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MATEMATISK STATISTIK OCH SIGNALBEHANDLING ESSO011

Datorlab 1

Fordelningar och slumpvariabler.
(Understanding Distributions)

In this computer exercise we will encounter some fundamental concepts, firstly, from probability theory:
the probability density function, expectation, and variance of a random variable; and, secondly, from
statistics: the histogram, the empirical distribution, and probability papers. The Weibull distribution
and the Gumbel distribution, both often used in reliability /safety analysis and in studies of environmental
hazards, will serve as examples. At first we will rely on simulations, but eventually we will investigate
real-world data: measurements of wave heights from the Atlantic Ocean.

You need a copy of Matlab that includes the Statistical Toolbox. Most versions of Matlab (including
our in the lab) have this toolbox included. On some occasion you will need access to data files including
samples that you will be asked to analyze. All necessary files are downloadable from the course home
page

http://www.math.chalmers.se/Stat/Grundutb/CTH/ess011/1415/files/labfiles.zip.

Please download the labfiles.zip file and uncompress it at the directory you plan to use for the computer
exercises.

1 Preparatory exercises

1. Make sure you understand what probability and density functions are and how they are related to
the distribution function.

2. Given a sample {z1,..,2,} from a random variable (r.v.) X, how do you construct the empirical
distribution function? What is the empirical distribution function?

3. Explain what is meant by the a-quantile of a distribution.

Question 1: Write down the definitions of expectation and variance of a continuous ran-
dom variable X, i.e. E(X) and V(X). Derive the expectation and variance of X if X is
exponentially distributed.

2 Relative frequencies and distributions

In this section, we will use numerical examples in Matlab to approach the concepts “probability” and
“distribution”. The aim is that you should obtain an intuitive feeling for probabilistic reasoning, rather
than to be immediately confronted with theory.
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Exploring data

For illustrational purposes, we will use artificial data, which are simulated from a statistical distribution.
This is opposite to real-world data, where no labels, explaining the statistical distributions, are found.
However, although we, statistically speaking, know the origin of the data, this approach is useful from
a pedagogical point of view. Even in research on statistical-computation algorithms, simulated data are
often used for analysis and testing.

To obtain a random data-set of 50 values, type

>> data=randn(1,50);

Question 2: What is the distribution of your random sample (use help randn)? Write down the
density function.

A good rule, whenever a new set of data is encountered: try to plot it in some kind of diagram! Use
the plot command: plot(data,’.-’). Another way of presenting the data is to plot the sorted data:
plot(sort(data),’.-’). From the data set got above, choose a relatively high number, say, x = 1.1. It
may be interesting to calculate the percentage of data which have values less than or equal to this number.
When the number of observations in the sample increases, we may interpret the ratio as the probability
to obtain a value less than x. The ratio is calculated as follows:

>> x=1.1; ratio=sum(data<=x)/length(data)

(See that you understand the commands!)

Question 3: Try three other values of x and write down the answer. How do you expect the
percentage to change with the change of x?

The opposite procedure, that is, find the value x corresponding to a given probability, is often more
important. This is referred to as finding the quantiles. We will return to this later.

We can of course let the computer choose a large number of values x to examine, and then try get an
overview. This is implemented in a home-written function empcdf. The function delivers two vectors: x
contains the values chosen, while the ratios are collected in ratio. (If you want to see the code, try type
empcdf.) The result is visualised in a new figure:

>> cdfplot(data) ;

>> figure(2);

>> x=sort(data); ratio=(1:length(data))/length(data);
>> plot(x,ratio,’.?)

>> grid on

The figure should look similar to Figure [1| in this paper. It shows in some sense how the values in data

are distributed, and the resulting function is called the empirical distribution functionﬂ. For a value on

the abscissa, say, 1.1, we find the percentage of values in the sample with values less than this number.
Another way to plot the empirical distribution function is to make use of the command stairs:

>> n=length(data);

>> figure(3);

>> stairs(sort(data), (1:n)/n)
>> grid on

! Distribution functions are often called cumulative distribution functions; that is why our home-written routine is called
empcdf, empirical cumulative distribution function.
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Figure 1: Empirical distribution function, an example.

Larger samples. The distribution function of a random variable

Let us now study another sample of 50 observations, obeying the same random law as the previous data.
We simulate data, and plot them in the same figure as before:

>> data=randn(1,50);
>> figure(2);
>> cdfplot(data);

Continue with a larger set of data, say, 2000 observations. Analyse them as before:

>> hold on
>> data=randn(1,2000);
>> cdfplot(data);

With a large number of observations, the result approaches the distribution function, that is, for a
random variable X, the function

Fx(z) =P(X < x). (1)

In our case, X was chosen from a Gaussian distribution (normal distribution); we had that X € N(0;1).
It is instructive to plot the theoretical distribution function, implemented in normcdf, in the same figure
as before:

>> plot(x,normcdf (x),’r’)
>> hold off

For every distribution function Fy, we have that Fx(z) — 1 when x — oo and that Fx(z) — 0 when
T — —00.

Question 4: Estimate the median. Is it easy to estimate the mean of the distribution from the
plot?
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Quantiles

The concept of quantile (or fractile), mentioned before, is important. The quantile can be defined in
different ways — when studying tables &c., you should always make sure of which definition is used. We
here define the quantile as a number x, which satisfies

PX<zy)=1-« (2)

where « is some small number (common choices: 0.05, 0.01, 0.001). The quantile is not always unique;
for some values of o there might be infinitely many x, satisfying ; for other values of o there might be
no quantile z,, at all.

Question 5: From your Matlab-plot (figure(2)), using and the definition of quantile, can you
estimate the quantile x5 when a = 0,057 Write the estimate down. Compare with the exact
value, given by norminv(1-0.05) (alo write it down).

Other distributions

Some common choices of distribution functions have their own names. They are not only just functions
in a mathematical sense, but have also been found suitable when modelling random phenomena in science
and technology. The distributions are listed in almost any basic text-book in mathematical statistics.

Some of the distributions are implemented in the Statistics Toolbox. You have already encountered
the distribution function when X € N(0;1); it is often denoted by ®:

Fx(z) = ®(z) = (273)1/2/3: /2 g

An easy way to obtain new distributions is scaling random variables or adding constants to them:
Suppose that the distribution function Fx(z) of some stochastic variable X is known. If a new stochastic
variable Y is defined as Y = aX + b, where a > 0 and b are constants, we can perform the following
calculation

Fy(y) =P(Y <y) =P(aX +b <y) =P(X < (y - b)/a) = Fx((y — b)/a)

to obtain the distribution function for Y.

Question 6: What is the distribution function Fy of Y if a < 07 Write it down in the terms of
Fx. What is the distribution function Fy of Y if a = 07 Sketch a plot of Fy in the latter case.

This transformation is governed by two parameters a and b; other distributions or transformations of
distributions might be governed by other sets of parameters. When analysing real-world data, one often
knows from experience which type of distribution is suitable to describe the data. What remains is then
to try to estimate the parameters out of data.

The normal distribution, for instance, is characterised by two parameters, m and o2 (or o): if X is
standard-normal, i.e. X € N(0;1), then for Y = 0 X + m we have that Y € N(m;o?), where m and o?
(or o) are the parameters.

The Gumbel distribution and the Weibull distribution

Two important distributions, with which we will meet up again in the course, are the Gumbel distribu-
tion (also called type I extreme value distribution, or double exponential distribution) and the Weibull
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distribution. A Gumbel distributed random variable X has the distribution function
Fx(z) = exp(—e~@0/7)  _o0 < 2 < c0.

Here, b is a location parameter and a > 0 is a scaling parameter. If X belongs to a Weibull distribution,
we have

Fx(z) =1—exp(—((z —b)/a)f), ==b (3)

where k is a shape parameter, b is a location parameter and a > 0 is a scaling parameter.

Question 7: Choose some values of the parameters and plot the function 1 — exp(—((z — b)/a)¥).
How does 1 — exp(—((x — b)/a)*) behave when x < b? Does it explain restriction z > b, and why?

Let us make some plots of these distribution functions. Try the following two cases of a Gumbel
distribution:

>> help evcdf

>> figure

>> x=-4:0.05:6;

>> a=2; b=0; Fl=evcdf(x,b,a);
>> a=1; b=1; F2=evcdf(x,b,a);
>> plot(x,F1,’b’,x,F2,°r?)

Two examples of a Weibull distribution are drawn by typing

>> help wblcdf

>> figure

>> x=linspace(0,6,200) ;

>> a=1; k=1; Fl=wblcdf(x,a,k);

>> a=2.3; k=1.8; F2=wblcdf(x,a,k);
>> plot(x,F1,’b’,x,F2,°r?)

Note that the Matlab routine wblcdf models only the case when b = 0, cf .

3 Expectation and variance of a random variable

For a random variable X, the expectation, sometimes called the mean and denoted E(X), gives the value of
X “on average”; if the distribution of X had been the mass distribution of a physical thing, the expectation
would have located the centre of gravity of that thing. The wvariance V(X) (or, rather, the standard
deviation D(X) = 1/V(X)) of X can be regarded as a measure of the distribution’s dispersion. For a set
of important distributions, E(X) and V(X) have been explicitely derived (in terms of the distribution’s
parameters) and tabulated, see for example the textbook.

For a given data set x1, ..., x, (sample), in most cases we do not know the distribution from which
the sample is taken, and hence not the mean and variance of that distribution. The sample mean, often
denoted z = (31" ; 2;)/n, and the sample variance, often denoted s? = -3  (z; — z)?, are then the
corresponding measures of location and dispersion. If the number n of observations increases, we may
expect that these quantities become closer to E(X) and V(X)) respectively. Let us examine this in Matlab
by means of simulated data, the distribution of which we can control:

Consider the Weibull distribution,

Fx(z) = 1 - exp(—((z — b)/a)°), = >b.
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The mean and variance are given by

E(X) = b+aI‘(1+%),
2
V(X) = a2r(1+%) —a? <F(1+i)) ,
where ~
F(p):/o P~ e " du. (4)

is the gamma function. Choose for example a = 1,5, b = 0, and ¢ = 2. To calculate expectation and
variance, one needs the gamma function in which is implemented in Matlab as gamma; hence

>> a=1.5; b=0; c=2;

>> EX=b+axgamma(1+1/c)

>> VX=a"2*gamma (1+2/c)-a~2*(gamma (1+1/c))~2;
>> DX=sqrt (VX)

Now, simulate a sample of 50 observations and find the sample mean and standard deviation by the
commands mean and std respectively:

>> x=wblrnd(a,c,1,50);
>> mean(x), std(x)

Question 8: Compare the values estimated from the samples with the theoretical values
EX, DX that you have also obtained above. Write down the values for E(X), z, D(X), d(z).
Are the theoretical and empirical values consistent with each other? Simulate larger samples
of, say, 200, 1000, and 5000 observations respectively. What happens when the number of
observations increases?

4 Probability plots

Assume that we have a set of observations x1, zo, ..., z,. Before we estimate any parameters, we must
convince ourselves that the observations originate from the right family of distributions, e.g. normal,
Gumbel, or Weibull. One way to get a rough idea of which family of distributions may be suitable, is to
display the observations in a probability ploiﬂ: If you suspect that the data originate from, for instance,
a normal distribution, then you should make a mormal probability plot; if you instead suspect a Gumbel
distribution, then make a Gumbel probability plot. If, in the plot, the observations seem to line up well
along a straight line, it indicates that the chosen distribution for the probability plot indeed might serve
as a good model for the observations. Statistics Toolbox provides normplot (for normal distribution),
wblplot (for Weibull distribution); but unfortunately there is no probability plot for Gumbel distribution,
so we have created one and named it gumbplot (available in labfiles). Acquaint yourself with the above-
mentioned commands, for example

2Before the computer age, the observations were plotted manually into diagram-forms printed on sheets of paper; therefore
we now and then will use the expression “to plot data in a certain probability paper” even if we are referring to computer-
displayed diagrams.
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>> datl=randn(2000,1); % Attention: Normal distribution!
>> normplot(datl)

>> wblplot(datl)

>> dat2=rand(3000,1); % Attention: Uniform distribution!
>> normplot(dat?2)

>> gumbplot (dat2)

>> dat3=wblrnd(2,2.3,1,3000); % Attention: Weibull distribution!
>> wblplot(dat3)

>> gumbplot(dat3) % Attention: Gumbel distribution!

>> dat4=gumbrnd(1,2,1,3500); % Available in labfiles
>> gumbplot(dat4)

Experiment more with the number of observations; change also distributions!

’ Question 9: What happens when you plot the data in the “wrong” distribution plot?

Measurements of significant wave heights in the Atlantic Ocean

In the field of oceanography and marine technology, statistical extreme-value theory has been used to a
great extent. In design of offshore structures knowledge about “extreme” conditions is important.

In the numerical examples above, we used artificial data, simulated from a distribution which we could
control. We will now consider real measurements from the Atlantic Ocean. The data set contains so-called
significant wave heights (in meters), that is, the average of the highest one-third of the waves.

Now, load the data set atlantic.dat and read about the measurements; then find the size of data,
and plot it:

>> atl=load(’atlantic.dat’);
>> help atlantic

>> size(atl)

>> plot(atl,’.’)

One knows that, roughly speaking, the registered so-called significant wave-heights behave, statistically,
as if they were maximum wave-heights; therefore one can suspect them to originate from a Gumbel
distribution, for instance. Below we will make different probability plots.

>> normplot(atl)
>> normplot (log(atl))
>> gumbplot (atl)
>> wblplot(atl)

’ Question 10: Which distribution might be a satisfactory choice?
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