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Matematisk Statistik och signalbehandling ESS011

Datorlab 2

Slumptal, slumpsignaler och filtrering.
In this computer exercise you will learn how to generate independent random numbers having a specified
probability distributions. The random numbers will then be used to simulate stationary random functions.
The random functions will be generated in the spectral domain and have normal (Gaussian) distribution:
A stationary normally distributed random function is defined by its expected value and the expected
periodogram, describing the average distribution of power over frequencies in the signal.
You need a copy of Matlab that includes the Statistical Toolbox. Most versions of Matlab (including
our in the lab) have this toolbox included. On some occasion you will need access to data files including
samples that you will be asked to analyze. All necessary files are downloadable from the course home
page
http://www.math.chalmers.se/Stat/Grundutb/CTH/ess011/1415/files/labfiles.zip.
Please download the labfiles.zip file and uncompress it at the directory you plan to use for the computer
exercises.

1 Preparatory exercises

1. Give a 0.95-quantile of a standard normal distribution.

2. Write down definition of average power of a signal and of "periodogram" of a signal.

3. Read Chapter 2 in "Additional material for ESS011" compendium, click . Find in Section 2.2.2
answers to the following questions;

(a) How are phases distributed in the normal random functions?

(b) Are the phases dependent?

2 How to generate random numbers

Let Y be a uniformly distributed random variable (between 0 and 1), and let F be a distribution function.
Then a random variable X is said to be a random variable distributed according to F if F (X) = Y , i.e.
if1

X = F−1(Y ).
1Note that F−1(y) is the inverse function of F (at instant y), not the reciprocal value 1/F (y) of F (y).

http://www.math.chalmers.se/Stat/Grundutb/CTH/ess011/1415/files/Notes/Bayes1.pdf
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If, for instance, F is

Rayleigh: Y = F (X) = 1− e−(X
2 )

2

⇔ X = (− ln(1− Y ))1/2

normal: Y = F (X) = Φ

(
X −m
σ

)
⇔ X = m+ σΦ−1(Y )

Gumbel: Y = F (X) = exp
(
−e−

X−b
a

)
⇔ X = b− a ln(− lnY ),

then X is a Rayleigh, normally, and Gumbel distributed random variable, respectively. In Matlab uni-
formly distributed random variables (“random numbers”) are generated by means of the command rand.
We will use it here to produce 2000 normally-distributed random numbers:

m=10; sigma=3;
x=m+sigma*norminv(rand(2000,1));
plot(x,’.’), grid on

Here we really encourage you to use the command randn instead, i.e

x=m+sigma*randn(2000,1);

Problem 1: Simulate 1000 standard Rayleigh random numbers. Since Rayleigh distribution
is a special case of the Weibull distribution use the Weibull probability plot (see Datorlab 1)
to check whether the simulated random numbers seam to be Rayleigh distributed. Comment
on the result.

To generate random numbers in Matlab, one can also make use of the commands wblrnd (Weibull),
normrnd (normal), and raylrnd (Rayleigh) from the commercial Statistics Toolbox.

3 Random functions

3.1 Square wave - signal

A square wave x with period T = 2 can be defined using Fourier series as follows

x(t) =
∑

k=1,3,...

2|ak| cos(ωk t+ 3π/2), ωk = 2π k/T, |ak| = 2/ωk. (1)

Note that the average value of x is zero and hence a0 = 0.
In practice the infinite sum has to be truncated, i.e. one uses only finite number of terms in the sum

(1), viz

xK(t) =
∑

k=1,3,...,K

4

ωk
cos(ωk t+ 3π/2). (2)

The following Matlab script can be used to evaluate xK(t). In the code dt and N define the sampling
rate and duration of the signal xK(t), respectively. Furter K defines the truncation threshold

T=2; N=2^8-1;
dt=T/N; t=(0:N-1)*dt;
K=15; w=2*(1:2:K)*pi/T;
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a=2./w; phi=3*pi/2;
xK = zeros(1,N);
for k=1:length(w);

xK=xK+2*a(k)*cos(w(k)*t+phi);
end

Problem 2: Use the code to compare x(t) defined in (1) with the approximation (2).
Illustrate the comparison by a suitable plot.

For any Fourier series x(t) =
∑

k>0 2|ak| cos(ωk t+ φk) the function

s(ωk) = 2|ak|2, k ≥ 1, (3)

called periodogram, describes how the average power of the signal is distributed over angular frequencies
ωk. The average power V of the signal x is given by

V =
1

T

∫ T

0
x(t)2 dt =

+∞∑
k=1

s(ωk),

since one has assumed that
∫ T
0 x(t) dt = 0 implying that a0 = 0. The truncated signal xK(t), see (2), was

defined by setting |ak| = 0 for k > K and hence its average power V =
∑K

k=1 s(ωk).

Problem 3: Compute the average power of the square wave x and the average power of
the approximation xK , K = 15. How much energy (in %) is missing in xK?

Problem 4: Compute and plot periodogram s(ωk) of xK , K = 15, for k = 1, 2, . . . , 25.
(Hint: a script can be found in the appendix to this lab.)

3.2 Finding periodogram using ftt

Consider a periodic signal x(t), with period T , represented in form of a time series x(ti), ti = i · dt and
T = N ·dt. Neglecting the so called "aliasing", that may occure for signals having unbounded periodogram,
then the first (N − 1)/2 values of the periodogram can be found using the fft (Fast Fourier Transform)
function. This will be illustrated using signal xK created in Section 3.1. The signal has, for all k > K,
s(ωk) = 0, see (3). Hence one can recover all s(ωk) using the fft algorithm. This will be done using the
following Matlab script

N2 = (N-1)/2;
FxK=fft(xK);
S = fftshift(abs(FxK).^2)/N^2;
S = 2*S(N2+2:N);
dw = 2*pi/T; % T=N*dt
w = (1:N2)*dw;
semilogy(w, S,’*’)
axis([0 2*pi*25/T 1e-35 1])
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Problem 5: Is the periodogram computed using ftt good approximation of the peri-
odogram of xK?

3.2.1 Example: periodogram of measured sea waves

In the numerical examples above, we used artificial data (the square wave) to illustrate some concept from
signal processing. We will now consider real measurements from the North Atlantic Ocean. The data set
contains sea level elevation (in meters) at some location on NAO. The data is seen as a sequence of sea
waves. Command help sea gives some important informations about the waves; that the sea is build up
by the wind waves and swell; the average wave period is 4 seconds while swell has about 10 seconds period

Now, load the data set sea.dat and read about the measurements; then plot it:

xs=load(’sea.dat’);
help sea
size(xs)
plot(xs(:,1),xs(:,2),’’)
N=length(xs); dt=0.25; T=N*dt;

Problem 6: Estimate the periodogram of the sea level data using fft. Hint: replace xK
by xs in the first script presented in Section 3.2.

Command help sea gave information that lower peak period in the signal is Tp2 = 11.5s while higher
peak period is Tp1=5.6s. Note that the square wave has period 2.

Problem 6a: Zoom the signal. Can you see the two main periods?

The angular frequency for which a periodogram attains its maximum ωp is called the peak frequency.
Similarly Tp = 2π/ωp is called peak period. The significant wave height H is defined as H = 4

√
V , where

V is the signals average energy. Recall that the average energy is equal of the sum of periodogram.

Problem 7: Estimate the peak peak frequency ωp , the peak period Tp and the significant
wave height H of the sea level data sea. (Hint: a script can be found in the appendix to
this lab.)

The measured signal seams to vary in the unpredictable way. The computed periodogram of the
signal is very noisy which we attribute to randomness of the signal. In oceanography one is often using
a theoretical power spectrum to describe the distribution of energy between different frequencies. The
power spectrum S(ω) is defined for any ω ≥ 0 while periodogram only for ωk. Roughly, periodogram
s(ωk) ≈ S(ωk) dω.

There are many proposed spectra in the literature. Popular Pierson-Moskowitz spectrum, often used
to model fully developed sea, will be used here. The spectrum depends on two parameters H and ωp and
is given by

S(ω) = cω−5 exp(−1.25ω4
p/ω

4), c = 0.3125H2ω4
p. (4)

Problem 8: Use the estimated values of ωp and H to evaluate the "theoretical" peri-
odogram. (Hint: a script can be found in the appendix to this lab.) Does the theoretical
periodogram describe well the observed periodogram?)
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One can see that periodogram varies a lot around the "thoeretical" power spectrum. In addition
energy contents for low frequencies, corresponding to ocean swell, seams to be missed by the "theoretical
spectrum". In the following section we shall study random functions which have a random (very irregular)
periodograms.

3.3 Random function

Next we will present random functions X(t), say, having expectation E[X(t)] = 0 and expected pe-
riodogram s(ωk), say, for example periodogram of a square wave or sea waves derived using Pierson-
Moskowits power spectrum. As before we define

|ak| =
√
s(ωk)/2, ωk = 2πk/T.

A periodic random function is defined as follows

X(t) =
+∞∑
k=1

2|Ak| cos(ωk t+ Φk), |Ak| = |ak|Rk/
√

2, Φk = 2π Uk, (5)

where Rk are independent Rayleigh distributed random numbers while Uk are independent uniformly
distributed random variables. (It is not difficult to show that E[X(t)] = 0 and that X(t) is normally
distributed.) In practice the infinite series in (5) has to be truncated leading to the following approximation

XK(t) =

K∑
k=1

2|Ak| cos(ωk t+ Φk). (6)

3.3.1 Example of random function having theoretical periodogram of the sea waves

In this example we will use the periodogram defined using the Pierson-Moskowitz power spectrum of sea
waves, viz

s(ωk) = S(ωk) dω,

where S(ω) is defined by (4). The following code can be used to simulate sea waves having Pearson-
Moskowitz spectrum

t=xs(:,1)’;
a = sqrt(SPM*dw/2);
R = sqrt(- 2 *log(rand(1,length(w)))); % Rayleigh random numbers
U=rand(1,length(w));
A=a.*R/sqrt(2); % random amplitudes
Phi=2*pi*U; % random phases
Xs = zeros(1,N);
for k=1:length(w);

Xs = Xs + 2*A(k)*cos(w(k)*t + Phi(k));
end

figure
plot(t,xs(:,2))
hold on
plot(t,Xs,’r’)
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Problem 9: Zoom the last plot. Is the variability of the measured signal xs and the
simulated Xs similar?

Problem 9a: Estimate periodogram of the simulated random signal Xs and compare it with
Pierson-Moskowitz spectrum SPM*dw evaluated in Problem 8. (Use fft algorithm given in
Section 3.2.1 to evaluate the periodogram of Xs.) Are these similar?

The periodogram of Xs is a random signal. The expected value of the periodogram is equal to the
Pierson-Moskowitz spectrum.

Problem 10: Simulate Ns times, for example Ns=10, the Random signals Xs. For each
simulation estimate a periodogram. (You will get Ns periodograms.) Take the average of
the periodograms and compare it with the Pierson-Moskowitz spectrum SPM*dw evaluated
in Problem 8. Is the average periodogram closer to the theoretical one? What would happen
if one has increased the number of simulations Ns?

4 Appendix

In the appendix some MATLAB scripts are given.

Problem 4:

K=15; T=2;
wod=2*(1:2:K)*pi/T;
figure
semilogy(wod, 2*(2./wod).^2,’ro’)
hold on
we = 2*pi*[2:2:16 17:25]/T;
plot(we,1E-30,’ro’)

Problem 6:

N2 = (N-1)/2;
Fxs=fft(xs);
S= fftshift(abs(Fxs).^2)/N^2;
S= 2*S(N2+2:N);
dw = 2*pi/T;
w = (1:N2)*dw;
figure
plot(w,S)
hold on

Problem 7:

[Smax ind]=max(S);
wp=w(ind); Tp=2*pi/wp; H=4*sqrt(sum(S))
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[wp Tp H]

Problem 8:

Given values of peak angular frequency ωp and significant wave height H the "theoretical" periodogram
can be evaluated using the following code

c=0.3125 *H^2*wp^4;
SPM= c*w.^-5.*exp(-1.25.*wp.^4./w.^4);
plot(w,SPM*dw,’r’,’linewidth’,3)
axis([0 4 0 4E-3])
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