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LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:

1. Structure engineering decision-making problems as hypothesis tests

2. Test hypotheses on the mean of a normal distribution using either a Z-test or a t-test procedure

3. Test hypotheses on the variance or standard deviation of a normal distribution

4. Test hypotheses on a population proportion

5. Use the P-value approach for making decisions in hypotheses tests

6. Compute power, type II error probability, and make sample size selection decisions for tests on

means, variances, and proportions

7. Explain and use the relationship between confidence intervals and hypothesis tests

8. Use the chi-square goodness of fit test to check distributional assumptions

9. Use contingency table tests

CD MATERIAL

10. Appreciate the likelihood ratio approach to construction of test statistics

11. Conduct small sample tests on a population proportion

Answers for many odd numbered  exercises are at the end of the book. Answers to exercises whose

numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete

worked solutions to certain exercises are also available in the e-Text. These are indicated in the

Answers to Selected Exercises section by a box around the exercise number. Exercises are also

available for some of the text sections that appear on CD only. These exercises may be found within

the e-Text immediately following the section they accompany.

9-1 HYPOTHESIS TESTING

9-1.1 Statistical Hypotheses

In the previous chapter we illustrated how to construct a confidence interval estimate of a pa-

rameter from sample data. However, many problems in engineering require that we decide

whether to accept or reject a statement about some parameter. The statement is called a

hypothesis, and the decision-making procedure about the hypothesis is called hypothesis

testing. This is one of the most useful aspects of statistical inference, since many types of

decision-making problems, tests, or experiments in the engineering world can be formulated

as hypothesis-testing problems. Furthermore, as we will see, there is a very close connection

between hypothesis testing and confidence intervals.

Statistical hypothesis testing and confidence interval estimation of parameters are the funda-

mental methods used at the data analysis stage of a comparative experiment, in which the engi-

neer is interested, for example, in comparing the mean of a population to a specified value. These

simple comparative experiments are frequently encountered in practice and provide a good foun-

dation for the more complex experimental design problems that we will discuss in Chapters 13

and 14. In this chapter we discuss comparative experiments involving a single population, and our

focus is on testing hypotheses concerning the parameters of the population.

We now give a formal definition of a statistical hypothesis.
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A statistical hypothesis is a statement about the parameters of one or more populations.

Definition



Since we use probability distributions to represent populations, a statistical hypothesis

may also be thought of as a statement about the probability distribution of a random variable.

The hypothesis will usually involve one or more parameters of this distribution.

For example, suppose that we are interested in the burning rate of a solid propellant used

to power aircrew escape systems. Now burning rate is a random variable that can be described

by a probability distribution. Suppose that our interest focuses on the mean burning rate (a

parameter of this distribution). Specifically, we are interested in deciding whether or not the

mean burning rate is 50 centimeters per second. We may express this formally as

(9-1)

The statement centimeters per second in Equation 9-1 is called the null

hypothesis, and the statement centimeters per second is called the alternative

hypothesis. Since the alternative hypothesis specifies values of that could be either greater

or less than 50 centimeters per second, it is called a two-sided alternative hypothesis. In some

situations, we may wish to formulate a one-sided alternative hypothesis, as in

or (9-2)

It is important to remember that hypotheses are always statements about the population or

distribution under study, not statements about the sample. The value of the population param-

eter specified in the null hypothesis (50 centimeters per second in the above example) is usu-

ally determined in one of three ways. First, it may result from past experience or knowledge

of the process, or even from previous tests or experiments. The objective of hypothesis testing

then is usually to determine whether the parameter value has changed. Second, this value may

be determined from some theory or model regarding the process under study. Here the objec-

tive of hypothesis testing is to verify the theory or model. A third situation arises when the

value of the population parameter results from external considerations, such as design or en-

gineering specifications, or from contractual obligations. In this situation, the usual objective

of hypothesis testing is conformance testing.

A procedure leading to a decision about a particular hypothesis is called a test of a

hypothesis. Hypothesis-testing procedures rely on using the information in a random sample

from the population of interest. If this information is consistent with the hypothesis, we will con-

clude that the hypothesis is true; however, if this information is inconsistent with the hypothesis,

we will conclude that the hypothesis is false. We emphasize that the truth or falsity of a particu-

lar hypothesis can never be known with certainty, unless we can examine the entire population.

This is usually impossible in most practical situations. Therefore, a hypothesis-testing procedure

should be developed with the probability of reaching a wrong conclusion in mind.

The structure of hypothesis-testing problems is identical in all the applications that we

will consider. The null hypothesis is the hypothesis we wish to test. Rejection of the null

hypothesis always leads to accepting the alternative hypothesis. In our treatment of hypothe-

sis testing, the null hypothesis will always be stated so that it specifies an exact value of the

parameter (as in the statement in Equation 9-1). The

alternate hypothesis will allow the parameter to take on several values (as in the statement

in Equation 9-1). Testing the hypothesis involves taking

a random sample, computing a test statistic from the sample data, and then using the test

statistic to make a decision about the null hypothesis.

H1: m Þ 50 centimeters per second

H0: m 5 50 centimeters per second

H1: m , 50 centimeters per second  H1: m . 50 centimeters per second

H0: m 5 50 centimeters per second  H0: m 5 50 centimeters per second

m

H1: m Þ 50

H0: m 5 50

H1: m Þ 50 centimeters per second

H0: m 5 50 centimeters per second
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9-1.2 Tests of Statistical Hypotheses

To illustrate the general concepts, consider the propellant burning rate problem introduced

earlier. The null hypothesis is that the mean burning rate is 50 centimeters per second, and the

alternate is that it is not equal to 50 centimeters per second. That is, we wish to test

Suppose that a sample of specimens is tested and that the sample mean burning

rate is observed. The sample mean is an estimate of the true population mean . A value of

the sample mean that falls close to the hypothesized value of centimeters per second

is evidence that the true mean is really 50 centimeters per second; that is, such evidence sup-

ports the null hypothesis H0. On the other hand, a sample mean that is considerably different

from 50 centimeters per second is evidence in support of the alternative hypothesis . Thus,

the sample mean is the test statistic in this case.

The sample mean can take on many different values. Suppose that if we

will not reject the null hypothesis , and if either or , we will

reject the null hypothesis in favor of the alternative hypothesis . This is illustrated

in Fig. 9-1. The values of that are less than 48.5 and greater than 51.5 constitute the critical

region for the test, while all values that are in the interval form a region for

which we will fail to reject the null hypothesis. By convention, this is usually called the

acceptance region. The boundaries between the critical regions and the acceptance region are

called the critical values. In our example the critical values are 48.5 and 51.5. It is customary

to state conclusions relative to the null hypothesis H0. Therefore, we reject H0 in favor of 

if the test statistic falls in the critical region and fail to reject H0 otherwise.

This decision procedure can lead to either of two wrong conclusions. For example, the

true mean burning rate of the propellant could be equal to 50 centimeters per second.

However, for the randomly selected propellant specimens that are tested, we could observe a

value of the test statistic that falls into the critical region. We would then reject the null

hypothesis H0 in favor of the alternate when, in fact, H0 is really true. This type of wrong

conclusion is called a type I error.

H1

x

H1

48.5 # x # 51.5

x

H1: m Þ 50

x . 51.5x , 48.5H0: m 5 50

48.5 # x # 51.5,

H1

m

m 5 50x

mx

n 5 10

H1: m Þ 50 centimeters per second

H0: m 5 50 centimeters per second
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Rejecting the null hypothesis H0 when it is true is defined as a type I error.

Definition

Failing to reject the null hypothesis when it is false is defined as a type II error.

Definition

Now suppose that the true mean burning rate is different from 50 centimeters per second, yet

the sample mean falls in the acceptance region. In this case we would fail to reject H0 when

it is false. This type of wrong conclusion is called a type II error.

x

Thus, in testing any statistical hypothesis, four different situations determine whether the final

decision is correct or in error. These situations are presented in Table 9-1.
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50 51.548.5

Reject H0

µ ≠ 50 cm/s

Fail to Reject H0

µ = 50 cm/s

Reject H0

µ ≠ 50 cm/s

x

Table 9-1 Decisions in Hypothesis Testing

Decision H0 Is True H0 Is False

Fail to reject H0 no error type II error

Reject H0 type I error no errorFigure 9-1 Decision criteria for testing H0: m 5

50 centimeters per second versus H1: m Þ 50 centime-

ters per second.

α /2 = 0.0287 α /2 = 0.0287

48.5 51.5= 50µ X

Figure 9-2 The critical region for H0: m 5 50

versus H1: m Þ 50 and n 5 10.

Because our decision is based on random variables, probabilities can be associated with

the type I and type II errors in Table 9-1. The probability of making a type I error is denoted

by the Greek letter a. That is,

a 5 P(type I error) 5 P(reject H0 when H0 is true) (9-3)

Sometimes the type I error probability is called the significance level, or the a-error, or the

size of the test. In the propellant burning rate example, a type I error will occur when either

or when the true mean burning rate is centimeters per second.

Suppose that the standard deviation of burning rate is centimeters per second and that

the burning rate has a distribution for which the conditions of the central limit theorem apply,

so the distribution of the sample mean is approximately normal with mean and stan-

dard deviation . The probability of making a type I error (or the

significance level of our test) is equal to the sum of the areas that have been shaded in the tails

of the normal distribution in Fig. 9-2. We may find this probability as

The z-values that correspond to the critical values 48.5 and 51.5 are

Therefore

This implies that 5.76% of all random samples would lead to rejection of the hypothesis

when the true mean burning rate is really 50 centimeters

per second.

H0: m 5 50 centimeters per second

a 5 P1Z , 21.902 1 P1Z . 1.902 5 0.028717 1 0.028717 5 0.057434

z1 5
48.5 2 50

0.79
5 21.90  and  z2 5

51.5 2 50

0.79
5 1.90

a 5 P1X , 48.5 when m 5 502 1 P1X . 51.5 when m 5 502

s/1n 5 2.5/110 5 0.79

m 5 50

s 5 2.5

m 5 50x , 48.5x . 51.5



From inspection of Fig. 9-2, notice that we can reduce by widening the acceptance

region. For example, if we make the critical values 48 and 52, the value of is

We could also reduce a by increasing the sample size. If 5

0.625, and using the original critical region from Fig. 9-1, we find

Therefore

In evaluating a hypothesis-testing procedure, it is also important to examine the proba-

bility of a type II error, which we will denote by b. That is,

a 5 P1Z , 22.402 1 P1Z . 2.402 5 0.0082 1 0.0082 5 0.0164

z1 5
48.5 2 50

0.625
5 22.40  and  z2 5

51.5 2 50

0.625
5 2.40

n 5 16, s/1n 5 2.5/116

5 0.0057 1 0.0057 5 0.0114

a 5 P  aZ ,
48 2 50

0.79
b 1 P   aZ .

52 2 50

0.79
b 5 P 1Z , 22.532 1 P 1Z . 2.532

a

a
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To calculate b (sometimes called the b-error), we must have a specific alternative hypothe-

sis; that is, we must have a particular value of m. For example, suppose that it is important to

reject the null hypothesis H0: m 5 50 whenever the mean burning rate m is greater than 52

centimeters per second or less than 48 centimeters per second. We could calculate the proba-

bility of a type II error b for the values m 5 52 and m 5 48 and use this result to tell us some-

thing about how the test procedure would perform. Specifically, how will the test procedure

work if we wish to detect, that is, reject H0, for a mean value of m 5 52 or m 5 48? Because

of symmetry, it is necessary only to evaluate one of the two cases—say, find the probability of

accepting the null hypothesis H0: m 5 50 centimeters per second when the true mean is m 5

52 centimeters per second.

Figure 9-3 will help us calculate the probability of type II error b. The normal distribution

on the left in Fig. 9-3 is the distribution of the test statistic when the null hypothesis 

H0: m 5 50 is true (this is what is meant by the expression “under H0: m 5 50”), and the nor-

mal distribution on the right is the distribution of when the alternative hypothesis is true and

the value of the mean is 52 (or “under H1: m 5 52”). Now a type II error will be committed if

the sample mean falls between 48.5 and 51.5 (the critical region boundaries) when m 5 52.

As seen in Fig. 9-3, this is just the probability that when the true mean is 

m 5 52, or the shaded area under the normal distribution on the right. Therefore, referring to

Fig. 9-3, we find that

b 5 P 148.5 # X # 51.5 when m 5 522

48.5 # X # 51.5

X

X

X

b 5 P(type II error) 5 P(fail to reject H0 when H0 is false) (9-4)



The z-values corresponding to 48.5 and 51.5 when m 5 52 are

Therefore

Thus, if we are testing H0: m 5 50 against H1: m Þ 50 with n 5 10, and the true value of the

mean is m 5 52, the probability that we will fail to reject the false null hypothesis is 0.2643. By

symmetry, if the true value of the mean is m 5 48, the value of b will also be 0.2643.

The probability of making a type II error b increases rapidly as the true value of 

approaches the hypothesized value. For example, see Fig. 9-4, where the true value of the

mean is m 5 50.5 and the hypothesized value is H0: m 5 50. The true value of m is very close

to 50, and the value for b is

As shown in Fig. 9-4, the z-values corresponding to 48.5 and 51.5 when m 5 50.5 are

Therefore

5 0.8980 2 0.0057 5 0.8923

Thus, the type II error probability is much higher for the case where the true mean is 50.5

centimeters per second than for the case where the mean is 52 centimeters per second. Of course,

b 5 P122.53 # Z # 1.272 5 P1Z # 1.272 2 P1Z # 22.532

z1 5
48.5 2 50.5

0.79
5 22.53  and  z2 5

51.5 2 50.5

0.79
5 1.27

b 5 P 148.5 # X # 51.5 when m 5 50.52

m

5 0.2643 2 0.0000 5 0.2643

b 5 P 124.43 # Z # 20.632 5 P 1Z # 20.632 2 P 1Z # 24.432

z1 5
48.5 2 52

0.79
5 24.43  and  z2 5

51.5 2 52

0.79
5 20.63
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Figure 9-3 The probability of type II error

when m 5 52 and n 5 10.
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when m 5 50.5 and n 5 10.



in many practical situations we would not be as concerned with making a type II error if the mean

were “close” to the hypothesized value. We would be much more interested in detecting large

differences between the true mean and the value specified in the null hypothesis.

The type II error probability also depends on the sample size n. Suppose that the null

hypothesis is centimeters per second and that the true value of the mean is

If the sample size is increased from n 5 10 to n 5 16, the situation of Fig. 9-5 results.

The normal distribution on the left is the distribution of when the mean , and the

normal distribution on the right is the distribution of when . As shown in Fig. 9-5,

the type II error probability is

When , the standard deviation of is , and the z-values

corresponding to 48.5 and 51.5 when are

Therefore

5 0.2119 2 0.0000 5 0.2119

Recall that when and , we found that ; therefore, increasing the

sample size results in a decrease in the probability of type II error.

The results from this section and a few other similar calculations are summarized in the

following table:

b 5 0.2643m 5 52n 5 10

b 5 P125.60 # Z # 20.802 5 P1Z # 20.802 2 P1Z # 25.602

z1 5
48.5 2 52

0.625
5 25.60 and z2 5

51.5 2 52

0.625
5 20.80

m 5 52

s/1n 5 2.5/116 5 0.625Xn 5 16

b 5 P 148.5 # X # 51.5 when m 5 522
m 5 52X

m 5 50X

m 5 52.

H0: m 5 50
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Acceptance Sample
Region Size a b at m 5 52 b at m 5 50.5

10 0.0576 0.2643 0.8923

10 0.0114 0.5000 0.9705

16 0.0164 0.2119 0.9445

16 0.0014 0.5000 0.991848 , x , 52

48.5 , x , 51.5

48 , x , 52

48.5 , x , 51.5
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The results in boxes were not calculated in the text but can easily be verified by the

reader. This display and the discussion above reveal four important points:

1. The size of the critical region, and consequently the probability of a type I error ,

can always be reduced by appropriate selection of the critical values.

2. Type I and type II errors are related. A decrease in the probability of one type of error

always results in an increase in the probability of the other, provided that the sample

size n does not change.

3. An increase in sample size will generally reduce both and b, provided that the

critical values are held constant.

4. When the null hypothesis is false, b increases as the true value of the parameter

approaches the value hypothesized in the null hypothesis. The value of b decreases

as the difference between the true mean and the hypothesized value increases.

Generally, the analyst controls the type I error probability a when he or she selects the

critical values. Thus, it is usually easy for the analyst to set the type I error probability at

(or near) any desired value. Since the analyst can directly control the probability of

wrongly rejecting H0, we always think of rejection of the null hypothesis H0 as a strong

conclusion.

On the other hand, the probability of type II error b is not a constant, but depends on

the true value of the parameter. It also depends on the sample size that we have selected.

Because the type II error probability b is a function of both the sample size and the extent to

which the null hypothesis H0 is false, it is customary to think of the decision to accept H0 as a

weak conclusion, unless we know that b is acceptably small. Therefore, rather than saying we

“accept H0”, we prefer the terminology “fail to reject H0”. Failing to reject H0 implies that we

have not found sufficient evidence to reject H0, that is, to make a strong statement. Failing to

reject H0 does not necessarily mean that there is a high probability that H0 is true. It may

simply mean that more data are required to reach a strong conclusion. This can have impor-

tant implications for the formulation of hypotheses.

An important concept that we will make use of is the power of a statistical test.

a

a
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The power of a statistical test is the probability of rejecting the null hypothesis H0

when the alternative hypothesis is true.

Definition

The power is computed as , and power can be interpreted as the probability of

correctly rejecting a false null hypothesis. We often compare statistical tests by comparing

their power properties. For example, consider the propellant burning rate problem when we

are testing centimeters per second against centimeters per second.

Suppose that the true value of the mean is . When n 5 10, we found that 

so the power of this test is when .

Power is a very descriptive and concise measure of the sensitivity of a statistical test,

where by sensitivity we mean the ability of the test to detect differences. In this case, the

sensitivity of the test for detecting the difference between a mean burning rate of 50 centime-

ters per second and 52 centimeters per second is 0.7357. That is, if the true mean is really 

52 centimeters per second, this test will correctly reject and “detect” this differ-

ence 73.57% of the time. If this value of power is judged to be too low, the analyst can increase

either a or the sample size n.

H0: m 5 50

m 5 521 2 b 5 1 2 0.2643 5 0.7357

b 5 0.2643,m 5 52

H1: m Þ 50H0: m 5 50

1 2 b



9-1.3 One-Sided and Two-Sided Hypotheses

A test of any hypothesis such as

is called a two-sided test, because it is important to detect differences from the hypothesized value

of the mean that lie on either side of . In such a test, the critical region is split into two parts,

with (usually) equal probability placed in each tail of the distribution of the test statistic.

Many hypothesis-testing problems naturally involve a one-sided alternative hypothesis,

such as

If the alternative hypothesis is , the critical region should lie in the upper tail

of the distribution of the test statistic, whereas if the alternative hypothesis is 

the critical region should lie in the lower tail of the distribution. Consequently, these tests

are sometimes called one-tailed tests. The location of the critical region for one-sided tests

is usually easy to determine. Simply visualize the behavior of the test statistic if the null

hypothesis is true and place the critical region in the appropriate end or tail of the distri-

bution. Generally, the inequality in the alternative hypothesis “points” in the direction of

the critical region.

In constructing hypotheses, we will always state the null hypothesis as an equality so that

the probability of type I error a can be controlled at a specific value. The alternative hypoth-

esis might be either one-sided or two-sided, depending on the conclusion to be drawn if H0 is

rejected. If the objective is to make a claim involving statements such as greater than, less

than, superior to, exceeds, at least, and so forth, a one-sided alternative is appropriate. If no

direction is implied by the claim, or if the claim not equal to is to be made, a two-sided alter-

native should be used.

EXAMPLE 9-1 Consider the propellant burning rate problem. Suppose that if the burning rate is less than

50 centimeters per second, we wish to show this with a strong conclusion. The hypotheses

should be stated as

Here the critical region lies in the lower tail of the distribution of . Since the rejection of H0

is always a strong conclusion, this statement of the hypotheses will produce the desired out-

come if H0 is rejected. Notice that, although the null hypothesis is stated with an equal sign, it

is understood to include any value of not specified by the alternative hypothesis. Therefore,

failing to reject H0 does not mean that centimeters per second exactly, but only that we

do not have strong evidence in support of .

In some real-world problems where one-sided test procedures are indicated, it is

occasionally difficult to choose an appropriate formulation of the alternative hypothesis. For

example, suppose that a soft-drink beverage bottler purchases 10-ounce bottles from a glass

H1

m 5 50

m

X

H1: m , 50 centimeters per second

H0: m 5 50 centimeters per second

H1: m , m0,

H1: m . m0

H0: m 5 m0  
or
 H0: m 5 m0

H1: m . m0 H1: m , m0

m0m0

H1: m Þ m0

H0: m 5 m0
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company. The bottler wants to be sure that the bottles meet the specification on mean internal

pressure or bursting strength, which for 10-ounce bottles is a minimum strength of 200 psi.

The bottler has decided to formulate the decision procedure for a specific lot of bottles as a

hypothesis testing problem. There are two possible formulations for this problem, either

(9-5)

or

(9-6)

Consider the formulation in Equation 9-5. If the null hypothesis is rejected, the bottles will be

judged satisfactory; if H0 is not rejected, the implication is that the bottles do not conform to

specifications and should not be used. Because rejecting H0 is a strong conclusion, this for-

mulation forces the bottle manufacturer to “demonstrate” that the mean bursting strength of

the bottles exceeds the specification. Now consider the formulation in Equation 9-6. In this

situation, the bottles will be judged satisfactory unless H0 is rejected. That is, we conclude that

the bottles are satisfactory unless there is strong evidence to the contrary.

Which formulation is correct, the one of Equation 9-5 or Equation 9-6? The answer is it

depends. For Equation 9-5, there is some probability that H0 will not be rejected (i.e., we

would decide that the bottles are not satisfactory), even though the true mean is slightly

greater than 200 psi. This formulation implies that we want the bottle manufacturer to demon-

strate that the product meets or exceeds our specifications. Such a formulation could be

appropriate if the manufacturer has experienced difficulty in meeting specifications in the past

or if product safety considerations force us to hold tightly to the 200 psi specification. On the

other hand, for the formulation of Equation 9-6 there is some probability that H0 will be ac-

cepted and the bottles judged satisfactory, even though the true mean is slightly less than

200 psi. We would conclude that the bottles are unsatisfactory only when there is strong evi-

dence that the mean does not exceed 200 psi, that is, when psi is rejected. This

formulation assumes that we are relatively happy with the bottle manufacturer’s past per-

formance and that small deviations from the specification of psi are not harmful.

In formulating one-sided alternative hypotheses, we should remember that rejecting H0 is

always a strong conclusion. Consequently, we should put the statement about which it is im-

portant to make a strong conclusion in the alternative hypothesis. In real-world problems, this

will often depend on our point of view and experience with the situation.

9-1.4 General Procedure for Hypothesis Tests

This chapter develops hypothesis-testing procedures for many practical problems. Use of the

following sequence of steps in applying hypothesis-testing methodology is recommended.

1. From the problem context, identify the parameter of interest.

2. State the null hypothesis, H0.

3. Specify an appropriate alternative hypothesis, .

4. Choose a significance level a.

H1

m $ 200

H0: m 5 200

H1: m , 200 psi

H0: m 5 200 psi

H1: m . 200 psi

H0: m 5 200 psi
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5. Determine an appropriate test statistic.

6. State the rejection region for the statistic.

7. Compute any necessary sample quantities, substitute these into the equation for the

test statistic, and compute that value.

8. Decide whether or not H0 should be rejected and report that in the problem context.

Steps 1–4 should be completed prior to examination of the sample data. This sequence of

steps will be illustrated in subsequent sections.

EXERCISES FOR SECTION 9-1
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9-1. In each of the following situations, state whether it is a

correctly stated hypothesis testing problem and why.

(a)

(b)

(c)

(d)

(e)

9-2. A textile fiber manufacturer is investigating a new

drapery yarn, which the company claims has a mean thread

elongation of 12 kilograms with a standard deviation of 0.5

kilograms. The company wishes to test the hypothesis

against using a random sample of

four specimens.

(a) What is the type I error probability if the critical region is

defined as kilograms? 

(b) Find b for the case where the true mean elongation is

11.25 kilograms.

9-3. Repeat Exercise 9-2 using a sample size of n = 16 and

the same critical region.

9-4. In Exercise 9-2, find the boundary of the critical region

if the type I error probability is specified to be .

9-5. In Exercise 9-2, find the boundary of the critical region

if the type I error probability is specified to be 0.05.

9-6. The heat evolved in calories per gram of a cement mix-

ture is approximately normally distributed. The mean is

thought to be 100 and the standard deviation is 2. We wish to

test versus with a sample of 

n = 9 specimens.

(a) If the acceptance region is defined as ,

find the type I error probability a.

(b) Find b for the case where the true mean heat evolved is 103.

(c) Find b for the case where the true mean heat evolved is

105. This value of b is smaller than the one found in part

(b) above. Why?

9-7. Repeat Exercise 9-6 using a sample size of and

the same acceptance region.

9-8. A consumer products company is formulating a new

shampoo and is interested in foam height (in millimeters).

Foam height is approximately normally distributed and has a

standard deviation of 20 millimeters. The company wishes to

n 5 5

98.5 # x # 101.5

H1: m Þ 100H0: m 5 100

a 5 0.01

x , 11.5

H1: m , 12,H0: m 5 12

H0: s 5 30, H1: s . 30

H0: p 5 0.1, H1: p 5 0.5

H0: x 5 50, H1: x Þ 50

H0: s . 10, H1: s 5 10

H0: m 5 25, H1: m Þ 25

test millimeters versus millime-

ters, using the results of samples.

(a) Find the type I error probability if the critical region is

.

(b) What is the probability of type II error if the true mean

foam height is 195 millimeters?

9-9. In Exercise 9-8, suppose that the sample data result in

millimeters.

(a) What conclusion would you reach?

(b) How “unusual” is the sample value millimeters

if the true mean is really 175 millimeters? That is, what is

the probability that you would observe a sample average

as large as 190 millimeters (or larger), if the true mean

foam height was really 175 millimeters?

9-10. Repeat Exercise 9-8 assuming that the sample size is

n 5 16 and the boundary of the critical region is the same.

9-11. Consider Exercise 9-8, and suppose that the sample

size is increased to n 5 16.

(a) Where would the boundary of the critical region be placed

if the type I error probability were to remain equal to the

value that it took on when n 5 10?

(b) Using n 5 16 and the new critical region found in part (a),

find the type II error probability b if the true mean foam

height is 195 millimeters.

(c) Compare the value of b obtained in part (b) with the value

from Exercise 9-8 (b). What conclusions can you draw?

9-12. A manufacturer is interested in the output voltage of a

power supply used in a PC. Output voltage is assumed to be

normally distributed, with standard deviation 0.25 Volts, and

the manufacturer wishes to test H0: m 5 5 Volts against 

H1: Volts, using n 5 8 units.

(a) The acceptance region is Find the value

of .

(b) Find the power of the test for detecting a true mean output

voltage of 5.1 Volts.

9-13. Rework Exercise 9-12 when the sample size is 16 and

the boundaries of the acceptance region do not change.

9-14. Consider Exercise 9-12, and suppose that the manu-

facturer wants the type I error probability for the test to be

a 5 0.05. Where should the acceptance region be located?

a

4.85 # x # 5.15.

m Þ 5

x 5 190

x 5 190

x . 185

a

n 5 10

H1: m . 175H0: m 5 175



9-2 TESTS ON THE MEAN OF A NORMAL DISTRIBUTION,
VARIANCE KNOWN

In this section, we consider hypothesis testing about the mean m of a single, normal population

where the variance of the population s2 is known. We will assume that a random sample X1,

X2, p , Xn has been taken from the population. Based on our previous discussion, the sample

mean is an unbiased point estimator of m with variance .

9-2.1 Hypothesis Tests on the Mean

Suppose that we wish to test the hypotheses

(9-7)

where m0 is a specified constant. We have a random sample X1, X2, p , Xn from a normal pop-

ulation. Since has a normal distribution (i.e., the sampling distribution of is normal)

with mean m0 and standard deviation if the null hypothesis is true, we could construct

a critical region based on the computed value of the sample mean , as in Section 9-1.2.

It is usually more convenient to standardize the sample mean and use a test statistic based on

the standard normal distribution. That is, the test procedure for H0: m 5 m0 uses the test statistic

X

s/1n

XX

H1: m Þ m0

H0: m 5 m0

s2/nX
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9-15. If we plot the probability of accepting H0: m 5 m0

versus various values of m and connect the points with a

smooth curve, we obtain the operating characteristic curve

(or the OC curve) of the test procedure. These curves are used

extensively in industrial applications of hypothesis testing to

display the sensitivity and relative performance of the test.

When the true mean is really equal to m0, the probability of ac-

cepting H0 is 1 2 a. Construct an OC curve for Exercise 9-8,

using values of the true mean m of 178, 181, 184, 187, 190,

193, 196, and 199.

9-16. Convert the OC curve in Exercise 9-15 into a plot of

the power function of the test.

9-17. A random sample of 500 registered voters in Phoenix

is asked if they favor the use of oxygenated fuels year-round

to reduce air pollution. If more than 400 voters respond posi-

tively, we will conclude that at least 60% of the voters favor

the use of these fuels.

(a) Find the probability of type I error if exactly 60% of the

voters favor the use of these fuels.

(b) What is the type II error probability b if 75% of the voters

favor this action?

Hint: use the normal approximation to the binomial.

9-18. The proportion of residents in Phoenix favoring the

building of toll roads to complete the freeway system is be-

lieved to be p 5 0.3. If a random sample of 10 residents

shows that 1 or fewer favor this proposal, we will conclude

that p , 0.3.

(a) Find the probability of type I error if the true proportion is

p 5 0.3.

(b) Find the probability of committing a type II error with this

procedure if p 5 0.2.

(c) What is the power of this procedure if the true proportion

is p 5 0.2?

9-19. The proportion of adults living in Tempe, Arizona,

who are college graduates is estimated to be p 5 0.4. To test

this hypothesis, a random sample of 15 Tempe adults is

selected. If the number of college graduates is between 4 and

8, the hypothesis will be accepted; otherwise, we will

conclude that .

(a) Find the type I error probability for this procedure, assum-

ing that p 5 0.4.

(b) Find the probability of committing a type II error if the

true proportion is really p 5 0.2.

p Þ 0.4

(9-8)
Z0 5

X 2 m0

s/1n



If the null hypothesis H0: m 5 m0 is true, , and it follows that the distribution of Z0

is the standard normal distribution [denoted N(0, 1)]. Consequently, if H0: m 5 m0 is true, the

probability is 1 2 a that the test statistic Z0 falls between and , where is the

percentage point of the standard normal distribution. The regions associated with

and are illustrated in Fig. 9-6(a). Note that the probability is a that the test statistic Z0

will fall in the region or when H0: m 5 m0 is true. Clearly, a sample

producing a value of the test statistic that falls in the tails of the distribution of Z0 would be

unusual if H0: m 5 m0 is true; therefore, it is an indication that H0 is false. Thus, we should

reject H0 if the observed value of the test statistic z0 is either

(9-9)

and we should fail to reject H0 if

(9-10)

The inequalities in Equation 9-10 defines the acceptance region for H0, and the two inequali-

ties in Equation 9-9 define the critical region or rejection region. The type I error probability

for this test procedure is a.

It is easier to understand the critical region and the test procedure, in general, when the

test statistic is Z0 rather than . However, the same critical region can always be written in

terms of the computed value of the sample mean . A procedure identical to the above is as

follows:

where

EXAMPLE 9-2 Aircrew escape systems are powered by a solid propellant. The burning rate of this pro-

pellant is an important product characteristic. Specifications require that the mean burning

rate must be 50 centimeters per second. We know that the standard deviation of burning

rate is s 5 2 centimeters per second. The experimenter decides to specify a type I error

probability or significance level of a 5 0.05 and selects a random sample of n 5 25 and

obtains a sample average burning rate of centimeters per second. What conclu-

sions should be drawn?

x 5 51.3

a 5 m0 1 za/2s/1n and b 5 m0 2 za/2s/1n

Reject H0: m 5 m0 if either x . a or x , b

x

X

2za/2 # z0 # za/2

z0 . za/2 or z0 , 2za/2

Z0 , 2za/2Z0 . za/2

2za/2za/2

100a/2
za/2za/22za/2

E1X 2 5 m0
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Figure 9-6 The distribution of Z0 when H0: m 5 m0 is true, with critical region for (a) the two-sided alternative H1 : m Þ m0,

(b) the one-sided alternative H1 : m . m0, and (c) the one-sided alternative H1 : m , m0.

(a)

0

N(0,1)

   z   /2α  –z   /2α  Z0

   /2α     /2α  Acceptance

region

Critical region

(c)

0

N(0,1)

–z   α Z0

α Acceptance

region

(b)

0

N(0,1)

   z   α  Z0

α

Critical region

Acceptance

region

Critical region



We may solve this problem by following the eight-step procedure outlined in Section 9-1.4.

This results in

1. The parameter of interest is m, the mean burning rate.

2. H0: m 5 50 centimeters per second

3. H1: m Þ 50 centimeters per second

4.

5. The test statistic is

6. Reject H0 if z0 . 1.96 or if z0 , 21.96. Note that this results from step 4, where we

specified , and so the boundaries of the critical region are at z0.025 5 1.96

and 2z0.025 5 21.96.

7. Computations: Since and s 5 2,

8. Conclusion: Since z0 5 3.25 . 1.96, we reject H0: m 5 50 at the 0.05 level of

significance. Stated more completely, we conclude that the mean burning rate dif-

fers from 50 centimeters per second, based on a sample of 25 measurements. In

fact, there is strong evidence that the mean burning rate exceeds 50 centimeters

per second.

We may also develop procedures for testing hypotheses on the mean m where the alter-

native hypothesis is one-sided. Suppose that we specify the hypotheses as

(9-11)

In defining the critical region for this test, we observe that a negative value of the test statistic

Z0 would never lead us to conclude that H0: m 5 m0 is false. Therefore, we would place the

critical region in the upper tail of the standard normal distribution and reject H0 if the com-

puted value of z0 is too large. That is, we would reject H0 if

(9-12)

as shown in Figure 9-6(b). Similarly, to test

(9-13)

we would calculate the test statistic Z0 and reject H0 if the value of z0 is too small. That is, the

critical region is in the lower tail of the standard normal distribution as shown in Figure 

9-6(c), and we reject H0 if

(9-14)z0 , 2za

H1: m , m0

H0: m 5 m0

z0 . za

H1: m . m0

H0: m 5 m0

z0 5
51.3 2 50

2/225
5 3.25

x 5 51.3

a 5  0.05

z0 5
x 2 m0

s/1n

a 5  0.05
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9-2.2 P-Values in Hypothesis Tests

One way to report the results of a hypothesis test is to state that the null hypothesis was or was

not rejected at a specified a-value or level of significance. For example, in the propellant

problem above, we can say that H0: m 5 50 was rejected at the 0.05 level of significance. This

statement of conclusions is often inadequate because it gives the decision maker no idea about

whether the computed value of the test statistic was just barely in the rejection region or

whether it was very far into this region. Furthermore, stating the results this way imposes the

predefined level of significance on other users of the information. This approach may be un-

satisfactory because some decision makers might be uncomfortable with the risks implied by

a 5 0.05.

To avoid these difficulties the P-value approach has been adopted widely in practice.

The P-value is the probability that the test statistic will take on a value that is at least as

extreme as the observed value of the statistic when the null hypothesis H0 is true. Thus, a 

P-value conveys much information about the weight of evidence against H0, and so a deci-

sion maker can draw a conclusion at any specified level of significance. We now give a

formal definition of a P-value.
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The P-value is the smallest level of significance that would lead to rejection of the

null hypothesis H0 with the given data.

Definition

It is customary to call the test statistic (and the data) significant when the null hypoth-

esis H0 is rejected; therefore, we may think of the P-value as the smallest level a at which

the data are significant. Once the P-value is known, the decision maker can determine how

significant the data are without the data analyst formally imposing a preselected level of

significance.

For the foregoing normal distribution tests it is relatively easy to compute the P-value. If

z0 is the computed value of the test statistic, the P-value is

(9-15)

Here, is the standard normal cumulative distribution function defined in Chapter 4.

Recall that , where Z is N(0, 1). To illustrate this, consider the propellant

problem in Example 9-2. The computed value of the test statistic is z0 5 3.25 and since the

alternative hypothesis is two-tailed, the P-value is

Thus, H0: m 5 50 would be rejected at any level of significance For

example, H0 would be rejected if , but it would not be rejected if .

It is not always easy to compute the exact P-value for a test. However, most modern

computer programs for statistical analysis report P-values, and they can be obtained on some

hand-held calculators. We will also show how to approximate the P-value. Finally, if the 

a 5 0.001a 5 0.01

a $ P-value 5 0.0012.

P-value 5 2 31 2 F13.252 4 5 0.0012

F1z2 5 P1Z # z2F1z2
P 5 •2 31 2 F1|z0|2 4 for a two-tailed test: H0: m 5 m0  H1: m Þ m0

1 2 F1z02 for a upper-tailed test: H0: m 5 m0  H1: m . m0

F1z02 for a lower-tailed test: H0: m 5 m0  H1: m , m0



P-value approach is used, step 6 of the hypothesis-testing procedure can be modified.

Specifically, it is not necessary to state explicitly the critical region.

9-2.3 Connection between Hypothesis Tests and Confidence Intervals

There is a close relationship between the test of a hypothesis about any parameter, say u, and

the confidence interval for u. If [l, u] is a % confidence interval for the parameter

u, the test of size of the hypothesis

will lead to rejection of H0 if and only if u0 is not in the % CI [l, u]. As an illus-

tration, consider the escape system propellant problem discussed above. The null hypothesis

H0: m 5 50 was rejected, using . The 95% two-sided CI on m can be calculated using

Equation 8-7. This CI is 50.52 # m # 52.08. Because the value m0 5 50 is not included in this

interval, the null hypothesis H0: m 5 50 is rejected.

Although hypothesis tests and CIs are equivalent procedures insofar as decision mak-

ing or inference about m is concerned, each provides somewhat different insights. For

instance, the confidence interval provides a range of likely values for m at a stated confi-

dence level, whereas hypothesis testing is an easy framework for displaying the risk levels

such as the P-value associated with a specific decision. We will continue to illustrate the

connection between the two procedures throughout the text.

9-2.4 Type II Error and Choice of Sample Size

In testing hypotheses, the analyst directly selects the type I error probability. However, the

probability of type II error b depends on the choice of sample size. In this section, we will

show how to calculate the probability of type II error b. We will also show how to select the

sample size to obtain a specified value of b.

Finding the Probability of Type II Error b

Consider the two-sided hypothesis

Suppose that the null hypothesis is false and that the true value of the mean is ,

say, where . The test statistic Z0 is

Therefore, the distribution of Z0 when H1 is true is

(9-16)Z0 , N  ad1n
s , 1b

Z0 5
X 2 m0

s/1n
5

X 2 1m0 1 d2
s/1n

1
d1n

s

d . 0

m 5 m0 1 d

H1: m Þ m0

H0: m 5 m0

a 5  0.05

100 11 2 a2
H1: u Þ u0

H0: u 5 u0

a

10011 2 a2
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where denotes the probability to the left of z in the standard normal distribution. Note

that Equation 9-17 was obtained by evaluating the probability that Z0 falls in the interval

when H1 is true. Furthermore, note that Equation 9-17 also holds if , due

to the symmetry of the normal distribution. It is also possible to derive an equation similar to

Equation 9-17 for a one-sided alternative hypothesis.

Sample Size Formulas

One may easily obtain formulas that determine the appropriate sample size to obtain a partic-

ular value of b for a given d and a. For the two-sided alternative hypothesis, we know from

Equation 9-17 that

or if d . 0,

(9-18)

since when d is positive. Let zb be the 100b upper percentile of the

standard normal distribution. Then, . From Equation 9-18

or

2zb . za/2 2
d1n

s

b 5 F12zb2F12za/2 2 d1n/s2 . 0

b . F  aza/2 2
d1n

s b

b 5 F  aza/2 2
d1n

s b 2 F  a2za/2 2
d1n

s b

d , 032za/2, za/2 4
F1z2

The distribution of the test statistic Z0 under both the null hypothesis H0 and the alternate

hypothesis H1 is shown in Fig. 9-7. From examining this figure, we note that if H1 is true, a

type II error will be made only if where . That is, the

probability of the type II error b is the probability that Z0 falls between and given

that H1 is true. This probability is shown as the shaded portion of Fig. 9-7. Expressed mathe-

matically, this probability is

za/22za/2

Z0 , N1d1n/s, 122za/2 # Z0 # za/2
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(9-17)b 5 F  aza/2 2
d1n

s b 2 F  a2za/2 2
d1n

s b

Under H
0
:    =   

0
µ µ Under H

1
:    ≠    

0
µ µ

N(0,1)

–z   /2α 0 z   /2α     √nδ
σ

   √nδ
σ , 1N ( (

β

Z0

Figure 9-7 The

distribution of Z0

under H0 and H1.



This approximation is good when is small compared to b. For either of

the one-sided alternative hypotheses the sample size required to produce a specified type II

error with probability b given d and a is

F12za/2 2 d1n/s2

EXAMPLE 9-3 Consider the rocket propellant problem of Example 9-2. Suppose that the analyst wishes to

design the test so that if the true mean burning rate differs from 50 centimeters per second by

as much as 1 centimeter per second, the test will detect this (i.e., reject H0: m 5 50) with a high

probability, say 0.90. Now, we note that s 5 2, d 5 51 2 50 5 1, a 5 0.05, and b 5 0.10.

Since and the sample size required to detect this 

departure from H0: m 5 50 is found by Equation 9-19 as

The approximation is good here, since 5

which is small relative to b.

Using Operating Characteristic Curves

When performing sample size or type II error calculations, it is sometimes more convenient to

use the operating characteristic curves in Appendix Charts VIa and VIb. These curves plot

b as calculated from Equation 9-17 against a parameter d for various sample sizes n. Curves

are provided for both a 5 0.05 and a 5 0.01. The parameter d is defined as

(9-21)d 5
0m 2 m0 0

s 5
0d 0
s

F125.202 . 0,

F 12za/2 2 d1n/s2 5 F 121.96 2 112142/22
n .

1za/2 1 zb22 s2

d2 5
11.96 1 1.2822 221122 . 42

zb 5 z0.10 5 1.28,za/2 5 z0.025 5 1.96
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(9-19)

where

d 5 m 2 m0

n .
1za/2 1 zb22 s2

d2

(9-20)

where

d 5 m 2 m0

n 5
1za 1 zb22 s2

d2



so one set of operating characteristic curves can be used for all problems regardless of the

values of m0 and s. From examining the operating characteristic curves or Equation 9-17 and

Fig. 9-7, we note that

1. The further the true value of the mean m is from m0, the smaller the probability of

type II error b for a given n and a. That is, we see that for a specified sample size and

a, large differences in the mean are easier to detect than small ones.

2. For a given d and a, the probability of type II error b decreases as n increases. That

is, to detect a specified difference d in the mean, we may make the test more power-

ful by increasing the sample size.

EXAMPLE 9-4 Consider the propellant problem in Example 9-2. Suppose that the analyst is concerned about

the probability of type II error if the true mean burning rate is m 5 51 centimeters per second.

We may use the operating characteristic curves to find b. Note that d 5 51 2 50 5 1, n 5 25,

s 5 2, and a 5 0.05. Then using Equation 9-21 gives

and from Appendix Chart VIa, with n 5 25, we find that b 5 0.30. That is, if the true mean

burning rate is m 5 51 centimeters per second, there is approximately a 30% chance that this

will not be detected by the test with n 5 25.

EXAMPLE 9-5 Once again, consider the propellant problem in Example 9-2. Suppose that the analyst would

like to design the test so that if the true mean burning rate differs from 50 centimeters per sec-

ond by as much as 1 centimeter per second, the test will detect this (i.e., reject H0: m 5 50)

with a high probability, say, 0.90. This is exactly the same requirement as in Example 9-3,

where we used Equation 9-19 to find the required sample size to be n 5 42. The operating

characteristic curves can also be used to find the sample size for this test. Since

, and b 5 0.10, we find from Appendix Chart VIa that the

required sample size is approximately n 5 40. This closely agrees with the sample size calcu-

lated from Equation 9-19.

In general, the operating characteristic curves involve three parameters: b, d, and n.

Given any two of these parameters, the value of the third can be determined. There are two

typical applications of these curves:

1. For a given n and d, find b (as illustrated in Example 9-3). This kind of problem is often

encountered when the analyst is concerned about the sensitivity of an experiment

already performed, or when sample size is restricted by economic or other factors.

2. For a given b and d, find n. This was illustrated in Example 9-4. This kind of problem

is usually encountered when the analyst has the opportunity to select the sample size

at the outset of the experiment.

Operating characteristic curves are given in Appendix Charts VIc and VId for the one-

sided alternatives. If the alternative hypothesis is either H1: m . m0 or H1: m , m0, the abscissa

scale on these charts is

(9-22)d 5
0m 2 m0 0

s

d 5 0m 2 m0 0 /s 5 1/2, a 5 0.05

d 5
0m 2 m0 0

s 5
0d 0
s 5

1

2
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Using the Computer

Many statistics software packages will calculate sample sizes and type II error probabilities. To

illustrate, here are some computations from Minitab for the propellant burning rate problem.
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Power and Sample Size

1-Sample Z Test

Testing mean 5 null (versus not 5 null)

Calculating power for mean 5 null + difference

Alpha 5 0.05 Sigma 5 2

Sample Target Actual

Difference Size Power Power

1 43 0.9000 0.9064

Power and Sample Size

1-Sample Z Test

Testing mean 5 null (versus not 5 null)

Calculating power for mean 5 null 1 difference

Alpha 5 0.05 Sigma 5 2

Sample Target Actual

Difference Size Power Power

1 28 0.7500 0.7536

Power and Sample Size

1-Sample Z Test

Testing mean 5 null (versus not 5 null)

Calculating power for mean 5 null 1 difference

Alpha 5 0.05 Sigma 5 2

Sample

Difference Size Power

1 25 0.7054

In the first part of the boxed display, we asked Minitab to work Example 9-3, that is, to find

the sample size n that would allow detection of a difference from m0 5 50 of 1 centimeter per

second with power of 0.9 and a 5 0.05. The answer, n 5 43, agrees closely with the calcu-

lated value from Equation 9-19 in Example 9-3, which was n 5 42. The difference is due to

Minitab using a value of zb that has more than two decimal places. The second part of the com-

puter output relaxes the power requirement to 0.75. Note that the effect is to reduce the

required sample size to n 5 28. The third part of the output is the solution to Example 9-4,

where we wish to determine the type II error probability of (b) or the power 5 1 2 b for the

sample size n 5 25. Note that Minitab computes the power to be 0.7054, which agrees closely

with the answer obtained from the O.C. curve in Example 9-4. Generally, however, the com-

puter calculations will be more accurate than visually reading values from an O.C. curve. 

9-2.5 Large-Sample Test

We have developed the test procedure for the null hypothesis H0: m 5 m0 assuming that the pop-

ulation is normally distributed and that s2 is known. In many if not most practical situations s2



will be unknown. Furthermore, we may not be certain that the population is well modeled by a

normal distribution. In these situations if n is large (say n . 40) the sample standard deviation s

can be substituted for s in the test procedures with little effect. Thus, while we have given a test

for the mean of a normal distribution with known s2, it can be easily converted into a large-

sample test procedure for unknown s2 that is valid regardless of the form of the distribution

of the population. This large-sample test relies on the central limit theorem just as the large-

sample confidence interval on m that was presented in the previous chapter did. Exact treatment

of the case where the population is normal, s2 is unknown, and n is small involves use of the 

t distribution and will be deferred until Section 9-3.

9-2.6 Some Practical Comments on Hypothesis Tests

The Eight-Step Procedure

In Section 9-1.4 we described an eight-step procedure for statistical hypothesis testing. This

procedure was illustrated in Example 9-2 and will be encountered many times in both this

chapter and Chapter 10. In practice, such a formal and (seemingly) rigid procedure is not

always necessary. Generally, once the experimenter (or decision maker) has decided on

the question of interest and has determined the design of the experiment (that is, how the data

are to be collected, how the measurements are to be made, and how many observations are

required), only three steps are really required:

1. Specify the test statistic to be used (such as Z0).

2. Specify the location of the critical region (two-tailed, upper-tailed, or lower-tailed).

3. Specify the criteria for rejection (typically, the value of a, or the P-value at which

rejection should occur).

These steps are often completed almost simultaneously in solving real-world problems,

although we emphasize that it is important to think carefully about each step. That is why we

present and use the eight-step process: it seems to reinforce the essentials of the correct

approach. While you may not use it every time in solving real problems, it is a helpful frame-

work when you are first learning about hypothesis testing.

Statistical versus Practical Significance

We noted previously that reporting the results of a hypothesis test in terms of a P-value is very

useful because it conveys more information than just the simple statement “reject H0” or “fail

to reject H0”. That is, rejection of H0 at the 0.05 level of significance is much more meaning-

ful if the value of the test statistic is well into the critical region, greatly exceeding the 5% crit-

ical value, than if it barely exceeds that value.

Even a very small P-value can be difficult to interpret from a practical viewpoint when

we are making decisions because, while a small P-value indicates statistical significance in

the sense that H0 should be rejected in favor of H1, the actual departure from H0 that has been

detected may have little (if any) practical significance (engineers like to say “engineering

significance”). This is particularly true when the sample size n is large.

For example, consider the propellant burning rate problem of Example 9-3 where we are

testing H0: m 5 50 centimeters per second versus H1: m ? 50 centimeters per second with s

5 2. If we suppose that the mean rate is really 50.5 centimeters per second, this is not a seri-

ous departure from H0: m 5 50 centimeters per second in the sense that if the mean really is

50.5 centimeters per second there is no practical observable effect on the performance of the

aircrew escape system. In other words, concluding that m 5 50 centimeters per second when

it is really 50.5 centimeters per second is an inexpensive error and has no practical signifi-

cance. For a reasonably large sample size, a true value of m 5 50.5 will lead to a sample thatx
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The P-value column in this display indicates that for large sample sizes the observed

sample value of would strongly suggest that H0: m 5 50 should be rejected, even

though the observed sample results imply that from a practical viewpoint the true mean does

not differ much at all from the hypothesized value m0 5 50. The power column indicates that

if we test a hypothesis at a fixed significance level a and even if there is little practical differ-

ence between the true mean and the hypothesized value, a large sample size will almost

always lead to rejection of H0.  The moral of this demonstration is clear:

x 5 50.5

is close to 50.5 centimeters per second, and we would not want this value of from the sam-

ple to result in rejection of H0. The following display shows the P-value for testing H0: m 5 50

when we observe centimeters per second and the power of the test at a 5 0.05 when

the true mean is 50.5 for various sample sizes n:

x 5 50.5

x
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Sample Size P-value Power (at a 5 0.05)
n When When True m 5 50.5

10 0.4295 0.1241

25 0.2113 0.2396

50 0.0767 0.4239

100 0.0124 0.7054

400 5.73 3 1027 0.9988

1000 2.57 3 10215 1.0000

x 5 50.5

Be careful when interpreting the results from hypothesis testing when the sample size

is large, because any small departure from the hypothesized value m0 will probably be

detected, even when the difference is of little or no practical significance.

EXERCISES FOR SECTION 9-2

9-20. The mean water temperature downstream from a

power plant cooling tower discharge pipe should be no more

than 100°F. Past experience has indicated that the standard

deviation of temperature is 2°F. The water temperature is

measured on nine randomly chosen days, and the average

temperature is found to be 98°F.

(a) Should the water temperature be judged acceptable with

a 5 0.05?

(b) What is the P-value for this test?

(c) What is the probability of accepting the null hypothesis

at a 5 0.05 if the water has a true mean temperature of

104 °F?

9-21. Reconsider the chemical process yield data from

Exercise 8-9. Recall that s 5 3, yield is normally distributed

and that n 5 5 observations on yield are 91.6%, 88.75%, 90.8%,

89.95%, and 91.3%. Use a 5 0.05.

(a) Is there evidence that the mean yield is not 90%?

(b) What is the P-value for this test?

(c) What sample size would be required to detect a true mean

yield of 85% with probability 0.95?

(d) What is the type II error probability if the true mean yield

is 92%?

(e) Compare the decision you made in part (c) with the 95%

CI on mean yield that you constructed in Exercise 8-7.

9-22. A manufacturer produces crankshafts for an automo-

bile engine. The wear of the crankshaft after 100,000 miles

(0.0001 inch) is of interest because it is likely to have an

impact on warranty claims. A random sample of n 5 15 shafts

is tested and 5 2.78. It is known that s 5 0.9 and that wear

is normally distributed.

(a) Test H0: m 5 3 versus using a 5 0.05.

(b) What is the power of this test if m 5 3.25?

(c) What sample size would be required to detect a true mean

of 3.75 if we wanted the power to be at least 0.9?

9-23. A melting point test of n 5 10 samples of a binder

used in manufacturing a rocket propellant resulted in

Assume that melting point is normally distrib-

uted with . 

(a) Test H0: m 5 155 versus H0: m Þ 155 using a 5 0.01.

(b) What is the P-value for this test?

s 5 1.58 F

x 5 154.28 F.

H0: m Z 3

x
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(c) What is the b-error if the true mean is m 5 150?

(d) What value of n would be required if we want b , 0.1

when m 5 150? Assume that a 5 0.01.

9-24. The life in hours of a battery is known to be approxi-

mately normally distributed, with standard deviation s 5 1.25

hours. A random sample of 10 batteries has a mean life of

hours.

(a) Is there evidence to support the claim that battery life

exceeds 40 hours? Use a 5 0.05.

(b) What is the P-value for the test in part (a)?

(c) What is the b-error for the test in part (a) if the true mean

life is 42 hours?

(d) What sample size would be required to ensure that b does

not exceed 0.10 if the true mean life is 44 hours?

(e) Explain how you could answer the question in part (a) 

by calculating an appropriate confidence bound on life.

9-25. An engineer who is studying the tensile strength of a

steel alloy intended for use in golf club shafts knows that 

tensile strength is approximately normally distributed with 

s 5 60 psi. A random sample of 12 specimens has a mean

tensile strength of psi.

(a) Test the hypothesis that mean strength is 3500 psi. Use

a 5 0.01.

(b) What is the smallest level of significance at which you

would be willing to reject the null hypothesis?

(c) Explain how you could answer the question in part (a)

with a two-sided confidence interval on mean tensile

strength.

9-26. Suppose that in Exercise 9-25 we wanted to reject the

null hypothesis with probability at least 0.8 if mean strength

m 5 3500. What sample size should be used? 

9-27. Supercavitation is a propulsion technology for under-

sea vehicles that can greatly increase their speed. It occurs

above approximately 50 meters per second, when pressure

drops sufficiently to allow the water to dissociate into water

vapor, forming a gas bubble behind the vehicle. When the gas

bubble completely encloses the vehicle, supercavitation is

said to occur. Eight tests were conducted on a scale model of

an undersea vehicle in a towing basin with the average ob-

served speed meters per second. Assume that speed

is normally distributed with known standard deviation s 5

4 meters per second.

(a) Test the hypotheses H0: m 5 100 versus H1: m , 100 us-

ing a 5 0.05.

(b) Compute the power of the test if the true mean speed is as

low as 95 meters per second.

(c) What sample size would be required to detect a true mean

speed as low as 95 meters per second if we wanted the

power of the test to be at least 0.85?

(d) Explain how the question in part (a) could be answered by

constructing a one-sided confidence bound on the mean

speed.

9-28. A bearing used in an automotive application is suppose

to have a nominal inside diameter of 1.5 inches. A random sam-

ple of 25 bearings is selected and the average inside diameter of

these bearings is 1.4975 inches. Bearing diameter is known to be

normally distributed with standard deviation s 5 0.01 inch.

(a) Test the hypotheses H0: m 5 1.5 versus H1: m Þ 1.5 using

a 5 0.01.

(b) Compute the power of the test if the true mean diameter is

1.495 inches.

(c) What sample size would be required to detect a true mean

diameter as low as 1.495 inches if we wanted the power of

the test to be at least 0.9?

(d) Explain how the question in part (a) could be answered by

constructing a two-sided confidence interval on the mean

diameter.

9-29. Medical researchers have developed a new artificial

heart constructed primarily of titanium and plastic. The heart

will last and operate almost indefinitely once it is implanted in

the patient’s body, but the battery pack needs to be recharged

about every four hours. A random sample of 50 battery packs

is selected and subjected to a life test. The average life of these

batteries is 4.05 hours. Assume that battery life is normally

distributed with standard deviation s 5 0.2 hour.

(a) Is there evidence to support the claim that mean battery

life exceeds 4 hours? Use a 5 0.05.

(b) Compute the power of the test if the true mean battery life

is 4.5 hours.

(c) What sample size would be required to detect a true mean

battery life of 4.5 hours if we wanted the power of the test

to be at least 0.9?

(d) Explain how the question in part (a) could be answered by

constructing a one-sided confidence bound on the mean life.

x 5 102.2

x 5 3250

x 5 40.5

9-3 TESTS ON THE MEAN OF A NORMAL DISTRIBUTION,
VARIANCE UNKNOWN

9-3.1 Hypothesis Tests on the Mean

We now consider the case of hypothesis testing on the mean of a population with unknown

variance s2. The situation is analogous to Section 8-3, where we considered a confidence

interval on the mean for the same situation. As in that section, the validity of the test procedure

we will describe rests on the assumption that the population distribution is at least approximately



normal. The important result upon which the test procedure relies is that if X1, X2, p , Xn is a

random sample from a normal distribution with mean m and variance s2, the random variable

has a t distribution with n 2 1 degrees of freedom. Recall that we used this result in Section

8-3 to devise the t-confidence interval for m. Now consider testing the hypotheses

We will use the test statistic

(9-23)

If the null hypothesis is true, T0 has a t distribution with n 2 1 degrees of freedom. When we

know the distribution of the test statistic when H0 is true (this is often called the reference

distribution or the null distribution), we can locate the critical region to control the type I

error probability at the desired level. In this case we would use the t percentage points 2tay2,n21

and as the boundaries of the critical region so that we would reject H0: m 5 m0 if

where t0 is the observed value of the test statistic T0. The test procedure is very similar to the

test on the mean with known variance described in Section 9-2, except that T0 is used as the

test statistic instead of Z0 and the tn21 distribution is used to define the critical region instead

of the standard normal distribution. A summary of the test procedures for both two- and one-

sided alternative hypotheses follows:

t0 . ta/2,n21  or if t0 , 2ta/2,n21

ta/2,n21

T0 5
X 2 m0

S/1n

H1: m Þ m0

H0: m 5 m0

T 5
X 2 m

S/1n
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Figure 9-8 The reference distribution for H0: m 5 m0 with critical region for (a) (b) and 

(c) H1: m , m0.

H1: m . m0,H1: m Zm0,

(a)

0

t
n – 1

–t   /2, n – 1α  –t   , n – 1α  T0t   /2, n – 1α  t   , n – 1α  

   /2α     /2α  

(c)

0

α  

(b)

0

α  

t
n – 1 t

n – 1

Null hypothesis: H0: m 5 m0

Test statistic:

Alternative hypothesis Rejection criteria

t0 , 2ta,n21H1: m , m0

t0 . ta,n21H1: m . m0

t0 . ta/2,n21 or t0 , 2ta/2,n21H1: m Zm0

T0 5
X 2 m0

S/1n

The One-

Sample t-Test

Figure 9-8 shows the location of the critical region for these situations.



EXAMPLE 9-6 The increased availability of light materials with high strength has revolutionized the design and

manufacture of golf clubs, particularly drivers. Clubs with hollow heads and very thin faces can

result in much longer tee shots, especially for players of modest skills. This is due partly to the

“spring-like effect” that the thin face imparts to the ball. Firing a golf ball at the head of the club

and measuring the ratio of the outgoing velocity of the ball to the incoming velocity can quantify

this spring-like effect. The ratio of velocities is called the coefficient of restitution of the club. An

experiment was performed in which 15 drivers produced by a particular club maker were selected

at random and their coefficients of restitution measured. In the experiment the golf balls were

fired from an air cannon so that the incoming velocity and spin rate of the ball could be precisely

controlled. It is of interest to determine if there is evidence (with a 5 0.05) to support a claim that

the mean coefficient of restitution exceeds 0.82. The observations follow:

0.8411 0.8191 0.8182 0.8125 0.8750

0.8580 0.8532 0.8483 0.8276 0.7983

0.8042 0.8730 0.8282 0.8359 0.8660

The sample mean and sample standard deviation are and s 5 0.02456. The normal

probability plot of the data in Fig. 9-9 supports the assumption that the coefficient of restitution is

normally distributed. Since the objective of the experimenter is to demonstrate that the mean co-

efficient of restitution exceeds 0.82, a one-sided alternative hypothesis is appropriate.

The solution using the eight-step procedure for hypothesis testing is as follows:

1. The parameter of interest is the mean coefficient of restitution, m.

2. H0: m 5 0.82

3. . We want to reject H0 if the mean coefficient of restitution exceeds 0.82.

4. a 5 0.05

5. The test statistic is

6. Reject H0 if t0 . t0.05,14 5 1.761

t0 5
x 2 m0

s/1n

H1: m . 0.82

x 5 0.83725
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Figure 9-9. Normal

probability plot of the

coefficient of restitu-

tion data from

Example 9-6.
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7. Computations: Since , s 5 0.02456, m0 5 0.82, and n 5 15, we have

8. Conclusions: Since , we reject H0 and conclude at the 0.05 level of

significance that the mean coefficient of restitution exceeds 0.82.

Minitab will conduct the one-sample t-test. The output from this software package is in the

following display:

t0 5 2.72 . 1.761

t0 5
0.83725 2 0.82

0.02456/115
5 2.72

x 5 0.83725
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Notice that Minitab computes both the test statistic T0 and a 95% lower confidence bound for

the coefficient of restitution. Because the 95% lower confidence bound exceeds 0.82, we

would reject the hypothesis that H0: m 5 0.82 and conclude that the alternative hypothesis

is true. Minitab also calculates a P-value for the test statistic T0. In the next

section we explain how this is done.

9-3.2 P-Value for a t-Test

The P-value for a t-test is just the smallest level of significance at which the null hypothesis

would be rejected. That is, it is the tail area beyond the value of the test statistic t0 for a one-

sided test or twice this area for a two-sided test. Because the t-table in Appendix Table IV

contains only 10 critical values for each t distribution, computation of the exact P-value

directly from the table is usually impossible. However, it is easy to find upper and lower

bounds on the P-value from this table.

To illustrate, consider the t-test based on 14 degrees of freedom in Example 9-6. The

relevant critical values from Appendix Table IV are as follows:

Critical Value: 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140

Tail Area: 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

Notice that t0 5 2.72 in Example 9-6, and that this is between two tabulated values, 2.624 and

2.977. Therefore, the P-value must be between 0.01 and 0.005. These are effectively the up-

per and lower bounds on the P-value.

Example 9-6 is an upper-tailed test. If the test is lower-tailed, just change the sign of t0 and

proceed as above. Remember that for a two-tailed test the level of significance associated with a

particular critical value is twice the corresponding tail area in the column heading. This consider-

ation must be taken into account when we compute the bound on the P-value. For example, sup-

pose that t0 5 2.72 for a two-tailed alternate based on 14 degrees of freedom. The value

(corresponding to a 5 0.02) and (corresponding to a 5 0.01), so the

lower and upper bounds on the P-value would be for this case.0.01 , P , 0.02

t0 , 2.977t0 . 2.624

H1: m . 0.82

One-Sample T: COR

Test of mu 5 0.82 vs mu . 0.82

Variable N Mean StDev SE Mean

COR 15 0.83725 0.02456 0.00634

Variable 95.0% Lower Bound T P

COR 0.82608 2.72 0.008
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Finally, most computer programs report P-values along with the computed value of the

test statistic. Some hand-held calculators also have this capability. In Example 9-6, Minitab

gave the P-value for the value t0 5 2.72 in Example 9-6 as 0.008.

9-3.3 Choice of Sample Size

The type II error probability for tests on the mean of a normal distribution with unknown vari-

ance depends on the distribution of the test statistic in Equation 9-23 when the null hypothe-

sis H0: m 5 m0 is false. When the true value of the mean is m 5 m0 1 d, the distribution for T0

is called the noncentral t distribution with n 2 1 degrees of freedom and noncentrality pa-

rameter . Note that if d 5 0, the noncentral t distribution reduces to the usual central

t distribution. Therefore, the type II error of the two-sided alternative (for example) would be

where denotes the noncentral t random variable. Finding the type II error probability b for

the t-test involves finding the probability contained between two points of the noncentral t

distribution. Because the noncentral t-random variable has a messy density function, this in-

tegration must be done numerically.

Fortunately, this ugly task has already been done, and the results are summarized in a se-

ries of O.C. curves in Appendix Charts VIe, VIf, VIg, and VIh that plot b for the t-test against

a parameter d for various sample sizes n. Curves are provided for two-sided alternatives on

Charts VIe and VIf. The abscissa scale factor d on these charts is defined as

(9-24)

For the one-sided alternative or , we use charts VIg and VIh with

(9-25)

We note that d depends on the unknown parameter s2. We can avoid this difficulty in sev-

eral ways. In some cases, we may use the results of a previous experiment or prior information

to make a rough initial estimate of s2. If we are interested in evaluating test performance after

the data have been collected, we could use the sample variance s2 to estimate s2. If there is no

previous experience on which to draw in estimating s2, we then define the difference in the

mean d that we wish to detect relative to s. For example, if we wish to detect a small difference

in the mean, we might use a value of (for example), whereas if we are interested

in detecting only moderately large differences in the mean, we might select (for

example). That is, it is the value of the ratio that is important in determining sample size,

and if it is possible to specify the relative size of the difference in means that we are interested in

detecting, then a proper value of d can usually be selected.

EXAMPLE 9-7 Consider the golf club testing problem from Example 9-6. If the mean coefficient of restitu-

tion exceeds 0.82 by as much as 0.02, is the sample size n 5 15 adequate to ensure that H0: m

5 0.82 will be rejected with probability at least 0.8?

To solve this problem, we will use the sample standard deviation s 5 0.02456 to estimate

s. Then . By referring to the operating characteristic

curves in Appendix Chart VIg (for a 5 0.05) with d 5 0.81 and n 5 15, we find that b 5 0.10,

d 5 0d 0 /s 5 0.02/0.02456 5 0.81

0d 0 /s d 5 0d 0 /s 5 2

d 5 0d 0 /s # 1

d 5
0m 2 m0 0

s 5
0d 0
s

m , m0m . m0

d 5
0m 2 m0 0

s 5
0d 0
s

T ¿0

5 P52ta/2,n21 # T ¿0 # ta/2,n216b 5 P52ta/2,n21 # T0 # ta/2,n21 0  d Þ 06
d1n/s



approximately. Thus, the probability of rejecting H0: m 5 0.82 if the true mean exceeds this

by 0.02 is approximately 1 2 b 5 1 2 0.10 5 0.90, and we conclude that a sample size of

n 5 15 is adequate to provide the desired sensitivity.

Minitab will also perform power and sample size computations for the one-sample t-test.

Below are several calculations based on the golf club testing problem:
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In the first portion of the computer output, Minitab reproduces the solution to Example 9-7, veri-

fying that a sample size of n 5 15 is adequate to give power of at least 0.8 if the mean coefficient

of restitution exceeds 0.82 by at least 0.02. In the middle section of the output, we asked Minitab

to compute the power if the difference in m and we wanted to detect was 0.01. Notice

that with n 5 15, the power drops considerably to 0.4425. The final portion of the output is the

sample size required to give a power of at least 0.8 if the difference between m and m0 of interest

is actually 0.01. A much larger n is required to detect this smaller difference.

9-3.4 Likelihood Ratio Approach to Development of Test Procedures
(CD Only)

EXERCISES FOR SECTION 9-3

m0 5 0.82

Power and Sample Size

1-Sample t Test

Testing mean 5 null (versus . null)

Calculating power for mean 5 null 1 difference

Alpha 5 0.05 Sigma 5 0.02456

Sample

Difference Size Power

0.02 15 0.9117

Power and Sample Size

1-Sample t Test

Testing mean 5 null (versus . null)

Calculating power for mean 5 null 1 difference

Alpha 5 0.05 Sigma 5 0.02456

Sample

Difference Size Power

0.01 15 0.4425

Power and Sample Size

1-Sample t Test

Testing mean 5 null (versus . null)

Calculating power for mean 5 null 1 difference

Alpha 5 0.05 Sigma 5 0.02456

Sample Target Actual

Difference Size Power Power

0.01 39 0.8000 0.8029

9-30. An article in the ASCE Journal of Energy Engineer-

ing (1999, Vol. 125, pp. 59–75) describes a study of the ther-

mal inertia properties of autoclaved aerated concrete used as a

building material. Five samples of the material were tested in

a structure, and the average interior temperature (°C) reported

was as follows: 23.01, 22.22, 22.04, 22.62, and 22.59.
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(a) Test the hypotheses H0: m 5 22.5 versus H1: m Þ 22.5,

using a 5 0.05. Find the P-value.

(b) Is there evidence to support the assumption that interior

temperature is normally distributed?

(c) Compute the power of the test if the true mean interior

temperature is as high as 22.75.

(d) What sample size would be required to detect a true mean

interior temperature as high as 22.75 if we wanted the

power of the test to be at least 0.9?

(e) Explain how the question in part (a) could be answered by

constructing a two-sided confidence interval on the mean

interior temperature.

9-31. A 1992 article in the Journal of the American Medical

Association (“A Critical Appraisal of 98.6 Degrees F, the Upper

Limit of the Normal Body Temperature, and Other Legacies of

Carl Reinhold August Wundrlich”) reported body temperature,

gender, and heart rate for a number of subjects. The body tem-

peratures for 25 female subjects follow: 97.8, 97.2, 97.4, 97.6,

97.8, 97.9, 98.0, 98.0, 98.0, 98.1, 98.2, 98.3, 98.3, 98.4, 98.4,

98.4, 98.5, 98.6, 98.6, 98.7, 98.8, 98.8, 98.9, 98.9, and 99.0.

(a) Test the hypotheses H0: m 5 98.6 versus ,

using a 5 0.05. Find the P-value.

(b) Compute the power of the test if the true mean female

body temperature is as low as 98.0.

(c) What sample size would be required to detect a true mean

female body temperature as low as 98.2 if we wanted the

power of the test to be at least 0.9?

(d) Explain how the question in part (a) could be answered by

constructing a two-sided confidence interval on the mean

female body temperature.

(e) Is there evidence to support the assumption that female

body temperature is normally distributed?

9-32. Cloud seeding has been studied for many decades as

a weather modification procedure (for an interesting study of

this subject, see the article in Technometrics by Simpson,

Alsen, and Eden, “A Bayesian Analysis of a Multiplicative

Treatment Effect in Weather Modification”, Vol. 17, pp. 161–

166). The rainfall in acre-feet from 20 clouds that were se-

lected at random and seeded with silver nitrate follows: 18.0,

30.7, 19.8, 27.1, 22.3, 18.8, 31.8, 23.4, 21.2, 27.9, 31.9, 27.1,

25.0, 24.7, 26.9, 21.8, 29.2, 34.8, 26.7, and 31.6.

(a) Can you support a claim that mean rainfall from seeded

clouds exceeds 25 acre-feet? Use a 5 0.01.

(b) Is there evidence that rainfall is normally distributed?

(c) Compute the power of the test if the true mean rainfall is

27 acre-feet.

(d) What sample size would be required to detect a true mean

rainfall of 27.5 acre-feet if we wanted the power of the test

to be at least 0.9?

(e) Explain how the question in part (a) could be answered by

constructing a one-sided confidence bound on the mean

diameter.

9-33. The sodium content of thirty 300-gram boxes of organic

corn flakes was determined. The data (in milligrams) are as

H1: m Þ 98.6

follows: 131.15, 130.69, 130.91, 129.54, 129.64, 128.77, 130.72,

128.33, 128.24, 129.65, 130.14, 129.29, 128.71, 129.00, 129.39,

130.42, 129.53, 130.12, 129.78, 130.92, 131.15, 130.69, 130.91,

129.54, 129.64, 128.77, 130.72, 128.33, 128.24, and 129.65.

(a) Can you support a claim that mean sodium content of this

brand of cornflakes is 130 milligrams? Use a 5 0.05.

(b) Is there evidence that sodium content is normally distrib-

uted?

(c) Compute the power of the test if the true mean sodium

content is 130.5 miligrams.

(d) What sample size would be required to detect a true mean

sodium content of 130.1 milligrams if we wanted the

power of the test to be at least 0.75?

(e) Explain how the question in part (a) could be answered by

constructing a two-sided confidence interval on the mean

sodium content.

9-34. Reconsider the tire testing experiment described in

Exercise 8-22.

(a) The engineer would like to demonstrate that the mean life

of this new tire is in excess of 60,000 kilometers. Formu-

late and test appropriate hypotheses, and draw conclu-

sions using a 5 0.05.

(b) Suppose that if the mean life is as long as 61,000 kilome-

ters, the engineer would like to detect this difference with

probability at least 0.90. Was the sample size n 5 16 used

in part (a) adequate? Use the sample standard deviation s

as an estimate of s in reaching your decision.

9-35. Reconsider the Izod impact test on PVC pipe described

in Exercise 8-23. Suppose that you want to use the data from this

experiment to support a claim that the mean impact strength

exceeds the ASTM standard (foot-pounds per inch). Formulate

and test the appropriate hypotheses using a 5 0.05.

9-36. Reconsider the television tube brightness experiment

in Exercise 8-24. Suppose that the design engineer believes

that this tube will require 300 microamps of current to pro-

duce the desired brightness level. Formulate and test an

appropriate hypothesis using a 5 0.05. Find the P-value for

this test. State any necessary assumptions about the underly-

ing distribution of the data.

9-37. Consider the baseball coefficient of restitution data

first presented in Exercise 8-79.

(a) Does the data support the claim that the mean coefficient

of restitution of baseballs exceeds 0.635? Use a 5 0.05.

(b) What is the P-value of the test statistic computed in part (a)?

(c) Compute the power of the test if the true mean coefficient

of restitution is as high as 0.64.

(d) What sample size would be required to detect a true mean

coefficient of restitution as high as 0.64 if we wanted the

power of the test to be at least 0.75?

9-38. Consider the dissolved oxygen concentration at TVA

dams first presented in Exercise 8-81.

(a) Test the hypotheses H0: m 5 4 versus . Use

a 5 0.01.

H1: m Þ 4
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9-4 HYPOTHESIS TESTS ON THE VARIANCE AND STANDARD
DEVIATION OF A NORMAL POPULATION

Sometimes hypothesis tests on the population variance or standard deviation are needed.

When the population is modeled by a normal distribution, the tests and intervals described in

this section are applicable.

9-4.1 The Hypothesis Testing Procedures

Suppose that we wish to test the hypothesis that the variance of a normal population s2 equals

a specified value, say or equivalently, that the standard deviation s is equal to s0. Let X1,

X2, p , Xn be a random sample of n observations from this population. To test

(9-26)

we will use the test statistic:

H1: s2 Þ s2
0

H0: s2 5 s2
0

s2
0,

(b) What is the P-value of the test statistic computed in part (a)?

(c) Compute the power of the test if the true mean dissolved

oxygen concentration is as low as 3.

(d) What sample size would be required to detect a true mean

dissolved oxygen concentration as low as 2.5 if we

wanted the power of the test to be at least 0.9?

9-39. Consider the cigar tar content data first presented in

Exercise 8-82.

(a) Can you support a claim that mean tar content exceeds

1.5? Use a 5 0.05

(b) What is the P-value of the test statistic computed in part (a)?

(c) Compute the power of the test if the true mean tar content

is 1.6.

(d) What sample size would be required to detect a true mean

tar content of 1.6 if we wanted the power of the test to be

at least 0.8?

9-40. Exercise 6-22 gave data on the heights of female

engineering students at ASU.

(a) Can you support a claim that mean height of female engi-

neering students at ASU is 65 inches? Use a 5 0.05

(b) What is the P-value of the test statistic computed in part (a)?

(c) Compute the power of the test if the true mean height is

62 inches.

(d) What sample size would be required to detect a true mean

height of 64 inches if we wanted the power of the test to be

at least 0.8?

9-41. Exercise 6-24 presented data on the concentration of

suspended solids in lake water.

(a) Test the hypotheses H0: m 5 55 versus , use

a 5 0.05.

(b) What is the P-value of the test statistic computed in part (a)?

(c) Compute the power of the test if the true mean concentra-

tion is as low as 50.

(d) What sample size would be required to detect a true mean

concentration as low as 50 if we wanted the power of the

test to be at least 0.9?

9-42. Exercise 6-25 describes testing golf balls for an over-

all distance standard.

(a) Can you support a claim that mean distance achieved by

this particular golf ball exceeds 280 yards? Use a 5 0.05.

(b) What is the P-value of the test statistic computed in part (a)?

(c) Compute the power of the test if the true mean distance is

290 yards.

(e) What sample size would be required to detect a true mean

distance of 290 yards if we wanted the power of the test to

be at least 0.8?

H1: m Þ 55

(9-27)X2
0 5
1n 2 12S2

s2
0

If the null hypothesis is true, the test statistic defined in Equation 9-27

follows the chi-square distribution with n 2 1 degrees of freedom. This is the reference

X2
0H0: s2 5 s2

0
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distribution for this test procedure. Therefore, we calculate , the value of the test statistic 

and the null hypothesis would be rejected if

where and are the upper and lower 100ay2 percentage points of the chi-

square distribution with n 2 1 degrees of freedom, respectively. Figure 9-10(a) shows the

critical region.

The same test statistic is used for one-sided alternative hypotheses. For the one-sided

hypothesis

(9-28)

we would reject H0 if whereas for the other one-sided hypothesis

(9-29)

we would reject H0 if The one-sided critical regions are shown in Figure 

9-10(b) and (c).

EXAMPLE 9-8 An automatic filling machine is used to fill bottles with liquid detergent. A random sample of

20 bottles results in a sample variance of fill volume of s2 5 0.0153 (fluid ounces)2. If the

variance of fill volume exceeds 0.01 (fluid ounces)2, an unacceptable proportion of bottles

will be underfilled or overfilled. Is there evidence in the sample data to suggest that the man-

ufacturer has a problem with underfilled or overfilled bottles? Use a 5 0.05, and assume that

fill volume has a normal distribution.

Using the eight-step procedure results in the following:

1. The parameter of interest is the population variance s2.

2. H0: s2 5 0.01

3. H1: s2 . 0.01

4. a 5 0.05

5. The test statistic is

x2
0 5
1n 2 12s2

s2
0

x2
0 , x2

12a,n21.

H1: s2 , s2
0

H0: s2 5 s2
0

x2
0 . x2

a,n21,

H1: s2 . s2
0

H0: s2 5 s2
0

x2
12a/2,n21x2

a/2,n21

x2
0 . x2

a/2, n21  or if x2
0 , x2

12a/2,n21

H0: s2 5 s2
0

X
2
0,x2

0

(a)

/2, n – 1    α

α

x2

n – 1
x2

/2, n – 1    α
x20

f (x)

x
1 –

/2
α /2

(b)

, n – 1    α
x2

n – 1
x2

0

f (x)

x

(c)

n – 1
x2

, n – 1    α
x20

f (x)

x
1 –

α

α

Figure 9-10 Reference distribution for the test of with critical region values for (a) ,

(b) , and (c) .H1: s2 , s2
0H1: s2 . s2

0

H1: s 2 Þ s2
0H0: s2 5 s2

0
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6. Reject H0 if

7. Computations:

8. Conclusions: Since we conclude that there is no

strong evidence that the variance of fill volume exceeds 0.01 (fluid ounces)2.

Using Appendix Table III, it is easy to place bounds on the P-value of a chi-square test.

From inspection of the table, we find that and Since 

we conclude that the P-value for the test in Example 9-8 is in the

interval The actual P-value is P 5 0.0649. (This value was obtained from

a calculator.)

9-4.2 b-Error and Choice of Sample Size

Operating characteristic curves for the chi-square tests in Section 9-4.1 are provided in

Appendix Charts VIi through VIn for a 5 0.05 and a 5 0.01. For the two-sided alternative

hypothesis of Equation 9-26, Charts VIi and VIj plot b against an abscissa parameter

(9-30)

for various sample sizes n, where s denotes the true value of the standard deviation. Charts

VIk and VIl are for the one-sided alternative while Charts VIm and VIn are for

the other one-sided alternative In using these charts, we think of s as the value

of the standard deviation that we want to detect.

These curves can be used to evaluate the b-error (or power) associated with a particu-

lar test. Alternatively, they can be used to design a test—that is, to determine what sample

size is necessary to detect a particular value of s that differs from the hypothesized

value s0.

EXAMPLE 9-9 Consider the bottle-filling problem from Example 9-8. If the variance of the filling process

exceeds 0.01 (fluid ounces)2, too many bottles will be underfilled. Thus, the hypothesized

value of the standard deviation is s0 5 0.10. Suppose that if the true standard deviation of the

filling process exceeds this value by 25%, we would like to detect this with probability at least

0.8. Is the sample size of n 5 20 adequate?

To solve this problem, note that we require

This is the abscissa parameter for Chart VIk. From this chart, with n 5 20 and l 5 1.25, we

find that b . 0.6. Therefore, there is only about a 40% chance that the null hypothesis will be

rejected if the true standard deviation is really as large as s 5 0.125 fluid ounce.

To reduce the b-error, a larger sample size must be used. From the operating characteris-

tic curve with b 5 0.20 and l 5 1.25, we find that n 5 75, approximately. Thus, if we want

the test to perform as required above, the sample size must be at least 75 bottles.

l 5
s
s0

5
0.125

0.10
5 1.25

H1: s2 , s2
0.

H1: s2 . s2
0,

l 5
s
s0

0.05 , P , 0.10.

27.20 , 29.07 , 30.14,

x2
0.05,19 5 30.14.x2

0.10,19 5 27.20

x2
0 5 29.07 , x2

0.05,19 5 30.14,

x2
0 5

1910.01532
0.01

5 29.07

x2
0 . x2

0.05,19 5 30.14.


