an excellent and mathematically sound introduction to finite element
methods, we refer to [13]. A more demanding one is [6].

7 Models considered

7.1 Reynolds equation

The first mathematical approach to tribology was undertaken by Leonard
Euler with a geometrical resistance theory of ”dry” friction - the Interlocking
Asperity Theory. Euler’s theory provides us with the two well known terms
for static and dynamic friction. The static friction coefficient is provided by
the tangent of the asperity angle, while the dynamic friction coefficient is
reduced by the kinetic term. But the true workhorse for many of years is
of course the Reynolds equation. It has been used successfully to determine
the pressure distribution in the fluid film for a wide range of applications
from bearings, seals to sheet metal forming processes.

In the spirit of Figure 14, where a typical channel is furnished with the
x-axis oriented as the relative surface velocity U and z-axis upwards, he
made the following assumptions:
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Figure 15: Continuity of flow in a column of height H.

1. Body forces are neglected, i.e. there are no extra fields of forces acting
on the fluid.

2. The pressure is constant through the thickness of the film.

3. The curvature of surfaces is large compared with film thickness. Sur-
face velocities need not be considered as varying in direction.

4. There is no slip at the boundaries.

5. The lubricant is Newtonian, i.e. stress is proportional to rate of shear.

6. The flow is laminar.

7. Fluid inertia is neglected.

8. The viscosity is constant through the film thickness.

With these assumptions considered, the development of the equations
can start. First, continuity of flow is examined.

7.1.1 Continuity of flow in a column

Consider a thin column of fluid of height H(x, y) and base dx, dy, Figure
15. Fluid flows from the left at a rate qx per unit width so the volume flow
rate is qxdy into the column. The rate of flow out per unit width is

qx +
∂qx
∂x

dx, (7.1)
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where ∂qx
∂x is the rate of change of flow in the x-direction. The actual flow

out is (
qx +

∂qx
∂x

dx

)
dy. (7.2)

In the y-direction the same argument applies. The flow rate in is qydx and
out is (

qy +
∂qy
∂y

dy

)
dx. (7.3)

The vertical flow is rather different. If the floor of the column moves upwards
at a velocity w0 and if the roof moves upward as well at a speed wH the
volume of the column changes at a rate (wH −w0)dxdy. Although the base
and roof are moving, at the instant considered the height is H, though a
fraction of time later it will of course have altered.

An alternative possibility is that the floor and/or roof are porous, and
fluid is flowing in at a velocity w0 or out of the column at a velocity wH .
The fluid velocity can be considered constant over the very small base area
dxdy hence the increase of volume is at a rate w0dxdy and fluid leaves at a
rate wHdxdy.

For continuity of flow, the fluid being of constant density, the rate flowing
in must equal the rate flowing out. These can all be added up. Flowing into
the column

qxdy + qydx+ w0dxdy, (7.4)

and flowing out(
qx +

∂qx
∂x

dx

)
dy +

(
qy +

∂qy
∂y

dy

)
dx+ wHdxdy. (7.5)

These two are equal, equating them and canceling,

∂qx
∂x

dxdy +
∂qy
∂y

dydx+ (wH − w0)dxdy = 0. (7.6)

Now dxdy is arbitrary and non zero, hence can be canceled giving the con-
tinuity of flow of a column as

∂qx
∂x

+
∂qy
∂y

+ (wH − w0) = 0. (7.7)

If the top and bottom surfaces are impermeable, wH − w0 is the rate of
change of height of the column according to time and may be written ∂H

∂t .
Having obtained the continuity it is necessary to look at the force balance
of an element of the fluid.
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Figure 16: Equilibrium of an element.

7.1.2 Equilibrium of an element

Take a small element of fluid of sides dx, dy and dz, Figure 16, and consider
first the forces in the x-direction only. On the left of the element there is
a pressure p on the face of area dydz giving a force of pdydz acting to the
right. On the opposite face the pressure is

p+
∂p

∂x
dx, (7.8)

and the corresponding force is(
p+

∂p

∂x
dx

)
dydz. (7.9)

There are shear stresses on the top and bottom faces producing forces. On
the bottom face the shear stress τx gives a force τxdxdy acting to the left
and on the top face, and acting to the right, is a force(

τx +
∂τx
∂z

dz

)
dxdy, (7.10)

where the shear stress on the top face being τx + ∂τx
∂z dz. These forces acting

to the left and right must balance each other so

pdydz +
(
τx +

∂τx
∂z

dz

)
dxdy =

(
p+

∂p

∂x
dx

)
dydz + τxdxdy, (7.11)

expanding and canceling considering dxdydz an arbitrary non zero volume
gives

∂τx
∂z

=
∂p

∂x
. (7.12)

Now Newton’s viscosity relation states

τx = µ
∂u

∂z
, (7.13)
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where u is the velocity of the fluid in the x-direction, so

∂

∂z

(
µ
∂u

∂z

)
=
∂p

∂x
. (7.14)

In the y-direction where the velocity of the fluid is v the shear stresses and
pressures can be equated and a similar equation follows

∂τy
∂z

=
∂p

∂y
, where τy = µ

∂v

∂z
,

so
∂

∂z

(
µ
∂v

∂z

)
=
∂p

∂y
. (7.15)

The pressure gradient in the z-direction is by assumption zero, so ∂p
∂z = 0.

Consider now equation (7.14) further. This can be integrated since p is not
a function of z, thus

µ
∂u

∂z
=
∂p

∂x
z + C1. (7.16)

Now both µ and u are functions of z but it is in this context too difficult to
consider both at once so µ is taken as constant with respect to z as stated in
assumption 8. It is important to realize that this is a big assumption and is
only made for simplicity. The inclusion of ∂µ

∂z can modify the equation very
considerably in certain circumstances. However, using this assumption, a
further integration can be performed to give

µu =
∂p

∂x

z2

2
+ C1z + C2. (7.17)

The boundary conditions are simple, according to assumption 4, i.e. no slip
at the boundaries {

u(0) = U0

u(H) = UH
, (7.18)

so (7.17) and (7.18) gives

u =
1

2µ
∂p

∂x
(z2 − zH) + (UH − U0)

z

H
+ U0. (7.19)

Finally the flow rate qx =
∫ H

0 u dz in the x-direction per unit width of y

qx = −H
3

12µ
∂p

∂x
+ (U0 + UH)

H

2
. (7.20)

If the same procedure is followed for y using equation (7.15) it is easily found
that

qy = −H
3

12µ
∂p

∂y
+ (V0 + VH)

H

2
, (7.21)

where V0 and VH in the y-direction correspond to U0 and UH in the x-
direction.
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7.1.3 Full Reynolds equation

It is now possible to replace (7.20) and (7.21) into the continuity equation
(7.7)

∂

∂x

(
H3

µ

∂p

∂x

)
+

∂

∂y

(
H3

µ

∂p

∂y

)
= 6
(
∂

∂x
((U0 + UH)H) +

∂

∂y
((V0 + VH)H) + 2 (wH − w0)

)
.

(7.22)

This is the full Reynolds equation with everything varying.

7.1.4 Simplifications

Firstly, write U for the sum U0 + UH and V for V0 + VH . These are merely
short forms and do not involve any assumptions. Next, it is usually possible
to arrange the axes so that either

∂

∂x
(UH) = 0, or

∂

∂y
(V H) = 0.

The right hand side of (7.22) can therefore now be reduced to

6
(
∂

∂x
(UH) + 2(wH − w0)

)
.

A further simplification is to realize that the velocity of a surface does not
vary from one point to another, i.e. U is not a function of x so

∂

∂x
(UH) = U

∂H

∂x
.

Furthermore, write wH − w0 as ∂H
∂t . This is allowable if the surfaces are

impermeable so no fluid seeps in or out and they are merely moving relative
to each other. The right hand side of (7.22) now becomes

6
(
U
∂H

∂x
+ 2

∂H

∂t

)
.

Keeping both these terms in is a matter of complexity. In steadily running
situations, of course, ∂H

∂t is zero, so this term is usually omitted. Finally µ
has been taken as constant in the z-direction, so why not consider it constant
everywhere, giving

∂

∂x

(
H3 ∂p

∂x

)
+

∂

∂y

(
H3 ∂p

∂y

)
= 6µU

∂H

∂x
, (7.23)

or
∇ · (H3∇p) = 6µU

∂H

∂x
. (7.24)

This is the Reynolds equation as usually quoted.
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Figure 17: Blowing up a balloon considering a solid obstacle.

7.1.5 The variational formulation of Reynolds equation consid-
ering cavitation

Thus far we have not accounted for the possibility to include effects of cavita-
tion in Reynolds equation (7.24). To cure this, we present a novel algorithm
in analogy with the obstacle problem, which is encountered in many applica-
tions. For instance, blowing up a balloon and finding its shape considering
a solid obstacle, Figure 17.

The model will be outlined in the following. We assume that p is zero
at the boundaries of the domain Ω of interest. Let pc be the atmospheric
pressure, which without loss of generality can be taken to be zero. Obviously,
(7.24) is recognized as the stationary reaction-diffusion equation, which is
elliptic and the left hand operator is a positive definite operator so depending
on the gradient of H we can have p < 0 on sets of positive measure in Ω
which is a physically unrealistic situation. The lubricant cannot support sub-
atmospheric pressure, so an additional condition is then p ≥ 0 in Ω. The
request to incorporate this condition into the model motivates reformulation
as a variational inequality. Let c be a typical thickness of the film and set

p :=
pc2

6µU
, d :=

H

c
, and f := −∂d

∂x
,

giving the scaled version of (7.24)

−∇ · (d3∇p) = f. (7.25)

For given smooth d ∈ L∞(Ω), p ∈ H1
0 (Ω) and f ∈ H−1(Ω) where the

appropriate Hilbert spaces

H1(Ω) = {v :
∫

Ω
|v|2 + |∇v|2 dΩ <∞},
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H1
0 (Ω) = {v ∈ H1(Ω), v|∂Ω = 0},

it is known that a solution p∗ to (7.25) may be given by minimizing the
strictly convex quadratic functional

J [p∗] = min
p∈H1

0 (Ω)
J [p] = min

p∈H1
0 (Ω)

∫
Ω

1
2
d3|∇p|2 − fp dΩ. (7.26)

In particular, p ∈ H1
0 (Ω) implies that p vanishes on the boundary of Ω. As

previously indicated p ≥ 0 so we restrict our admissible functions in the
minimization process to reside in the space

K = {v ∈ H1
0 (Ω) : v ≥ 0},

and seek p∗ ∈ K such that

J [p∗] = min
p∈K

J [p]. (7.27)

We assume that K is closed and so chosen that p∗ exists and is unique.
Relying on the convexity of K we have

(1− ε)p+ εv ∈ K, 0 ≤ ε ≤ 1, ∀p, v ∈ K.

As a motivation for the next step we study a smooth quadratic function
g : R→ R on the closed interval I = [a, b]. Seek the points x0 ∈ I for which

g(x0) = min
x∈I

g(x). (7.28)

Three cases can now occur, Figure 18,

(a) if a < x0 < b, then g′(x0) = 0,
(b) if x0 = a, then g′(x0) ≥ 0,
(c) if x0 = b, then g′(x0) ≤ 0.

These statements may be summarized into one inequality by writing

g′(x0)(x− x0) ≥ 0, ∀x ∈ I. (7.29)

The analogy with (7.28) and (7.29) to our problem at hand (7.26) is straight-
forward. Using Gâteaux derivative we obtain

∂

∂ε
J [(1− ε)p+ εv]

∣∣∣∣
ε=0

(v − p) ≥ 0, ∀v ∈ K,

and finally we have our variational inequality for Reynolds thin film model
considering cavitation: find p ∈ K such that∫

Ω
d3∇p · ∇(v − p)− f(v − p) dΩ ≥ 0, ∀v ∈ K. (7.30)
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a b

(a) a < x0 < b⇒ g′(x0) = 0.

a b

(b) x0 = a⇒ g′(x0) ≥ 0.

a b

(c) x0 = b⇒ g′(x0) ≤ 0.

Figure 18: Three distinct cases for g(x0) = minx∈I g(x).

For the physical reasoning behind this model, see Capriz and Cimatti [9].
This formulation furthermore leads naturally to a decomposition of our do-
main into two disjoint sets

Ω = Ω+ ∪ Ωc,

where Ω+ stands for the domain having positive pressure and Ωc the domain
of cavitation. The set Ωc may be empty and in this case is our constraint
inactive and we have

J [p∗] = min
p∈K

J [p] = min
p∈H1

0 (Ω)
J [p].

In our application is usually Ωc non empty so there is an unknown free
boundary Γc between the two sets. This will automatically be identified
through our formulation, in comparison to the classical approaches men-
tioned in the previous section where it needs to be known a priori. A true
advantage. The question of regularity of the free boundary is not that easy
to answer, but if we assume that Γc is smooth we have that

∂p∗

∂n

∣∣∣∣
Γc

= 0,
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as we approach Γc from Ω+. This is of course identified as the standard
Reynolds boundary condition.

In order to solve the cavitation problem numerically, we introduce the
regularized version of (7.30): given a small penalty parameter ε ∈ R+, we
seek pε ∈ H1

0 (Ω) such that∫
Ω
d3∇pε · ∇v dΩ +

∫
Ω
d3β(pε)v dΩ =

∫
Ω
fv dΩ, ∀v ∈ H1

0 (Ω). (7.31)

where

β(s) =

{
0, s ≥ 0

s/ε, s < 0
.

This formulation was studied by Scholz [33] in the context of obstacle prob-
lems, and was used as a starting point for formulating a posteriori error
estimates by Johnson [24] (see also Wu [40] for application to the problem
at hand). From [33], we know that the solution of (7.31) converges to the
solution of (7.30) in the sense that∫

Ω
d3|∇p−∇pε|2 dΩ ≤ Cε

∫
Ω
f2 dΩ.

The idea used in [33, 24] was to tie ε to the meshsize h in a finite element
method for solving (7.31). In order to make dimensional sense (which is
important for the conditioning of the discrete system of equations) it is clear
that ε ∼ h2, in which case the error in the penalty formulation is of the same
order as the discretization error of a linear finite element method. Thus,
this approach is best suited for low-order finite element methods (linear and
bilinear). For higher order finite elements, we will either have a penalty error
dominating the discretization error or, alternatively, with ε ∼ hq, q > 2,
obtain a badly conditioned system of equations.

7.1.6 The finite element formulation

Let Th = {T} be a locally quasi-uniform triangulation of Ω into simplexes
T of local mesh size h, in the following regarded as a piecewise constant
function such that h(x) = h|T for x ∈ T , and let

Vh = {v ∈ H1
0 (Ω) : v|T ∈ P1(T ), ∀T ∈ Th},

i.e., we will use constant-strain triangles. Furthermore, we will tie the
penalty parameter ε to the local meshsize, following [33, 24], according to
ε = γ−1h2, where γ is a constant. We seek ph ∈ Vh such that∫

Ω
d3∇ph · ∇v dΩ +

∫
Ω
d3β(ph)v dΩ =

∫
Ω
fv dΩ, ∀v ∈ Vh, (7.32)
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or, explicitly,∫
Ω
d3∇ph · ∇v dΩ +

∫
Ω
d3γh−2p−h v dΩ =

∫
Ω
fv dΩ, ∀v ∈ Vh, (7.33)

where we used the notation

w− := min(w, 0).

This nonlinear problem is solved iteratively using fixed-point iterations. We
lumped the mass matrix resulting from the penalty term using nodal quadra-
ture, and the condition ph ≥ 0 was checked node-wise. In all nodes where
ph < 0, penalty was applied.

A posteriori error control is derived in natural norm and in goal oriented
formulation via dual solution. For the latter one is the performance for
two ways of linearisation of the tangent matrix compared with the error in
natural norm. The two basic forms of error control forms different strategies
for the mesh adaptivity that finally show up in rate of convergence.

The error control also rates the elements according to their contributions
to the total error. We subdivide those elements having highest indicators
forming next refined mesh. We refine 30% of the elements with the highest
indicator in each adaptive step.

In Figure 19, a typical model of an oil-pocket is illustrated together with
current mesh and pressure contours after ten refinements.

7.2 Mixed formulation of Reynolds equation

Instead of deriving the final form of Reynolds equation it is possible to
reclaim the flow rates, and formulate the mixed problem using flow and
pressure as variables (q, p). One obvious advantage of this formulation is
that no derivative of H is needed. Another one is the possibility to take
care of the cavitation problem as a pressure projection on the run due to
the fact that the two fields are iterated in parallel using an algorithm of
Uzawa type. Yet another advantage is that the flow is a primary variable,
hence no postprocessing is necessary if leakage is of interest.

7.2.1 The continuous model

By adding (7.20) and (7.21) taking continuity (7.7) and presented simpli-
fications into consideration, we are able to reintroduce Reynolds equation
and pose the problem as a mixed one of finding (q, p) such that

12µ
H3

q +∇p =
6µ
H2
U ,

∇ · q = 0.
(7.34)
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(a) Oil-pocket model.

(b) Mesh after ten refinements using error control in L2-
norm.

(c) Pressure contour lines.

Figure 19: Oil-pocket overview using Reynolds model.
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where it has been assumed that the thickness of the film does not change
over time and that U = (U0, UH) = (0, UH) and V = 0. In weak form, this
problem may be written as seeking q ∈ H(div; Ω), where

H(div; Ω) = {v ∈ L2(Ω) : ‖∇ · v‖L2(Ω) <∞},

and p ∈ L2(Ω) such that∫
Ω

12µ
H3

q · v dΩ−
∫

Ω
p∇ · v dΩ =

∫
Ω

6µ
H2
U · v dΩ, ∀v ∈ H(div; Ω), (7.35)

and ∫
Ω
∇ · qw dΩ = 0, ∀w ∈ L2(Ω). (7.36)

Boundary conditions for this problem are either handled strongly, in the case
of conditions on the normal flow rate, or weakly in the case of conditions on
the pressure.

7.2.2 The finite element formulation

Let Th = {T} be a locally quasi-uniform triangulation of Ω into simplexes T
of local mesh size h. From the finite element theory of mixed methods, it is
well known that one must carefully select the combination of approximations
for the flow variables and the pressure variable. In case of the Reynolds
model, a well known stable element combination is the lowest order Raviart-
Thomas finite element spaces for the flux, i.e. qh ∈ RT 0, defined as [8]

RT 0 := {q ∈ H(div; Ω) : q|T ∈ ([P0(T )]2 + xP0(T )), ∀T ∈ Th},

where P0(T ) is the space of zero degree polynomials on the element T ,
combined with element-wise constant pressure ph ∈ Qh, where

Qh := {w ∈ L2(Ω) : w|T ∈ P0(T ), ∀T ∈ Th}.

Now we state our finite element problem as seek (qh, ph) ∈ RT 0 ×Qh such
that∫

Ω

12µ
H3

qh · v dΩ−
∫

Ω
ph∇ · v dΩ =

∫
Ω

6µ
H2
U · v dΩ, ∀v ∈ RT 0, (7.37)

and ∫
Ω
∇ · qhw dΩ = 0, ∀w ∈ Qh. (7.38)

For a given finite element discretization of the saddle point problem (7.37)
and (7.38) we arrive at the following matrix formulation(

A B
BT 0

)(
qh
ph

)
=
(

F
0

)
. (7.39)
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In order for this to be solved we need to have A and BTA−1B invertible.
Normally there is no problem in the finite element method for A to be posi-
tive definite, but it is more crucial in the latter construction, due to the fact
that B is formed from a mix of the finite element spaces involved. How-
ever for our particular choice of spaces RT 0 and Qh the system is known to
be solvable without any stability problems. The the well–posedness of this
problem follows from the general theory presented by Brezzi, Hager, and
Raviart [8]. Cavitation occurs when the pressure reaches atmospheric pres-
sure, which we for definiteness define as p = 0. The lubricant cannot support
subatmospheric pressure, so an additional condition is p ≥ 0 in Ω. In order
to incorporate this condition into the model, we apply an iterative algorithm
of Uzawa type to solve the system taking cavitation into consideration using
a pressure projection on the run.

1. Let k = 0 and choose an initial pkh.
2. Solve the linear system Aqk+1

h = F−Bpkh for the flow field qk+1
h .

3. Perform Richardson update pk+1
h = pkh + ωBTqk+1

h ,
where ω is a relaxation parameter.

4. Project pressure field pk+1
h = PΛ(pk+1

h ), where the operator
PΛ(ϑ) := max(0,ϑ).

5. If convergence not yet achieved, set k = k + 1 and go back to step 2.

The projection operator PΛ is applied element–wise on the element values
for the pressure, which by construction leads to ph ∈ {p ∈ L2(Ω) : p ≥ 0}.

When it comes to adapt the mesh to given goals we investigate the
discrete jump of the normal component JqihKE of the flux qih over all interior
edges E in mesh T ih . We insert new nodes on midpoints of those edges
having highest indicators forming next refined mesh T i+1

h . We refine 30%
of the edges with the highest indicator in each adaptive step.

In Figure 20 is the flow field illustrated for the particular oil-pocket model
under consideration. Pressure field is similar to that for the penalized model,
Figure 19.

7.3 Stokes equation

We investigate the Stoksian flow model in two flavors, the strain and Laplace
formulation respectively, incorporate cavitation effect and formulate adap-
tive finite element methods for their solutions. We will focus on control of
the error in energy-like norms.

7.3.1 The continuous models

Consider a domain Ω in Rn, n = 2 or n = 3 with boundary ∂Ω. We consider
a lubricant with viscosity µ. The Stokes equation using strain formulation
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(a) Oil-pocket model.
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(b) Flow field.

Figure 20: Oil-pocket overview using 2D mixed formulation of Reynolds
model.
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can then be written

−2µ∇ · ε(u) +∇p = f and ∇ · u = 0 in Ω, (7.40)

with, for ease of presentation, u = 0 on ∂Ω. Here, u is the velocity of the
lubricant,

ε(u) =
1
2

(∇⊗ u+ (∇⊗ u)T ),

is the symmetric velocity gradient, p is the pressure, and f is a force term.
We have also used the notation

(∇ · τ )i =
n∑
j=1

∂τij
∂xj

.

Cavitation occurs when the pressure reaches atmospheric pressure, which
we for definiteness define as p = 0. The lubricant cannot support subat-
mospheric pressure, so an additional condition is p ≥ 0 in Ω. In order to
incorporate this condition into the model, it can be written as a variational
inequality as follows. Let

K = {p ∈ L2(Ω) : p ≥ 0},

and seek u ∈ [H1(Ω)]n and p ∈ K such that∫
Ω

2µε(u) : ε(v) dΩ−
∫

Ω
p∇ · v dΩ =

∫
Ω
f · v dΩ, ∀v ∈ [H1(Ω)]n, (7.41)

and

−
∫

Ω
∇ · u(q − p) dΩ ≤ 0, ∀q ∈ K. (7.42)

The same cavitation story goes for the Laplace formulation of Stokes equa-
tion. This one can be written as seek u ∈ [H1(Ω)]n and p ∈ K such that

∫
Ω
µ∇u : ∇v dΩ−

∫
Ω
p∇ · v dΩ =

∫
Ω
f · v dΩ, ∀v ∈ [H1(Ω)]n, (7.43)

and

−
∫

Ω
∇ · u(q − p) dΩ ≤ 0, ∀q ∈ K. (7.44)

The well-posedness of both problems follows from the general theory pre-
sented by Brezzi, Hager, and Raviart [8].
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7.3.2 Finite element formulations

Let Th = {T} be a locally quasi-uniform triangulation of Ω into simplexes T
of diameter hT . Let Eh denote the set of all element faces E, of size hE , in
Th. With each edge we associate a fixed unit normal vector n, and denote
the jump of a function v ∈ ΓE over an interior edge by JvK := v+ − v− and
JvK := v+ for an exterior one, where v± := limε↓0v(x ∓ εn) with x ∈ ΓE .
We define the following nonconforming finite element space for the strain
formulation

Vh := {v ∈ [L2(Ω)]n : v ∈ [P 1(T )]n, ∀T ∈ Th,v is continuous at
the midpoints of all interior faces, and v = 0
at the midpoints of all faces along ∂Ω},

Qh := {q ∈ L2(Ω) : q|T ∈ P 0(T ), ∀T ∈ Th},

i.e., we will use the Crouzeix-Raviart element which is known to be inf-sup
stable. We seek (uh, ph) ∈ Vh ×Qh such that

ah(uh,v) + bh(v, ph) = (f ,v), ∀v ∈ Vh, (7.45)

bh(uh, q − ph) ≤ 0, ∀q ∈ Qh ∩K, (7.46)

where

ah(u,v) :=
∑
T∈T

∫
T

2µε(u) : ε(v) dx+
∑
E∈Eh

γ

hE

∫
E
JuK · JvK ds,

and
bh(v, p) := −

∑
T∈T

∫
T
∇ · vq dx.

Here hE denotes the smallest of the sizes hT of the elements sharing edge
E. We remark that the standard formulation for the Crouzeix-Raviart ele-
ment is not stable for the symmetric velocity gradient formulation of Stokes
problem because of the absence of a discrete Korn’s inequality. The jumps
across element edges are added in order to fix this problem. We refer to
[7, 23] for details.

In order to solve the discrete system, (7.45) and (7.46), we apply an
iterative algorithm of Uzawa type.

1. Let k = 0 and choose an initial pkh.
2. Solve the linear system (7.45) for velocity field ukh.
3. Update pressure field pk+1

h = PΛ(pkh −∇ · ukh), where the operator
PΛ(ϑ) := max(0, ϑ).

4. If convergence not yet achieved, set k = k + 1 and go back to step 2.
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For the Laplacian formulation we choose the following function spaces

Vh := {v ∈ [H1
0 (Ω)]n : v|T ∈ [P 2(T )]n, ∀T ∈ Th},

Qh := {q ∈ L2(Ω) : q ∈ C0(Ω), q|T ∈ P 1(T ), ∀T ∈ Th},

i.e., we will use the Taylor-Hood element which is known to be stable. We
seek (uh, ph) ∈ Vh ×Qh such that∫

Ω
µ∇uh : ∇v dΩ−

∫
Ω
ph∇ · v dΩ =

∫
Ω
f · v dΩ, ∀v ∈ Vh, (7.47)

and

−
∫

Ω
∇ · uh(q − ph) dΩ ≤ 0, ∀q ∈ Qh ∩K. (7.48)

For the solution of the discrete system, (7.47) and (7.48), we also apply an
iterative algorithm of Uzawa type similar to that one used for the strain
formulation. However, recall that p = − limκ→∞ κ∇ ·u, but ∇ · Vh does not
reside in Qh, due to the fact that we are using Taylor-Hood elements, so in
step 3 we find a continuous pressure corrector pd ∈ Qh.

1. Let k = 0 and choose an initial pkh.
2. Solve the linear system (7.47) for velocity field ukh.
3. Find pd from the system

∫
Ω pdq dΩ = −

∫
Ω∇ · u

k
hq dΩ, ∀q ∈ Qh.

4. Update pressure field pk+1
h = PΛ(pkh + pd), where the operator

PΛ(ϑ) := max(0, ϑ).
5. If convergence not yet achieved, set k = k + 1 and go back to step 2.

Error control is derived and adaptivity applied. The process is illus-
trated in Figure 21, showing mesh refinement, pressure contour lines and
stream lines. We can se that recirculation in the pocket has started for this
particular pocket depth. In Figure 22 we present the residual-based explicit
error estimator progress during adaptivity for the Stokes 2D model.

7.4 Weak coupling of Reynolds model and Stokes model

The Reynolds model is a reduced Stokes model, valid for narrow lubrication
regions. In order to be able to handle non-narrow regions, there is a need to
be able to transit to the more accurate Stokes model. A fundamental prob-
lem is how to couple the two models in a numerical simulation, preferably
allowing for different meshes in the different domains. We present a weak
coupling method for Reynolds and Stokes models for lubrication computa-
tions.
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(a) Oil-pocket model.

(b) Mesh after ten refinements.

(c) Pressure contour lines.

(d) Stream lines.

Figure 21: Oil-pocket overview using Stokes 2D model.
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Figure 22: Residual-based explicit error estimator progress during adaptivity
for the Stokes 2D model.

7.4.1 The continuous model

We are interested in a weak coupling across a vertical interface of the mixed
formulation of Reynolds model and Stokes model previously considered.

The interface from the Reynolds side then appears one–dimensional,
while the interface on the Stokes side is two–dimensional. Denote by ΩR

the Reynolds domain, ΩS the Stokes domain, by Γ1D the dimensionally re-
duced interface, and by Γ2D := Γ1D ×H the full 2D interface. We have the
following problem to solve taking cavitation into consideration:

12µ
H3

q +∇pR =
6µ
H2
U in ΩR ⊂ R2,

∇ · q = 0 in ΩR,

−µ∆u+∇pS = 0 in ΩS ⊂ R3,

∇ · u = 0 in ΩS ,∫ H

0
σn(u, pS) dz + pR = 0 on Γ1D,

(q −
∫ H

0
u dz) · n = 0 on Γ1D.

(7.49)

This problem must then be supplemented with boundary conditions on the
exterior boundaries, which depend on the type of model adjacent to the
exterior. These are handled in the usual way in the finite element setting.
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7.4.2 Finite element formulation

To formulate our method, we suppose that we have regular finite element
partitions T ih , i ∈ {R,S} of the two subdomains ΩR and ΩS into shape
regular simplexes. These two meshes imply the existence of trace meshes on
the interface

Gih = {E : E = T ∩ Γ2D, ∀T ∈ T ih}, i ∈ {R,S}.

From the finite element theory of mixed methods, it is well known that one
must carefully select the combination of approximations for the flow vari-
ables and the pressure. In the case of the Reynolds model, a well known
stable element combination is the lowest order Raviart-Thomas approxima-
tion for the flow rate, i.e., qh ∈ V R

h , where

V R
h := {q ∈ H(div,Ω) : q|T ∈ (P0(T ))2 + xP0(T ), ∀T ∈ T Rh }

combined with a pressure space of element–wise constant pressures,

QRh := {p ∈ L2(Ω) : p|T ∈ P0(T ), ∀T ∈ T Rh }.

In the case of Stokes flow, we choose to use the well known stable Taylor-
Hood element consisting of the velocity space

V S
h := {u ∈ [C0(Ω)]3 : u|T ∈ (P2(T ))3, ∀T ∈ T Sh }

and pressure space

QSh := {p ∈ C0(Ω) : p|T ∈ P1(T ), ∀T ∈ T Sh }.

Cavitation occurs when the pressure reaches atmospheric pressure, which
we for definiteness define as p = 0. The lubricant cannot support subatmo-
spheric pressure, so an additional condition is p ≥ 0 in ΩR ∪ΩS . In order to
incorporate this condition into the model, it can be written as a variational
inequality. For this purpose we define the space

K = {p ∈ L2(Ω) : p ≥ 0}.

We shall use a Lagrange multiplier method using piecewise constants on the
1D trace mesh GRh for the fulfillment of the continuity requirement on the
velocities. We seek (qh,uh, phR, p

h
S , λ

h) ∈ V R
h × V S

h ×QRh ×QSh × Ch, where

Ch := {κ ∈ L2(Γ1D) : κ|E ∈ P0(E), ∀E ∈ GRh },

such that

ah((qh,uh), (vR,vS)) + bh((phR, p
h
S), (vR,vS))

+ch(λh, (vR,vS)) = fh(vR), (7.50)
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for all (vR,vS) ∈ V R
h × V S

h ,

bh((phR − wR, phS − wS), (qh,uh)) ≤ 0, (7.51)

for all (wR, wS) ∈ (QRh ∩K)× (QSh ∩K), and

ch(κ, qh,uh) = 0, ∀κ ∈ Ch. (7.52)

Here

ah((q,u), (vR,vS)) :=
∫

ΩR

12µ
H3

q · vR dΩ +
∫

ΩS

µ∇u : ∇vS dΩ,

bh((wR, wS), (vR,vS)) := −
∫

ΩR

wR∇ · vR dΩ−
∫

ΩS

wS∇ · vS dΩ,

ch(γ, (vR,vS)) :=
∫

Γ2D

γ n · (vR −
∫ H

0
vS dz) ds,

fh(vR) :=
∫

ΩR

6µ
H2
U · vR dΩ.

(7.53)

It is clear from the formulation that on every one–dimensional element side
on GRh the (constant) normal component of the flow rate will be set equal to
the mean of the Stokes velocities over the height (multiplied by the height).
The problem could thus alternatively be posed in a discrete space where
this side condition is used directly in the definition of the space. The the
well–posedness of this problem follows from the general theory presented
by Brezzi, Hager, and Raviart [8], and for the interface condition in this
setting we refer to the closely related approach of Alonso et al. [1]. For
solving this nonlinear saddle point problem, we have chosen to use an Uzawa
iteration method. In order to find a good initial solution, we first assemble
the finite element matrices emanating from full model (7.49), written using
the unrestricted spaces (that are actually used in the iterations)

KS Bd 0 0 CS

BT
d 0 0 0 0

0 0 Kq Kp CR

0 0 KT
p 0 0

CT
S 0 CT

R 0 Sλ




uh

phS
qh

phR
λh

 =


0
0
Fq

0
0

, (7.54)

where the submatrices are the assembled element matrices according to the
integrals found in (7.53), i.e. with (vR,vS , wR, wS , κ) ∈ V R

h × V S
h × QRh ×

QSh × Ch denoting generic basis functions spanning the relevant spaces, we
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have

KS =
⊕
T∈T S

h

∫
T
µ∇vS : ∇vS dΩ, Bd = −

⊕
T∈T S

h

∫
T
wS∇ · vS dΩ,

Kq =
⊕
T∈T R

h

∫
T

12µ
H3

vR · vR dΩ, Kp =
⊕
T∈T R

h

∫
T
wR∇ · vR dΩ,

Fq =
⊕
T∈T R

h

∫
T

6µ
H2
U · vR dΩ,

CR =
⊕
E∈GR

h

∫
E
n · vR ds, CS = −

⊕
E∈GR

h

∫
E

∫ H

0
n · vS dz ds, Sλ = 0,

where ⊕ denotes the assembly operator for the finite element matrix con-
struction. We remark that in this particular case there is no need for sta-
bilization of the multipliers, thus Sλ = 0. A simple stabilization method
could for instance mimic the idea of letting neighboring edges along GRh be
connected by springs with spring constants kλ, giving

Sλ =
⊕
E∈GR

h

kλ

(
1 −1
−1 1

)
.

The system (7.54) is fed repeatedly into a direct linear equation solver. In
each round is a simple cavitation requirement phS = max(phS , 0) enforced
and a modification of the corresponding residuals (out–of–balance residual
forces) carried out. This process is repeated until phS ≥ 0 throughout the
Stokes domain. The artificial pressure boundary conditions are then released
and the model with current solution state is handed over to Usawa taking
cavitation into consideration using a pressure projection on the run. The
Stokes and Reynolds models are solved in parallel as described in in previous
chapters. We supply the details.

A core operation in Uzawa algorithm is to update the pressure field.
However, recall that p = − limκ→∞ κ∇·u, but ∇·V S

h does not reside in QSh ,
due to the fact that we are using Taylor-Hood elements, so in step 3 we find
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a continuous pressure corrector pd ∈ QSh .

1. Let k = 0 and choose as initial pressure solution kphS and kphR
provided by the solution strategy of the linear system (7.54)
just described.

2. Solve the condensated version of the linear system (7.54)KS 0 CS

0 Kq CR

CT
S CT

R Sλ

kuh
kqh
kλh

 =

 −Bd
kphS

Fq −Kp
kphR

0

,
for the vector fields kuh and kqh and the Lagrange multipliers kλh.

3. Find a continuous pressure corrector pd ∈ QSh from the system∫
ΩS
pdq dΩ = −

∫
ΩS
∇ · uhq dΩ, ∀q ∈ QSh ⇔ Mdpd = Bd

kuh,
where Md is the lumped mass matrix, which makes the update fast.

4. Update pressure fields{
k+1phS = PΛ(kphS + ωSpd)
k+1phR = PΛ(Fq + ωRKT

p
kqh)

where ωS and ωR are relaxation parameters and the operator
PΛ(ϑ) := max(0,ϑ).

5. If convergence not yet achieved, set k = k + 1 and go back to step 2.

The projection operator PΛ is applied point–wise on the nodal values for the
pressure, which by construction leads to {phR, phS} ∈ K.

For the numerical evaluation of the integrals involved in the coupling
matrices, CR and CS , a 2-point Gauss quadrature scheme is used on the
edges of the one-dimensional trace mesh GRh and a 3-point Gauss quadrature
scheme for companion surface integrals on the Stokes mesh.

Finally in Figure 23, we illustrate a typical coupling situation where
the 3D Stokes part is modeled with Taylor-Hood tetrahedra elements. As
expected a Couette flow profile is generated in the coupling zones.

8 Computational aspects

For the development of element routines Mathematica has been used. All
basis functions and their derivatives according to parameter space has been
symbolically derived and, after optimization according to number of float-
ing point operations needed, automatically translated to Matlab code and
written to m-files.

Apart from standard Taylor-Hood triangle and tetrahedra, interpolating
pressure linear and velocity quadratic, the following two elements are used,
namely Raviart-Thomas in 2D and Crouzeix-Raviart in 2D and 3D.
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(a) Oil-pocket model.
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(d) Couette flow profile at coupling zones.

Figure 23: Oil-pocket overview using coupling model.
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8.1 Raviart-Thomas element

The Raviart-Thomas (RT k) triangular and tetrahedral elements of order k
are tailor-made finite elements for approximation of vector fields in such for-
mulations where only normal continuity is required over the element faces.
They are suitable for flow-pressure formulation of fluid problems. For mixed
forms of second order elliptic applications, standard H1(Ω)-continuous ap-
proximations are well-known to cause problems in that they allow spurious
modes with non-zero energy that do not exist in the continuous problem.
The RT k elements are designed to approximate H(div; Ω), and does there-
fore not suffer from this problem. That’s the reason for their popularity in
the so called mixed finite element formulation.

Here we will focus on the lowest order Raviart-Thomas triangular ele-
ment i 2D that is used in the thesis. This element is edge based rather than
nodal and is constructed such that the normal component of each vector
valued basis function ϕi is constant one on element edge Ei and zero on the
two other edges, for i ∈ {1, 2, 3}. This construction will assure continuity in
the normal, but not tangential, direction of a vector field over the element
edges. To be more precise, let the vector field under consideration reside in
the lowest Raviart-Thomas finite element space, i.e. qh ∈ RT 0, where [8]

RT 0 := {q ∈ H(div; Ω) : q|T ∈ ([P0(T )]2 + xP0(T )), ∀T ∈ Th},

and P0(T ) is the space of zero degree polynomials on the element T ∈ Th, a
locally quasi-uniform triangulation of Ω into simplexes T of local mesh size
h. This means that the support is restricted to the two triangles adjacent
to their common edge, or one triangle if we have an exterior edge under
consideration. By direct computation it can be verified that

div q ∈ P0(T ), and q · ni ∈ P0(Ei),

where Ei are the edges of T and ni a unit normal vector to Ei for i ∈ {1, 2, 3}.
It is possible to show that a piecewise polynomial function is in H(div; Ω)
if and only if it has continuous normal components across the edges in the
triangulation. This ensures that RT 0 consists of all vector fields q that are
locally q|T ∈ ([P0(T )]2 + xP0(T )), and whose constant normal components
across the edges are continuous.

The standard way in the finite element community to make use of a
reference element for definition of the basis functions turns out to be a bit
complicated in this case. In order to make elements that are continuous in
the normal direction of the mapped reference element, we must assume that
the geometry mapping is affine. This is usually not the case, and a more
elaborate Piola transformation has to be involved. So, the construction of
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the basis functions for the Raviart-Thomas spaces is most easily done in
the physical configuration. Consider an element with corner nodes xi, edge
vectors ei associated with edges Ei, and with edge unit normal vectors

ni =
(

0 −1
1 0

)
ei
‖ei‖

.

The lowest order element basis functions can be written

ϕi =
(
ai + cix
bi + ciy

)
,

and to construct the vector valued basis {ϕ1,ϕ2,ϕ3} on the element we
need to solve

ϕi · nj = δij ,

at the three midpoints xei = 1
2(xi + xi+1) mod 3 of the edges. This is a

simple linear algebra problemn1x n1y n1 · xe1
n2x n2y n2 · xe2
n3x n3y n3 · xe3

aibi
ci

 = f i, with (f i)j = δij .

The three basis functions are illustrated in Figure 24. Note that this does
not yet define the basis functions for Th uniquely, because there are two unit
normal vectors to an edge. A choice for the normal can for example be made
according to the numbering of the nodes in Th. For instance, let the edge
vectors ei point to the node with the largest index.

8.2 Crouzeix-Raviart element

The non-conforming Crouzeix-Raviart (CR) element, for triangles and tetra-
hedra, is a finite element that can interpolate both the field variable and the
divergence of the field variable. Thus the difficult problem of locking in the
incompressible limit showed by standard FE methods is eliminated. The
CR element is thereby suitable for (nearly) incompressible problems, such
as incompressible flow. However, for linear elasticity a stability term has to
be added to the weak form in order to make the CR element stable. This
is because without the stabilization term the CR element can rotate around
its side nodes.

Here, we will focus on the first order (linear) CR element, which has its
unknowns located at the center of gravity on the element sides, see Figure
25 for the triangle case. This implies that continuity between elements is
only fulfilled at these points. The linear CR element, is constructed simply
defining the standard linear triangle or tetrahedra shape functions on the
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Figure 24: Lowest order Raviart-Thomas basis functions.

inscribed one, Figure 25, and then letting them be extended to the whole
element. Consequently, a shape function affiliated with a side under con-
sideration is constant one along that side and minus one at the opposite
node.

Next, we show the interpolant features for the CR element. Let πhu
denote the interpolation of u. Further, choose the interpolant πhu such
that the average value of the exact u on each element side is equal to the
nodal value, i.e.,

πhu(xi) =
1
|Ei|

∫
Ei

u(xEi) dEi,

for element side Ei. Now, the CR element can in a mean sense interpolate
the divergence of the field variable on an element T , which is shown by the
following manipulations∫

T
∇ · u dT =

∑
i

∫
Ei

n · u dEi =
∑
i

∫
Ei

n · πhu dEi =
∫
T
∇ · πhu dT.

where Gauss’ theorem was used. Thus, the interpolant approximates u in
a mean sense and the divergence of the interpolant approximates the diver-
gence of u in (another) mean sense. A standard low order FE approximation
lacks this possibility of simultaneously approximating the solution and its
divergence, which can be interpreted as the underlying cause of locking.
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Figure 25: The three Crouzeix-Raviart basis functions.

8.3 Coupling matrices

After the involved surface integrals in CR and CS has been carried out in
local parameter space, we need to address the values of the shape functions
to their appropriate nodal degrees of freedom. As we usually do not know the
actual orientation of the tetrahedra given by the program that performed
the mesh of the 3D domain, it is therefor necessary to solve the inverse
problem; Given a four node tetrahedra with nodal coordinates x1,x2,x3

and x4 and a point xc under consideration anywhere on it’s surface. Find
the corresponding parameter values ξ, η and ζ. To be more precise, we need
to solve the following system

[x1,x2,x3,x4] ·ϕ = xc with basis functions ϕ = (ξ, η, ζ, 1− ξ − η − ζ)T .

This is a simple linear algebra problem, and the solution is given byx1 − x4 x2 − x4 x3 − x4

y1 − y4 y2 − y4 y3 − y4

z1 − z4 z2 − z4 z3 − z4

ξη
ζ

 =

xc − x4

yc − y4

zc − z4

.
Now it’s straightforward to feed them into both the linear and quadratic
tetrahedra shape functions and distribute them accordingly.

8.4 Element assembly

The assembly of sparse matrices is a key operation in finite element meth-
ods. A naive and plain implementation consumes a huge amount of time in
Matlab.

%--- Allocate sparse global stiffness matrix.
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K = sparse(nDof,nDof);
%--- Assemble all the elements.
for ie = 1:ne

%--- Element stiffness matrix.
Ke = elementStiffness(ie);
%--- Map local dof to global.
[iK,jK] = topology(ie);
%--- Assemble.
K(iK,jK) = K(iK,jK) + Ke;

end

Such an assembly of large finite element models was not the main purpose
when Matlab was designed. A quick look at the internal data structures for
a sparse matrix, gives a clear indication of the time thief involved. To
understand why the above example are so slow, we need to understand how
Matlab stores its sparse matrices. A sparse matrix is in general stored, and
particular our global stiffness matrix of order nDof times nDof, as three
ordinary vectors that holds information about nonzero entries in the sparse
array under consideration. Let’s call them iS, the row indices bucket, jS, the
column indices bucket and finally cS the bucket of coefficients. As Matlab is
an old friend of Fortran, arrays are stored in column order, with sorted row
indices iS. This implies a massive reorganization of the triplets (iS,jS,cS)
whenever a new nonzero coefficient calls for space in the assembly phase.

To solve the problem we create and furnish the mentioned list of triplets
ourselves, and let Matlab convert them into a sparse matrix all at once.
In this process we rely on the nice implemented property that, if there are
duplicates, which a finite element matrix always has, the duplicates are
summed, which is exactly what we want when assembling a finite element
matrix. This workaround gives a speedup factor of ∼ 150 when dealing with
nDof of order five and, is expected to be even more significant as nDof grows.

A problem is to allocate enough space for the three buckets (iS,jS,cS)
in advance. An nDof2 approach will likely fill up the computer memory so,
start with a reasonable, in some way problem dependent, size and let them
grow nice and smooth during the assembly phase. An example follows

%--- Initial allocation of sparse array buckets.
mS = 1000;
iS = zeros(mS,1);
jS = zeros(mS,1);
cS = zeros(mS,1);
nS = 0;
%--- Assemble all the elements.

52



for ie = 1:ne
%--- Element stiffness matrix.
Ke = elementStiffness(ie);
%--- Map local dof to global.
[iG,jG] = topology(ie);
nG = length(iG);
nG2 = nG*nG;
%--- Watch out for bucket overflow.
if ((nS + nG2) > mS)

mS = 2*mS + nG2;
iS(mS) = 0;
jS(mS) = 0;
cS(mS) = 0;

end
%--- Add on.
kG = 1:nG2;
kS = nS + kG;
iS(kS) = iG(1+mod(kG-1,nG));
jS(kS) = jG(ceil(kG/nG));
cS(kS) = Ke(:);
nS = kS(end);

end
%--- Finally, give birth to the sparse global stiffness array.
K = sparse(iS(1:nS),jS(1:nS),cS(1:nS),nDof,nDof);

9 Summary of appended papers

In this section a brief summary of the appended papers is given.
Paper I. We present an adaptive finite element method for a cavita-

tion model based on Reynolds equation. A posteriori error estimates and
adaptive algorithms are derived, and numerical examples illustrating the
theory are supplied. In order to incorporate into the model the fact that
the lubricant cannot support sub-atmospheric pressure we formulate it as
a variational inequality. To solve the cavitation problem numerically, we
introduce a regularized version of the variational inequality using a penalty
parameter tied to the local mesh size. Adaptivity is then based upon a
posteriori error control in an energy-like norm. A method based on goal-
oriented adaptive error control in general functionals of the solution is also
presented.

Paper II. A lubrication model based on the more physically adequate
Stokes equation, that, in comparison to the simplified Reynolds model, can
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handle more demanding situations that comes with the computational do-
main at hand. We are using Crouzeix-Raviart element. The stability for
the velocity gradient formulation used is fixed by adding contribution to the
stiffness matrix from jumps over the element edges. For the Laplacian for-
mulation a mathematical problem is that the pressure, as usual, is penalized
as a limit process of the divergence of the vector field and does therefore not
reside in the same function space as the pressure itself. We find a continuous
pressure corrector that reside in the proper function space to be used in the
Uzawa iteration algorithm. Adaptivity is then based upon a posteriori error
control. A simplified error control that is an analogy with the Hencky prob-
lem in elastoplasticity is applied. Numerical results comparing the Stokes
model with the Reynolds model are supplied.

Paper III. The Reynolds model modeled with mixed-finite element
methods, i.e. different function spaces for the dependent variable and the
fluxes. So, a given boundary problem is decomposed into two or more equiv-
alent problems. It is crucial to select the combination of approximations
for the flow variables and the pressure variable. We use the lowest order
Raviart-Thomas approximation for the flux, which is known to be stable.
Adaptive mesh refinement and error control is taken into account. The
paper concludes with some numerical examples.

Paper IV. The Reynolds model is a reduced Stokes model, valid for
narrow lubrication regions. In order to be able to handle non-narrow regions,
there is a need to be able to transit to the more accurate Stokes model.
A fundamental problem is how to couple the two models in a numerical
simulation, preferably allowing for different meshes in the different domains.
In this paper, we present a weak coupling method for Reynolds and Stokes
models for lubrication computations. For the non-narrow region a mixed
finite element method is used. The two meshes are glued together using 1D
trace meshes and a Lagrange multiplier approach.

10 Future trends and ideas

The ultimate goal is to optimize the shape of the surface texture in order to
tailor the surfaces to their expected field of application. To that extent we
need to scrutinize the oil-pocket scenario even further and a more extensive
physical model description is necessary, i.e. towards Navier-Stokes.

The coupling of Reynolds equation in narrow regions to the governing
equations of the non-narrow regions containing a more elaborate model will
be formulated as a discontinuous Galerkin problem followed by Nitsche’s
method [28], in order to glue the regions together along the internal bound-
aries.
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There are also new and promising applications using oil-pocket tech-
niques. One of them investigated experimentally at the moment is piston
rings, where the lubricant model and the ring dynamics has to be solved
simultaneously, i.e.,

∇ ·
(
h3∇p

)
= 6µU

dh

dx
+ 12µ

dh

dt

m
∂2h

∂t2
= F (p)

.

To sum up, a ”functional analysis” approach to the scenario opens up for
application in areas that at first sight seems to be completely different. For
instance use of ”oil-pocket” techniques on external surfaces of vehicles, such
as cars, trains and aeroplanes, in order to reduce drag. In this case is one
surface identified as the solid surface of the vehicle and the other one the
onset flow. The ”lubricated region” then corresponds to the boundary layer.
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SUMMARY

We present an adaptive finite element method for a cavitation model based on Reynolds’ equation.
A posteriori error estimates and adaptive algorithms are discussed, and numerical examples illustrating
the theory are supplied. Copyright � 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The motivation for this work is the need for accurate computations of the hydrostatic pressure in
a lubricant entrapped between the tool and workpiece in a metal-forming process or in a sliding
bearing. The ultimate goal is to be able to optimize the surface structure so as to take advantage
of cavitation effects in the lubricant.

Often, the computations performed in order to assess the effects of surface pit geometries are
based on highly simplified assumptions, see, e.g. Etsion et al. [1, 2], Wang et al. [3]. We propose
to instead solve the full model numerically as part of an optimization loop. To this end, we
here initiate a study of adaptive finite element modelling of hydrodynamic lubrication including
cavitation effects. The cavitation will introduce steep pressure gradients that cannot be resolved
on a coarse computational mesh. Consequently, an adaptive algorithm to automatically refine the
mesh locally, based on error estimation, is crucial for accurate results. To our knowledge, the only
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paper dealing with adaptivity for this problem proper is Wu and Oden [4], where an a priori error
estimate was used as error indicator. Using such an approach, the problem of unknown constants
precludes accurate estimation of the error and allows only error indication, i.e. information about
where the error is large (in a relative sense). We follow instead the a posteriori approach laid out
in Johnson and Hansbo [5], and in particular Johnson [6], which deals with a problem closely
related to ours (however, without numerical examples).

In this paper, we will focus on control of the error in energy-like norms (root-mean-square
control of pressure gradients) and goal-oriented adaptive control for functionals of the error (e.g.
of the pressure resultant).

The cavitation problem that we consider can be written as a variational inequality. We will use a
penalty approach to reformulate the problem as a variational equality, and our adaptive algorithm
will be closely tied to the penalty formulation. For a more general method for error control of
variational inequalities, applicable also to the problem at hand, we refer to Suttmeier [7].

We emphasize that the basic theory for a posteriori error estimates for the problem at hand is
not new but was given by Johnson [6] for energy norm and by French et al. [8] for pointwise
errors. Our contribution lies in the more general error estimates, in the implementation details, and
in the numerical examples.

2. THE CONTINUOUS PROBLEM

Consider a thin lubricant with viscosity ! enclosed between two surfaces !1 and !2 in relative
motion. We assume that !1 (identified with the xy-plane) is stationary and that !2 moves with
velocity v= (V, 0, 0). The Reynolds’ equation can then be written as

−∇ · (H3∇P) = −6!V
!H
!x

where H(x, y) is the local thickness of the lubricant film, and P is the pressure. For the physical
reasoning behind this model, see, e.g. Capriz and Cimatti [9]. We assume that P is zero at the
boundaries of the domain " of interest (zero taken as the atmospheric pressure).

The lubricant cannot support subatmospheric pressure, so an additional condition is P!0 in ".
In order to incorporate this condition into the model, it is often written as a variational inequality
as follows. Let c be a typical thickness of the film and set

p := Pc2

6!V
, d := H

c
, and f :=−!d

!x

Then the cavitation model can be formulated as follows: let

K = {v ∈ H1
0 (") : v!0}

and seek p ∈ K such that
∫

"
d3∇ p · ∇(v − p) d"!

∫

"
f (v − p) d" ∀v ∈ K (1)

see [9].
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In order to solve the cavitation problem numerically, we first introduce the following regularized
version of (1): given a small penalty parameter " ∈ R+, we seek p" ∈ H1

0 (") such that
∫

"
d3∇ p" · ∇v d" +

∫

"
d3#(p")v d"=

∫

"
f v d" ∀v ∈ H1

0 (") (2)

where

#(s) =
{
0, s!0

s/", s<0

This formulation was studied by Scholz [10] in the context of obstacle problems, and was used as
a starting point for formulating a posteriori error estimates by Johnson [6] (see also Wu [11] for
application to the problem at hand). From [10], we know that the solution of (2) converges to the
solution of (1) in the sense that

∫

"
d3|∇ p − ∇ p"|2 d""C"

∫

"
f 2 d"

The idea used in [6, 10] was to tie " to the mesh size h in a finite element method for solving
(2). In order to make dimensional sense (which is important for the conditioning of the discrete
system of equations), it is clear that " ∼ h2, in which case the error in the penalty formulation is
of the same order as the discretization error of a linear finite element method. Thus, this approach
is best suited for low-order finite element methods (linear and bilinear). For higher-order finite
elements, we will either have a penalty error dominating the discretization error or, alternatively,
with "∼ hq , q>2, obtain a badly conditioned system of equations.

3. FINITE ELEMENT APPROXIMATION

3.1. Formulation

Let T={T } be a locally quasiuniform triangulation of " into simplexes T of local mesh size h
(in the following regarded as a piecewise constant function such that h(x)= h|T for x ∈ T ) and let

Vh ={v ∈ H1
0 ("): v|T ∈ P1(T ), ∀T ∈T}

i.e. we will use constant-strain triangles. Furthermore, we will tie the penalty parameter " to the
local mesh size, following [6, 10], according to "= $−1h2, where $ is a constant.

We seek ph ∈ Vh such that
∫

"
d3∇ ph · ∇v d" +

∫

"
d3#(ph)v d"=

∫

"
f v d" ∀v ∈ Vh (3)

or, explicitly,
∫

"
d3∇ ph · ∇v d" +

∫

"
d3$h−2 p−

h v d"=
∫

"
f v d" ∀v ∈ Vh (4)

where we used the notation

w− := min(w, 0)
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This non-linear problem we solved iteratively using fixed-point iterations. We lumped the mass
matrix resulting from the penalty term using nodal quadrature, and the condition ph!0 was checked
nodewise. In all nodes where ph<0, penalty was applied.

3.2. A posteriori error control in the natural norm

We consider error control in the natural norm induced by the finite element formulation, following
Johnson [6], denoted by e= p" − ph . We have the following a posteriori error representation

‖d3/2∇e‖L2(") + ‖d3/2$1/2h−1e−‖L2(")"C1
∑

T∈T
%T + C2

∑

T∈T
%!T (5)

where

%T = h‖ f + ∇ · (d3∇ ph) − d3$h−2 p−
h ‖L2(T )

%!T = 1
2h

1/2‖d3[n · ∇ ph]‖L2(!T )

with [n · ∇ ph] denoting the jump in normal derivative across element sides !T , and

[v] =
{

v+ − v− on !Tint,

v+ on !T!",
v± = lim

&↓0
v(x ∓ &nT )

This is a consequence of the following argument, given in [6]. We first note the orthogonality
relation

∫

"
d3∇e · ∇v d" +

∫

"
d3$h−2e−v d"= 0 ∀v ∈ Vh (6)

Then, with 'h a suitable interpolant (e.g. that of Clément [12]) onto Vh , and using the monotonicity
of v *→ v−,

(v− − w−)(v − w)!(v− − w−)2

we have

‖d3/2∇e‖2L2(") + ‖d3/2$1/2h−1e−‖2L2(") =
∫

"
d3|∇e|2 d" +

∫

"
d3$h−2|e−|2 d"

"
∫

"
d3|∇e|2 d" +

∫

"
d3$h−2e−e d"

=
∫

"
d3∇ p" · ∇e d" +

∫

"
d3$h−2 p−

" e d"

−
∫

"
d3∇ ph · ∇e d" −

∫

"
d3$h−2 p−

h e d"

=
∫

"
f e d" −

∫

"
d3∇ ph · ∇e d" −

∫

"
d3$h−2 p−

h e d"
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=
∫

"
f (e − 'he) d" −

∫

"
d3∇ ph · ∇(e − 'he) d"

−
∫

"
d3$h−2 p−

h (e − 'he) d"

Using integration by parts followed by Cauchy’s inequality and interpolation estimates yielding
the constants

C1 = sup
v∈H1

0 (")

h−1‖v − 'hv‖L2(T )

‖d3/2∇v‖L2(T )
, C2 = sup

v∈H1
0 (")

h−1/2‖v − 'hv‖L2(!T )

‖d3/2∇v‖L2(T )

the error representation formula (5) follows.
It is clear that the constants C1 and C2 cannot be computed exactly, but they may be estimated

as approximate solutions to the eigenvalue problem of finding u ∈ H1(K ) and ( ∈ R such that

(
∫

T
d3∇u · ∇v dx =

∫

T
(u − 'hu)(v − 'hv) dx ∀v ∈ H1(K )

Then C1 is given by C1 =√
(max/h; C2 is computed analogously. (For this computation, it is

easier to let 'h denote the nodal interpolant, which, however, requires more smoothness than that
assumed in the interpolation estimate in order to make sense, see [12]. This is a technical point of
no practical importance in the current context.) For example, on an equilateral triangular element
with H1(K ) replaced by P2(K ), and assuming d constant and h := √

2meas(T ), we find

C1 ≈ 0.501d−3/2, C2 ≈ 0.635d−3/2

3.3. Goal-oriented a posteriori error control

We next consider error control for functionals of the error, or ‘quantities of interest’, following
Becker and Rannacher [13]. The total error in this approach is found as the product of two terms:

1. The residual, obtained by plugging the finite element solution into the differential equation.
This quantity measures the inability of the finite element solution to solve the equation in a
pointwise sense and is completely local.

2. The solution z of a linearized continuous dual problem; a generalized Green’s function
(a.k.a. influence function) which gives information about the effect of the local error upon
the quantity of interest.

The important questions to address in this context are the linearizarion of the dual problem
and the computation of the dual solution z. In the following, we will discuss different ways to
deal with these questions. We begin with a brief description of the goal-oriented approach in the
present setting.

Denote by e= p" − ph and e# = #(p") − #(ph). Defining the residual R ∈ H−1(") by

〈R, v〉 :=
∫

"
f v d" −

∫

"
d3∇ ph · ∇v d" −

∫

"
d3#(ph)v d" ∀v ∈ H1

0 (") (7)
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where 〈· , ·〉 denotes duality pairing, we have the following error equation:
∫

"
d3∇e · ∇v d" +

∫

"
d3e#v d"= 〈R, v〉 ∀v ∈ H1

0 (") (8)

and the orthogonality property
∫

"
d3∇e · ∇v d" +

∫

"
d3e#v d"= 0 ∀v ∈ Vh (9)

In order to estimate functionals of the error, we follow [5, 13] and argue by duality as follows.
For briefness of notation, assume that we have a general non-linear variational problem: find p ∈ V
such that

∫

"
A(p)v d"=

∫

"
f v d" ∀v ∈ V

and a FEM counterpart: find ph ∈ Vh such that
∫

"
A(ph)v d" =

∫

"
f v d" ∀v ∈ Vh

We then have the following Galerkin orthogonality property:
∫

"
(A(p) − A(ph))v d" = 0 ∀v ∈ Vh

or
∫

"
B · (p − ph)v d"= 0 ∀v ∈ Vh

where

B :=
∫ 1

0
A′()p + (1 − ))ph) d) (10)

Note that B constitutes an exact linearization, since
∫ 1

0

d
d)

A()p + (1 − ))ph) d) = [A()p + (1 − ))ph)]10 = A(p) − A(ph)

and
∫ 1

0

d
d)

A()p + (1 − ))ph) d) =
∫ 1

0
A′(·) d

d)
()p + (1 − ))ph) d) = B · (p − ph)

Next, we must define a linearized dual continuous problem as follows: find z such that

BT · z = g

where g can be chosen freely, and where BT is the adjoint of B, defined by
∫

"
BT · pv d" =

∫

"
pB · v d"
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for all p ∈ V and v ∈ V . Then

∫

"
(p − ph)g d" =

∫

"
(p − ph)BT · z d"

=
∫

"
B · (p − ph)z d"

=
∫

"
(A(p) − A(ph))z d"

=
∫

"
( f − A(ph))(z − 'hz) d" (11)

To obtain an error estimate involving a quantity of interest, a suitable g must be chosen. In our
case we are interested in the error in the pressure resultant, in which case g= 1 is the proper
choice. We note also that in a scalar case B can be computed directly by

B = A(p) − A(ph)
p − ph

if p − ph 1= 0, B = 0 otherwise (12)

However, computing B exactly still requires knowledge of the exact solution and two possible
practical strategies are:

• Use the rectangle rule for computing the integral in (10) to obtain B(p, ph) ≈ A′(ph). This
is usually an inexpensive method since A′ is represented by the Newton matrix which is
normally computed anyway in a non-linear iteration scheme, but it does introduce a rather
severe linearization error.

• Compute an improved approximation p∗
h of p and use B(p, ph) ≈ B(p∗

h, ph). This requires
a substantial additional computational effort since p∗

h is computed to a higher accuracy than
ph . Of course, p∗

h can then be used as the solution used for design purposes, but technically
the error is computed for ph , not p∗

h . If we want to be economical, we then need some
information as to how much the error decreases going from ph to p∗

h which may not be so
easy to come by.

In this paper we shall consider and compare these two strategies applied to the lubrication
problem.

Approximate linearization: Here we introduce the adjoint problem of finding z ∈ H1
0 (") such

that
∫

"
d3∇z · ∇v d" +

∫

"
#′(ph)zv d" =

∫

"
gv d" ∀v ∈ H1

0 (") (13)

for a given g, where we note that

#′(ph) =
{
0, ph!0

"−1, ph<0
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‘Exact’ linearization: Here we use (12) and search z ∈ H1
0 (") such that

∫

"
d3∇z · ∇v d" +

∫

"
bzv d" =

∫

"
gv d" ∀v ∈ H1

0 (") (14)

where

b(x)=
{
d3e#(x)/e(x) if e(x) 1= 0

0 if e(x)= 0

and we note that 0"b"d3/". This idea was introduced by French et al. [8] to obtain maximum
norm control of the error for a closely related problem.

Having solved the dual problem numerically, we make the specific choice of v = e and deduce,
following (11), that

∫

"
ge d" ≈

∫

"
f (z − 'hz) d" −

∫

"
d3∇ ph · ∇(z − 'hz) d" −

∫

"
d3#(ph)(z − 'hz) d" (15)

This relation is then used for both the approximate and exact linearization cases.
The strategy for numerical evaluation of the error is now as follows. In order to solve (14)

approximately, we need to approximate b. This we do by solving the problem (3) on two meshes,
the one used to compute ph and one where all elements have been divided once more. On the finer
mesh, we also solve the dual problem (14) or, in case of the approximate linearization, (13). This
is done in order to evaluate approximatively z − 'hz. For indication of which elements that are
to be refined, we note that the integral over " can be written as a sum of element integrals. The
size of the element integrals is then used as an indicator; we refine the 30% of the elements with
the highest indicator in each adaptive step. We shall in particular be concerned with the choice
g= 1, since this gives us the error in the pressure resultant. The pressure resultant is the quantity
of interest in the lubrication problem; the ultimate goal is to optimize the pit geometries in such
a way as to maximize this quantity.

4. NUMERICAL EXAMPLES

In order to investigate the performance of the methods proposed, a few numerical examples will
be presented. Unfortunately, experimental results demonstrating in detail the local behaviour of the
pressure image is, to our knowledge, not published. Though some integrated experimental results,
such as lift, has been given by Etsion et al. [1, 2] and Wang et al. [3].

The only parameter involved in the algorithm and used in the numerical calculations is $, the
global constant which ties the penalty parameter " to the local mesh size, according to " = $−1h2. We
remark that, since h → 0 as the mesh is refined, the strength of the penalty increases automatically
in areas where the mesh is refined. These are also the areas in which the error contribution is
estimated to be large. In all examples that follow we set $ = 1000. An important strength of the
method is that $ is just a potentiometer for speed of convergence and does not influence the final
solution. All integrals involved are integrated using two-point Gauss quadrature. The characteristic
channel height c is in all examples defined to be equal to the nominal channel height and all other
unimportant scaling parameters is chosen so that the product 6!V := 1.
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4.1. One-dimensional chain-tooth

We consider a simple one-dimensional chain-tooth according to Figure 1. The geometry of the
tooth is simply a half square and the channel height is twice the peak height of the tooth. The
boundary conditions are p= 0 at the inlet and outlet of the domain.

A comparison between a pure Reynolds solution and the adaptive finite element cavitation
method with a posteriori error control in the natural norm is given in Figure 2. We can see that
we essentially reconstruct the behaviour of the classical solution when the continuity boundary
conditions are applied. The important note is of course that we do not need to a priori define
the boundary location between the fluid and cavitation phases. As can be seen in Figure 2, the
classical approach of first computing pR from a pure Reynolds solution, followed by approximating
p≈ max(0, pR) (known as the half-Sommerfeld condition, cf. [14]) is not very accurate.

Figure 1. One-dimensional tooth model.

Figure 2. One-dimensional tooth model. Comparison of pure Reynolds solution
with proposed cavitation model.
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Figure 3. One-dimensional tooth model. Adaptivity refinement progress.

Figure 4. One-dimensional tooth model. Convergence of a posteriori error
representation according to relation (5).
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Figure 5. Hemi-spherical oil-pocket model.

Figure 6. Hemi-spherical oil-pocket model. Pure Reynolds solution on a coarse mesh.

In Figure 3 we visualize the adaptivity refinement progress inserting new nodes. In each step,
the elements that give the largest third of the element contributions to the total a posteriori error
according to relation (5) are subdivided into two new ones. The decrease of the total error according
to refinement, measured by the number of nodes, is presented in Figure 4.
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Figure 7. Hemi-spherical oil-pocket model. Pure Reynolds solution on a semi-fine mesh.

Figure 8. Cavitation model. Initial mesh.
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Figure 9. Hemi-spherical oil-pocket model. Adaptivity progress.

Figure 10. Hemi-spherical oil-pocket model. Pressure iso levels.

4.2. Two-dimensional oil-pocket

We consider a two-dimensional oil-pocket in the shape of a hemi-sphere, Figure 5. The geometry
is furnished as follows. The channel height is twice the impact depth and half of the impact radius.
Boundary condition is p= 0 on external boundary of the domain.
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Figure 11. Hemi-spherical oil-pocket model. Cavitation model, solution on a fine mesh.

Figure 12. Hemi-spherical oil-pocket model. Cavitation model, convergence of pressure in natural norm.
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Figure 13. Hemi-spherical oil-pocket model. Cavitation model, convergence of lift.

Figure 14. Infinite array of pockets.

First a pure Reynolds solution on a coarse mesh, Figure 6, followed by solution on a semi-fine
one, Figure 7.

The following four Figures 8–11 illustrate error control in the natural norm starting with the
initial mesh and after adaptive refinement step 20. We can clearly see the focus towards regions
with high gradients in the solution as a result of the error-oriented adaptive refinement process.

Copyright � 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 72:1584–1604
DOI: 10.1002/nme



ADAPTIVE FINITE ELEMENT METHODS FOR HYDRODYNAMIC LUBRICATION 1599

Figure 15. Infinite array of pockets. Cavitation model, pressure distribution in one cell.

Figure 16. Infinite array of pockets. Cavitation model, pressure distribution in one cell.
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Figure 17. Infinite array of pockets. Cavitation model, lift as function of area ratio d/w.

Figure 18. Infinite array of pockets. Cavitation model, contour plot of lift according to area ratio
d/w and depth/diameter ratio h/d .
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Figure 19. One-dimensional ‘hemi-spherical’ oil-pocket model. Bundle of pressure
curves according to impact depth.

Figure 20. One-dimensional ‘hemi-spherical’ oil-pocket model. Lift according to impact depth.
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Figure 21. Hemi-spherical oil-pocket model. Convergence of residual error representation according to
relation (15). Each dot represents an adaptive step.

The convergence of the pressure solution in the natural norm is shown in Figure 12, and the
convergence of lift in Figure 13.

4.3. Optimization of two-dimensional oil-pocket area ratio

We consider the same two-dimensional single oil-pocket layout as in the previous example, but
now assembled as an infinite array of quadrilateral cells, containing one centred pocket each,
Figure 14.

Our aim is to investigate how the lift is influenced by the size and depth of the oil-pocket. One
cell is considered and cyclic boundary conditions are imposed using multipoint constraints in order
to simulate the infinite array. The analysis is summarized in Figures 15–18. In the last figure, d/w
denotes the oil-pocket impact diameter over cell width and h/d is the oil-pocket impact depth
over diameter. Inspecting Figure 17 we can identify an optimal impact diameter but hardly do the
same for the impact depth, which, however, is clearly identifiable in a one-dimensional setting as
evident in the last two figures: in Figure 19 the pressure curves for increasing impact depth clearly
indicate a certain depth better than the others; the total lift as function of centre impact depth
over nominal clearance between the surfaces accompanies the scenario, Figure 20. The worrisome
question as to why the two-dimensional case is less predictive than the one-dimensional has to be
left as an open question for the moment (cf. Section 5).
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Figure 22. Hemi-spherical oil-pocket model. Convergence in lift. Each dot represents an adaptivity step.

4.4. Goal-oriented a posteriori error control and comparison

We consider again the two-dimensional oil-pocket with the shape of a hemi-sphere, Figure 5. In
Figure 21 we present the decrease of the total residual error 〈1, e〉 representation given in relation
(15) relative to the number of nodes, for the two different strategies to compute the tangent matrix
B. Finally, in Figure 22 we compare, relative to the convergence in lift, the formulation of error
control in the natural norm with the two goal-oriented strategies.

5. DISCUSSION

As expected, the goal-oriented finite element method is more effective in predicting the lift even
for a rather coarse mesh. On the other hand, more work is needed at each refinement step for the
goal-oriented method, so it is not obvious to judge if one method is in favour over the other. Error
estimation in the natural norm cannot give us information about the error in lift, but if the change
in computational lift is monitored separately, the simpler natural norm adaptivity must, for our
purposes, be considered sufficiently good for adapting the mesh.

In order to optimize and fully investigate the shape of the oil-pockets, our results indicate that
the two-dimensional model does not have a good predictive quality. This we conjecture depends
on the shortcomings of the Reynolds thin film model. We believe that the simulations must rely on
more accurate modelling, using incompressible Stokes or Navier–Stokes flow, at least in regions
with rapidly varying height. Thus, future work will focus on the coupling of narrow regions with
relative non-narrow regions (e.g. oil-pockets) using different physical models.
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A STOKES MODEL WITH CAVITATION FOR THE
NUMERICAL SIMULATION OF HYDRODYNAMIC

LUBRICATION

BERTIL NILSSON AND PETER HANSBO

Abstract. We present a cavitation model based on Stokes’ equation
and formulate adaptive finite element methods for its numerical solution.
A posteriori error estimates and adaptive algorithms are derived, and
numerical examples illustrating the theory are supplied, in particular
with comparison to the simplified Reynolds model of lubrication.

1. Introduction

The motivation for this work is the need for accurate computations of the
hydrostatic pressure in a lubricant entrapped between the tool and workpiece
in a metal forming process or in a sliding bearing. The ultimate goal is to
be able to optimize the surface structure so as to maximize the lift from
the pressure in the fluid. The usual tool for analyzing this problem is the
Reynolds’ model [15], which however has severe limitations in that it is not
well suited for handling large variations in the geometry of the lubrication
layer. One way of decreasing resistance between the tool and workpiece is
to make pits in the surface of the workpiece in order to generate cavitation
with resulting pressure redistribution. If the pit geometry cannot be allowed
to vary in an arbitrary fashion, optimization of the pit geometry becomes
untenable.

In this paper, we will present a model for Stokesian flow with cavitation
and formulate adaptive finite element methods for its solution. We will focus
on control of the error in energy-like norms, and present numerical results
comparing the Stokes model with the Reynolds model.

2. The continuous problem

Consider a domain Ω in Rn, n = 2 or n = 3 with boundary ∂Ω. We
consider a lubricant with viscosity µ. The Stokes equation can then be
written

(1) −2µ∇ · ε(u) +∇p = f and ∇ · u = 0 in Ω,

Key words and phrases. cavitation, Stokes problem, adaptivity, error estimate .
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with, for ease of presentation, u = 0 on ∂Ω. Here, u is the velocity of the
lubricant,

ε(u) =
1
2
(
∇⊗ u+ (∇⊗ u)T

)
is the symmetric velocity gradient, p is the pressure, and f is a force term.
We have also used the notation

(∇ · τ )i =
n∑
j=1

∂τij
∂xj

.

Cavitation occurs when the pressure reaches atmospheric pressure, which
we for definiteness define as p = 0. The lubricant cannot support subat-
mospheric pressure, so an additional condition is p ≥ 0 in Ω. In order to
incorporate this condition into the model, it can be written as a variational
inequality as follows. Let

K = {p ∈ L2(Ω) : p ≥ 0},
and seek u ∈ [H1(Ω)]n and p ∈ K such that

(2)
∫

Ω
2µε(u) : ε(v) dΩ−

∫
Ω
p∇ · v dΩ =

∫
Ω
f · v dΩ, ∀v ∈ [H1(Ω)]n

and

(3) −
∫

Ω
∇ · u (q − p) dΩ ≤ 0, ∀q ∈ K.

The well-posedness of this problem follows from the general theory pre-
sented by Brezzi, Hager, and Raviart [6].

3. Finite element approximation

3.1. Formulation. In order to discretize this problem, we let Th denote a
triangulation of Ω into simplices T of diameter hT , and let Eh denote the set
of element faces E, of size hE , in Th. We split Eh into two disjoint subsets

Eh = EI ∪ EB
where EI is the set of edges in the interior of Ω and EB is the set of edges
on the boundary. Further, with each edge we associate a fixed unit normal
n such that for edges on the boundary n is the exterior unit normal. We
denote the jump of a function v ∈ Γh at an edge E by JvK = v+ − v− for
E ∈ EI and JvK = v+ for E ∈ EB, and the average 〈v〉 = (v+ + v−)/2 for
E ∈ EI and 〈v〉 = v+ for E ∈ EB, where v± = limε↓0 v(x∓ εn) with x ∈ E.

We define the following nonconforming finite element space:

Vh := { v ∈ [L2(Ω)]n : v ∈ [P 1(T )]n, ∀T ∈ Th, v is continuous at
the midpoints of all interior faces, and v = 0 at the
midpoints of all faces along ∂Ω}.
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Qh := {q ∈ L2(Ω) : q|T ∈ P 0(T ), ∀T ∈ Th},
i.e., we will use the Crouzeix-Raviart element which is known to be inf-sup
stable. We seek (uh, ph) ∈ Vh ×Qh such that

(4) ah(uh,v) + bh(v, ph) = (f ,v), ∀v ∈ Vh

(5) bh(uh, q − ph) ≤ 0, ∀q ∈ Qh ∩K.
Here,

(6) ah(u,v) :=
∑
T∈Th

∫
T

2µε(u) : ε(v) dx+
∑
E∈Eh

γ

hE

∫
E

JuK · JvK ds

and

(7) bh(v, q) := −
∑
T∈Th

∫
T
∇ · v q dx.

Here, hE denotes the smallest of the sizes hT of the elements sharing edge
E. We remark that the standard formulation for the Crouzeix-Raviart ele-
ment is not stable for the symmetric velocity gradient formulation of Stokes
problem because of the absence of a discrete Korn’s inequality. The jumps
across element borders are added in order to fix this problem. We refer to
[4, 10] for details.

3.2. Solution method. In order to solve the non-linear discrete system (4)
and (5), we apply an iterative algorithm of Uzawa type.

(1) Let k = 0 and choose an initial pkh.
(2) Solve the linear system (4) for the velocity field ukh.
(3) Update the pressure field pk+1

h = PΛ(pkh−∇·ukh) elementwise, where
the operator PΛ(ϑ) := max(0, ϑ).

(4) Set k = k + 1 and go back to step (2).

3.3. A posteriori error control. The question of error control for mixed
variational inequalities has not been extensively treated in the literature.
Though it fits in the general framework of Becker and Rannacher [2], the only
paper the authors are aware of that explicitly treats the case at hand is [17],
where, however, the fact that there is a variational inequality not only for the
multiplier, but also for the primal variable, is used in a crucial way. We shall
here instead explore a simple alternative to [2, 17] based on the observation
that the cavitation problem is reminiscent of the Hencky problem in elasto–
plasticity, and then follow Johnson and Hansbo [13] in deriving a posteriori
error estimates. We then first consider the compressible case and consider
the Stokes problem as the limit of the corresponding elasticity problem with
the bulk modulus tending to infinity. The elasticity problem in question can
be formulated as follows: find the velocity u and the stress σ such that
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(8)

σ = 2µ εD(u) + Π(κ∇ · u) 1 in Ω

−∇ · σ = f in Ω

u = 0 on ∂Ω

Here, κ is the bulk modulus, 1 is the identity tensor, τD = τ − 1
3tr τ 1 is

the deviatoric part of τ , with tr τ =
∑

k τkk, and

(9) Π(v) =
{
v if v ≤ 0,
0 if v > 0.

To simplify the analysis, we shall consider a regularized version of (8) in the
form of a penalty method. Given ε > 0, find σ ∈ W = {τ : τji = τij ∈
L2(Ω)} and u ∈ [H1

0 ]n such that

(10) c(σ, τ ) + ε−1(tr σ −Π(tr σ), τ )− (ε(u), τ ) = 0, ∀τ ∈W
(σ, ε(u))− (f ,v) = 0, ∀v ∈ [H1

0 ]n.

Here

(f ,v) =
∫

Ω
f · v dx, (σ, τ ) =

∫
Ω
σ : τ dx,

and c(σ, τ ) is the complementary energy functional

(11) c(σ, τ ) :=
∫

Ω

(
1

2µ
σD : τD +

1
3κ

tr σ tr τ
)
dΩ.

Note that (10) formally tends to (8) as ε → 0. The regularization is in-
troduced with the purpose of simplifying the statement and proof of the a
posteriori error estimate, and the actual (small) value of ε will be insignifi-
cant. In the following, we shall use the notation

η(σ) =
1
ε

(tr σ −Π(tr σ)) 1.

3.3.1. Finite element formulation. The regularized and slightly compressible
form of (4)–(5) now takes the form: find (σh,uh) ∈W × Vh such that

(12) c (σh, τ ) + (η(σh), τ ) = (ε (uh) , τ )

for all τ ∈W ,

(13)
∑
T∈Th

(σh, ε(v))T +
∑
E∈Eh

γ

hE
(JuhK , JvK)E = (f ,v)

for all v ∈ Vh. Here, Equation (12) can be thought of as holding pointwise
in the element; it is formulated as a weak statement for convenience only.
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3.3.2. An energy norm error estimate for the elasticity equations. To pre-
pare for the full error estimate, we first need to establish an error estimate
for the elasticity equations without cavitation. A closely related estimate
was recently derived for fully discontinuous finite element methods in [11].
We write the discretized elasticity equations as follows. Find uh ∈ Vh such
that

(14)
∑
T∈Th

(σ(uh),v)T +
∑
E∈Eh

γ

hE
(JuhK , JvK)E = (f ,v), ∀v ∈ Vh,

where the elastic stress tensor is defined as

(15) σ(u) = 2µ ε(u) + (κ− 2µ/3)∇ · u1.

We let u denote the exact solution to the continuous problem corresponding
to (14) and introduce the following norm

(16) |‖v‖|2 =
∑
T∈Th

(σ(v), ε(v))T

on H1
0∪Vh. For the three-dimensional case, we shall use the following decom-

position of 3× 3 tensor fields (for the two-dimensional case, we analogously
use the decomposition introduced in [3]). Below we denote by H(curl,Ω)
the space of vector–valued functions in [L2(Ω)]3 for which the curl is also in
[L2(Ω)]3.

Lemma 1. Let χ ∈ L2(Ω,R3×3) be a second order tensor field. Then there
exist z ∈ H1

0 (Ω) and φ ∈ [H(curl,Ω)]3 such that

(17) χ = σ(z) + Curl φ

where

(18) Curl φ =



∂φ13

∂x2
− ∂φ12

∂x3

∂φ11

∂x3
− ∂φ13

∂x1

∂φ12

∂x1
− ∂φ11

∂x2

∂φ23

∂x2
− ∂φ22

∂x3

∂φ21

∂x3
− ∂φ23

∂x1

∂φ22

∂x1
− ∂φ21

∂x2

∂φ33

∂x2
− ∂φ32

∂x3

∂φ31

∂x3
− ∂φ33

∂x1

∂φ32

∂x1
− ∂φ31

∂x2


and the following stability estimate holds

(19) ‖z‖H1(Ω) + ‖Curl φ‖L2(Ω) ≤ C‖χ‖L2(Ω).

Proof. We let z solve the variational problem

(σ(z), ε(v)) = (χ, ε(v)) ∀v ∈ [H1(Ω)]n,

and thus ‖z‖H1(Ω) ≤ C‖χ‖L2(Ω) by Korn’s inequality. Further,∇·(σ(z)− χ) =
0 in the distributional sense; thus the divergence of each row [σ(z)−χ]i of
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the matrix σ(z)− χ is zero and may be represented in terms of the curl of
functions φi = [φi1 φi2 φi3] ∈ H(curl,Ω). This implies that there exists a
matrix φ = [φT1 φ

T
2 φ

T
3 ]T ∈ [H(curl,Ω)]3 such that

χ− σ(z) = Curl φ,

‖Curl φ‖L2(Ω) = ‖χ− σ(z)‖L2(Ω) ≤ C‖χ‖L2(Ω).

�

Note that if χ is symmetric, Curl φ is also symmetric.
We are now ready to formulate our main result. In the following, C

denotes a generic constant independent of the meshsize, not necessarily the
same at different instances.

Theorem 1. The following a posteriori error estimate holds

(20) |‖u− uh‖|2 ≤ C
∑
T∈Th

η2
T

where the element indicator ηT is defined by

η2
T = h2

T ‖f +∇ · σ(uh)‖2L2(T ) +
γ2

hT
‖ JuhK ‖2L2(∂T )

+hT ‖ Jσ(uh) · nK ‖2L2(∂T ).

Proof. Letting e = u − uh be the error and using the decomposition (17)
with χ = σ(e) and elementwise applied derivatives we obtain

|‖e‖|2 =
∑
T∈Th

(σ(e), ε(e))T

=
∑
T∈Th

(ε(e),σ(z))T +
∑
T∈Th

(ε(e),Curl φ)T

= I + II(21)

We proceed with estimates of the two terms.
For the first term I we first eliminate the exact elasticity solution u and

use the definition of the finite element method (14) to subtract the contin-
uous Scott-Zhang interpolant πz ∈ Vh, cf. Brenner and Scott [5], as follows

I =
∑
T∈Th

(σ(e), ε(z))T

= (f , z)−
∑
T∈Th

(σ(uh), ε(z))T

= (f , z − πz)−
∑
T∈Th

(σ(uh), ε(z − πz))T .
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Next, using Green’s formula we arrive at

I =
∑
T∈Th

(f +∇ · σ(uh), z − πz)T

−
∑
E∈Eh

(Jn · σ(uh)K , z − πz)E

= I1 + I2,

where n is fixed on each edge in accordance with the direction of the jump.
These terms may now be directly estimated in a straightforward manner
using the Cauchy-Schwartz inequality, the trace inequality

‖v‖2L2(∂T ) ≤ C
(
h−1
T ‖v‖

2
L2(T ) + hT ‖∇v‖2L2(T )

)
,

cf. Thomée [18], standard interpolation error estimates, cf. [5], and finally
the stability estimate (19) as follows.
Term I1. Using the Cauchy-Schwartz inequality on the sum and scaling
with suitable powers of hT we obtain

I1 ≤

∑
T∈Th

h2
T ‖f +∇ · σ(uh)‖2L2(T )

1/2∑
T∈Th

h−2
T ‖z − πz‖

2
L2(T )

1/2

(22)

Next using interpolation error estimates we have

(23)
∑
T∈Th

h−2
T ‖z − πz‖

2
L2(T ) ≤ C‖z‖

2
H1(Ω)

Term I2. Using the Cauchy-Schwartz inequality on the sum with suitable
scaling we get

I2 ≤

∑
E∈Eh

hT ‖ Jn · σ(uh)K ‖2L2(E)

1/2∑
E∈Eh

h−1
T ‖z − πz‖

2
L2(E)

1/2

(24)

Using the trace inequality followed by an interpolation error estimate we
have

(25)
∑
E∈Eh

h−1
T ‖z − πz‖

2
L2(E) ≤ C‖z‖

2
H1(Ω).

Collecting the estimates and using the stability estimate (19) we finally get

(26) I ≤ C

∑
T∈Th

η2
T

1/2

‖z‖H1(Ω) ≤ C

∑
T∈Th

η2
T

1/2

|‖e‖|
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To estimate the second term II we first use Green’s formula and the
symmetry of Curl φ to conclude that

II =
∑
T∈Th

(ε(e),Curl φ)T

=
∑
E∈Eh

(JuhK ,n ·Curl φ)E(27)

since ∇ ·Curl φ = 0. Next we note that we can write the right-hand side
in the following form

II =
∑
E∈Eh

(JuhK ,n ·Curl φ)E

=
∑
T∈Th

(uh −w,n ·Curl φ)∂T(28)

for any continuous function w which is zero on the boundary ∂Ω. We can
now estimate the contributions from each triangle as follows

(uh −w,n ·Curl φ)∂T ≤ ‖uh −w‖
H

1
2 (∂T )

‖n ·Curl φ‖
H−

1
2 (∂T )

(29)

Next using the normal trace inequality

(30) ‖n · v‖
H−

1
2 (∂T )

≤ C
(
‖v‖L2(T ) + hT ‖∇ · v‖L2(T )

)
see Larson and Målqvist [14], applied to each row of Curl φ, we obtain the
following inequality

(31) ‖n ·Curl φ‖
H−

1
2 (∂T )

≤ C‖Curl φ‖L2(T )

which together with (28) and (29) give

II ≤ C

∑
T∈Th

‖uh −w‖2
H

1
2 (∂T )

1/2∑
T∈Th

‖Curl φ‖2L2(T )

1/2

≤ C

∑
T∈Th

‖uh −w‖2
H

1
2 (∂T )

1/2

|‖e‖|(32)

Finally, the following inequality, see [14] for a detailed proof, holds

(33) inf
w∈[C(Ω)]n

∑
T∈Th

‖uh −w‖2
H

1
2 (∂T )

≤ C
∑
T∈Th

h−1
T ‖ JuhK ‖2L2(∂T )
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and thus we obtain the estimate

II ≤ C

∑
T∈Th

h−1
T ‖ JuhK ‖2L2(∂T )

1/2

|‖e‖|(34)

Collecting the estimates of terms I and II, the theorem follows. �

3.3.3. Error estimation in the complementary energy norm. Having estab-
lished an a posteriori estimate for the linear elasticity problem, we now
return to our regularized cavitation problem. To obtain an error estimate in
complementary energy norm for the Hencky problem, we subtract the finite
element problem from the continuous problem to obtain

c(σ − σh, τ ) + (η(σ)− η(σh), τ ) = (ε(u)− ε(uh), τ ) ∀τ ∈W.

We define ‖σ‖2c := c(σ,σ) and eu := u − uh, and set τ = σ − σh to find
that

‖σ − σh‖2c = (ε (u− uh) ,σ − σh)− (η(σ)− η(σh),σ − σh)
≤ (ε (eu) ,σ − σh) ,

where the last step follows from the following easily checked monotonicity
relation:

(v −Π(v)− (w −Π(w)))(v − w) ≥ 0.
Replacing σ(uh) by σh in Theorem 1 and the proof thereof, we conclude
that

(35) ‖σ − σh‖2c ≤ C
∑
T∈Th

η2
T .

Finally, in a standard mixed method for slightly compressible elasticity,
one replaces the divergence free condition corresponding to (5) with

(36) −
∑
T∈Th

∫
T
∇ · uh q dx−

∑
T∈Th

∫
T

1
κ
ph q dx = 0,

for all q ∈ Qh. Now, since the Crouzeix–Raviart approximation has the
property ∇ · Vh ⊂ Qh element-wise, we may simply identify

ph = −κ∇ · uh,

which is typically not possible in other discrete mixed methods. Thus we
can formally let κ → ∞ and set σh = 2µεD(uh) − ph1 elementwise. This
stress is then used to drive the adaptive scheme.

For deciding which elements to refine in the adaptive process, the size of
the ηT is used as an indicator. We refine the 30% of the elements with the
highest indicator in each adaptive step.
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Figure 1. Oil pocket model.

4. Numerical examples

In order to investigate the performance of the methods proposed, a few
numerical examples will be presented. Unfortunately, experimental results
demonstrating in detail the local behavior of the pressure and velocity images
is, to our knowledge, not published. Though some integrated experimental
results, such as lift, has been given by Etsion [7], [8] and Wang et. al. [19].

The object for our study is a single parabolic shaped oil pocket, Figure
1. A central longitudinal cut through the gap between the metal sheet and
work piece comprise our 2D computational model. The dimensions of the
nominal channel and a particular pocket can be seen in Figure 2. Our aim is
to study the behavior of the physics as the depth of the oil pocket increases
while the opening width of the pocket and channel height stays the same.
Boundary conditions used for the pressure is p = 0 at inlet and outlet.
Velocity is set to zero along the floor of the channel and pocket boundary.
Finally is the show driven by ux = 1, uy = 0 at the ceiling. The lubricant
viscosity µ = 1.

The initial mesh has a typical element side length of 0.1. In Figure 2
we visualize the adaptivity refinement progress inserting new nodes giving
a sequence of meshes under consideration for a particular pocket depth. In
each step the elements that give the largest third of the element contribu-
tions to the total error according to relation (35) are subdivided along their
longest side into two new ones. After refinement step 10 is the area ratio
approximately 80 for the largest element over the smallest. Likewise is the
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Figure 2. Sequence of refined meshes.

longest element side over the shortest one found to be about 20. The process
indicates a sound adaptivity to take place at the two sharp corners of the
oil pocket, which of course are the two dramatic regions of the domain.

The decrease of the total error according to refinement, measured by the
number of nodes, is presented in Figure 3. Each dot indicates an adaptivity
step.

From a starting pressure p = 0 throughout the initial domain is the pres-
sure field inherited to the next refined mesh using linear interpolation during
the adaptivity process. Despite this, is the typical number of iterations 500,
though decreasing with refinement level, for the Usawa algorithm using well
tuned relaxation, to converge according to ‖pk+1

h − pkh‖ < 10−9 for a par-
ticular mesh. All integrals involved are integrated using a 4-point Gauss
quadrature scheme.

In Figure 4 we present row-wise for increased pocket depth, pressure, uy,
and stream function contour lines. We can se from the stream lines that
we have recirculation in the pocket for a pocket depth somewhere between
row two and three. In the left column is the cavitation zone identified to
be located at the sharp upstream edge of the pocket. The important note
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Figure 3. Convergence for the right hand side of the error
estimate (35).

is of course that we do not need to a priori define the boundary location
between the fluid and cavitation phases. This is automatically taken care of
by the refinement process.

A comparison of pressure at ceiling between an adaptive Reynolds cavi-
tation model [15] and the present Stokes cavitation model is given in Fig-
ure 5. The former tends to overestimate the pressure and also presents a
sharper peak value, at least for moderate oil-pocket depths, while the Stokes
model shows a more smooth realistic outfit. The classical way to approach
the cavitation problem in the Reynolds community via continuity boundary
conditions or first computing pR from a pure Reynolds solution, followed by
approximating p ≈ max(0, pR) (known as the half-Sommerfeld condition), is
not very accurate at all compared to the cavitation models. The unrealistic
peak in pressure at inlet is related to the fact that the symmetric velocity
gradient formulation, not the Laplacian, is used for Stokes, resulting in un-
realistic boundary effects (i.e., unrealistic for the present case, where the
channel is cut off). However, this is of less practical importance as long as
the inlet is placed considerable far away from the scene of interest in the
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Figure 4. Pressure, uy and stream function contour lines
for increasing depth of the oil pocket.

model. The pressure adapts rather fast to the correct one according to the
formulation.

If we define impact to be the ratio of maximal channel height over minimal
channel height Figure 6 indicates that both models are potent to indicate an
oil pocket impact of ≈ 1.7 that is better than all other in order to produce
best lift. This is in agreement with our earlier observation in Figure 4
indicating depth when recirculation is induced. A bouquet of figures 7-10
presents the mesh after 10 refinements and state of the flow for this particular
pocket.

As the oil pocket depth increases the Reynolds model breaks down as can
be seen in Figures 11-12. This is of course due to severe recirculation in the
pocket, which interferes badly with one of the basic assumptions for the flow
to be laminar in Reynolds model. However the Stokes model remains calm.
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equations with cavitation
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Abstract

We present a cavitation model based on Reynolds equation and
formulate a mixed finite element method for its numerical solution.
A posteriori error estimates and adaptive algorithms are derived, and
numerical examples illustrating the theory are supplied, in particular
with comparison to the simplified Reynolds model of lubrication.

1 Introduction

The motivation for this work is the need for accurate computations of the
hydrostatic pressure in a lubricant entrapped between the tool and workpiece
in a metal forming process or in a sliding bearing. The ultimate goal is to be
able to optimize the surface structure so as to minimize friction effects. The
usual tool for analyzing this problem is the Reynolds model, which however
has severe limitations in that it is not well suited for handling large variations
in the geometry of the lubrication layer. One way of decreasing resistance
between the tool and workpiece is to make pits in the surface of the workpiece
in order to generate cavitation with resulting pressure redistribution. If the
pit geometry cannot be allowed to vary in an arbitrary fashion, optimization
of the pit geometry becomes untenable.

In this paper, we will present a mixed finite element model for Reynolds
flow with cavitation and formulate adaptive finite element methods for its
solution. We will focus on control of the error in energy-like norms, and
present numerical results comparing the with the Reynolds model.

1.1 Reynolds equation

The first mathematical approach to tribology was undertaken by Leonard
Euler with a geometrical resistance theory of ”dry” friction - the Interlocking
Asperity Theory. Euler’s theory provides us with the two well known terms
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Figure 1: Reynolds channel.

for static and dynamic friction. The static friction coefficient is provided by
the tangent of the asperity angle, while the dynamic friction coefficient is
reduced by the kinetic term. But the true workhorse for many of years is
of course the Reynolds equation. It has been used successfully to determine
the pressure distribution in the fluid film for a wide range of applications
from bearings, seals to sheet metal forming processes.

In the spirit of Figure 1, where a typical channel is furnished with the
x-axis oriented as the relative surface velocity U and z-axis upwards, he
made the following assumptions:

1. Body forces are neglected, i.e. there are no extra fields of forces acting
on the fluid.

2. The pressure is constant through the thickness of the film.

3. The curvature of surfaces is large compared with film thickness. Sur-
face velocities need not be considered as varying in direction.

4. There is no slip at the boundaries.

5. The lubricant is Newtonian, i.e. stress is proportional to rate of shear.

6. The flow is laminar.

7. Fluid inertia is neglected.

8. The viscosity is constant through the film thickness.

With these assumptions considered, the development of the equations
can start. First, continuity of flow is examined.
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Figure 2: Continuity of flow in a column of height H.

1.1.1 Continuity of flow of a column

Consider a thin column of fluid of height H(x, y) and base dx, dy, Figure 2.
Fluid flows from the left at a rate qx per unit width so the volume flow rate
is qxdy into the column. The rate of flow out per unit width is

qx +
∂qx
∂x

dx, (1)

where ∂qx
∂x is the rate of change of flow in the x-direction. The actual flow

out is (
qx +

∂qx
∂x

dx

)
dy. (2)

In the y-direction the same argument applies. The flow rate in is qydx and
out is (

qy +
∂qy
∂y

dy

)
dx. (3)

The vertical flow is rather different. If the floor of the column moves upwards
at a velocity w0 and if the roof moves upward as well at a speed wH the
volume of the column changes at a rate (wH −w0)dxdy. Although the base
and roof are moving, at the instant considered the height is H, though a
fraction of time later it will of course have altered.

An alternative possibility is that the floor and/or roof are porous, and
fluid is flowing in at a velocity w0 or out of the column at a velocity wH .
The fluid velocity can be considered constant over the very small base area
dxdy hence the increase of volume is at a rate w0dxdy and fluid leaves at a
rate wHdxdy.

For continuity of flow, the fluid being of constant density, the rate flowing
in must equal the rate flowing out. These can all be added up. Flowing into
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Figure 3: Equilibrium of an element.

the column
qxdy + qydx+ w0dxdy, (4)

and flowing out(
qx +

∂qx
∂x

dx

)
dy +

(
qy +

∂qy
∂y

dy

)
dx+ wHdxdy. (5)

These two are equal, equating them and canceling,

∂qx
∂x

dxdy +
∂qy
∂y

dydx+ (wH − w0)dxdy = 0. (6)

Now dxdy is arbitrary and non zero, hence can be canceled giving the con-
tinuity of flow of a column as

∂qx
∂x

+
∂qy
∂y

+ (wH − w0) = 0. (7)

If the top and bottom surfaces are impermeable, wH − w0 is the rate of
change of height of the column according to time and may be written ∂H

∂t .
Having obtained the continuity it is necessary to look at the force balance
of an element of the fluid.

1.1.2 Equilibrium of an element

Take a small element of fluid of sides dx, dy and dz, Figure 3, and consider
first the forces in the x-direction only. On the left of the element there is
a pressure p on the face of area dydz giving a force of pdydz acting to the
right. On the opposite face the pressure is

p+
∂p

∂x
dx, (8)

and the corresponding force is(
p+

∂p

∂x
dx

)
dydz. (9)
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There are shear stresses on the top and bottom faces producing forces. On
the bottom face the shear stress τx gives a force τxdxdy acting to the left
and on the top face, and acting to the right, is a force(

τx +
∂τx
∂z

dz

)
dxdy, (10)

where the shear stress on the top face being τx + ∂τx
∂z dz. These forces acting

to the left and right must balance each other so

pdydz +
(
τx +

∂τx
∂z

dz

)
dxdy =

(
p+

∂p

∂x
dx

)
dydz + τxdxdy, (11)

expanding and canceling considering dxdydz an arbitrary non zero volume
gives

∂τx
∂z

=
∂p

∂x
. (12)

Now Newton’s viscosity relation states

τx = µ
∂u

∂z
, (13)

where u is the velocity of the fluid in the x-direction, so

∂

∂z

(
µ
∂u

∂z

)
=
∂p

∂x
. (14)

In the y-direction where the velocity of the fluid is v the shear stresses and
pressures can be equated and a similar equation follows

∂τy
∂z

=
∂p

∂y
, where τy = µ

∂v

∂z
,

so
∂

∂z

(
µ
∂v

∂z

)
=
∂p

∂y
. (15)

The pressure gradient in the z-direction is by assumption zero, so ∂p
∂z = 0.

Consider now equation (14) further. This can be integrated since p is not a
function of z, thus

µ
∂u

∂z
=
∂p

∂x
z + C1. (16)

Now both µ and u are functions of z but it is in this context too difficult to
consider both at once so µ is taken as constant with respect to z as stated in
assumption 8. It is important to realize that this is a big assumption and is
only made for simplicity. The inclusion of ∂µ

∂z can modify the equation very
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considerably in certain circumstances. However, using this assumption, a
further integration can be performed to give

µu =
∂p

∂x

z2

2
+ C1z + C2. (17)

The boundary conditions are simple, according to assumption 4, i.e. no slip
at the boundaries {

u(0) = U0

u(H) = UH
, (18)

so (17) and (18) gives

u =
1

2µ
∂p

∂x
(z2 − zH) + (UH − U0)

z

H
+ U0. (19)

Finally the flow rate qx =
∫ H

0 u dz in the x-direction per unit width of y

qx = −H
3

12µ
∂p

∂x
+ (U0 + UH)

H

2
. (20)

If the same procedure is followed for y using equation (15) it is easily found
that

qy = −H
3

12µ
∂p

∂y
+ (V0 + VH)

H

2
, (21)

where V0 and VH in the y-direction correspond to U0 and UH in the x-
direction.

1.1.3 Full Reynolds equation

It is now possible to replace (20) and (21) into the continuity equation (7)

∂

∂x

(
H3

µ

∂p

∂x

)
+

∂

∂y

(
H3

µ

∂p

∂y

)
= 6
(
∂

∂x
((U0 + UH)H) +

∂

∂y
((V0 + VH)H) + 2 (wH − w0)

)
.

(22)

This is the full Reynolds equation with everything varying.

1.1.4 Simplifications

Firstly, write U for the sum U0 + UH and V for V0 + VH . These are merely
short forms and do not involve any assumptions. Next, it is usually possible
to arrange the axes so that either

∂

∂x
(UH) = 0, or

∂

∂y
(V H) = 0.
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The right hand side of (22) can therefore now be reduced to

6
(
∂

∂x
(UH) + 2(wH − w0)

)
.

A further simplification is to realize that the velocity of a surface does not
vary from one point to another, i.e. U is not a function of x so

∂

∂x
(UH) = U

∂H

∂x
.

Furthermore, write wH − w0 as ∂H
∂t ; this is allowable if the surfaces are

impermeable so no fluid seeps in or out and they are merely moving relative
to each other. The right hand side of (22) now becomes

6
(
U
∂H

∂x
+ 2

∂H

∂t

)
.

Keeping both these terms in is a matter of complexity. In steadily running
situations, of course, ∂H

∂t is zero, so this term is usually omitted. Finally µ
has been taken as constant in the z-direction, so why not consider it constant
everywhere, giving

∂

∂x

(
H3 ∂p

∂x

)
+

∂

∂y

(
H3 ∂p

∂y

)
= 6µU

∂H

∂x
, (23)

or
∇ · (H3∇p) = 6µU

∂H

∂x
. (24)

This is the Reynolds equation as usually quoted.

2 The continuous problem

By adding (20) and (21) taking continuity (7) and presented simplifications
into consideration, we are able to reintroduce Reynolds equation and pose
the problem as a mixed one of finding (q, p) such that

12µ
H3

q +∇p =
6µ
H2

U ,

∇ · q = 0,
(25)

where it has been assumed that the thickness of the film does not change
over time and that U = (U0, UH) = (0, UH) and V = 0. In weak form, this
problem may be written as seeking q ∈ H(div; Ω), where

H(div; Ω) = {v ∈ L2(Ω) : ‖∇ · v‖L2(Ω) <∞},
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and p ∈ L2(Ω) such that∫
Ω

12µ
H3

q · v dΩ−
∫

Ω
p∇ · v dΩ =

∫
Ω

6µ
H2

U · v dΩ, ∀v ∈ H(div; Ω), (26)

and ∫
Ω
∇ · qw dΩ = 0, ∀w ∈ L2(Ω). (27)

Boundary conditions for this problem are either handled strongly, in the case
of conditions on the normal flow rate, or weakly in the case of conditions on
the pressure.

3 The finite element method

3.1 Formulation

Let Th = {T} be a locally quasi-uniform triangulation of Ω into simplexes T
of local mesh size h. From the finite element theory of mixed methods, it is
well known that one must carefully select the combination of approximations
for the flow variables and the pressure variable. In case of the Reynolds
model, a well known stable element combination is the lowest order Raviart-
Thomas finite element spaces for the flux, i.e. qh ∈ RT 0, defined as [5]

RT 0 := {q ∈ H(div; Ω) : q|T ∈ ([P0(T )]2 + xP0(T )), ∀T ∈ Th},

where P0(T ) is the space of zero degree polynomials on the element T ,
combined with element-wise constant pressure ph ∈ Qh, where

Qh := {w ∈ L2(Ω) : w|T ∈ P0(T ), ∀T ∈ Th}.

The Raviart-Thomas (RT k) triangular and tetrahedral elements of order k
are tailor-made finite elements for approximation of vector fields in such for-
mulations where only normal continuity is required over the element faces.
They are suitable for flow-pressure formulation of fluid problems. For mixed
forms of second order elliptic applications, standard H1(Ω)-continuous ap-
proximations are well-known to cause problems in that they allow spurious
modes with non-zero energy that do not exist in the continuous problem.
The RT k elements are designed to approximate H(div; Ω), and does there-
fore not suffer from this problem. That’s the reason for their popularity in
the so called mixed finite element formulation.

The triangular element we exercise is edge based rather than nodal and
is constructed such that the normal component of each vector valued basis
function ϕi is constant one on element edge Ei and zero on the two other
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edges, for i ∈ {1, 2, 3}. This construction will assure continuity in the nor-
mal, but not tangential, direction of a vector field over the element edges.
This means that the support is restricted to the two triangles adjacent to
their common edge, or one triangle if we have an exterior edge under con-
sideration. By direct computation it can be verified that

div q ∈ P0(T ), and q · ni ∈ P0(Ei),

where Ei are the edges of T and ni a unit normal vector to Ei for i ∈ {1, 2, 3}.
It is possible to show that a piecewise polynomial function is in H(div; Ω)
if and only if it has continuous normal components across the edges in the
triangulation. This ensures that RT 0 consists of all vector fields q that are
locally q|T ∈ ([P0(T )]2 + xP0(T )), and whose constant normal components
across the edges are continuous.

The standard way in the finite element community to make use of a
reference element for definition of the basis functions turns out to be a bit
complicated in this case. In order to make elements that are continuous in
the normal direction of the mapped reference element, we must assume that
the geometry mapping is affine. This is usually not the case, and a more
elaborate Piola transformation has to be involved. So, the construction of
the basis functions for the Raviart-Thomas spaces is most easily done in
the physical configuration. Consider an element with corner nodes xi, edge
vectors ei associated with edges Ei, and with edge unit normal vectors

ni =
(

0 −1
1 0

)
ei
‖ei‖

.

The lowest order element basis functions can be written

ϕi =
(
ai + cix
bi + ciy

)
,

and to construct the vector valued basis {ϕ1,ϕ2,ϕ3} on the element we
need to solve

ϕi · nj = δij ,

at the three midpoints xei = 1
2(xi + xi+1) mod 3 of the edges. This is a

simple linear algebra problemn1x n1y n1 · xe1
n2x n2y n2 · xe2
n3x n3y n3 · xe3

aibi
ci

 = f i, with (f i)j = δij .

The three basis functions are illustrated in Figure 4. Note that this does
not yet define the basis functions for Th uniquely, because there are two unit
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Figure 4: Lowest order Raviart-Thomas basis functions.

normal vectors to an edge. A choice for the normal can for example be made
according to the numbering of the nodes in Th. For instance, let the edge
vectors ei point to the node with the largest index.

Now we state our finite element problem as seek (qh, ph) ∈ RT 0 × Qh
such that∫

Ω

12µ
H3

qh · v dΩ−
∫

Ω
ph∇ · v dΩ =

∫
Ω

6µ
H2

U · v dΩ, ∀v ∈ RT 0, (28)

and ∫
Ω
∇ · qhw dΩ = 0, ∀w ∈ Qh. (29)

3.2 Solution

For a given finite element discretization of the saddle point problem (28)
and (29) we arrive at the following matrix formulation(

A B
BT 0

)(
qh
ph

)
=
(

F
0

)
. (30)

In order for this to be solved we need to have A and BTA−1B invertible.
Normally there is no problem in the finite element method for A to be posi-
tive definite, but it is more crucial in the latter construction, due to the fact
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that B is formed from a mix of the finite element spaces involved. How-
ever for our particular choice of spaces RT 0 and Qh the system is known to
be solvable without any stability problems. The the well–posedness of this
problem follows from the general theory presented by Brezzi, Hager, and
Raviart [5]. Cavitation occurs when the pressure reaches atmospheric pres-
sure, which we for definiteness define as p = 0. The lubricant cannot support
subatmospheric pressure, so an additional condition is p ≥ 0 in Ω. In order
to incorporate this condition into the model, we apply an iterative algorithm
of Uzawa type to solve the system taking cavitation into consideration using
a pressure projection on the run.

1. Let k = 0 and choose an initial pkh.
2. Solve the linear system Aqk+1

h = F−Bpkh for the flow field qk+1
h .

3. Perform Richardson update pk+1
h = pkh + ωBTqk+1

h ,
where ω is a relaxation parameter.

4. Project pressure field pk+1
h = PΛ(pk+1

h ), where the operator
PΛ(ϑ) := max(0,ϑ).

5. If convergence not yet achieved, set k = k + 1 and go back to step 2.

The projection operator PΛ is applied element–wise on the element values
for the pressure, which by construction leads to ph ∈ {p ∈ L2(Ω) : p ≥ 0}.

3.3 Error control

An adaptive finite element method should consists of a sequence of successive
loops

Solve −−−−→ Estimatex y
Refine ←−−−− Mark

The a posteriori error control in the Estimate step, and for the whole loop
as well, has been investigated over the last decade for the conforming finite
element method. However, the mixed finite element method and the problem
at hand, i.e. with cavitation treatment via projection, is to the authors
knowledge not treated in the literature. We choose to follow Carstensen and
Hoppe [6].

Given a sequence of refined meshes {T ih} with corresponding solution qih
and error ei = ‖q − qih‖ on mesh T ih . Then

e2
i ≤ γie2

0 + Ciρi−1, for i = 1, 2, ... (31)

with constants C > 0, 0 < γ < 1 and 0 < ρ < 1 if the refinement is done
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using the following strategy. Define the error estimator

ηh = (
∑
E∈ET

η2
E)1/2, with η2

E := hE‖JqihKE‖2L2(Ω). (32)

where, JqihKE is the discrete jump JqihKE := qih|T+ − qih|T− of the flux qih
over an interior edge E := T+ ∩ T− of the length hE := diam(E) shared by
the two neighboring triangles T± ∈ T ih and ET denotes the set of all interior
edges in T ih . We have also used the notation v|T± := limε↓0v(x ∓ εn) with
x ∈ ΓE , and n a constant unit normal vector to the edge E.

A sufficient condition for (31) to hold is now to insert new nodes on
midpoints of those edges having highest indicators ηE forming next refined
mesh T i+1

h . We refine 30% of the edges with the highest indicator in each
adaptive step.

4 Numerical examples

In order to investigate the performance of the methods proposed, a few
numerical examples will be presented. Unfortunately, experimental results
demonstrating in detail the local behavior of the pressure and velocity images
is, to our knowledge, not published. Though some integrated experimental
results, such as lift, has been given by Etsion [7], [8] and Wang et. al. [14].

The object for our study is a single parabolic shaped oil pocket, Figure
5. A central longitudinal cut through the gap between the metal sheet and
work piece comprise our 2D computational model. The dimensions of the
nominal channel and a particular pocket can be seen in Figure 6. Boundary
conditions used for the pressure is p = 0 at a thin slice surrounding the actual
domain. Upper and lower walls are impermeable, thus q = 0 at applicable
element edges, Figure 6. The flow is driven by the relative velocity U = (1, 0)
between the metal sheet and the workpiece. The lubricant viscosity µ = 1.

From a starting pressure p = 0 throughout the initial domain is the
pressure field inherited to the next refined mesh using linear interpolation
during the adaptivity process. Despite this is the typical number of iterations
1000, though decreasing with refinement level, for the Usawa algorithm to
converge according to ‖pk+1

h − pkh‖ < 10−9 for a particular mesh. In order
to converge, especially for deep oil pockets, Usawa needed to be relaxed
by ω = 0.1. All integrals involved are integrated using a 4-point Gauss
quadrature scheme.

The initial mesh has a typical element side length of 0.2. In Figure 7
we visualize the adaptivity refinement progress inserting new nodes giving
a sequence of meshes under consideration for a particular pocket depth. In
each step the edges that give the largest third of the edge contributions to

12



Figure 5: Oil pocket model.
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Figure 6: Initial mesh and boundary conditions. Pressure is zero at o-marked
elements and flow is zero at ∗-marked edges.
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Initial mesh: 402 nodes, 718 elements
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Ref 2: 668 nodes, 1244 elements
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Ref 3: 875 nodes, 1653 elements
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Ref 4: 1167 nodes, 2234 elements

−1 −0.5 0 0.5 1

−0.5

0

0.5

Ref 10: 7296 nodes, 14453 elements

Figure 7: Sequence of refined meshes.

the total error according to relation (32) are subdivided forcing neighboring
elements to be subdivided into, at least, two new ones. After refinement
step 10 is the area ratio approximately 6000 for the largest element over the
smallest. Likewise is the longest element side over the shortest one found
to be about 115. The process indicates adaptivity to take place along the
sharp edge of the oil pocket, which of course is the dramatic region of the
domain.

The decrease of the total error indicator ηh, defined by (32), according
to refinement, measured by the number of nodes, is presented in Figure 8.
Each dot indicates a refinement step.

In Figure 9 we present the typical pressure bubble with constant pressure
element and in Figure 10 we visualize the flow vector at center of elements
throughout the domain. We emphasize that we do not need to a priori
define the boundary location between the fluid and cavitation phases. This
is automatically taken care of by the refinement process.

In order to compare current results with earlier ones [3], an L2-projection
of the pressure field is applied in order to furnish a continuous piecewise lin-
ear pressure over the elements. A comparison of pressure at ceiling between
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Figure 8: Error estimation according to (32). Each dot indicates a refine-
ment step.
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Figure 10: Flow vectors.

an adaptive Reynolds cavitation model [3] and the present model is given in
Figures 11(a) and 11(b) and indicates good agreement. The classical way to
approach the cavitation problem in the Reynolds community via continuity
boundary conditions or first computing pR from a pure Reynolds solution,
followed by approximating p ≈ max(0, pR) (known as the half-Sommerfeld
condition), is not very accurate at all compared to the cavitation model
presented.

5 Concluding remarks

We have presented an apparently novel approach to cavitation in Reynolds
model based on a mixed formulation, as an alternative to Reynolds pure
model combined with the cruder half-Sommerfeld condition often used in
lubrication analysis. We focus on the pressure drop as the source of cavita-
tion, which has been criticized, e.g., by Joseph [11] as being dubious from
a physical point of view. However, as we see it, our approach has a wider
range of applicability and can in principle make use of other cavitation mod-
els, such as those of [11]; it can also be used to model stretching of cavitation
bubbles due to convective phenomena.

One of our aim was also to study the behavior of the physics as the
depth of the oil pocket increases while the opening width of the pocket and
channel height stays the same in order to indicate an oil pocket depth that
is better than all other to produce lift. But the story goes for this mixed
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(a) Current model.

−1 −0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b) Reynolds cavitation model [3].

Figure 11: Contour lines for comparison of pressure at ceiling for current
model and the one in [3].
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formulation as the one presented in [3]. Reynolds simplified flow model is
unable to indicate such a depth. To achieve this information we have to go
to a similar cavitation model based on Stokes flow model, as investigated in
[4].

Future research will focus on cavitating flows for the full transient Navier-
Stokes equations, for which a simple cavitation model such as ours can be
an alternative for some aspects of cavitation, compared to more elaborate
models incorporating several physical phenomena.
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Abstract

The Reynolds model is a reduced Stokes model, valid for narrow
lubrication regions. In order to be able to handle locally non-narrow
regions such as pits or grooves, often displaying or rapid geometrical
variations, there is a need to be able to transit to the more accurate
Stokes model. A fundamental problem is how to couple the two mod-
els in a numerical simulation, preferably allowing for different meshes
in the different domains. In this paper, we present a weak coupling
method for Reynolds and Stokes models for lubrication computations.
is taken into account. The paper concludes with some numerical ex-
amples.

1 Introduction

In approximating thin fluid films typically appearing in lubrication, simpli-
fying assumptions (discussed below) introduced by Reynolds in the 19:th
century [7] are typically introduced in order to remove the dimension as-
sociated with the thickness of the film. In many situations, one or more
of these assumptions must be dropped in order to make accurate predic-
tions of the actual flow. If, however, the Reynolds assumptions hold in a
substantial part of the domain of interest, there is a large computational
gain in making a model coupling between the Reynolds model and a more
accurate model such as Stokes or Navier–Stokes equations. An example of
such a coupling scheme, between Stokes and Reynolds equations, is given by
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Figure 1: Reynolds channel.

Stay and Barocas [8], who formulate the Reynolds problem in terms solely
of the pressure and apply stress balance and velocity continuity conditions
on the interface. In this paper we take a more direct approach in that we
pose both the Stokes and Reynolds equations on mixed form with unknowns
for velocity and pressure. In the Reynolds case, the velocity variable then
represents the flow rate, i.e., the integral of the physical velocity across the
interface thickness. In posing this mixed formulation, we obtain a natural
coupling method based on convex minimization with constraints: divergence
zero constraints in both the Stokes and Reynolds domains, and continuity
constraints between the mean velocities across the coupling interface.

2 Reynolds equation

The first mathematical approach to tribology was undertaken by Leonard
Euler with a geometrical resistance theory of ”dry” friction - the Interlocking
Asperity Theory. Euler’s theory provides us with the two well known terms
for static and dynamic friction. The static friction coefficient is provided by
the tangent of the asperity angle, while the dynamic friction coefficient is
reduced by the kinetic term. But the true workhorse for many of years is of
course the Reynolds equation [7]. It has been used successfully to determine
the pressure distribution in the fluid film for a wide range of applications
from bearings, seals to sheet metal forming processes.

In the spirit of Figure 1, where a typical channel is furnished with the
x-axis oriented as the relative surface velocity U and z-axis upwards, he
made the following assumptions:

1. Body forces are neglected, i.e. there are no extra fields of forces acting
on the fluid.

2. The pressure is constant through the thickness of the film.
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Figure 2: Continuity of flow in a column of height H.

3. The curvature of surfaces is large compared with film thickness. Sur-
face velocities need not be considered as varying in direction.

4. There is no slip at the boundaries.

5. The lubricant is Newtonian, i.e. stress is proportional to rate of shear.

6. The flow is laminar.

7. Fluid inertia is neglected.

8. The viscosity is constant through the film thickness.

With these assumptions considered, the development of the equations
can start. First, continuity of flow is examined.

2.1 Continuity of flow of a column

Consider a thin column of fluid of height H(x, y) and base dx, dy, Figure 2.
Fluid flows from the left at a rate qx per unit width so the volume flow rate
is qxdy into the column. The rate of flow out per unit width is

qx +
∂qx
∂x

dx, (1)

where ∂qx
∂x is the rate of change of flow in the x-direction. The actual flow

out is (
qx +

∂qx
∂x

dx

)
dy. (2)
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In the y-direction the same argument applies. The flow rate in is qydx and
out is (

qy +
∂qy
∂y

dy

)
dx. (3)

The vertical flow is rather different. If the floor of the column moves upwards
at a velocity w0 and if the roof moves upward as well at a speed wH the
volume of the column changes at a rate (wH −w0)dxdy. Although the base
and roof are moving, at the instant considered the height is H, though a
fraction of time later it will of course have altered.

An alternative possibility is that the floor and/or roof are porous, and
fluid is flowing in at a velocity w0 or out of the column at a velocity wH .
The fluid velocity can be considered constant over the very small base area
dxdy hence the increase of volume is at a rate w0dxdy and fluid leaves at a
rate wHdxdy.

For continuity of flow, the fluid being of constant density, the rate flowing
in must equal the rate flowing out. These can all be added up. Flowing into
the column

qxdy + qydx+ w0dxdy, (4)

and flowing out(
qx +

∂qx
∂x

dx

)
dy +

(
qy +

∂qy
∂y

dy

)
dx+ wHdxdy. (5)

These two are equal, equating them and canceling,

∂qx
∂x

dxdy +
∂qy
∂y

dydx+ (wH − w0)dxdy = 0. (6)

Now dxdy is arbitrary and non zero, hence can be canceled giving the con-
tinuity of flow of a column as

∂qx
∂x

+
∂qy
∂y

+ (wH − w0) = 0. (7)

If the top and bottom surfaces are impermeable, wH − w0 is the rate of
change of height of the column according to time and may be written ∂H

∂t .
Having obtained the continuity it is necessary to look at the force balance
of an element of the fluid.

2.2 Equilibrium of an element

Take a small element of fluid of sides dx, dy and dz, Figure 3, and consider
first the forces in the x-direction only. On the left of the element there is
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Figure 3: Equilibrium of an element.

a pressure p on the face of area dydz giving a force of pdydz acting to the
right. On the opposite face the pressure is

p+
∂p

∂x
dx, (8)

and the corresponding force is(
p+

∂p

∂x
dx

)
dydz. (9)

There are shear stresses on the top and bottom faces producing forces. On
the bottom face the shear stress τx gives a force τxdxdy acting to the left
and on the top face, and acting to the right, is a force(

τx +
∂τx
∂z

dz

)
dxdy, (10)

where the shear stress on the top face being τx + ∂τx
∂z dz. These forces acting

to the left and right must balance each other so

pdydz +
(
τx +

∂τx
∂z

dz

)
dxdy =

(
p+

∂p

∂x
dx

)
dydz + τxdxdy, (11)

expanding and canceling considering dxdydz an arbitrary non zero volume
gives

∂τx
∂z

=
∂p

∂x
. (12)

Now Newton’s viscosity relation states

τx = µ
∂u

∂z
, (13)

where u is the velocity of the fluid in the x-direction, so

∂

∂z

(
µ
∂u

∂z

)
=
∂p

∂x
. (14)
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In the y-direction where the velocity of the fluid is v the shear stresses and
pressures can be equated and a similar equation follows

∂τy
∂z

=
∂p

∂y
, where τy = µ

∂v

∂z
,

so
∂

∂z

(
µ
∂v

∂z

)
=
∂p

∂y
. (15)

The pressure gradient in the z-direction is by assumption zero, so ∂p
∂z = 0.

Consider now equation (14) further. This can be integrated since p is not a
function of z, thus

µ
∂u

∂z
=
∂p

∂x
z + C1. (16)

Now both µ and u are functions of z but it is in this context too difficult to
consider both at once so µ is taken as constant with respect to z as stated in
assumption 8. It is important to realize that this is a big assumption and is
only made for simplicity. The inclusion of ∂µ

∂z can modify the equation very
considerably in certain circumstances. However, using this assumption, a
further integration can be performed to give

µu =
∂p

∂x

z2

2
+ C1z + C2. (17)

The boundary conditions are simple, according to assumption 4, i.e. no slip
at the boundaries {

u(0) = U0

u(H) = UH
, (18)

so (17) and (18) gives

u =
1

2µ
∂p

∂x
(z2 − zH) + (UH − U0)

z

H
+ U0. (19)

Finally the flow rate qx =
∫ H

0 u dz in the x-direction per unit width of y

qx = −H
3

12µ
∂p

∂x
+ (U0 + UH)

H

2
. (20)

If the same procedure is followed for y using equation (15) it is easily found
that

qy = −H
3

12µ
∂p

∂y
+ (V0 + VH)

H

2
, (21)

where V0 and VH in the y-direction correspond to U0 and UH in the x-
direction.
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It is now possible to replace (20) and (21) into the continuity equation
(7)

∂

∂x

(
H3

µ

∂p

∂x

)
+

∂

∂y

(
H3

µ

∂p

∂y

)
= 6
(
∂

∂x
((U0 + UH)H) +

∂

∂y
((V0 + VH)H) + 2 (wH − w0)

)
.

(22)

This is the full Reynolds equation in terms of the pressure as usually stated,
and in particular as used in [8].

3 A mixed formulation of Reynolds equation

In order to formulate a coupling method between Reynolds equation and
more accurate fluid models, we reintroduce the flow rates from (20)–(21)
and pose the problem as that of finding (q, p) such that

12µ
H3

q +∇p =
6µ
H2
U ,

∇ · q = 0.

where it has been assumed that the thickness of the film does not change
over time and that U = (U0, UH) = (0, UH) and V = 0.

In weak form, this problem may be written as seeking q ∈ H(div; Ω),
where

H(div,Ω) = {v ∈ [L2(Ω)]2 : ‖∇ · v‖L2(Ω) <∞},

and p ∈ L2(Ω), L2(Ω) being the space of square–integrable functions over
Ω, such that∫

Ω

12µ
H3

q · v dΩ−
∫

Ω
p∇ · v dΩ =

∫
Ω

6µ
H2
U · v dΩ, ∀v ∈ H(div; Ω), (23)

and ∫
Ω
∇ · qw dΩ = 0, ∀w ∈ L2(Ω). (24)

Boundary conditions for this problem are either handled strongly, in the case
of conditions on the normal flow rate, or weakly in the case of conditions on
the pressure.

4 The coupled problem

We are interested in coupling the Reynolds model with the Stokes model
across a vertical interface. The interface from the Reynolds side then appears
one–dimensional, while the interface on the Stokes side is two–dimensional.
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Denote by ΩR the Reynolds domain, ΩS the Stokes domain, by Γ1D the
dimensionally reduced interface, and by Γ2D := Γ1D×H the full 2D interface.
We have the following problem to solve taking cavitation into consideration:

12µ
H3

q +∇pR =
6µ
H2
U in ΩR ⊂ R2,

∇ · q = 0 in ΩR,

−µ∆u+∇pS = 0 in ΩS ⊂ R3,

∇ · u = 0 in ΩS ,∫ H

0
σn(u, pS) dz + pR = 0 on Γ1D,

(q −
∫ H

0
u dz) · n = 0 on Γ1D.

(25)

This problem must then be supplemented with boundary conditions on the
exterior boundaries, which depend on the type of model adjacent to the
exterior. These are handled in the usual way in the finite element setting.

4.1 Finite element formulation

To formulate our method, we suppose that we have regular finite element
partitions T ih , i ∈ {R,S} of the two subdomains ΩR and ΩS into shape
regular simplexes. These two meshes imply the existence of trace meshes on
the interface

Gih = {E : E = T ∩ Γ2D, ∀T ∈ T ih}, i ∈ {R,S}.

From the finite element theory of mixed methods, it is well known that one
must carefully select the combination of approximations for the flow vari-
ables and the pressure. In the case of the Reynolds model, a well known
stable element combination is the lowest order Raviart-Thomas approxima-
tion for the flow rate, i.e., qh ∈ V R

h , where

V R
h := {q ∈ H(div,Ω) : q|T ∈ (P0(T ))2 + xP0(T ), ∀T ∈ T Rh }

combined with a pressure space of elementwise constant pressures,

QRh := {p ∈ L2(Ω) : p|T ∈ P0(T ), ∀T ∈ T Rh }.

In the case of Stokes flow, we choose to use the well known stable Taylor-
Hood element consisting of the velocity space

V S
h := {u ∈ [C0(Ω)]3 : u|T ∈ (P2(T ))3, ∀T ∈ T Sh }
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and pressure space

QSh := {p ∈ C0(Ω) : p|T ∈ P1(T ), ∀T ∈ T Sh }.

Cavitation occurs when the pressure reaches atmospheric pressure, which
we for definiteness define as p = 0. The lubricant cannot support subatmo-
spheric pressure, so an additional condition is p ≥ 0 in ΩR ∪ΩS . In order to
incorporate this condition into the model, it can be written as a variational
inequality. For this purpose we define the space

K = {p ∈ L2(Ω) : p ≥ 0}.

We shall use a Lagrange multiplier method using piecewise constants on the
1D trace mesh GRh for the fulfillment of the continuity requirement on the
velocities. We seek (qh,uh, phR, p

h
S , λ

h) ∈ V R
h × V S

h ×QRh ×QSh × Ch, where

Ch := {κ ∈ L2(Γ1D) : κ|E ∈ P0(E), ∀E ∈ GRh },

such that
ah((qh,uh), (vR,vS)) + bh((phR, p

h
S), (vR,vS)) + ch(λh, (vR,vS)) = fh(vR),

∀(vR,vS) ∈ V R
h × V S

h ,

(26)

bh((phR − wR, phS − wS), (qh,uh)) ≤ 0, ∀(wR, wS) ∈ (QRh ∩K)× (QSh ∩K),
(27)

and
ch(κ, qh,uh) = 0, ∀κ ∈ Ch. (28)

Here

ah((q,u), (vR,vS)) :=
∫

ΩR

12µ
H3

q · vR dΩ +
∫

ΩS

µ∇u : ∇vS dΩ,

bh((wR, wS), (vR,vS)) := −
∫

ΩR

wR∇ · vR dΩ−
∫

ΩS

wS∇ · vS dΩ,

ch(γ, (vR,vS)) :=
∫

Γ2D

γ n · (vR −
∫ H

0
vS dz) ds,

fh(vR) :=
∫

ΩR

6µ
H2
U · vR dΩ.

(29)

It is clear from the formulation that on every one–dimensional element side
on GRh the (constant) normal component of the flow rate will be set equal to
the mean of the Stokes velocities over the height (multiplied by the height).
The problem could thus alternatively be posed in a discrete space where
this side condition is used directly in the definition of the space. The the
well–posedness of this problem follows from the general theory presented by
Brezzi, Hager, and Raviart [3], and for the interface condition in this setting
we refer to the closely related approach of Alonso et al. [1].
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4.2 Solution

For solving this nonlinear saddle point problem, we have chosen to use an
Uzawa iteration method. In order to find a good initial solution, we first
assemble the finite element matrices emanating from full model (25), written
using the unrestricted spaces (that are actually used in the iterations)

KS Bd 0 0 CS

BT
d 0 0 0 0

0 0 Kq Kp CR

0 0 KT
p 0 0

CT
S 0 CT

R 0 Sλ




uh

ph
S

qh

ph
R

λh

 =


0
0
Fq
0
0

, (30)

where the submatrices are the assembled element matrices according to the
integrals found in (29), i.e. with (vR,vS , wR, wS , κ) ∈ V R

h ×V S
h ×QRh ×QSh×

Ch denoting generic basis functions spanning the relevant spaces, we have

KS =
⊕
T∈T S

h

∫
T
µ∇vS : ∇vS dΩ, Bd = −

⊕
T∈T S

h

∫
T
wS∇ · vS dΩ,

Kq =
⊕
T∈T R

h

∫
T

12µ
H3

vR · vR dΩ, Kp =
⊕
T∈T R

h

∫
T
wR∇ · vR dΩ,

Fq =
⊕
T∈T R

h

∫
T

6µ
H2
U · vR dΩ,

CR =
⊕
E∈GR

h

∫
E
n · vR ds, CS = −

⊕
E∈GR

h

∫
E

∫ H

0
n · vS dz ds, Sλ = 0,

where ⊕ denotes the assembly operator for the finite element matrix con-
struction. We emphasize that in this particular case there is no need for
stabilization of the multipliers, thus Sλ = 0. A simple stabilization method
could for instance mimic the idea of letting neighboring edges along GRh be
connected by springs with spring constants kλ, giving

Sλ =
⊕
E∈GR

h

kλ

(
1 −1
−1 1

)
.

The system (30) is fed repeatedly into a direct linear equation solver. In
each round is a simple cavitation requirement phS = max(phS , 0) enforced
and a modification of the corresponding residuals (out–of–balance residual
forces) carried out. This process is repeated until phS ≥ 0 throughout the
Stokes domain. The artificial pressure boundary conditions are then released
and the model with current solution state is handed over to Usawa taking
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cavitation into consideration using a pressure projection on the run. The
Stokes and Reynolds models are solved in parallel as described in Hansbo
and Nilsson [5], and Nilsson [6]. We supply the details.

A core operation in Uzawa algorithm is to update the pressure field.
However, recall that p = − limκ→∞ κ∇·u, but ∇·V S

h does not reside in QSh ,
due to the fact that we are using Taylor-Hood elements, so in step 3 we find
a continuous pressure corrector pd ∈ QSh .

1. Let k = 0 and choose as initial pressure solution kphS and kphR
provided by the solution strategy of the linear system (30)
just described.

2. Solve the condensated version of the linear system (30)KS 0 CS

0 Kq CR

CT
S CT

R Sλ

kuh
kqh
kλh

 =

 −Bd
kphS

Fq −Kp
kphR

0

,
for the vector fields kuh and kqh and the Lagrange multipliers kλh.

3. Find a continuous pressure corrector pd ∈ QSh from the system∫
ΩS
pdq dΩ = −

∫
ΩS
∇ · uhq dΩ, ∀q ∈ QSh ⇔ Mdpd = Bd

kuh,
where Md is the lumped mass matrix, which makes the update fast.

4. Update pressure fields{
k+1phS = PΛ(kphS + ωSpd)
k+1phR = PΛ(Fq + ωRKT

p
kqh)

where ωS and ωR are relaxation parameters and the operator
PΛ(ϑ) := max(0,ϑ).

5. If convergence not yet achieved, set k = k + 1 and go back to step 2.

The projection operator PΛ is applied point–wise on the nodal values for the
pressure, which by construction leads to {phR, phS} ∈ K.

The typical number of iterations is then 200 for the Usawa algorithm,
using well tuned relaxation for the two models, to converge according to
‖k+1phS − kphS‖ + ‖k+1phR − kphR‖ < 10−9 for a particular mesh. For the
numerical evaluation of the integrals involved in the coupling matrices, CR

and CS , a 2-point Gauss quadrature scheme is used on the edges of the
one-dimensional trace mesh GRh and a 3-point Gauss quadrature scheme for
companion surface integrals on the Stokes mesh.

5 Numerical examples

In order to investigate the performance of the method proposed, a numerical
example will be presented. Of course, experimental results demonstrating
in detail the local behavior of the pressure and velocity images for the two
physical models glued together is hard to achieve.
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Figure 4: Oil pocket model.

The object for our study is a single parabolic shaped oil pocket, Figure 4.
A central longitudinal cut through the gap between the sheet metal and work
piece comprise our full symmetrical 3D computational Stokes model. The
nominal channel has the dimensions x×y×z = [−0.5, 0.5]× [0, 0.6]× [0, 0.2]
and the particular parabolic oil pocket is shaped as (x/0.4)2 + (y/0.4)2 +
(z/0.1)2 = 1. The narrow lubrication regions modeled by Reynolds equation
is used as transit parts between the Stokes models. We investigate one Stokes
part combined with two Reynolds parts of rectangular shape, the inlet part
x× y = [−1.6,−0.5]× [0, 0.6] and the outlet part x× y = [0.5, 1.6]× [0, 0.6].
The finite element model can be inspected in Figure 5.

Boundary conditions used for the pressure is p = 0 at inlet x = −1.6
and outlet x = 1.6 parts of the narrow Reynolds regions. Velocity is set to
ux = uy = uz = 0 over the floor of the Stokes channel, oil pocket included.
Symmetry along the two cuts y = 0 and y = 0.6 is accomplished via uy = 0
for the Stokes part and q = 0 for the Reynolds parts. Finally is the flow
driven by ux = 1, uy = uz = 0 at the ceiling of the Stokes model and over
the Reynolds parts. The lubricant viscosity µ = 1.

For visualization purposes we apply a L2-projection to the Reynolds
constant element pressure field forming a continuous one. In Figure 6 we
present pressure contour lines on the model surface, and in Figures 7 and
8 contour lines for slices in two different directions. We can clearly iden-
tify by inspection the cavitation zone upstream in the pocket and a high
pressure peak at downstream pocket side. The important note is of course
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(a) FE-model from above.
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(b) FE-model from below.

Figure 5: Finite element computational model. Outlet and inlet 2D
Reynolds parts and 3D Stokes part in between.
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Figure 6: Pressure contour lines on the surface.

that we do not need to a priori define the boundary location between the
fluid and cavitation phases. The classical way to approach the cavitation
problem in the Reynolds community via continuity boundary conditions or
first computing pR from a pure Reynolds solution, followed by approximat-
ing p ≈ max(0, pR) (known as the half-Sommerfeld condition), is not very
accurate at all compared to the cavitation model presented here.

From Figure 9 it is obvious that the weak coupling of velocity field be-
tween the models produce a Couette flow profile as expected.

If we define pocket impact to be the ratio of maximal channel height
over minimal channel height Figure 10 indicates that the model at hand
is potent to indicate an oil pocket impact of ≈ 1.9 that is better than all
other in order to produce best lift. This is in agreement with our earlier
observation described in Hansbo and Nilsson [4], and [5]. indicating depth
when recirculation is induced. These two models are included in the figure
purely for qualitative comparison.

As the oil pocket depth increases the Reynolds model breaks down. This
is of course due to severe recirculation in the pocket, which interferes badly
with one of the basic assumptions for the flow to be laminar in Reynolds
model. However the Stokes model remains calm.
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