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Abstract

The main aim of this thesis is to provide a precise method by which the growth

of the yeast Saccharomyces cerevisiae can be standardized from a specified initial

optical density (OD). To apply the proposed method of standardization and also

to compare with the previous methods, we use two datasets: one consists of

99 wild-type yeast strains growth data, observed for 24 hours and the other

consists of 200 wild-type yeast strains, observed for 44 hours, cultured in normal

environment.

We propose a method to standardize the growth of yeast with respect to an

initial OD, fitting two observed growth curves at the same time by the modified

Chapman-Richards growth model. We check the fitting and standardization of

growth by residual plot and calculating the coefficient of determination. To ver-

ify the efficiency of the proposed method, we standardize growth curves at the

mean initial OD values for each dataset by the proposed method and also by the

previous methods, and compare the estimates of the physiologically growth pa-

rameters: the lag phase, the maximum relative growth rate and stationary phase

OD increment.

The method works well for close observed growth curves. It shows better

result for lag phase using distant observed curves but slightly worse results for the

other two growth parameters. Weighing the observations has a better effect in this

case and it is found to be insensitive with respect to the point of standardization.

Finally, a generalization of the method is also discussed.
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Chapter 1

Introduction

Yeasts are unicellular fungi. Saccharomyces cerevisiae is well-known and com-

mercially significant among the yeasts. This organism has long been utilized to

ferment the sugars of rice, wheat, barley, and corn to produce alcoholic bev-

erages and in the baking industry to expand, or raise, dough. Saccharomyces

cerevisiae is commonly known as baker’s yeast and it has also been used as the

most ideal eukaryotic microorganism for biological studies in many aspects since

a long time ago (Sherman, 1997). The genetics of yeast has become an essential

part of those who work with higher eukaryotes. It has also become extremely

useful as a reference towards the sequences of human and other higher eukaryotic

genes (Sherman, 1997). In fact, Saccharomyces cerevisiae, was the first eukary-

otic genome that was fully sequenced, annotated, and made publicly available

(Goffeau, 1997). The completed yeast genome sequence made it possible towards

the development of many novel tools for analyzing all molecular components of

the cell and their interactions (Scherens and Goffeau, 2000). It now serves as a

model organism for understanding and interpreting eukaryotic cell function like

human DNA sequences (Botstein et al., 1997).

Study of the consequences of the gene deletion mutants can be carried out to

understand the cellular process performed by various genes. One aspect to study

this consequences is the study of the genomewide phenotypic characterization,

referred to as phenomics. It is very crucial to detect different physiological fea-

tures like time to adapt environmental challenges and kinetics and efficiency of

growth to determine the cellular role of a gene (Warringer et al., 2003). In recent

1
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years, genomewide large-scale phenotypic characterization of yeast deletion mu-

tants has received a lot of attention. Some quantitative phenotypic analyses have

been performed to a large set of yeast strains (Warringer et al., 2003). But to

provide consistent and more easily interpreted quantitative phenotypic analysis

still requires a lot of works to be done. Quantifying the growth of yeast strains

could, therefore, be an attempt towards facilitating the phenotypic profiling of

the yeast Saccharomyces cerevisiae.

1.1 Growth of yeast

The cell division of yeast occurs by budding in which a daughter is initiated as

an out growth from the mother cell, followed by nuclear division, cell-wall forma-

tion, and finally cell separation. The sizes of haploid1 and diploid2 cells vary with

the phase of growth and from strain to strain (Sherman, 1997). Yeast cell grows

in three main phases– the lag phase, the exponential phase and the stationary

phase. When a culture of yeast cells is inoculated in a fresh growth medium,

they enter a brief lag phase where they are biochemically active but not dividing.

The lag phase refers the initial growth phase, when number of cells remains rel-

atively constant prior to rapid growth, also referred as adaptation time. During

this phase the individual cells are actively metabolizing, in preparation for cell

division. The cells usually activate the metabolic pathways to make enough of

the essential nutrients to begin active growth. From literature it is seen that the

duration and extent of this phase depends on firstly the initial population size

and secondly environmental conditions like temperature, pH, alcohol, oxygen,

salt concentration, nutrients etc. Once the cell starts actively metabolizing, they

begin DNA replication and shortly after the cells divide. This begins the second

phase of growth called the exponential phase of growth. This is the period in

which the cells grow most rapidly. The time it takes the culture to double is

called generation time. This exponential phase depends on several factors: the

organism itself, the growth medium, and the temperature are all important fac-

1A single set of chromosomes (half the full set of genetic material), present in the egg and
sperm cells of animals and in the egg and pollen cells of plants.

2A full set of genetic material, consisting of paired chromosomes one chromosome from each
parental set. Most animal cells except the gametes have a diploid set of chromosomes.
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tors in determining the generation time. The third phase in growth of yeast is

stationary phase when metabolism slows and the cells stop rapid cell division.

The factors that cause cells to enter stationary phase are related to change in the

environment typically caused by high cell density. Figure 1.1 illustrates how the

yeast cell grows in three main phases.

Lag phase

Stationary phase

Exponential phase

t

log(Nt)

Figure 1.1: A typical logarithmic yeast growth curve where Nt is the population
size at time t.

1.2 Mathematical modelling of yeast growth

Mathematical tools in biological system have become important in assisting sci-

entists to understand and explain a lot of biological phenomena like the cellular

process, the whole metabolism of organisms, the evolution of species and so forth.

Concerning the growth of yeast cells, many physiological models have been pro-

posed in the literature. However, mathematically it is not easy to model the

behavior of the growth of yeast considering important growth parameters.

Richards (1928) performed the mathematical analysis of the growth of the

yeast Saccharomyces cerevisiae a long time ago. He devised that the growth

of yeast Saccharomyces cerevisiae has as asymmetrical S-shape. The growth

reached a maximum yield within 100 hours in the synthetically defined medium

in his study. He also measured the effect of temperature by van’t Hoff Arrhenius

equation. Gani and Saunders (1977) proposed branching process to model the
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growth of yeast colonies. They tested their theoretical results on three types

of yeast cells. As an approximation, their model reasonably descriptive of the

biological phenomena involved in the budding of yeast cells. Szewczyk (1989)

demonstrated a model for baker’s yeast growth which gives a flexible framework

for description of the yeast cultivation under oxidative utilization of glucose,

ethanol coassimilation under oxidative conditions, a change from oxidative to

oxidoreductive metabolism above a critical growth rate. Parameter estimation

method of the model and kinetic expressions both for the saturated respiratory

capacity and the repression of respiration were also discussed.

The phenotypic characterization is also becoming popular to the scientists

now a days though genomic, proteomic studies of yeast have been conducted

by a number researchers during last decade. Warringer et al. (2003) presented

gene functional prediction by studying the growth behavior of yeast after the salt

sensitive genes are being deleted. They investigated the consequences of loss of

individual genes under saline stress. A high correlation to protein-protein data

and no correlation between gene dispensability and gene expression were reported.

Medawar et al. (2003) proposed a simple non-structured model to assess the lag-

phase before yeast growth in alcoholic media. Ethanol is the main yeast growth

inhibitor acting in wine. Different cultures were run with varying initial ethanol

content and the influence on yeast growth were shown.

Warringer et al. (2003) presented and evaluated a method based on microscale

liquid cultivation of some commonly used yeast strains to provide consistent

and more easily explained quantitative phenotypic information, which leads to

a large-scale automated phenotypic profiling. The concept of phenotypic in-

dices at growth rate and at stationary phase OD increment were introduced

and compared for the used strains. Fernandez-Ricaud et al. (2005) announced

a publicly available source -PROPHECY- PROfiling of PHEnotypic Character-

istics in Yeast– database accessible at http://prophecy.lundberg.gu.se to mine,

filter and visualize the phenotypic data which is continuously updated. This is

the first online resource to observe the genome-wide growth behavior of mutant

strains in the yeast deletion collection during condition of environmental changes.

PROPHECY allows us to see the physiologically relevant growth parameters: the

time to adopt to the environmental changes - the lag time, the maximum growth

rate - the exponential phase and stationary phase cell density - the efficiency of
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growth.

Pylvänäinen (2005) compared the fits of the modified logistic, Gompertz and

Chapman-Richards models using nonlinear least square method for yeast growth

on the datasets extracted from PROPHECY database where altogether 576 Sac-

charomyces cerevisiae mutant strains were cultured in eight different environ-

ments. The physiologically important growth parameters - the lag time, the

maximum relative growth rate and the efficiency of growth, were estimated. The

modified Chapman-Richards model was found to be the best. One of her finding

showed that the lag time and the growth rate strongly depends on the initial

population size. Methods for standardizing growth curve were also derived with

varying initial ODs. The main idea behind standardization was to predict and

generalize the growth behavior having a standard initial OD. The methods to con-

struct a summary curve from different standardized growth curves and filtering

methods for atypical growth curves were also demonstrated.

Ericson et al. (2006) investigated genetic pleiotropy3 in Saccharomyces cere-

visiae by using high-resolution phenotypic profiling method to quantify the fitness

contribution of genes on the five smallest yeast chromosomes under six distinct

environmental stress. A higher extent of pleiotropy in yeast genes were found and

the non-existence of phenotypic islands are reported. Hietala et al. (2006) used

a five-parameter polynomial ratio (PR) model to characterize the growth, from

lag through stationary phase, of the yeast Saccharomyces cerevisiae in response

to cadmium toxicity. The PR model used in his study had more advantage over

standard mathematical models in the ability to represent the initial cell mortality

observed when Saccharomyces cerevisiae is exposed to increasing cadmium lev-

els, up to 12 mg/l Cd, as well as following cell recovery and growth to stationary

levels.

1.3 Objectives

This study is an attempt to fit and predict simultaneously the growth behavior of

the yeast Saccharomyces cerevisiae having the population a fixed standard initial

size. The specific intentions include:

3Pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits.
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• To fit yeast growth data and standardize it simultaneously using Chapman-

Richards model from a standard initial OD for two set of observations, one

with low and one with comparatively high initial OD.

• To compare the proposed method with the existing methods of standard-

ization.

• To derive a method for generalization of fitting and standardization for

wild-type yeast strains which will facilitate to phenotypic profiling.

This thesis is organized as follows. In chapter 2, the datasets, preprocessing of the

data as blank correction, calibration, smoothing are discussed. The Chapman-

Richards growth model, introduction of the three part model and the fitting are

discussed in chapter 3. The proposed method of standardization and necessary

formulae are derived in chapter 4. In chapter 5, the results from the analysis are

demonstrated. In chapter 6, discussion from the analysis, some conclusions and

the scope of further research are presented.



Chapter 2

Experimental Data

Yeast strains are inoculated in 350 µl synthetically defined (SD) medium1 and in-

cubated for 24 to 48 hours in a Bioscreen Analyzer with high intensity shaking 60

seconds every other minute. Optical density (OD) is measured every 20 minutes

using a wide band (450-580 nm) filter. Each plate contained wild-type strains in

randomized (once) positions. Strains are analyzed in duplicate (inhibitory con-

ditions). All data measured by Bioscreen Analyzer are smoothened so that each

OD value lower than previous value (i.e. the OD value at the previous time point)

is set the previous value. The simplest biological reason for this, could be due to

air bubbles. The OD values are then further blank corrected and calibrated to

get the actual measurement of cell densities.

2.1 Optical density

Optical density is easy, very quick and widely used method to estimate the num-

ber of cell in a culture. It is defined as the logarithm to the base 10 of the ratio

of the incident light to the transmitted light. OD is defined as

OD = log10

(
I0

I

)

1The SD medium contains yeast nitrogen base (YNB) without amino acids, ammonium
sulphate and succinic acid, buffered to pH 5.8; glucose; histidine, methionine, uracil, lysine and
leucine.

7
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where I0 is the intensity of the incident light and I is the intensity of the trans-

mitted light. Optical density can be measured by a spectrophotometer, a device

that passes light through a cell suspension and detects the amount of unscattered

light that goes through. Optical density is proportional to the number of cells

(in somewhat extent).

2.2 Bioscreen C Analyzer

Bioscreen C is an highly developed instrument which has been designed to create

up to 200 growth curves from 200 separate samples. Designed for the automation

of microbiology, as micro-organisms grow, they increase the suspension turbidity

of their growth medium. The organism of interest and any growth medium may

be selected. Specimens are manually dispensed using an Electronic or Digital

specially modified multichannel pipette into the wells of a special 10 x 10 mi-

croplates in two sets. Each well has a capacity of 400 µl. An optical density

(OD) curve is measured by calculating the turbidity of this medium over time.

This curve reflects the growth, increase of the organism. Bioscreen C system

provides the platform for these measurements to be made.

2.3 Blank correction

A blank represents a measurement of OD in a Bioscreen Analyzer where the

OD value measurement of wells contains only sterile water. A blank equal to

0.067 is subtracted from all data used in this thesis. This blank is the average

blank of all wells in all five Bioscreens, calculated after running several hundreds

of wells with only sterile water. There are differences betweens Bioscreens; the

lowest Bioscreens average was 0.063 and the highest being 0.072. The reason of

using same blank in all Bioscreens is that in practice it is not possible to measure

Bioscreens and well specific blanks for each run. For more details, see Ericson

(2004).
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2.4 Calibration

While measuring yeast growth curve by optical density, a technical problem of

non-linear relationship between OD values measured and number of cell at higher

densities, is encountered. The yeast cultures are supposed to be diluted at higher

OD values, but it is not possible with current high throughput set up. A cali-

bration curve function is then introduced to transform the non-linear relation to

a linear, so that the calibrated OD values will be proportional to to the number

of cells. To derive the calibrated curve, pairwise OD measurements of diluted

and undiluted samples are taken in all five Bioscreens. The well and Bioscreen

specific blanks are subtracted from each of the measured OD values and then

multiplied by the dilution factor. In order to reduce the sensitivity of the OD

measurements, the well specific averages over all Bioscreen analyzers are taken

so that there are a set of OD values of the diluted and undiluted samples. For

more details, see Pylvänäinen (2005).

A regression equation is fitted using the least square method with x, the well

specific average of the blank corrected undiluted OD as independent and y, the

well specific average of the blank corrected diluted OD multiplied by the dilution

factor as dependent variable. It is assumed that there is almost a proportional

relation between the blank corrected diluted OD values and the blank corrected

undiluted OD values approximately up to 0.3. A cubic function is then fitted as

y = x + cx3

where c is a constant. Least square method is used to estimate c and the fitted

curve becomes

y = x + 0.8324057x3 (2.1)

A second degree polynomial term is avoided as it could make the curve too steep

so that the y values would not be too high if we extrapolate for higher values of

x.
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2.5 Datasets

Two datasets have been used for the analysis in this thesis where all of the yeast

strains were wild type.

2.5.1 Dataset I

In the first dataset wild type S. cerevisiae strains are cultured in synthetically

defined (SD) medium. Synthetically defined (SD) medium contains yeast ni-

trogen base (YNB), ammonium sulphate and succinic acid, glucose; histidine,

methionine, uracil, lysine and leucine. All the strains are incubated twice; first

for 72 hours, then for 24 hours (in fresh medium) in a Bioscreen Analyzer C,

optical density is measured every 20 minute. Each well plate contained wild-type

strain in randomized (once) positions. Well 4 does not include cells, it was used

just to measure absorbance of well with media. Therefore, the dataset includes

99 wild-type S. cerevisiae strains growth data by OD measurement at 73 time

points.

2.5.2 Dataset II

Like dataset I, dataset II also contains the growth data points of wild-type strains

of the yeast S. cerevisiae. Here the strains are also cultured in synthetically

defined (SD) medium and incubated exactly as we have done for dataset I. But

here the strains are incubated for 44 hours in the Bioscreen Analyzer and optical

density is measured every 20 minute. In order to get the robust measurement of

OD values, strains with different initial cell density are replicated in the wells of

the Bioscreen. Therefore, the dataset contains optical density measurements at

132 time points of 200 wild-type yeast strains with replicated and variable initial

cell density.



Chapter 3

Growth Model

Many models have been proposed so far to describe the growth pattern in wide

range of disciplines such as crop science, fishery research, forest science and biol-

ogy. Some of the commonly used growth models are logistic, Gompertz, Richards,

Stannard, Schnute etc. Not all the models give adequate fit of the growth be-

havior of yeast. Also the parameters used in the growth models should have

a clear biological meaning. Pylvänäinen (2005) compared most commonly used

growth models: logistic, Gompertz and Champman-Richards in yeast growth.

She fitted and standardized the growth models for a wide range of start ODs.

The Champman-Richards model was found to be the best to describe the growth

pattern of the mutant and wild type yeast strains cultured in eight different

environmental stresses. Therefore, we propose to fit and standardize the yeast

growth by using Champman-Richards model in this thesis. In this chapter we

state the Champman-Richards model, its reparameterization, derivation of the

growth parameters, three part model and assessing the fit of a model.

3.1 Chapman-Richards model and its reparameteri-

zation

Pienaar and Turnbull (1973) described the Chapman-Richards generalization of

von Bertalanffy’s growth model which contain parameters in the model having

at least a gross physiological or biological interpretation. All the models consider

11
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the relative population size log(Nt/N0), where N0 is the initial population size

and Nt is the population size at time t. The Champman-Richards model (Pienaar

and Turnbull, 1973) is

vt = log

(
Nt

N0

)
= β0

[
1− β1e

−β2t
] 1

(1−β3) (3.1)

While modelling of the bacterial growth curve Zwietering et al. (1990) noticed

the problem of lack of biological parameters in the models and suggested the

modification of the logistic, Gompertz, Richards, Schnute and Stannard growth

curve functions. The models are reparameterized in such a way that they contain

parameters that are microbiologically relevant. The reparameterized Chapman-

Richards model is

vt = log

(
Nt

N0

)
= Az

[
1− (1− β3)e

β

β3
β3−1
3 µ

Az
(λz−t)+β3

] 1
1−β3

(3.2)

where Az = β0 is the asymptote, the maximum value of the growth (on logarith-

mic scale), µ = β0β2β
β3

1−β3
3 is the slope of the tangent of the logarithmic growth

curve at the inflection point1, the maximum relative population growth rate and

λz =
log

(
β1

1−β3

)
−β3

β2
is the time axis intercept of the tangent at the point of in-

flection on the logarithmic growth curve, the lag time. The Chapman-Richards

model is also known as Richards model and it is very flexible as it can be fitted

to both exponential and sigmoidal2 growth patterns.

Since the number of cells vt > 0 at time t = 0 for all t, the models were

reparamiterized by introducing a new parameter D < 0 which gave the following

form

gt = log(Nt) = yt + D (3.3)

where D = log(N0) − y0. Then the Chapman-Richards reparameterized model

1An inflection point is a point on a curve at which the sign of the curvature (i.e., the concavity)
changes.

2A curve which has first a convex shape and then a concave shape, i.e. has the shape like
the letter S.
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becomes

gt = β0

[
1− β1e

−β2t
] 1

(1−β3) + D (3.4)

3.2 Derivation of the growth parameters of the Chapman-

Richards model

The physiologically important growth parameters– the lag time λ, the maximum

growth rate µ and the stationary phase OD increment Y of the model were also

derived and estimated by Pylvänäinen (2005). For the analysis purpose of this

thesis here we reproduce the growth parameters from Pylvänäinen (2005).

The stationary phase OD increment: The stationary phase OD increment

is the final OD minus the initial OD. Mathematically

Y = eβ0+D − eg0

= eβ0+D − eβ0(1−β1)
1

1−β3 +D

The growth rate: The maximum relative growth rate, µ is defined as the

slope of the tangent of the logarithmic growth curve gt at its inflection time point.

The inflection time point tI can be derived by calculating the second derivative

of the function (3.4) with respect to t, equating at zero and solving with respect

to t. The first and second derivatives are

dgt

dt
=

β0β1β2e
β2t

(
1− β1e

β2t
) 1

1−β3
−1

1− β3

d2gt

dt2
=

β0β
2
1β2

2

(
1

1−β3
− 1

)
e−2β2t(1− β1e

−β2t)
1

1−β3
−2

1− β3

− β0β1β
2
2e−β2t(1− β1e

−β2t)
1

1−β3
−1

1− β3
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λ tI

y0 + D

y0

0

log(Nt)

t

Figure 3.1: Illustration of the growth parameter calculation in the Chapman-
Richards model where Nt is the population size at time t, tI is the inflection
time point, y0 is the value of the Chapman-Richards function (3.4) at time t = 0,
D = log(N0)− y0, and λ is the lag time.

Equating these at zero gives the solution

tI =
log

( β1

1−β3

)

β2

The growth rate µ is derived by calculating the first derivative at the inflection

time point tI

µ =
(

dgt

dt

)

tI

= β0β2β
β3

1−β3
3

The lag time: The tangent line through the inflection point is

m = µt + β0β
1

1−β3
3 − µtI + D
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The lag time λ, is the time axis value at the intercept of this tangent line with

the base line y0 + D, so that

y0 + D = µλ + β0β
1

1−β3
3 − µtI + D (3.5)

Solving (3.5) with respect to λ yields

λ =
y0 − β0β

1
1−β3
3 + µtI
µ

=
β0(1− β1)

1
1−β3 − β0β

1
1−β3
3 + µ

log(
β1

1−β3
)

β2

µ

3.3 The three part model

While fitting by Chapman-Richards model, the fit in the very beginning and the

transition from the exponential phase to stationary phase was not very good in

Pylvänäinen (2005). Therefore, a three part model was suggested to reduce the

error in fit. The proposed model consists of three parts: the beginning of the

curve until inflection point, the linear part following the inflection point which is

modelled as straight line and the rest after the linear part. Mathematically

g∗t =





gt; t ≤ tI

gtI + µ(t− tI); tI ≤ t ≤ tI + ∆

gt−∆ + µ∆; t ≥ tI + ∆

(3.6)

where ∆ is the time span of the linear part (∆ ≥ 0) and gt is the Chapman-

Richards function given by equation (3.4). The three part model can be illus-

trated by Figure 3.2.

3.4 Fitting the model and assessing the fit of the model

The data are blank corrected, smoothened and calibrated before fitting the model

as described in chapter 2. Non-linear regression approach are used to fit the
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y0

0

tI tI + ∆ t

log(Nt)

y0 + D

Figure 3.2: Illustration of the three part model where Nt is the population size
at time t, tI is the inflection time point, y0 is the value of the Chapman-Richards
function (3.4) at time t = 0, and D = log(N0)− y0.

three part model to the data by lsqnonlin (non-linear least square) function in

Matlab. To make good comparison with uniformity in all respect and also for

simplicity, we keep initial values same for all runs to estimate the parameters and

to standardize simultaneously: β0 = 4.5, β1 = −50, β2 = 0.3, β3 = 3, D = −3.

To assess fits of the model, we plot the residuals and calculate the coefficient

of determination. The coefficient of determination can be written as

r2 = 1− SSE

SST

= 1−
∑n

tp=1(g
∗
tp − xtp)2∑n

tp=1(xtp − x̄)2
(3.7)

where g∗tp is the fitted curve at time point tp, xp is the observed OD value at time

point tp, x̄ is mean of observed OD values over n time points and n is the total

number of time points.



Chapter 4

Standardization Method

The purpose of standardization is to predict the growth behavior of yeast. In

large scale experiments it is very hard to keep the initial cell size constant or

to start with a prefixed cell size. Therefore, a method is essentially required to

predict what would happen if we start with a fixed OD. In the proposed method

of standardization we assume that the idealized model of a logarithmic growth

curve consisting of a lag phase in the beginning, then an exponential phase and

a stationary phase in the end, is true. Our approach allows to start with a

simultaneous fitting of the three part model with Chapman-Richards function

for two sets of growth data– one started with a low initial OD and the other

with a comparatively higher initial OD. Then we are to predict the growth of

the yeast starting from an initial OD in the middle between the initial ODs of

two observed growth curves. The main idea behind the proposed approach of

having data from two growth curves is to extract different pieces of information

from two growth curves. We believe that data from the curve with higher initial

OD i.e. from the upper observed curve, have greater influence to the beginning

and lower influence to the end. And the data from the lower observed curve

are less informative in the beginning and provides higher information at the end

when we standardize a curve from an initial OD. Compare to Pylvänäinen (2005)

methods (for more details, see Appendix) we may then expect a better overall

precision incorporating those ideas through weighing the observations. We expect

the proposed approach will also reduce the correlation between initial OD and

growth rate and will also reduce the sensitivity of the growth.

17
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4.1 Standardizing two curves simultaneously

The standardization method predicts the growth starting from a fixed initial

OD, taking information from curves with one higher initial OD and one lower

initial OD. First we use the three part model with Chapman-Richards function

without a linear part in the middle to fit the observed curve with higher initial

OD using non-linear least square and then the three part model is fitted to

the lower observed curve also by non-linear least square. Finally we derive the

standardized curve starting from an initial OD in the middle between the initial

ODs of the observed curves, keeping the growth parameters– the lag time λ, the

maximum relative growth rate µ and stationary phase OD increment Y , constant

and removing the linear piece from the middle and lifting the curve up from the

lower observed curve as illustrated in Figure 4.1. Therefore, the standardized

curve is the Chapman-Richards curve. The growth parameters are also kept the

same for the fitted curves and the standardized curve.

log(s0)

log(Nt)

tI t

Linear part

Standardized curve

Three part model curve

Figure 4.1: Illustration of standardizing curve at s0 where Nt is the population
size at time t, tI is the inflection time point.

The model of the upper observed curve, is written as

g∗t =

{
gt; t ≤ tL

gt+∆up − (gtU − gtL); t ≥ tL
(4.1)
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where

gt = β0

[
1− β1e

−β2t
] 1

(1−β3) + Dup (4.2)

is the Chapman-Richards function, and where the derivatives of the curve at tL

and tL + ∆up have to be the same. See the Appendix for further details.

The three part model for the lower observed curve is given by

g∗t =





gt; t ≤ tI

gtI + µ(t− tI); tI ≤ t ≤ tI + ∆down

gt−∆down
+ µ∆down; t ≥ tI + ∆down

(4.3)

where

gt = β0

[
1− β1e

−β2t
] 1

(1−β3) + Ddown (4.4)

and

tI =
log

( β1

1−β3

)

β2
(4.5)

is the inflection time point and

µ = β0β2β
β3

1−β3
3 (4.6)

is the maximum relative growth rate and ∆down is the time span of the linear

part. We first fit the two observed curves simultaneously using fixed ∆up and

∆down. Consequently the free parameters are β0, β1, β2, β3, Dup and Ddown.

To also fit ∆up and ∆down, we proceed as follows:

• ∆up is fitted using ’golden section search’ (Press et al., 1992), by minimizing

the fitting errors for both observed curves using non-linear least square

method, keeping ∆down fixed. During the implementation of the ’golden

section search’, we keep our search space for the linear part, ∆up, 0 to 5

hours as our experience shows that the linear part never exceeds 5 hours.

• ∆down is iteratively recalculated assuming that the stationary phase OD

increment of the three part model curve equals the stationary phase OD in-
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crement for the standardized curve (Pylvänäinen, 2005). See the Appendix

for further details.

Then with the constraints that removing the linear piece from the middle

and shifting the lower curve up by τ ≥ 0 and taking estimated parameter values

from the fit of the two observed curves, we obtain the standardized curve which

is denoted by g•t .

g•t = β0

[
1− β1e

−β2t
] 1

(1−β3) + Ddown + τ (4.7)

Let s0 be the standard initial OD, the fixed value. Equating (4.7) at t = 0, we

get β0[1− β1]
1

(1−β3) + Ddown + τ which is equal to log(s0), i.e.

β0[1− β1]
1

(1−β3) + Ddown + τ = log(s0) (4.8)

Solving (4.8) for τ gives

τ = log(s0)− β0[1− β1]
1

(1−β3) (4.9)

4.2 Model fitting procedure

First we fix a standard initial OD, denoted by s0 somewhere between the ini-

tial ODs of the two observed curves. Then according to the Chapman-Richards

model, the curve that has initial value s0 can be obtained by the following pro-

cedure:

1. An initial value of ∆down is chosen for the lower curve.

2. Perform the ’golden section search’ to find out the optimum ∆up for the

upper curve, minimizing the fitting errors for both observed curves simul-

taneously by using least square method.

3. The models (4.1) and (4.3) are fitted simultaneously for the upper and

lower curves respectively using non-linear least square method using the

fixed ∆down for the lower curve and the optimum ∆up obtained by ’golden

section search’ for the upper curve.
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4. The stationary phase OD increment Y and Y •, are calculated. If |Y −
Y •| > c, then a new value of ∆down is calculated as given by (A.1.6) in the

Appendix. The constant c is the maximum allowed difference between Y

and Y •.

Step 2 to step 4 are repeated until |Y − Y •| < c.

4.3 Weighted non-linear least square

log(s0)

log(Nt)

t

Standardized curve

Three part model curve

Weight = 0.2

Weight = 0.2

Weight = 1.0 Weight = 1.0

Figure 4.2: Illustration of standardizing curve at s0 when the weights are used
to the observations. Here Nt is the population size at time t.

The reason behind weighing the observations is that we think the observations

in the beginning of the upper curve have greater influence in the standardized

curve than the observations of the beginning of the lower curve. Similarly the

observations at the end of the lower curve, that is, during stationary phase, have

greater influence than that of the upper curve. So, we give weight 1.0 for half

of the observations in the beginning of the upper curve while the rest gets 0.2

and 0.2 for half of the observations in the beginning of the lower curve whereas

1.0 for the rest. The weighting is illustrated by Figure 4.2. Then we perform

the non-linear least square to fit both observed curves and derive the standardize

curve simultaneously.





Chapter 5

Results

The main purpose of this study is to predict the growth behavior of yeast strains

from a specified initial OD. In the previous chapter, we propose a method by

which the growth can be predicted with respect to an initial OD. The initial OD

has an obvious influence towards the growth of yeast. If one starts with very

small number of cell in the beginning, the lag phase will be longer (than that of

higher cell densities). On the other hand the lag phase will be shorter if one starts

with higher number of cells in the beginning. Consequently the population will

go to the exponential phase very quickly. Considering all these constraints, the

proposed approach is applied to the datasets I and II. As mentioned in chapter

2, the dataset I consist of OD values of 99 wild-type yeast strains observed for

24 hours. Since the follow-up for 24 hours is not enough for the cells to go to

the stationary phase, we therefore collect another dataset; dataset II which has

growth information for 200 wild-type yeast strains observed for 44 hours. Plot

of well-wise initial OD values and the histogram of the initial OD values are

presented in Figure 5.1. In dataset I, the deviations of the initial OD values are

not very large; the lowest OD value is 0.0030 and the highest is 0.1060. Also the

data collected for over 24 hours only which is not enough to have the stationary

phase. Therefore we collect dataset II where initial OD values vary from 0.0270

to 0.3091 and the growth is observed for 44 hours. The minimum, maximum,

mean and coefficient of variation (CV) of the initial OD values in the dataset I

and II are presented in Table 5.1.

23
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Table 5.1: The minimum, maximum, mean and coefficient of variation (CV) of the
initial OD values in the datasets. The values are blank corrected and calibrated.

Dataset Minimum Maximum Mean CV
I 0.0030 0.1060 0.0596 47.14
II 0.0270 0.3091 0.1297 57.19

Pylvänäinen (2005) also proposed methods for standardization; one for stan-

dardizing up and the other for standardizing down. But her methods are quite

sensitive since those show poor fit if the difference of the initial OD between

the observed and the standardize curve are high. Therefore, to make a good

comparison we proceed as follows: first we sort the observations in the datasets

with respect to initial OD values and we divide them into three parts and we

take the middle part to standardize by Pylvänäinen methods at the mean value

(in logarithmic scale) s0 = 0.0513 for dataset I and s0 = 0.1092 for dataset II.

The rest one-third with higher initial OD and one-third with lower initial OD

paired randomly, are used to derive standardized curve at the same points by

the proposed method. In this way we derive 33 standardized growth curves by

Pylvänäinen methods and 33 standardized growth curves at s0 = 0.0513 by pro-

posed method for dataset I. Similarly we derive 66 standardized growth curves

by Pylvänäinen methods and 67 standardized growth curves at s0 = 0.1092 by

proposed method for dataset II. We also use weights as described in section 4.3.

For each of the standardized growth curves, we calculate the growth parameters:

adaptation time λ, the maximum relative growth rate µ and stationary phase

OD increment Y at the same time. The summary of the results are presented in

Table 5.2 and Table 5.3.

Figures 5.2 to 5.6 are derived by the proposed method of standardization

when the observed curves have higher and lower initial OD values and their

corresponding residual plots are also shown in the right. The standardized curves

are also derived by the proposed method when the two observed curves are very

close. From the residual plot we see that the fit does not look good when we

choose the two observed curves with distant initial ODs. A systematic error

occurs in the beginning of all fittings. There could be some biological reasons for

this. But the residuals do not vary too much if we standardize at different points
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(a) Plot of well-wise initial OD values
in dataset I. The values are blank cor-
rected and calibrated.
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(b) Histogram of the initial OD values
of all wild-type in dataset I. The values
are blank corrected and calibrated.
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(c) Plot of well-wise initial OD values
in dataset II. The values are blank cor-
rected and calibrated.
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of all wild-type in dataset II. The val-
ues are blank corrected and calibrated.

Figure 5.1: Plot of well-wise initial OD values and histogram of initial OD values
in dataset I and II.
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(a) The r-square value for the upper
curve is 0.9992 and for the lower curve
is 0.9983.
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(b) Plot of residuals.
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(c) The r-square value for the upper
curve is 0.9992 and for the lower curve
is 0.9979.
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(d) Plot of residuals.
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(e) The r-square value for the upper
curve is 0.9990 and for the lower curve
is 0.9973.
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(f) Plot of residuals.

Figure 5.2: The three part model with Chapman-Richards function fitted to
the dataset I, well 96 and well 8 (using weights). The observed curve log(OD)
(solid), the fitted growth curve (dotted) and the standardized curve (dashed).
The corresponding residual plots of the fitted curves are on the right.
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(a) The r-square value for the upper
curve is 0.9977 and for the lower curve
is 0.9927.
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(b) Plot of residuals.
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(c) The r-square value for the upper
curve is 0.9978 and for the lower curve
is 0.9930.
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(d) Plot of residuals.
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(e) The r-square value for the upper
curve is 0.9981 and the lower curve is
0.9916.
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(f) Plot of residuals.

Figure 5.3: The three part model with Chapman-Richards function fitted to the
dataset II, well 186 and well 84. The observed curve log(OD) (solid), the fitted
growth curve (dotted) and the standardized curve (dashed). The corresponding
residual plots of the fitted curves are on the right.
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(a) The r-square value for the upper
curve is 0.9968 and for the lower curve
is 0.9938.
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(b) Plot of residuals.
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(c) The r-square value for the upper
curve is 0.9971 and for the lower curve
is 0.9933.
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(d) Plot of residuals.
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(e) The r-square value for the upper
curve is 0.9978 and the lower curve is
0.9902.
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(f) Plot of residuals.

Figure 5.4: The three part model with Chapman-Richards function fitted to the
dataset II, well 186 and well 84 (using weights). The observed curve log(OD)
(solid), the fitted growth curve (dotted) and the standardized curve (dashed).
The corresponding residual plots of the fitted curves are on the right.
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(a) The r-square value for the upper
curve (well 84) is 0.9991 and for the
lower curve (well 26) is 0.9993.
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(b) Plot of residuals.
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(c) The r-square value for the upper
curve (well 77) is 0.9994 and for the
lower curve (well 106) is 0.9989.
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(d) Plot of residuals.
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(e) The r-square value for the upper
curve (well 16) is 0.9995 and the lower
curve (well 95) is 0.9994.
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(f) Plot of residuals.

Figure 5.5: The three part model with Chapman-Richards function fitted to the
dataset II. The observed curve log(OD) (solid), the fitted growth curve (dotted)
and the standardized curve (dashed). The corresponding residual plots of the
fitted curves are on the right.
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(a) The r-square value for the upper
curve (well 84) is 0.9985 and for the
lower curve (well 26) is 0.9988.
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(b) Plot of residuals.
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(c) The r-square value for the upper
curve (well 77) is 0.9985 and for the
lower curve (well 106) is 0.9981.
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(d) Plot of residuals.
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(e) The r-square value for the upper
curve (well 16) is 0.9993 and the lower
curve (well 95) is 0.9993.
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(f) Plot of residuals.

Figure 5.6: The three part model with Chapman-Richards function fitted to the
dataset II using weights. The observed curve log(OD) (solid), the fitted growth
curve (dotted) and the standardized curve (dashed). The corresponding residual
plots of the fitted curves are on the right.
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between the two observed curves. The fitting error becomes very small when the

two observed curves are close and the weighting does not have substantial effect.

Table 5.2: The summary of results derived by the proposed method and
Pylvänäinen methods from datasets I.

Parameter Method Mean St. dev. CV(%)

λ
Pylvänäinen method 2.1765 0.1466 6.74
Proposed method (weighted) 2.3996 0.2373 9.89

µ
Pylvänäinen method 0.3561 0.0064 1.81
Proposed method (weighted) 0.3533 0.0050 1.41

Y
Pylvänäinen method 5.3711 0.1802 3.35
Proposed method (weighted) 5.2950 0.3355 6.10

Table 5.3: The summary of results derived by the proposed method and
Pylvänäinen methods from datasets II.

Parameter Method Mean St. dev. CV(%)

λ
Pylvänäinen method 0.8645 0.2279 26.37
Proposed method 0.7668 0.1581 20.62
Proposed method (weighted) 0.7753 0.1351 17.42

µ
Pylvänäinen method 0.3634 0.0100 2.74
Proposed method 0.3458 0.0115 3.32
Proposed method (weighted) 0.3459 0.0110 3.17

Y
Pylvänäinen method 5.4976 0.1638 2.98
Proposed method 4.6607 0.2806 6.02
Proposed method (weighted) 4.6564 0.2902 6.23

From Table 5.2, we see that the estimate of the lag time λ by proposed

method has slightly higher coefficient of variation than Pylvänäinen methods for

dataset I. One reason for this is could be– we choose very close observed curves to

standardize by Pylvänäinen methods and distant curves for the proposed method.

But coefficient of variation of the relative maximum growth rate µ, is still lower

for the proposed method than Pylvänäinen methods.

From Table 5.3, the lag time λ estimated by proposed method, has less co-

efficient of variation than estimated by Pylvänäinen methods, even when the

observations are not weighted for dataset II. The coefficient of variation is much
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less when the weighting is used. But the coefficient of variation is slightly higher

for the proposed method for both cases when the weighting is used and also

not used. The coefficient of variation of the stationary phase OD increment by

Pylvänäinen methods is less for both datasets.



Chapter 6

Discussion and Conclusion

Quantitative phenomics is a fundamental approach for better understanding the

cellular process, to determine the cellular role of genes through screening the

quantitative changes of growth phenotypes in a wide variety of growth conditions

for yeast. We mainly focus one problem related to the microbial growth– how to

standardize the growth curves with respect to an initial OD, having observed the

growth curves. We use the Chapman-Richards growth function as our basic tool.

The three part model is fitted for a wide range of wild-type yeast growth curves

and the standardized growth curves are derived with a specified OD. The model

works well when the observed curves are close. For the distant observed curves,

some fitting errors arise. However, the fitting errors can be reduced to a certain

extent by considering lower tolerance levels during each iteration while running

lsqnonlin function in Matlab and also using very small termination criterion.

Here it is to be mentioned that to reduce the running time of the Matlab codes,

we consider the termination criterion c (the difference between the stationary

phase OD increment of the three part model curve and standardize curve) equals

0.01 and keep TolX=0.001 and TolFun=0.001 for the parameter options in

lsqnonlin function for all runs, while the default values are TolX=1e-6 and

TolFun=1e-6. We also report a systematic error in the very beginning of all

observed curves. In most of the curves we see a weird behavior as– it suddenly

goes up and then it comes down and follows the typical shape of the yeast growth

curve for each of the observed curves. But we do not know why this happens;

there might be some biological reasons. When we fit the upper curve, we perform

33
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the ’golden section search’ to find out the optimum linear part for the upper

curve for which the fitting error of the both observed curves is minimum. Also

we adjust the optimum linear piece for the lower curve so that the stationary

phase OD increment of the lower curve becomes equal to the stationary phase

OD increment of the standardized curve.

Another important objective of this thesis, is to compare the efficiency of the

proposed method of standardization with the existing methods, in particular,

the Pylvänäinen methods. We compare our proposed method of standardization

with the Pylvänäinen methods by deriving standardized curves and comparing

the estimates of the growth parameters. The proposed method shows better re-

sults as it has lower coefficient of variation for the growth parameter: the relative

maximum growth rate for dataset I and the lag time for dataset II. But for lag

phase in dataset I and maximum relative growth rate for dataset II, Pylvänäinen

methods show slightly better results. The stationary phase OD increment is

better by Pylvänäinen methods for both datasets. Since Pylvänäinen methods

are sensitive as those overestimate or underestimate the growth parameters for

distant observed curves, we choose to use the proposed method for the distant

observed curves and Pylvänäinen methods for the close observed curves for stan-

dardization. The result would possibly be more in favor to the proposed method

if we choose the same observed curves for the proposed method.

The proposed method can easily be generalized to obtain a single standard

curve from n pairs of observed curves where n observed curves have initial OD

greater than the specified initial OD for standardization and the other n observed

curves have initial OD less than the specified initial OD for standardization. The

three part models are to be the fitted to the observed curves. The upper n

curves can be fitted by choosing the optimum linear pieces by the ’golden section

search’. The linear parts for the lower n curves can be adjusted so that the

stationary phase OD increment of the standardized curve becomes equal to the

average of the stationary phase OD increment of the three part model curves,

having initial OD less than the standard initial OD. We assume that the lag time

and the growth rate are the same for all the three part model curves and the

standardized curve.
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6.1 Future work

Further study can be conducted to standardize more accurately and to get the ro-

bust estimate of growth parameters by a number of ways. Some of the techniques,

could then be–

• Improving algorithms: We use higher tolerance during each iteration while

fitting and standardizing growth curves to reduce the computational time.

One can try to improve the algorithm to increase the computational speed

and use lower tolerance to get more precise fitting of the observed curves.

For instance, one can use high tolerance in the beginning of the fitting and

lower tolerance when fine-tuning the fit. At the same time, different weights

can also be used.

• Using more curves: One can use another observed curve in between the

two other curves to integrate some more information as well. The add

in information from the middle curve can strengthen the estimates of the

growth parameters.

• Exploring the bulb shape: During the fitting of the observed curves, we

always notice a bulb shape in the very beginning for which a systematic

error always occurs in the fitting. We believe there might be some biological

reasons, but we do not integrate this bulb shape in our models. It would

be interesting to explore this further.

• Applying more advanced statistical methods: Some more advanced statisti-

cal tools like time series analysis using the state space models or exponential

smoothing, Bayesian approach can also be applied to get more precise fit-

ting and estimate of the growth parameters of yeast.
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Appendix A

Pylvänäinen methods

A.1 Standardizing upwards

This method was developed to predict what would happen if the initial OD is

fixed and larger than the observed initial OD. The three part model is used to

fit the observed curve so that a standardize curve can be obtained by ’lifting’ the

fitted curve to start from log(s0) and removing the linear piece from the middle,

Figure A.1. The growth parameters lag time, maximum relative growth rate and

stationary phase OD increment, are to be the same for the three part model curve

and the standardize curve.

The three part model given by

g∗t =





gt; t ≤ tI

gtI + µ(t− tI); tI ≤ t ≤ tI + ∆

gt−∆ + µ∆; t ≥ tI + ∆

(A.1.1)

where

gt = β0

[
1− β1e

−β2t
] 1

(1−β3) + D (A.1.2)

39
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t

log(Nt)

Linear part

Three part model curve

Standardized curve

log(s0)

tI

Figure A.1: Illustration of standardizing curve when the standard initial OD is
higher than the observed initial OD. Here Nt is the population size at time t.

is the Chapman-Richards function.

tI =
log

( β1

1−β3

)

β2

is the inflection time point and

µ = β0β2β
β3

1−β3
3

is the maximum relative growth rate and ∆ is the time span of the linear part.

First the three part model is fitted to the observed data points with the con-

straints that removing the linear piece from the middle and shifting the curve by

τ ≥ 0. The standardized curve which is denoted by g•t , is obtained:

g•t = β0

[
1− β1e

−β2t
] 1

(1−β3) + D + τ (A.1.3)

Let s0 be the standard initial OD, the fixed value. Equating (4.3) at t = 0, we

get β0[1− β1]
1

(1−β3) + D + τ which is equal to log(s0), i.e.

β0[1− β1]
1

(1−β3) + D + τ = log(s0) (A.1.4)
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Solving (A.1.4) for τ gives

τ = log(s0)− β0[1− β1]
1

(1−β3) (A.1.5)

Then the time span of the linear part ∆, is so adjusted that the stationary phase

OD increment of the three part model curve

Y = eβ0+D+µ∆ − eβ0(1−β1)
1

1−β3 +D

equals to the stationary phase OD increment of the standardized curve

Y • = eβ0+D+τ − eβ0(1−β1)
1

1−β3 +D+τ

This yields

∆ =
−β0 −D + log[eβ0+D+τ − eβ0(1−β1)

1
1−β3 +D+τ + eβ0(1−β1)

1
1−β3 +D]

µ
(A.1.6)
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A.2 Standardizing downwards

When the standard initial OD is less than the observed initial OD, then standard-

izing downward method can be applied. A Chapman-Richard model curve that

lacks a part in the middle is fitted to the observed data. The standardized curve

is then the Chapman-Richard model curve, including the part in the middle. The

stationary phase OD increment of the standardized curve is to be same as of the

observed curve, but the lag time and the growth rate do not need to be the same.

The model of the observed curve is written as

g∗t =

{
gt; t ≤ tL

gt+∆ − (gtU − gtL); t ≥ tL
(A.2.7)

The following figure shows the standardizing downwards by Pylvänäinen method

t

log(Nt)

Standardized curvelog(s0)

Chapman-Richards model curve
that lacks a part in the middle

tL tU

Figure A.2: Illustration of standardizing curve when the standard initial OD is
lower than the observed initial OD. Here Nt is the population size at time t.

where

gt = β0

[
1− β1e

−β2t
] 1

(1−β3) + D (A.2.8)
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is the Chapman-Richards function and

∆ = tU − tL.

The model of the standardized curve can be written as

g•t = β0

[
1− β1e

−β2t
] 1

(1−β3) + D + τ (A.2.9)

where τ(≤ 0) is obtained by setting the initial log(OD) value of the standardized

curve to log(s0)

β0[1− β1]
1

(1−β3) + D + τ = log(s0) (A.2.10)

Solving (A.2.10) for τ yields

τ = log(s0)− β0[1− β1]
1

(1−β3) (A.2.11)

The stationary phase OD increment of the standardized curve

Y = eβ0+D+τ − eβ0(1−β1)
1

1−β3 +D+τ

has to equal the stationary phase OD increment of the observed curve

Y = eβ0+D−(gtU
−gtL

) − eβ0(1−β1)
1

1−β3
+D

= eβ0+D−β0

[
(1−β1e−β2(tL+∆))

1
1−β3 −(1−β1e−β2tL )

1
1−β3

]
− eβ0(1−β1)

1
1−β3

+D

This gives

∆ = −tL +
1
β2

log

[
β1

1−
(
(1− β1e−β2tL)

1
1−β3 + [ϕ]

)1−β3

]
(A.2.12)

ϕ =
β0 + D − log

[
eβ0(1−β1)

1
1−β3

+D

+ eβ0+D+τ − eβ0(1−β1)
1

1−β3 +D+τ
]

β0


